Sample records for fsxj32 mcnp nuclear

  1. MCNP capabilities for nuclear well logging calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forster, R.A.; Little, R.C.; Briesmeister, J.F.

    The Los Alamos Radiation Transport Code System (LARTCS) consists of state-of-the-art Monte Carlo and discrete ordinates transport codes and data libraries. This paper discusses how the general-purpose continuous-energy Monte Carlo code MCNP ({und M}onte {und C}arlo {und n}eutron {und p}hoton), part of the LARTCS, provides a computational predictive capability for many applications of interest to the nuclear well logging community. The generalized three-dimensional geometry of MCNP is well suited for borehole-tool models. SABRINA, another component of the LARTCS, is a graphics code that can be used to interactively create a complex MCNP geometry. Users can define many source and tallymore » characteristics with standard MCNP features. The time-dependent capability of the code is essential when modeling pulsed sources. Problems with neutrons, photons, and electrons as either single particle or coupled particles can be calculated with MCNP. The physics of neutron and photon transport and interactions is modeled in detail using the latest available cross-section data.« less

  2. Verification of MCNP6.2 for Nuclear Criticality Safety Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Forrest B.; Rising, Michael Evan; Alwin, Jennifer Louise

    2017-05-10

    Several suites of verification/validation benchmark problems were run in early 2017 to verify that the new production release of MCNP6.2 performs correctly for nuclear criticality safety applications (NCS). MCNP6.2 results for several NCS validation suites were compared to the results from MCNP6.1 [1] and MCNP6.1.1 [2]. MCNP6.1 is the production version of MCNP® released in 2013, and MCNP6.1.1 is the update released in 2014. MCNP6.2 includes all of the standard features for NCS calculations that have been available for the past 15 years, along with new features for sensitivity-uncertainty based methods for NCS validation [3]. Results from the benchmark suitesmore » were compared with results from previous verification testing [4-8]. Criticality safety analysts should consider testing MCNP6.2 on their particular problems and validation suites. No further development of MCNP5 is planned. MCNP6.1 is now 4 years old, and MCNP6.1.1 is now 3 years old. In general, released versions of MCNP are supported only for about 5 years, due to resource limitations. All future MCNP improvements, bug fixes, user support, and new capabilities are targeted only to MCNP6.2 and beyond.« less

  3. Using NJOY to Create MCNP ACE Files and Visualize Nuclear Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kahler, Albert Comstock

    We provide lecture materials that describe the input requirements to create various MCNP ACE files (Fast, Thermal, Dosimetry, Photo-nuclear and Photo-atomic) with the NJOY Nuclear Data Processing code system. Input instructions to visualize nuclear data with NJOY are also provided.

  4. Implementation of a tree algorithm in MCNP code for nuclear well logging applications.

    PubMed

    Li, Fusheng; Han, Xiaogang

    2012-07-01

    The goal of this paper is to develop some modeling capabilities that are missing in the current MCNP code. Those missing capabilities can greatly help for some certain nuclear tools designs, such as a nuclear lithology/mineralogy spectroscopy tool. The new capabilities to be developed in this paper include the following: zone tally, neutron interaction tally, gamma rays index tally and enhanced pulse-height tally. The patched MCNP code also can be used to compute neutron slowing-down length and thermal neutron diffusion length. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. MCNP (Monte Carlo Neutron Photon) capabilities for nuclear well logging calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forster, R.A.; Little, R.C.; Briesmeister, J.F.

    The Los Alamos Radiation Transport Code System (LARTCS) consists of state-of-the-art Monte Carlo and discrete ordinates transport codes and data libraries. The general-purpose continuous-energy Monte Carlo code MCNP (Monte Carlo Neutron Photon), part of the LARTCS, provides a computational predictive capability for many applications of interest to the nuclear well logging community. The generalized three-dimensional geometry of MCNP is well suited for borehole-tool models. SABRINA, another component of the LARTCS, is a graphics code that can be used to interactively create a complex MCNP geometry. Users can define many source and tally characteristics with standard MCNP features. The time-dependent capabilitymore » of the code is essential when modeling pulsed sources. Problems with neutrons, photons, and electrons as either single particle or coupled particles can be calculated with MCNP. The physics of neutron and photon transport and interactions is modeled in detail using the latest available cross-section data. A rich collections of variance reduction features can greatly increase the efficiency of a calculation. MCNP is written in FORTRAN 77 and has been run on variety of computer systems from scientific workstations to supercomputers. The next production version of MCNP will include features such as continuous-energy electron transport and a multitasking option. Areas of ongoing research of interest to the well logging community include angle biasing, adaptive Monte Carlo, improved discrete ordinates capabilities, and discrete ordinates/Monte Carlo hybrid development. Los Alamos has requested approval by the Department of Energy to create a Radiation Transport Computational Facility under their User Facility Program to increase external interactions with industry, universities, and other government organizations. 21 refs.« less

  6. Possible Improvements to MCNP6 and its CEM/LAQGSM Event-Generators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mashnik, Stepan Georgievich

    2015-08-04

    This report is intended to the MCNP6 developers and sponsors of MCNP6. It presents a set of suggested possible future improvements to MCNP6 and to its CEM03.03 and LAQGSM03.03 event-generators. A few suggested modifications of MCNP6 are quite simple, aimed at avoiding possible problems with running MCNP6 on various computers, i.e., these changes are not expected to change or improve any results, but should make the use of MCNP6 easier; such changes are expected to require limited man-power resources. On the other hand, several other suggested improvements require a serious further development of nuclear reaction models, are expected to improvemore » significantly the predictive power of MCNP6 for a number of nuclear reactions; but, such developments require several years of work by real experts on nuclear reactions.« less

  7. Lecture Notes on Criticality Safety Validation Using MCNP & Whisper

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Forrest B.; Rising, Michael Evan; Alwin, Jennifer Louise

    Training classes for nuclear criticality safety, MCNP documentation. The need for, and problems surrounding, validation of computer codes and data area considered first. Then some background for MCNP & Whisper is given--best practices for Monte Carlo criticality calculations, neutron spectra, S(α,β) thermal neutron scattering data, nuclear data sensitivities, covariance data, and correlation coefficients. Whisper is computational software designed to assist the nuclear criticality safety analyst with validation studies with the Monte Carlo radiation transport package MCNP. Whisper's methodology (benchmark selection – C k's, weights; extreme value theory – bias, bias uncertainty; MOS for nuclear data uncertainty – GLLS) and usagemore » are discussed.« less

  8. MCNP6 Status

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goorley, John T.

    2012-06-25

    We, the development teams for MCNP, NJOY, and parts of ENDF, would like to invite you to a proposed 3 day workshop October 30, 31 and November 1 2012, to be held at Los Alamos National Laboratory. At this workshop, we will review new and developing missions that MCNP6 and the underlying nuclear data are being asked to address. LANL will also present its internal plans to address these missions and recent advances in these three capabilities and we will be interested to hear your input on these topics. Additionally we are interested in hearing from you additional technical advances,more » missions, concerns, and other issues that we should be considering for both short term (1-3 years) and long term (4-6 years)? What are the additional existing capabilities and methods that we should be investigating? The goal of the workshop is to refine priorities for mcnp6 transport methods, algorithms, physics, data and processing as they relate to the intersection of MCNP, NJOY and ENDF.« less

  9. Verification of BWR Turbine Skyshine Dose with the MCNP5 Code Based on an Experiment Made at SHIMANE Nuclear Power Station

    NASA Astrophysics Data System (ADS)

    Tayama, Ryuichi; Wakasugi, Kenichi; Kawanaka, Ikunori; Kadota, Yoshinobu; Murakami, Yasuhiro

    We measured the skyshine dose from turbine buildings at Shimane Nuclear Power Station Unit 1 (NS-1) and Unit 2 (NS-2), and then compared it with the dose calculated with the Monte Carlo transport code MCNP5. The skyshine dose values calculated with the MCNP5 code agreed with the experimental data within a factor of 2.8, when the roof of the turbine building was precisely modeled. We concluded that our MCNP5 calculation was valid for BWR turbine skyshine dose evaluation.

  10. Using Machine Learning to Predict MCNP Bias

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grechanuk, Pavel Aleksandrovi

    For many real-world applications in radiation transport where simulations are compared to experimental measurements, like in nuclear criticality safety, the bias (simulated - experimental k eff) in the calculation is an extremely important quantity used for code validation. The objective of this project is to accurately predict the bias of MCNP6 [1] criticality calculations using machine learning (ML) algorithms, with the intention of creating a tool that can complement the current nuclear criticality safety methods. In the latest release of MCNP6, the Whisper tool is available for criticality safety analysts and includes a large catalogue of experimental benchmarks, sensitivity profiles,more » and nuclear data covariance matrices. This data, coming from 1100+ benchmark cases, is used in this study of ML algorithms for criticality safety bias predictions.« less

  11. Addressing Fission Product Validation in MCNP Burnup Credit Criticality Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mueller, Don; Bowen, Douglas G; Marshall, William BJ J

    2015-01-01

    The US Nuclear Regulatory Commission (NRC) Division of Spent Fuel Storage and Transportation issued Interim Staff Guidance (ISG) 8, Revision 3 in September 2012. This ISG provides guidance for NRC staff members’ review of burnup credit (BUC) analyses supporting transport and dry storage of pressurized water reactor spent nuclear fuel (SNF) in casks. The ISG includes guidance for addressing validation of criticality (k eff) calculations crediting the presence of a limited set of fission products and minor actinides (FP&MAs). Based on previous work documented in NRC Regulatory Guide (NUREG) Contractor Report (CR)-7109, the ISG recommends that NRC staff members acceptmore » the use of either 1.5 or 3% of the FP&MA worth—in addition to bias and bias uncertainty resulting from validation of k eff calculations for the major actinides in SNF—to conservatively account for the bias and bias uncertainty associated with the specified unvalidated FP&MAs. The ISG recommends (1) use of 1.5% of the FP&MA worth if a modern version of SCALE and its nuclear data are used and (2) 3% of the FP&MA worth for well qualified, industry standard code systems other than SCALE with the Evaluated Nuclear Data Files, Part B (ENDF/B),-V, ENDF/B-VI, or ENDF/B-VII cross sections libraries. The work presented in this paper provides a basis for extending the use of the 1.5% of the FP&MA worth bias to BUC criticality calculations performed using the Monte Carlo N-Particle (MCNP) code. The extended use of the 1.5% FP&MA worth bias is shown to be acceptable by comparison of FP&MA worths calculated using SCALE and MCNP with ENDF/B-V, -VI, and -VII–based nuclear data. The comparison supports use of the 1.5% FP&MA worth bias when the MCNP code is used for criticality calculations, provided that the cask design is similar to the hypothetical generic BUC-32 cask model and that the credited FP&MA worth is no more than 0.1 Δk eff (ISG-8, Rev. 3, Recommendation 4).« less

  12. Criticality Calculations with MCNP6 - Practical Lectures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Forrest B.; Rising, Michael Evan; Alwin, Jennifer Louise

    2016-11-29

    These slides are used to teach MCNP (Monte Carlo N-Particle) usage to nuclear criticality safety analysts. The following are the lecture topics: course information, introduction, MCNP basics, criticality calculations, advanced geometry, tallies, adjoint-weighted tallies and sensitivities, physics and nuclear data, parameter studies, NCS validation I, NCS validation II, NCS validation III, case study 1 - solution tanks, case study 2 - fuel vault, case study 3 - B&W core, case study 4 - simple TRIGA, case study 5 - fissile mat. vault, criticality accident alarm systems. After completion of this course, you should be able to: Develop an input modelmore » for MCNP; Describe how cross section data impact Monte Carlo and deterministic codes; Describe the importance of validation of computer codes and how it is accomplished; Describe the methodology supporting Monte Carlo codes and deterministic codes; Describe pitfalls of Monte Carlo calculations; Discuss the strengths and weaknesses of Monte Carlo and Discrete Ordinants codes; The diffusion theory model is not strictly valid for treating fissile systems in which neutron absorption, voids, and/or material boundaries are present. In the context of these limitations, identify a fissile system for which a diffusion theory solution would be adequate.« less

  13. The effects of nuclear data library processing on Geant4 and MCNP simulations of the thermal neutron scattering law

    NASA Astrophysics Data System (ADS)

    Hartling, K.; Ciungu, B.; Li, G.; Bentoumi, G.; Sur, B.

    2018-05-01

    Monte Carlo codes such as MCNP and Geant4 rely on a combination of physics models and evaluated nuclear data files (ENDF) to simulate the transport of neutrons through various materials and geometries. The grid representation used to represent the final-state scattering energies and angles associated with neutron scattering interactions can significantly affect the predictions of these codes. In particular, the default thermal scattering libraries used by MCNP6.1 and Geant4.10.3 do not accurately reproduce the ENDF/B-VII.1 model in simulations of the double-differential cross section for thermal neutrons interacting with hydrogen nuclei in a thin layer of water. However, agreement between model and simulation can be achieved within the statistical error by re-processing ENDF/B-VII.I thermal scattering libraries with the NJOY code. The structure of the thermal scattering libraries and sampling algorithms in MCNP and Geant4 are also reviewed.

  14. Adjoint-Based Uncertainty Quantification with MCNP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seifried, Jeffrey E.

    2011-09-01

    This work serves to quantify the instantaneous uncertainties in neutron transport simulations born from nuclear data and statistical counting uncertainties. Perturbation and adjoint theories are used to derive implicit sensitivity expressions. These expressions are transformed into forms that are convenient for construction with MCNP6, creating the ability to perform adjoint-based uncertainty quantification with MCNP6. These new tools are exercised on the depleted-uranium hybrid LIFE blanket, quantifying its sensitivities and uncertainties to important figures of merit. Overall, these uncertainty estimates are small (< 2%). Having quantified the sensitivities and uncertainties, physical understanding of the system is gained and some confidence inmore » the simulation is acquired.« less

  15. Copper benchmark experiment for the testing of JEFF-3.2 nuclear data for fusion applications

    NASA Astrophysics Data System (ADS)

    Angelone, M.; Flammini, D.; Loreti, S.; Moro, F.; Pillon, M.; Villar, R.; Klix, A.; Fischer, U.; Kodeli, I.; Perel, R. L.; Pohorecky, W.

    2017-09-01

    A neutronics benchmark experiment on a pure Copper block (dimensions 60 × 70 × 70 cm3) aimed at testing and validating the recent nuclear data libraries for fusion applications was performed in the frame of the European Fusion Program at the 14 MeV ENEA Frascati Neutron Generator (FNG). Reaction rates, neutron flux spectra and doses were measured using different experimental techniques (e.g. activation foils techniques, NE213 scintillator and thermoluminescent detectors). This paper first summarizes the analyses of the experiment carried-out using the MCNP5 Monte Carlo code and the European JEFF-3.2 library. Large discrepancies between calculation (C) and experiment (E) were found for the reaction rates both in the high and low neutron energy range. The analysis was complemented by sensitivity/uncertainty analyses (S/U) using the deterministic and Monte Carlo SUSD3D and MCSEN codes, respectively. The S/U analyses enabled to identify the cross sections and energy ranges which are mostly affecting the calculated responses. The largest discrepancy among the C/E values was observed for the thermal (capture) reactions indicating severe deficiencies in the 63,65Cu capture and elastic cross sections at lower rather than at high energy. Deterministic and MC codes produced similar results. The 14 MeV copper experiment and its analysis thus calls for a revision of the JEFF-3.2 copper cross section and covariance data evaluation. A new analysis of the experiment was performed with the MCNP5 code using the revised JEFF-3.3-T2 library released by NEA and a new, not yet distributed, revised JEFF-3.2 Cu evaluation produced by KIT. A noticeable improvement of the C/E results was obtained with both new libraries.

  16. Performance upgrades to the MCNP6 burnup capability for large scale depletion calculations

    DOE PAGES

    Fensin, M. L.; Galloway, J. D.; James, M. R.

    2015-04-11

    The first MCNP based inline Monte Carlo depletion capability was officially released from the Radiation Safety Information and Computational Center as MCNPX 2.6.0. With the merger of MCNPX and MCNP5, MCNP6 combined the capability of both simulation tools, as well as providing new advanced technology, in a single radiation transport code. The new MCNP6 depletion capability was first showcased at the International Congress for Advancements in Nuclear Power Plants (ICAPP) meeting in 2012. At that conference the new capabilities addressed included the combined distributive and shared memory parallel architecture for the burnup capability, improved memory management, physics enhancements, and newmore » predictability as compared to the H.B Robinson Benchmark. At Los Alamos National Laboratory, a special purpose cluster named “tebow,” was constructed such to maximize available RAM per CPU, as well as leveraging swap space with solid state hard drives, to allow larger scale depletion calculations (allowing for significantly more burnable regions than previously examined). As the MCNP6 burnup capability was scaled to larger numbers of burnable regions, a noticeable slowdown was realized.This paper details two specific computational performance strategies for improving calculation speedup: (1) retrieving cross sections during transport; and (2) tallying mechanisms specific to burnup in MCNP. To combat this slowdown new performance upgrades were developed and integrated into MCNP6 1.2.« less

  17. Benchmarking of MCNP for calculating dose rates at an interim storage facility for nuclear waste.

    PubMed

    Heuel-Fabianek, Burkhard; Hille, Ralf

    2005-01-01

    During the operation of research facilities at Research Centre Jülich, Germany, nuclear waste is stored in drums and other vessels in an interim storage building on-site, which has a concrete shielding at the side walls. Owing to the lack of a well-defined source, measured gamma spectra were unfolded to determine the photon flux on the surface of the containers. The dose rate simulation, including the effects of skyshine, using the Monte Carlo transport code MCNP is compared with the measured dosimetric data at some locations in the vicinity of the interim storage building. The MCNP data for direct radiation confirm the data calculated using a point-kernel method. However, a comparison of the modelled dose rates for direct radiation and skyshine with the measured data demonstrate the need for a more precise definition of the source. Both the measured and the modelled dose rates verified the fact that the legal limits (<1 mSv a(-1)) are met in the area outside the perimeter fence of the storage building to which members of the public have access. Using container surface data (gamma spectra) to define the source may be a useful tool for practical calculations and additionally for benchmarking of computer codes if the discussed critical aspects with respect to the source can be addressed adequately.

  18. MCNP Version 6.2 Release Notes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Werner, Christopher John; Bull, Jeffrey S.; Solomon, C. J.

    Monte Carlo N-Particle or MCNP ® is a general-purpose Monte Carlo radiation-transport code designed to track many particle types over broad ranges of energies. This MCNP Version 6.2 follows the MCNP6.1.1 beta version and has been released in order to provide the radiation transport community with the latest feature developments and bug fixes for MCNP. Since the last release of MCNP major work has been conducted to improve the code base, add features, and provide tools to facilitate ease of use of MCNP version 6.2 as well as the analysis of results. These release notes serve as a general guidemore » for the new/improved physics, source, data, tallies, unstructured mesh, code enhancements and tools. For more detailed information on each of the topics, please refer to the appropriate references or the user manual which can be found at http://mcnp.lanl.gov. This release of MCNP version 6.2 contains 39 new features in addition to 172 bug fixes and code enhancements. There are still some 33 known issues the user should familiarize themselves with (see Appendix).« less

  19. Severe accident skyshine radiation analysis by MCNP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eurajoki, T.

    1994-12-31

    If a severe accident with a considerable core damage occurs at a nuclear power plant whose containment top is remarkably thin compared with the walls, the radiation transported through the top and scattered in air may cause high dose rates at the power plant area. Noble gases and other fission products released to the containment act as sources. The dose rates caused by skyshine have been calculated by MCNP3A for the Loviisa nuclear power plant (two-unit, 445-MW VVER) for the outside area and inside some buildings, taking the attenuation in the roofs of the buildings into account.

  20. MCNP4A: Features and philosophy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hendricks, J.S.

    This paper describes MCNP, states its philosophy, introduces a number of new features becoming available with version MCNP4A, and answers a number of questions asked by participants in the workshop. MCNP is a general-purpose three-dimensional neutron, photon and electron transport code. Its philosophy is ``Quality, Value and New Features.`` Quality is exemplified by new software quality assurance practices and a program of benchmarking against experiments. Value includes a strong emphasis on documentation and code portability. New features are the third priority. MCNP4A is now available at Los Alamos. New features in MCNP4A include enhanced statistical analysis, distributed processor multitasking, newmore » photon libraries, ENDF/B-VI capabilities, X-Windows graphics, dynamic memory allocation, expanded criticality output, periodic boundaries, plotting of particle tracks via SABRINA, and many other improvements. 23 refs.« less

  1. Validation of MCNP: SPERT-D and BORAX-V fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, C.; Palmer, B.

    1992-11-01

    This report discusses critical experiments involving SPERT-D{sup 1,2} fuel elements and BORAX-V{sup 3-8} fuel which have been modeled and calculations performed with MCNP. MCNP is a Monte Carlo based transport code. For this study continuous-energy nuclear data from the ENDF/B-V cross section library was used. The SPERT-D experiments consisted of various arrays of fuel elements moderated and reflected with either water or a uranyl nitrate solution. Some SPERT-D experiments used cadmium as a fixed neutron poison, while others were poisoned with various concentrations of boron in the moderating/reflecting solution. ne BORAX-V experiments were arrays of either boiling fuel rod assembliesmore » or superheater assemblies, both types of arrays were moderated and reflected with water. In one boiling fuel experiment, two fuel rods were replaced with borated stainless steel poison rods.« less

  2. Validation of MCNP: SPERT-D and BORAX-V fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, C.; Palmer, B.

    1992-11-01

    This report discusses critical experiments involving SPERT-D[sup 1,2] fuel elements and BORAX-V[sup 3-8] fuel which have been modeled and calculations performed with MCNP. MCNP is a Monte Carlo based transport code. For this study continuous-energy nuclear data from the ENDF/B-V cross section library was used. The SPERT-D experiments consisted of various arrays of fuel elements moderated and reflected with either water or a uranyl nitrate solution. Some SPERT-D experiments used cadmium as a fixed neutron poison, while others were poisoned with various concentrations of boron in the moderating/reflecting solution. ne BORAX-V experiments were arrays of either boiling fuel rod assembliesmore » or superheater assemblies, both types of arrays were moderated and reflected with water. In one boiling fuel experiment, two fuel rods were replaced with borated stainless steel poison rods.« less

  3. AN ASSESSMENT OF MCNP WEIGHT WINDOWS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. S. HENDRICKS; C. N. CULBERTSON

    2000-01-01

    The weight window variance reduction method in the general-purpose Monte Carlo N-Particle radiation transport code MCNPTM has recently been rewritten. In particular, it is now possible to generate weight window importance functions on a superimposed mesh, eliminating the need to subdivide geometries for variance reduction purposes. Our assessment addresses the following questions: (1) Does the new MCNP4C treatment utilize weight windows as well as the former MCNP4B treatment? (2) Does the new MCNP4C weight window generator generate importance functions as well as MCNP4B? (3) How do superimposed mesh weight windows compare to cell-based weight windows? (4) What are the shortcomingsmore » of the new MCNP4C weight window generator? Our assessment was carried out with five neutron and photon shielding problems chosen for their demanding variance reduction requirements. The problems were an oil well logging problem, the Oak Ridge fusion shielding benchmark problem, a photon skyshine problem, an air-over-ground problem, and a sample problem for variance reduction.« less

  4. Benchmarking the MCNP code for Monte Carlo modelling of an in vivo neutron activation analysis system.

    PubMed

    Natto, S A; Lewis, D G; Ryde, S J

    1998-01-01

    The Monte Carlo computer code MCNP (version 4A) has been used to develop a personal computer-based model of the Swansea in vivo neutron activation analysis (IVNAA) system. The model included specification of the neutron source (252Cf), collimators, reflectors and shielding. The MCNP model was 'benchmarked' against fast neutron and thermal neutron fluence data obtained experimentally from the IVNAA system. The Swansea system allows two irradiation geometries using 'short' and 'long' collimators, which provide alternative dose rates for IVNAA. The data presented here relate to the short collimator, although results of similar accuracy were obtained using the long collimator. The fast neutron fluence was measured in air at a series of depths inside the collimator. The measurements agreed with the MCNP simulation within the statistical uncertainty (5-10%) of the calculations. The thermal neutron fluence was measured and calculated inside the cuboidal water phantom. The depth of maximum thermal fluence was 3.2 cm (measured) and 3.0 cm (calculated). The width of the 50% thermal fluence level across the phantom at its mid-depth was found to be the same by both MCNP and experiment. This benchmarking exercise has given us a high degree of confidence in MCNP as a tool for the design of IVNAA systems.

  5. Automated variance reduction for MCNP using deterministic methods.

    PubMed

    Sweezy, J; Brown, F; Booth, T; Chiaramonte, J; Preeg, B

    2005-01-01

    In order to reduce the user's time and the computer time needed to solve deep penetration problems, an automated variance reduction capability has been developed for the MCNP Monte Carlo transport code. This new variance reduction capability developed for MCNP5 employs the PARTISN multigroup discrete ordinates code to generate mesh-based weight windows. The technique of using deterministic methods to generate importance maps has been widely used to increase the efficiency of deep penetration Monte Carlo calculations. The application of this method in MCNP uses the existing mesh-based weight window feature to translate the MCNP geometry into geometry suitable for PARTISN. The adjoint flux, which is calculated with PARTISN, is used to generate mesh-based weight windows for MCNP. Additionally, the MCNP source energy spectrum can be biased based on the adjoint energy spectrum at the source location. This method can also use angle-dependent weight windows.

  6. Elaborate SMART MCNP Modelling Using ANSYS and Its Applications

    NASA Astrophysics Data System (ADS)

    Song, Jaehoon; Surh, Han-bum; Kim, Seung-jin; Koo, Bonsueng

    2017-09-01

    An MCNP 3-dimensional model can be widely used to evaluate various design parameters such as a core design or shielding design. Conventionally, a simplified 3-dimensional MCNP model is applied to calculate these parameters because of the cumbersomeness of modelling by hand. ANSYS has a function for converting the CAD `stp' format into an MCNP input in the geometry part. Using ANSYS and a 3- dimensional CAD file, a very detailed and sophisticated MCNP 3-dimensional model can be generated. The MCNP model is applied to evaluate the assembly weighting factor at the ex-core detector of SMART, and the result is compared with a simplified MCNP SMART model and assembly weighting factor calculated by DORT, which is a deterministic Sn code.

  7. Testing the Delayed Gamma Capability in MCNP6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weldon, Robert A.; Fensin, Michael L.; McKinney, Gregg W.

    The mission of the Domestic Nuclear Detection Office is to quickly and reliably detect unauthorized attempts to import or transport special nuclear material for use against the United States. Developing detection equipment to meet this objective requires accurate simulation of both the detectable signature and detection mechanism. A delayed particle capability was initially added to MCNPX 2.6.A in 2005 to sample the radioactive fission product parents and emit decay particles resulting from the decay chain. To meet the objectives of detection scenario modeling, the capability was designed to sample a particular time for emitting particular multiplicity of a particular energy.more » Because the sampling process of selecting both time and energy is interdependent, to linearize the time and emission sampling, atom densities are computed at several discrete time steps, and the time-integrated production is computed by multiplying the atom density by the decay constant and time step size to produce a cumulative distribution function for sampling the emission time, energy, and multiplicity. The delayed particle capability was initially given a time-bin structure to help reasonably reproduce, from a qualitative sense, a fission benchmark by Beddingfield, which examined the delayed gamma emission. This original benchmark was only qualitative and did not contain the magnitudes of the actual measured data but did contain relative graphical representation of the spectra. A better benchmark with measured data was later provided by Hunt, Mozin, Reedy, Selpel, and Tobin at the Idaho Accelerator Center; however, because of the complexity of the benchmark setup, sizable systematic errors were expected in the modeling, and initial results compared to MCNPX 2.7.0 showed errors outside of statistical fluctuation. Presented in this paper is a more simplified approach to benchmarking, utilizing closed form analytic solutions to the granddaughter equations for particular sets of decay

  8. MCNP6 Fission Multiplicity with FMULT Card

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilcox, Trevor; Fensin, Michael Lorne; Hendricks, John S.

    With the merger of MCNPX and MCNP5 into MCNP6, MCNP6 now provides all the capabilities of both codes allowing the user to access all the fission multiplicity data sets. Detailed in this paper is: (1) the new FMULT card capabilities for accessing these different data sets; (2) benchmark calculations, as compared to experiment, detailing the results of selecting these separate data sets for thermal neutron induced fission on U-235.

  9. How to Build MCNP 6.2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bull, Jeffrey S.

    This presentation describes how to build MCNP 6.2. MCNP®* 6.2 can be compiled on Macs, PCs, and most Linux systems. It can also be built for parallel execution using both OpenMP and Messing Passing Interface (MPI) methods. MCNP6 requires Fortran, C, and C++ compilers to build the code.

  10. Production of energetic light fragments in extensions of the CEM and LAQGSM event generators of the Monte Carlo transport code MCNP6 [Production of energetic light fragments in CEM, LAQGSM, and MCNP6

    DOE PAGES

    Mashnik, Stepan Georgievich; Kerby, Leslie Marie; Gudima, Konstantin K.; ...

    2017-03-23

    We extend the cascade-exciton model (CEM), and the Los Alamos version of the quark-gluon string model (LAQGSM), event generators of the Monte Carlo N-particle transport code version 6 (MCNP6), to describe production of energetic light fragments (LF) heavier than 4He from various nuclear reactions induced by particles and nuclei at energies up to about 1 TeV/nucleon. In these models, energetic LF can be produced via Fermi breakup, preequilibrium emission, and coalescence of cascade particles. Initially, we study several variations of the Fermi breakup model and choose the best option for these models. Then, we extend the modified exciton model (MEM)more » used by these codes to account for a possibility of multiple emission of up to 66 types of particles and LF (up to 28Mg) at the preequilibrium stage of reactions. Then, we expand the coalescence model to allow coalescence of LF from nucleons emitted at the intranuclear cascade stage of reactions and from lighter clusters, up to fragments with mass numbers A ≤ 7, in the case of CEM, and A ≤ 12, in the case of LAQGSM. Next, we modify MCNP6 to allow calculating and outputting spectra of LF and heavier products with arbitrary mass and charge numbers. The improved version of CEM is implemented into MCNP6. Lastly, we test the improved versions of CEM, LAQGSM, and MCNP6 on a variety of measured nuclear reactions. The modified codes give an improved description of energetic LF from particle- and nucleus-induced reactions; showing a good agreement with a variety of available experimental data. They have an improved predictive power compared to the previous versions and can be used as reliable tools in simulating applications involving such types of reactions.« less

  11. Production of energetic light fragments in extensions of the CEM and LAQGSM event generators of the Monte Carlo transport code MCNP6 [Production of energetic light fragments in CEM, LAQGSM, and MCNP6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mashnik, Stepan Georgievich; Kerby, Leslie Marie; Gudima, Konstantin K.

    We extend the cascade-exciton model (CEM), and the Los Alamos version of the quark-gluon string model (LAQGSM), event generators of the Monte Carlo N-particle transport code version 6 (MCNP6), to describe production of energetic light fragments (LF) heavier than 4He from various nuclear reactions induced by particles and nuclei at energies up to about 1 TeV/nucleon. In these models, energetic LF can be produced via Fermi breakup, preequilibrium emission, and coalescence of cascade particles. Initially, we study several variations of the Fermi breakup model and choose the best option for these models. Then, we extend the modified exciton model (MEM)more » used by these codes to account for a possibility of multiple emission of up to 66 types of particles and LF (up to 28Mg) at the preequilibrium stage of reactions. Then, we expand the coalescence model to allow coalescence of LF from nucleons emitted at the intranuclear cascade stage of reactions and from lighter clusters, up to fragments with mass numbers A ≤ 7, in the case of CEM, and A ≤ 12, in the case of LAQGSM. Next, we modify MCNP6 to allow calculating and outputting spectra of LF and heavier products with arbitrary mass and charge numbers. The improved version of CEM is implemented into MCNP6. Lastly, we test the improved versions of CEM, LAQGSM, and MCNP6 on a variety of measured nuclear reactions. The modified codes give an improved description of energetic LF from particle- and nucleus-induced reactions; showing a good agreement with a variety of available experimental data. They have an improved predictive power compared to the previous versions and can be used as reliable tools in simulating applications involving such types of reactions.« less

  12. Sensitivity-Uncertainty Based Nuclear Criticality Safety Validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Forrest B.

    2016-09-20

    These are slides from a seminar given to the University of Mexico Nuclear Engineering Department. Whisper is a statistical analysis package developed to support nuclear criticality safety validation. It uses the sensitivity profile data for an application as computed by MCNP6 along with covariance files for the nuclear data to determine a baseline upper-subcritical-limit for the application. Whisper and its associated benchmark files are developed and maintained as part of MCNP6, and will be distributed with all future releases of MCNP6. Although sensitivity-uncertainty methods for NCS validation have been under development for 20 years, continuous-energy Monte Carlo codes such asmore » MCNP could not determine the required adjoint-weighted tallies for sensitivity profiles. The recent introduction of the iterated fission probability method into MCNP led to the rapid development of sensitivity analysis capabilities for MCNP6 and the development of Whisper. Sensitivity-uncertainty based methods represent the future for NCS validation – making full use of today’s computer power to codify past approaches based largely on expert judgment. Validation results are defensible, auditable, and repeatable as needed with different assumptions and process models. The new methods can supplement, support, and extend traditional validation approaches.« less

  13. Performance of MCNP4A on seven computing platforms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hendricks, J.S.; Brockhoff, R.C.

