Conversion of human choriogonadotropin into a follitropin by protein engineering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, R.K.; Dean-Emig, D.M.; Moyle, W.R.
1991-02-01
Human reproduction is dependent upon the action of follicle-stimulating hormone (hFSH), luteinizing hormone (hLH), and chorionic gonadotropin (hCG). While the {alpha} subunits of these heterodimeric proteins can be interchanged without effect on receptor-binding specificity, their {beta} subunits differ and direct hormone binding to either LH/CG or FSH receptors. Previous studies employing chemical modifications of the hormones, monoclonal antibodies, or synthetic peptides have implicated hCG {beta}-subunit residues between Cys-38 and Cys-57 and corresponding regions of hLH{beta} and hFSH{beta} in receptor recognition and activation. Since the {beta} subunits of hCG or hLH and hFSH exhibit very little sequence similarity in this region,more » the authors postulated that these residues might contribute to hormone specificity. To test this hypothesis the authors constructed chimeric hCG/hFSH {beta} subunits, coexpressed them with the human {alpha} subunit, and examined their ability to interact with LH and FSH receptors and hormone-specific monoclonal antibodies. Surprisingly, substitution of hFSH{beta} residues 33-52 for hCG{beta} residues 39-58 had no effect on receptor binding or stimulation. However, substitution of hFSH{beta} residues 88-108 in place of the carboxyl terminus of hCG{beta} (residues 94-145) resulted in a hormone analog identical to hFSH in its ability to bind and stimulate FSH receptors. The altered binding specificity displayed by this analog is not attributable solely to the replacement of hCG{beta} residues 108-145 or substitution of residues in the determinant loop located between hCD{beta} residues 93 and 100.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grasso, P.; Santa-Coloma, T.A.; Reichert, L.E. Jr.
1991-06-01
We have previously described FSH receptor-mediated influx of 45Ca++ in cultured Sertoli cells from immature rats and receptor-enriched proteoliposomes via activation of voltage-sensitive and voltage-independent calcium channels. We have further shown that this effect of FSH does not require cholera toxin- or pertussis toxin-sensitive guanine nucleotide binding protein or activation of adenylate cyclase. In the present study, we have identified regions of human FSH-beta-subunit which appear to be involved in mediating calcium influx. We screened 11 overlapping peptide amides representing the entire primary structure of hFSH-beta-subunit for their effects on 45Ca++ flux in FSH receptor-enriched proteoliposomes. hFSH-beta-(1-15) and hFSH-beta-(51-65) inducedmore » uptake of 45Ca++ in a concentration-related manner. This effect of hFSH-beta-(1-15) and hFSH-beta-(51-65) was also observed in liposomes lacking incorporated FSH receptor. Reducing membrane fluidity by incubating liposomes (containing no receptor) with hFSH-beta-(1-15) or hFSH-beta-(51-65) at temperatures lower than the transition temperatures of their constituent phospholipids resulted in no significant (P greater than 0.05) difference in 45Ca++ uptake. The effectiveness of the calcium ionophore A23187, however, was abolished. Ruthenium red, a voltage-independent calcium channel antagonist, was able to completely block uptake of 45Ca++ induced by hFSH-beta-(1-15) and hFSH-beta-(51-65) whereas nifedipine, a calcium channel blocker specific for L-type voltage-sensitive calcium channels, was without effect. These results suggest that in addition to its effect on voltage-sensitive calcium channel activity, interaction of FSH with its receptor may induce formation of transmembrane aqueous channels which also facilitate influx of extracellular calcium.« less
FSH is an important regulator of mammalian gametogenesis and the female reproductive cycle. Although little is known about the transcriptional regulation of the beta-subunit (the rate-limiting subunit of FSH synthesis), sequence analysis of the ovine FSHbeta promoter has revealed...
Anti-activin A antibody (IgY) specifically neutralizes various activin A activities.
Murata, T; Saito, S; Shiozaki, M; Lu, R Z; Eto, Y; Funaba, M; Takahashi, M; Torii, K
1996-01-01
Activin A (beta A beta A), originally isolated from ovarian follicular fluids as a follicule-stimulating hormone (FSH) secretion stimulator, has also been identified as an erythroid differentiation factor (EDF), a neuron survival factor and a mesoderm-inducing factor. Thus, activin A is a multifunctional factor, and further studies on its physiological function are important. However, it is very difficult to produce a specific antibody to neutralize the activity of activin A because of its highly conserved amino acid sequence across mammalian species. In this study, we succeeded in generating an antibody against activin A, which can neutralize several activities of activin A, such as the stimulation of FSH secretion from pituitary cells and the induction of the differentiation of erythrocytes in vitro. This antibody did not affect the activity of activin B (beta B beta B), which induces the differentiation of erythrocytes in vitro, and the activity of inhibin A (alpha beta A), which inhibits FSH secretion from pituitary in vitro, but slightly neutralized that of activin AB (beta A beta B). Western blotting analysis showed that this antibody recognized both dimeric and monomeric forms of the beta A subunit of activin and inhibin. These results suggest that this antibody recognizes the beta A subunit of activin and specifically neutralizes the activity of a dimer of the beta A subunit, activin A. Furthermore, by the addition of this antibody to the culture medium, the development of murine embryos was suppressed, suggesting that endogenous activin A plays an important role in murine development. These results indicate the usefulness of this antibody for studies of endogenous activin actions.
Wang, Xiao-Jing; Wang, Xiao-Xing; Wang, Ya-Jun; Wang, Xi-Zhong; He, Guang-Xin; Chen, Hong-Wei; Fei, Li-Song
2002-09-01
Activin, which is included in the transforming growth factor-beta (TGF beta) superfamily of proteins and receptors, is known to have broad-ranging effects in the creatures. The mature peptide of beta A subunit of this gene, one of the most highly conserved sequence, can elevate the basal secretion of follicle-stimulating hormone (FSH) in the pituitary and FSH is pivotal to organism's reproduction. Reproduction block is one of the main reasons which cause giant panda to extinct. The sequence of Activin beta A subunit gene mature peptides has been successfully amplified from giant panda, red panda and malayan sun bear's genomic DNA by using polymerase chain reaction (PCR) with a pair of degenerate primers. The PCR products were cloned into the vector pBlueScript+ of Esherichia coli. Sequence analysis of Activin beta A subunit gene mature peptides shows that the length of this gene segment is the same (359 bp) and there is no intron in all three species. The sequence encodes a peptide of 119 amino acid residues. The homology comparison demonstrates 93.9% DNA homology and 99% homology in amino acid among these three species. Both GenBank blast search result and restriction enzyme map reveal that the sequences of Activin beta A subunit gene mature peptides of different species are highly conserved during the evolution process. Phylogeny analysis is performed with PHYLIP software package. A consistent phylogeny tree has been drawn with three different methods. The software analysis outcome accords with the academic view that giant panda has a closer relationship to the malayan sun bear than the red panda. Giant panda should be grouped into the bear family (Uersidae) with the malayan sun bear. As to the red panda, it would be better that this animal be grouped into the unique family (red panda family) because of great difference between the red panda and the bears (Uersidae).
Murata, T; Takizawa, T; Funaba, M; Fujimura, H; Murata, E; Takahashi, M; Torii, K
1997-02-01
Inhibins (alpha-beta(A) and alpha-beta(B)) and activins (beta(A)-beta(A), beta(A)-beta(B) and beta(B)-beta(B)) were originally isolated from ovarian follicular fluids as FSH secretion modifiers. Inhibin/activin subunits, alpha, beta(A) and beta(B), are widely distributed in several tissues, including gonads and brain, and inhibins and activins have been reported to be involved in ovarian or hypothalamic functions. In this study, we established and employed a competitive RT-PCR assay system for rat inhibin/activin subunits by capillary electrophoresis to determine rat hypothalamic and ovarian inhibin/activin subunit mRNA levels during the estrous cycle. Linearity of standards for alpha, beta(A), and beta(B) subunit assays were between 0.01-0.3 amol, 0.003-0.09 amol and 0.002-0.02 amol of each fragment DNA as a standard, respectively. Hypothalamic beta(A) subunit mRNA during the estrous morning (1000 h) tended to be increased compared with that of the proestrous evening (1700 h), although they were not significantly different. Ovarian alpha subunit mRNA levels tended to be increased during the proestrous morning (1000 h) and were significantly increased in the proestrous evening (1700 h), compared with diestrus and estrus (P < 0.05). Ovarian beta(A) subunit mRNA was also significantly higher in the proestrous evening, compared with diestrus and estrus (P < 0.05), but in the case of beta(B) subunit mRNA there was no difference among diestrus, proestrus and estrus. We thus established a sensitive competitive RT-PCR system for the measurement of inhibin/activin alpha, beta(A) and beta(B) subunits, and this assay system would be helpful for the study of inhibin/activin action in brain and other tissues where these factors are expressed at low levels.
Muyan, M; Boime, I
1998-05-01
The placental hormone human CG (hCG) consists of two noncovalently linked alpha- and beta-subunits similar to the other glycoprotein hormones LH, FSH, and TSH. These heterodimers share a common alpha subunit but differ in their structurally distinct beta subunits. The CGbeta subunit is distinguished among the beta subunits by the presence of a C-terminal extension with four serine-linked oligosaccharides (carboxyl terminal peptide or CTP). In previous studies we observed that deleting this sequence decreased assembly of the truncated CGbeta subunit (CGbeta114) with the alpha-subunit and increased the heterogeneity of the secreted forms of the uncombined subunit synthesized in transfected Chinese hamster ovary (CHO) cells. The latter result was attributed to alterations in the processing of the two N-linked oligosaccharides. To examine at what step this heterogeneity occurs, the CGbeta and CGbeta114 genes were transfected into wild-type and mutant CHO cell lines that are defective in the late steps of the N-linked carbohydrate-processing pathway. We show here that removal of the CTP alters the processing of the core mannosyl unit of the subunit to complex forms at both glycosylation sites and that the oligosaccharides contain polylactosamine. Although it has been presumed that there is little intramolecular interaction between the CTP and the proximal domains of the subunit, our data suggest that the CTP sequence participates in the folding of the newly synthesized subunit, which is manifest by the posttranslational changes observed here.
Trubiroha, Achim; Wuertz, Sven; Frank, Sabrina N; Sures, Bernd; Kloas, Werner
2009-11-01
Plerocercoids of the tapeworm Ligula intestinalis (Cestoda: Bothriocephalidea) have been reported to inhibit gametogenesis of their intermediate fish hosts. However, mechanistic studies are rare and the proximate cues leading to impaired reproduction still remain unknown. In the present study we investigated the effects of infection by L. intestinalis on reproductive parameters of roach (Rutilus rutilus, Cyprinidae), a common fish host of this parasite. Field studies on roach demonstrated that in both genders infection prevented gonad development. As revealed by quantitative PCR, infection was accompanied by essentially lower pituitary expression of follicle-stimulating hormone beta-subunit (FSHbeta) and luteinizing hormone beta-subunit (LHbeta) mRNA compared with uninfected roach, providing clear evidence for gonadotropin-insufficiency as the cause of arrested gametogenesis. Under controlled laboratory conditions infected roach showed lower mRNA levels of FSHbeta but not of LHbeta, despite histology revealing similar gonad stages as in uninfected conspecifics. These findings indicate the involvement of FSH rather than LH in mediating effects of infection early during gonad development in roach. Moreover, the impact of L. intestinalis on reproductive parameters of roach appeared to be independent of the parasite burden. Together, these data provide valuable information on the role of FSH and LH as mediators of parasite-induced sterilization in a vertebrate and implicate the selective inhibition of host reproduction by L. intestinalis as a natural source of endocrine disruption in fish.
Piketty, Vincent; Kara, Elodie; Guillou, Florian; Reiter, Eric; Crepieux, Pascale
2006-01-01
Background The follicle-stimulating hormone receptor (FSH-R) is a seven transmembrane spanning receptor (7TMR) which plays a crucial role in male and female reproduction. Upon FSH stimulation, the FSH-R activates the extracellular signal-regulated kinases (ERK). However, the mechanisms whereby the agonist-stimulated FSH-R activates ERK are poorly understood. In order to activate ERK, some 7 TMRs require beta-arrestin-and dynamin-dependent internalization to occur, whereas some others do not. In the present study, we examined the ability of the FSH-activated FSH-R to induce ERK phosphorylation, in conditions where its beta-arrestin- and dynamin-mediated internalization was impaired. Methods Human embryonic kidney (HEK) 293 cells were transiently transfected with the rat FSH-R. Internalization of the FSH-R was manipulated by co-expression of either a beta-arrestin (319–418) dominant negative peptide, either an inactive dynamin K44A mutant or of wild-type beta-arrestin 1 or 2. The outcomes on the FSH-R internalization were assayed by measuring 125I-FSH binding at the cell surface when compared to internalized 125I-FSH binding. The resulting ERK phosphorylation level was visualized by Western blot analysis. Results In HEK 293 cells, FSH stimulated ERK phosphorylation in a dose-dependent manner. Co-transfection of the beta- arrestin (319–418) construct, or of the dynamin K44A mutant reduced FSH-R internalization in response to FSH, without affecting ERK phosphorylation. Likewise, overexpression of wild-type beta-arrestin 1 or 2 significantly increased the FSH-R internalization level in response to FSH, without altering FSH-induced ERK phosphorylation. Conclusion From these results, we conclude that the FSH-R does not require beta-arrestin- nor dynamin-mediated internalization to initiate ERK phosphorylation in response to FSH. PMID:16787538
Japón, M A; Rubinstein, M; Low, M J
1994-08-01
We used 35S-labeled oligonucleotides and cRNAs (riboprobes) to detect the temporal order and spatial pattern of anterior pituitary hormone gene expression in (B6CBF1 x B6CBF1)F2 fetal mice from embryonic Day 9.5 (E9.5) to postnatal Day 1 (P1). Pro-opiomelanocortin (POMC) mRNA was expressed in the basal diencephalon on Day E10.5, in the ventromedial zone of the pars distalis on Day E12.5, and in the pars intermedia on Day E14.5. The common alpha-glycoprotein subunit (alpha-GSU) mRNA first appeared in the anterior wall of Rathke's pouch on Day E11.5 and extended to the pars tuberalis and ventromedial zone of the pars distalis on Day E12.5. Thyroid-stimulating hormone-beta (TSH beta) subunit mRNA was expressed initially in both the pas tuberalis and ventromedial pars distalis on Day E14.5, with an identical spatial distribution to alpha-GSU at the time. In contrast, luteinizing hormone-beta (LH beta) subunit and follicle-stimulating hormone beta (FSH beta) subunit mRNAs were detected initially only in the ventromedial pars distalis on Days E16.5 and E17.5, respectively, in an identical distribution to each other. POMC-, alpha-GSU-, TSH beta, LH beta-, and FSH beta-positive cells within the pars distalis all increased in number and autoradiographic signal with differing degrees of spatial expansion posteriorly, laterally, and dorsally up to Day P1. POMC expression was typically the most intense and extended circumferentially to include the entire lateral and dorsal surfaces of the pars distalis. The expression of both growth hormone (GH) and prolactin (PRL) started coincidentally on Day E15.5. However PRL cells localized in the ventromedial area similarly to POMC and the glycoprotein hormone subunits, whereas GH cells were found initially in a more lateral and central distribution within the lobes of the pars distalis. Somatotrophs increased dramatically in number and autoradiographic signal, extending throughout the pars distalis except for the most peripheral layer of cells on Day E17.5. Mammotrophs also increased in number but less abundantly than somatotrophs, and PRL expression remained more confined to central-medial and ventrolateral areas of the pars distalis up to Day P1. These data demonstrate distinctive patterns of expression for each of the major anterior pituitary hormone genes during development of the mouse pituitary gland and suggest that different groups of committed cells are the immediate precursors to the terminally differentiated hormone-secreting cell types.
Perspectives on fish gonadotropins and their receptors.
Levavi-Sivan, B; Bogerd, J; Mañanós, E L; Gómez, A; Lareyre, J J
2010-02-01
Teleosts lack a hypophyseal portal system and hence neurohormones are carried by nerve fibers from the preoptic region to the pituitary. The various cell types in the teleost pituitary are organized in discrete domains. Fish possess two gonadotropins (GtH) similar to FSH and LH in other vertebrates; they are heterodimeric hormones that consist of a common alpha subunit non-covalently associated with a hormone-specific beta subunit. In recent years the availability of molecular cloning techniques allowed the isolation of the genes coding for the GtH subunits in 56 fish species representing at least 14 teleost orders. Advanced molecular engineering provides the technology to produce recombinant GtHs from isolated cDNAs. Various expression systems have been used for the production of recombinant proteins. Recombinant fish GtHs were produced for carp, seabream, channel and African catfish, goldfish, eel, tilapia, zebrafish, Manchurian trout and Orange-spotted grouper. The hypothalamus in fishes exerts its regulation on the release of the GtHs via several neurohormones such as GnRH, dopamine, GABA, PACAP, IGF-I, norepinephrine, NPY, kisspeptin, leptin and ghrelin. In addition, gonadal steroids and peptides exert their effects on the gonadotropins either directly or via the hypothalamus. All these are discussed in detail in this review. In mammals, the biological activities of FSH and LH are directed to different gonadal target cells through the cell-specific expression of the FSH receptor (FSHR) and LH receptor (LHR), respectively, and the interaction between each gonadotropin-receptor couple is highly selective. In contrast, the bioactivity of fish gonadotropins seems to be less specific as a result of promiscuous hormone-receptor interactions, while FSHR expression in Leydig cells explains the strong steroidogenic activity of FSH in certain fish species. Copyright 2009 Elsevier Inc. All rights reserved.
Use of polyclonal and monoclonal antibodies to study hCG-receptor interactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milius, R.P.
1985-01-01
Although the glycoprotein hormones lutropin (LH), follitropin (FSH), and thyrotropin (TSH) bind to different receptors, each contains an identical alpha subunit. Specificity is somehow endowed by theta subunits which are distinct for each hormone. Human choriogonadotropin (hCG) is a natural LH analog that contains a beta subunit nearly identical to that of LH. The roles of these subunits in the recognition and high affinity binding of hCG to receptor was examined. Polyclonal and monoclonal antibodies specific for the individual subunits of hCG were used to probe the hormone-receptor interaction. Conformation-specific and sequence-specific antibodies were examined for their abilities to bindmore » Triton X-100-solubilized /sup 125/I-hCG-receptor complex and to inhibit hormone binding to crude rat ovarian membranes containing receptor. Even though the immunoreactive sites are not located on the receptor binding surface of the beta subunit, most, but not all, of these polyclonal and monoclonal antibodies were able to inhibit /sup 125/I-hCG binding to receptor. Although the inhibition of binding may be due to steric interference due to the size of the antibody molecules, a two-step model for hCG binding to receptor is presented that also explains these results. In this model, the beta subunit initially binds with the receptor with a highly specific but low affinity interaction. This activates a site for the high affinity binding of the alpha subunit and stabilization of the complex. This is an attractive model as it may be applied to other glycoprotein hormones sharing an alpha subunit.« less
Elhadd, Tarik A; Ghosh, Sujoy; Teoh, Wei Leng; Trevethick, Katy Ann; Hanzely, Zoltan; Dunn, Laurence T; Malik, Iqbal A; Collier, Andrew
2009-08-01
Thyrotropinomas are rare pituitary tumors. In 25 percent of cases there is autonomous secretion of a second pituitary hormone, adding to the clinical complexity. We report a patient with thyrotropin (TSH)-dependant hyperthyroidism along with growth hormone (GH) and follicle-stimulating hormone (FSH) hypersecretion but low alpha-glycoprotein (alpha-subunit) concentrations, a hitherto unique constellation of findings. A 67-year-old Scottish lady presented with longstanding ankle edema, paroxysmal atrial fibrillation, uncontrolled hypertension, fine tremors, warm peripheries, and agitation. Initial findings were a small goiter, elevated serum TSH of 7.37 mU/L (normal range, 0.30-6.0 mU/L), a free-thyroxine concentration of 34.9 pmol/L (normal range, 9.0-24.0 pmol/L), a flat TSH response to TSH-releasing hormone, and serum alpha-subunit of 3.1 IU/L (normal, <3.0 IU/L). There was no evidence of an abnormal thyroid hormone beta receptor by genotyping. Serum FSH was 56.8 U/L, but the luteinizing hormone (LH) was 23.6 U/L (postmenopausal FSH and LH reference ranges both >30 U/L) Basal insulin-like growth factor I was elevated to 487 microg/L with the concomitant serum GH being 14.1 mU/L, and subsequent serum GH values 30 minutes after 75 g oral glucose being 19.1 mU/L and 150 minutes later being 13.7 mU/L. An magnetic resonance imaging pituitary revealed a macroadenoma. Pituitary adenomectomy was performed with the histology confirming a pituitary adenoma, and the immunohistochemistry staining showed positive reactivity for FSH with scattered cells staining for GH and TSH. Staining for other anterior pituitary hormones was negative. After pituitary surgery she became clinically and biochemically euthyroid, the serum IFG-1 became normal, but the pattern of serum FSH and LH did not change. This case of plurihormonal thyrotropinoma is unique in having hypersecretion of TSH, GH, and FSH with low alpha-subunit. Such a combination may represent a new subentity of TSHomas.
Acampora, D; Mazan, S; Tuorto, F; Avantaggiato, V; Tremblay, J J; Lazzaro, D; di Carlo, A; Mariano, A; Macchia, P E; Corte, G; Macchia, V; Drouin, J; Brûlet, P; Simeone, A
1998-04-01
Genetic and molecular approaches have enabled the identification of regulatory genes critically involved in determining cell types in the pituitary gland and/or in the hypothalamus. Here we report that Otx1, a homeobox-containing gene of the Otx gene family, is postnatally transcribed and translated in the pituitary gland. Cell culture experiments indicate that Otx1 may activate transcription of the growth hormone (GH), follicle-stimulating hormone (betaFSH), luteinizing hormone (betaLH) and alpha-glycoprotein subunit (alphaGSU) genes. Analysis of Otx1 null mice indicates that, at the prepubescent stage, they exhibit transient dwarfism and hypogonadism due to low levels of pituitary GH, FSH and LH hormones which, in turn, dramatically affect downstream molecular and organ targets. Nevertheless, Otx1-/- mice gradually recover from most of these abnormalities, showing normal levels of pituitary hormones with restored growth and gonadal function at 4 months of age. Expression patterns of related hypothalamic and pituitary cell type restricted genes, growth hormone releasing hormone (GRH), gonadotropin releasing hormone (GnRH) and their pituitary receptors (GRHR and GnRHR) suggest that, in Otx1-/- mice, hypothalamic and pituitary cells of the somatotropic and gonadotropic lineages appear unaltered and that the ability to synthesize GH, FSH and LH, rather than the number of cells producing these hormones, is affected. Our data indicate that Otx1 is a new pituitary transcription factor involved at the prepubescent stage in the control of GH, FSH and LH hormone levels and suggest that a complex regulatory mechanism might exist to control the physiological need for pituitary hormones at specific postnatal stages.
Kim, Na Na; Habibi, Hamid R; Lee, Jehee; Choi, Cheol Young
2012-08-01
Gonadotropins (GTHs) are the key regulators of reproduction in vertebrates. The present study investigated autoregulatory effects of gonadotropins, using recombinant FSH (rFSH) and LH (rLH) in cinnamon clownfish (Amphiprion melanopus). Experiments were carried out to investigate the actions of cinnamon clownfish rFSH and rLH on expression of GTH subunits, GTH receptors, and vitellogenin (Vtg) mRNA in vivo and in vitro. Plasma estradiol-17β (E(2)) level was also measured in immature fish following treatments with rFSH and rLH. The results demonstrate increasing levels of GTH subunits, GTH-receptors, Vtg mRNA levels, as well as plasma E(2) levels following injection with rFSH and rLH. The findings support the hypothesis that LH and FSH stimulate reproduction, in part, by autoregulatory mechanisms leading to upregulation of GTH receptors and GTH hormone production in cinnamon clownfish. The results provide a framework for better understanding of the mechanisms of GTH-mediated control of reproduction in cinnamon clownfish and other vertebrates. Copyright © 2012 Elsevier Inc. All rights reserved.
Martyniuk, Christopher J; Kroll, Kevin J; Porak, Wesley F; Steward, Cheree; Grier, Harry J; Denslow, Nancy D
2009-09-15
The objectives of this study were to investigate the seasonal changes in pituitary gonadotropins, growth hormone (GH), and estrogen receptor (ER) isoform mRNA in wild female and male largemouth bass (LMB) (Micropterus salmoides) from an unpolluted habitat to better understand reproductive physiology in this ecologically important species. Female pituitary luteinizing hormone (LH) beta subunit and follicle stimulating hormone (FSH) beta subunit mRNA showed significant seasonal variation with levels peaking from January to April and were lowest from May to August. Male LMB showed more variation in gonadotropin subunit expression from month to month. Females had approximately 2-3 times higher gonadotropin mRNA levels in the pituitary when compared to males. All three gonadotropin mRNAs in females were positively correlated to gonadosomatic index (GSI), but only LHbeta mRNA was correlated to GSI in males. Gonadotropin mRNA expression also increased with increasing oocyte and sperm maturation. Gonadotropin beta subunit mRNA expression was positively correlated to GH mRNA in both sexes. The expression of all three ER isoforms was significantly correlated to each other in both sexes. The concurrent increase in all three ER mRNA isoforms with increasing gonadotropin mRNA in females and males suggests a prominent role for E2 feedback on pituitary gonadotropin synthesis in both sexes and that each of the three ER isoforms are likely to play a role in the pituitary during teleost reproduction.
Meher, Biswa Ranjan; Dixit, Anshuman; Bousfield, George R.; Lushington, Gerald H.
2015-01-01
The gonadotropin known as follicle-stimulating hormone (FSH) plays a key role in regulating reproductive processes. Physiologically active FSH is a glycoprotein that can accommodate glycans on up to four asparagine residues, including two sites in the FSHα subunit that are critical for biochemical function, plus two sites in the β subunit, whose differential glycosylation states appear to correspond to physiologically distinct functions. Some degree of FSHβ hypo-glycosylation seems to confer advantages toward reproductive fertility of child-bearing females. In order to identify possible mechanistic underpinnings for this physiological difference we have pursued computationally intensive molecular dynamics simulations on complexes between the high affinity site of the gonadal FSH receptor (FSHR) and several FSH glycoforms including fully-glycosylated (FSH24), hypo-glycosylated (e.g., FSH15), and completely deglycosylated FSH (dgFSH). These simulations suggest that deviations in FSH/FSHR binding profile as a function of glycosylation state are modest when FSH is adorned with only small glycans, such as single N-acetylglucosamine residues. However, substantial qualitative differences emerge between FSH15 and FSH24 when FSH is decorated with a much larger, tetra-antennary glycan. Specifically, the FSHR complex with hypo-glycosylated FSH15 is observed to undergo a significant conformational shift after 5–10 ns of simulation, indicating that FSH15 has greater conformational flexibility than FSH24 which may explain the more favorable FSH15 kinetic profile. FSH15 also exhibits a stronger binding free energy, due in large part to formation of closer and more persistent salt-bridges with FSHR. PMID:26402790
hCG: Biological Functions and Clinical Applications
Nwabuobi, Chinedu; Arlier, Sefa; Schatz, Frederick; Guzeloglu-Kayisli, Ozlem; Lockwood, Charles Joseph; Kayisli, Umit Ali
2017-01-01
Human chorionic gonadotropin (hCG) is produced primarily by differentiated syncytiotrophoblasts, and represents a key embryonic signal that is essential for the maintenance of pregnancy. hCG can activate various signaling cascades including mothers against decapentaplegic homolog 2 (Smad2), protein kinase C (PKC), and/or protein kinase A (PKA) in several cells types by binding to luteinizing hormone/chorionic gonadotropin receptor (LHCGR) or potentially by direct/indirect interaction with transforming growth factor beta receptor (TGFβR). The molecule displays specialized roles in promoting angiogenesis in the uterine endothelium, maintaining myometrial quiescence, as well as fostering immunomodulation at the maternal-fetal interface. It is a member of the glycoprotein hormone family that includes luteinizing hormone (LH), thyroid-stimulating hormone (TSH), and follicle-stimulating hormone (FSH). The α-subunit of hCG displays homologies with TSH, LH, and FSH, whereas the β subunit is 80–85% homologous to LH. The hCG molecule is produced by a variety of organs, exists in various forms, exerts vital biological functions, and has various clinical roles ranging from diagnosis and monitoring of pregnancy and pregnancy-related disorders to cancer surveillance. This review presents a detailed examination of hCG and its various clinical applications. PMID:28937611
hCG: Biological Functions and Clinical Applications.
Nwabuobi, Chinedu; Arlier, Sefa; Schatz, Frederick; Guzeloglu-Kayisli, Ozlem; Lockwood, Charles Joseph; Kayisli, Umit Ali
2017-09-22
Human chorionic gonadotropin (hCG) is produced primarily by differentiated syncytiotrophoblasts, and represents a key embryonic signal that is essential for the maintenance of pregnancy. hCG can activate various signaling cascades including mothers against decapentaplegic homolog 2 (Smad2), protein kinase C (PKC), and/or protein kinase A (PKA) in several cells types by binding to luteinizing hormone/chorionic gonadotropin receptor (LHCGR) or potentially by direct/indirect interaction with transforming growth factor beta receptor (TGFβR). The molecule displays specialized roles in promoting angiogenesis in the uterine endothelium, maintaining myometrial quiescence, as well as fostering immunomodulation at the maternal-fetal interface. It is a member of the glycoprotein hormone family that includes luteinizing hormone (LH), thyroid-stimulating hormone (TSH), and follicle-stimulating hormone (FSH). The α-subunit of hCG displays homologies with TSH, LH, and FSH, whereas the β subunit is 80-85% homologous to LH. The hCG molecule is produced by a variety of organs, exists in various forms, exerts vital biological functions, and has various clinical roles ranging from diagnosis and monitoring of pregnancy and pregnancy-related disorders to cancer surveillance. This review presents a detailed examination of hCG and its various clinical applications.
Distinct functions of neuromedin u and neuromedin s in orange-spotted grouper.
Li, Shuisheng; Xiao, Ling; Liu, Qiongyu; Zheng, Binbin; Chen, Huapu; Liu, Xiaochun; Zhang, Yong; Lin, Haoran
2015-10-01
Neuromedin U (NMU) and neuromedin S (NMS) play inhibitory roles in the regulation of food intake and energy homeostasis in mammals. However, their functions are not clearly established in teleost fish. In the present study, nmu and nms homologs were identified in several fish species. Subsequently, their cDNA sequences were cloned from the orange-spotted grouper (Epinephelus coioides). Sequence analysis showed that the orange-spotted grouper Nmu proprotein contains a 21-amino acid mature Nmu peptide (Nmu-21). The Nms proprotein lost the typical mature Nms peptide, but it retains a putative 34-amino acid peptide (Nmsrp). In situ hybridization revealed that nmu- and nms-expressing cells are mainly localized in the hypothalamic regions associated with appetite regulation. Food deprivation decreased the hypothalamic nmu mRNA levels but induced an increase of nms mRNA levels. Periprandial expression analysis showed that hypothalamic expression of nmu increased significantly at 3 h post-feeding, while nms expression was elevated at the normal feeding time. I.p. injection of synthetic Nmu-21 peptide suppressed the hypothalamic neuropeptide y (npy) expression, while Nmsrp administration significantly increased the expression of npy and orexin in orange-spotted grouper. Furthermore, the mRNA levels of LH beta subunit (lhβ) and gh in the pituitary were significantly down-regulated after Nmu-21 peptide administration, while Nmsrp was able to significantly stimulate the expression of FSH beta subunit (fshβ), prolactin (prl), and somatolaction (sl). Our results indicate that nmu and nms possess distinct neuroendocrine functions and pituitary functions in the orange spotted grouper. © 2015 Society for Endocrinology.
Schmitz, Monika; Aroua, Salima; Vidal, Bernadette; Le Belle, Nadine; Elie, Pierre; Dufour, Sylvie
2005-01-01
Pituitary gonadotropins, luteinizing hormone (LH) and follicle-stimulating hormone (FSH) are, in teleosts as in mammals, under the control of hypothalamic factors and steroid feedbacks. In teleosts, feedback regulations largely vary depending on species and physiological stage. In the present study the regulation of FSH and LH expression was investigated in the European eel, a fish of biological and phylogenetical interest as a representative of an early group of teleosts. The eel FSHbeta subunit was cloned, sequenced and together with earlier isolated eel LHbeta and glycoprotein hormone alpha (GPalpha) subunits used to study the differential regulation of LH and FSH. In situ hybridization indicated that FSHbeta and LHbeta are expressed by separate cells of the proximal pars distalis of the adenohypophysis, differently from the situation in mammals. The profiles of LHbeta and FSHbeta subunit expression were compared during experimental ovarian maturation, using dot-blot assays. Expression levels for LHbeta and GPalpha increased throughout ovarian development with a positive correlation between these two subunits. Conversely, FSHbeta mRNA levels decreased. To understand the role of sex steroids in these opposite variations, immature eels were treated with estradiol (E2)and testosterone (T), both steroids being produced in eel ovaries during gonadal development. E2 treatment induced increases in both LHbeta and GPalpha mRNA levels, without any significant effect on FSHbeta. In contrast, T treatment induced a decrease in FSHbeta mRNA levels, without any significant effect on the other subunits. These data demonstrate that steroids exert a differential feedback on eel gonadotropin expression, with an E2-specific positive feedback on LH and a T-specific negative feedback on FSH, leading to an opposite regulation of LH and FSH during ovarian development. Copyright 2005 S. Karger AG, Basel
Recombinant follicle-stimulating hormone: new biotechnology for infertility.
Prevost, R R
1998-01-01
The frequency of infertility in developed countries is approximately 8-10%. New drugs are available for assisted reproduction techniques. Two recombinant follicle-stimulating hormone (FSH) products, follitropin-beta (Follistim in the United States, Puregon in Europe) and follitropin-alpha (Gonal-F), join compounds derived through transfecting nonhuman cell lines with genetic material capable of replicating identical amino acid sequences to human compounds. The cell line used for recombinant (r)-FSH production is the Chinese hamster ovary (CHO). Previously, the only agents that showed benefit in controlled ovulatory stimulation were derived from the urine of menopausal women. Those compounds contain additional substances, such as urinary proteins and various amounts of luteininzing hormone. The amino acid sequence of r-FSH is identical to that of human FSH, but the two recombinant products exist in many different isoforms and differ from each other and from human FSH due to varied carbohydrate side chains. Due to variation in the carbohydrate side chains, follitropin-beta in solution has a higher pH than urine-derived FSH, which enhances receptor affinity and therefore is a greater inducer of folliculogenesis. Follitropin-beta does not cause endogenous production of anti-CHO or anti-FSH antibodies, and is well tolerated.
Fasting lowers gastrin-releasing peptide and Fsh mRNA in the ovine anterior pituitary gland
USDA-ARS?s Scientific Manuscript database
Estrogen receptor beta (ER-ß), LH, and FSH are important mediators of reproduction. FSH stimulates follicle recruitment and development. During anorexia, serum concentrations of FSH and LH decrease. Gastrin-releasing peptide (GRP), neuromedin B (NMB), peroxisome proliferator-activated receptor-gamma...
Fasting lowers gastrin-releasing peptide and FSH mRNA in the ovine anterior pituitary gland
USDA-ARS?s Scientific Manuscript database
Estrogen receptor beta (ER-ß), LH, and FSH are important mediators of reproduction. FSH stimulates follicle recruitment and development. During anorexia, serum concentrations of FSH and LH decrease. Gastrin-releasing peptide (GRP), neuromedin B (NMB), peroxisome proliferator-activated receptor-gamma...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, G.P.
1987-01-01
Studies have been designed to examine the role of guanine nucleotides in mediating FSH-sensitive adenylate cyclase activity in Sertoli cell plasma membranes. Analysis of ({sup 3}H)GDP binding to plasma membranes suggested a single high affinity site with a K{sub d} = 0.24 uM. Competition studies indicated that GTP{sub {gamma}}S was 7-fold more potent than GDP{sub {beta}}S. Bound GDP could be released by FSH in the presence of GTP{sub {gamma}}S, but not by FSH alone. Adenylate cyclase activity was enhanced 5-fold by FSH in the presence of GTP. Addition of GDP{sub {beta}}S to the activated enzyme (FSH plus GTP) resulted inmore » a time-dependent decay to basal activity within 20 sec. GDP{sub {beta}}S competitively inhibited GTP{sub {gamma}}S-stimulated adenylate cyclase activity with a K{sub i} = 0.18 uM. Adenylate cyclase activity was also demonstrated to be sensitive to the nucleotide bound state. In the presence of FSH, only the GTP{sub {gamma}}S-bound form persisted even if GDP{sub {beta}}S previously occupied all available binding sites. Two membrane proteins, M{sub r} = 43,000 and 48,000, were ADP{centered dot}ribosylated using cholera toxin and labeling was enhanced 2 to 4-fold by GTP{sub {gamma}}S but not by GDP{sub {beta}}S. The M{sub r} = 43,000 and 48,000 proteins represented variant forms of G{sub S}. A single protein of M{sub r} = 40,000 (G{sub i}) was ADP-ribosylated by pertussis toxin in vitro. GTP inhibited forskolin-stimulated adenylate cyclase activity with an IC{sub 50} = 0.1 uM. The adenosine analog, N{sup 6}{centered dot}phenylisopropyl adenosine enhanced GTP inhibition of forskolin-stimulated adenylate cyclase activity by an additional 15%. GTP-dependent inhibition of forskolin-sensitive adenylate cyclase activity was abolished in membranes prepared from Sertoli cells treated in culture with pertussis toxin.« less
Cadmium, follicle-stimulating hormone, and effects on bone in women age 42-60 years, NHANES III
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gallagher, Carolyn M., E-mail: 2crgallagher@optonline.net; Department of Preventive Medicine, Stony Brook University Medical Center, Stony Brook, New York; Moonga, Baljit S.
Background: Increased body burden of environmental cadmium has been associated with greater risk of decreased bone mineral density (BMD) and osteoporosis in middle-aged and older women, and an inverse relationship has been reported between follicle-stimulating hormone (FSH) and BMD in middle-aged women; however, the relationships between cadmium and FSH are uncertain, and the associations of each with bone loss have not been analyzed in a single population. Objectives: The objective of this study was to evaluate the associations between creatinine-adjusted urinary cadmium (UCd) and FSH levels, and the associations between UCd and FSH with BMD and osteoporosis, in postmenopausal andmore » perimenopausal women aged 42-60 years. Methods: Data were obtained from the Third National Health Examination and Nutrition Survey, 1988-1994 (NHANES III). Outcomes evaluated were serum FSH levels, femoral bone mineral density measured by dual energy X-ray absorptiometry, and osteoporosis indicated by femoral BMD cutoffs based on the international standard. Urinary cadmium levels were analyzed for association with these outcomes, and FSH levels analyzed for association with bone effects, using multiple regression. Subset analysis was conducted by a dichotomous measure of body mass index (BMI) to proxy higher and lower adipose-synthesized estrogen effects. Results: UCd was associated with increased serum FSH in perimenopausal women with high BMI (n=642; {beta}=0.45; p{<=}0.05; R{sup 2}=0.35) and low BMI (n=408; {beta}=0.61; p{<=}0.01; R{sup 2}=0.34). Among perimenopausal women with high BMI, BMD was inversely related to UCd ({beta}=-0.04; p{<=}0.05) and FSH ({beta}=-0.03; p{<=}0.05). In postmenopausal women with low BMI, an incremental increase in FSH was associated with 2.78 greater odds for osteoporosis (109 with and 706 without) (OR=2.78; 95% CI=1.43, 5.42; p{<=}0.01). Conclusion: Long-term cadmium exposure at environmental levels is associated with increased serum FSH, and both FSH and UCd are associated with bone loss, in US women aged 42-60 years.« less
Hyperthyroidism secondary to a pituitary adenoma secreting TSH, FSH, alpha-subunit and GH.
Patrick, A W; Atkin, S L; MacKenzie, J; Foy, P M; White, M C; MacFarlane, I A
1994-02-01
A 51-year-old man had been treated for hyperthyroidism with antithyroid drugs for 8 years. He was then found to have a large pituitary adenoma with biochemical evidence of overproduction of TSH, FSH and alpha-subunit. Subsequent immunocytochemical and tissue culture studies confirmed secretion of these hormones. In addition, the tumour stained for GH and was capable of GH production in vitro. This combination of hormones produced by a pituitary adenoma has not been previously reported.
Kobayashi, Yasuhisa; Alam, Mohammad Ashraful; Horiguchi, Ryo; Shimizu, Akio; Nakamura, Masaru
2010-06-01
Recent studies have suggested that the hypothalamic-pituitary-gonadal axis is involved in gonadal sex change in sex-changing teleosts. However, its underlying mechanism remains largely unknown. In this study, we focused on the distinct roles of two gonadotropins (GTHs), follicle-stimulating hormone (FSH) and luteinizing hormone (LH), in the protogynous hermaphrodite teleost, honeycomb grouper (Epinephelus merra). First, we investigated the expression pattern of mRNAs for GTH subunits (cga, fshb, and lhb) in the pituitaries from fish at the different sexual phases. Real-time RT-PCR analyses showed that fhsb mRNA levels in the female pituitary were low. However, fshb transcripts increased dramatically in association with testis development. In contrast, levels of cga and lhb mRNAs did not significantly vary during sex change. In addition, immunohistochemical observations of Fshb- and Lhb-producing cells in the pituitary, through the use of specific antibodies for detections of teleost GTH subunits, were consistent with sexually dimorphic expression of Fshb. In order to identify the role of GTH in gonad of honeycomb grouper, we treated females with bovine FSH (50 or 500 ng/fish) or LH (500 ng/fish) in vivo. After 3 wk, FSH treatments induced female-to-male sex change and up-regulated endogenous androgen levels and fshb transcripts, whereas LH treatment had no effect on sex change. These results suggest that FSH may trigger the female-to-male sex change in honeycomb grouper.
Bernard, D J; Woodruff, T K
2001-04-01
Inhibin binding protein (InhBP) and the transforming growth factor-beta (TGF beta) type III receptor, beta glycan, have been identified as putative inhibin coreceptors. Here we cloned the InhBP cDNA in rats and predict that it encodes a large membrane-spanning protein that is part of the Ig superfamily, as has been described for humans. Two abundant InhBP transcripts (4.4 and 1.8 kb) were detected in the adult rat pituitary. The larger transcript encodes the full-length protein while the 1.8-kb transcript (InhBP-short or InhBP-S) corresponds to a splice variant of the receptor. This truncated isoform contains only the N-terminal signal peptide and first two (of 12) Ig-like domains observed in the full-length InhBP (InhBP-long or InhBP-L). InhBP-S does not contain a transmembrane domain and is predicted to be a soluble protein. Beta glycan was also detected in the pituitary; however, it was most abundant within the intermediate lobe. Although we also observed beta glycan immunopositive cells in the anterior pituitary, they rarely colocalized with FSH beta-producing cells. We next examined physiological regulation of the coreceptors across the rat estrous cycle. Like circulating inhibin A and inhibin B levels, pituitary InhBP-L and InhBP-S mRNA levels were dynamically regulated across the cycle and were negatively correlated with serum FSH levels. Expression of both forms of InhBP was also positively correlated with serum inhibin B, but not inhibin A, levels. These data are particularly interesting in light of our in vitro observations that InhBP may function as an inhibin B-specific coreceptor. Pituitary beta glycan mRNA levels did not fluctuate across the cycle nor did they correlate with serum FSH. These observations, coupled with its pattern of expression within the pituitary, indicate that beta glycan likely functions as more than merely an inhibin coreceptor within the pituitary. A direct role for InhBP or beta glycan in regulation of pituitary FSH by inhibin in vivo has yet to be determined, but the demonstration of dynamic regulation of pituitary InhBP and its negative relation to serum FSH across the estrous cycle is an important step in this direction.
Phosphoinositide 3-Kinase p110δ Mediates Estrogen- and FSH-Stimulated Ovarian Follicle Growth
Li, Qian; He, Hui; Zhang, Yin-Li; Li, Xiao-Meng; Guo, Xuejiang; Huo, Ran; Bi, Ye; Li, Jing
2013-01-01
In the mammalian ovary, primordial follicles are generated early in life and remain dormant for prolonged periods. Their growth resumes via primordial follicle activation, and they continue to grow until the preovulatory stage under the regulation of hormones and growth factors, such as estrogen, FSH, and IGF-1. Both FSH and IGF-1 activate the phosphatidylinositol-3 kinase (PI3K)/Akt (acute transforming retrovirus thymoma protein kinase) signaling pathway in granulosa cells (GCs), yet it remains inconclusive whether the PI3K pathway is crucial for follicle growth. In this study, we investigated the p110δ isoform (encoded by the Pik3cd gene) of PI3K catalytic subunit expression in the mouse ovary and its function in fertility. Pik3cd-null females were subfertile, exhibited fewer growing follicles and more atretic antral follicles in the ovary, and responded poorly to exogenous gonadotropins compared with controls. Ovary transplantation showed that Pik3cd-null ovaries responded poorly to FSH stimulation in vitro; this confirmed that the follicle growth defect was intrinsically ovarian. In addition, estradiol (E2)-stimulated follicle growth and GC proliferation in preantral follicles was impaired in Pik3cd-null ovaries. FSH and E2 substantially activated the PI3K/Akt pathway in GCs of control mice but not in those of Pik3cd-null mice. However, primordial follicle activation and oocyte meiotic maturation were not affected by Pik3cd knockout. Taken together, our findings indicate that the p110δ isoform of the PI3K catalytic subunit is a key component of the PI3K pathway for both FSH and E2-stimulated follicle growth in ovarian GCs; however, it is not required for primordial follicle activation and oocyte development. PMID:23820902
Welt, Corrine K; Pagan, Yanira L; Smith, Patricia C; Rado, Kimberly B; Hall, Janet E
2003-04-01
To test the hypothesis that estradiol, inhibin A, and inhibin B contribute differentially to FSH negative feedback in specific phases of the menstrual cycle, daily blood samples were obtained across a control cycle and after selective estrogen blockade with tamoxifen. To examine the site of estradiol-negative feedback in control and tamoxifen treatment cycles, early follicular phase GnRH (free alpha-subunit) pulse frequency was assessed in normal women, and FSH levels were examined in GnRH-deficient women in whom hypothalamic output was fixed with GnRH administration. FSH was higher in the early follicular phase in the presence of estrogen receptor blockade (15.7 +/- 3.1 vs. 13.2 +/- 1.9 IU/liter; P < 0.05) but was not increased in the late follicular phase. In the luteal phase, FSH was elevated (10.1 +/- 0.7 vs. 7.3 +/- 0.6 IU/liter; P < 0.01). In normal women, free alpha-subunit pulse frequency increased (7.3 +/- 0.4 vs. 4.8 +/- 0.4 pulses per 8 h; P < 0.003), but in GnRH-deficient women, there was no FSH increase (11.1 +/- 1.6 vs. 12.5 +/- 3.6 IU/liter) in the early follicular phase in the presence of estrogen blockade. In conclusion, estradiol exerts a greater role over inhibin in FSH-negative feedback regulation during the luteal phase and the luteal-follicular transition. In contrast, inhibin A and/or B plays a more critical role as the follicular phase progresses. In addition, these studies support a primary if not exclusive hypothalamic site of estrogen-negative feedback in the early follicular phase.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fowler, J.E. Jr.; Platoff, G.E.; Kubrock, C.A.
1982-01-01
Among 17 men who had received seemingly curative treatment for unilateral non-seminomatous germ cell tumors for the testis and who had consistently normal serum human chorionic gonadotropin (HCG) levels at a reference laboratory, 7 (41%) had at least one falsely positive commercial serum HCG determination. To investigate the cause of these falsely positive determinations the authors measured the cross reactivity of luteinizing hormone (LH) and follicle stimulating hormone (FSH) standards in the commercial HCG assay, and studied the relationships between commercial HCG levels and serum LH levels, serum FSH levels and gonadal status in men with and without normal gonadalmore » function. The falsely positive HCG determinations appeared to be due to elevated serum LH levels and cross reactivity of LH in the commercial HCG assay because: 1) there was substantial cross reactivity of the LH standards in the commercial assay, 2) the serum LH was elevated in four of six men with solitary testes, 3) there was a striking correlation between elevated serum LH levels and falsely elevated commercial HCG levels in ten men with solitary or absent testes, and 4) there were no falsely positive HCG determinations in 13 normal men but there were falsely positive HCG determinations in seven of ten anorchid men.« less
Shahed, Asha; McMichael, Carling F.; Young, Kelly A.
2017-01-01
This study sought to characterize the rapid intraovarian mRNA response of key folliculogenic factors that may contribute to the restoration of folliculogenesis during 2-10 days of photostimulation in Siberian hamsters. Adult hamsters were exposed to short photoperiod (8L:16D) for 14 weeks (SD). A subset were then transferred to long photoperiod (16L:8D) for 2(PT day-2), 4(PT day-4), or 10 days (PT day-10). Quantitative real-time PCR was used to measure intraovarian mRNA expression of: gonadotropin releasing hormone (GnRH), follicle stimulating hormone β-subunit (FSHβ-subunit), luteinizing hormone β-subunit (LHβ-subunit), FSH and LH receptors, estrogen receptorsα and β (Esr1 and Esr2), matrix metalloproteinase (MMP)-2 and -9, anti-Müllerian hormone (AMH), inhibin-α subunit, fibroblast growth factor-2 (FGF-2) and proliferating cell nuclear antigen (PCNA). Compared to SD, plasma FSH concentrations increased on PT day-4 and the number of antral follicles and corpora lutea increased on PT day-10. FSHR and inhibin-α mRNA expression also increased on PT day-4, whereas LHR and proliferation marker PCNA both increased on PT day-10 as compared to SD. Esr1 mRNA increased on PT day-2 and remained significantly increased as compared to SD, whereas Esr1 mRNA increased only on PT day-2, similar to FGF-2 and MMP-2 results. No differences were observed in mRNA expression in ovarian GnRH, FSHβ- and LHβ-subunits, AMH, and MMP-9 mRNA with 2-10 days of photostimulation. Rapid increases in intraovarian FSHR and inhibin-α mRNA and antral follicle/corpora lutea numbers suggest that the ovary is primed to react quickly to the FSH released in response to brief periods of photostimulation. PMID:26174001
Kida, Hiroshi; Sugano, Yuri; Iizuka, Ryo; Fujihashi, Masahiro; Yohda, Masafumi; Miki, Kunio
2008-11-14
Prefoldin (PFD) is a heterohexameric molecular chaperone that is found in eukaryotic cytosol and archaea. PFD is composed of alpha and beta subunits and forms a "jellyfish-like" structure. PFD binds and stabilizes nascent polypeptide chains and transfers them to group II chaperonins for completion of their folding. Recently, the whole genome of Thermococcus kodakaraensis KOD1 was reported and shown to contain the genes of two alpha and two beta subunits of PFD. The genome of Thermococcus strain KS-1 also possesses two sets of alpha (alpha1 and alpha2) and beta subunits (beta1 and beta2) of PFD (TsPFD). However, the functions and roles of each of these PFD subunits have not been investigated in detail. Here, we report the crystal structure of the TsPFD beta1 subunit at 1.9 A resolution and its functional analysis. TsPFD beta1 subunits form a tetramer with four coiled-coil tentacles resembling the jellyfish-like structure of heterohexameric PFD. The beta hairpin linkers of beta1 subunits assemble to form a beta barrel "body" around a central fourfold axis. Size-exclusion chromatography and multi-angle light-scattering analyses show that the beta1 subunits form a tetramer at pH 8.0 and a dimer of tetramers at pH 6.8. The tetrameric beta1 subunits can protect against aggregation of relatively small proteins, insulin or lysozyme. The structural and biochemical analyses imply that PFD beta1 subunits act as molecular chaperones in living cells of some archaea.
Tse, R; Wu, Y J; Vavougios, G; Hou, Y; Hinek, A; Mahuran, D J
1996-08-20
There are three human beta-hexosaminidase isozymes which are composed of all possible dimeric combinations of an alpha and/or a beta subunit; A (alpha beta), and B (beta beta), and S (alpha alpha). The amino acid sequences of the two subunits are 60% identical. The homology between the two chains varies with the middle > the carboxy-terminal > > the amino-terminal portions. Although dimerization is required for activity, each subunit contains its own active site and differs in its substrate specificity and thermal stability. The presence of the beta subunit in hexosaminidase A also influences the substrate specificity of the alpha subunit; e.g., in vivo only the A heterodimer can hydrolyze GM2 ganglioside. In this report, we localize functional regions in the two subunits by cellular expression of alpha/beta fusion proteins joined at adjacently aligned residues. First, a chimeric alpha/beta chain was made by replacing the least well-conserved amino-terminal section of the beta chain with the corresponding alpha section. The biochemical characteristics of this protein were nearly identical to hexosaminidase B. Therefore, the most dissimilar regions in the subunits are not responsible for their dissimilar biochemical properties. A second fusion protein was made that also included the more homologous middle section of the alpha chain. This protein expressed the substrate specificity unique to isozymes containing an alpha subunit (A and S). We conclude that the region responsible for the ability of the alpha subunit to bind negatively charged substrates is located within residues alpha 132-283. Interestingly, the remaining carboxy-terminal section from the beta chain, beta 316-556, was sufficient to allow this chimera to hydrolyze GM2 ganglioside with 10% the specific activity of heterodimeric hexosaminidase A. Thus, the carboxy-terminal section of each subunit is likely involved in subunit-subunit interactions.
Inactivation properties of voltage-gated K+ channels altered by presence of beta-subunit.
Rettig, J; Heinemann, S H; Wunder, F; Lorra, C; Parcej, D N; Dolly, J O; Pongs, O
1994-05-26
Structural and functional diversity of voltage-gated Kv1-type potassium channels in rat brain is enhanced by the association of two different types of subunits, the membrane-bound, poreforming alpha-subunits and a peripheral beta-subunit. We have cloned a beta-subunit (Kv beta 1) that is specifically expressed in the rat nervous system. Association of Kv beta 1 with alpha-subunits confers rapid A-type inactivation on non-inactivating Kv1 channels (delayed rectifiers) in expression systems in vitro. This effect is mediated by an inactivating ball domain in the Kv beta 1 amino terminus.
Immunochemical mapping of gonadotropins.
Berger, P; Bidart, J M; Delves, P S; Dirnhofer, S; Hoermann, R; Isaacs, N; Jackson, A; Klonisch, T; Lapthorn, A; Lund, T; Mann, K; Roitt, I; Schwarz, S; Wick, G
1996-12-20
As a glycoprotein hormone, human chorionic gonadotropic (hCG) is not a single molecular entity but this term rather comprises an array of molecular variants such as hCG, hCG beta, hCGn, hCG beta n, hCG beta cf, -CTPhCG, hCG beta CTP, deglyhCG, asialohCG, hCGav and the closely related molecules hLH, hLH beta and hLH beta ef. The advent of monoclonal antibodies (MCA), the availability of ultrasensitive detection systems and the recent determination of the crystal structure of hCG, made it possible to design special purpose diagnostic and clinical research immunoassays for hCG-like molecules. For more than a decade we and others have tried to refine epitope maps for hCG and related molecules by means of a large panel of MCA, naturally occurring metabolic variants of hCG (hCGn, hCG beta, hCG alpha, hCG beta cf, hCG beta CTP), homologous hormones and subunits of various species (e.g. hLH, hLH beta, hFSH, hTSH, oLH, rLH beta), chemically modified molecules (deglyhCG, asialohCG, tryptic and chymotryptic hCG beta and hCG alpha fragments) and synthetic peptides (octapeptides and longer). It appeared that all epitopes on molecular hCG-variants recognized by our MCA are determined by the protein backbone. Except for the two major epitopes on hCG beta CTP and parts of two antigenic domains on hCG alpha, epitopes on hCG-derived molecules are determined by the tertiary and quarternary structure. Operationally useful descriptive epitope maps were designed including information on assay suitability of antigenic determinants. On this basis we established ultrasensitive time-resolved fluoroimmuno-assays for hCG, hCG and hCGn, hCG beta and hCG beta n and hCG beta cf, hCG alpha and additional assays recognizing different spectra of hCG-variants. Such assay have been applied by us and others to the detection of pregnancy, early pregnancy loss, choriocarcinoma, testicular cancer, other cancers and prenatal diagnosis. However, as the molecular structure of many epitopes utilized in immunoassays of different laboratories was not resolved, comparability of results was not satisfactory. Consequently, attempts were made to compare schematic epitope maps from different research institutions. The situation has been much improved by solving the three-dimensional (3D) structure of hCG. It has been shown that hCG is a member of the structural superfamily of cystine knot growth factors like NGF, PDGF-B and TGF-beta. Each of its subunits is stabilized in its topology by three disulfide bonds forming a cystine knot. Moreover, it turned out that the disulfide bridges in their majority have previously been wrongly assigned. Computer molecular modeling of crystallographic coordinates of hCG and subsequent selective combined--PCR-based and immunological--mutational analyses of hCG beta expressed via the transmembrane region of a MHC molecule made it possible to more precisely localize epitopes on hCG-derived molecules. Although the entire surface of hCG has to be regarded as potentially immunogenic there seems to be hot spots where epitopes are clustered in antigenic domains. These are located on the first and third loops protuding from the cystine knots of both subunits and are possibly centered around the knot itself. Ultimate answers on epitope localizations will be given by the crystal structure determination of hCG complexed with different Fabs.
Kimmich, Tanja; Brüning, Ansgar; Käufl, Stephanie D; Makovitzky, Josef; Kuhn, Christina; Jeschke, Udo; Friese, Klaus; Mylonas, Ioannis
2010-08-01
Inhibins and activins are important regulators of the female reproductive system. Recently, two novel inhibin subunits, named betaC and betaE, have been identified and shown to be expressed in several human tissues. However, only limited data on the expression of these novel inhibin subunits in normal human endometrial tissue and endometrial adenocarcinoma cell lines exist. Samples of proliferative and secretory human endometrium were obtained from five premenopausal, non-pregnant patients undergoing gynecological surgery for benign diseases. Normal endometrial tissue and Ishikawa endometrial adenocarcinoma cell lines were analyzed by immunohistochemistry, immunofluorescence and RT-PCR. Expression of the inhibin betaC and betaE subunits could be demonstrated at the protein level by means of immunohistochemical evaluation and at the transcriptional level by establishing a betaC- and betaE-specific RT-PCR analysis in normal human endometrial tissue and the parental Ishikawa cell line. Interestingly, in a highly de-differentiated subclone of the Ishikawa cell line lacking estrogen receptor expression, the expression of the inhibin-betaC subunit appeared strongly reduced. Here, we show for the first time that the novel inhibin/activin-betaC and -betaE subunits are expressed in normal human endometrium and the estrogen receptor positive human endometrial carcinoma cell line Ishikawa using RT-PCR and immunohistochemical detection methods. Interestingly, the Ishikawa minus cell line (lacking estrogen receptor expression) demonstrated no to minimal expression of the betaC subunit as observed with immunofluorescence and RT-PCR, suggesting a possible hormone- dependency of this subunit in human endometrial cancer cells. Moreover, because the Ishikawa cell line minus is thought to be a more malignant endometrial cell line than its estrogen receptor positive counterpart, inhibin-betaC subunit might be substantially involved in the pathogenesis and malignant transformation in human endometrium.
Geib, Sandrine; Sandoz, Guillaume; Mabrouk, Kamel; Matavel, Alessandra; Marchot, Pascale; Hoshi, Toshinori; Villaz, Michel; Ronjat, Michel; Miquelis, Raymond; Lévêque, Christian; de Waard, Michel
2002-01-01
Native high-voltage-gated calcium channels are multi-subunit complexes comprising a pore-forming subunit Ca(v) and at least two auxiliary subunits alpha(2)delta and beta. The beta subunit facilitates cell-surface expression of the channel and contributes significantly to its biophysical properties. In spite of its importance, detailed structural and functional studies are hampered by the limited availability of native beta subunit. Here, we report the purification of a recombinant calcium-channel beta(4) subunit from bacterial extracts by using a polyhistidine tag. The purified protein is fully functional since it binds on the alpha1 interaction domain, its main Ca(v)-binding site, and regulates the activity of P/Q calcium channel expressed in Xenopus oocytes in a similar way to the beta(4) subunit produced by cRNA injection. We took advantage of the functionality of the purified material to (i) develop an efficient surface-plasmon resonance assay of the interaction between two calcium channel subunits and (ii) measure, for the first time, the affinity of the recombinant His-beta(4) subunit for the full-length Ca(v)2.1 channel. The availability of this purified material and the development of a surface-plasmon resonance assay opens two immediate research perspectives: (i) drug screening programmes applied to the Ca(v)/beta interaction and (ii) crystallographic studies of the calcium-channel beta(4) subunit. PMID:11988102
Takeo, Y
1984-08-01
Plasma concentrations of LH, FSH, 17 beta-estradiol, estrone and progesterone were determined chronologically by radioimmunoassays in two groups of adult female rats exposed to continuous illumination (LL). Group 1 rats showing vaginal estrous cycles were sacrificed at 3- to 6-hour intervals during late proestrus through early estrus of the first 5 cycles after exposure to LL. Group 2 animals which displayed persistent vaginal estrus in an early period of exposure to LL were killed on the 2nd, 3rd, 4th, 5th and 7th days of vaginal estrus. In Group 1 rats, surges of the hormones, except estrone, took place in all the 5 cycles. The occurrence of peak hormone levels in each cycle was invariably delayed after transfer of animals to LL. According to regression analyses, the lengths of secretion cycles of LH, FSH, 17 beta-estradiol and progesterone in rats under LL were 100.89, 100.46, 101.14 and 101.06 h, respectively. Elevation of 17 beta-estradiol levels was observed prior to the LH surge, and peaks of progesterone and FSH occurred following it. However, the secretion patterns of these hormones appear to be disrupted with length of exposure to LL. In group 2 rats, the mean concentration of LH during persistent estrus was approximately similar to that on the morning of the days of proestrus of the 4-day cycles of rats placed under an alternating 12-hour light-dark regimen (LD), whereas the mean FSH concentration was continuously low. While the concentrations of 17 beta-estradiol and estrone in persistent-estrous rats were elevated, progesterone levels remained low.(ABSTRACT TRUNCATED AT 250 WORDS)
Raz, Tal; Gray, Allister; Hunter, Barbara; Card, Claire
2009-10-01
Superovulatory treatment may potentially increase the embryo recovery rate and the per-cycle pregnancy rate in normal or subfertile mares that are managed properly. However, some studies suggest a possible negative effect of superovulatory treatment on ovarian follicular maturation and embryo viability. Objectives of the present study were to investigate the early effects of eFSH treatment in reproductively normal mares in terms of: folliculogenesis, pregnancy rate, early embryonic development, reproductive tract parameters (tone and edema), and serum estradiol-17beta and progesterone concentrations. Reproductively sound mares (n=26) were evaluated daily by transrectal palpation and ultrasonography. Five days after spontaneous ovulation, mares were randomly assigned to one of two treatment groups. In the eFSH group, mares (n=16 estrous cycles) were administered eFSH twice daily; beginning when a follicle > or =20mm was detected, and continuing until at least one follicle reached a diameter of > or =35 mm. PGF2alpha was administered 2 days following initiation of eFSH therapy, and hCG was administered approximately 36h after cessation of eFSH therapy. In the control group, mares (n=26 estrous cycles) were administered PGF2alpha 7 days after spontaneous ovulation, and hCG when a follicle > or =35 mm was detected. All mares were bred with fresh semen, monitored for ovulation (Day 0), and evaluated for pregnancy on Days 11-16. Serum estradiol-17beta and progesterone concentrations were analyzed using radioimmunoassay on the Day of hCG administration, and Days 8, 11 and 16. Mares treated with eFSH had more follicles > or =30 mm at the time of hCG administration (2.6+/-0.4 compared with 1.1+/-0.1; P<0.01), and more ovulations (2.3+/-0.5 compared with 1.1+/-0.3; P<0.01). However, pregnancy rates were not significantly different between groups (50%; 8/16 compared with 62%; 16/26). Mean overall daily growth rate of embryonic vesicles from Day 11 to 16 was not statistically different between the two groups (3.3+/-0.3 compared with 3.7+/-0.1 mm/day) (P=0.2); however, was more variable (P<0.01) in the eFSH group (95%CI: 2.6-3.8mm/day) than in the control group (95%CI: 3.5-3.9 mm/day). Administration of eFSH modified the reproductive tract variables and serum concentrations of progesterone and estradiol-17beta on the days that oocyte maturation, fertilization, and early embryonic development are expected to occur. These alterations may be related to the greater incidence of non-ovulatory follicles (25% compared with 0%), fewer embryos per ovulation rate (0.3+/-0.1 compared with 0.6+/-0.1), and the lesser than expected pregnancy rates in the eFSH-treated mares.
Tumkosit, Prem; Kuryatov, Alexander; Luo, Jie; Lindstrom, Jon
2006-10-01
Nicotinic acetylcholine receptors (AChRs) containing alpha6 subunits are typically found at aminergic nerve endings where they play important roles in nicotine addiction and Parkinson's disease. alpha6* AChRs usually contain beta3 subunits. beta3 subunits are presumed to assemble only in the accessory subunit position within AChRs where they do not participate in forming acetylcholine binding sites. Assembly of subunits in the accessory position may be a critical final step in assembly of mature AChRs. Human alpha6 AChRs subtypes were permanently transfected into human tsA201 human embryonic kidney (HEK) cell lines. alpha6beta2beta3 and alpha6beta4beta3 cell lines were found to express much larger amounts of AChRs and were more sensitive to nicotine-induced increase in the amount of AChRs than were alpha6beta2 or alpha6beta4 cell lines. The increased sensitivity to nicotine-induced up-regulation was due not to a beta3-induced increase in affinity for nicotine but probably to a direct effect on assembly of AChR subunits. HEK cells express only a small amount of mature alpha6beta2 AChRs, but many of these subunits are on the cell surface. This contrasts with Xenopus laevis oocytes, which express a large amount of incorrectly assembled alpha6beta2 subunits that bind cholinergic ligands but form large amorphous intracellular aggregates. Monoclonal antibodies (mAbs) were made to the alpha6 and beta3 subunits to aid in the characterization of these AChRs. The alpha6 mAbs bind to epitopes C-terminal of the extracellular domain. These data demonstrate that both cell type and the accessory subunit beta3 can play important roles in alpha6* AChR expression, stability, and up-regulation by nicotine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martel, C.; Labrie, C.; Dupont, E.
1990-12-01
The enzyme 3 beta-hydroxysteroid dehydrogenase/delta 5-delta 4 isomerase (3 beta-HSD) catalyzes an obligatory step in the conversion of pregnenolone and other 5-ene-3 beta-hydroxysteroids into progesterone as well as precursors of all androgens and estrogens in the ovary. Since 3 beta-HSD is likely to be an important target for regulation by pituitary hormones, we have studied the effect of chronic treatment with LH (hCG), FSH, and PRL on ovarian 3 beta-HSD expression and activity in hypophysectomized adult female rats. Human CG (hCG) (10 IU, twice a day (bid)), ovine FSH (0.5 microgram, bid), and ovine PRL (1 mg, bid) were administered,more » singly or in combination, for a period of 10 days starting 15 days after hypophysectomy. In hypophysectomized rats, PRL exerted a potent inhibitory effect on all the parameters studied. In fact, PRL caused a 81% decrease in ovarian 3 beta-HSD mRNA content accompanied by a similar decrease in 3 beta-HSD activity and protein levels. In addition, ovarian weight decreased by 40% whereas serum progesterone fell dramatically from 1.92 nmol/liter to undetectable levels after treatment with PRL. Whereas hCG alone had only slight stimulatory effects on 3 beta-HSD mRNA, protein content and activity levels, treatment with the gonadotropin partially or completely reversed the potent inhibitory effects of oPRL on all the parameters measured. FSH, on the other hand, had no significant effect on 3 beta-HSD expression and activity. In situ hybridization experiments using the 35S-labeled rat ovary 3 beta-HSD cDNA probe show that the inhibitory effect of PRL is exerted primarily on luteal cell 3 beta-HSD expression and activity. On the other hand, it can be seen that hCG stimulates 3 beta-HSD mRNA accumulation in interstitial cells.« less
Naor, Zvi; Jabbour, Henry N.; Naidich, Michal; Pawson, Adam J.; Morgan, Kevin; Battersby, Sharon; Millar, Michael R.; Brown, Pamela; Millar, Robert P.
2007-01-01
The asynchronous secretion of gonadotrope LH and FSH under the control of GnRH is crucial for ovarian cyclicity but the underlying mechanism is not fully resolved. Because prostaglandins (PG) are autocrine regulators in many tissues, we determined whether they have this role in gonadotropes. We first demonstrated that GnRH stimulates PG synthesis by induction of cyclooxygenase-2, via the protein kinase C/c-Src/phosphatidylinositol 3′-kinase/MAPK pathway in the LβT2 gonadotrope cell line. We then demonstrated that PGF2α and PGI2, but not PGE2 inhibited GnRH receptor expression by inhibition of phosphoinositide turnover. PGF2α, but not PGI2 or PGE2, reduced GnRH-induction of LHβ gene expression, but not the α-gonadotropin subunit or the FSHβ subunit genes. The prostanoid receptors EP1, EP2, FP, and IP were expressed in rat gonadotropes. Incubations of rat pituitaries with PGF2α, but not PGI2 or PGE2, inhibited GnRH-induced LH secretion, whereas the cyclooxygenase inhibitor, indomethacin, stimulated GnRH-induced LH secretion. None of these treatments had any effect on GnRH-induced FSH secretion. The findings have thus elaborated a novel GnRH signaling pathway mediated by PGF2α-FP and PGI2-IP, which acts through an autocrine/paracrine modality to limit autoregulation of the GnRH receptor and differentially inhibit LH and FSH release. These findings provide a mechanism for asynchronous LH and FSH secretions and suggest the use of combination therapies of GnRH and prostanoid analogs to treat infertility, diseases with unbalanced LH and FSH secretion and in hormone-dependent diseases such as prostatic cancer. PMID:17138645
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, T.; Weintraub, B.D.
1985-04-01
The regulation of TSH apoprotein and carbohydrate biosynthesis by thyroid hormone was studied by incubating pituitaries from normal and hypothyroid (3 weeks post-thyroidectomy) rats in medium containing (/sup 14/C)alanine and (/sup 3/H) glucosamine. After 6 h, samples were sequentially treated with anti-TSH beta to precipitate TSH and free TSH beta, anti-LH beta to clear the sample of LH and free LH beta, then anti-LH alpha to precipitate free alpha-subunit. Total proteins were acid precipitated. All precipitates were subjected to electrophoresis on sodium dodecyl sulfate-polyacrylamide gels, which were then sliced and assayed by scintillation spectrometry. In hypothyroid pituitaries plus medium, (/supmore » 14/C)alanine incorporation in combined and free beta-subunits was 26 times normal and considerably greater than the 3.4-fold increase seen in total protein; combined and free alpha-subunits showed no specific increase in apoprotein synthesis. (/sup 3/H)Glucosamine incorporation in combined alpha- and beta-subunits in hypothyroid samples was 13 and 21 times normal, respectively, and was greater than the 1.9-fold increase in total protein; free alpha-subunit showed no specific increase in carbohydrate synthesis. The glucosamine to alanine ratio, reflecting relative glycosylation of newly synthesized molecules, was increased in hypothyroidism for combined alpha-subunits, but not for combined beta-subunits, free alpha-subunits, or total proteins. In summary, short term hypothyroidism selectively stimulated TSH beta apoprotein synthesis and carbohydrate synthesis of combined alpha- and beta-subunits. Hypothyroidism also increased the relative glycosylation of combined alpha-subunit. Thus, thyroid hormone deficiency appears to alter the rate-limiting step in TSH assembly (i.e. beta-subunit synthesis) as well as the carbohydrate structure of TSH, which may play important roles in its biological function.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bidart, J.M.; Troalen, F.; Salesse, R.
1987-06-25
We describe a first attempt to study the antibody-combining sites recognized by monoclonal antibodies raised against the beta-subunit of human choriogonadotropin (hCG). Two groups of antibodies were first defined by their ability to recognize only the free beta-subunit or the free and combined subunit. Antibodies FBT-11 and FBT-11-L bind only to hCG beta-subunit but not to hCG, whereas antibodies FBT-10 and D1E8 bind to both the beta-subunit and the hormone. In both cases, the antigenic determinants were localized to the core of the protein (residues 1-112), indicating the weak immunogenicity of the specific carboxyl-terminal extension of hCG-beta. Nine synthetic peptidesmore » spanning different regions of hCG-beta and lutropin-beta were assessed for their capacity to inhibit antibody binding. A synthetic peptide inclusive of the NH2-terminal region (residues 1-7) of the hCG beta-subunit was found to inhibit binding to the radiolabeled subunit of a monoclonal antibody specific for free hCG-beta (FBT-11). Further delineation of the antigenic site recognized by this antibody provided evidence for the involvement of fragment 82-92. Moreover, monoclonal antibody FBT-11 inhibited the recombination of hCG-beta to hCG-alpha, indicating that its antigenic determinant might be located nearby or in the hCG-beta portion interacting with the alpha-subunit. Binding of monoclonal antibody FBT-10, corresponding to the second antigenic determinant, was weakly inhibited by fragment 82-105 and did not impair the recombination of the hCG beta-subunit to the hCG alpha-subunit. Its combining site appeared to be located in a region of the intact native choriogonadotropin present at the surface of the hormone-receptor complex.« less
Burkart, Anna D; Mukherjee, Abir; Mayo, Kelly E
2006-03-01
The rodent ovary is regulated throughout the reproductive cycle to maintain normal cyclicity. Ovarian follicular development is controlled by changes in gene expression in response to the gonadotropins FSH and LH. The inhibin alpha-subunit gene belongs to a group of genes that is positively regulated by FSH and negatively regulated by LH. Previous studies established an important role for inducible cAMP early repressor (ICER) in repression of alpha-inhibin. These current studies investigate the mechanisms of repression by ICER. It is not clear whether all four ICER isoforms expressed in the ovary can act as repressors of the inhibin alpha-subunit gene. EMSAs demonstrate binding of all isoforms to the inhibin alpha-subunit CRE (cAMP response element), and transfection studies demonstrate that all isoforms can repress the inhibin alpha-subunit gene. Repression by ICER is dependent on its binding to DNA as demonstrated by mutations to ICER's DNA-binding domain. These mutational studies also demonstrate that repression by ICER is not dependent on heterodimerization with CREB (CRE-binding protein). Competitive EMSAs show that ICER effectively competes with CREB for binding to the inhibin alpha CRE in vitro. Chromatin immunoprecipitation assays demonstrate a replacement of CREB dimers bound to the inhibin alpha CRE by ICER dimers in ovarian granulosa cells in response to LH signaling. Thus, there is a temporal association of transcription factors bound to the inhibin alpha-CRE controlling inhibin alpha-subunit gene expression.
Yuan, Yitong; Liu, Shunqi; Zhao, Yue; Lian, Ling; Lian, Zhengxing
2018-01-01
Interferon-γ (IFN-γ) is critical for innate and adaptive immunity against viral and bacterial infections. IFN-γ reportedly affects the phagocytic ability of monocytes and macrophages as well as regulates pituitary function in humans and mice. The present study analyzed the impact of IFN-γ on monocyte and macrophage phagocytosis, production performance, and pituitary function in vivo and in vitro (in dwarf chickens). IFN-γ was injected into dwarf chickens through a vein, and then, the laying rate, average egg weight, and levels of follicle-stimulating hormone (FSH) and IFN-γ were measured in treatment and control groups. For the in vitro experiment, the pituitary tissues were supplemented with IFN-γ, and the mRNA expression levels of follicle-stimulating hormone beta subunit ( FSH-β ), interferon gamma receptor 1 ( IFNGR 1), and interferon gamma receptor 2 ( IFNGR 2) in the pituitary were assessed. Monocyte and macrophage phagocytosis product (PP) was decreased by IFN-γ treatment in a dose-dependent manner in vitro. In the in vivo experiment, the level of IFN-γ in the treatment group was higher than that in the control group at 7 d ( P < 0.05), 14 d ( P < 0.01), and 21 d ( P < 0.01) post-injection. Compared with the control group, monocyte and macrophage PP was lower in the treatment group after injection ( P < 0.01). The laying rate was higher in the treatment group than in the control group at 2 and 3 wk post-injection ( P < 0.05). There was a significant difference between the treatment and control groups in the levels of FSH at 1, 3, 7, and 14 d post-injection ( P < 0.01). In the in vitro experiment, increased mRNA expression levels of FSH-β , IFNGR 1, and IFNGR 2 were observed in the treatment group after stimulation with 100 U/mL IFN-γ for 24 h compared to those in the control group ( P < 0.05). IFN-γ inhibited the phagocytosis of monocytes and macrophages; up-regulated the mRNA expression levels of the FSH-β , IFNGR 1, and IFNGR 2; enhanced the secretion of FSH; and improved the laying rate. IFN-γ might be an important regulator in the trade-off between the immune effect and production performance in dwarf chickens.
Structural Studies of Human Pyruvate Dehydrogenase
NASA Technical Reports Server (NTRS)
Ciszak, Ewa; Korotchkina, Lioubov G.; Dominiak, Paulina; Sidhu, Sukhdeep; Patel, Mulchand S.; Curreri, Peter A. (Technical Monitor)
2002-01-01
Human pyruvate dehydrogenase (E1) catalyzes the irreversible decarboxylation of pyruvate in the presence of Mg(2+) and thiamin pyrophosphate (TPP) followed by the rate-limiting reductive acetylation of the lipoyl moiety linked to dihydrolipoamide acetyltransferase. The three-dimensional structure of human E1 is elucidated using the methods of macromolecular X-ray crystallography. The structure is an alpha, alpha', beta and beta' tetramer with the protein units being in the tetrahedral arrangement. Each 361-residue alpha-subunit and 329-residue beta-subunit is composed of a beta-sheet core surrounded by alpha-helical domains. Each subunit is in extensive contact with all the three subunits involving TPP and magnesium cofactors, and potassium ions. The two binding sites for TPP are at the alpha-beta' and alpha'-beta interfaces, each involving a magnesium ion and Phe6l, His63, Tyr89, and Met200 from the alpha-subunit (or alpha'-subunit), and Met81 Phe85, His128 from the beta-subunit (or beta'-subunit). K+ ions are nestled between two beta-sheets and the end of an alpha-helix in each beta-subunit, where they are coordinated by four carbonyl oxygen groups from Ile12, Ala160, Asp163, and Asnl65, and a water molecule. The catalytic C2 carbon of thiazolium ring in this structure forms a 3.2 A contact with a water molecule involved in a series of H-bonds with other water molecules, and indirectly with amino acids including those involved in the catalysis and regulation of the enzyme.
Amino acid sequence of the human fibronectin receptor
1987-01-01
The amino acid sequence deduced from cDNA of the human placental fibronectin receptor is reported. The receptor is composed of two subunits: an alpha subunit of 1,008 amino acids which is processed into two polypeptides disulfide bonded to one another, and a beta subunit of 778 amino acids. Each subunit has near its COOH terminus a hydrophobic segment. This and other sequence features suggest a structure for the receptor in which the hydrophobic segments serve as transmembrane domains anchoring each subunit to the membrane and dividing each into a large ectodomain and a short cytoplasmic domain. The alpha subunit ectodomain has five sequence elements homologous to consensus Ca2+- binding sites of several calcium-binding proteins, and the beta subunit contains a fourfold repeat strikingly rich in cysteine. The alpha subunit sequence is 46% homologous to the alpha subunit of the vitronectin receptor. The beta subunit is 44% homologous to the human platelet adhesion receptor subunit IIIa and 47% homologous to a leukocyte adhesion receptor beta subunit. The high degree of homology (85%) of the beta subunit with one of the polypeptides of a chicken adhesion receptor complex referred to as integrin complex strongly suggests that the latter polypeptide is the chicken homologue of the fibronectin receptor beta subunit. These receptor subunit homologies define a superfamily of adhesion receptors. The availability of the entire protein sequence for the fibronectin receptor will facilitate studies on the functions of these receptors. PMID:2958481
The H,K-ATPase beta-subunit can act as a surrogate for the beta-subunit of Na,K-pumps.
Horisberger, J D; Jaunin, P; Reuben, M A; Lasater, L S; Chow, D C; Forte, J G; Sachs, G; Rossier, B C; Geering, K
1991-10-15
Na,K-ATPase and H,K-ATPase are the only members of the P-type ATPases in which a glycosylated beta-subunit is part of the purified active enzyme. In this study, we have followed the synthesis and the posttranslational processing of the beta-subunit of H,K-ATPase (beta HK) in Xenopus oocytes injected with beta HK cRNA and have tested whether it can act as a surrogate for the beta-subunit of Na,K-ATPase (beta NaK) to support the functional expression of Na,K-pumps. In Xenopus oocytes, beta HK is processed from an Endo H-sensitive 51-kDa coreglycosylated form to an Endo H-resistant 71-kDa fully glycosylated form. Similar to beta NaK, beta HK can stabilize and increase the trypsin resistance of alpha-subunits of Na,K-ATPase (alpha NaK). Finally, expression of beta HK together with alpha NaK leads to an increased number of ouabain binding sites at the plasma membrane accompanied by an increased Rb+ uptake and Na,K-pump current. Our data suggest that beta HK, similar to beta NaK, can assemble to alpha NaK, support the structural maturation and the intracellular transport of catalytic alpha NaK, and ultimately form active alpha NaK-beta HK complexes with Na,K-pump transport properties.
Du, Pang; Cui, Guang-Bin; Wang, Ya-Rong; Zhang, Xiao-Yong; Ma, Ke-Jun; Wei, Jing-Guo
2006-12-01
Hypercholesterolemia, which is closely related to gallbladder bile stasis, can cause sphincter of Oddi dysfunction (SOD) by increasing the tension of sphincter of Oddi (SO). Intracellular calcium ion concentration ([Ca(2+)](i)) could influence the tension of SO. The beta1 subunit of the big-conductance Ca(2+) sensitive K(+) channel (BK(Ca)) can enhance the sensitivity of the BK(Ca) channel to [Ca(2+)](i). Absence and decline of the BKCa channel subunit beta1 could lead to many diseases. However, the relationship between hypercholesterolemia and the expression of beta1 subunit is not well understood. In this study, we successfully expressed and purified the rabbit BK(Ca) beta1 subunit protein and prepared its polyclonal antibody. The specificity of the prepared antibody was determined by Western blotting. A SOD rabbit model induced by a high cholesterol diet was established and the expression of the beta1 subunit of SO was determined by immunohistochemical staining and western blotting. Compared with the controls, our results demonstrated that hypercholesterolemia could decrease the expression of the beta1 subunit in the SO cells from rabbits. This indicates that lower expression of BKCa channel beta1 subunit might induce SOD.
Fragrant dioxane derivatives identify beta1-subunit-containing GABAA receptors.
Sergeeva, Olga A; Kletke, Olaf; Kragler, Andrea; Poppek, Anja; Fleischer, Wiebke; Schubring, Stephan R; Görg, Boris; Haas, Helmut L; Zhu, Xin-Ran; Lübbert, Hermann; Gisselmann, Günter; Hatt, Hanns
2010-07-30
Nineteen GABA(A) receptor (GABA(A)R) subunits are known in mammals with only a restricted number of functionally identified native combinations. The physiological role of beta1-subunit-containing GABA(A)Rs is unknown. Here we report the discovery of a new structural class of GABA(A)R positive modulators with unique beta1-subunit selectivity: fragrant dioxane derivatives (FDD). At heterologously expressed alpha1betaxgamma2L (x-for 1,2,3) GABA(A)R FDD were 6 times more potent at beta1- versus beta2- and beta3-containing receptors. Serine at position 265 was essential for the high sensitivity of the beta1-subunit to FDD and the beta1N286W mutation nearly abolished modulation; vice versa the mutation beta3N265S shifted FDD sensitivity toward the beta1-type. In posterior hypothalamic neurons controlling wakefulness GABA-mediated whole-cell responses and GABAergic synaptic currents were highly sensitive to FDD, in contrast to beta1-negative cerebellar Purkinje neurons. Immunostaining for the beta1-subunit and the potency of FDD to modulate GABA responses in cultured hypothalamic neurons was drastically diminished by beta1-siRNA treatment. In conclusion, with the help of FDDs we reveal a functional expression of beta1-containing GABA(A)Rs in the hypothalamus, offering a new tool for studies on the functional diversity of native GABA(A)Rs.
Hirai, M Y; Fujiwara, T; Chino, M; Naito, S
1995-10-01
Transgenic expression of genes encoding the alpha' and beta subunits of beta-conglycinin, one of the major seed storage proteins of soybean (Glycine max [L.] Merr.), was analyzed in Arabidopsis thaliana (L.) Heynh. under conditions of sulfate deficiency. Temporal patterns of expression of both the intact beta subunit gene and the beta subunit gene promoter fused to the beta-glucuronidase (GUS) gene are similar in soil-less cultures using rockwool, suggesting that the response to sulfate deficiency is regulated mainly at the level of transcription. In hydroponic cultures with various concentrations of sulfate, expression of both the intact beta subunit gene and the beta subunit gene promoter-GUS fusion gene were negatively correlated to increased sulfate concentrations in the culture medium. Transfer of transgenic A. thaliana plants carrying the beta subunit gene promoter-GUS fusion from sulfate-deficient to sulfate-sufficient control medium caused GUS activity in developing siliques to be repressed within two days. A reverse shift, where the plants were transferred from the control to sulfate-deficient medium, caused GUS activity to become higher than that in seeds of the control plants within two days. These results indicate that the expression of the beta subunit gene promoter responds rapidly to changes of sulfate availability.
Sato, Takanobu; Kitahara, Kousuke; Susa, Takao; Kato, Takako; Kato, Yukio
2006-10-01
Recently, we have reported that a Prophet of Pit-1 homeodomain factor, Prop-1, is a novel transcription factor for the porcine follicle-stimulating hormone beta subunit (FSHbeta) gene. This study subsequently aimed to examine the role of Prop-1 in the gene expression of two other porcine gonadotropin subunits, pituitary glycoprotein hormone alpha subunit (alphaGSU), and luteinizing hormone beta subunit (LHbeta). A series of deletion mutants of the porcine alphaGSU (up to -1059 bp) and LHbeta (up to -1277 bp) promoters were constructed in the reporter vector, fused with the secreted alkaline phosphatase gene (pSEAP2-Basic). Transient transfection studies using GH3 cells were carried out to estimate the activation of the porcine alphaGSU and LHbeta promoters by Prop-1, which was found to activate the alphaGSU promoter of -1059/+12 bp up to 11.7-fold but not the LHbeta promoter. Electrophoretic mobility shift assay and DNase I footprinting analysis revealed that Prop-1 binds to six positions, -1038/-1026, -942/-928, -495/-479, -338/-326, -153/-146, and -131/-124 bp, that comprise the A/T cluster. Oligonucleotides of six Prop-1 binding sites were directly connected to the minimum promoter of alphaGSU, fused in the pSEAP2-Basic vector, followed by transfecting GH3 cells to determine the cis-acting activity. Finally, we concluded that at least five Prop-1 binding sites are the cis-acting elements for alphaGSU gene expression. The present results revealed a notable feature of the proximal region, where three Prop-1-binding sites are close to and/or overlap the pituitary glycoprotein hormone basal element, GATA-binding element, and junctional regulatory element. To our knowledge, this is the first demonstration of the role of Prop-1 in the regulation of alphaGSU gene expression. These results, taken together with our previous finding that Prop-1 is a transcription factor for FSHbeta gene, confirm that Prop-1 modulates the synthesis of FSH at the transcriptional level. On the other hand, the defects of Prop-1 are known to cause dwarfism and combined pituitary hormone deficiency accompanying hypogonadism. Accordingly, the present observations provide a novel view to understand the hypogonadism caused by Prop-1 defects at the molecular level through the regulatory mechanism of alphaGSU and FSHbeta gene expressions.
O-linked oligosaccharides on insulin receptor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collier, E.; Gorden, P.
1991-02-01
The insulin receptor, an integral membrane glycoprotein, is synthesized as a single-chain precursor that is cleaved to produce two mature subunits, both of which contain N-linked oligosaccharide chains and covalently linked fatty acids. We report that the beta-subunit also contains O-linked oligosaccharides. The proreceptor, alpha-subunit, and beta-subunit were labeled with (3H)mannose and (3H)galactose in the presence or absence of an inhibitor of O-linked glycosylation. Tryptic peptides from each component were separated by reverse-phase high-performance liquid chromatography. N- and O-linked oligosaccharide chains were identified on these peptides by specific enzymatic digestions. The proreceptor and alpha-subunit contained only N-linked oligosaccharides, whereas themore » beta-subunit contained both N- and O-linked oligosaccharides. The O-linked oligosaccharide chains were attached to a single tryptic fraction of the beta-subunit, which also contained N-linked chains. This fraction was further localized to the NH2-terminal tryptic peptide of the beta-subunit by specific immunoprecipitation with an anti-peptide antibody with specificity for this region. Binding of insulin and autophosphorylation of the beta-subunit were not dependent on O-linked glycosylation, because cells grown in the presence of the inhibitor exhibited a normal dose response to insulin. Therefore, the insulin receptor contains O-linked oligosaccharides on the NH2-terminal tryptic peptide of the beta-subunit, and these O-linked oligosaccharides are not necessary to the binding or autophosphorylation function of the receptor.« less
Sahlan, Muhamad; Kanzaki, Taro; Yohda, Masafumi
2009-05-01
The hyperthermophilic archaeon Thermococcus sp. strain KS-1 (T. KS-1) expresses two different chaperonin subunits, alpha and beta, for the folding of its proteins. The composition of the subunits in the hexadecameric double ring changes with temperature. The content of the beta subunit significantly increases according to the increase in temperature. The homo-oligomer of the beta subunit, Cpn beta, is more thermostable than that of the alpha subunit, Cpn alpha. Since Cpn alpha and Cpn beta also have different protein folding activities and interactions with prefoldin, the hetero-oligomer is thought to exhibit different characteristics according to the content of subunits. The hetero-oligomer of the T. KS-1 chaperonin has not been studied, however, because the alpha and beta subunits form hetero-oligomers of varying compositions when they are expressed simultaneously. In this study, we characterized the T. KS-1 chaperonin hetero-oligomer, Cpn alphabeta, containing both alpha and beta in the alternate order, which was constructed by the expression of alpha and beta subunits in a coordinated fashion and protease digestion. Cpn alphabeta protected citrate synthase from thermal aggregation, promoted the folding of acid-denatured GFP in an ATP-dependent manner, and exhibited an ATP-dependent conformational change. The yield of refolded GFP generated by Cpn alphabeta was almost equivalent to that generated by Cpn beta but lower than that generated by Cpn alpha. In contrast, Cpn alphabeta exhibited almost the same level of thermal stability as Cpn alpha, which was lower than that of Cpn beta. The affinity of Cpn alphabeta to prefoldin was found to be between those of Cpn alpha and Cpn beta, as expected.
Hub, Jochen S; Kubitzki, Marcus B; de Groot, Bert L
2010-05-06
We present molecular dynamics simulations of unliganded human hemoglobin (Hb) A under physiological conditions, starting from the R, R2, and T state. The simulations were carried out with protonated and deprotonated HC3 histidines His(beta)146, and they sum up to a total length of 5.6 micros. We observe spontaneous and reproducible T-->R quaternary transitions of the Hb tetramer and tertiary transitions of the alpha and beta subunits, as detected from principal component projections, from an RMSD measure, and from rigid body rotation analysis. The simulations reveal a marked asymmetry between the alpha and beta subunits. Using the mutual information as correlation measure, we find that the beta subunits are substantially more strongly linked to the quaternary transition than the alpha subunits. In addition, the tertiary populations of the alpha and beta subunits differ substantially, with the beta subunits showing a tendency towards R, and the alpha subunits showing a tendency towards T. Based on the simulation results, we present a transition pathway for coupled quaternary and tertiary transitions between the R and T conformations of Hb.
Function of Several Critical Amino Acids in Human Pyruvate Dehydrogenase Revealed by Its Structure
NASA Technical Reports Server (NTRS)
Korotchkina, Lioubov G.; Ciszak, E.; Patel, M.
2004-01-01
Pyruvate dehydrogenase (E1), an alpha 2 beta 2 tetramer, catalyzes the oxidative decarboxylation of pyruvate and reductive acetylation of lipoyl moieties of the dihydrolipoamide acetyltransferase. The roles of beta W135, alpha P188, alpha M181, alpha H15 and alpha R349 of E1 determined by kinetic analysis were reassessed by analyzing the three-dimensional structure of human E1. The residues identified above are found to play a structural role rather than being directly involved in catalysis: beta W135 is the center residue in the hydrophobic interaction between beta and beta' subunits; alpha P188 and alpha M181 are critical for the conformation of the TPP-binding motif and interaction between alpha and beta subunits; alpha H15, is necessary for the organization of the N-terminus of alpha and alpha'; subunits and alpha R349 supports the interaction of the C-terminus of the alpha subunits with the beta subunits. Analysis of several critical E1 residues confirms the importance of residues distant from the active site for subunit interactions and enzyme function.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meacham, Connie A.; Brodfuehrer, Peter D.; Watkins, Jennifer A.