    1994-12-31

    The performance of seven computer platforms has been evaluated with the MCNP4A Monte Carlo radiation transport code. For the first time we report timing results using MCNP4A and its new test set and libraries. Comparisons are made on platforms not available to us in previous MCNP timing studies. By using MCNP4A and its 325-problem test set, a widely-used and readily-available physics production code is used; the timing comparison is not limited to a single ``typical`` problem, demonstrating the problem dependence of timing results; the results are reproducible at the more than 100 installations around the world using MCNP; comparison ofmore » performance of other computer platforms to the ones tested in this study is possible because we present raw data rather than normalized results; and a measure of the increase in performance of computer hardware and software over the past two years is possible. The computer platforms reported are the Cray-YMP 8/64, IBM RS/6000-560, Sun Sparc10, Sun Sparc2, HP/9000-735, 4 processor 100 MHz Silicon Graphics ONYX, and Gateway 2000 model 4DX2-66V PC. In 1991 a timing study of MCNP4, the predecessor to MCNP4A, was conducted using ENDF/B-V cross-section libraries, which are export protected. The new study is based upon the new MCNP 25-problem test set which utilizes internationally available data. MCNP4A, its test problems and the test data library are available from the Radiation Shielding and Information Center in Oak Ridge, Tennessee, or from the NEA Data Bank in Saclay, France. Anyone with the same workstation and compiler can get the same test problem sets, the same library files, and the same MCNP4A code from RSIC or NEA and replicate our results. And, because we report raw data, comparison of the performance of other compute platforms and compilers can be made.« less

  14. TRIPOLI-4® - MCNP5 ITER A-lite neutronic model benchmarking

    NASA Astrophysics Data System (ADS)

    Jaboulay, J.-C.; Cayla, P.-Y.; Fausser, C.; Lee, Y.-K.; Trama, J.-C.; Li-Puma, A.

    2014-06-01

    The aim of this paper is to present the capability of TRIPOLI-4®, the CEA Monte Carlo code, to model a large-scale fusion reactor with complex neutron source and geometry. In the past, numerous benchmarks were conducted for TRIPOLI-4® assessment on fusion applications. Experiments (KANT, OKTAVIAN, FNG) analysis and numerical benchmarks (between TRIPOLI-4® and MCNP5) on the HCLL DEMO2007 and ITER models were carried out successively. In this previous ITER benchmark, nevertheless, only the neutron wall loading was analyzed, its main purpose was to present MCAM (the FDS Team CAD import tool) extension for TRIPOLI-4®. Starting from this work a more extended benchmark has been performed about the estimation of neutron flux, nuclear heating in the shielding blankets and tritium production rate in the European TBMs (HCLL and HCPB) and it is presented in this paper. The methodology to build the TRIPOLI-4® A-lite model is based on MCAM and the MCNP A-lite model (version 4.1). Simplified TBMs (from KIT) have been integrated in the equatorial-port. Comparisons of neutron wall loading, flux, nuclear heating and tritium production rate show a good agreement between the two codes. Discrepancies are mainly included in the Monte Carlo codes statistical error.

  15. Delta-ray Production in MCNP 6.2.0

    NASA Astrophysics Data System (ADS)

    Anderson, C.; McKinney, G.; Tutt, J.; James, M.

    Secondary electrons in the form of delta-rays, also referred to as knock-on electrons, have been a feature of MCNP for electron and positron transport for over 20 years. While MCNP6 now includes transport for a suite of heavy-ions and charged particles from its integration with MCNPX, the production of delta-rays was still limited to electron and positron transport. In the newest release of MCNP6, version 6.2.0, delta-ray production has now been extended for all energetic charged particles. The basis of this production is the analytical formulation from Rossi and ICRU Report 37. This paper discusses the MCNP6 heavy charged-particle implementation and provides production results for several benchmark/test problems.

  16. Validation of MCNP6 Version 1.0 with the ENDF/B-VII.1 Cross Section Library for Uranium Metal, Oxide, and Solution Systems on the High Performance Computing Platform Moonlight

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chapman, Bryan Scott; MacQuigg, Michael Robert; Wysong, Andrew Russell

    In this document, the code MCNP is validated with ENDF/B-VII.1 cross section data under the purview of ANSI/ANS-8.24-2007, for use with uranium systems. MCNP is a computer code based on Monte Carlo transport methods. While MCNP has wide reading capability in nuclear transport simulation, this validation is limited to the functionality related to neutron transport and calculation of criticality parameters such as k eff.

  17. Status Report on the MCNP 2020 Initiative

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Forrest B.; Rising, Michael Evan

    2017-10-02

    The discussion below provides a status report on the MCNP 2020 initiative. It includes discussion of the history of MCNP 2020, accomplishments during 2013-17, priorities for near-term development, other related efforts, a brief summary, and a list of references for the plans and work accomplished.

  18. Determination of neutron flux distribution in an Am-Be irradiator using the MCNP.

    PubMed

    Shtejer-Diaz, K; Zamboni, C B; Zahn, G S; Zevallos-Chávez, J Y

    2003-10-01

    A neutron irradiator has been assembled at IPEN facilities to perform qualitative-quantitative analysis of many materials using thermal and fast neutrons outside the nuclear reactor premises. To establish the prototype specifications, the neutron flux distribution and the absorbed dose rates were calculated using the MCNP computer code. These theoretical predictions then allow one to discuss the optimum irradiator design and its performance.

  19. Delta-ray Production in MCNP 6.2.0

    DOE PAGES

    Anderson, Casey Alan; McKinney, Gregg Walter; Tutt, James Robert; ...

    2017-10-26

    Secondary electrons in the form of delta-rays, also referred to as knock-on electrons, have been a feature of MCNP for electron and positron transport for over 20 years. While MCNP6 now includes transport for a suite of heavy-ions and charged particles from its integration with MCNPX, the production of delta-rays was still limited to electron and positron transport. In the newest release of MCNP6, version 6.2.0, delta-ray production has now been extended for all energetic charged particles. The basis of this production is the analytical formulation from Rossi and ICRU Report 37. As a result, this paper discusses the MCNP6more » heavy charged-particle implementation and provides production results for several benchmark/test problems.« less

  20. MCNP-model for the OAEP Thai Research Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallmeier, F.X.; Tang, J.S.; Primm, R.T. III

    An MCNP input was prepared for the Thai Research Reactor, making extensive use of the MCNP geometry`s lattice feature that allows a flexible and easy rearrangement of the core components and the adjustment of the control elements. The geometry was checked for overdefined or undefined zones by two-dimensional plots of cuts through the core configuration with the MCNP geometry plotting capabilities, and by a three-dimensional view of the core configuration with the SABRINA code. Cross sections were defined for a hypothetical core of 67 standard fuel elements and 38 low-enriched uranium fuel elements--all filled with fresh fuel. Three test calculationsmore » were performed with the MCNP4B-code to obtain the multiplication factor for the cases with control elements fully inserted, fully withdrawn, and at a working position.« less

  1. An investigation of MCNP6.1 beryllium oxide S(α, β) cross sections

    DOE PAGES

    Sartor, Raymond F.; Glazener, Natasha N.

    2016-03-08

    In MCNP6.1, materials are constructed by identifying the constituent isotopes (or elements in a few cases) individually. This list selects the corresponding microscopic cross sections calculated from the free-gas model to create the material macroscopic cross sections. Furthermore, the free-gas model and the corresponding material macroscopic cross sections assume that the interactions of atoms do not affect the nuclear cross sections.

  2. Comparisons between MCNP, EGS4 and experiment for clinical electron beams.

    PubMed

    Jeraj, R; Keall, P J; Ostwald, P M

    1999-03-01

    Understanding the limitations of Monte Carlo codes is essential in order to avoid systematic errors in simulations, and to suggest further improvement of the codes. MCNP and EGS4, Monte Carlo codes commonly used in medical physics, were compared and evaluated against electron depth dose data and experimental backscatter results obtained using clinical radiotherapy beams. Different physical models and algorithms used in the codes give significantly different depth dose curves and electron backscattering factors. The default version of MCNP calculates electron depth dose curves which are too penetrating. The MCNP results agree better with experiment if the ITS-style energy-indexing algorithm is used. EGS4 underpredicts electron backscattering for high-Z materials. The results slightly improve if optimal PRESTA-I parameters are used. MCNP simulates backscattering well even for high-Z materials. To conclude the comparison, a timing study was performed. EGS4 is generally faster than MCNP and use of a large number of scoring voxels dramatically slows down the MCNP calculation. However, use of a large number of geometry voxels in MCNP only slightly affects the speed of the calculation.

  3. Review of heavy charged particle transport in MCNP6.2

    NASA Astrophysics Data System (ADS)

    Zieb, K.; Hughes, H. G.; James, M. R.; Xu, X. G.

    2018-04-01

    The release of version 6.2 of the MCNP6 radiation transport code is imminent. To complement the newest release, a summary of the heavy charged particle physics models used in the 1 MeV to 1 GeV energy regime is presented. Several changes have been introduced into the charged particle physics models since the merger of the MCNP5 and MCNPX codes into MCNP6. This paper discusses the default models used in MCNP6 for continuous energy loss, energy straggling, and angular scattering of heavy charged particles. Explanations of the physics models' theories are included as well.

  4. Review of Heavy Charged Particle Transport in MCNP6.2

    DOE PAGES

    Zieb, Kristofer James Ekhart; Hughes, Henry Grady III; Xu, X. George; ...

    2018-01-05

    The release of version 6.2 of the MCNP6 radiation transport code is imminent. To complement the newest release, a summary of the heavy charged particle physics models used in the 1 MeV to 1 GeV energy regime is presented. Several changes have been introduced into the charged particle physics models since the merger of the MCNP5 and MCNPX codes into MCNP6. Here, this article discusses the default models used in MCNP6 for continuous energy loss, energy straggling, and angular scattering of heavy charged particles. Explanations of the physics models’ theories are included as well.

  5. Benchmarking comparison and validation of MCNP photon interaction data

    NASA Astrophysics Data System (ADS)

    Colling, Bethany; Kodeli, I.; Lilley, S.; Packer, L. W.

    2017-09-01

    The objective of the research was to test available photoatomic data libraries for fusion relevant applications, comparing against experimental and computational neutronics benchmarks. Photon flux and heating was compared using the photon interaction data libraries (mcplib 04p, 05t, 84p and 12p). Suitable benchmark experiments (iron and water) were selected from the SINBAD database and analysed to compare experimental values with MCNP calculations using mcplib 04p, 84p and 12p. In both the computational and experimental comparisons, the majority of results with the 04p, 84p and 12p photon data libraries were within 1σ of the mean MCNP statistical uncertainty. Larger differences were observed when comparing computational results with the 05t test photon library. The Doppler broadening sampling bug in MCNP-5 is shown to be corrected for fusion relevant problems through use of the 84p photon data library. The recommended libraries for fusion neutronics are 84p (or 04p) with MCNP6 and 84p if using MCNP-5.

  6. MCNP HPGe detector benchmark with previously validated Cyltran model.

    PubMed

    Hau, I D; Russ, W R; Bronson, F

    2009-05-01

    An exact copy of the detector model generated for Cyltran was reproduced as an MCNP input file and the detection efficiency was calculated similarly with the methodology used in previous experimental measurements and simulation of a 280 cm(3) HPGe detector. Below 1000 keV the MCNP data correlated to the Cyltran results within 0.5% while above this energy the difference between MCNP and Cyltran increased to about 6% at 4800 keV, depending on the electron cut-off energy.

  7. Monte Carlo Modeling of the Initial Radiation Emitted by a Nuclear Device in the National Capital Region

    DTIC Science & Technology

    2013-07-01

    also simulated in the models. Data was derived from calculations using the three-dimensional Monte Carlo radiation transport code MCNP (Monte Carlo N...32  B.  MCNP PHYSICS OPTIONS ......................................................................................... 33  C.  HAZUS...input deck’) for the MCNP , Monte Carlo N-Particle, radiation transport code. MCNP is a general-purpose code designed to simulate neutron, photon

  8. MCNP Output Data Analysis with ROOT (MODAR)

    NASA Astrophysics Data System (ADS)

    Carasco, C.

    2010-06-01

    MCNP Output Data Analysis with ROOT (MODAR) is a tool based on CERN's ROOT software. MODAR has been designed to handle time-energy data issued by MCNP simulations of neutron inspection devices using the associated particle technique. MODAR exploits ROOT's Graphical User Interface and functionalities to visualize and process MCNP simulation results in a fast and user-friendly way. MODAR allows to take into account the detection system time resolution (which is not possible with MCNP) as well as detectors energy response function and counting statistics in a straightforward way. Program summaryProgram title: MODAR Catalogue identifier: AEGA_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEGA_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 155 373 No. of bytes in distributed program, including test data, etc.: 14 815 461 Distribution format: tar.gz Programming language: C++ Computer: Most Unix workstations and PC Operating system: Most Unix systems, Linux and windows, provided the ROOT package has been installed. Examples where tested under Suse Linux and Windows XP. RAM: Depends on the size of the MCNP output file. The example presented in the article, which involves three two-dimensional 139×740 bins histograms, allocates about 60 MB. These data are running under ROOT and include consumption by ROOT itself. Classification: 17.6 External routines: ROOT version 5.24.00 ( http://root.cern.ch/drupal/) Nature of problem: The output of an MCNP simulation is an ASCII file. The data processing is usually performed by copying and pasting the relevant parts of the ASCII file into Microsoft Excel. Such an approach is satisfactory when the quantity of data is small but is not efficient when the size of the simulated data is large, for example when time

  9. The X6XS. 0 cross section library for MCNP-4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pruvost, N.L.; Seamon, R.E.; Rombaugh, C.T.

    1991-06-01

    This report documents the work done by X-6, HSE-6, and CTR Technical Services to produce a comprehensive working cross-section library for MCNP-4 suitable for SUN workstations and similar environments. The resulting library consists of a total of 436 files (one file for each ZAID). The library is 152 Megabytes in Type 1 format and 32 Megabytes in Type 2 format. Type 2 can be used when porting the library from one computer to another of the same make. Otherwise, Type 1 must be used to ensure portability between different computer systems. Instructions for installing the library and adding ZAIDs tomore » it are included here. Also included is a description of the steps necessary to install and test version 4 of MCNP. To improve readability of this report, certain commands and filenames are given in uppercase letters. The actual command or filename on the SUN workstation, however, must be specified in lowercase letters. Any questions regarding the data contained in the library should be directed to X-6 and any questions regarding the installation of the library and the testing that was performed should be directed to HSE-6. 9 refs., 7 tabs.« less

  10. SABRINA - an interactive geometry modeler for MCNP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    West, J.T.; Murphy, J.

    One of the most difficult tasks when analyzing a complex three-dimensional system with Monte Carlo is geometry model development. SABRINA attempts to make the modeling process more user-friendly and less of an obstacle. It accepts both combinatorial solid bodies and MCNP surfaces and produces MCNP cells. The model development process in SABRINA is highly interactive and gives the user immediate feedback on errors. Users can view their geometry from arbitrary perspectives while the model is under development and interactively find and correct modeling errors. An example of a SABRINA display is shown. It represents a complex three-dimensional shape.

  11. MCNP6 Simulation of Light and Medium Nuclei Fragmentation at Intermediate Energies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mashnik, Stepan Georgievich; Kerby, Leslie Marie

    2015-05-22

    MCNP6, the latest and most advanced LANL Monte Carlo transport code, representing a merger of MCNP5 and MCNPX, is actually much more than the sum of those two computer codes; MCNP6 is available to the public via RSICC at Oak Ridge, TN, USA. In the present work, MCNP6 was validated and verified (V&V) against different experimental data on intermediate-energy fragmentation reactions, and results by several other codes, using mainly the latest modifications of the Cascade-Exciton Model (CEM) and of the Los Alamos version of the Quark-Gluon String Model (LAQGSM) event generators CEM03.03 and LAQGSM03.03. It was found that MCNP6 usingmore » CEM03.03 and LAQGSM03.03 describes well fragmentation reactions induced on light and medium target nuclei by protons and light nuclei of energies around 1 GeV/nucleon and below, and can serve as a reliable simulation tool for different applications, like cosmic-ray-induced single event upsets (SEU’s), radiation protection, and cancer therapy with proton and ion beams, to name just a few. Future improvements of the predicting capabilities of MCNP6 for such reactions are possible, and are discussed in this work.« less

  12. Characterization and Performance Evaluation of an HPXe Detector for Nuclear Explosion Monitoring Applications

    DTIC Science & Technology

    2007-09-01

    performance of the detector, and to compare the performance with sodium iodide and germanium detectors. Monte Carlo ( MCNP ) simulation was used to...aluminum ~50% more efficient), and to estimate optimum shield dimensions for an HPXe based nuclear explosion monitor. MCNP modeling was also used to...detector were calculated with MCNP by using input activity levels as measured in routine NEM runs at Pacific Northwest National Laboratory (PNNL

  13. Features of MCNP6 Relevant to Medical Radiation Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, H. Grady III; Goorley, John T.

    2012-08-29

    MCNP (Monte Carlo N-Particle) is a general-purpose Monte Carlo code for simulating the transport of neutrons, photons, electrons, positrons, and more recently other fundamental particles and heavy ions. Over many years MCNP has found a wide range of applications in many different fields, including medical radiation physics. In this presentation we will describe and illustrate a number of significant recently-developed features in the current version of the code, MCNP6, having particular utility for medical physics. Among these are major extensions of the ability to simulate large, complex geometries, improvement in memory requirements and speed for large lattices, introduction of mesh-basedmore » isotopic reaction tallies, advances in radiography simulation, expanded variance-reduction capabilities, especially for pulse-height tallies, and a large number of enhancements in photon/electron transport.« less

  14. Monte Carlo MCNP-4B-based absorbed dose distribution estimates for patient-specific dosimetry.

    PubMed

    Yoriyaz, H; Stabin, M G; dos Santos, A

    2001-04-01

    This study was intended to verify the capability of the Monte Carlo MCNP-4B code to evaluate spatial dose distribution based on information gathered from CT or SPECT. A new three-dimensional (3D) dose calculation approach for internal emitter use in radioimmunotherapy (RIT) was developed using the Monte Carlo MCNP-4B code as the photon and electron transport engine. It was shown that the MCNP-4B computer code can be used with voxel-based anatomic and physiologic data to provide 3D dose distributions. This study showed that the MCNP-4B code can be used to develop a treatment planning system that will provide such information in a time manner, if dose reporting is suitably optimized. If each organ is divided into small regions where the average energy deposition is calculated with a typical volume of 0.4 cm(3), regional dose distributions can be provided with reasonable central processing unit times (on the order of 12-24 h on a 200-MHz personal computer or modest workstation). Further efforts to provide semiautomated region identification (segmentation) and improvement of marrow dose calculations are needed to supply a complete system for RIT. It is envisioned that all such efforts will continue to develop and that internal dose calculations may soon be brought to a similar level of accuracy, detail, and robustness as is commonly expected in external dose treatment planning. For this study we developed a code with a user-friendly interface that works on several nuclear medicine imaging platforms and provides timely patient-specific dose information to the physician and medical physicist. Future therapy with internal emitters should use a 3D dose calculation approach, which represents a significant advance over dose information provided by the standard geometric phantoms used for more than 20 y (which permit reporting of only average organ doses for certain standardized individuals)

  15. MCNP output data analysis with ROOT (MODAR)

    NASA Astrophysics Data System (ADS)

    Carasco, C.

    2010-12-01

    MCNP Output Data Analysis with ROOT (MODAR) is a tool based on CERN's ROOT software. MODAR has been designed to handle time-energy data issued by MCNP simulations of neutron inspection devices using the associated particle technique. MODAR exploits ROOT's Graphical User Interface and functionalities to visualize and process MCNP simulation results in a fast and user-friendly way. MODAR allows to take into account the detection system time resolution (which is not possible with MCNP) as well as detectors energy response function and counting statistics in a straightforward way. New version program summaryProgram title: MODAR Catalogue identifier: AEGA_v1_1 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEGA_v1_1.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 150 927 No. of bytes in distributed program, including test data, etc.: 4 981 633 Distribution format: tar.gz Programming language: C++ Computer: Most Unix workstations and PCs Operating system: Most Unix systems, Linux and windows, provided the ROOT package has been installed. Examples where tested under Suse Linux and Windows XP. RAM: Depends on the size of the MCNP output file. The example presented in the article, which involves three two dimensional 139×740 bins histograms, allocates about 60 MB. These data are running under ROOT and include consumption by ROOT itself. Classification: 17.6 Catalogue identifier of previous version: AEGA_v1_0 Journal reference of previous version: Comput. Phys. Comm. 181 (2010) 1161 External routines: ROOT version 5.24.00 ( http://root.cern.ch/drupal/) Does the new version supersede the previous version?: Yes Nature of problem: The output of a MCNP simulation is an ascii file. The data processing is usually performed by copying and pasting the relevant parts of the ascii

  16. Gas Core Reactor Numerical Simulation Using a Coupled MHD-MCNP Model

    NASA Technical Reports Server (NTRS)

    Kazeminezhad, F.; Anghaie, S.

    2008-01-01

    Analysis is provided in this report of using two head-on magnetohydrodynamic (MHD) shocks to achieve supercritical nuclear fission in an axially elongated cylinder filled with UF4 gas as an energy source for deep space missions. The motivation for each aspect of the design is explained and supported by theory and numerical simulations. A subsequent report will provide detail on relevant experimental work to validate the concept. Here the focus is on the theory of and simulations for the proposed gas core reactor conceptual design from the onset of shock generations to the supercritical state achieved when the shocks collide. The MHD model is coupled to a standard nuclear code (MCNP) to observe the neutron flux and fission power attributed to the supercritical state brought about by the shock collisions. Throughout the modeling, realistic parameters are used for the initial ambient gaseous state and currents to ensure a resulting supercritical state upon shock collisions.

  17. V&V of MCNP 6.1.1 Beta Against Intermediate and High-Energy Experimental Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mashnik, Stepan G

    This report presents a set of validation and verification (V&V) MCNP 6.1.1 beta results calculated in parallel, with MPI, obtained using its event generators at intermediate and high-energies compared against various experimental data. It also contains several examples of results using the models at energies below 150 MeV, down to 10 MeV, where data libraries are normally used. This report can be considered as the forth part of a set of MCNP6 Testing Primers, after its first, LA-UR-11-05129, and second, LA-UR-11-05627, and third, LA-UR-26944, publications, but is devoted to V&V with the latest, 1.1 beta version of MCNP6. The MCNP6more » test-problems discussed here are presented in the /VALIDATION_CEM/and/VALIDATION_LAQGSM/subdirectories in the MCNP6/Testing/directory. README files that contain short descriptions of every input file, the experiment, the quantity of interest that the experiment measures and its description in the MCNP6 output files, and the publication reference of that experiment are presented for every test problem. Templates for plotting the corresponding results with xmgrace as well as pdf files with figures representing the final results of our V&V efforts are presented. Several technical “bugs” in MCNP 6.1.1 beta were discovered during our current V&V of MCNP6 while running it in parallel with MPI using its event generators. These “bugs” are to be fixed in the following version of MCNP6. Our results show that MCNP 6.1.1 beta using its CEM03.03, LAQGSM03.03, Bertini, and INCL+ABLA, event generators describes, as a rule, reasonably well different intermediate- and high-energy measured data. This primer isn’t meant to be read from cover to cover. Readers may skip some sections and go directly to any test problem in which they are interested.« less

  18. Geometry creation for MCNP by Sabrina and XSM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Riper, K.A.

    The Monte Carlo N-Particle transport code MCNP is based on a surface description of 3-dimensional geometry. Cells are defined in terms of boolean operations on signed quadratic surfaces. MCNP geometry is entered as a card image file containing coefficients of the surface equations and a list of surfaces and operators describing cells. Several programs are available to assist in creation of the geometry specification, among them Sabrina and the new ``Smart Editor`` code XSM. We briefly describe geometry creation in Sabrina and then discuss XSM in detail. XSM is under development; our discussion is based on the state of XSMmore » as of January 1, 1994.« less

  19. Accelerating Pseudo-Random Number Generator for MCNP on GPU

    NASA Astrophysics Data System (ADS)

    Gong, Chunye; Liu, Jie; Chi, Lihua; Hu, Qingfeng; Deng, Li; Gong, Zhenghu

    2010-09-01

    Pseudo-random number generators (PRNG) are intensively used in many stochastic algorithms in particle simulations, artificial neural networks and other scientific computation. The PRNG in Monte Carlo N-Particle Transport Code (MCNP) requires long period, high quality, flexible jump and fast enough. In this paper, we implement such a PRNG for MCNP on NVIDIA's GTX200 Graphics Processor Units (GPU) using CUDA programming model. Results shows that 3.80 to 8.10 times speedup are achieved compared with 4 to 6 cores CPUs and more than 679.18 million double precision random numbers can be generated per second on GPU.

  20. An Electron/Photon/Relaxation Data Library for MCNP6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, III, H. Grady

    The capabilities of the MCNP6 Monte Carlo code in simulation of electron transport, photon transport, and atomic relaxation have recently been significantly expanded. The enhancements include not only the extension of existing data and methods to lower energies, but also the introduction of new categories of data and methods. Support of these new capabilities has required major additions to and redesign of the associated data tables. In this paper we present the first complete documentation of the contents and format of the new electron-photon-relaxation data library now available with the initial production release of MCNP6.

  1. A CT and MRI scan to MCNP input conversion program.

    PubMed

    Van Riper, Kenneth A

    2005-01-01

    We describe a new program to read a sequence of tomographic scans and prepare the geometry and material sections of an MCNP input file. Image processing techniques include contrast controls and mapping of grey scales to colour. The user interface provides several tools with which the user can associate a range of image intensities to an MCNP material. Materials are loaded from a library. A separate material assignment can be made to a pixel intensity or range of intensities when that intensity dominates the image boundaries; this material is assigned to all pixels with that intensity contiguous with the boundary. Material fractions are computed in a user-specified voxel grid overlaying the scans. New materials are defined by mixing the library materials using the fractions. The geometry can be written as an MCNP lattice or as individual cells. A combination algorithm can be used to join neighbouring cells with the same material.

  2. Simplification of an MCNP model designed for dose rate estimation

    NASA Astrophysics Data System (ADS)

    Laptev, Alexander; Perry, Robert

    2017-09-01

    A study was made to investigate the methods of building a simplified MCNP model for radiological dose estimation. The research was done using an example of a complicated glovebox with extra shielding. The paper presents several different calculations for neutron and photon dose evaluations where glovebox elements were consecutively excluded from the MCNP model. The analysis indicated that to obtain a fast and reasonable estimation of dose, the model should be realistic in details that are close to the tally. Other details may be omitted.

  3. Comparison of scientific computing platforms for MCNP4A Monte Carlo calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hendricks, J.S.; Brockhoff, R.C.

    1994-04-01

    The performance of seven computer platforms is evaluated with the widely used and internationally available MCNP4A Monte Carlo radiation transport code. All results are reproducible and are presented in such a way as to enable comparison with computer platforms not in the study. The authors observed that the HP/9000-735 workstation runs MCNP 50% faster than the Cray YMP 8/64. Compared with the Cray YMP 8/64, the IBM RS/6000-560 is 68% as fast, the Sun Sparc10 is 66% as fast, the Silicon Graphics ONYX is 90% as fast, the Gateway 2000 model 4DX2-66V personal computer is 27% as fast, and themore » Sun Sparc2 is 24% as fast. In addition to comparing the timing performance of the seven platforms, the authors observe that changes in compilers and software over the past 2 yr have resulted in only modest performance improvements, hardware improvements have enhanced performance by less than a factor of [approximately]3, timing studies are very problem dependent, MCNP4Q runs about as fast as MCNP4.« less

  4. MCNP5 CALCULATIONS REPLICATING ARH-600 NITRATE DATA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    FINFROCK SH

    This report serves to extend the previous document: 'MCNP Calculations Replicating ARH-600 Data' by replicating the nitrate curves found in ARH-600. This report includes the MCNP models used, the calculated critical dimension for each analyzed parameter set, and the resulting data libraries for use with the CritView code. As with the ARH-600 data, this report is not meant to replace the analysis of the fissile systems by qualified criticality personnel. The M CNP data is presented without accounting for the statistical uncertainty (although this is typically less than 0.001) or bias and, as such, the application of a reasonable safetymore » margin is required. The data that follows pertains to the uranyl nitrate and plutonium nitrate spheres, infinite cylinders, and infinite slabs of varying isotopic composition, reflector thickness, and molarity. Each of the cases was modeled in MCNP (version 5.1.40), using the ENDF/B-VI cross section set. Given a molarity, isotopic composition, and reflector thickness, the fissile concentration and diameter (or thicknesses in the case of the slab geometries) were varied. The diameter for which k-effective equals 1.00 for a given concentration could then be calculated and graphed. These graphs are included in this report. The pages that follow describe the regions modeled, formulas for calculating the various parameters, a list of cross-sections used in the calculations, a description of the automation routine and data, and finally the data output. The data of most interest are the critical dimensions of the various systems analyzed. This is presented graphically, and in table format, in Appendix B. Appendix C provides a text listing of the same data in a format that is compatible with the CritView code. Appendices D and E provide listing of example Template files and MCNP input files (these are discussed further in Section 4). Appendix F is a complete listing of all of the output data (i.e., all of the analyzed dimensions and

  5. Comparison of EGS4 and MCNP Monte Carlo codes when calculating radiotherapy depth doses.

    PubMed

    Love, P A; Lewis, D G; Al-Affan, I A; Smith, C W

    1998-05-01

    The Monte Carlo codes EGS4 and MCNP have been compared when calculating radiotherapy depth doses in water. The aims of the work were to study (i) the differences between calculated depth doses in water for a range of monoenergetic photon energies and (ii) the relative efficiency of the two codes for different electron transport energy cut-offs. The depth doses from the two codes agree with each other within the statistical uncertainties of the calculations (1-2%). The relative depth doses also agree with data tabulated in the British Journal of Radiology Supplement 25. A discrepancy in the dose build-up region may by attributed to the different electron transport algorithims used by EGS4 and MCNP. This discrepancy is considerably reduced when the improved electron transport routines are used in the latest (4B) version of MCNP. Timing calculations show that EGS4 is at least 50% faster than MCNP for the geometries used in the simulations.

  6. Comparison of CdZnTe neutron detector models using MCNP6 and Geant4

    NASA Astrophysics Data System (ADS)

    Wilson, Emma; Anderson, Mike; Prendergasty, David; Cheneler, David

    2018-01-01

    The production of accurate detector models is of high importance in the development and use of detectors. Initially, MCNP and Geant were developed to specialise in neutral particle models and accelerator models, respectively; there is now a greater overlap of the capabilities of both, and it is therefore useful to produce comparative models to evaluate detector characteristics. In a collaboration between Lancaster University, UK, and Innovative Physics Ltd., UK, models have been developed in both MCNP6 and Geant4 of Cadmium Zinc Telluride (CdZnTe) detectors developed by Innovative Physics Ltd. Herein, a comparison is made of the relative strengths of MCNP6 and Geant4 for modelling neutron flux and secondary γ-ray emission. Given the increasing overlap of the modelling capabilities of MCNP6 and Geant4, it is worthwhile to comment on differences in results for simulations which have similarities in terms of geometries and source configurations.

  7. Production and testing of the ENEA-Bologna VITJEFF32.BOLIB (JEFF-3.2) multi-group (199 n + 42 γ) cross section library in AMPX format for nuclear fission applications

    NASA Astrophysics Data System (ADS)

    Pescarini, Massimo; Orsi, Roberto; Frisoni, Manuela

    2017-09-01

    The ENEA-Bologna Nuclear Data Group produced the VITJEFF32.BOLIB multi-group coupled neutron/photon (199 n + 42 γ) cross section library in AMPX format, based on the OECD-NEA Data Bank JEFF-3.2 evaluated nuclear data library. VITJEFF32.BOLIB was conceived for nuclear fission applications as European counterpart of the ORNL VITAMIN-B7 similar library (ENDF/B-VII.0 data). VITJEFF32.BOLIB has the same neutron and photon energy group structure as the former ORNL VITAMIN-B6 reference library (ENDF/B-VI.3 data) and was produced using similar data processing methodologies, based on the LANL NJOY-2012.53 nuclear data processing system for the generation of the nuclide cross section data files in GENDF format. Then the ENEA-Bologna 2007 Revision of the ORNL SCAMPI nuclear data processing system was used for the conversion into the AMPX format. VITJEFF32.BOLIB contains processed cross section data files for 190 nuclides, obtained through the Bondarenko (f-factor) method for the treatment of neutron resonance self-shielding and temperature effects. Collapsed working libraries of self-shielded cross sections in FIDO-ANISN format, used by the deterministic transport codes of the ORNL DOORS system, can be generated from VITJEFF32.BOLIB through the cited SCAMPI version. This paper describes the methodology and specifications of the data processing performed and presents some results of the VITJEFF32.BOLIB validation.