2008-09-15
Juvenile rats have been reported to be more sensitive to the acute neurotoxic effects of the pyrethroid deltamethrin than adults. While toxicokinetic differences between juveniles and adults are documented, toxicodynamic differences have not been examined. Voltage-gated sodium channels, the primary targets of pyrethroids, are comprised of {alpha} and {beta} subunits, each of which have multiple isoforms that are expressed in a developmentally-regulated manner. To begin to test whether toxicodynamic differences could contribute to age-dependent deltamethrin toxicity, deltamethrin effects were examined on sodium currents in Xenopus laevis oocytes injected with different combinations of rat {alpha} (Na{sub v}1.2 or Na{sub v}1.3) andmore » {beta} ({beta}{sub 1} or {beta}{sub 3}) subunits. Deltamethrin induced tail currents in all isoform combinations and increased the percent of modified channels in a concentration-dependent manner. Effects of deltamethrin were dependent on subunit combination; Na{sub v}1.3-containing channels were modified to a greater extent than were Na{sub v}1.2-containing channels. In the presence of a {beta} subunit, deltamethrin effects were significantly greater, an effect most pronounced for Na{sub v}1.3 channels; Na{sub v}1.3/{beta}{sub 3} channels were more sensitive to deltamethrin than Na{sub v}1.2/{beta}{sub 1} channels. Na{sub v}1.3/{beta}{sub 3} channels are expressed embryonically, while the Na{sub v}1.2 and {beta}{sub 1} subunits predominate in adults, supporting the hypothesis for age-dependent toxicodynamic differences. Structure-activity relationships for sensitivity of these subunit combinations were examined for other pyrethroids. Permethrin and tetramethrin did not modify currents mediated by either subunit combination. Cypermethrin, {beta}-cyfluthrin, esfenvalerate and fenpropathrin all modified sodium channel function; effects were significantly greater on Na{sub v}1.3/{beta}{sub 3} than on Na{sub v}1.2/{beta}{sub 1} channels. These data demonstrate a greater sensitivity of Na{sub v}1.3 vs Na{sub v}1.2 channels to deltamethrin and other cyano-containing pyrethroids, particularly in the presence of a {beta} subunit.« less
Peters, B P; Krzesicki, R F; Hartle, R J; Perini, F; Ruddon, R W
1984-12-25
Human choriocarcinoma cells (JAR) synthesize the alpha and beta subunits of the glycoprotein hormone chorionic gonadotropin (hCG) (R.W. Ruddon, C.A. Hanson, A. H. Bryan, G.J. Putterman, E.L. White, F. Perini, K. S. Meade, and P.H. Aldenderfer (1980) J. Biol. Chem. 255, 1000-1007). In addition to the hCG dimer (alpha beta), JAR cells secrete uncombined alpha and beta subunits into the culture medium (L.A. Cole, R.J. Hartle, J.A. Laferla, and R.W. Ruddon (1983) Endocrinology 113, 1176-1178). Pulse-chase studies with [35S]methionine or [3H]mannose were carried out in order to compare free alpha, free beta, and the alpha beta dimer with regard to the kinetics of synthesis, N-linked oligosaccharide processing, and secretion and to determine the kinetics of alpha-beta subunit combination. A panel of three antisera was used to immunoprecipitate directly the free subunits and the alpha beta dimer sequentially from the same cell lysates and culture media. The alpha subunit of hCG was synthesized in a slight molar excess (1.2-1.5-fold) over the beta subunit, and alpha beta dimer was rapidly formed by combination of the intracellular alpha and beta precursors. Dimer formation was already apparent in JAR cells following a 10-min biosynthetic labeling incubation with [35S]methionine. The combination of subunits ceased by 30 min of chase even though 51% of alpha and 44% of beta remained free within the cells. Combination of the alpha and beta precursors had occurred before their N-linked oligosaccharides were processed beyond the Man8GlcNAc2 structure. The initial trimming of glucosyl and mannosyl units from the high-mannose oligosaccharides of the hCG precursors occurred more rapidly for free alpha and CG-alpha than for free beta and CG-beta. JAR cells accumulated alpha precursors bearing mostly Man8GlcNAc2 units and beta precursors bearing Man8GlcNAc2 units that represent the substrates of the rate-limiting step in the secretory pathway. In spite of the fact that their N-linked oligosaccharides were trimmed at different rates, free alpha, free beta, and alpha beta dimer were all secreted into the medium at the same rate, with a half-time of 35 min. The secreted hCG forms were stable in the chase medium between 4 and 8h, indicating that extracellular degradation, combination of free subunits to form dimer, or dissociation of dimer to form free subunits did not occur.(ABSTRACT TRUNCATED AT 400 WORDS)
Zhang, Rong; Dzhura, Igor; Grueter, Chad E; Thiel, William; Colbran, Roger J; Anderson, Mark E
2005-09-01
L-type Ca2+ channels are macromolecular protein complexes in neurons and myocytes that open in response to cell membrane depolarization to supply Ca2+ for regulating gene transcription and vesicle secretion and triggering cell contraction. L-type Ca2+ channels include a pore-forming alpha and an auxiliary beta subunit, and alpha subunit openings are regulated by cellular Ca2+ through a mechanism involving the Ca2+-sensing protein calmodulin (CaM) and CaM binding motifs in the alpha subunit cytoplasmic C terminus. Here we show that these CaM binding motifs are "auto-agonists" that increase alpha subunit openings by binding the beta subunit. The CaM binding domains are necessary and sufficient for the alpha subunit C terminus to bind the beta subunit in vitro, and excess CaM blocks this interaction. Addition of CaM binding domains to native cardiac L-type Ca2+ channels in excised cell membrane patches increases openings, and this agonist effect is prevented by excess CaM. Recombinant LTCC openings are also increased by exogenous CaM binding domains by a mechanism requiring the beta subunit, and excess CaM blocks this effect. Thus, the bifunctional ability of the alpha subunit CaM binding motifs to competitively associate with the beta subunit or CaM provides a novel paradigm for feedback control of cellular Ca2+ entry.
Xu, Shuhua; Soroka, Carol J; Sun, An-Qiang; Backos, Donald S; Mennone, Albert; Suchy, Frederick J; Boyer, James L
2016-01-01
The heteromeric membrane protein Organic Solute Transporter alpha/beta is the major bile acid efflux transporter in the intestine. Physical association of its alpha and beta subunits is essential for their polarized basolateral membrane localization and function in the transport of bile acids and other organic solutes. We identified a highly conserved acidic dileucine motif (-EL20L21EE) at the extracellular amino-tail of organic solute transporter beta from multiple species. To characterize the role of this protein interacting domain in the association of the human beta and alpha subunits and in membrane localization of the transporter, Leu20 and Leu21 on the amino-tail of human organic solute transporter beta were replaced with alanines by site-directed mutagenesis. Co-immunoprecipitation study in HEK293 cells demonstrated that substitution of the leucine residues with alanines prevented the interaction of the human beta mutant with the alpha subunit. Membrane biotinylation demonstrated that the LL/AA mutant eliminated membrane expression of both subunits. Computational-based modelling of human organic solute transporter beta suggested that the LL/AA mutation substantially alters both the structure and lipophilicity of the surface, thereby not only affecting the interaction with the alpha subunit but also possibly impacting the capacity of the beta subunit to traffick through the cell and interact with the membrane. In summary, our findings indicate that the dileucine motif in the extracellular N-terminal region of human organic solute transporter beta subunit plays a critical role in the association with the alpha subunit and in its polarized plasma membrane localization.
Canosa, L F; Ceballos, N R
2002-05-01
In order to study the regulation of testicular steroidogenesis in the toad Bufo arenarum, the effect of gonadotropins (hCG and hrFSH) on steroidogenic enzymes was determined using an in vitro system. 3beta-Hydroxysteroid dehydrogenase/isomerase activity was not affected by any of the gonadotropins, at any of the concentrations used. In contrast, 5alpha-reductase activity was strongly reduced by both hCG and hrFSH. Human chorionic gonadotropin inhibited the activity of cytochrome P450 17alpha-hydroxylase-C(17-20) lyase (P450(c17)), only at the highest concentration used, while hrFSH strongly reduced P450(c17) activity at all the doses assayed. In conclusion, these data suggest that LH (hCG) and FSH regulate steroidogenic enzymes such as 5alphaRed and P450(c17). The results also suggest that FSH could be involved in the regulation of the change in steroidogenesis undergone by the testis during the breeding season. In turn, the inhibition of P450(c17) activity could result in a reduction of androgen production and an increment of C21 steroids. (c) 2002 Elsevier Science (USA).
Sahlan, Muhamad; Kanzaki, Taro; Zako, Tamotsu; Maeda, Mizuo; Yohda, Masafumi
2010-09-01
Prefoldin is a co-chaperone that captures an unfolded protein substrate and transfers it to the group II chaperonin for completion of protein folding. Group II chaperonin of a hyperthermophilic archaeon, Thermococcus strain KS-1, interacts and cooperates with archaeal prefoldins. Although the interaction sites within chaperonin and prefoldin have been analyzed, the binding mode between jellyfish-like hexameric prefoldin and the double octameric ring group II chaperonin remains unclear. As prefoldin binds the chaperonin beta subunit more strongly than the alpha subunit, we analyzed the binding mode between prefoldin and chaperonin in the context of Thermococcus group II chaperonin complexes of various subunit compositions and arrangements. The oligomers exhibited various affinities for prefoldins according to the number and order of subunits. Binding affinity increased with the number of Cpnbeta subunits. Interestingly, chaperonin complexes containing two beta subunits adjacently exhibited stronger affinities than other chaperonin complexes containing the same number of beta subunits. The result suggests that all four beta tentacles of prefoldin interact with the helical protrusions of CPN in the PFD-CPN complex as the previously proposed model that two adjacent PFD beta subunits seem to interact with two CPN adjacent subunits. Copyright © 2010 Elsevier B.V. All rights reserved.
Iizuka, Ryo; Sugano, Yuri; Ide, Naoki; Ohtaki, Akashi; Yoshida, Takao; Fujiwara, Shinsuke; Imanaka, Tadayuki; Yohda, Masafumi
2008-03-28
Prefoldin is a heterohexameric molecular chaperone complex that is found in the eukaryotic cytosol and also in archaea. It captures a nonnative protein and subsequently delivers it to a group II chaperonin for proper folding. Archaeal prefoldin is a heterocomplex containing two alpha subunits and four beta subunits with the structure of a double beta-barrel assembly, with six long coiled coils protruding from it like a jellyfish with six tentacles. We have studied the protein folding mechanism of group II chaperonin using those of Thermococcus sp. strain KS-1 (T. KS-1) because they exhibit high protein folding activity in vitro. We have also demonstrated functional cooperation between T. KS-1 chaperonins and prefoldin from Pyrococcus horikoshii OT3. Recent genome analysis has shown that Thermococcus kodakaraensis KOD1 contains two pairs of prefoldin subunit genes, correlating with the existence of two different chaperonin subunits. In this study, we characterized four different recombinant prefoldin complexes composed of two pairs of prefoldin subunits (alpha1, alpha2, beta1, and beta2) from T. KS-1. All of them (alpha1-beta1, alpha2-beta1, alpha1-beta2, and alpha2-beta2) exist as alpha(2)beta(4) heterohexamers and can protect several proteins from forming aggregates with different activities. We have also compared the collaborative activity between the prefoldin complexes and the cognate chaperonins. Prefoldin complexes containing the beta1 subunit interacted with the chaperonins more strongly than those with the beta2 subunit. The results suggest that Thermococcus spp. express different prefoldins for different substrates or conditions as chaperonins.
Assembly of the epithelial Na+ channel evaluated using sucrose gradient sedimentation analysis.
Cheng, C; Prince, L S; Snyder, P M; Welsh, M J
1998-08-28
Three subunits, alpha, beta, and gamma, contribute to the formation of the epithelial Na+ channel. To investigate the oligomeric assembly of the channel complex, we used sucrose gradient sedimentation analysis to determine the sedimentation properties of individual subunits and heteromultimers comprised of multiple subunits. When the alpha subunit was expressed alone, it first formed an oligomeric complex with a sedimentation coefficient of 11 S, and then generated a higher order multimer of 25 S. In contrast, individual beta and gamma subunits predominately assembled into 11 S complexes. We obtained similar results with expression in cells and in vitro. When we co-expressed beta with alpha or with alpha plus gamma, the beta subunit assembled into a 25 S complex. Glycosylation of the alpha subunit was not required for assembly into a 25 S complex. We found that the alpha subunit formed intra-chain disulfide bonds. Although such bonds were not required to generate an oligomeric complex, under nonreducing conditions the alpha subunit formed a complex that migrated more homogeneously at 25 S. This suggests that intra-chain disulfide bonds may stabilize the complex. These data suggest that the epithelial Na+ channel subunits form high order oligomeric complexes and that the alpha subunit contains the information that facilitates such formation. Interestingly, the ability of the alpha, but not the beta or gamma, subunit to assemble into a 25 S homomeric complex correlates with the ability of these subunits to generate functional channels when expressed alone.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Hui; Lin, Lu; Haq, Ihtesham Ul
The transcription factor nuclear factor-κB (NF-κB) plays an important role in diverse processes, including cell proliferation and differentiation, apoptosis and inflammation. However, the role of NF-κB in porcine follicle development is not clearly elucidated. In this study, we demonstrated that follicle stimulating hormone (FSH) increased the level of inhibitor of NF-κB (IκB) protein and promoted the cytoplasmic localization of p65, indicating that FSH inhibits the activation of NF-κB in porcine granulosa cells. Moreover, inhibition of NF-κB by FSH or another specific inhibitor of NF-κB, pyrrolidine dithiocarbamate (PDTC), could activate JNK signaling and enhance autophagic activity in porcine granulosa cells. Knockdownmore » of RelA (p65) Subunit of NF-κB by RNA interference abrogated the activation of JNK signaling pathway and the increase of autophagic protein expression by FSH. Meanwhile, the functional significance of FSH or PDTC-mediated autophagy were further investigated. Our results demonstrated that the increased autophagy promoted progesterone secretion in porcine granulosa cells. Blockage of autophagy by chloroquine obviated the FSH or PDTC-induced progesterone production. Taken together, these results indicate that inhibition of NF-κB increased autophagy via JNK signaling, and promote steroidogenesis in porcine granulosa cells. Our results provide new insights into the regulation and function of autophagy in mammalian follicle development. - Highlights: • FSH inhibits the activation of NF-κB in porcine primary granulosa cells. • Inhibition of NF-κB by FSH promotes autophagy via JNK signaling in granulosa cells. • Increased autophagy contributes to progesterone production in granulosa cells. • This is the first report against beclin1 regulation in porcine granulosa cells.« less
1995-01-01
To examine the function of the alpha 6 beta 4 integrin we have determined its ligand-binding ability and overexpressed two potentially dominant negative mutant beta 4 subunits, lacking either the cytoplasmic or extracellular domain, in bladder epithelial 804G cells. The results of cell adhesion and radioligand-binding assays showed that alpha 6 beta 4 is a receptor for several laminin isoforms, including laminin 1, 2, 4, and 5. Overexpression of the tail-less or head-less mutant beta 4 subunit did not suppress alpha 6 beta 4-mediated adhesion to laminins, as both types of transfectants adhered to these ligands in the presence of blocking anti-beta 1 antibodies as well as the controls. However, immunofluorescence experiments indicated that the endogenous alpha 6 beta 4 integrin and other hemidesmosomal markers were not concentrated in hemidesmosomes in cells overexpressing tail- less beta 4, while the distribution of these molecules was not altered in cells overexpressing the head-less subunit. Electron microscopic studies confirmed that cells overexpressing tail-less beta 4 had a drastically reduced number of hemidesmosomes, while cells expressing the head-less subunit had a normal number of these structures. Thus, expression of a tail-less, but not a head-less mutant beta 4 subunit leads to a dominant negative effect on hemidesmosome assembly without suppressing initial adhesion to laminins. We conclude that the alpha 6 beta 4 integrin binds to several laminins and plays an essential role in the assembly and/or stability of hemidesmosomes, that alpha 6 beta 4- mediated adhesion and hemidesmosome assembly have distinct requirements, and that it is possible to use a dominant negative approach to selectively interfere with a specific function of an integrin. PMID:7721947
Wilken, Jason A; Bedows, Elliott
2004-05-04
The intracellular kinetic folding pathway of the human chorionic gonadotropin beta-subunit (hCG-beta) reveals the presence of a disulfide between Cys residues 38-57 that is not detected by X-ray analysis of secreted hCG-beta. This led us to propose that disulfide rearrangement is an essential feature of cystine knot formation during CG-beta folding. To test this, we used disulfide bond formation to monitor progression of intracellular folding intermediates of a previously uncharacterized protein, the CG-beta subunit of cynomolgous macaque (Macaca fascicularis). Like its human counterpart hCG-beta with which it shares 81% identity, macaque (m)CG-beta is a cystine knot-containing subunit that assembles with an alpha-subunit common to all glycoprotein hormone members of its species to form a biologically active heterodimer, mCG, which, like hCG, is required for pregnancy maintenance. An early mCG-beta folding intermediate, mpbeta1, contained two disulfide bonds, one between Cys34 and Cys88 and the other between Cys38 and Cys57. The subsequent folding intermediate, mpbeta2-early, was represented by an ensemble of folding forms that, in addition to the two disulfides mentioned above, included disulfide linkages between Cys9 and Cys57 and between Cys38 and Cys90. These latter two disulfides are those contained within the beta-subunit cystine knot and reveal that a disulfide exchange occurred during the mpbeta2-early folding step leading to formation of the mCG-beta knot. Thus, while defining the intracellular kinetic protein folding pathway of a monkey homologue of CG-beta, we detected the previously predicted disulfide exchange event crucial for CG-beta cystine knot formation and attainment of CG-beta assembly competence.
Thoden, J. B.; Holden, H. M.; Fisher, A. J.; Sinclair, J. F.; Wesenberg, G.; Baldwin, T. O.; Rayment, I.
1997-01-01
Luciferase, as isolated from Vibrio harveyi, is an alpha beta heterodimer. When allowed to fold in the absence of the alpha subunit, either in vitro or in vivo, the beta subunit of enzyme will form a kinetically stable homodimer that does not unfold even after prolonged incubation in 5 M urea at pH 7.0 and 18 degrees C. This form of the beta subunit, arising via kinetic partitioning on the folding pathway, appears to constitute a kinetically trapped alternative to the heterodimeric enzyme (Sinclair JF, Ziegler MM, Baldwin TO. 1994. Kinetic partitioning during protein folding yields multiple native states. Nature Struct Biol 1: 320-326). Here we describe the X-ray crystal structure of the beta 2 homodimer of luciferase from V. harveyi determined and refined at 1.95 A resolution. Crystals employed in the investigational belonged to the orthorhombic space group P2(1)2(1)2(1) with unit cell dimensions of a = 58.8 A, b = 62.0 A, and c = 218.2 A and contained one dimer per asymmetric unit. Like that observed in the functional luciferase alpha beta heterodimer, the major tertiary structural motif of each beta subunit consists of an (alpha/beta)8 barrel (Fisher AJ, Raushel FM, Baldwin TO, Rayment I. 1995. Three-dimensional structure of bacterial luciferase from Vibrio harveyi at 2.4 A resolution. Biochemistry 34: 6581-6586). The root-mean-square deviation of the alpha-carbon coordinates between the beta subunits of the hetero- and homodimers is 0.7 A. This high resolution X-ray analysis demonstrated that "domain" or "loop" swapping has not occurred upon formation of the beta 2 homodimer and thus the stability of the beta 2 species to denaturation cannot be explained in such simple terms. In fact, the subunit:subunit interfaces observed in both the beta 2 homodimer and alpha beta heterodimer are remarkably similar in hydrogen-bonding patterns and buried surface areas. PMID:9007973
Harding, Louisa B; Schultz, Irvin R; da Silva, Denis A M; Ylitalo, Gina M; Ragsdale, Dave; Harris, Stephanie I; Bailey, Stephanie; Pepich, Barry V; Swanson, Penny
2016-09-01
It is well known that endocrine disrupting compounds (EDCs) present in wastewater treatment plant (WWTP) effluents interfere with reproduction in fish, including altered gonad development and induction of vitellogenin (Vtg), a female-specific egg yolk protein precursor produced in the liver. As a result, studies have focused on the effects of EDC exposure on the gonad and liver. However, impacts of environmental EDC exposure at higher levels of the hypothalamic-pituitary-gonad axis are less well understood. The pituitary gonadotropins, follicle-stimulating hormone (Fsh) and luteinizing hormone (Lh) are involved in all aspects of gonad development and are subject to feedback from gonadal steroids making them a likely target of endocrine disruption. In this study, the effects of WWTP effluent exposure on pituitary gonadotropin mRNA expression were investigated to assess the utility of Lh beta-subunit (lhb) as a biomarker of estrogen exposure in juvenile coho salmon (Oncorhynchus kisutch). First, a controlled 72-h exposure to 17α-ethynylestradiol (EE2) and 17β-trenbolone (TREN) was performed to evaluate the response of juvenile coho salmon to EDC exposure. Second, juvenile coho salmon were exposed to 0, 20 or 100% effluent from eight WWTPs from the Puget Sound, WA region for 72h. Juvenile coho salmon exposed to 2 and 10ng EE2L(-1) had 17-fold and 215-fold higher lhb mRNA levels relative to control fish. Hepatic vtg mRNA levels were dramatically increased 6670-fold, but only in response to 10ng EE2L(-1) and Fsh beta-subunit (fshb) mRNA levels were not altered by any of the treatments. In the WWTP effluent exposures, lhb mRNA levels were significantly elevated in fish exposed to five of the WWTP effluents. In contrast, transcript levels of vtg were not affected by any of the WWTP effluent exposures. Mean levels of natural and synthetic estrogens in fish bile were consistent with pituitary lhb expression, suggesting that the observed lhb induction may be due to estrogenic activity of the WWTP effluents. These results suggest that lhb gene expression may be a sensitive index of acute exposure to estrogenic chemicals in juvenile coho salmon. Further work is needed to determine the kinetics and specificity of lhb induction to evaluate its utility as a potential indicator of estrogen exposure in immature fish. Published by Elsevier B.V.
Recombination and mutation of class II histocompatibility genes in wild mice.
Wakeland, E K; Darby, B R
1983-12-01
We have compared the tryptic peptide fingerprints of the A alpha, A beta, E alpha, and E beta subunits encoded by four wild-derived H-2 complexes expressing A molecules closely related to Ak. The A molecules encoded by these Ak-related mice have A alpha and A beta subunits that differ from A alpha k and A beta k by less than 10% of their tryptic peptides. Comparisons among the four wild-derived A molecules suggested that these contemporary A alpha and A beta alleles arose by sequential mutational events from common ancestor A alpha and A beta alleles. These results suggest that A alpha and A beta may co-evolve as an A beta A alpha gene duplex in wild mice. Tryptic peptide fingerprint comparisons of the E beta gene linked to these Ak-related A beta A alpha gene duplexes indicate that two encode E beta d-like subunits, whereas another encodes an E beta s-like subunit. These results strongly suggest that the A beta A alpha duplex and E beta recombine in wild mouse populations. The significantly different evolutionary patterns exhibited by the class II genes encoding A vs E molecules are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watkins, D.C.; Northup, J.K.; Malbon, C.C.
1987-05-01
Cultures of 3T3-L1 cells were incubated with either 10 ng/ml cholera toxin or 10 ng/ml pertussis toxin from 4 days prior to the initiation of differentiation and throughout the subsequent incubation. Toxin concentrations were sufficient to completely prevent the labelling of alpha-subunits with (/sup 32/P)NAD/sup +/ and pertussis toxin and to prevent by more than 90% the labelling with (/sup 32/P)NAD/sup +/ and cholera toxin in membranes prepared from these cells. Neither toxin prevented the differentiation to the adipocyte phenotype. Neither toxin prevented the increases in the relative amounts of G-proteins which occur upon differentiation. Both toxins dramatically decreased themore » amount of beta-subunits. As measured by quantitative immunoblotting with antisera specific for both the 35 kDa and 36 kDa beta-subunits, levels of beta-subunit were decreased by more than 50% of steady-state level of control cells. Thus, bacterial toxins which modifies G-protein alpha-subunits are capable of modulating the levels of beta-subunits in vivo. The basis for the regulation of G-protein subunit expression by bacterial toxins is under study.« less
NASA Astrophysics Data System (ADS)
Deb, Rajib; Sajjanar, Basavaraj; Singh, Umesh; Alex, Rani; Raja, T. V.; Alyethodi, Rafeeque R.; Kumar, Sushil; Sengar, Gyanendra; Sharma, Sheetal; Singh, Rani; Prakash, B.
2015-12-01
Na+/K+-ATPase is an integral membrane protein composed of a large catalytic subunit (alpha), a smaller glycoprotein subunit (beta), and gamma subunit. The beta subunit is essential for ion recognition as well as maintenance of the membrane integrity. Present study was aimed to analyze the expression pattern of ATPase beta subunit genes (ATPase B1, ATPase B2, and ATPase B3) among the crossbred bulls under different ambient temperatures (20-44 °C). The present study was also aimed to look into the relationship of HSP70 with the ATPase beta family genes. Our results demonstrated that among beta family genes, transcript abundance of ATPase B1 and ATPase B2 is significantly ( P < 0.05) higher during the thermal stress. Pearson correlation coefficient analysis revealed that the expression of ATPase Β1, ATPase B2, and ATPase B3 is highly correlated ( P < 0.01) with HSP70, representing that the change in the expression pattern of these genes is positive and synergistic. These may provide a foundation for understanding the mechanisms of ATPase beta family genes for cellular thermotolerance in cattle.
Integrins beta 5, beta 3 and alpha v are apically distributed in endometrial epithelium.
Aplin, J D; Spanswick, C; Behzad, F; Kimber, S J; Vićovac, L
1996-07-01
Several adhesion molecules have been shown to occur at the surface of endometrial cells. One of these is the integrin alpha v subunit which associates with various beta chains including beta 5. We demonstrate the presence of integrin beta 5 polypeptide in human endometrial epithelial cells throughout the menstrual cycle using immunocytochemistry with monospecific antibodies, and at the mRNA level by thermal amplification from endometrial cDNA. Integrin beta 5 is also found in a population of bone marrow-derived cells. A notable feature of the distribution of the beta 5 subunit in the glandular and luminal epithelium is its apical localization, which may suggest an involvement in implantation. However, no evidence was found for regulated expression of epithelial beta 5. In mouse, the beta 5 subunit is found at both the apical and basal surface of epithelial cells and expression is essentially oestrous cycle-independent. Comparisons are made in both species with the distribution of the alpha v and beta 3 subunits which also localize to the apical epithelium.
Localization of yeast RNA polymerase I core subunits by immunoelectron microscopy.
Klinger, C; Huet, J; Song, D; Petersen, G; Riva, M; Bautz, E K; Sentenac, A; Oudet, P; Schultz, P
1996-01-01
Immunoelectron microscopy was used to determine the spatial organization of the yeast RNA polymerase I core subunits on a three-dimensional model of the enzyme. Images of antibody-labeled enzymes were compared with the native enzyme to determine the localization of the antibody binding site on the surface of the model. Monoclonal antibodies were used as probes to identify the two largest subunits homologous to the bacterial beta and beta' subunits. The epitopes for the two monoclonal antibodies were mapped using subunit-specific phage display libraries, thus allowing a direct correlation of the structural data with functional information on conserved sequence elements. An epitope close to conserved region C of the beta-like subunit is located at the base of the finger-like domain, whereas a sequence between conserved regions C and D of the beta'-like subunit is located in the apical region of the enzyme. Polyclonal antibodies outlined the alpha-like subunit AC40 and subunit AC19 which were found co-localized also in the apical region of the enzyme. The spatial location of the subunits is correlated with their biological activity and the inhibitory effect of the antibodies. Images PMID:8887555
A cross-linking study of the Ca2+, Mg2+-activated adenosine triphosphatase of Escherichia coli.
Bragg, P D; Hou, C
1980-05-01
The solubilized Ca2+,Mg2+-activated adenosine triphosphatase of Escherichia coli is composed of five subunits designated alpha, beta, gamma, delta and epsilon in order of decreasing molecular weight. The subunit structure of the enzyme has been investigated by the use of the cleavable cross-linking agents dithiobis(succinimidyl propionate), methyl-4-mercaptobutyrimidate, dimethyl-3,3'-dithiobispropionimidate, disuccinimidyl tartarate, and cupric 1,10-phenanthrolinate. The products of cross-linking were analyzed by two different two-dimensional gel electrophoresis systems. The following cross-linked subunit dimers were observed: alpha 2, beta 2, alpha beta, alpha delta, beta gamma, beta delta, beta epsilon and gamma epsilon. These results, together with other published data, are discussed in relation to a model of the arrangement of the subunits in the ATPase molecule.
Proteolytic processing of endogenous and recombinant beta 4 integrin subunit
1992-01-01
The alpha 6 beta 4 integrin is a receptor involved in the interaction of epithelial cells with basement membranes. This integrin is unique among the known integrins in that its beta 4 subunit has a large cytoplasmic domain. The function of this cytoplasmic domain is not known. In this paper we show that the beta 4 subunit undergoes proteolytic processing in cultured cells and provide evidence that this also happens in tissues. Immunoprecipitation experiments indicated that the cytoplasmic domain of beta 4 is susceptible to a calcium-dependent protease present in cellular extracts. In vitro assays with purified calpain showed that this enzyme can cleave beta 4 at two distinct sites in the cytoplasmic domain, generating truncated molecules of 165 and 130 kD. Immunoblotting experiments performed on cultured epithelial cells using an antibody to a peptide modeled after the COOH-terminus of the beta 4 subunit showed 70-kD fragments and several fragments of molecular masses between 185 and 115 kD. Similar fragments were detected in CHO cells transfected with the full-length beta 4 cDNA, but not in control transfected cells or in cells transfected with a mutant cDNA lacking the epitope of the cytoplasmic peptide antibody. The sizes of the fragments indicated that both the intracellular and extracellular domains of beta 4 are proteolytically processed. To examine the processing of the beta 4 subunit in epithelial tissues in vivo, human skin frozen sections were stained with antibodies to the ectodomain or the cytoplasmic domain of beta 4. The distinct staining patterns obtained with the two types of antibodies provided evidence that beta 4 is proteolytically processed in vivo in skin. Analogous experiments performed on sections of the cornea suggested that beta 4 is not proteolytically processed at a detectable level in this tissue. Thus, cleavage of the beta 4 subunit occurs in a tissue-specific fashion. These results suggest a potential mechanism of modulating the activities of the alpha 6 beta 4 integrin. PMID:1500432
Calmodulin-dependent gating of Ca(v)1.2 calcium channels in the absence of Ca(v)beta subunits.
Ravindran, Arippa; Lao, Qi Zong; Harry, Jo Beth; Abrahimi, Parwiz; Kobrinsky, Evgeny; Soldatov, Nikolai M
2008-06-10
It is generally accepted that to generate calcium currents in response to depolarization, Ca(v)1.2 calcium channels require association of the pore-forming alpha(1C) subunit with accessory Ca(v)beta and alpha(2)delta subunits. A single calmodulin (CaM) molecule is tethered to the C-terminal alpha(1C)-LA/IQ region and mediates Ca2+-dependent inactivation of the channel. Ca(v)beta subunits are stably associated with the alpha(1C)-interaction domain site of the cytoplasmic linker between internal repeats I and II and also interact dynamically, in a Ca2+-dependent manner, with the alpha(1C)-IQ region. Here, we describe a surprising discovery that coexpression of exogenous CaM (CaM(ex)) with alpha(1C)/alpha(2)delta in COS1 cells in the absence of Ca(v)beta subunits stimulates the plasma membrane targeting of alpha(1C), facilitates calcium channel gating, and supports Ca2+-dependent inactivation. Neither real-time PCR with primers complementary to monkey Ca(v)beta subunits nor coimmunoprecipitation analysis with exogenous alpha(1C) revealed an induction of endogenous Ca(v)beta subunits that could be linked to the effect of CaM(ex). Coexpression of a calcium-insensitive CaM mutant CaM(1234) also facilitated gating of Ca(v)beta-free Ca(v)1.2 channels but did not support Ca2+-dependent inactivation. Our results show there is a functional matchup between CaM(ex) and Ca(v)beta subunits that, in the absence of Ca(v)beta, renders Ca2+ channel gating facilitated by CaM molecules other than the one tethered to LA/IQ to support Ca2+-dependent inactivation. Thus, coexpression of CaM(ex) creates conditions when the channel gating, voltage- and Ca2+-dependent inactivation, and plasma-membrane targeting occur in the absence of Ca(v)beta. We suggest that CaM(ex) affects specific Ca(v)beta-free conformations of the channel that are not available to endogenous CaM.
Subunits of the Snf1 kinase heterotrimer show interdependence for association and activity.
Elbing, Karin; Rubenstein, Eric M; McCartney, Rhonda R; Schmidt, Martin C
2006-09-08
The Snf1 kinase and its mammalian orthologue, the AMP-activated protein kinase (AMPK), function as heterotrimers composed of a catalytic alpha-subunit and two non-catalytic subunits, beta and gamma. The beta-subunit is thought to hold the complex together and control subcellular localization whereas the gamma-subunit plays a regulatory role by binding to and blocking the function of an auto-inhibitory domain (AID) present in the alpha-subunit. In addition, catalytic activity requires phosphorylation by a distinct upstream kinase. In yeast, any one of three Snf1-activating kinases, Sak1, Tos3, or Elm1, can fulfill this role. We have previously shown that Sak1 is the only Snf1-activating kinase that forms a stable complex with Snf1. Here we show that the formation of the Sak1.Snf1 complex requires the beta- and gamma-subunits in vivo. However, formation of the Sak1.Snf1 complex is not necessary for glucose-regulated phosphorylation of the Snf1 activation loop. Snf1 kinase purified from cells lacking the beta-subunits do not contain any gamma-subunit, indicating that the Snf1 kinase does not form a stable alphagamma dimer in vivo. In vitro kinase assays using purified full-length and truncated Snf1 proteins demonstrate that the kinase domain, which lacks the AID, is significantly more active than the full-length Snf1 protein. Addition of purified beta- and gamma-subunits could stimulate the kinase activity of the full-length alpha-subunit but only when all three subunits were present, suggesting an interdependence of all three subunits for assembly of a functional complex.
Fauser, B C; Pache, T D; Lamberts, S W; Hop, W C; de Jong, F H; Dahl, K D
1991-10-01
Serum steroid, gonadotropin, and alpha-subunit levels were assessed in 35 women with cycle abnormalities [11 with and 24 without polycystic ovarian disease (PCOD) according to strict clinical and biochemical criteria] and 8 regularly cycling women in the early (cycle day 3 or 4) and mid (cycle day 7 or 8) follicular phase. LH and FSH levels were estimated using two immunological techniques [RIA and immunoradiometric assay (IRMA)] and in vitro bioassays (BIO), using mouse Leydig cells and rat granulosa cells, respectively. In PCOD patients mean alpha-subunit, free androgen index [FAI; testosterone x 100/sex hormone-binding globulin (SHBG)], androstenedione, estrone, and estradiol (E2) were significantly elevated compared to levels in the early follicular phase of control cycles and non-PCOD patients. In addition, in PCOD patients mean IRMA-LH and RIA-LH levels were distinctly increased (2.8- to 3.6 fold, respectively; both comparisons, P less than 0.001) compared to control values, but in the same order of magnitude (1.3- to 1.4-fold increments) as that in non-PCOD patients. However, the median BIO-LH level in PCOD patients was 5.9-fold higher than that in non-PCOD patients and 4.0-fold higher than the BIO-LH in the early follicular phase of control women. Consequently, the median BIO/IRMA-LH ratio was 4.8-fold higher in PCOD patients compared to non-PCOD patients. In women with cycle abnormalities, individual BIO/IRMA-LH ratios correlated with BIO-LH (rs = 0.48), FAI (rs = 0.39), free estrogens (E2/SHBG ratios; rs = 0 0.47), and dehydroepiandrosterone sulfate (rs = 0.60) concentrations. Mean IRMA-, RIA-, and BIO-FSH levels and BIO/IRMA-FSH ratios were not significantly different when various groups were compared. Although RIA- and IRMA-LH levels showed good correlation (rs = 0.88), RIA-LH levels were consistently higher, resulting in distinctly higher RIA-LH/FSH ratios (mean, 4.5) compared to IRMA-LH/FSH ratios (median, 1.8) in PCOD patients.(ABSTRACT TRUNCATED AT 400 WORDS)
Avni, A; Avital, S; Gromet-Elhanan, Z
1991-04-25
Incubation of tobacco and lettuce thylakoids with 2 M LiCl in the presence of MgATP removes the beta subunit from their CF1-ATPase (CF1 beta) together with varying amounts of the CF1 alpha subunit (CF1 alpha). These 2 M LiCl extracts, as with the one obtained from spinach thylakoids (Avital, S., and Gromet-Elhanan, Z. (1991) J. Biol. Chem. 266, 7067-7072), could form active hybrid ATPases when reconstituted into inactive beta-less Rhodospirillum rubrum chromatophores. Pure CF1 beta fractions that have been isolated from these extracts could not form such active hybrids by themselves, but could do so when supplemented with trace amounts (less than 5%) of CF1 alpha. A mitochondrial F1-ATPase alpha subunit was recently reported to be a heat-shock protein, having two amino acid sequences that show a highly conserved identity with sequences found in molecular chaperones (Luis, A. M., Alconada, A., and Cuezva, J. M. (1990) J. Biol. Chem. 265, 7713-7716). These sequences are also conserved in CF1 alpha isolated from various plants, but not in F1 beta subunits. The above described reactivation of CF1 beta by trace amounts of CF1 alpha could thus be due to a chaperonin-like function of CF1 alpha, which involves the correct, active folding of isolated pure CF1 beta.
Conlee, J W; Shapiro, S M; Churn, S B
2000-04-01
The homozygous (jj) jaundiced Gunn rat model for hyperbilirubinemia displays pronounced cerebellar hypoplasia. To examine the cellular mechanisms involved in bilirubin toxicity, this study focused on the effect of hyperbilirubinemia on calcium/calmodulin-dependent kinase II (CaM kinase II). CaM kinase II is a neuronally enriched enzyme which performs several important functions. Immunohistochemical analysis of alternating serial sections were performed using monoclonal antibodies for the alpha and beta subunits of CaM kinase II. Measurements were made of the total numbers of stained cells in each of the deep cerebellar nuclei and of Purkinje and granule cell densities in cerebellar lobules II, VI, and IX. The beta subunit was present in Purkinje cells and deep cerebellar nuclei of both groups at all ages, but only granule cells which had migrated through the Purkinje cell layer showed staining for beta subunit; external granule cells were completely negative. Many Purkinje cells had degenerated in the older animals, and the percent of granule cells stained for beta subunit was significantly reduced. The alpha subunit was found exclusively in Purkinje cells, although its appearance was delayed in the jaundiced animals. Sulfadimethoxine was administered to some jj rats 24 h or 15 days prior to sacrifice to increase brain bilirubin concentration. Results showed that bilirubin exposure modulated both alpha and beta CaM kinase II subunit expression in selective neuronal populations, but sulfadimethoxine had no acute effect on enzyme immunoreactivity. Thus, developmental expression of the alpha and beta subunits of CaM kinase II was affected by chronic bilirubin exposure during early postnatal development of jaundiced Gunn rats.
Snyder, P M; Cheng, C; Prince, L S; Rogers, J C; Welsh, M J
1998-01-09
Members of the DEG/ENaC protein family form ion channels with diverse functions. DEG/ENaC subunits associate as hetero- and homomultimers to generate channels; however the stoichiometry of these complexes is unknown. To determine the subunit stoichiometry of the human epithelial Na+ channel (hENaC), we expressed the three wild-type hENaC subunits (alpha, beta, and gamma) with subunits containing mutations that alter channel inhibition by methanethiosulfonates. The data indicate that hENaC contains three alpha, three beta, and three gamma subunits. Sucrose gradient sedimentation of alphahENaC translated in vitro, as well as alpha-, beta-, and gammahENaC coexpressed in cells, was consistent with complexes containing nine subunits. FaNaCh and BNC1, two related DEG/ENaC channels, produced complexes of similar mass. Our results suggest a novel nine-subunit stoichiometry for the DEG/ENaC family of ion channels.
Horbach, M; Meyer, H E; Bickel-Sandkötter, S
1991-09-01
Treatment of isolated, latent chloroplast ATPase with pyridoxal-5-phosphate (pyridoxal-P) in presence of Mg2+ causes inhibition of dithiothreitol-activated plus heat-activated ATP hydrolysis. The amount of [3H]pyridoxal-P bound to chloroplast coupling factor 1 (CF1) was estimated to run up to 6 +/- 1 pyridoxal-P/enzyme, almost equally distributed between the alpha- and beta-subunits. Inactivation, however, is complete after binding of 1.5-2 pyridoxal-P/CF1, suggesting that two covalently modified lysines prevent the activation of the enzyme. ADP as well as ATP in presence of Mg2+ protects the enzyme against inactivation and concomittantly prevents incorporation of a part of the 3H-labeled pyridoxal-P into beta- and alpha-subunits. Phosphate prevents labeling of the alpha-subunit, but has only a minor effect on protection against inactivation. The data indicate a binding site at the interface between the alpha- and beta-subunits. Cleavage of the pyridoxal-P-labeled subunits with cyanogen bromide followed by sequence analysis of the labeled peptides led to the detection of Lys beta 359, Lys alpha 176 and Lys alpha 266, which are closely related to proposed nucleotide-binding regions of the alpha- and beta-subunits.
Barczak, A. J.; Zhao, J.; Pruitt, K. D.; Last, R. L.
1995-01-01
A study of the biochemical genetics of the Arabidopsis thaliana tryptophan synthase beta subunit was initiated by characterization of mutants resistant to the inhibitor 5-fluoroindole. Thirteen recessive mutations were recovered that are allelic to trp2-1, a mutation in the more highly expressed of duplicate tryptophan synthase beta subunit genes (TSB1). Ten of these mutations (trp2-2 through trp2-11) cause a tryptophan requirement (auxotrophs), whereas three (trp2-100 through trp2-102) remain tryptophan prototrophs. The mutations cause a variety of changes in tryptophan synthase beta expression. For example, two mutations (trp2-5 and trp2-8) cause dramatically reduced accumulation of TSB mRNA and immunologically detectable protein, whereas trp2-10 is associated with increased mRNA and protein. A correlation exists between the quantity of mutant beta and wild-type alpha subunit levels in the trp2 mutant plants, suggesting that the synthesis of these proteins is coordinated or that the quantity or structure of the beta subunit influences the stability of the alpha protein. The level of immunologically detectable anthranilate synthase alpha subunit protein is increased in the trp2 mutants, suggesting the possibility of regulation of anthranilate synthase levels in response to tryptophan limitation. PMID:7635295
Pagès, F; Ildefonse, M; Ragno, M; Crouzy, S; Bennett, N
2000-01-01
Coexpression of the betawt and alphawt subunits of the bovine rod channel restores two characteristics of the native channels: higher sensitivity to cAMP and potentiation of cGMP-induced currents by low cAMP concentrations. To test whether the increased sensitivity to cAMP is due to the uncharged nature of the asparagine residue (N1201) situated in place of aspartate D604 in the beta subunit as previously suggested (, Neuron. 15:619-625), we compared currents from wild-type (alphawt and alphawt/betawt) and from mutated channels (alphaD604N, alphaD604N/betawt, and alphawt/betaN1201D). The results show that the sensitivity to cAMP and cAMP potentiation is partly but not entirely determined by the charge of residue 1201 in the beta subunit. The D604N mutation in the alpha subunit and, to a lesser extent, coexpression of the betawt subunit with the alphawt subunit reduce the open probability for cGMP compared to that of the alphawt channel. Interpretation of the data with the MWC allosteric model (model of Monod, Wyman, Changeux;, J. Mol. Biol. 12:88-118) suggests that the D604N mutation in the alpha subunits and coassembly of alpha and beta subunits alter the free energy of gating by cAMP more than that of cAMP binding. PMID:10692312
Campbell, Zachary T; Weichsel, Andrzej; Montfort, William R; Baldwin, Thomas O
2009-07-07
Bacterial luciferase from Vibrio harveyi is a heterodimer composed of a catalytic alpha subunit and a homologous but noncatalytic beta subunit. Despite decades of enzymological investigation, structural evidence defining the active center has been elusive. We report here the crystal structure of V. harveyi luciferase bound to flavin mononucleotide (FMN) at 2.3 A. The isoalloxazine ring is coordinated by an unusual cis-Ala-Ala peptide bond. The reactive sulfhydryl group of Cys106 projects toward position C-4a, the site of flavin oxygenation. This structure also provides the first data specifying the conformations of a mobile loop that is crystallographically disordered in both prior crystal structures [(1995) Biochemistry 34, 6581-6586; (1996) J. Biol. Chem. 271, 21956 21968]. This loop appears to be a boundary between solvent and the active center. Within this portion of the protein, a single contact was observed between Phe272 of the alpha subunit, not seen in the previous structures, and Tyr151 of the beta subunit. Substitutions at position 151 on the beta subunit caused reductions in activity and total quantum yield. Several of these mutants were found to have decreased affinity for reduced flavin mononucleotide (FMNH(2)). These findings partially address the long-standing question of how the beta subunit stabilizes the active conformation of the alpha subunit, thereby participating in the catalytic mechanism.
Mangat, Simmanjeet; Chandrashekarappa, Dakshayini; McCartney, Rhonda R; Elbing, Karin; Schmidt, Martin C
2010-01-01
Members of the AMP-activated protein kinase family, including the Snf1 kinase of Saccharomyces cerevisiae, are activated under conditions of nutrient stress. AMP-activated protein kinases are heterotrimeric complexes composed of a catalytic alpha subunit and regulatory beta and gamma subunits. In this study, the role of the beta subunits in the regulation of Snf1 activity was examined. Yeasts express three isoforms of the AMP-activated protein kinase consisting of Snf1 (alpha), Snf4 (gamma), and one of three alternative beta subunits, either Sip1, Sip2, or Gal83. The Gal83 isoform of the Snf1 complex is the most abundant and was analyzed in the greatest detail. All three beta subunits contain a conserved domain referred to as the glycogen-binding domain. The deletion of this domain from Gal83 results in a deregulation of the Snf1 kinase, as judged by a constitutive activity independent of glucose availability. In contrast, the deletion of this homologous domain from the Sip1 and Sip2 subunits had little effect on Snf1 kinase regulation. Therefore, the different Snf1 kinase isoforms are regulated through distinct mechanisms, which may contribute to their specialized roles in different stress response pathways. In addition, the beta subunits are subjected to phosphorylation. The responsible kinases were identified as being Snf1 and casein kinase II. The significance of the phosphorylation is unclear since the deletion of the region containing the phosphorylation sites in Gal83 had little effect on the regulation of Snf1 in response to glucose limitation.
ERIC Educational Resources Information Center
Zhu, Lixin
2008-01-01
To integrate research into the teaching of glycoproteins, the story of discovering hydrogen-potassium ATPase (HK-ATPase) [beta] subunit is presented in a way covering all the important teaching points. The interaction between the HK-ATPase [alpha] subunit and a glycoprotein of 60-80 kDa was demonstrated to support the existence of the [beta]…
Receptor-binding region in human choriogonadotropin/lutropin. beta. subunit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keutmann, H.T.; Charlesworth, M.C.; Mason, K.A.
1987-04-01
Synthetic fragments have not been widely used thus far to evaluate structure-activity relations in the glycoprotein hormones. The authors prepared a series of peptides representing the intercysteine loop sequence (residues 38-57) in human choriogonadotropin (hCG) and lutropin (hLH) ..beta.. subunits, anticipating that it might be oriented toward the surface and accessible to receptors. The peptides were characterized chemically and tested for bioactivity by binding to rat ovarian membrane receptor and stimulation of Leydig cell testosterone production. The hCG..beta..-(38-57) and hLH..beta..-(38-57) peptides inhibited binding of /sup 125/I-labeled hCG half-maximally at 1.51 x 10/sup -4/ and 2.03 x 10/sup -5/ M, respectively,more » while other peptide hormones and fragments from elsewhere in the ..beta.. subunit were inactive. Both peptides stimulated testosterone production, with half-maximal responses at 3.55 x 10/sup -5/ M (hCG) and 2.18 x 10/sup -5/ M (hLH). By radioimmunoassay with an antibody to thyroglobulin-conjugated hCG..beta..-(38-57) peptide, native hCG and ..beta.. subunit were highly reactive, as were the reduced and carboxymethylated subunit and peptide. These results indicate that the 38-57 region of ..beta.. subunit is exposed on the surface and constitutes a component in the receptor-binding domain for hCG and hLH. A region of amphipathic-helical structure in the 38-57 sequence may promote hormone-receptor interactions in a manner proposed for several other peptide hormones.« less
beta'-COP, a novel subunit of coatomer.
Stenbeck, G; Harter, C; Brecht, A; Herrmann, D; Lottspeich, F; Orci, L; Wieland, F T
1993-01-01
Several lines of evidence favour the hypothesis that intracellular biosynthetic protein transport in eukaryotes is mediated by non-clathrin-coated vesicles (for a review see Rothman and Orci, 1992). The vesicles have been isolated and a set of their surface proteins has been characterized as coat proteins (COPs). These COPs exist in the cytosol as a preformed complex, the coatomer, which was prior to this study known to contain six subunits: four (alpha-, beta-, gamma- and delta-COP) with molecular weights between 160 and 58 kDa, and two additional proteins of approximately 36 and 20 kDa, epsilon- and xi-COP. Here we describe a novel subunit of the coatomer complex, beta'-COP. This subunit occurs in amounts stoichiometric to the established COPs both in the coatomer and in nonclathrin-coated vesicles and shows homology to the beta-subunits of trimeric G proteins. Images PMID:8334999
Kalmykova, Alla I; Shevelyov, Yuri Y; Polesskaya, Oksana O; Dobritsa, Anna A; Evstafieva, Alexandra G; Boldyreff, Brigitte; Issinger, Olaf-Georg; Gvozdev, Vladimir A
2002-03-01
An earlier described CK2(beta)tes gene of Drosophila melanogaster is shown to encode a male germline specific isoform of regulatory beta subunit of casein kinase 2. Western-analysis using anti-CK2(beta)tes Ig revealed CK2(beta)tes protein in Drosophila testes extract. Expression of a CK2(beta)tes-beta-galactosidase fusion protein driven by the CK2(beta)tes promoter was found in transgenic flies at postmitotic stages of spermatogenesis. Examination of biochemical characteristics of a recombinant CK2(beta)tes protein expressed in Escherichia coli revealed properties similar to those of CK2beta: (a) CK2(beta)tes protein stimulates CK2alpha catalytic activity toward synthetic peptide; (b) it inhibits phosphorylation of calmodulin and mediates stimulation of CK2alpha by polylysine; (c) it is able to form (CK2(beta)tes)2 dimers, as well as (CK2alpha)2(CK2(beta)tes)2 tetramers. Using the yeast two-hybrid system and coimmunoprecipitation analysis of protein extract from Drosophila testes, we demonstrated an association between CK2(beta)tes and CK2alpha. Northern-analysis has shown that another regulatory (beta') subunit found recently in D. melanogaster genome is also testis-specific. Thus, we describe the first example of two tissue-specific regulatory subunits of CK2 which might serve to provide CK2 substrate recognition during spermatogenesis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mark, Brian L.; Mahuran, Don J.; Cherney, Maia M.
2010-12-01
In humans, two major {beta}-hexosaminidase isoenzymes exist: Hex A and Hex B. Hex A is a heterodimer of subunits {alpha} and {beta} (60% identity), whereas Hex B is a homodimer of {beta}-subunits. Interest in human {beta}-hexosaminidase stems from its association with Tay-Sachs and Sandhoff disease; these are prototypical lysosomal storage disorders resulting from the abnormal accumulation of G{sub M2}-ganglioside (G{sub M2}). Hex A degrades G{sub M2} by removing a terminal N-acetyl-D-galactosamine ({beta}-GalNAc) residue, and this activity requires the G{sub M2}-activator, a protein which solubilizes the ganglioside for presentation to Hex A. We present here the crystal structure of human Hexmore » B, alone (2.4 {angstrom}) and in complex with the mechanistic inhibitors GalNAc-isofagomine (2.2 {angstrom}) or NAG-thiazoline (2.5 {angstrom}). From these, and the known X-ray structure of the G{sub M2}-activator, we have modeled Hex A in complex with the activator and ganglioside. Together, our crystallographic and modeling data demonstrate how {alpha} and {beta}-subunits dimerize to form either Hex A or Hex B, how these isoenzymes hydrolyze diverse substrates, and how many documented point mutations cause Sandhoff disease ({beta}-subunit mutations) and Tay-Sachs disease ({alpha}-subunit mutations).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gesundheit, N.; Gyves, P.W.; DeCherney, G.S.
1989-06-01
Mouse hemipituitaries in vitro secrete TSH, composed of an alpha-beta heterodimer, as well as excess (free) alpha-subunits. By dual metabolic labeling with (35S)sulfate and (3H)mannose, we have characterized oligosaccharides from secreted TSH alpha, TSH beta, and free alpha-subunits released from the apoprotein by enzymatic deglycosylation. Oligosaccharides from each subunit displayed a distinct anion exchange HPLC profile due to a specific pattern of sialylation and sulfation. Six species were obtained from TSH alpha (with two glycosylation sites), including neutral oligosaccharides as well as those with one or two negative charges. For TSH beta (with one glycosylation site) at least eight oligosaccharidemore » species were noted, representing nearly every permutation of sialylation and sulfation; approximately 30% contained three or more negative charges. Analysis of (3H)mannose-labeled oligosaccharides on Concanavalin-A-agarose showed 85% binding for those from TSH alpha, 70% for free alpha, and 50% for those from TSH beta. These data demonstrate that oligosaccharides from secreted TSH beta were more sialylated and sulfated, consistent with a more complex branching pattern, than those from TSH alpha. Oligosaccharides from free alpha-subunit were more sialylated than those from TSH alpha, and the net negative charge was intermediate between those of TSH alpha and TSH beta. Although great microheterogeneity is present even at the single glycosylation site on the beta-subunit of secreted TSH, a pattern of sialylation and sulfation could be discerned.« less
Cross-linking of hCG to luteal receptors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ji, T.H.; Ji, I.
1985-01-01
Photoaffinity labeling of the lutropin/choriogonadotropin (LH/hCG) receptor system on porcine granulosa cells has demonstrated that both the ..cap alpha.. and ..beta.. subunits of hCG directly photoaffinity label the hormone receptor. Three new bands appear on SDS-PAGE as a consequence of photoaffinity labeling by each subunit: the molecular weights of the three bands (106K, 88K, and 83K) produced by the subunit are larger by approximately 10K than those of the three bands (96K, 76K, and 73K) labeled by the ..cap alpha.. subunit. Although it could be a coincidence that the molecular weight of the ..beta.. subunit is approximately 10K larger thanmore » that of the ..cap alpha.. subunit, the similarity in these differences suggests the possibility that both the ..cap alpha.. and ..beta.. subunits have labeled the same polypeptides.« less
Li, L.; Drake, R. R.; Clement, S.; Brown, R. M.
1993-01-01
Using differential product entrapment and photolabeling under specifying conditions, we identifIed a 37-kD polypeptide as the best candidate among the UDP-glucose-binding polypeptides for the catalytic subunit of cotton (Gossypium hirsutum) cellulose synthase. This polypeptide is enriched by entrapment under conditions favoring [beta]-1,4-glucan synthesis, and it is magnesium dependent and sensitive to unlabeled UDP-glucose. A 52-kD polypeptide was identified as the most likely candidate for the catalytic subunit of [beta]-1,3-glucan synthase because this polypeptide is the most abundant protein in the entrapment fraction obtained under conditions favoring [beta]-1,3-glucan synthesis, is coincident with [beta]-1,3-glucan synthase activity, and is calcium dependent. The possible involvement of other polypeptides in the synthesis of [beta]-1,3-glucan is discussed. PMID:12231766
Assembly of Q{beta} viral RNA polymerase with host translational elongation factors EF-Tu and -Ts.
Takeshita, Daijiro; Tomita, Kozo
2010-09-07
Replication and transcription of viral RNA genomes rely on host-donated proteins. Qbeta virus infects Escherichia coli and replicates and transcribes its own genomic RNA by Qbeta replicase. Qbeta replicase requires the virus-encoded RNA-dependent RNA polymerase (beta-subunit), and the host-donated translational elongation factors EF-Tu and -Ts, as active core subunits for its RNA polymerization activity. Here, we present the crystal structure of the core Qbeta replicase, comprising the beta-subunit, EF-Tu and -Ts. The beta-subunit has a right-handed structure, and the EF-Tu:Ts binary complex maintains the structure of the catalytic core crevasse of the beta-subunit through hydrophobic interactions, between the finger and thumb domains of the beta-subunit and domain-2 of EF-Tu and the coiled-coil motif of EF-Ts, respectively. These hydrophobic interactions are required for the expression and assembly of the Qbeta replicase complex. Thus, EF-Tu and -Ts have chaperone-like functions in the maintenance of the structure of the active Qbeta replicase. Modeling of the template RNA and the growing RNA in the catalytic site of the Qbeta replicase structure also suggests that structural changes of the RNAs and EF-Tu:Ts should accompany processive RNA polymerization and that EF-Tu:Ts in the Qbeta replicase could function to modulate the RNA folding and structure.
Pasapera, Ana María; Jiménez-Aguilera, María del Pilar; Chauchereau, Anne; Milgrom, Edwin; Olivares, Aleida; Uribe, Aída; Gutiérrez-Sagal, Rubén; Ulloa-Aguirre, Alfredo
2005-03-01
In the present study, we analyzed human follicle-stimulating hormone (FSH)-induced cell proliferation and transactivation of estrogen-sensitive reporter genes-in L cells stably expressing the human FSH receptor [L-(hFSHR(+)) cells]. In order to dissect the signaling pathways involved in this process, L-(hFSHR(+)) cells were transiently transfected with either the 3X-ERE-TAT-Luc or the ERE-VitA2-TK-CAT reporter genes and treated with FSH or PKA activators (cholera toxin, forskolin and 8-Br-cAMP) in the presence or absence of various kinase inhibitors. We found that FSH and all PKA activators, specifically induced transactivation of both reporter genes. Transactivation of estrogen-sensitive genes by FSH or PKA activators were blocked (approximately 90%) by H89 (PKA inhibitor) and LY294002 but not by Wortmannin (PI3-K inhibitors), 4-OH-tamoxifen, ICI182,780 or SB203580 (p38 MAPK inhibitor); PD98059 (ERK1/2 inhibitor) partially (approximately 30%) blocked the FSH-mediated effect. The combination of FSH and estradiol resulted in a synergistic effect on transactivation as well as on cell proliferation, and this enhancement was attenuated by antiestrogens. We additionally analyzed the participation of the coactivators SRC-1 and cAMP response element binding protein (CREB)-binding protein (CBP) in FSH-evoked estrogen receptor (ER)-dependent transactivation; we found that CBP but not SRC-1 potentiated FSH-induced transcriptional activation of both ER-sensitive reporters, being this effect stronger on the ERE-VitA2-TK-CAT than on the 3X-ERE-TAT-Luc reporter. Thus, in L-(hFSHR(+)) cells FSH induces transcriptional activation of estrogen-sensitive genes through an A-kinase-triggered signaling pathway, using also to a lesser extent the ERK1/2 and p38 pathways. PI3-K is not apparently involved in this FSH-mediated process since LY294002, but not Wortmannin, specifically binds ERs and completely blocks estrogen action. Presumably, CBP cooperates with the ER on genes that contain estrogen responsive elements through mechanisms involving the participation of other proteins and/or basal transcription factors (e.g. CREB), which in turn mediate the transcriptional response of estrogen-sensitive reporter genes to FSH stimulation.
Yamodo, Innocent H; Blystone, Scott D
2004-01-01
Using truncated or mutated alphaIIb integrin cytoplasmic domains fused to the alphaV extracellular domain and expressed with the beta3 integrin subunit, we demonstrate that the double mutation of proline residues 998 and 999 to alanine (PP998/999AA), previously shown to disturb the C-terminal conformation of the alphaIIb integrin cytoplasmic domain, prevents tyrosine phosphorylation of beta3 integrin induced by Arg-Gly-Asp peptide ligation. This mutation also inhibits integrin mediated actin assembly and cell adhesion to vitronectin. In contrast, progressive truncation of the alphaIIb-subunit cytoplasmic domain did not reproduce these effects. Interestingly, the PP998/999AA mutations of alphaIIb did not affect beta3 tyrosine phosphorylation, cell adhesion, or actin polymerization induced by manganese. Exogenous addition of manganese was sufficient to rescue beta3 phosphorylation, cell adhesion, and actin assembly in cells expressing the PP998/999AA mutation when presented with a vitronectin substrate. Further, induction of the high affinity conformation of this mutant beta3 integrin by incubation with either Arg-Gly-Asp peptide or exogenous manganese was equivalent. These results suggest that the extracellular structure of beta3 integrins in the high affinity conformation is not directly related to the structure of the cytoplasmic face of the integrin. Moreover, the requirement for beta3 phosphorylation is demonstrated without mutation of the beta3 subunit. In support of our previous hypothesis of a role for beta3 phosphorylation in adhesion, these studies demonstrate a strong correlation between beta3 tyrosine phosphorylation and assembly of a cytoskeleton competent to support firm cell adhesion.
Lemieux, M Joanne; Mark, Brian L; Cherney, Maia M; Withers, Stephen G; Mahuran, Don J; James, Michael N G
2006-06-16
Lysosomal beta-hexosaminidase A (Hex A) is essential for the degradation of GM2 gangliosides in the central and peripheral nervous system. Accumulation of GM2 leads to severely debilitating neurodegeneration associated with Tay-Sachs disease (TSD), Sandoff disease (SD) and AB variant. Here, we present the X-ray crystallographic structure of Hex A to 2.8 A resolution and the structure of Hex A in complex with NAG-thiazoline, (NGT) to 3.25 A resolution. NGT, a mechanism-based inhibitor, has been shown to act as a chemical chaperone that, to some extent, prevents misfolding of a Hex A mutant associated with adult onset Tay Sachs disease and, as a result, increases the residual activity of Hex A to a level above the critical threshold for disease. The crystal structure of Hex A reveals an alphabeta heterodimer, with each subunit having a functional active site. Only the alpha-subunit active site can hydrolyze GM2 gangliosides due to a flexible loop structure that is removed post-translationally from beta, and to the presence of alphaAsn423 and alphaArg424. The loop structure is involved in binding the GM2 activator protein, while alphaArg424 is critical for binding the carboxylate group of the N-acetyl-neuraminic acid residue of GM2. The beta-subunit lacks these key residues and has betaAsp452 and betaLeu453 in their place; the beta-subunit therefore cleaves only neutral substrates efficiently. Mutations in the alpha-subunit, associated with TSD, and those in the beta-subunit, associated with SD are discussed. The effect of NGT binding in the active site of a mutant Hex A and its effect on protein function is discussed.
Fortin, Jérôme; Boehm, Ulrich; Weinstein, Michael B.; Graff, Jonathan M.; Bernard, Daniel J.
2014-01-01
The activin/inhibin system regulates follicle-stimulating hormone (FSH) synthesis and release by pituitary gonadotrope cells in mammals. In vitro cell line data suggest that activins stimulate FSH β-subunit (Fshb) transcription via complexes containing the receptor-regulated SMAD proteins SMAD2 and SMAD3. Here, we used a Cre-loxP approach to determine the necessity for SMAD2 and/or SMAD3 in FSH synthesis in vivo. Surprisingly, mice with conditional mutations in both Smad2 and Smad3 specifically in gonadotrope cells are fertile and produce FSH at quantitatively normal levels. Notably, however, we discovered that the recombined Smad3 allele produces a transcript that encodes the entirety of the SMAD3 C-terminal Mad homology 2 (MH2) domain. This protein behaves similarly to full-length SMAD3 in Fshb transcriptional assays. As the truncated protein lacks the N-terminal Mad homology 1 (MH1) domain, these results show that SMAD3 DNA-binding activity as well as SMAD2 are dispensable for normal FSH synthesis in vivo. Furthermore, the observation that deletion of proximal exons does not remove all SMAD3 function may facilitate interpretation of divergent phenotypes previously described in different Smad3 knockout mouse lines.—Fortin, J., Boehm, U., Weinstein, M. B., Graff, J. M., Bernard, D. J. Follicle-stimulating hormone synthesis and fertility are intact in mice lacking SMAD3 DNA binding activity and SMAD2 in gonadotrope cells. PMID:24308975
Manikkam, Mohan; Thompson, Robert C; Herkimer, Carol; Welch, Kathleen B; Flak, Jonathan; Karsch, Fred J; Padmanabhan, Vasantha
2008-04-01
The goal of this study was to explore mechanisms that mediate hypersecretion of LH and progressive loss of cyclicity in female sheep exposed during fetal life to excess testosterone. Our working hypothesis was that prenatal testosterone excess, by its androgenic action, amplifies GnRH-induced LH (but not FSH) secretion and, thus, hypersecretion of LH in adulthood, and that this results from altered developmental gene expression of GnRH and estradiol (E2) receptors, gonadotropin subunits, and paracrine factors that differentially regulate LH and FSH synthesis. We observed that, relative to controls, females exposed during fetal life to excess testosterone, as well as the nor-aromatizable androgen dihydrotestosterone, exhibited enhanced LH but not FSH responses to intermittent delivery of GnRH boluses under conditions in which endogenous LH (GnRH) pulses were suppressed. Luteinizing hormone hypersecretion was more evident in adults than in prepubertal females, and it was associated with development of acyclicity. Measurement of pituitary mRNA concentrations revealed that prenatal testosterone excess induced developmental changes in gene expression of pituitary GnRH and E2 receptors and paracrine modulators of LH and FSH synthesis in a manner consistent with subsequent amplification of LH release. Together, this series of studies suggests that prenatal testosterone excess, by its androgenic action, amplifies GnRH-induced LH response, leading to LH hypersecretion and acyclicity in adulthood, and that this programming involves developmental changes in expression of pituitary genes involved in LH and FSH release.
Chaperones of F[subscript 1]-ATPase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ludlam, Anthony; Brunzelle, Joseph; Pribyl, Thomas
2009-09-25
Mitochondrial F{sub 1}-ATPase contains a hexamer of alternating {alpha} and {beta} subunits. The assembly of this structure requires two specialized chaperones, Atp11p and Atp12p, that bind transiently to {beta} and {alpha}. In the absence of Atp11p and Atp12p, the hexamer is not formed, and {alpha} and {beta} precipitate as large insoluble aggregates. An early model for the mechanism of chaperone-mediated F{sub 1} assembly (Wang, Z. G., Sheluho, D., Gatti, D. L., and Ackerman, S. H. (2000) EMBO J. 19, 1486--1493) hypothesized that the chaperones themselves look very much like the {alpha} and {beta} subunits, and proposed an exchange of Atp11pmore » for {alpha} and of Atp12p for {beta}; the driving force for the exchange was expected to be a higher affinity of {alpha} and {beta} for each other than for the respective chaperone partners. One important feature of this model was the prediction that as long as Atp11p is bound to {beta} and Atp12p is bound to {alpha}, the two F{sub 1} subunits cannot interact at either the catalytic site or the noncatalytic site interface. Here we present the structures of Atp11p from Candida glabrata and Atp12p from Paracoccus denitrificans, and we show that some features of the Wang model are correct, namely that binding of the chaperones to {alpha} and {beta} prevents further interactions between these F1 subunits. However, Atp11p and Atp12p do not resemble {alpha} or {beta}, and it is instead the F{sub 1} {gamma} subunit that initiates the release of the chaperones from {alpha} and {beta} and their further assembly into the mature complex.« less
Barrett, D M W; Bartlewski, P M; Duggavathi, R; Davies, K L; Huchkowsky, S L; Epp, T; Rawlings, N C
2008-04-15
Fertility is often lower in anestrous compared to cyclic ewes, after conventional estrus synchronization. We hypothesized that synchronization of ovarian follicular waves and ovulation could improve fertility at controlled breeding in anestrous ewes. Estradiol-17beta synchronizes follicular waves in cattle. The objectives of the present experiments were to study the effect of an estradiol injection, with or without a 12-d medroxyprogesterone acetate (MAP) sponge treatment, on synchronization of follicular waves and ovulation in anestrous ewes. Twenty ewes received sesame oil (n=8) or estradiol-17beta (350 microg; n=12). Eleven ewes received MAP sponges for 12d and were treated with oil (n=5) or estradiol-17beta (n=6) 6d before sponge removal. Saline (n=6) or eCG (n=6) was subsequently given to separate groups of ewes at sponge removal in the MAP/estradiol-17beta protocol. Estradiol treatment alone produced a peak in serum FSH concentrations (4.73+/-0.53 vs. 2.36+/-0.39 ng/mL for treatment vs. control; mean+/-S.E.M.) after a short-lived (6 h) suppression. Six of twelve ewes given estradiol missed a follicular wave around the time of estradiol injection. Medroxyprogesterone acetate-treated ewes given estradiol had more prolonged suppression of serum FSH concentrations (6-18 h) and a delay in the induced FSH peak (32.3+/-3.3 vs. 17.5+/-0.5 h). Wave emergence was delayed (5.7+/-0.3 vs. 1.4+/-0.7d from the time of estradiol injection), synchronized, and occurred at a predictable time (5-7 vs. 0-4d) compared to ewes given MAP alone. All ewes given eCG ovulated 3-4d after injection; this predictable time of ovulation may be efficacious for AI and embryo transfer.
Constitution and behavior of follicular structures in the human anterior pituitary gland.
Ciocca, D. R.; Puy, L. A.; Stati, A. O.
1984-01-01
The follicular structures present in the human pituitary gland were studied, at the light-microscopic level, using histochemical and immunocytochemical techniques. The antisera applied in the peroxidase-antiperoxidase procedure were anti-hFSH beta, anti-hLH beta, anti-hPRL, anti-hGH, anti-hTSH beta, anti-hLPH beta, anti-pACTH, and anti-hACTH. In the 10 normal pituitaries examined, follicles were always found in the three areas of the adenohypophysis. The wall of the pars distalis follicles showed the seven immunoreactive cell types studied, while follicle-stimulating hormone (FSH) and luteinizing hormone (LH) cells were the only ones present in the wall of the pars tuberalis follicles. Most of the cell types studied were also present in the wall of the intermediate area follicles, but these follicles had characteristics not found in the other two areas. They were very large, with frequent interconnections forming a three-dimensional network of anastomotic cavities, and the colloid had different histochemical affinity. None of the hormones studied could be detected by immunocytochemistry within the follicular colloid. Three of the ten pituitary adenomas examined showed numerous follicular structures. Some of the follicles in the adenomatous pituitaries were similar to those found in the normal adenohypophysis, but there were also follicles filled with only traces of colloid and numerous blood cells in the cavity, and follicles filled with neoformed connective tissue. In one of these cases, FSH/LH immunoreactive adenoma cells were seen in the wall of the follicles. The results obtained suggest that the finding of pituitary adenomas with follicular structures is not uncommon and that the follicles originate from the tumor cells. In addition, the follicles seem to have several functional stages, explaining the finding of different types of follicular formation. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 Figure 13 Figure 14 Figure 15 Figure 16 PMID:6326578
Salvador-Recatalà, Vicenta; Schneider, Toni; Greenberg, Robert M
2008-03-26
The function of voltage-gated calcium (Cav) channels greatly depends on coupling to cytoplasmic accessory beta subunits, which not only promote surface expression, but also modulate gating and kinetic properties of the alpha1 subunit. Schistosomes, parasitic platyhelminths that cause schistosomiasis, express two beta subunit subtypes: a structurally conventional beta subunit and a variant beta subunit with unusual functional properties. We have previously characterized the functional properties of the variant Cavbeta subunit. Here, we focus on the modulatory phenotype of the conventional Cavbeta subunit (SmCavbeta) using the human Cav2.3 channel as the substrate for SmCavbeta and the whole-cell patch-clamp technique. The conventional Schistosoma mansoni Cavbeta subunit markedly increases Cav2.3 currents, slows macroscopic inactivation and shifts steady state inactivation in the hyperpolarizing direction. However, currents produced by Cav2.3 in the presence of SmCavbeta run-down to approximately 75% of their initial amplitudes within two minutes of establishing the whole-cell configuration. This suppressive effect was independent of Ca2+, but dependent on intracellular Mg2+-ATP. Additional experiments revealed that SmCavbeta lends the Cav2.3/SmCavbeta complex sensitivity to Na+ ions. A mutant version of the Cavbeta subunit lacking the first forty-six amino acids, including a string of twenty-two acidic residues, no longer conferred sensitivity to intracellular Mg2+-ATP and Na+ ions, while continuing to show wild type modulation of current amplitude and inactivation of Cav2.3. The data presented in this article provide insights into novel mechanisms employed by platyhelminth Cavbeta subunits to modulate voltage-gated Ca2+ currents that indicate interactions between the Ca2+ channel complex and chelated forms of ATP as well as Na+ ions. These results have potentially important implications for understanding previously unknown mechanisms by which platyhelminths and perhaps other organisms modulate Ca2+ currents in excitable cells.
Kolibianakis, E M; Venetis, C A; Bosdou, J K; Zepiridis, L; Chatzimeletiou, K; Makedos, A; Masouridou, S; Triantafillidis, S; Mitsoli, A; Tarlatzis, B C
2015-02-01
Does substituting 150 µg corifollitropin alfa for 450 IU follitropin beta during the first 7 days of ovarian stimulation in proven poor responders, result in retrieval of a non-inferior number (<1.5 fewer) of cumulus oocyte complexes (COCs)? A single s.c. dose of 150 µg corifollitropin alfa on the first day of ovarian stimulation, followed if necessary, from Day 8 onwards, with 450 IU of follitropin beta/day, is not inferior to daily doses of 450 IU follitropin beta. The 95% CI of the difference between medians in the number of oocytes retrieved was -1 to +1 within the safety margin of 1.5. Recent data from retrospective studies suggest that the use of corifollitropin alfa in poor responders is promising since it could simplify ovarian stimulation without compromising its outcome. Seventy-nine women with previous poor ovarian response undergoing ICSI treatment were enrolled in this open label, non-inferiority, randomized clinical trial (RCT). Inclusion criteria were: previous poor response to ovarian stimulation (≤4 COCs) after maximal stimulation, age <45 years, regular spontaneous menstrual cycle, body mass index: 18-32 kg/m(2) and basal follicle stimulating hormone ≤20 IU/l. On Day 2 of the menstrual cycle, patients were administered either a single s.c dose of 150 µg corifollitropin alfa (n = 40) or a fixed daily dose of 450 IU of follitropin beta (n = 39). In the corifollitropin alfa group, 450 IU of follitropin beta were administered from Day 8 of stimulation until the day of human chorionic gonadotrophin (hCG) administration, if necessary. To inhibit premature luteinizing hormone surge, the gonadotrophin releasing hormone antagonist ganirelix was used. Triggering of final oocyte maturation was performed using 250 µg of recombinant hCG, when at least two follicles reached 17 mm in mean diameter. The number of COCs retrieved was not statistically different between the corifollitropin alfa and the follitropin beta groups [Median 3 versus 2, 95% CI 2-4, 2-3, respectively, P = 0.26]. The 95% CI of the difference between medians in the number of oocytes retrieved was -1 to +1. A multivariable analysis adjusting for all the potential baseline differences confirmed this finding. No significant difference was observed regarding the probability of live birth between the corifollitropin alfa and the follitropin beta group (live birth per patient reaching oocyte retrieval: 7.9 versus 2.6%, respectively, difference +5.3%, 95% CI: -6.8 to +18.3). The present study was not powered to test a smaller difference (e.g. 1 COC) in terms of COCs retrieved as well as to show potential differences in the probability of pregnancy. Moreover, it would be interesting to assess whether the continuation of stimulation in the long acting FSH arm, where necessary, with 200 IU instead of 450 IU of follitropin beta would have altered the direction or the magnitude of the effect of the type of FSH, observed on the number of COCs retrieved. Corifollitropin alfa simplifies IVF treatment because it is administered in a GnRH antagonist protocol and replaces seven daily FSH injections with a single one of a long acting FSH without compromising the outcome. It could greatly reduce the burden of treatment for poor responders and this deserves further investigation. © The Author 2014. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
CRTC2 and Nedd4 ligase involvement in FSH and TGFβ1 upregulation of connexin43 gap junction.
Fang, Wei-Ling; Lai, Si-Yi; Lai, Wei-An; Lee, Ming-Ting; Liao, Ching-Fong; Ke, Ferng-Chun; Hwang, Jiuan-Jiuan
2015-12-01
The major mission of the ovarian follicle is the timely production of the mature fertilizable oocyte, and this is achieved by gonadotropin-regulated, gap junction-mediated cell-cell communication between the oocyte and surrounding nurturing granulosa cells. We have demonstrated that FSH and transforming growth factor beta 1 (TGFβ1) stimulate Gja1 gene-encoded connexin43 (Cx43) gap junction formation/function in rat ovarian granulosa cells is important for their induction of steroidogenesis; additionally, cAMP-protein kinase A (PKA)- and calcium-calcineurin-sensitive cAMP response element-binding (CREB) coactivator CRTC2 plays a crucial role during steroidogenesis. This study was to explore the potential molecular mechanism whereby FSH and TGFβ1 regulate Cx43 synthesis and degradation, particularly the involvement of CRTC2 and ubiquitin ligase Nedd4. Primary culture of granulosa cells from ovarian antral follicles of gonadotropin-primed immature rats was used. At 48 h post-treatment, FSH plus TGFβ1 increased Cx43 level and gap junction function in a PKA- and calcineurin-dependent manner, and TGFβ1 acting through its type I receptor modulated FSH action. Chromatin-immunoprecipitation analysis reveals FSH induced an early-phase (45 min) and FSH+TGFβ1 further elicited a late-phase (24 h) increase in CRTC2, CREB and CBP binding to the Gja1 promoter. Additionally, FSH+TGFβ1 increased the half-life of hyper-phosphorylated Cx43 (Cx43-P2). Also, the proteasome inhibitor MG132 prevented the brefeldin A (blocker of protein transport through Golgi)-reduced Cx43-P2 level and membrane Cx43 gap junction plaque. This is associated with FSH+TGFβ1-attenuated Cx43 interaction with Nedd4 and Cx43 ubiquitination. In all, this study uncovers that FSH and TGFβ1 upregulation of Cx43 gap junctions in ovarian granulosa cells critically involves enhancing CRTC2/CREB/CBP-mediated Cx43 expression and attenuating ubiquitin ligase Nedd4-mediated proteosomal degradation of Cx43 protein. © 2015 Society for Endocrinology.
NASA Astrophysics Data System (ADS)
Carlsohn, Elisabet; Ångström, Jonas; Emmett, Mark R.; Marshall, Alan G.; Nilsson, Carol L.
2004-05-01
Chemical cross-linking of proteins is a well-established method for structural mapping of small protein complexes. When combined with mass spectrometry, cross-linking can reveal protein topology and identify contact sites between the peptide surfaces. When applied to surface-exposed proteins from pathogenic organisms, the method can reveal structural details that are useful in vaccine design. In order to investigate the possibilities of applying cross-linking on larger protein complexes, we selected the urease enzyme from Helicobacter pylori as a model. This membrane-associated protein complex consists of two subunits: [alpha] (26.5 kDa) and [beta] (61.7 kDa). Three ([alpha][beta]) heterodimers form a trimeric ([alpha][beta])3 assembly which further associates into a unique dodecameric 1.1 MDa complex composed of four ([alpha][beta])3 units. Cross-linked peptides from trypsin-digested urease complex were analyzed by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) and molecular modeling. Two potential cross-linked peptides (present in the cross-linked sample but undetectable in [alpha], [beta], and native complex) were assigned. Molecular modeling of urease [alpha][beta] complex and trimeric urease units ([alpha][beta])3 revealed a linkage site between the [alpha]-subunit and the [beta]-subunit, and an internal cross-linkage in the [beta]-subunit.
Moreno, H; Rudy, B; Llinás, R
1997-12-09
Human epithelial kidney cells (HEK) were prepared to coexpress alpha1A, alpha2delta with different beta calcium channel subunits and green fluorescence protein. To compare the calcium currents observed in these cells with the native neuronal currents, electrophysiological and pharmacological tools were used conjointly. Whole-cell current recordings of human epithelial kidney alpha1A-transfected cells showed small inactivating currents in 80 mM Ba2+ that were relatively insensitive to calcium blockers. Coexpression of alpha1A, betaIb, and alpha2delta produced a robust inactivating current detected in 10 mM Ba2+, reversibly blockable with low concentration of omega-agatoxin IVA (omega-Aga IVA) or synthetic funnel-web spider toxin (sFTX). Barium currents were also supported by alpha1A, beta2a, alpha2delta subunits, which demonstrated the slowest inactivation and were relatively insensitive to omega-Aga IVA and sFTX. Coexpression of beta3 with the same combination as above produced inactivating currents also insensitive to low concentration of omega-Aga IVA and sFTX. These data indicate that the combination alpha1A, betaIb, alpha2delta best resembles P-type channels given the rate of inactivation and the high sensitivity to omega-Aga IVA and sFTX. More importantly, the specificity of the channel blocker is highly influenced by the beta subunit associated with the alpha1A subunit.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chuang, J.L.; Chuang, D.T.; Cox, R.P.
1996-06-01
Maple syrup urine disease (MSUD) or branched-chain ketoaciduria is caused by a deficiency in the mitochondrial branched-chain {alpha}-ketoacid dehydrogenase (BCKAD) complex. The clinical manifestations are characterized by accumulation of branched chain amino and {alpha}-ketoacids, which leads to severe cerebral edema with seizures, ketoacidosis, and mental retardation. The BCKAD complex comprises three catalytic components, i.e., a decarboxylase (E1) consisting of two E1{alpha} (M{sub r} = 46,000) and two E1{Beta} (M{sub r} = 37,500) subunits, a transacylase (E2) that contains 24 lipoic acid-bearing subunits, and a dehydrogenase (E3), which is a homodimeric flavoprotein. MSUD is genetically heterogeneous, since mutations in the E1{alpha}more » subunit (type IA MSUD), the E1{Beta} subunit (type IB), the E2 subunit (type II) and the E3 subunit (type III) have been described. The functional consequences of certain mutations in the BCKAD complex have been studied. 23 refs., 3 figs.« less
Structure of Glycerol Dehydratase Reactivase: A New Type of Molecular Chaperone
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liao, Der-Ing; Reiss, Lisa; Turner, Jr., Ivan
2010-03-08
The function of glycerol dehydratase (GDH) reactivase is to remove damaged coenzyme B{sub 12} from GDH that has suffered mechanism-based inactivation. The structure of GDH reactivase from Klebsiella pneumoniae was determined at 2.4 {angstrom} resolution by the single isomorphous replacement with anomalous signal (SIR/AS) method. Each tetramer contains two elongated 63 kDa {alpha} subunits and two globular 14 kDa {beta} subunits. The {alpha} subunit contains structural features resembling both GroEL and Hsp70 groups of chaperones, and it appears chaperone like in its interactions with ATP. The fold of the {beta} subunit resembles that of the {beta} subunit of glycerol dehydratase,more » except that it lacks some coenzyme B12 binding elements. A hypothesis for the reactivation mechanism of reactivase is proposed based on these structural features.« less
Hyland, R H; Douglass, W A; Tan, S M; Law, S K
2001-01-01
A central region of the beta2 integrin subunit, RN (residues D300 to C459), was replaced by the equivalent sequences from beta1 and beta7 to give the chimeras beta2RN1 and beta2RN7. Whilst the former construct failed to form heterodimer at the cell surface with alphaL, the later of these could be expressed together with the alphaL subunit to form a variant LFA-1. Based on recent modelling work, the RN region consists of two parts, one is the C-terminal end of the putative A-domain (RB, residues D300 to A359), and the other the mid-region (BN, residues Y360 to C459). Chimeras exchanging the two component regions were made. Of the four resultant chimeras, only the beta2RB1 chimera failed to support LFA-1 expression. Thus the beta1 specific residues of this region affect the interaction with the alphaL subunit. Whereas the alphaL/beta2RB7 LFA-1 variant is wildtype like with respect to ICAM-1 adhesion, the alphaLbeta2BN1 and alphaLbeta2BN7, as well as the alphaLbeta2RN7, variants are more adhesive than the wildtype. These results suggest that an authentic beta2 mid-region is, in part, required for maintaining the LFA-1 in a resting state.
Boltz, Kathryn W; Frasch, Wayne D
2006-09-19
F(1)-ATPase mutations in Escherichia coli that changed the strength of hydrogen bonds between the alpha and beta subunits in a location that links the catalytic site to the interface between the beta catch loop and the gamma subunit were examined. Loss of the ability to form the hydrogen bonds involving alphaS337, betaD301, and alphaD335 lowered the k(cat) of ATPase and decreased its susceptibility to Mg(2+)-ADP-AlF(n) inhibition, while mutations that maintain or strengthen these bonds increased the susceptibility to Mg(2+)-ADP-AlF(n) inhibition and lowered the k(cat) of ATPase. These data suggest that hydrogen bonds connecting alphaS337 to betaD301 and betaR323 and connecting alphaD335 to alphaS337 are important to transition state stabilization and catalytic function that may result from the proper alignment of catalytic site residues betaR182 and alphaR376 through the VISIT sequence (alpha344-348). Mutations betaD301E, betaR323K, and alphaR282Q changed the rate-limiting step of the reaction as determined by an isokinetic plot. Hydrophobic mutations of betaR323 decreased the susceptibility to Mg(2+)-ADP-AlF(n)() inhibition and lowered the number of interactions required in the rate-limiting step yet did not affect the k(cat) of ATPase, suggesting that betaR323 is important to transition state formation. The decreased rate of ATP synthase-dependent growth and decreased level of lactate-dependent quenching observed with alphaD335, betaD301, and alphaE283 mutations suggest that these residues may be important to the formation of an alternative set of hydrogen bonds at the interface of the alpha and beta subunits that permits the release of intersubunit bonds upon the binding of ATP, allowing gamma rotation in the escapement mechanism.
Shpakovski, G V; Acker, J; Wintzerith, M; Lacroix, J F; Thuriaux, P; Vigneron, M
1995-01-01
Four cDNAs encoding human polypeptides hRPB7.0, hRPB7.6, hRPB17, and hRPB14.4 (referred to as Hs10 alpha, Hs10 beta, Hs8, and Hs6, respectively), homologous to the ABC10 alpha, ABC10 beta, ABC14.5, and ABC23 RNA polymerase subunits (referred to as Sc10 alpha, Sc10 beta, Sc8, and Sc6, respectively) of Saccharomyces cerevisiae, were cloned and characterized for their ability to complement defective yeast mutants. Hs10 alpha and the corresponding Sp10 alpha of Schizosaccharomyces pombe can complement an S. cerevisiae mutant (rpc10-delta::HIS3) defective in Sc10 alpha. The peptide sequences are highly conserved in their carboxy-terminal halves, with an invariant motif CX2CX12RCX2CGXR corresponding to a canonical zinc-binding domain. Hs10 beta, Sc10 beta, and the N subunit of archaeal RNA polymerase are homologous. An invariant CX2CGXnCCR motif presumably forms an atypical zinc-binding domain. Hs10 beta, but not the archaeal subunit, complemented an S. cerevisiae mutant (rpb10-delta 1::HIS3) lacking Sc10 beta. Hs8 complemented a yeast mutant (rpb8-delta 1::LYS2) defective in the corresponding Sc8 subunit, although with a strong thermosensitive phenotype. Interspecific complementation also occurred with Hs6 and with the corresponding Dm6 cDNA of Drosophila melanogaster. Hs6 cDNA and the Sp6 cDNA of S. pombe are dosage-dependent suppressors of rpo21-4, a mutation generating a slowly growing yeast defective in the largest subunit of RNA polymerase II. Finally, a doubly chimeric S. cerevisiae strain bearing the Sp6 cDNA and the human Hs10 beta cDNA was also viable. No interspecific complementation was observed for the human hRPB25 (Hs5) homolog of the yeast ABC27 (Sc5) subunit. PMID:7651387
Ca2+ signalling, voltage-gated Ca2+ channels and praziquantel in flatworm neuromusculature.
Greenberg, R M
2005-01-01
Transient changes in calcium (Ca2+) levels regulate a wide variety of cellular processes, and cells employ both intracellular and extracellular sources of Ca2+ for signalling. Praziquantel, the drug of choice against schistosomiasis, disrupts Ca2+ homeostasis in adult worms. This review will focus on voltage-gated Ca2+ channels, which regulate levels of intracellular Ca2+ by coupling membrane depolarization to entry of extracellular Ca2+. Ca2+ channels are members of the ion channel superfamily and represent essential components of neurons, muscles and other excitable cells. Ca2+ channels are membrane protein complexes in which the pore-forming alpha1 subunit is modulated by auxiliary subunits such as beta and alpha2delta. Schistosomes express two Ca2+ channel beta subunit subtypes: a conventional subtype similar to beta subunits found in other vertebrates and invertebrates and a novel variant subtype with unusual structural and functional properties. The variant schistosome beta subunit confers praziquantel sensitivity to an otherwise praziquantel-insensitive mammalian Ca2+ channel, implicating it as a mediator of praziquantel action.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matzuk, M.M.; Krieger, M.; Corless, C.L.
1987-09-01
Human chorionic gonadotropin (hCG) is a member of a family of heterodimeric glycoprotein hormones that have a common ..cap alpha.. subunit but differ in their hormone-specific ..beta..-subunits. The ..beta.. subunit of hCG (hCG..beta..) is unique among the ..beta.. subunits in that it contains four mucin-like O-linked oligosaccharides attached to a carboxyl-terminal extension. To study the effects of O-glycosylation on the secretion and assembly of hCG, expression vectors containing either hCG..beta.. gene alone or together with the hCG..cap alpha.. gene were transfected into a mutant Chinese hamster ovary cell line, 1d1D, which exhibits a reversible defect in O-glycosylation. The results revealmore » that hCG..beta.. can be secreted normally in the absence of its O-linked oligosaccharides. hCG..beta.. devoid of O-linked carbohydrate can also combine efficiently with hCG..cap alpha.. and be secreted as an intact dimer. The authors conclude that in Chinese hamster ovary cells, the hCG..beta.. O-linked chains play no role in the assembly and secretion of hCG. The normal and O-linked oligosaccharide-deficient forms of hCG secreted by these cells should prove useful in examining the role of O-linked chains on the biological function of hCG.« less
Localization of beta and gamma subunits of ENaC in sensory nerve endings in the rat foot pad.
Drummond, H A; Abboud, F M; Welsh, M J
2000-11-24
The molecular mechanisms underlying mechanoelectrical transduction and the receptors that detect light touch remain uncertain. Studies in Caenorhabditis elegans suggest that members of the DEG/ENaC cation channel family may be mechanoreceptors. Therefore, we tested the hypothesis that subunits of the mammalian epithelial Na(+) channel (ENaC) family are expressed in touch receptors in rat hairless skin. We detected betaENaC and gammaENaC, but not alphaENaC transcripts in cervical and lumbar dorsal root ganglia (DRG). Using immunofluorescence, we found betaENaC and gammaENaC expressed in medium to large lumbar DRG neurons. Moreover, we detected these two subunits in Merkel cell-neurite complexes, Meissner-like corpuscles, and small lamellated corpuscles, specialized mechanosensory structures of the skin. Within these structures, betaENaC and gammaENaC were localized in the nerve fibers believed to contain the sensors responsive to mechanical stress. Thus beta and gammaENaC subunits are good candidates as components of the molecular sensor that detects touch.
Thermodynamic characterization of the interaction between prefoldin and group II chaperonin.
Sahlan, Muhamad; Zako, Tamotsu; Tai, Phan The; Ohtaki, Akashi; Noguchi, Keiichi; Maeda, Mizuo; Miyatake, Hideyuki; Dohmae, Naoshi; Yohda, Masafumi
2010-06-18
Prefoldin (PFD) is a hexameric chaperone that captures a protein substrate and transfers it to a group II chaperonin (CPN) to complete protein folding. We have studied the interaction between PFD and CPN using those from a hyperthermophilic archaeon, Thermococcus strain KS-1 (T. KS-1). In this study, we determined the crystal structure of the T. KS-1 PFDbeta2 subunit and characterized the interactions between T. KS-1 CPNs (CPNalpha and CPNbeta) and T. KS-1 PFDs (PFDalpha1-beta1 and PFDalpha2-beta2). As predicted from its amino acid sequence, the PFDbeta2 subunit conforms to a structure similar to those of the PFDbeta1 subunit and the Pyrococcus horikoshii OT3 PFDbeta subunit, with the exception of the tip of its coiled-coil domain, which is thought to be the CPN interaction site. The interactions between T. KS-1 CPNs and PFDs (CPNalpha and PFDalpha1-beta1; CPNalpha and PFDalpha2-beta2; CPNbeta and PFDalpha1-beta1; and CPNbeta and PFDalpha2-beta2) were analyzed using the Biacore T100 system at various temperatures ranging from 20 to 45 degrees C. The affinities between PFDs and CPNs increased with an increase in temperature. The thermodynamic parameters calculated from association constants showed that the interaction between PFD and CPN is entropy driven. Among the four combinations of PFD-CPN interactions, the entropy difference in binding between CPNbeta and PFDalpha2-beta2 was the largest, and affinity significantly increased at higher temperatures. Considering that expression of PFDalpha2-beta2 and CPNbeta subunit is induced upon heat shock, our results suggest that PFDalpha1-beta1 is a general PFD for T. KS-1 CPNs, whereas PFDalpha2-beta2 is specific for CPNbeta. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Subunit assembly of hemoglobin: an important determinant of hematologic phenotype.
Bunn, H F
1987-01-01
Hemoglobin's physiologic properties depend on the orderly assembly of its subunits in erythropoietic cells. The biosynthesis of alpha- and beta-globin polypeptide chains is normally balanced. Heme rapidly binds to the globin subunit, either during translation or shortly thereafter. The formation of the alpha beta-dimer is facilitated by electrostatic attraction of a positively charged alpha-subunit to a negatively charged beta-subunit. The alpha beta-dimer dissociates extremely slowly. The difference between the rate of dissociation of alpha beta- and alpha gamma-dimers with increasing pH explains the well-known alkaline resistance of Hb F. Two dimers combine to form the functioning alpha 2 beta 2-tetramer. This model of hemoglobin assembly explains the different levels of positively charged and negatively charged mutant hemoglobins that are encountered in heterozygotes and the effect of alpha-thalassemia and heme deficiency states in modifying the level of the variant hemoglobin as well as Hb A2. Electrostatic interactions also affect the binding of hemoglobin to the cytoplasmic surface of the red cell membrane and may underlie the formation of target cells. Enhanced binding of positively charged variants such as S and C trigger a normally dormant pathway for potassium and water loss. Thus, the positive charge on beta c is responsible for the two major contributors to the pathogenesis of Hb SC disease: increased proportion of Hb S and increased intracellular hemoglobin concentration. It is likely that electrostatic interactions play an important role in the assembly of a number of other multisubunit macromolecules, including membrane receptors, cytoskeletal proteins, and DNA binding proteins.
Bryant, D A; de Lorimier, R; Lambert, D H; Dubbs, J M; Stirewalt, V L; Stevens, S E; Porter, R D; Tam, J; Jay, E
1985-01-01
The genes for the alpha- and beta-subunit apoproteins of allophycocyanin (AP) were isolated from the cyanelle genome of Cyanophora paradoxa and subjected to nucleotide sequence analysis. The AP beta-subunit apoprotein gene was localized to a 7.8-kilobase-pair Pst I restriction fragment from cyanelle DNA by hybridization with a tetradecameric oligonucleotide probe. Sequence analysis using that oligonucleotide and its complement as primers for the dideoxy chain-termination sequencing method confirmed the presence of both AP alpha- and beta-subunit genes on this restriction fragment. Additional oligonucleotide primers were synthesized as sequencing progressed and were used to determine rapidly the nucleotide sequence of a 1336-base-pair region of this cloned fragment. This strategy allowed the sequencing to be completed without a detailed restriction map and without extensive and time-consuming subcloning. The sequenced region contains two open reading frames whose deduced amino acid sequences are 81-85% homologous to cyanobacterial and red algal AP subunits whose amino acid sequences have been determined. The two open reading frames are in the same orientation and are separated by 39 base pairs. AP alpha is 5' to AP beta and both coding sequences are preceded by a polypurine, Shine-Dalgarno-type sequence. Sequences upstream from AP alpha closely resemble the Escherichia coli consensus promoter sequences and also show considerable homology to promoter sequences for several chloroplast-encoded psbA genes. A 56-base-pair palindromic sequence downstream from the AP beta gene could play a role in the termination of transcription or translation. The allophycocyanin apoprotein subunit genes are located on the large single-copy region of the cyanelle genome. PMID:2987916
Direct integrin alphavbeta6-ERK binding: implications for tumour growth.
Ahmed, Nuzhat; Niu, Jun; Dorahy, Douglas J; Gu, Xinhua; Andrews, Sarah; Meldrum, Cliff J; Scott, Rodney J; Baker, Mark S; Macreadie, Ian G; Agrez, Michael V
2002-02-21
Blockade of the mitogen-activated protein (MAP) kinase pathway suppresses growth of colon cancer in vivo. Here we demonstrate a direct link between the extracellular signal-regulated kinase ERK2 and the growth-promoting cell adhesion molecule, integrin alphavbeta6, in colon cancer cells. Down-regulation of beta6 integrin subunit expression inhibits tumour growth in vivo and MAP kinase activity in response to serum stimulation. In alphavbeta6-expressing cells ERK2 is bound only to the beta6 subunit. The increase in cytosolic MAP kinase activity upon epidermal growth factor stimulation is all accounted for by beta6-bound ERK. Deletion of the ERK2 binding site on the beta6 cytoplasmic domain inhibits tumour growth and leads to an association between ERK and the beta5 subunit. The physical interaction between integrin alphavbeta6 and ERK2 defines a novel paradigm of integrin-mediated signalling and provides a therapeutic target for cancer treatment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loyer, M.; Leclerc, D.; Gravel, R.A.
1994-09-01
Propionic acidemia is a rare autosomal recessive disorder resulting from defects of the {alpha} or {beta} subunit of biotin-dependent propionyl-CoA carboxylase (PCC). Mutations are assigned to defects of the PCCA ({alpha} subunit) or PCCB ({beta} subunit) gene through complementation studies after somatic fusion of patient cell lines. About two-thirds of patients with {beta} subunit defects (complementation group pccBC) show interallelic complementation in cell fusion experiments (subgroups pccB and pccC), monitored by the PCC-dependent metabolisms of {sup 14}C-propionate. Most patient cell lines are heteroallelic for two different mutations, leaving ambiguous the identity of the mutation participating in interallelic complementation. To identifymore » the complementing mutations, we have expressed {beta}-subunit cDNAs containing individual mutations by microinjection of the cDNAs in recipient cells from patients with {beta} subunit defects. Correction of the PCC defect was monitored by autoradiography of {sup 14}C-propionate incorporation. In some experiments, cDNAs were co-injected with a plasmid expressing the E. coli lacZ gene as a positive control for successful injection. Two mutations from the pccB subgroup showed complementation when injected into pccC cells; dupKICK140-143 and Pro228Leu. Similarly, two mutations from the pccC subgroup complemented after injection into pccB cells; {Delta}Ile408 and Arg410Trp. No mutation complemented with mutation of the pccBC group which are classified as non-complementing in cell fusion experiments. The results show that the complementing pccB mutations are found in the N-terminal half of the {beta} subunit, while the complementing pccC mutations cluxter at a site in the C-terminal half. The latter site is a candidate for the propionyl-CoA binding site based on sequence identity with a region of transcarboxylase from Propionibacterium shermanii.« less
Functions and ATP-binding responses of the twelve histidine residues in the TF1-ATPase beta subunit.
Tozawa, K; Yagi, H; Hisamatsu, K; Ozawa, K; Yoshida, M; Akutsu, H
2001-10-01
The C2 proton signals of all (twelve) histidine residues of the TF1 beta subunit in the 1H-NMR spectrum have been identified and assigned by means of pH change experiments and site-directed substitution of histidines by glutamines. pH and ligand titration experiments were carried out for these signals. Furthermore, the ATPase activity of the reconstituted alpha3beta3gamma complex was examined for the twelve mutant beta subunits. Two of three conserved histidines, namely, His-119 and 324, were found to be important for expression of the ATPase activity. The former fixes the N-terminal domain to the central domain. His-324 is involved in the formation of the interface essential for the alpha3beta3gamma complex assembly. The other conserved residue, His-363, showed a very low pK(a), suggesting that it is involved in the tertiary structure formation. On the binding of a nucleotide, only the signals of His-173, 179, 200, and 324 shifted. These histidines are located in the hinge region, and its proximity, of the beta subunit. This observation provided further support for the conformational change of the beta monomer from the open to the closed form on the binding of a nucleotide proposed by us [Yagi et al. (1999) Biophys. J. 77, 2175-2183]. This conformational change should be one of the essential driving forces in the rotation of the alpha3beta3gamma complex.
Senior, Alan E.; Muharemagi, Alma; Wilke-Mounts, Susan
2008-01-01
Alpha subunit of Escherichia coli ATP synthase was expressed with a C-terminal 6-His tag and purified. Pure alpha was monomeric, competent in nucleotide binding, and had normal N-terminal sequence. In F1-subunit dissociation/reassociation experiments it supported full reconstitution of ATPase, and reassociated complexes were able to bind to F1-depleted membranes with restoration of ATP-driven proton pumping. Therefore interaction between the stator delta subunit and the N-terminal residue 1-22 region of alpha occurred normally when pure alpha was complexed with other F1 subunits. On the other hand, three different types of experiment showed that no interaction occurred between pure delta and isolated alpha subunit. Unlike in F1, the N-terminal region of isolated alpha was not susceptible to trypsin cleavage. Therefore, during assembly of ATP synthase, complexation of alpha subunit with other F1 subunits is prerequisite for delta subunit binding to the N-terminal region of alpha. We suggest that the N-terminal 1-22 residues of alpha are sequestered in isolated alpha until released by binding of beta to alpha subunit. This prevents 1/1 delta/alpha complexes from forming, and provides a satisfactory explanation of the stoichiometry of one delta per three alpha seen in the F1 sector of ATP synthase, assuming that steric hindrance prevents binding of more than one delta to the alpha3/beta3 hexagon. The cytoplasmic fragment of the b subunit (bsol) did not bind to isolated alpha. It might also be that complexation of alpha with beta subunits is prerequisite for direct binding of stator b subunit to the F1-sector. PMID:17176112
Milligan, G; Mullaney, I; Unson, C G; Marshall, L; Spiegel, A M; McArdle, H
1988-01-01
The major pertussis-toxin-sensitive guanine nucleotide-binding protein of rat glioma C6 BU1 cells corresponded immunologically to Gi2. Antibodies which recognize the alpha subunit of this protein indicated that it has an apparent molecular mass of 40 kDa and a pI of 5.7. Incubation of membranes of these cells with guanosine 5'-[beta gamma-imido]triphosphate, or other analogues of GTP, caused release of this polypeptide from the membrane in a time-dependent manner. Analogues of GDP or of ATP did not mimic this effect. The GTP analogues similarly caused release of the alpha subunit of Gi2 from membranes of C6 cells in which this G-protein had been inactivated by pretreatment with pertussis toxin. The beta subunit was not released from the membrane under any of these conditions, indicating that the release process was a specific response to the dissociation of the G-protein after binding of the GTP analogue. Similar nucleotide profiles for release of the alpha subunits of forms of Gi were noted for membranes of both the neuroblastoma x glioma hybrid cell line NG108-15 and of human platelets. These data provide evidence that: (1) pertussis-toxin-sensitive G-proteins, in native membranes, do indeed dissociate into alpha and beta gamma subunits upon activation; (2) the alpha subunit of 'Gi-like' proteins need not always remain in intimate association with the plasma membrane; and (3) the alpha subunit of Gi2 can still dissociate from the beta/gamma subunits after pertussis-toxin-catalysed ADP-ribosylation. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 6. Fig. 7. Fig. 8. PMID:3140801
2011-03-01
GroEL AhpC/TSA family protein hypothetical protein FTL0617 heat shock protein DnaK succinyl-CoA synthetase subunit beta hypothetical protein...lipoprotein chaperonin GroEL co-chaperonin GroES DNA-directed RNA polymerase subunit beta intracellular growth locus, subunit C 3.2 Differentiation...thailandensis E264 Unique Proteins Whole Cell Lysates OMPs putative lipoprotein glucan 1,4-a-glucosidase glycosy hydrolase family protein putative
[Genetic aspects of premature ovarian failure].
Warenik-Szymankiewicz, Alina; Słopień, Radosław
2005-01-01
Among the causes of premature ovarian failure (POF) two groups of factors are reported: factors which lead to decrease of follicular number and factors which stimulate follicular atresia. In the first group genetic factors are the most important whereas in the second: enzymatic autoimmunological, iatrogenic, toxins and infections are reported. In 1986 familiar POF on the background of long arm of chromosome X deletion was reported. Other chromosomes which are important for normal ovarian function are: chromosome 21 (AIRE gene), chromosome 11 (gene of beta FSH, ATM gene), chromosome 3 (gene responsible for BEPS syndrome) and chromosome 2 (genes of FSH and LH receptors). In this review the role of these genes and results of several epidemiological studies are reported.
Molecular basis and function of voltage-gated K+ channels in pulmonary arterial smooth muscle cells.
Yuan, X J; Wang, J; Juhaszova, M; Golovina, V A; Rubin, L J
1998-04-01
K(+)-channel activity-mediated alteration of the membrane potential and cytoplasmic free Ca2+ concentration ([Ca2+]cyt) is a pivotal mechanism in controlling pulmonary vasomotor tone. By using combined approaches of patch clamp, imaging fluorescent microscopy, and molecular biology, we examined the electrophysiological properties of K+ channels and the role of different K+ currents in regulating [Ca2+]cyt and explored the molecular identification of voltage-gated K+ (KV)- and Ca(2+)-activated K+ (KCa)-channel genes expressed in pulmonary arterial smooth muscle cells (PASMC). Two kinetically distinct KV currents [IK(V)], a rapidly inactivating (A-type) and a noninactivating delayed rectifier, as well as a slowly activated KCa current [IK(Ca)] were identified. IK(V) was reversibly inhibited by 4-aminopyridine (5 mM), whereas IK(Ca) was significantly inhibited by charybdotoxin (10-20 nM). K+ channels are composed of pore-forming alpha-subunits and auxiliary beta-subunits. Five KV-channel alpha-subunit genes from the Shaker subfamily (KV1.1, KV1.2, KV1.4, KV1.5, and KV1.6), a KV-channel alpha-subunit gene from the Shab subfamily (KV2.1), a KV-channel modulatory alpha-subunit (KV9.3), and a KCa-channel alpha-subunit gene (rSlo), as well as three KV-channel beta-subunit genes (KV beta 1.1, KV beta 2, and KV beta 3) are expressed in PASMC. The data suggest that 1) native K+ channels in PASMC are encoded by multiple genes; 2) the delayed rectifier IK(V) may be generated by the KV1.1, KV1.2, KV1.5, KV1.6, KV2.1, and/or KV2.1/KV9.3 channels; 3) the A-type IK(V) may be generated by the KV1.4 channel and/or the delayed rectifier KV channels (KV1 subfamily) associated with beta-subunits; and 4) the IK(Ca) may be generated by the rSlo gene product. The function of the KV channels plays an important role in the regulation of membrane potential and [Ca2+]cyt in PASMC.
Mayer, Richard Bernhard; Ebner, Thomas; Shebl, Omar; Tews, Gernot
2012-01-01
a 25- year old woman with secondary infertility caused by a male factor was enrolled in our IVF/ICSI-ET program. Stimulation was performed in a long- protocol and ovarian stimulation, using rFSH follitropin beta, starting on the third day of the menstrual cycle. The rFSH dose per day was 900 IU-0 IU-0 IU-0 IU. Due to normal ovarian response and follicle growth, stimulation was continued and there was no detriment in oocyte quality and no symptoms of OHSS. Following blastocyte transfer cesarean section was unpreventable at 37+5 weeks of gestation due to an impacted transverse lie. Different stimulation protocols are needed for appropriate treatment of various patients provided that the administration of treatment was done correctly. In the case of injection errors, continuing stimulation protocol seems to be achievable in certain cases considering hormone levels and the process of follicle growth.
Mayer, Richard Bernhard; Ebner, Thomas; Shebl, Omar; Tews, Gernot
2012-01-01
We present a case with a severe injection error: a 25- year old woman with secondary infertility caused by a male factor was enrolled in our IVF/ICSI-ET program. Stimulation was performed in a long- protocol and ovarian stimulation, using rFSH follitropin beta, starting on the third day of the menstrual cycle. The rFSH dose per day was 900 IU-0 IU-0 IU-0 IU. Due to normal ovarian response and follicle growth, stimulation was continued and there was no detriment in oocyte quality and no symptoms of OHSS. Following blastocyte transfer cesarean section was unpreventable at 37+5 weeks of gestation due to an impacted transverse lie. Different stimulation protocols are needed for appropriate treatment of various patients provided that the administration of treatment was done correctly. In the case of injection errors, continuing stimulation protocol seems to be achievable in certain cases considering hormone levels and the process of follicle growth. PMID:24592042
Oligodendrocytes in brain and optic nerve express the beta3 subunit isoform of Na,K-ATPase.
Martín-Vasallo, P; Wetzel, R K; García-Segura, L M; Molina-Holgado, E; Arystarkhova, E; Sweadner, K J
2000-09-01
The Na,K-ATPase, which catalyzes the active transport of Na(+) and K(+), has two principal subunits (alpha and beta) that have several genetically distinct isoforms. Most of these isoforms are expressed in the nervous system, but certain ones are preferentially expressed in glia and others in neurons. Of the beta isoforms, beta1 predominates in neurons and beta2 in astrocytes, although there are some exceptions. Here we demonstrate that beta3 is expressed in rat and mouse white matter oligodendrocytes. Immunofluorescence microscopy identified beta3 in oligodendrocytes of rat brain white matter in typical linear arrays of cell bodies between fascicles of axons. The intensity of stain peaked at 20 postnatal days. beta3 was identified in cortical oligodendrocytes grown in culture, where it was expressed in processes and colocalized with antibody to galactocerebroside. In the mouse and rat optic nerve, beta3 stain was seen in oligodendrocytes, where it colocalized with carbonic anhydrase II. For comparison, optic nerve was stained for the beta1 and beta2 subunits, showing distinct patterns of labelling of axons (beta1) and astrocytes (beta2). The C6 glioma cell line was also found to express the beta3 isoform preferentially. Since beta3 was not found at detectable levels in astrocytes, this suggests that C6 is closer to oligodendrocytes than astrocytes in the glial cell lineage. Copyright 2000 Wiley-Liss, Inc.
False Negative Urine Pregnancy Testing with Complete Molar Pregnancy: An Example of the Hook Effect.
Anderson, Zachary; Larson, Eric; Khan, Muhammad; Bell, Maria
2016-02-01
Gestational trophoblastic disease (GTD) encompasses a group of tumors derived from trophoblasts, which normally form the placenta during pregnancy. Human chorionic gonadotropin (hCG) is a glycoprotein composed of an alpha subunit identical to that of thyroid stimulating hormone (TSH), follicle-stimulating hormone (FSH), and luteinizing hormone (LH). Detection of beta-hCG is achievable in both urine and serum samples, proving useful for the detection of normal pregnancy and GTD. However, in the presence of very high levels of beta-hCG, a false negative result may be obtained due to a phenomenon called the "hook effect" or "prozone phenomenon." In certain circumstances, trophoblastic tumors can produce very high levels of beta-hCG, causing misleading results on urine pregnancy testing. A 49-year-old Caucasian female with past medical history pertinent for deep vein thrombosis, ovarian cysts, and osteopenia presented to her internist with report of irregular uterine bleeding for the preceding three months, accompanied by complaints of abdominal bloating, night sweats, and constipation. The patient stated she had completed two negative qualitative urine pregnancy tests and had been seen by both gynecology and gastroenterology, with recommendations to start supplemental estrogen for her symptoms and begin additional fiber intake for irritable bowel syndrome, respectively. Despite negative urine beta-hCG, a quantitative serum beta-hCG was obtained and revealed a level greater than 200,000 international units (IU). The patient was referred to gynecologic oncology and an open abdominal hysterectomy with preservation of her ovaries was performed. Histopathologic examination showed a complete hydatiform mole with no evidence of invasion. The case highlights the importance of clinical judgment in modern medicine, where biochemical methods and imaging modalities have become main stays in diagnosis. As mentioned, there are ways to reduce the incidence of the hook effect, but with added time and cost. Clinicians need to consider the possibility of the hook effect for instances where the clinical picture points to a disease entity despite negative test results. Delaying diagnoses, as illustrated with GTD, has the potential to cause significant morbidity and mortality.
Itakura, Tomohiro; Kuroki, Aya; Ishibashi, Yasuhiro; Tsuji, Daisuke; Kawashita, Eri; Higashine, Yukari; Sakuraba, Hitoshi; Yamanaka, Shoji; Itoh, Kohji
2006-08-01
Sandhoff disease (SD) is an autosomal recessive GM2 gangliosidosis caused by the defect of lysosomal beta-hexosaminidase (Hex) beta-subunit gene associated with neurosomatic manifestations. Therapeutic effects of Hex subunit gene transduction have been examined on Sandhoff disease model mice (SD mice) produced by the allelic disruption of Hexb gene encoding the murine beta-subunit. We demonstrate here that elimination of GM2 ganglioside (GM2) accumulated in the fibroblastic cell line derived from SD mice (FSD) did not occur when the HEXB gene only was transfected. In contrast, a significant increase in the HexB (betabeta homodimer) activity toward neutral substrates, including GA2 (asialo-GM2) and oligosaccharides carrying the terminal N-acetylglucosamine residues at their non-reducing ends (GlcNAc-oligosaccharides) was observed. Immunoblotting with anti-human HexA (alphabeta heterodimer) serum after native polyacrylamide gel electrophoresis (Native-PAGE) revealed that the human HEXB gene product could hardly form the chimeric HexA through associating with the murine alpha-subunit. However, co-introduction of the HEXA encoding the human alpha-subunit and HEXB genes caused significant corrective effect on the GM2 degradation by producing the human HexA. These results indicate that the recombinant human HexA could interspeciesly associate with the murine GM2 activator protein to degrade GM2 accumulated in the FSD cells. Thus, therapeutic effects of the recombinant human HexA isozyme but not human HEXB gene product could be evaluated by using the SD mice.
Zhang, Weimin; Zhang, Yong; Zhang, Lihong; Zhao, Huihong; Li, Xin; Huang, He; Lin, Haoran
2007-06-01
The orange-spotted grouper Epinephelus coioides is a protogynous hermaphroditic fish, but the physiological basis of its sex change remains largely unknown. In the present study, the 2-year-old orange-spotted grouper was induced to change sex precociously by oral administration of 17alpha-methyltestosterone (MT, 50 mg/Kg diet, twice a day at daily ration of 5% bodyweight) for 60 days. The serum testosterone levels were significantly elevated after MT treatment for 20 and 40 days as compared to control, but the levels of serum estradiol (E(2)) remained unchanged. The expression of P450aromA in the gonad significantly decreased after MT treatment for 20, 40, and 60 days. Accordingly, the enzyme activity of gonadal aromatase was also lower. The expression of FSHbeta subunit in the pituitary was significantly decreased after MT treatment for 20 days, but returned to the control levels after 40 and 60 days; however, the expression of LHbeta subunit was not altered significantly by MT treatment. The expression of FTZ-F1 in the gonad also decreased significantly in response to MT treatment for 40 and 60 days, but its expression in the pituitary was not altered significantly. Interestingly, when tested in vitro on ovarian fragments, MT had no direct effect on the expression of P450aromA and FTZ-F1 as well as the activity of gonadal aromatase, suggesting that the inhibition of gonadal P450aromatase and FTZ-F1 by MT may be mediated at upper levels of the brain-pituitary-gonadal axis. Taken together, these results indicated that FSH, P450aromA, FTZ-F1, and serum testosterone are associated with the MT-induced sex change of the orange-spotted grouper, but the cause-effect relationship between these factors and sex change in this species remains to be characterized. (c) 2006 Wiley-Liss, Inc.
Pogrmic-Majkic, Kristina; Samardzija, Dragana; Fa, Svetlana; Hrubik, Jelena; Glisic, Branka; Kaisarevic, Sonja; Andric, Nebojsa
2014-11-01
Premature luteinization is a possible cause of infertility in women. It is currently unknown whether environmental chemicals can induce changes associated with premature luteinization. Using rat granulosa cells (GC) in vitro, we demonstrated that exposure to atrazine (ATR), a widely used herbicide, causes GC phenotype that resembles that of human premature luteinization. At the end of the 48-h stimulation with FSH, ATR-exposed GC showed (1) higher levels of progesterone, (2) overexpression of luteal markers (Star and Cyp11a1), and (3) an increase in progesterone:estradiol ratio above 1. Mechanistic experiments were conducted to understand the signaling events engaged by ATR that lead to this phenotype. Western blot analysis revealed prolonged phosphorylation of protein kinase B (AKT) and cAMP response element-binding protein (CREB) in ATR- and FSH-exposed GC. An increased level of ERK1/2-dependent transcriptional factor CCATT/enhancer-binding protein beta (CEBPB) was observed after 4 h of ATR exposure. Inhibitors of PI3K (wortmannin) and MEK (U0126) prevented ATR-induced rise in progesterone level and expression of luteal markers in FSH-stimulated GC. Atrazine intensified AKT and CEBPB signaling and caused Star overexpression in forskolin-stimulated GC but not in epidermal growth factor (EGF)-stimulated GC. In the presence of rolipram, a specific inhibitor of phosphodiesterase 4 (PDE4), ATR was not able to further elevate AKT phosphorylation, CEBPB protein level, and Star mRNA in FSH-stimulated GC, suggesting that ATR inhibits PDE4. Overall, this study showed that ATR acts as a FSH sensitizer leading to enhanced cAMP, AKT, and CEBPB signaling and progesterone biosynthesis, which promotes premature luteinization phenotype in GC. © 2014 by the Society for the Study of Reproduction, Inc.
2010-05-01
protein 1b (lb;c) thiol peroxidase attachment invasion locus protein trigger factor 50S ribosomal protein L9 urease (urea amidohydrolase) beta...subunit attachment invasion locus protein urease (urea amidohydrolase) beta subunit attachment invasion locus protein hypothetical protein y2159
Direct antigonadal activity of cannabinoids: suppression of rat granulosa cell functions.
Adashi, E Y; Jones, P B; Hsueh, A J
1983-02-01
The direct effects of delta 9-tetrahydrocannabinol (THC) and related cannabinoids on ovarian granulosa cells were studied in vitro. Granulosa cells from immature, hypophysectomized, estrogen-treated rats were cultured for 2 days in an androstenedione-supplemented medium in the presence or absence of follicle-stimulating hormone (FSH) (10 ng/ml) with or without cannabinoids. FSH treatment increased progesterone and estrogen biosynthesis, whereas concomitant treatment with THC led to a dose-dependent inhibition of the FSH-stimulated accumulation of progesterone and estrogen with ED50 values of 3.5 +/- 0.3 X 10(-7) and 1.8 +/- 0.2 X 10(-6) M, respectively. Treatment with related but nonpsychoactive cannabinoids (cannabidiol, cannabinol, cannabigerol, or cannabichromene) was equally effective. The THC-induced inhibition of progesterone production was reversible and was associated with an inhibition of pregnenolone biosynthesis and a decrease of 3 beta-hydroxysteroid dehydrogenase activity. In addition, treatment with THC brought about a dose-dependent inhibition of the FSH-induced increase in luteinizing hormone (LH) receptors. The inhibitory effects of THC were not associated with changes in cell number, protein content, or cell viability. Thus, THC exerts direct inhibitory effects on FSH-dependent functions related to steroidogenesis and the acquisition of LH receptors, all of which are essential to follicular maturation. Because plasma concentrations of THC similar to those used in this study have been reported in human beings, repeated exposure of female users to THC may lead to ovarian dysfunction, due in part, to the direct antigonadal activity to THC.
Wibbels, T; Owens, D W; Licht, P; Limpus, C; Reed, P C; Amoss, M S
1992-07-01
Changes in serum concentrations of gonadotropins and gonadal steroids during the periovulatory period were monitored in green, Chelonia mydas, and loggerhead, Caretta caretta, sea turtles. Turtles were from natural populations that nest on a coral island on the Great Barrier Reef. After nesting, each turtle was transferred to a holding tank and held for a maximum of 8 days. A time series of blood samples was obtained from each of five sea turtles (three C. mydas and two C. caretta) starting immediately after nesting and then at approximately 12-hr intervals until the time of release. Prior to release back into the ocean, each turtle was examined by laparoscopy to verify that ovulation had occurred. Serum concentrations of follicle-stimulating hormone (FSH), luteinizing hormone (LH), progesterone (PRO), and testosterone (T) in both species exhibited significant changes during this period. Surges of FSH, LH, and PRO were evident within approximately 20 to 50 hr after each turtle had nested. The significant change in FSH concentration during the periovulatory period is the first such report for a reptile. Coincident with maximal concentrations of FSH, LH, and PRO was a decline in T concentrations in both species. Estradiol-17 beta concentrations were near or below assay sensitivity in the C. mydas, whereas those in the C. caretta were detectable but exhibited no significant changes. The dynamic changes in FSH, LH, PRO, and T concentrations are consistent with the hypothesis that these hormones facilitate specific physiological events during ovulation and egg production.
Cozens, A L; Walker, J E
1986-01-01
The nucleotide sequence has been determined of a segment of 4680 bases of the pea chloroplast genome. It adjoins a sequence described elsewhere that encodes subunits of the F0 membrane domain of the ATP-synthase complex. The sequence contains a potential gene encoding a protein which is strongly related to the S2 polypeptide of Escherichia coli ribosomes. It also encodes an incomplete protein which contains segments that are homologous to the beta'-subunit of E. coli RNA polymerase and to yeast RNA polymerases II and III. PMID:3530249
Suzuki, C; Nikkuni, S
1994-01-28
A halotolerant yeast, Pichia farinosa KK1 strain, produces a unique killer toxin termed SMK toxin (salt-mediated killer toxin) which shows its maximum killer activity in the presence of 2 M NaCl. The toxin consists of two distinct subunits, alpha and beta, which are tightly linked without a disulfide bond under acidic conditions, even in the presence of 6 M urea. Under neutral conditions, however, the alpha subunit precipitates, resulting in the dissociation of the subunits and the loss of killer activity. The nucleotide sequence of the SMK1 gene predicts a 222 amino acid preprotoxin with a typical signal sequence, the hydrophobic alpha, an interstitial gamma polypeptide with a putative glycosylation site, and the hydrophilic beta. Amino acid sequence analyses of peptide fragments including the carboxyl-terminal peptides fragments including the carboxyl-terminal peptides from each subunit suggest that the alpha and beta subunits consist of amino acid residues 19-81 and 146-222 of the preprotoxin, respectively, and the molecular weight of the mature alpha beta dimer is 14,214. The KEX2-like endopeptidase and KEX1-like carboxypeptidase may be involved in the stepwise processing of the SMK preprotoxin. The maturation process and the functions of the SMK toxin are compared with the K1 toxin of Saccharomyces cerevisiae.
Fontaine, Jean-Xavier; Saladino, Francesca; Agrimonti, Caterina; Bedu, Magali; Tercé-Laforgue, Thérèse; Tétu, Thierry; Hirel, Bertrand; Restivo, Francesco M; Dubois, Frédéric
2006-03-01
Although the physiological role of the enzyme glutamate dehydrogenase which catalyses in vitro the reversible amination of 2-oxoglutarate to glutamate remains to be elucidated, it is now well established that in higher plants the enzyme preferentially occurs in the mitochondria of phloem companion cells. The Nicotiana plumbaginifolia and Arabidopis thaliana enzyme is encoded by two distinct genes encoding either an alpha- or a beta-subunit. Using antisense plants and mutants impaired in the expression of either of the two genes, we showed that in leaves and stems both the alpha- and beta-subunits are targeted to the mitochondria of the companion cells. In addition, we found in both species that there is a compensatory mechanism up-regulating the expression of the alpha-subunit in the stems when the expression of the beta-subunit is impaired in the leaves, and of the beta-subunit in the leaves when the expression of the alpha-subunit is impaired in the stems. When one of the two genes encoding glutamate dehydrogenase is ectopically expressed, the corresponding protein is targeted to the mitochondria of both leaf and stem parenchyma cells and its production is increased in the companion cells. These results are discussed in relation to the possible signalling and/or physiological function of the enzyme which appears to be coordinated in leaves and stems.
Mahmoodi, Yasaman; Mehrnejad, Faramarz; Khalifeh, Khosrow
2018-01-01
Interactions of carbon nanotubes (CNTs) and blood proteins are of interest for nanotoxicology and nanomedicine. It is believed that the interactions of blood proteins and glycoproteins with CNTs may have important biological effects. In spite of many experimental studies of single-walled carbon nanotubes (SWCNT) and glycoproteins with different methods, little is known about the atomistic details of their association process or of structural alterations occurring in adsorbed glycoproteins. In this study, we have applied molecular dynamics simulation to investigate the interaction of follicle stimulating hormone (hFSH) with SWCNT. The aim of this work is to investigate possible mechanisms of nanotoxicity at a molecular level. We present details of the molecular dynamics, structure, and free energy of binding of hFSH on the surface of SWCNT. We find that hFSH in aqueous solution strongly adsorbs onto SWCNT via their concave surface as evidenced by high binding free energies for residues in both protein subunits. It was found that hydrophobic, π-cation, and π-π stacking interactions are the main driving forces for the adsorption of the protein at the nanotube surface.
Exercise-induced stress responses of amenorrheic and eumenorrheic runners.
Loucks, A B; Horvath, S M
1984-12-01
The role of stress in exercise-associated amenorrhea was investigated. Sex hormones [FSH, LH, androstenedione (A), testosterone, estrone, and 17 beta-estradiol (E2)], stress hormones [dehydroepiandrosterone, cortisol (F), PRL, norepinephrine, and epinephrine] and psychological status (Profile of Mood States and State-Trait Anxiety Inventory) were measured at rest and in response to a 40-min 80% of maximal aerobic power (VO2max) run in highly trained eumenorrheic (n = 8) and amenorrheic (n = 7) women runners matched for fatness [eumenorrheic, 16.5 +/- 2.3% (+/- SD); amenorrheic, 14.9 +/- 4.8] and maximal aerobic power (eumenorrheic, 58.9 +/- 5.7 ml/kg X min; amenorrheic, 59.8 +/- 4.6). Eumenorrheic runners were tested between days 3 and 8 of the follicular phase. At rest, decreased plasma FSH, LH, and E2 concentrations were found in amenorrheic women [eumenorrheic FSH, 10.5 +/- 4.1 mIU/ml; amenorrheic FSH, 4.9 +/- 1.6 (P less than 0.01); eumenorrheic LH, 14.1 +/- 6.1 mIU/ml; amenorrheic LH, 5.1 +/- 1.7 (P less than 0.01); eumenorrheic E2, 20 +/- 9 pg/ml; amenorrheic E2, 7 +/- 6 (P less than 0.05)]. Other sex and stress hormones and psychological measurements were similar in the two groups and were within the normal range. Ventilatory, cardiovascular, thermoregulatory, and psychological responses to the submaximal run were identical. Among eumenorrheic women, all stress hormones and A increased after exercise, but PRL, F, and A were unchanged among amenorrheic women. Estrone, E2, and testosterone did not change in either group. These observations are inconsistent with a general stress hypothesis of exercise-associated amenorrhea as well as with more specific hyperprolactinemic and hyperandrogenic hypotheses. In amenorrheic women, failure of PRL to increase in response to exercise may be due to their lack of E2, while failure of F and A to increase may indicate reduced adrenal 3 beta-hydroxysteroid dehydrogenase/isomerase activity.
NASA Technical Reports Server (NTRS)
Akbarian, S.; Huntsman, M. M.; Kim, J. J.; Tafazzoli, A.; Potkin, S. G.; Bunney, W. E. Jr; Jones, E. G.; Bloom, F. E. (Principal Investigator)
1995-01-01
The prefrontal cortex of schizophrenics is hypoactive and displays changes related to inhibitory, GABAergic neurons, and GABAergic synapses. These changes include decreased levels of glutamic acid decarboxylase (GAD), the enzyme for GABA synthesis, upregulation of muscimol binding, and downregulation of benzodiazepine binding to GABAA receptors. Studies in the visual cortex of nonhuman primates have demonstrated that gene expression for GAD and for several GABAA receptor subunit polypeptides is under control of neuronal activity, raising the possibility that similar mechanisms in the hypoactive prefrontal cortex of schizophrenics may explain the abnormalities in GAD and in GABAA receptor regulation. In the present study, which is the first of its type on human cerebral cortex, levels of mRNAs for six GABAA receptor subunits (alpha 1, alpha 2, alpha 5, beta 1, beta 2, gamma 2) and their laminar expression patterns were analyzed in the prefrontal cortex of schizophrenics and matched controls, using in situ hybridization histochemistry and densitometry. Three types of laminar expression pattern were observed: mRNAs for the alpha 1, beta 2, and gamma 2 subunits, which are the predominant receptor subunits expressed in the mature cortex, were expressed at comparatively high levels by cells of all six cortical layers, but most intensely by cells in lower layer III and layer IV. mRNAs for the alpha 2, alpha 5, and beta 1 subunits were expressed at lower levels; alpha 2 and beta 1 were expressed predominantly by cells in layers II, III, and IV; alpha 5 was expressed predominantly in layers IV, V, and VI. There were no significant changes in overall mRNA levels for any of the receptor subunits in the prefrontal cortex of schizophrenics, and the laminar expression pattern of all six receptor subunit mRNAs did not differ between schizophrenics and controls. Because gene expression for GABAA receptor subunits is not consistently altered in the prefrontal cortex of schizophrenics, the previously reported upregulation of muscimol binding sites and downregulation of benzodiazepine binding sites in the prefrontal and adjacent cingulate cortex of schizophrenics are possibly due to posttranscriptional modifications of mRNAs and their translated polypeptides.
Cabilla, Jimena P; Díaz, María del Carmen; Machiavelli, Leticia I; Poliandri, Ariel H; Quinteros, Fernanda A; Lasaga, Mercedes; Duvilanski, Beatriz H
2006-09-01
Previous studies showed that 17 beta-estradiol (17 beta-E2) regulates the nitric oxide (NO)/soluble guanylyl cyclase (sGC)/cGMP pathway in many tissues. Evidence from our laboratory indicates that 17 beta-E2 disrupts the inhibitory effect of NO on prolactin release, decreasing sGC activity and affecting the cGMP pathway in anterior pituitary gland of adult ovariectomized and estrogenized rats. To ascertain the mechanisms by which 17 beta-E2 affects sGC activity, we investigated the in vivo and in vitro effects of 17 beta-E2 on sGC protein and mRNA expression in anterior pituitary gland from immature female rats. In the present work, we showed that 17 beta-E2 acute treatment exerted opposite effects on the two sGC subunits, increasing alpha1 and decreasing beta1 subunit protein and mRNA expression. This action on sGC protein expression was maximal 6-9 h after 17 beta-E2 administration. 17beta-E2 also caused the same effect on mRNA expression at earlier times. Concomitantly, 17 beta-E2 dramatically decreased sGC activity 6 and 9 h after injection. These effects were specific of 17 beta-E2, because they were not observed with the administration of other steroids such as progesterone and 17 alpha-estradiol. This inhibitory action of 17beta-E2 on sGC also required the activation of estrogen receptor (ER), because treatment with the pure ER antagonist ICI 182,780 completely blocked 17 beta-E2 action. 17 beta-E2 acute treatment caused the same effects on pituitary cells in culture. These results suggest that 17 beta-E2 exerts an acute inhibitory effect on sGC in anterior pituitary gland by down-regulating sGC beta 1 subunit and sGC activity in a specific, ER-dependent manner.
Kubo, Miyoko; Clark, Richard A F; Katz, Anne B; Taichman, Lorne B; Jin, Zaishun; Zhao, Ying; Moriguchi, Takahiko
2007-04-01
alphavbeta3 is a multiligand integrin receptor that interacts with fibrinogen (FG), fibrin (FB), fibronectin (FN), vitronectin (VN), and denatured collagen. We previously reported that cultured normal human keratinocytes, like in vivo keratinocytes, do not express alphavbeta3 on the cell surface, and do not adhere to and migrate on FG and FB. Furthermore, we reported that human keratinocytes transduced with beta3 integrin subunit cDNA by a retrovirus-mediated transduction method express alphavbeta3 on the cell surface and adhere to FG, FB, FN, and VN significantly compared with beta-galactosidase (beta-gal) cDNA-transduced keratinocytes (control). In this study, we determined whether these beta3 integrin subunit cDNA-transduced keratinocytes or normal human keratinocytes adhere to denatured collagen (gelatin) using a 1 h cell adhesion assay. beta3 cDNA-transduced keratinocytes adhered to gelatin, whereas no significant adhesion was observed with the control cells (beta-gal cDNA-transduced keratinocytes and normal human keratinocytes). The adhesion to gelatin was inhibited by LM609, a monoclonal antibody to alphavbeta3, and RGD peptides but not by normal mouse IgG1 nor RGE peptides. Thus, transduction of beta3 integrin subunit cDNA confers on human keratinocytes the ability to adhere to denatured collagen (gelatin) as well as to FG, FB, VN, and FN. Otherwise, normal human keratinocytes do not adhere to gelatin. These data support the idea that beta3 cDNA-transduced human keratinocytes can be a good material for cultured epithelium to achieve better take rate with acute or chronic wounds, in which FG, FB, and denatured collagen are abundantly present.
Scammell, Jonathan G; Funkhouser, Jane D; Moyer, Felricia S; Gibson, Susan V; Willis, Donna L
2008-02-01
The goal of this study was to characterize the gonadotropins expressed in pituitary glands of the New World squirrel monkey (Saimiri sp.) and owl monkey (Aotus sp.). The various subunits were amplified from total RNA from squirrel monkey and owl monkey pituitary glands by reverse transcription-polymerase chain reaction and the deduced amino acid sequences compared to those of other species. Mature squirrel monkey and owl monkey glycoprotein hormone alpha-polypeptides (96 amino acids in length) were determined to be 80% homologous to the human sequence. The sequences of mature beta subunits of follicle stimulating hormone (FSHbeta) from squirrel monkey and owl monkey (111 amino acids in length) are 92% homologous to human FSHbeta. New World primate glycoprotein hormone alpha-polypeptides and FSHbeta subunits showed conservation of all cysteine residues and consensus N-linked glycosylation sites. Attempts to amplify the beta-subunit of luteinizing hormone from squirrel monkey and owl monkey pituitary glands were unsuccessful. Rather, the beta-subunit of chorionic gonadotropin (CG) was amplified from pituitaries of both New World primates. Squirrel monkey and owl monkey CGbeta are 143 and 144 amino acids in length and 77% homologous with human CGbeta. The greatest divergence is in the C terminus, where all four sites for O-linked glycosylation in human CGbeta, responsible for delayed metabolic clearance, are predicted to be absent in New World primate CGbetas. It is likely that CG secreted from pituitary of New World primates exhibits a relatively short half-life compared to human CG.
Kao, Hsiao-Jung; Cheng, Ching-Feng; Chen, Yen-Hui; Hung, Shuen-Iu; Huang, Cheng-Chih; Millington, David; Kikuchi, Tateki; Wu, Jer-Yuarn; Chen, Yuan-Tsong
2006-12-15
Using the metabolomics-guided screening coupled to N-ethyl-N-nitrosourea-mediated mutagenesis, we identified mice that exhibited elevated levels of long-chain acylcarnitines. Whole genome homozygosity mapping with 262 SNP markers mapped the disease gene to chromosome 5 where candidate genes Hadha and Hadhb, encoding the mitochondria trifunctional protein (MTP) alpha- and beta-subunits, respectively, are located. Direct sequencing revealed a normal alpha-subunit, but detected a nucleotide T-to-A transversion in exon 14 (c.1210T>A) of beta-subunit (Hadhb) which resulted in a missense mutation of methionine to lysine (M404K). Western blot analysis showed a significant reduction of both the alpha- and beta-subunits, consistent with reduced enzyme activity in both the long-chain 3-hydroxyacyl-CoA dehydrogenase and the long-chain 3-ketoacyl-CoA thiolase activities. These mice had a decreased weight gain and cardiac arrhythmias which manifested from a prolonged PR interval to a complete atrio-ventricular dissociation, and died suddenly between 9 and 16 months of age. Histopathological studies showed multifocal cardiac fibrosis and hepatic steatosis. This mouse model will be useful to further investigate the mechanisms underlying arrhythmogenesis relating to lipotoxic cardiomyopathy and to investigate pathophysiology and treatment strategies for human MTP deficiency.
The dipole moment of membrane proteins: potassium channel protein and beta-subunit.
Takashima, S
2001-12-25
The mechanism of ion channel opening is one of the most fascinating problems in membrane biology. Based on phenomenological studies, early researchers suggested that the elementary process of ion channel opening may be the intramembrane charge movement or the orientation of dipolar proteins in the channel. In spite of the far reaching significance of these hypotheses, it has not been possible to formulate a comprehensive molecular theory for the mechanism of channel opening. This is because of the lack of the detailed knowledge on the structure of channel proteins. In recent years, however, the research on the structure of channel proteins made marked advances and, at present, we are beginning to have sufficient information on the structure of some of the channel proteins, e.g. potassium-channel protein and beta-subunits. With these new information, we are now ready to have another look at the old hypothesis, in particular, the dipole moment of channel proteins being the voltage sensor for the opening and closing of ion channels. In this paper, the dipole moments of potassium channel protein and beta-subunit, are calculated using X-ray diffraction data. A large dipole moment was found for beta-subunits while the dipole moment of K-channel protein was found to be considerably smaller than that of beta-subunits. These calculations were conducted as a preliminary study of the comprehensive research on the dipolar structure of channel proteins in excitable membranes, above all, sodium channel proteins.
Jiang, Dong-Neng; Li, Jian-Tao; Tao, Ya-Xiong; Chen, Hua-Pu; Deng, Si-Ping; Zhu, Chun-Hua; Li, Guang-Li
2017-05-01
Melanocortin-4 receptor (Mc4r) function related to reproduction in fish has not been extensively investigated. Here, we report on gene expression changes by real-time PCR following treatment with Mc4r agonists and antagonists in the spotted scat (Scatophagus argus). Using in vitro incubated hypothalamus, the Mc4r nonselective agonist NDP-MSH ([Nle 4 , D-Phe 7 ]-α-melanocyte stimulating hormone; 10 -6 M) and selective agonist THIQ (N-[(3R)-1, 2, 3, 4-Tetrahydroisoquinolinium-3-ylcarbonyl]- (1R)-1-(4-chlorobenzyl)-2-[4-cyclohexyl-4-(1H-1,2,4-triazol-1-ylmethyl) piperidin-1-yl]-2-oxoethylamine; 10 -7 M) significantly increased the expression of gnrh (Gonadotropin releasing hormone), while the Mc4r nonselective antagonist SHU9119 (Ac-Nle-[Asp-His-DPhe/DNal(2')-Arg-Trp-Lys]-NH2; 10 -6 M) and selective antagonist Ipsen 5i (compound 5i synthesized in Ipsen Research Laboratories; 10 -6 M) significantly inhibited gnrh expression after 3 h of incubation. In incubated pituitary tissue, NDP-MSH and THIQ significantly increased the expression of fshb (Follicle-stimulating hormone beta subunit) and lhb (Luteinizing hormone beta subunit), while SHU9119 and Ipsen 5i significantly decreased fshb and lhb expression after 3 h of incubation. During the in vivo experiment, THIQ (1 mg/kg bw) significantly increased gnrh expression in hypothalamic tissue, as well as the fshb and lhb expression in pituitary tissue 12 h after abdominal injection. Furthermore, Ipsen 5i (1 mg/kg bw) significantly inhibited gnrh expression in hypothalamic tissue, as well as fshb and lhb gene expression in pituitary tissue 12 h after abdominal injection. In summary, Mc4r singling appears to stimulate gnrh expression in the hypothalamus, thereby modulating the synthesis of Fsh and Lh in the pituitary. In addition, Mc4r also appears to directly regulate fshb and lhb levels in the pituitary in spotted scat. Our study suggests that Mc4r, through the hypothalamus and pituitary, participates in reproductive regulation in fish.
Wang, Ningshan; Orr-Urtreger, Avi; Chapman, Joab; Rabinowitz, Ruth; Korczyn, Amos D
2004-07-15
Neuronal nicotinic acetylcholine receptors (nAChRs) are composed of 12 subunits (alpha2-alpha10 and beta2-beta4). alpha5 Subunits, expressed throughout the central nervous system (CNS) and the autonomic nervous system (ANS), possess unique pharmacological properties. The effects of oxotremorine (OXO) on autonomic functions and tremor were examined in mice lacking alpha5 nAChR subunits (alpha5-/-) and compared with those in wild-type (WT) control mice. The alpha5-/- mice showed significantly increased salivation and tremor responses to OXO. The hypothermia, bradycardia and defecation induced by OXO were of similar magnitudes in the two mouse strains. The enhanced OXO effects in alpha5-/- mice indicate inhibitory effects of alpha5 subunits in autonomic ganglia, and support the participation of these subunits in cholinergic transmission in autonomic ganglia.
Schulte, B A; Steel, K P
1994-07-01
Mice homozygous for mutations at the viable dominant spotting (Wv) and Steel-dickie (Sld) loci exhibit a similar phenotype which includes deafness. The auditory dysfunction derives from failure of the stria vascularis to develop normally and to generate a high positive endocochlear potential (EP). Because strial function is driven by Na,K-ATPase its expression was investigated in inner ears of Wv/Wv and Sld/Sld mice and their wild-type littermates by immunostaining with antisera against four of the enzyme's subunit isoforms. Wild-type mice from two different genetic backgrounds showed an identical distribution of subunit isoforms among inner ear transport cells. Several epithelial cell types coexpressed the alpha 1 and beta 1 subunits. Vestibular dark cells showed no reactivity for beta 1 but expressed abundant beta 2, whereas, strial marginal cells stained strongly for both beta isoforms. The only qualitative difference between mutant and wild-type mice was the absence of beta 1 subunit in marginal cells of the mutant's stria. However, it is unlikely that this difference accounts for failure of mutants to generate a high EP because the beta 1 subunit is not present in the stria vascularis of either rats or gerbils with normal EP values. Strong immunostaining for Na,K-ATPase in lateral wall fibrocytes of normal mice along with diminished immunoreactivity in the mutants supports the concept that these strategically located transport fibrocytes actively resorb K+ leaked across Reissner's membrane into scala vestibuli or effluxed from hair cells and nerves into scala tympani. It is further speculated that the resorbed K+ normally is siphoned down its concentration gradient into the intrastrial space through gap junctions between fibrocytes and strial basal and intermediate cells where it is recycled back to endolymph via marginal cells. Thus, failure of mutants to generate a positive EP could be explained by the absence of intermediate cells which may form the final link in the conduit for moving K+ from perilymph to the intrastrial compartment.
Joly, Sandrine; Samardzija, Marijana; Wenzel, Andreas; Thiersch, Markus; Grimm, Christian
2009-03-01
During light-induced photoreceptor degeneration, large amounts of cellular debris are formed that must be cleared from the subretinal space. The integrins alphavbeta5 and alphavbeta3 are involved in the normal physiological process of phagocytosis in the retina. This study was conducted to investigate the question of whether the lack of beta5 and/or beta3 integrin subunits might influence the course of retinal degeneration and/or clearance of photoreceptor debris induced by acute exposure to light. Wild-type, beta5(-/-) and beta3(-/-) single-knockout, and beta3(-/-)/beta5(-/-) Ccl2(-/-)/beta5(-/-) double-knockout mice were exposed to 13,000 lux of white light for 2 hours to induce severe photoreceptor degeneration. Real-time PCR and Western blot analysis were used to analyze gene and protein expression, light- and electron microscopy to judge retinal morphology, and immunofluorescence to study retinal distribution of proteins. Individual or combined deletion of beta3 and beta5 integrin subunits did not affect the pattern of photoreceptor cell loss or the clearance of photoreceptor debris in mice compared with that in wild-type mice. Invading macrophages may contribute to efficient phagocytosis. However, ablation of the MCP-1 gene did not prevent macrophage recruitment. Several chemokines in addition to MCP-1 were induced after light-induced damage that may have compensated for the deletion of MCP-1. Acute clearance of a large amount of cellular debris from the subretinal space involves invading macrophages and does not depend on beta3 and beta5 integrins.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, J.H.; Wu, J.C.; Joshi, V.
1986-05-01
Treatment of the mitochondrial F/sub 1/-ATPase (MF/sub 1/) containing 1 specific 7-(4-nitro-2,1,3-(/sup 14/C)benzoxadiazolyl)-label (NBD) per enzyme molecule with acetylcysteine (AC) shows that the ratio r of specific ATPase activity of (O-NBD)/sub n/MF/sub 1/ to that of the control MF/sub 1/ increases linearly with the number of labels removed by AC from r < 0.1 to r > 0.9 and that dr/dn approx. = -1 as expected from specific labeling of an essential Tyr in the catalytic ..beta..' subunit. The r value of this labeled enzyme can also be increased 10-fold by LiCl-induced rearrangement of its subunits without removing any ofmore » the label. Similar treatment of the rearranged (O-NBD)/sub n/MF/sub 1/ shows that only a fraction of its radioactive labels can be removed at the normal rate by AC with dr/dn approx. = -1. The remaining labels have little inhibitory effect and are removed at much slower rates by AC with dr/dn approx. = 0. If the reaction with the rearranged (O-NBD)/sub n/MF/sub 1/ is terminated by gel-filtration when most of the labels on ..beta..' have been removed, an isomeric form of the covalently labeled enzyme is obtained with n > 0.5 but r approx. = 1, indicating that its labels are on the subunits (..beta..'') which do not catalyze directly. Incubation of O-..beta..'-NBD-MF/sub 1/ and O-BETA''-NBD-MF/sub 1/ at pH 8.95 gives N-..beta..'-NBD-MF/sub 1/ and N-..beta..''-NBD-MF/sub 1/ respectively with different fluorescence quenching characteristics.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lim, Kap; Pullalarevu, Sadhana; Surabian, Karen Talin
2010-03-12
Glycocyamine kinase (GK), a member of the phosphagen kinase family, catalyzes the Mg{sup 2+}-dependent reversible phosphoryl group transfer of the N-phosphoryl group of phosphoglycocyamine to ADP to yield glycocyamine and ATP. This reaction helps to maintain the energy homeostasis of the cell in some multicelullar organisms that encounter high and variable energy turnover. GK from the marine worm Namalycastis sp. is heterodimeric, with two homologous polypeptide chains, {alpha} and {beta}, derived from a common pre-mRNA by mutually exclusive N-terminal alternative exons. The N-terminal exon of GK{beta} encodes a peptide that is different in sequence and is 16 amino acids longermore » than that encoded by the N-terminal exon of GK{alpha}. The crystal structures of recombinant GK{alpha}{beta} and GK{beta}{beta} from Namalycastis sp. were determined at 2.6 and 2.4 {angstrom} resolution, respectively. In addition, the structure of the GK{beta}{beta} was determined at 2.3 {angstrom} resolution in complex with a transition state analogue, Mg{sup 2+}-ADP-NO{sub 3}{sup -}-glycocyamine. Consistent with the sequence homology, the GK subunits adopt the same overall fold as that of other phosphagen kinases of known structure (the homodimeric creatine kinase (CK) and the monomeric arginine kinase (AK)). As with CK, the GK N-termini mediate the dimer interface. In both heterodimeric and homodimeric GK forms, the conformations of the two N-termini are asymmetric, and the asymmetry is different than that reported previously for the homodimeric CKs from several organisms. The entire polypeptide chains of GK{alpha}{beta} are structurally defined, and the longer N-terminus of the {beta} subunit is anchored at the dimer interface. In GK{beta}{beta} the 24 N-terminal residues of one subunit and 11 N-terminal residues of the second subunit are disordered. This observation is consistent with a proposal that the GK{alpha}{beta} amino acids involved in the interface formation were optimized once a heterodimer emerged as the physiological form of the enzyme. As a consequence, the homodimer interface (either solely {alpha} or solely {beta} chains) has been corrupted. In the unbound state, GK exhibits an open conformation analogous to that observed with ligand-free CK or AK. Upon binding the transition state analogue, both subunits of GK undergo the same closure motion that clasps the transition state analogue, in contrast to the transition state analogue complexes of CK, where the corresponding transition state analogue occupies only one subunit, which undergoes domain closure. The active site environments of the GK, CK, and AK at the bound states reveal the structural determinants of substrate specificity. Despite the equivalent binding in both active sites of the GK dimer, the conformational asymmetry of the N-termini is retained. Thus, the coupling between the structural asymmetry and negative cooperativity previously proposed for CK is not supported in the case of GK.« less
Extrinsic factors regulate partial agonist efficacy of strychnine-sensitive glycine receptors.
Farroni, Jeffrey S; McCool, Brian A
2004-08-09
Strychnine-sensitive glycine receptors in many adult forebrain regions consist of alpha2 + beta heteromeric channels. This subunit composition is distinct from the alpha1 + beta channels found throughout the adult spinal cord. Unfortunately, the pharmacology of forebrain alpha2beta receptors are poorly defined compared to 'neonatal' alpha2 homomeric channels or 'spinal' alpha1beta heteromers. In addition, the pharmacologic properties of native alpha2beta glycine receptors have been generally distinct from receptors produced by heterologous expression. To identify subtype-specific pharmacologic tools for the forebrain alpha2beta receptors, it is important to identify a heterologous expression system that closely resembles these native glycine-gated chloride channels. While exploring pharmacological properties of alpha2beta glycine receptors compared to alpha2-homomers, we found that distinct heterologous expression systems appeared to differentially influence partial agonist pharmacology. The beta-amino acid taurine possessed 30-50% efficacy for alpha2-containing receptor isoforms when expressed in HEK 293 cells. However, taurine efficacy was dramatically reduced in L-cell fibroblasts. Similar results were obtained for beta-alanine. The efficacy of these partial agonists was also strongly reduced by the beta subunit. There were no significant differences in apparent strychnine affinity values calculated from concentration-response data between expression systems or subunit combinations. Nor did relative levels of expression correlate with partial agonist efficacy when compared within or between several different expression systems. Finally, disruption of the tubulin cytoskeleton reduced the efficacy of partial agonists in a subunit-dependent, but system-independent, fashion. Our results suggest that different heterologous expression systems can dramatically influence the agonist pharmacology of strychnine-sensitive glycine receptors. In the systems examine here, these effects are independent of both absolute expression level and any system-related alterations in the agonist binding site. We conclude that complex interactions between receptor composition and extrinsic factors may play a significant role in determining strychnine-sensitive glycine receptor partial agonist pharmacology.
Two subunits of the 55 K porcine zona pellucida glycoprotein family are immunologically distinct
DOE Office of Scientific and Technical Information (OSTI.GOV)
Subramanian, M.G.; Yurewicz, E.C.; Sacco, A.G.
1986-03-01
The 55K glycoprotein family (ZP3) of the porcine zona pellucida is comprised of two subunits of 46 K and 45 K which can be resolved by endo-..beta..-galactosidase digestion of ZP3 followed by reversed phase HPLC on Vydac C4 resin. Gel electrophoresis revealed that the 46 K component (EBDG..cap alpha..) is approx. 95% pure and the 45 K component (EBGD..beta..) is 100% pure. In the present study, these two subunits were evaluated immunologically by RIA. Under similar reaction protocols (chloramine-T iodination procedure) comparable specific activities were obtained for EBGD..cap alpha.. (33.06 +/- 7.5 ..mu..ci/..mu..gm), EBGD..beta.. (30.45 +/- 1.6) and ZP3 (26.3more » +/- 1.3). Antibody (Ab) titration studies revealed that EBGD..cap alpha.. and ..beta.. are potent immunogens and /sup 125/I-EBGD..cap alpha.. showed minimal cross reactivity to EBGD..beta..-Ab (8% bound at 1:500 dilution), whereas, /sup 125/I-EBGD..beta.. showed a greater degree of cross reactivity to EBGD..cap alpha..-Ab (23% bound at 1:500 dilution). Maximum binding for the two labeled antigens against homologous Abs (1:500) was > 60%. Dose response studies revealed that in the /sup 125/I-EBGD..cap alpha.. vs EBGD..cap alpha.. -Ab system, the 50% intercept was 3.25 +/- 0.32 ng for EBGD..cap alpha.. and 472.43 +/- 30.26 ng for EBGD..beta.. (p < 0.01), whereas, in the /sup 125/I-EBGD..beta.. vs EBGD..beta..-Ab system the 50% intercept was 3.51 +/- 0.58 for EBGD..beta.. and 166.77 +/- 49.20 for EBGD..cap alpha.. (p < 0.01). No significant differences were observed in the slopes of the dose response curves. It is concluded that the two subunits of ZP3 possess distinct immunologic characteristics as evaluated by RIA.« less
NASA Astrophysics Data System (ADS)
Dagen, Aaron J.
1985-12-01
The fluorescence decay profiles, relative quantum yield and transmission of the (alpha), (beta) and ((alpha)(beta)) complexes from phycoerythrin isolated from the photosynthetic antenna system of Nostoc sp. and measured by single picosecond laser spectroscopic techniques is studied. The fluorescence decay profiles of all three complexes are found to be intensity independent for the intensity range investigated ((TURN)4 x 10('13) to (TURN)4 x 10('15) photons-cm('-2) per pulse). The apparent decrease in the relative quantum yield of all three complexes as intensity increases is offset by a corresponding increase in the relative transmission. This evidence, along with the intensity independent fluorescence kinetics, suggests that exciton annihilation is absent in these complexes. The decay profiles are fit to models assuming energy transfer amongst fluorescing chromophores. The intraprotein transfer rate is found to be 100 ps in the (alpha) subunit, 666 ps in the (beta) subunit. Constraining these rates to be identical in the monomer results in explaining the monomer kinetics by an increase in the nonradiative rate of the f(,(beta)) chromophore, an apparent result of aggregation effects.
NASA Astrophysics Data System (ADS)
Dagen, A. J.
1985-12-01
The fluorescence decay profiles, relative quantum yield and transmission of the alpha, beta and (alpha beta) complexes from phycoerythrin isolated from the photosynthetic antenna system of Nostoc sp. and measured by single picosecond laser spectroscopic techniques is studied. The fluorescence decay profiles of all three complexes are found to be intensity independent for the intensity range investigated (approx. 4x10 to the 13th power to 4x10 to the 15th power photons/sq cm per pulse). The apparent decrease in the relative quantum yield of all three complexes as intensity increases is offset by a corresponding increase in the relative transmission. This evidence, along with the intensity independent fluorescence kinetics, suggests that exciton annihilation is absent in these complexes. The decay profiles are fit to models assuming energy transfer amongst fluorescing chromophores. The intraprotein transfer rate is found to be 100 ps in the alpha subunit, 666 ps in the beta subunit. Constraining these rates to be identical in the monomer results in explaining the monomer kinetics by an increase in the nonradiative rate of the f beta chromophore, an apparent result of aggregation effects.
Bertenshaw, G P; Turk, B E; Hubbard, S J; Matters, G L; Bylander, J E; Crisman, J M; Cantley, L C; Bond, J S
2001-04-20
Meprin A and B are highly regulated, secreted, and cell-surface metalloendopeptidases that are abundantly expressed in the kidney and intestine. Meprin oligomers consist of evolutionarily related alpha and/or beta subunits. The work herein was carried out to identify bioactive peptides and proteins that are susceptible to hydrolysis by mouse meprins and kinetically characterize the hydrolysis. Gastrin-releasing peptide fragment 14-27 and gastrin 17, regulatory molecules of the gastrointestinal tract, were found to be the best peptide substrates for meprin A and B, respectively. Peptide libraries and a variety of naturally occurring peptides revealed that the meprin beta subunit has a clear preference for acidic amino acids in the P1 and P1' sites of substrates. The meprin alpha subunit selected for small (e.g. serine, alanine) or hydrophobic (e.g. phenylalanine) residues in the P1 and P1' sites, and proline was the most preferred amino acid at the P2' position. Thus, although the meprin alpha and beta subunits share 55% amino acid identity within the protease domain and are normally localized at the same tissue cell surfaces, they have very different substrate and peptide bond specificities indicating different functions. Homology models of the mouse meprin alpha and beta protease domains, based on the astacin crystal structure, revealed active site differences that can account for the marked differences in substrate specificity of the two subunits.
Koyama, T; Hughes, R C
1992-12-25
We have examined the properties of the alpha 5 beta 1 integrin of baby hamster kidney (BHK) cells, a ricin-resistant variant Ric14 lacking N-acetylglucosaminyl transferase I, and hence unable to complete assembly of hybrid- or complex-type N-glycans, and BHK cells treated with 1-deoxymannojirimycin (dMM), an inhibitor of Golgi mannosidases involved in the initial processing of N-glycan precursors. Comparable amounts of alpha 5 beta 1 integrin were isolated from these cells by chromatography of detergent extracts on a fibronectin cell-binding fragment affinity column and elution with EDTA. The alpha 5 beta 1 integrin obtained from normal BHK cells by fibronectin affinity chromatography contained mainly endoglycosidase H-resistant oligosaccharides, whereas in RicR14 cells or dMM-treated BHK cells these were entirely endoglycosidase H-sensitive. Analysis of lactoperoxidase labeled or long term biosynthetically 35S-labeled proteins from cultures of normal or glycosylation deficient cells showed similar steady state levels of alpha 5 beta 1 integrin and expression at the cell surface. Pulse-chase experiments in normal BHK cells showed rapid conversion of the alpha 5 subunit into a mature form containing oligosaccharides resistant to endoglycosidase H and slower maturation of a precursor beta 1 subunit, as in other cell types. In Ric14 cells the precursor beta 1 subunit was found to carry glycans larger than the fully processed Man5GlcNAc2 glycan of the mature subunit, indicating that the bulk precursor pool had not been translocated into the cis-Golgi compartment containing mannosidase I. We conclude that in BHK cells terminal oligosaccharide processing of alpha 5 beta 1 integrin subunits is not required for dimer formation, surface expression, and fibronectin binding, and that expression of the glycosylation defect of Ric14 cells on the alpha 5 beta 1 integrin does not account for the reduced adhesiveness of these cells on fibronectin compared with normal and dMM-treated BHK cells.
Expression of {beta}{sub 1} integrins in human endometrial stromal and decidual cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shiokawa, Shigetatsu; Yoshimura, Yasunori; Nakamura, Yukio
The present study was undertaken to investigate the expression of {beta}{sub 1} integrins in human endometrium and decidua using flow cytometry, immunohistochemistry, and immunoprecipitation. Fluorescence-activated flow cytometry demonstrated the greater expression of the {beta}{sub 1}, {alpha}{sub 1}, {alpha}{sub 2}, and {alpha}{sub 5} subunits of the {beta}{sub 1} integrin family in cultured stromal cells from the midsecretory phase, than in those of the early proliferative phase. The addition of estradiol (E{sub 2}) and progesterone (P) to cultured stromal cells in the early proliferative phase increased the expression of {beta}{sub 1} integrins in vitro. Flow cytometry also demonstrated the expression of themore » {beta}{sub 1}, {alpha}{sub 1}, {alpha}{sub 2}, {alpha}{sub 3}, {alpha}{sub 5}, and {alpha}{sub 6} subunits of {beta}{sub 1} integrin family in cultured decidual cells, and the enriched-fraction of prolactin (PRL)-producing decidual cells isolated by Percoll gradients showed high levels of {beta}{sub 1} integrins expression. Immunohistochemistry confirmed the {beta}{sub 1} integrin cell surface phenotypes in cultured decidual cells observed by flow cytometry. In summary, the present study demonstrated that endometrial stromal and decidual cells expressed {beta}{sub 1} integrin subunits at their surfaces. The expression exhibited a variability throughout the menstrual cycles, being predominantly detected in the secretory phase, and was maintained highly in the decidua. Thus, {beta}{sub 1} integrins in human endometrium and decidua may be important in mediating the organization of extracellular matrix proteins derived from embryos during the early stage of implantation. 43 refs., 7 figs., 2 tabs.« less
Busch, Alexander S; Hagen, Casper P; Almstrup, Kristian; Main, Katharina M; Juul, Anders
2016-04-01
Do variants of the genes encoding follicle stimulating hormone (FSH) beta subunit (B) and FSH receptor (R) impact circulating reproductive hormone levels and ovarian follicle maturation in healthy peripubertal girls? FSHB and FSHR genetic variants exert, alone or their combination, distinct effects on reproductive hormone levels as well as ovarian follicle maturation in healthy peripubertal girls. FSHB and FSHR genetic variants impact reproductive hormone levels as well as associated pathologies in women. While FSHR c. 2039A>G is known to alter gonadotrophin levels in women, FSHR c.-29G>A has not yet been shown to exert effect and there are conflicting results concerning FSHB c.-211G>T. This population-based study included 633 girls recruited as part of two cohorts, the COPENHAGEN Puberty Study (2006-2014, a cross-sectional and ongoing longitudinal study) and the Copenhagen Mother-Child Cohort (1997-2002, including transabdominal ultrasound (TAUS) of the ovaries in a subset of 91 peripubertal girls). Clinical examinations, including pubertal breast stage (Tanner's classification B1-B5) were performed. Circulating levels of FSH, luteinizing hormone (LH), estradiol, anti-Mullerian hormone (AMH) and inhibin-B were assessed by immunoassays. In a subset of the girls (n = 91), ovarian volume and the number/size of antral follicles were assessed by TAUS. Genotypes were determined by competitive PCR. FSHR c.2039A>G minor alleles were positively associated with serum FSH (β = 0.08, P = 0.004), LH (β = 0.06, P = 0.012) and estradiol (β = 0.06, P = 0.017) (adjusted for Tanner stages). In a combined model, FSHR c.-29G>A and FSHR c.2039A>G alleles were positively associated with FSH levels in early-pubertal girls (B2 + B3, n = 327, r = 0.1, P = 0.02) and in young adolescents (B4 + B5, n = 149, r = 0.2, P = 0.01). Serum AMH and inhibin B levels were not significantly influenced by the single nucleotide polymorphisms (SNPs). Single SNPs were not associated with follicles counts, however, a cumulative minor allele count (FSHB c.-211 G>T and FSHR c.-29G>A) was negatively associated with the number of large follicles (≥5 mm) (n = 91, P = 0.04) (adjusted for Tanner stages). Since we studied girls and young adolescents during pubertal transition, our study may not be fully comparable with previous studies on FSHB and FSHR variants in adult women. The group of young adolescents (Tanner B4 + B5) reflects the endocrine situation in adult women best, however, the group is not large enough to contribute substantially to the conflicting results concerning the influence of FSHB c.-211G>T in adult women. Furthermore, we have no information about the exact day of the menstrual cycle in the subgroup of girls with menarche. The sex-specific interaction of FSHB and FSHR genetic variants and physiological as well as pathological conditions is being increasingly elucidated. The variant triplet set might serve as diagnostic and pharmacogenetic marker. For the first time, we show an additional effect of FSHR c.-29G>A on serum FSH levels in healthy girls. Moreover, morphological data suggest impaired FSH-induced maturation of ovarian follicles in minor allele carriers of FSHB c.-211G>T and FSHR c.-29G>A. This may explain previous findings of delayed pubertal onset in these girls. Funding was provided by the Danish Agency for Science, Technology and Innovation (09-067180), Danish Ministry of the Environment, CeHoS (MST-621-00065), Capital Region of Denmark (December 2011), Ministry of Higher Education and Science (DFF-1331-00113) and EDMaRC (Danish Ministry of Health). A.S.B. was funded from December 2015 by ReproUnion (EU Interreg Öresund-Kattegat-Skagerrak). The authors declare no conflict of interest. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spreitzer, Robert J.
CO{sub 2} and O{sub 2} are mutually competitive at the active site of ribulose-1,5-biphosphate (RuBP) carboxylase/oxygenase (Rubisco). Rubisco contains two subunits, each present in eight copies. The 15-kD small subunit is coded by a family of nuclear RbcS genes. Until now, the role of the small subunit in Rubisco structure or catalytic efficiency is not known. Because of other work in eliminating the two RbcS genes in the green algo Chlamydomonas reinhardtii, it is now possible to address questions about the structure-function relationships of the eukaryotic small subunit. There are three specific aims in this project: (1) Alanine scanning mutagenesismore » is being used to dissect the importance of the {beta}A/{beta}B loop, a feature unique to the eukaryotic small subunit. (2) Random mutagenesis is being used to identify additional residues or regions of the small subunit that are important for holoenzyme assembly and function. (3) Attempts are being made to express foreign small subunits in Chlamydomonas to examine the contribution of small subunits to holoenzyme assembly, catalytic efficiency, and CO{sub 2}/O{sub 2} specificity.« less
Bleach, E C; Glencross, R G; Feist, S A; Groome, N P; Knight, P G
2001-03-01
The relationship between follicle growth and plasma inhibin A, FSH, LH, estradiol (E), and progesterone was investigated during the normal bovine estrous cycle and after treatment with steroid-free bovine follicular fluid (bFF) to arrest follicle development. In the first study, four heifers were monitored over three prostaglandin (PG)-synchronized cycles. Blood was collected every 2-8 h, and ovaries were examined daily by ultrasonography. Inhibin A was measured using a modified enzyme-linked immunosorbent assay that employed a new monoclonal antibody against the alpha subunit of bovine inhibin. Plasma inhibin A ( approximately 50 pg/ml before luteolysis) rose steadily during the induced follicular phase (P < 0.05) to a peak ( approximately 125 pg/ml) coincident with the preovulatory E/LH/FSH surge. After ovulation, inhibin A fell sharply (P < 0.05) to a nadir ( approximately 55 pg/ml) coincident with the secondary FSH rise. During the next 3 days, inhibin A increased to approximately 90 pg/ml in association with growth of the new dominant follicle (DF). Plasma E also rose twofold during this period, whereas FSH fell by approximately 50%. Inhibin A was negatively correlated with FSH (r = -0.37, P < 0.001) and positively correlated with E (r = 0.49, P < 0.0001). Observations on eight cycles (two cycles/heifer), in which growth of the ovulatory DF was monitored from emergence to ovulation, showed that the first-wave DF (DF1) ovulated in three cycles and the second-wave DF (DF2) in five cycles. After PG, plasma inhibin A and E increased similarly in both groups, with concomitant falls in FSH. In the former group, the restricted ability of DF1 to secrete both inhibin A and E was restored after luteolysis. Results indicate that dynamic changes in the secretion of both E and inhibin A from the DF contribute to the fall in FSH during the follicular phase and to the generation and termination of the secondary FSH surge, both of which play a key role in follicle selection. In the second study, bFF (two dose levels) was administered to heifers (n = 3-4) for 60 h starting from the time of DF1 emergence. Both doses suppressed FSH (P < 0.05) and blocked DF1 growth to the same extent (P < 0.01), although inhibin A levels were only marginally raised by the lower dose (not significant compared to controls). The high bFF dose raised (P < 0.001) inhibin A to supraphysiological levels ( approximately 1 ng/ml). A large "rebound" rise in FSH occurred within 1 day of stopping both treatments, even though the inhibin A level in the high-dose bFF group was still approximately threefold higher than that in controls. This indicates that desensitization of gonadotropes to inhibin negative feedback is a contributory factor, together with reduced ovarian output of E, in generation of the post-bFF rebound in FSH.
Beccari, T; Hoade, J; Orlacchio, A; Stirling, J L
1992-01-01
cDNAs encoding the mouse beta-N-acetylhexosaminidase alpha-subunit were isolated from a mouse testis library. The longest of these (1.7 kb) was sequenced and showed 83% similarity with the human alpha-subunit cDNA sequence. The 5' end of the coding sequence was obtained from a genomic DNA clone. Alignment of the human and mouse sequences showed that all three putative N-glycosylation sites are conserved, but that the mouse alpha-subunit has an additional site towards the C-terminus. All eight cysteines in the human sequence are conserved in the mouse. There are an additional two cysteines in the mouse alpha-subunit signal peptide. All amino acids affected in Tay-Sachs-disease mutations are conserved in the mouse. Images Fig. 1. PMID:1379046
González, Janneth; Gálvez, Angela; Morales, Ludis; Barreto, George E.; Capani, Francisco; Sierra, Omar; Torres, Yolima
2013-01-01
Three-dimensional models of the alpha- and beta-1 subunits of the calcium-activated potassium channel (BK) were predicted by threading modeling. A recursive approach comprising of sequence alignment and model building based on three templates was used to build these models, with the refinement of non-conserved regions carried out using threading techniques. The complex formed by the subunits was studied by means of docking techniques, using 3D models of the two subunits, and an approach based on rigid-body structures. Structural effects of the complex were analyzed with respect to hydrogen-bond interactions and binding-energy calculations. Potential interaction sites of the complex were determined by referencing a study of the difference accessible surface area (DASA) of the protein subunits in the complex. PMID:23492851
Ghosh, D; Weeks, C M; Grochulski, P; Duax, W L; Erman, M; Rimsay, R L; Orr, J C
1991-01-01
The x-ray structure of a short-chain dehydrogenase, the bacterial holo 3 alpha,20 beta-hydroxysteroid dehydrogenase (EC 1.1.1.53), is described at 2.6 A resolution. This enzyme is active as a tetramer and crystallizes with four identical subunits in the asymmetric unit. It has the alpha/beta fold characteristic of the dinucleotide binding region. The fold of the rest of the subunit, the quaternary structure, and the nature of the cofactor-enzyme interactions are, however, significantly different from those observed in the long-chain dehydrogenases. The architecture of the postulated active site is consistent with the observed stereospecificity of the enzyme and the fact that the tetramer is the active form. There is only one cofactor and one substrate-binding site per subunit; the specificity for both 3 alpha- and 20 beta-ends of the steroid results from the binding of the steroid in two orientations near the same cofactor at the same catalytic site. Images PMID:1946424
Expression of membrane-bound and cytosolic guanylyl cyclases in the rat inner ear.
Seebacher, T; Beitz, E; Kumagami, H; Wild, K; Ruppersberg, J P; Schultz, J E
1999-01-01
Membrane-bound guanylyl cyclases (GCs) are peptide hormone receptors whereas the cytosolic isoforms are receptors for nitric oxide. In the inner ear, the membrane-bound GCs may be involved in the regulation of fluid homeostasis and the cytosolic forms possibly play a role in signal processing and regulation of local blood flow. In this comprehensive study, we examined, qualitatively and quantitatively, the transcription pattern of all known GC isoforms in the inner ear from rat by RT-PCR. The tissues used were endolymphatic sac, stria vascularis, organ of Corti, organ of Corti outer hair cells, cochlear nerve, Reissner's membrane, vestibular dark cells, and vestibular sensory cells. We show that multiple particulate (GC-A, GC-B, GC-D, GC-E, GC-F and GC-G) and several subunits of the heterodimeric cytosolic GCs (alpha1, alpha2, beta1 and beta2) are expressed, albeit at highly different levels. GC-C was not found. GC-A and the soluble subunits alpha1 and beta1 were transcribed ubiquitously. GC-B was present in all tissues except stria vascularis, which contained GC-A and traces of GC-E and GC-G. GC-B was by far the predominant membrane-bound isoform in the organ of Corti (86%), Reissner's membrane (75%) and the vestibulum (80%). Surprisingly, GC-E, a retinal isoform, was detected in significant amounts in the cochlear nerve (8%) and in the organ of Corti (4%). Although the cytosolic GC is a heterodimer composed of an alpha and a beta subunit, the mRNA transcription of these subunits was not stoichiometric. Particularly in the vestibulum, the transcription of the beta1 subunits was at least four-fold higher than of the alpha1 subunit. The data are compatible with earlier suggestions that membrane receptor GCs may be involved in the control of inner ear electrolyte and fluid composition whereas NO-stimulated GC isoforms mainly participate in the regulation of blood flow and supporting cell physiology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tyrey, L.; Hammond, C.B.
1976-05-15
Antiserum generated against the hormone-specific ..beta..-subunit of hCG was used with different labeled antigens to measure circulating hCG in patients having trophoblastic disease. When /sup 125/I-hCG..beta.. served as the labeled antigen, a small number of patient sera failed to show parallelism with the second IS-hCG reference and erroneous estimates of hormone concentrations were obtained. Replacement of the /sup 125/I-hCG..beta.. with labeled hCG corrected the nonparallelism exhibited by these samples. Inhibition curves obtained with purified hCG and hCG..beta.. suggested that both the nonparallelism and its correction with the change in labeled antigen would be consistent with the possibility that this assaymore » aberration may result from the presence of free hCG..beta.. in these sera. (auth)« less
Extrinsic factors regulate partial agonist efficacy of strychnine-sensitive glycine receptors
Farroni, Jeffrey S; McCool, Brian A
2004-01-01
Background Strychnine-sensitive glycine receptors in many adult forebrain regions consist of alpha2 + beta heteromeric channels. This subunit composition is distinct from the alpha1 + beta channels found throughout the adult spinal cord. Unfortunately, the pharmacology of forebrain alpha2beta receptors are poorly defined compared to 'neonatal' alpha2 homomeric channels or 'spinal' alpha1beta heteromers. In addition, the pharmacologic properties of native alpha2beta glycine receptors have been generally distinct from receptors produced by heterologous expression. To identify subtype-specific pharmacologic tools for the forebrain alpha2beta receptors, it is important to identify a heterologous expression system that closely resembles these native glycine-gated chloride channels. Results While exploring pharmacological properties of alpha2beta glycine receptors compared to alpha2-homomers, we found that distinct heterologous expression systems appeared to differentially influence partial agonist pharmacology. The β-amino acid taurine possessed 30–50% efficacy for alpha2-containing receptor isoforms when expressed in HEK 293 cells. However, taurine efficacy was dramatically reduced in L-cell fibroblasts. Similar results were obtained for β-alanine. The efficacy of these partial agonists was also strongly reduced by the beta subunit. There were no significant differences in apparent strychnine affinity values calculated from concentration-response data between expression systems or subunit combinations. Nor did relative levels of expression correlate with partial agonist efficacy when compared within or between several different expression systems. Finally, disruption of the tubulin cytoskeleton reduced the efficacy of partial agonists in a subunit-dependent, but system-independent, fashion. Conclusions Our results suggest that different heterologous expression systems can dramatically influence the agonist pharmacology of strychnine-sensitive glycine receptors. In the systems examine here, these effects are independent of both absolute expression level and any system-related alterations in the agonist binding site. We conclude that complex interactions between receptor composition and extrinsic factors may play a significant role in determining strychnine-sensitive glycine receptor partial agonist pharmacology. PMID:15301692
Cortisone Dissociates the Shaker Family K Channels from their Beta Subunit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan, Y.; Weng, J; Kabaleeswaran, V
2008-01-01
The Shaker family voltage-dependent potassium channels (Kv1) are expressed in a wide variety of cells and are essential for cellular excitability. In humans, loss-of-function mutations of Kv1 channels lead to hyperexcitability and are directly linked to episodic ataxia and atrial fibrillation. All Kv1 channels assemble with {Beta} subunits (Kv{Beta}s), and certain Kv{Beta}s, for example Kv{Beta}1, have an N-terminal segment that closes the channel by the N-type inactivation mechanism. In principle, dissociation of Kv{Beta}1, although never reported, should eliminate inactivation and thus potentiate Kv1 current. We found that cortisone increases rat Kv1 channel activity by binding to Kv{Beta}1. A crystal structuremore » of the K{Beta}v-cortisone complex was solved to 1.82-{angstrom}resolution and revealed novel cortisone binding sites. Further studies demonstrated that cortisone promotes dissociation of Kv{Beta}. The new mode of channel modulation may be explored by native or synthetic ligands to fine-tune cellular excitability.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Culia, C.T.; Stubbs, L.J.; Montgomery, C.S.
1994-03-29
Three genes (Gabrg3, Gabra5, and Gabrb3) encoding the {gamma}{sub 3}, {alpha}{sub 5}, and {beta}{sub 3} subunits of the type A {gamma}-aminobutyric acid receptor, respectively, are known to map near the pink-eyed dilution (p) locus in mouse chromosome 7. This region shares homology with a segment of human chromosome 15 that is implicated in Angelman syndrome, an inherited neurobehavioral disorder. By mapping Gabrg3-Gabra5-Gabrb3-telomere. Like Gabrb3, neither the Gabra5 nor Gabrg3 gene is functionally imprinted in adult mouse brain. Mice deleted for all three subunits die at birth with a cleft palate, although there are rare survivors ({approximately} 5%) that do notmore » have a cleft palate but do exhibit a neurological abnormality characterized by tremor, jerky gait, and runtiness. The authors have previously suggested that deficiency of the {beta}{sub 3} subunit may be responsible for the clefting defect. Most notably, however, in this report they describe mice carrying two overlapping, complementing p deletions that fail to express the {gamma}{sub 3} transcript, as well as mice from another line that express neither the {gamma}{sub 3} nor {alpha}{sub 5} transcripts. Surprisingly, mice from both of these lines are phenotypically normal and do not exhibit any of the neurological symptoms characteristic of the rare survivors that are deleted for all three ({gamma}{sub 3}, {alpha}{sub 5}, and {beta}{sub 3}) subunits. These mice therefore provide a whole-organism type A {gamma}-aminobutyric-acid receptor background that is devoid of any receptor subtypes that normally contain the {gamma}{sub 3} and/or {alpha}{sub 5} subunits. The absence of an overt neurological phenotype in mice lacking the {gamma}{sub 3} and/or {alpha}{sub 5} subunits also suggests that mutations in these genes are unlikely to provide useful animal models for Angelman syndrome in humans.« less
Isa, S H Md; Wong, M; Khalid, B A K
2006-12-01
A patient with beta hCG-secreting germ cell carcinoma of the pineal and suprasellar regions presented with hydrocephalus, Parinaud's syndrome, hypopituitarism and polyuria. Central diabetes insipidus was strongly suspected although the water deprivation test was not diagnostic. The polyuria however, responded to ADH analogue when the hypothyroidism and hypocortisolism were treated. Pubertal development was evident and serum testosterone was normal despite the low FSH/LH, suggesting hCG stimulation of Leydig cells. This case illustrates that a beta hCG-germ cell tumour of the suprasellar region causing hypopituitarism can mask the presence of central diabetes insipidus and hypogonadotrophic hypogonadism.
Hou, Y.; Vavougios, G.; Hinek, A.; Wu, K. K.; Hechtman, P.; Kaplan, F.; Mahuran, D. J.
1996-01-01
Substitution mutations adversely affecting the alpha-subunit of beta-hexosaminidase A (alphabeta) (EC 3.2.1.52) result in Tay-Sachs disease. The majority affect the initial folding of the pro-alpha chain in the endoplasmic reticulum, resulting in its retention and degradation. A much less common occurrence is a mutation that specifically affects an "active-site" residue necessary for substrate binding and/or catalysis. In this case, hexosaminidase A is present in the lysosome, but it lacks all alpha-specific activity. This biochemical phenotype is referred to as the "B1-variant form" of Tay-Sachs disease. Kinetic analysis of suspected B1-variant mutations is complex because hexosaminidase A is heterodimeric and both subunits possess similar active sites. In this report, we examine a previously identified B1-variant mutation, alpha-Val192Leu. Chinese hamster ovary cells were permanently cotransfected with an alpha-cDNA-construct encoding the substitution and a mutant beta-cDNA (beta-Arg211Lys), encoding a beta-subunit that is inactive but normal in all other respects. We were surprised to find that the Val192Leu substitution, produced a pro-alpha chain that did not form alpha-beta dimers and was not transported to the lysosome. Finally, we reexamined the hexosaminidase activity and protein levels in the fibroblasts from the original patient. These data were also not consistent with the biochemical phenotype of the B1 variant of Tay-Sachs disease previously reported to be present. Thus, we conclude that the Val192Leu substitution does not specifically affect the alpha-active site. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:8659543
Hou, Y; Vavougios, G; Hinek, A; Wu, K K; Hechtman, P; Kaplan, F; Mahuran, D J
1996-07-01
Substitution mutations adversely affecting the alpha-subunit of beta-hexosaminidase A (alphabeta) (EC 3.2.1.52) result in Tay-Sachs disease. The majority affect the initial folding of the pro-alpha chain in the endoplasmic reticulum, resulting in its retention and degradation. A much less common occurrence is a mutation that specifically affects an "active-site" residue necessary for substrate binding and/or catalysis. In this case, hexosaminidase A is present in the lysosome, but it lacks all alpha-specific activity. This biochemical phenotype is referred to as the "B1-variant form" of Tay-Sachs disease. Kinetic analysis of suspected B1-variant mutations is complex because hexosaminidase A is heterodimeric and both subunits possess similar active sites. In this report, we examine a previously identified B1-variant mutation, alpha-Val192Leu. Chinese hamster ovary cells were permanently cotransfected with an alpha-cDNA-construct encoding the substitution and a mutant beta-cDNA (beta-Arg211Lys), encoding a beta-subunit that is inactive but normal in all other respects. We were surprised to find that the Val192Leu substitution, produced a pro-alpha chain that did not form alpha-beta dimers and was not transported to the lysosome. Finally, we reexamined the hexosaminidase activity and protein levels in the fibroblasts from the original patient. These data were also not consistent with the biochemical phenotype of the B1 variant of Tay-Sachs disease previously reported to be present. Thus, we conclude that the Val192Leu substitution does not specifically affect the alpha-active site.
Molecular analysis of nicotinic receptor expression in autism.
Martin-Ruiz, C M; Lee, M; Perry, R H; Baumann, M; Court, J A; Perry, E K
2004-04-07
Autism is a developmental disorder of unknown aetiopathology and lacking any specific pharmacological therapeutic intervention. Neurotransmitters such as serotonin, gamma-aminobutyric acid (GABA) and acetylcholine have been implicated. Abnormalities in nicotinic acetylcholine receptors have been identified including cortical loss of binding to the alpha4/beta2 subtype and increase in cerebellar alpha7 binding. Receptor expression (mRNA) has not so far been systematically examined. This study aims to further explore the role of nicotinic receptors in autism by analysing nicotinic receptor subunit mRNA in conjunction with protein levels and receptor binding in different brain areas. Quantitative RT-PCR for alpha4, alpha7 and beta2 subunit mRNA expression levels; alpha3, alpha4, alpha7 and beta2 subunit protein expression immunochemistry and specific radioligand receptor binding were performed in adult autism and control brain samples from cerebral cortex and cerebellum. Alpha4 and beta2 protein expression and receptor binding density as well as alpha4 mRNA levels were lower in parietal cortex in autism, while alpha7 did not change for any of these parameters. In cerebellum, alpha4 mRNA expression was increased, whereas subunit protein and receptor levels were decreased. Alpha7 receptor binding in cerebellum was increased alongside non-significant elevations in mRNA and protein expression levels. No significant changes were found for beta2 in cerebellum. The data obtained, using complementary measures of receptor expression, indicate that reduced gene expression of the alpha4beta2 nicotinic receptor in the cerebral cortex is a major feature of the neurochemical pathology of autism, whilst post-transcriptional abnormalities of both this and the alpha7 subtype are apparent in the cerebellum. The findings point to dendritic and/or synaptic nicotinic receptor abnormalities that may relate to disruptions in cerebral circuitry development.
Vallano, M L; Beaman-Hall, C M; Mathur, A; Chen, Q
2000-04-01
Multiple isoforms of type II Ca(2+)-calmodulin-dependent kinase (CaM KII) are composed of two major neuron-specific subunits, designated alpha and beta, and two less well-characterized subunits that are also expressed in non-neuronal tissues, designated delta and gamma. Regulated expression of these 4 gene products, and several variants produced by alternative splicing, shows temporal and regional specificity and influences intracellular targeting. We used immunoblotting and RT-PCR to analyze subunit and variant expression and distribution in cultured cerebellar astrocytes and neurons, and whole cerebellar cortex from rodent brain. The data indicate that: (i) astrocytes express a single splice variant of delta, namely delta(2); (ii) like neurons, astrocytes express two forms of CaM KII gamma; gamma(B) and gamma(A); (iii) these CaM KII variants are enriched in the supernate fraction in astrocytes, and the particulate fraction in neurons; (iv) unlike neurons, astrocytes do not express detectable levels of alpha or beta subunits or their respective splice variants. The results indicate that neurons and astrocytes express distinct CaM KII subunits and variants that localize to distinct subcellular compartments and, by inference, exert distinct cellular functions. Copyright 2000 Wiley-Liss, Inc.
An inversion of 25 base pairs causes feline GM2 gangliosidosis variant.
Martin, Douglas R; Krum, Barbara K; Varadarajan, G S; Hathcock, Terri L; Smith, Bruce F; Baker, Henry J
2004-05-01
In G(M2) gangliosidosis variant 0, a defect in the beta-subunit of lysosomal beta-N-acetylhexosaminidase (EC 3.2.1.52) causes abnormal accumulation of G(M2) ganglioside and severe neurodegeneration. Distinct feline models of G(M2) gangliosidosis variant 0 have been described in both domestic shorthair and Korat cats. In this study, we determined that the causative mutation of G(M2) gangliosidosis in the domestic shorthair cat is a 25-base-pair inversion at the extreme 3' end of the beta-subunit (HEXB) coding sequence, which introduces three amino acid substitutions at the carboxyl terminus of the protein and a translational stop that is eight amino acids premature. Cats homozygous for the 25-base-pair inversion express levels of beta-subunit mRNA approximately 190% of normal and protein levels only 10-20% of normal. Because the 25-base-pair inversion is similar to mutations in the terminal exon of human HEXB, the domestic shorthair cat should serve as an appropriate model to study the molecular pathogenesis of human G(M2) gangliosidosis variant 0 (Sandhoff disease).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wehmann, R.E.; Harman, S.M.; Birken, S.
1981-12-01
We have devised a radioimmunoassay (RIA) for human choriogonadotropin (hCG) in first morning-voided urine specimens. Concanavalin A, a lectin, is used to extract and concentrate the hCG from urine. A high-affinity antiserum is used, directed to the hCG..beta.. carboxy-terminal peptide, a unique immunological determinant not shared by the beta subunit of human lutropin. This ensures that urinary human lutropin-related molecules, which interfere with RIAs involving antisera to the intact hCG..beta.. subunit, will not cross react in this assay. A concentration of hCG as low as 0.4 ..mu..g/L can be detected in the first morning-voided urine. The effective sensitivity of thismore » assay for the unequivocal detection of hCG production is somewhat better than that achieved with the serum hCG RIA involving antisera to the hCG..beta.. subunit. The improved specificity and sensitivity of this assay, and the greater convenience of collecting samples of urine rather than blood, are clinically useful advantages of this approach to assessing hCG production in humans.« less
ADP binding to TF1 and its subunits induces ultraviolet spectral changes.
Hisabori, T; Yoshida, M; Sakurai, H
1986-09-01
Adenine nucleotide binding sites on the coupling factor ATPase of thermophilic bacterium PS3 (TF1) were investigated by UV spectroscopy and by equilibrium dialysis. When ADP was mixed with TF1 in the presence and in the absence of Mg2+, an UV absorbance change was induced (t1/2 approximately 1 min) with a peak at about 278 nm and a trough at about 250 nm. Similar spectral changes were induced by ADP with the isolated beta subunits in the presence and in the absence of Mg2+, and with the isolated alpha subunits in the presence of Mg2+ although the magnitudes of the changes were different. From equilibrium dialysis measurement we identified two classes of nucleotide binding sites in TF1 in the presence of Mg2+, three high-affinity sites (Kd = 61 nM) and three low-affinity sites (Kd = 87 microM). In the absence of Mg2+, TF1 has one high-affinity site (Kd less than 10 nM) and five low-affinity sites (Kd = 100 microM). Moreover, we found a single Mg2+-dependent ADP binding site on the isolated alpha subunit and a single Mg2+-independent ADP binding site on the isolated beta subunit. From the above observations, we concluded that the three Mg2+-dependent high-affinity sites for ADP are located on the alpha subunit in TF1 and that the single high-affinity site is located on one of the beta subunits in TF1 in the absence of Mg2+.
Han, Xing-Fa; Li, Jun-Li; Zhou, Yu-Qin; Ren, Xiao-Hua; Liu, Gong-Cheng; Cao, Xiao-Han; Du, Xiao-Gang; Zeng, Xian-Yin
2016-01-01
GnRH sterilization vaccines have been developed for various practical and clinical reasons. However, conjugation of GnRH peptide to carrier protein has many drawbacks, hampering the further commercialization of GnRH vaccines. In this study, a new nonconjugated GnRH vaccine, D-Lys6-GnRH-tandem-dimer peptide (TDK), emulsified in Specol adjuvant was investigated for its immunocastration efficacy in young male rats. Prepubertal male rats were randomly allocated into three groups (n = 12): control (no treatment), surgically castrated or immunized against 100 μg TDK in Specol adjuvant at 6 weeks of age (with a booster 8 weeks later). Blood samples (for antibody titers and hormone concentrations) were collected at 2-week intervals until rats were killed (18 weeks of age). Compared to intact controls, active immunization against TDK reduced (P < 0.05) serum concentrations of testosterone, inhibin B, LH and FSH, prevented the onset of spermatogenesis at puberty. Furthermore, mRNA expressions of GnRH receptor, LH-β and FSH-β in the pituitary, LH receptor, FSH receptor, inhibin α, βA and βB subunit in the testes were decreased in immunocastrated rats compared to intact controls (P < 0.05). These results demonstrate for the first time that GnRH-tandem-dimer peptide emulsified in Specol is a promising veterinary sterilization medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, K.; Caron, M.G.; Lefkowitz, R.J.
1990-10-05
To facilitate functional and mechanistic studies of receptor-G protein interactions by expression of the human {beta}{sub 2}-adrenergic receptor (h{beta}-AR) has been expressed in Saccharomyces cerevisiae. This was achieved by placing a modified h{beta}-AR gene under control of the galactose-inducible GAL1 promoter. After induction by galactose, functional h{beta}-AR was expressed at a concentration several hundred times as great as that found in any human tissue. As determined from competitive ligand binding experiments, h{beta}-AR expressed in yeast displayed characteristic affinities, specificity, and stereoselectivity. Partial activation of the yeast pheromone response pathway by {beta}-adrenergic receptor agonists was achieved in cells coexpressing h{beta}-AR andmore » a mammalian G protein (G{sub s}) {alpha} subunit - demonstrating that these components can couple to each other and to downstream effectors when expressed in yeast. This in vivo reconstitution system provides a new approach for examining ligand binding and G protein coupling to cell surface receptors.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hou, Y.; Vavougios, G.; Hinek, A.
1996-07-01
Substitution mutations adversely affecting the {alpha}-subunit of {beta}-hexosaminidase A ({alpha}{beta}) (EC 3.2.1.52) result in Tay-Sachs disease. The majority affect the initial folding of the pro-{alpha} chain in the endoplasmic reticulum, resulting in its retention and degradation. A much less common occurrence is a mutation that specifically affects an {open_quotes}active-site{close_quotes} residue necessary for substrate binding and/or catalysis. In this case, hexosaminidase A is present in the lysosome, but it lacks all {alpha}-specific activity. This biochemical phenotype is referred to as the {open_quotes}B1-variant form{close_quotes} of Tay-Sachs disease. Kinetic analysis of suspected B1-variant mutations is complex because hexosaminidase A is heterodimeric and bothmore » subunits possess similar active sites. In this report, we examine a previously identified B1-variant mutation, {alpha}-Val{sup 192}Leu. Chinese hamster ovary cells were permanently cotransfected with an {alpha}-cDNA-construct encoding the substitution and a mutant {beta}-cDNA ({beta}-Arg{sup 211}Lys), encoding a {beta}-subunit that is inactive but normal in all other respects. We were surprised to find that the Val{sup 192}Leu substitution produced a pro-{alpha} chain that did not form {alpha}-{beta} dimers and was not transported to the lysosome. Finally, we reexamined the hexosaminidase activity and protein levels in the fibroblasts from the original patient. These data were also not consistent with the biochemical phenotype of the B1 variant of Tay-Sachs disease previously reported to be present. Thus, we conclude that the Val{sup 192}Leu substitution does not specifically affect the {alpha}-active site. 23 refs., 4 figs., 2 tabs.« less
Westh-Hansen, S E; Rasmussen, P B; Hastrup, S; Nabekura, J; Noguchi, K; Akaike, N; Witt, M R; Nielsen, M
1997-06-25
Recombinant human GABA(A) receptors were investigated in vitro by coexpression of cDNAs coding for alpha1, beta2, and gamma2 subunits in the baculovirus/Sf-9 insect cell system. We report that a single amino acid exchange (isoleucine 121 to valine 121) in the N-terminal, extracellular part of the alpha1 subunit induces a marked decrease in agonist GABA(A) receptor ligand sensitivity. The potency of muscimol and GABA to inhibit the binding of the GABA(A) receptor antagonist [3H]SR 95531 (2-(3-carboxypropyl)-3-amino-6-(4-methoxyphenyl)pyridazinium bromide) was higher in receptor complexes of alpha1(ile 121) beta2gamma2 than in those of alpha1(val 121) beta2gamma2 (IC50 values were 32-fold and 26-fold lower for muscimol and GABA, respectively). The apparent affinity of the GABA(A) receptor antagonist bicuculline methiodide to inhibit the binding of [3H]SR 95531 did not differ between the two receptor complex variants. Electrophysiological measurements of GABA induced whole-cell Cl- currents showed a ten-fold decrease in the GABA(A) receptor sensitivity of alpha1 (val 121) beta2gamma2 as compared to alpha1(ile 121) beta2gamma2 receptor complexes. Thus, a relatively small change in the primary structure of the alpha1 subunit leads to a decrease selective for GABA(A) receptor sensitivity to agonist ligands, since no changes were observed in a GABA(A) receptor antagonist affinity and benzodiazepine receptor binding.