  8. Neutron and photon shielding benchmark calculations by MCNP on the LR-0 experimental facility.

    PubMed

    Hordósy, G

    2005-01-01

    In the framework of the REDOS project, the space-energy distribution of the neutron and photon flux has been calculated over the pressure vessel simulator thickness of the LR-0 experimental reactor, Rez, Czech Republic. The results calculated by the Monte Carlo code MCNP4C are compared with the measurements performed in the Nuclear Research Institute, Rez. The spectra have been measured at the barrel, in front of, inside and behind the pressure vessel in different configurations. The neutron measurements were performed in the energy range 0.1-10 MeV. This work has been done in the frame of the 5th Frame Work Programme of the European Community 1998-2002.

  9. MCNP-REN - A Monte Carlo Tool for Neutron Detector Design Without Using the Point Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abhold, M.E.; Baker, M.C.

    1999-07-25

    The development of neutron detectors makes extensive use of the predictions of detector response through the use of Monte Carlo techniques in conjunction with the point reactor model. Unfortunately, the point reactor model fails to accurately predict detector response in common applications. For this reason, the general Monte Carlo N-Particle code (MCNP) was modified to simulate the pulse streams that would be generated by a neutron detector and normally analyzed by a shift register. This modified code, MCNP - Random Exponentially Distributed Neutron Source (MCNP-REN), along with the Time Analysis Program (TAP) predict neutron detector response without using the pointmore » reactor model, making it unnecessary for the user to decide whether or not the assumptions of the point model are met for their application. MCNP-REN is capable of simulating standard neutron coincidence counting as well as neutron multiplicity counting. Measurements of MOX fresh fuel made using the Underwater Coincidence Counter (UWCC) as well as measurements of HEU reactor fuel using the active neutron Research Reactor Fuel Counter (RRFC) are compared with calculations. The method used in MCNP-REN is demonstrated to be fundamentally sound and shown to eliminate the need to use the point model for detector performance predictions.« less

  10. Multi-canister overpack project -- verification and validation, MCNP 4A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldmann, L.H.

    This supporting document contains the software verification and validation (V and V) package used for Phase 2 design of the Spent Nuclear Fuel Multi-Canister Overpack. V and V packages for both ANSYS and MCNP are included. Description of Verification Run(s): This software requires that it be compiled specifically for the machine it is to be used on. Therefore to facilitate ease in the verification process the software automatically runs 25 sample problems to ensure proper installation and compilation. Once the runs are completed the software checks for verification by performing a file comparison on the new output file and themore » old output file. Any differences between any of the files will cause a verification error. Due to the manner in which the verification is completed a verification error does not necessarily indicate a problem. This indicates that a closer look at the output files is needed to determine the cause of the error.« less

  11. The MCNP6 Analytic Criticality Benchmark Suite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Forrest B.

    2016-06-16

    Analytical benchmarks provide an invaluable tool for verifying computer codes used to simulate neutron transport. Several collections of analytical benchmark problems [1-4] are used routinely in the verification of production Monte Carlo codes such as MCNP® [5,6]. Verification of a computer code is a necessary prerequisite to the more complex validation process. The verification process confirms that a code performs its intended functions correctly. The validation process involves determining the absolute accuracy of code results vs. nature. In typical validations, results are computed for a set of benchmark experiments using a particular methodology (code, cross-section data with uncertainties, and modeling)more » and compared to the measured results from the set of benchmark experiments. The validation process determines bias, bias uncertainty, and possibly additional margins. Verification is generally performed by the code developers, while validation is generally performed by code users for a particular application space. The VERIFICATION_KEFF suite of criticality problems [1,2] was originally a set of 75 criticality problems found in the literature for which exact analytical solutions are available. Even though the spatial and energy detail is necessarily limited in analytical benchmarks, typically to a few regions or energy groups, the exact solutions obtained can be used to verify that the basic algorithms, mathematics, and methods used in complex production codes perform correctly. The present work has focused on revisiting this benchmark suite. A thorough review of the problems resulted in discarding some of them as not suitable for MCNP benchmarking. For the remaining problems, many of them were reformulated to permit execution in either multigroup mode or in the normal continuous-energy mode for MCNP. Execution of the benchmarks in continuous-energy mode provides a significant advance to MCNP verification methods.« less

  12. An investigation of voxel geometries for MCNP-based radiation dose calculations.

    PubMed

    Zhang, Juying; Bednarz, Bryan; Xu, X George

    2006-11-01

    Voxelized geometry such as those obtained from medical images is increasingly used in Monte Carlo calculations of absorbed doses. One useful application of calculated absorbed dose is the determination of fluence-to-dose conversion factors for different organs. However, confusion still exists about how such a geometry is defined and how the energy deposition is best computed, especially involving a popular code, MCNP5. This study investigated two different types of geometries in the MCNP5 code, cell and lattice definitions. A 10 cm x 10 cm x 10 cm test phantom, which contained an embedded 2 cm x 2 cm x 2 cm target at its center, was considered. A planar source emitting parallel photons was also considered in the study. The results revealed that MCNP5 does not calculate total target volume for multi-voxel geometries. Therefore, tallies which involve total target volume must be divided by the user by the total number of voxels to obtain a correct dose result. Also, using planar source areas greater than the phantom size results in the same fluence-to-dose conversion factor.

  13. Voxel2MCNP: a framework for modeling, simulation and evaluation of radiation transport scenarios for Monte Carlo codes.

    PubMed

    Pölz, Stefan; Laubersheimer, Sven; Eberhardt, Jakob S; Harrendorf, Marco A; Keck, Thomas; Benzler, Andreas; Breustedt, Bastian

    2013-08-21

    The basic idea of Voxel2MCNP is to provide a framework supporting users in modeling radiation transport scenarios using voxel phantoms and other geometric models, generating corresponding input for the Monte Carlo code MCNPX, and evaluating simulation output. Applications at Karlsruhe Institute of Technology are primarily whole and partial body counter calibration and calculation of dose conversion coefficients. A new generic data model describing data related to radiation transport, including phantom and detector geometries and their properties, sources, tallies and materials, has been developed. It is modular and generally independent of the targeted Monte Carlo code. The data model has been implemented as an XML-based file format to facilitate data exchange, and integrated with Voxel2MCNP to provide a common interface for modeling, visualization, and evaluation of data. Also, extensions to allow compatibility with several file formats, such as ENSDF for nuclear structure properties and radioactive decay data, SimpleGeo for solid geometry modeling, ImageJ for voxel lattices, and MCNPX's MCTAL for simulation results have been added. The framework is presented and discussed in this paper and example workflows for body counter calibration and calculation of dose conversion coefficients is given to illustrate its application.

  14. The MCNP-DSP code for calculations of time and frequency analysis parameters for subcritical systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valentine, T.E.; Mihalczo, J.T.

    1995-12-31

    This paper describes a modified version of the MCNP code, the MCNP-DSP. Variance reduction features were disabled to have strictly analog particle tracking in order to follow fluctuating processes more accurately. Some of the neutron and photon physics routines were modified to better represent the production of particles. Other modifications are discussed.

  15. Modification and benchmarking of MCNP for low-energy tungsten spectra.

    PubMed

    Mercier, J R; Kopp, D T; McDavid, W D; Dove, S B; Lancaster, J L; Tucker, D M

    2000-12-01

    The MCNP Monte Carlo radiation transport code was modified for diagnostic medical physics applications. In particular, the modified code was thoroughly benchmarked for the production of polychromatic tungsten x-ray spectra in the 30-150 kV range. Validating the modified code for coupled electron-photon transport with benchmark spectra was supplemented with independent electron-only and photon-only transport benchmarks. Major revisions to the code included the proper treatment of characteristic K x-ray production and scoring, new impact ionization cross sections, and new bremsstrahlung cross sections. Minor revisions included updated photon cross sections, electron-electron bremsstrahlung production, and K x-ray yield. The modified MCNP code is benchmarked to electron backscatter factors, x-ray spectra production, and primary and scatter photon transport.

  16. Comparison study of photon attenuation characteristics of Lead-Boron Polyethylene by MCNP code, XCOM and experimental data

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Jia, Mingchun; Gong, Junjun; Xia, Wenming

    2017-08-01

    The linear attenuation coefficient, mass attenuation coefficient and mean free path of various Lead-Boron Polyethylene (PbBPE) samples which can be used as the photon shielding materials in marine reactor have been simulated using the Monte Carlo N-Particle (MCNP)-5 code. The MCNP simulation results are in good agreement with the XCOM values and the reported experimental data for source Cesium-137 and Cobalt-60. Thus, this method based on MCNP can be used to simulate the photon attenuation characteristics of various types of PbBPE materials.

  17. Development and Implementation of Photonuclear Cross-Section Data for Mutually Coupled Neutron-Photon Transport Calculations in the Monte Carlo N-Particle (MCNP) Radiation Transport Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, Morgan C.

    2000-07-01

    The fundamental motivation for the research presented in this dissertation was the need to development a more accurate prediction method for characterization of mixed radiation fields around medical electron accelerators (MEAs). Specifically, a model is developed for simulation of neutron and other particle production from photonuclear reactions and incorporated in the Monte Carlo N-Particle (MCNP) radiation transport code. This extension of the capability within the MCNP code provides for the more accurate assessment of the mixed radiation fields. The Nuclear Theory and Applications group of the Los Alamos National Laboratory has recently provided first-of-a-kind evaluated photonuclear data for a selectmore » group of isotopes. These data provide the reaction probabilities as functions of incident photon energy with angular and energy distribution information for all reaction products. The availability of these data is the cornerstone of the new methodology for state-of-the-art mutually coupled photon-neutron transport simulations. The dissertation includes details of the model development and implementation necessary to use the new photonuclear data within MCNP simulations. A new data format has been developed to include tabular photonuclear data. Data are processed from the Evaluated Nuclear Data Format (ENDF) to the new class ''u'' A Compact ENDF (ACE) format using a standalone processing code. MCNP modifications have been completed to enable Monte Carlo sampling of photonuclear reactions. Note that both neutron and gamma production are included in the present model. The new capability has been subjected to extensive verification and validation (V&V) testing. Verification testing has established the expected basic functionality. Two validation projects were undertaken. First, comparisons were made to benchmark data from literature. These calculations demonstrate the accuracy of the new data and transport routines to better than 25 percent. Second, the ability

  18. Monte Carlo calculations of thermal neutron capture in gadolinium: a comparison of GEANT4 and MCNP with measurements.

    PubMed

    Enger, Shirin A; Munck af Rosenschöld, Per; Rezaei, Arash; Lundqvist, Hans

    2006-02-01

    GEANT4 is a Monte Carlo code originally implemented for high-energy physics applications and is well known for particle transport at high energies. The capacity of GEANT4 to simulate neutron transport in the thermal energy region is not equally well known. The aim of this article is to compare MCNP, a code commonly used in low energy neutron transport calculations and GEANT4 with experimental results and select the suitable code for gadolinium neutron capture applications. To account for the thermal neutron scattering from chemically bound atoms [S(alpha,beta)] in biological materials a comparison of thermal neutron fluence in tissue-like poly(methylmethacrylate) phantom is made with MCNP4B, GEANT4 6.0 patch1, and measurements from the neutron capture therapy (NCT) facility at the Studsvik, Sweden. The fluence measurements agreed with MCNP calculated results considering S(alpha,beta). The location of the thermal neutron peak calculated with MCNP without S(alpha,beta) and GEANT4 is shifted by about 0.5 cm towards a shallower depth and is 25%-30% lower in amplitude. Dose distribution from the gadolinium neutron capture reaction is then simulated by MCNP and compared with measured data. The simulations made by MCNP agree well with experimental results. As long as thermal neutron scattering from chemically bound atoms are not included in GEANT4 it is not suitable for NCT applications.

  19. Verification of MCNP simulation of neutron flux parameters at TRIGA MK II reactor of Malaysia.

    PubMed

    Yavar, A R; Khalafi, H; Kasesaz, Y; Sarmani, S; Yahaya, R; Wood, A K; Khoo, K S

    2012-10-01

    A 3-D model for 1 MW TRIGA Mark II research reactor was simulated. Neutron flux parameters were calculated using MCNP-4C code and were compared with experimental results obtained by k(0)-INAA and absolute method. The average values of φ(th),φ(epi), and φ(fast) by MCNP code were (2.19±0.03)×10(12) cm(-2)s(-1), (1.26±0.02)×10(11) cm(-2)s(-1) and (3.33±0.02)×10(10) cm(-2)s(-1), respectively. These average values were consistent with the experimental results obtained by k(0)-INAA. The findings show a good agreement between MCNP code results and experimental results. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Comparison of TG-43 dosimetric parameters of brachytherapy sources obtained by three different versions of MCNP codes.

    PubMed

    Zaker, Neda; Zehtabian, Mehdi; Sina, Sedigheh; Koontz, Craig; Meigooni, Ali S

    2016-03-08

    Monte Carlo simulations are widely used for calculation of the dosimetric parameters of brachytherapy sources. MCNP4C2, MCNP5, MCNPX, EGS4, EGSnrc, PTRAN, and GEANT4 are among the most commonly used codes in this field. Each of these codes utilizes a cross-sectional library for the purpose of simulating different elements and materials with complex chemical compositions. The accuracies of the final outcomes of these simulations are very sensitive to the accuracies of the cross-sectional libraries. Several investigators have shown that inaccuracies of some of the cross section files have led to errors in 125I and 103Pd parameters. The purpose of this study is to compare the dosimetric parameters of sample brachytherapy sources, calculated with three different versions of the MCNP code - MCNP4C, MCNP5, and MCNPX. In these simulations for each source type, the source and phantom geometries, as well as the number of the photons, were kept identical, thus eliminating the possible uncertainties. The results of these investigations indicate that for low-energy sources such as 125I and 103Pd there are discrepancies in gL(r) values. Discrepancies up to 21.7% and 28% are observed between MCNP4C and other codes at a distance of 6 cm for 103Pd and 10 cm for 125I from the source, respectively. However, for higher energy sources, the discrepancies in gL(r) values are less than 1.1% for 192Ir and less than 1.2% for 137Cs between the three codes.

  1. TORT/MCNP coupling method for the calculation of neutron flux around a core of BWR.

    PubMed

    Kurosawa, Masahiko

    2005-01-01

    For the analysis of BWR neutronics performance, accurate data are required for neutron flux distribution over the In-Reactor Pressure Vessel equipments taking into account the detailed geometrical arrangement. The TORT code can calculate neutron flux around a core of BWR in a three-dimensional geometry model, but has difficulties in fine geometrical modelling and lacks huge computer resource. On the other hand, the MCNP code enables the calculation of the neutron flux with a detailed geometry model, but requires very long sampling time to give enough number of particles. Therefore, a TORT/MCNP coupling method has been developed to eliminate the two problems mentioned above in each code. In this method, the TORT code calculates angular flux distribution on the core surface and the MCNP code calculates neutron spectrum at the points of interest using the flux distribution. The coupling method will be used as the DOT-DOMINO-MORSE code system. This TORT/MCNP coupling method was applied to calculate the neutron flux at points where induced radioactivity data were measured for 54Mn and 60Co and the radioactivity calculations based on the neutron flux obtained from the above method were compared with the measured data.

  2. p32 Is a Novel Target for Viral Protein ICP34.5 of Herpes Simplex Virus Type 1 and Facilitates Viral Nuclear Egress*

    PubMed Central

    Wang, Yu; Yang, Yin; Wu, Songfang; Pan, Shuang; Zhou, Chaodong; Ma, Yijie; Ru, Yongxin; Dong, Shuxu; He, Bin; Zhang, Cuizhu; Cao, Youjia

    2014-01-01

    As a large double-stranded DNA virus, herpes simplex virus type 1 (HSV-1) assembles capsids in the nucleus where the viral particles exit by budding through the inner nuclear membrane. Although a number of viral and host proteins are involved, the machinery of viral egress is not well understood. In a search for host interacting proteins of ICP34.5, which is a virulence factor of HSV-1, we identified a cellular protein, p32 (gC1qR/HABP1), by mass spectrophotometer analysis. When expressed, ICP34.5 associated with p32 in mammalian cells. Upon HSV-1 infection, p32 was recruited to the inner nuclear membrane by ICP34.5, which paralleled the phosphorylation and rearrangement of nuclear lamina. Knockdown of p32 in HSV-1-infected cells significantly reduced the production of cell-free viruses, suggesting that p32 is a mediator of HSV-1 nuclear egress. These observations suggest that the interaction between HSV-1 ICP34.5 and p32 leads to the disintegration of nuclear lamina and facilitates the nuclear egress of HSV-1 particles. PMID:25355318

  3. CREPT-MCNP code for efficiency calibration of HPGe detectors with the representative point method.

    PubMed

    Saegusa, Jun

    2008-01-01

    The representative point method for the efficiency calibration of volume samples has been previously proposed. For smoothly implementing the method, a calculation code named CREPT-MCNP has been developed. The code estimates the position of a representative point which is intrinsic to each shape of volume sample. The self-absorption correction factors are also given to make correction on the efficiencies measured at the representative point with a standard point source. Features of the CREPT-MCNP code are presented.

  4. Monte Carlo N-Particle (MCNP) Modeling of the Cellular Dosimetry of 64Cu: Comparison with MIRDcell S Values and Implications for Studies of Its Cytotoxic Effects.

    PubMed

    Cai, Zhongli; Kwon, Yongkyu Luke; Reilly, Raymond M

    2017-02-01

    64 Cu emits positrons as well as β - particles and Auger and internal conversion electrons useful for radiotherapy. Our objective was to model the cellular dosimetry of 64 Cu under different geometries commonly used to study the cytotoxic effects of 64 Cu. Monte Carlo N-Particle (MCNP) was used to simulate the transport of all particles emitted by 64 Cu from the cell surface (CS), cytoplasm (Cy), or nucleus (N) of a single cell; monolayer in a well (radius = 0.32-1.74 cm); or a sphere (radius = 50-6,000 μm) of cells to calculate S values. The radius of the cell and N ranged from 5 to 12 μm and 2 to 11 μm, respectively. S values were obtained by MIRDcell for comparison. MCF7/HER2-18 cells were exposed in vitro to 64 Cu-labeled trastuzumab. The subcellular distribution of 64 Cu was measured by cell fractionation. The surviving fraction was determined in a clonogenic assay. The relative differences of MCNP versus MIRDcell self-dose S values (S self ) for 64 Cu ranged from -0.2% to 3.6% for N to N (S N←N ), 2.3% to 8.6% for Cy to N (S N←Cy ), and -12.0% to 7.3% for CS to N (S N←CS ). The relative differences of MCNP versus MIRDcell cross-dose S values were 25.8%-30.6% for a monolayer and 30%-34% for a sphere, respectively. The ratios of S N←N versus S N←Cy and S N←Cy versus S N←CS decreased with increasing ratio of the N of the cell versus radius of the cell and the size of the monolayer or sphere. The surviving fraction of MCF7 /: HER2-18 cells treated with 64 Cu-labeled trastuzumab (0.016-0.368 MBq/μg, 67 nM) for 18 h versus the absorbed dose followed a linear survival curve with α = 0.51 ± 0.05 Gy -1 and R 2 = 0.8838. This is significantly different from the linear quadratic survival curve of MCF7 /: HER2-18 cells exposed to γ-rays. MCNP- and MIRDcell-calculated S values agreed well. 64 Cu in the N increases the dose to the N in isolated single cells but has less effect in a cell monolayer or small cluster of cells simulating a micrometastasis

  5. Comparison of TG‐43 dosimetric parameters of brachytherapy sources obtained by three different versions of MCNP codes

    PubMed Central

    Zaker, Neda; Sina, Sedigheh; Koontz, Craig; Meigooni1, Ali S.

    2016-01-01

    Monte Carlo simulations are widely used for calculation of the dosimetric parameters of brachytherapy sources. MCNP4C2, MCNP5, MCNPX, EGS4, EGSnrc, PTRAN, and GEANT4 are among the most commonly used codes in this field. Each of these codes utilizes a cross‐sectional library for the purpose of simulating different elements and materials with complex chemical compositions. The accuracies of the final outcomes of these simulations are very sensitive to the accuracies of the cross‐sectional libraries. Several investigators have shown that inaccuracies of some of the cross section files have led to errors in  125I and  103Pd parameters. The purpose of this study is to compare the dosimetric parameters of sample brachytherapy sources, calculated with three different versions of the MCNP code — MCNP4C, MCNP5, and MCNPX. In these simulations for each source type, the source and phantom geometries, as well as the number of the photons, were kept identical, thus eliminating the possible uncertainties. The results of these investigations indicate that for low‐energy sources such as  125I and  103Pd there are discrepancies in gL(r) values. Discrepancies up to 21.7% and 28% are observed between MCNP4C and other codes at a distance of 6 cm for  103Pd and 10 cm for  125I from the source, respectively. However, for higher energy sources, the discrepancies in gL(r) values are less than 1.1% for  192Ir and less than 1.2% for  137Cs between the three codes. PACS number(s): 87.56.bg PMID:27074460

  6. Numerical Tests for the Problem of U-Pu Fuel Burnup in Fuel Rod and Polycell Models Using the MCNP Code

    NASA Astrophysics Data System (ADS)

    Muratov, V. G.; Lopatkin, A. V.

    An important aspect in the verification of the engineering techniques used in the safety analysis of MOX-fuelled reactors, is the preparation of test calculations to determine nuclide composition variations under irradiation and analysis of burnup problem errors resulting from various factors, such as, for instance, the effect of nuclear data uncertainties on nuclide concentration calculations. So far, no universally recognized tests have been devised. A calculation technique has been developed for solving the problem using the up-to-date calculation tools and the latest versions of nuclear libraries. Initially, in 1997, a code was drawn up in an effort under ISTC Project No. 116 to calculate the burnup in one VVER-1000 fuel rod, using the MCNP Code. Later on, the authors developed a computation technique which allows calculating fuel burnup in models of a fuel rod, or a fuel assembly, or the whole reactor. It became possible to apply it to fuel burnup in all types of nuclear reactors and subcritical blankets.

  7. Calculated organ doses for Mayak production association central hall using ICRP and MCNP.

    PubMed

    Choe, Dong-Ok; Shelkey, Brenda N; Wilde, Justin L; Walk, Heidi A; Slaughter, David M

    2003-03-01

    As part of an ongoing dose reconstruction project, equivalent organ dose rates from photons and neutrons were estimated using the energy spectra measured in the central hall above the graphite reactor core located in the Russian Mayak Production Association facility. Reconstruction of the work environment was necessary due to the lack of personal dosimeter data for neutrons in the time period prior to 1987. A typical worker scenario for the central hall was developed for the Monte Carlo Neutron Photon-4B (MCNP) code. The resultant equivalent dose rates for neutrons and photons were compared with the equivalent dose rates derived from calculations using the conversion coefficients in the International Commission on Radiological Protection Publications 51 and 74 in order to validate the model scenario for this Russian facility. The MCNP results were in good agreement with the results of the ICRP publications indicating the modeling scenario was consistent with actual work conditions given the spectra provided. The MCNP code will allow for additional orientations to accurately reflect source locations.

  8. Analysis of JSI TRIGA MARK II reactor physical parameters calculated with TRIPOLI and MCNP.

    PubMed

    Henry, R; Tiselj, I; Snoj, L

    2015-03-01

    New computational model of the JSI TRIGA Mark II research reactor was built for TRIPOLI computer code and compared with existing MCNP code model. The same modelling assumptions were used in order to check the differences of the mathematical models of both Monte Carlo codes. Differences between the TRIPOLI and MCNP predictions of keff were up to 100pcm. Further validation was performed with analyses of the normalized reaction rates and computations of kinetic parameters for various core configurations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. The design of a multisource americium-beryllium (Am-Be) neutron irradiation facility using MCNP for the neutronic performance calculation.

    PubMed

    Sogbadji, R B M; Abrefah, R G; Nyarko, B J B; Akaho, E H K; Odoi, H C; Attakorah-Birinkorang, S

    2014-08-01

    The americium-beryllium neutron irradiation facility at the National Nuclear Research Institute (NNRI), Ghana, was re-designed with four 20 Ci sources using Monte Carlo N-Particle (MCNP) code to investigate the maximum amount of flux that is produced by the combined sources. The results were compared with a single source Am-Be irradiation facility. The main objective was to enable us to harness the maximum amount of flux for the optimization of neutron activation analysis and to enable smaller sample sized samples to be irradiated. Using MCNP for the design construction and neutronic performance calculation, it was realized that the single-source Am-Be design produced a thermal neutron flux of (1.8±0.0007)×10(6) n/cm(2)s and the four-source Am-Be design produced a thermal neutron flux of (5.4±0.0007)×10(6) n/cm(2)s which is a factor of 3.5 fold increase compared to the single-source Am-Be design. The criticality effective, k(eff), of the single-source and the four-source Am-Be designs were found to be 0.00115±0.0008 and 0.00143±0.0008, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Neutrons Flux Distributions of the Pu-Be Source and its Simulation by the MCNP-4B Code

    NASA Astrophysics Data System (ADS)

    Faghihi, F.; Mehdizadeh, S.; Hadad, K.

    Neutron Fluence rate of a low intense Pu-Be source is measured by Neutron Activation Analysis (NAA) of 197Au foils. Also, the neutron fluence rate distribution versus energy is calculated using the MCNP-4B code based on ENDF/B-V library. Theoretical simulation as well as our experimental performance are a new experience for Iranians to make reliability with the code for further researches. In our theoretical investigation, an isotropic Pu-Be source with cylindrical volume distribution is simulated and relative neutron fluence rate versus energy is calculated using MCNP-4B code. Variation of the fast and also thermal neutrons fluence rate, which are measured by NAA method and MCNP code, are compared.

  11. Evaluation of the new electron-transport algorithm in MCNP6.1 for the simulation of dose point kernel in water

    NASA Astrophysics Data System (ADS)

    Antoni, Rodolphe; Bourgois, Laurent

    2017-12-01

    energy ranges. Accordingly, special care has to be taken in setting choice for calculating electron dose distribution with MCNP6, in particular with regards to dosimetry or nuclear medicine applications.

  12. SU-E-T-212: Comparison of TG-43 Dosimetric Parameters of Low and High Energy Brachytherapy Sources Obtained by MCNP Code Versions of 4C, X and 5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zehtabian, M; Zaker, N; Sina, S

    2015-06-15

    Purpose: Different versions of MCNP code are widely used for dosimetry purposes. The purpose of this study is to compare different versions of the MCNP codes in dosimetric evaluation of different brachytherapy sources. Methods: The TG-43 parameters such as dose rate constant, radial dose function, and anisotropy function of different brachytherapy sources, i.e. Pd-103, I-125, Ir-192, and Cs-137 were calculated in water phantom. The results obtained by three versions of Monte Carlo codes (MCNP4C, MCNPX, MCNP5) were compared for low and high energy brachytherapy sources. Then the cross section library of MCNP4C code was changed to ENDF/B-VI release 8 whichmore » is used in MCNP5 and MCNPX codes. Finally, the TG-43 parameters obtained using the MCNP4C-revised code, were compared with other codes. Results: The results of these investigations indicate that for high energy sources, the differences in TG-43 parameters between the codes are less than 1% for Ir-192 and less than 0.5% for Cs-137. However for low energy sources like I-125 and Pd-103, large discrepancies are observed in the g(r) values obtained by MCNP4C and the two other codes. The differences between g(r) values calculated using MCNP4C and MCNP5 at the distance of 6cm were found to be about 17% and 28% for I-125 and Pd-103 respectively. The results obtained with MCNP4C-revised and MCNPX were similar. However, the maximum difference between the results obtained with the MCNP5 and MCNP4C-revised codes was 2% at 6cm. Conclusion: The results indicate that using MCNP4C code for dosimetry of low energy brachytherapy sources can cause large errors in the results. Therefore it is recommended not to use this code for low energy sources, unless its cross section library is changed. Since the results obtained with MCNP4C-revised and MCNPX were similar, it is concluded that the difference between MCNP4C and MCNPX is their cross section libraries.« less

  13. An Assessment of the Detection of Highly Enriched Uranium and its Use in an Improvised Nuclear Device using the Monte Carlo Computer Code MCNP-5

    NASA Astrophysics Data System (ADS)

    Cochran, Thomas

    2007-04-01

    In 2002 and again in 2003, an investigative journalist unit at ABC News transported a 6.8 kilogram metallic slug of depleted uranium (DU) via shipping container from Istanbul, Turkey to Brooklyn, NY and from Jakarta, Indonesia to Long Beach, CA. Targeted inspection of these shipping containers by Department of Homeland Security (DHS) personnel, included the use of gamma-ray imaging, portal monitors and hand-held radiation detectors, did not uncover the hidden DU. Monte Carlo analysis of the gamma-ray intensity and spectrum of a DU slug and one consisting of highly-enriched uranium (HEU) showed that DU was a proper surrogate for testing the ability of DHS to detect the illicit transport of HEU. Our analysis using MCNP-5 illustrated the ease of fully shielding an HEU sample to avoid detection. The assembly of an Improvised Nuclear Device (IND) -- a crude atomic bomb -- from sub-critical pieces of HEU metal was then examined via Monte Carlo criticality calculations. Nuclear explosive yields of such an IND as a function of the speed of assembly of the sub-critical HEU components were derived. A comparison was made between the more rapid assembly of sub-critical pieces of HEU in the ``Little Boy'' (Hiroshima) weapon's gun barrel and gravity assembly (i.e., dropping one sub-critical piece of HEU on another from a specified height). Based on the difficulty of detection of HEU and the straightforward construction of an IND utilizing HEU, current U.S. government policy must be modified to more urgently prioritize elimination of and securing the global inventories of HEU.

  14. MCNP/X TRANSPORT IN THE TABULAR REGIME

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    HUGHES, H. GRADY

    2007-01-08

    The authors review the transport capabilities of the MCNP and MCNPX Monte Carlo codes in the energy regimes in which tabular transport data are available. Giving special attention to neutron tables, they emphasize the measures taken to improve the treatment of a variety of difficult aspects of the transport problem, including unresolved resonances, thermal issues, and the availability of suitable cross sections sets. They also briefly touch on the current situation in regard to photon, electron, and proton transport tables.

  15. Gamma irradiator dose mapping simulation using the MCNP code and benchmarking with dosimetry.

    PubMed

    Sohrabpour, M; Hassanzadeh, M; Shahriari, M; Sharifzadeh, M

    2002-10-01

    The Monte Carlo transport code, MCNP, has been applied in simulating dose rate distribution in the IR-136 gamma irradiator system. Isodose curves, cumulative dose values, and system design data such as throughputs, over-dose-ratios, and efficiencies have been simulated as functions of product density. Simulated isodose curves, and cumulative dose values were compared with dosimetry values obtained using polymethyle-methacrylate, Fricke, ethanol-chlorobenzene, and potassium dichromate dosimeters. The produced system design data were also found to agree quite favorably with those of the system manufacturer's data. MCNP has thus been found to be an effective transport code for handling of various dose mapping excercises for gamma irradiators.

  16. Using the MCNP Taylor series perturbation feature (efficiently) for shielding problems

    NASA Astrophysics Data System (ADS)

    Favorite, Jeffrey

    2017-09-01

    The Taylor series or differential operator perturbation method, implemented in MCNP and invoked using the PERT card, can be used for efficient parameter studies in shielding problems. This paper shows how only two PERT cards are needed to generate an entire parameter study, including statistical uncertainty estimates (an additional three PERT cards can be used to give exact statistical uncertainties). One realistic example problem involves a detailed helium-3 neutron detector model and its efficiency as a function of the density of its high-density polyethylene moderator. The MCNP differential operator perturbation capability is extremely accurate for this problem. A second problem involves the density of the polyethylene reflector of the BeRP ball and is an example of first-order sensitivity analysis using the PERT capability. A third problem is an analytic verification of the PERT capability.

  17. MCNP6.1 simulations for low-energy atomic relaxation: Code-to-code comparison with GATEv7.2, PENELOPE2014, and EGSnrc

    NASA Astrophysics Data System (ADS)

    Jung, Seongmoon; Sung, Wonmo; Lee, Jaegi; Ye, Sung-Joon

    2018-01-01

    Emerging radiological applications of gold nanoparticles demand low-energy electron/photon transport calculations including details of an atomic relaxation process. Recently, MCNP® version 6.1 (MCNP6.1) has been released with extended cross-sections for low-energy electron/photon, subshell photoelectric cross-sections, and more detailed atomic relaxation data than the previous versions. With this new feature, the atomic relaxation process of MCNP6.1 has not been fully tested yet with its new physics library (eprdata12) that is based on the Evaluated Atomic Data Library (EADL). In this study, MCNP6.1 was compared with GATEv7.2, PENELOPE2014, and EGSnrc that have been often used to simulate low-energy atomic relaxation processes. The simulations were performed to acquire both photon and electron spectra produced by interactions of 15 keV electrons or photons with a 10-nm-thick gold nano-slab. The photon-induced fluorescence X-rays from MCNP6.1 fairly agreed with those from GATEv7.2 and PENELOPE2014, while the electron-induced fluorescence X-rays of the four codes showed more or less discrepancies. A coincidence was observed in the photon-induced Auger electrons simulated by MCNP6.1 and GATEv7.2. A recent release of MCNP6.1 with eprdata12 can be used to simulate the photon-induced atomic relaxation.