Groves, M R; Hanlon, N; Turowski, P; Hemmings, B A; Barford, D
1999-01-08
The PR65/A subunit of protein phosphatase 2A serves as a scaffolding molecule to coordinate the assembly of the catalytic subunit and a variable regulatory B subunit, generating functionally diverse heterotrimers. Mutations of the beta isoform of PR65 are associated with lung and colon tumors. The crystal structure of the PR65/Aalpha subunit, at 2.3 A resolution, reveals the conformation of its 15 tandemly repeated HEAT sequences, degenerate motifs of approximately 39 amino acids present in a variety of proteins, including huntingtin and importin beta. Individual motifs are composed of a pair of antiparallel alpha helices that assemble in a mainly linear, repetitive fashion to form an elongated molecule characterized by a double layer of alpha helices. Left-handed rotations at three interrepeat interfaces generate a novel left-hand superhelical conformation. The protein interaction interface is formed from the intrarepeat turns that are aligned to form a continuous ridge.
Habe, Hiroshi; Kobuna, Akinori; Hosoda, Akifumi; Kosaka, Tomoyuki; Endoh, Takayuki; Tamura, Hiroto; Yamane, Hisakazu; Nojiri, Hideaki; Omori, Toshio; Watanabe, Kazuya
2009-07-01
Desulfotignum balticum utilizes benzoate coupled to sulfate reduction. Two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) analysis was conducted to detect proteins that increased more after growth on benzoate than on butyrate. A comparison of proteins on 2D gels showed that at least six proteins were expressed. The N-terminal sequences of three proteins exhibited significant identities with the alpha and beta subunits of electron transfer flavoprotein (ETF) from anaerobic aromatic-degraders. By sequence analysis of the fosmid clone insert (37,590 bp) containing the genes encoding the ETF subunits, we identified three genes, whose deduced amino acid sequences showed 58%, 74%, and 62% identity with those of Gmet_2267 (Fe-S oxidoreductase), Gmet_2266 (ETF beta subunit), and Gmet_2265 (ETF alpha subunit) respectively, which exist within the 300-kb genomic island of aromatic-degradation genes from Geobacter metallireducens GS-15. The genes encoding ETF subunits found in this study were upregulated in benzoate utilization.
NASA Astrophysics Data System (ADS)
Neish, Calum S.; Martin, Ian L.; Davies, Martin; Henderson, Robert M.; Edwardson, J. Michael
2003-08-01
We have developed an atomic force microscopy (AFM)-based method for the determination of the subunit architecture of ionotropic receptors, and tested the method using the GABAA receptor as a model system. The most common form of the GABAA receptor probably consists of 2alpha1-, 2beta2- and 1gamma2-subunits. We show here that the arrangement of subunits around the central Cl- ion channel can be deduced by AFM of receptors tagged with subunit-specific antibodies. Transfection of cells with DNA encoding alpha1-, beta2- and gamma2-subunits resulted in the production of receptors containing all three subunits, as judged by both immunoblot analysis and the binding of [3H]-Ro15-1788, a specific radioligand for the GABAA receptor. A His6-tag on the alpha1-subunit was used to purify the receptor from membrane fractions of transfected cells. After incubation with anti-His6 immunoglobulin G, some receptors became tagged with either one or two antibody molecules. AFM analysis of complexes containing two bound antibodies showed that the most common angle between the two tags was 135°, close to the value of 144° expected if the two alpha-subunits are separated by a third subunit. This method is applicable to the complete elucidation of the subunit arrangement around the GABAA receptor rosette, and can also be applied to other ionotropic receptors.
Ronin, C; Stannard, B S; Rosenbloom, I L; Magner, J A; Weintraub, B D
1984-09-25
Thyroid-stimulating hormone (TSH) subunit glycosylation was compared to that of total cell glycoproteins in mouse thyrotropic tumors. Lipid-linked oligosaccharides, total cell glycoproteins, and TSH subunits were labeled with either [3H]mannose, [3H]galactose, or [3H]glucose in pulse and pulse-chase experiments. The various oligosaccharides were isolated respectively by lipid extraction and mild acid hydrolysis, by selective immunoprecipitation, or by acid precipitation followed by trypsin and endoglycosidase H treatment. The nature of the oligosaccharides was assessed by their migration in paper chromatography, their relative incorporation of different precursors, and also their resistance to alpha-mannosidase. At 60 min, lipid-linked oligosaccharides were found to be composed of Glc3-2Man9GlcNAc2, Man9-8GlcNAc2, and Man5GlcNAc2. At 10 or 60 min of labeling, total cell proteins contained Glc3Man9GlcNAc2, Glc1Man9GlcNAc2, Man9GlcNAc2, Glc1Man8GlcNAc2, Man8GlcNAc2, and Man7GlcNAc2. The largest oligosaccharide, Glc3Man9GlcNAc2, had an unusually long half-life of about 2 h. In contrast, no Glc3Man9GlcNAc2 was found either on TSH + alpha subunits or on free beta subunits isolated either by immunoprecipitation or by sodium dodecyl sulfate gel electrophoresis. Instead, primarily Man9GlcNAc2 was found after a 10-min pulse both on TSH + alpha subunits and on beta subunits. When the pulse was followed by a chase up to 2 h, there was a progressive increase in Man8GlcNAc2 in higher amounts on TSH + alpha-subunit carbohydrate chains than on beta subunits.(ABSTRACT TRUNCATED AT 250 WORDS)
Pressure-induced subunit dissociation and unfolding of dimeric beta-lactoglobulin.
Valente-Mesquita, V L; Botelho, M M; Ferreira, S T
1998-01-01
Effects of hydrostatic pressure on dimeric beta-lactoglobulin A (beta-Lg) were investigated. Application of pressures of up to 3.5 kbar induced a significant red shift ( approximately 11 nm) and a 60% increase in intrinsic fluorescence emission of beta-Lg. These changes were very similar to those induced by guanidine hydrochloride, which caused subunit dissociation and unfolding of beta-Lg. A large hysteresis in the recovery of fluorescence parameters was observed upon decompression of beta-Lg. Pressure-induced dissociation and unfolding were not fully reversible, because of the formation of a nonnative intersubunit disulfide bond that hampered correct refolding of the dimer. Comparison between pressure dissociation/unfolding at 3 degrees C and 23 degrees C revealed a marked destabilization of beta-Lg at low temperature. The stability of beta-Lg toward pressure was significantly enhanced by 1 M NaCl, but not by glycerol (up to 20% v/v). These observations suggest that salt stabilization was not related to a general cosolvent effect, but may reflect charge screening. Interestingly, pressure-induced dissociation/unfolding was completely independent of beta-Lg concentration, in apparent violation of the law of mass action. Possible causes for this anomalous behavior are discussed. PMID:9649408
Xiao, Xiao; Zi, Xiang-Dong; Niu, Hui-Ran; Xiong, Xian-Rong; Zhong, Jin-Cheng; Li, Jian; Wang, Li; Wang, Yong
2014-04-22
The competence for embryonic development after IVF is low in the yak, therefore, we investigated the effects of supplementation of FSH, LH and the proteasome inhibitor MG132 in IVM media on yak oocyte competence for development after IVF. In Experiment 1, yak cumulus-oocyte complexes (COCs) were in vitro matured (IVM) in TCM-199 with 20% fetal calf serum (FCS), 1 microg/mL estradiol-17beta, and different combinations of LH (50 or 100 IU/mL) and FSH (0, 1, 5, 10 microg/mL) at 38.6 degrees C, 5% CO2 in air for 24 h. Matured oocytes were exposed to frozen-thawed, heparin-capacitated yak sperm. Presumptive zygotes were cultured in SOF medium containing 6 mg/ml BSA, 0.5 mg/mL myoinositol, 3% (v/v) essential amino acids, 1% nonessential amino acids and 100 μg/mL L-glutamine (48 h, 38.5 degrees C, 5% CO2, 5% O2, and 90% N2). In Experiment 2, cumulus cells were collected at the end of IVM to determine FSHR and LHR mRNA expression by real-time PCR. In Experiment 3 and 4, COCs were cultured in the presence or absence of the proteasomal inhibitor MG132 from either 0-6 h or 18-24 h after initiation of maturation. The optimum concentration of FSH and LH in IVM media was 5 microg/mL FSH and 50 IU/mL LH which resulted in the greatest cleavage (79.1%) and blastocyst rates (16.1%). Both FSHR and LHR mRNA were detected in yak cumulus cells after IVM. Treatment with MG132 early in maturation reduced (P<0.05) cleavage and blastocyst rates. Conversely, treatment with MG132 late in maturation improved (P<0.05) blastocyst rate. Optimal results with MG132 were achieved at a concentration of 10 microM. An optimum concentration of FSH and LH in IVM medium, and treatment with MG132 late in maturation can improve yak oocytes competence for development after IVF.
Takayama, S; White, M F; Kahn, C R
1988-03-05
The effect of 12-O-tetradecanoylphorbol-13-acetate (TPA) on the function of the insulin receptor was examined in intact hepatoma cells (Fao) and in solubilized extracts purified by wheat germ agglutinin chromatography. Incubation of ortho[32P]phosphate-labeled Fao cells with TPA increased the phosphorylation of the insulin receptor 2-fold after 30 min. Analysis of tryptic phosphopeptides from the beta-subunit of the receptor by reverse-phase high performance liquid chromatography and determination of their phosphoamino acid composition suggested that TPA predominantly stimulated phosphorylation of serine residues in a single tryptic peptide. Incubation of the Fao cells with insulin (100 nM) for 1 min stimulated 4-fold the phosphorylation of the beta-subunit of the insulin receptor. Prior treatment of the cells with TPA inhibited the insulin-stimulated tyrosine phosphorylation by 50%. The receptors extracted with Triton X-100 from TPA-treated Fao cells and purified on immobilized wheat germ agglutinin retained the alteration in kinase activity and exhibited a 50% decrease in insulin-stimulated tyrosine autophosphorylation and phosphotransferase activity toward exogenous substrates. This was due primarily to a decrease in the Vmax for these reactions. TPA treatment also decreased the Km of the insulin receptor for ATP. Incubation of the insulin receptor purified from TPA-treated cells with alkaline phosphatase decreased the phosphate content of the beta-subunit to the control level and reversed the inhibition, suggesting that the serine phosphorylation of the beta-subunit was responsible for the decreased tyrosine kinase activity. Our results support the notion that the insulin receptor is a substrate for protein kinase C in the Fao cell and that the increase in serine phosphorylation of the beta-subunit of the receptor produced by TPA treatment inhibited tyrosine kinase activity in vivo and in vitro. These data suggest that protein kinase C may regulate the function of the insulin receptor.
Guillermet-Guibert, Julie; Bjorklof, Katja; Salpekar, Ashreena; Gonella, Cristiano; Ramadani, Faruk; Bilancio, Antonio; Meek, Stephen; Smith, Andrew J H; Okkenhaug, Klaus; Vanhaesebroeck, Bart
2008-06-17
The p110 isoforms of phosphoinositide 3-kinase (PI3K) are acutely regulated by extracellular stimuli. The class IA PI3K catalytic subunits (p110alpha, p110beta, and p110delta) occur in complex with a Src homology 2 (SH2) domain-containing p85 regulatory subunit, which has been shown to link p110alpha and p110delta to Tyr kinase signaling pathways. The p84/p101 regulatory subunits of the p110gamma class IB PI3K lack SH2 domains and instead couple p110gamma to G protein-coupled receptors (GPCRs). Here, we show, using small-molecule inhibitors with selectivity for p110beta and cells derived from a p110beta-deficient mouse line, that p110beta is not a major effector of Tyr kinase signaling but couples to GPCRs. In macrophages, both p110beta and p110gamma contributed to Akt activation induced by the GPCR agonist complement 5a, but not by the Tyr kinase ligand colony-stimulating factor-1. In fibroblasts, which express p110beta but not p110gamma, p110beta mediated Akt activation by the GPCR ligands stromal cell-derived factor, sphingosine-1-phosphate, and lysophosphatidic acid but not by the Tyr kinase ligands PDGF, insulin, and insulin-like growth factor 1. Introduction of p110gamma in these cells reduced the contribution of p110beta to GPCR signaling. Taken together, these data show that p110beta and p110gamma can couple redundantly to the same GPCR agonists. p110beta, which shows a much broader tissue distribution than the leukocyte-restricted p110gamma, could thus provide a conduit for GPCR-linked PI3K signaling in the many cell types where p110gamma expression is low or absent.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang Chen; Puett, D.
1991-10-22
Members of the glycoprotein hormone family contain a common {alpha} subunit and a hormone-specific {beta} subunit. Human choriogonadotropin (hCG) {beta} is a 145 amino acid residue protein glycosylated at 6 positions (2 N-linked and 4 O-linked oligosaccharides). In an effort to elucidate receptor determinants on hCG{beta}, the authors have used site-directed mutagenesis to prepare and express several mutant cDNAs with replacements at arginines-43 and -94. Arg-43 is invariant in all known mammalian CG/lutropin {beta} amino acid sequences, and Arg-94 is conserved in 10 of the 12 sequences. Moreover, various studies involving synthetic peptides and enzymatic digestions of intact {beta} chainsmore » suggest that these residues may be important in hCG receptor binding. Point mutants were made in which these two arginines were replaced with the corresponding residues in human follitropin {beta}, Leu-43 and Asp-94. The wild-type and mutant {beta} chains were expressed in CHO cells containing a stably integrated gene for bovine {alpha}, and heterodimer formation occurred. These heterologous gonadotropins were active in assays using transformed Leydig cells, competitive binding with standard {sup 125}I-hCG, and cAMP and progesterone production, but the potency was considerably less than that associated with the hCG{beta} wild-type-containing gonadotropin. The double-mutant protein Arg-43 to Leu/Arg-94 to Asp also associated with bovine {alpha}, but the resultant heterodimer exhibited only low activity. Replacement but the Lys-43-containing {beta} chain appeared to exhibit a low degree of subunit association or reduced stability relative to the expressed hCG{beta} wild type. These results demonstrate that arginines-43 and -94 contribute to receptor binding through a positive charge.« less
Kaydamov, C; Tewes, A; Adler, K; Manteuffel, R
2000-04-25
We have isolated cDNA sequences encoding alpha and beta subunits of potential G proteins from a cDNA library prepared from somatic embryos of Nicotiana plumbaginifolia Viv. at early developmental stages. The predicted NPGPA1 and NPGPB1 gene products are 75-98% identical to the known respective plant alpha and beta subunits. Southern hybridizations indicate that NPGPA1 is probably a single-copy gene, whereas at least two copies of NPGPB1 exist in the N. plumbaginifolia genome. Northern analyses reveal that both NPGPA1 and NPGPB1 mRNA are expressed in all embryogenic stages and plant tissues examined and their expression is obviously regulated by the plant hormone auxin. Immunohistological localization of NPGPalpha1 and NPGPbeta1 preferentially on plasma and endoplasmic reticulum membranes and their immunochemical detection exclusively in microsomal cell fractions implicate membrane association of both proteins. The temporal and spatial expression patterns of NPGPA1 and NPGPB1 show conformity as well as differences. This could account for not only cooperative, but also individual activities of both subunits during embryogenesis and plant development.
Knox, J. D.; Cress, A. E.; Clark, V.; Manriquez, L.; Affinito, K. S.; Dalkin, B. L.; Nagle, R. B.
1994-01-01
The epithelial basal lamina composition and integrin expression profile of normal and neoplastic human prostate was characterized using immunohistochemical analysis of frozen samples. The major components of the basal lamina surrounding normal acini were laminin, type IV collagen, entactin, and type VII collagen with variable amounts of tenascin. The basal lamina of neoplastic acini had a similar composition, except for the loss of type VII collagen, which was observed in all grades of carcinoma. The basal cells of the normal prostate express the alpha 6-, beta 1-, and beta 4-integrin subunits, suggesting that both the alpha 6 beta 1- and alpha 6 beta 4-integrin complexes are formed. In prostate carcinoma there is a complete loss of beta 4 expression and the alpha 6- and beta 1-integrin subunits, which are restricted to the basal and basal lateral surfaces of basal cells, are distributed diffusely throughout the cytoplasmic membrane. The differential expression of type VII collagen and beta 4 are discussed in relationship to their possible role in tumor progression. Images Figure 1 Figure 2 Figure 3 PMID:8030747
Chaumont, F; Silva Filho, M de C; Thomas, D; Leterme, S; Boutry, M
1994-02-01
The mitochondrial F1-ATPase beta subunit (ATPase-beta) of Nicotiana plumbaginifolia is nucleus-encoded as a precursor containing an NH2-terminal extension. By sequencing the mature N. tabacum ATPase-beta, we determined the length of the presequence, viz. 54 residues. To define the essential regions of this presequence, we produced a series of 3' deletions in the sequence coding for the 90 NH2-terminal residues of ATPase-beta. The truncated sequences were fused with the chloramphenicol acetyl transferase (cat) and beta-glucuronidase (gus) genes and introduced into tobacco plants. From the observed distribution of CAT and GUS activity in the plant cells, we conclude that the first 23 amino-acid residues of ATPase-beta remain capable of specifically targeting reporter proteins into mitochondria. Immunodetection in transgenic plants and in vitro import experiments with various CAT fusion proteins show that the precursors are processed at the expected cleavage site but also at a cryptic site located in the linker region between the presequence and the first methionine of native CAT.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu Xiaohong, E-mail: xuxh63@zjnu.cn; Ye Yinping; Li Tao
Bisphenol-A (BPA) is known to be a potent endocrine disrupter. Evidence is emerging that estrogen exerts a rapid influence on hippocampal synaptic plasticity and the dendritic spine density, which requires activation of NMDA receptors. In the present study, we investigated the effects of BPA (ranging from 1 to 1000 nM), focusing on the rapid dynamic changes in dendritic filopodia and the expressions of estrogen receptor (ER) {beta} and NMDA receptor, as well as the phosphorylation of NMDA receptor subunit NR2B in the cultured hippocampal neurons. A specific ER antagonist ICI 182,780 was used to examine the potential involvement of ERs.more » The results demonstrated that exposure to BPA (ranging from 10 to 1000 nM) for 30 min rapidly enhanced the motility and the density of dendritic filopodia in the cultured hippocampal neurons, as well as the phosphorylation of NR2B (pNR2B), though the expressions of NMDA receptor subunits NR1, NR2B, and ER{beta} were not changed. The antagonist of ERs completely inhibited the BPA-induced increases in the filopodial motility and the number of filopodia extending from dendrites. The increased pNR2B induced by BPA (100 nM) was also completely eliminated. Furthermore, BPA attenuated the effects of 17{beta}-estradiol (17{beta}-E{sub 2}) on the dendritic filopodia outgrowth and the expression of pNR2B when BPA was co-treated with 17{beta}-E{sub 2}. The present results suggest that BPA, like 17{beta}-E{sub 2}, rapidly results in the enhanced motility and density of dendritic filopodia in the cultured hippocampal neurons with the concomitant activation of NMDA receptor subunit NR2B via an ER-mediated signaling pathway. Meanwhile, BPA suppressed the enhancement effects of 17{beta}-E{sub 2} when it coexists with 17{beta}-E{sub 2}. These results provided important evidence suggesting the neurotoxicity of the low levels of BPA during the early postnatal development of the brain.« less
Oxygen binding by alpha(Fe2+)2beta(Ni2+)2 hemoglobin crystals.
Bruno, S.; Bettati, S.; Manfredini, M.; Mozzarelli, A.; Bolognesi, M.; Deriu, D.; Rosano, C.; Tsuneshige, A.; Yonetani, T.; Henry, E. R.
2000-01-01
Oxygen binding by hemoglobin fixed in the T state either by crystallization or by encapsulation in silica gels is apparently noncooperative. However, cooperativity might be masked by different oxygen affinities of alpha and beta subunits. Metal hybrid hemoglobins, where the noniron metal does not bind oxygen, provide the opportunity to determine the oxygen affinities of alpha and beta hemes separately. Previous studies have characterized the oxygen binding by alpha(Ni2+)2beta(Fe2+)2 crystals. Here, we have determined the three-dimensional (3D) structure and oxygen binding of alpha(Fe2+)2beta(Ni2+)2 crystals grown from polyethylene glycol solutions. Polarized absorption spectra were recorded at different oxygen pressures with light polarized parallel either to the b or c crystal axis by single crystal microspectrophotometry. The oxygen pressures at 50% saturation (p50s) are 95 +/- 3 and 87 +/- 4 Torr along the b and c crystal axes, respectively, and the corresponding Hill coefficients are 0.96 +/- 0.06 and 0.90 +/- 0.03. Analysis of the binding curves, taking into account the different projections of the alpha hemes along the optical directions, indicates that the oxygen affinity of alpha1 hemes is 1.3-fold lower than alpha2 hemes. Inspection of the 3D structure suggests that this inequivalence may arise from packing interactions of the Hb tetramer within the monoclinic crystal lattice. A similar inequivalence was found for the beta subunits of alpha(Ni2+)2beta(Fe2+)2 crystals. The average oxygen affinity of the alpha subunits (p50 = 91 Torr) is about 1.2-fold higher than the beta subunits (p50 = 110 Torr). In the absence of cooperativity, this heterogeneity yields an oxygen binding curve of Hb A with a Hill coefficient of 0.999. Since the binding curves of Hb A crystals exhibit a Hill coefficient very close to unity, these findings indicate that oxygen binding by T-state hemoglobin is noncooperative, in keeping with the Monod, Wyman, and Changeux model. PMID:10794410
MtGimC, a novel archaeal chaperone related to the eukaryotic chaperonin cofactor GimC/prefoldin.
Leroux, M R; Fändrich, M; Klunker, D; Siegers, K; Lupas, A N; Brown, J R; Schiebel, E; Dobson, C M; Hartl, F U
1999-12-01
Group II chaperonins in the eukaryotic and archaeal cytosol assist in protein folding independently of the GroES-like cofactors of eubacterial group I chaperonins. Recently, the eukaryotic chaperonin was shown to cooperate with the hetero-oligomeric protein complex GimC (prefoldin) in folding actin and tubulins. Here we report the characterization of the first archaeal homologue of GimC, from Methanobacterium thermoautotrophicum. MtGimC is a hexamer of 87 kDa, consisting of two alpha and four beta subunits of high alpha-helical content that are predicted to contain extended coiled coils and represent two evolutionarily conserved classes of Gim subunits. Reconstitution experiments with MtGimC suggest that two subunits of the alpha class (archaeal Gimalpha and eukaryotic Gim2 and 5) form a dimer onto which four subunits of the beta class (archaeal Gimbeta and eukaryotic Gim1, 3, 4 and 6) assemble. MtGimalpha and beta can form hetero-complexes with yeast Gim subunits and MtGimbeta partially complements yeast strains lacking Gim1 and 4. MtGimC is a molecular chaperone capable of stabilizing a range of non-native proteins and releasing them for subsequent chaperonin-assisted folding. In light of the absence of Hsp70 chaperones in many archaea, GimC may fulfil an ATP-independent, Hsp70-like function in archaeal de novo protein folding.
MtGimC, a novel archaeal chaperone related to the eukaryotic chaperonin cofactor GimC/prefoldin.
Leroux, M R; Fändrich, M; Klunker, D; Siegers, K; Lupas, A N; Brown, J R; Schiebel, E; Dobson, C M; Hartl, F U
1999-01-01
Group II chaperonins in the eukaryotic and archaeal cytosol assist in protein folding independently of the GroES-like cofactors of eubacterial group I chaperonins. Recently, the eukaryotic chaperonin was shown to cooperate with the hetero-oligomeric protein complex GimC (prefoldin) in folding actin and tubulins. Here we report the characterization of the first archaeal homologue of GimC, from Methanobacterium thermoautotrophicum. MtGimC is a hexamer of 87 kDa, consisting of two alpha and four beta subunits of high alpha-helical content that are predicted to contain extended coiled coils and represent two evolutionarily conserved classes of Gim subunits. Reconstitution experiments with MtGimC suggest that two subunits of the alpha class (archaeal Gimalpha and eukaryotic Gim2 and 5) form a dimer onto which four subunits of the beta class (archaeal Gimbeta and eukaryotic Gim1, 3, 4 and 6) assemble. MtGimalpha and beta can form hetero-complexes with yeast Gim subunits and MtGimbeta partially complements yeast strains lacking Gim1 and 4. MtGimC is a molecular chaperone capable of stabilizing a range of non-native proteins and releasing them for subsequent chaperonin-assisted folding. In light of the absence of Hsp70 chaperones in many archaea, GimC may fulfil an ATP-independent, Hsp70-like function in archaeal de novo protein folding. PMID:10581246
Identification of an active acidic residue in the catalytic site of beta-hexosaminidase.
Tse, R; Vavougios, G; Hou, Y; Mahuran, D J
1996-06-11
Human beta-hexosaminidases A and B (EC 3.2.1.52) are dimeric lysosomal glycosidases composed of evolutionarily related alpha and/or beta subunits. Both isozymes hydrolyze terminal beta-linked GalNAc or GlcNAc residues from numerous artificial and natural substrates; however, in vivo GM2 ganglioside is a substrate for only the heterodimeric A isozyme. Thus, mutations in either gene encoding its alpha or beta subunits can result in GM2 ganglioside storage and Tay-Sachs or Sandhoff disease, respectively. All glycosyl hydrolases ae believed to have one or more acidic residues in their catalytic site. We demonstrate that incubation of hexosaminidase with a chemical modifier specific for carboxyl side chains produces a time-dependent loss of activity, and that this effect can be blocked by the inclusion of a strong competitive inhibitor in the reaction mix. We hypothesized that the catalytic acid residue(s) should be located in a region of overall homology and be invariant within the aligned deduced primary sequences of the human alpha and beta subunits, as well as hexosaminidases from other species, including bacteria. Such a region is encoded by exons 5-6 of the HEXA and HEXB genes. This region includes beta Arg211 (invariant in 15 sequences), which we have previously shown to be an active residue. This region also contains two invariant and one conserved acidic residues. A fourth acidic residue, Asp alpha 258, beta 290, in exon 7 was also investigated because of its association with the B1 variant of Tay-Sachs disease. Conservative substitutions were made at each candidate residue by in vitro mutagenesis of a beta cDNA, followed by cellular expression. Of these, only the beta Asp196Asn substitution decreased the kcat (350-910-fold) without any noticeable effect on the K(m). Mutagenesis of either beta Asp240 or beta Asp290 to Asn decreased kcat by 10- or 1.4-fold but also raised the K(m) of the enzyme 11- of 3-fold, respectively. The above results strongly suggest that beta Asp196 is a catalytic acid residue in beta-hexosaminidase.
A yeast-based genetic screening to identify human proteins that increase homologous recombination.
Collavoli, Anita; Comelli, Laura; Rainaldi, Giuseppe; Galli, Alvaro
2008-05-01
To identify new human proteins implicated in homologous recombination (HR), we set up 'a papillae assay' to screen a human cDNA library using the RS112 strain of Saccharomyces cerevisiae containing an intrachromosomal recombination substrate. We isolated 23 cDNAs, 11 coding for complete proteins and 12 for partially deleted proteins that increased HR when overexpressed in yeast. We characterized the effect induced by the overexpression of the complete human proteasome subunit beta 2, the partially deleted proteasome subunits alpha 3 and beta 8, the ribosomal protein L12, the brain abundant membrane signal protein (BASP1) and the human homologue to v-Ha-RAS (HRAS), which elevated HR by 2-6.5-fold over the control. We found that deletion of the RAD52 gene, which has a key role in most HR events, abolished the increase of HR induced by the proteasome subunits and HRAS; by contrast, the RAD52 deletion did not affect the high level of HR due to BASP1 and RPL12. This suggests that the proteins stimulated yeast HR via different mechanisms. Overexpression of the complete beta 2 human proteasome subunit or the partially deleted alpha 3 and beta 8 subunits increased methyl methanesulphonate (MMS) resistance much more in the rad52 Delta mutant than in the wild-type. Overexpression of RPL12 and BASP1 did not affect MMS resistance in both the wild-type and the rad52 Delta mutant, whereas HRAS decreased MMS resistance in the rad52 Delta mutant. The results indicate that these proteins may interfere with the pathway(s) involved in the repair of MMS-induced DNA damage. Finally, we provide further evidence that yeast is a helpful tool to identify human proteins that may have a regulatory role in HR.
Overexpression of the VSSC-associated CAM, β-2, enhances LNCaP cell metastasis associated behavior.
Jansson, Keith H; Lynch, Jill E; Lepori-Bui, Nadia; Czymmek, Kirk J; Duncan, Randall L; Sikes, Robert A
2012-07-01
Prostate cancer (PCa) is the second-leading cause of cancer death in American men. This is due largely to the "silent" nature of the disease until it has progressed to a highly metastatic and castrate resistant state. Voltage sensitive sodium channels (VSSCs) are multimeric transmembrane protein complexes comprised of a pore-forming α subunit and one or two β subunits. The β-subunits modulate surface expression and gating kinetics of the channels but also have inherent cell adhesion molecule (CAM) functions. We hypothesize that PCa cells use VSSC β-subunits as CAMs during PCa progression and metastasis. We overexpressed the beta-2 isoform as a C-terminal fusion protein with enhanced cyan fluorescence protein (ECFP) in the weakly metastatic LNCaP cells. The effect of beta-2 overexpression on cell morphology was examined using confocal microscopy while metastasis-associated behavior was tested by performing several in vitro metastatic functional assays and in vivo subcutaneous tumor studies. We found that cells overexpressing beta-2 (2BECFP) converted to a bipolar fibroblastic morphology. 2BECFP cells were more adhesive than control (ECFP) to vitronectin (twofold) and Matrigel® (1.3-fold), more invasive through Matrigel® (3.6-fold in 72 hr), and had enhanced migration (2.1-fold in 96 hr) independent of proliferation in wound-healing assays. In contrast, 2BECFP cells have a reduced tumor-take and tumor volume in vivo even though the overexpression of beta-2 was maintained. Functional overexpression of VSSC β-subunits in PCa may be one mechanism leading to increased metastatic behavior while decreasing the ability to form localized tumor masses. Copyright © 2011 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Boulter, Jim; Connolly, John; Deneris, Evan; Goldman, Dan; Heinemann, Steven; Patrick, Jim
1987-11-01
A family of genes coding for proteins homologous to the α subunit of the muscle nicotinic acetylcholine receptor has been identified in the rat genome. These genes are transcribed in the central and peripheral nervous systems in areas known to contain functional nicotinic receptors. In this paper, we demonstrate that three of these genes, which we call alpha3, alpha4, and beta2, encode proteins that form functional nicotinic acetylcholine receptors when expressed in Xenopus oocytes. Oocytes expressing either alpha3 or alpha4 protein in combination with the beta2 protein produced a strong response to acetylcholine. Oocytes expressing only the alpha4 protein gave a weak response to acetylcholine. These receptors are activated by acetylcholine and nicotine and are blocked by Bungarus toxin 3.1. They are not blocked by α -bungarotoxin, which blocks the muscle nicotinic acetylcholine receptor. Thus, the receptors formed by the alpha3, alpha4, and beta2 subunits are pharmacologically similar to the ganglionic-type neuronal nicotinic acetylcholine receptor. These results indicate that the alpha3, alpha4, and beta2 genes encode functional nicotinic acetylcholine receptor subunits that are expressed in the brain and peripheral nervous system.
Papke, Roger L; Wecker, Lynn; Stitzel, Jerry A
2010-05-01
Transgenic mouse models with nicotinic acetylcholine receptor (nAChR) knockouts and knockins have provided important insights into the molecular substrates of addiction and disease. However, most studies of heterologously expressed neuronal nAChR have used clones obtained from other species, usually human or rat. In this work, we use mouse clones expressed in Xenopus oocytes to provide a relatively comprehensive characterization of the three primary classes of nAChR: muscle-type receptors, heteromeric neuronal receptors, and homomeric alpha7-type receptors. We evaluated the activation of these receptor subtypes with acetylcholine and cytisine-related compounds, including varenicline. We also characterized the activity of classic nAChR antagonists, confirming the utility of mecamylamine and dihydro-beta-erythroidine as selective antagonists in mouse models of alpha3beta4 and alpha4beta2 receptors, respectively. We also conducted an in-depth analysis of decamethonium and hexamethonium on muscle and neuronal receptor subtypes. Our data indicate that, as with receptors cloned from other species, pairwise expression of neuronal alpha and beta subunits in oocytes generates heterogeneous populations of receptors, most likely caused by variations in subunit stoichiometry. Coexpression of the mouse alpha5 subunit had varying effects, depending on the other subunits expressed. The properties of cytisine-related compounds are similar for mouse, rat, and human nAChR, except that varenicline produced greater residual inhibition of mouse alpha4beta2 receptors than with human receptors. We confirm that decamethonium is a partial agonist, selective for muscle-type receptors, but also note that it is a nondepolarizing antagonist for neuronal-type receptors. Hexamethonium was a relatively nonselective antagonist with mixed competitive and noncompetitive activity.
Biosynthesis and processing of platelet GPIIb-IIIa in human megakaryocytes.
Duperray, A; Berthier, R; Chagnon, E; Ryckewaert, J J; Ginsberg, M; Plow, E; Marguerie, G
1987-06-01
Platelet membrane glycoprotein IIb-IIIa forms a calcium-dependent heterodimer and constitutes the fibrinogen receptor on stimulated platelets. GPIIb is a two-chain protein containing disulfide-linked alpha and beta subunits. GPIIIa is a single chain protein. These proteins are synthesized in the bone marrow by megakaryocytes, but the study of their synthesis has been hampered by the difficulty in obtaining enriched population of megakaryocytes in large numbers. To examine the biosynthesis and processing of GPIIb-IIIa, purified human megakaryocytes were isolated from liquid cultures of cryopreserved leukocytes stem cell concentrates from patients with chronic myelogenous leukemia. Immunoprecipitation of [35S]methionine pulse-chase-labeled cell extracts by antibodies specific for the alpha or beta subunits of GPIIb indicated that GPIIb was derived from a precursor of Mr 130,000 that contains the alpha and beta subunits. This precursor was converted to GPIIb with a half-life of 4-5 h. No precursor form of GPIIIa was detected. The glycosylation of GPIIb-IIIa was examined in megakaryocytes by metabolic labeling in the presence of tunicamycin, monensin, or treatment with endoglycosidase H. The polypeptide backbones of the GPIIb and the GPIIIa have molecular masses of 120 and 90 kD, respectively. High-mannose oligosaccharides are added to these polypeptide backbones co-translationally. The GPIIb precursor is then processed with conversion of high-mannose to complex type carbohydrates yielding the mature subunits GPIIb alpha (Mr 116,000) and GPIIb beta (Mr 25,000). No posttranslational processing of GPIIIa was detected.
Xu, Jinghong; Yu, Liping; Zhang, Jiping; Cai, Rui; Sun, Xinde
2010-02-15
Auditory experience during the postnatal critical period is essential for the normal maturation of auditory function. Previous studies have shown that rearing infant rat pups under conditions of continuous moderate-level noise delayed the emergence of adult-like topographic representational order and the refinement of response selectivity in the primary auditory cortex (A1) beyond normal developmental benchmarks and indefinitely blocked the closure of a brief, critical-period window. To gain insight into the molecular mechanisms of these physiological changes after noise rearing, we studied expression of the AMPA receptor subunit GluR2 and GABA(A) receptor subunit beta3 in the auditory cortex after noise rearing. Our results show that continuous moderate-level noise rearing during the early stages of development decreases the expression levels of GluR2 and GABA(A)beta3. Furthermore, noise rearing also induced a significant decrease in the level of GABA(A) receptors relative to AMPA receptors. However, in adult rats, noise rearing did not have significant effects on GluR2 and GABA(A)beta3 expression or the ratio between the two units. These changes could have a role in the cellular mechanisms involved in the delayed maturation of auditory receptive field structure and topographic organization of A1 after noise rearing. Copyright 2009 Wiley-Liss, Inc.
Further studies on the quaternary structure of yeast casein kinase II.
Szyszka, R; Lopaczyński, W; Gałasiński, W; Grankowski, N; Gasior, E
1986-01-01
Casein kinase type II were isolated by the same procedure, from rat liver, human placenta, Querin carcinoma and yeast, and characterized. The mammalian enzymes were composed of three subunits alpha, alpha' and beta, whereas yeast kinase was composed of two subunits alpha and alpha'. It was shown that the catalytic activity, substrate and phosphate donor specificity, sensitivity to heparin and spermine were the same for all the kinases tested. The results give additional support to the suggestion [1] that the beta subunit is not required for optimal activity and specificity of yeast casein kinase II. The quaternary structure of the yeast enzyme of a molecular weight of approximately 150 000 is proposed as alpha2 alpha'2.
Raz, Tal; Hunter, Barbara; Carley, Sylvia; Card, Claire
2009-11-01
The objective was to compare the reproductive performances associated with the first (Cycle-1), second (Cycle-2), and mid-season (MS-Cycle) ovulations of the breeding season in donor mares that were treated with equine-FSH (eFSH) in the early vernal transition. Mares (n=15) kept under ambient light were examined ultrasonographically per-rectum starting January 30. When an ovarian follicle > or =25mm in diameter was detected, twice daily eFSH treatments were initiated. The eFSH treatments ceased when a follicle > or =35mm was detected, and 36h later hCG was administered. Thereafter, mares were artificially inseminated every 48h until ovulation (Day 0). Trans-cervical embryo recovery attempts were performed on Day 8, and subsequently PGF2alpha was administered. Equine FSH was not administered in the subsequent estrous cycles. In Cycle-2 and in the MS-Cycle, hCG was administered when a follicle > or =35mm was detected; breeding, embryo recovery, and PGF2alpha administration, were similar to Cycle-1. Mares had an untreated estrous cycle (no treatment or breeding) between Cycle-2 and the MS-Cycle. All mares developed follicle(s) > or =35mm after 4.9+/-0.6 days of eFSH treatment, and subsequently ovulations occurred; mean (95% CI) interval from treatment initiation to ovulation was 7.9 (6.5-9.3) days. The number of preovulatory follicles (> or =30mm) at the time of hCG administration (Cycle-1: 2.2+/-0.3 compared with Cycle-2: 1.0+/-0 compared with MS-Cycle: 1.1+/-0.1 follicles), and the number of ovulations (2.5+/-0.4 compared with 1.0+/-0 compared with 1.1+/-0.1 ovulations) were greater (p<0.05) in Cycle-1. Nevertheless, mean embryo numbers did not differ among cycles (0.8+/-0.2 compared with 0.5+/-0.1 compared with 0.5+/-0.1 embryo/mare). On average, embryo morphology grade was less (p<0.05) in Cycle-1 as compared to non-eFSH cycles (combined Cycle-2 and MS-Cycle). This impaired embryo quality could be due to a seasonal effect, or negative effect of the eFSH treatment, which was possibly related to alterations in the hormonal environment (estradiol-17beta and progesterone). A prolonged IOI (>21 days) was recorded in 7 of 15 mares following the Cycle-1 ovulation, but not subsequently. In conclusion, eFSH treatment of vernal transitional donor mares stimulated ovulation within only few days of treatment, and the following embryo recovery rate was at least as good as in the subsequent estrous cycles; however, on average, embryos were morphologically impaired. In subsequent estrous cycles in the breeding season, ovulations, embryo recovery rates, and embryo variables did not appear to be negatively affected; however, the first inter-ovulatory interval of the breeding season was prolonged in approximately half of the mares.
Wynn, R M; Chuang, J L; Sansaricq, C; Mandel, H; Chuang, D T
2001-09-28
Maple syrup urine disease (MSUD) is a metabolic disorder associated with often-fatal ketoacidosis, neurological derangement, and mental retardation. In this study, we identify and characterize two novel type IB MSUD mutations in Israeli patients, which affect the E1beta subunit in the decarboxylase (E1) component of the branched-chain alpha-ketoacid dehydrogenase complex. The recombinant mutant E1 carrying the prevalent S289L-beta (TCG --> TTG) mutation in the Druze kindred exists as a stable inactive alphabeta heterodimer. Based on the human E1 structure, the S289L-beta mutation disrupts the interactions between Ser-289-beta and Glu-290-beta', and between Arg-309-beta and Glu-290-beta', which are essential for native alpha(2)beta(2) heterotetrameric assembly. The R133P-beta (CGG --> CCG) mutation, on the other hand, is inefficiently expressed in Escherichia coli as heterotetramers in a temperature-dependent manner. The R133P-beta mutant E1 exhibits significant residual activity but is markedly less stable than the wild-type, as measured by thermal inactivation and free energy change of denaturation. The R133P-beta substitution abrogates the coordination of Arg-133-beta to Ala-95-beta, Glu-96-beta, and Ile-97-beta, which is important for strand-strand interactions and K(+) ion binding in the beta subunit. These findings provide new insights into folding and assembly of human E1 and will facilitate DNA-based diagnosis for MSUD in the Israeli population.
Balasubramaniam, Sumathi; Lee, Heng Chin; Lazan, Hamid; Othman, Roohaida; Ali, Zainon Mohd
2005-01-01
beta-Galactosidase (EC. 3.2.1.23) from ripe carambola (Averrhoa carambola L. cv. B10) fruit was fractionated through a combination of ion exchange and gel filtration chromatography into four isoforms, viz. beta-galactosidase I, II, III and IV. This beta-galactosidases had apparent native molecular masses of 84, 77, 58 and 130 kDa, respectively. beta-Galactosidase I, the predominant isoform, was purified to electrophoretic homogeneity; analysis of the protein by SDS-PAGE revealed two subunits with molecular masses of 48 and 36 kDa. N-terminal amino acid sequence of the respective polypeptides shared high similarities albeit at different domains, with the deduced amino acid sequence of certain plant beta-galactosidases, thus, explaining the observed low similarity between the two subunits. beta-Galactosidase I was probably a heterodimer that have glycoprotein properties and a pI value of 7.2, with one of the potential glycosylation sites appeared to reside within the 48-kDa-polypeptide. The purified beta-galactosidase I was substantially active in hydrolyzing (1-->4)beta-linked spruce and a mixture of (1-->3)beta- and (1-->6)beta-linked gum arabic galactans. This isoform also had the capability to solubilize and depolymerize structurally intact pectins as well as to modify alkaline-soluble hemicelluloses, reflecting in part changes that occur during ripening.
Jansson, Keith H; Castillo, Deborah G; Morris, Joseph W; Boggs, Mary E; Czymmek, Kirk J; Adams, Elizabeth L; Schramm, Lawrence P; Sikes, Robert A
2014-01-01
Prostate cancer (PCa) is believed to metastasize through the blood/lymphatics systems; however, PCa may utilize the extensive innervation of the prostate for glandular egress. The interaction of PCa and its nerve fibers is observed in 80% of PCa and is termed perineural invasion (PNI). PCa cells have been observed traveling through the endoneurium of nerves, although the underlying mechanisms have not been elucidated. Voltage sensitive sodium channels (VSSC) are multimeric transmembrane protein complexes comprised of a pore-forming α subunit and one or two auxiliary beta (β) subunits with inherent cell adhesion molecule (CAM) functions. The beta-2 isoform (gene SCN2B) interacts with several neural CAMs, while interacting putatively with other prominent neural CAMs. Furthermore, beta-2 exhibits elevated mRNA and protein levels in highly metastatic and castrate-resistant PCa. When overexpressed in weakly aggressive LNCaP cells (2BECFP), beta-2 alters LNCaP cell morphology and enhances LNCaP cell metastasis associated behavior in vitro. We hypothesize that PCa cells use beta-2 as a CAM during PNI and subsequent PCa metastasis. The objective of this study was to determine the effect of beta-2 expression on PCa cell neurotropic metastasis associated behavior. We overexpressed beta-2 as a fusion protein with enhanced cyan fluorescence protein (ECFP) in weakly aggressive LNCaP cells and observed neurotropic effects utilizing our novel ex vivo organotypic spinal cord co-culture model, and performed functional assays with neural matrices and atomic force microscopy. With increased beta-2 expression, PCa cells display a trend of enhanced association with nerve axons. On laminin, a neural CAM, overexpression of beta-2 enhances PCa cell migration, invasion, and growth. 2BECFP cells exhibit marked binding affinity to laminin relative to LNECFP controls, and recombinant beta-2 ectodomain elicits more binding events to laminin than BSA control. Functional overexpression of VSSC beta subunits in PCa may mediate PCa metastatic behavior through association with neural matrices.
Peterson, G L; Hokin, L E
1980-01-01
Purification of the (Na+ + K+)-activated ATPase has been improved 2-fold the respect to both purity and yield over the previous method [Peterson, Ewing, Hootman & Conte (1978) J. Biol. Chem. 253, 4762-4770] by using Lubrol WX and non-denaturing concentrations of sodium dodecyl sulphate (SDS). The enzyme was purified 200-fold over the homogenate. The preparation had a specific activity of about 600 mumol of Pi/h per mg of protein, and was about 60% pure according to quantification of Coomassie Blue-stained SDS/polyacrylamide gels. The yield of purified enzyme was about 10 mg of protein per 100g of dry brine-shrimp (Artemia salina) cysts. The method is highly suitable for purification either on a small scale (10-25g of dry cysts) or on a large scale (900g of dry cysts) and methods are described for both. The large (Na+ + K+)-activated ATPase subunit (alpha-subunit) was isolated in pure form by SDS-gel filtration on Bio-Gel A 1.5m. The small subunit (beta-subunit) was eluted with other contaminating proteins on the Bio-Gel column, but was isolated in pure form by extraction from SDS/polyacrylamide gels. The amino acid and carbohydrate compositions of both subunits are reported. The alpha-subunit contained 5.2% carbohydrate by weight, and the beta-subunit 9.2%. Sialic acid was absent from both subunits. Images Fig. 3. Fig. 4. PMID:6272692
Mehta, Ashok K; Marutha Ravindran, C R; Ticku, Maharaj K
2007-08-24
In the present study, we investigated the co-localization pattern of the delta subunit with other subunits of GABA(A) receptors in the rat brain using immunoprecipitation and Western blotting techniques. Furthermore, we investigated whether low concentrations of ethanol affect the delta-subunit-containing GABA(A) receptor assemblies in the rat brain using radioligand binding to the rat brain membrane homogenates as well as to the immunoprecipitated receptor assemblies. Our results revealed that delta subunit is not co-localized with gamma(2) subunit but it is associated with the alpha(1), alpha(4) or alpha(6), beta(2) and/or beta(3) subunit(s) of GABA(A) receptors in the rat brain. Ethanol (1-50 mM) neither affected [(3)H]muscimol (3 nM) binding nor diazepam-insensitive [(3)H]Ro 15-4513 (2 nM) binding in the rat cerebellum and cerebral cortex membranes. However, a higher concentration of ethanol (500 mM) inhibited the binding of these radioligands to the GABA(A) receptors partially in the rat cerebellum and cerebral cortex. Similarly, ethanol (up to 50 mM) did not affect [(3)H]muscimol (15 nM) binding to the immunoprecipitated delta-subunit-containing GABA(A) receptor assemblies in the rat cerebellum and hippocampus but it inhibited the binding partially at a higher concentration (500 mM). These results suggest that the native delta-subunit-containing GABA(A) receptors do not play a major role in the pharmacology of clinically relevant low concentrations of ethanol.
Witt, M R; Westh-Hansen, S E; Rasmussen, P B; Hastrup, S; Nielsen, M
1996-11-01
It has been shown previously that unsaturated free fatty acids (FFAs) strongly enhance the binding of agonist benzodiazepine receptor ligands and GABAA receptor ligands in the CNS in vitro. To investigate the selectivity of this effect, recombinant human GABAA/benzodiazepine receptor complexes formed by different subunit compositions (alpha x beta y gamma 2, x = 1, 2, 3, and 5; y = 1, 2, and 3) were expressed using the baculovirus-transfected Sf9 insect cell system. At 10(-4) M, unsaturated FFAs, particularly arachidonic (20:4) and docosahexaenoic (22:6) acids, strongly stimulated (> 200% of control values) the binding of [3H]flunitrazepam ([3H]FNM) to the alpha 3 beta 2 gamma 2 receptor combination in whole cell preparations. No effect or small increases in levels of unsaturated FFAs on [3H]FNM binding to alpha 1 beta x gamma 2 and alpha 2 beta x gamma 2 receptor combinations were observed, and weak effects (130% of control values) were detected using the alpha 5 beta 2 gamma 2 receptor combination. The saturated FFAs, stearic and palmitic acids, were without effect on [3H]FNM binding to any combination of receptor complexes. The hydroxylated unsaturated FFAs, ricinoleic and ricinelaidic acids, were shown to decrease the binding of [3H]FNM only if an alpha 1 beta 2 gamma 2 receptor combination was used. Given the heterogeneity of the GABAA/ benzodiazepine receptor subunit distribution in the CNS, the effects of FFAs on the benzodiazepine receptor can be assumed to vary at both cellular and regional levels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, F.C.; Brown, R.M. Jr.; Drake, R.R. Jr.
1990-03-25
Photoaffinity labeling of purified cellulose synthase with (beta-32P)5-azidouridine 5'-diphosphoglucose (UDP-Glc) has been used to identify the UDP-Glc binding subunit of the cellulose synthase from Acetobacter xylinum strain ATCC 53582. The results showed exclusive labeling of an 83-kDa polypeptide. Photoinsertion of (beta-32P)5-azido-UDP-Glc is stimulated by the cellulose synthase activator, bis-(3'----5') cyclic diguanylic acid. Addition of increasing amounts of UDP-Glc prevents photolabeling of the 83-kDa polypeptide. The reversible and photocatalyzed binding of this photoprobe also showed saturation kinetics. These studies demonstrate that the 83-kDa polypeptide is the catalytic subunit of the cellulose synthase in A. xylinum strain ATCC 53582.
The AMP-activated protein kinase beta 1 subunit modulates erythrocyte integrity.
Cambridge, Emma L; McIntyre, Zoe; Clare, Simon; Arends, Mark J; Goulding, David; Isherwood, Christopher; Caetano, Susana S; Reviriego, Carmen Ballesteros; Swiatkowska, Agnieszka; Kane, Leanne; Harcourt, Katherine; Adams, David J; White, Jacqueline K; Speak, Anneliese O
2017-01-01
Failure to maintain a normal in vivo erythrocyte half-life results in the development of hemolytic anemia. Half-life is affected by numerous factors, including energy balance, electrolyte gradients, reactive oxygen species, and membrane plasticity. The heterotrimeric AMP-activated protein kinase (AMPK) is an evolutionarily conserved serine/threonine kinase that acts as a critical regulator of cellular energy balance. Previous roles for the alpha 1 and gamma 1 subunits in the control of erythrocyte survival have been reported. In the work described here, we studied the role of the beta 1 subunit in erythrocytes and observed microcytic anemia with compensatory extramedullary hematopoiesis together with splenomegaly and increased osmotic resistance. Copyright © 2016 ISEH - International Society for Experimental Hematology. Published by Elsevier Inc. All rights reserved.
Prulière-Escabasse, Virginie; Planès, Carole; Escudier, Estelle; Fanen, Pascale; Coste, André; Clerici, Christine
2007-11-23
Sodium 4-phenylbutyrate (4-PBA) has been shown to correct the cellular trafficking of several mutant or nonmutant plasma membrane proteins such as cystic fibrosis transmembrane conductance regulator through the expression of 70-kDa heat shock proteins. The objective of the study was to determine whether 4-PBA may influence the functional expression of epithelial sodium channels (ENaC) in human nasal epithelial cells (HNEC). Using primary cultures of HNEC, we demonstrate that 4-PBA (5 mm for 6 h) markedly stimulated amiloride-sensitive sodium channel activity and that this was related to an increased abundance of alpha-, beta-, and gamma-ENaC subunits in the apical membrane. The increase in ENaC cell surface expression (i) was due to insertion of newly ENaC subunits as determined by brefeldin A experiments and (ii) was not associated with cell surface retention of ENaC subunits because endocytosis of ENaC subunits was unchanged. In addition, we find that ENaC co-immunoprecipitated with the heat shock protein constitutively expressed Hsc70, that has been reported to modulate ENaC trafficking, and that 4-PBA decreased Hsc70 protein level. Finally, we report that in cystic fibrosis HNEC obtained from two cystic fibrosis patients, 4-PBA increased functional expression of ENaC as demonstrated by the increase in amiloride-sensitive sodium transport and in alpha-, beta-, and gamma-ENaC subunit expression in the apical membrane. Our results suggest that in HNEC, 4-PBA increases the functional expression of ENaC through the insertion of new alpha-, beta-, and gamma-ENaC subunits into the apical membrane and also suggest that 4-PBA could modify ENaC trafficking by reducing Hsc70 protein expression.
Elkind-Hirsch, Karen E; Webster, Bobby W; Brown, Crystal P; Vernon, Michael W
2003-03-01
To evaluate controlled ovarian stimulation cycles using the GnRH antagonist ganirelix in combination with the recombinant FSH, follitropin-beta, in women with polycystic ovary syndrome (PCOS). Prospective, nonrandomized clinical study. Hospital-based infertility practice. Twenty women with PCOS planning to undergo ovarian stimulation. Fasting glucose and insulin levels were used to calculate insulin resistance ratios (FG/I). After pretreatment with oral contraceptives, serum LH levels were determined, and 250 microg ganirelix was administered on cycle day 2. Upon suppression of LH, concurrent ganirelix and follitropin-beta therapy (morning ganirelix and evening follitropin-beta) was started and continued until the day of hCG. Days of stimulation, dose of follitropin-beta, pregnancy, and ongoing pregnancy were compared based on FG/I ratios. One dose of ganirelix effectively suppressed LH levels in all patients. All patients ovulated as documented by a rise in progesterone. Significant differences were observed between the insulin-resistant and non-insulin-resistant groups for both days of stimulation and dose of follitropin-beta. The overall clinical pregnancy rate was 44.4%, with an ongoing pregnancy rate of 27.8%. In this preliminary study, we demonstrate the effectiveness of a concurrent ganirelix and follitropin-beta therapy for ovarian stimulation in women with PCOS.
Molinarolo, Steven; Granata, Daniele; Carnevale, Vincenzo; Ahern, Christopher A
2018-02-21
Voltage-gated sodium channel (VGSC) beta (β) subunits have been called the "overachieving" auxiliary ion channel subunit. Indeed, these subunits regulate the trafficking of the sodium channel complex at the plasma membrane and simultaneously tune the voltage-dependent properties of the pore-forming alpha-subunit. It is now known that VGSC β-subunits are capable of similar modulation of multiple isoforms of related voltage-gated potassium channels, suggesting that their abilities extend into the broader voltage-gated channels. The gene family for these single transmembrane immunoglobulin beta-fold proteins extends well beyond the traditional VGSC β1-β4 subunit designation, with deep roots into the cell adhesion protein family and myelin-related proteins - where inherited mutations result in a myriad of electrical signaling disorders. Yet, very little is known about how VGSC β-subunits support protein trafficking pathways, the basis for their modulation of voltage-dependent gating, and, ultimately, their role in shaping neuronal excitability. An evolutionary approach can be useful in yielding new clues to such functions as it provides an unbiased assessment of protein residues, folds, and functions. An approach is described here which indicates the greater emergence of the modern β-subunits roughly 400 million years ago in the early neurons of Bilateria and bony fish, and the unexpected presence of distant homologues in bacteriophages. Recent structural breakthroughs containing α and β eukaryotic sodium channels containing subunits suggest a novel role for a highly conserved polar contact that occurs within the transmembrane segments. Overall, a mixture of approaches will ultimately advance our understanding of the mechanism for β-subunit interactions with voltage-sensor containing ion channels and membrane proteins.
Sánchez-Criado, José E; Martín De Las Mulas, Juana; Bellido, Carmina; Tena-Sempere, Manuel; Aguilar, Rafaela; Blanco, Alfonso
2004-01-01
Estrogen (E) is a key regulator of the synthesis and secretion of pituitary reproductive hormones [luteinizing hormone (LH), follicle-stimulating hormone (FSH) and prolactin (PRL)]. Until recently, it was thought that all biological actions of E at the pituitary were manifested through a single E receptor (R). The pituitary, like many other reproductive tissues, expresses two isoforms of ER, alpha and beta, both activated by E. The relative contribution of alpha and beta forms in E regulatory actions is largely unknown. To this end, 2-week-old ovariectomized (OVX) rats were injected over 3 days with 25 microg estradiol benzoate (EB), 1.5 mg of propylpyrazole triol (PPT), a selective ERalpha agonist, 1.5 mg of the selective ERbeta agonist diarylpropionitrile (DPN) or a combination of PPT and DPN. Controls were injected with 0.2 ml oil. At 10:00 h on the day after treatment, trunk blood was collected to determine serum concentration of LH, FSH and PRL, and pituitaries were processed for RT-PCR analysis of total (A+B) progesterone receptor (PR) mRNA, immunocytochemistry of PR and incubation. Pituitaries from each of the five groups were incubated in DMEM, with or without 20 nM of the antiprogestin at the receptor ZK299, for 3 h with: 10(-8)M 17beta-estradiol, 10(-6)M PPT, 10(-6)M DPN, PPT+DPN or medium alone, respectively, to determine LH, FSH and PRL secretion, and, when challenged with two pulses of 15 min 1 h apart of 10(-8)M gonadotropin-releasing hormone (GnRH) (GnRH self-priming). EB, PPT and PPT+DPN treatments increased PR mRNA and the number and intensity of nuclei immunoreactive (IR) for PR in gonadotropes, and reduced the number of gonadectomy cells. Like E, PPT alone or in combination with DPN stimulated PRL secretion, increased basal and GnRH-stimulated LH and FSH secretion and induced GnRH self-priming in the absence of ZK299 in the incubation medium. DPN alone had only a significant E-like effect on gonadectomy cells and IR-PR, but not on GnRH self-priming. In addition, while DPN lacked an agonistic action on peripheral tissue and serum pituitary reproductive hormones concentration, EB, PPT and PPT+DPN induced similar uterine ballooning and vaginal cornification, and increased and decreased, respectively, serum concentrations of PRL and gonadotropins. Overall, these results indicate that most of these E actions on the pituitary are exerted through the ERalpha isoform. The finding that activation of ERbeta with its selective DPN agonist had an estrogenic effect on IR-PR nuclei, but not on GnRH self-priming, a characteristic ERalpha-mediated effect of E, suggests that the biological action of E at the pituitary may involve both isoforms of ER.
Cavallini, Giorgio; Biagiotti, Giulio; Bolzon, Elisa
2013-01-01
We tested the hypothesis that letrozole increases sperm count in non-obstructive azoospermic or cryptozoospermic patients with a testosterone (T)/17-beta-2-oestradiol (E2) ratio <10. Forty-six patients with no chromosomal aberrations were randomized into two groups: 22 received letrozole 2.5 mg per day for 6 months (Group 1: 6 azoospermic+16 cryptozoospermic patients), while 24 received a placebo (Group 2: 5 azoospermic+19 cryptozoospermic patients). The following data were collected: two semen analyses, clinical history, scrotal Duplex scans, body mass index (BMI), Y microdeletion, karyotype and cystic fibrosis screens and follicle-stimulating hormone (FSH), luteinizing hormone (LH), E2, T and prolactin levels. Both before and after letrozole or placebo administration, the patients underwent two semen analyses and hormonal assessments. The differences were evaluated using the Mann–Whitney U test. The relationships between sperm concentration after letrozole administration with respect to FSH, T/E2 ratio, bilateral testicle volume and BMI before letrozole administration were assessed using multivariate analysis. The side effects were assessed using the chi-square test. Group 1 had sperm concentration (medians: 400–1.290×106 ml−1; P<0.01) and motility (medians: class A from 2% to 15% P<0.01), FSH, LH and T significantly increased, while Group 2 did not. E2 levels diminished significantly in Group 1, but not in Group 2. Eight patients in Group 1 demonstrated side effects, whereas no patient side effects were observed in Group 2. The sperm concentration after letrozole administration is inversely related to T/E2, FSH and BMI; a direct relationship emerged between sperm concentration and testicular volume. PMID:24121976
Chan, H T; Anthony, C
1991-01-01
The quinoprotein methanol dehydrogenase (MDH) of Acetobacter methanolicus has an alpha 2 beta 2 structure. By contrast with other MDHs, the beta-subunit (approx. 8.5 kDa) does not contain the five lysine residues previously proposed to be involved in ionic interactions with the electron acceptor cytochrome cL. That electrostatic interactions are involved was confirmed by the demonstration that methanol:cytochrome cL oxidoreductase activity was inhibited by high ionic strength (I), the strength of interaction being inversely related to the square root of I. Specific modifiers of arginine residues on MDH inhibited this reaction but not the dye-linked MDH activity. Modification of lysine residues on MDH that altered its charge had no effect on the dye-linked activity but inhibited reaction with cytochrome cL. When the charge was retained on modification of lysine residues, little effect on either activity was observed. Cross-linking experiments confirmed that lysine residues on the alpha-subunit, but not the beta-subunit, are involved in the 'docking' process between the proteins. Images Fig. 4. PMID:1660263
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Shuxia; Zhou, Hua; Walian, Peter J.
2005-04-06
{gamma}-secretase is a membrane protein complex that cleaves the {beta}-amyloid precursor protein (APP) within the transmembrane region, following prior processing by {beta}-secretase, producing amyloid {beta}-peptides (A{beta}{sub 40} and A{beta}{sub 42}). Errant production of A{beta}-peptides that substantially increases A{beta}{sub 42} production has been associated with the formation of amyloid plaques in Alzheimer's disease patients. Biophysical and genetic studies indicate that presenilin-1 (Psn-1), which contains the proteolytic active site, and three other membrane proteins, nicastrin (Nct), APH-1, and PEN-2 are required to form the core of the active {gamma}-secretase complex. Here, we report the purification of the native {gamma}-secretase complexes from HeLamore » cell membranes and the identification of an additional {gamma}-secretase complex subunit, CD147, a transmembrane glycoprotein with two immunoglobulin-like domains. The presence of this subunit as an integral part of the complex itself was confirmed through co-immunoprecipitation studies of the purified protein from HeLa cells and solubilized complexes from other cell lines such as neural cell HCN-1A and HEK293. Depletion of CD147 by RNA interference was found to increase the production of A{beta} peptides without changing the expression level of the other {gamma}-secretase components or APP substrates while CD147 overexpression had no statistically significant effect on amyloid {beta}-peptide production, other {gamma}-secretase components or APP substrates, indicating that the presence of the CD147 subunit within the {gamma}-secretase complex directly down-modulates the production of A{beta}-peptides. {gamma}-secretase was first recognized through its role in the production of the A{beta} peptides that are pathogenic in Alzheimer's disease (AD) (1). {gamma}-secretase is a membrane protein complex with unusual aspartyl protease activity that cleaves a variety of type I membrane proteins, such as APP, CD44, DCC, ErbB4, E-cadherin, LRP, N-cadherin, Nectin-1, and Notch, within their transmembranous regions (2-11); therefore, in addition to its role in AD, {gamma}-secretase has been found to participate in other important biological functions, such as intracellular signaling. {gamma}-secretase processing of APP requires prior removal of a major fragment of the APP extracellular domain (sAPP{sub {beta}}) by {beta}-secretase to yield a membrane bound fragment (APP CTF{sub {beta}}). Subsequent cleavage of this membrane bound fragment by {gamma}-secretase results in the release of the Alzheimer's disease (AD) associated amyloid {beta}-peptides (12). The proteolytic activity of {gamma}-secretase is found not to be critically dependent on the specific sequence, but instead on the size of the extracellular domain (13); such sequence independent characteristics of the substrate are reminiscent of those of the 26S proteasome complex that cleaves substrates in a non-sequence specific manner. {gamma}-secretase is present in almost all animal species, vertebrates and invertebrates; it is expressed in many human organs and tissues.« less
Sinici, Incilay; Yonekawa, Sayuri; Tkachyova, Ilona; Gray, Steven J; Samulski, R Jude; Wakarchuk, Warren; Mark, Brian L; Mahuran, Don J
2013-01-01
The hydrolysis in lysosomes of GM2 ganglioside to GM3 ganglioside requires the correct synthesis, intracellular assembly and transport of three separate gene products; i.e., the alpha and beta subunits of heterodimeric beta-hexosaminidase A, E.C. # 3.2.1.52 (encoded by the HEXA and HEXB genes, respectively), and the GM2-activator protein (GM2AP, encoded by the GM2A gene). Mutations in any one of these genes can result in one of three neurodegenerative diseases collectively known as GM2 gangliosidosis (HEXA, Tay-Sachs disease, MIM # 272800; HEXB, Sandhoff disease, MIM # 268800; and GM2A, AB-variant form, MIM # 272750). Elements of both of the hexosaminidase A subunits are needed to productively interact with the GM2 ganglioside-GM2AP complex in the lysosome. Some of these elements have been predicted from the crystal structures of hexosaminidase and the activator. Recently a hybrid of the two subunits has been constructed and reported to be capable of forming homodimers that can perform this reaction in vivo, which could greatly simplify vector-mediated gene transfer approaches for Tay-Sachs or Sandhoff diseases. A cDNA encoding a hybrid hexosaminidase subunit capable of dimerizing and hydrolyzing GM2 ganglioside could be incorporated into a single vector, whereas packaging both subunits of hexosaminidase A into vectors, such as adeno-associated virus, would be impractical due to size constraints. In this report we examine the previously published hybrid construct (H1) and a new more extensive hybrid (H2), with our documented in cellulo (live cell- based) assay utilizing a fluorescent GM2 ganglioside derivative. Unfortunately when Tay-Sachs cells were transfected with either the H1 or H2 hybrid construct and then were fed the GM2 derivative, no significant increase in its turnover was detected. In vitro assays with the isolated H1 or H2 homodimers confirmed that neither was capable of human GM2AP-dependent hydrolysis of GM2 ganglioside.
Sinici, Incilay; Yonekawa, Sayuri; Tkachyova, Ilona; Gray, Steven J.; Samulski, R. Jude; Wakarchuk, Warren; Mark, Brian L.; Mahuran, Don J.
2013-01-01
The hydrolysis in lysosomes of GM2 ganglioside to GM3 ganglioside requires the correct synthesis, intracellular assembly and transport of three separate gene products; i.e., the alpha and beta subunits of heterodimeric beta-hexosaminidase A, E.C. # 3.2.1.52 (encoded by the HEXA and HEXB genes, respectively), and the GM2-activator protein (GM2AP, encoded by the GM2A gene). Mutations in any one of these genes can result in one of three neurodegenerative diseases collectively known as GM2 gangliosidosis (HEXA, Tay-Sachs disease, MIM # 272800; HEXB, Sandhoff disease, MIM # 268800; and GM2A, AB-variant form, MIM # 272750). Elements of both of the hexosaminidase A subunits are needed to productively interact with the GM2 ganglioside-GM2AP complex in the lysosome. Some of these elements have been predicted from the crystal structures of hexosaminidase and the activator. Recently a hybrid of the two subunits has been constructed and reported to be capable of forming homodimers that can perform this reaction in vivo, which could greatly simplify vector-mediated gene transfer approaches for Tay-Sachs or Sandhoff diseases. A cDNA encoding a hybrid hexosaminidase subunit capable of dimerizing and hydrolyzing GM2 ganglioside could be incorporated into a single vector, whereas packaging both subunits of hexosaminidase A into vectors, such as adeno-associated virus, would be impractical due to size constraints. In this report we examine the previously published hybrid construct (H1) and a new more extensive hybrid (H2), with our documented in cellulo (live cell- based) assay utilizing a fluorescent GM2 ganglioside derivative. Unfortunately when Tay-Sachs cells were transfected with either the H1 or H2 hybrid construct and then were fed the GM2 derivative, no significant increase in its turnover was detected. In vitro assays with the isolated H1 or H2 homodimers confirmed that neither was capable of human GM2AP-dependent hydrolysis of GM2 ganglioside. PMID:23483939
Aloise, P; Kagawa, Y; Coleman, P S
1991-06-05
Three F1 preparations, the beef heart (MF1) and thermophilic bacterium (TF1) holoenzymes, and the alpha 3 beta 3 "core" complex of TF1 reconstituted from individually expressed alpha and beta subunits, were compared as to their kinetic and binding stoichiometric responses to covalent photoaffinity labeling with BzATP and BzADP (+/- Mg2+). Each enzyme displayed an enhanced pseudo-first order rate of photoinhibition and one-third of the sites covalent binding to a catalytic site for full inhibition, plus, but not minus Mg2+. Titration of near stoichiometric [MgBzADP]/[F1] ratios during photolysis disclosed two sequential covalent binding patterns for each enzyme; a high affinity binding corresponding to unistoichiometric covalent association concomitant with enzyme inhibition, followed by a low affinity multisite-saturating covalent association. Thus, in the absence of the structural asymmetry inducing gamma delta epsilon subunits of the holoenzyme, the sequential binding of nucleotide at putative catalytic sites on the alpha 3 beta 3 complex of any F1 appears sufficient to effect binding affinity changes. With MF1, final covalent saturation of BzADP-accessible sites was achieved with 2 mol of BzADP/mol of enzyme, but with TF1 or its alpha 3 beta 3 complex, saturation required 3 mol of BzADP/mol of enzyme. Such differential final labeling stoichiometries could arise because of the endogenous presence of 1 nucleotide already bound to one of the 3 potential catalytic sites on normally prepared MF1, whereas TF1, possessing no endogenous nucleotide, has 3 vacant BzADP-accessible sites. Kinetics measurements revealed that regardless of the incremental extent of inhibition of the TF1 holoenzyme by BzADP during photolysis, the two higher apparent Km values (approximately 1.5 x 10(-4) and approximately 10(-3) M, respectively) of the progressively inactivated incubation are unchanged relative to fully unmodified enzyme. As reported for BzATP (or BzADP) and MF1 (Ackerman, S.H., Grubmeyer, C., and Coleman, P.S. (1987) J. Biol. Chem. 262, 13765-13772), this supports the fact that the photocovalent inhibition of F1 is a one-hit one-kill phenomenon. Isoelectric focusing gels revealed that [3H]BzADP covalently modifies both TF1 and MF1 exclusively on the beta subunit, whether or not Mg2+ is present. A single 19-residue [3H]BzADP-labeled peptide was resolved from a tryptic digest of MF1, and this peptide corresponded with the one believed to contain at least a portion of the beta subunit catalytic site domain (i.e. beta Ala-338----beta Arg-356).
Integrin distributions in renal cell carcinomas of various grades of malignancy.
Korhonen, M.; Laitinen, L.; Ylänne, J.; Koukoulis, G. K.; Quaranta, V.; Juusela, H.; Gould, V. E.; Virtanen, I.
1992-01-01
We studied 41 renal cell carcinomas, classified according to histologic grades G1 through G3, by indirect immunofluorescence microscopy using a panel of monoclonal antibodies (MAb) against various integrin subunits, and the basement membrane (BM) components laminin and collagen type IV. Selected cases also were immunostained using the avidin-biotin-complex method. The alpha 3 and beta 1 integrin subunits were detected in tumor cells of all the carcinomas. All G1 carcinomas, like normal tubular epithelial cells, expressed the alpha 6 subunit, whereas it was lacking in 20% and 40% of G2 and G3 carcinomas, respectively. Furthermore, when alpha 6 was expressed, a lack of basally polarized organization of the subunit, coupled with disorganization of the BM components, correlated with histologic grade. Another feature that appeared to characterize the more anaplastic tumors was their high level (80%) of the alpha v subunit expression as compared with its absence in the G1 carcinomas. Stromal myofibroblasts, identified by double-labeling with anti-myosin, were often characterized by the expression of the alpha 1, alpha 3, alpha 5 and beta 1 subunits. These results indicate that changes in integrin expression in renal cell carcinomas may be correlated with their degree of histologic malignancy. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:1443050
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adra, C.N.; Morrison, P.; Lim, B.
1994-10-11
The authors report the cloning of the cDNA for a human gene whose mRNA is expressed specifically in hematopoietic cells. A long open reading frame in the 1.7-kb mRNA encodes a 214-aa protein of 25 kDa with four hydrophobic regions consistent with a protein that traverses the membrane four times. To reflect the structure and expression of this gene in diverse hematopoietic lineages of lymphoid and myeloid origin, the authors named the gene HTm{sub 4}. The protein is about 20% homologous to two other {open_quotes}four-transmembrane{close_quotes} proteins; the B-cell-specific antigen CD20 and the {beta} subunit of the high-affinity receptor for IgE,more » Fc{sub {epsilon}}RI{beta}. The highest homologies among the three proteins are found in the transmembrane domains, but conserved residues are also recognized in the inter-transmembrane domains and in the N and C termini. Using fluorescence in situ hybridization, they localized HTm{sub 4} to human chromosome 11q12-13.1, where the CD20 and Fc{sub {epsilon}}RI{beta} genes are also located. Both the murine homologue for CD20, Ly-44, and the murine Fc{sub {epsilon}}RI{beta} gene map to the same region in murine chromosome 19. The authors propose that the HTm{sub 4}, CD20, and Fc{sub {epsilon}}RI{beta} genes evolved from the same ancestral gene to form a family of four-transmembrane proteins. It is possible that other related members exist. Similar to CD20 and Fc{sub {epsilon}}RI{beta}, it is likely that Htm{sub 4} has a role in signal transduction and, like Fc{sub {epsilon}}RI{beta}, might be a subunit associated with receptor complexes.« less
Tsuneki, H; Klink, R; Léna, C; Korn, H; Changeux, J P
2000-07-01
Nicotinic acetylcholine receptors (nAChRs) are expressed in the midbrain ascending dopaminergic system, a target of many addictive drugs. Here we assessed the intracellular Ca2+ level by imaging fura-2-loaded cells in substantia nigra pars compacta in mouse brain slices, and we examined the influence on this level of prolonged exposures to nicotine using mice lacking the nAChR beta2-subunit. In control cells, superfusion with nicotine (10-100 microM) caused a long-lasting rise of intracellular Ca2+ level which depended on extracellular Ca2+. This nicotinic response was almost completely absent in beta2-/- mutant mice, leaving a small residual response to a high concentration (100 microM) of nicotine which was inhibited by the alpha7-subunit-selective antagonist, methyllycaconitine. Conversely, the alpha7-subunit-selective agonist choline (10 mM) caused a methyllycaconitine-sensitive increase in intracellular Ca2+ level both in wild-type and beta2-/- mutant mice. Nicotine-elicited Ca2+ mobilization was reduced by the Na+ channel blocker tetrodotoxin (TTX) and by T-type Ca2+ channel blocking agents, whereas the choline-elicited Ca2+ increase was insensitive to TTX. Neither nicotine nor choline produced Ca2+ increase following inhibition of the release of Ca2+ from intracellular stores by dantrolene. These results demonstrate that in nigral dopaminergic neurons, nicotine can elicit Ca2+ mobilization via activation of two distinct nAChR subtypes: that of beta2-subunit-containing nAChR followed by activation of Na+ channel and T-type Ca2+ channels, and/or activation of alpha7-subunit-containing nAChR. The Ca2+ influx due to nAChR activation is subsequently amplified by the recruitment of intracellular Ca2+ stores. This Ca2+ mobilization may possibly contribute to the long-term effects of nicotine on the dopaminergic system.
Rossi, Emanuela; Morabito, Alessandro; De Maio, Ermelinda; Di Rella, Francesca; Esposito, Giuseppe; Gravina, Adriano; Labonia, Vincenzo; Landi, Gabriella; Nuzzo, Francesco; Pacilio, Carmen; Piccirillo, Maria Carmela; D'Aiuto, Giuseppe; D'Aiuto, Massimiliano; Rinaldo, Massimo; Botti, Gerardo; Gallo, Ciro; Perrone, Francesco; de Matteis, Andrea
2008-01-10
To compare the endocrine effects of 6 months of adjuvant treatment with letrozole + triptorelin or tamoxifen + triptorelin in premenopausal patients with early breast cancer within an ongoing phase 3 trial (Hormonal Adjuvant Treatment Bone Effects study). Prospectively collected hormonal data were available for 81 premenopausal women, of whom 30 were assigned to receive tamoxifen + triptorelin and 51 were assigned letrozole + triptorelin +/- zoledronate. Serum 17-beta-estradiol (E2), follicle-stimulating hormone (FSH), luteinizing hormone (LH), Delta4-androstenedione, testosterone, dehydroepiandrosterone-sulfate, progesterone, adrenocorticotropic hormone (ACTH), and cortisol were measured at baseline and after 6 months of treatment. For each hormone, 6-month values were compared between treatment groups by the Wilcoxon-Mann-Whitney exact test. Median age was 44 years for both groups of patients. Letrozole + triptorelin (+/- zoledronate) induced a stronger suppression of median E2 serum levels (P = .0008), LH levels (P = .0005), and cortisol serum levels (P < .0001) compared with tamoxifen + triptorelin. Median FSH serum levels were suppressed in both groups, but such suppression was lower among patients receiving letrozole, who showed significantly higher median FSH serum levels (P < .0001). No significant differences were observed for testosterone, progesterone, ACTH, androstenedione, and dehydroepiandrosterone between the two groups of patients. Letrozole in combination with triptorelin induces a more intense estrogen suppression than tamoxifen + triptorelin in premenopausal patients with early breast cancer.
Wang, Hong-Xing; Gillio-Meina, Carolina; Chen, Shuli; Gong, Xiang-Qun; Li, Tony Y; Bai, Donglin; Kidder, Gerald M
2013-08-01
WNTs are extracellular signaling molecules that exert their actions through receptors of the frizzled (FZD) family. Previous work indicated that WNT2 regulates cell proliferation in mouse granulosa cells acting through CTNNB1 (beta-catenin), a key component in canonical WNT signaling. In other cells, WNT signaling has been shown to regulate expression of connexin43 (CX43), a gap junction protein, as well as gap junction assembly. Since previous work demonstrated that CX43 is also essential in ovarian follicle development, the objective of this study was to determine if WNT2 regulates CX43 expression and/or gap-junctional intercellular communication (GJIC) in granulosa cells. WNT2 knockdown via siRNA markedly reduced CX43 expression and GJIC. CX43 expression, the extent of CX43-containing gap junction membrane, and GJIC were also reduced by CTNNB1 transient knockdown. CTNNB1 is mainly localized to the membranes between granulosa cells but disappeared from this location after WNT2 knockdown. Furthermore, CTNNB1 knockdown interfered with the ability of follicle-stimulating hormone (FSH) to promote the mobilization of CX43 into gap junctions. We propose that the WNT2/CTNNB1 pathway regulates CX43 expression and GJIC in granulosa cells by modulating CTNNB1 stability and localization in adherens junctions, and that this is essential for FSH stimulation of GJIC.
Law, Nathan C; White, Morris F; Hunzicker-Dunn, Mary E
2016-12-30
G protein-coupled receptors (GPCRs) activate PI3K/v-AKT thymoma viral oncoprotein (AKT) to regulate many cellular functions that promote cell survival, proliferation, and growth. However, the mechanism by which GPCRs activate PI3K/AKT remains poorly understood. We used ovarian preantral granulosa cells (GCs) to elucidate the mechanism by which the GPCR agonist FSH via PKA activates the PI3K/AKT cascade. Insulin-like growth factor 1 (IGF1) is secreted in an autocrine/paracrine manner by GCs and activates the IGF1 receptor (IGF1R) but, in the absence of FSH, fails to stimulate YXXM phosphorylation of IRS1 (insulin receptor substrate 1) required for PI3K/AKT activation. We show that PKA directly phosphorylates the protein phosphatase 1 (PP1) regulatory subunit myosin phosphatase targeting subunit 1 (MYPT1) to activate PP1 associated with the IGF1R-IRS1 complex. Activated PP1 is sufficient to dephosphorylate at least four IRS1 Ser residues, Ser 318 , Ser 346 , Ser 612 , and Ser 789 , and promotes IRS1 YXXM phosphorylation by the IGF1R to activate the PI3K/AKT cascade. Additional experiments indicate that this mechanism also occurs in breast cancer, thyroid, and preovulatory granulosa cells, suggesting that the PKA-dependent dephosphorylation of IRS1 Ser/Thr residues is a conserved mechanism by which GPCRs signal to activate the PI3K/AKT pathway downstream of the IGF1R. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Coopman, P J; Thomas, D M; Gehlsen, K R; Mueller, S C
1996-11-01
The mechanisms and receptors involved in phagocytosis by nonhematopoietic cells are not well understood. The involvement of the alpha 3 beta 1 integrin in phagocytosis of the extracellular matrix by human breast cancer cells was studied. The possible role of this integrin was suggested since alpha 3 and beta 1 but not alpha 2 subunits are concentrated at membrane sites where local degradation of fluorescently labeled gelatin occurs. Strikingly, anti-alpha 3 integrin monoclonal antibodies (mAbs) stimulate the phagocytosis of fluorescently labeled gelatin films, gelatin beads, and Matrigel films in a quantitative phagocytosis assay. Stimulation of the gelatin uptake by the anti-alpha 3 mAb is dose responsive, saturable, and time dependent. Antibodies against other integrin subunits have a lower stimulatory effect (anti-beta 1) or no significant effect (anti-alpha 2, -alpha 5, -alpha 6, and -alpha v) on gelatin phagocytosis. The synthetic HGD-6 human laminin peptide that binds specifically the alpha 3 beta 1 integrin, but not the scrambled HSGD-6 control peptide, also markedly stimulates gelatin uptake in a dose-responsive way. Furthermore, the stimulatory effects of the HGD-6 peptide and the anti-alpha 3 mAb are additive, suggesting that they might promote phagocytosis in different ways. Other laminin (YIGSR, IKVAV) and fibronectin (GRGDS) peptides have no effect on gelatin phagocytosis. Immunofluorescence shows that the alpha 3 and the beta 1, but not the alpha 2 integrin subunit, concentrate into patches on the cell surface after treatment with their respective mAbs. And, both gelatin and the alpha 3 beta 1 but not the alpha 2 beta 1 integrin are cointernalized and routed to acidic vesicles such as lysosomes. In conclusion, we demonstrate that human breast cancer cells locally degrade and phagocytose the extracellular matrix and show for the first time that the alpha 3 beta 1 integrin participates in this phagocytosis. We hypothesize that the anti-alpha 3 antibodies and the laminin peptide HGD-6 activate the alpha 3 beta 1 integrin, which results in a downstream signaling cascade stimulating phagocytosis.
Gallego, Xavier; Ruiz, Jessica; Valverde, Olga; Molas, Susanna; Robles, Noemí; Sabrià, Josefa; Crabbe, John C.; Dierssen, Mara
2012-01-01
Abuse of alcohol and smoking are extensively co-morbid. Some studies suggest partial commonality of action of alcohol and nicotine mediated through nicotinic acetylcholine receptors (nAChRs). We tested mice with transgenic over expression of the alpha 5, alpha 3, beta 4 receptor subunit genes, which lie in a cluster on human chromosome 15, that were previously shown to have increased nicotine self-administration, for several responses to ethanol. Transgenic and wild-type mice did not differ in sensitivity to several acute behavioral responses to ethanol. However, transgenic mice drank less ethanol than wild-type in a two-bottle (ethanol vs. water) preference test. These results suggest a complex role for this receptor subunit gene cluster in the modulation of ethanol’s as well as nicotine’s effects. PMID:22459873
Muneyuki, E; Odaka, M; Yoshida, M
1997-08-11
Previously, we reported the substitution of Tyr341 of the F1-ATPase beta subunit from a thermophilic Bacillus strain PS3 with leucine, cysteine, or alanine (M. Odaka et al. J. Biochem., 115 (1994) 789-796). These mutations resulted in a great decrease in the affinity of the isolated beta subunit for ATP-Mg and an increase in the apparent Km of the alpha3beta3gamma complex in ATP hydrolysis when examined above 0.1 mM ATP. Here, we examined the ATPase activity of the mutant complexes in a wide range of ATP concentration and found that the mutants exhibited apparent positive cooperativity in ATP hydrolysis. This is the first clear demonstration that a single mutation in the catalytic sites converts the kinetics from apparent negative cooperativity in the wild-type alpha3beta3gamma complex to apparent positive cooperativity. The conversion of apparent cooperativity could be explained in terms of a simple kinetic scheme based on the binding change model proposed by Boyer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bahl, O.P.; Anumula, K.R.
1986-05-01
eCG ..beta..-subunit contains more than 50% carbohydrate and constitutes about 72% of the hormone. O-linked carbohydrate (85%) was separated from the N-linked (15%) by gel filtration of the endoproteinase Lys-C digest. Six O-linked carbohydrate units were released by NaOH/NaB/sup 3/H/sub 4/ treatment. Oligosaccharides were fractionated by gel filtration and paper chromatography. Several oligosaccharides were obtained ranging in size from a sialyl di-saccharide to megalosaccharide with about 50 sugar residues. Methylation analyses and tlc examination of the oligosaccharides after endo- and exoglycosidase digestions and nitrous acid deamination and Smith degradation revealed a core structure of Gal..beta..1-4 GlcNAc..beta..1-6 (Gal ..beta..1-3) GalNAcH/sub 2/more » with poly-N-acetyllactosamine peripheral extensions. Nearly 50% of the oligosaccharides were large and were preferentially extended on 1,6 arm of the GalNAcH/sub 2/ by repeating N-acetyllactosamine units. Furthermore, these oligosaccharides contained branching 1,3,6-linked galactoses giving rise to tri, penta and multiantennary structures.« less
Ellestad, Laura E; Malkiewicz, Stefanie A; Guthrie, H David; Welch, Glenn R; Porter, Tom E
2009-02-01
The expression profile of glucocorticoid-induced leucine zipper (GILZ) in the anterior pituitary during the second half of embryonic development in the chick is consistent with in vivo regulation by circulating corticosteroids. However, nothing else has been reported about the presence of GILZ in the neuroendocrine system. We sought to characterize expression and regulation of GILZ in the chicken embryonic pituitary gland and determine the effect of GILZ overexpression on anterior pituitary hormone levels. Pituitary GILZ mRNA levels increased during embryogenesis to a maximum on the day of hatch, and decreased through the first week after hatch. GILZ expression was rapidly upregulated by corticosterone in embryonic pituitary cells. To determine whether GILZ regulates hormone gene expression in the developing anterior pituitary, we overexpressed GILZ in embryonic pituitary cells and measured mRNA for the major pituitary hormones. Exogenous GILZ increased prolactin mRNA above basal levels, but not as high as that in corticosterone-treated cells, indicating that GILZ may play a small role in lactotroph differentiation. The largest effect we observed was a twofold increase in FSH beta subunit in cells transfected with GILZ but not treated with corticosterone, suggesting that GILZ may positively regulate gonadotroph development in a manner not involving glucocorticoids. In conclusion, this is the first report to characterize avian GILZ and examine its regulation in the developing neuroendocrine system. We have shown that GILZ is upregulated by glucocorticoids in the embryonic pituitary gland and may regulate expression of several pituitary hormones.
Jücker, M; Feldman, R A
1995-11-17
Binding of human granulocyte/macrophage colony-stimulating factor (hGM-CSF) to its receptor induces the rapid activation of phosphatidylinositol-3 kinase (PI 3-kinase). As hGM-CSF receptor (hGMR) does not contain a consensus sequence for binding of PI 3-kinase, hGMR must use a distinct mechanism for its association with and activation of PI 3-kinase. Here, we describe the identification of a tyrosine-phosphorylated protein of 76-85 kDa (p80) that associates with the common beta subunit of hGMR and with the SH2 domains of the p85 subunit of PI 3-kinase in hGM-CSF-stimulated cells. Src/Yes and Lyn were tightly associated with the p80.PI 3-kinase complex, suggesting that p80 and other phosphotyrosyl proteins present in the complex were phosphorylated by Src family kinases. Tyrosine phosphorylation of p80 was only detected in hGM-CSF or human interleukin-3-stimulated cells, suggesting that activation of p80 might be specific for signaling via the common beta subunit. We postulate that p80 functions as an adapter protein that may participate in linking the hGM-CSF receptor to the PI 3-kinase signaling pathway.
Fluorescence properties and conformational stability of the beta-hemocyanin of Helix pomatia.
Idakieva, Krassimira; Siddiqui, Nurul I; Parvanova, Katja; Nikolov, Peter; Gielens, Constant
2006-04-01
The beta-hemocyanin (beta-HpH) is one of the three dioxygen-binding proteins found freely dissolved in the hemolymph of the gastropodan mollusc Helix pomatia. The didecameric molecule (molecular mass 9 MDa) is built up of only one type of subunits. The fluorescence properties of the oxygenated and apo-form (copper-deprived) of the didecamer and its subunits were characterized. Upon excitation of the hemocyanins at 295 or 280 nm, tryptophyl residues buried in the hydrophobic interior of the protein determine the fluorescence emission. This is confirmed by quenching experiments with acrylamide, cesium chloride and potassium iodide. The copper-dioxygen system at the binuclear active site quenches the tryptophan emission of the oxy-beta-HpH. The removal of this system increases the fluorescence quantum yield and causes structural rearrangement of the microenvironment of the emitting tryptophyl residues in the apo-form. Time-resolved fluorescence measurements show that the oxygenated and copper-deprived forms of the beta-HpH and its subunits exist in different conformations. The thermal stability of the oxy- and apo-beta-HpH is characterized by a transition temperature (Tm) of 84 degrees C and 63 degrees C, respectively, obtained by differential scanning calorimetry. Increase of the temperature influences the active site at lower temperatures than the environments of tryptophans and tyrosines causing a loss of oxygen bound to the copper atoms. This process is, at least partially, reversible as after cooling of the protein samples, around 60% reinstatement of the copper-peroxide band has been observed. The results confirm the role of the copper-dioxygen complex for the stabilization of the hemocyanin structure in solution. The other important stabilizing factor is oligomerization of the hemocyanin molecule.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antonacci, R.; Colombo, I.; Volta, M.
The electron-transfer flavoprotein (ETF), located in the mitochondrial matrix, is a nuclear-encoded enzyme delivering to the respiratory chain electrons by straight-chain acyl-CoA dehydrogenases and other dehydrogenases. ETF is composed of a 35-kDa [alpha]-subunit that is cleaved to a 32-kDa protein during mitochondrial import (ETFA) and a [beta]-subunit that reaches the mitochondrion unmodified (ETFB). The cDNA encoding both these subunits has been cloned and sequenced. 14 refs., 1 fig.
Effect of alternative glycosylation on insulin receptor processing.
Hwang, J B; Frost, S C
1999-08-06
The mature insulin receptor is a cell surface heterotetrameric glycoprotein composed of two alpha- and two beta-subunits. In 3T3-L1 adipocytes as in other cell types, the receptor is synthesized as a single polypeptide consisting of uncleaved alpha- and beta-subunits, migrating as a 190-kDa glycoprotein. To examine the importance of N-linked glycosylation on insulin receptor processing, we have used glucose deprivation as a tool to alter protein glycosylation. Western blot analysis shows that glucose deprivation led to a time-dependent accumulation of an alternative proreceptor of 170 kDa in a subcellular fraction consistent with endoplasmic reticulum localization. Co-precipitation assays provide evidence that the alternative proreceptor bound GRP78, an endoplasmic reticulum molecular chaperone. N-Glycosidase F treatment shows that the alternative proreceptor contained N-linked oligosaccharides. Yet, endoglycosidase H insensitivity indicates an aberrant oligosaccharide structure. Using pulse-chase methodology, we show that the synthetic rate was similar between the normal and alternative proreceptor. However, the normal proreceptor was processed into alpha- and beta-subunits (t((1)/(2)) = 1.3 +/- 0.6 h), while the alternative proreceptor was degraded (t((1)/(2)) = 5.1 +/- 0.6 h). Upon refeeding cells that were initially deprived of glucose, the alternative proreceptor was processed to a higher molecular weight form and gained sensitivity to endoglycosidase H. This "intermediate" form of the proreceptor was also degraded, although a small fraction escaped degradation, resulting in cleavage to the alpha- and beta-subunits. These data provide evidence for the first time that glucose deprivation leads to the accumulation of an alternative proreceptor, which can be post-translationally glycosylated with the readdition of glucose inducing both accelerated degradation and maturation.
Biological functions of hCG and hCG-related molecules
2010-01-01
Background hCG is a term referring to 4 independent molecules, each produced by separate cells and each having completely separate functions. These are hCG produced by villous syncytiotrophoblast cells, hyperglycosylated hCG produced by cytotrophoblast cells, free beta-subunit made by multiple primary non-trophoblastic malignancies, and pituitary hCG made by the gonadotrope cells of the anterior pituitary. Results and discussion hCG has numerous functions. hCG promotes progesterone production by corpus luteal cells; promotes angiogenesis in uterine vasculature; promoted the fusion of cytotrophoblast cell and differentiation to make syncytiotrophoblast cells; causes the blockage of any immune or macrophage action by mother on foreign invading placental cells; causes uterine growth parallel to fetal growth; suppresses any myometrial contractions during the course of pregnancy; causes growth and differentiation of the umbilical cord; signals the endometrium about forthcoming implantation; acts on receptor in mother's brain causing hyperemesis gravidarum, and seemingly promotes growth of fetal organs during pregnancy. Hyperglycosylated hCG functions to promote growth of cytotrophoblast cells and invasion by these cells, as occurs in implantation of pregnancy, and growth and invasion by choriocarcinoma cells. hCG free beta-subunit is produced by numerous non-trophoblastic malignancies of different primaries. The detection of free beta-subunit in these malignancies is generally considered a sign of poor prognosis. The free beta-subunit blocks apoptosis in cancer cells and promotes the growth and malignancy of the cancer. Pituitary hCG is a sulfated variant of hCG produced at low levels during the menstrual cycle. Pituitary hCG seems to mimic luteinizing hormone actions during the menstrual cycle. PMID:20735820
Phosphorylation and ubiquitination of the IkappaB kinase complex by two distinct signaling pathways.
Shambharkar, Prashant B; Blonska, Marzenna; Pappu, Bhanu P; Li, Hongxiu; You, Yun; Sakurai, Hiroaki; Darnay, Bryant G; Hara, Hiromitsu; Penninger, Josef; Lin, Xin
2007-04-04
The IkappaB kinase (IKK) complex serves as the master regulator for the activation of NF-kappaB by various stimuli. It contains two catalytic subunits, IKKalpha and IKKbeta, and a regulatory subunit, IKKgamma/NEMO. The activation of IKK complex is dependent on the phosphorylation of IKKalpha/beta at its activation loop and the K63-linked ubiquitination of NEMO. However, the molecular mechanism by which these inducible modifications occur remains undefined. Here, we demonstrate that CARMA1, a key scaffold molecule, is essential to regulate NEMO ubiquitination upon T-cell receptor (TCR) stimulation. However, the phosphorylation of IKKalpha/beta activation loop is independent of CARMA1 or NEMO ubiquitination. Further, we provide evidence that TAK1 is activated and recruited to the synapses in a CARMA1-independent manner and mediate IKKalpha/beta phosphorylation. Thus, our study provides the biochemical and genetic evidence that phosphorylation of IKKalpha/beta and ubiquitination of NEMO are regulated by two distinct pathways upon TCR stimulation.
NASA Technical Reports Server (NTRS)
Cai, X.; Henry, R. L.; Takemoto, L. J.; Guikema, J. A.; Wong, P. P.; Spooner, B. S. (Principal Investigator)
1992-01-01
The amino acid sequences of the beta and gamma subunit polypeptides of glutamine synthetase from bean (Phaseolus vulgaris L.) root nodules are very similar. However, there are small regions within the sequences that are significantly different between the two polypeptides. The sequences between amino acids 2 and 9 and between 264 and 274 are examples. Three peptides (gamma 2-9, gamma 264-274, and beta 264-274) corresponding to these sequences were synthesized. Antibodies against these peptides were raised in rabbits and purified with corresponding peptide-Sepharose affinity chromatography. Western blot analysis of polyacrylamide gel electrophoresis of bean nodule proteins demonstrated that the anti-beta 264-274 antibodies reacted specifically with the beta polypeptide and the anti-gamma 264-274 and anti-gamma 2-9 antibodies reacted specifically with the gamma polypeptide of the native and denatured glutamine synthetase. These results showed the feasibility of using synthetic peptides in developing antibodies that are capable of distinguishing proteins with similar primary structures.
Gałasiński, W
1996-05-01
The structural and functional characteristics of the elongation system (ribosomes and elongation factors) are presented. The immunochemical and diagnostic meaning of the ribosome investigations is considered. Evidence of the participation of ribosomes in the first step of protein glycosylation is presented. The heterogeneous elongation factor eEF-1, isolated from Guerin epithelioma, can be separated into three fractions: one of them functionally corresponds to EF-1 alpha, the second on to EF-1 beta gamma, and the third is an unidentified, active aggregate named EF-1B, which contains the subunit forms EF-1 alpha and EF-1 beta gamma, and other polypeptides showing protein kinase activity. The aggregate EF-1B can be autophosphorylated, while the subunit forms EF-1 alpha and EF-1 beta gamma can neither become autophosphorylated nor phosphorylate other polypeptides. The subunit form EF-beta gamma consists from two polypeptides of 32 and 51 kDa, corresponding to other eukaryotic beta and gamma polypeptides, respectively. EF-1 beta gamma is thermostable and protects against thermal inactivation of EF-1 alpha in the EF-1 alpha-EF-1 beta gamma complex. Pure eEF-2 preparations isolated from normal and neoplastic tissues show different structural features. The existence of eEF-2 in multiple forms, differing in molecular mass, have been found. The eEF-2 with molecular weight of about 100 kDa can be phosphorylated, while eEF-2 of about 65 kDa was not phosphorylated by protein kinase eEF-2. The phosphorylated eEF-2 lost its activity, and this effect was reversed by dephosphorylation. The eEF-2 (65 kDa) was isolated from the active polyribosomes, and it may directly participate in the translocation step of the peptide elongation. It was noted that the components of elongation system can be inhibited, in separate steps, by the substances isolated from various sources of plant origin. Alkaloids emetine and cepheline, cardiac remedy digoxin, saponin glycoside, and its aglycon directly inactivated ribosomes. Quercetin inhibited eEF-1 activity by directly influencing its subunit form EF-1 alpha. eEF-2 was shown to be a target site of the inhibitory action of the glycoside isolated from Melissa officinalis leaves.
Matsunaga, Toshiyuki; Endo, Satoshi; Maeda, Satoshi; Ishikura, Shuhei; Tajima, Kazuo; Tanaka, Nobutada; Nakamura, Kazuo T; Imamura, Yorishige; Hara, Akira
2008-09-15
Human DHRS4 is a peroxisomal member of the short-chain dehydrogenase/reductase superfamily, but its enzymatic properties, except for displaying NADP(H)-dependent retinol dehydrogenase/reductase activity, are unknown. We show that the human enzyme, a tetramer composed of 27kDa subunits, is inactivated at low temperature without dissociation into subunits. The cold inactivation was prevented by a mutation of Thr177 with the corresponding residue, Asn, in cold-stable pig DHRS4, where this residue is hydrogen-bonded to Asn165 in a substrate-binding loop of other subunit. Human DHRS4 reduced various aromatic ketones and alpha-dicarbonyl compounds including cytotoxic 9,10-phenanthrenequinone. The overexpression of the peroxisomal enzyme in cultured cells did not increase the cytotoxicity of 9,10-phenanthrenequinone. While its activity towards all-trans-retinal was low, human DHRS4 efficiently reduced 3-keto-C(19)/C(21)-steroids into 3beta-hydroxysteroids. The stereospecific conversion to 3beta-hydroxysteroids was observed in endothelial cells transfected with vectors expressing the enzyme. The mRNA for the enzyme was ubiquitously expressed in human tissues and several cancer cells, and the enzyme in HepG2 cells was induced by peroxisome-proliferator-activated receptor alpha ligands. The results suggest a novel mechanism of cold inactivation and role of the inducible human DHRS4 in 3beta-hydroxysteroid synthesis and xenobiotic carbonyl metabolism.
Sagherian, C; Poroszlay, S; Vavougios, G; Mahuran, D
1993-01-01
Lysosomal beta-hexosaminidase (EC 3.2.1.52) occurs as two major isozymes, Hex A (alpha beta) and Hex B (beta beta). The alpha and beta subunits are encoded by the HEXA and HEXB genes, respectively. Extensive homology in both the gene structures and deduced primary sequences demonstrate their common evolutionary origin. While undergoing similar proteolytic modifications in the lysosome, the pro beta polypeptide is additionally cleaved internally to produce the mature 24-30 kilodalton beta b and beta a chains. Previous data have suggested that this processing event occurs somewhere between residues Ser311 and Lys315. In this report we demonstrate that this area is located in a hydrophilic disulfide-loop structure (between Cys309 and Cys360). The cleavage event is prevented by the deletion through in vitro mutagenesis of the Arg312-Gln-Asn-Lys tetrapeptide or by its substitution with the aligned alpha residues (Gly-Ser-Glu-Pro). Reintroduction of either Arg312 or Lys315 reinstates the processing. Furthermore, we show that this area is not involved in lysosomal targeting of pro-Hex B, or in the increased stability or the variation in substrate specificity of the beta as compared with the alpha subunit. Our data suggest the presence of a novel lysosomal endoprotease. Like other endoproteases it is specific for basic amino acids; however, it cleaves on the amino-terminal side rather than the conventional carboxy-terminal side of such residues and then only if they are fully exposed to the lysosomal environment.(ABSTRACT TRUNCATED AT 250 WORDS)
Interaction of the sliding clamp beta-subunit and Hda, a DnaA-related protein.
Kurz, Mareike; Dalrymple, Brian; Wijffels, Gene; Kongsuwan, Kritaya
2004-06-01
In Escherichia coli, interactions between the replication initiation protein DnaA, the beta subunit of DNA polymerase III (the sliding clamp protein), and Hda, the recently identified DnaA-related protein, are required to convert the active ATP-bound form of DnaA to an inactive ADP-bound form through the accelerated hydrolysis of ATP. This rapid hydrolysis of ATP is proposed to be the main mechanism that blocks multiple initiations during cell cycle and acts as a molecular switch from initiation to replication. However, the biochemical mechanism for this crucial step in DNA synthesis has not been resolved. Using purified Hda and beta proteins in a plate binding assay and Ni-nitrilotriacetic acid pulldown analysis, we show for the first time that Hda directly interacts with beta in vitro. A new beta-binding motif, a hexapeptide with the consensus sequence QL[SP]LPL, related to the previously identified beta-binding pentapeptide motif (QL[SD]LF) was found in the amino terminus of the Hda protein. Mutants of Hda with amino acid changes in the hexapeptide motif are severely defective in their ability to bind beta. A 10-amino-acid peptide containing the E. coli Hda beta-binding motif was shown to compete with Hda for binding to beta in an Hda-beta interaction assay. These results establish that the interaction of Hda with beta is mediated through the hexapeptide sequence. We propose that this interaction may be crucial to the events that lead to the inactivation of DnaA and the prevention of excess initiation of rounds of replication.
Urbatzka, Ralph; Lorenz, Claudia; Wiedemann, Caterina; Lutz, Ilka; Kloas, Werner
2014-03-01
Steroids are known to influence the reproductive pituitary-gonadal axis in adult amphibians. Here, we studied the effects of hormones on pituitary and gonadal mRNA expression during the development of Xenopus laevis. Tadpoles at NF 58 (prometamorphosis) and at NF 66 (freshly metamorphosed) were exposed for three days to 17β-estradiol (E2), tamoxifen (TAM), testosterone (T), dihydrotestosterone (DHT) at 10(-7)M, and flutamide (FLU) at 10(-6)M. In both genders at NF 58 and 66, T and DHT decreased luteinizing hormone beta (lhβ), but increased follicle stimulating hormone beta (fshβ), while FLU induced lhβ specifically in males. In the testis steroidogenic genes (p450 side chain cleavage enzyme, p450scc; steroid acute regulatory protein, star) at NF 58 showed a similar pattern as for lhβ, while the response at NF 66 was only partially present. In females, TAM induced lhβ at NF 58, while E2 decreased lhβ and increased fshβ at NF 66. In the ovaries, no alterations were observed for the steroidogenic genes. Summarizing, gonadotropic and steroidogenic mRNA expression may indicate control of androgen level during testis differentiation in male tadpoles at NF 58. In females the non-responsiveness of steroidogenic genes could be a sign of gonadal quiescence during pre-pubertal stages. Copyright © 2013 Elsevier Inc. All rights reserved.
Duijkers, Ingrid J M; Klipping, Christine; Grob, Paul; Korver, Tjeerd
2010-10-01
To compare the effects on ovarian activity of two oral contraceptives containing nomegestrol acetate (NOMAC)/17 beta-oestradiol (E2) or drospirenone (DRSP)/ethinylestradiol (EE). In this open-label, randomised, six-cycle study, 32 subjects using NOMAC/E2 (2.5-1.5 mg; 24/4-day regimen) were compared to 16 subjects using DRSP/EE (3 mg-30 microg; 21/7-day regimen). Measurements included serum oestradiol, progesterone, follicle stimulating hormone (FSH) and luteinising hormone (LH), and ultrasonography of follicular diameter. No ovulations occurred during treatment. Progesterone was fully suppressed, with mean maximum values <2 nmol/l in both groups over all cycles. For NOMAC/E2, mean maximum follicular diameter decreased from 19.3 mm before treatment to between 6.9 and 8.2 mm during treatment, with no subject having a follicular diameter ≥15 mm. For DRSP/EE, a decrease from 19.6 to between 7.4 and 10.8 mm was observed, with two subjects (12.5%) having a maximum follicle diameter ≥15 mm. These findings were consistent with observed FSH reductions; full suppression of LH surges was observed in both groups. Post-treatment return of ovulation in both groups occurred on average 21 days after the last active tablet intake. NOMAC/E2 achieves consistent ovulation inhibition, with suppressive effects on the ovaries at least similar to those of DRSP/EE.
The 60 kDa heat shock proteins in the hyperthermophilic archaeon Sulfolobus shibatae.
Kagawa, H K; Osipiuk, J; Maltsev, N; Overbeek, R; Quaite-Randall, E; Joachimiak, A; Trent, J D
1995-11-10
One of the most abundant proteins in the hyperthermophilic archaeon Sulfolobus shibatae is the 59 kDa heat shock protein (TF55) that is believed to form a homo-oligomeric double ring complex structurally similar to the bacterial chaperonins. We discovered a second protein subunit in the S. shibatae ring complex (referred to as alpha) that is stoichiometric with TF55 (renamed beta). The gene and flanking regions of alpha were cloned and sequenced and its inferred amino acid sequence has 54.4% identity and 74.4% similarity to beta. Transcription start sites for both alpha and beta were mapped and three potential transcription regulatory regions were identified. Northern analyses of cultures shifted from normal growth temperatures (70 to 75 degrees C) to heat shock temperatures (85 to 90 degrees C) indicated that the levels of alpha and beta mRNAs increased during heat shock, but at all temperatures their relative proportions remained constant. Monitoring protein synthesis by autoradiography of total proteins from cultures pulse labeled with L(-)[35S]methionine at normal and heat shock temperatures indicated significant increases in alpha and beta synthesis during heat shock. Under extreme heat shock conditions (> or = 90 degrees C) alpha and beta appeared to be the only two proteins synthesized. The purified alpha and beta subunits combined to form high molecular mass complexes with similar mobilities on native polyacrylamide gels to the complexes isolated directly from cells. Equal proportions of the two subunits gave the greatest yield of the complex, which we refer to as a "rosettasome". It is argued that the rosettasome consists of two homo-oligomeric rings; one of alpha and the other of beta. Polyclonal antibodies against alpha and beta from S. shibatae cross-reacted with proteins of similar molecular mass in 10 out of the 17 archaeal species tested, suggesting that the two rosettasome proteins are highly conserved among the archaea. The archaeal sequences were aligned with bacterial and eukaryotic chaperonins to generate a phylogenetic tree. The tree reveals the close relationship between the archaeal rosettasomes and the eukaryotic TCP1 protein family and the distant relationship to the bacterial GroEL/HSP60 proteins.
Purification and characterization of the glycogen-bound protein phosphatase from rat liver.
Wera, S; Bollen, M; Stalmans, W
1991-01-05
Glycogen-bound protein phosphatase G from rat liver was transferred from glycogen to beta-cyclodextrin (cycloheptaamylose) linked to Sepharose 6B. After removal of the catalytic subunit and of contaminating proteins with 2 M NaCl, elution with beta-cyclodextrin yielded a single protein on native polyacrylamide gel electrophoresis and two polypeptides (161 and 54 kDa) on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Several lines of evidence indicate that the latter polypeptides are subunits of the protein phosphatase G holoenzyme. First, these polypeptides were also present, together with the catalytic subunit, in the extensively purified holoenzyme. Also, polyclonal antibodies against these polypeptides were able to bind the holoenzyme. Further, while bound to cyclodextrin-Sepharose, the polypeptides were able to recombine with separately purified type-1 (AMD) catalytic subunit, but not with type-2A (PCS) catalytic subunit. The characteristics of the reconstituted enzyme resembled those of the nonpurified protein phosphatase G. At low dilutions, the spontaneous phosphorylase phosphatase activity of the reconstituted enzyme was about 10 times lower than that of the catalytic subunit, but it was about 1000-fold more resistant to inhibition by the modulator protein (inhibitor-2). In contrast with the free catalytic subunit, the reconstituted enzyme co-sedimented with glycogen, and it was able to activate purified liver glycogen synthase b. Also, the synthase phosphatase activity was synergistically increased by a cytosolic phosphatase and inhibited by physiological concentrations of phosphorylase alpha and of Ca2+.
Both α and β Subunits of Human Choriogonadotropin Photoaffinity Label the Hormone Receptor
NASA Astrophysics Data System (ADS)
Ji, Inhae; Ji, Tae H.
1981-09-01
It has been shown that a photoactivable derivative of human choriogonadotropin (hCG) labels the lutropin receptor on porcine granulosa cells [Ji, I. & Ji, T. H. (1980) Proc. Natl. Acad. Sci. USA 77, 7167-7170]. In an attempt to identify which of the hCG subunits labeled the receptor, three sets of different hCG derivatives were prepared. In the first set, hCG was coupled to the N-hydroxysuccinimide ester of 4-azidobenzoylglycine and radioiodinated. In the second set, only one of the subunits was radioiodinated, but both subunits were allowed to react with the reagent. In the third set, both the reagent and [125I]iodine were coupled to only one of the subunits. The binding activity of each hormone derivative was comparable to that of 125I-labeled hCG. After binding of these hormone derivatives to the granulosa cell surface, they were photolyzed. After solubilization, autoradiographs of sodium dodecyl sulfate/polyacrylamide gels of each sample revealed a number of labeled bands; the hCG derivatives containing 125I-labeled alpha subunit produced four bands (molecular weights 120,000 +/- 6,000, 96,000 +/- 5,000, 76,000 +/- 4,000, and 73,000 +/- 4,000) and those containing 125I-labeled beta subunit produced three bands (molecular weights 106,000 +/- 6,000, 88,000 +/- 5,000, and 83,000 +/- 4,000). Results were the same when the hormone-receptor complexes were solubilized in 0.5% Triton X-100 and then photolyzed or when the hormone was derivatized with a family of reagents having arms of various lengths. We conclude that both the alpha subunit and the beta subunit of hCG photoaffinity labeled certain membrane polypeptides and that these polypeptides are related to the hormone receptor.
Tsakiridis, T; Wong, P P; Liu, Z; Rodgers, C D; Vranic, M; Klip, A
1996-02-01
Muscle fibers adapt to ionic challenges of exercise by increasing the plasma membrane Na+-K+ pump activity. Chronic exercise training has been shown to increase the total amount of Na+-K+ pumps present in skeletal muscle. However, the mechanism of adaptation of the Na+-K+ pump to an acute bout of exercise has not been determined, and it is not known whether it involves alterations in the content of plasma membrane pump subunits. Here we examine the effect of 1 h of treadmill running (20 m/min, 10% grade) on the subcellular distribution and expression of Na+-K+ pump subunits in rat skeletal muscles. Red type I and IIa (red-I/IIa) and white type IIa and IIb (white-IIa/IIb) hindlimb muscles from resting and exercised female Sprague-Dawley rats were removed for subcellular fractionation. By homogenization and gradient centrifugation, crude membranes and purified plasma membranes were isolated and subjected to gel electrophoresis and immunoblotting by using pump subunit-specific antibodies. Furthermore, mRNA was isolated from specific red type I (red-I) and white type IIb (white-IIb) muscles and subjected to Northern blotting by using subunit-specific probes. In both red-I/IIa and white-IIa/IIb muscles, exercise significantly raised the plasma membrane content of the alpha1-subunit of the pump by 64 +/- 24 and 55 +/- 22%, respectively (P < 0.05), and elevated the alpha2-polypeptide by 43 +/- 22 and 94 +/- 39%, respectively (P < 0.05). No significant effect of exercise could be detected on the amount of these subunits in an internal membrane fraction or in total membranes. In addition, exercise significantly increased the alpha1-subunit mRNA in red-I muscle (by 50 +/- 7%; P < 0.05) and the beta2-subunit mRNA in white-IIb muscles (by 64 +/- 19%; P < 0.01), but the alpha2- and beta1-mRNA levels were unaffected in this time period. We conclude that increased presence of alpha1- and alpha2-polypeptides at the plasma membrane and subsequent elevation of the alpha1- and beta2-subunit mRNAs may be mechanisms by which acute exercise regulates the Na+-K+ pump of skeletal muscle.
Cohn, R D; Mayer, U; Saher, G; Herrmann, R; van der Flier, A; Sonnenberg, A; Sorokin, L; Voit, T
1999-03-01
The integrins are a large family of heterodimeric transmembrane cellular receptors which mediate the association between the extracellular matrix (ECM) and cytoskeletal proteins. The alpha7beta1 integrin is a major laminin binding integrin in skeletal and cardiac muscle and is thought to be involved in myogenic differentiation and migration processes. The main binding partners of the alpha7 integrin are laminin-1 (alpha1-beta1-gamma1), laminin-2 (alpha2-beta1-gamma1) and laminin-4 (alpha2-beta2-gamma1). Targeted deletion of the gene for the alpha7 integrin subunit (ITGA7) in mice leads to a novel form of muscular dystrophy. In the present study we have investigated the expression of two alternative splice variants, the alpha7B and beta1D integrin subunits, in normal human skeletal muscle, as well as in various forms of muscular dystrophy. In normal human skeletal muscle the expression of the alpha7 integrin subunit appeared to be developmentally regulated: it was first detected at 2 years of age. In contrast, the beta1D integrin could be detected in immature and mature muscle in the sarcolemma of normal fetal skeletal muscle at 18 weeks gestation. The expression of alpha7B integrin was significantly reduced at the sarcolemma in six patients with laminin alpha2 chain deficient congenital muscular dystrophy (CMD) (age >2 years). However, this reduction was not correlated with the amount of laminin alpha2 chain expressed. In contrast, the expression of the laminin alpha2 chain was not altered in the skeletal muscle of the alpha7 knock-out mice. These data argue in favor that there is not a tight correlation between the expression of the alpha7 integrin subunit and that of the laminin alpha2 chain in either human or murine dystrophic muscle. Interestingly, in dystrophinopathies (Duchenne and Becker muscular dystrophy; DMD/BMD) expression of alpha7B was upregulated irrespective of the level of dystrophin expression as shown by a strong sarcolemmal staining pattern even in young boys (age <2 years). The expression of the beta1D integrin subunit was not altered in any of our patients with different types of muscular dystrophy. In contrast, sarcolemmal expression of beta1D integrin was significantly reduced in the alpha7 integrin knock-out mice, whereas the expression of the components of the DGC was not altered. The secondary loss of alpha7B in laminin alpha2 chain deficiency defines a biochemical change in the composition of the plasma membrane resulting from a primary protein deficiency in the basal lamina. These findings, in addition to the occurrence of a muscular dystrophy in alpha7 deficient mice, implies that the alpha7B integrin is an important laminin receptor within the plasma membrane which plays a significant role in skeletal muscle function and stability.
Gallego, Xavier; Ruiz-Medina, Jessica; Valverde, Olga; Molas, Susanna; Robles, Noemí; Sabrià, Josefa; Crabbe, John C; Dierssen, Mara
2012-05-01
Abuse of alcohol and smoking are extensively co-morbid. Some studies suggest partial commonality of action of alcohol and nicotine mediated through nicotinic acetylcholine receptors (nAChRs). We tested mice with transgenic over expression of the alpha 5, alpha 3, beta 4 receptor subunit genes, which lie in a cluster on human chromosome 15, that were previously shown to have increased nicotine self-administration, for several responses to ethanol. Transgenic and wild-type mice did not differ in sensitivity to several acute behavioral responses to ethanol. However, transgenic mice drank less ethanol than wild-type in a two-bottle (ethanol vs. water) preference test. These results suggest a complex role for this receptor subunit gene cluster in the modulation of ethanol's as well as nicotine's effects. Copyright © 2012. Published by Elsevier Inc.
Hautala, T; Heikkinen, J; Kivirikko, K I; Myllylä, R
1992-01-01
The levels of lysine hydroxylase protein and the levels of the mRNAs for lysine hydroxylase and the alpha- and beta-subunits of proline 4-hydroxylase were measured in cultured human skin fibroblasts treated with 1 mM-minoxidil. The data demonstrate that minoxidil decreases the amount of lysine hydroxylase protein, this being due to a decrease in the level of lysine hydroxylase mRNA. The effect of minoxidil appears to be highly specific, as no changes were observed in the amounts of mRNAs for the alpha- and beta-subunits of proline 4-hydroxylase. Images Fig. 1. Fig. 2. Fig. 3. PMID:1314568
Highly conserved small subunit residues influence rubisco large subunit catalysis.
Genkov, Todor; Spreitzer, Robert J
2009-10-30
The chloroplast enzyme ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) catalyzes the rate-limiting step of photosynthetic CO(2) fixation. With a deeper understanding of its structure-function relationships and competitive inhibition by O(2), it may be possible to engineer an increase in agricultural productivity and renewable energy. The chloroplast-encoded large subunits form the active site, but the nuclear-encoded small subunits can also influence catalytic efficiency and CO(2)/O(2) specificity. To further define the role of the small subunit in Rubisco function, the 10 most conserved residues in all small subunits were substituted with alanine by transformation of a Chlamydomonas reinhardtii mutant that lacks the small subunit gene family. All the mutant strains were able to grow photosynthetically, indicating that none of the residues is essential for function. Three of the substitutions have little or no effect (S16A, P19A, and E92A), one primarily affects holoenzyme stability (L18A), and the remainder affect catalysis with or without some level of associated structural instability (Y32A, E43A, W73A, L78A, P79A, and F81A). Y32A and E43A cause decreases in CO(2)/O(2) specificity. Based on the x-ray crystal structure of Chlamydomonas Rubisco, all but one (Glu-92) of the conserved residues are in contact with large subunits and cluster near the amino- or carboxyl-terminal ends of large subunit alpha-helix 8, which is a structural element of the alpha/beta-barrel active site. Small subunit residues Glu-43 and Trp-73 identify a possible structural connection between active site alpha-helix 8 and the highly variable small subunit loop between beta-strands A and B, which can also influence Rubisco CO(2)/O(2) specificity.
Purohit, Rahul; Fritz, Bradley G.; The, Juliana; Issaian, Aaron; Weichsel, Andrzej; David, Cynthia L.; Campbell, Eric; Hausrath, Andrew C.; Rassouli-Taylor, Leida; Garcin, Elsa D.; Gage, Matthew J.; Montfort, William R.
2014-01-01
Soluble guanylate cyclase (sGC) is a heterodimeric heme protein and the primary nitric oxide receptor. NO binding stimulates cyclase activity, leading to regulation of cardiovascular physiology and making sGC an attractive target for drug discovery. YC-1 and related compounds stimulate sGC both independently and synergistically with NO and CO binding; however, where the compounds bind and how they work remains unknown. Using linked-equilibria binding measurements, surface plasmon resonance, and domain truncations in Manduca sexta and bovine sGC, we demonstrate that YC-1 binds near or directly to the heme-containing domain of the beta subunit. In the absence of CO, YC-1 binds with Kd = 9–21 μM, depending on construct. In the presence of CO, these values decrease to 0.6–1.1 μM. Pfizer compound 25 bound ~10-fold weaker than YC-1 in the absence of CO whereas compound BAY 41–2272 bound particularly tightly in the presence of CO (Kd = 30–90 nM). Additionally, we found that CO binding is much weaker to heterodimeric sGC proteins (Kd = 50–100 μM) than to the isolated heme domain (Kd = 0.2 μM for Manduca beta H-NOX/PAS). YC-1 greatly enhanced CO binding to heterodimeric sGC, as expected (Kd = ~1 μM). These data indicate the alpha subunit induces a heme pocket conformation with lower affinity for CO and NO. YC-1 family compounds bind near the heme domain, overcoming the alpha subunit effect and inducing a heme pocket conformation with high affinity. We propose this high-affinity conformation is required for the full-length protein to achieve high catalytic activity. PMID:24328155
Amyloid beta peptide as a physiological modulator of neuronal 'A'-type K+ current.
Plant, Leigh D; Webster, Nicola J; Boyle, John P; Ramsden, Martin; Freir, Darragh B; Peers, Chris; Pearson, Hugh A
2006-11-01
Control of neuronal spiking patterns resides, in part, in the type and degree of expression of voltage-gated K(+) channel subunits. Previous studies have revealed that soluble forms of the Alzheimer's disease associated amyloid beta protein (Abeta) can increase the 'A'-type current in neurones. In this study, we define the molecular basis for this increase and show that endogenous production of Abeta is important in the modulation of Kv4.2 and Kv4.3 subunit expression in central neurones. A-type K(+) currents, and Kv4.2 and Kv4.3 subunit expression, were transiently increased in cerebellar granule neurones by the 1-40 and 1-42 forms of Abeta (100nM, 2-24h). Currents through recombinant Kv4.2 channels expressed in HEK293 cells were increased in a similar fashion to those through the native channels. Increases in 'A'-type current could be prevented by the use of cycloheximide and brefeldin A, indicating that protein expression and trafficking processes were altered by Abeta, rather than protein degredation. Endogenous Abeta production in cerebellar granule neurones was blocked using inhibitors of either gamma- or beta-secretase and resulted in decreased K(+) current. Crucially this could be prevented by co-application of exogenous Abeta (1nM), however, no change in Kv4.2 or Kv4.3 subunit expression occurred. These data show that Abeta is a modulator of Kv4 subunit expression in neurones at both the functional and the molecular level. Thus Abeta is not only involved in Alzheimer pathology, but is also an important physiological regulator of ion channel expression and hence neuronal excitability.
Aspergillus contaminans Hubka, Jurjevic, S.W. Peterson & Lysková, sp. nov
USDA-ARS?s Scientific Manuscript database
Aspergillus contaminans is described as a new species from the fingernail of a patient with an infected nail. Phylogenetic analysis of four loci (ITS, calmodulin, beta tubulin and RNA polymerase beta, second largest subunit) showed that this species is most closely related to A. carlsbadensis from A...
Dynes, Joseph L; Xu, Shuping; Bothner, Sarah; Lahti, Jill M; Hori, Roderick T
2004-03-01
The protein complex Selectivity Factor 1, composed of TBP, TAF(I)48, TAF(I)63 and TAF(I)110, is required for rRNA transcription by RNA polymerase I in the nucleolus. The steps involved in targeting Selectivity Factor 1 will be dependent on the transport pathways that are used and the localization signals that direct this trafficking. In order to investigate these issues, we characterized human TAF(I)48, a subunit of Selectivity Factor 1. By domain analysis of TAF(I)48, the carboxyl-terminal 51 residues were found to be required for the localization of TAF(I)48, as well as sufficient to direct Green Fluorescent Protein to the nucleus and nucleolus. The carboxyl-terminus of TAF(I)48 also has the ability to associate with multiple members of the beta-karyopherin family of nuclear import receptors, including importin beta (karyopherin beta1), transportin (karyopherin beta2) and RanBP5 (karyopherin beta3), in a Ran-dependent manner. This property of interacting with multiple beta-karyopherins has been previously reported for the nuclear localization signals of some ribosomal proteins that are likewise directed to the nucleolus. This study identifies the first nuclear import sequence identified within the TBP-Associated Factor subunits of Selectivity Factor 1.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ford, K.A.; LaBarbera, A.R.
1988-11-01
The purpose of these studies was to determine whether changes in FSH receptors correlated with FSH-induced attenuation of FSH-responsive adenylyl cyclase in immature porcine granulosa cells. Cells were incubated with FSH (1-1000 ng/ml) for up to 24 h, treated with acidified medium (pH 3.5) to remove FSH bound to cells, and incubated with (125I)iodo-porcine FSH to quantify FSH-binding sites. FSH increased binding of FSH in a time-, temperature-, and FSH concentration-dependent manner. FSH (200 ng/ml) increased binding approximately 4-fold within 16 h. Analysis of equilibrium saturation binding data indicated that the increase in binding sites reflected a 2.3-fold increase inmore » receptor number and a 5.4-fold increase in apparent affinity. The increase in binding did not appear to be due to 1) a decrease in receptor turnover, since the basal rate of turnover appeared to be very slow; 2) an increase in receptor synthesis, since agents that inhibit protein synthesis and glycosylation did not block the increase in binding; or 3) an increase in intracellular receptors, since agents that inhibit cytoskeletal components had no effect. Agents that increase intracellular cAMP did not affect FSH binding. The increase in binding appeared to result from unmasking of cryptic FSH-binding sites, since FSH increased binding in cell-free membrane preparations to the same extent as in cells. Unmasking of cryptic sites was hormone specific, and the sites bound FSH specifically. Unmasking of sites was reversible in a time- and temperature-dependent manner after removal of bound FSH. The similarity between the FSH dose-response relationships for unmasking of FSH-binding sites and attenuation of FSH-responsive cAMP production suggests that the two processes are functionally linked.« less
Characterization of rat leydig cell gonadotropin receptor structure by affinity cross-linking
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Q.Y.; Hwang, J.; Menon, K.M.J.
1986-05-01
The gonadotropin receptor from rat leydig cell has been characterized with respect to binding kinetics and physiological regulation. The present study was intended to examine the structure of the receptor. Leydig cell suspension was prepared by either collagenase digestion or by mechanical disruption of the testis. The cells were incubated with /sup 125/I-hCG and the unreacted hCG was removed by centrifugation. The /sup 125/I-hCG was then covalently linked to the cell surface receptor using cleavable (dithiobis (succinimidyl propionate)) and non-cleavable (disuccinimidyl suberate) cross-linking reagents. The extracted cross-linked membrane proteins were resolved on SDS-polyacrylamide gels under reducing and non-reducing conditions andmore » subjected to autoradiographic analysis. Under non-reducing conditions, two labeled species with M/sub r/ = 87,000 and 120,000 were detected. However, only one labeled band was detected under reducing conditions with M/sub r/ = 64,000. The binding of /sup 125/I-hCG to the receptor was inhibited by hCG and LH, but not by a number of peptides and proteins. The data suggest that hCG receptor in leydig cell is an oligomeric complex consisting of four subunits, ..cap alpha cap alpha beta gamma... The ..beta.. and ..gamma.. subunits are each linked to an ..cap alpha.. subunit through disulfide linkage and the hormone binds to each ..cap alpha.. subunit. The two dimers formed (..cap alpha beta cap alpha gamma..) are associated by noncovalent interactions.« less
Kabashi, Edor; Agar, Jeffrey N; Hong, Yu; Taylor, David M; Minotti, Sandra; Figlewicz, Denise A; Durham, Heather D
2008-06-01
In amyotrophic lateral sclerosis caused by mutations in Cu/Zn-superoxide dismutase (SOD1), altered solubility and aggregation of the mutant protein implicates failure of pathways for detecting and catabolizing misfolded proteins. Our previous studies demonstrated early reduction of proteasome-mediated proteolytic activity in lumbar spinal cord of SOD1(G93A) transgenic mice, tissue particularly vulnerable to disease. The purpose of this study was to identify any underlying abnormalities in proteasomal structure. In lumbar spinal cord of pre-symptomatic mice [postnatal day 45 (P45) and P75], normal levels of structural 20S alpha subunits were incorporated into 20S/26S proteasomes; however, proteasomal complexes separated by native gel electrophoresis showed decreased immunoreactivity with antibodies to beta3, a structural subunit of the 20S proteasome core, and beta5, the subunit with chymotrypsin-like activity. This occurred prior to increase in beta5i immunoproteasomal subunit. mRNA levels were maintained and no association of mutant SOD1 with proteasomes was identified, implicating post-transcriptional mechanisms. mRNAs also were maintained in laser captured motor neurons at a later stage of disease (P100) in which multiple 20S proteins are reduced relative to the surrounding neuropil. Increase in detergent-insoluble, ubiquitinated proteins at P75 provided further evidence of stress on mechanisms of protein quality control in multiple cell types prior to significant motor neuron death.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilden, P.A.; Treadway, J.L.; Morrison, B.D.
1989-12-12
Examination of {sup 125}I-IGF-1 affinity cross-linking and {beta}-subunit autophosphorylation has indicated that IGF-1 induces a covalent association of isolated {alpha}{beta} heterodimeric IGF-1 receptors into an {alpha}{sub 2}{beta}{sub 2} heterotetrameric state, in a similar manner to that observed for the insulin receptor. The formation of the {alpha}{sub 2}{beta}{sub 2} heterotetrameric IGF-1 receptor complex from the partially purified {alpha}{beta} heterodimers was time dependent with half-maximal formation in approximately 30 min at saturating IGF-1 concentrations. The IGF-1-dependent association of the partially purified {alpha}{beta} heterodimers into an {alpha}{sub 2}{beta}{sub 2} heterotetrameric state was specific for the IGF-1 receptors since IGF-1 was unable to stimulatemore » the protein kinase activity of the purified {alpha}{beta} heterodimeric insulin receptor complex. Incubation of the {alpha}{sub 2}{beta}{sub 2} heterotetrameric IGF-1 holoreceptor with the specific sulfhydryl agent iodoacetamide (IAN) did not alter {sup 125}I-IGF-1 binding or IGF-1 stimulation of protein kinase activity. However, IAN treatment of the {alpha}{beta} heterodimeric IGF-1 receptors inhibited the IGF-1 dependent covalent formation of the disulfide-linked {alpha}{sub 2}{beta}{sub 2} heterotetrameric complex. These data indicate that IGF-1 induces the covalent association of isolated {alpha}{beta} heterodimeric IGF-1 receptor complexes into a disulfide-linked {alpha}{sub 2}{beta}{sub 2} heterotetrameric state whereas Mn/MgATP induces a noncovalent association. Therefore, unlike the insulin receptor in which noncovalent association is sufficient for kinase activation, only the covalent assembly of the IGF-1 receptor {alpha}{beta} heterodimers into the {alpha}{sub 2}{beta}{sub 2} heterotetrameric holoreceptor complex is associated with ligand-stimulated protein kinase activation.« less
Karn, Robert C; Laukaitis, Christina M
2003-06-17
Mouse salivary androgen-binding protein (ABP) is a member of the secretoglobin family produced in the submaxillary glands of house mice (Mus musculus). We report the cDNA sequences and amino acid sequences of the beta and gamma subunits of ABP from a mouse cDNA library, identifying the two subunits by their pIs and molecular weights. An anomalously high molecular weight of the alpha subunit is likely due to glycosylation at a single site. A phylogenetic comparison of the three subunits of ABP with the chains of other mammalian secretoglobins shows that ABP is most closely related to mouse lachrymal protein and to the major cat allergen Fel dI. An evaluation of the most conserved residues in ABP and the other secretoglobins, in light of structural data reported by others [Callebaut, I., Poupon, A., Bally, R., Demaret, J.-P., Housset, D., Delettre, J., Hossenlopp, P., and Mornon, J.-P. (2000) Ann. N.Y. Acad. Sci. 923, 90-112; Pattabiraman, N., Matthews, J., Ward, K., Mantile-Selvaggi, G., Miele, L., and Mukherjee, A. (2000) Ann. N.Y. Acad. Sci. 923, 113-127], allows us to draw conclusions about the critical residues important in ligand binding by the two different ABP dimers and to assess the importance of ligand binding in the function of the molecule. In addition to the cDNAs, which represent those of the musculus subspecies of Mus musculus, we also report the coding regions of the beta and gamma subunit cDNAs from two other mouse inbred strains which represent the other two subspecies: M. musculus domesticus and M. musculus castaneus. The high nonsynonymous/synonymous substitution rate ratios (K(a)/K(s)) for both the beta and gamma subunits suggest that these two proteins are evolving under strong directional selection, as has been reported for the alpha subunit [Hwang, J., Hofstetter, J., Bonhomme, F., and Karn, R. (1997) J. Hered. 88, 93-97; Karn, R., and Clements, M. (1999) Biochem. Genet. 37, 187-199].
A sea lamprey glycoprotein hormone receptor similar with gnathostome thyrotropin hormone receptor.
Freamat, Mihael; Sower, Stacia A
2008-10-01
The specificity of the vertebrate hypothalamic-pituitary-gonadal and hypothalamic-pituitary-thyroid axes is explained by the evolutionary refinement of the specificity of expression and selectivity of interaction between the glycoprotein hormones GpH (FSH, LH, and TSH) and their cognate receptors GpH-R (FSH-R, LH-R, and TSH-R). These two finely tuned signaling pathways evolved by gene duplication and functional divergence from an ancestral GpH/GpH-R pair. Comparative analysis of the protochordate and gnathostome endocrine systems suggests that this process took place prior or concomitantly with the emergence of the gnathostome lineage. Here, we report identification and characterization of a novel glycoprotein hormone receptor (lGpH-R II) in the Agnathan sea lamprey. This 781 residue protein was found approximately 43% identical with mammalian TSH-R and FSH-R representative sequences, and similarly with these two classes of mammalian receptors it is assembled from ten exons. A synthetic ligand containing the lamprey glycoprotein hormone beta-chain tethered upstream of a mammalian alpha-chain activated the lGpH-R II expressed in COS-7 cells but in a lesser extent than lGpH-R I. Molecular phylogenetic analysis of vertebrate GpH-R protein sequences suggests a closer relationship between lGpH-R II and gnathostome thyrotropin receptors. Overall, the presence and characteristics of the lamprey glycoprotein hormone receptors suggest existence of a primitive functionally overlapping glycoprotein hormone/glycoprotein hormone receptor system in this animal.
Shpakovskiĭ, G V; Lebedenko, E N
1996-12-01
The rpb10+ cDNA from the fission yeast Schizosaccharomyces pombe was cloned using two independent approaches (PCR and genetic suppression). The cloned cDNA encoded the Rpb10 subunit common for all three RNA polymerases. Comparison of the deduced amino acid sequence of the Sz. pombe Rbp10 subunit (71 amino acid residues) with those of the homologous subunits of RNA polymerases I, II, and III from Saccharomyces cerevisiae and Home sapiens revealed that heptapeptides RCFT/SCGK (residues 6-12), RYCCRRM (residues 43-49), and HVDLIEK (residues 53-59) were evolutionarily the most conserved structural motifs of these subunits. It is shown that the Rbp10 subunit from Sz. pombe can substitute its homolog (ABC10 beta) in the baker's yeast S. cerevisiae.
The cost-effectiveness of IVF in the UK: a comparison of three gonadotrophin treatments.
Sykes, D; Out, H J; Palmer, S J; van Loon, J
2001-12-01
The objective of this study was to evaluate the cost-effectiveness of women undergoing IVF treatment with recombinant FSH (rFSH) in comparison with highly purified urinary FSH (uFSH-HP) and human menopausal gonadotrophins (HMG). A decision-analytic model was used to estimate cost-effectiveness ratios for 'the average cost per ongoing pregnancy' and 'incremental cost per additional pregnancy' for women entering into IVF treatment for a maximum of three cycles. The model was constructed based on a previously published large prospective randomized clinical trial comparing rFSH and uFSH-HP. Where necessary, these data were augmented with a combination of expert opinion, evidence from the literature and observational data relating to the management and cost of IVF treatment in the UK. The cost of rFSH, uFSH-HP and HMG were obtained from National Health Service list prices in the UK. The model predicted a cumulative pregnancy rate after three cycles of 57.1% for rFSH and 44.4% for both uFSH-HP and HMG. The cost of IVF treatment was 5135 pounds sterling for rFSH, 4806 pounds sterling for uFSH-HP and 4202 pounds sterling for HMG. When assessed in association with outcomes, the average cost per ongoing pregnancy was more favourable with rFSH (8992 pounds sterling) than with either uFSH-HP (10 834 pounds sterling) or HMG (9472 pounds sterling). The incremental cost per additional pregnancy was 2583 pounds sterling using rFSH instead of uFSH-HP and 7321 pounds sterling using rFSH instead of HMG. These results were robust to changes in the baseline assumptions of the model. rFSH is a cost-effective treatment strategy in ovulation induction prior to IVF.
The evolution of energy-transducing systems: Studies with archaebacteria
NASA Technical Reports Server (NTRS)
Stan-Lotter, Helga
1993-01-01
N-ethylmaleimide (NEM) inhibits the ATPase of H. saccharovorum in a nucleotide protectable manner. The bulk of 14C-NEM is incorporated into subunit 1. Inhibition kinetics indicated a single binding site. To determine the sequence around this site, cyanogen bromide peptides of NEM-labeled ATPase enzyme were prepared and separated on Tris-Tricine gels. Autoradiography indicated that the NEM binding site is probably located in a fragment of Mr 10-12 K. This result will be confirmed by N-terminal sequencing of the peptide. Since the cysteinyl residue, to which NEM is bound, may be located at the C-terminal end, purification and proteolytic treatment of the 10 K peptide will be required. One inhibitor of V-type ATPases, fluoresceinisothiocyanate (FITC) inhibited also the ATPase of H. saccharovorum. Preliminary results indicated protection against inhibition by nucleotides. Localization of the binding sited to the major subunits is in progress. An extraction procedure for the membrane sector of the ATPase complex of H. saccharovorum yielded a preparation which was enriched in a peptide of Mr 5 500. Experiments to test the immunological crossreaction with subunit c from the Escherichia coli F-type ATPase and the labeling with 14C-DCCD are currently carried out. Polyclonal antiserum to the smaller of the major subunits of the ATPase from H. saccharovorum (subunit ll) reacts in Western blots strongly with the alpha and beta subunits of the F1 ATPase of E. coli, suggesting highly conserved regions on both types of ATPases. To elucidate further the regions of homology, cyanogen bromide peptides of the beta subunits were prepared for sequence analysis.
Internalization of Rat FSH and LH/CG Receptors by rec-eCG in CHO-K1 Cells.
Park, Jong-Ju; Seong, Hun-Ki; Kim, Jeong-Soo; Munkhzaya, Byambaragchaa; Kang, Myung-Hwa; Min, Kwan-Sik
2017-06-01
Equine chorionic gonadotropin (eCG) is a unique molecule that elicits the response characteristics of both follicle-stimulating hormone (FSH) and luteinizing hormone (LH) in other species. Previous studies from this laboratory had demonstrated that recombinant eCG (rec-eCG) from Chinese hamster ovary (CHO-K1) cells exhibited both FSH- and LH-like activity in rat granulosa and Leydig cells. In this study, we analyzed receptor internalization through rec-eCGs, wild type eCG (eCGβ/α) and mutant eCG (eCGβ/αΔ56) with an N-linked oligosaccharide at Asn 56 of the α-subunit. Both the rec-eCGs were obtained from CHO-K1 cells. The agonist activation of receptors was analyzed by measuring stimulation time and concentrations of rec-eCGs. Internalization values in the stably selected rat follicle-stimulating hormone receptor (rFSHR) and rat luteinizing/chorionic gonadotropin receptor (rLH/CGR) were highest at 50 min after stimulation with 10 ng of rec-eCGβ/α. The dose-dependent response was highest when 10 ng of rec-eCGβ/α was used. The deglycosylated eCGβ/αΔ56 mutant did not enhance the agonist-stimulated internalization. We concluded that the state of activation of rFSHR and rLH/CGR could be modulated through agonist-stimulated internalization. Our results suggested that the eLH/CGRs are mostly internalized within 60 min by agonist-stimulation by rec-eCG. We also suggested that the lack of responsiveness of the deglycosylated eCGβ/ αΔ56 was likely because the site of glycosylation played a pivotal role in agonist-stimulated internalization in cells expressing rFSHR and rLH/CGR.
Maruska, Karen P; Levavi-Sivan, Berta; Biran, Jakob; Fernald, Russell D
2011-01-01
Social position in a dominance hierarchy is often tightly coupled with fertility. Consequently, an animal that can recognize and rapidly take advantage of an opportunity to rise in rank will have a reproductive advantage. Reproduction in all vertebrates is controlled by the brain-pituitary-gonad axis, and in males of the African cichlid fish Astatotilapia burtoni, GnRH1 neurons at the apex of this axis are under social control. However, little is known about how quickly social information is transformed into functional reproductive change, or about how socially controlled changes in GnRH1 neurons influence downstream actions of the brain-pituitary-gonad axis. We created an opportunity for reproductively suppressed males to ascend in status and then measured how quickly the perception of this opportunity caused changes in mRNA and protein levels of the pituitary gonadotropins. mRNA levels of the β-subunits of LH and FSH rose rapidly in the pituitary 30 min after suppressed males perceived an opportunity to ascend. In contrast, mRNA levels of GnRH receptor-1 remained unchanged during social transition but were higher in stable dominant compared with subordinate males. In the circulation, levels of both LH and FSH were also quickly elevated. There was a positive correlation between mRNA in the pituitary and circulating protein levels for LH and FSH, and both gonadotropins were positively correlated with plasma 11-ketotestosterone. Our results show that the pituitary is stimulated extremely rapidly after perception of social opportunity, probably to allow suppressed males to quickly achieve reproductive success in a dynamic social environment.
Martyniuk, Christopher J; Kroll, Kevin J.; Porak, Wesley F.; Steward, Cheree; Grier, Harry J.; Denslow, Nancy D.
2011-01-01
The objectives of this study were to investigate the seasonal changes in pituitary gonadotropins, growth hormone (GH), and estrogen receptor (ER) isoform mRNA in wild female and male largemouth bass (LMB) (Micropterus salmoides) from an unpolluted habitat to better understand reproductive physiology in this ecologically important species. Female pituitary luteinizing hormone (LH) β subunit and follicle-stimulating hormone (FSH) β subunit mRNA showed significant seasonal variation with levels peaking from January to April and were lowest from May through August. Male LMB showed more variation in gonadotropin subunit expression from month to month. Females had approximately 2–3 times higher gonadotropin mRNA levels in the pituitary when compared to males. All three gonadotropin mRNAs in females were positively correlated to gonadosomatic index (GSI), but only LHβ mRNA was correlated to GSI in males. Gonadotropin mRNA expression also increased with increasing oocyte and sperm maturation. Gonadotropin β subunit mRNA expression was positively correlated to GH mRNA in both sexes. The expression of all three ER isoforms was significantly correlated to each other in both sexes. The concurrent increase in all three ER mRNA isoforms with increasing gonadotropin mRNA in females and males suggests a prominent role for E2 feedback on pituitary gonadotropin synthesis in both sexes and that each of the three ER isoforms are likely to play a role in the pituitary during teleost reproduction. PMID:19416730
DOE Office of Scientific and Technical Information (OSTI.GOV)
Druck, T.; Gu, Y.; Prabhala, G.
1995-11-01
Clathrin-coated vesicles, involved in endocytosis and Golgi processing, have a surface lattice containing clathrin triskelia and stoichiometric amounts of additional components termed {open_quotes}assembly proteins,{close_quotes} or APs. The AP form at the plasma membrane, AP2, is composed of two large subunits of 100-115 kDa, denoted AP2{alpha} and AP2{beta}, a medium chain of 50 kDa, designated AP50, and a small chain. We have determined human chromosomal locations of genes for a large AP2{beta} (CLAPB1) and a medium (CLAPM1) AP subunit and of a novel clathrin-binding protein, VCP, that binds clathrin simultaneously with A1`s. Chromosomal in situ hybridization of a human genomic clonemore » demonstrated that the CLAPM1 gene mapped to chromosome region 3q28. The gene for the CLAPB1 large subunit was mapped to 17q11.2-q12 by PCR amplification of an AP2{beta} fragment from a panel of rodent-human hybrid DNAs. To map the human VCP sequence, a human-specific probe was made by RT-PCR of human mRNA using oligonucleotide primers from conserved regions of the porcine sequence. The amplified human fragment served as probe on Southern blots of hybrid DNAs to determine that the human VCP locus maps to chromosome region 9pter-q34. 13 refs., 2 figs.« less
NASA Technical Reports Server (NTRS)
Sharina, Iraida G.; Martin, Emil; Thomas, Anthony; Uray, Karen L.; Murad, Ferid
2003-01-01
Soluble guanylyl cyclase (sGC) is a cytosolic enzyme producing the intracellular messenger cyclic guanosine monophosphate (cGMP) on activation with nitric oxide (NO). sGC is an obligatory heterodimer composed of alpha and beta subunits. We investigated human beta1 sGC transcriptional regulation in BE2 human neuroblastoma cells. The 5' upstream region of the beta1 sGC gene was isolated and analyzed for promoter activity by using luciferase reporter constructs. The transcriptional start site of the beta1 sGC gene in BE2 cells was identified. The functional significance of consensus transcriptional factor binding sites proximal to the transcriptional start site was investigated by site deletions in the 800-bp promoter fragment. The elimination of CCAAT-binding factor (CBF) and growth factor independence 1 (GFI1) binding cores significantly diminished whereas deletion of the NF1 core elevated the transcription. Electrophoretic mobility-shift assay (EMSA) and Western analysis of proteins bound to biotinated EMSA probes confirmed the interaction of GFI1, CBF, and NF1 factors with the beta1 sGC promoter. Treatment of BE2 cells with genistein, known to inhibit the CBF binding to DNA, significantly reduced protein levels of beta1 sGC by inhibiting transcription. In summary, our study represents an analysis of the human beta1 sGC promoter regulation in human neuroblastoma BE2 cells and identifies CBF as a critically important factor in beta1 sGC expression.
Newell-Fugate, Annie E.; Taibl, Jessica N.; Alloosh, Mouhamad; Sturek, Michael; Bahr, Janice M.; Nowak, Romana A.; Krisher, Rebecca L.
2015-01-01
The discrete effects of obesity on infertility in females remain undefined to date. To investigate obesity-induced ovarian dysfunction, we characterized metabolic parameters, steroidogenesis, and folliculogenesis in obese and lean female Ossabaw mini-pigs. Nineteen nulliparous, sexually mature female Ossabaw pigs were fed a high fat/cholesterol/fructose diet (n=10) or a control diet (n=9) for eight months. After a three-month diet-induction period, pigs remained on their respective diets and had ovarian ultrasound and blood collection conducted during a five-month study period after which ovaries were collected for histology, cell culture, and gene transcript level analysis. Blood was assayed for steroid and protein hormones. Obese pigs developed abdominal obesity and metabolic syndrome, including hyperglycemia, hypertension, insulin resistance and dyslipidemia. Obese pigs had elongated estrous cycles and hyperandrogenemia with decreased LH, increased FSH and luteal phase progesterone, and increased numbers of medium, ovulatory, and cystic follicles. Theca cells of obese, compared to control, pigs displayed androstenedione hypersecretion in response to in vitro treatment with LH, and up-regulated 3-beta-hydroxysteroid dehydrogenase 1 and 17-beta-hydroxysteroid dehydrogenase 4 transcript levels in response to in vitro treatment with LH or LH + insulin. Granulosa cells of obese pigs had increased 3-beta-hydroxysteroid dehydrogenase 1 transcript levels. In summary, obese Ossabaw pigs have increased transcript levels and function of ovarian enzymes in the delta 4 steroidogenic pathway. Alterations in LH, FSH, and progesterone, coupled with theca cell dysfunction, contribute to the hyperandrogenemia and disrupted folliculogenesis patterns observed in obese pigs. The obese Ossabaw mini-pig is a useful animal model in which to study the effects of obesity and metabolic syndrome on ovarian function and steroidogenesis. Ultimately, this animal model may be useful toward the development of therapies to improve fertility in obese and/or hyperandrogenemic females or in which to examine the effects of obesity on the maternal-fetal environment and offspring health. PMID:26046837
USDA-ARS?s Scientific Manuscript database
Bursicon is a neuropeptide that regulates cuticle sclerotization (hardening and tanning) and wing expansion in insects via a G-protein coupled receptor. The peptide consists of alpha and beta subunits. In the present study, we cloned bursicon alpha and beta genes in the house fly Musca domestica us...
Ionic regulation of the biosynthesis of NaK-ATPase subunits.
McDonough, A A; Tang, M J; Lescale-Matys, L
1990-07-01
In this review we have summarized the work of ourselves and others on ionic and hormonal regulation of synthesis of the sodium pump. No one central theme emerges from this summary. Rather, it appears that abundance can be regulated pre-translationally or posttranslationally. As reviewed recently, regulation of the expression of the beta glycoprotein subunit, which has no described enzymatic function, can regulate holoenzyme expression. In the kidney this is exemplified in our studies in LLC-PK1 cells and proximal tubule cells where pre-translational regulation of beta expression is key to increasing holoenzyme abundance, and also exemplified in the hypothyroid renal cortex where regulation of beta protein abundance post-translationally appears to impact the abundance of enzymatically active NaK-ATPase. Future studies in the field of ionic regulation of NaK-ATPase must be directed at elucidating the signals that mediate the response, and at how these signals alter the NaK-ATPase biosynthetic pathway from expression of alpha and beta genes, through to turnover of the mature NaK-ATPase heterodimer.
Lysosome-mediated Cell Death and Autophagy-Dependent Multidrug Resistance in Breast Cancer
2008-10-01
gene links mitochondria and cell death, the data suggests that Bcl2 may be involved in autophagic cell death and AD-MDR. GeneGo analysis also...GSK3 beta GSK3 beta E2A p53 p21 p21 E2F1 PPAR -gamma JNK1(MA PK8) JNK1(M APK8) ESR1 (nuclear) RARalpha Androgen receptor Androge n receptor p53...RelA (p65 NF-kB subunit) Erk (MAPK1/3 ) Erk (MAPK1/ 3) PPAR - gamma SOX9 Bcl-2 Bcl-2 RARalpha SP1 EGFR EGFR RelA (p65 NF- kB subunit) RARalpha RelA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Landefeld, T.D.; Byrne, M.D.; Campbell, K.L.
1981-12-01
The alpha- and beta-subunits of hCG were radioiodinated and recombined with unlabeled complementary subunits. The resultant recombined hormones, selectively labeled in either the alpha- or beta-subunit, were separated from unrecombined subunit by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, extracted with Triton X-100, and characterized by binding analysis. The estimates of maximum binding (active fraction) of the two resultant selectively labeled, recombined hCG preparations, determined with excess receptor were 0.41 and 0.59. These values are similar to those obtained when hCG is labeled as an intact molecule. The specific activities of the recombined preparations were estimated by four different methods, and themore » resulting values were used in combination with the active fraction estimates to determine the concentrations of active free and bound hormone. Binding analyses were run using varying concentrations of both labeled and unlabeled hormone. Estimates of the equilibrium dissociation binding constant (Kd) and receptor capacity were calculated in three different ways. The mean estimates of capacity (52.6 and 52.7 fmol/mg tissue) and Kd (66.6 and 65.7 pM) for the two preparations were indistinguishable. Additionally, these values were similar to values reported previously for hCG radioiodinated as an intact molecule. The availability of well characterized, selectively labeled hCG preparations provides new tools for studying the mechanism of action and the target cell processing of the subunits of this hormone.« less
Crystal structure of heterotetrameric sarcosine oxidase from Corynebacterium sp. U-96
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ida, Koh; E-mail: idakoh@sci.kitasato-u.ac.jp; Moriguchi, Tomotaka
2005-07-29
Sarcosine oxidase from Corynebacterium sp. U-96 is a heterotetrameric enzyme. Here we report the crystal structures of the enzyme in complex with dimethylglycine and folinic acid. The {alpha} subunit is composed of two domains, contains NAD{sup +}, and binds folinic acid. The {beta} subunit contains dimethylglycine, FAD, and FMN, and these flavins are approximately 10 A apart. The {gamma} subunit is in contact with two domains of {alpha} subunit and has possibly a folate-binding structure. The {delta} subunit contains a single atom of zinc and has a Cys{sub 3}His zinc finger structure. Based on the structures determined and on themore » previous works, the structure-function relationship on the heterotetrameric sarcosine oxidase is discussed.« less
Semon, Julie A; Nagy, Lauren H; Llamas, Claire B; Tucker, H Alan; Lee, Ryang Hwa; Prockop, Darwin J
2010-07-01
Multipotent mesenchymal stromal cells (MSCs) home to damaged tissue by processes partly regulated by integrins. Integrin subunits expressed by MSCs were identified by flow cytometry (FC), immunocytochemistry (IC), and a panel of integrin-binding antibodies. In subconfluent cultures, over 80% of MSCs expressed integrin subunits beta1, beta2, and alpha3, 20%-55% expressed alpha1, alpha2, alpha4, alpha5, alpha6, and alphaV, and about 10% expressed beta3 when assayed by FC. None of the cells expressed significant levels of 13 other integrins as assayed by FC, but seven of the 13 integrins were detected by IC: beta5, alpha7, alpha8, alpha9, alpha11, alphaX, and alphaD. Expression of some integrins changed with MSC confluency: integrins beta3, alpha1, alpha3, alpha5, and alphaV increased, and alpha6 decreased. Furthermore, alpha4 was the only integrin to vary among preparations of MSCs from different donors. The results resolved some discrepancies in the literature concerning integrin expression by MSCs. We also investigated the role of specific integrins in MSC adhesion to endothelial cells (ECs) from the pulmonary artery (HPAEC), cardiac-derived microvasculature (HMVEC-C), and umbilical veins (HUVEC). In experiments with blocking antibodies to beta integrins, anti-beta5 reduced MSC adhesion to all types of ECs, anti-beta1 to both HUVEC and HPAEC, anti-beta3 to HUVEC, and anti-beta2 to HMVEC-C. With blocking antibodies to alpha integrins, anti-alphaX reduced adhesion to HPAEC and HMVEC-C, anti-alphaV to HPAEC, and both anti-alpha7 and anti-alphaD to HMVEC-C. Thus, MSCs use diverse integrins to adhere to EC from various blood vessels in vitro.
Yanofsky, Stephen D; Shen, Emily S; Holden, Frank; Whitehorn, Erik; Aguilar, Barbara; Tate, Emily; Holmes, Christopher P; Scheuerman, Randall; MacLean, Derek; Wu, May M; Frail, Donald E; López, Francisco J; Winneker, Richard; Arey, Brian J; Barrett, Ronald W
2006-05-12
The pituitary glycoprotein hormones, luteinizing hormone and follicle-stimulating hormone (FSH), act through their cognate receptors to initiate a series of coordinated physiological events that results in germ cell maturation. Given the importance of FSH in regulating folliculogenesis and fertility, the development of FSH mimetics has been sought to treat infertility. Currently, purified and recombinant human FSH are the only FSH receptor (FSH-R) agonists available for infertility treatment. By screening unbiased combinatorial chemistry libraries, using a cAMP-responsive luciferase reporter assay, we discovered thiazolidinone agonists (EC50's = 20 microm) of the human FSH-R. Subsequent analog library screening and parallel synthesis optimization resulted in the identification of a potent agonist (EC50 = 2 nm) with full efficacy compared with FSH that was FSH-R-selective and -dependent. The compound mediated progesterone production in Y1 cells transfected with the human FSH-R (EC50 = 980 nm) and estradiol production from primary rat ovarian granulosa cells (EC50 = 10.5 nm). This and related compounds did not compete with FSH for binding to the FSH-R. Use of human FSH/thyroid-stimulating hormone (TSH) receptor chimeras suggested a novel mechanism for receptor activation through a binding site independent of the natural hormone binding site. This study is the first report of a high affinity small molecule agonist that activates a glycoprotein hormone receptor through an allosteric mechanism. The small molecule FSH receptor agonists described here could lead to an oral alternative to the current parenteral FSH treatments used clinically to induce ovarian stimulation for both in vivo and in vitro fertilization therapy.
Binding Linkage in a Telomere DNA–Protein Complex at the Ends of Oxytricha nova Chromosomes
Buczek, Pawel; Orr, Rochelle S.; Pyper, Sean R.; Shum, Mili; Ota, Emily Kimmel Irene; Gerum, Shawn E.; Horvath, Martin P.
2005-01-01
Alpha and beta protein subunits of the telomere end binding protein from Oxytricha nova (OnTEBP) combine with telomere single strand DNA to form a protective cap at the ends of chromosomes. We tested how protein–protein interactions seen in the co-crystal structure relate to DNA binding through use of fusion proteins engineered as different combinations of domains and subunits derived from OnTEBP. Joining alpha and beta resulted in a protein that bound single strand telomere DNA with high affinity (KD-DNA=1.4 nM). Another fusion protein, constructed without the C-terminal protein–protein interaction domain of alpha, bound DNA with 200-fold diminished affinity (KD-DNA=290 nM) even though the DNA-binding domains of alpha and beta were joined through a peptide linker. Adding back the alpha C-terminal domain as a separate protein restored high-affinity DNA binding. The binding behaviors of these fusion proteins and the native protein subunits are consistent with cooperative linkage between protein-association and DNA-binding equilibria. Linking DNA–protein stability to protein–protein contacts at a remote site may provide a trigger point for DNA–protein disassembly during telomere replication when the single strand telomere DNA must exchange between a very stable OnTEBP complex and telomerase. PMID:15967465
Shpakovskiĭ, G V; Lebedenko, E N; Thuriaux, P
1997-02-01
The rpb10 cDNA of the fission yeast Schizosaccharomyces pombe, encoding one of the five small subunits common to all three nuclear DNA-dependent RNA polymerases, was isolated from an expression cDNA library by two independent approaches: PCR-based screening and direct suppression by means of heterospecific complementation of a temperature-sensitive mutant defective in the corresponding gene of Saccharomyces cerevisiae. The cloned Sz. pombe cDNA encodes a protein Rpb10 of 71 amino acids with an M of 8,275 Da, sharing 51 amino acids (71% identity) with the subunit ABC10 beta of RNA polymerases I-III from S. cerevisiae. All eukaryotic members of this protein family have the same general organization featuring two highly conserved motifs (RCFT/SCGK and RYCCRRM) around an atypical zinc finger and an additional invariant HVDLIEK motif toward the C-terminal end. The last motif is only characteristics for homologs from eukaryotes. In keeping with this remarkable structural conservation, the Sz. pombe cDNA also fully complemented a S. cerevisiae deletion mutant lacking subunit ABC10 beta (null allele rpb10-delta 1::HIS3).
Nishihara, Masahiro; Miura, Tetsuji; Miki, Takayuki; Tanno, Masaya; Yano, Toshiyuki; Naitoh, Kazuyuki; Ohori, Katsuhiko; Hotta, Hiroyuki; Terashima, Yoshiaki; Shimamoto, Kazuaki
2007-11-01
Recently we found that the level of anti-infarct tolerance afforded by ischemic preconditioning (IPC) and erythropoietin (EPO) infusion was closely correlated with the level of Ser9-phospho-GSK-3beta upon reperfusion in the heart. To get an insight into the mechanism by which phospho-GSK-3beta protects the myocardium from ischemia/reperfusion injury, we examined the effects of IPC and EPO on interactions between GSK-3beta and subunits of the mitochondrial permeability transition pore (mPTP) in this study. Rat hearts were subjected to 25-min global ischemia and 5-min reperfusion in vitro with or without IPC plus EPO infusion (5 units/ml) before ischemia. Ventricular tissues were sampled before or after ischemia/reperfusion to separate subcellular fractions for immunoblotting and immunoprecipitation. Reperfusion increased mitochondrial GSK-3beta by 2-fold and increased phospho-GSK-3beta level in all fractions examined. Major subunits of mPTP, adenine nucleotide translocase (ANT) and voltage-dependent anion channel (VDAC), were co-immunoprecipitated with GSK-3beta after reperfusion. Phospho-GSK-3beta was co-immunoprecipitated with ANT but not with VDAC. IPC+EPO significantly increased the levels of GSK-3beta and phospho-GSK-3beta that were co-immunoprecipitated with ANT to 145+/-8% and 143+/-16%, respectively, of baseline but did not induce phospho-GSK-3beta-VDAC binding. A PKC inhibitor and a PI3 kinase inhibitor suppressed the IPC+EPO-induced increase in the level of phospho-GSK-3beta-ANT complex. The level of cyclophilin D co-immunoprecipitated with ANT after reperfusion was significantly reduced to 39+/-10% of the control by IPC+EPO. These results suggest that reduction in affinity of ANT to cyclophilin D by increased phospho-GSK-3beta binding to ANT may be responsible for suppression of mPTP opening and myocardial protection afforded by IPC+EPO.
Daschil, Nina; Kniewallner, Kathrin M; Obermair, Gerald J; Hutter-Paier, Birgit; Windisch, Manfred; Marksteiner, Josef; Humpel, Christian
2015-03-01
It is well established that L-type calcium channels (LTCCs) are expressed in astroglia. However, their functional role is still speculative, especially under pathologic conditions. We recently showed that the α1 subunit-like immunoreactivity of the CaV1.2 channel is strongly expressed in reactive astrocytes around beta-amyloid plaques in 11-month-old Alzheimer transgenic (tg) mice with the amyloid precursor protein London and Swedish mutations. The aim of the present study was to examine the cellular expression of all LTCC subunits around beta-amyloid plaques by in situ hybridization using (35)S-labeled oligonucleotides. Our data show that messenger RNAs (mRNAs) of the LTCC CaV1.2 α1 subunit as well as all auxiliary β and α2δ subunits, except α2δ-4, were expressed in the hippocampus of age-matched wild-type mice. It was unexpected to see, that cells directly located in the plaque core in the cortex expressed mRNAs for CaV1.2 α1, β2, β4, and α2δ-1, whereas no expression was detected in the halo. Furthermore, cells in the plaque core also expressed preprotachykinin-A mRNA, the precursor for substance P. By means of confocal microscopy, we demonstrated that collagen-IV-stained brain vessels in the cortex were associated with the plaque core and were immunoreactive for substance P. In cortical organotypic brain slices of adult Alzheimer mice, we could demonstrate that LTCC blockers increased angiogenesis, which was further potentiated by substance P. In conclusion, our data show that brain vessels associated with beta-amyloid plaques express substance P and an LTCC and may play a role in angiogenesis. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Ohtaki, Akashi; Kida, Hiroshi; Miyata, Yusuke; Ide, Naoki; Yonezawa, Akihiro; Arakawa, Takatoshi; Iizuka, Ryo; Noguchi, Keiichi; Kita, Akiko; Odaka, Masafumi; Miki, Kunio; Yohda, Masafumi
2008-02-29
Prefoldin (PFD) is a heterohexameric molecular chaperone complex in the eukaryotic cytosol and archaea with a jellyfish-like structure containing six long coiled-coil tentacles. PFDs capture protein folding intermediates or unfolded polypeptides and transfer them to group II chaperonins for facilitated folding. Although detailed studies on the mechanisms for interaction with unfolded proteins or cooperation with chaperonins of archaeal PFD have been performed, it is still unclear how PFD captures the unfolded protein. In this study, we determined the X-ray structure of Pyrococcus horikoshii OT3 PFD (PhPFD) at 3.0 A resolution and examined the molecular mechanism for binding and recognition of nonnative substrate proteins by molecular dynamics (MD) simulation and mutation analyses. PhPFD has a jellyfish-like structure with six long coiled-coil tentacles and a large central cavity. Each subunit has a hydrophobic groove at the distal region where an unfolded substrate protein is bound. During MD simulation at 330 K, each coiled coil was highly flexible, enabling it to widen its central cavity and capture various nonnative proteins. Docking MD simulation of PhPFD with unfolded insulin showed that the beta subunit is essentially involved in substrate binding and that the alpha subunit modulates the shape and width of the central cavity. Analyses of mutant PhPFDs with amino acid replacement of the hydrophobic residues of the beta subunit in the hydrophobic groove have shown that beta Ile107 has a critical role in forming the hydrophobic groove.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ainsworth, P.J.; Coulter-Mackie, M.B.
1992-10-01
The B1 variant form of Tay-Sachs disease is enzymologically unique in that the causative mutation(s) appear to affect the active site in the [alpha] subunit of [beta]-hexosaminidase A without altering its ability to associate with the [beta] subunit. Most previously reported B1 variant mutations were found in exon 5 within codon 178. The coding sequence of the [alpha] subunit gene of a patient with the B1 variant form was examined with a combination of reverse transcription of mRNA to cDNA, PCR, and dideoxy sequencing. A double mutation in exon 6 has been identified: a G[sub 574][yields]C transversion causing a val[submore » 192][yields]leu change and a G[sub 598][yields] A transition resulting in a val[sub 200][yields]met alteration. The amplified cDNAs were otherwise normal throughout their sequence. The 574 and 598 alterations have been confirmed by amplification directly from genomic DNA from the patient and her mother. Transient-expression studies of the two exon 6 mutations (singly or together) in COS-1 cells show that the G[sub 574][yields]C change is sufficient to cause the loss of enzyme activity. The biochemical phenotype of the 574 alteration in transfection studies is consistent with that expected for a B1 variant mutation. As such, this mutation differs from previously reported B1 variant mutations, all of which occur in exon 5. 31 refs., 2 figs., 2 tabs.« less
Sen, Anindito; Baxa, Ulrich; Simon, Martha N; Wall, Joseph S; Sabate, Raimon; Saupe, Sven J; Steven, Alasdair C
2007-02-23
Fungal prions are infectious filamentous polymers of proteins that are soluble in uninfected cells. In its prion form, the HET-s protein of Podospora anserina participates in a fungal self/non-self recognition phenomenon called heterokaryon incompatibility. Like other prion proteins, HET-s has a so-called "prion domain" (its C-terminal region, HET-s-(218-289)) that is responsible for induction and propagation of the prion in vivo and for fibril formation in vitro. Prion fibrils are thought to have amyloid backbones of polymerized prion domains. A relatively detailed model has been proposed for prion domain fibrils of HET-s based on a variety of experimental constraints (Ritter, C., Maddelein, M. L., Siemer, A. B., Luhrs, T., Ernst, M., Meier, B. H., Saupe, S. J., and Riek, R. (2005) Nature 435, 844-848). To test specific predictions of this model, which envisages axial stacking of beta-solenoids with two coils per subunit, we examined fibrils by electron microscopy. Electron diffraction gave a prominent meridional reflection at (0.47 nm)(-1), indicative of cross-beta structure, as predicted. STEM (scanning transmission electron microscopy) mass-per-unit-length measurements yielded 1.02 +/- 0.16 subunits per 0.94 nm, in agreement with the model prediction (1 subunit per 0.94 nm). This is half the packing density of approximately 1 subunit per 0.47 nm previously obtained for fibrils of the yeast prion proteins, Ure2p and Sup35p, whence it follows that the respective amyloid architectures are basically different.
Gerli, Sandro; Bini, Vittorio; Favilli, Alessandro; Di Renzo, Gian Carlo
2013-06-01
Clinical efficacy of human-derived follicle-stimulating hormone (FSH) versus recombinant FSH (rFSH) in IVF-ICSI cycles has long been compared, but no clear evidence of the superiority of a preparation over the other has been found. Human gonadotropins have been often grouped together, but a different glycosylation may be present in each preparation, therefore influencing the specific bioactivity. To exclude confounding factors, a meta-analysis and a cost-effectiveness analysis were designed to compare effectiveness and cost-effectiveness of a specific highly purified human FSH (HP-hFSH) (Fostimon®) versus rFSH (Gonal-F®) in IVF/ICSI cycles. Research methodology filters were applied in MEDLINE, Current Contents and Web of Science from 1980 to February 2012. Eight randomized trials met selection criteria. The meta-analysis showed no significant differences between rFSH and HP-hFSH treatment in live-birth rate (odds ratio [OR] 0.84, 95% confidence interval [CI] 0.63-1.11), clinical pregnancy rate (OR 0.85, 95% CI 0.68-1.07), number of oocytes retrieved, number of mature oocytes and days of stimulation. The cost-effectiveness ratio was € 7174 in the rFSH group and € 2056 in the HP-hFSH group. HP-hFSH is as effective as rFSH in ovarian stimulation for IVF-ICSI cycles, but the human preparation is more cost-effective.
Hohaus, Annette; Person, Veronika; Behlke, Joachim; Schaper, Jutta; Morano, Ingo; Haase, Hannelore
2002-08-01
Ahnak is a ubiquitously expressed giant protein of 5643 amino acids implicated in cell differentiation and signal transduction. In a recent study, we demonstrated the association of ahnak with the regulatory beta2 subunit of the cardiac L-type Ca2+ channel. Here we identify the most carboxyl-terminal ahnak region (aa 5262-5643) to interact with recombinant beta2a as well as with beta2 and beta1a isoforms of native muscle Ca2+ channels using a panel of GST fusion proteins. Equilibrium sedimentation analysis revealed Kd values of 55 +/- 11 nM and 328 +/- 24 nM for carboxyl-terminal (aa 195-606) and amino-terminal (aa 1-200) truncates of the beta2a subunit, respectively. The same carboxyl-terminal ahnak region (aa 5262-5643) bound to G-actin and cosedimented with F-actin. Confocal microscopy of human left ventricular tissue localized the carboxyl-terminal ahnak portion to the sarcolemma including the T-tubular system and the intercalated disks of cardiomyocytes. These results suggest that ahnak provides a structural basis for the subsarcolemmal cytoarchitecture and confers the regulatory role of the actin-based cytoskeleton to the L-type Ca2+ channel.
Lomako, Joseph; Lomako, Wieslawa M; Carothers Carraway, Coralie A; Carraway, Kermit L
2010-04-01
MUC4 is a heterodimeric membrane mucin, composed of a mucin subunit ASGP-1 (MUC4alpha) and a transmembrane subunit ASGP-2 (MUC4beta), which has been implicated in the protection of epithelial cell surfaces. In the rat stratified corneal epithelium Muc4 is found predominantly in the most superficial cell layers. Since previous studies in other tissues have shown that Muc4 is regulated by TGF-beta via a proteosomal degradation mechanism, we investigated the regulation of corneal Muc4 in stratified cultures of corneal epithelial cells. Application of proteosome or processing inhibitors led to increases in levels of Muc4, particularly in the basal and intermediate levels of the stratified cultures. These changes were accompanied by increases in Muc4 ubiquitination, chaperone association and incorporation into intracellular aggresomes. In contrast, treatment with TGF-beta resulted in reduced levels of Muc4, which were reversed by proteosome inhibition. The results support a model in which Muc4 precursor is synthesized in all layers of the corneal epithelium, but Muc4 is degraded in basal and intermediate layers by a proteosomal mechanism at least partly dependent on TGF-beta inhibition of Muc4 processing. J. Cell. Physiol. 223: 209-214, 2010. (c) 2009 Wiley-Liss, Inc.
Nakashima, T; Yao, M; Kawamura, S; Iwasaki, K; Kimura, M; Tanaka, I
2001-05-01
Ribosomal protein L5 is a 5S rRNA binding protein in the large subunit and plays an essential role in the promotion of a particular conformation of 5S rRNA. The crystal structure of the ribosomal protein L5 from Bacillus stearothermophilus has been determined at 1.8 A resolution. The molecule consists of a five-stranded antiparallel beta-sheet and four alpha-helices, which fold in a way that is topologically similar to the ribonucleoprotein (RNP) domain. The molecular shape and electrostatic representation suggest that the concave surface and loop regions are involved in 5S rRNA binding. To identify amino acid residues responsible for 5S rRNA binding, we made use of Ala-scanning mutagenesis of evolutionarily conserved amino acids occurring in the beta-strands and loop regions. The mutations of Asn37 at the beta1-strand and Gln63 at the loop between helix 2 and beta3-strand as well as that of Phe77 at the tip of the loop structure between the beta2- and beta3-strands caused a significant reduction in 5S rRNA binding. In addition, the mutations of Thr90 on the beta3-strand and Ile141 and Asp144 at the loop between beta4- and beta5-strands moderately reduced the 5S rRNA-binding affinity. Comparison of these results with the more recently analyzed structure of the 50S subunit from Haloarcula marismortui suggests that there are significant differences in the structure at N- and C-terminal regions and probably in the 5S rRNA binding.
Nakashima, T; Yao, M; Kawamura, S; Iwasaki, K; Kimura, M; Tanaka, I
2001-01-01
Ribosomal protein L5 is a 5S rRNA binding protein in the large subunit and plays an essential role in the promotion of a particular conformation of 5S rRNA. The crystal structure of the ribosomal protein L5 from Bacillus stearothermophilus has been determined at 1.8 A resolution. The molecule consists of a five-stranded antiparallel beta-sheet and four alpha-helices, which fold in a way that is topologically similar to the ribonucleoprotein (RNP) domain. The molecular shape and electrostatic representation suggest that the concave surface and loop regions are involved in 5S rRNA binding. To identify amino acid residues responsible for 5S rRNA binding, we made use of Ala-scanning mutagenesis of evolutionarily conserved amino acids occurring in the beta-strands and loop regions. The mutations of Asn37 at the beta1-strand and Gln63 at the loop between helix 2 and beta3-strand as well as that of Phe77 at the tip of the loop structure between the beta2- and beta3-strands caused a significant reduction in 5S rRNA binding. In addition, the mutations of Thr90 on the beta3-strand and Ile141 and Asp144 at the loop between beta4- and beta5-strands moderately reduced the 5S rRNA-binding affinity. Comparison of these results with the more recently analyzed structure of the 50S subunit from Haloarcula marismortui suggests that there are significant differences in the structure at N- and C-terminal regions and probably in the 5S rRNA binding. PMID:11350033
Valdramidou, Dimitra; Humphries, Martin J; Mould, A Paul
2008-11-21
Integrin-ligand interactions are regulated in a complex manner by divalent cations, and previous studies have identified ligand-competent, stimulatory, and inhibitory cation-binding sites. In collagen-binding integrins, such as alpha2beta1, ligand recognition takes place exclusively at the alpha subunit I domain. However, activation of the alphaI domain depends on its interaction with a structurally similar domain in the beta subunit known as the I-like or betaI domain. The top face of the betaI domain contains three cation-binding sites: the metal-ion dependent adhesion site (MIDAS), the ADMIDAS (adjacent to MIDAS), and LIMBS (ligand-associated metal-binding site). The role of these sites in controlling ligand binding to the alphaI domain has yet to be elucidated. Mutation of the MIDAS or LIMBS completely blocked collagen binding to alpha2beta1; in contrast mutation of the ADMIDAS reduced ligand recognition but this effect could be overcome by the activating monoclonal antibody TS2/16. Hence, the MIDAS and LIMBS appear to be essential for the interaction between alphaI and betaI, whereas occupancy of the ADMIDAS has an allosteric effect on the conformation of betaI. An activating mutation in the alpha2 I domain partially restored ligand binding to the MIDAS and LIMBS mutants. Analysis of the effects of Ca(2+), Mg(2+), and Mn(2+) on ligand binding to these mutants showed that the MIDAS is a ligand-competent site through which Mn(2+) stimulates ligand binding, whereas the LIMBS is a stimulatory Ca(2+)-binding site, occupancy of which increases the affinity of Mg(2+) for the MIDAS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hajra, A.; Liu, P.; Collins, E.S.
1994-09-01
A pericentric inversion of chromosome 16 (inv(16)(p13;q22)) is consistently seen in acute myeloid leukemia of the M4Eo subtype. This inversion fuses almost the entire coding region of the gene encoding of the {beta} subunit of the heterodimeric transcription factor CBF/PEBP2 to the region of the MYH11 gene encoding the rod domain for the smooth muscle myosin heavy chain (SMMHC). To investigate the biological properties of the CBF{beta}/SMMHC fusion protein, we have generated 3T3 cell lines that stably express the CBF{beta}/SMMHC chimeric cDNA or the normal, nonchimeric CBF{beta} and SMMHC cDNAs. 3T3 cells expressing CBF{beta}/SMMHC acquire a transformed phenotype, as indicatedmore » by altered cell morphology, formation of foci, and growth in soft agar. Cells constitutively overexpressing the normal CBF{beta} cDNA or the rod region of SMMHC remain nontransformed. Western blot analysis using antibodies to CBF{beta} and the SMMHC rod demonstrates that stably transfected cells express the appropriate chimeric or normal protein. Electrophoretic mobility shift assays reveal that cells transformed by the chimeric cDNA do not have a CBF-DNA complex of the expected mobility, but instead contain a large complex with CBF DNA-binding activity that fails to migrate out of the gel wells. In order to define the regions of CBF{beta}/SMMHC necessary for 3T3 transformation, we have stably transfected cells with mutant CBF{beta}/SMMHC cDNAs containing various deletions of the coding region. Analysis of these cell lines indicates that the transformation property of CBF{beta}/SMMHC requires regions of CBF{beta} known to be necessary for association with the DNA-binding CBF{alpha} subunit, and also requires an intact SMMHC carboxyl terminus, which is necessary for formation of the coiled coil domain of the myosin rod.« less
Balasch, J; Fábregues, F; Creus, M; Peñarrubia, J; Vidal, E; Carmona, F; Puerto, B; Vanrell, J A
2000-01-01
The main goal in the present study was to compare follicular development and estradiol levels after ovarian stimulation in pituitary suppressed normally ovulating women undergoing IVF, using highly purified urinary follicle stimulating hormone (FSH) (u-FSH-HP) and recombinant FSH (rec-FSH). A secondary variable in our study was embryo implantation potential, which is closely related to appropriate follicular development and oocyte competence. For the main purpose of this study, 30 IVF patients (group 1) were treated during IVF consecutive cycles, using the same stimulation protocol, with u-FSH-HP in the first treatment study cycle and rec-FSH in the second one. As a control group (group 2) for implantation rates obtained in cycles treated with rec-FSH, 30 additional IVF patients were included who underwent a second IVF attempt again with u-FSH-HP. The total dose of FSH used and ovarian response obtained in terms of estradiol plasma levels and the total number of growing follicles on the day of human chronic gonadotropin (HCG) injection were similar in both treatment cycles in group 1 but better follicular dynamics and oocyte maturity were obtained with rec-FSH. The implantation rate was significantly higher in rec-FSH treated cycles in patients in group 1 than in control women (group 2). rec-FSH is more efficacious than u-FSH-HP when used in the same patient in inducing multiple follicular development in down-regulated cycles as indicated by ovarian performance and oocyte maturity. In addition, rec-FSH yields significantly higher implantation rates than u-FSH-HP when used in patients undergoing their second IVF attempt.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brüning, Ansgar, E-mail: ansgar.bruening@med.uni-muenchen.de; Matsingou, Christina; Brem, German Johannes
2012-10-15
Inhibins and activins are gonadal peptide hormones of the transforming growth factor-β super family with important functions in the reproductive system. By contrast, the recently identified inhibin βE subunit, primarily expressed in liver cells, appears to exert functions unrelated to the reproductive system. Previously shown downregulation of inhibin βE in hepatoma cells and anti-proliferative effects of ectopic inhibin βE overexpression indicated growth-regulatory effects of inhibin βE. We observed a selective re-expression of the inhibin βE subunit in HepG2 hepatoblastoma cells, MCF7 breast cancer cells, and HeLa cervical cancer cells under endoplasmic reticulum stress conditions induced by tunicamycin, thapsigargin, and nelfinavir.more » Analysis of XPB1 splicing and ATF4 activation revealed that inhibin βE re-expression was associated with induction of the endoplasmic reticulum stress reaction by these drugs. Transfection of an ATF4 expression plasmid specifically induced inhibin βE expression in HeLa cells and indicates inhibin βE as a hitherto unidentified target gene of ATF4, a key transcription factor of the endoplasmic reticulum stress response. Therefore, the inhibin βE subunit defines not only a new player but also a possible new marker for drug-induced endoplasmic reticulum stress. -- Highlights: ► Endoplasmic reticulum stress induces inhibin beta E expression. ► Inhibin beta E is regulated by the transcription factor ATF4. ► Inhibin beta E expression can be used as a marker for drug-induced ER stress.« less
Shi, Feng-Tao; Cheung, Anthony P; Klausen, Christian; Huang, He-Feng; Leung, Peter C K
2010-10-01
We have reported that growth differentiation factor 9 (GDF9) can enhance activin A (β(A)β(A))-induced inhibin B (αβ(B)) secretion in human granulosa-lutein (hGL) cells, but its effects on steroidogenic acute regulatory protein (StAR), ovarian steroidogenic enzymes, and progesterone production are unknown. We undertook this study to further evaluate GDF9 in this regard. hGL cells from women undergoing in vitro fertilization treatment were cultured with and without small interfering RNA (siRNA) transfection targeted at inhibin α-subunit or GDF9 before treatment with GDF9, activin A, FSH, or combinations. We compared StAR, P450 side-chain cleavage enzyme, and 3β-hydroxysteroid dehydrogenase expression in hGL cells and progesterone levels in culture media after these treatments. mRNA, protein, and hormone levels were assessed with real-time RT-PCR, immunoblotting, and ELISA, respectively. Data were analyzed by ANOVA followed by Tukey's test. Activin A alone reduced basal and FSH-induced progesterone production by decreasing the expression of StAR protein, which regulates the rate-limiting step in steroidogenesis but not P450 side-chain cleavage enzyme and 3β-hydroxysteroid dehydrogenase. GDF9 attenuated these activin A effects on StAR and progesterone. After transfection of α-subunit siRNA, activin A level increased (P < 0.001), whereas basal and activin A-induced inhibin B levels (with and without GDF9) decreased. Furthermore, the effects of GDF9 in reversing activin A suppression of progesterone production were attenuated (P < 0.001). Transfection of GDF9 siRNA decreased GDF9 as expected and led to lower StAR expression and progesterone secretion than those observed with activin A treatment alone. GDF9 attenuates the suppressive effects of activin A on StAR expression and progesterone production by increasing the expression of inhibin B, which acts as an activin A competitor.
Porcaro, Antonio B; Migliorini, Filippo; Petrozziello, Aldo; Sava, Teodoro; Romano, Mario; Caruso, Beatrice; Cocco, Claudio; Ghimenton, Claudio; Zecchinini Antoniolli, Stefano; Lacola, Vincenzo; Rubilotta, Emanuele; Monaco, Carmelo; Comunale, Luigi
2012-01-01
To evaluate the physiopathology of follicle-stimulating hormone (FSH) along the pituitary-testicular-prostate axis at the time of initial diagnosis of prostate cancer in relation to the available clinical variables and to the subsequent cluster selection of the patient population. The study included 98 patients who were diagnosed with prostate cancer. Age, percentages of positive cores (P+) at transrectal ultrasound scan biopsy, biopsy Gleason score (bGS), luteinizing hormone (LH), FSH, total testosterone, free testosterone (FT) and prostate-specific antigen (PSA) were the continuous clinical variables. All patients had not previously received hormonal manipulations. FSH correlation and multiple linear analyses were computed in the population. The FSH/PSA ratio was computed and then ranked for clustering the population as groups A (0.13≤FSH/PSA≤0.57), B (0.57
Chern, C J; Croce, C M
1976-01-01
The structural locus for human beta glucuronidase is assigned to chromosome 7, a localization based upon concordant segregation of the expression of the human enzyme and the presence of human chromosome 7 in somatic cell hybrid clones derived independently from fusions of different human and mouse cells. Hybrid clones containing only human chromosome 7 are included in this study. Electrophoresis of beta glucuronidase also has revealed that human beta glucuronidase has a tetrametric structure. Images Fig. 1 Fig. 2 Fig. 3 PMID:941902
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gu, Y.
1989-01-01
The specificity of the antibodies in the serum of a patient with myasthenia gravis for a the {alpha}-bungarotoxin binding sites of the acetylcholine receptor (AChR) was examined using AChRs in the C2 mouse muscle cell line as a model. The antibodies were shown to be specific for one of the two toxin-binding sites. The effect of the antibodies in this myasthenic serum on the functional response of the receptor to cholinergic agonists was also examined using carbamylcholine-induced {sup 22}Na uptake into C2 myotubes as a measured of the receptor function. Antibodies specific for the {gamma}, {delta}, and {epsilon} subunit, respectively,more » of mammalian muscle AChRs were developed using subunit-specific synthetic peptides as antigens. Using these antibodies and monoclonal antibodies for other subunits as probes, I have identified four ({alpha}, {beta}, {gamma}, and {delta}) subunits of mammalian muscle AChRs on immunoblots. When AChRs from embryonic, neonatal, normal and denervated adult muscles were compared on immunoblots, the {alpha}, {beta}, and {delta} subunits were identical in all four receptor preparations, with or without endoglycosidase digestion. The spatial and temporal distribution of the {gamma}- and {epsilon}- AChRs in developing and in denervated muscles corresponds to the distribution of AChRs with slow and fast channels, respectively, and that the development changes in the channel properties of the receptor arise from a change in the subunit composition of the receptor, in which the {gamma} is replaced by {epsilon}.« less
The 2.2 A resolution structure of the O(H) blood-group-specific lectin I from Ulex europaeus.
Audette, G F; Vandonselaar, M; Delbaere, L T
2000-12-01
The tertiary and quaternary structure of the lectin I from Ulex europaeus (UE-I) has been determined to 2.2 A resolution. UE-I is a dimeric metalloglycoprotein that binds the H-type 2 human blood group determinant [alpha-L-Fucalpha(1-->2)-beta-D-Galbeta(1-->4)-beta-D-Glc NAcalpha-]. Nine changes from the published amino acid sequence were necessary to account for the electron density. The quaternary structural organization of UE-I is that of the most commonly occurring legume lectin dimer. The tertiary structure of the monomeric subunits is similar to that in the conventional lectin subunit; however, some structural differences are noted. These differences include a four-stranded anti-parallel "S" sheet in UE-I versus the five-stranded S sheet in other lectin monomers. The Ala residue of the Ala-Asp cis-peptide bond present in the carbohydrate-binding site of the conventional lectin monomer is replaced with a Thr in the UE-I structure. Also, a novel disulfide bridge linking Cys115 and Cys150 is present. There are two metallic ions, one calcium and the other manganese, per subunit. N-linked oligosaccharides are at residues 23 and 111 of each subunit. One molecule of R-2-methyl-2, 4-pentanediol (R-MPD) is present in a shallow depression on the surface of each subunit. In order to examine the binding of the H-type 2 blood group determinant by UE-I, its beta-methyl glycoside (H-type 2-OMe) was docked into the binding site of R-MPD. The epitope previously identified for H-type 2-OMe by chemical mapping proved, with only minor adjustment of amino acid residues, to be complementary to the shallow cavity occupied by R-MPD in the structure. Several key interactions have been proposed between the H-type 2-OMe and UE-I. Copyright 2000 Academic Press.
Endocrine regulation of gonadotropin and growth hormone gene transcription in fish.
Melamed, P; Rosenfeld, H; Elizur, A; Yaron, Z
1998-06-01
The pituitary of a number of teleosts contains two gonadotropins (GtHs) which are produced in distinct populations of cells; the beta subunit of the GtH I being found in close proximity to the somatotrophs, while the II beta cells are more peripheral. In several species the GtH beta subunits are expressed at varying levels throughout the reproductive cycle, the I beta dominating in early maturing fish, after which the II beta becomes predominant. This suggests differential control of the beta subunit synthesis which may be regulated by both hypothalamic hormones and gonadal steroids. At ovulation and spawning, changes also occur in the somatotrophs, which become markedly more active, while plasma growth hormone (GH) levels increase. In a number of species, GnRH elevates either the I beta or the II beta mRNA levels, depending on the reproductive state of the fish. In tilapia, the GnRH effect on the II beta appears to be mediated through both cAMP-PKA and PKC pathways. GnRH also stimulates GH release in both goldfish and tilapia, but it increases the GH transcript levels only in goldfish; both GnRH and direct activation of PKC are ineffective in altering GH mRNA in tilapia pituitary cells. Dopamine (DA) does not alter II beta transcript levels in cultured tilapia pituitary cells, but increases GH mRNA levels in both rainbow trout and tilapia, in a PKA-dependent manner. This effect appears to be through interactions with Pit-1 and also by stabilizing the mRNA. Somatostatin (SRIF) does not alter GH transcript levels in either tilapia or rainbow trout, although it may alter GH synthesis by modulation of translation. Gonadal steroids appear to have differential effects on the transcription of the beta subunits. In tilapia, testosterone (T) elevates I beta mRNA levels in cells from immature or early maturing fish (in low doses), but depresses them in cells from late maturing fish and is ineffective in cells from regressed fish. Similar results were seen in early recrudescing male coho salmon injected with T or E2. T or E2 administered in vivo has dramatic stimulatory effects on the II beta transcript levels in immature fish of a number of species, while less powerful effects are seen in vitro. A response is also seen in cells from early maturing rainbow trout or tilapia, or regressed tilapia, but not in cells from late maturing or spawning fish. These results are substantiated by the finding that the promoter of the salmon II beta gene contains several estrogen responsive elements (EREs) which react and interact differently when exposed to varying levels of E2. In addition, activator protein-1 (AP-1) and steroidogenic factor-1 (SF-1) response elements are also found in the salmon II beta promoter; the AP-1 site is located close to a half ERE, while the SF-1 acts synergistically with the E2 receptor. The mRNA levels of both AP-1 and SP-1 are elevated, at least in mammals, by GnRH, suggesting possible sites for cross-talk between GnRH and steroid activated pathways. Reports of the effects of T or E2 on GH transcription differ. No effect is seen in vitro in pituitaries of tilapia, juvenile rainbow trout or common carp, but T does increase the transcript levels in pituitaries of both immature and mature goldfish. Reasons for these discrepancies are unclear, but other systemic hormones may be more instrumental than the gonadal steroids in regulating GH transcription. These include T3 which increases both GH mRNA levels and de novo synthesis (in tilapia and common carp) and insulin-like growth factor-I (IGF-I) which reduces GH transcript levels as well as inhibiting GH release.
Kotkar, Shriram P; Chavan, Vilas B; Sudalai, Arumugam
2007-03-15
A novel and highly enantioselective method for the synthesis of gamma-amino-alpha,beta-unsaturated esters via tandem alpha-amination-Horner-Wadsworth-Emmons (HWE) olefination of aldehydes is described. The one-pot assembly has been demonstrated for the construction of functionalized chiral 2-pyrrolidones, subunits present in several alkaloids. [structure: see text
Vieira, L M; Rodrigues, C A; Castro Netto, A; Guerreiro, B M; Silveira, C R A; Freitas, B G; Bragança, L G M; Marques, K N G; Sá Filho, M F; Bó, G A; Mapletoft, R J; Baruselli, P S
2016-03-15
Plasma FSH profiles, in vitro embryo production (IVP) after ovum pickup (OPU), and establishment of pregnancy with IVP embryos were compared in untreated Holstein oocyte donors and those superstimulated with multiple injections or a single intramuscular (IM) injection of porcine FSH (pFSH) in hyaluronan (HA). Plasma FSH profiles were determined in 23 heifers randomly allocated to one of four groups. Controls received no treatment, whereas the F200 group received 200 mg of pFSH in four doses, 12 hours apart. The F200HA and F300HA groups received 200- or 300-mg pFSH in 5 mL or 7.5 mL, respectively of a 0.5% HA solution by a single IM injection. Plasma FSH levels were determined before the first pFSH treatment and every 6 hours over 96 hours. All data were analyzed by orthogonal contrasts. Circulating FSH area under curve (AUC) in pFSH-treated animals was greater than that in the control group (P = 0.02). Although the AUC did not differ among FSH-treated groups (P = 0.56), the total period with elevated plasma FSH was greater in the F200 group than in the HA groups (P < 0.0001). However, the F300HA group had a greater AUC than the F200HA group (P = 0.006), with a similar total period with elevated plasma FSH (P = 0.17). The IVP was performed in 90 nonlactating Holstein cows randomly allocated to one of the four treatment groups as in the first experiment. A greater proportion of medium-sized (6-10 mm) follicles was observed in cows receiving pFSH, regardless of the treatment group (P < 0.0001). Also, numbers of follicles (P = 0.01), cumulus-oocyte complexes (COCs) retrieved (P = 0.01) and matured (P = 0.02), cleavage rates (P = 0.002), and blastocysts produced per OPU session (P = 0.06) were greater in cows receiving pFSH, regardless of the treatment group. Cows in the F200HA group had a greater recovery rate (P = 0.009), number of COCs cultured (P = 0.04), and blastocysts produced per OPU session (P = 0.06) than cows in the F300HA group. Similar pregnancy rates were observed 50 to 60 days after transferring IVP embryos from donors in the different treatment groups (P > 0.05). In conclusion, a single IM injection of pFSH combined in 0.5% HA resulted in similar plasma FSH profiles as twice-daily pFSH treatments. Treatment of nonlactating donors with pFSH, with or without HA, resulted in increased IVP over untreated controls. A single dose of 200 mg of pFSH in 0.5% HA resulted in greater IVP than 300-mg pFSH in HA. Finally, pregnancy rates with IVP embryos were similar, regardless donor treatment. Copyright © 2016 Elsevier Inc. All rights reserved.