  18. Parameter dependence of the MCNP electron transport in determining dose distributions.

    PubMed

    Reynaert, N; Palmans, H; Thierens, H; Jeraj, R

    2002-10-01

    In this paper, a detailed study of the electron transport in MCNP is performed, separating the effects of the energy binning technique on the energy loss rate, the scattering angles, and the sub-step length as a function of energy. As this problem is already well known, in this paper we focus on the explanation as to why the default mode of MCNP can lead to large deviations. The resolution dependence was investigated as well. An error in the MCNP code in the energy binning technique in the default mode (DBCN 18 card = 0) was revealed, more specific in the updating of cross sections when a sub-step is performed corresponding to a high-energy loss. This updating error is not present in the ITS mode (DBCN 18 card = 1) and leads to a systematically lower dose deposition rate in the default mode. The effect is present for all energies studied (0.5-10 MeV) and depends on the geometrical resolution of the scoring regions and the energy grid resolution. The effect of the energy binning technique is of the same order of that of the updating error for energies below 2 MeV, and becomes less important for higher energies. For a 1 MeV point source surrounded by homogeneous water, the deviation of the default MCNP results at short distances attains 9% and remains approximately the same for all energies. This effect could be corrected by removing the completion of an energy step each time an electron changes from an energy bin during a sub-step. Another solution consists of performing all calculations in the ITS mode. Another problem is the resolution dependence, even in the ITS mode. The higher the resolution is chosen (the smaller the scoring regions) the faster the energy is deposited along the electron track. It is proven that this is caused by starting a new energy step when crossing a surface. The resolution effect should be investigated for every specific case when calculating dose distributions around beta sources. The resolution should not be higher than 0.85*(1-EFAC

  19. A Patch to MCNP5 for Multiplication Inference: Description and User Guide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solomon, Jr., Clell J.

    2014-05-05

    A patch to MCNP5 has been written to allow generation of multiple neutrons from a spontaneous-fission event and generate list-mode output. This report documents the implementation and usage of this patch.

  20. MCNP simulations of material exposure experiments (u)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Temple, Brian A

    2010-12-08

    Simulations of proposed material exposure experiments were performed using MCNP6. The experiments will expose ampules containing different materials of interest with radiation to observe the chemical breakdown of the materials. Simulations were performed to map out dose in materials as a function of distance from the source, dose variation between materials, dose variation due to ampule orientation, and dose variation due to different source energy. This write up is an overview of the simulations and will provide guidance on how to use the data in the spreadsheet.

  1. Design of boron carbide-shielded irradiation channel of the outer irradiation channel of the Ghana Research Reactor-1 using MCNP.

    PubMed

    Abrefah, R G; Sogbadji, R B M; Ampomah-Amoako, E; Birikorang, S A; Odoi, H C; Nyarko, B J B

    2011-01-01

    The MCNP model for the Ghana Research Reactor-1 was redesigned to incorporate a boron carbide-shielded irradiation channel in one of the outer irradiation channels. Extensive investigations were made before arriving at the final design of only one boron carbide covered outer irradiation channel; as all the other designs that were considered did not give desirable results of neutronic performance. The concept of redesigning a new MCNP model, which has a boron carbide-shielded channel is to equip the Ghana Research Reactor-1 with the means of performing efficient epithermal neutron activation analysis. After the simulation, a comparison of the results from the original MCNP model for the Ghana Research Reactor-1 and the new redesigned model of the boron carbide shielded channel was made. The final effective criticality of the original MCNP model for the GHARR-1 was recorded as 1.00402 while that of the new boron carbide designed model was recorded as 1.00282. Also, a final prompt neutron lifetime of 1.5245 × 10(-4)s was recorded for the new boron carbide designed model while a value of 1.5571 × 10(-7)s was recorded for the original MCNP design of the GHARR-1. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. Simulation of the GCR spectrum in the Mars curiosity rover's RAD detector using MCNP6

    NASA Astrophysics Data System (ADS)

    Ratliff, Hunter N.; Smith, Michael B. R.; Heilbronn, Lawrence

    2017-08-01

    The paper presents results from MCNP6 simulations of galactic cosmic ray (GCR) propagation down through the Martian atmosphere to the surface and comparison with RAD measurements made there. This effort is part of a collaborative modeling workshop for space radiation hosted by Southwest Research Institute (SwRI). All modeling teams were tasked with simulating the galactic cosmic ray (GCR) spectrum through the Martian atmosphere and the Radiation Assessment Detector (RAD) on-board the Curiosity rover. The detector had two separate particle acceptance angles, 4π and 30 ° off zenith. All ions with Z = 1 through Z = 28 were tracked in both scenarios while some additional secondary particles were only tracked in the 4π cases. The MCNP6 4π absorbed dose rate was 307.3 ± 1.3 μGy/day while RAD measured 233 μGy/day. Using the ICRP-60 dose equivalent conversion factors built into MCNP6, the simulated 4π dose equivalent rate was found to be 473.1 ± 2.4 μSv/day while RAD reported 710 μSv/day.

  3. Preliminary results of 3D dose calculations with MCNP-4B code from a SPECT image.

    PubMed

    Rodríguez Gual, M; Lima, F F; Sospedra Alfonso, R; González González, J; Calderón Marín, C

    2004-01-01

    Interface software was developed to generate the input file to run Monte Carlo MCNP-4B code from medical image in Interfile format version 3.3. The software was tested using a spherical phantom of tomography slides with known cumulated activity distribution in Interfile format generated with IMAGAMMA medical image processing system. The 3D dose calculation obtained with Monte Carlo MCNP-4B code was compared with the voxel S factor method. The results show a relative error between both methods less than 1 %.

  4. Validation of MCNP6 Version 1.0 with the ENDF/B-VII.1 Cross Section Library for Plutonium Metals, Oxides, and Solutions on the High Performance Computing Platform Moonlight

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chapman, Bryan Scott; Gough, Sean T.

    This report documents a validation of the MCNP6 Version 1.0 computer code on the high performance computing platform Moonlight, for operations at Los Alamos National Laboratory (LANL) that involve plutonium metals, oxides, and solutions. The validation is conducted using the ENDF/B-VII.1 continuous energy group cross section library at room temperature. The results are for use by nuclear criticality safety personnel in performing analysis and evaluation of various facility activities involving plutonium materials.

  5. Evaluation of the Pool Critical Assembly Benchmark with Explicitly-Modeled Geometry using MCNP6

    DOE PAGES

    Kulesza, Joel A.; Martz, Roger Lee

    2017-03-01

    Despite being one of the most widely used benchmarks for qualifying light water reactor (LWR) radiation transport methods and data, no benchmark calculation of the Oak Ridge National Laboratory (ORNL) Pool Critical Assembly (PCA) pressure vessel wall benchmark facility (PVWBF) using MCNP6 with explicitly modeled core geometry exists. As such, this paper provides results for such an analysis. First, a criticality calculation is used to construct the fixed source term. Next, ADVANTG-generated variance reduction parameters are used within the final MCNP6 fixed source calculations. These calculations provide unadjusted dosimetry results using three sets of dosimetry reaction cross sections of varyingmore » ages (those packaged with MCNP6, from the IRDF-2002 multi-group library, and from the ACE-formatted IRDFF v1.05 library). These results are then compared to two different sets of measured reaction rates. The comparison agrees in an overall sense within 2% and on a specific reaction- and dosimetry location-basis within 5%. Except for the neptunium dosimetry, the individual foil raw calculation-to-experiment comparisons usually agree within 10% but is typically greater than unity. Finally, in the course of developing these calculations, geometry that has previously not been completely specified is provided herein for the convenience of future analysts.« less

  6. 1985 Nuclear Science Symposium, 32nd, and 1985 Symposium on Nuclear Power Systems, 17th, San Francisco, CA, October 23-25, 1985, Proceedings

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The present conference ranges over topics in high energy physics instrumentation, detectors, nuclear medical applications, health physics and environmental monitoring, reactor instrumentation, nuclear spacecraft instrumentation, the 'Fastbus' data acquisition system, circuits and systems for nuclear research facilities, and the development status of nuclear power systems. Specific attention is given to CCD high precision detectors, a drift chamber preamplifier, a Cerenkov ring imaging detector, novel scintillation glasses and scintillating fibers, a modular multidrift vertex detector, radial wire drift chambers, liquid argon polarimeters, a multianode photomultiplier, the reliability of planar silicon detectors, the design and manufacture of wedge and strip anodes, ultrafast triode photodetectors, photomultiplier tubes, a barium fluoride plastic scintillator, a fine grained neutron hodoscope, the stability of low leakage silicon photodiodes for crystal calorimeters, and X-ray proportional counters. Also considered are positron emission tomography, single photon emission computed tomography, nuclear magnetic resonance imaging, Geiger-Muller detectors, nuclear plant safeguards, a 32-bit Fastbus computer, an advanced light water reactor, and nuclear plant maintenance.

  7. Thorium-based mixed oxide fuel in a pressurized water reactor: A feasibility analysis with MCNP

    NASA Astrophysics Data System (ADS)

    Tucker, Lucas Powelson

    This dissertation investigates techniques for spent fuel monitoring, and assesses the feasibility of using a thorium-based mixed oxide fuel in a conventional pressurized water reactor for plutonium disposition. Both non-paralyzing and paralyzing dead-time calculations were performed for the Portable Spectroscopic Fast Neutron Probe (N-Probe), which can be used for spent fuel interrogation. Also, a Canberra 3He neutron detector's dead-time was estimated using a combination of subcritical assembly measurements and MCNP simulations. Next, a multitude of fission products were identified as candidates for burnup and spent fuel analysis of irradiated mixed oxide fuel. The best isotopes for these applications were identified by investigating half-life, photon energy, fission yield, branching ratios, production modes, thermal neutron absorption cross section and fuel matrix diffusivity. 132I and 97Nb were identified as good candidates for MOX fuel on-line burnup analysis. In the second, and most important, part of this work, the feasibility of utilizing ThMOX fuel in a pressurized water reactor (PWR) was first examined under steady-state, beginning of life conditions. Using a three-dimensional MCNP model of a Westinghouse-type 17x17 PWR, several fuel compositions and configurations of a one-third ThMOX core were compared to a 100% UO2 core. A blanket-type arrangement of 5.5 wt% PuO2 was determined to be the best candidate for further analysis. Next, the safety of the ThMOX configuration was evaluated through three cycles of burnup at several using the following metrics: axial and radial nuclear hot channel factors, moderator and fuel temperature coefficients, delayed neutron fraction, and shutdown margin. Additionally, the performance of the ThMOX configuration was assessed by tracking cycle length, plutonium destroyed, and fission product poison concentration.

  8. Validation of the MCNP computational model for neutron flux distribution with the neutron activation analysis measurement

    NASA Astrophysics Data System (ADS)

    Tiyapun, K.; Chimtin, M.; Munsorn, S.; Somchit, S.

    2015-05-01

    The objective of this work is to demonstrate the method for validating the predication of the calculation methods for neutron flux distribution in the irradiation tubes of TRIGA research reactor (TRR-1/M1) using the MCNP computer code model. The reaction rate using in the experiment includes 27Al(n, α)24Na and 197Au(n, γ)198Au reactions. Aluminium (99.9 wt%) and gold (0.1 wt%) foils and the gold foils covered with cadmium were irradiated in 9 locations in the core referred to as CT, C8, C12, F3, F12, F22, F29, G5, and G33. The experimental results were compared to the calculations performed using MCNP which consisted of the detailed geometrical model of the reactor core. The results from the experimental and calculated normalized reaction rates in the reactor core are in good agreement for both reactions showing that the material and geometrical properties of the reactor core are modelled very well. The results indicated that the difference between the experimental measurements and the calculation of the reactor core using the MCNP geometrical model was below 10%. In conclusion the MCNP computational model which was used to calculate the neutron flux and reaction rate distribution in the reactor core can be used for others reactor core parameters including neutron spectra calculation, dose rate calculation, power peaking factors calculation and optimization of research reactor utilization in the future with the confidence in the accuracy and reliability of the calculation.

  9. DXRaySMCS: a user-friendly interface developed for prediction of diagnostic radiology X-ray spectra produced by Monte Carlo (MCNP-4C) simulation.

    PubMed

    Bahreyni Toossi, M T; Moradi, H; Zare, H

    2008-01-01

    In this work, the general purpose Monte Carlo N-particle radiation transport computer code (MCNP-4C) was used for the simulation of X-ray spectra in diagnostic radiology. The electron's path in the target was followed until its energy was reduced to 10 keV. A user-friendly interface named 'diagnostic X-ray spectra by Monte Carlo simulation (DXRaySMCS)' was developed to facilitate the application of MCNP-4C code for diagnostic radiology spectrum prediction. The program provides a user-friendly interface for: (i) modifying the MCNP input file, (ii) launching the MCNP program to simulate electron and photon transport and (iii) processing the MCNP output file to yield a summary of the results (relative photon number per energy bin). In this article, the development and characteristics of DXRaySMCS are outlined. As part of the validation process, output spectra for 46 diagnostic radiology system settings produced by DXRaySMCS were compared with the corresponding IPEM78. Generally, there is a good agreement between the two sets of spectra. No statistically significant differences have been observed between IPEM78 reported spectra and the simulated spectra generated in this study.

  10. Monte Carlo dose calculations in homogeneous media and at interfaces: a comparison between GEPTS, EGSnrc, MCNP, and measurements.

    PubMed

    Chibani, Omar; Li, X Allen

    2002-05-01

    Three Monte Carlo photon/electron transport codes (GEPTS, EGSnrc, and MCNP) are bench-marked against dose measurements in homogeneous (both low- and high-Z) media as well as at interfaces. A brief overview on physical models used by each code for photon and electron (positron) transport is given. Absolute calorimetric dose measurements for 0.5 and 1 MeV electron beams incident on homogeneous and multilayer media are compared with the predictions of the three codes. Comparison with dose measurements in two-layer media exposed to a 60Co gamma source is also performed. In addition, comparisons between the codes (including the EGS4 code) are done for (a) 0.05 to 10 MeV electron beams and positron point sources in lead, (b) high-energy photons (10 and 20 MeV) irradiating a multilayer phantom (water/steel/air), and (c) simulation of a 90Sr/90Y brachytherapy source. A good agreement is observed between the calorimetric electron dose measurements and predictions of GEPTS and EGSnrc in both homogeneous and multilayer media. MCNP outputs are found to be dependent on the energy-indexing method (Default/ITS style). This dependence is significant in homogeneous media as well as at interfaces. MCNP(ITS) fits more closely the experimental data than MCNP(DEF), except for the case of Be. At low energy (0.05 and 0.1 MeV), MCNP(ITS) dose distributions in lead show higher maximums in comparison with GEPTS and EGSnrc. EGS4 produces too penetrating electron-dose distributions in high-Z media, especially at low energy (<0.1 MeV). For positrons, differences between GEPTS and EGSnrc are observed in lead because GEPTS distinguishes positrons from electrons for both elastic multiple scattering and bremsstrahlung emission models. For the 60Co source, a quite good agreement between calculations and measurements is observed with regards to the experimental uncertainty. For the other cases (10 and 20 MeV photon sources and the 90Sr/90Y beta source), a good agreement is found between the three

  11. Device for Detection of Explosives, Nuclear and Other Hazardous Materials in Luggage and Cargo Containers

    NASA Astrophysics Data System (ADS)

    Kuznetsov, Andrey; Evsenin, Alexey; Gorshkov, Igor; Osetrov, Oleg; Vakhtin, Dmitry

    2009-12-01

    Device for detection of explosives, radioactive and heavily shielded nuclear materials in luggage and cargo containers based on Nanosecond Neutron Analysis/Associated Particles Technique (NNA/APT) is under construction. Detection module consists of a small neutron generator with built-in position-sensitive detector of associated alpha-particles, and several scintillator-based gamma-ray detectors. Explosives and other hazardous chemicals are detected by analyzing secondary high-energy gamma-rays from reactions of fast neutrons with materials inside a container. The same gamma-ray detectors are used to detect unshielded radioactive and nuclear materials. An array of several neutron detectors is used to detect fast neutrons from induced fission of nuclear materials. Coincidence and timing analysis allows one to discriminate between fission neutrons and scattered probing neutrons. Mathematical modeling by MCNP5 and MCNP-PoliMi codes was used to estimate the sensitivity of the device and its optimal configuration. Comparison of the features of three gamma detector types—based on BGO, NaI and LaBr3 crystals is presented.

  12. SABRINA: an interactive three-dimensional geometry-mnodeling program for MCNP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    West, J.T. III

    SABRINA is a fully interactive three-dimensional geometry-modeling program for MCNP, a Los Alamos Monte Carlo code for neutron and photon transport. In SABRINA, a user constructs either body geometry or surface geometry models and debugs spatial descriptions for the resulting objects. This enhanced capability significantly reduces effort in constructing and debugging complicated three-dimensional geometry models for Monte Carlo analysis. 2 refs., 33 figs.

  13. Total reaction cross sections in CEM and MCNP6 at intermediate energies

    DOE PAGES

    Kerby, Leslie M.; Mashnik, Stepan G.

    2015-05-14

    Accurate total reaction cross section models are important to achieving reliable predictions from spallation and transport codes. The latest version of the Cascade Exciton Model (CEM) as incorporated in the code CEM03.03, and the Monte Carlo N-Particle transport code (MCNP6), both developed at Los Alamos National Laboratory (LANL), each use such cross sections. Having accurate total reaction cross section models in the intermediate energy region (50 MeV to 5 GeV) is very important for different applications, including analysis of space environments, use in medical physics, and accelerator design, to name just a few. The current inverse cross sections used inmore » the preequilibrium and evaporation stages of CEM are based on the Dostrovsky et al. model, published in 1959. Better cross section models are now available. Implementing better cross section models in CEM and MCNP6 should yield improved predictions for particle spectra and total production cross sections, among other results.« less

  14. MCNP modelling of the wall effects observed in tissue-equivalent proportional counters.

    PubMed

    Hoff, J L; Townsend, L W

    2002-01-01

    Tissue-equivalent proportional counters (TEPCs) utilise tissue-equivalent materials to depict homogeneous microscopic volumes of human tissue. Although both the walls and gas simulate the same medium, they respond to radiation differently. Density differences between the two materials cause distortions, or wall effects, in measurements, with the most dominant effect caused by delta rays. This study uses a Monte Carlo transport code, MCNP, to simulate the transport of secondary electrons within a TEPC. The Rudd model, a singly differential cross section with no dependence on electron direction, is used to describe the energy spectrum obtained by the impact of two iron beams on water. Based on the models used in this study, a wall-less TEPC had a higher lineal energy (keV.micron-1) as a function of impact parameter than a solid-wall TEPC for the iron beams under consideration. An important conclusion of this study is that MCNP has the ability to model the wall effects observed in TEPCs.

  15. Total reaction cross sections in CEM and MCNP6 at intermediate energies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerby, Leslie M.; Mashnik, Stepan G.

    Accurate total reaction cross section models are important to achieving reliable predictions from spallation and transport codes. The latest version of the Cascade Exciton Model (CEM) as incorporated in the code CEM03.03, and the Monte Carlo N-Particle transport code (MCNP6), both developed at Los Alamos National Laboratory (LANL), each use such cross sections. Having accurate total reaction cross section models in the intermediate energy region (50 MeV to 5 GeV) is very important for different applications, including analysis of space environments, use in medical physics, and accelerator design, to name just a few. The current inverse cross sections used inmore » the preequilibrium and evaporation stages of CEM are based on the Dostrovsky et al. model, published in 1959. Better cross section models are now available. Implementing better cross section models in CEM and MCNP6 should yield improved predictions for particle spectra and total production cross sections, among other results.« less

  16. 10 CFR 32.2 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Definitions. 32.2 Section 32.2 Energy NUCLEAR REGULATORY COMMISSION SPECIFIC DOMESTIC LICENSES TO MANUFACTURE OR TRANSFER CERTAIN ITEMS CONTAINING BYPRODUCT MATERIAL... disposal, or nuclear material contained in any fuel assembly, subassembly, fuel rod, or fuel pellet...

  17. 10 CFR 32.2 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Definitions. 32.2 Section 32.2 Energy NUCLEAR REGULATORY COMMISSION SPECIFIC DOMESTIC LICENSES TO MANUFACTURE OR TRANSFER CERTAIN ITEMS CONTAINING BYPRODUCT MATERIAL... disposal, or nuclear material contained in any fuel assembly, subassembly, fuel rod, or fuel pellet...

  18. Bias estimates used in lieu of validation of fission products and minor actinides in MCNP K eff calculations for PWR burnup credit casks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mueller, Don E.; Marshall, William J.; Wagner, John C.

    The U.S. Nuclear Regulatory Commission (NRC) Division of Spent Fuel Storage and Transportation recently issued Interim Staff Guidance (ISG) 8, Revision 3. This ISG provides guidance for burnup credit (BUC) analyses supporting transport and storage of PWR pressurized water reactor (PWR) fuel in casks. Revision 3 includes guidance for addressing validation of criticality (k eff) calculations crediting the presence of a limited set of fission products and minor actinides (FP&MA). Based on previous work documented in NUREG/CR-7109, recommendation 4 of ISG-8, Rev. 3, includes a recommendation to use 1.5 or 3% of the FP&MA worth to conservatively cover the biasmore » due to the specified FP&MAs. This bias is supplementary to the bias and bias uncertainty resulting from validation of k eff calculations for the major actinides in SNF and does not address extension to actinides and fission products beyond those identified herein. The work described in this report involves comparison of FP&MA worths calculated using SCALE and MCNP with ENDF/B-V, -VI, and -VII based nuclear data and supports use of the 1.5% FP&MA worth bias when either SCALE or MCNP codes are used for criticality calculations, provided the other conditions of the recommendation 4 are met. The method used in this report may also be applied to demonstrate the applicability of the 1.5% FP&MA worth bias to other codes using ENDF/B V, VI or VII based nuclear data. The method involves use of the applicant s computational method to generate FP&MA worths for a reference SNF cask model using specified spent fuel compositions. The applicant s FP&MA worths are then compared to reference values provided in this report. The applicants FP&MA worths should not exceed the reference results by more than 1.5% of the reference FP&MA worths.« less

  19. Radiation shielding evaluation of the BNCT treatment room at THOR: a TORT-coupled MCNP Monte Carlo simulation study.

    PubMed

    Chen, A Y; Liu, Y-W H; Sheu, R J

    2008-01-01

    This study investigates the radiation shielding design of the treatment room for boron neutron capture therapy at Tsing Hua Open-pool Reactor using "TORT-coupled MCNP" method. With this method, the computational efficiency is improved significantly by two to three orders of magnitude compared to the analog Monte Carlo MCNP calculation. This makes the calculation feasible using a single CPU in less than 1 day. Further optimization of the photon weight windows leads to additional 50-75% improvement in the overall computational efficiency.

  20. Development of Multi-physics (Multiphase CFD + MCNP) simulation for generic solution vessel power calculation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Seung Jun; Buechler, Cynthia Eileen

    The current study aims to predict the steady state power of a generic solution vessel and to develop a corresponding heat transfer coefficient correlation for a Moly99 production facility by conducting a fully coupled multi-physics simulation. A prediction of steady state power for the current application is inherently interconnected between thermal hydraulic characteristics (i.e. Multiphase computational fluid dynamics solved by ANSYS-Fluent 17.2) and the corresponding neutronic behavior (i.e. particle transport solved by MCNP6.2) in the solution vessel. Thus, the development of a coupling methodology is vital to understand the system behavior at a variety of system design and postulated operatingmore » scenarios. In this study, we report on the k-effective (keff) calculation for the baseline solution vessel configuration with a selected solution concentration using MCNP K-code modeling. The associated correlation of thermal properties (e.g. density, viscosity, thermal conductivity, specific heat) at the selected solution concentration are developed based on existing experimental measurements in the open literature. The numerical coupling methodology between multiphase CFD and MCNP is successfully demonstrated, and the detailed coupling procedure is documented. In addition, improved coupling methods capturing realistic physics in the solution vessel thermal-neutronic dynamics are proposed and tested further (i.e. dynamic height adjustment, mull-cell approach). As a key outcome of the current study, a multi-physics coupling methodology between MCFD and MCNP is demonstrated and tested for four different operating conditions. Those different operating conditions are determined based on the neutron source strength at a fixed geometry condition. The steady state powers for the generic solution vessel at various operating conditions are reported, and a generalized correlation of the heat transfer coefficient for the current application is discussed. The assessment of

  1. Simulation of the GCR spectrum in the Mars curiosity rover's RAD detector using MCNP6.

    PubMed

    Ratliff, Hunter N; Smith, Michael B R; Heilbronn, Lawrence

    2017-08-01

    The paper presents results from MCNP6 simulations of galactic cosmic ray (GCR) propagation down through the Martian atmosphere to the surface and comparison with RAD measurements made there. This effort is part of a collaborative modeling workshop for space radiation hosted by Southwest Research Institute (SwRI). All modeling teams were tasked with simulating the galactic cosmic ray (GCR) spectrum through the Martian atmosphere and the Radiation Assessment Detector (RAD) on-board the Curiosity rover. The detector had two separate particle acceptance angles, 4π and 30 ° off zenith. All ions with Z = 1 through Z = 28 were tracked in both scenarios while some additional secondary particles were only tracked in the 4π cases. The MCNP6 4π absorbed dose rate was 307.3 ± 1.3 µGy/day while RAD measured 233 µGy/day. Using the ICRP-60 dose equivalent conversion factors built into MCNP6, the simulated 4π dose equivalent rate was found to be 473.1 ± 2.4 µSv/day while RAD reported 710 µSv/day. Copyright © 2017 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.

  2. Spent nuclear fuel assembly inspection using neutron computed tomography

    NASA Astrophysics Data System (ADS)

    Pope, Chad Lee

    The research presented here focuses on spent nuclear fuel assembly inspection using neutron computed tomography. Experimental measurements involving neutron beam transmission through a spent nuclear fuel assembly serve as benchmark measurements for an MCNP simulation model. Comparison of measured results to simulation results shows good agreement. Generation of tomography images from MCNP tally results was accomplished using adapted versions of built in MATLAB algorithms. Multiple fuel assembly models were examined to provide a broad set of conclusions. Tomography images revealing assembly geometric information including the fuel element lattice structure and missing elements can be obtained using high energy neutrons. A projection difference technique was developed which reveals the substitution of unirradiated fuel elements for irradiated fuel elements, using high energy neutrons. More subtle material differences such as altering the burnup of individual elements can be identified with lower energy neutrons provided the scattered neutron contribution to the image is limited. The research results show that neutron computed tomography can be used to inspect spent nuclear fuel assemblies for the purpose of identifying anomalies such as missing elements or substituted elements. The ability to identify anomalies in spent fuel assemblies can be used to deter diversion of material by increasing the risk of early detection as well as improve reprocessing facility operations by confirming the spent fuel configuration is as expected or allowing segregation if anomalies are detected.

  3. Nuclear Data Uncertainties for Typical LWR Fuel Assemblies and a Simple Reactor Core

    NASA Astrophysics Data System (ADS)

    Rochman, D.; Leray, O.; Hursin, M.; Ferroukhi, H.; Vasiliev, A.; Aures, A.; Bostelmann, F.; Zwermann, W.; Cabellos, O.; Diez, C. J.; Dyrda, J.; Garcia-Herranz, N.; Castro, E.; van der Marck, S.; Sjöstrand, H.; Hernandez, A.; Fleming, M.; Sublet, J.-Ch.; Fiorito, L.

    2017-01-01

    The impact of the current nuclear data library covariances such as in ENDF/B-VII.1, JEFF-3.2, JENDL-4.0, SCALE and TENDL, for relevant current reactors is presented in this work. The uncertainties due to nuclear data are calculated for existing PWR and BWR fuel assemblies (with burn-up up to 40 GWd/tHM, followed by 10 years of cooling time) and for a simplified PWR full core model (without burn-up) for quantities such as k∞, macroscopic cross sections, pin power or isotope inventory. In this work, the method of propagation of uncertainties is based on random sampling of nuclear data, either from covariance files or directly from basic parameters. Additionally, possible biases on calculated quantities are investigated such as the self-shielding treatment. Different calculation schemes are used, based on CASMO, SCALE, DRAGON, MCNP or FISPACT-II, thus simulating real-life assignments for technical-support organizations. The outcome of such a study is a comparison of uncertainties with two consequences. One: although this study is not expected to lead to similar results between the involved calculation schemes, it provides an insight on what can happen when calculating uncertainties and allows to give some perspectives on the range of validity on these uncertainties. Two: it allows to dress a picture of the state of the knowledge as of today, using existing nuclear data library covariances and current methods.

  4. 10 CFR 75.32 - Initial inventory report.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Initial inventory report. 75.32 Section 75.32 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) SAFEGUARDS ON NUCLEAR MATERIAL-IMPLEMENTATION OF US/IAEA AGREEMENT Reports § 75.32 Initial inventory report. (a) The initial inventory reporting date shall be the...

  5. Treating electron transport in MCNP{sup trademark}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, H.G.

    1996-12-31

    The transport of electrons and other charged particles is fundamentally different from that of neutrons and photons. A neutron, in aluminum slowing down from 0.5 MeV to 0.0625 MeV will have about 30 collisions; a photon will have fewer than ten. An electron with the same energy loss will undergo 10{sup 5} individual interactions. This great increase in computational complexity makes a single- collision Monte Carlo approach to electron transport unfeasible for many situations of practical interest. Considerable theoretical work has been done to develop a variety of analytic and semi-analytic multiple-scattering theories for the transport of charged particles. Themore » theories used in the algorithms in MCNP are the Goudsmit-Saunderson theory for angular deflections, the Landau an theory of energy-loss fluctuations, and the Blunck-Leisegang enhancements of the Landau theory. In order to follow an electron through a significant energy loss, it is necessary to break the electron`s path into many steps. These steps are chosen to be long enough to encompass many collisions (so that multiple-scattering theories are valid) but short enough that the mean energy loss in any one step is small (for the approximations in the multiple-scattering theories). The energy loss and angular deflection of the electron during each step can then be sampled from probability distributions based on the appropriate multiple- scattering theories. This subsumption of the effects of many individual collisions into single steps that are sampled probabilistically constitutes the ``condensed history`` Monte Carlo method. This method is exemplified in the ETRAN series of electron/photon transport codes. The ETRAN codes are also the basis for the Integrated TIGER Series, a system of general-purpose, application-oriented electron/photon transport codes. The electron physics in MCNP is similar to that of the Integrated TIGER Series.« less

  6. 3D element imaging using NSECT for the detection of renal cancer: a simulation study in MCNP.

    PubMed

    Viana, R S; Agasthya, G A; Yoriyaz, H; Kapadia, A J

    2013-09-07

    This work describes a simulation study investigating the application of neutron stimulated emission computed tomography (NSECT) for noninvasive 3D imaging of renal cancer in vivo. Using MCNP5 simulations, we describe a method of diagnosing renal cancer in the body by mapping the 3D distribution of elements present in tumors using the NSECT technique. A human phantom containing the kidneys and other major organs was modeled in MCNP5. The element composition of each organ was based on values reported in literature. The two kidneys were modeled to contain elements reported in renal cell carcinoma (RCC) and healthy kidney tissue. Simulated NSECT scans were executed to determine the 3D element distribution of the phantom body. Elements specific to RCC and healthy kidney tissue were then analyzed to identify the locations of the diseased and healthy kidneys and generate tomographic images of the tumor. The extent of the RCC lesion inside the kidney was determined using 3D volume rendering. A similar procedure was used to generate images of each individual organ in the body. Six isotopes were studied in this work - (32)S, (12)C, (23)Na, (14)N, (31)P and (39)K. The results demonstrated that through a single NSECT scan performed in vivo, it is possible to identify the location of the kidneys and other organs within the body, determine the extent of the tumor within the organ, and to quantify the differences between cancer and healthy tissue-related isotopes with p ≤ 0.05. All of the images demonstrated appropriate concentration changes between the organs, with some discrepancy observed in (31)P, (39)K and (23)Na. The discrepancies were likely due to the low concentration of the elements in the tissue that were below the current detection sensitivity of the NSECT technique.

  7. Verification and Validation of Monte Carlo n-Particle Code 6 (MCNP6) with Neutron Protection Factor Measurements of an Iron Box

    DTIC Science & Technology

    2014-03-27

    VERIFICATION AND VALIDATION OF MONTE CARLO N- PARTICLE CODE 6 (MCNP6) WITH NEUTRON PROTECTION FACTOR... PARTICLE CODE 6 (MCNP6) WITH NEUTRON PROTECTION FACTOR MEASUREMENTS OF AN IRON BOX THESIS Presented to the Faculty Department of Engineering...STATEMENT A. APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED iv AFIT-ENP-14-M-05 VERIFICATION AND VALIDATION OF MONTE CARLO N- PARTICLE CODE 6

  8. Validation of updated neutronic calculation models proposed for Atucha-II PHWR. Part I: Benchmark comparisons of WIMS-D5 and DRAGON cell and control rod parameters with MCNP5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mollerach, R.; Leszczynski, F.; Fink, J.

    2006-07-01

    In 2005 the Argentine Government took the decision to complete the construction of the Atucha-II nuclear power plant, which has been progressing slowly during the last ten years. Atucha-II is a 745 MWe nuclear station moderated and cooled with heavy water, of German (Siemens) design located in Argentina. It has a pressure-vessel design with 451 vertical coolant channels, and the fuel assemblies (FA) are clusters of 37 natural UO{sub 2} rods with an active length of 530 cm. For the reactor physics area, a revision and update calculation methods and models (cell, supercell and reactor) was recently carried out coveringmore » cell, supercell (control rod) and core calculations. As a validation of the new models some benchmark comparisons were done with Monte Carlo calculations with MCNP5. This paper presents comparisons of cell and supercell benchmark problems based on a slightly idealized model of the Atucha-I core obtained with the WIMS-D5 and DRAGON codes with MCNP5 results. The Atucha-I core was selected because it is smaller, similar from a neutronic point of view, and more symmetric than Atucha-II Cell parameters compared include cell k-infinity, relative power levels of the different rings of fuel rods, and some two-group macroscopic cross sections. Supercell comparisons include supercell k-infinity changes due to the control rods (tubes) of steel and hafnium. (authors)« less

  9. Acceleration of MCNP calculations for small pipes configurations by using Weigth Windows Importance cards created by the SN-3D ATTILA

    NASA Astrophysics Data System (ADS)

    Castanier, Eric; Paterne, Loic; Louis, Céline

    2017-09-01

    In the nuclear engineering, you have to manage time and precision. Especially in shielding design, you have to be more accurate and efficient to reduce cost (shielding thickness optimization), and for this, you use 3D codes. In this paper, we want to see if we can easily applicate the CADIS methods for design shielding of small pipes which go through large concrete walls. We assess the impact of the WW generated by the 3D-deterministic code ATTILA versus WW directly generated by MCNP (iterative and manual process). The comparison is based on the quality of the convergence (estimated relative error (σ), Variance of Variance (VOV) and Figure of Merit (FOM)), on time (computer time + modelling) and on the implement for the engineer.

  10. Radiation Characterization Summary: ACRR Central Cavity Free-Field Environment with the 32-Inch Pedestal at the Core Centerline (ACRR-FF-CC-32-cl).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vega, Richard Manuel; Parma, Edward J.; Naranjo, Gerald E.

    2015-08-01

    This document presents the facilit y - recommended characteri zation o f the neutron, prompt gamma - ray, and delayed gamma - ray radiation fields in the Annular Core Research Reactor ( ACRR ) for the cen tral cavity free - field environment with the 32 - inch pedestal at the core centerline. The designation for this environmen t is ACRR - FF - CC - 32 - cl. The neutron, prompt gamma - ray , and delayed gamma - ray energy spectra , uncertainties, and covariance matrices are presented as well as radial and axial neutron and gamma -more » ray fluence profiles within the experiment area of the cavity . Recommended constants are given to facilitate the conversion of various dosimetry readings into radiation metrics desired by experimenters. Representative pulse operations are presented with conversion examples . Acknowledgements The authors wish to th ank the Annular Core Research Reactor staff and the Radiation Metrology Laboratory staff for their support of this work . Also thanks to David Ames for his assistance in running MCNP on the Sandia parallel machines.« less

  11. An analysis of MCNP cross-sections and tally methods for low-energy photon emitters.

    PubMed

    Demarco, John J; Wallace, Robert E; Boedeker, Kirsten

    2002-04-21

    Monte Carlo calculations are frequently used to analyse a variety of radiological science applications using low-energy (10-1000 keV) photon sources. This study seeks to create a low-energy benchmark for the MCNP Monte Carlo code by simulating the absolute dose rate in water and the air-kerma rate for monoenergetic point sources with energies between 10 keV and 1 MeV. The analysis compares four cross-section datasets as well as the tally method for collision kerma versus absorbed dose. The total photon attenuation coefficient cross-section for low atomic number elements has changed significantly as cross-section data have changed between 1967 and 1989. Differences of up to 10% are observed in the photoelectric cross-section for water at 30 keV between the standard MCNP cross-section dataset (DLC-200) and the most recent XCOM/NIST tabulation. At 30 keV, the absolute dose rate in water at 1.0 cm from the source increases by 7.8% after replacing the DLC-200 photoelectric cross-sections for water with those from the XCOM/NIST tabulation. The differences in the absolute dose rate are analysed when calculated with either the MCNP absorbed dose tally or the collision kerma tally. Significant differences between the collision kerma tally and the absorbed dose tally can occur when using the DLC-200 attenuation coefficients in conjunction with a modern tabulation of mass energy-absorption coefficients.

  12. Absorbed fractions in a voxel-based phantom calculated with the MCNP-4B code.

    PubMed

    Yoriyaz, H; dos Santos, A; Stabin, M G; Cabezas, R

    2000-07-01

    A new approach for calculating internal dose estimates was developed through the use of a more realistic computational model of the human body. The present technique shows the capability to build a patient-specific phantom with tomography data (a voxel-based phantom) for the simulation of radiation transport and energy deposition using Monte Carlo methods such as in the MCNP-4B code. MCNP-4B absorbed fractions for photons in the mathematical phantom of Snyder et al. agreed well with reference values. Results obtained through radiation transport simulation in the voxel-based phantom, in general, agreed well with reference values. Considerable discrepancies, however, were found in some cases due to two major causes: differences in the organ masses between the phantoms and the occurrence of organ overlap in the voxel-based phantom, which is not considered in the mathematical phantom.

  13. MCNP simulation to optimise in-pile and shielding parts of the Portuguese SANS instrument.

    PubMed

    Gonçalves, I F; Salgado, J; Falcão, A; Margaça, F M A; Carvalho, F G

    2005-01-01

    A Small Angle Neutron Scattering instrument is being installed at one end of the tangential beam tube of the Portuguese Research Reactor. The instrument is fed using a neutron scatterer positioned in the middle of the beam tube. The scatterer consists of circulating H2O contained in a hollow disc of Al. The in-pile shielding components and the shielding installed around the neutron selector have been the object of an MCNP simulation study. The quantities calculated were the neutron and gamma-ray fluxes in different positions, the energy deposited in the material by the neutron and gamma-ray fields, the material activation resulting from the neutron field and radiation doses at the exit wall of the shutter and around the shielding. The MCNP results are presented and compared with results of an analytical approach and with experimental data collected after installation.

  14. Element analysis and calculation of the attenuation coefficients for gold, bronze and water matrixes using MCNP, WinXCom and experimental data

    NASA Astrophysics Data System (ADS)

    Esfandiari, M.; Shirmardi, S. P.; Medhat, M. E.

    2014-06-01

    In this study, element analysis and the mass attenuation coefficient for matrixes of gold, bronze and water with various impurities and the concentrations of heavy metals (Cu, Mn, Pb and Zn) are evaluated and calculated by the MCNP simulation code for photons emitted from Barium-133, Americium-241 and sources with energies between 1 and 100 keV. The MCNP data are compared with the experimental data and WinXCom code simulated results by Medhat. The results showed that the obtained results of bronze and gold matrix are in good agreement with the other methods for energies above 40 and 60 keV, respectively. However for water matrixes with various impurities, there is a good agreement between the three methods MCNP, WinXCom and the experimental one in low and high energies.

  15. 10 CFR 32.60 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false [Reserved] 32.60 Section 32.60 Energy NUCLEAR REGULATORY COMMISSION SPECIFIC DOMESTIC LICENSES TO MANUFACTURE OR TRANSFER CERTAIN ITEMS CONTAINING BYPRODUCT MATERIAL Generally Licensed Items § 32.60 [Reserved] ...

  16. 10 CFR 32.60 - [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false [Reserved] 32.60 Section 32.60 Energy NUCLEAR REGULATORY COMMISSION SPECIFIC DOMESTIC LICENSES TO MANUFACTURE OR TRANSFER CERTAIN ITEMS CONTAINING BYPRODUCT MATERIAL Generally Licensed Items § 32.60 [Reserved] ...

  17. MCNP calculations for container inspection with tagged neutrons

    NASA Astrophysics Data System (ADS)

    Boghen, G.; Donzella, A.; Filippini, V.; Fontana, A.; Lunardon, M.; Moretto, S.; Pesente, S.; Zenoni, A.

    2005-12-01

    We are developing an innovative tagged neutrons inspection system (TNIS) for cargo containers: the system will allow us to assay the chemical composition of suspect objects, previously identified by a standard X-ray radiography. The operation of the system is extensively being simulated by using the MCNP Monte Carlo code to study different inspection geometries, cargo loads and hidden threat materials. Preliminary simulations evaluating the signal and the signal over background ratio expected as a function of the system parameters are presented. The results for a selection of cases are briefly discussed and demonstrate that the system can operate successfully in different filling conditions.

  18. NUCLEAR HEATING IN LIF DOSEMETERS IN A FUSION NEUTRON FIELD, TRIAL OF DIRECT COMPARISON OF EXPERIMENTAL AND SIMULATED RESULTS.

    PubMed

    Pohorecki, Wladyslaw; Obryk, Barbara

    2017-09-29

    The results of nuclear heating measured by means of thermoluminescent dosemeters (TLD-LiF) in a Cu block irradiated by 14 MeV neutrons are presented. The integral Cu experiment relevant for verification of copper nuclear data at neutron energies characteristic for fusion facilities was performed in the ENEA FNG Laboratory at Frascati. Five types of TLDs were used: highly photon sensitive LiF:Mg,Cu,P (MCP-N), 7LiF:Mg,Cu,P (MCP-7) and standard, lower sensitivity LiF:Mg,Ti (MTS-N), 7LiF:Mg,Ti (MTS-7) and 6LiF:Mg,Ti (MTS-6). Calibration of the detectors was performed with gamma rays in terms of air-kerma (10 mGy of 137Cs air-kerma). Nuclear heating in the Cu block was also calculated with the use of MCNP transport code Nuclear heating in Cu and air in TLD's positions was calculated as well. The nuclear heating contribution from all simulated by MCNP6 code particles including protons, deuterons, alphas tritons and heavier ions produced by the neutron interactions were calculated. A trial of the direct comparison between experimental results and results of simulation was performed. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Benchmark of PENELOPE code for low-energy photon transport: dose comparisons with MCNP4 and EGS4.

    PubMed

    Ye, Sung-Joon; Brezovich, Ivan A; Pareek, Prem; Naqvi, Shahid A

    2004-02-07

    The expanding clinical use of low-energy photon emitting 125I and 103Pd seeds in recent years has led to renewed interest in their dosimetric properties. Numerous papers pointed out that higher accuracy could be obtained in Monte Carlo simulations by utilizing newer libraries for the low-energy photon cross-sections, such as XCOM and EPDL97. The recently developed PENELOPE 2001 Monte Carlo code is user friendly and incorporates photon cross-section data from the EPDL97. The code has been verified for clinical dosimetry of high-energy electron and photon beams, but has not yet been tested at low energies. In the present work, we have benchmarked the PENELOPE code for 10-150 keV photons. We computed radial dose distributions from 0 to 10 cm in water at photon energies of 10-150 keV using both PENELOPE and MCNP4C with either DLC-146 or DLC-200 cross-section libraries, assuming a point source located at the centre of a 30 cm diameter and 20 cm length cylinder. Throughout the energy range of simulated photons (except for 10 keV), PENELOPE agreed within statistical uncertainties (at worst +/- 5%) with MCNP/DLC-146 in the entire region of 1-10 cm and with published EGS4 data up to 5 cm. The dose at 1 cm (or dose rate constant) of PENELOPE agreed with MCNP/DLC-146 and EGS4 data within approximately +/- 2% in the range of 20-150 keV, while MCNP/DLC-200 produced values up to 9% lower in the range of 20-100 keV than PENELOPE or the other codes. However, the differences among the four datasets became negligible above 100 keV.

  20. MCNP and GADRAS Comparisons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klasky, Marc Louis; Myers, Steven Charles; James, Michael R.

    To facilitate the timely execution of System Threat Reviews (STRs) for DNDO, and also to develop a methodology for performing STRs, LANL performed comparisons of several radiation transport codes (MCNP, GADRAS, and Gamma-Designer) that have been previously utilized to compute radiation signatures. While each of these codes has strengths, it is of paramount interest to determine the limitations of each of the respective codes and also to identify the most time efficient means by which to produce computational results, given the large number of parametric cases that are anticipated in performing STR's. These comparisons serve to identify regions of applicabilitymore » for each code and provide estimates of uncertainty that may be anticipated. Furthermore, while performing these comparisons, examination of the sensitivity of the results to modeling assumptions was also examined. These investigations serve to enable the creation of the LANL methodology for performing STRs. Given the wide variety of radiation test sources, scenarios, and detectors, LANL calculated comparisons of the following parameters: decay data, multiplicity, device (n,γ) leakages, and radiation transport through representative scenes and shielding. This investigation was performed to understand potential limitations utilizing specific codes for different aspects of the STR challenges.« less

  1. MCNP modelling of scintillation-detector gamma-ray spectra from natural radionuclides.

    PubMed

    Hendriks, P H G M; Maucec, M; de Meijer, R J

    2002-09-01

    gamma-ray spectra of natural radionuclides are simulated for a BGO detector in a borehole geometry using the Monte Carlo code MCNP. All gamma-ray emissions of the decay of 40K and the series of 232Th and 238U are used to describe the source. A procedure is proposed which excludes the time-consuming electron tracking in less relevant areas of the geometry. The simulated gamma-ray spectra are benchmarked against laboratory data.

  2. Enhancements to the MCNP6 background source

    DOE PAGES

    McMath, Garrett E.; McKinney, Gregg W.

    2015-10-19

    The particle transport code MCNP has been used to produce a background radiation data file on a worldwide grid that can easily be sampled as a source in the code. Location-dependent cosmic showers were modeled by Monte Carlo methods to produce the resulting neutron and photon background flux at 2054 locations around Earth. An improved galactic-cosmic-ray feature was used to model the source term as well as data from multiple sources to model the transport environment through atmosphere, soil, and seawater. A new elevation scaling feature was also added to the code to increase the accuracy of the cosmic neutronmore » background for user locations with off-grid elevations. Furthermore, benchmarking has shown the neutron integral flux values to be within experimental error.« less

  3. 10 CFR 32.301 - Violations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Violations. 32.301 Section 32.301 Energy NUCLEAR REGULATORY COMMISSION SPECIFIC DOMESTIC LICENSES TO MANUFACTURE OR TRANSFER CERTAIN ITEMS CONTAINING BYPRODUCT MATERIAL Violations § 32.301 Violations. (a) The Commission may obtain an injunction or other...

  4. 10 CFR 32.301 - Violations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Violations. 32.301 Section 32.301 Energy NUCLEAR REGULATORY COMMISSION SPECIFIC DOMESTIC LICENSES TO MANUFACTURE OR TRANSFER CERTAIN ITEMS CONTAINING BYPRODUCT MATERIAL Violations § 32.301 Violations. (a) The Commission may obtain an injunction or other...

  5. MCNP simulation of a Theratron 780 radiotherapy unit.

    PubMed

    Miró, R; Soler, J; Gallardo, S; Campayo, J M; Díez, S; Verdú, G

    2005-01-01

    A Theratron 780 (MDS Nordion) 60Co radiotherapy unit has been simulated with the Monte Carlo code MCNP. The unit has been realistically modelled: the cylindrical source capsule and its housing, the rectangular collimator system, both the primary and secondary jaws and the air gaps between the components. Different collimator openings, ranging from 5 x 5 cm2 to 20 x 20 cm2 (narrow and broad beams) at a source-surface distance equal to 80 cm have been used during the study. In the present work, we have calculated spectra as a function of field size. A study of the variation of the electron contamination of the 60Co beam has also been performed.

  6. Monte Carlo Techniques for Nuclear Systems - Theory Lectures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Forrest B.

    These are lecture notes for a Monte Carlo class given at the University of New Mexico. The following topics are covered: course information; nuclear eng. review & MC; random numbers and sampling; computational geometry; collision physics; tallies and statistics; eigenvalue calculations I; eigenvalue calculations II; eigenvalue calculations III; variance reduction; parallel Monte Carlo; parameter studies; fission matrix and higher eigenmodes; doppler broadening; Monte Carlo depletion; HTGR modeling; coupled MC and T/H calculations; fission energy deposition. Solving particle transport problems with the Monte Carlo method is simple - just simulate the particle behavior. The devil is in the details, however. Thesemore » lectures provide a balanced approach to the theory and practice of Monte Carlo simulation codes. The first lectures provide an overview of Monte Carlo simulation methods, covering the transport equation, random sampling, computational geometry, collision physics, and statistics. The next lectures focus on the state-of-the-art in Monte Carlo criticality simulations, covering the theory of eigenvalue calculations, convergence analysis, dominance ratio calculations, bias in Keff and tallies, bias in uncertainties, a case study of a realistic calculation, and Wielandt acceleration techniques. The remaining lectures cover advanced topics, including HTGR modeling and stochastic geometry, temperature dependence, fission energy deposition, depletion calculations, parallel calculations, and parameter studies. This portion of the class focuses on using MCNP to perform criticality calculations for reactor physics and criticality safety applications. It is an intermediate level class, intended for those with at least some familiarity with MCNP. Class examples provide hands-on experience at running the code, plotting both geometry and results, and understanding the code output. The class includes lectures & hands-on computer use for a variety of Monte Carlo

  7. Brachytherapy dosimetry of 125I and 103Pd sources using an updated cross section library for the MCNP Monte Carlo transport code.

    PubMed

    Bohm, Tim D; DeLuca, Paul M; DeWerd, Larry A

    2003-04-01

    Permanent implantation of low energy (20-40 keV) photon emitting radioactive seeds to treat prostate cancer is an important treatment option for patients. In order to produce accurate implant brachytherapy treatment plans, the dosimetry of a single source must be well characterized. Monte Carlo based transport calculations can be used for source characterization, but must have up to date cross section libraries to produce accurate dosimetry results. This work benchmarks the MCNP code and its photon cross section library for low energy photon brachytherapy applications. In particular, we calculate the emitted photon spectrum, air kerma, depth dose in water, and radial dose function for both 125I and 103Pd based seeds and compare to other published results. Our results show that MCNP's cross section library differs from recent data primarily in the photoelectric cross section for low energies and low atomic number materials. In water, differences as large as 10% in the photoelectric cross section and 6% in the total cross section occur at 125I and 103Pd photon energies. This leads to differences in the dose rate constant of 3% and 5%, and differences as large as 18% and 20% in the radial dose function for the 125I and 103Pd based seeds, respectively. Using a partially updated photon library, calculations of the dose rate constant and radial dose function agree with other published results. Further, the use of the updated photon library allows us to verify air kerma and depth dose in water calculations performed using MCNP's perturbation feature to simulate updated cross sections. We conclude that in order to most effectively use MCNP for low energy photon brachytherapy applications, we must update its cross section library. Following this update, the MCNP code system will be a very effective tool for low energy photon brachytherapy dosimetry applications.

  8. 40 CFR 192.32 - Standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... § 192.32 Standards. (a) Standards for application during processing operations and prior to the end of... nonoperational and subject to a license by the Nuclear Regulatory Commission or an Agreement State shall limit... the Nuclear Regulatory Commission or Agreement State into individual site licenses. (ii) The Nuclear...

  9. 40 CFR 192.32 - Standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... § 192.32 Standards. (a) Standards for application during processing operations and prior to the end of... nonoperational and subject to a license by the Nuclear Regulatory Commission or an Agreement State shall limit... the Nuclear Regulatory Commission or Agreement State into individual site licenses. (ii) The Nuclear...

  10. Radiation Characterization Summary: ACRR Polyethylene-Lead-Graphite (PLG) Bucket Located in the Central Cavity on the 32-Inch Pedestal at the Core Centerline (ACRR-PLG-CC-32-cl).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parma, Edward J.,; Vehar, David W.; Lippert, Lance L.

    2015-06-01

    This document presents the facility-recommended characterization of the neutron, prompt gamma-ray, and delayed gamma-ray radiation fields in the Annular Core Research Reactor (ACRR) for the polyethylene-lead-graphite (PLG) bucket in the central cavity on the 32-inch pedestal at the core centerline. The designation for this environment is ACRR-PLG-CC-32-cl. The neutron, prompt gamma-ray, and delayed gamma-ray energy spectra, uncertainties, and covariance matrices are presented as well as radial and axial neutron and gamma-ray fluence profiles within the experiment area of the bucket. Recommended constants are given to facilitate the conversion of various dosimetry readings into radiation metrics desired by experimenters. Representative pulsemore » operations are presented with conversion examples. Acknowledgements The authors wish to thank the Annular Core Research Reactor staff and the Radiation Metrology Laboratory staff for their support of this work. Also thanks to David Ames for his assistance in running MCNP on the Sandia parallel machines.« less

  11. Propagation of nuclear data uncertainties for fusion power measurements

    NASA Astrophysics Data System (ADS)

    Sjöstrand, Henrik; Conroy, Sean; Helgesson, Petter; Hernandez, Solis Augusto; Koning, Arjan; Pomp, Stephan; Rochman, Dimitri

    2017-09-01

    Neutron measurements using neutron activation systems are an essential part of the diagnostic system at large fusion machines such as JET and ITER. Nuclear data is used to infer the neutron yield. Consequently, high-quality nuclear data is essential for the proper determination of the neutron yield and fusion power. However, uncertainties due to nuclear data are not fully taken into account in uncertainty analysis for neutron yield calibrations using activation foils. This paper investigates the neutron yield uncertainty due to nuclear data using the so-called Total Monte Carlo Method. The work is performed using a detailed MCNP model of the JET fusion machine; the uncertainties due to the cross-sections and angular distributions in JET structural materials, as well as the activation cross-sections in the activation foils, are analysed. It is found that a significant contribution to the neutron yield uncertainty can come from uncertainties in the nuclear data.

  12. PWR Facility Dose Modeling Using MCNP5 and the CADIS/ADVANTG Variance-Reduction Methodology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blakeman, Edward D; Peplow, Douglas E.; Wagner, John C

    2007-09-01

    The feasibility of modeling a pressurized-water-reactor (PWR) facility and calculating dose rates at all locations within the containment and adjoining structures using MCNP5 with mesh tallies is presented. Calculations of dose rates resulting from neutron and photon sources from the reactor (operating and shut down for various periods) and the spent fuel pool, as well as for the photon source from the primary coolant loop, were all of interest. Identification of the PWR facility, development of the MCNP-based model and automation of the run process, calculation of the various sources, and development of methods for visually examining mesh tally filesmore » and extracting dose rates were all a significant part of the project. Advanced variance reduction, which was required because of the size of the model and the large amount of shielding, was performed via the CADIS/ADVANTG approach. This methodology uses an automatically generated three-dimensional discrete ordinates model to calculate adjoint fluxes from which MCNP weight windows and source bias parameters are generated. Investigative calculations were performed using a simple block model and a simplified full-scale model of the PWR containment, in which the adjoint source was placed in various regions. In general, it was shown that placement of the adjoint source on the periphery of the model provided adequate results for regions reasonably close to the source (e.g., within the containment structure for the reactor source). A modification to the CADIS/ADVANTG methodology was also studied in which a global adjoint source is weighted by the reciprocal of the dose response calculated by an earlier forward discrete ordinates calculation. This method showed improved results over those using the standard CADIS/ADVANTG approach, and its further investigation is recommended for future efforts.« less

  13. A Monte-Carlo Benchmark of TRIPOLI-4® and MCNP on ITER neutronics

    NASA Astrophysics Data System (ADS)

    Blanchet, David; Pénéliau, Yannick; Eschbach, Romain; Fontaine, Bruno; Cantone, Bruno; Ferlet, Marc; Gauthier, Eric; Guillon, Christophe; Letellier, Laurent; Proust, Maxime; Mota, Fernando; Palermo, Iole; Rios, Luis; Guern, Frédéric Le; Kocan, Martin; Reichle, Roger

    2017-09-01

    Radiation protection and shielding studies are often based on the extensive use of 3D Monte-Carlo neutron and photon transport simulations. ITER organization hence recommends the use of MCNP-5 code (version 1.60), in association with the FENDL-2.1 neutron cross section data library, specifically dedicated to fusion applications. The MCNP reference model of the ITER tokamak, the `C-lite', is being continuously developed and improved. This article proposes to develop an alternative model, equivalent to the 'C-lite', but for the Monte-Carlo code TRIPOLI-4®. A benchmark study is defined to test this new model. Since one of the most critical areas for ITER neutronics analysis concerns the assessment of radiation levels and Shutdown Dose Rates (SDDR) behind the Equatorial Port Plugs (EPP), the benchmark is conducted to compare the neutron flux through the EPP. This problem is quite challenging with regard to the complex geometry and considering the important neutron flux attenuation ranging from 1014 down to 108 n•cm-2•s-1. Such code-to-code comparison provides independent validation of the Monte-Carlo simulations, improving the confidence in neutronic results.

  14. SMITHERS: An object-oriented modular mapping methodology for MCNP-based neutronic–thermal hydraulic multiphysics

    DOE PAGES

    Richard, Joshua; Galloway, Jack; Fensin, Michael; ...

    2015-04-04

    A novel object-oriented modular mapping methodology for externally coupled neutronics–thermal hydraulics multiphysics simulations was developed. The Simulator using MCNP with Integrated Thermal-Hydraulics for Exploratory Reactor Studies (SMITHERS) code performs on-the-fly mapping of material-wise power distribution tallies implemented by MCNP-based neutron transport/depletion solvers for use in estimating coolant temperature and density distributions with a separate thermal-hydraulic solver. The key development of SMITHERS is that it reconstructs the hierarchical geometry structure of the material-wise power generation tallies from the depletion solver automatically, with only a modicum of additional information required from the user. In addition, it performs the basis mapping from themore » combinatorial geometry of the depletion solver to the required geometry of the thermal-hydraulic solver in a generalizable manner, such that it can transparently accommodate varying levels of thermal-hydraulic solver geometric fidelity, from the nodal geometry of multi-channel analysis solvers to the pin-cell level of discretization for sub-channel analysis solvers.« less

  15. SABRINA - An interactive geometry modeler for MCNP (Monte Carlo Neutron Photon)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    West, J.T.; Murphy, J.

    SABRINA is an interactive three-dimensional geometry modeler developed to produce complicated models for the Los Alamos Monte Carlo Neutron Photon program MCNP. SABRINA produces line drawings and color-shaded drawings for a wide variety of interactive graphics terminals. It is used as a geometry preprocessor in model development and as a Monte Carlo particle-track postprocessor in the visualization of complicated particle transport problem. SABRINA is written in Fortran 77 and is based on the Los Alamos Common Graphics System, CGS. 5 refs., 2 figs.

  16. Impact of nuclear data uncertainty on safety calculations for spent nuclear fuel geological disposal

    NASA Astrophysics Data System (ADS)

    Herrero, J. J.; Rochman, D.; Leray, O.; Vasiliev, A.; Pecchia, M.; Ferroukhi, H.; Caruso, S.

    2017-09-01

    In the design of a spent nuclear fuel disposal system, one necessary condition is to show that the configuration remains subcritical at time of emplacement but also during long periods covering up to 1,000,000 years. In the context of criticality safety applying burn-up credit, k-eff eigenvalue calculations are affected by nuclear data uncertainty mainly in the burnup calculations simulating reactor operation and in the criticality calculation for the disposal canister loaded with the spent fuel assemblies. The impact of nuclear data uncertainty should be included in the k-eff value estimation to enforce safety. Estimations of the uncertainty in the discharge compositions from the CASMO5 burn-up calculation phase are employed in the final MCNP6 criticality computations for the intact canister configuration; in between, SERPENT2 is employed to get the spent fuel composition along the decay periods. In this paper, nuclear data uncertainty was propagated by Monte Carlo sampling in the burn-up, decay and criticality calculation phases and representative values for fuel operated in a Swiss PWR plant will be presented as an estimation of its impact.

  17. On the effect of updated MCNP photon cross section data on the simulated response of the HPA TLD.

    PubMed

    Eakins, Jonathan

    2009-02-01

    The relative response of the new Health Protection Agency thermoluminescence dosimeter (TLD) has been calculated for Narrow Series X-ray distribution and (137)Cs photon sources using the Monte Carlo code MCNP5, and the results compared with those obtained during its design stage using the predecessor code, MCNP4c2. The results agreed at intermediate energies (approximately 0.1 MeV to (137)Cs), but differed at low energies (<0.1 MeV) by up to approximately 10%. This disparity has been ascribed to differences in the default photon interaction data used by the two codes, and derives ultimately from the effect on absorbed dose of the recent updates to the photoelectric cross sections. The sources of these data have been reviewed.

  18. 10 CFR 32.303 - Criminal penalties.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Criminal penalties. 32.303 Section 32.303 Energy NUCLEAR REGULATORY COMMISSION SPECIFIC DOMESTIC LICENSES TO MANUFACTURE OR TRANSFER CERTAIN ITEMS CONTAINING BYPRODUCT MATERIAL Violations § 32.303 Criminal penalties. (a) Section 223 of the Atomic Energy Act of 1954...

  19. 10 CFR 32.303 - Criminal penalties.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Criminal penalties. 32.303 Section 32.303 Energy NUCLEAR REGULATORY COMMISSION SPECIFIC DOMESTIC LICENSES TO MANUFACTURE OR TRANSFER CERTAIN ITEMS CONTAINING BYPRODUCT MATERIAL Violations § 32.303 Criminal penalties. (a) Section 223 of the Atomic Energy Act of 1954...

  20. Development of a patient-specific dosimetry estimation system in nuclear medicine examination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, H. H.; Dong, S. L.; Yang, H. J.

    2011-07-01

    The purpose of this study is to develop a patient-specific dosimetry estimation system in nuclear medicine examination using a SimSET-based Monte Carlo code. We added a dose deposition routine to store the deposited energy of the photons during their flights in SimSET and developed a user-friendly interface for reading PET and CT images. Dose calculated on ORNL phantom was used to validate the accuracy of this system. The S values for {sup 99m}Tc, {sup 18}F and {sup 131}I obtained by the system were compared to those from the MCNP4C code and OLINDA. The ratios of S values computed by thismore » system to those obtained with OLINDA for various organs were ranged from 0.93 to 1.18, which are comparable to that obtained from MCNP4C code (0.94 to 1.20). The average ratios of S value were 0.99{+-}0.04, 1.03{+-}0.05, and 1.00{+-}0.07 for isotopes {sup 131}I, {sup 18}F, and {sup 99m}Tc, respectively. The simulation time of SimSET was two times faster than MCNP4C's for various isotopes. A 3D dose calculation was also performed on a patient data set with PET/CT examination using this system. Results from the patient data showed that the estimated S values using this system differed slightly from those of OLINDA for ORNL phantom. In conclusion, this system can generate patient-specific dose distribution and display the isodose curves on top of the anatomic structure through a friendly graphic user interface. It may also provide a useful tool to establish an appropriate dose-reduction strategy to patients in nuclear medicine environments. (authors)« less

  1. 10 CFR 32.8 - Information collection requirements: OMB approval.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Information collection requirements: OMB approval. 32.8 Section 32.8 Energy NUCLEAR REGULATORY COMMISSION SPECIFIC DOMESTIC LICENSES TO MANUFACTURE OR TRANSFER...) The Nuclear Regulatory Commission has submitted the information collection requirements contained in...

  2. 10 CFR 32.8 - Information collection requirements: OMB approval.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Information collection requirements: OMB approval. 32.8 Section 32.8 Energy NUCLEAR REGULATORY COMMISSION SPECIFIC DOMESTIC LICENSES TO MANUFACTURE OR TRANSFER...) The Nuclear Regulatory Commission has submitted the information collection requirements contained in...

  3. Improved radial dose function estimation using current version MCNP Monte-Carlo simulation: Model 6711 and ISC3500 125I brachytherapy sources.

    PubMed

    Duggan, Dennis M

    2004-12-01

    Improved cross-sections in a new version of the Monte-Carlo N-particle (MCNP) code may eliminate discrepancies between radial dose functions (as defined by American Association of Physicists in Medicine Task Group 43) derived from Monte-Carlo simulations of low-energy photon-emitting brachytherapy sources and those from measurements on the same sources with thermoluminescent dosimeters. This is demonstrated for two 125I brachytherapy seed models, the Implant Sciences Model ISC3500 (I-Plant) and the Amersham Health Model 6711, by simulating their radial dose functions with two versions of MCNP, 4c2 and 5.

  4. Optimization of Shielding- Collimator Parameters for ING-27 Neutron Generator Using MCNP5

    NASA Astrophysics Data System (ADS)

    Hegazy, Aya Hamdy; Skoy, V. R.; Hossny, K.