Diverse roles of integrin receptors in articular cartilage.
Shakibaei, M; Csaki, C; Mobasheri, A
2008-01-01
Integrins are heterodimeric integral membrane proteins made up of alpha and beta subunits. At least eighteen alpha and eight beta subunit genes have been described in mammals. Integrin family members are plasma membrane receptors involved in cell adhesion and active as intra- and extracellular signalling molecules in a variety of processes including embryogenesis, hemostasis, tissue repair, immune response and metastatic spread of tumour cells. Integrin beta 1 (beta1-integrin), the protein encoded by the ITGB1 gene (also known as CD29 and VLAB), is a multi-functional protein involved in cell-matrix adhesion, cell signalling, cellular defense, cell adhesion, protein binding, protein heterodimerisation and receptor-mediated activity. It is highly expressed in the human body (17.4 times higher than the average gene in the last updated revision of the human genome). The extracellular matrix (ECM) of articular cartilage is a unique environment. Interactions between chondrocytes and the ECM regulate many biological processes important to homeostasis and repair of articular cartilage, including cell attachment, growth, differentiation and survival. The beta1-integrin family of cell surface receptors appears to play a major role in mediating cell-matrix interactions that are important in regulating these fundamental processes. Chondrocyte mechanoreceptors have been proposed to incorporate beta1-integrins and mechanosensitive ion channels which link with key ECM, cytoskeletal and signalling proteins to maintain the chondrocyte phenotype, prevent chondrocyte apoptosis and regulate chondrocyte-specific gene expression. This review focuses on the expression and function of beta1-integrins in articular chondrocytes, its role in the unique biology of these cells and its distribution in cartilage.
García-Delgado, Neivys; Velasco, Myrian; Sánchez-Soto, Carmen; Díaz-García, Carlos Manlio; Hiriart, Marcia
2018-01-01
Pancreatic beta cells during the first month of development acquire functional maturity, allowing them to respond to variations in extracellular glucose concentration by secreting insulin. Changes in ionic channel activity are important for this maturation. Within the voltage-gated calcium channels (VGCC), the most studied channels are high-voltage-activated (HVA), principally L-type; while low-voltage-activated (LVA) channels have been poorly studied in native beta cells. We analyzed the changes in the expression and activity of VGCC during the postnatal development in rat beta cells. We observed that the percentage of detection of T-type current increased with the stage of development. T-type calcium current density in adult cells was higher than in neonatal and P20 beta cells. Mean HVA current density also increased with age. Calcium current behavior in P20 beta cells was heterogeneous; almost half of the cells had HVA current densities higher than the adult cells, and this was independent of the presence of T-type current. We detected the presence of α1G, α1H, and α1I subunits of LVA channels at all ages. The Cav 3.1 subunit (α1G) was the most expressed. T-type channel blockers mibefradil and TTA-A2 significantly inhibited insulin secretion at 5.6 mM glucose, which suggests a physiological role for T-type channels at basal glucose conditions. Both, nifedipine and TTA-A2, drastically decreased the beta-cell subpopulation that secretes more insulin, in both basal and stimulating glucose conditions. We conclude that changes in expression and activity of VGCC during the development play an important role in physiological maturation of beta cells. PMID:29556214
Schrattenholz, A; Roth, U; Godovac-Zimmermann, J; Maelicke, A
1997-10-28
Using 2,8,5'-[3H]ATP as a direct photoaffinity label for membrane-bound nicotinic acetylcholine receptor (nAChR) from Torpedo marmorata, we have identified a binding site for ATP in the extracellular region of the beta-subunit of the receptor. Photolabeling was completely inhibited in the presence of saturating concentrations of nonradioactive ATP, whereas neither the purinoreceptor antagonists suramin, theophyllin, and caffeine nor the nAChR antagonists alpha-bungarotoxin and d-tubocurarine affected the labeling reaction. Competitive and noncompetitive nicotinic agonists and Ca2+ increased the yield of the photoreaction by up to 50%, suggesting that the respective binding sites are allosterically linked with the ATP site. The dissociation constant KD of binding of ATP to the identified site on the nAChR was of the order of 10(-4) M. Sites of labeling were found in the sequence regions Leu11-Pro17 and Asp152-His163 of the nAChR beta-subunit. These regions may represent parts of a single binding site for ATP, which is discontinuously distributed within the primary structure of the N-terminal extracellular domain. The existence of an extracellular binding site for ATP confirms, on the molecular level, that this nucleotide can directly act on nicotinic receptors, as has been suggested from previous electrophysiological and biochemical studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chuang, J.L.; Fisher, C.R.; Chuang, D.T.
1994-08-01
The authors report the occurrence of three novel mutations in the E1[alpha] (BCKDHA) locus of the branched-chain [alpha]-keto acid dehydrogenase (BCKAD) complex that cause maple syrup urine disease (MSUD). An 8-bp deletion in exon 7 is present in one allele of a compound-heterozygous patient (GM-649). A single C nucleotide insertion in exon 2 occurs in one allele of an intermediate-MSUD patient (Lo). The second allele of patient Lo carries an A-to-G transition in exon 9 of the E1[alpha] gene. This missense mutation changes Tyr-368 to Cys (Y368C) in the E1[alpha] subunit. Both the 8-bp deletion and the single C insertionmore » generate a downstream nonsense codon. Both mutations appear to be associated with a low abundance of the mutant E1[alpha] mRNA, as determined by allele-specific oligonucleotide probing. Transfection studies strongly suggest that the Y368C substitution in the E1[alpha] subunit impairs its proper assembly with the normal E1[beta]. Unassembled as well as misassembled E1[alpha] and E1[beta] subunits are degraded in the cell. 32 refs., 8 figs.« less
Mondal, Mohan; Baruah, Kishore Kumar; Prakash, B S
2016-01-01
Mithun (Bos frontalis) is a semi-wild rare ruminant species. A simple sensitive enzymeimmunoassay suitable for assaying FSH in the blood plasma of mithun is not available which thereby limits our ability to understand this species reproductive processes. Therefore, the aim of this article was to develop a simple and sensitive enzymeimmunoassay (EIA) for estimation of FSH in mithun plasma and apply the assay to understand the estrous cycle and superovulatory process in this species. To accomplish this goal, biotinylated FSH was bridged between streptavidin-peroxidase and immobilized antiserum in a competitive assay. Forty microlitre mithun plasma was used directly in the EIA. The FSH standards were prepared in hormone free plasma and ranged from 5-1280 pg/well/40 μL. The sensitivity of EIA was 5 pg/well FSH, which corresponds to 0.125 ng/mL plasma and the 50% relative binding sensitivity was 90 pg/well/40 μL. Although the shape of the standard curve was not influenced by different plasma volumes viz. 40 and 80 μL, a slight drop in the OD450 was observed with the increasing volume of plasma. Parallelism tests conducted between the endogenous mithun FSH and bovine FSH standards showed good homology between them. Plasma FSH estimated using the developed EIA and commercially available FSH EIA kit in the same samples were correlated (r = 0.98) and showed linearity. Both the Intra- and inter-assay CV were below 6%. Recovery of known concentrations of added FSH showed linearity (r = 0.99). The developed EIA was further validated biologically by estimating FSH in cyclic cows for the entire estrous cycle, in mithun heifers administered with GnRH analogues and in mithun cows during superovulatory treatment with FSH. In conclusion, the EIA developed for FSH determination in mithun blood plasma is simple and highly sensitive for estimation of mithun FSH in all physiological conditions.
Jahangeer, S; Rodbell, M
1993-10-01
We have compared the sedimentation rates on sucrose gradients of the heterotrimeric GTP-binding regulatory (G) proteins Gs, G(o), Gi, and Gq extracted from rat brain synaptoneurosomes with Lubrol and digitonin. The individual alpha and beta subunits were monitored with specific antisera. In all cases, both subunits cosedimented, indicating that the subunits are likely complexed as heterotrimers. When extracted with Lubrol all of the G proteins sedimented with rates of about 4.5 S (consistent with heterotrimers) whereas digitonin extracted 60% of the G proteins with peaks at 11 S; 40% pelleted as larger structures. Digitonin-extracted Gi was cross-linked by p-phenylenedimaleimide, yielding structures too large to enter polyacrylamide gels. No cross-linking of Lubrol-extracted Gi occurred. Treatment of the membranes with guanosine 5'-[gamma-thio]triphosphate and Mg2+ yielded digitonin-extracted structures with peak sedimentation values of 8.5 S--i.e., comparable to that of purified G(o) in digitonin and considerably larger than the Lubrol-extracted 2S structures representing the separated alpha and beta gamma subunits formed by the actions of guanosine 5'-[gamma-thio]triphosphate. It is concluded that the multimeric structures of G proteins in brain membranes are at least partially preserved in digitonin and that activation of these structures in membranes yields monomers of G proteins rather than the disaggregated products (alpha and beta gamma complexes) observed in Lubrol. It is proposed that hormones and GTP affect the dynamic interplay between multimeric G proteins and receptors in a fashion analogous to the actions of ATP on the dynamic interactions between myosin and actin filaments. Signal transduction is mediated by activated monomers released from the multimers during the activation process.
Jahangeer, S; Rodbell, M
1993-01-01
We have compared the sedimentation rates on sucrose gradients of the heterotrimeric GTP-binding regulatory (G) proteins Gs, G(o), Gi, and Gq extracted from rat brain synaptoneurosomes with Lubrol and digitonin. The individual alpha and beta subunits were monitored with specific antisera. In all cases, both subunits cosedimented, indicating that the subunits are likely complexed as heterotrimers. When extracted with Lubrol all of the G proteins sedimented with rates of about 4.5 S (consistent with heterotrimers) whereas digitonin extracted 60% of the G proteins with peaks at 11 S; 40% pelleted as larger structures. Digitonin-extracted Gi was cross-linked by p-phenylenedimaleimide, yielding structures too large to enter polyacrylamide gels. No cross-linking of Lubrol-extracted Gi occurred. Treatment of the membranes with guanosine 5'-[gamma-thio]triphosphate and Mg2+ yielded digitonin-extracted structures with peak sedimentation values of 8.5 S--i.e., comparable to that of purified G(o) in digitonin and considerably larger than the Lubrol-extracted 2S structures representing the separated alpha and beta gamma subunits formed by the actions of guanosine 5'-[gamma-thio]triphosphate. It is concluded that the multimeric structures of G proteins in brain membranes are at least partially preserved in digitonin and that activation of these structures in membranes yields monomers of G proteins rather than the disaggregated products (alpha and beta gamma complexes) observed in Lubrol. It is proposed that hormones and GTP affect the dynamic interplay between multimeric G proteins and receptors in a fashion analogous to the actions of ATP on the dynamic interactions between myosin and actin filaments. Signal transduction is mediated by activated monomers released from the multimers during the activation process. Images Fig. 1 Fig. 2 PMID:8415607
1995-01-01
Oligosaccharyltransferase mediates the transfer of a preassembled high mannose oligosaccharide from a lipid-linked oligosaccharide donor to consensus glycosylation acceptor sites in newly synthesized proteins in the lumen of the rough endoplasmic reticulum. The Saccharomyces cerevisiae oligosaccharyltransferase is an oligomeric complex composed of six nonidentical subunits (alpha-zeta), two of which are glycoproteins (alpha and beta). The beta and delta subunits of the oligosaccharyltransferase are encoded by the WBP1 and SWP1 genes. Here we describe the functional characterization of the OST1 gene that encodes the alpha subunit of the oligosaccharyltransferase. Protein sequence analysis revealed a significant sequence identity between the Saccharomyces cerevisiae Ost1 protein and ribophorin I, a previously identified subunit of the mammalian oligosaccharyltransferase. A disruption of the OST1 locus was not tolerated in haploid yeast showing that expression of the Ost1 protein is essential for vegetative growth of yeast. An analysis of a series of conditional ost1 mutants demonstrated that defects in the Ost1 protein cause pleiotropic underglycosylation of soluble and membrane-bound glycoproteins at both the permissive and restrictive growth temperatures. Microsomal membranes isolated from ost1 mutant yeast showed marked reductions in the in vitro transfer of high mannose oligosaccharide from exogenous lipid-linked oligosaccharide to a glycosylation site acceptor tripeptide. Microsomal membranes isolated from the ost1 mutants contained elevated amounts of the Kar2 stress-response protein. PMID:7860628
Maddineni, S; Ocón-Grove, O M; Krzysik-Walker, S M; Hendricks, G L; Proudman, J A; Ramachandran, R
2008-09-01
Gonadotrophin-inhibitory hormone (GnIH), a hypothalamic RFamide, has been found to inhibit gonadotrophin secretion from the anterior pituitary gland originally in birds and, subsequently, in mammalian species. The gene encoding a transmembrane receptor for GnIH (GnIHR) was recently identified in the brain, pituitary gland and gonads of song bird, chicken and Japanese quail. The objectives of the present study are to characterise the expression of GnIHR mRNA and protein in the chicken pituitary gland, and to determine whether sexual maturation and gonadal steroids influence pituitary GnIHR mRNA abundance. GnIHR mRNA quantity was found to be significantly higher in diencephalon compared to either anterior pituitary gland or ovaries. GnIHR mRNA quantity was significantly higher in the pituitaries of sexually immature chickens relative to sexually mature chickens. Oestradiol or a combination of oestradiol and progesterone treatment caused a significant decrease in pituitary GnIHR mRNA quantity relative to vehicle controls. GnIHR-immunoreactive (ir) cells were identified in the chicken pituitary gland cephalic and caudal lobes. Furthermore, GnIHR-ir cells were found to be colocalised with luteinising hormone (LH)beta mRNA-, or follicle-stimulating hormone (FSH)beta mRNA-containing cells. GnIH treatment significantly decreased LH release from anterior pituitary gland slices collected from sexually immature, but not from sexually mature chickens. Taken together, GnIHR gene expression is possibly down regulated in response to a surge in circulating oestradiol and progesterone levels as the chicken undergoes sexual maturation to allow gonadotrophin secretion. Furthermore, GnIHR protein expressed in FSHbeta or LHbeta mRNA-containing cells is likely to mediate the inhibitory effect of GnIH on LH and FSH secretion.
Contribution of oligosaccharides to protection of the H,K-ATPase beta-subunit against trypsinolysis.
Crothers, James M; Asano, Shinji; Kimura, Tohru; Yoshida, Ayumi; Wong, Aline; Kang, Jung Wook; Forte, John G
2004-08-01
The proton-pumping H+,K+-adenosinetriphosphatase (H,K-ATPase), responsible for acid secretion by the gastric parietal cell, faces a harshly acidic environment, with some pepsin from neighboring chief cells, at its luminal surface. Its large catalytic alpha-subunit is mostly oriented cytoplasmically. The smaller beta-subunit (HKbeta), is mainly extracellular, with one transmembrane domain and a small cytoplasmic domain. Seven N-linked oligosaccharides in the extracellular domain of HKbeta are thought to contribute to protection of the H,K-ATPase, since previous work has shown that their complete removal, by peptide N-glycosidase F (PNGase F), greatly increased susceptibility of HKbeta to proteolysis. The possibility of graded protection by different numbers of oligosaccharides was investigated here with the use of mutant HKbeta cDNA, having various N-glycosylation sites mutated (Asn to Gln), transfected into HEK-293 cells. Membrane preparations, two days after transfection, were solubilized in 1% Triton X-100 and subjected to trypsinolysis (pH 8, 37 degrees C, trypsin:protein 1:10-1:25). Relative amounts of HKbeta remaining after 20 min trypsin were determined, after sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and probing of Western blots with an antibody to the HKbeta extracellular domain, by chemiluminescent development of blots and densitometry of resulting films. Maturely glycosylated HKbeta was made significantly more susceptible to trypsin than wild type when at least five oligosaccharides were deleted, while the high-mannose form (pre-beta), from the endoplasmic reticulum, became significantly more susceptible than wild-type pre-beta with removal of only two or more oligosaccharides. For each mutant, and wild type, pre-beta was consistently more susceptible than the mature form. While the number, and kind, of oligosaccharides seem to affect protection for HKbeta against trypsinolysis, other aspects of protein maturation, including proper folding of peptide domains and possible subtle alterations of conformation during Golgi processing, are also likely to contribute to this protection. Copyright 2004 Wiley-VCH Verlag GmbH and Co.
Ribel-Madsen, Rasmus; Poulsen, Pernille; Holmkvist, Johan; Mortensen, Brynjulf; Grarup, Niels; Friedrichsen, Martin; Jørgensen, Torben; Lauritzen, Torsten; Wojtaszewski, Jørgen F P; Pedersen, Oluf; Hansen, Torben; Vaag, Allan
2010-04-01
Phosphoinositide 3-kinase (PI3K) is a major effector in insulin signaling. rs361072, located in the promoter of the gene (PIK3CB) for the p110beta subunit, has previously been found to be associated with homeostasis model assessment for insulin resistance (HOMA-IR) in obese subjects. The aim was to investigate the influence of rs361072 on in vivo glucose metabolism, skeletal muscle PI3K subunit protein levels, and type 2 diabetes. The functional role of rs361072 was studied in 196 Danish healthy adult twins. Peripheral and hepatic insulin sensitivity was assessed by a euglycemic-hyperinsulinemic clamp. Basal and insulin-stimulated biopsies were taken from the vastus lateralis muscle, and tissue p110beta and p85alpha proteins were measured by Western blotting. The genetic association with type 2 diabetes and quantitative metabolic traits was investigated in 9,316 Danes with glucose tolerance ranging from normal to overt type 2 diabetes. While hepatic insulin resistance was similar in the fasting state, carriers of the minor G allele had lower hepatic glucose output (per-allele effect: -16%, P(add) = 0.004) during high physiological insulin infusion. rs361072 did not associate with insulin-stimulated peripheral glucose disposal despite a decreased muscle p85alpha:p110beta protein ratio (P(add) = 0.03) in G allele carriers. No association with HOMA-IR or type 2 diabetes (odds ratio 1.07, P = 0.5) was identified, and obesity did not interact with rs361072 on these traits. Our study suggests that the minor G allele of PIK3CB rs361072 associates with decreased muscle p85alpha:p110beta ratio and lower hepatic glucose production at high plasma insulin levels. However, no impact on type 2 diabetes prevalence was found.
Genetic basis of human complement C8[beta] deficiency
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaufmann, T.; Rittner, C.; Schneider, P.M.
1993-06-01
The eighth component of human complement (c8) is a serum protein consisting of three chains ([alpha], [beta], and [gamma]) and encoded by three different genes, C8A, C8B, and C8G. C8A and C8B are closely linked on chromosome 1p, whereas C8G is located on chromosome 9q. In the serum the [beta] subunit is non-covalently bound to the disulfide-linked [alpha]-[gamma] subunit. Patients with C8[beta] deficiency suffer from recurrent neisserial infections such as meningitis. Exon-specific polymerase chain reaction (PCR) amplification with primer pairs from the flanking intron sequences was used to amplify all 12 C8B exons separately. No difference regarding the exon sizesmore » was observed in a C8[beta]-deficient patient compared with a normal person. Therefore, direct sequence analysis of all exon-specific PCR products from normal and C8[beta]-deficient individuals was carried out. As a cause for C8[beta] deficiency, we found a single C-T exchange in exon 9 leading to a stop codon. An allele-specific PCR system was designed to detect the normal and the deficiency allele simultaneously. Using this approach as well as PCR typing of the Taql polymorphism located in intron 11, five families with 7 C8[beta]-deficient members were investigated. The mutation was not found to be restricted to one of the two Taql RFLP alleles. The mutant allele was observed in all families investigated and can therefore be regarded as a major cause of C8[beta] deficiency in the Caucasian population. In addition, two C8[beta]-deficient patients were found to be heterozygous for the C-T exchange. The molecular basis of the alleles without this point mutation also causing deficiency has not yet been defined. 23 refs., 4 figs., 3 tabs.« less
de Mouzon, J; Allavena, E; Schmitt, C; Frappé, M
2004-06-01
The objective of the study was to make an economic evaluation of in vitro fertilization and to determine the impact of some factors on its cost, particularly the choice between recombinant follicle stimulating hormone (r-FSH) and urinary FSH (u-FSH) for ovarian stimulation. Costs were calculated in a Public Health view, by studying two phases: the stimulation cycle (including down-regulation) and the pregnancy (including the neonatal period). The calculation has included the side effects and the frozen embryos transfers. Economic data came from various sources: the French nomenclature on medical treatments (NGAP), the French drugs dictionary (Vidal) and the French Information system medical plan (PMSI). FSH costs were computed according to the currently marketed products, i.e., Fostimon (Laboratoires Genévrier, Sophia-Antipolis, France) for urinary FSH, and Gonal-F (Laboratoires Serono, Boulogne-Billancourt, France) and Puregon (Laboratoires Organon, Puteaux, France) for recombinant FSH. Two different ways of efficacy between u-FSH and r-FSH were considered for the calculations, those reported in Daya's meta-analysis (3.7% in favour of r-FSH for the clinical pregnancy rate per initiated cycle) and in the only double-blind study (Frydman et al., no difference). The annual cost of ART reaches approximately 130 million Euros in France, for the cycles only, and 170 million Euros when including the pregnancy costs. Urinary FSH is much cheaper than recombinant FSH. Whereas the number of administered FSH units was higher in u-FSH, this results in a mean lower cost of 500 Euros per cycle (2422 Euros for u-FSH and 2959 Euros for r-FSH). For one complete year, in France, the potential over cost of recombinant products reaches 24 million Euros when considering only the cycles (128.4 vs. 104.0 million Euros) and 24-31 million Euros when pregnancies and babies (neonatal period) are considered (171.4 vs 140.7 and 147.0 million Euros, respectively). The IVF per baby cost can be estimated at 16 463 Euros for r-FSH and at 14 116 Euros (in case of equivalence between the two drugs) to 15 805 Euros (in case of a difference of 3.7% pregnancy per oocyte recovery) for u-FSH. This gives Public Health lighting to the choices in the matter of ovulation stimulation. It shows the economic impact of the choice in the FSH type.
Mechanism of abnormal growth in astrocytes derived from a mouse model of GM2 gangliosidosis.
Kawashima, Nagako; Tsuji, Daisuke; Okuda, Tetsuya; Itoh, Kohji; Nakayama, Ken-ichi
2009-11-01
Sandhoff disease is a progressive neurodegenerative disorder caused by mutations in the HEXB gene which encodes the beta-subunit of N-acetyl-beta-hexosaminidase A and B, resulting in the accumulation of the ganglioside GM2. We isolated astrocytes from the neonatal brain of Sandhoff disease model mice in which the N-acetyl-beta-hexosaminidase beta-subunit gene is genetically disrupted (ASD). Glycolipid profiles revealed that GM2/GA2 accumulated in the lysosomes and not on the cell surface of ASD astrocytes. In addition, GM3 was increased on the cell surface. We found remarkable differences in the cell proliferation of ASD astrocytes when compared with cells isolated from wild-type mice, with a faster growth rate of ASD cells. In addition, we observed increased extracellular, signal-regulated kinase (ERK) phosphorylation in ASD cells, but Akt phosphorylation was decreased. Furthermore, the phosphorylation of ERK in ASD cells was not dependent upon extracellular growth factors. Treatment of ASD astrocytes with recombinant N-acetyl-beta-hexosaminidase A resulted in a decrease of their growth rate and ERK phosphorylation. These results indicated that the up-regulation of ERK phosphorylation and the increase in proliferation of ASD astrocytes were dependent upon GM2/GA2 accumulation. These findings may represent a mechanism in linking the nerve cell death and reactive gliosis observed in Sandhoff disease.
Occurrence of two different forms of protocatechuate 3,4-dioxygenase in a Moraxella sp
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sterjiades, R.; Pelmont, J.
1989-02-01
Two alternative forms of protocatechuate 3,4-dioxygenase (PCase) have been purified from Moraxella sp. strain GU2, a bacterium that is able to grow on guaiacol or various other phenolic compounds as the sole source of carbon and energy. One of these forms (PCase-P) was induced by protocatechuate and had an apparent molecular weight of 220,000. The second form (PCase-G) was induced by guaiacol or other phenolic compounds, such as 2-ethoxyphenol or 4-hydroxybenzoate. It appeared to be smaller (M{sub r} 158,000), and its turnover number was about double that of the former enzyme. Both dioxygenases had similar properties and were built frommore » the association of equal amounts of nonidentical subunits, {alpha} and {beta}, which were estimated to have molecular weights of 29,500 and 25,500, respectively. The ({alpha}{beta}){sub 3} and ({alpha}{beta}){sub 4} structures were suggested for PCases G and P, respectively. On the basis of two-dimensional gel electrophoresis, the {alpha} and {beta} polypeptides of PCase-G differed from those of PCase-P. Amino acid analysis supported this conclusion. Both PCases, however, had several other properties in common. It is proposed that both isoenzymes were generated from different sets of {alpha} and {beta} subunits, and the significance of these data is discussed.« less
[The regulation of FSH release by the testis. Studies on inhibin].
Krause, W
1977-05-12
The FSH release from the hypophysis is suggested to be particularly regulated by a testicular hormone called inhibin. Origin, structure and target organs of inhibin are unknown. Experiments to test some hypotheses in this field are described. Adult male rats, prenatally treated with busulfan, show only Sertoli cells in the semiferous tubules. Experimental cryptorchidism and orchidectomy, however, leads to an increase in FSH levels as observed in normal animals. This indicates the role of Sertoli cells in FSH regulation. Ligation of efferent ducts of testes leads to an increase of FSH levels, too, indicating that an FSH-inhibiting principle cannot be absorbed. Interstitial testis fluid (ITF) of normal rats was applicated to immature female rats. Their FSH release is inhibited, visible in the lower ovarian weight gain following additional hCG-administration. Orchidectomized animals react with a decrease of FSH levels to the application of ITF. Therefore ITF seems to contain a FSH-inhibiting factor. Androgen binding protein-content of epididymes, however, is increased after repeated injections of ITF. It is concluded that testis (probably the Sertoli cells) produces a FSH-inhibiting factor, but ITF contains only small amounts of inhibin.
Age-specific reference values for serum FSH and estradiol levels throughout the reproductive period.
Grisendi, Valentina; Spada, Elena; Argento, Cindy; Plebani, Maddalena; Milani, Silvano; Seracchioli, Renato; Volpe, Annibale; La Marca, Antonio
2014-06-01
High serum day 3 FSH levels are associated with poor ovarian reserve and reduced fertility, but the interpretation of FSH values according to age is still not univocal. The purpose of this study was to determine age-dependent reference values in women with regular menstrual cycles and FSH as a guide for specialists. The study was performed at the Department of Mother-Infant of a University-based tertiary care centre. One-hundred ninety-two healthy normal menstruating women were recruited for the study. All patients attended the department on menstrual cycle day 3 for a blood sample for FSH and estradiol determination. A linear relationship between FSH or estradiol serum levels and age was observed. The FSH level increased by 0.11 IU for every year of age (1 IU for every 9 years of age). The values of FSH and estradiol corresponding to the 5th, 25th, 50th, 75th, 95th centiles for any specific age have been calculated. Serum FSH levels need to be interpreted according to age-dependent reference values. Serum FSH levels on 95th centile for any age may represent a warning sign for reduced ovarian reserve.
NASA Astrophysics Data System (ADS)
Liu, Timon C.; Li, Fan-Hui
2010-11-01
Photonic homeostatics is a discipline to study the establishment, maintenance, decay, upgrading and representation of function-specific homoestasis (FSH) by using photonics. FSH is a negative-feedback response of a biosystem to maintain the function-specific fluctuations inside the biosystem so that the function is perfectly performed. A stress may increase sirtuin 1 (SIRT1) activities above FSH-specific SIRT1 activity to induce a function far from its FSH. On the one hand, low level laser irradiation or monochromatic light (LLL) can not modulate a function in its FSH or a stress in its stress-specific homeostasis (StSH), but modulate a function far from its FSH or a stress far from its StSH. On the other hand, the biophotons from a biosystem with its function in its FSH should be less than the one from the biosystem with its function far from its FSH. The non-resonant interaction of low intensity laser irradiation or monochromatic light (LIL) and a kind of membrane protein can be amplified by all the membrane proteins if the function is far from its FSH. This amplification might hold for biophoton emission of the membrane protein so that the photonic spectroscopy can be used to represent the function far from its FSH, which is called photonomics.
Dysfunctional C8 beta chain in patients with C8 deficiency.
Tschopp, J; Penea, F; Schifferli, J; Späth, P
1986-12-01
Two sera from unrelated individuals, each lacking C8 activity, were examined by Western blot analysis. Using antisera raised against whole C8, the two sera are shown to lack the C8 beta chain, indicating a C8 beta deficiency, which is frequently observed in cases of dysfunctional C8. In contrast, by means of a specific anti-C8-beta antiserum, a C8 beta-like polypeptide chain of apparently identical molecular weight compared to normal C8 beta was detected. Digestion of normal and dysfunctional C8 beta with Staphylococcus aureus V8 protease revealed distinct differences in the enzymatic digestion pattern. We conclude that the dysfunction in the C8 protein in these two patients resides in the dysfunctional C8 beta chain, and that this form of C8 deficiency is distinct from C8 deficiencies previously reported, in which one or both C8 subunits are lacking.
da Silva, Júlio César Barboza; Ferreira, Roberta Machado; Maturana Filho, Milton; Naves, Julianne de Rezende; Santin, Thiago; Pugliesi, Guilherme; Madureira, Ed Hoffmann
2017-03-01
We aimed with the present study to evaluate the effects of FSH treatment (200 mg) split in four or six administrations on ovarian follicle stimulation and in vitro oocyte competence for embryo production in dairy cows with synchronized follicular wave emergence. On random days of the estrous cycle (Day 0), non-lactating Holstein cows received a progesterone (P4)-releasing intravaginal device and 2 mg estradiol benzoate IM. On Day 3, they received 0.530 mg sodium cloprostenol (PGF2α) IM. Control cows (n = 35) received no further treatments, whereas FSH-treated cows received 200 mg FSH split in four (FSH4 group; n = 33) or six (FSH6 group; n = 33) administration regimens. Starting on Day 4, cows in FSH4 group received 200 mg FSH split in four equivalent doses of 50 mg 12 h apart. Cows in FSH6 group received the same total FSH dose split in six equivalent doses of 33.3 mg 12 h apart, but treatments started on Day 3. On Day 7 AM (36 h of "coasting" period for FSH-treated groups), the P4 devices were removed and cows were subjected to ovum pick up (OPU). Viable oocytes were in vitro fertilized using sexed-sorted semen. Although FSH treatment did not (P > 0.1) increase the total number of follicles (Control, 53.2 ± 4.5 vs. FSH-treated, 51.4 ± 3.1), the two hormonal stimulation regimens, FSH4 and FSH6, increased the number of medium follicles (6-10 mm; 5.2 ± 0.5 vs. 18.1 ± 1.4; P < 0.0001) and reduced the number of small follicles (2-5.9 mm; 46.3 ± 5.1 vs. 31.0 ± 2.4 P < 0.0001). Also, FSH treatment or regimen did not increase (P > 0.1) the number of viable oocytes (Control, 12.6 ± 1.26 vs. FSH-treated, 12.70 ± 1.03), recovery rate (Control, 36.5% vs. FSH-treated, 36%) and the number of in vitro produced blastocyst (Control, 4.1 ± 0.52 vs. FSH-treated 4.3 ± 0.5). We concluded that FSH stimulation protocol proposed herein is effective to stimulate the growth of small antral follicle population prior to OPU, but it was ineffective to improve in vitro oocyte competence for embryo production in non-lactating Holstein cows with synchronized follicular wave emergence. Copyright © 2017 Elsevier Inc. All rights reserved.
Revelli, Alberto; Poso, Francesca; Gennarelli, Gianluca; Moffa, Federica; Grassi, Giuseppina; Massobrio, Marco
2006-07-18
Both recombinant FSH (r-FSH) and highly-purified, urinary FSH (HP-uFSH) are frequently used in ovulation induction associated with timed sexual intercourse. Their effectiveness is reported to be similar, and therefore the costs of treatment represent a major issue to be considered. Although several studies about costs in IVF have been published, data obtained in low-technology infertility treatments are still scarce. Two hundred and sixty infertile women (184 with unexplained infertility, 76 with CC-resistant polycystic ovary syndrome) at their first treatment cycle were randomized and included in the study. Ovulation induction was accomplished by daily administration of rFSH or HP-uFSH according to a low-dose, step-up regimen aimed to obtain a monofollicular ovulation. A bi- or tri-follicular ovulation was anyway accepted, whereas hCG was withdrawn and the cycle cancelled when more than three follicles greater than or equal to 18 mm diameter were seen at ultrasound. The primary outcome measure was the cost of therapy per delivered baby, estimated according to a cost-minimization analysis. Secondary outcomes were the following: monofollicular ovulation rate, total FSH dose, cycle cancellation rate, length of the follicular phase, number of developing follicles (>12 mm diameter), endometrial thickness at hCG, incidence of twinning and ovarian hyperstimulation syndrome, delivery rate. The overall FSH dose needed to achieve ovulation was significantly lower with r-FSH, whereas all the other studied variables did not significantly differ with either treatments. However, a trend toward a higher delivery rate with r-FSH was observed in the whole group and also when results were considered subgrouping patients according to the indication to treatment. Considering the significantly lower number of vials/patient and the slight (although non-significant) increase in the delivery rate with r-FSH, the cost-minimization analysis showed a 9.4% reduction in the overall therapy cost per born baby in favor of r-FSH.
Chen, Hao; Kshirsagar, Sarika; Jensen, Ingvill; Lau, Kevin; Simonson, Caitlin; Schluter, Samuel F
2010-02-01
Beta 2 microglobulin (beta2m) is an essential subunit of major histocompatibility complex (MHC) type I molecules. In this report, beta2m cDNAs were identified and sequenced from sandbar shark spleen cDNA library. Sandbar shark beta2m gene encodes one amino acid less than most teleost beta2m genes, and 3 amino acids less than mammal beta2m genes. Although sandbar shark beta2m protein contains one beta sheet less than that of human in the predicted protein structure, the overall structure of beta2m proteins is conserved during evolution. Germline gene for the beta2m in sandbar and nurse shark is present as a single locus. It contains three exons and two introns. CpG sites are evenly distributed in the shark beta2m loci. Several DNA repeat elements were also identified in the shark beta2m loci. Sequence analysis suggests that the beta2m locus is not linked to the MHC I loci in the shark genome.
Belkin, A M; Zhidkova, N I; Balzac, F; Altruda, F; Tomatis, D; Maier, A; Tarone, G; Koteliansky, V E; Burridge, K
1996-01-01
The cytoplasmic domains of integrins provide attachment of these extracellular matrix receptors to the cytoskeleton and play a critical role in integrin-mediated signal transduction. In this report we describe the identification, expression, localization, and initial functional characterization of a novel form of beta 1 integrin, termed beta 1D. This isoform contains a unique alternatively spliced cytoplasmic domain of 50 amino acids, with the last 24 amino acids encoded by an additional exon. Of these 24 amino acids, 11 are conserved when compared to the beta 1A isoform, but 13 are unique (Zhidkova, N. I., A. M. Belkin, and R. Mayne. 1995. Biochem. Biophys. Res. Commun. 214:279-285; van der Flier, A., I. Kuikman, C. Baudoin, R, van der Neuf, and A. Sonnenberg. 1995. FEBS Lett. 369:340-344). Using an anti-peptide antibody against the beta 1D integrin subunit, we demonstrated that the beta 1D isoform is synthesized only in skeletal and cardiac muscles, while very low amounts of beta 1A were detected by immunoblot in striated muscles. Whereas beta 1A could not be detected in adult skeletal muscle fibers and cardiomyocytes by immunofluorescence, beta 1D was localized to the sarcolemma of both cell types. In skeletal muscle, beta 1D was concentrated in costameres, myotendinous, and neuromuscular junctions. In cardiac muscle this beta 1 isoform was found in costamers and intercalated discs. beta 1D was associated with alpha 7A and alpha 7B in adult skeletal muscle. In cardiomyocytes of adult heart, alpha 7B was the major partner for the beta 1D isoform. beta 1D could not be detected in proliferating C2C12 myoblasts, but it appeared immediately after myoblast fusion and its amount continued to rise during myotube growth and maturation. In contrast, expression of the beta 1A isoform was downregulated during myodifferentiation in culture and it was completely displaced by beta 1D in mature differentiated myotubes. We also analyzed some functional properties of the beta 1D integrin subunit. Expression of human beta 1D in CHO cells led to its localization at focal adhesions. Clustering of this integrin isoform on the cell surface stimulated tyrosine phosphorylation of pp125FAK (focal adhesion kinase) and caused transient activation of mitogen-activated protein (MAP) kinases. These data indicate that beta 1D and beta 1A integrin isoforms are functionally similar with regard to integrin-mediated signaling.
Hook, Sharon E; Nagler, James J; Cavileer, Tim; Verducci, Joseph; Liu, Yushi; Hayton, William; Schultz, Irvin R
2011-02-01
Normal transcriptomic patterns along the brain-pituitary-gonad-liver (BPGL) axis should be better characterized if endocrine-disrupting compound-induced changes in gene expression are to be understood. Female rainbow trout were studied over a complete year-long reproductive cycle. Tissue samples from pituitary, ovary, and liver were collected for microarray analysis using the 16K Genomic Research on Atlantic Salmon Project (GRASP) microarray and for quantitative polymerase chain reaction measures of estrogen receptor (ER) isoform messenger RNA (mRNA) levels. Plasma was collected to determine levels of circulating estradiol-17β (E2), follicle-stimulating hormone (FSH), and luteinizing hormone (LH). As an a priori hypothesis, changes in gene expression were correlated to either circulating levels of E2, FSH, and LH, or ER mRNAs quantified by quantitative polymerase chain reaction. In the liver, most transcriptomic patterns correlated to levels of either E2, LH, or ERs. Fewer ovarian transcripts could be correlated to levels of E2, ERα, or FSH. No significant associations were obvious in the pituitary. As a post hoc hypothesis, changes in transcript abundance were compared with microarray features with known roles in gonadal maturation. Many altered transcripts in the ovary correlated to transcript levels of estradiol 17-beta-dehydrogenase 8 or 17 B HSD12, or to glycoprotein alpha chain 1 or 2. In the pituitary, genes involved with the growth axis (e.g., growth hormone, insulin-related growth factor binding protein) correlated with the most transcripts. These results suggest that transcriptional networks along the BPGL axis may be regulated by factors other than circulating steroid hormones. © 2010 SETAC.
Pulsatile LH secretion and ovarian follicular wave emergence and growth in anestrous ewes.
Seekallu, Srinivas V; Barrett, David M W; Toosi, Behzad M; Clarke, Kelsey; Ewen, Kirk A; Duggavathi, Rajesha; Davies, Kate L; Pattullo, Kim M; Bagu, Edward T; Rawlings, Norman C
2010-10-01
The objective of this study was to determine if pulsatile LH secretion was needed for ovarian follicular wave emergence and growth in the anestrous ewe. In Experiment 1, ewes were either large or small (10 x 0.47 or 5 x 0.47 cm, respectively; n = 5/group) sc implants releasing estradiol-17 beta for 10 d (Day 0 = day of implant insertion), to suppress pulsed LH secretion, but not FSH secretion. Five sham-operated control ewes received no implants. In Experiment 2, 12 ewes received large estradiol-releasing implants for 12 d (Day 0 = day of implant insertion); six were given GnRH (200 ng IV) every 4 h for the last 6 d that the implants were in place (to reinitiate pulsed LH secretion) whereas six Control ewes were given saline. Ovarian ultrasonography and blood sampling were done daily; blood samples were also taken every 12 min for 6 h on Days 5 and 9, and on Days 6 and 12 of the treatment period in Experiments 1 and 2, respectively. Treatment with estradiol blocked pulsatile LH secretion (P < 0.001). In Experiment 1, implant treatment halted follicular wave emergence between Days 2 and 10. In Experiment 2, follicular waves were suppressed during treatment with estradiol, but resumed following GnRH treatment. In both experiments, the range of peaks in serum FSH concentrations that preceded and triggered follicular wave emergence was almost the same as control ewes and those given estradiol implants alone or with GnRH; mean concentrations did not differ (P < 0.05). We concluded that some level of pulsatile LH secretion was required for the emergence of follicular waves that were triggered by peaks in serum FSH concentrations in the anestrous ewe. (c) 2010 Elsevier Inc. All rights reserved.
Xie, Gary; Forst, Christian; Bonner, Carol; Jensen, Roy A
2002-01-01
Tryptophan synthase consists of two subunits, alpha and beta. Two distinct subgroups of beta chain exist. The major group (TrpEb_1) includes the well-studied beta chain of Salmonella typhimurium. The minor group of beta chain (TrpEb_2) is most frequently found in the Archaea. Most of the amino-acid residues important for catalysis are highly conserved between both TrpE subfamilies. Conserved amino-acid residues of TrpEb_1 that make allosteric contact with the TrpEa subunit (the alpha chain) are absent in TrpEb_2. Representatives of Archaea, Bacteria and higher plants all exist that possess both TrpEb_1 and TrpEb_2. In those prokaryotes where two trpEb genes coexist, one is usually trpEb_1 and is adjacent to trpEa, whereas the second is trpEb_2 and is usually unlinked with other tryptophan-pathway genes. TrpEb_1 is nearly always partnered with TrpEa in the tryptophan synthase reaction. However, by default at least six lineages of the Archaea are likely to use TrpEb_2 as the functional beta chain, as TrpEb_1 is absent. The six lineages show a distinctive divergence within the overall TrpEa phylogenetic tree, consistent with the lack of selection for amino-acid residues in TrpEa that are otherwise conserved for interfacing with TrpEb_1. We suggest that the standalone function of TrpEb_2 might be to catalyze the serine deaminase reaction, an established catalytic capability of tryptophan synthase beta chains. A coincident finding of interest is that the Archaea seem to use the citramalate pathway, rather than threonine deaminase (IlvA), to initiate the pathway of isoleucine biosynthesis.
2010-01-01
Background Follicle stimulating hormone (FSH) and anti-Müllerian hormone (AMH) represent the two most frequently utilized laboratory tests in determining ovarian reserve (OR). This study determined the clinical significance of their concordance and discordance in female infertility patients. Methods We investigated 366 consecutive infertility patients (350 reached IVF), excluding women with polycystic ovarian syndrome (PCOS). They were considered to have normal FSH and AMH if values fell within age-specific (as-) 95% confidence intervals (CI), and to suffer from diminished ovarian reserve (DOR) if FSH exceeded and/or AMH fell below those. The two hormones, thus, could be concordant (Group I), both normal (IA) or abnormal (IB), show normal AMH/abnormal FSH (Group II) or normal FSH/abnormal AMH (Group III). Oocyte yields, stratified for age categories, were then studied in each group as reflection of OR. Results Oocyte yields significantly decreased from groups IA to II to III and IB. Predictive values of as-FSH/AMH patterns changed, however, at different ages. Except at very young and very old ages, normal as-AMH better predicted higher oocytes yields than normal as-FSH, though above age 42 years normal as-FSH predicts good oocyte yields even with abnormally low AMH. Under age 42 discrepancies between as- FSH and as-AMH remain similarly predictive of oocyte yields at all ages. Discussion Concordances and discordances between as-FSH and as-AMH improve OR assessments and predictability of oocyte yields in IVF. PMID:20565808
Medan, Mohamed S; Takedom, Toshiro; Aoyagi, Yoshito; Konishi, Masato; Yazawa, Shigeto; Watanabe, Gen; Taya, Kazuyoshi
2006-02-01
The hypothesis of the present study is that active immunization of cows against inhibin would neutralize endogenous inhibin, increase circulating levels of follicle stimulating hormone, and subsequently affect follicular dynamics and the ovulation rate during the estrous cycle. Thirteen cows were immunized against inhibin alpha-subunit and, 6 cows were immunized with a placebo. Both groups were given 4 booster immunizations 7, 14, 21, and 34 weeks after the primary injection. Ovaries were examined daily after the 2nd, 3rd, and 4th booster immunizations by transrectal ultrasonography for 25 days. After the 4th booster immunization, blood samples were collected daily for one complete estrous cycle to measure FSH and LH. The results showed that the immunized cows generated antibodies against inhibin, and that they had higher FSH levels compared with the controls. The number of follicular waves during the estrous cycle was higher in the immunized cows (3 or 4 waves) than in the controls (2 or 3 waves). Moreover, the immunized cows had a greater number of follicles during the estrous cycle compared with the control cows. The maximum number of follicles was 14.8 +/- 1.7 vs 5.4 +/- 0.2 in inhibin-immunized and control cows, respectively, during the first follicular wave and 13.9 +/- 1.9 vs 5.6 +/- 0.7, respectively, during the ovulatory wave. Multiple ovulations were increased in the immunized cows. However, the ovulation rate varied greatly in the immunized animals. In conclusion, immunization against inhibin increased FSH secretions during the estrous cycle in the cows. Moreover, the immunized cows had a greater number of follicular waves during the estrous cycle and a greater number of follicles, and this could be used as a potential source of oocytes for use in IVF/embryo transfer programs.
Zhang, Rui-Xin; Li, Aihui; Liu, Bing; Wang, Linbo; Ren, Ke; Zhang, Haiqing; Berman, Brian M; Lao, Lixing
2008-04-01
Although it has been shown that pro-inflammatory cytokines such as interleukin-1beta (IL-1beta) facilitate perception of noxious inputs at the spinal level, the mechanisms have not been understood. This study determined the cell type that produces IL-1beta, the co-localization of IL-1 receptor type I (IL-1RI) and Fos and NR1 in the spinal cord, and the effects of IL-1 receptor antagonist (IL-1ra) on NR1 phosphorylation and hyperalgesia in a rat model of inflammatory pain. Phosphorylation of NR1, an essential subunit of the NMDA receptor (NMDAR), is known to modulate NMDAR activity and facilitate pain. Hyperalgesia was induced by injecting complete Freund's adjuvant (CFA, 0.08ml, 40microg Mycobacterium tuberculosis) into one hind paw of each rat. Paw withdrawal latency (PWL) was tested before CFA (-48h) for baseline and 2 and 24h after CFA to assess hyperalgesia. IL-1ra was given (i.t.) 24h before CFA to block the action of basal IL-1beta and 2h prior to each of two PWL tests to block CFA-induced IL-1beta. Spinal cords were removed for double immunostaining of IL-1beta/neuronal marker and IL-1beta/glial cell markers, IL-1RI/Fos and IL-1RI/NR1, and for Western blot to measure NR1 phosphorylation. The data showed that: (1) astrocytes produce IL-1beta, (2) IL-1RI is localized in Fos- and NR1-immunoreactive neurons within the spinal dorsal horn, and (3) IL-1ra at 0.01mg/rat significantly increased PWL (P<0.05) and inhibited NR1 phosphorylation compared to saline control. The results suggest that spinal IL-1beta is produced by astrocytes and enhances NR1 phosphorylation to facilitate inflammatory pain.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boura, Evzen; Hurley, James H.
2012-03-15
MVB12-associated {beta}-prism (MABP) domains are predicted to occur in a diverse set of membrane-associated bacterial and eukaryotic proteins, but their existence, structure, and biochemical properties have not been characterized experimentally. Here, we find that the MABP domains of the MVB12A and B subunits of ESCRT-I are functional modules that bind in vitro to liposomes containing acidic lipids depending on negative charge density. The MABP domain is capable of autonomously localizing to subcellular puncta and to the plasma membrane. The 1.3-{angstrom} atomic resolution crystal structure of the MVB12B MABP domain reveals a {beta}-prism fold, a hydrophobic membrane-anchoring loop, and an electropositivemore » phosphoinositide-binding patch. The basic patch is open, which explains how it senses negative charge density but lacks stereoselectivity. These observations show how ESCRT-I could act as a coincidence detector for acidic phospholipids and protein ligands, enabling it to function both in protein transport at endosomes and in cytokinesis and viral budding at the plasma membrane.« less
Panayotou, G; Bax, B; Gout, I; Federwisch, M; Wroblowski, B; Dhand, R; Fry, M J; Blundell, T L; Wollmer, A; Waterfield, M D
1992-01-01
Circular dichroism and fluorescence spectroscopy were used to investigate the structure of the p85 alpha subunit of the PI 3-kinase, a closely related p85 beta protein, and a recombinant SH2 domain-containing fragment of p85 alpha. Significant spectral changes, indicative of a conformational change, were observed on formation of a complex with a 17 residue peptide containing a phosphorylated tyrosine residue. The sequence of this peptide is identical to the sequence surrounding Tyr751 in the kinase-insert region of the platelet-derived growth factor beta-receptor (beta PDGFR). The rotational correlation times measured by fluorescence anisotropy decay indicated that phosphopeptide binding changed the shape of the SH2 domain-containing fragment. The CD and fluorescence spectroscopy data support the secondary structure prediction based on sequence analysis and provide evidence for flexible linker regions between the various domains of the p85 proteins. The significance of these results for SH2 domain-containing proteins is discussed. Images PMID:1330535
mRNA-Selective Translation Induced by FSH in Primary Sertoli Cells
Musnier, Astrid; León, Kelly; Morales, Julia; Reiter, Eric; Boulo, Thomas; Costache, Vlad; Vourc'h, Patrick; Heitzler, Domitille; Oulhen, Nathalie; Poupon, Anne; Boulben, Sandrine; Cormier, Patrick
2012-01-01
FSH is a key hormonal regulator of Sertoli cell secretory activity, required to optimize sperm production. To fulfil its biological function, FSH binds a G protein-coupled receptor, the FSH-R. The FSH-R-transduced signaling network ultimately leads to the transcription or down-regulation of numerous genes. In addition, recent evidence has suggested that FSH might also regulate protein translation. However, this point has never been demonstrated conclusively yet. Here we have addressed this issue in primary rat Sertoli cells endogenously expressing physiological levels of FSH-R. We observed that, within 90 min of stimulation, FSH not only enhanced overall protein synthesis in a mammalian target of rapamycin-dependent manner but also increased the recruitment of mRNA to polysomes. m7GTP pull-down experiments revealed the functional recruitment of mammalian target of rapamycin and p70 S6 kinase to the 5′cap, further supported by the enhanced phosphorylation of one of p70 S6 kinase targets, the eukaryotic initiation factor 4B. Importantly, the scaffolding eukaryotic initiation factor 4G was also recruited, whereas eukaryotic initiation factor 4E-binding protein, the eukaryotic initiation factor 4E generic inhibitor, appeared to play a minor role in translational regulations induced by FSH, in contrast to what is generally observed in response to anabolic factors. This particular regulation of the translational machinery by FSH stimulation might support mRNA-selective translation, as shown here by quantitative RT-PCR amplification of the c-fos and vascular endothelial growth factor mRNA but not of all FSH target mRNA, in polysomal fractions. These findings add a new level of complexity to FSH biological roles in its natural target cells, which has been underappreciated so far. PMID:22383463
Sowers, MaryFran R; Zheng, Huiyong; Jannausch, Mary L; McConnell, Daniel; Nan, Bin; Harlow, Sioban; Randolph, John F
2010-05-01
The objective of the study was to describe bone loss rates across the transmenopause related to FSH staging and the final menstrual period (FMP). This was a population-based cohort of 629 women (baseline age 24-44 yr) with annual data points over 15 yr. Measures were bone mineral density (BMD), FSH to define four FSH stages, and menstrual bleeding cessation to define the FMP. Bone loss rates were reported by obesity status. Annualized rates of lumbar spine bone loss began in FSH stage 3, which occurs approximately 2 yr prior to the FMP (1.67%/yr); bone loss continued into FSH stage 4 (1.21%/yr). Mean spine BMD in FSH stage 4 was 6.4% less than spine BMD value in FSH stage 1. Annualized rates of femoral neck (FN) bone loss began in FSH stage 3 (0.55%/yr) and continued into FSH stage 4 (0.72%/yr). The FN difference between mean values in FSH stage 1 and FSH stage 4 was 5%. Annualized rates of spine bone loss in the 2 yr prior to the FMP were 1.7%/yr, 3.3%/yr in the 2 yr after the FMP, and 1.1%/yr in the 2- to 7-yr period after the FMP. Nonobese women had lower BMD levels and greater bone loss rates. Spine and FN bone loss accelerates in FSH stage 3. Bone loss also began to accelerate 2 yr before the FMP with the greatest loss occurring in the 2 yr after the FMP. Bone loss rates in both spine and FN BMD were greater in nonobese women than obese women.
Kretzschmar, D; Poeck, B; Roth, H; Ernst, R; Keller, A; Porsch, M; Strauss, R; Pflugfelder, G O
2000-01-01
Lysosomal protein trafficking is a fundamental process conserved from yeast to humans. This conservation extends to lysosome-like organelles such as mammalian melanosomes and insect eye pigment granules. Recently, eye and coat color mutations in mouse (mocha and pearl) and Drosophila (garnet and carmine) were shown to affect subunits of the heterotetrameric adaptor protein complex AP-3 involved in vesicle trafficking. Here we demonstrate that the Drosophila eye color mutant ruby is defective in the AP-3beta subunit gene. ruby expression was found in retinal pigment and photoreceptor cells and in the developing central nervous system. ruby mutations lead to a decreased number and altered size of pigment granules in various cell types in and adjacent to the retina. Humans with lesions in the related AP-3betaA gene suffer from Hermansky-Pudlak syndrome, which is caused by defects in a number of lysosome-related organelles. Hermansky-Pudlak patients have a reduced skin pigmentation and suffer from internal bleeding, pulmonary fibrosis, and visual system malfunction. The Drosophila AP-3beta adaptin also appears to be involved in processes other than eye pigment granule biogenesis because all ruby allele combinations tested exhibited defective behavior in a visual fixation paradigm. PMID:10790396
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chi, Seung-Wook; Lee, Si-Hyung; Kim, Do-Hyoung
2005-12-30
{alpha}-Conotoxin PIA is a novel nicotinic acetylcholine receptor (nAChR) antagonist isolated from Conus purpurascens that targets nAChR subtypes containing {alpha}6 and {alpha}3 subunits. {alpha}-conotoxin PIA displays 75-fold higher affinity for rat {alpha}6/{alpha}3{beta}2{beta}3 nAChRs than for rat {alpha}3{beta}2 nAChRs. We have determined the three-dimensional structure of {alpha}-conotoxin PIA by nuclear magnetic resonance spectroscopy. The {alpha}-conotoxin PIA has an '{omega}-shaped' overall topology as other {alpha}4/7 subfamily conotoxins. Yet, unlike other neuronally targeted {alpha}4/7-conotoxins, its N-terminal tail Arg{sup 1}-Asp{sup 2}-Pro{sup 3} protrudes out of its main molecular body because Asp{sup 2}-Pro{sup 3}-Cys{sup 4}-Cys{sup 5} forms a stable type I {beta}-turn. In addition, amore » kink introduced by Pro{sup 15} in the second loop of this toxin provides a distinct steric and electrostatic environment from those in {alpha}-conotoxins MII and GIC. By comparing the structure of {alpha}-conotoxin PIA with other functionally related {alpha}-conotoxins we suggest structural features in {alpha}-conotoxin PIA that may be associated with its unique receptor recognition profile.« less
Shimoyama, S; Gansauge, F; Gansauge, S; Oohara, T; Beger, H G
1995-12-01
The aim of this study was to elucidate the expression and distribution patterns of both integrins and extracellular matrix (ECM) molecules in chronic pancreatitis (CP) and pancreatic adenocarcinoma (PC) compared with normal pancreas (NP). Expression of nine alpha-subunits (alpha 2-alpha 6, alpha V, alpha L, alpha M, and alpha X), four beta-subunits (beta 1, beta 3-beta 5), and four ECM molecules (type IV collagen, laminin, fibronectin, and vitronectin) was investigated immunohistochemically. In CP, all integrins except alpha V showed nearly the same staining patterns compared with NP. Some acinar cells in CP expressed alpha V. Whereas alpha 2, alpha 3, and alpha 6 expression was stronger and diffuse, no alpha 5 expression was seen in PC. Basement membrane (BM) showed continuous staining in CP, whereas it showed discontinuous/absent staining in PC with antitype IV collagen, laminin, and vitronectin antibodies. Some carcinoma cells showed reverse correlation between alpha 2, alpha 3, and alpha 6 expression and type IV collagen and laminin expression. Fibronectin showed diffuse stromal expression in CP and PC. Some acinar cells or duct cells in CP carcinoma cells in PC showed intracellular VN expression. These results suggest that these integrins and ECM molecules are involved in inflammatory and malignant processes in pancreas.
McElduff, A; Watkinson, A; Hedo, J A; Gorden, P
1986-11-01
The insulin receptor is synthesized as a 190,000-Mr single-chain precursor that contains exclusively asparagine-N-linked high-mannose-type carbohydrate chains. In this study we have characterized the structure of the pro-receptor oligosaccharides. IM-9 lymphocytes were pulse-chase-labelled with [3H]mannose, and the insulin pro-receptor was isolated by immunoprecipitation and SDS/polyacrylamide-gel electrophoresis. The pro-receptor oligosaccharides were removed from the protein backbone with endoglycosidase H and analysed by h.p.l.c. Immediately after a [3H]mannose pulse the largest oligosaccharide found in the pro-receptor was Glc1Man9GlcNAc2; this structure represented only a small fraction (3%) of the total. The predominant oligosaccharides present in the pro-receptor were Man9GlcNAc2 (25%) and Man8GlcNAc2 (48%). Smaller oligosaccharides were also detected: Man7GlcNAc2 (18%), Man6GlcNAc2 (3%) and Man5GlcNAc2 (3%). The relative distribution of the different oligosaccharides did not change at 1, 2 or 3 h after the pulse with the exception of the rapid disappearance of the Glc1Man9GlcNAc2 component. The mature alpha- and beta-subunits of the insulin receptor are known to contain both high-mannose-type and complex-type oligosaccharides. We have also examined here the structure of the high-mannose chains of these subunits. The predominant species in the alpha-subunit was Man8GlcNAc2 whereas in the beta-subunit it was Man7GlcNAc2. These results demonstrate that most (approx. 75%) oligosaccharides of the insulin pro-receptor are chains of the type Man8GlcNAc2 or Man9GlcNAc2. Thus, assuming that a Glc3Man9GlcNAc2 species is transferred co-translationally, carbohydrate processing of the pro-receptor appears to be very rapid and limited to the removal of the three glucose residues and one mannose residue. Further mannose removal does not occur until the pro-receptor has been proteolytically cleaved. In addition, the degree of mannose trimming appears to be different in the alpha- and beta-subunits.
McElduff, A; Watkinson, A; Hedo, J A; Gorden, P
1986-01-01
The insulin receptor is synthesized as a 190,000-Mr single-chain precursor that contains exclusively asparagine-N-linked high-mannose-type carbohydrate chains. In this study we have characterized the structure of the pro-receptor oligosaccharides. IM-9 lymphocytes were pulse-chase-labelled with [3H]mannose, and the insulin pro-receptor was isolated by immunoprecipitation and SDS/polyacrylamide-gel electrophoresis. The pro-receptor oligosaccharides were removed from the protein backbone with endoglycosidase H and analysed by h.p.l.c. Immediately after a [3H]mannose pulse the largest oligosaccharide found in the pro-receptor was Glc1Man9GlcNAc2; this structure represented only a small fraction (3%) of the total. The predominant oligosaccharides present in the pro-receptor were Man9GlcNAc2 (25%) and Man8GlcNAc2 (48%). Smaller oligosaccharides were also detected: Man7GlcNAc2 (18%), Man6GlcNAc2 (3%) and Man5GlcNAc2 (3%). The relative distribution of the different oligosaccharides did not change at 1, 2 or 3 h after the pulse with the exception of the rapid disappearance of the Glc1Man9GlcNAc2 component. The mature alpha- and beta-subunits of the insulin receptor are known to contain both high-mannose-type and complex-type oligosaccharides. We have also examined here the structure of the high-mannose chains of these subunits. The predominant species in the alpha-subunit was Man8GlcNAc2 whereas in the beta-subunit it was Man7GlcNAc2. These results demonstrate that most (approx. 75%) oligosaccharides of the insulin pro-receptor are chains of the type Man8GlcNAc2 or Man9GlcNAc2. Thus, assuming that a Glc3Man9GlcNAc2 species is transferred co-translationally, carbohydrate processing of the pro-receptor appears to be very rapid and limited to the removal of the three glucose residues and one mannose residue. Further mannose removal does not occur until the pro-receptor has been proteolytically cleaved. In addition, the degree of mannose trimming appears to be different in the alpha- and beta-subunits. Images Fig. 1. PMID:3827820
Clinical relevance of combined FSH and AMH observations in infertile women.
Gleicher, Norbert; Kim, Ann; Kushnir, Vitaly; Weghofer, Andrea; Shohat-Tal, Aya; Lazzaroni, Emanuela; Lee, Ho-Joon; Barad, David H
2013-05-01
FSH and anti-Müllerian hormone (AMH) are, individually, widely used to assess functional ovarian reserve (FOR) but demonstrate discrepancies in efficacy. How predictive they are combined is unknown. The purpose of this study was to assess predictive values of different FSH and AMH combinations on in vitro fertilization (IVF). FSH and AMH levels in patients were categorized as low, normal, and high, based on age-specific 95% confidence intervals. This allowed for establishment of nine combinations of low, normal, or high FSH/AMH patient categories. With use of various statistical methods, patients in individual categories were then compared in outcomes. We investigated 544 consecutive infertility patients in their first IVF cycles. IVF cycles were managed. Oocyte yields and implantation and pregnancy rates, adjusted for age and fragile X mental retardation 1 (FMR1) genotypes/subgenotypes, were measured. The most notable repeated finding was a strong statistical association of the FSH/AMH high/high category (characterized by abnormally high FSH and AMH levels) with favorable IVF outcomes compared with outcomes for other FSH/AMH variations (4.34 times odds of high oocyte yields and 1.93 times odds of clinical pregnancy). Addition of age to the model only minimally further improved the odds of pregnancy to 2.03 times. The positive association with high oocyte yields, however, turned negative (0.75 times lower yields) with addition of FMR1 to the model for women with FSH/AMH high/high and the het-norm/low FMR1 subgenotype compared with women with the norm FMR1 genotype and other FSH/AMH categories. In the absence of het-norm/low FMR1, abnormally high FSH and AMH, a seemingly contradictory combination, reflects highly beneficial outcomes in IVF compared with the other FSH/AMH categories, suggesting greater importance of FSH in early follicle maturation than currently recognized. The study also confirms adverse outcome effects of het-norm/low FMR1 and, therefore, the gene's importance for reproductive success.
Zwart, R; Abraham, D; Oortgiesen, M; Vijverberg, H P
1994-08-22
Pharmacological characteristics of native neuronal nicotinic acetylcholine receptor-mediated ion currents in mouse N1E-115 neuroblastoma cells have been investigated by superfusion of voltage clamped cells with known concentrations of the agonists acetylcholine, nicotine and cytisine, and the antagonists alpha-bungarotoxin and neuronal bungarotoxin. The sensitivity of the nicotinic acetylcholine receptor for agonists followed the agonist potency rank-order: nicotine approximately acetylcholine > cytisine. The EC50 values of acetylcholine and nicotine are 78 microM and 76 microM, respectively. Equal concentrations of acetylcholine and nicotine induce inward currents with approximately the same peak amplitude whereas cytisine induces much smaller inward currents. Acetylcholine-induced currents are unaffected by high concentrations of alpha-bungarotoxin. Conversely, at 10 and 90 nM neuronal bungarotoxin reduces the amplitude of the 1 mM acetylcholine-induced inward current to 47% and 11% of control values, respectively. Both the agonist potency rank-order and the differential sensitivity to snake toxins of nicotinic receptors in N1E-115 cells are consistent with the known pharmacological profile of alpha 4 beta 2 nicotinic receptors expressed in Xenopus oocytes and distinct from those of all other nicotinic acetylcholine receptors of known functional subunit compositions. All data indicate that the native nicotinic acetylcholine receptor in N1E-115 cells is an assembly of alpha 4 and beta 2 subunits, the putative major subtype of nicotinic acetylcholine receptor in the brain.
Revelli, Alberto; Poso, Francesca; Gennarelli, Gianluca; Moffa, Federica; Grassi, Giuseppina; Massobrio, Marco
2006-01-01
Background Both recombinant FSH (r-FSH) and highly-purified, urinary FSH (HP-uFSH) are frequently used in ovulation induction associated with timed sexual intercourse. Their effectiveness is reported to be similar, and therefore the costs of treatment represent a major issue to be considered. Although several studies about costs in IVF have been published, data obtained in low-technology infertility treatments are still scarce. Methods Two hundred and sixty infertile women (184 with unexplained infertility, 76 with CC-resistant polycystic ovary syndrome) at their first treatment cycle were randomized and included in the study. Ovulation induction was accomplished by daily administration of rFSH or HP-uFSH according to a low-dose, step-up regimen aimed to obtain a monofollicular ovulation. A bi- or tri-follicular ovulation was anyway accepted, whereas hCG was withdrawn and the cycle cancelled when more than three follicles greater than or equal to 18 mm diameter were seen at ultrasound. The primary outcome measure was the cost of therapy per delivered baby, estimated according to a cost-minimization analysis. Secondary outcomes were the following: monofollicular ovulation rate, total FSH dose, cycle cancellation rate, length of the follicular phase, number of developing follicles (>12 mm diameter), endometrial thickness at hCG, incidence of twinning and ovarian hyperstimulation syndrome, delivery rate. Results The overall FSH dose needed to achieve ovulation was significantly lower with r-FSH, whereas all the other studied variables did not significantly differ with either treatments. However, a trend toward a higher delivery rate with r-FSH was observed in the whole group and also when results were considered subgrouping patients according to the indication to treatment. Conclusion Considering the significantly lower number of vials/patient and the slight (although non-significant) increase in the delivery rate with r-FSH, the cost-minimization analysis showed a 9.4% reduction in the overall therapy cost per born baby in favor of r-FSH. PMID:16848893
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Xiaoxia; University of Chinese Academy of Sciences, Beijing; Chen, Xiaowen
The glycoprotein subunit α (gsuα) gene encodes the shared α subunit of the three pituitary heterodimeric glycoprotein hormones: follicle-stimulating hormone β (Fshβ), luteinizing hormone β (Lhβ) and thyroid stimulating hormone β (Tshβ). In our current study, we identified and characterized the promoter region of zebrafish gsuα and generated a stable gsuα:EGFP transgenic line, which recapitulated the endogenous gsuα expression in the early developing pituitary gland. A relatively conserved regulatory element set is presented in the promoter regions of zebrafish and three other known mammalian gsuα promoters. Our results also demonstrated that the expression patterns of the gsuα:EGFP transgene were allmore » identical to those expression patterns of the endogenous gsuα expression in the pituitary tissue when our transgenic fish were treated with various endocrine chemicals, including forskolin (FSK), SP600125, trichostatin A (TSA), KClO{sub 4}, dexamethasone (Dex), β-estradiol and progesterone. Thus, this gsuα:EGFP transgenic fish reporter line provides another valuable tool for investigating the lineage development of gsuα-expressing gonadotrophins and the coordinated regulation of various glycoprotein hormone subunit genes. These reporter fish can serve as a novel platform to perform screenings of endocrine-disrupting chemicals (EDCs) in vivo as well. - Highlights: • Identification of the promoter of zebrafish glycoprotein subunit α (gsuα) gene • Generation of stable transmission gsuα:EGFP transgenic zebrafish reporter • Demonstration of the recapitulation of the gsuα:EGFP and endogenous gsuα expression • Suggestion of the gsuα:EGFP transgenic zebrafish as a novel platform for EDC study.« less
Genetic ablation of the alpha 6-integrin subunit in Tie1Cre mice enhances tumour angiogenesis.
Germain, Mitchel; De Arcangelis, Adèle; Robinson, Stephen D; Baker, Marianne; Tavora, Bernardo; D'Amico, Gabriela; Silva, Rita; Kostourou, Vassiliki; Reynolds, Louise E; Watson, Alan; Jones, J Louise; Georges-Labouesse, Elisabeth; Hodivala-Dilke, Kairbaan
2010-02-01
Laminins are expressed highly in blood vessel basement membranes and have been implicated in angiogenesis. alpha6beta1- and alpha6beta4-integrins are major receptors for laminins in endothelial cells, but the precise role of endothelial alpha6-integrin in tumour angiogenesis is not clear. We show that blood vessels in human invasive ductal carcinoma of the breast have decreased expression of the alpha6-integrin-subunit when compared with normal breast tissue. These data suggest that a decrease in alpha6-integrin-subunit expression in endothelial cells is associated with tumour angiogenesis. To test whether the loss of the endothelial alpha6-integrin subunit affects tumour growth and angiogenesis, we generated alpha6fl/fl-Tie1Cre+ mice and showed that endothelial deletion of alpha6-integrin is sufficient to enhance tumour size and tumour angiogenesis in both murine B16F0 melanoma and Lewis cell lung carcinoma. Mechanistically, endothelial alpha6-integrin deficiency elevated significantly VEGF-mediated angiogenesis both in vivo and ex vivo. In particular, alpha6-integrin-deficient endothelial cells displayed increased levels of VEGF-receptor 2 (VEGFR2) and VEGF-mediated downstream ERK1/2 activation. By developing the first endothelial-specific alpha6-knockout mice, we show that the expression of the alpha6-integrin subunit in endothelial cells acts as a negative regulator of angiogenesis both in vivo and ex vivo. Copyright 2009 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
ERIC Educational Resources Information Center
Moody, Teena D.; Watabe, Ayako M.; Indersmitten, Tim; Komiyama, Noboru H.; Grant, Seth G. N.; O'Dell, Thomas J.
2011-01-01
Through protein interactions mediated by their cytoplasmic C termini the GluN2A and GluN2B subunits of NMDA receptors (NMDARs) have a key role in the formation of NMDAR signaling complexes at excitatory synapses. Although these signaling complexes are thought to have a crucial role in NMDAR-dependent forms of synaptic plasticity such as long-term…
Albers-Wolthers, C H J; de Gier, J; Oei, C H Y; Schaefers-Okkens, A C; Kooistra, H S
2016-09-15
Determining the presence of functional gonadal tissue in dogs can be challenging, especially in bitches during anestrus or not known to have been ovariectomized, or in male dogs with nonscrotal testes. Furthermore, in male dogs treated with deslorelin, a slow-release GnRH agonist implant for reversible chemical castration, the verification of complete downregulation of the hypothalamic-pituitary-gonadal (HPG) axis can be difficult, especially if pretreatment parameters such as the size of the testes or prostate gland are not available. The aims of this study were to validate an immunoradiometric assay for measurement of FSH in canine urine, to determine if the urinary FSH to creatinine ratio can be used to verify the neuter status in bitches and male dogs, as an alternative to the plasma FSH concentration, and to determine if downregulation of the HPG axis is achieved in male dogs during deslorelin treatment. Recovery of added canine FSH and serial dilutions of urine reported that the immunoradiometric assay measures urinary FSH concentration accurately and with high precision. Plasma FSH concentrations (the mean of two samples, taken 40 minutes apart) and the urinary FSH to creatinine ratio were determined before gonadectomy and 140 days (median, range 121-225 days) and 206 days (median, range 158-294 days) after gonadectomy of 13 bitches and five male dogs, respectively, and in 13 male dogs before and 132 days (median, range 117-174 days) after administration of a deslorelin implant. In both bitches and male dogs, the plasma FSH concentration and the urinary FSH to creatinine ratio were significantly higher after gonadectomy, with no overlapping of their ranges. Receiver operating characteristic analysis of the urinary FSH to creatinine ratio revealed a cut-off value of 2.9 in bitches and 6.5 in males to verify the presence or absence of functional gonadal tissue. In male dogs treated with deslorelin, the plasma FSH concentrations and urinary FSH to creatinine ratios were significantly lower after administration of the implant, but their ranges overlapped. We conclude that the urinary FSH to creatinine ratio can be used to verify the neuter status of bitches and male dogs. However, it cannot be used for the assessment of complete downregulation of the HPG axis after administration of a deslorelin implant. The urinary FSH to creatinine ratio is preferable over the plasma FSH concentration because it involves only one sample that can be collected relatively easy and noninvasively. Copyright © 2016 Elsevier Inc. All rights reserved.
Cui, Z; Agarwal, A; da Silva, B F; Sharma, R; Sabanegh, E
2018-06-01
Nonobstructive azoospermia (NOA) patients present with high levels of serum FSH. At the protein level, the aetiology and pathways underlying different subtypes of NOA are unclear. The aim was to evaluate quantitatively differences in proteomic profiles of NOA patients presenting with normal serum FSH and normal testicular volume and high serum FSH and small testicular volume. The study comprised of 14 nonobstructive azoospermic men (N = 4; normal FSH and normal testicular volume and N = 10; high FSH and small testicular volume) and seven normozoospermic men. Proteomic analysis was done using LC-MS. GSTM3 and PGK2 were less abundant in the normal and high FSH group compared to controls. HSPA4L and HSPA4 were exclusively present in control group whereas HSP90AB1, HSPA1B, HSP90AA1 and HSPA2 were less abundant and exclusive to the normal and high FSH group. We have identified six heat-shock proteins that may have a role in the pathology of NOA. FSH and testicular volume by itself are not good markers of NOA. The inverse association of GSTM3 and PGK2 regulation with FSH levels along with 12 proteins exclusively in NOA groups suggests further evaluation of their predictive potential in a larger cohort of patients. © 2018 Blackwell Verlag GmbH.
Paluzzi, Jean-Paul; Vanderveken, Mark; O’Donnell, Michael J.
2014-01-01
A family of evolutionarily old hormones is the glycoprotein cysteine knot-forming heterodimers consisting of alpha- (GPA) and beta-subunits (GPB), which assemble by noncovalent bonds. In mammals, a common glycoprotein hormone alpha-subunit (GPA1) pairs with unique beta-subunits that establish receptor specificity, forming thyroid stimulating hormone (GPA1/TSHβ) and the gonadotropins luteinizing hormone (GPA1/LHβ), follicle stimulating hormone (GPA1/FSHβ), choriogonadotropin (GPA1/CGβ). A novel glycoprotein heterodimer was identified in vertebrates by genome analysis, called thyrostimulin, composed of two novel subunits, GPA2 and GPB5, and homologs occur in arthropods, nematodes and cnidarians, implying that this neurohormone system existed prior to the emergence of bilateral metazoans. In order to discern possible physiological roles of this hormonal signaling system in mosquitoes, we have isolated the glycoprotein hormone genes producing the alpha- and beta-subunits (AedaeGPA2 and AedaeGPB5) and assessed their temporal expression profiles in the yellow and dengue-fever vector, Aedes aegypti. We have also isolated a putative receptor for this novel mosquito hormone, AedaeLGR1, which contains features conserved with other glycoprotein leucine-rich repeating containing G protein-coupled receptors. AedaeLGR1 is expressed in tissues of the alimentary canal such as the midgut, Malpighian tubules and hindgut, suggesting that this novel mosquito glycoprotein hormone may regulate ionic and osmotic balance. Focusing on the hindgut in adult stage A. aegypti, where AedaeLGR1 was highly enriched, we utilized the Scanning Ion-selective Electrode Technique (SIET) to determine if AedaeGPA2/GPB5 modulated cation transport across this epithelial tissue. Our results suggest that AedaeGPA2/GPB5 does indeed participate in ionic and osmotic balance, since it appears to inhibit natriuresis and promote kaliuresis. Taken together, our findings imply this hormone may play an important role in ionic balance when levels of Na+ are limited and levels of K+ are in excess – such as during the digestion and assimilation of erythrocytes following vertebrate blood-feeding by females. PMID:24466069
Thyroid hormone is essential for pituitary somatotropes and lactotropes.
Stahl, J H; Kendall, S K; Brinkmeier, M L; Greco, T L; Watkins-Chow, D E; Campos-Barros, A; Lloyd, R V; Camper, S A
1999-04-01
Mice homozygous for a disruption in the alpha-subunit essential for TSH, LH, and FSH activity (alphaGsu-/-) exhibit hypothyroidism and hypogonadism similar to that observed in TSH receptor-deficient hypothyroid mice (hyt) and GnRH-deficient hypogonadal mutants (hpg). Although the five major hormone-producing cells of the anterior pituitary are present in alphaGsu-/- mice, the relative proportions of each cell type are altered dramatically. Thyrotropes exhibit hypertrophy and hyperplasia, and somatotropes and lactotropes are underrepresented. The size and number of gonadotropes in alphaGsu mutants are not remarkable in contrast to the hypertrophy characteristic of gonadectomized animals. The reduction in lactotropes is more severe in alphaGsu mutants (13-fold relative to wild-type) than in hyt or hpg mutants (4.5- and 1.5-fold, respectively). In addition, T4 replacement therapy of alphaGsu mutants restores lactotropes to near-normal levels, illustrating the importance of T4, but not alpha-subunit, for lactotrope proliferation and function. T4 replacement is permissive for gonadotrope hypertrophy in alphaGsu mutants, consistent with the role for T4 in the function of gonadotropes. This study reveals the importance of thyroid hormone in developing the appropriate proportions of anterior pituitary cell types.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geng, Wenxin; Yan, Xingrong; Du, Huicong
Highlights: •A GST-FSH fusion protein was successfully expressed in E. coli. •Immunization with GST-FSH antigen can raise high-titer anti-FSH polyclonal sera. •Anti-FSH polyclonal sera can neutralize osteoclastogenic effect of FSH in vitro. •FSH immunization can prevent bone loss in a rat osteoporosis model. -- Abstract: Osteoporosis, a metabolic bone disease, threatens postmenopausal women globally. Hormone replacement therapy (HTR), especially estrogen replacement therapy (ERT), is used widely in the clinic because it has been generally accepted that postmenopausal osteoporosis is caused by estrogen deficiency. However, hypogonadal α and β estrogen receptor null mice were only mildly osteopenic, and mice with eithermore » receptor deleted had normal bone mass, indicating that estrogen may not be the only mediator that induces osteoporosis. Recently, follicle-stimulating hormone (FSH), the serum concentration of which increases from the very beginning of menopause, has been found to play a key role in postmenopausal osteoporosis by promoting osteoclastogenesis. In this article, we confirmed that exogenous FSH can enhance osteoclast differentiation in vitro and that this effect can be neutralized by either an anti-FSH monoclonal antibody or anti-FSH polyclonal sera raised by immunizing animals with a recombinant GST-FSHβ fusion protein antigen. Moreover, immunizing ovariectomized rats with the GST-FSHβ antigen does significantly prevent trabecular bone loss and thereby enhance the bone strength, indicating that a FSH-based vaccine may be a promising therapeutic strategy to slow down bone loss in postmenopausal women.« less
Analysis of molecular assemblies by flow cytometry: determinants of Gi1 and by binding
NASA Astrophysics Data System (ADS)
Sarvazyan, Noune A.; Neubig, Richard R.
1998-05-01
We report here a novel application of flow cytometry for the quantitative analysis of the high affinity interaction between membrane proteins both in detergent solutions and when reconstituted into lipid vesicles. The approach is further advanced to permit the analysis of binding to expressed protein complexes in native cell membranes. The G protein heterotrimer signal transduction function links the extracellularly activated transmembrane receptors and intracellular effectors. Upon activation, (alpha) and (beta) (gamma) subunits of G protein undergo a dissociation/association cycle on the cell membrane interface. The binding parameters of solubilized G protein (alpha) and (beta) (gamma) subunits have been defined but little is known quantitatively about their interactions in the membrane. Using a novel flow cytometry approach, the binding of low nanomolar concentrations of fluorescein-labeled G(alpha) i1 (F- (alpha) ) to (beta) (gamma) both in detergent solution and in a lipid environment was quantitatively compared. Unlabeled (beta) $gama reconstituted in biotinylated phospholipid vesicles bound F-(alpha) tightly (Kd 6 - 12 nM) while the affinity for biotinylated-(beta) (gamma) in Lubrol was even higher (Kd of 2.9 nM). The application of this approach to proteins expressed in native cell membranes will advance our understanding of G protein function in context of receptor and effector interaction. More generally, this approach can be applied to study the interaction of any fluorescently labeled protein with a membrane protein which can be expressed in Sf9 plasma membranes.
Insulin resistance in striated muscle-specific integrin receptor beta1-deficient mice.
Zong, Haihong; Bastie, Claire C; Xu, Jun; Fassler, Reinhard; Campbell, Kevin P; Kurland, Irwin J; Pessin, Jeffrey E
2009-02-13
Integrin receptor plays key roles in mediating both inside-out and outside-in signaling between cells and the extracellular matrix. We have observed that the tissue-specific loss of the integrin beta1 subunit in striated muscle results in a near complete loss of integrin beta1 subunit protein expression concomitant with a loss of talin and to a lesser extent, a reduction in F-actin content. Muscle-specific integrin beta1-deficient mice had no significant difference in food intake, weight gain, fasting glucose, and insulin levels with their littermate controls. However, dynamic analysis of glucose homeostasis using euglycemichyperinsulinemic clamps demonstrated a 44 and 48% reduction of insulin-stimulated glucose infusion rate and glucose clearance, respectively. The whole body insulin resistance resulted from a specific inhibition of skeletal muscle glucose uptake and glycogen synthesis without any significant effect on the insulin suppression of hepatic glucose output or insulin-stimulated glucose uptake in adipose tissue. The reduction in skeletal muscle insulin responsiveness occurred without any change in GLUT4 protein expression levels but was associated with an impairment of the insulin-stimulated protein kinase B/Akt serine 473 phosphorylation but not threonine 308. The inhibition of insulin-stimulated serine 473 phosphorylation occurred concomitantly with a decrease in integrin-linked kinase expression but with no change in the mTOR.Rictor.LST8 complex (mTORC2). These data demonstrate an in vivo crucial role of integrin beta1 signaling events in mediating cross-talk to that of insulin action.
Laser crosslinking of E. coli RNA polymerase and T7 DNA.
Harrison, C A; Turner, D H; Hinkle, D C
1982-01-01
The first photochemical crosslinking of a protein to a nucleic acid using laser excitation is reported. A single, 120 mJ, 20 ns pulse at 248 nm crosslinks about 10% of bound E. coli RNA polymerase to T7 DNA under the conditions studied. The crosslinking yield depends on mercaptoethanol concentration, and is a linear function of laser intensity. The protein subunits crosslinked to DNA are beta, beta' and sigma. PMID:7045809
Mining the Immune Cell Proteome to Identify Ovarian Cancer-Specific Biomarkers
2013-11-01
transcription 4 (STAT4) Ras-related C3 botulinum toxin substrate 3 (RAC3) Serine/ threonine -protein phosphatase 2A catalytic subunit beta isoform (PP2AB...Mitogen-activated protein kinase 14 (MK14) Wnt signaling pathway (6) Beta-arrestin-1 (ARRB1) Serine/ threonine -protein phosphatase 2A catalytic...carried the diagnosis of chronic hypertension, diabetes , anti-phospholipid lipid antibody syndrome, or systemic lupus erythematous. Subjects were also
Radicioni, A F; Di Giorgio, G; Grugni, G; Cuttini, M; Losacco, V; Anzuini, A; Spera, S; Marzano, C; Lenzi, A; Cappa, M; Crinò, A
2012-01-01
Hypogonadism in Prader-Willi syndrome (PWS) is generally attributed to hypothalamic dysfunction or to primary gonadal defect, but pathophysiology is still unclear. To investigate the aetiology of hypothalamic-pituitary-gonadal axis dysfunction in PWS males. Clinical examination and blood sampling for luteinizing hormone (LH), follicle-stimulating hormone (FSH), testosterone, inhibin B and sexhormone-binding globulin (SHBG) were performed in 34 PWS patients, age 5·1-42·7 years, and in 125 healthy males of same age range. All participants were divided into two groups : < or ≥13·5 years. Pubertal PWS patients showed an arrest of pubertal development. Patients <13·5 years had normal LH, FSH, testosterone and 7/10 had low inhibin B. Among those ≥13·5 years, 8/24 patients had normal LH and testosterone, high FSH and low inhibin B. 5/24 had low FSH, LH, testosterone and inhibin B; one showed normal LH and FSH despite low testosterone and inhibin B; 4/24 had low testosterone and LH but normal FSH despite low inhibin B; 6/24 showed high FSH, low inhibin B and normal LH despite low testosterone. Compared with controls, patients <13·5 years had lower LH, inhibin B, similar FSH, testosterone, SHBG levels and testicular volume; those ≥13·5 years had smaller testicular volume, near-significantly lower LH, testosterone, SHBG, inhibin B and higher FSH. PWS patients display heterogeneity of hypogonadism: (i) hypogonadotropic hypogonadism of central origin for LH and/or FSH; (ii) early primary testicular dysfunction (Sertoli cells damage); and (iii) a combined hypogonadism (testicular origin for FSH-inhibin B axis and central origin for LH-T axis). © 2011 Blackwell Publishing Ltd.
Yu, Chunxiao; Zhang, Xu; Zhang, Haiqing; Guan, Qingbo; Zhao, Jiajun; Xu, Jin
2015-01-01
Objective The objectives of this study were to observe the changes in follicle-stimulating hormone (FSH) and bone mineral density (BMD) in postmenopausal women, to research the relationship between FSH and postmenopausal osteoporosis, and to observe the effects of FSH on osteoclast differentiation in RAW264.7 cells. Methods We analyzed 248 postmenopausal women with normal bone metabolism. A radioimmunoassay (RIA) was used to detect serum FSH, luteinizing hormone (LH), and estradiol (E2). Dual-energy X-ray absorptiometry was used to measure forearm BMD. Then, we analyzed the age-related changes in serum FSH, LH and E2. Additionally, FSH serum concentrations were compared between a group of postmenopausal women with osteoporosis and a control group. Osteoclasts were induced from RAW264.7 cells in vitro by receptor activator of nuclear factor kappa B ligand (RANKL), and these cells were treated with 0, 5, 10, and 20 ng/ml FSH. After the osteoclasts matured, tartrate-resistant acid phosphatase (TRAP) staining was used to identify osteoclasts, and the mRNA expression levels of genes involved in osteoclastic phenotypes and function, such as receptor activator of NF-κB (Rank), Trap, matrix metalloproteinase-9 (Mmp-9) and Cathepsin K, were detected in different groups using real-time PCR (polymerase chain reaction). Results 1. FSH serum concentrations in postmenopausal women with osteoporosis increased notably compared with the control group. 2. RANKL induced RAW264.7 cell differentiation into mature osteoclasts in vitro. 3. FSH increased mRNA expression of genes involved in osteoclastic phenotypes and function, such as Rank, Trap, Mmp-9 and Cathepsin K, in a dose-dependent manner. Conclusions The circulating concentration of FSH may play an important role in the acceleration of bone loss in postmenopausal women. FSH increases osteoclastogenesis in vitro. PMID:26241313
Wang, Jie; Zhang, Wenwen; Yu, Chunxiao; Zhang, Xu; Zhang, Haiqing; Guan, Qingbo; Zhao, Jiajun; Xu, Jin
2015-01-01
The objectives of this study were to observe the changes in follicle-stimulating hormone (FSH) and bone mineral density (BMD) in postmenopausal women, to research the relationship between FSH and postmenopausal osteoporosis, and to observe the effects of FSH on osteoclast differentiation in RAW264.7 cells. We analyzed 248 postmenopausal women with normal bone metabolism. A radioimmunoassay (RIA) was used to detect serum FSH, luteinizing hormone (LH), and estradiol (E2). Dual-energy X-ray absorptiometry was used to measure forearm BMD. Then, we analyzed the age-related changes in serum FSH, LH and E2. Additionally, FSH serum concentrations were compared between a group of postmenopausal women with osteoporosis and a control group. Osteoclasts were induced from RAW264.7 cells in vitro by receptor activator of nuclear factor kappa B ligand (RANKL), and these cells were treated with 0, 5, 10, and 20 ng/ml FSH. After the osteoclasts matured, tartrate-resistant acid phosphatase (TRAP) staining was used to identify osteoclasts, and the mRNA expression levels of genes involved in osteoclastic phenotypes and function, such as receptor activator of NF-κB (Rank), Trap, matrix metalloproteinase-9 (Mmp-9) and Cathepsin K, were detected in different groups using real-time PCR (polymerase chain reaction). 1. FSH serum concentrations in postmenopausal women with osteoporosis increased notably compared with the control group. 2. RANKL induced RAW264.7 cell differentiation into mature osteoclasts in vitro. 3. FSH increased mRNA expression of genes involved in osteoclastic phenotypes and function, such as Rank, Trap, Mmp-9 and Cathepsin K, in a dose-dependent manner. The circulating concentration of FSH may play an important role in the acceleration of bone loss in postmenopausal women. FSH increases osteoclastogenesis in vitro.
Berkkanoglu, Murat; Ozgur, Kemal
2010-07-01
To find out the optimum maximal dosage of recombinant follicle stimulating hormone (rFSH) in microdose gonadotropin-releasing hormone analog (GnRH-a) flare cycles in poor responders. Prospective randomized study. Private infertility clinic. A total of 119 women were taken into the study. The study group underwent a microdose protocol with a GnRH-agonist followed by rFSH administration. On the third day of GnRH-a administration, 119 patients were randomized in three groups to receive daily fixed doses of 300 IU of rFSH (group A, n = 38), or 450 IU of rFSH (group B, n = 39), or 600 IU of rFSH (group C, n = 42). Peak E(2) levels, days of stimulation with rFSH, total rFSH dosage, total number of oocytes retrieved, M2 oocytes retrieved, total number of embryos, number of embryos transferred, number of Grade-1 embryos transferred, clinical pregnancy rate (positive fetal cardiac activity), and cancellation rates of stimulation and embryo transfer. Clinical pregnancy rates were 13.1%, 15.3%, and 16.1% for group A, group B, and group C, respectively. There were no significant differences in the age, peak serum E(2) concentration, days of stimulation with rFSH, total number of M2 oocytes retrieved, number of embryos transferred, clinical pregnancy rates, and cancellation rates of stimulation and embryo transfer between the three groups except for total rFSH dosage. There is no need to use doses above 300 IU of rFSH to increase the pregnancy rate in microdose cycles. In addition, because the duration of stimulation does not differ between the groups, the usage of 300 IU rFSH in microdose cycles results in less total amount of rFSH consumed in a cycle compared with higher dosages, and this would obviously cost less money to the patients. Copyright 2010 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Activation of IKKalpha and IKKbeta through their fusion with HTLV-I tax protein.
Xiao, G; Sun, S C
2000-10-26
Human T-cell leukemia virus type I (HTLV-I) Tax protein persistently stimulates the activity of IkappaB kinase (IKK), resulting in constitutive activation of the transcription factor NF-kappaB. Tax activation of IKK requires physical interaction of this viral protein with the IKK regulatory subunit, IKKgamma. The Tax/IKKgamma interaction allows Tax to engage the IKK catalytic subunits, IKKalpha and IKKbeta, although it remains unclear whether this linker function of IKKgamma is sufficient for supporting the Tax-specific IKK activation. To address this question, we have examined the sequences of IKKgamma required for modulating the Tax/IKK signaling. We demonstrate that when fused to Tax, a small N-terminal fragment of IKKgamma, containing its minimal IKKalpha/beta-binding domain, is sufficient for bringing Tax to and activating the IKK catalytic subunits. Disruption of the IKKalpha/beta-binding activity of this domain abolishes its function in modulating the Tax/IKK signaling. We further demonstrate that direct fusion of Tax to IKKalpha and IKKbeta leads to activation of these kinases. These findings suggest that the IKKgamma-directed Tax/IKK association serves as a molecular trigger for IKK activation.
Purification and characterization of the three Snf1-activating kinases of Saccharomyces cerevisiae.
Elbing, Karin; McCartney, Rhonda R; Schmidt, Martin C
2006-02-01
Members of the Snf1/AMPK family of protein kinases are activated by distinct upstream kinases that phosphorylate a conserved threonine residue in the Snf1/AMPK activation loop. Recently, the identities of the Snf1- and AMPK-activating kinases have been determined. Here we describe the purification and characterization of the three Snf1-activating kinases of Saccharomyces cerevisiae. The identities of proteins associated with the Snf1-activating kinases were determined by peptide mass fingerprinting. These kinases, Sak1, Tos3 and Elm2 do not appear to require the presence of additional subunits for activity. Sak1 and Snf1 co-purify and co-elute in size exclusion chromatography, demonstrating that these two proteins form a stable complex. The Snf1-activating kinases phosphorylate the activation loop threonine of Snf1 in vitro with great specificity and are able to do so in the absence of beta and gamma subunits of the Snf1 heterotrimer. Finally, we showed that the Snf1 kinase domain isolated from bacteria as a GST fusion protein can be activated in vitro and shows substrate specificity in the absence of its beta and gamma subunits.
Chen, Tianfeng; Wong, Yum-Shing; Zheng, Wenjie
2006-11-01
A fast protein liquid chromatographic method for purification of selenium-containing phycocyanin (Se-PC) from selenium-enriched Spirulina platensis was described in this study. The purification procedures involved fractionation by ammonium sulfate precipitation, DEAE-Sepharose ion-exchange chromatography and Sephacry S-300 size exclusion chromatography. The purity ratio (A620/A280) and the separation factor (A620/A655) of the purified Se-PC were 5.12 and 7.92, respectively. The Se concentration of purified Se-PC was 496.5 microg g(-1) protein, as determined by ICP-AES analysis. The purity of the Se-PC was further characterized by UV-VIS and fluorescence spectrometry, SDS-PAGE, RP-HPLC and gel filtration HPLC. The apparent molecular mass of the native Se-PC determined by gel filtration HPLC was 109 kDa, indicating that the protein existed as a trimer. SDS-PAGE of the purified Se-PC yielded two major bands corresponding to the alpha and beta subunits. A better separation of these two subunits was obtained by RP-HPLC. Identification of the alpha and beta subunits separated by SDS-PAGE and RP-HPLC was achieved by peptide mass fingerprinting (PMF) using MALDI-TOF-TOF mass spectrometry.
Eukaryotic RNA polymerase subunit RPB8 is a new relative of the OB family.
Krapp, S; Kelly, G; Reischl, J; Weinzierl, R O; Matthews, S
1998-02-01
RNA polymerase II subunit RPB8 is an essential subunit that is highly conserved throughout eukaryotic evolution and is present in all three types of nuclear RNA polymerases. We report the first high resolution structural insight into eukaryotic RNA polymerase architecture with the solution structure of RPB8 from Saccharomyces cerevisiae. It consists of an eight stranded, antiparallel beta-barrel, four short helical regions and a large, unstructured omega-loop. The strands are connected in classic Greek-key fashion. The overall topology is unusual and contains a striking C2 rotational symmetry. Furthermore, it is most likely a novel associate of the oligonucleotide/oligosaccharide (OB) binding protein class.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiong, J.-P.; Stehle, T.; Zhang, R.