    2018-04-01

    Neutron generators are now used in various fields. They produce only fast neutrons; D-D neutron generator produces 2.45 MeV neutrons and D-T produces 14.1 MeV neutrons. In order to optimize shielding-collimator parameters to achieve higher neutron flux at the investigated sample (The signal) with lower neutron and gamma rays flux at the area of the detectors, design iterations are widely used. This work was applied to ROMASHA setup, TANGRA project, FLNP, Joint Institute for Nuclear Research. The studied parameters were; (1) shielding-collimator material, (2) Distance between the shielding-collimator assembly first plate and center of the neutron beam, and (3) thickness of collimator sheets. MCNP5 was used to simulate ROMASHA setup after it was validated on the experimental results of irradiation of Carbon-12 sample for one hour to detect its 4.44 MeV characteristic gamma line. The ratio between the signal and total neutron flux that enters each detector was calculated and plotted, concluding that the optimum shielding-collimator assembly is Tungsten of 5 cm thickness for each plate, and a distance of 2.3 cm. Also, the ratio between the signal and total gamma rays flux was calculated and plotted for each detector, leading to the previous conclusion but the distance was 1 cm.

  5. Monte Carlo determination of the conversion coefficients Hp(3)/Ka in a right cylinder phantom with 'PENELOPE' code. Comparison with 'MCNP' simulations.

    PubMed

    Daures, J; Gouriou, J; Bordy, J M

    2011-03-01

    This work has been performed within the frame of the European Union ORAMED project (Optimisation of RAdiation protection for MEDical staff). The main goal of the project is to improve standards of protection for medical staff for procedures resulting in potentially high exposures and to develop methodologies for better assessing and for reducing, exposures to medical staff. The Work Package WP2 is involved in the development of practical eye-lens dosimetry in interventional radiology. This study is complementary of the part of the ENEA report concerning the calculations with the MCNP-4C code of the conversion factors related to the operational quantity H(p)(3). In this study, a set of energy- and angular-dependent conversion coefficients (H(p)(3)/K(a)), in the newly proposed square cylindrical phantom made of ICRU tissue, have been calculated with the Monte-Carlo code PENELOPE and MCNP5. The H(p)(3) values have been determined in terms of absorbed dose, according to the definition of this quantity, and also with the kerma approximation as formerly reported in ICRU reports. At a low-photon energy (up to 1 MeV), the two results obtained with the two methods are consistent. Nevertheless, large differences are showed at a higher energy. This is mainly due to the lack of electronic equilibrium, especially for small angle incidences. The values of the conversion coefficients obtained with the MCNP-4C code published by ENEA quite agree with the kerma approximation calculations obtained with PENELOPE. We also performed the same calculations with the code MCNP5 with two types of tallies: F6 for kerma approximation and *F8 for estimating the absorbed dose that is, as known, due to secondary electrons. PENELOPE and MCNP5 results agree for the kerma approximation and for the absorbed dose calculation of H(p)(3) and prove that, for photon energies larger than 1 MeV, the transport of the secondary electrons has to be taken into account.

  6. Doppler Temperature Coefficient Calculations Using Adjoint-Weighted Tallies and Continuous Energy Cross Sections in MCNP6

    NASA Astrophysics Data System (ADS)

    Gonzales, Matthew Alejandro

    The calculation of the thermal neutron Doppler temperature reactivity feedback co-efficient, a key parameter in the design and safe operation of advanced reactors, using first order perturbation theory in continuous energy Monte Carlo codes is challenging as the continuous energy adjoint flux is not readily available. Traditional approaches of obtaining the adjoint flux attempt to invert the random walk process as well as require data corresponding to all temperatures and their respective temperature derivatives within the system in order to accurately calculate the Doppler temperature feedback. A new method has been developed using adjoint-weighted tallies and On-The-Fly (OTF) generated continuous energy cross sections within the Monte Carlo N-Particle (MCNP6) transport code. The adjoint-weighted tallies are generated during the continuous energy k-eigenvalue Monte Carlo calculation. The weighting is based upon the iterated fission probability interpretation of the adjoint flux, which is the steady state population in a critical nuclear reactor caused by a neutron introduced at that point in phase space. The adjoint-weighted tallies are produced in a forward calculation and do not require an inversion of the random walk. The OTF cross section database uses a high order functional expansion between points on a user-defined energy-temperature mesh in which the coefficients with respect to a polynomial fitting in temperature are stored. The coefficients of the fits are generated before run- time and called upon during the simulation to produce cross sections at any given energy and temperature. The polynomial form of the OTF cross sections allows the possibility of obtaining temperature derivatives of the cross sections on-the-fly. The use of Monte Carlo sampling of adjoint-weighted tallies and the capability of computing derivatives of continuous energy cross sections with respect to temperature are used to calculate the Doppler temperature coefficient in a research

  7. Background-Source Cosmic-Photon Elevation Scaling and Cosmic-Neutron/Photon Date Scaling in MCNP6

    NASA Astrophysics Data System (ADS)

    Tutt, J.; Anderson, C.; McKinney, G.

    Cosmic neutron and photon fluxes are known to scale exponentially with elevation. Consequently, cosmic neutron elevation scaling was implemented for use with the background-source option shortly after its introduction into MCNP6, whereby the neutron flux weight factor was adjusted by the elevation scaling factor when the user-specified elevation differed from the selected background.dat grid-point elevation. At the same time, an elevation scaling factor was suggested for the cosmic photon flux, however, cosmic photon elevation scaling is complicated by the fact that the photon background consists of two components: cosmic and terrestrial. Previous versions of the background.dat file did not provide any way to separate these components. With Rel. 4 of this file in 2015, two new columns were added that provide the energy grid and differential cosmic photon flux separately from the total photon flux. Here we show that the cosmic photon flux component can now be scaled independently and combined with the terrestrial component to form the total photon flux at a user-specified elevation in MCNP6. Cosmic background fluxes also scale with the solar cycle due to solar modulation. This modulation has been shown to be nearly sinusoidal over time, with an inverse effect - increased modulation leads to a decrease in cosmic fluxes. This effect was initially included with the cosmic source option in MCNP6 and has now been extended for use with the background source option when: (1) the date is specified in the background.dat file, and (2) when the user specifies a date on the source definition card. A description of the cosmic-neutron/photon date scaling feature will be presented along with scaling results for past and future date extrapolations.

  8. Background-Source Cosmic-Photon Elevation Scaling and Cosmic-Neutron/Photon Date Scaling in MCNP6

    DOE PAGES

    Tutt, James Robert; Anderson, Casey Alan; McKinney, Gregg Walter

    2017-10-26

    Here, cosmic neutron and photon fluxes are known to scale exponentially with elevation. Consequently, cosmic neutron elevation scaling was implemented for use with the background-source option shortly after its introduction into MCNP6, whereby the neutron flux weight factor was adjusted by the elevation scaling factor when the user-specified elevation differed from the selected background.dat grid-point elevation. At the same time, an elevation scaling factor was suggested for the cosmic photon flux, however, cosmic photon elevation scaling is complicated by the fact that the photon background consists of two components: cosmic and terrestrial. Previous versions of the background.dat file did notmore » provide any way to separate these components. With Rel. 4 of this file in 2015, two new columns were added that provide the energy grid and differential cosmic photon flux separately from the total photon flux. Here we show that the cosmic photon flux component can now be scaled independently and combined with the terrestrial component to form the total photon flux at a user-specified elevation in MCNP6.« less

  9. Conversion coefficients for determination of dispersed photon dose during radiotherapy: NRUrad input code for MCNP.

    PubMed

    Shahmohammadi Beni, Mehrdad; Ng, C Y P; Krstic, D; Nikezic, D; Yu, K N

    2017-01-01

    Radiotherapy is a common cancer treatment module, where a certain amount of dose will be delivered to the targeted organ. This is achieved usually by photons generated by linear accelerator units. However, radiation scattering within the patient's body and the surrounding environment will lead to dose dispersion to healthy tissues which are not targets of the primary radiation. Determination of the dispersed dose would be important for assessing the risk and biological consequences in different organs or tissues. In the present work, the concept of conversion coefficient (F) of the dispersed dose was developed, in which F = (Dd/Dt), where Dd was the dispersed dose in a non-targeted tissue and Dt is the absorbed dose in the targeted tissue. To quantify Dd and Dt, a comprehensive model was developed using the Monte Carlo N-Particle (MCNP) package to simulate the linear accelerator head, the human phantom, the treatment couch and the radiotherapy treatment room. The present work also demonstrated the feasibility and power of parallel computing through the use of the Message Passing Interface (MPI) version of MCNP5.

  10. Conversion coefficients for determination of dispersed photon dose during radiotherapy: NRUrad input code for MCNP

    PubMed Central

    Krstic, D.; Nikezic, D.

    2017-01-01

    Radiotherapy is a common cancer treatment module, where a certain amount of dose will be delivered to the targeted organ. This is achieved usually by photons generated by linear accelerator units. However, radiation scattering within the patient’s body and the surrounding environment will lead to dose dispersion to healthy tissues which are not targets of the primary radiation. Determination of the dispersed dose would be important for assessing the risk and biological consequences in different organs or tissues. In the present work, the concept of conversion coefficient (F) of the dispersed dose was developed, in which F = (Dd/Dt), where Dd was the dispersed dose in a non-targeted tissue and Dt is the absorbed dose in the targeted tissue. To quantify Dd and Dt, a comprehensive model was developed using the Monte Carlo N-Particle (MCNP) package to simulate the linear accelerator head, the human phantom, the treatment couch and the radiotherapy treatment room. The present work also demonstrated the feasibility and power of parallel computing through the use of the Message Passing Interface (MPI) version of MCNP5. PMID:28362837

  11. Background-Source Cosmic-Photon Elevation Scaling and Cosmic-Neutron/Photon Date Scaling in MCNP6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tutt, James Robert; Anderson, Casey Alan; McKinney, Gregg Walter

    Here, cosmic neutron and photon fluxes are known to scale exponentially with elevation. Consequently, cosmic neutron elevation scaling was implemented for use with the background-source option shortly after its introduction into MCNP6, whereby the neutron flux weight factor was adjusted by the elevation scaling factor when the user-specified elevation differed from the selected background.dat grid-point elevation. At the same time, an elevation scaling factor was suggested for the cosmic photon flux, however, cosmic photon elevation scaling is complicated by the fact that the photon background consists of two components: cosmic and terrestrial. Previous versions of the background.dat file did notmore » provide any way to separate these components. With Rel. 4 of this file in 2015, two new columns were added that provide the energy grid and differential cosmic photon flux separately from the total photon flux. Here we show that the cosmic photon flux component can now be scaled independently and combined with the terrestrial component to form the total photon flux at a user-specified elevation in MCNP6.« less

  12. Considerations of MCNP Monte Carlo code to be used as a radiotherapy treatment planning tool.

    PubMed

    Juste, B; Miro, R; Gallardo, S; Verdu, G; Santos, A

    2005-01-01

    The present work has simulated the photon and electron transport in a Theratron 780® (MDS Nordion)60Co radiotherapy unit, using the Monte Carlo transport code, MCNP (Monte Carlo N-Particle). This project explains mainly the different methodologies carried out to speedup calculations in order to apply this code efficiently in radiotherapy treatment planning.

  13. 10 CFR 32.3 - Maintenance of records.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Maintenance of records. 32.3 Section 32.3 Energy NUCLEAR REGULATORY COMMISSION SPECIFIC DOMESTIC LICENSES TO MANUFACTURE OR TRANSFER CERTAIN ITEMS CONTAINING BYPRODUCT MATERIAL § 32.3 Maintenance of records. Each record required by this part must be legible...

  14. 10 CFR 32.23 - Same: Safety criteria.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Same: Safety criteria. 32.23 Section 32.23 Energy NUCLEAR REGULATORY COMMISSION SPECIFIC DOMESTIC LICENSES TO MANUFACTURE OR TRANSFER CERTAIN ITEMS CONTAINING BYPRODUCT MATERIAL Exempt Concentrations and Items § 32.23 Same: Safety criteria. An applicant for a license...

  15. 10 CFR 32.27 - Same: Safety criteria.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Same: Safety criteria. 32.27 Section 32.27 Energy NUCLEAR REGULATORY COMMISSION SPECIFIC DOMESTIC LICENSES TO MANUFACTURE OR TRANSFER CERTAIN ITEMS CONTAINING BYPRODUCT MATERIAL Exempt Concentrations and Items § 32.27 Same: Safety criteria. An applicant for a license...

  16. 10 CFR 32.3 - Maintenance of records.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Maintenance of records. 32.3 Section 32.3 Energy NUCLEAR REGULATORY COMMISSION SPECIFIC DOMESTIC LICENSES TO MANUFACTURE OR TRANSFER CERTAIN ITEMS CONTAINING BYPRODUCT MATERIAL § 32.3 Maintenance of records. Each record required by this part must be legible...

  17. Validation of MCNP NPP Activation Simulations for Decommissioning Studies by Analysis of NPP Neutron Activation Foil Measurement Campaigns

    NASA Astrophysics Data System (ADS)

    Volmert, Ben; Pantelias, Manuel; Mutnuru, R. K.; Neukaeter, Erwin; Bitterli, Beat

    2016-02-01

    In this paper, an overview of the Swiss Nuclear Power Plant (NPP) activation methodology is presented and the work towards its validation by in-situ NPP foil irradiation campaigns is outlined. Nuclear Research and consultancy Group (NRG) in The Netherlands has been given the task of performing the corresponding neutron metrology. For this purpose, small Aluminium boxes containing a set of circular-shaped neutron activation foils have been prepared. After being irradiated for one complete reactor cycle, the sets have been successfully retrieved, followed by gamma-spectrometric measurements of the individual foils at NRG. Along with the individual activities of the foils, the reaction rates and thermal, intermediate and fast neutron fluence rates at the foil locations have been determined. These determinations include appropriate corrections for gamma self-absorption and neutron self-shielding as well as corresponding measurement uncertainties. The comparison of the NPP Monte Carlo calculations with the results of the foil measurements is done by using an individual generic MCNP model functioning as an interface and allowing the simulation of individual foil activation by predetermined neutron spectra. To summarize, the comparison between calculation and measurement serve as a sound validation of the Swiss NPP activation methodology by demonstrating a satisfying agreement between measurement and calculation. Finally, the validation offers a chance for further improvements of the existing NPP models by ensuing calibration and/or modelling optimizations for key components and structures.

  18. SU-F-T-140: Assessment of the Proton Boron Fusion Reaction for Practical Radiation Therapy Applications Using MCNP6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adam, D; Bednarz, B

    Purpose: The proton boron fusion reaction is a reaction that describes the creation of three alpha particles as the result of the interaction of a proton incident upon a 11B target. Theoretically, the proton boron fusion reaction is a desirable reaction for radiation therapy applications in that, with the appropriate boron delivery agent, it could potentially combine the localized dose delivery protons exhibit (Bragg peak) and the local deposition of high LET alpha particles in cancerous sites. Previous efforts have shown significant dose enhancement using the proton boron fusion reaction; the overarching purpose of this work is an attempt tomore » validate previous Monte Carlo results of the proton boron fusion reaction. Methods: The proton boron fusion reaction, 11B(p, 3α), is investigated using MCNP6 to assess the viability for potential use in radiation therapy. Simple simulations of a proton pencil beam incident upon both a water phantom and a water phantom with an axial region containing 100ppm boron were modeled using MCNP6 in order to determine the extent of the impact boron had upon the calculated energy deposition. Results: The maximum dose increase calculated was 0.026% for the incident 250 MeV proton beam scenario. The MCNP simulations performed demonstrated that the proton boron fusion reaction rate at clinically relevant boron concentrations was too small in order to have any measurable impact on the absorbed dose. Conclusion: For all MCNP6 simulations conducted, the increase of absorbed dose of a simple water phantom due to the 11B(p, 3α) reaction was found to be inconsequential. In addition, it was determined that there are no good evaluations of the 11B(p, 3α) reaction for use in MCNPX/6 and further work should be conducted in cross section evaluations in order to definitively evaluate the feasibility of the proton boron fusion reaction for use in radiation therapy applications.« less

  19. 10 CFR 60.32 - Conditions of construction authorization.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Conditions of construction authorization. 60.32 Section 60.32 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN GEOLOGIC REPOSITORIES Licenses Construction Authorization § 60.32 Conditions of construction authorization...

  20. 10 CFR 60.32 - Conditions of construction authorization.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Conditions of construction authorization. 60.32 Section 60.32 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN GEOLOGIC REPOSITORIES Licenses Construction Authorization § 60.32 Conditions of construction authorization...

  1. 10 CFR 60.32 - Conditions of construction authorization.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Conditions of construction authorization. 60.32 Section 60.32 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN GEOLOGIC REPOSITORIES Licenses Construction Authorization § 60.32 Conditions of construction authorization...

  2. 10 CFR 60.32 - Conditions of construction authorization.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Conditions of construction authorization. 60.32 Section 60.32 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN GEOLOGIC REPOSITORIES Licenses Construction Authorization § 60.32 Conditions of construction authorization...

  3. 32 CFR 223.1 - Purpose.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... DEFENSE UNCLASSIFIED CONTROLLED NUCLEAR INFORMATION (DOD UCNI) § 223.1 Purpose. This part implements 10 U... referred to as “the Department of Defense Unclassified Controlled Nuclear Information (DoD UCNI),” to... 32 National Defense 2 2011-07-01 2011-07-01 false Purpose. 223.1 Section 223.1 National Defense...

  4. Monte Carlo simulation of x-ray spectra in diagnostic radiology and mammography using MCNP4C

    NASA Astrophysics Data System (ADS)

    Ay, M. R.; Shahriari, M.; Sarkar, S.; Adib, M.; Zaidi, H.

    2004-11-01

    The general purpose Monte Carlo N-particle radiation transport computer code (MCNP4C) was used for the simulation of x-ray spectra in diagnostic radiology and mammography. The electrons were transported until they slow down and stop in the target. Both bremsstrahlung and characteristic x-ray production were considered in this work. We focus on the simulation of various target/filter combinations to investigate the effect of tube voltage, target material and filter thickness on x-ray spectra in the diagnostic radiology and mammography energy ranges. The simulated x-ray spectra were compared with experimental measurements and spectra calculated by IPEM report number 78. In addition, the anode heel effect and off-axis x-ray spectra were assessed for different anode angles and target materials and the results were compared with EGS4-based Monte Carlo simulations and measured data. Quantitative evaluation of the differences between our Monte Carlo simulated and comparison spectra was performed using student's t-test statistical analysis. Generally, there is a good agreement between the simulated x-ray and comparison spectra, although there are systematic differences between the simulated and reference spectra especially in the K-characteristic x-rays intensity. Nevertheless, no statistically significant differences have been observed between IPEM spectra and the simulated spectra. It has been shown that the difference between MCNP simulated spectra and IPEM spectra in the low energy range is the result of the overestimation of characteristic photons following the normalization procedure. The transmission curves produced by MCNP4C have good agreement with the IPEM report especially for tube voltages of 50 kV and 80 kV. The systematic discrepancy for higher tube voltages is the result of systematic differences between the corresponding spectra.

  5. A comparison of the COG and MCNP codes in computational neutron capture therapy modeling, Part I: boron neutron capture therapy models.

    PubMed

    Culbertson, C N; Wangerin, K; Ghandourah, E; Jevremovic, T

    2005-08-01

    The goal of this study was to evaluate the COG Monte Carlo radiation transport code, developed and tested by Lawrence Livermore National Laboratory, for neutron capture therapy related modeling. A boron neutron capture therapy model was analyzed comparing COG calculational results to results from the widely used MCNP4B (Monte Carlo N-Particle) transport code. The approach for computing neutron fluence rate and each dose component relevant in boron neutron capture therapy is described, and calculated values are shown in detail. The differences between the COG and MCNP predictions are qualified and quantified. The differences are generally small and suggest that the COG code can be applied for BNCT research related problems.

  6. 10 CFR 13.32 - Location of hearing.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Location of hearing. 13.32 Section 13.32 Energy NUCLEAR REGULATORY COMMISSION PROGRAM FRAUD CIVIL REMEDIES § 13.32 Location of hearing. (a) The hearing may be held... shall have the opportunity to present argument with respect to the location of the hearing. (c) The...

  7. 10 CFR 32.56 - Same: Material transfer reports.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Same: Material transfer reports. 32.56 Section 32.56 Energy NUCLEAR REGULATORY COMMISSION SPECIFIC DOMESTIC LICENSES TO MANUFACTURE OR TRANSFER CERTAIN ITEMS CONTAINING BYPRODUCT MATERIAL Generally Licensed Items § 32.56 Same: Material transfer reports. Each person...

  8. 10 CFR 32.56 - Same: Material transfer reports.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Same: Material transfer reports. 32.56 Section 32.56 Energy NUCLEAR REGULATORY COMMISSION SPECIFIC DOMESTIC LICENSES TO MANUFACTURE OR TRANSFER CERTAIN ITEMS CONTAINING BYPRODUCT MATERIAL Generally Licensed Items § 32.56 Same: Material transfer reports. Each person...

  9. 10 CFR 63.32 - Conditions of construction authorization.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Conditions of construction authorization. 63.32 Section 63.32 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA Licenses Construction Authorization § 63.32 Conditions of...

  10. 10 CFR 63.32 - Conditions of construction authorization.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Conditions of construction authorization. 63.32 Section 63.32 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA Licenses Construction Authorization § 63.32 Conditions of...

  11. 10 CFR 63.32 - Conditions of construction authorization.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Conditions of construction authorization. 63.32 Section 63.32 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA Licenses Construction Authorization § 63.32 Conditions of...

  12. 10 CFR 63.32 - Conditions of construction authorization.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Conditions of construction authorization. 63.32 Section 63.32 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA Licenses Construction Authorization § 63.32 Conditions of...

  13. 10 CFR 61.32 - Facility information and verification.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Facility information and verification. 61.32 Section 61.32 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Licenses Us/iaea Safeguards Agreement § 61.32 Facility information and verification. (a) In...

  14. 10 CFR 61.32 - Facility information and verification.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Facility information and verification. 61.32 Section 61.32 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Licenses Us/iaea Safeguards Agreement § 61.32 Facility information and verification. (a) In...

  15. 10 CFR 61.32 - Facility information and verification.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Facility information and verification. 61.32 Section 61.32 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Licenses Us/iaea Safeguards Agreement § 61.32 Facility information and verification. (a) In...

  16. Assessment of background hydrogen by the Monte Carlo computer code MCNP-4A during measurements of total body nitrogen.

    PubMed

    Ryde, S J; al-Agel, F A; Evans, C J; Hancock, D A

    2000-05-01

    The use of a hydrogen internal standard to enable the estimation of absolute mass during measurement of total body nitrogen by in vivo neutron activation is an established technique. Central to the technique is a determination of the H prompt gamma ray counts arising from the subject. In practice, interference counts from other sources--e.g., neutron shielding--are included. This study reports use of the Monte Carlo computer code, MCNP-4A, to investigate the interference counts arising from shielding both with and without a phantom containing a urea solution. Over a range of phantom size (depth 5 to 30 cm, width 20 to 40 cm), the counts arising from shielding increased by between 4% and 32% compared with the counts without a phantom. For any given depth, the counts increased approximately linearly with width. For any given width, there was little increase for depths exceeding 15 centimeters. The shielding counts comprised between 15% and 26% of those arising from the urea phantom. These results, although specific to the Swansea apparatus, suggest that extraneous hydrogen counts can be considerable and depend strongly on the subject's size.

  17. Inter-comparison of Dose Distributions Calculated by FLUKA, GEANT4, MCNP, and PHITS for Proton Therapy

    NASA Astrophysics Data System (ADS)

    Yang, Zi-Yi; Tsai, Pi-En; Lee, Shao-Chun; Liu, Yen-Chiang; Chen, Chin-Cheng; Sato, Tatsuhiko; Sheu, Rong-Jiun

    2017-09-01

    The dose distributions from proton pencil beam scanning were calculated by FLUKA, GEANT4, MCNP, and PHITS, in order to investigate their applicability in proton radiotherapy. The first studied case was the integrated depth dose curves (IDDCs), respectively from a 100 and a 226-MeV proton pencil beam impinging a water phantom. The calculated IDDCs agree with each other as long as each code employs 75 eV for the ionization potential of water. The second case considered a similar condition of the first case but with proton energies in a Gaussian distribution. The comparison to the measurement indicates the inter-code differences might not only due to different stopping power but also the nuclear physics models. How the physics parameter setting affect the computation time was also discussed. In the third case, the applicability of each code for pencil beam scanning was confirmed by delivering a uniform volumetric dose distribution based on the treatment plan, and the results showed general agreement between each codes, the treatment plan, and the measurement, except that some deviations were found in the penumbra region. This study has demonstrated that the selected codes are all capable of performing dose calculations for therapeutic scanning proton beams with proper physics settings.

  18. Zeeman perturbed nuclear quadrupole spin echo envelope modulations for spin 3/2 nuclei in polycrystalline specimens

    NASA Astrophysics Data System (ADS)

    Ramachandran, R.; Narasimhan, P. T.

    The results of theoretical and experimental studies of Zeeman-perturbed nuclear quadrupole spin echo envelope modulations (ZSEEM) for spin 3/2 nuclei in polycrystalline specimens are presented. The response of the Zeeman-perturbed spin ensemble to resonant two pulse excitations has been calculated using the density matrix formalism. The theoretical calculation assumes a parallel orientation of the external r.f. and static Zeeman fields and an arbitrary orientation of these fields to the principal axes system of the electric field gradient. A numerical powder averaging procedure has been adopted to simulate the response of the polycrystalline specimens. Using a coherent pulsed nuclear quadrupole resonance spectrometer the ZSEEM patterns of the 35Cl nuclei have been recorded in polycrystalline specimens of potassium chlorate, barium chlorate, mercuric chloride (two sites) and antimony trichloride (two sites) using the π/2-τ-π/2 sequence. The theoretical and experimental ZSEEM patterns have been compared. In the case of mercuric chloride, the experimental 35Cl ZSEEM patterns are found to be nearly identical for the two sites and correspond to a near-zero value of the asymmetry parameter, η, of the electric field gradient tensor. The difference in the η values for the two 35Cl sites (η ˜0·06 and η˜0·16) in antimony trichloride is clearly reflected in the experimental and theoretical ZSEEM patterns. The present study indicates the feasibility of evaluating η for spin 3/2 nuclei in polycrystalline specimens from ZSEEM investigations.

  19. Charged particle spectra in 32S + 32S interactions at 200 GeV/nucleon from CCD-imaged nuclear collisions in a streamer chamber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teitelbaum, Lawrence Paul

    1992-04-01

    We have measured the transverse momentum spectra 1/p T dN/dp T and rapidity distributions dN/dy of negatively charged hadrons and protons for central 32S + 32S interactions at 200 GeV/nucleon incident energy. The negative hadron dN/dy distribution is too broad to be accounted for by thermal models which demand isotropic particle emission. It is compatible with models which emphasize longitudinal dynamics, by either a particle production mechanism, as in the Lund fragmentation model, or by introducing one-dimensional hydrodynamic expansion, as in the Landau model. The proton dN/dy distribution, although showing no evidence for a peak in the target fragmentation region,more » exhibits limited nuclear stopping power. We estimate the mean rapidity shift of participant target protons to be Δy ~ 1.5, greater than observed for pp collisions, less than measured in central pA collisions, and much less than would be observed for a single equilibrated fireball at midrapidity. Both the negative hadron and proton dN/dy distributions can be fit by a symmetric Landau two-fireball model. Although the spectrum possesses a two-component structure, a comparison to pp data at comparable center-of-mass energy shows no evidence for enhanced production at low p T. The two-component structure can be explained by a thermal and chemical equilibrium model which takes into account the kinematics of resonance decay. Using an expression motivated by longitudinal expansion we find the same temperature for both the protons and negative hadrons at freezeout, T f ~ 170 MeV. We conclude that the charged particle spectra of negative hadrons and protons can be accommodated in a simple collision picture of limited nuclear stopping, evolution through a state of thermal equilibrium, followed by longitudinal hydrodynamic expansion until freezeout.« less

  20. User Manual for Whisper-1.1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Forrest B.; Rising, Michael Evan; Alwin, Jennifer Louise

    2017-01-26

    Whisper is a statistical analysis package developed in 2014 to support nuclear criticality safety (NCS) validation [1-3]. It uses the sensitivity profile data for an application as computed by MCNP6 [4-6] along with covariance files [7,8] for the nuclear data to determine a baseline upper-subcritical-limit (USL) for the application. Whisper version 1.0 was first developed and used at LANL in 2014 [3]. During 2015- 2016, Whisper was updated to version 1.1 and is to be included with the upcoming release of MCNP6.2. This document describes the user input and options for running whisper-1.1, including 2 perl utility scripts that simplifymore » ordinary NCS work, whisper_mcnp.pl and whisper_usl.pl. For many detailed references on the theory, applications, nuclear data & covariances, SQA, verification-validation, adjointbased methods for sensitivity-uncertainty analysis, and more – see the Whisper – NCS Validation section of the MCNP Reference Collection at mcnp.lanl.gov. There are currently over 50 Whisper reference documents available.« less

  1. Estimation of coolant void reactivity for CANDU-NG lattice using DRAGON and validation using MCNP5 and TRIPOLI-4.3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karthikeyan, R.; Tellier, R. L.; Hebert, A.

    2006-07-01

    The Coolant Void Reactivity (CVR) is an important safety parameter that needs to be estimated at the design stage of a nuclear reactor. It helps to have an a priori knowledge of the behavior of the system during a transient initiated by the loss of coolant. In the present paper, we have attempted to estimate the CVR for a CANDU New Generation (CANDU-NG) lattice, as proposed at an early stage of the Advanced CANDU Reactor (ACR) development. We have attempted to estimate the CVR with development version of the code DRAGON, using the method of characteristics. DRAGON has several advancedmore » self-shielding models incorporated in it, each of them compatible with the method of characteristics. This study will bring to focus the performance of these self-shielding models, especially when there is voiding of such a tight lattice. We have also performed assembly calculations in 2 x 2 pattern for the CANDU-NG fuel, with special emphasis on checkerboard voiding. The results obtained have been validated against Monte Carlo codes MCNP5 and TRIPOLI-4.3. (authors)« less

  2. Visualization of nuclear particle trajectories in nuclear oil-well logging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Case, C.R.; Chiaramonte, J.M.

    Nuclear oil-well logging measures specific properties of subsurface geological formations as a function of depth in the well. The knowledge gained is used to evaluate the hydrocarbon potential of the surrounding oil field. The measurements are made by lowering an instrument package into an oil well and slowly extracting it at a constant speed. During the extraction phase, neutrons or gamma rays are emitted from the tool, interact with the formation, and scatter back to the detectors located within the tool. Even though only a small percentage of the emitted particles ever reach the detectors, mathematical modeling has been verymore » successful in the accurate prediction of these detector responses. The two dominant methods used to model these devices have been the two-dimensional discrete ordinates method and the three-dimensional Monte Carlo method has routinely been used to investigate the response characteristics of nuclear tools. A special Los Alamos National Laboratory version of their standard MCNP Monte carlo code retains the details of each particle history of later viewing within SABRINA, a companion three-dimensional geometry modeling and debugging code.« less

  3. ZEPrompt: An Algorithm for Rapid Estimation of Building Attenuation for Prompt Radiation from a Nuclear Detonation

    DTIC Science & Technology

    2014-01-01

    and 50 kT, to within 30% of first-principles code ( MCNP ) for complicated cities and 10% for simpler cities. 15. SUBJECT TERMS Radiation Transport...Use of MCNP for Dose Calculations .................................................................... 3 2.3 MCNP Open-Field Absorbed Dose...Calculations .................................................. 4 2.4 The MCNP Urban Model

  4. EBR-II Static Neutronic Calculations by PHISICS / MCNP6 codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paolo Balestra; Carlo Parisi; Andrea Alfonsi

    2016-02-01

    The International Atomic Energy Agency (IAEA) launched a Coordinated Research Project (CRP) on the Shutdown Heat Removal Tests (SHRT) performed in the '80s at the Experimental fast Breeder Reactor EBR-II, USA. The scope of the CRP is to improve and validate the simulation tools for the study and the design of the liquid metal cooled fast reactors. Moreover, training of the next generation of fast reactor analysts is being also considered the other scope of the CRP. In this framework, a static neutronic model was developed, using state-of-the art neutron transport codes like SCALE/PHISICS (deterministic solution) and MCNP6 (stochastic solution).more » Comparison between both solutions is briefly illustrated in this summary.« less

  5. Epstein–Barr virus glycoprotein gM can interact with the cellular protein p32 and knockdown of p32 impairs virus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Changotra, Harish; Turk, Susan M.; Artigues, Antonio

    The Epstein–Barr virus glycoprotein complex gMgN has been implicated in assembly and release of fully enveloped virus, although the precise role that it plays has not been elucidated. We report here that the long predicted cytoplasmic tail of gM is not required for complex formation and that it interacts with the cellular protein p32, which has been reported to be involved in nuclear egress of human cytomegalovirus and herpes simplex virus. Although redistribution of p32 and colocalization with gM was not observed in virus infected cells, knockdown of p32 expression by siRNA or lentivirus-delivered shRNA recapitulated the phenotype of amore » virus lacking expression of gNgM. A proportion of virus released from cells sedimented with characteristics of virus lacking an intact envelope and there was an increase in virus trapped in nuclear condensed chromatin. The observations suggest the possibility that p32 may also be involved in nuclear egress of Epstein–Barr virus. - Highlights: • The predicted cytoplasmic tail of gM is not required to complex with gN. • Cellular p32 can interact with the predicted cytoplasmic tail of EBV gM. • Knockdown of p32 recapitulates the phenotype of virus lacking the gNgM complex.« less

  6. A comparison between EGS4 and MCNP computer modeling of an in vivo X-ray fluorescence system.

    PubMed

    Al-Ghorabie, F H; Natto, S S; Al-Lyhiani, S H

    2001-03-01

    The Monte Carlo computer codes EGS4 and MCNP were used to develop a theoretical model of a 180 degrees geometry in vivo X-ray fluorescence system for the measurement of platinum concentration in head and neck tumors. The model included specification of the photon source, collimators, phantoms and detector. Theoretical results were compared and evaluated against X-ray fluorescence data obtained experimentally from an existing system developed by the Swansea In Vivo Analysis and Cancer Research Group. The EGS4 results agreed well with the MCNP results. However, agreement between the measured spectral shape obtained using the experimental X-ray fluorescence system and the simulated spectral shape obtained using the two Monte Carlo codes was relatively poor. The main reason for the disagreement between the results arises from the basic assumptions which the two codes used in their calculations. Both codes assume a "free" electron model for Compton interactions. This assumption will underestimate the results and invalidates any predicted and experimental spectra when compared with each other.