The structural basis for the divalent cation-dependent binding of heterodimeric alpha beta integrins to their ligands, which contain the prototypical Arg-Gly-Asp sequence, is unknown. Interaction with ligands triggers tertiary and quaternary structural rearrangements in integrins that are needed for cell signaling. Here we report the crystal structure of the extracellular segment of integrin alpha Vbeta 3 in complex with a cyclic peptide presenting the Arg-Gly-Asp sequence. The ligand binds at the major interface between the alpha V and beta 3 subunits and makes extensive contacts with both. Both tertiary and quaternary changes are observed in the presence of ligand. Themore » tertiary rearrangements take place in beta A, the ligand-binding domain of beta 3; in the complex, beta A acquires two cations, one of which contacts the ligand Asp directly and the other stabilizes the ligand-binding surface. Ligand binding induces small changes in the orientation of alpha V relative to beta 3.« less
Engelke, Michael; Friedrich, Olaf; Budde, Petra; Schäfer, Christina; Niemann, Ursula; Zitt, Christof; Jüngling, Eberhard; Rocks, Oliver; Lückhoff, Andreas; Frey, Jürgen
2002-07-17
Transient receptor potential proteins (TRP) are supposed to participate in the formation of store-operated Ca(2+) influx channels by co-assembly. However, little is known which domains facilitate the interaction of subunits. Contribution of the N-terminal coiled-coil domain and ankyrin-like repeats and the putative pore region of the mouse TRP1beta (mTRP1beta) variant to the formation of functional cation channels were analyzed following overexpression in HEK293 (human embryonic kidney) cells. MTRP1beta expressing cells exhibited enhanced Ca(2+) influx and enhanced whole-cell membrane currents compared to mTRP1beta deletion mutants. Using a yeast two-hybrid assay only the coiled-coil domain facilitated homodimerization of the N-terminus. These results suggest that the N-terminus of mTRP1beta is required for structural organization thus forming functional channels.
Bozzo, Gale G; Raghothama, Kashchandra G; Plaxton, William C
2004-01-01
An intracellular acid phosphatase (IAP) from P(i)-starved (-P(i)) tomato ( Lycopersicon esculentum ) suspension cells has been purified to homogeneity. IAP is a purple acid phosphatase (PAP), as the purified protein was violet in colour (lambda(max)=546 nm) and was insensitive to L-tartrate. PAGE, periodic acid-Schiff staining and peptide mapping demonstrated that the enzyme exists as a 142 kDa heterodimer composed of an equivalent ratio of glycosylated and structurally dissimilar 63 (alpha-subunit) and 57 kDa (beta-subunit) polypeptides. However, the nine N-terminal amino acids of the alpha- and beta-subunits were identical, exhibiting similarity to the deduced N-terminal portions of several putative plant PAPs. Quantification of immunoblots probed with rabbit anti-(tomato acid phosphatase) immune serum revealed that the 4-fold increase in IAP activity due to P(i)-deprivation was correlated with similar increases in the amount of antigenic IAP alpha- and beta-subunits. IAP displayed optimal activity at pH 5.1, was activated 150% by 10 mM Mg(2+), but was potently inhibited by Zn(2+), Cu(2+), Fe(3+), molybdate, vanadate, fluoride and P(i). Although IAP demonstrated broad substrate selectivity, its specificity constant ( V (max)/ K (m)) with phosphoenolpyruvate was >250% greater than that obtained with any other substrate. IAP exhibited significant peroxidase activity, which was optimal at pH 9.0 and insensitive to Mg(2+) or molybdate. This IAP is proposed to scavenge P(i) from intracellular phosphate esters in -P(i) tomato. A possible secondary IAP role in the metabolism of reactive oxygen species is discussed. IAP properties are compared with those of two extracellular PAP isoenzymes that are secreted into the medium of -P(i) tomato cells [Bozzo, Raghothama and Plaxton (2002) Eur. J. Biochem. 269, 6278-6286]. PMID:14521509
Parcej, D N; Scott, V E; Dolly, J O
1992-11-17
Neuronal acceptors for alpha-dendrotoxin (alpha-DTX) have recently been purified from mammalian brain and shown to consist of two classes of subunit, a larger (approximately 78,000 M(r)) protein (alpha) whose N-terminal sequence is identical to that of a cloned, alpha-DTX-sensitive K+ channel, and a novel M(r) 39,000 (beta) polypeptide of unknown function. However, little information is available regarding the oligomeric composition of these native molecules. By sedimentation analysis of alpha-DTX acceptors isolated from bovine cortex, two species have been identified. A minority of these oligomers contain only the larger protein, while the vast majority possess both subunits. Based on accurate determination of the molecular weights of these two forms it is proposed that alpha-DTX-sensitive K+ channels exist as alpha 4 beta 4 complexes because this combination gives the best fit to the experimental data.
Immunochemical analysis of Micrococcus lysodeikticus (luteus) F1-ATPase and its subunits.
Urban, C; Salton, M R
1983-08-31
The F1-ATPase from Micrococcus lysodeikticus has been purified to 95% protein homogeneity in this laboratory and as all other bacterial F1S, possesses five distinct subunits with molecular weights ranging from 60 000 to 10 000 (Huberman, M. and Salton, M.R.J. (1979) Biochim. Biophys. Acta 547, 230-240). In this communication, we demonstrate the immunochemical reactivities of antibodies to native and SDS-dissociated subunits with the native and dissociated F1-ATPase and show that: (1) the antibodies generated to the native or SDS-dissociated subunits react with the native molecule; (2) all of the subunits comprising the F1 are antigenically unique as determined by crossed immunoelectrophoresis and the Ouchterlony double-diffusion techniques; (3) antibodies to the SDS-denatured individual delta- and epsilon-subunits can be used to destabilize the interaction of these specific subunits with the rest of the native F1; and (4) all subunit antibodies as well as anti-native F1 were found to inhibit ATPase activity to varying degrees, the strongest inhibition being seen with antibodies to the total F1 and anti-alpha- and anti-beta-subunit antibodies. The interaction of specific subunit antibodies may provide a new and novel way to study further and characterize the catalytic portions of F1-ATPases and in general may offer an additional method for the examination of multimeric proteins.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Machaalani, Rita, E-mail: rita.machaalani@sydney.edu.au; Bosch Institute, The University of Sydney, NSW 2006; The Children's Hospital at Westmead, NSW 2145
It is postulated that nicotine, as the main neurotoxic constituent of cigarette smoke, influences SIDS risk through effects on nicotinic acetylcholine receptors (nAChRs) in brainstem nuclei that control respiration and arousal. This study compared {alpha}7 and {beta}2 nAChR subunit expression in eight nuclei of the caudal and rostral medulla and seven nuclei of the pons between SIDS (n = 46) and non-SIDS infants (n = 14). Evaluation for associations with known SIDS risk factors included comparison according to whether infants had a history of exposure to cigarette smoke in the home, and stratification for sleep position and gender. Compared tomore » non-SIDS infants, SIDS infants had significantly decreased {alpha}7 in the caudal nucleus of the solitary tract (cNTS), gracile and cuneate nuclei, with decreased {beta}2 in the cNTS and increased {beta}2 in the facial. When considering only the SIDS cohort: 1-cigarette smoke exposure was associated with increased {alpha}7 in the vestibular nucleus and increased {beta}2 in the rostral dorsal motor nucleus of the vagus, rNTS and Cuneate, 2-there was a gender interaction for {alpha}7 in the gracile and cuneate, and {beta}2 in the cNTS and rostral arcuate nucleus, and 3-there was no effect of sleep position on {alpha}7, but prone sleep was associated with decreased {beta}2 in three nuclei of the pons. In conclusion, SIDS infants demonstrate differences in expression of {alpha}7 and {beta}2 nAChRs within brainstem nuclei that control respiration and arousal, which is independent on prior history of cigarette smoke exposure, especially for the NTS, with additional differences for smoke exposure ({beta}2), gender ({alpha}7 and {beta}2) and sleep position ({beta}2) evident. -- Highlights: Black-Right-Pointing-Pointer The 'normal' response to smoke exposure is decreased {alpha}7 and {beta}2 in certain nuclei. Black-Right-Pointing-Pointer SIDS infants have decreased {alpha}7 in cNTS, Grac and Cun. Black-Right-Pointing-Pointer SIDS infants have decreased {beta}2 in cNTS and increased {beta}2 in facial. Black-Right-Pointing-Pointer The NTS is more sensitive to both {alpha}7 and {beta}2 regulation in SIDS. Black-Right-Pointing-Pointer Smoke exposure amongst SIDS induces a different response; increased {alpha}7 and {beta}2.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dassama, Laura M.K.; Boal, Amie K.; Krebs, Carsten
2014-10-02
The reaction of a class I ribonucleotide reductase (RNR) begins when a cofactor in the {beta} subunit oxidizes a cysteine residue {approx}35 {angstrom} away in the {alpha} subunit, generating a thiyl radical. In the class Ic enzyme from Chlamydia trachomatis (Ct), the cysteine oxidant is the Mn{sup IV} ion of a Mn{sup IV}/Fe{sup III} cluster, which assembles in a reaction between O{sub 2} and the Mn{sup II}/Fe{sup II} complex of {beta}. The heterodinuclear nature of the cofactor raises the question of which site, 1 or 2, contains the Mn{sup IV} ion. Because site 1 is closer to the conserved locationmore » of the cysteine-oxidizing tyrosyl radical of class Ia and Ib RNRs, we suggested that the Mn{sup IV} ion most likely resides in this site (i.e., {sup 1}Mn{sup IV}/{sup 2}Fe{sup III}), but a subsequent computational study favored its occupation of site 2 ({sup 1}Fe{sup III}/{sup 2}Mn{sup IV}). In this work, we have sought to resolve the location of the Mn{sup IV} ion in Ct RNR-{beta} by correlating X-ray crystallographic anomalous scattering intensities with catalytic activity for samples of the protein reconstituted in vitro by two different procedures. In samples containing primarily Mn{sup IV}/Fe{sup III} clusters, Mn preferentially occupies site 1, but some anomalous scattering from site 2 is observed, implying that both {sup 1}Mn{sup II}/{sup 2}Fe{sup II} and {sup 1}Fe{sup II}/{sup 2}Mn{sup II} complexes are competent to react with O{sub 2} to produce the corresponding oxidized states. However, with diminished Mn{sup II} loading in the reconstitution, there is no evidence for Mn occupancy of site 2, and the greater activity of these 'low-Mn' samples on a per-Mn basis implies that the {sup 1}Mn{sup IV}/{sup 2}Fe{sup III}-{beta} is at least the more active of the two oxidized forms and may be the only active form.« less
Muradov, Khakim G; Granovsky, Alexey E; Artemyev, Nikolai O
2003-03-25
Photoreceptor cGMP phosphodiesterase (PDE6) is the effector enzyme in the vertebrate visual transduction cascade. The activity of rod PDE6 catalytic alpha- and beta-subunits is blocked in the dark by two inhibitory Pgamma-subunits. The inhibition is released upon light-stimulation of photoreceptor cells. Mutation H258N in PDE6beta has been linked to congenital stationary night blindness (CSNB) in a large Danish family (Rambusch pedigree) (Gal, A., Orth, U., Baehr, W., Schwinger, E., and Rosenberg, T. (1994) Nat. Genet. 7, 64-67.) We have analyzed the consequences of this mutation for PDE6 function using a Pgamma-sensitive PDE6alpha'/PDE5 chimera, Chi16. Biochemical analysis of the H257N mutant, an equivalent of PDE6betaH258N, demonstrates that this substitution does not alter the ability of chimeric PDE to dimerize or the enzyme's catalytic properties. The sensitivity of H257N to a competitive inhibitor zaprinast was also unaffected. However, the mutant displayed a significant impairment in the inhibitory interaction with Pgamma, which was apparent from a approximately 20-fold increase in the K(i) value (46 nM) and incomplete maximal inhibition. The inhibitory defect of H257N is not due to perturbation of noncatalytic cGMP binding to the PDE6alpha' GAF domains. The noncatalytic cGMP-binding characteristics of the H257N mutant were similar to those of the parent PDE6alpha'/PDE5 chimera. Since rod PDE6 in the Rambusch CSNB is a catalytic heterodimer of the wild-type PDE6alpha and mutant PDE6beta, Chi16 and H257N were coexpressed, and a heterodimeric PDE, Chi16/H257N, was isolated. It displayed two Pgamma inhibitory sites with the K(i) values of 5 and 57 nM. Our results support the hypothesis that mutation H258N in PDE6beta causes CSNB through incomplete inhibition of PDE6 activity by Pgamma, which leads to desensitization of rod photoreceptors.
Bozzi, Manuela; Bianchi, Marzia; Sciandra, Francesca; Paci, Maurizio; Giardina, Bruno; Brancaccio, Andrea; Cicero, Daniel O
2003-11-25
Dystroglycan (DG) is an adhesion molecule playing a crucial role for tissue stability during both early embriogenesis and adulthood and is composed by two tightly interacting subunits: alpha-DG, membrane-associated and highly glycosylated, and the transmembrane beta-DG. Recently, by solid-phase binding assays and NMR experiments, we have shown that the C-terminal domain of alpha-DG interacts with a recombinant extracellular fragment of beta-DG (positions 654-750) independently from glycosylation and that the linear binding epitope is located between residues 550 and 565 of alpha-DG. In order to elucidate which moieties of beta-DG are specifically involved in the complex with alpha-DG, the ectodomain has been recombinantly expressed and purified in a labeled ((13)C,(15)N) form and studied by multidimensional NMR. Although it represents a natively unfolded protein domain, we obtained an almost complete backbone assignment. Chemical shift index, (1)H-(15)N heteronuclear single-quantum coherence and nuclear Overhauser effect (HSQC-NOESY) spectra and (3)J(HN,H)(alpha) coupling constant values confirm that this protein is highly disordered, but (1)H-(15)N steady-state NOE experiments indicate that the protein presents two regions of different mobility. The first one, between residues 659 and 722, is characterized by a limited degree of mobility, whereas the C-terminal portion, containing about 30 amino acids, is highly flexible. The binding of beta-DG(654-750) to the C-terminal region of the alpha subunit, alpha-DG(485-620), has been investigated, showing that the region of beta-DG(654-750) between residues 691 and 719 is involved in the interaction.
Hale, Benjamin G; Batty, Ian H; Downes, C Peter; Randall, Richard E
2008-01-18
Influenza A virus NS1 protein stimulates host-cell phosphoinositide 3-kinase (PI3K) signaling by binding to the p85beta regulatory subunit of PI3K. Here, in an attempt to establish a mechanism for this activation, we report further on the functional interaction between NS1 and p85beta. Complex formation was found to be independent of NS1 RNA binding activity and is mediated by the C-terminal effector domain of NS1. Intriguingly, the primary direct binding site for NS1 on p85beta is the inter-SH2 domain, a coiled-coil structure that acts as a scaffold for the p110 catalytic subunit of PI3K. In vitro kinase activity assays, together with protein binding competition studies, reveal that NS1 does not displace p110 from the inter-SH2 domain, and indicate that NS1 can form an active heterotrimeric complex with PI3K. In addition, it was established that residues at the C terminus of the inter-SH2 domain are essential for mediating the interaction between p85beta and NS1. Equivalent residues in p85alpha have previously been implicated in the basal inhibition of p110. However, such p85alpha residues were unable to substitute for those in p85beta with regards NS1 binding. Overall, these data suggest a model by which NS1 activates PI3K catalytic activity by masking a normal regulatory element specific to the p85beta inter-SH2 domain.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu Guo; Institute of Neuroscience, Department of Neurobiology, Second Military Medical University, Shanghai 200433; Yang Huayan
Macrophage differentiation antigen associated with complement three receptor function (Mac-1) belongs to {beta}{sub 2} subfamily of integrins that mediate important cell-cell and cell-extracellular matrix interactions. Biochemical studies have indicated that Mac-1 is a constitutive heterodimer in vitro. Here, we detected the heterodimerization of Mac-1 subunits in living cells by means of two fluorescence resonance energy transfer (FRET) techniques (fluorescence microscopy and fluorescence spectroscopy) and our results demonstrated that there is constitutive heterodimerization of the Mac-1 subunits and this constitutive heterodimerization of the Mac-1 subunits is cell-type independent. Through FRET imaging, we found that heterodimers of Mac-1 mainly localized in plasmamore » membrane, perinuclear, and Golgi area in living cells. Furthermore, through analysis of the estimated physical distances between cyan fluorescent protein (CFP) and yellow fluorescent protein (YFP) fused to Mac-1 subunits, we suggested that the conformation of Mac-1 subunits is not affected by the fusion of CFP or YFP and inferred that Mac-1 subunits take different conformation when expressed in Chinese hamster ovary (CHO) and human embryonic kidney (HEK) 293T cells, respectively.« less
Wang, Hai-Yan; Zheng, Peng-Sheng
2015-01-01
To determine the efficacy of letrozole alone or with recombinant follicle-stimulating hormone (rFSH) for ovarian induction in anovulatory women. A total of 322 patients undergoing intrauterine insemination (IUI) were included in this retrospective study. Letrozole (2.5 or 5.0 mg) was administered from days 5 to 9 of menses, alone or followed with rFSH started on day 9 until the day of human chorionic gonadotropin administration. A single IUI was performed 24 h after ovulation. The number of follicles, endometrial thickness and serum estradiol levels were significantly higher in the letrozole + rFSH groups than in the letrozole-alone groups (p < 0.05), but no significant difference was found between the two doses of letrozole, whether alone or with rFSH. Women treated with 5.0 mg/day of letrozole + rFSH required a total dose of rFSH similar to women treated with 2.5 mg/day of letrozole + rFSH (230.77 ± 118.29 vs. 258.55 ± 130.13 IU, respectively; p = 0.205). There was no significant difference in pregnancy rates between the two doses of letrozole, whether alone or with rFSH. Treatment with letrozole + rFSH was more efficacious than letrozole alone for pregnancy in the IUI program; however, the effect of 5.0 mg/day of letrozole versus 2.5 mg/day of letrozole on ovulation was equivalent, regardless of whether rFSH was used. © 2014 S. Karger AG, Basel.
Method of increasing radiation sensitivity by inhibition of beta one integrin
Park, Catherine [San Francisco, CA; Bissell, Mina J [Berkeley, CA
2009-11-17
A method for increasing or monitoring apoptosis in tumor cells by the co-administration of ionizing radiation and an anti-integrin antibody. Increasing apoptosis reduces tumor growth in vivo and in a cell culture model. The antibody is directed against the beta-1 integrin subunit and is inhibitory of beta-1 integrin signaling. Other molecules having an inhibitory effect on beta-1 integrin, either in signaling or in binding to its cognate extracellular receptors may also be used. The present method is particularly of interest in treatment of tumor cells associated with breast cancer, wherein radiation is currently used alone. The present method further contemplates a monoclonal antibody suitable for human administration that may further comprise a radioisotope attached thereto.
Anthranilate synthase subunit organization in Chromobacterium violaceum.
Carminatti, C A; Oliveira, I L; Recouvreux, D O S; Antônio, R V; Porto, L M
2008-09-16
Tryptophan is an aromatic amino acid used for protein synthesis and cellular growth. Chromobacterium violaceum ATCC 12472 uses two tryptophan molecules to synthesize violacein, a secondary metabolite of pharmacological interest. The genome analysis of this bacterium revealed that the genes trpA-F and pabA-B encode the enzymes of the tryptophan pathway in which the first reaction is the conversion of chorismate to anthranilate by anthranilate synthase (AS), an enzyme complex. In the present study, the organization and structure of AS protein subunits from C. violaceum were analyzed using bioinformatics tools available on the Web. We showed by calculating molecular masses that AS in C. violaceum is composed of alpha (TrpE) and beta (PabA) subunits. This is in agreement with values determined experimentally. Catalytic and regulatory sites of the AS subunits were identified. The TrpE and PabA subunits contribute to the catalytic site while the TrpE subunit is involved in the allosteric site. Protein models for the TrpE and PabA subunits were built by restraint-based homology modeling using AS enzyme, chains A and B, from Salmonella typhimurium (PDB ID 1I1Q).
Soroka, Carol J; Xu, Shuhua; Mennone, Albert; Lam, Ping; Boyer, James L
2008-01-01
Background The organic solute transporter (OSTα-OSTβ) is a heteromeric transporter that is expressed on the basolateral membrane of epithelium in intestine, kidney, liver, testis and adrenal gland and facilitates efflux of bile acids and other steroid solutes. Both subunits are required for plasma membrane localization of the functional transporter but it is unclear how and where the subunits interact and whether glycosylation is required for functional activity. We sought to examine these questions for the human OSTα-OSTβ transporter using the human hepatoma cell line, HepG2, and COS7 cells transfected with constructs of human OSTα-FLAG and OSTβ-Myc. Results Tunicamycin treatment demonstrated that human OSTα is glycosylated. In COS7 cells Western blotting identified the unglycosylated form (~31 kD), the core precursor form (~35 kD), and the mature, complex glycoprotein (~40 kD). Immunofluorescence of both cells indicated that, in the presence of OSTβ, the alpha subunit could still be expressed on the plasma membrane after tunicamycin treatment. Furthermore, the functional uptake of 3H-estrone sulfate was unchanged in the absence of N-glycosylation. Co-immunoprecipitation indicates that the immature form of OSTα interact with OSTβ. However, immunoprecipitation of OSTβ using an anti-Myc antibody did not co-precipitate the mature, complex glycosylated form of OSTα, suggesting that the primary interaction occurs early in the biosynthetic pathway and may be transient. Conclusion In conclusion, human OSTα is a glycoprotein that requires interaction with OSTβ to reach the plasma membrane. However, glycosylation of OSTα is not necessary for interaction with the beta subunit or for membrane localization or function of the heteromeric transporter. PMID:18847488
Structure and Function of Vps15 in the Endosomal G Protein Signaling Pathway
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heenan, Erin J.; Vanhooke, Janeen L.; Temple, Brenda R.
2009-09-11
G protein-coupled receptors mediate cellular responses to a wide variety of stimuli, including taste, light, and neurotransmitters. In the yeast Saccharomyces cerevisiae, activation of the pheromone pathway triggers events leading to mating. The view had long been held that the G protein-mediated signal occurs principally at the plasma membrane. Recently, it has been shown that the G protein {alpha} subunit Gpa1 can promote signaling at endosomes and requires two components of the sole phosphatidylinositol-3-kinase in yeast, Vps15 and Vps34. Vps15 contains multiple WD repeats and also binds to Gpa1 preferentially in the GDP-bound state; these observations led us to hypothesizemore » that Vps15 may function as a G protein {beta} subunit at the endosome. Here we show an X-ray crystal structure of the Vps15 WD domain that reveals a seven-bladed propeller resembling that of typical G{beta} subunits. We show further that the WD domain is sufficient to bind Gpa1 as well as to Atg14, a potential G{gamma} protein that exists in a complex with Vps15. The Vps15 kinase domain together with the intermediate domain (linking the kinase and WD domains) also contributes to Gpa1 binding and is necessary for Vps15 to sustain G protein signaling. These findings reveal that the Vps15 G{beta}-like domain serves as a scaffold to assemble Gpa1 and Atg14, whereas the kinase and intermediate domains are required for proper signaling at the endosome.« less
Determination of porcine plasma follitropin levels during superovulation treatment in cows.
Demoustier, M M; Beckers, J F; Van Der Zwalmen, P; Closset, J; Gillard, J L; Ectors, F
1988-08-01
Porcine follicle stimulating hormone (pFSH) and porcine luteinizing hormone (pLH), are widely used to induce superovulation in cows. An advantage of this treatment is that the LH:FSH ratio can be varied to optimize the growth of the ovarian follicles. However, due to the relatively short half-life of FSH, the superovulatory treatment requires numerous injections. A performant radioimmunoassay system (sensitivity=0.2 ng/ml plasma) was used to determine plasma pFSH levels in cows that were superovulated with 2 daily injections of 4 Armour Units (A.U.) of pFSH for 4 d. From plasma profiles, the half-life and the disappearance of pFSH were estimated at 5 h and at 10 to 12 h, respectively, confirming the necessity of using two daily injections.
Dewailly, Didier; Robin, Geoffroy; Peigne, Maëliss; Decanter, Christine; Pigny, Pascal; Catteau-Jonard, Sophie
2016-11-01
Androgens, FSH, anti-Müllerian hormone (AMH) and estradiol (E2) are essential in human ovarian folliculogenesis. However, the interactions between these four players is not fully understood. The purpose of this review is to highlight the chronological sequence of the appearance and function of androgens, FSH, AMH and E2 and to discuss controversies in the relationship between FSH and AMH. A better understanding of this interaction could supplement our current knowledge about the pathophysiology of the polycystic ovary syndrome (PCOS). A literature review was performed using the following search terms: androgens, FSH, FSH receptor, anti-Mullerian hormone, AMHRII, estradiol, follicle, ovary, PCOS, aromatase, granulosa cell, oocyte. The time period searched was 1980-2015 and the databases interrogated were PubMed and Web of Science. During the pre-antral ('gonadotropin-independent') follicle growth, FSH is already active and promotes follicle growth in synergy with theca cell-derived androgens. Conversely, AMH is inhibitory by counteracting FSH. We challenge the hypothesis that AMH is regulated by androgens and propose rather an indirect effect through an androgen-dependent amplification of FSH action on granulosa cells (GCs) from small growing follicles. This hypothesis implies that FSH stimulates AMH expression. During the antral ('gonadotropin-dependent') follicle growth, E2 production results from FSH-dependent activation of aromatase. Conversely, AMH is inhibitory but the decline of its expression, amplified by E2, allows full expression of aromatase, characteristic of the large antral follicles. We propose a theoretical scheme made up of two triangles that follow each other chronologically. In PCOS, pre-antral follicle growth is excessive (triangle 1) because of intrinsic androgen excess that renders GCs hypersensitive to FSH, with consequently excessive AMH expression. Antral follicle growth and differentiation are disturbed (triangle 2) because of the abnormally persisting inhibition of FSH effects by AMH that blocks aromatase. Beside anovulation, this scenario may also serve to explain the higher receptiveness to gonadotropin therapy and the increased risk of ovarian hyperstimulation syndrome (OHSS) in patients with PCOS. Within GCs, the balance between FSH and AMH effects is pivotal in the shift from androgen- to oestrogen-driven follicles. Our two triangles hypothesis, based on updated data from the literature, offers a pedagogic template for the understanding of folliculogenesis in the normal and polycystic ovary. It opens new avenues for the treatment of anovulation due to PCOS. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Lehert, Philippe; Kolibianakis, Efstratios M; Venetis, Christos A; Schertz, Joan; Saunders, Helen; Arriagada, Pablo; Copt, Samuel; Tarlatzis, Basil
2014-02-20
The potential benefit of adding recombinant human luteinizing hormone (r-hLH) to recombinant human follicle-stimulating hormone (r-hFSH) during ovarian stimulation is a subject of debate, although there is evidence that it may benefit certain subpopulations, e.g. poor responders. A systematic review and a meta-analysis were performed. Three databases (MEDLINE, Embase and CENTRAL) were searched (from 1990 to 2011). Prospective, parallel-, comparative-group randomized controlled trials (RCTs) in women aged 18-45 years undergoing in vitro fertilization, intracytoplasmic sperm injection or both, treated with gonadotrophin-releasing hormone analogues and r-hFSH plus r-hLH or r-hFSH alone were included. The co-primary endpoints were number of oocytes retrieved and clinical pregnancy rate. Analyses were conducted for the overall population and for prospectively identified patient subgroups, including patients with poor ovarian response (POR). In total, 40 RCTs (6443 patients) were included in the analysis. Data on the number of oocytes retrieved were reported in 41 studies and imputed in two studies. Therefore, data were available from 43 studies (r-hFSH plus r-hLH, n=3113; r-hFSH, n=3228) in the intention-to-treat (ITT) population (all randomly allocated patients, including imputed data). Overall, no significant difference in the number of oocytes retrieved was found between the r-hFSH plus r-hLH and r-hFSH groups (weighted mean difference -0.03; 95% confidence interval [CI] -0.41 to 0.34). However, in poor responders, significantly more oocytes were retrieved with r-hFSH plus r-hLH versus r-hFSH alone (n=1077; weighted mean difference +0.75 oocytes; 95% CI 0.14-1.36). Significantly higher clinical pregnancy rates were observed with r-hFSH plus r-hLH versus r-hFSH alone in the overall population analysed in this review (risk ratio [RR] 1.09; 95% CI 1.01-1.18) and in poor responders (n=1179; RR 1.30; 95% CI 1.01-1.67; ITT population); the observed difference was more pronounced in poor responders. These data suggest that there is a relative increase in the clinical pregnancy rates of 9% in the overall population and 30% in poor responders. In conclusion, this meta-analysis suggests that the addition of r-hLH to r-hFSH may be beneficial for women with POR.
Islam, N; Poitras, L; Gagnon, F; Moss, T
1996-10-17
The structure and temporal expression of two Xenopus cDNAs encoding the beta subunit of pyruvate dehydrogenase (XPdhE1 beta) have been determined. XPdhE1 beta was 88% homologous to mature human PdhE1 beta, but the putative N-terminal mitochondrial signal peptide was poorly conserved. Zygotic expression of XPdhE1 beta mRNA was detected at neural tube closure and increased until stage 40. RT-PCR cloning identified a short homology to a protein kinase open reading frame within the 3' non-coding sequence of the XPdhE1 beta cDNAs. This homology, which occurred on the antisense cDNA strand, was shown by strand specific RT-PCR to be transcribed in vivo as part of an antisense RNA. Northern analysis showed that this RNA formed part of an abundant and heterogeneous population of antisense and sense poly(A)-RNAs transcribed from the XPdhE1 beta loci and coordinately regulated with message production.
Papaleo, Enrico; Zaffagnini, Stefano; Munaretto, Maria; Vanni, Valeria Stella; Rebonato, Giorgia; Grisendi, Valentina; Di Paola, Rossana; La Marca, Antonio
2016-12-01
To externally validate a nomogram based on ovarian reserve markers as a tool to optimize the FSH starting dose in IVF/ICSI cycles. A two-centres retrospective study including 398 infertile women undergoing their first IVF/ICSI cycle (June 2013-June 2014). IVF data were retrieved from two independent IVF centres in Italy (San Raffaele Hospital, Centre 1; Verona Hospital, Centre 2). A central lab for the routine measurement of AMH and FSH was used for both centres. All women were treated based on physical and hormonal characteristics according to locally adopted protocols. The nomogram was then retrospectively applied to the patients comparing the calculated starting dose to the one actually given. In Centre 1, 64/131 women (48.8%) had an ovarian response below the target. While 45 of these patients were treated with a maximal FSH starting dose (≥225 IU), n=19/131 (14.5%) were treated with a submaximal dose. The vast majority of them (n=17/19) would have received a higher FSH starting dose by using the nomogram. Seventeen patients (n=17/131) had hyper response and about half of them would have been treated with a reduced FSH starting dose according to the nomogram. In Centre 2, 142/267 patients (53.2%) had an ovarian response below the target. While 136 of these were treated with a maximal FSH starting dose (≥225 IU), n=6/267 were treated with a submaximal dose. The majority of them (n=5/6) would have received a higher FSH starting dose. Thirty-two (n=32/267) patients had hyper response and more than half of them would have been treated with a reduced FSH dose. In both Centres, applying the nomogram would have resulted in more appropriate FSH starting doses compared to the the ones actually given based on clinicians choices. The use of an objective algorithm based on patient's age, serum FSH and AMH levels may thus be an effective advice on the selection of the tailored FSH starting dose. Hence, the use of this easily available nomogram could increase the proportion of patients achieving the optimal ovarian response. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grasso, P.; Reichert, L.E. Jr.
1990-08-01
We have previously reported that FSH stimulates flux of 45Ca2+ into cultured Sertoli cells from immature rats via voltage-sensitive and voltage-independent calcium channels. In the present study, we show that this effect of FSH does not require cholera toxin (CT)- or pertussis toxin (PT)-sensitive guanine nucleotide binding (G) protein or activation of adenylate cyclase (AC). Significant stimulation of 45Ca2+ influx was observed within 1 min, and maximal response (3.2-fold over basal levels) was achieved within 2 min after exposure to FSH. FSH-stimulated elevations in cellular cAMP paralleled increases in 45Ca2+ uptake, suggesting a possible coupling of AC activation to 45Ca2+more » influx. (Bu)2cAMP, however, was not able to enhance 45Ca2+ uptake over basal levels at a final concentration of 1000 microM, although a concentration-related increase in androstenedione conversion to estradiol was evident. Exposure of Sertoli cells to CT (10 ng/ml) consistently stimulated basal levels of androstenedione conversion to estradiol but had no effect on basal levels of 45Ca2+ uptake. Similarly, CT had no effect on FSH-induced 45Ca2+ uptake, but potentiated FSH-stimulated estradiol synthesis. PT (10 ng/ml) augmented basal and FSH-stimulated estradiol secretion without affecting 45Ca2+ influx. The adenosine analog N6-phenylisopropyladenosine, which binds to Gi-coupled adenosine receptors on Sertoli cells, inhibited FSH-stimulated androgen conversion to estradiol in a dose-related (1-1000 nM) manner, but FSH-stimulated 45Ca2+ influx remained unchanged. Our results show that in contrast to FSH-stimulated estradiol synthesis, the flux of 45Ca2+ into Sertoli cells in response to FSH is not mediated either directly or indirectly by CT- or PT-sensitive G protein, nor does it require activation of AC. Our data further suggest that the FSH receptor itself may function as a calcium channel.« less
Nimrod, A
1981-01-01
The effect of FSH and androgen on the conversion of cholesterol into progesterone by cultured rat granulosa cells (GC) was studied in intact cells or mitochondrial preparations. Culture of GC for immature hypophysectomized diethylstilbestrol-treated rats for 48 h in the presence of ovine FSH (5 microgram/ml) alone, or FSH + testosterone (Te; 0.5 microgram/ml) caused a slight increase in the activity of the mitochondrial marker enzyme succinic dehydrogenase, while Te had no effect. Culture with the hormones for 48 h had no significant effect on the levels of free and esterified cellular cholesterol. GC monolayers after 48 h with or without FSH and Te converted [3H]cholesterol into 4 major metabolites, 3 of which were secreted into the medium and, in thin-layer chromatographic behavior, resembled pregnenolone, progesterone and 20 alpha-dihydroprogesterone. The total amount of the 3 C-21 steroids was higher (p less than 0.01) in FSH- or Te-treated than in control cells, and combined treatment had a synergistic effect. The uptake of labeled cholesterol (4--10%) was significantly higher (p less than 0.01) in cells pretreated with FSH or Te, whereas a combined FSH and Te treatment had an additive effect. Mitochondria isolated from GC monolayers took up cholesterol in a temperature-dependent fashion, but this uptake was not affected by hormonal pretreatment. In the presence of cyanoketone, the mitochondrial fractions activity converted cholesterol into pregnenolone. This activity was enhanced by FSH or Te (p less than 0.01), and further enhancement was observed with FSH + Te; the combined effect appeared to be more than additive (p = 0.05). The results suggest that both FSH and Te enhance the activity of cholesterol side-chain cleavage, but do not affect the transport of cholesterol into the mitochondria. A possible hormonal effect on a pre-mitochondrial step is discussed.
NASA Astrophysics Data System (ADS)
Ross, Michael H.
Breast cancer is the most common cancer for women worldwide, representing approximately 25% of all new cancer cases in this population. While early detection and removal of breast cancer still confined to the primary site results in a good prognosis, approximately one- third of patients will develop distant metastases. In these patients, overall survival is markedly reduced. Of the common sites for breast cancer metastasis, the skeletal system is the most frequent. Treating breast cancer bone metastases has proven particularly difficult for several reasons, such as dissemination of metastases throughout the skeleton, poor drug localization to sites of interest, a lack of tumor-specific targets expressed across breast cancer subtypes, and the chemo-protective nature of the bone microenvironment. This dissertation is focused on investigating a potential tumor-target expressed on breast cancer bone metastases, and to improve drug treatment efficacy against tumor cells in the bone microenvironment. Integrins are heterodimeric cell surface receptors, composed of an alpha and beta subunit from a large family of selectively-compatible integrin subunits. As a heterodimeric complex, integrins can bind to components of the extracellular matrix or to other cells. One particular integrin complex, integrin alphavbeta3, is composed of the tightly regulated integrin subunit beta3 and the more widely expressed alphav subunit. I examined the expression of integrin beta3 on primary breast cancer as compared to metastases in murine cancer models, and observed that integrin expression is significantly elevated on bone metastases as compared to the primary tumors or visceral metastases. In addition, I evaluated tumor-associated integrin beta3 expression on a tissue microarray (TMA) composed of primary breast cancer and patient-matched bone metastatic tissue from 42 patients. Across nearly all patients, tumor-associated integrin beta3 expression was significantly elevated on bone metastases as compared to the primary tumor. For the first time, I demonstrate that tumor-associated integrin beta3 is elevated on bone metastases across all breast cancer subtypes, supporting the translational potential of targeting integrin beta3 in breast cancer patients with bone metastases. Integrin beta3 was weakly expressed on tumor cells in vitro and on tumor cells in the primary mammary fat pad (MFP). Additional analysis demonstrated that integrin beta3 on circulating tumor cells is dispensable for strong expression of integrin beta3 on subsequent bone metastases, suggested that integrin beta3 may be induced within the bone microenvironment. I identified transforming growth factor beta (TGF-beta) to be a potent inducer of integrin beta3 in vitro, and further demonstrate canonical TGF-beta signaling through the SMAD2 and SMAD3 (SMAD2/3) pathway is responsible for breast cancer upregulation of integrin beta3 induction on bone metastases, both in vitro and in vivo. Utilizing this information, I sought to evaluate the targeting potential of nanotherapy coated with a targeting ligand specific for integrin alphavbeta3. Nanotherapy has the potential to increase therapeutic efficacy and reduce toxicity versus traditional chemotherapies by enhancing drug delivery to specific targets of interest. I explored the localization potential of two nanoparticles with significantly different sizes: polysorbate (tween) 80 micelle nanoparticles (MPs, 12.5 nm) or perfluorocarbon (PFC) nanoparticles ( 250 nm). The smaller integrin alphavbeta3- targeted micelle nanoparticle (alphavbeta3-MP) could more effectively penetrate breast cancer bone metastases than larger integrin alphavbeta3-targeted PFC nanoparticles (alphavbeta3-PFCs). With these observations, I evaluated whether alphavbeta3-MP-mediated drug delivery could more effectively attenuate bone metastatic tumor burden and bone destruction than free drug delivery. Using the chemotherapeutic agent docetaxel (DTX), a potent microtubule inhibitor that is a first-line therapy for metastatic breast cancer, I observe that DTX is only weakly tumor- suppressive in our mouse model of breast cancer metastases. However, treating mice bearing breast cancer metastases with alphavbeta3-MP-delivery of a docetaxel-prodrug (DTX-PD) significantly reduced bone tumor burden and bone destruction, and with less hepatotoxicity. I observed a significant decrease in bone-residing tumor cell proliferation in mice treated with alphavbeta3-MP- delivery of DTX-PD, without overt osteoclast killing or inhibition of osteoclast formation. Together, these results provide support that nanotherapy-mediated attenuation of bone metastases and bone destruction occurs through enhanced drug efficacy against breast cancer cells within the bone. In this Dissertation, Chapter 1 will provide an overview of breast cancer, bone metastases, integrins, and the therapeutic potential of nanotherapy. In Chapter 2, my work on the expression and physiologic regulation of integrin beta3 on breast cancer during metastases will be explored. In Chapter 3, the role of the cytokine TGF-beta in regulating tumoral expression of integrin beta3 will be discussed. And in Chapter 4, I discuss the use of integrin alphavbeta3-targeted nanotherapy directed against breast cancer metastases. Collectively, I provide evidence that chemotherapeutic efficacy against breast cancer cells within bone can be enhanced by exploiting the expression of tumoral integrin beta3 at that metastatic site.
Bernstein, Lori R; Mackenzie, Amelia C L; Lee, Se-Jin; Chaffin, Charles L; Merchenthaler, István
2016-03-01
Women of advanced maternal age (AMA) (age ≥ 35) have increased rates of infertility, miscarriages, and trisomic pregnancies. Collectively these conditions are called "egg infertility." A root cause of egg infertility is increased rates of oocyte aneuploidy with age. AMA women often have elevated endogenous FSH. Female senescence-accelerated mouse-prone-8 (SAMP8) has increased rates of oocyte spindle aberrations, diminished fertility, and rising endogenous FSH with age. We hypothesize that elevated FSH during the oocyte's FSH-responsive growth period is a cause of abnormalities in the meiotic spindle. We report that eggs from SAMP8 mice treated with equine chorionic gonadotropin (eCG) for the period of oocyte growth have increased chromosome and spindle misalignments. Activin is a molecule that raises FSH, and ActRIIB:Fc is an activin decoy receptor that binds and sequesters activin. We report that ActRIIB:Fc treatment of midlife SAMP8 mice for the duration of oocyte growth lowers FSH, prevents egg chromosome and spindle misalignments, and increases litter sizes. AMA patients can also have poor responsiveness to FSH stimulation. We report that although eCG lowers yields of viable oocytes, ActRIIB:Fc increases yields of viable oocytes. ActRIIB:Fc and eCG cotreatment markedly reduces yields of viable oocytes. These data are consistent with the hypothesis that elevated FSH contributes to egg aneuploidy, declining fertility, and poor ovarian response and that ActRIIB:Fc can prevent egg aneuploidy, increase fertility, and improve ovarian response. Future studies will continue to examine whether ActRIIB:Fc works via FSH and/or other pathways and whether ActRIIB:Fc can prevent aneuploidy, increase fertility, and improve stimulation responsiveness in AMA women.
MOORE, BRANDON C.; KOHNO, SATOMI; COOK, ROBERT W.; ALVERS, ASHLEY L.; HAMLIN, HEATHER J.; WOODRUFF, TERESA K.; GUILLETTE, LOUIS J.
2014-01-01
Activins and estrogens participate in regulating the breakdown of ovarian germ cell nests and follicle assembly in mammals. In 1994, our group reported elevated frequencies of abnormal, multioocytic ovarian follicles in 6 month old, environmental contaminant-exposed female alligators after gonadotropin challenge. Here, we investigated if maternal contribution of endocrine disrupting contaminants to the egg subsequently alters estrogen/inhibin/activin signaling in hatchling female offspring, putatively predisposing an increased frequency of multioocytic follicle formation. We quantified basal and exogenous gonadotropin-stimulated concentrations of circulating plasma steroid hormones and ovarian activin signaling factor mRNA abundance in hatchling alligators from the same contaminated (Lake Apopka) and reference (Lake Woodruff) Florida lakes, as examined in 1994. Basal circulating plasma estradiol and testosterone concentrations were greater in alligators from the contaminated environment, whereas activin/inhibin βA subunit and follistatin mRNA abundances were lower than values measured in ovaries from reference lake animals. Challenged, contaminant-exposed animals showed a more robust increase in plasma estradiol concentration following an acute follicle stimulating hormone (FSH) challenge compared with reference site alligators. Aromatase and follistatin mRNA levels increased in response to an extended FSH challenge in the reference site animals, but not in the contaminant-exposed animals. In hatchling alligators, ovarian follicles have not yet formed; therefore, these endocrine differences are likely to affect subsequent ovarian development, including ovarian follicle assembly. PMID:20166196
Master, E R; Mohn, W W
2001-06-01
We investigated induction of biphenyl dioxygenase in the psychrotolerant polychlorinated biphenyl (PCB) degrader Pseudomonas strain Cam-1 and in the mesophilic PCB degrader Burkholderia strain LB400. Using a counterselectable gene replacement vector, we inserted a lacZ-Gm(r) fusion cassette between chromosomal genes encoding the large subunit (bphA) and small subunit (bphE) of biphenyl dioxygenase in Cam-1 and LB400, generating Cam-10 and LB400-1, respectively. Potential inducers of bphA were added to cell suspensions of Cam-10 and LB400-1 incubated at 30 degrees C, and then beta-galactosidase activity was measured. Biphenyl induced beta-galactosidase activity in Cam-10 to a level approximately six times greater than the basal level in cells incubated with pyruvate. In contrast, the beta-galactosidase activities in LB400-1 incubated with biphenyl and in LB400-1 incubated with pyruvate were indistinguishable. At a concentration of 1 mM, most of the 40 potential inducers tested were inhibitory to induction by biphenyl of beta-galactosidase activity in Cam-10. The exceptions were naphthalene, salicylate, 2-chlorobiphenyl, and 4-chlorobiphenyl, which induced beta-galactosidase activity in Cam-10, although at levels that were no more than 30% of the levels induced by biphenyl. After incubation for 24 h at 7 degrees C, biphenyl induced beta-galactosidase activity in Cam-10 to a level approximately four times greater than the basal level in cells incubated with pyruvate. The constitutive level of beta-galactosidase activity in LB400-1 grown at 15 degrees C was approximately five times less than the level in LB400-1 grown at 30 degrees C. Thus, there are substantial differences in the effects of physical and chemical environmental conditions on genetic regulation of PCB degradation in different bacteria.
Activins in reproductive biology and beyond.
Wijayarathna, R; de Kretser, D M
2016-04-01
Activins are members of the pleiotrophic family of the transforming growth factor-beta (TGF-β) superfamily of cytokines, initially isolated for their capacity to induce the release of FSH from pituitary extracts. Subsequent research has demonstrated that activins are involved in multiple biological functions including the control of inflammation, fibrosis, developmental biology and tumourigenesis. This review summarizes the current knowledge on the roles of activin in reproductive and developmental biology. It also discusses interesting advances in the field of modulating the bioactivity of activins as a therapeutic target, which would undoubtedly be beneficial for patients with reproductive pathology. A comprehensive literature search was carried out using PUBMED and Google Scholar databases to identify studies in the English language which have contributed to the advancement of the field of activin biology, since its initial isolation in 1987 until July 2015. 'Activin', 'testis', 'ovary', 'embryonic development' and 'therapeutic targets' were used as the keywords in combination with other search phrases relevant to the topic of activin biology. Activins, which are dimers of inhibin β subunits, act via a classical TGF-β signalling pathway. The bioactivity of activin is regulated by two endogenous inhibitors, inhibin and follistatin. Activin is a major regulator of testicular and ovarian development. In the ovary, activin A promotes oocyte maturation and regulates granulosa cell steroidogenesis. It is also essential in endometrial repair following menstruation, decidualization and maintaining pregnancy. Dysregulation of the activin-follistatin-inhibin system leads to disorders of female reproduction and pregnancy, including polycystic ovary syndrome, ectopic pregnancy, miscarriage, fetal growth restriction, gestational diabetes, pre-eclampsia and pre-term birth. Moreover, a rise in serum activin A, accompanied by elevated FSH, is characteristic of female reproductive aging. In the male, activin A is an autocrine and paracrine modulator of germ cell development and Sertoli cell proliferation. Disruption of normal activin signalling is characteristic of many tumours affecting reproductive organs, including endometrial carcinoma, cervical cancer, testicular and ovarian cancer as well as prostate cancer. While activin A and B aid the progression of many tumours of the reproductive organs, activin C acts as a tumour suppressor. Activins are important in embryonic induction, morphogenesis of branched glandular organs, development of limbs and nervous system, craniofacial and dental development and morphogenesis of the Wolffian duct. The field of activin biology has advanced considerably since its initial discovery as an FSH stimulating agent. Now, activin is well known as a growth factor and cytokine that regulates many aspects of reproductive biology, developmental biology and also inflammation and immunological mechanisms. Current research provides evidence for novel roles of activins in maintaining the structure and function of reproductive and other organ systems. The fact that activin A is elevated both locally as well as systemically in major disorders of the reproductive system makes it an important biomarker. Given the established role of activin A as a pro-inflammatory and pro-fibrotic agent, studies of its involvement in disorders of reproduction resulting from these processes should be examined. Follistatin, as a key regulator of the biological actions of activin, should be evaluated as a therapeutic agent in conditions where activin A overexpression is established as a contributing factor. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Dynamics of the h-LH and h-FSH response after the stimulation test with Gn-RH-LH/FSH in man.
Klepsch, I; Grigorescu, A; Eşanu, C
1976-01-01
A study was carried out on a number of 17 subjects concerning the dynamics of LH and FSH response after stimulation with Gn-RH-LH/FSH. The results show a stimulation 10 minutes after quick i.v. injection of synthetic RH, with a peak at 20-30 minutes and a persistence of the response of up to 180 min. The variation of the response is proportional with the dose, the response to stimulation being higher for LH than for FSH. The response in the normal adult male is of 82-858% for LH and of 157-250% for FSH. In aged subjects there is an increased response capacity showing that the hypophysis still reacts at an advanced age, with variations depending on the individual characteristics. In Sheehan's syndrome the basal values of FSH and LH are low, with a slight response after stimulation with RH, suggesting the possibility of a partial regeneration of the hypophysis if any intact areas were left after the initial necrotic process.
Isolation and characterization of cDNA clones for human erythrocyte beta-spectrin.
Prchal, J T; Morley, B J; Yoon, S H; Coetzer, T L; Palek, J; Conboy, J G; Kan, Y W
1987-01-01
Spectrin is an important structural component of the membrane skeleton that underlies and supports the erythrocyte plasma membrane. It is composed of nonidentical alpha (Mr 240,000) and beta (Mr 220,000) subunits, each of which contains multiple homologous 106-amino acid segments. We report here the isolation and characterization of a human erythroid-specific beta-spectrin cDNA clone that encodes parts of the beta-9 through beta-12 repeat segments. This cDNA was used as a hybridization probe to assign the beta-spectrin gene to human chromosome 14 and to begin molecular analysis of the gene and its mRNA transcripts. RNA transfer blot analysis showed that the reticulocyte beta-spectrin mRNA is 7.8 kilobases in length. Southern blot analysis of genomic DNA revealed the presence of restriction fragment length polymorphisms (RFLPs) within the beta-spectrin gene locus. The isolation of human spectrin cDNA probes and the identification of closely linked RFLPs will facilitate analysis of mutant spectrin genes causing congenital hemolytic anemias associated with quantitative and qualitative spectrin abnormalities. Images PMID:3478706
Janecek, S.
1995-01-01
Many (alpha/beta)8-barrel enzymes contain their conserved sequence regions at or around the beta-strand segments that are often preceded and succeeded by glycines and prolines, respectively. alpha-Amylase is one of these enzymes. Its sequences exhibit a very low degree of similarity, but strong conservation is seen around its beta-strands. These conserved regions were used in the search for similarities with beta-strands of other (alpha/beta)8-barrel enzymes. The analysis revealed an interesting similarity between the segment around the beta 2-strand of alpha-amylase and the one around the beta 4-strand of glycolate oxidase that are flanked in loops by glycines and prolines. The similarity can be further extended on other members of the alpha-amylase and glycolate oxidase subfamilies, i.e., cyclodextrin glycosyltransferase and oligo-1,6-glucosidase, and flavocytochrome b2, respectively. Moreover, the alpha-subunit of tryptophan synthase, the (alpha/beta)8-barrel enzyme belonging to the other subfamily of (alpha/beta)8-barrels, has both investigated strands, beta 2 and beta 4, similar to beta 2 of alpha-amylase and beta 4 of glycolate oxidase. The possibilities of whether this similarity exists only by chance or is a consequence of some processes during the evolution of (alpha/beta)8-barrel proteins are briefly discussed. PMID:7549888
Janecek, S
1995-06-01
Many (alpha/beta)8-barrel enzymes contain their conserved sequence regions at or around the beta-strand segments that are often preceded and succeeded by glycines and prolines, respectively. alpha-Amylase is one of these enzymes. Its sequences exhibit a very low degree of similarity, but strong conservation is seen around its beta-strands. These conserved regions were used in the search for similarities with beta-strands of other (alpha/beta)8-barrel enzymes. The analysis revealed an interesting similarity between the segment around the beta 2-strand of alpha-amylase and the one around the beta 4-strand of glycolate oxidase that are flanked in loops by glycines and prolines. The similarity can be further extended on other members of the alpha-amylase and glycolate oxidase subfamilies, i.e., cyclodextrin glycosyltransferase and oligo-1,6-glucosidase, and flavocytochrome b2, respectively. Moreover, the alpha-subunit of tryptophan synthase, the (alpha/beta)8-barrel enzyme belonging to the other subfamily of (alpha/beta)8-barrels, has both investigated strands, beta 2 and beta 4, similar to beta 2 of alpha-amylase and beta 4 of glycolate oxidase. The possibilities of whether this similarity exists only by chance or is a consequence of some processes during the evolution of (alpha/beta)8-barrel proteins are briefly discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Misic, Ana M.; Satyshur, Kenneth A.; Forest, Katrina T.
Type IV pili are bacterial extracellular filaments that can be retracted to create force and motility. Retraction is accomplished by the motor protein PilT. Crystal structures of Pseudomonas aeruginosa PilT with and without bound {beta},{gamma}-methyleneadenosine-5{prime}-triphosphate have been solved at 2.6 {angstrom} and 3.1 {angstrom} resolution, respectively, revealing an interlocking hexamer formed by the action of a crystallographic 2-fold symmetry operator on three subunits in the asymmetric unit and held together by extensive ionic interactions. The roles of two invariant carboxylates, Asp Box motif Glu163 and Walker B motif Glu204, have been assigned to Mg{sup 2+} binding and catalysis, respectively. Themore » nucleotide ligands in each of the subunits in the asymmetric unit of the {beta},{gamma}-methyleneadenosine-5{prime}-triphosphate-bound PilT are not equally well ordered. Similarly, the three subunits in the asymmetric unit of both structures exhibit differing relative conformations of the two domains. The 12{sup o} and 20{sup o} domain rotations indicate motions that occur during the ATP-coupled mechanism of the disassembly of pili into membrane-localized pilin monomers. Integrating these observations, we propose a three-state 'Ready, Active, Release' model for the action of PilT.« less
Ozawa, Y; Kameya, T; Kasuga, A; Naritaka, H; Kanda, N; Maruyama, H; Saruta, T
1998-04-01
A 38-yr-old female with a TSH- and GH-secreting pituitary adenoma is described, who had both overt symptoms, hyperthyroidism and acromegaly. Her serum TSH was not suppressed despite high concentrations of free T3 and free T4, and her alpha-subunit/TSH molar ratio was high. Her serum GH was consistently high, and was not suppressed by an oral glucose tolerance test. Preoperative testing revealed that, although the TSH response was impaired, TSH, alpha-subunit and GH were increased by TRH injection, and that these hormones were reduced by bromocriptine or somatostatin analog. Although she did not have hyperprolactinemia, the in vitro culture and immunohistochemical studies revealed that the adenoma cells produced and released PRL, in addition to TSH, alpha-subunit and GH. Immunohistochemical studies showed the presence of GH in the cytoplasm of many adenoma cells. TSH beta-positive adenoma cells were less frequently seen than GH-positive adenoma cells. No cells showed the coexistence of GH and TSH beta, and a few cells were positive for PRL. By electron microscopy, the adenoma was found to be composed of a single cell type resembling thyrotrophs, and did not have any characteristics of somatotrophs. This case was considered to be of interest, because the adenoma was ultrastructurally monomorphous, but immunohistochemically polymorphous.
Edelmann, L; Wasserstein, M P; Kornreich, R; Sansaricq, C; Snyderman, S E; Diaz, G A
2001-10-01
Maple syrup urine disease (MSUD) is a rare, autosomal recessive disorder of branched-chain amino acid metabolism. We noted that a large proportion (10 of 34) of families with MSUD that were followed in our clinic were of Ashkenazi Jewish (AJ) descent, leading us to search for a common mutation within this group. On the basis of genotyping data suggestive of a conserved haplotype at tightly linked markers on chromosome 6q14, the BCKDHB gene encoding the E1beta subunit was sequenced. Three novel mutations were identified in seven unrelated AJ patients with MSUD. The locations of the affected residues in the crystal structure of the E1beta subunit suggested possible mechanisms for the deleterious effects of these mutations. Large-scale population screening of AJ individuals for R183P, the mutation present in six of seven patients, revealed that the carrier frequency of the mutant allele was approximately 1/113; the patient not carrying R183P had a previously described homozygous mutation in the gene encoding the E2 subunit. These findings suggested that a limited number of mutations might underlie MSUD in the AJ population, potentially facilitating prenatal diagnosis and carrier detection of MSUD in this group.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nikolau, Basil J; Wurtele, Eve S; Oliver, David J
The present invention provides nucleic acid and amino acid sequences of acetyl CoA synthetase (ACS), plastidic pyruvate dehydrogenase (pPDH), ATP citrate lyase (ACL), Arabidopsis pyruvate decarboxylase (PDC), and Arabidopsis aldehyde dehydrogenase (ALDH), specifically ALDH-2 and ALDH-4. The present invention also provides a recombinant vector comprising a nucleic acid sequence encoding one of the aforementioned enzymes, an antisense sequence thereto or a ribozyme therefor, a cell transformed with such a vector, antibodies to the enzymes, a plant cell, a plant tissue, a plant organ or a plant in which the level of an enzyme has been altered, and a method ofmore » producing such a plant cell, plant tissue, plant organ or plant. Desirably, alteration of the level of enzyme results in an alteration of the level of acetyl CoA in the plant cell, plant tissue, plant organ or plant. In addition, the present invention provides a recombinant vector comprising an antisense sequence of a nucleic acid sequence encoding pyruvate decarboxylase (PDC), the E1.alpha. subunit of pPDH, the E1.beta. subunit of pPDH, the E2 subunit of pPDH, mitochondrial pyruvate dehydrogenase (mtPDH) or aldehyde dehydrogenase (ALDH) or a ribozyme that can cleave an RNA molecule encoding PDC, E1.alpha. pPDH, E1.beta. pPDH, E2 pPDH, mtPDH or ALDH.« less
Multiple modes of a-type potassium current regulation.
Cai, Shi-Qing; Li, Wenchao; Sesti, Federico
2007-01-01
Voltage-dependent potassium (K+) channels (Kv) regulate cell excitability by controlling the movement of K+ ions across the membrane in response to changes in the cell voltage. The Kv family, which includes A-type channels, constitute the largest group of K+ channel genes within the superfamily of Na+, Ca2+ and K+ voltage-gated channels. The name "A-type" stems from the typical profile of these currents that results form the opposing effects of fast activation and inactivation. In neuronal cells, A-type currents (I(A)), determine the interval between two consecutive action potentials during repetitive firing. In cardiac muscle, A-type currents (I(to)), control the initial repolarization of the myocardium. Structurally, A-type channels are tetramers of alpha-subunits each containing six putative transmembrane domains including a voltage-sensor. A-type channels can be modulated by means of protein-protein interactions with so-called beta-subunits that control inactivation voltage sensitivity and other properties, and by post-transcriptional modifications such as phosphorylation or oxidation. Recently a new mode of A-type regulation has been discovered in the form of a class of hybrid beta-subunits that posses their own enzymatic activity. Here, we review the biophysical and physiological properties of these multiple modes of A-type channel regulation.
A cost per live birth comparison of HMG and rFSH randomized trials.
Connolly, Mark; De Vrieze, Kathleen; Ombelet, Willem; Schneider, Dirk; Currie, Craig
2008-12-01
To help inform healthcare treatment practices and funding decisions, an economic evaluation was conducted to compare the two leading gonadotrophins used for IVF in Belgium. Based on the results of a recently published meta-analysis, a simulated decision tree model was constructed with four states: (i) fresh cycle, (ii) cryopreserved cycle, (iii) live birth and (iv) treatment withdrawal. Gonadotrophin costs were based on highly purified human menopausal gonadotrophin (HP-HMG; Menopur) and recombinant FSH (rFSH) alpha (Gonal-F). After one fresh and one cryopreserved cycle the average treatment cost with HP-HMG was lower than with rFSH (HP-HMG euro3635; rFSH euro4103). The average cost saving per person started on HP-HMG when compared with rFSH was euro468. Additionally, the average costs per live birth of HP-HMG and rFSH were found to be significantly different: HP-HMG euro9996; rFSH euro13,009 (P < 0.0001). HP-HMG remained cost-saving even after key parameters in the model were varied in the probabilistic sensitivity analysis. Treatment with HP-HMG was found to be the dominant treatment strategy in IVF because of improved live birth rates and lower costs. Within a fixed healthcare budget, the cost-savings achieved using HP-HMG would allow for the delivery of additional IVF cycles.
Santi, Daniele; Spaggiari, Giorgia; Casarini, Livio; Fanelli, Flaminia; Mezzullo, Marco; Pagotto, Uberto; Granata, Antonio R M; Carani, Cesare; Simoni, Manuela
2017-06-01
We present a case report of an atypical giant pituitary adenoma secreting follicle-stimulating hormone (FSH). A 55-year-old patient presented for erectile dysfunction, loss of libido and fatigue. The biochemical evaluation showed very high FSH serum levels in the presence of central hypogonadism. Neither testicular enlargement nor increased sperm count was observed, thus a secretion of FSH with reduced biological activity was supposed. The histological examination after neuro-surgery showed an atypical pituitary adenoma with FSH-positive cells. Hypogonadism persisted and semen analyses impaired until azoospermia in conjunction with the reduction in FSH levels suggesting that, at least in part, this gonadotropin should be biologically active. Thus, we hypothesized a concomitant primary testicular insufficiency. The patient underwent short-term treatment trials with low doses of either recombinant luteinizing hormone (LH) or human chorionic gonadotropin (hCG) in three consecutive treatment schemes, showing an equal efficacy in stimulating testosterone (T) increase. This is the first case of atypical, giant FSH-secreting pituitary adenoma with high FSH serum levels without signs of testicular hyperstimulation, in presence of hypogonadism with plausible combined primary and secondary etiology. Hypophysectomized patients may represent a good model to assess both pharmacodynamics and effective dose of LH and hCG in the male.
Shoaib, M; Gommans, J; Morley, A; Stolerman, I P; Grailhe, R; Changeux, J-P
2002-03-01
The subtypes of nicotinic receptors at which the behavioural effects of nicotine originate are not fully understood. These experiments use mice lacking the beta2 subunit of nicotinic receptors to investigate its role in nicotine discrimination and conditioned taste aversion (CTA). Wild-type and mutant mice were trained either in a two-lever nicotine discrimination procedure using a tandem schedule of food reinforcement, or in a counterbalanced two-flavour CTA procedure. Rates of lever-pressing of wild-type and mutant mice did not differ. Wild-type mice acquired discrimination of nicotine (0.4 or 0.8 mg/kg) rapidly and exhibited steep dose-response curves. Mutant mice failed to acquire these nicotine discriminations and exhibited flat dose-response curves. Both wild-type and mutant mice acquired discrimination of nicotine (1.6 mg/kg) although discrimination performance was weak in the mutants. Nicotine initially reduced response rates in wild-type and mutant mice, and tolerance developed to this effect in each genotype. Both genotypes acquired discrimination of morphine (3 mg/kg) with similar degrees of accuracy, and dose-response curves for morphine discrimination in the two genotypes were indistinguishable. Nicotine produced dose-related CTA in both genotypes, but the magnitude of the effect was less in the mutants than in the wild-type controls. It is concluded that nicotinic receptors containing the beta2 subunit play a major role in the discriminative stimulus and taste aversion effects of nicotine that may reflect psychological aspects of tobacco dependence. Such receptors appear to have a less crucial role in the response-rate, reducing effects of nicotine and in nicotine tolerance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Culiat, C.T.; Stubbs, L.; Nicholls, R.D.
1993-06-01
Genetic and molecular analyses of a number of radiation-induced deletion mutations of the pink-eyed dilution (p) locus in mouse chromosome 7 have identified a specific interval on the genetic map associated with a neonatally lethal mutation that results in cleft palate. This interval, closely linked and distal to p, and bracketed by the genes encoding the [alpha][sub 5] and [beta][sub 3] subunits of the type A [gamma]-aminobutyric acid receptor (Gabra5 and Gabrb3, respectively), contains a gene(s) (cp1; cleft palate 1) necessary for normal palate development. The cp1 interval extends from the distal breakpoint of the prenatally lethal p[sup 83FBFo] deletionmore » to the Gabrb3 locus. Among 20 p deletions tested, there was complete concordance between alterations at the Gabrb3 transcription unit and inability to complement the cleft-palate defect. These mapping data, along with previously described in vivo and in vitro teratological effects of [gamma]-aminobutyric acid or its agonists on palate development, suggest the possibility that a particular type A [gamma]-aminobutyric acid receptor that includes the [beta][sub 3] subunit may be necessary for normal palate development. The placement of the cp1 gene within a defined segment of the larger D15S12h (p)-D15S9h-1 interval in the mouse suggests that the highly homologous region of the human genome, 15q11-q13, be evaluated for a role(s) in human fetal facial development. 29 refs., 4 figs., 1 tab.« less
Hisabori, T; Kobayashi, H; Kaibara, C; Yoshida, M
1994-03-01
F1-ATPase isolated from plasma membrane of a thermophilic Bacillus strain PS3 (TF1) has very little or no endogenously bound adenine nucleotides. However, it can bind one ADP per mol of the enzyme on one of three beta subunits to form a stable TF1.ADP complex when incubated with a high concentration of ADP [Yoshida, M. & Allison, W.S. (1986) J. Biol. Chem. 261, 5714-5721]. The same TF1.ADP complex was recovered after filling all ADP binding sites with [3H]ADP and repeated gel filtration. Direct binding assay revealed that the TF1.ADP complex had lost the highest affinity site for TNP-ADP. When a substoichiometric amount of TNP-ATP was added, the complex hydrolyzed TNP-ATP slowly (single site hydrolysis), like native TF1. However, this hydrolysis was not promoted by chase-addition of excess ATP. The optimal pH of the ATPase activity of TF1 or the TF1.ADP complex measured with a short reaction period, 6.5, was lower than the reported value, 9.0, under the steady-state condition. Although the bound ADP was released from the complex only when the enzyme underwent multiple catalytic turnover, the rate of this release was much slower than the turnover. These results suggest that when one ADP binds to a site on one of the beta subunits and stays there for a long time, the enzyme will change form and the bound ADP will become a special species which is not able to be directly involved in the enzyme catalysis. This binding site for ADP appears to be the first site responsible for the single-site catalysis reaction observed for native TF1.
Miura, Y; Perkel, V S; Magner, J A
1988-09-01
We have determined the structures of high mannose (Man) oligosaccharide units at individual glycosylation sites of mouse TSH. Mouse thyrotropic tumor tissue was incubated with D-[2-3H]Man with or without [14C]tyrosine ([14C] Tyr) for 2, 3, or 6 h, and for a 3-h pulse followed by a 2-h chase. TSH heterodimers or free alpha-subunits were obtained from homogenates using specific antisera. After reduction and alkylation, subunits were treated with trypsin. The tryptic fragments were then loaded on a reverse phase HPLC column to separate tryptic fragments bearing labeled oligosaccharides. The N-linked oligosaccharides were released with endoglycosidase-H and analyzed by paper chromatography. Man9GlcNac2 and Man8GlcNac2 units predominated at each time point and at each specific glycosylation site, but the processing of high Man oligosaccharides differed at each glycosylation site. The processing at Asn23 of TSH beta-subunits was slower than that at Asn56 or Asn82 of alpha-subunits. The processing at Asn82 was slightly faster than that at Asn56 for both alpha-subunits of TSH heterodimers and free alpha-subunits. The present study demonstrates that the early processing of oligosaccharides differs at the individual glycosylation sites of TSH and free alpha-subunits, perhaps because of local conformational differences.
Direct interaction of beta-amyloid with Na,K-ATPase as a putative regulator of the enzyme function
NASA Astrophysics Data System (ADS)
Petrushanko, Irina Yu.; Mitkevich, Vladimir A.; Anashkina, Anastasia A.; Adzhubei, Alexei A.; Burnysheva, Ksenia M.; Lakunina, Valentina A.; Kamanina, Yulia V.; Dergousova, Elena A.; Lopina, Olga D.; Ogunshola, Omolara O.; Bogdanova, Anna Yu.; Makarov, Alexander A.
2016-06-01
By maintaining the Na+ and K+ transmembrane gradient mammalian Na,K-ATPase acts as a key regulator of neuronal electrotonic properties. Na,K-ATPase has an important role in synaptic transmission and memory formation. Accumulation of beta-amyloid (Aβ) at the early stages of Alzheimer’s disease is accompanied by reduction of Na,K-ATPase functional activity. The molecular mechanism behind this phenomenon is not known. Here we show that the monomeric Aβ(1-42) forms a tight (Kd of 3 μM), enthalpy-driven equimolar complex with α1β1 Na,K-ATPase. The complex formation results in dose-dependent inhibition of the enzyme hydrolytic activity. The binding site of Aβ(1-42) is localized in the “gap” between the alpha- and beta-subunits of Na,K-ATPase, disrupting the enzyme functionality by preventing the subunits from shifting towards each other. Interaction of Na,K-ATPase with exogenous Aβ(1-42) leads to a pronounced decrease of the enzyme transport and hydrolytic activity and Src-kinase activation in neuroblastoma cells SH-SY5Y. This interaction allows regulation of Na,K-ATPase activity by short-term increase of the Aβ(1-42) level. However prolonged increase of Aβ(1-42) level under pathological conditions could lead to chronical inhibition of Na,K-ATPase and disruption of neuronal function. Taken together, our data suggest the role of beta-amyloid as a novel physiological regulator of Na,K-ATPase.
Expression of FSH receptor in the hamster ovary during perinatal development
Chakraborty, Prabuddha; Roy, Shyamal K.
2014-01-01
FSH plays an important role in ovarian follicular development, and it functions via the G-protein coupled FSH receptor. The objectives of the present study were to determine if full-length FSHR mRNA and corresponding protein were expressed in fetal through postnatal hamster ovaries to explain the FSH-induced primordial follicle formation, and if FSH or estrogen (E) would affect the expression. A full-length and two alternately spliced FSHR transcripts were expressed from E14 through P20. The level of the full-length FSHR mRNA increased markedly through P7 before stabilizing at a lower level with the formation and activation of primordial follicles. A predicted 87kDa FSHR protein band was detected in fetal through P4 ovaries, but additional bands appeared as ovary developed. FSHR immunosignal was present in undifferentiated somatic cells and oocytes in early postnatal ovaries, but was granulosa cells specific after follicles formed. Both eCG and E significantly up-regulated full-length FSHR mRNA levels. Therefore, FSHR is expressed in the hamster ovary from the fetal life to account for FSH-induced primordial follicle formation and cAMP production. Further, FSH or E regulates the receptor expression. PMID:25462586
Wang, Huizhen; Larson, Melissa; Jablonka-Shariff, Albina; Pearl, Christopher A; Miller, William L; Conn, P Michael; Boime, Irving; Kumar, T Rajendra
2014-04-15
FSH and luteinizing hormone (LH) are secreted constitutively or in pulses, respectively, from pituitary gonadotropes in many vertebrates, and regulate ovarian function. The molecular basis for this evolutionarily conserved gonadotropin-specific secretion pattern is not understood. Here, we show that the carboxyterminal heptapeptide in LH is a gonadotropin-sorting determinant in vivo that directs pulsatile secretion. FSH containing this heptapeptide enters the regulated pathway in gonadotropes of transgenic mice, and is released in response to gonadotropin-releasing hormone, similar to LH. FSH released from the LH secretory pathway rescued ovarian defects in Fshb-null mice as efficiently as constitutively secreted FSH. Interestingly, the rerouted FSH enhanced ovarian follicle survival, caused a dramatic increase in number of ovulations, and prolonged female reproductive lifespan. Furthermore, the rerouted FSH vastly improved the in vivo fertilization competency of eggs, their subsequent development in vitro and when transplanted, the ability to produce offspring. Our study demonstrates the feasibility to fine-tune the target tissue responses by modifying the intracellular trafficking and secretory fate of a pituitary trophic hormone. The approach to interconvert the secretory fate of proteins in vivo has pathophysiological significance, and could explain the etiology of several hormone hyperstimulation and resistance syndromes.
Pakrasi, H B; De Ciechi, P; Whitmarsh, J
1991-01-01
Cytochrome (cyt) b559, an integral membrane protein, is an essential component of the photosystem II (PSII) complex in the thylakoid membranes of oxygenic photosynthetic organisms. Cyt b559 has two subunits, alpha and beta, each with one predicted membrane spanning alpha-helical domain. The heme cofactor of this cytochrome is coordinated between two histidine residues. Each of the two subunit polypeptides of cyt b559 has one His residue. To investigate the influence of these His residues on the structure of cyt b559 and the PSII complex, we used a site directed mutagenesis approach to replace each His residue with a Leu residue. Introduction of these missense mutations in the transformable unicellular cyanobacterium, Synechocystis 6803, resulted in complete loss of PSII activity. Northern blot analysis showed that these mutations did not affect the stability of the polycistronic mRNA that encompasses both the psbE and the psbF genes, encoding the alpha and the beta subunits, respectively. Moreover, both of the single His mutants showed the presence of the alpha subunit which was 1.5 kd smaller than the same polypeptide in wild type cells. A secondary effect of such a structural change was that D1 and D2, two proteins that form the catalytic core (reaction center) of PSII, were also destabilized. Our results demonstrate that proper axial coordination of the heme cofactor in cyt b559 is important for the structural integrity of the reaction center of PSII. Images PMID:1904816
NASA Technical Reports Server (NTRS)
Kyrpides, N. C.; Woese, C. R.
1998-01-01
As the amount of available sequence data increases, it becomes apparent that our understanding of translation initiation is far from comprehensive and that prior conclusions concerning the origin of the process are wrong. Contrary to earlier conclusions, key elements of translation initiation originated at the Universal Ancestor stage, for homologous counterparts exist in all three primary taxa. Herein, we explore the evolutionary relationships among the components of bacterial initiation factor 2 (IF-2) and eukaryotic IF-2 (eIF-2)/eIF-2B, i.e., the initiation factors involved in introducing the initiator tRNA into the translation mechanism and performing the first step in the peptide chain elongation cycle. All Archaea appear to posses a fully functional eIF-2 molecule, but they lack the associated GTP recycling function, eIF-2B (a five-subunit molecule). Yet, the Archaea do posses members of the gene family defined by the (related) eIF-2B subunits alpha, beta, and delta, although these are not specifically related to any of the three eukaryotic subunits. Additional members of this family also occur in some (but by no means all) Bacteria and even in some eukaryotes. The functional significance of the other members of this family is unclear and requires experimental resolution. Similarly, the occurrence of bacterial IF-2-like molecules in all Archaea and in some eukaryotes further complicates the picture of translation initiation. Overall, these data lend further support to the suggestion that the rudiments of translation initiation were present at the Universal Ancestor stage.
Uysal, Aysel; Alkan, Gül; Kurtoğlu, Ayşegül; Erol, Onur; Kurtoğlu, Erdal
2017-09-01
Iron accumulation in the endocrine glands has been implicated in the aetiopathogenesis of decreased reproductive capacity in patients with beta-thalassemia major (β-TM). The aim of the current study was to investigate the serum concentration of anti-Müllerian hormone (AMH), a marker of ovarian reserve, in women with transfusion-dependent β-TM. In this case-control study, we recruited 43 women with transfusion-dependent TM and 44 age-matched healthy controls. Hormonal and haematological parameters, serum level of AMH, antral follicle count, and ovarian volume were assessed. Twenty-two of the 43 women were hypogonadotropic, 8 with primary amenorrhea and 14 with secondary amenorrhea. FSH, LH, estradiol, prolactin, and AMH levels; antral follicle count; and ovarian volume were significantly lower in women with TM compared with the control group (p<0.05 for all). AMH level and other ovarian reserve markers are significantly diminished in women with transfusion-dependent TM compared to age-matched controls. Our findings support a deleterious effect of iron overload on ovarian tissue. Published by Elsevier B.V.
Wynne, P M; Puig, S I; Martin, G E; Treistman, S N
2009-06-01
Neurons are highly differentiated and polarized cells, whose various functions depend upon the compartmentalization of ion channels. The rat hypothalamic-neurohypophysial system (HNS), in which cell bodies and dendrites reside in the hypothalamus, physically separated from their nerve terminals in the neurohypophysis, provides a particularly powerful preparation in which to study the distribution and regional properties of ion channel proteins. Using electrophysiological and immunohistochemical techniques, we characterized the large-conductance calcium-activated potassium (BK) channel in each of the three primary compartments (soma, dendrite, and terminal) of HNS neurons. We found that dendritic BK channels, in common with somatic channels but in contrast to nerve terminal channels, are insensitive to iberiotoxin. Furthermore, analysis of dendritic BK channel gating kinetics indicates that they, like somatic channels, have fast activation kinetics, in contrast to the slow gating of terminal channels. Dendritic and somatic channels are also more sensitive to calcium and have a greater conductance than terminal channels. Finally, although terminal BK channels are highly potentiated by ethanol, somatic and dendritic channels are insensitive to the drug. The biophysical and pharmacological properties of somatic and dendritic versus nerve terminal channels are consistent with the characteristics of exogenously expressed alphabeta1 versus alphabeta4 channels, respectively. Therefore, one possible explanation for our findings is a selective distribution of auxiliary beta1 subunits to the somatic and dendritic compartments and beta4 to the terminal compartment. This hypothesis is supported immunohistochemically by the appearance of distinct punctate beta1 or beta4 channel clusters in the membrane of somatic and dendritic or nerve terminal compartments, respectively.
Bandyopadhyay, Sanjay; Allison, William S
2004-07-27
In crystal structures of the bovine F(1)-ATPase (MF(1)), the side chains of gammaMet(23), gammaMet(232), and gammaLeu(77) interact in a cluster. Substitution of the corresponding residues in the alpha(3)beta(3)gamma subcomplex of TF(1) with lysine lowers the ATPase activity to 2.3, 11, and 15%, respectively, of that displayed by wild-type. In contrast, TF(1) subcomplexes containing the gammaM(23)C, gammaM(232)C, and gammaL(77)C substitutions display 36, 36, and 130%, respectively, of the wild-type ATPase activity. The ATPase activity of the gammaM(23)C/gammaM(232)C double mutant subcomplex is 36% that of the wild-type subcomplex before and after cross-linking the introduced cysteines, whereas the ATPase activity of the gammaM(23)C/L(77)C double mutant increased from 50 to 85% that of wild-type after cross-linking the introduced cysteines. Only beta-beta cross-links formed when the alpha(3)(betaE(395)C)(3)gammaM(23)C double mutant was inactivated with CuCl(2). The overall results suggest that the attenuated ATPase of the mutant subcomplexes containing the gammaM(23)K, gammaL(77)K, and gammaM(232)K substitutions is caused by disruption of the cluster of hydrophobic amino acid side chains and that the midregion of the coiled-coil comprised of the amino- and carboxyl-terminal alpha helices of the gamma subunit does not undergo unwinding or major displacement from the side chain of gammaLeu(77) during ATP-driven rotation of the gamma subunit.
Karigo, Tomomi; Aikawa, Masato; Kondo, Chika; Abe, Hideki; Kanda, Shinji; Oka, Yoshitaka
2014-02-01
Two types of gonadotropins, luteinizing hormone (LH) and follicle stimulating hormone (FSH), are important pituitary hormones for sexual maturation and reproduction, and both of them are centrally regulated by gonadotropin-releasing hormone (GnRH) from the hypothalamus. In mammals, these two gonadotropins are secreted from a single type of gonadotrope. The mechanisms of differential regulation by GnRH of the release of two types of gonadotropins with different secretory profiles are still unknown. In teleosts, however, LH and FSH are secreted from separate cellular populations, unlike in mammals. This feature makes them useful for studying the regulatory mechanisms of LH and FSH secretions independently. Here, we generated transgenic medaka lines that express Ca(2+) indicator protein, inverse-pericam, specifically in the LH or FSH cells. We performed cell-type-specific Ca(2+) imaging of LH and FSH cells, respectively, using the whole brain-pituitary preparations of these transgenic fish in which all neural circuits and GnRH neuronal projection to the pituitary are kept intact. LH and FSH cells showed different Ca(2+) responses to GnRH. The results suggest differential regulation mechanisms for LH and FSH release by GnRH. Moreover, we also succeeded in detecting the effect on LH cells of endogenous GnRH peptide, which was released by electrical stimulation of the axons of GnRH1 neurons. Thus, our newly developed experimental model system using the whole brain-pituitary in vitro preparation of the transgenic medaka is a powerful tool for analyzing the differential regulatory mechanisms of the release of LH and FSH by multisynaptic neural inputs to the pituitary.
Yang, Xin; Wang, Qian; Pang, Zeng-Run; Pan, Meng-Ran; Zhang, Wen
2017-12-01
Flavonoid-enriched extract from Hippophae rhamnoides L. (Elaeagnaceae) seed (FSH) has shown beneficial effects in anti-hypertension and lowering cholesterol level. However, evidence for its efficacy in treating obesity is limited. We sought to determine if FSH can reduce body weight and regulate lipid metabolism disorder in high fat diet (HFD)-induced obese mouse model, and to investigate potential molecular targets involved. C57BL/6 mice were fed with HFD for 8 weeks to induce obesity. The modeled mice were divided into four groups and treated with vehicle, rosiglitazone (2 mg/kg), low (100 mg/kg) and high (300 mg/kg) dose of FSH, respectively. Normal control was also used. The treatments were administered orally for 9 weeks. We measured the effect of FSH on regulating body weight, various liver and serum parameters, and molecular targets that are key to lipid metabolism. FSH administration at 100 and 300 mg/kg significantly reduced body weight gain by 33.06 and 43.51%, respectively. Additionally, triglyceride concentration in serum and liver were decreased by 15.67 and 49.56%, individually, after FSH (300 mg/kg) treatment. Upon FSH (100 and 300 mg/kg) treatment, PPARα mRNA expression was upregulated in liver (1.24- and 1.42-fold) and in adipose tissue (1.66- and 1.72-fold). Furthermore, FSH downregulated PPARγ protein level both in liver and adipose tissue. Moreover, FSH inhibited macrophage infiltration into adipose tissues, and downregulated TNFα mRNA expression in adipose tissue (38.01-47.70%). This effect was mediated via regulation of PPARγ and PPARα gene expression, and suppression of adipose tissue inflammation.
The effectiveness of zinc supplementation in men with isolated hypogonadotropic hypogonadism.
Liu, Yan-Ling; Zhang, Man-Na; Tong, Guo-Yu; Sun, Shou-Yue; Zhu, Yan-Hua; Cao, Ying; Zhang, Jie; Huang, Hong; Niu, Ben; Li, Hong; Guo, Qing-Hua; Gao, Yan; Zhu, Da-Long; Li, Xiao-Ying
2017-01-01
A multicenter, open-label, randomized, controlled superiority trial with 18 months of follow-up was conducted to investigate whether oral zinc supplementation could further promote spermatogenesis in males with isolated hypogonadotropic hypogonadism (IHH) receiving sequential purified urinary follicular-stimulating hormone/human chorionic gonadotropin (uFSH/hCG) replacement. Sixty-seven Chinese male IHH patients were recruited from the Departments of Endocrinology in eight tertiary hospitals and randomly allocated into the sequential uFSH/hCG group (Group A, n = 34) or the sequential uFSH plus zinc supplementation group (Group B, n = 33). In Group A, patients received sequential uFSH (75 U, three times a week every other 3 months) and hCG (2000 U, twice a week) treatments. In Group B, patients received oral zinc supplementation (40 mg day-1 ) in addition to the sequential uFSH/hCG treatment given to patients in Group A. The primary outcome was the proportion of patients with a sperm concentration ≥1.0 × 106 ml-1 during the 18 months. The comparison of efficacy between Groups A and B was analyzed. Nineteen of 34 (55.9%) patients receiving sequential uFSH/hCG and 20 of 33 (60.6%) patients receiving sequential uFSH/hCG plus zinc supplementation achieved sperm concentrations ≥1.0 × 106 ml-1 by intention to treat analyses. No differences between Group A and Group B were observed as far as the efficacy of inducing spermatogenesis (P = 0.69). We concluded that the sequential uFSH/hCG plus zinc supplementation regimen had a similar efficacy to the sequential uFSH/hCG treatment alone. The additional improvement of 40 mg day-1 oral zinc supplementation on spermatogenesis and masculinization in male IHH patients is very subtle.
Structure and function of archaeal prefoldin, a co-chaperone of group II chaperonin.
Ohtaki, Akashi; Noguchi, Keiichi; Yohda, Masafumi
2010-01-01
Molecular chaperones are key cellular components involved in the maintenance of protein homeostasis and other unrelated functions. Prefoldin is a chaperone that acts as a co-factor of group II chaperonins in eukaryotes and archaea. It assists proper folding of protein by capturing nonnative proteins and delivering it to the group II chaperonin. Eukaryotic prefoldin is a multiple subunit complex composed of six different polypeptide chains. Archaeal prefoldin, on the other hand, is a heterohexameric complex composed of two alpha and four beta subunits, and forms a double beta barrel assembly with six long coiled coils protruding from it like a jellyfish with six tentacles. Based on the structural information of the archaeal prefoldin, substrate recognition and prefoldin-chaperonin binding mechanisms have been investigated. In this paper, we review a series of studies on the molecular mechanisms of archaeal PFD function. Particular emphasis will be placed on the molecular structures revealed by X-ray crystallography and molecular dynamics induced by binding to nonnative protein substrates.
Whitehead, Timothy A; Boonyaratanakornkit, Boonchai B; Höllrigl, Volker; Clark, Douglas S
2007-04-01
Prefoldin is a molecular chaperone found in the domains eukarya and archaea that acts in conjunction with Group II chaperonin to correctly fold other nascent proteins. Previously, our group identified a putative single subunit of prefoldin, gamma PFD, that was up-regulated in response to heat stress in the hyperthermophilic archaeon Methanocaldococcus jannaschii. In order to characterize this protein, we subcloned and expressed it and the other two prefoldin subunits from M. jannaschii, alpha and beta PFD, into Eschericia coli and characterized the proteins. Whereas alpha and beta PFD readily assembled into the expected hexamer, gamma PFD would not assemble with either protein. Instead, gamma PFD forms long filaments of defined dimensions measuring 8.5 nm x 1.7-3.5 nm and lengths exceeding 1 microm. Filamentous gamma PFD acts as a molecular chaperone through in vitro assays, in a manner comparable to PFD. A possible molecular model for filament assembly is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riess, O.; Weber, B.; Hayden, M.R.
1992-10-01
The finding of a mutation in the beta subunit of the cyclic GMP (cGMP) phosphodiesterase gene causing retinal degeneration in mice (the Pdeb gene) prompted a search for disease-causing mutations in the human phosphodiesterase gene (PDEB gene) in patients with retinitis pigmentosa. All 22 exons including 196 bp of the 5[prime] region of the PDEB gene have been assessed for mutations by using single-strand conformational polymorphism analysis in 14 patients from 13 unrelated families with autosomal recessive retinitis pigmentosa (ARRP). No disease-causing mutations were found in this group of affected individuals of seven different ancestries. However, a frequent intronic andmore » two exonic polymorphisms (Leu[sup 489][yields]Gln and Gly[sup 842][yields]Gly) were identified. Segregation analysis using these polymorphic sites excludes linkage of ARRP to the PDEB gene in a family with two affected children. 43 refs., 3 figs., 2 tabs.« less
Functional expression of IL-12 receptor by human eosinophils: IL-12 promotes eosinophil apoptosis.
Nutku, E; Zhuang, Q; Soussi-Gounni, A; Aris, F; Mazer, B D; Hamid, Q
2001-07-15
In murine models of allergic inflammation, IL-12 has been shown to decrease tissue eosinophilia, but the underlying mechanisms are not known. We evaluated the expression of IL-12R and the effect of IL-12 on eosinophil survival. In situ hybridization demonstrated the presence of mRNA and immunoreactivity for IL-12Rbeta1 and -beta2 subunits in human peripheral blood eosinophils. Surface expression of IL-12Rbeta1 and -beta2 subunits on freshly isolated human eosinophils was optimally expressed after incubation with PMA. To determine the functional significance of IL-12R studies, we studied cell viability and apoptosis. Morphological analysis and propidium iodide staining for cell cycle demonstrated that recombinant human IL-12 increased in vitro human eosinophil apoptosis in a dose-dependent manner. Addition of IL-5 together with IL-12 abrogated eosinophil apoptosis, suggesting that IL-12 and IL-5 have antagonistic effects. Our findings provide evidence for a novel role for IL-12 in regulating eosinophil function by increasing eosinophil apoptosis.
Hatzold, Julia; Beleggia, Filippo; Herzig, Hannah; Altmüller, Janine; Nürnberg, Peter; Bloch, Wilhelm; Wollnik, Bernd; Hammerschmidt, Matthias
2016-01-01
The molecular pathways underlying tumor suppression are incompletely understood. Here, we identify cooperative non-cell-autonomous functions of a single gene that together provide a novel mechanism of tumor suppression in basal keratinocytes of zebrafish embryos. A loss-of-function mutation in atp1b1a, encoding the beta subunit of a Na,K-ATPase pump, causes edema and epidermal malignancy. Strikingly, basal cell carcinogenesis only occurs when Atp1b1a function is compromised in both the overlying periderm (resulting in compromised epithelial polarity and adhesiveness) and in kidney and heart (resulting in hypotonic stress). Blockade of the ensuing PI3K-AKT-mTORC1-NFκB-MMP9 pathway activation in basal cells, as well as systemic isotonicity, prevents malignant transformation. Our results identify hypotonic stress as a (previously unrecognized) contributor to tumor development and establish a novel paradigm of tumor suppression. DOI: http://dx.doi.org/10.7554/eLife.14277.001 PMID:27240166
Ray, M A; Graham, A J; Lee, M; Perry, R H; Court, J A; Perry, E K
2005-08-01
The cholinergic system has been implicated in the development of autism on the basis of neuronal nicotinic acetylcholine receptor (nAChR) losses in cerebral and cerebellar cortex. In the present study, the first to explore nAChRs in the thalamus in autism, alpha4, alpha7 and beta2 nAChR subunit expression in thalamic nuclei of adult individuals with autism (n=3) and age-matched control cases (n=3) was investigated using immunochemical methods. Loss of alpha7- and beta2- (but not alpha4-) immunoreactive neurons occurred in the paraventricular nucleus (PV) and nucleus reuniens in autism. Preliminary results indicated glutamic acid decarboxylase immunoreactivity occurred at a low level in PV, co-expressed with alpha7 in normal and autistic cases and was not reduced in autism. This suggested loss of neuronal alpha7 in autism is not caused by loss of GABAergic neurons. These findings indicate nicotinic abnormalities that occur in the thalamus in autism which may contribute to sensory or attentional deficits.
Dioxygenase-like reactivity of an isolable superoxo-nickel(II) complex.
Company, Anna; Yao, Shenglai; Ray, Kallol; Driess, Matthias
2010-08-16
Although O(2) activation by metals such as iron and copper has been a matter of intensive research in the last decades, this type of chemistry for nickel systems is still in its infancy. Moreover, studies regarding the oxidizing ability of the resulting "Ni(n)-O(2)" species towards exogenous substrates are scarce. In this work, we report on the reactivity of an isolable and thermally stable mononuclear superoxo-nickel compound [Ni(II)(beta-diketiminato)(O(2))] (1) towards different types of organic substrates. In addition, we have been able to prove that the beta-diketiminato ligand can undergo partial intramolecular oxidation due to close proximity between the isopropyl groups of the beta-diketiminato-aryl and the superoxo subunits. Compound 1 performs hydrogen-atom abstraction from O-H and N-H groups and most importantly it shows an unprecedented dioxygenase-like reactivity in the oxidation of 2,4,6-tri-tert-butylphenol. The latter reaction most likely occurs through the mediation of a putative [Ni(III)-oxo] intermediate, affording an unprecedented oxidation product of the phenol that incorporates two oxygen atoms from a single O(2) subunit. Results presented herein provide evidence of the striking oxidizing ability of dioxygen-nickel species and further support the viability to use such systems as oxidation catalysts analogous to its heavy metal congener, palladium.
Alterations of the Intracellular Peptidome in Response to the Proteasome Inhibitor Bortezomib
Berezniuk, Iryna; Dasgupta, Sayani; Castro, Leandro M.; Gozzo, Fabio C.; Ferro, Emer S.; Fricker, Lloyd D.
2013-01-01
Bortezomib is an antitumor drug that competitively inhibits proteasome beta-1 and beta-5 subunits. While the impact of bortezomib on protein stability is known, the effect of this drug on intracellular peptides has not been previously explored. A quantitative peptidomics technique was used to examine the effect of treating human embryonic kidney 293T (HEK293T) cells with 5–500 nM bortezomib for various lengths of time (30 minutes to 16 hours), and human neuroblastoma SH-SY5Y cells with 500 nM bortezomib for 1 hour. Although bortezomib treatment decreased the levels of some intracellular peptides, the majority of peptides were increased by 50–500 nM bortezomib. Peptides requiring cleavage at acidic and hydrophobic sites, which involve beta-1 and -5 proteasome subunits, were among those elevated by bortezomib. In contrast, the proteasome inhibitor epoxomicin caused a decrease in the levels of many of these peptides. Although bortezomib can induce autophagy under certain conditions, the rapid bortezomib-mediated increase in peptide levels did not correlate with the induction of autophagy. Taken together, the present data indicate that bortezomib alters the balance of intracellular peptides, which may contribute to the biological effects of this drug. PMID:23308178
Welt, C K; Martin, K A; Taylor, A E; Lambert-Messerlian, G M; Crowley, W F; Smith, J A; Schoenfeld, D A; Hall, J E
1997-08-01
To isolate the impact of GnRH pulse frequency on FSH secretion and to examine the effect of differing levels of FSH on inhibin B secretion during the luteal-follicular transition, exogenous GnRH was administered to GnRH-deficient women using one of two regimens, and the results were compared to those in normal women. In the GnRH-deficient women, the GnRH pulse frequency was increased from every 4 h in the late luteal phase to every 90 min on the day of menses to mimic normal cycling women (physiological frequency transition; n = 8 studies) or the GnRH pulse frequency was kept constant at a late luteal phase frequency of every 4 h through the first 6 days of the subsequent early follicular phase of cycle 2 (slow frequency transition; n = 6 studies). The differential rise in FSH secretion induced in these studies allowed us to examine the subsequent contribution of varying levels of FSH to inhibin B secretion. A physiological regimen of GnRH during the luteal-follicular transition resulted in a rise in FSH and inhibin B levels that did not differ from that in normal cycling women and a normal follicular phase length. On the other hand, maintaining a luteal frequency of GnRH for 6 days into the subsequent early follicular phase produced FSH levels significantly lower than those in the physiological transition (P < 0.05), with the greatest difference seen on the day after menses (9.1 +/- 1.0 vs. 16.4 +/- 1.4 IU/L for the slow and physiological transition groups, respectively; P < 0.005), but no difference in LH. This slower rise of FSH secretion in the slow frequency group was associated with significantly lower inhibin B levels (43.3 +/- 21.5 vs. 140.0 +/- 24.4 pg/mL, mean days 1, 3, and 5; P < 0.02), a later doubling of estradiol from baseline (day 9.6 +/- 0.9 vs. day 5.6 +/- 0.1; P < 0.02), and a longer follicular phase length (16.0 +/- 1.4 vs. 11.6 +/- 0.9 days; P < 0.05) compared with those in the physiological transition group. In conclusion, during the luteal-follicular transition, the GnRH pulse frequency contributes to but is not solely responsible for the FSH rise that initiates folliculogenesis. Alteration of FSH dynamics induced by changes in GnRH pulse frequency in GnRH-deficient women provides evidence that FSH stimulates inhibin B production in the human. Timely follicular development indicated by both estradiol and inhibin B secretion appears to be dependent on the pattern of increase in FSH during the luteal-follicular transition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slade, Daniel J.; Lovelace, Leslie L.; Chruszcz, Maksymilian
2010-03-04
Human C8 is one of five complement components (C5b, C6, C7, C8, and C9) that assemble on bacterial membranes to form a porelike structure referred to as the 'membrane attack complex' (MAC). C8 contains three genetically distinct subunits (C8{alpha}, C8{beta}, C8{gamma}) arranged as a disulfide-linked C8{alpha}-{gamma} dimer that is noncovalently associated with C8{beta}. C6, C7 C8{alpha}, C8{beta}, and C9 are homologous. All contain N- and C-terminal modules and an intervening 40-kDa segment referred to as the membrane attack complex/perforin (MACPF) domain. The C8{gamma} subunit is unrelated and belongs to the lipocalin family of proteins that display a {beta}-barrel fold andmore » generally bind small, hydrophobic ligands. Several hundred proteins with MACPF domains have been identified based on sequence similarity; however, the structure and function of most are unknown. Crystal structures of the secreted bacterial protein Plu-MACPF and the human C8{alpha} MACPF domain were recently reported and both display a fold similar to those of the bacterial pore-forming cholesterol-dependent cytolysins (CDCs). In the present study, we determined the crystal structure of the human C8{alpha} MACPF domain disulfide-linked to C8{gamma} ({alpha}MACPF-{gamma}) at 2.15 {angstrom} resolution. The {alpha}MACPF portion has the predicted CDC-like fold and shows two regions of interaction with C8{gamma}. One is in a previously characterized 19-residue insertion (indel) in C8{alpha} and fills the entrance to the putative C8{gamma} ligand-binding site. The second is a hydrophobic pocket that makes contact with residues on the side of the C8{gamma} {beta}-barrel. The latter interaction induces conformational changes in {alpha}MACPF that are likely important for C8 function. Also observed is structural conservation of the MACPF signature motif Y/W-G-T/S-H-F/Y-X{sub 6}-G-G in {alpha}MACPF and Plu-MACPF, and conservation of several key glycine residues known to be important for refolding and pore formation by CDCs.« less
Tarlatzis, B; Tavmergen, E; Szamatowicz, M; Barash, A; Amit, A; Levitas, E; Shoham, Z
2006-01-01
The effect of recombinant human LH (r-hLH; lutropin alfa) in women undergoing controlled ovarian stimulation with recombinant human FSH (r-hFSH) prior to IVF was investigated. After down-regulation with the GnRH agonist, buserelin, 114 normo-ovulatory women (aged 18-37 years) received r-hFSH alone until the lead follicle reached a diameter of 14 mm. Patients were then randomized in a double-blind fashion to receive r-hFSH in addition to r-hLH, 75 IU s.c., or placebo daily for a maximum of 10 days prior to oocyte retrieval and IVF. The primary end-point was the number of metaphase II oocytes. There were no significant differences between treatment groups for the primary end-point. Serum estradiol concentrations on the day of HCG administration were significantly higher in the group receiving r-hLH plus r-hFSH than in the group receiving r-hFSH alone (P = 0.0001), but there were no significant differences between the groups in dose and duration of r-hFSH treatment required, oocyte maturation, fertilization rate, pregnancy rate and live birth rate. In this patient population, the addition of r-hLH during the late follicular phase of a long GnRH agonist and r-hFSH stimulation cycle provides no further benefit in terms of oocyte maturation or other end-points.
Mutations participating in interallelic complementation in propionic acidemia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gravel, R.A.; Akerman, B.R.; Lamhonwah, A.M.
1994-07-01
Deficiency of propionyl-CoA carboxylase (PCC; [alpha][sub 4][beta][sub 4]) results in the rare, autosomal recessive disease propionic acidemia. Cell fusion experiments have revealed two complementation groups, pccA and pccB, corresponding to defects of the PCCA ([alpha]-subunit) and PCCB ([beta]-subunit) genes, respectively. The pccBCC group includes subgroups, pccB and pccC, which are thought to reflect interallelic complementation between certain mutations of the PCCB gene. In this study, the authors have identified the mutations in two pccB, one pccC, and two pccBC cell lines and have deduced those alleles participating in interallelic complementation. One pccB line was a compound hetrozygote of Pro228Leu andmore » Asn536Asp. The latter mutation was also detected in a noncomplementing pccBC line. This leaves Pro228Leu responsible for complementation in the pccB cells. The second pccB line contained an insertional duplication, dupKICK140-143, and a splice mutation IVS+1 G[yields]T, located after Lys466. The authors suggest that the dupKICK mutation is the complementing allele, since the second allele is incompatible with normal splicing. The pccC line studied was homozygous for Arg410Trp, which is necessarily the complementing allele in that line. For a second pccC line, they previously had proposed that [Delta]Ile408 was the complementing allele. They now show that its second allele, [open quotes]Ins[center dot]Del[close quotes], a 14-bp deletion replaced by a 12-bp insertion beginning at codon 407, fails to complement in homozygous form. The authors conclude that the interallelic complementation results from mutations in domains that can interact between [beta]-subunits in the PCC heteromer to restore enzymatic function. On the basis of sequence homology with the Propionibacterium shermanii transcarboxylase 12S subunit, they suggest that the pccC domain, defined by Ile408 and Arg410, may involve the propionyl-CoA binding site. 37 refs., 5 figs., 2 tabs.« less
Sultan, Nabil Ali Mohammed; Kenoth, Roopa; Swamy, Musti J
2004-12-15
A new galactose-specific lectin has been purified from the extracts of Trichosanthes dioica seeds by affinity chromatography on cross-linked guar gum. The purified lectin (T. dioica seed lectin, TDSL) moved as a single symmetrical peak on gel filtration on Superose-12 in the presence of 0.1 M lactose with an M(r) of 55 kDa. In the absence of ligand, the movement was retarded, indicating a possible interaction of the lectin with the column matrix. In SDS-PAGE, in the presence of beta-mercaptoethanol, two non-identical bands of M(r) 24 and 37 kDa were observed, whereas in the absence of beta-mercaptoethanol, the lectin yielded a single band corresponding to approximately 55,000 Da, indicating that the two subunits of TDSL are connected by one or more disulfide bridges. TDSL is a glycoprotein with about 4.9% covalently bound neutral sugar. Analysis of near-UV CD spectrum by three different methods (CDSSTR, CONTINLL, and SELCON3) shows that TDSL contains 13.3% alpha-helix, 36.7% beta-sheet, 19.4% beta-turns, and 31.6% unordered structure. Among a battery of sugars investigated, TDSL was inhibited strongly by beta-d-galactopyranosides, with 4-methylumbelliferyl-beta-d-galactopyranoside being the best ligand. Chemical modification studies indicate that tyrosine residues are important for the carbohydrate-binding and hemagglutinating activities of the lectin. A partial protection was observed when the tyrosine modification was performed in the presence of 0.2 M lactose. The tryptophan residues of TDSL appear to be buried in the protein interior as they could not be modified under native conditions, whereas upon denaturation with 8 M urea two Trp residues could be selectively modified by N-bromosuccinimide. The subunit composition and size, secondary structure, and sugar specificity of this lectin are similar to those of type-2 ribosome inactivating proteins, suggesting that TDSL may belong to this protein family.
ERIC Educational Resources Information Center
Bavec, Aljosa
2004-01-01
We have developed an "in vitro assay" for following the interaction between the [alpha][subscript i2] subunit and [beta][subscript 1[gamma]2] dimer from sf9 cells. This method is suitable for education purposes because it is easy, reliable, nonexpensive, can be applied for a big class of 20 students, and avoid the commonly used kinetic approach,…
Inferring High-Confidence Human Protein-Protein Interactions
2012-01-01
comprised proteins that had the same specific func- tion or were subunits of the same protein complex, such as branched chain keto acid E1 alpha (BCKDHA...and branched chain keto acid E1 beta (BCKDHB) [3,29], and dynein cytoplasmic 2 intermediate chain 1 (D2LIC) and dynein cytoplasmic 2 heavy chain 1...474.3 28.0 1337.0 BCKDHA 5 Branched chain keto acid dehydro. E1, alpha BCKDHB 4 Branched chain keto acid dehydro. E1, beta 4 471.4 29.0 1337.5 ARTN 2
Dissecting Arabidopsis G beta signal transduction on the protein surface
USDA-ARS?s Scientific Manuscript database
The heterotrimeric G protein complex provides signal amplification and target specificity. The Arabidopsis Gbeta subunit of this complex (AGB1) interacts with and modulates the activity of target cytoplasmic proteins. This specificity resides in the structure of the interface between AGB1 and its ta...
Nimrod, A
1977-09-01
Cultures of granulosa cells from immature hypophysectomized DES-treated rats were unable to maintain progestin production of more than 48 h in medium without hormone supplementation or in the presence of FSH only. Production of progestin (20alpha-dihydroprogesterone, as measured by radioimmunoassay) remained unimpaired in the presence of androstenedione (Ad) and was markedly increased in the presence of both Ad and FSH. The combined treatment with FSH and Ad during the first 48 h of culture brought about persistent changes in the cultured cells, since progestin accumulation did not decline upon subsequent removal of these hormones during days 3 and 4 of culture. Dibutyryl cyclic AMP (DBC) was able to mimic the changes in steroidogenic capability induced by the combined action of FSH and Ad. The extent of [125I]-FSH binding, FSH-stimulable cAMP accumulation and cyclic 3',5'-nucleotide phosphodiesterase activity were not affected by addition of Ad to the culture medium. Ad synergized with DBC in the stimulation of progestin accumulation in granulosa cell cultures. It is suggested that androgen acts at a step in the regulation of progestin biosynthesis distal to cAMP production.
Romero-Avila, M Teresa; Flores-Jasso, C Fabián; García-Sáinz, J Adolfo
2002-01-01
Transforming growth factor-beta (TGF-beta) induced alpha(1B)-adrenergic receptor phosphorylation in Rat-1 fibroblasts stably expressing these adrenoceptors. This effect of TGF-beta was rapid, reaching a maximum within 30 min and decreasing thereafter, and concentration-dependent (EC(50) 0.3 pM). The phosphoinositide 3-kinase inhibitors wortmannin and LY294002, and the protein kinase C inhibitors staurosporine, Ro 318220 and bisindolylmaleimide, blocked the effect of this growth factor. alpha(1B)-Adrenergic receptor phosphorylation was associated with desensitization, as indicated by a reduction in the adrenergic-mediated production of [(3)H]inositol phosphates. Phosphorylation of alpha(1B)-adrenergic receptors by TGF-beta was also observed in Cos-1 cells transfected with the receptor. Co-transfection of the dominant-negative mutant of the regulatory subunit of phosphoinositide 3-kinase (Deltap85) inhibited the phosphorylation of alpha(1B)-adrenergic receptors induced by TGF-beta. Our results indicate that activation of TGF-beta receptors induces alpha(1B)-adrenergic receptor phosphorylation and desensitization. The data suggest that phosphoinositide 3-kinase and protein kinase C play key roles in this effect of TGF-beta. PMID:12234252
Romero-Avila, M Teresa; Flores-Jasso, C Fabián; García-Sáinz, J Adolfo
2002-12-01
Transforming growth factor-beta (TGF-beta) induced alpha(1B)-adrenergic receptor phosphorylation in Rat-1 fibroblasts stably expressing these adrenoceptors. This effect of TGF-beta was rapid, reaching a maximum within 30 min and decreasing thereafter, and concentration-dependent (EC(50) 0.3 pM). The phosphoinositide 3-kinase inhibitors wortmannin and LY294002, and the protein kinase C inhibitors staurosporine, Ro 318220 and bisindolylmaleimide, blocked the effect of this growth factor. alpha(1B)-Adrenergic receptor phosphorylation was associated with desensitization, as indicated by a reduction in the adrenergic-mediated production of [(3)H]inositol phosphates. Phosphorylation of alpha(1B)-adrenergic receptors by TGF-beta was also observed in Cos-1 cells transfected with the receptor. Co-transfection of the dominant-negative mutant of the regulatory subunit of phosphoinositide 3-kinase (Deltap85) inhibited the phosphorylation of alpha(1B)-adrenergic receptors induced by TGF-beta. Our results indicate that activation of TGF-beta receptors induces alpha(1B)-adrenergic receptor phosphorylation and desensitization. The data suggest that phosphoinositide 3-kinase and protein kinase C play key roles in this effect of TGF-beta.
Gastric acid secretion: activation and inhibition.
Sachs, G.; Prinz, C.; Loo, D.; Bamberg, K.; Besancon, M.; Shin, J. M.
1994-01-01
Peripheral regulation of gastric acid secretion is initiated by the release of gastrin from the G cell. Gastrin then stimulates the cholecystokinin-B receptor on the enterochromaffin-like cell beginning a calcium signaling cascade. An exocytotic release of histamine follows with concomitant activation of a C1- current. The released histamine begins the H2-receptor mediated sequence of events in the parietal cell, which results in activation of the gastric H+/K+ - ATPase. This enzyme is the final common pathway of acid secretion. The H+/K+ - ATPase is composed of two subunits: the larger alpha-subunit couples ion transport to hydrolysis of ATP, the smaller beta-subunit is required for appropriate assembly of the holoenzyme. Both the membrane and extracytoplasmic domain contain the ion transport pathway, and therefore, this region is the target for the antisecretory drugs of the post-H2 era. The 100 kDa alpha-subunit has probably 10 membrane spanning segments with, therefore, five extracytoplasmic loops. The 35 kDA beta-subunit has a single membrane spanning segment, and most of this protein is extracytoplasmic with the six or seven N glycosylation consensus sequences occupied. Omeprazole is an acid-accumulated, acid-activated, prodrug that binds covalently to two cysteine residues at positions 813 (or 822) and 892, accessible from the acidic face of the pump. Lansoprazole binds to cys321, 813 (or 822) and 892; pantoprazole binds to cys813 and 822. The common binding site for these drugs (cys813 or 822) is responsible for the inhibition of acid transport. Covalent inhibition of the acid pump improves control of acid secretion, but since the effective half life of the inhibition in man is about 48 hr, full inhibition of acid secretion, perhaps necessary for eradication of Helicobacter pylori in combination with a single antibiotic, will require prolongation of the effect of this class of drug. PMID:7502535
Calmodulin is a phospholipase C-beta interacting protein.
McCullar, Jennifer S; Larsen, Shana A; Millimaki, Ryan A; Filtz, Theresa M
2003-09-05
Phospholipase C-beta 3 (PLC beta 3) is an important effector enzyme in G protein-coupled signaling pathways. Activation of PLC beta 3 by G alpha and G beta gamma subunits has been fairly well characterized, but little is known about other protein interactions that may also regulate PLC beta 3 function. A yeast two-hybrid screen of a mouse brain cDNA library with the amino terminus of PLC beta 3 has yielded potential PLC beta 3 interacting proteins including calmodulin (CaM). Physical interaction between CaM and PLC beta 3 is supported by a positive secondary screen in yeast and the identification of a CaM binding site in the amino terminus of PLC beta 3. Co-precipitation of in vitro translated and transcribed amino- and carboxyl-terminal PLC beta 3 revealed CaM binding at a putative amino-terminal binding site. Direct physical interaction of PLC beta 3 and PLC beta 1 isoforms with CaM is supported by pull-down of both isoenzymes with CaM-Sepharose beads from 1321N1 cell lysates. CaM inhibitors reduced M1-muscarinic receptor stimulation of inositol phospholipid hydrolysis in 1321N1 astrocytoma cells consistent with a physiologic role for CaM in modulation of PLC beta activity. There was no effect of CaM kinase II inhibitors, KN-93 and KN-62, on M1-muscarinic receptor stimulation of inositol phosphate hydrolysis, consistent with a direct interaction between PLC beta isoforms and CaM.
Ye, Xiaoqing; Li, Feixue; Zhang, Jianyun; Ma, Huihui; Ji, Dapeng; Huang, Xin; Curry, Thomas E; Liu, Weiping; Liu, Jing
2017-09-05
Pyrethroids, a class of insecticides that are widely used worldwide, have been identified as endocrine-disrupting chemicals (EDCs). Our recent epidemiological study reported on an association of increased pyrethroids exposure with elevated gonadotropins levels and earlier pubertal development in Chinese boys. In this study, we further investigated the effects of cypermethrin (CP), one of the most ubiquitous pyrethroid insecticides, on hypothalamic-pituitary-gonadal (HPG) axis and pubertal onset in male animal models. Early postnatal exposure to CP at environmentally relevant doses (0.5, 5, and 50 μg/kg CP) significantly accelerated the age of puberty onset in male mice. Administration of CP induced a dose-dependent increase in serum levels of luteinizing hormone (LH), follicle-stimulating hormone (FSH) and testosterone in male mice. CP did not affect gonadotropin-releasing hormone (GnRH) gene expression in the hypothalamus, but CP at higher concentrations stimulated GnRH pulse frequency. CP could induce the secretion of LH and FSH, as well as the expression of gonadotropin subunit genes [chorionic gonadotropin α (CGα), LHβ, and FSHβ] in pituitary gonadotropes. CP stimulated testosterone production and the expression of steroidogenesis-related genes [steroidogenic acute regulatory (StAR) and Cytochrome p 450, family 11, subfamily A, polypeptide 1 (CYP11A1)] in testicular Leydig cells. The interference with hypothalamic sodium channels as well as calcium channels in pituitary gonadotropes and testicular Leydig cells was responsible for CP-induced HPG axis maturation. Our findings established in animal models provide further evidence for the biological plausibility of pyrethroid exposure as a potentially environmental contributor to earlier puberty in males.
New discoveries on the biology and detection of human chorionic gonadotropin
Cole, Laurence A
2009-01-01
Human chorionic gonadotropin (hCG) is a glycoprotein hormone comprising 2 subunits, alpha and beta joined non covalently. While similar in structure to luteinizing hormone (LH), hCG exists in multiple hormonal and non-endocrine agents, rather than as a single molecule like LH and the other glycoprotein hormones. These are regular hCG, hyperglycosylated hCG and the free beta-subunit of hyperglycosylated hCG. For 88 years regular hCG has been known as a promoter of corpus luteal progesterone production, even though this function only explains 3 weeks of a full gestations production of regular hCG. Research in recent years has explained the full gestational production by demonstration of critical functions in trophoblast differentiation and in fetal nutrition through myometrial spiral artery angiogenesis. While regular hCG is made by fused villous syncytiotrophoblast cells, extravillous invasive cytotrophoblast cells make the variant hyperglycosylated hCG. This variant is an autocrine factor, acting on extravillous invasive cytotrophoblast cells to initiate and control invasion as occurs at implantation of pregnancy and the establishment of hemochorial placentation, and malignancy as occurs in invasive hydatidiform mole and choriocarcinoma. Hyperglycosylated hCG inhibits apoptosis in extravillous invasive cytotrophoblast cells promoting cell invasion, growth and malignancy. Other non-trophoblastic malignancies retro-differentiate and produce a hyperglycosylated free beta-subunit of hCG (hCG free beta). This has been shown to be an autocrine factor antagonizing apoptosis furthering cancer cell growth and malignancy. New applications have been demonstrated for total hCG measurements and detection of the 3 hCG variants in pregnancy detection, monitoring pregnancy outcome, determining risk for Down syndrome fetus, predicting preeclampsia, detecting pituitary hCG, detecting and managing gestational trophoblastic diseases, diagnosing quiescent gestational trophoblastic disease, diagnosing placental site trophoblastic tumor, managing testicular germ cell malignancies, and monitoring other human malignancies. There are very few molecules with such wide and varying functions as regular hCG and its variants, and very few tests with such a wide spectrum of clinical applications as total hCG. PMID:19171054
The effect of estradiol on granulosa cell responses to FSH in women with polycystic ovary syndrome.
Homer, Michael V; Rosencrantz, Marcus A; Shayya, Rana F; Chang, R Jeffrey
2017-02-10
The influence of estradiol (E 2 ) on granulosa cell (GC) function has not been tested clinically in women with polycystic ovary syndrome (PCOS). The objective of this study is to determine if E 2 influences GC responses to FSH in women with PCOS. This is a two phase, single cohort study conducted over a 2-year period at a single academic center. Nine women with PCOS according to NIH criteria. In Phase 1, FSH stimulation of GC responses as measured by E 2 and Inhibin B (Inh B) were assessed before and at 5 and 6 weeks after GnRH agonist administration. In Phase 2, the same protocol was employed with the addition of an aromatase inhibitor (letrozole, LET) administered daily beginning at week 4 for 2 weeks. In Phase 1, recovery of FSH, E 2 and Inh B from ovarian suppression occurred at 5 and 6 weeks after GnRH agonist injection and preceded resumption of LH and androgen secretion. In Phase 2, hormone recovery after GnRH agonist was characterized by elevated FSH and suppressed E 2 levels whereas recovery of LH and androgen levels were unchanged. In Phase 1, FSH stimulated E 2 and Inh B responses were unaltered during recovery from ovarian suppression. In Phase 2, E 2 and Inh B fold changes after FSH were significantly reduced at weeks 5 (p < 0.04) and 6 (p < 0.01), respectively. In anovulatory women with PCOS, chronic, unopposed E 2 secretion may contribute, at least in part, to enhanced ovarian responsiveness to FSH. NCT02389088.
Humaidan, P; Chin, W; Rogoff, D; D'Hooghe, T; Longobardi, S; Hubbard, J; Schertz, J
2017-03-01
How does the efficacy and safety of a fixed-ratio combination of recombinant human FSH plus recombinant human LH (follitropin alfa plus lutropin alfa; r-hFSH/r-hLH) compare with that of r-hFSH monotherapy for controlled ovarian stimulation (COS) in patients with poor ovarian response (POR)? The primary and secondary efficacy endpoints were comparable between treatment groups and the safety profile of both treatment regimens was favourable. Although meta-analyses of clinical trials have suggested some beneficial effect on reproductive outcomes with r-hLH supplementation in patients with POR, the definitions of POR were heterogeneous and limit the comparability across studies. Phase III, single-blind, active-comparator, randomized, parallel-group clinical trial. Patients were followed for a single ART cycle. A total of 939 women were randomized (1:1) to receive either r-hFSH/r-hLH or r-hFSH. Randomization, stratified by study site and participant age, was conducted via an interactive voice response system. Women classified as having POR, based on criteria incorporating the ESHRE Bologna criteria, were down-regulated with a long GnRH agonist protocol and following successful down-regulation were randomized (1:1) to COS with r-hFSH/r-hLH or r-hFSH alone. The primary efficacy endpoint was the number of oocytes retrieved following COS. Safety endpoints included the incidence of adverse events, including ovarian hyperstimulation syndrome (OHSS). Post hoc analyses investigated safety outcomes and correlations between live birth and baseline characteristics (age and number of oocytes retrieved in previous ART treatment cycles or serum anti-Müllerian hormone (AMH)). The significance of the treatment effect was tested by generalized linear models (Poisson regression for counts and logistic regression for binary endpoints) adjusting for age and country. Of 949 subjects achieving down-regulation, 939 were randomized to r-hFSH/r-hLH (n = 477) or r-hFSH (n = 462) and received treatment. Efficacy assessment: In the intention-to-treat (ITT) population, the mean (SD) number of oocytes retrieved (primary endpoint) was 3.3 (2.71) in the r-hFSH/r-hLH group compared with 3.6 (2.82) in the r-hFSH group (between-group difference not statistically significant). The observed difference between treatment groups (r-hFSH/r-hLH and r-hFSH, respectively) for efficacy outcomes decreased over the course of pregnancy (biochemical pregnancy rate: 17.3% versus 23.9%; clinical pregnancy rate: 14.1% versus 16.8%; ongoing pregnancy rate: 11.0% versus 12.4%; and live birth rate: 10.6% versus 11.7%). An interaction (identified post hoc) between baseline characteristics related to POR and treatment effect was noted for live birth, with r-hFSH/r-hLH associated with a higher live birth rate for patients with moderate or severe POR, whereas r-hFSH was associated with a higher live birth rate for those with mild POR. A post hoc logistic regression analysis indicated that the incidence of total pregnancy outcome failure was lower in the r-hFSH/r-hLH group (6.7%) compared with the r-hFSH group (12.4%) with an odds ratio of 0.52 (95% CI 0.33, 0.82; P = 0.005). Safety assessment: The overall proportion of patients with treatment-emergent adverse events (TEAEs) occurring during or after r-hFSH/r-hLH or r-hFSH use (stimulation or post-stimulation phase) was 19.9% and 26.8%, respectively. There was no consistent pattern of TEAEs associated with either treatment. Despite using inclusion criteria for POR incorporating the ESHRE Bologna criteria, further investigation is needed to determine the impact of the heterogeneity of POR in the Bologna patient population. The observed correlation between baseline clinical characteristics related to POR and live birth rate, as well as the observed differences between groups regarding total pregnancy outcome failure were from post hoc analyses, and the study was not powered for these endpoints. In addition, the attrition rate for pregnancy outcomes in this trial may not reflect general medical practice. Furthermore, as the patient population was predominantly White these results might not be applicable to other ethnicities. In the population of women with POR investigated in this study, although the number of oocytes retrieved was similar following stimulation with either a fixed-ratio combination of r-hFSH/r-hLH or r-hFSH monotherapy, post hoc analyses showed that there was a lower rate of total pregnancy outcome failure in patients receiving r-hFSH/r-hLH, in addition to a higher live birth rate in patients with moderate and severe POR. These findings are clinically relevant and require additional investigation. The benefit:risk balance of treatment with either r-hFSH/r-hLH or r-hFSH remains positive. This study was funded by Merck KGaA, Darmstadt, Germany. P.H. has received honoraria for lectures and unrestricted research grants from Ferring, Merck KGaA and MSD. D.R. is a former employee of EMD Serono, a business of Merck KGaA, Darmstadt, Germany. J.S., J.H. and W.C. are employees of EMD Serono Research and Development Institute, a business of Merck KGaA, Darmstadt, Germany. T.D.'H. and S.L. are employees of Merck KGaA, Darmstadt, Germany. ClinicalTrials.gov identifier: NCT02047227; EudraCT Number: 2013-003817-16. ClinicalTrials.gov: 24 January 2014; EudraCT: 19 December 2013. 30 January 2014. © The Author 2017. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watkins, D.C.; Northup, J.K.; Malbon, C.C.
Treatment of cultures of 3T3-L1 cells with methylisobutyl-xanthine and dexamethasone has been shown to result in accumulation of lipid and conversion to the morphology of adipocytes in more than 90% of the cells. The status of the stimulatory (Gs), inhibitory (Gi) and Go-proteins during the course of 3T3-L1 differentiation was examined. The amount of alpha subunit of Gs (..cap alpha..Gs), assayed by radiolabeling in the presence of cholera toxin and (/sup 32/P)NAD/sup +/, increased upon differentiation as previously described by others. The amounts of ..cap alpha..Gi and ..cap alpha..Go assayed by radiolabeling in the presence of pertussis toxin and (/supmore » 32/P)NAD/sup +/ increased 3-fold upon differentiation. Immunoblots of cell membranes subjected to gel electrophoresis in sodium dodecyl sulfate were probed with two rabbit antisera raised against bovine brain ..cap alpha..Go and with one raised against the..beta..-subunit of the bovine rod-outer-segment G-protein, referred to as transducin. The immunoblotting data confirm the increase upon differentiation of ..cap alpha..Go and also demonstrate an increase in the amount of the ..beta..-subunit. Thus differentiation of 3T3-L1 cells is accompanied by dramatic changes in the complexion of G-proteins in the membranes.« less
Materials and methods for the alteration of enzyme and acetyl CoA levels in plants
Nikolau, Basil J.; Wurtele, Eve S.; Oliver, David J.; Behal, Robert; Schnable, Patrick S.; Ke, Jinshan; Johnson, Jerry L.; Allred, Carolyn C.; Fatland, Beth; Lutziger, Isabelle; Wen, Tsui-Jung
2005-09-13
The present invention provides nucleic acid and amino acid sequences of acetyl CoA synthetase (ACS), plastidic pyruvate dehydrogenase (pPDH), ATP citrate lyase (ACL), Arabidopsis pyruvate decarboxylase (PDC), and Arabidopsis aldehyde dehydrogenase (ALDH), specifically ALDH-2 and ALDH-4. The present invention also provides a recombinant vector comprising a nucleic acid sequence encoding one of the aforementioned enzymes, an antisense sequence thereto or a ribozyme therefor, a cell transformed with such a vector, antibodies to the enzymes, a plant cell, a plant tissue, a plant organ or a plant in which the level of an enzyme has been altered, and a method of producing such a plant cell, plant tissue, plant organ or plant. Desirably, alteration of the level of enzyme results in an alteration of the level of acetyl CoA in the plant cell, plant tissue, plant organ or plant. In addition, the present invention provides a recombinant vector comprising an antisense sequence of a nucleic acid sequence encoding pyruvate decarboxylase (PDC), the E1.alpha. subunit of pPDH, the E1.beta. subunit of pPDH, the E2 subunit of pPDH, mitochondrial pyruvate dehydrogenase (mtPDH) or aldehyde dehydrogenase (ALDH) or a ribozyme that can cleave an RNA molecule encoding PDC, E1.alpha. pPDH, E1.beta. pPDH, E2 pPDH, mtPDH or ALDH.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nikolau, Basil J.; Wurtele, Eve S.; Oliver, David J.
The present invention provides nucleic acid and amino acid sequences of acetyl CoA synthetase (ACS), plastidic pyruvate dehydrogenase (pPDH), ATP citrate lyase (ACL), Arabidopsis pyruvate decarboxylase (PDC), and Arabidopsis aldehyde dehydrogenase (ALDH), specifically ALDH-2 and ALDH-4. The present invention also provides a recombinant vector comprising a nucleic acid sequence encoding one of the aforementioned enzymes, an antisense sequence thereto or a ribozyme therefor, a cell transformed with such a vector, antibodies to the enzymes, a plant cell, a plant tissue, a plant organ or a plant in which the level of an enzyme has been altered, and a method ofmore » producing such a plant cell, plant tissue, plant organ or plant. Desirably, alteration of the level of enzyme results in an alteration of the level of acetyl CoA in the plant cell, plant tissue, plant organ or plant. In addition, the present invention provides a recombinant vector comprising an antisense sequence of a nucleic acid sequence encoding pyruvate decarboxylase (PDC), the E1.sub..alpha. subunit of pPDH, the E1.sub..beta. subunit of pPDH, the E2 subunit of pPDH, mitochondrial pyurvate dehydrogenase (mtPDH) or aldehyde dehydrogenase (ALDH) or a ribozyme that can cleave an RNA molecule encoding PDC, E1.sub..alpha. pPDH, E1.sub..beta. pPDH, E2 pPDH, mtPDH or ALDH.« less
Multilocus genotyping of Giardia duodenalis in lambs from Spain reveals a high hetrogeneity
USDA-ARS?s Scientific Manuscript database
Fecal specimens from 120 lambs in Valencia (Spain) were analyzed for Giardia duodenalis by IFA and nested-PCR using the beta giardin, glutamate dehydrogenase (gdh), triose phosphate isomerase (tpi) and small subunit ribosomal RNA (ssurRNA) genes. The highest prevalence was obtained using the ssurRN...
The control of inositol lipid hydrolysis.
Katan, M
1996-01-01
Hydrolysis of PIP2 by specific PLC enzymes is involved in the regulation of different cellular processes by many extracellular signals. The need stringently to control this reaction is reflected by the fact that there are many PLC isozymes and multiple mechanisms linking these isozymes to various receptors. For two of the three PLC families found in mammalian cells (PLC beta and gamma), the components of the main regulatory pathways have been identified. PLC beta isozymes are regulated through G protein coupled receptors. Their activity is stimulated by interaction with alpha subunit from the Gq family and interaction with G protein beta gamma subunits. PLC gamma isozymes are regulated through receptor and non-receptor tyrosine kinases. The combination of SH2 dependent complex formation with phosphorylated tyrosine kinases and the subsequent phosphorylation of PLC gamma leads to stimulation of its activity. Although components that stimulate PLC beta and gamma isozymes have been identified, the molecular mechanism of stimulation remains largely unknown. Each signalling component operating within this general framework represents a family of related proteins. It is not clear what all the functional differences between members of the same family may be and to what extent they could determine specificity of individual signalling pathways. Similarly, it is not known to what extent alterations in PLC function/expression contribute to human pathologies. In the context of oncology, there is evidence for upregulation of PLC gamma in parallel with increased expression of the EGF receptor (Artega et al. 1991). However, it is not clear yet whether this is causally involved or a bystander effect.
Purification and characterization of a casein kinase 2-type protein kinase from pea nuclei
NASA Technical Reports Server (NTRS)
Li, H.; Roux, S. J.
1992-01-01
Almost all the polyamine-stimulated protein kinase activity associated with the chromatin fraction of nuclei purified from etiolated pea (Pisum sativum L.) plumules is present in a single enzyme that can be extracted from chromatin by 0.35 molar NaCl. This protein kinase can be further purified over 2000-fold by salt fractionation and anion-exchange and casein-agarose column chromatography, after which it is more than 90% pure. The purified kinase has a specific activity of about 650 nanomoles per minute per milligram protein in the absence of polyamines, with either ATP or GTP as phosphoryl donor. Spermidine can stimulate its activity fourfold, with half-maximal activation at about 2 millimolar. Spermine and putrescine also stimulate activity, although somewhat less effectively. This kinase has a tetrameric alpha 2 beta 2 structure with a native molecular weight of 130,000, and subunit molecular weights of 36,000 for the catalytic subunit (alpha) and 29,000 for the regulatory subunit (beta). In western blot analyses, only the alpha subunit reacts strongly with polyclonal antibodies to a Drosophila casein kinase II. The pea kinase can use casein and phosvitin as artificial substrates, phosphorylating both the serine and threonine residues of casein. It has a pH optimum near 8.0, a Vmax of 1.5 micromoles per minute per milligram protein, and a Km for ATP of approximately 75 micromolar. Its activity can be almost completely inhibited by heparin at 5 micrograms per milliliter, but is relatively insensitive to concentrations of staurosporine, K252a, and chlorpromazine that strongly antagonize Ca(2+) -regulated protein kinases. These results are discussed in relation to recent findings that casein kinase 2-type kinases may phosphorylate trans-acting factors that bind to light-regulated promoters in plants.
Kashimata, M; Gresik, E W
1997-02-01
Epidermal growth factor (EGF) and transforming growth factor-alpha (TGF-alpha) regulate branching morphogenesis of fetal mouse submandibular gland (SMG) rudiments in vitro. The EGF system (EGF, TGF-alpha, and their shared receptor, EGFR) also regulates expression of integrins and their ligands in the extracellular matrix. We show here that inhibition of EGFR tyrosine-kinase activity by a tyrphostin retards in vitro development of SMGs. Using total RNA isolated from pooled SMGs taken from intact mouse fetuses, mRNA transcripts for EGF, TGF-alpha, and EGFR were detected by reverse transcription-polymerase chain reaction (RT-PCR), and age-dependent variations in the levels of these mRNA were quantitatively determined by nuclease protection assays. These findings suggest that the EGF system is operative in the in vivo development of this gland. alpha6-Integrin subunit was localized by immunofluorescence at the basal surface of epithelial cells. Branching morphogenesis of cultured SMG rudiments was inhibited by anti-alpha6 antibodies. Synthesis of alpha6-subunit in cultured SMGs, detected by metabolic labeling and immunoprecipitation, was increased by EGF and drastically reduced by tyrphostin. RT-PCR revealed that mRNAs for alpha6- and beta1- and beta4-integrin subunits are expressed at all ages between embryonic day 13 and postnatal day 7. These findings suggest that 1) the EGF system is a physiologic regulator of development of fetal mouse SMG, and 2) one mechanism by which it acts may be by regulating expression of integrins, which in turn control interaction of epithelial cells with the extracellular matrix.
Crystal structure of dUTP pyrophosphatase from feline immunodeficiency virus.
Prasad, G. S.; Stura, E. A.; McRee, D. E.; Laco, G. S.; Hasselkus-Light, C.; Elder, J. H.; Stout, C. D.
1996-01-01
We have determined the crystal structure of dUTP pyrophosphatase (dUTPase) from feline immunodeficiency virus (FIV) at 1.9 A resolution. The structure has been solved by the multiple isomorphous replacement (MIR) method using a P6(3) crystal form. The results show that the enzyme is a trimer of 14.3 kDa subunits with marked structural similarity to E. coli dUTPase. In both enzymes the C-terminal strand of an anti-parallel beta-barrel participates in the beta-sheet of an adjacent subunit to form an interdigitated, biologically functional trimer. In the P6(3) crystal form one trimer packs on the 6(3) screw-axis and another on the threefold axis so that there are two independent monomers per asymmetric unit. A Mg2+ ion is coordinated by three asparate residues on the threefold axis of each trimer. Alignment of 17 viral, prokaryotic, and eukaryotic dUTPase sequences reveals five conserved motifs. Four of these map onto the interface between pairs of subunits, defining a putative active site region; the fifth resides in the C-terminal 16 residues, which is disordered in the crystals. Conserved motifs from all three subunits are required to create a given active site. With respect to viral protein expression, it is particularly interesting that the gene for dUTPase (DU) resides in the middle of the Pol gene, the enzyme cassette of the retroviral genome. Other enzymes encoded in the Pol polyprotein, including protease (PR), reverse transcriptase (RT), and most likely integrase (IN), are dimeric enzymes, which implies that the stoichiometry of expression of active trimeric dUTPase is distinct from the other Pol-encoded enzymes. Additionally, due to structural constraints, it is unlikely that dUTPase can attain an active form prior to cleavage from the polyprotein. PMID:8976551
Botticelli, G; Bacchi Modena, A; Bresciani, D; Villa, P; Aguzzoli, L; Florio, P; Nappi, R E; Petraglia, F; Genazzani, A R
1992-12-01
The effect of an acute physical stress on hormone secretions before and after a 10-day naltrexone treatment in untrained healthy and amenorrheic women was investigated. Plasma levels of pituitary (LH, FSH, prolactin, GH, ACTH, beta-endorphin) and adrenal (cortisol, androstenedione, testosterone) hormones were measured at rest and in response to 60 min of physical exercise. The test was done both before and after a 10-day naltrexone (50 mg/day) treatment. Graded levels of treadmill exercise (50, 70 and 90% of maximal oxygen uptake (VO2) every 20 min) was used as physical stressor. While mean +/- SE plasma LH levels in control women were higher than in amenorrheic patients and increased following the naltrexone treatment (p < 0.01), no significant differences of basal plasma hormonal levels were observed between amenorrheic and eumenorrheic women, both before and after naltrexone treatment. Physical exercise at 90% VO2 induced a significant increase in plasma GH, ACTH, beta-endorphin, cortisol, androstenedione and testosterone levels in controls before naltrexone treatment (p < 0.01). The mean increase in plasma androstenedione and testosterone levels in control women was significantly higher after naltrexone treatment (p < 0.01). In amenorrheic patients before naltrexone, physical exercise induced an increase in plasma prolactin and GH levels, but not in plasma ACTH, beta-endorphin, cortisol, testosterone and androstenedione. After naltrexone treatment, the exercise induced a significant plasma ACTH, beta-endorphin and cortisol levels, while the increase of plasma prolactin levels was significantly higher than before treatment (p < 0.01).(ABSTRACT TRUNCATED AT 250 WORDS)
Metabolic clearance and blood production rates of estradiol in hyperthyroidism.
Ridgway, E C; Longcope, C; Maloof, F
1975-09-01
The metabolic clearance rate of 17beta-estradiol (MCR2), the plasma levels of 17beta-estradiol (E2)1, sex-steroid binding globulin (SSBG), luteinizing hormone (LH) and follicle-stimulating hormone (FSH) were measured in 10 hyperthyroid subjects (7 men and 3 women). The blood production rate of 17beta-estradiol (PB2) was calculated for all subjects. Nine of the 10 hyperthyroid subjects had a decreased MCR2 which returned towards normal in 5 of the 6 subjects restudied following therapy. In all 10 subjects the levels of SSBG were increased when they were hyperthyroid and returned toward normal with therapy. It is concluded that the decrease in MCR2 is largely due to the increased binding of 17beta-estradiol to SSBG. In 7 of the 10 hyperthyroid the plasma E2 concentrations were normal whereas 3 had slightly elevated levels. In 8 of the 10 hyperthyroid the PB2 was within the normal range. Only 2 hyperthyroid subjects had slightly elevated PB2. In the 6 subjects who were restudied after therapy, there was no consistent change in PB2 which remained in the normal range in all cases. It is concluded that the MCR2 is decreased in most subjects with hyperthyroidism in association with an increase of SSBG. Despite this change in MCR2 there is no significant change in PB2. The increase in SSBG levels in hyperthyroidism appears to be a direct effect of the elevation of thyroid hormone activity and is not mediated through estrogen.
Shafiee-Kermani, Farideh; Han, Sang-oh; Miller, William L
2007-07-01
FSH is induced by activin, and this expression is modulated by GnRH through FSHB expression. This report focuses on the inhibitory effect of GnRH on activin-induced FSHB expression. Activin-treated primary murine pituitary cultures robustly express mutant ovine FSHBLuc-DeltaAP1, a luciferase transgene driven by 4.7 kb of ovine FSHB promoter. This promoter lacks two GnRH-inducible activator protein-1 sites, making it easier to observe GnRH-mediated inhibition. Luciferase expression from this transgene was decreased 94% by 100 nM GnRH with a half-time of approximately 4 h in pituitary cultures, and this inhibition was independent of follistatin. Activators of cAMP and protein kinase C like forskolin and phorbol 12-myristate 3-acetate (PMA), respectively, mimicked GnRH action. Kinetic studies of wild-type ovine FSHBLuc in LbetaT2 cells showed continuous induction by activin (4-fold) over 20 h. Most of this induction (78%) was blocked, beginning at 6 h. cAMP response element binding protein (CREB) was implicated in this inhibition because overexpression of its constitutively active mutant mimicked GnRH, and its inhibitor (inducible cAMP early repressor isoform II) reversed the inhibition caused by GnRH, forskolin, or PMA. In addition, GnRH, forskolin, or PMA increased the expression of a CREB-responsive reporter gene, 6xCRE-37PRL-Luc. Inhibition of nitric oxide type I (NOSI) by 7-nitroindazole also reversed GnRH-mediated inhibition by 60%. It is known that GnRH and CREB induce production of NOSI in gonadotropes and neuronal cells, respectively. These data support the concept that chronic GnRH inhibits activin-induced ovine FSHB expression by sequential activation of CREB and NOSI through the cAMP and/or protein kinase C pathways.
Structural and biological mimicry of protein surface recognition by [alpha/beta]-peptide foldamers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horne, W. Seth; Johnson, Lisa M.; Ketas, Thomas J.
Unnatural oligomers that can mimic protein surfaces offer a potentially useful strategy for blocking biomedically important protein-protein interactions. Here we evaluate an approach based on combining {alpha}- and {beta}-amino acid residues in the context of a polypeptide sequence from the HIV protein gp41, which represents an excellent testbed because of the wealth of available structural and biological information. We show that {alpha}/{beta}-peptides can mimic structural and functional properties of a critical gp41 subunit. Physical studies in solution, crystallographic data, and results from cell-fusion and virus-infectivity assays collectively indicate that the gp41-mimetic {alpha}/{beta}-peptides effectively block HIV-cell fusion via a mechanism comparablemore » to that of gp41-derived {alpha}-peptides. An optimized {alpha}/{beta}-peptide is far less susceptible to proteolytic degradation than is an analogous {alpha}-peptide. Our findings show how a two-stage design approach, in which sequence-based {alpha} {yields} {beta} replacements are followed by site-specific backbone rigidification, can lead to physical and biological mimicry of a natural biorecognition process.« less
Pozzi, Andrea Gabriela; Rosemblit, Cinthia; Ceballos, Nora Raquel
2006-01-01
This paper analyzes, in the toad Bufo arenarum, the effect on spermiation and androgen secretion of two human recombinant gonadotropins, human recombinant LH (hrLH) and human recombinant FSH (hrFSH) as well as the well-known spermiation-inducing hormone, human chorionic gonadotropin (hCG). For this purpose, testes were incubated with different concentrations of hrLH (0.01-2.5 microg/ml) and hrFSH (0.05-5 microg/ml), and results were compared with those obtained with 2.5 microg/ml hCG. Spermiation was most efficiently stimulated by hrFSH, which elicited a higher response than either hrLH or hCG. Both hrFSH and hrLH produced a bell-shaped dose-response curve, with a 50% inhibition on spermiation at a concentration twice higher than that necessary to get the highest response. However, none of the gonadotropins yielded a biphasic response on androgen secretion, hrLH producing the highest response at a concentration that evoked a 70% inhibition in the spermiation test. Regarding steroidogenesis, hrLH and hrFSH were more active than hCG. Taken together, the results described in this paper suggest that, in B. arenarum, spermiation and androgen secretion are mediated by different receptors. After comparing the effects of recombinant hormones, we conclude that hrFSH has a greater effect on spermiation than hCG or hrLH.
Kim, Bora; Kang, Eun-Suk; Fava, Maurizio; Mischoulon, David; Soskin, David; Yu, Bum-Hee; Lee, Dongsoo; Lee, Dong-Yun; Park, Hyung-Doo; Jeon, Hong Jin
2013-12-30
Current suicidal ideation and attempts are more commonly found in female patients with major depressive disorder (MDD) than in males. However, little is known about the relationship between activity of female reproductive hormones and suicide. The study population consisted of 490 female MDD patients of age ≥18. They were assessed by the Mini-International Neuropsychiatric Interview. At the same visit, we measured blood Follicle-Stimulating Hormone (FSH), Luteinizing Hormone (LH), estradiol, progesterone, Adrenocorticotropic Hormone (ACTH), cortisol, thyroid hormones, and prolactin. Blood FSH showed a significant difference among female MDD patients with suicide attempt, those with ideation, and those without within the previous month. Post-hoc analysis also showed that FSH was significantly lower in MDD patients with suicide attempt and ideation than those without, whereas other hormones showed no differences between those with and without attempt. FSH was negatively associated with current suicidality scores after adjustment for age and education years in all age groups. FSH was significantly lower in those with current suicide ideation or attempt than those without in age 45 years or under, but not in other age groups. In conclusion, blood FSH is significantly lower in female MDD patients with current suicide attempt or ideation than those without, especially in age 45 years or under. © 2013 Elsevier Ireland Ltd. All rights reserved.
Tsai, M H; Saier, M H
1995-06-01
Electron transfer flavoproteins (ETF) are alpha beta-heterodimers found in eukaryotic mitochondria and bacteria. We have identified currently sequenced protein members of the ETF-alpha and ETF-beta families. Members of these two families include (a) the ETF subunits of mammals and bacteria, (b) homologous pairs of proteins (FixB/FixA) that are essential for nitrogen fixation in some bacteria, and (c) a pair of carnitine-inducible proteins encoded by two open reading frames in Escherichia coli (YaaQ and YaaR). These three groups of proteins comprise three clusters on both the ETF-alpha and ETF-beta phylogenetic trees, separated from each other by comparable phylogenetic distances. This fact suggests that these two protein families evolved with similar overall rates of evolutionary divergence. Relative regions of sequence conservation are evaluated, and signature sequences for both families are derived.
Regional localization of the human integrin {beta}{sub 6} gene (ITGB6) to chromosome 2q24-q31
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fernandez-Ruiz, E.; Sanchez-Madrid, F.
The heterodimer {alpha}{sub v}{beta}{sub 6} acts as a fibronectin receptor for human carcinoma cells. The authors report here the regional localization of the {beta}{sub 6} gene to 2q24-q31 by fluorescence in situ hybridization coupled with GTG-banding. This gene is located close to the region to which genes coding for the {alpha} subunits of the integrins VLA-4 and vitronectin receptor (ITGA4 and ITGAV, respectively) have been previously mapped (2q31-q32). These data suggest a proximal position of the integrin {beta}{sub 6} locus (ITGB6) on this integrin gene cluster. Futhermore, double-labeling in situ hybridization experiments performed with {alpha}{sub 4} and {alpha}{sub v} probesmore » indicated a telomeric position of ITGAV with respect to ITGA4. 22 refs., 2 figs.« less
Vieira, L M; Rodrigues, C A; Castro Netto, A; Guerreiro, B M; Silveira, C R A; Moreira, R J C; Sá Filho, M F; Bó, G A; Mapletoft, R J; Baruselli, P S
2014-07-15
The present study evaluated the efficacy of superstimulation with p-FSH (Folltropin) before the ovum pick-up (OPU) on IVP in lactating and nonlactating Holstein donors. A total of 30 Holstein cows (15 lactating and 15 nonlactating) were blocked by lactation status to one of two groups (control or p-FSH), in a cross-over design. On a random day of the estrous cycle, all cows received an intravaginal progesterone device and 2.0 mg IM of estradiol benzoate (Day 0). Cows in the control group received no further treatment, whereas cows in the p-FSH group received a total dosage of 200 mg of p-FSH on Days 4 and 5 in four decreasing doses 12 hours apart (57, 57, 43, and 43 mg). On Day 7, the progesterone device was removed, and OPU was conducted in both groups (40 hours after the last p-FSH injection in the p-FSH-treated group). There was no difference between groups (P = 0.92) in the numbers of follicles that were aspirated per OPU session (17.2 ± 1.3 vs. 17.1 ± 1.1 in control and p-FSH-treated cows, respectively); however, p-FSH-treated cows had a higher (P < 0.001) percentage of medium-sized follicles (6-10 mm) at the time of the OPU (55.1%; 285/517) than control cows (20.8%; 107/514). Although recovery rate was lower (60.0%, 310/517 vs. 69.8%, 359/514; P = 0.002), p-FSH-treated cows had a higher blastocyst production rate (34.5%, 89/258 vs. 19.8%, 55/278; P < 0.001) and more transferable embryos per OPU session were produced in the p-FSH group (3.0 ± 0.5 vs. 1.8 ± 0.4; P = 0.02). Regardless of treatment, non-lactating cows had a higher blastocyst rate (41.9%, 106/253 vs. 13.4%, 38/283; P = 0.001) and produced more transferable embryos per OPU session (3.5 ± 0.5 vs. 1.3 ± 0.3; P = 0.003) than lactating cows. Thus, superstimulation of Holstein donors with p-FSH before OPU increased the efficiency of IVP. In addition, non-lactating donors had higher percentage of in vitro blastocyst development and produced more embryos per OPU session than lactating cows. Copyright © 2014 Elsevier Inc. All rights reserved.
O'Halloran, Damien M; Altshuler-Keylin, Svetlana; Zhang, Xiao-Dong; He, Chao; Morales-Phan, Christopher; Yu, Yawei; Kaye, Julia A; Brueggemann, Chantal; Chen, Tsung-Yu; L'Etoile, Noelle D
2017-03-13
In Caenorhabditis elegans, the AWC neurons are thought to deploy a cGMP signaling cascade in the detection of and response to AWC sensed odors. Prolonged exposure to an AWC sensed odor in the absence of food leads to reversible decreases in the animal's attraction to that odor. This adaptation exhibits two stages referred to as short-term and long-term adaptation. Previously, the protein kinase G (PKG), EGL-4/PKG-1, was shown necessary for both stages of adaptation and phosphorylation of its target, the beta-type cyclic nucleotide gated (CNG) channel subunit, TAX-2, was implicated in the short term stage. Here we uncover a novel role for the CNG channel subunit, CNG-3, in short term adaptation. We demonstrate that CNG-3 is required in the AWC for adaptation to short (thirty minute) exposures of odor, and contains a candidate PKG phosphorylation site required to tune odor sensitivity. We also provide in vivo data suggesting that CNG-3 forms a complex with both TAX-2 and TAX-4 CNG channel subunits in AWC. Finally, we examine the physiology of different CNG channel subunit combinations.
The GIRK1 subunit potentiates G protein activation of cardiac GIRK1/4 hetero-tetramers
Touhara, Kouki K; Wang, Weiwei; MacKinnon, Roderick
2016-01-01
G protein gated inward rectifier potassium (GIRK) channels are gated by direct binding of G protein beta-gamma subunits (Gβγ), signaling lipids, and intracellular Na+. In cardiac pacemaker cells, hetero-tetramer GIRK1/4 channels and homo-tetramer GIRK4 channels play a central role in parasympathetic slowing of heart rate. It is known that the Na+ binding site of the GIRK1 subunit is defective, but the functional difference between GIRK1/4 hetero-tetramers and GIRK4 homo-tetramers remains unclear. Here, using purified proteins and the lipid bilayer system, we characterize Gβγ and Na+ regulation of GIRK1/4 hetero-tetramers and GIRK4 homo-tetramers. We find in GIRK4 homo-tetramers that Na+ binding increases Gβγ affinity and thereby increases the GIRK4 responsiveness to G protein stimulation. GIRK1/4 hetero-tetramers are not activated by Na+, but rather are in a permanent state of high responsiveness to Gβγ, suggesting that the GIRK1 subunit functions like a GIRK4 subunit with Na+ permanently bound. DOI: http://dx.doi.org/10.7554/eLife.15750.001 PMID:27074664
Bhartiya, Deepa; Singh, Jarnail
2015-01-01
Despite extensive research, genetic basis of premature ovarian failure (POF) and ovarian cancer still remains elusive. It is indeed paradoxical that scientists searched for mutations in FSH receptor (FSHR) expressed on granulosa cells, whereas more than 90% of cancers arise in ovary surface epithelium (OSE). Two distinct populations of stem cells including very small embryonic-like stem cells (VSELs) and ovarian stem cells (OSCs) exist in OSE, are responsible for neo-oogenesis and primordial follicle assembly in adult life, and are modulated by FSH via its alternatively spliced receptor variant FSHR3 (growth factor type 1 receptor acting via calcium signaling and the ERK/MAPK pathway). Any defect in FSH-FSHR3-stem cell interaction in OSE may affect folliculogenesis and thus result in POF. Ovarian aging is associated with a compromised microenvironment that does not support stem cell differentiation into oocytes and further folliculogenesis. FSH exerts a mitogenic effect on OSE and elevated FSH levels associated with advanced age may provide a continuous trigger for stem cells to proliferate resulting in cancer, thus supporting gonadotropin theory for ovarian cancer. Present review is an attempt to put adult ovarian biology, POF, aging, and cancer in the perspective of FSH-FSHR3-stem cell network that functions in OSE. This hypothesis is further supported by the recent understanding that: i) cancer is a stem cell disease and OSE is the niche for ovarian cancer stem cells; ii) ovarian OCT4-positive stem cells are regulated by FSH; and iii) OCT4 along with LIN28 and BMP4 are highly expressed in ovarian cancers. © 2015 Society for Reproduction and Fertility.
Fornaro, Felice; Cobellis, Luigi; Mele, Daniela; Tassou, Argyrò; Badolati, Barbara; Sorrentino, Simona; De Lucia, Domenico; Colacurci, Nicola
2007-01-01
To compare the effects of GnRH-agonist/recombinant rFSH versus GnRH-antagonist/recombinant FSH stimulation on follicular fluid levels of soluble intercellular adhesion molecule (sICAM)-1 and vascular cell adhesion molecule-1 (sVCAM-1) during in vitro fertilization (IVF). Prospective, randomized study. University hospital. Seventy-three women underwent IVF. GnRH-agonist/rFSH or GnRH-antagonist/rFSH administration and collection of follicular fluid from 3 small (11-14 mm in diameter) and 3 large (18-21 mm in diameter) follicles on the day of oocyte retrieval. Follicular fluid levels of sICAM-1 and sVCAM-1 and intrafollicular estradiol and progesterone were also measured. Women who underwent GnRH-agonist/rFSH showed higher concentrations of sICAM-1 in both small and large follicles were compared with patients who received GnRH-antagonist/rFSH treatment; follicular fluid levels of sVCAM-1 were similar between the 2 stimulation protocols. Content of sICAM-1 in small and large follicles positively correlated with the number of follicles of > or =15 mm and the number of oocytes that were retrieved in both study groups. Concentrations of follicular fluid sVCAM-1 and progesterone were higher in large than in small follicles and were correlated positively to each other in both follicular classes. In IVF, GnRH-agonist/rFSH is associated with higher follicular fluid levels of sICAM-1 compared with GnRH-antagonist/rFSH regimen. Intrafollicular sICAM-1 content may predict ovarian response, and sVCAM-1 appears as an indicator of the degree of follicular luteinization.
Celik, Cem; Sofuoğlu, Kenan; Selçuk, Selçuk; Asoğlu, Mehmet Reşit; Abalı, Remzi; Cetingöz, Elçin; Baykal, Bahar; Uludoğan, Mehmet
2011-01-01
Gonadotropins used in controlled ovarian stimulation have been increasing in number. Beside the recombinant preparations such as rec-FSH, rec-LH and h-hMG human-derived preparations have entered the market. We decided to compare the effects of rec-FSH and HP-hMG with GnRHa on embryo quality and pregnancy outcome in women undergoing an IVF cycle. In this study, data of 87 patients who had applied to our center from 2007 to 2008 and who had met all inclusion criteria, were analyzed. The patients underwent controlled ovarian hyperstimulation with HP-hMG, rec-FSH following down-regulation with a GnRHa in a long protocol, selected according to determined criteria and acquired embryo via IVF transfer. Of the 87 patients, 44 were stimulated with rec-FSH and 43 with HP-hMG. Distribution of infertility causes was similar between the groups. Duration of gonadotropin administration (p=0.677, Student's t-test) and the total dose of gonadotropin received (p=0.392, Student's t-test) were similar between the two groups. The fertilization rate of the rec-FSH group was significantly higher than the HP-hMG group (p=0.001, Mann-Whitney U test). No significant differences were observed between the study groups in biochemical, clinical and ongoing pregnancy parameters. The higher oocyte yield with rec-FSH does not result in higher quality embryos. LH activity in combination with FSH activity positively affected the oocyte and embryo maturation. Therefore, when we consider the clinical and ongoing pregnancy rates there is no inferiority of HP-hMG in controlled ovarian stimulation.
Çelik, Cem; Sofuoğlu, Kenan; Selçuk, Selçuk; Asoğlu, Mehmet Reşit; Abalı, Remzi; Çetingöz, Elçin; Baykal, Bahar; Uludoğan, Mehmet
2011-01-01
Objective Gonadotropins used in controlled ovarian stimulation have been increasing in number. Beside the recombinant preparations such as rec-FSH, rec-LH and h-hMG human-derived preparations have entered the market. We decided to compare the effects of rec-FSH and HP-hMG with GnRHa on embryo quality and pregnancy outcome in women undergoing an IVF cycle. Material and Methods In this study, data of 87 patients who had applied to our center from 2007 to 2008 and who had met all inclusion criteria, were analyzed. The patients underwent controlled ovarian hyperstimulation with HP-hMG, rec-FSH following down-regulation with a GnRHa in a long protocol, selected according to determined criteria and acquired embryo via IVF transfer. Results Of the 87 patients, 44 were stimulated with rec-FSH and 43 with HP-hMG. Distribution of infertility causes was similar between the groups. Duration of gonadotropin administration (p=0.677, Student’s t-test) and the total dose of gonadotropin received (p=0.392, Student’s t-test) were similar between the two groups. The fertilization rate of the rec-FSH group was significantly higher than the HP-hMG group (p=0.001, Mann-Whitney U test). No significant differences were observed between the study groups in biochemical, clinical and ongoing pregnancy parameters. Conclusion The higher oocyte yield with rec-FSH does not result in higher quality embryos. LH activity in combination with FSH activity positively affected the oocyte and embryo maturation. Therefore, when we consider the clinical and ongoing pregnancy rates there is no inferiority of HP-hMG in controlled ovarian stimulation. PMID:24591951
Plurihormonal cells of normal anterior pituitary: Facts and conclusions
Mitrofanova, Lubov B.; Konovalov, Petr V.; Krylova, Julia S.; Polyakova, Victoria O.; Kvetnoy, Igor M.
2017-01-01
Introduction plurihormonality of pituitary adenomas is an ability of adenoma cells to produce more than one hormone. After the immunohistochemical analysis had become a routine part of the morphological study, a great number of adenomas appeared to be multihormonal in actual practice. We hypothesize that the same cells of a normal pituitary gland releases several hormones simultaneously. Objective To analyse a possible co-expression of hormones by the cells of the normal anterior pituitary of adult humans in autopsy material. Materials and methods We studied 10 pituitary glands of 4 women and 6 men with cardiovascular and oncological diseases. Double staining immunohistochemistry using 11 hormone combinations was performed in all the cases. These combinations were: prolactin/thyroid-stimulating hormone (TSH), prolactin/luteinizing hormone (LH), prolactin/follicle-stimulating hormone (FSH), prolactin/adrenocorticotropic hormone (ACTH), growth hormone (GH)/TSH, GH/LH, GH/FSH, GH/ACTH, TSH/LH, TSH/FSH, TSH/ACTH. Laser Confocal Scanning Microscopy with a mixture of primary antibodies was performed in 2 cases. These mixtures were ACTH/prolactin, FSH/prolactin, TSH/prolactin, ACTH/GH, and FSH/GH. Results We found that the same cells of the normal adenohypophysis can co-express prolactin with ACTH, TSH, FSH, LH; GH with ACTH, TSH, FSH, LH, and TSH with ACTH, FSH, LH. The comparison of the average co-expression coefficients of prolactin, GH and TSH with other hormones showed that the TSH co-expression coefficient was significantly the least (9,5±6,9%; 9,6±7,8%; 1,0±1,3% correspondingly). Conclusion Plurihormonality of normal adenohypophysis is an actually existing phenomenon. Identification of different hormones in pituitary adenomas enables to find new ways to improve both diagnostic process and targeted treatment. PMID:28418929
Malini, N A; Roy George, K
2018-05-01
Polycystic ovary syndrome (PCOS) is a highly prevalent endocrine and metabolic disorder among reproductive aged women, leading to infertility. One of the common clinical manifestations in PCOS is that there is a difference in the range of LH production in different case of PCOS and accordingly variability in LH:FSH ratio was observed. The aim of the present study was to evaluate different ranges of LH:FSH ratios in PCOS. In this cross sectional study, a consecutive series of 745 women (aged 28.11 ± 0.2) who were subjected to infertility treatment at specialist infertility clinics in central Travancore region were considered. About 50 healthy females (aged 27.58 ± 0.4) with regular menstrual cycles were regarded as control. The data were collected from hospital records using subject's written informed consent. PCOS patients were observed to have different ranges of LH:FSH ratios from < 1 range to 4.6-5.5 and subjects were classified into 7 PCO subgroups on the basis of their LH:FSH ratios. In whole PCO group, body weight, LH, FSH, LH:FSH ratio, insulin, HbA1c, estradiol, testosterone and TSH were significantly (P < .05) increased whereas progesterone and SHBG levels were significantly (P < .05) decreased in comparison to control. In various PCO subgroups as LH levels and LH:FSH ratios were increased, levels of insulin, testosterone and AMH were increased and SHBG levels were decreased accordingly. This finding suggested a dependence of insulin, LH and testosterone in initiating the hormonal imbalances in PCOS. Copyright © 2018 Elsevier Inc. All rights reserved.
Prohibitin regulates the FSH signaling pathway in rat granulosa cell differentiation.
Chowdhury, Indrajit; Thomas, Kelwyn; Zeleznik, Anthony; Thompson, Winston E
2016-05-01
Published results from our laboratory identified prohibitin (PHB), a gene product expressed in granulosa cells (GCs) that progressively increases during follicle maturation. Our current in vitro studies demonstrate that follicle-stimulating hormone (FSH) stimulates Phb expression in rat primary GCs. The FSH-dependent expression of PHB was primarily localized within mitochondria, and positively correlates with the morphological changes in GCs organelles, and synthesis and secretions of estradiol (E2) and progesterone (P4). In order to confirm that PHB plays a regulatory role in rat GC differentiation, endogenous PHB-knockdown studies were carried out in undifferentiated GCs using adenoviral (Ad)-mediated RNA interference methodology. Knockdown of PHB in GCs resulted in the suppression of the key steroidogenic enzymes including steroidogenic acute regulatory protein (StAR), p450 cholesterol side-chain cleavage enzyme (p450scc), 3β-hydroxysteroid dehydrogenase (3β-HSD), and aromatase (Cyp19a1); and decreased E2 and P4 synthesis and secretions in the presence of FSH stimulation. Furthermore, these experimental studies also provided direct evidence that PHB within the mitochondrial fraction in GCs is phosphorylated at residues Y249, T258, and Y259 in response to FSH stimulation. The observed levels of phosphorylation of PHB at Y249, T258, and Y259 were significantly low in GCs in the absence of FSH stimulation. In addition, during GC differentiation FSH-induced expression of phospho-PHB (pPHB) requires the activation of MEK1-ERK1/2 signaling pathway. Taken together, these studies provide new evidence supporting FSH-dependent PHB/pPHB upregulation in GCs is required to sustain the differentiated state of GCs. © 2016 The authors.
Leader, Benjamin; Hegde, Aparna; Baca, Quentin; Stone, Kimberly; Lannon, Benjamin; Seifer, David B; Broekmans, Frank; Baker, Valerie L
2012-10-01
To determine the frequency of clinical discordance between antimüllerian hormone (AMH, ng/mL) and follicle-stimulating hormone (FSH, IU/L) by use of cut points defined by response to controlled ovarian stimulation in the same serum samples drawn on estradiol-confirmed, menstrual cycle days 2 to 4. Retrospective analysis. Fertility centers in 30 U.S. states and a single reference laboratory with uniform testing protocols. 5,354 women, 20 to 45 years of age. None. Frequency of discordance between serum AMH and FSH values. Of the 5,354 women tested, 1 in 5 had discordant AMH and FSH values defined as AMH <0.8 (concerning) with FSH <10 (reassuring) or AMH ≥ 0.8 (reassuring) with FSH ≥ 10 (concerning). Of the women with reassuring FSH values (n = 4,469), the concerning AMH values were found in 1 in 5 women in a highly age-dependent fashion, ranging from 1 in 11 women under 35 years of age to 1 in 3 women above 40 years of age. On the other hand, of the women with reassuring AMH values (n = 3,742), 1 in 18 had concerning FSH values, a frequency that did not vary in a statistically significant fashion by age. Clinical discordance in serum AMH and FSH values was frequent and age dependent using common clinical cut points, a large patient population, one reference laboratory, and uniform testing methodology. This conclusion is generalizable to women undergoing fertility evaluation, although AMH testing has not been standardized among laboratories, and the cut points presented are specific to the laboratory in this study. Copyright © 2012. Published by Elsevier Inc.
Ramachandran Pillai, R; Sharon, Leena; Premkumar, Nancy R; Kattimani, Shivanand; Sagili, Haritha; Rajendiran, Soundravally
2017-01-01
Post-partum depression (PPD) is the common adverse outcome of child bearing which affects the wellbeing of both mother and newborn and has long-term effects. Hence, reliable potential biological tests for early detection of PPD are essential. Follicle stimulating hormone (FSH) and luteinizing hormone (LH) were associated with depressive disorders and the present study estimated the levels of serum FSH, LH in postpartum depression and explored them as predictive biomarkers in the development of PPD. In this nested case control study done at a tertiary care hospital in South India, 450 postpartum women were screened at 6th week post-delivery for PPD. Socio-demographic and clinical data were recorded and depressive symptoms were assessed using Edinburgh Postnatal Depression Scale (EPDS). Out of 450 subjects screened, 100 women with depressive symptoms were categorized as cases and 100 controls were selected from the remaining subjects matching for age and BMI with cases. Serum levels of FSH and LH were measured using direct competitive immunoassay by chemiluminescene technology. Serum LH/FSH ratio was found to be significantly (p=0.02) low in PPD women when compared to normal postpartum subjects. We also found a significant negative correlation between LH/FSH ratio and EPDS scores. Based on the receiver operating characteristic curve, the optimal cut-off value for serum of LH/FSH levels in predicting postpartum depression was estimated to be 0.22mlU/mL with an AUC of 0.598 (95%CI, 0.291-0.859). Our study demonstrated that low LH/FSH ratio after delivery was associated with increased risk for the development of PPD. Low LH/FSH ratio at six-week post delivery can be used as a robust biochemical predictor of post-partum depression. Copyright © 2016 Elsevier Inc. All rights reserved.
1991-01-01
Many precursors of mitochondrial proteins are processed in two successive steps by independent matrix peptidases (MPP and MIP), whereas others are cleaved in a single step by MPP alone. To explain this dichotomy, we have constructed deletions of all or part of the octapeptide characteristic of a twice cleaved precursor (human ornithine transcarbamylase [pOTC]), have exchanged leader peptide sequences between once-cleaved (human methylmalonyl-CoA mutase [pMUT]; yeast F1ATPase beta-subunit [pF1 beta]) and twice-cleaved (pOTC; rat malate dehydrogenase (pMDH); Neurospora ubiquinol-cytochrome c reductase iron-sulfur subunit [pFe/S]) precursors, and have incubated these proteins with purified MPP and MIP. When the octapeptide of pOTC was deleted, or when the entire leader peptide of a once-cleaved precursor (pMUT or pF1 beta) was joined to the mature amino terminus of a twice-cleaved precursor (pOTC or pFe/S), no cleavage was produced by either protease. Cleavage of these constructs by MPP was restored by re- inserting as few as two amino-terminal residues of the octapeptide or of the mature amino terminus of a once-cleaved precursor. We conclude that the mature amino terminus of a twice-cleaved precursor is structurally incompatible with cleavage by MPP; such proteins have evolved octapeptides cleaved by MIP to overcome this incompatibility. PMID:1672532
Blaha, Milan; Nemcova, Lucie; Kepkova, Katerina Vodickova; Vodicka, Petr; Prochazka, Radek
2015-10-06
The gonadotropin-induced resumption of oocyte meiosis in preovulatory follicles is preceded by expression of epidermal growth factor (EGF)-like peptides, amphiregulin (AREG) and epiregulin (EREG), in mural granulosa and cumulus cells. Both the gonadotropins and the EGF-like peptides possess the capacity to stimulate resumption of oocyte meiosis in vitro via activation of a broad signaling network in cumulus cells. To better understand the rapid genomic actions of gonadotropins (FSH) and EGF-like peptides, we analyzed transcriptomes of cumulus cells at 3 h after their stimulation. We hybridized aRNA from cumulus cells to a pig oligonucleotide microarray and compared the transcriptomes of FSH- and AREG/EREG-stimulated cumulus cells with untreated control cells and vice versa. The identified over- and underexpressed genes were subjected to functional genomic analysis according to their molecular and cellular functions. The expression pattern of 50 selected genes with a known or potential function in ovarian development was verified by real-time qRT-PCR. Both FSH and AREG/EREG increased the expression of genes associated with regulation of cell proliferation, cell migration, blood coagulation and extracellular matrix remodeling. FSH alone induced the expression of genes involved in inflammatory response and in the response to reactive oxygen species. Moreover, FSH stimulated the expression of genes closely related to some ovulatory events either exclusively or significantly more than AREG/EREG (AREG, ADAMTS1, HAS2, TNFAIP6, PLAUR, PLAT, and HSD17B7). In contrast to AREG/EREG, FSH also increased the expression of genes coding for key transcription factors (CEBPB, FOS, ID1/3, and NR5A2), which may contribute to the differing expression profiles of FSH- and AREG/EREG-treated cumulus cells. The impact of FSH on cumulus cell gene transcription was higher than the impact of EGF-like factors in terms of the number of cell functions affected as well as the number of over- and underexpressed genes. Both FSH and EGF-like factors overexpressed genes involved in the post-ovulatory switch in steroidogenesis and tissue remodelling. However, FSH was remarkably more efficient in the up-regulation of several specific genes essential for ovulation of matured oocytes and also genes that been reported to play an important role in maturation of cumulus-enclosed oocytes in vitro.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fa, Svetlana; Pogrmic-Majkic, Kristina; Samardzija, Dragana
Worldwide used herbicide atrazine is linked to reproductive dysfunction in females. In this study, we investigated the effects and the mechanism of atrazine action in the ovary using a primary culture of immature granulosa cells. In granulosa cells, follicle-stimulating hormone (FSH) activates both cyclic adenosine monophosphate (cAMP) and extracellular-regulated kinase 1/2 (ERK1/2) cascades, with cAMP pathway being more important for luteinizing hormone receptor (LHR) and aromatase (CYP19A1) mRNA expression. We report that 48 h after atrazine exposure the FSH-stimulated LHR and CYP19A1 mRNA expression and estradiol synthesis were decreased, with LHR mRNA being more sensitive to atrazine than CYP19A1 mRNA.more » Inadequate acquisition of LHR in the FSH-stimulated and atrazine-exposed granulosa cells renders human chorionic gonadotropin (hCG) ineffective to stimulate amphiregulin (Areg), epiregulin (Ereg), and progesterone receptor (Pgr) mRNA expression, suggesting anti-ovulatory effect of atrazine. To dissect the signaling cascade involved in atrazine action in granulosa cells, we used U0126, a pharmacological inhibitor of ERK1/2. U0126 prevents atrazine-induced decrease in LHR and CYP19A1 mRNA levels and estradiol production in the FSH-stimulated granulosa cells. ERK1/2 inactivation restores the ability of hCG to induce expression of the ovulatory genes in atrazine-exposed granulosa cells. Cell-based ELISA assay revealed that atrazine does not change the FSH-stimulated ERK1/2 phosphorylation in granulosa cells. The results from this study reveal that atrazine does not affect but requires ERK1/2 phosphorylation to cause decrease in the FSH-induced LHR and CYP19A1 mRNA levels and estradiol production in immature granulosa cells, thus compromising ovulation and female fertility. - Highlights: • Atrazine inhibits estradiol production in FSH-stimulated granulosa cells. • Atrazine inhibits LHR and Cyp19a1 mRNA expression in FSH-stimulated granulosa cells. • Atrazine prevents hCG-induced expression of the ovulatory genes. • ERK1/2 activation is required for atrazine action in granulosa cells. • Atrazine does not interfere with FSH-stimulated ERK1/2 phosphorylation.« less
The Aged Microenvironment Influences Prostate Carcinogenesis
2009-12-01
Pcdhb4 protocadherin beta 4 NM_053129 -2.3 BC068157 cDNA sequence BC068157 NM_207203 -2.3 Bub1 budding uninhibited by benzimidazoles 1 NM_009772...protein phosphatase 2, regulatory subunit B NM_028392 -2.1 Bub3 budding uninhibited by benzimidazoles 3 AK083742 -2.1 Kif4 kinesin family member 4
Lin, Yen-Lin; Huang, Kuang-Tse
2009-08-01
A low reaction rate with nitric oxide (NO) is one of the important characteristics of hemoglobin (Hb)-based oxygen carriers. The reaction rate between oxyHb and NO is usually measured by stopped-flow spectrophotometry. However, the reported rates vary due to the difficulty of accurately determining the NO concentration and the limit of the instrument dead time. To circumvent these problems, we developed an experiment using oxymyoglobin (oxyMb) to compete with oxyHb for NO that is released from an NO donor. Determination of the rate constants in the competition experiment no longer depends on accurate measurement of time or NO concentration, since this approach instead measures the ratio of rate constants for the reaction of oxyHb and oxyMb with NO. For recombinant mutant Hb alpha(L29F)beta the rates for alpha(L29F) and beta are approximately 15- and 1.6-fold smaller than for wild-type Hb. In conclusion, the competition experiment provides an alternative method for determination of relative reaction rates of recombinant Hb subunits with NO.
Poli, Anna; Di Pietro, Antonio; Zigon, Dusan; Lenasi, Helena
2009-02-01
Fungi present the ability to hydroxylate steroids. In some filamentous fungi, progesterone induces an enzyme system which converts the compound into a less toxic hydroxylated product. We investigated the progesterone response in the vascular wilt pathogen Fusarium oxysporum, using mass spectrometry and high performance liquid chromatography (HPLC). Progesterone was mainly transformed into 15alpha-hydroxyprogesterone, which was found predominantly in the extracellular medium. The role of two conserved fungal signaling cascades in the induction of the progesterone-transforming enzyme system was studied, using knockout mutants lacking the mitogen-activated protein kinase Fmk1 or the heterotrimeric G-protein beta subunit Fgb1 functioning upstream of the cyclic adenosine monophosphate (cAMP) pathway. No steroid hydroxylation was induced in the Deltafgb1 strain, suggesting a role for the G-protein beta subunit in progesterone signaling. Exogenous cAMP restored the induction of progesterone-transforming activity in the Deltafgb1 strain, suggesting that steroid signaling in F. oxysporum is mediated by the cAMP-PKA pathway.
Aguiar, F L N; Lunardi, F O; Lima, L F; Rocha, R M P; Bruno, J B; Magalhães-Padilha, D M; Cibin, F W S; Nunes-Pinheiro, D C S; Gastal, M O; Rodrigues, A P R; Apgar, G A; Gastal, E L; Figueiredo, J R
2016-04-01
This study investigated the effect of adding different concentrations of bovine recombinant follicle-stimulating hormone on the IVC of equine preantral follicles enclosed in ovarian tissue fragments. Randomized ovarian fragments were fixed immediately (fresh noncultured control) or cultured for 1 or 7 days in α-MEM(+) supplemented with 0, 10, 50, and 100 ng/mL FSH and subsequently analyzed by classical histology. Culture media collected on Day 1 or Day 7 and were analyzed for steroids (estradiol and progesterone) and reactive oxygen species (ROS). After Day 1 and Day 7 of culture, 50-ng/mL FSH treatment had a greater (P < 0.05) percentage of morphologically normal follicles when compared to the other groups, except the 10-ng/mL FSH treatment at Day 1 of culture. The percentage of developing follicles (transition, primary, and secondary), and follicular and oocyte diameters were higher (P < 0.05) in the 50-ng/mL FSH treatment compared to the other groups after Day 7 of culture. Furthermore, estradiol secretion and ROS production were maintained (P > 0.05) throughout the culture in the 50-ng/mL FSH treatment. In conclusion, the addition of 50 ng/mL of FSH promoted activation of primordial follicles to developing follicles, improved survival of preantral follicles, and maintained estradiol and ROS production of equine ovarian tissue after 7 days of culture. Copyright © 2016 Elsevier Inc. All rights reserved.
FOLLITROPIN RECEPTORS CONTAIN CRYPTIC LIGAND BINDING SITES1
Lin, Win; Bernard, Michael P.; Cao, Donghui; Myers, Rebecca V.; Kerrigan, John E.; Moyle, William R.
2007-01-01
Human choriogonadotropin (hCG) and follitropin (hFSH) have been shown to contact different regions of the extracellular domains of G-protein coupled lutropin (LHR) and follitropin (FSHR) receptors. We report here that hCG and hFSH analogs interact with an FSHR/LHR chimera having only two unique LHR residues similar to the manners in which they dock with LHR and FSHR, respectively. This shows that although the FSHR does not normally bind hCG, it contains a cryptic lutropin binding site that has the potential to recognize hCG in a manner similar to the LHR. The presence of this cryptic site may explain why equine lutropins bind many mammalian FSHR and why mutations in the transmembrane domain distant from the extracellular domain enable the FSHR to bind hCG. The leucine-rich repeat domain (LRD) of the FSHR also appears to contain a cryptic FSH binding site that is obscured by other parts of the extracellular domain. This will explain why contacts seen in crystals of hFSH complexed with an LRD fragment of the human FSHR are hard to reconcile with the abilities of FSH analogs to interact with membrane G-protein coupled FSHR. We speculate that cryptic lutropin binding sites in the FSHR, which are also likely to be present in thyrotropin receptors (TSHR), permit the physiological regulation of ligand binding specificity. Cryptic FSH binding sites in the LRD may enable alternate spliced forms of the FSHR to interact with FSH. PMID:17059863
Silva, G M; Brito, I R; Sales, A D; Aguiar, F L N; Duarte, A B G; Araújo, V R; Vieira, L A; Magalhães-Padilha, D M; Lima, L F; Alves, B G; Silveira, L B R; Lo Turco, E G; Rodrigues, A P; Campello, C C; Wheeler, M B; Figueiredo, J R
2017-03-01
The aims of this study were: (1) to evaluate the effect of different insulin concentrations, alone or in combination with either a fixed FSH concentration or increasing FSH concentrations on the in vitro culture of isolated caprine preantral follicles and (2) to analyze the efficiency of two IVM media and maturation culture systems (with or without coculture with in vivo grown oocytes) on the meiosis resumption. Secondary follicles were cultured for 18 days in a basic medium supplemented with low- or high-insulin concentration alone or with a fixed FSH concentration or with increasing FSH concentrations. Oocytes grown in vivo or in vitro were matured alone or cocultured. The high-insulin concentration associated with fixed FSH treatment had higher meiotic resumption rate (P < 0.05) and was the only treatment capable of producing oocytes in metaphase II. The rates of germinal vesicle, germinal vesicle breakdown, metaphase I, metaphase II (MII), meiotic resumption, and oocyte diameter were similar between the maturation media. In conclusion, a basic medium supplemented with 10-μg/mL insulin and 100-μg/mL FSH throughout the culture period improved meiotic resumption rate and produced MII oocytes from caprine preantral follicles cultured in vitro. The MII rate was similar between in vivo and in vitro grown oocytes ≥110 μm. Copyright © 2016 Elsevier Inc. All rights reserved.
MUC1 and MUC4: Switching the Emphasis from Large to Small
Carraway, Kermit L.
2011-01-01
Summation The MUC1 and MUC4 membrane mucins are each composed of a large alpha (α) and a small beta (β) subunit. The α subunits are fully exposed at the cell surface and contain variable numbers of repeated amino acid sequences that are heavily glycosylated. In contrast, the β subunits are much smaller and are anchored within the cell membrane, with their amino-terminal portions exposed at the cell surface and their carboxy-terminal tails facing the cytosol. Studies over the last several years are challenging the long-held belief that α subunits play the predominant role in cancer by conferring cellular properties that allow tumor cells to evade immune recognition and destruction. Indeed, the β subunits of MUC1 and MUC4 have emerged as oncogenes, as they engage signaling pathways responsible for tumor initiation and progression. Thus, a switch in the emphasis from the large α to the small β subunits offers attractive possibilities for successful clinical application. Such a focus shift is further supported by the absence of allelic polymorphism and variable glycosylation in the β subunit as well as by the presence of the β subunit in most MUC1 and MUC4 isoforms expressed by tumors. MUC1α, also known as CA15.3, is a Food and Drug Administration-approved serum biomarker for breast cancer, but its use is no longer recommended by the American Society of Clinical Oncology. However, comparison of β subunit expression in normal and malignant breast tissues may offer a novel approach to the exploitation of membrane mucins as biomarkers, as MUC1β-induced gene signatures with prognostic and predictive values in breast cancer have been reported. Preclinical studies with peptides that interfere with MUC1β oncogenic functions also look promising. PMID:21728842
Studer, Remo; von Boehmer, Lotta; Haenggi, Tatjana; Schweizer, Claude; Benke, Dietmar; Rudolph, Uwe; Fritschy, Jean-Marc
2006-09-01
Multiple GABAA-receptor subtypes are assembled from alpha, beta and gamma subunit variants. GABAA receptors containing the alpha3 subunit represent a minor population with a restricted distribution in the CNS. In addition, they predominate in monoaminergic neurons and in the nucleus reticularis thalami (nRT), suggesting a role in the regulation of cortical function and sleep. Mice with a targeted deletion of the alpha3 subunit gene (alpha3(0/0)) are viable and exhibit a subtle behavioural phenotype possibly related to dopaminergic hyperfunction. Here, we investigated immunohistochemically the consequences of the loss of alpha3 subunit for maturation of GABAA receptors and formation of GABAergic synapses in the nRT. Throughout postnatal development, the regional distribution of the alpha1, alpha2, or alpha5 subunit was unaltered in alpha3(0/0) mice and the prominent alpha3 subunit staining of nRT neurons in wildtype mice was not replaced. Subcellularly, as seen by double immunofluorescence, the alpha3 and gamma2 subunit were clustered at postsynaptic sites in the nRT of adult wildtype mice along with the scaffolding protein gephyrin. In alpha3(0/0) mice, gamma2 subunit clustering was disrupted and gephyrin formed large aggregates localized at the cell surface, but unrelated to postsynaptic sites, indicating that nRT neurons lack postsynaptic GABAA receptors in mutant mice. Furthermore, GABAergic terminals were enlarged and reduced in number, suggesting a partial deficit of GABAergic synapses. Therefore, GABAA receptors are required for gephyrin clustering and long-term synapse maintenance. The absence of GABAA-mediated transmission in the nRT may have a significant impact on the function of the thalamo-cortical loop of alpha3(0/0) mice.
Marcinkiewicz, C; Gałasiński, W
1993-01-01
EF-1C is a component of the aggregate EF-1B, consisting of the subunit forms EF-1A.EF-1C; it was isolated by dissociation of this aggregate in the presence of GTP. The subunit form EF-1C stimulates binding of aminoacyl-tRNA to ribosomes, catalysed by EF-1A, similarly as EF-1 beta gamma which stimulates the activity of EF-1 in other eukaryotic cells. EF-1C in the presence of 6 M urea was separated into two polypeptides. Polypeptide of molecular mass 32,000 Da is responsible for regeneration of the EF-1A.GTP active complex. Thermal sensitivity of EF-1A was much higher than that of EF-1B, thus a protective role of EF-1C in the EF-1A.EF-1C complex is suggested.
Wieser, Herbert
2007-04-01
Gluten proteins play a key role in determining the unique baking quality of wheat by conferring water absorption capacity, cohesivity, viscosity and elasticity on dough. Gluten proteins can be divided into two main fractions according to their solubility in aqueous alcohols: the soluble gliadins and the insoluble glutenins. Both fractions consist of numerous, partially closely related protein components characterized by high glutamine and proline contents. Gliadins are mainly monomeric proteins with molecular weights (MWs) around 28,000-55,000 and can be classified according to their different primary structures into the alpha/beta-, gamma- and omega-type. Disulphide bonds are either absent or present as intrachain crosslinks. The glutenin fraction comprises aggregated proteins linked by interchain disulphide bonds; they have a varying size ranging from about 500,000 to more than 10 million. After reduction of disulphide bonds, the resulting glutenin subunits show a solubility in aqueous alcohols similar to gliadins. Based on primary structure, glutenin subunits have been divided into the high-molecular-weight (HMW) subunits (MW=67,000-88,000) and low-molecular-weight (LMW) subunits (MW=32,000-35,000). Each gluten protein type consists or two or three different structural domains; one of them contains unique repetitive sequences rich in glutamine and proline. Native glutenins are composed of a backbone formed by HMW subunit polymers and of LMW subunit polymers branched off from HMW subunits. Non-covalent bonds such as hydrogen bonds, ionic bonds and hydrophobic bonds are important for the aggregation of gliadins and glutenins and implicate structure and physical properties of dough.
Regulation of nicotinic acetylcholine receptor phosphorylation in rat myotubes by forskolin and cAMP
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miles, K.; Anthony, D.T.; Rubin, L.L.
1987-09-01
The nicotinic acetylcholine receptor (Ac-ChoR) from rat myotubes prelabeled in culture with (/sup 32/P)orthophosphate was isolated by acetylcholine affinity chromatography followed by immunoaffinity chromatography. Under basal conditions, the nicotinic AcChoR was shown to be phosphorylated in situ on the ..beta.. and delta subunits. Regulation of AcChoR phosphorylation by cAMP-dependent protein kinase was explored by the addition of forskolin or cAMP analogues to prelabeled cell cultures. Forskolin, an activator of adenylate cyclase, stimulated the phosphorylation of the delta subunit 20-fold over basal phosphorylation and induced phosphorylation of the ..cap alpha.. subunit. The effect of forskolin was dose dependent with a half-maximalmore » response at 8 ..mu..M in the presence of 35 ..mu..M Ro 20-1724, a phosphodiesterase inhibitor. Stimulation of delta subunit phosphorylation was almost maximal within 5 min, whereas stimulation of ..cap alpha.. subunit phosphorylation was not maximal until 45 min after forskolin treatment. Stimulation of AcChoR phosphorylation by 8-benzylthioadenosine 3',5'-cyclic monophosphate was identical to that obtained by forskolin. Two-dimensional thermolytic phosphopeptide maps of the delta subunit revealed a single major phosphopeptide. These results correlate closely with the observed effects of forskolin on AcChoR desensitization in muscle and suggest that cAMP-dependent phosphorylation of the delta subunit increases the rate of AcChoR desensitization in rat myotubes.« less
Curciarello, R; Lareu, J F; Fossati, C A; Docena, G H; Petruccelli, S
2008-09-01
Cows' milk allergy (CMA) is the most common cause of food allergy in infancy. The only proven treatment is the complete elimination of cows' milk proteins (CMPs) from the diet by means of hypoallergenic formulas. Soybean-based formulae are widely used although intolerance to soy has been reported to occur in 15-40% of infants with CMA. The aim of this work was to analyse the in vitro reactivity of the soybean cultivar Raiden, which naturally lacks glycinin A(4)A(5)B(3), to evaluate whether this genotype could be a safe CMP substitute for CMA patients. The reactivity of conventional soybean (CS) and Raiden soybean (RS) genotypes and also recombinant glycinin A(4)A(5)B(3) and alphabeta-conglycinin with casein-specific monoclonal antibodies and CMP-specific polyclonal serum was evaluated by immunoblotting and ELISA. A sequential competitive ELISA with the polyclonal antiserum and different soluble inhibitors was performed. In addition, an indirect ELISA with sera of atopic children with CMA was carried out to analyse the IgE-binding capacity of the different soybean components. We have shown that CS contains four components that cross-react with CMP, while RS has only one. The remaining cross-reactive component in RS was identified as alpha-subunit beta-conglycinin. By means of inhibitory ELISA, we demonstrated that CS, RS and the alpha-subunit beta-conglycinin extracts inhibited the binding of CMP-specific antibodies to the CMP-coated solid phase. Finally, we showed that CS, RS and the recombinant proteins were recognized by human CMP-specific IgE antibodies. This work shows that although Raiden has fewer cross-reactive components than conventional soybean, it still has a residual cross-reactive component: the alpha-subunit beta-conglycinin. This reactivity might make this genotype unsuitable to treat CMA and also explains adverse reactions to soybean in CMA infants.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petroulakis, E.; Cao, Z.; Salo, T.
Mutations in the HEXA gene that encodes the {alpha}-subunit of the heterodimeric lysosomal enzyme {beta}-hexosaminidase A, or Hex A ({alpha}{beta}), cause G{sub M2} gangliosidosis, type 1. The infantile form (Tay-Sachs disease) results when there is no residual Hex A activity, while less severe and more variable clinical phenotypes result when residual Hex A activity is present. A non-Jewish male who presented with an acute psychotic episode at age 16 was diagnosed with a subacute encephalopathic form of G{sub M2} gangliosidosis. At age 19, chronic psychosis with intermittent acute exacerbations remains the most disabling symptom in this patient and his affectedmore » brother although both exhibit some ataxia and moderately severe dysarthria. We have found a 4 bp insertion (+TATC 1278) associated with infantile Tay-Sachs disease on one allele; no previously identified mutation was found on the second allele. SSCP analysis detected a shift in exon 13 and sequencing revealed a G1422C mutation in the second allele that results in a Trp474Cys substitution. The presence of the mutation was confirmed by the loss of HaeIII and ScrFI sites in exon 13 PCR products from the subjects and their father. The mutation was introduced into the {alpha}-subunit cDNA and Hex S ({alpha}{alpha}) and Hex A ({alpha}{beta}) were transiently expressed in monkey COS-7 cells. The Trp474Cys mutant protein had approximately 5% and 12% of wild-type Hex S and Hex A activity, respectively. Western blot analysis revealed a small amount of residual mature {alpha}-subunit and a normal level of precursor protein. We conclude that the Trp474Cys mutation is the cause of the Hex A deficiency associated with a subacute (juvenile-onset) phenotype in this patient. Like other mutations in exon 13 of HEXA, it appears to affect intracellular processing. Studies of the defect in intracellular processing are in progress.« less
Hultsch, T; Brand, P; Lohmann, S; Saloga, J; Kincaid, R L; Knop, J
1998-05-01
FcepsilonRI-mediated exocytosis of preformed mediators from mast cells and basophils (e.g. histamine, serotonin, beta-hexosaminidase) is sensitive to the immunosuppressants cyclosporin A and FK506 (IC50 200 and 4 nM, respectively) but not rapamycin. The mechanism of inhibition does not appear to involve tyrosine phosphorylation, hydrolysis of inositol phosphates or calcium flux. Here we report experiments using a molecular approach to assess the role of calcineurin, a serine/threonine phosphatase thought to be the primary pharmacological target of these drugs. Calcineurin's activity requires association of its catalytic (A) subunit with an intrinsic regulatory (B) subunit. We hypothesized that calcineurin-sensitive signalling events should be affected by the depletion of calcineurin B subunits, thereby reducing the number of active A:B complexes. We therefore transfected rat basophilic leukemia (RBL) cells with an inhibitory (dominant negative) form of the calcineurin A subunit, which binds the calcineurin B subunit with high affinity but does not possess catalytic activity (B subunit knock-out, BKO). In these transfected cells, the dose-response curve for the inhibition of FcepsilonRI-mediated exocytosis by FK506 was shifted to the left, indicating an increased drug sensitivity of BKO-transfected cells. We conclude that FK506 inhibition of FcepsilonRI-mediated exocytosis in mast cells specifically targets calcineurin activity.
Rivera, R T; Pasion, S G; Wong, D T; Fei, Y B; Biswas, D K
1989-06-01
A clonal strain of human lung tumor cells in culture (ChaGo), derived from a bronchogenic carcinoma, synthesizes and secretes large amounts of alpha (alpha) and a comparatively lower level of beta (beta) subunit of the glycoprotein hormone, human chorionic gonadotropin (HCG). ChaGo cells lost their characteristic anchorage-independent growth phenotype in the presence of anti-alpha-HCG antibody. The effect of the antibody was partially reversed by addition of alpha-HCG to the culture medium. ChaGo cells were transfected with an expression vector (pRSV-anti-alpha-HCG), that directs synthesis of RNA complementary to alpha-HCG mRNA. The transfectants produced alpha-HCG antisense RNA which was associated with the reduced level of alpha-HCG. Transfectants also displayed several altered phenotypic properties, including altered morphology, less mitosis, reduced growth rate, loss of anchorage-independent growth, and loss of tumorigenicity in nude mice. Treatment of transfectants with 8,bromo-cAMP resulted in increased accumulation of alpha-HCG mRNA, no change in the level of alpha-HCG antisense RNA, release of the inhibition of [3H]thymidine incorporation, and restoration of anchorage-independent growth phenotype. The overexpression of c-myc, observed in ChaGo cells, was unaffected by the reduced level of alpha-HCG. These results suggest that ectopic synthesis of the alpha subunit of HCG plays a functional role in the transformation of these human lung cells.
Bajotto, Gustavo; Murakami, Taro; Nagasaki, Masaru; Sato, Yuzo; Shimomura, Yoshiharu
2009-10-01
The mitochondrial branched-chain alpha-keto acid dehydrogenase complex (BCKDC) is responsible for the committed step in branched-chain amino acid catabolism. In the present study, we examined BCKDC regulation in Otsuka Long-Evans Tokushima Fatty (OLETF) rats both before (8 weeks of age) and after (25 weeks of age) the onset of type 2 diabetes mellitus. Long-Evans Tokushima Otsuka (LETO) rats were used as controls. Plasma branched-chain amino acid and branched-chain alpha-keto acid concentrations were significantly increased in young and middle-aged OLETF rats. Although the hepatic complex was nearly 100% active in all animals, total BCKDC activity and protein abundance of E1alpha, E1beta, and E2 subunits were markedly lower in OLETF than in LETO rats at 8 and 25 weeks of age. In addition, hepatic BCKDC activity and protein amounts were significantly decreased in LETO rats aged 25 weeks than in LETO rats aged 8 weeks. In skeletal muscle, E1beta and E2 proteins were significantly reduced, whereas E1alpha tended to increase in OLETF rats. Taken together, these results suggest that (1) whole-body branched-chain alpha-keto acid oxidation capacity is extremely reduced in OLETF rats independently of diabetes development, (2) the aging process decreases BCKDC activity and protein abundance in the liver of normal rats, and (3) differential posttranscriptional regulation for the subunits of BCKDC may exist in skeletal muscle.