  7. 10 CFR 32.201 - Serialization of nationally tracked sources.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Serialization of nationally tracked sources. 32.201 Section 32.201 Energy NUCLEAR REGULATORY COMMISSION SPECIFIC DOMESTIC LICENSES TO MANUFACTURE OR TRANSFER CERTAIN ITEMS CONTAINING BYPRODUCT MATERIAL Specifically Licensed Items § 32.201 Serialization of...

  8. 10 CFR 32.201 - Serialization of nationally tracked sources.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Serialization of nationally tracked sources. 32.201 Section 32.201 Energy NUCLEAR REGULATORY COMMISSION SPECIFIC DOMESTIC LICENSES TO MANUFACTURE OR TRANSFER CERTAIN ITEMS CONTAINING BYPRODUCT MATERIAL Specifically Licensed Items § 32.201 Serialization of...

  9. INDIVIDUAL DOSIMETRY IN DISPOSAL REPOSITORY OF HEAT-GENERATING NUCLEAR WASTE.

    PubMed

    Pang, Bo; Saurí Suárez, Héctor; Becker, Frank

    2016-09-01

    Certain working scenarios in a disposal facility of heat-generating nuclear waste might lead to an enhanced level of radiation exposure for workers in such facilities. Hence, a realistic estimation of the personal dose during individual working scenarios is desired. In this study, the general-purpose Monte Carlo N-Particle code MCNP6 (Pelowitz, D. B. (ed). MCNP6 user manual LA-CP-13-00634, Rev. 0 (2013)) was applied to simulate a representative radiation field in a disposal facility. A tool to estimate the personal dose was then proposed by taking into account the influence of individual motion sequences during working scenarios. As basis for this approach, a movable whole-body phantom was developed to describe individual body gestures of the workers during motion sequences. In this study, the proposed method was applied to the German concept of geological disposal in rock salt. The feasibility of the proposed approach was demonstrated with an example of working scenario in an emplacement drift of a rock salt mine. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. New Tools to Prepare ACE Cross-section Files for MCNP Analytic Test Problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Forrest B.

    Monte Carlo calculations using one-group cross sections, multigroup cross sections, or simple continuous energy cross sections are often used to: (1) verify production codes against known analytical solutions, (2) verify new methods and algorithms that do not involve detailed collision physics, (3) compare Monte Carlo calculation methods with deterministic methods, and (4) teach fundamentals to students. In this work we describe 2 new tools for preparing the ACE cross-section files to be used by MCNP ® for these analytic test problems, simple_ace.pl and simple_ace_mg.pl.

  11. Calculation of the effective dose from natural radioactivity in soil using MCNP code.

    PubMed

    Krstic, D; Nikezic, D

    2010-01-01

    Effective dose delivered by photon emitted from natural radioactivity in soil was calculated in this work. Calculations have been done for the most common natural radionuclides in soil (238)U, (232)Th series and (40)K. A ORNL human phantoms and the Monte Carlo transport code MCNP-4B were employed to calculate the energy deposited in all organs. The effective dose was calculated according to ICRP 74 recommendations. Conversion factors of effective dose per air kerma were determined. Results obtained here were compared with other authors. Copyright 2009 Elsevier Ltd. All rights reserved.

  12. 10 CFR 32.1 - Purpose and scope.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Purpose and scope. 32.1 Section 32.1 Energy NUCLEAR REGULATORY COMMISSION SPECIFIC DOMESTIC LICENSES TO MANUFACTURE OR TRANSFER CERTAIN ITEMS CONTAINING... specific licenses to persons who manufacture or initially transfer items containing byproduct material for...

  13. Nuclear Involvement in the Appearance of a Chloroplast-Encoded 32,000 Dalton Thylakoid Membrane Polypeptide Integral to the Photosystem II Complex 1

    PubMed Central

    Leto, Kenneth J.; Keresztes, Aron; Arntzen, Charles J.

    1982-01-01

    The genetic locus for the high chlorophyll fluorescent photosystem II-deficient maize mutant hcf*-3 has been definitively located to the nuclear genome. Fluorography of lamellar polypeptides labeled with [35S]methionine in vivo revealed the specific loss of a heavily labeled 32,000 dalton thylakoid membrane polypeptide as well as its chloroplast encoded precursor species at 34,000 daltons. Examination of freeze-fractured mesophyll and bundle sheath thylakoids from hcf*-3 revealed that both plastid types lacked the large EFs particles believed to consist of the photosystem II reaction center-core complex and associated light harvesting chlorophyll-proteins. The present evidence suggests that the synthesis or turnover/integration of the chloroplast-encoded 34,000 to 32,000 dalton polypeptide is under nuclear control, and that these polyipeptides are integral components of photosystem II which may be required for the assembly or structural stabilization of newly formed photosystem II reaction centers in both mesophyll and bundle sheath chloroplasts. Images PMID:16662421

  14. Calculation of self–shielding factor for neutron activation experiments using GEANT4 and MCNP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romero–Barrientos, Jaime, E-mail: jaromero@ing.uchile.cl; Universidad de Chile, DFI, Facultad de Ciencias Físicas Y Matemáticas, Avenida Blanco Encalada 2008, Santiago; Molina, F.

    2016-07-07

    The neutron self–shielding factor G as a function of the neutron energy was obtained for 14 pure metallic samples in 1000 isolethargic energy bins from 1·10{sup −5}eV to 2·10{sup 7}eV using Monte Carlo simulations in GEANT4 and MCNP6. The comparison of these two Monte Carlo codes shows small differences in the final self–shielding factor mostly due to the different cross section databases that each program uses.

  15. SUMCOR: Cascade summing correction for volumetric sources applying MCNP6.

    PubMed

    Dias, M S; Semmler, R; Moreira, D S; de Menezes, M O; Barros, L F; Ribeiro, R V; Koskinas, M F

    2018-04-01

    The main features of code SUMCOR developed for cascade summing correction for volumetric sources are described. MCNP6 is used to track histories starting from individual points inside the volumetric source, for each set of cascade transitions from the radionuclide. Total and FEP efficiencies are calculated for all gamma-rays and X-rays involved in the cascade. Cascade summing correction is based on the matrix formalism developed by Semkow et al. (1990). Results are presented applying the experimental data sent to the participants of two intercomparisons organized by the ICRM-GSWG and coordinated by Dr. Marie-Cristine Lépy from the Laboratoire National Henri Becquerel (LNE-LNHB), CEA, in 2008 and 2010, respectively and compared to the other participants in the intercomparisons. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. 10 CFR 1.32 - Office of the Executive Director for Operations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... of Nuclear Reactor Regulation, the Office of New Reactors, the Office of Nuclear Material Safety and... Section 1.32 Energy NUCLEAR REGULATORY COMMISSION STATEMENT OF ORGANIZATION AND GENERAL INFORMATION... Nuclear Regulatory Research, the Office of Nuclear Security and Incident Response, and the NRC Regional...

  17. 10 CFR 1.32 - Office of the Executive Director for Operations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... of Nuclear Reactor Regulation, the Office of New Reactors, the Office of Nuclear Material Safety and... Section 1.32 Energy NUCLEAR REGULATORY COMMISSION STATEMENT OF ORGANIZATION AND GENERAL INFORMATION... Nuclear Regulatory Research, the Office of Nuclear Security and Incident Response, and the NRC Regional...

  18. 10 CFR 1.32 - Office of the Executive Director for Operations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... of Nuclear Reactor Regulation, the Office of New Reactors, the Office of Nuclear Material Safety and... Section 1.32 Energy NUCLEAR REGULATORY COMMISSION STATEMENT OF ORGANIZATION AND GENERAL INFORMATION... Nuclear Regulatory Research, the Office of Nuclear Security and Incident Response, and the NRC Regional...

  19. 10 CFR 1.32 - Office of the Executive Director for Operations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... of Nuclear Reactor Regulation, the Office of New Reactors, the Office of Nuclear Material Safety and... Section 1.32 Energy NUCLEAR REGULATORY COMMISSION STATEMENT OF ORGANIZATION AND GENERAL INFORMATION... Nuclear Regulatory Research, the Office of Nuclear Security and Incident Response, and the NRC Regional...

  20. Feynman variance for neutrons emitted from photo-fission initiated fission chains - a systematic simulation for selected speacal nuclear materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soltz, R. A.; Danagoulian, A.; Sheets, S.

    Theoretical calculations indicate that the value of the Feynman variance, Y2F for the emitted distribution of neutrons from ssionable exhibits a strong monotonic de- pendence on a the multiplication, M, of a quantity of special nuclear material. In 2012 we performed a series of measurements at the Passport Inc. facility using a 9- MeV bremsstrahlung CW beam of photons incident on small quantities of uranium with liquid scintillator detectors. For the set of objects studies we observed deviations in the expected monotonic dependence, and these deviations were later con rmed by MCNP simulations. In this report, we modify the theorymore » to account for the contri- bution from the initial photo- ssion and benchmark the new theory with a series of MCNP simulations on DU, LEU, and HEU objects spanning a wide range of masses and multiplication values.« less

  1. 10 CFR 32.21a - Same: Conditions of license.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Same: Conditions of license. 32.21a Section 32.21a Energy NUCLEAR REGULATORY COMMISSION SPECIFIC DOMESTIC LICENSES TO MANUFACTURE OR TRANSFER CERTAIN ITEMS CONTAINING BYPRODUCT MATERIAL Exempt Concentrations and Items § 32.21a Same: Conditions of license. Each...

  2. 10 CFR 32.21a - Same: Conditions of license.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Same: Conditions of license. 32.21a Section 32.21a Energy NUCLEAR REGULATORY COMMISSION SPECIFIC DOMESTIC LICENSES TO MANUFACTURE OR TRANSFER CERTAIN ITEMS CONTAINING BYPRODUCT MATERIAL Exempt Concentrations and Items § 32.21a Same: Conditions of license. Each...

  3. 10 CFR 32.23 - Same: Safety criteria.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Same: Safety criteria. 32.23 Section 32.23 Energy NUCLEAR REGULATORY COMMISSION SPECIFIC DOMESTIC LICENSES TO MANUFACTURE OR TRANSFER CERTAIN ITEMS CONTAINING..., shielding, or other safety features of the product from wear and abuse likely to occur in normal handling...

  4. 10 CFR 32.27 - Same: Safety criteria.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Same: Safety criteria. 32.27 Section 32.27 Energy NUCLEAR REGULATORY COMMISSION SPECIFIC DOMESTIC LICENSES TO MANUFACTURE OR TRANSFER CERTAIN ITEMS CONTAINING..., shielding, or other safety features of the product from wear and abuse likely to occur in normal handling...

  5. DNDO Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liegey, Lauren Rene; Wilcox, Trevor; Mckinney, Gregg Walter

    2015-08-07

    My internship program was the Domestic Nuclear Detection Office Summer Internship Program. I worked at Los Alamos National Laboratory with Trevor A. Wilcox and Gregg W. McKinney in the NEN-5 group. My project title was “MCNP Physical Model Interoperability & Validation”. The goal of my project was to write a program to predict the solar modulation parameter for dates in the future and then implement it into MCNP6. This update to MCNP6 can be used to calculate the background more precisely, which is an important factor in being able to detect Special Nuclear Material. We will share our work inmore » a published American Nuclear Society (ANS) paper, an ANS presentation, and a LANL student poster session. Through this project, I gained skills in programming, computing, and using MCNP. I also gained experience that will help me decide on a career or perhaps obtain employment in the future.« less

  6. Release Notes for Whisper-1.1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Forrest B.; Rising, Michael Evan; Alwin, Jennifer Louise

    Whisper is a statistical analysis package developed in 2014 to support nuclear criticality safety (NCS) validation [1-3]. It uses the sensitivity profile data for an application as computed by MCNP6 [4-6] along with covariance files [7,8] for the nuclear data to determine a baseline upper-subcritical-limit (USL) for the application. Whisper version 1.0 was first developed and used at LANL in 2014 [3]. During 2015-2016, Whisper was updated to version 1.1 [9] and is to be included with the upcoming release of MCNP6.2. This document describes the Whisper-1.1 package that will be included with the MCNP6.2 release during 2017. Specific detailsmore » are provided on the computer systems supported, the software quality assurance (SQA) procedures, installation, and testing. This document does not address other important topics, such as the importance of sensitivity-uncertainty (SU) methods to NCS validation, the theory underlying SU methodology, tutorials on the usage of MCNP-Whisper, practical approaches to using SU methodology to support and extend traditional validation, etc. There are over 50 documents included with Whisper-1.1 and available in the MCNP Reference Collection on the MCNP website (mcnp.lanl.gov) that address all of those topics and more. In this document, however, a complete bibliography of relevant MCNP-Whisper references is provided.« less

  7. Charged particle spectra in [sup 32]S + [sup 32]S interactions at 200 GeV/nucleon from CCD-imaged nuclear collisions in a streamer chamber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teitelbaum, L.P.

    1992-04-01

    We have measured the transverse momentum spectra 1/p[sub T] dN/dp[sub T] and rapidity distributions dN/dy of negatively charged hadrons and protons for central [sup 32]S + [sup 32]S interactions at 200 GeV/nucleon incident energy. The negative hadron dN/dy distribution is too broad to be accounted for by thermal models which demand isotropic particle emission. It is compatible with models which emphasize longitudinal dynamics, by either a particle production mechanism, as in the Lund fragmentation model, or by introducing one-dimensional hydrodynamic expansion, as in the Landau model. The proton dN/dy distribution, although showing no evidence for a peak in the targetmore » fragmentation region, exhibits limited nuclear stopping power. We estimate the mean rapidity shift of participant target protons to be [Delta]y [approximately] 1.5, greater than observed for pp collisions, less than measured in central pA collisions, and much less than would be observed for a single equilibrated fireball at midrapidity. Both the negative hadron and proton dN/dy distributions can be fit by a symmetric Landau two-fireball model. Although the spectrum possesses a two-component structure, a comparison to pp data at comparable center-of-mass energy shows no evidence for enhanced production at low p[sub T]. The two-component structure can be explained by a thermal and chemical equilibrium model which takes into account the kinematics of resonance decay. Using an expression motivated by longitudinal expansion we find the same temperature for both the protons and negative hadrons at freezeout, T[sub f] [approximately] 170 MeV. We conclude that the charged particle spectra of negative hadrons and protons can be accommodated in a simple collision picture of limited nuclear stopping, evolution through a state of thermal equilibrium, followed by longitudinal hydrodynamic expansion until freezeout.« less

  8. Benchmarking study of the MCNP code against cold critical experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sitaraman, S.

    1991-01-01

    The purpose of this study was to benchmark the widely used Monte Carlo code MCNP against a set of cold critical experiments with a view to using the code as a means of independently verifying the performance of faster but less accurate Monte Carlo and deterministic codes. The experiments simulated consisted of both fast and thermal criticals as well as fuel in a variety of chemical forms. A standard set of benchmark cold critical experiments was modeled. These included the two fast experiments, GODIVA and JEZEBEL, the TRX metallic uranium thermal experiments, the Babcock and Wilcox oxide and mixed oxidemore » experiments, and the Oak Ridge National Laboratory (ORNL) and Pacific Northwest Laboratory (PNL) nitrate solution experiments. The principal case studied was a small critical experiment that was performed with boiling water reactor bundles.« less

  9. Fission products detection in irradiated TRIGA fuel by means of gamma spectroscopy and MCNP calculation.

    PubMed

    Cagnazzo, M; Borio di Tigliole, A; Böck, H; Villa, M

    2018-05-01

    Aim of this work was the detection of fission products activity distribution along the axial dimension of irradiated fuel elements (FEs) at the TRIGA Mark II research reactor of the Technische Universität (TU) Wien. The activity distribution was measured by means of a customized fuel gamma scanning device, which includes a vertical lifting system to move the fuel rod along its vertical axis. For each investigated FE, a gamma spectrum measurement was performed along the vertical axis, with steps of 1 cm, in order to determine the axial distribution of the fission products. After the fuel elements underwent a relatively short cooling down period, different fission products were detected. The activity concentration was determined by calibrating the gamma detector with a standard calibration source of known activity and by MCNP6 simulations for the evaluation of self-absorption and geometric effects. Given the specific TRIGA fuel composition, a correction procedure is developed and used in this work for the measurement of the fission product Zr 95 . This measurement campaign is part of a more extended project aiming at the modelling of the TU Wien TRIGA reactor by means of different calculation codes (MCNP6, Serpent): the experimental results presented in this paper will be subsequently used for the benchmark of the models developed with the calculation codes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. 10 CFR 32.52 - Same: material transfer reports and records.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Same: material transfer reports and records. 32.52 Section 32.52 Energy NUCLEAR REGULATORY COMMISSION SPECIFIC DOMESTIC LICENSES TO MANUFACTURE OR TRANSFER CERTAIN ITEMS CONTAINING BYPRODUCT MATERIAL Generally Licensed Items § 32.52 Same: material transfer...

  11. Use of integral experiments in support to the validation of JEFF-3.2 nuclear data evaluation

    NASA Astrophysics Data System (ADS)

    Leclaire, Nicolas; Cochet, Bertrand; Jinaphanh, Alexis; Haeck, Wim

    2017-09-01

    For many years now, IRSN has developed its own Monte Carlo continuous energy capability, which allows testing various nuclear data libraries. In that prospect, a validation database of 1136 experiments was built from cases used for the validation of the APOLLO2-MORET 5 multigroup route of the CRISTAL V2.0 package. In this paper, the keff obtained for more than 200 benchmarks using the JEFF-3.1.1 and JEFF-3.2 libraries are compared to benchmark keff values and main discrepancies are analyzed regarding the neutron spectrum. Special attention is paid on benchmarks for which the results have been highly modified between both JEFF-3 versions.

  12. Nuclear Technology Series. Course 32: Nondestructive Examination (NDE) Techniques II.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  13. 10 CFR 32.20 - Same: Records and material transfer reports.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Same: Records and material transfer reports. 32.20 Section 32.20 Energy NUCLEAR REGULATORY COMMISSION SPECIFIC DOMESTIC LICENSES TO MANUFACTURE OR TRANSFER... material transfer reports. (a) Each person licensed under § 32.18 shall maintain records of transfer of...

  14. 10 CFR 32.20 - Same: Records and material transfer reports.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Same: Records and material transfer reports. 32.20 Section 32.20 Energy NUCLEAR REGULATORY COMMISSION SPECIFIC DOMESTIC LICENSES TO MANUFACTURE OR TRANSFER... material transfer reports. (a) Each person licensed under § 32.18 shall maintain records of transfer of...

  15. 10 CFR 32.12 - Same: Records and material transfer reports.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Same: Records and material transfer reports. 32.12 Section 32.12 Energy NUCLEAR REGULATORY COMMISSION SPECIFIC DOMESTIC LICENSES TO MANUFACTURE OR TRANSFER... material transfer reports. (a) Each person licensed under § 32.11 shall maintain records of transfer of...

  16. Nuclear Thermal Rocket Simulation in NPSS

    NASA Technical Reports Server (NTRS)

    Belair, Michael L.; Sarmiento, Charles J.; Lavelle, Thomas M.

    2013-01-01

    Four nuclear thermal rocket (NTR) models have been created in the Numerical Propulsion System Simulation (NPSS) framework. The models are divided into two categories. One set is based upon the ZrC-graphite composite fuel element and tie tube-style reactor developed during the Nuclear Engine for Rocket Vehicle Application (NERVA) project in the late 1960s and early 1970s. The other reactor set is based upon a W-UO2 ceramic-metallic (CERMET) fuel element. Within each category, a small and a large thrust engine are modeled. The small engine models utilize RL-10 turbomachinery performance maps and have a thrust of approximately 33.4 kN (7,500 lbf ). The large engine models utilize scaled RL-60 turbomachinery performance maps and have a thrust of approximately 111.2 kN (25,000 lbf ). Power deposition profiles for each reactor were obtained from a detailed Monte Carlo N-Particle (MCNP5) model of the reactor cores. Performance factors such as thermodynamic state points, thrust, specific impulse, reactor power level, and maximum fuel temperature are analyzed for each engine design.

  17. Nuclear Thermal Rocket Simulation in NPSS

    NASA Technical Reports Server (NTRS)

    Belair, Michael L.; Sarmiento, Charles J.; Lavelle, Thomas L.

    2013-01-01

    Four nuclear thermal rocket (NTR) models have been created in the Numerical Propulsion System Simulation (NPSS) framework. The models are divided into two categories. One set is based upon the ZrC-graphite composite fuel element and tie tube-style reactor developed during the Nuclear Engine for Rocket Vehicle Application (NERVA) project in the late 1960s and early 1970s. The other reactor set is based upon a W-UO2 ceramic- metallic (CERMET) fuel element. Within each category, a small and a large thrust engine are modeled. The small engine models utilize RL-10 turbomachinery performance maps and have a thrust of approximately 33.4 kN (7,500 lbf ). The large engine models utilize scaled RL-60 turbomachinery performance maps and have a thrust of approximately 111.2 kN (25,000 lbf ). Power deposition profiles for each reactor were obtained from a detailed Monte Carlo N-Particle (MCNP5) model of the reactor cores. Performance factors such as thermodynamic state points, thrust, specific impulse, reactor power level, and maximum fuel temperature are analyzed for each engine design.

  18. 10 CFR 51.32 - Finding of no significant impact.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Finding of no significant impact. 51.32 Section 51.32 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) ENVIRONMENTAL PROTECTION REGULATIONS FOR DOMESTIC LICENSING AND RELATED REGULATORY FUNCTIONS National Environmental Policy Act-Regulations Implementing...

  19. MCNP-based computational model for the Leksell gamma knife.

    PubMed

    Trnka, Jiri; Novotny, Josef; Kluson, Jaroslav

    2007-01-01

    We have focused on the usage of MCNP code for calculation of Gamma Knife radiation field parameters with a homogenous polystyrene phantom. We have investigated several parameters of the Leksell Gamma Knife radiation field and compared the results with other studies based on EGS4 and PENELOPE code as well as the Leksell Gamma Knife treatment planning system Leksell GammaPlan (LGP). The current model describes all 201 radiation beams together and simulates all the sources in the same time. Within each beam, it considers the technical construction of the source, the source holder, collimator system, the spherical phantom, and surrounding material. We have calculated output factors for various sizes of scoring volumes, relative dose distributions along basic planes including linear dose profiles, integral doses in various volumes, and differential dose volume histograms. All the parameters have been calculated for each collimator size and for the isocentric configuration of the phantom. We have found the calculated output factors to be in agreement with other authors' works except the case of 4 mm collimator size, where averaging over the scoring volume and statistical uncertainties strongly influences the calculated results. In general, all the results are dependent on the choice of the scoring volume. The calculated linear dose profiles and relative dose distributions also match independent studies and the Leksell GammaPlan, but care must be taken about the fluctuations within the plateau, which can influence the normalization, and accuracy in determining the isocenter position, which is important for comparing different dose profiles. The calculated differential dose volume histograms and integral doses have been compared with data provided by the Leksell GammaPlan. The dose volume histograms are in good agreement as well as integral doses calculated in small calculation matrix volumes. However, deviations in integral doses up to 50% can be observed for large

  20. 10 CFR 32.55 - Same: Quality assurance; prohibition of transfer.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Same: Quality assurance; prohibition of transfer. 32.55 Section 32.55 Energy NUCLEAR REGULATORY COMMISSION SPECIFIC DOMESTIC LICENSES TO MANUFACTURE OR TRANSFER...; prohibition of transfer. (a) Each person licensed under § 32.53 shall visually inspect each device and shall...

  1. 10 CFR 32.13 - Same: Prohibition of introduction.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Same: Prohibition of introduction. 32.13 Section 32.13 Energy NUCLEAR REGULATORY COMMISSION SPECIFIC DOMESTIC LICENSES TO MANUFACTURE OR TRANSFER CERTAIN ITEMS... that it will be transferred to persons exempt under § 30.14 of this chapter or equivalent regulations...

  2. 10 CFR 32.110 - Acceptance sampling procedures under certain specific licenses.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Acceptance sampling procedures under certain specific licenses. 32.110 Section 32.110 Energy NUCLEAR REGULATORY COMMISSION SPECIFIC DOMESTIC LICENSES TO MANUFACTURE OR TRANSFER CERTAIN ITEMS CONTAINING BYPRODUCT MATERIAL Quality Control Sampling Procedures § 32...

  3. 10 CFR 32.110 - Acceptance sampling procedures under certain specific licenses.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Acceptance sampling procedures under certain specific licenses. 32.110 Section 32.110 Energy NUCLEAR REGULATORY COMMISSION SPECIFIC DOMESTIC LICENSES TO MANUFACTURE OR TRANSFER CERTAIN ITEMS CONTAINING BYPRODUCT MATERIAL Quality Control Sampling Procedures § 32...

  4. Impact of thorium based molten salt reactor on the closure of the nuclear fuel cycle

    NASA Astrophysics Data System (ADS)

    Jaradat, Safwan Qasim Mohammad

    Molten salt reactor (MSR) is one of six reactors selected by the Generation IV International Forum (GIF). The liquid fluoride thorium reactor (LFTR) is a MSR concept based on thorium fuel cycle. LFTR uses liquid fluoride salts as a nuclear fuel. It uses 232Th and 233U as the fertile and fissile materials, respectively. Fluoride salt of these nuclides is dissolved in a mixed carrier salt of lithium and beryllium (FLiBe). The objective of this research was to complete feasibility studies of a small commercial thermal LFTR. The focus was on neutronic calculations in order to prescribe core design parameter such as core size, fuel block pitch (p), fuel channel radius, fuel path, reflector thickness, fuel salt composition, and power. In order to achieve this objective, the applicability of Monte Carlo N-Particle Transport Code (MCNP) to MSR modeling was verified. Then, a prescription for conceptual small thermal reactor LFTR and relevant calculations were performed using MCNP to determine the main neutronic parameters of the core reactor. The MCNP code was used to study the reactor physics characteristics for the FUJI-U3 reactor. The results were then compared with the results obtained from the original FUJI-U3 using the reactor physics code SRAC95 and the burnup analysis code ORIPHY2. The results were comparable with each other. Based on the results, MCNP was found to be a reliable code to model a small thermal LFTR and study all the related reactor physics characteristics. The results of this study were promising and successful in demonstrating a prefatory small commercial LFTR design. The outcome of using a small core reactor with a diameter/height of 280/260 cm that would operate for more than five years at a power level of 150 MWth was studied. The fuel system 7LiF - BeF2 - ThF4 - UF4 with a (233U/ 232Th) = 2.01 % was the candidate fuel for this reactor core.

  5. Efficiency of whole-body counter for various body size calculated by MCNP5 software.

    PubMed

    Krstic, D; Nikezic, D

    2012-11-01

    The efficiency of a whole-body counter for (137)Cs and (40)K was calculated using the MCNP5 code. The ORNL phantoms of a human body of different body sizes were applied in a sitting position in front of a detector. The aim was to investigate the dependence of efficiency on the body size (age) and the detector position with respect to the body and to estimate the accuracy of real measurements. The calculation work presented here is related to the NaI detector, which is available in the Serbian Whole-body Counter facility in Vinca Institute.

  6. Nuclear EMP simulation for large-scale urban environments. FDTD for electrically large problems.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, William S.; Bull, Jeffrey S.; Wilcox, Trevor

    2012-08-13

    In case of a terrorist nuclear attack in a metropolitan area, EMP measurement could provide: (1) a prompt confirmation of the nature of the explosion (chemical or nuclear) for emergency response; and (2) and characterization parameters of the device (reaction history, yield) for technical forensics. However, urban environment could affect the fidelity of the prompt EMP measurement (as well as all other types of prompt measurement): (1) Nuclear EMP wavefront would no longer be coherent, due to incoherent production, attenuation, and propagation of gamma and electrons; and (2) EMP propagation from source region outward would undergo complicated transmission, reflection, andmore » diffraction processes. EMP simulation for electrically-large urban environment: (1) Coupled MCNP/FDTD (Finite-difference time domain Maxwell solver) approach; and (2) FDTD tends to be limited to problems that are not 'too' large compared to the wavelengths of interest because of numerical dispersion and anisotropy. We use a higher-order low-dispersion, isotropic FDTD algorithm for EMP propagation.« less

  7. Multi-group Fokker-Planck proton transport in MCNP{trademark}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, K.J.

    1997-11-01

    MCNP has been enhanced to perform proton transport using a multigroup Fokker Planck (MGFP) algorithm with primary emphasis on proton radiography simulations. The new method solves the Fokker Planck approximation to the Boltzmann transport equation for the small angle multiple scattering portion of proton transport. Energy loss is accounted for by applying a group averaged stopping power over each transport step. Large angle scatter and non-inelastic events are treated as extinction. Comparisons with the more rigorous LAHET code show agreement to a few per cent for the total transmitted currents. The angular distributions through copper and low Z compounds showmore » good agreement between LAHET and MGFP with the MGFP method being slightly less forward peaked and without the large angle tails apparent in the LAHET simulation. Suitability of this method for proton radiography simulations is shown for a simple problem of a hole in a copper slab. LAHET and MGFP calculations of position, angle and energy through more complex objects are presented.« less

  8. Opportunities for Undergraduate Research in Nuclear Physics

    DOE PAGES

    Hicks, S. F.; Nguyen, T. D.; Jackson, D. T.; ...

    2017-10-26

    University of Dallas (UD) physics majors are offered a variety of undergraduate research opportunities in nuclear physics through an established program at the University of Kentucky Accelerator Laboratory (UKAL). The 7-MV Model CN Van de Graaff accelerator and the neutron production and detection facilities located there are used by UD students to investigate how neutrons scatter from materials that are important in nuclear energy production and for our basic understanding of how neutrons interact with matter. Recent student projects include modeling of the laboratory using the neutron transport code MCNP to investigate the effectiveness of laboratory shielding, testing the long-termmore » gain stability of C 6D 6 liquid scintillation detectors, and deducing neutron elastic and inelastic scattering cross sections for 12C. Finally, results of these student projects are presented that indicate the pit below the scattering area reduces background by as much as 30%; the detectors show no significant gain instabilities; and new insights into existing 12C neutron inelastic scattering cross-section discrepancies near a neutron energy of 6.0 MeV are obtained.« less

  9. Opportunities for Undergraduate Research in Nuclear Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hicks, S. F.; Nguyen, T. D.; Jackson, D. T.

    University of Dallas (UD) physics majors are offered a variety of undergraduate research opportunities in nuclear physics through an established program at the University of Kentucky Accelerator Laboratory (UKAL). The 7-MV Model CN Van de Graaff accelerator and the neutron production and detection facilities located there are used by UD students to investigate how neutrons scatter from materials that are important in nuclear energy production and for our basic understanding of how neutrons interact with matter. Recent student projects include modeling of the laboratory using the neutron transport code MCNP to investigate the effectiveness of laboratory shielding, testing the long-termmore » gain stability of C 6D 6 liquid scintillation detectors, and deducing neutron elastic and inelastic scattering cross sections for 12C. Finally, results of these student projects are presented that indicate the pit below the scattering area reduces background by as much as 30%; the detectors show no significant gain instabilities; and new insights into existing 12C neutron inelastic scattering cross-section discrepancies near a neutron energy of 6.0 MeV are obtained.« less

  10. Monte Carlo modelling of large scale NORM sources using MCNP.

    PubMed

    Wallace, J D

    2013-12-01

    The representative Monte Carlo modelling of large scale planar sources (for comparison to external environmental radiation fields) is undertaken using substantial diameter and thin profile planar cylindrical sources. The relative impact of source extent, soil thickness and sky-shine are investigated to guide decisions relating to representative geometries. In addition, the impact of source to detector distance on the nature of the detector response, for a range of source sizes, has been investigated. These investigations, using an MCNP based model, indicate a soil cylinder of greater than 20 m diameter and of no less than 50 cm depth/height, combined with a 20 m deep sky section above the soil cylinder, are needed to representatively model the semi-infinite plane of uniformly distributed NORM sources. Initial investigation of the effect of detector placement indicate that smaller source sizes may be used to achieve a representative response at shorter source to detector distances. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  11. 32 CFR 223.1 - Purpose.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 2 2013-07-01 2013-07-01 false Purpose. 223.1 Section 223.1 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) MISCELLANEOUS DOD UNCLASSIFIED CONTROLLED NUCLEAR INFORMATION (UCNI) § 223.1 Purpose. This part: (a) Updates policies, assigns...

  12. 32 CFR 223.1 - Purpose.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 2 2014-07-01 2014-07-01 false Purpose. 223.1 Section 223.1 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) MISCELLANEOUS DOD UNCLASSIFIED CONTROLLED NUCLEAR INFORMATION (UCNI) § 223.1 Purpose. This part: (a) Updates policies, assigns...

  13. Multi-threading performance of Geant4, MCNP6, and PHITS Monte Carlo codes for tetrahedral-mesh geometry.

    PubMed

    Han, Min Cheol; Yeom, Yeon Soo; Lee, Hyun Su; Shin, Bangho; Kim, Chan Hyeong; Furuta, Takuya

    2018-05-04

    In this study, the multi-threading performance of the Geant4, MCNP6, and PHITS codes was evaluated as a function of the number of threads (N) and the complexity of the tetrahedral-mesh phantom. For this, three tetrahedral-mesh phantoms of varying complexity (simple, moderately complex, and highly complex) were prepared and implemented in the three different Monte Carlo codes, in photon and neutron transport simulations. Subsequently, for each case, the initialization time, calculation time, and memory usage were measured as a function of the number of threads used in the simulation. It was found that for all codes, the initialization time significantly increased with the complexity of the phantom, but not with the number of threads. Geant4 exhibited much longer initialization time than the other codes, especially for the complex phantom (MRCP). The improvement of computation speed due to the use of a multi-threaded code was calculated as the speed-up factor, the ratio of the computation speed on a multi-threaded code to the computation speed on a single-threaded code. Geant4 showed the best multi-threading performance among the codes considered in this study, with the speed-up factor almost linearly increasing with the number of threads, reaching ~30 when N  =  40. PHITS and MCNP6 showed a much smaller increase of the speed-up factor with the number of threads. For PHITS, the speed-up factors were low when N  =  40. For MCNP6, the increase of the speed-up factors was better, but they were still less than ~10 when N  =  40. As for memory usage, Geant4 was found to use more memory than the other codes. In addition, compared to that of the other codes, the memory usage of Geant4 more rapidly increased with the number of threads, reaching as high as ~74 GB when N  =  40 for the complex phantom (MRCP). It is notable that compared to that of the other codes, the memory usage of PHITS was much lower, regardless of both the complexity of the

  14. Gamma-ray spectroscopy measurements and simulations for uranium mining

    NASA Astrophysics Data System (ADS)

    Marchais, T.; Pérot, B.; Carasco, C.; Allinei, P.-G.; Chaussonnet, P.; Ma, J.-L.; Toubon, H.

    2018-01-01

    AREVA Mines and the Nuclear Measurement Laboratory of CEA Cadarache are collaborating to improve the sensitivity and precision of uranium concentration evaluation by means of gamma measurements. This paper reports gamma-ray spectra, recorded with a high-purity coaxial germanium detector, on standard cement blocks with increasing uranium content, and the corresponding MCNP simulations. The detailed MCNP model of the detector and experimental setup has been validated by calculation vs. experiment comparisons. An optimization of the detector MCNP model is presented in this paper, as well as a comparison of different nuclear data libraries to explain missing or exceeding peaks in the simulation. Energy shifts observed between the fluorescence X-rays produced by MCNP and atomic data are also investigated. The qualified numerical model will be used in further studies to develop new gamma spectroscopy approaches aiming at reducing acquisition times, especially for ore samples with low uranium content.

  15. 32 CFR 223.2 - Applicability.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 2 2014-07-01 2014-07-01 false Applicability. 223.2 Section 223.2 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) MISCELLANEOUS DOD UNCLASSIFIED CONTROLLED NUCLEAR INFORMATION (UCNI) § 223.2 Applicability. This part applies to: (a) Office of...

  16. Neutron dose estimation in a zero power nuclear reactor

    NASA Astrophysics Data System (ADS)

    Triviño, S.; Vedelago, J.; Cantargi, F.; Keil, W.; Figueroa, R.; Mattea, F.; Chautemps, A.; Santibañez, M.; Valente, M.

    2016-10-01

    This work presents the characterization and contribution of neutron and gamma components to the absorbed dose in a zero power nuclear reactor. A dosimetric method based on Fricke gel was implemented to evaluate the separation between dose components in the mixed field. The validation of this proposed method was performed by means of direct measurements of neutron flux in different positions using Au and Mg-Ni activation foils. Monte Carlo simulations were conversely performed using the MCNP main code with a dedicated subroutine to incorporate the exact complete geometry of the nuclear reactor facility. Once nuclear fuel elements were defined, the simulations computed the different contributions to the absorbed dose in specific positions inside the core. Thermal/epithermal contributions of absorbed dose were assessed by means of Fricke gel dosimetry using different isotopic compositions aimed at modifying the sensitivity of the dosimeter for specific dose components. Clear distinctions between gamma and neutron capture dose were obtained. Both Monte Carlo simulations and experimental results provided reliable estimations about neutron flux rate as well as dose rate during the reactor operation. Simulations and experimental results are in good agreement in every positions measured and simulated in the core.

  17. LANL Summer 2016 Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mendoza, Paul Michael

    The Monte Carlo N-Particle (MCNP) transport code developed at Los Alamos National Laboratory (LANL) utilizes nuclear cross-section data in a compact ENDF (ACE) format. The accuracy of MCNP calculations depends on the accuracy of nuclear ACE data tables, which depends on the accuracy of the original ENDF files. There are some noticeable differences in ENDF files from one generation to the next, even among the more common fissile materials. As the next generation of ENDF files is being prepared, several software tools were developed to simulate a large number of benchmarks in MCNP (over 1000), collect data from these simulations,more » and visually represent the results.« less

  18. Comparative study on neutron data in integral experiments of MYRRHA mockup critical cores in the VENUS-F reactor

    NASA Astrophysics Data System (ADS)

    Krása, Antonín; Kochetkov, Anatoly; Baeten, Peter; Vittiglio, Guido; Wagemans, Jan; Bécares, Vicente

    2017-09-01

    VENUS-F is a fast, zero-power reactor with 30% wt. metallic uranium fuel and solid lead as coolant simulator. It serves as a mockup of the MYRRHA reactor core. This paper describes integral experiments performed in two critical VENUS-F core configurations (with and without graphite reflector). Discrepancies between experiments and Monte Carlo calculations (MCNP5) of keff, fission rate spatial distribution and reactivity effects (lead void and fuel Doppler) depending on a nuclear data library used (JENDL-4.0, ENDF-B-VII.1, JEFF-3.1.2, 3.2, 3.3T2) are presented.

  19. Extensions of the MCNP5 and TRIPOLI4 Monte Carlo Codes for Transient Reactor Analysis

    NASA Astrophysics Data System (ADS)

    Hoogenboom, J. Eduard; Sjenitzer, Bart L.

    2014-06-01

    To simulate reactor transients for safety analysis with the Monte Carlo method the generation and decay of delayed neutron precursors is implemented in the MCNP5 and TRIPOLI4 general purpose Monte Carlo codes. Important new variance reduction techniques like forced decay of precursors in each time interval and the branchless collision method are included to obtain reasonable statistics for the power production per time interval. For simulation of practical reactor transients also the feedback effect from the thermal-hydraulics must be included. This requires coupling of the Monte Carlo code with a thermal-hydraulics (TH) code, providing the temperature distribution in the reactor, which affects the neutron transport via the cross section data. The TH code also provides the coolant density distribution in the reactor, directly influencing the neutron transport. Different techniques for this coupling are discussed. As a demonstration a 3x3 mini fuel assembly with a moving control rod is considered for MCNP5 and a mini core existing of 3x3 PWR fuel assemblies with control rods and burnable poisons for TRIPOLI4. Results are shown for reactor transients due to control rod movement or withdrawal. The TRIPOLI4 transient calculation is started at low power and includes thermal-hydraulic feedback. The power rises about 10 decades and finally stabilises the reactor power at a much higher level than initial. The examples demonstrate that the modified Monte Carlo codes are capable of performing correct transient calculations, taking into account all geometrical and cross section detail.

  20. Simulation of irradiation exposure of electronic devices due to heavy ion therapy with Monte Carlo Code MCNP6

    NASA Astrophysics Data System (ADS)

    Lapins, Janis; Guilliard, Nicole; Bernnat, Wolfgang; Buck, Arnulf

    2017-09-01

    During heavy ion irradiation therapy the patient has to be located exactly at the right position to make sure that the Bragg peak occurs in the tumour. The patient has to be moved in the range of millimetres to scan the ill tissue. For that reason a special table was developed which allows exact positioning. The electronic control can be located outside the surgery. But that has some disadvantage for the construction. To keep the system compact it would be much more comfortable to put the electronic control inside the surgery. As a lot of high energetic secondary particles are produced during the therapy causing a high dose in the room it is important to find positions with low dose rates. Therefore, investigations are needed where the electronic devices should be located to obtain a minimum of radiation, help to prevent the failure of sensitive devices. The dose rate was calculated for carbon ions with different initial energy and protons over the entire therapy room with Monte Carlo particle tracking using MCNP6. The types of secondary particles were identified and the dose rate for a thin silicon layer and an electronic mixture material was determined. In addition, the shielding effect of several selected material layers was calculated using MCNP6.

  1. Calculation of conversion coefficients for clinical photon spectra using the MCNP code.

    PubMed

    Lima, M A F; Silva, A X; Crispim, V R

    2004-01-01

    In this work, the MCNP4B code has been employed to calculate conversion coefficients from air kerma to the ambient dose equivalent, H*(10)/Ka, for monoenergetic photon energies from 10 keV to 50 MeV, assuming the kerma approximation. Also estimated are the H*(10)/Ka for photon beams produced by linear accelerators, such as Clinac-4 and Clinac-2500, after transmission through primary barriers of radiotherapy treatment rooms. The results for the conversion coefficients for monoenergetic photon energies, with statistical uncertainty <2%, are compared with those in ICRP publication 74 and good agreements were obtained. The conversion coefficients calculated for real clinic spectra transmitted through walls of concrete of 1, 1.5 and 2 m thick, are in the range of 1.06-1.12 Sv Gy(-1).

  2. A comparison of the COG and MCNP codes in computational neutron capture therapy modeling, Part II: gadolinium neutron capture therapy models and therapeutic effects.

    PubMed

    Wangerin, K; Culbertson, C N; Jevremovic, T

    2005-08-01

    The goal of this study was to evaluate the COG Monte Carlo radiation transport code, developed and tested by Lawrence Livermore National Laboratory, for gadolinium neutron capture therapy (GdNCT) related modeling. The validity of COG NCT model has been established for this model, and here the calculation was extended to analyze the effect of various gadolinium concentrations on dose distribution and cell-kill effect of the GdNCT modality and to determine the optimum therapeutic conditions for treating brain cancers. The computational results were compared with the widely used MCNP code. The differences between the COG and MCNP predictions were generally small and suggest that the COG code can be applied to similar research problems in NCT. Results for this study also showed that a concentration of 100 ppm gadolinium in the tumor was most beneficial when using an epithermal neutron beam.

  3. 32 CFR 291.1 - Purpose.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 2 2011-07-01 2011-07-01 false Purpose. 291.1 Section 291.1 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) FREEDOM OF INFORMATION ACT PROGRAM DEFENSE NUCLEAR AGENCY (DNA) FREEDOM OF INFORMATION ACT PROGRAM § 291.1 Purpose. This part...

  4. 32 CFR 291.1 - Purpose.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 2 2014-07-01 2014-07-01 false Purpose. 291.1 Section 291.1 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) FREEDOM OF INFORMATION ACT PROGRAM DEFENSE NUCLEAR AGENCY (DNA) FREEDOM OF INFORMATION ACT PROGRAM § 291.1 Purpose. This part...

  5. 32 CFR 291.1 - Purpose.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 2 2012-07-01 2012-07-01 false Purpose. 291.1 Section 291.1 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) FREEDOM OF INFORMATION ACT PROGRAM DEFENSE NUCLEAR AGENCY (DNA) FREEDOM OF INFORMATION ACT PROGRAM § 291.1 Purpose. This part...

  6. 32 CFR 291.1 - Purpose.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 2 2010-07-01 2010-07-01 false Purpose. 291.1 Section 291.1 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) FREEDOM OF INFORMATION ACT PROGRAM DEFENSE NUCLEAR AGENCY (DNA) FREEDOM OF INFORMATION ACT PROGRAM § 291.1 Purpose. This part...

  7. 32 CFR 291.1 - Purpose.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 2 2013-07-01 2013-07-01 false Purpose. 291.1 Section 291.1 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) FREEDOM OF INFORMATION ACT PROGRAM DEFENSE NUCLEAR AGENCY (DNA) FREEDOM OF INFORMATION ACT PROGRAM § 291.1 Purpose. This part...

  8. 10 CFR 10.32 - Recommendation of the NRC Personnel Security Review Panel.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Recommendation of the NRC Personnel Security Review Panel. 10.32 Section 10.32 Energy NUCLEAR REGULATORY COMMISSION CRITERIA AND PROCEDURES FOR DETERMINING... Procedures § 10.32 Recommendation of the NRC Personnel Security Review Panel. (a) The Deputy Executive...

  9. 10 CFR 10.32 - Recommendation of the NRC Personnel Security Review Panel.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Recommendation of the NRC Personnel Security Review Panel. 10.32 Section 10.32 Energy NUCLEAR REGULATORY COMMISSION CRITERIA AND PROCEDURES FOR DETERMINING... Procedures § 10.32 Recommendation of the NRC Personnel Security Review Panel. (a) The Deputy Executive...

  10. 10 CFR 10.32 - Recommendation of the NRC Personnel Security Review Panel.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Recommendation of the NRC Personnel Security Review Panel. 10.32 Section 10.32 Energy NUCLEAR REGULATORY COMMISSION CRITERIA AND PROCEDURES FOR DETERMINING... Procedures § 10.32 Recommendation of the NRC Personnel Security Review Panel. (a) The Deputy Executive...

  11. Organ dose conversion coefficients based on a voxel mouse model and MCNP code for external photon irradiation.

    PubMed

    Zhang, Xiaomin; Xie, Xiangdong; Cheng, Jie; Ning, Jing; Yuan, Yong; Pan, Jie; Yang, Guoshan

    2012-01-01

    A set of conversion coefficients from kerma free-in-air to the organ absorbed dose for external photon beams from 10 keV to 10 MeV are presented based on a newly developed voxel mouse model, for the purpose of radiation effect evaluation. The voxel mouse model was developed from colour images of successive cryosections of a normal nude male mouse, in which 14 organs or tissues were segmented manually and filled with different colours, while each colour was tagged by a specific ID number for implementation of mouse model in Monte Carlo N-particle code (MCNP). Monte Carlo simulation with MCNP was carried out to obtain organ dose conversion coefficients for 22 external monoenergetic photon beams between 10 keV and 10 MeV under five different irradiation geometries conditions (left lateral, right lateral, dorsal-ventral, ventral-dorsal, and isotropic). Organ dose conversion coefficients were presented in tables and compared with the published data based on a rat model to investigate the effect of body size and weight on the organ dose. The calculated and comparison results show that the organ dose conversion coefficients varying the photon energy exhibits similar trend for most organs except for the bone and skin, and the organ dose is sensitive to body size and weight at a photon energy approximately <0.1 MeV.

  12. Image enhancement using MCNP5 code and MATLAB in neutron radiography.

    PubMed

    Tharwat, Montaser; Mohamed, Nader; Mongy, T

    2014-07-01

    This work presents a method that can be used to enhance the neutron radiography (NR) image for objects with high scattering materials like hydrogen, carbon and other light materials. This method used Monte Carlo code, MCNP5, to simulate the NR process and get the flux distribution for each pixel of the image and determines the scattered neutron distribution that caused image blur, and then uses MATLAB to subtract this scattered neutron distribution from the initial image to improve its quality. This work was performed before the commissioning of digital NR system in Jan. 2013. The MATLAB enhancement method is quite a good technique in the case of static based film neutron radiography, while in neutron imaging (NI) technique, image enhancement and quantitative measurement were efficient by using ImageJ software. The enhanced image quality and quantitative measurements were presented in this work. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Dose mapping using MCNP code and experiment for SVST-Co-60/B irradiator in Vietnam.

    PubMed

    Tran, Van Hung; Tran, Khac An

    2010-06-01

    By using MCNP code and ethanol-chlorobenzene (ECB) dosimeters the simulations and measurements of absorbed dose distribution in a tote-box of the Cobalt-60 irradiator, SVST-Co60/B at VINAGAMMA have been done. Based on the results Dose Uniformity Ratios (DUR), positions and values of minimum and maximum dose extremes in a tote-box, and efficiency of the irradiator for the different dummy densities have been gained. There is a good agreement between simulation and experimental results in comparison and they have valuable meanings for operation of the irradiator. Copyright 2010 Elsevier Ltd. All rights reserved.

  14. ASNC upgrade for nuclear material accountancy of ACPF

    NASA Astrophysics Data System (ADS)

    Seo, Hee; Ahn, Seong-Kyu; Lee, Chaehun; Oh, Jong-Myeong; Yoon, Seonkwang

    2018-02-01

    A safeguards neutron coincidence counter for nuclear material accountancy of the Advanced spent-fuel Conditioning Process Facility (ACPF), known as the ACP Safeguards Neutron Counter (ASNC), was upgraded to improve its remote-handling and maintenance capabilities. Based on the results of the previous design study, the neutron counter was completely rebuilt, and various detector parameters for neutron coincidence counting (i.e., high-voltage plateau, efficiency profile, dead time, die-away time, gate length, doubles gate fraction, and stability) were experimentally determined. The measurement data showed good agreement with the MCNP simulation results. To the best of the authors' knowledge, the ASNC is the only safeguards neutron coincidence counter in the world that is installed and operated in a hot-cell. The final goals to be achieved were (1) to evaluate the uncertainty level of the ASNC in nuclear material accountancy of the process materials of the oxide-reduction process for spent fuels and (2) to evaluate the applicability of the neutron coincidence counting technique within a strong radiation field (e.g., in a hot-cell environment).

  15. 32 CFR 32.32 - Real property.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 1 2012-07-01 2012-07-01 false Real property. 32.32 Section 32.32 National... NON-PROFIT ORGANIZATIONS Post-Award Requirements Property Standards § 32.32 Real property. Each DoD Component that makes awards under which real property is acquired in whole or in part with Federal funds...

  16. 32 CFR 32.32 - Real property.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 1 2011-07-01 2011-07-01 false Real property. 32.32 Section 32.32 National... NON-PROFIT ORGANIZATIONS Post-Award Requirements Property Standards § 32.32 Real property. Each DoD Component that makes awards under which real property is acquired in whole or in part with Federal funds...

  17. 32 CFR 32.32 - Real property.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 1 2013-07-01 2013-07-01 false Real property. 32.32 Section 32.32 National... NON-PROFIT ORGANIZATIONS Post-Award Requirements Property Standards § 32.32 Real property. Each DoD Component that makes awards under which real property is acquired in whole or in part with Federal funds...

  18. 32 CFR 32.32 - Real property.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 1 2010-07-01 2010-07-01 false Real property. 32.32 Section 32.32 National... NON-PROFIT ORGANIZATIONS Post-Award Requirements Property Standards § 32.32 Real property. Each DoD Component that makes awards under which real property is acquired in whole or in part with Federal funds...

  19. 32 CFR 32.32 - Real property.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 1 2014-07-01 2014-07-01 false Real property. 32.32 Section 32.32 National... NON-PROFIT ORGANIZATIONS Post-Award Requirements Property Standards § 32.32 Real property. Each DoD Component that makes awards under which real property is acquired in whole or in part with Federal funds...

  20. Monte Carlo modeling of ion chamber performance using MCNP.

    PubMed

    Wallace, J D

    2012-12-01

    Ion Chambers have a generally flat energy response with some deviations at very low (<100 keV) and very high (>2 MeV) energies. Some improvements in the low energy response can be achieved through use of high atomic number gases, such as argon and xenon, and higher chamber pressures. This work looks at the energy response of high pressure xenon-filled ion chambers using the MCNP Monte Carlo package to develop geometric models of a commercially available high pressure ion chamber (HPIC). The use of the F6 tally as an estimator of the energy deposited in a region of interest per unit mass, and the underlying assumptions associated with its use are described. The effect of gas composition, chamber gas pressure, chamber wall thickness, and chamber holder wall thicknesses on energy response are investigated and reported. The predicted energy response curve for the HPIC was found to be similar to that reported by other investigators. These investigations indicate that improvements to flatten the overall energy response of the HPIC down to 70 keV could be achieved through use of 3 mm-thick stainless steel walls for the ion chamber.

  1. Reactivity impact of {sup 16}O thermal elastic-scattering nuclear data for some numerical and critical benchmark systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kozier, K. S.; Roubtsov, D.; Plompen, A. J. M.

    2012-07-01

    The thermal neutron-elastic-scattering cross-section data for {sup 16}O used in various modern evaluated-nuclear-data libraries were reviewed and found to be generally too high compared with the best available experimental measurements. Some of the proposed revisions to the ENDF/B-VII.0 {sup 16}O data library and recent results from the TENDL system increase this discrepancy further. The reactivity impact of revising the {sup 16}O data downward to be consistent with the best measurements was tested using the JENDL-3.3 {sup 16}O cross-section values and was found to be very small in MCNP5 simulations of the UO{sub 2} and reactor-recycle MOX-fuel cases of the ANSmore » Doppler-defect numerical benchmark. However, large reactivity differences of up to about 14 mk (1400 pcm) were observed using {sup 16}O data files from several evaluated-nuclear-data libraries in MCNP5 simulations of the Los Alamos National Laboratory HEU heavy-water solution thermal critical experiments, which were performed in the 1950's. The latter result suggests that new measurements using HEU in a heavy-water-moderated critical facility, such as the ZED-2 zero-power reactor at the Chalk River Laboratories, might help to resolve the discrepancy between the {sup 16}O thermal elastic-scattering cross-section values and thereby reduce or better define its uncertainty, although additional assessment work would be needed to confirm this. (authors)« less

  2. 32 CFR 223.7 - Information requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 2 2010-07-01 2010-07-01 false Information requirements. 223.7 Section 223.7 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) MISCELLANEOUS DEPARTMENT OF DEFENSE UNCLASSIFIED CONTROLLED NUCLEAR INFORMATION (DOD UCNI) § 223.7 Information...

  3. Assessment of neutron dosemeters around standard sources and nuclear fissile objects.

    PubMed

    Raimondi, N; Tournier, B; Groetz, J E; Piot, J; Riebler, E; Crovisier, P; Chambaudet, A; Cabanné, N

    2002-01-01

    In order to evaluate the neutron doses around nuclear fissile objects, a comparative study has been made on several neutron dosemeters: bubble dosemeters, etched-track detectors (CR-39) and 3He-filled proportional counters used as dose-rate meters. The measurements were made on the ambient and the personal dose equivalents H*(10) and Hp(10). Results showed that several bubble dosemeters should have been used due to a low reproducibility in the measurements. A strong correlation with the neutron energy was also found, with about a 30% underestimation of Hp(10) for neutrons from the PuBe source, and about a 9% overestimation for neutrons from the 252Cf source. Measurements of the nuclear fissile objects were made using the CR-39 and the dose-rate meters. The CR-39 led to an underestimation of 30% with respect to the neutron dose-rate meter measurements. In addition, the MCNP calculation code was used in the different configurations.

  4. 10 CFR 32.12 - Same: Records and material transfer reports.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... product or material at time of transfer of the byproduct material by the licensee. (c)(1) The licensee... 10 Energy 1 2010-01-01 2010-01-01 false Same: Records and material transfer reports. 32.12 Section 32.12 Energy NUCLEAR REGULATORY COMMISSION SPECIFIC DOMESTIC LICENSES TO MANUFACTURE OR TRANSFER...

  5. 32 CFR 761.7 - Basic controls.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Defense Nuclear Agency (Eniwetok Atoll). (e) Military areas. Entries authorized under this Instruction do... 32 National Defense 5 2014-07-01 2014-07-01 false Basic controls. 761.7 Section 761.7 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY ISLANDS UNDER NAVY JURISDICTION NAVAL...

  6. 32 CFR 761.7 - Basic controls.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Defense Nuclear Agency (Eniwetok Atoll). (e) Military areas. Entries authorized under this Instruction do... 32 National Defense 5 2012-07-01 2012-07-01 false Basic controls. 761.7 Section 761.7 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY ISLANDS UNDER NAVY JURISDICTION NAVAL...

  7. 10 CFR 32.16 - Certain items containing byproduct material: Records and reports of transfer.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... reports of transfer. 32.16 Section 32.16 Energy NUCLEAR REGULATORY COMMISSION SPECIFIC DOMESTIC LICENSES TO MANUFACTURE OR TRANSFER CERTAIN ITEMS CONTAINING BYPRODUCT MATERIAL Exempt Concentrations and Items § 32.16 Certain items containing byproduct material: Records and reports of transfer. (a) Each...

  8. 10 CFR 32.16 - Certain items containing byproduct material: Records and reports of transfer.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... reports of transfer. 32.16 Section 32.16 Energy NUCLEAR REGULATORY COMMISSION SPECIFIC DOMESTIC LICENSES TO MANUFACTURE OR TRANSFER CERTAIN ITEMS CONTAINING BYPRODUCT MATERIAL Exempt Concentrations and Items § 32.16 Certain items containing byproduct material: Records and reports of transfer. (a) Each...

  9. Self-optimizing Monte Carlo method for nuclear well logging simulation

    NASA Astrophysics Data System (ADS)

    Liu, Lianyan

    1997-09-01

    In order to increase the efficiency of Monte Carlo simulation for nuclear well logging problems, a new method has been developed for variance reduction. With this method, an importance map is generated in the regular Monte Carlo calculation as a by-product, and the importance map is later used to conduct the splitting and Russian roulette for particle population control. By adopting a spatial mesh system, which is independent of physical geometrical configuration, the method allows superior user-friendliness. This new method is incorporated into the general purpose Monte Carlo code MCNP4A through a patch file. Two nuclear well logging problems, a neutron porosity tool and a gamma-ray lithology density tool are used to test the performance of this new method. The calculations are sped up over analog simulation by 120 and 2600 times, for the neutron porosity tool and for the gamma-ray lithology density log, respectively. The new method enjoys better performance by a factor of 4~6 times than that of MCNP's cell-based weight window, as per the converged figure-of-merits. An indirect comparison indicates that the new method also outperforms the AVATAR process for gamma-ray density tool problems. Even though it takes quite some time to generate a reasonable importance map from an analog run, a good initial map can create significant CPU time savings. This makes the method especially suitable for nuclear well logging problems, since one or several reference importance maps are usually available for a given tool. Study shows that the spatial mesh sizes should be chosen according to the mean-free-path. The overhead of the importance map generator is 6% and 14% for neutron and gamma-ray cases. The learning ability towards a correct importance map is also demonstrated. Although false-learning may happen, physical judgement can help diagnose with contributon maps. Calibration and analysis are performed for the neutron tool and the gamma-ray tool. Due to the fact that a very

  10. Effect of a dual-purpose cask payload increment of spent fuel assemblies from VVER 1000 Bushehr Nuclear Power Plant on basket criticality.

    PubMed

    Rezaeian, M; Kamali, J

    2017-01-01

    Dual-purpose casks can be utilized for dry interim storage and transportation of the highly radioactive spent fuel assemblies (SFAs) of Bushehr Nuclear Power Plant (NPP). Criticality safety analysis was carried out using the MCNP code for the cask containing 12, 18, or 19 SFAs. The basket materials of borated stainless steel and Boral (Al-B 4 C) were investigated, and the minimum required receptacle pitch of the basket was determined. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Using MCNP6 to Estimate Fission Neutron Properties of a Reflected Plutonium Sphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, Alexander Rich; Nelson, Mark Andrew; Hutchinson, Jesson D.

    The purpose of this project was to determine the fission multiplicity distribution, p(v), for the Beryllium Reflected Plutonium (BeRP) ball and to determine whether or not it changed appreciably for various High Density Polyethylene (HDPE) reflected configurations. The motivation for this project was to determine whether or not the average number of neutrons emitted per fission, v, changed significantly enough to reduce the discrepancy between MCNP6 and Robba, Dowdy, Atwater (RDA) point kinetic model estimates of multiplication. The energy spectrum of neutrons that induced fissions in the BeRP ball, NIF (E), was also computed in order to determine the averagemore » energy of neutrons inducing fissions, NIF . p(v) was computed using the FMULT card, NIF (E) and NIF were computed using an F4 tally with an FM tally modifier (F4/FM) card, and the multiplication factor, k eff, was computed using the KCODE card. Although NIF (E) changed significantly between bare and HDPE reflected configurations of the BeRP ball, the change in p(v), and thus the change in v, was insignificant. This is likely due to a difference between the way that NIF is computed using the FMULT and F4/FM cards. The F4/FM card indicated that NIF (E) was essentially Watt-fission distributed for a bare configuration and highly thermalized for all HDPE reflected configurations, while the FMULT card returned an average energy between 1 and 2 MeV for all configurations, which would indicate that the spectrum is Watt-fission distributed, regardless of the amount of HDPE reflector. The spectrum computed with the F4/FM cards is more physically meaningful and so the discrepancy between it and the FMULT card result is being investigated. It is hoped that resolving the discrepancy between the FMULT and F4/FM card estimates of NIF(E) will provide better v estimates that will lead to RDA multiplication estimates that are in better agreement with MCNP6 simulations.« less

  12. MCNP6 model of the University of Washington clinical neutron therapy system (CNTS).

    PubMed

    Moffitt, Gregory B; Stewart, Robert D; Sandison, George A; Goorley, John T; Argento, David C; Jevremovic, Tatjana

    2016-01-21

    A MCNP6 dosimetry model is presented for the Clinical Neutron Therapy System (CNTS) at the University of Washington. In the CNTS, fast neutrons are generated by a 50.5 MeV proton beam incident on a 10.5 mm thick Be target. The production, scattering and absorption of neutrons, photons, and other particles are explicitly tracked throughout the key components of the CNTS, including the target, primary collimator, flattening filter, monitor unit ionization chamber, and multi-leaf collimator. Simulations of the open field tissue maximum ratio (TMR), percentage depth dose profiles, and lateral dose profiles in a 40 cm × 40 cm × 40 cm water phantom are in good agreement with ionization chamber measurements. For a nominal 10 × 10 field, the measured and calculated TMR values for depths of 1.5 cm, 5 cm, 10 cm, and 20 cm (compared to the dose at 1.7 cm) are within 0.22%, 2.23%, 4.30%, and 6.27%, respectively. For the three field sizes studied, 2.8 cm × 2.8 cm, 10.4 cm × 10.3 cm, and 28.8 cm × 28.8 cm, a gamma test comparing the measured and simulated percent depth dose curves have pass rates of 96.4%, 100.0%, and 78.6% (depth from 1.5 to 15 cm), respectively, using a 3% or 3 mm agreement criterion. At a representative depth of 10 cm, simulated lateral dose profiles have in-field (⩾ 10% of central axis dose) pass rates of 89.7% (2.8 cm × 2.8 cm), 89.6% (10.4 cm × 10.3 cm), and 100.0% (28.8 cm × 28.8 cm) using a 3% and 3 mm criterion. The MCNP6 model of the CNTS meets the minimum requirements for use as a quality assurance tool for treatment planning and provides useful insights and information to aid in the advancement of fast neutron therapy.

  13. Rapid Acute Dose Assessment Using MCNP6

    NASA Astrophysics Data System (ADS)

    Owens, Andrew Steven

    Acute radiation doses due to physical contact with a high-activity radioactive source have proven to be an occupational hazard. Multiple radiation injuries have been reported due to manipulating a radioactive source with bare hands or by placing a radioactive source inside a shirt or pants pocket. An effort to reconstruct the radiation dose must be performed to properly assess and medically manage the potential biological effects from such doses. Using the reference computational phantoms defined by the International Commission on Radiological Protection (ICRP) and the Monte Carlo N-Particle transport code (MCNP6), dose rate coefficients are calculated to assess doses for common acute doses due to beta and photon radiation sources. The research investigates doses due to having a radioactive source in either a breast pocket or pants back pocket. The dose rate coefficients are calculated for discrete energies and can be used to interpolate for any given energy of photon or beta emission. The dose rate coefficients allow for quick calculation of whole-body dose, organ dose, and/or skin dose if the source, activity, and time of exposure are known. Doses are calculated with the dose rate coefficients and compared to results from the International Atomic Energy Agency (IAEA) reports from accidents that occurred in Gilan, Iran and Yanango, Peru. Skin and organ doses calculated with the dose rate coefficients appear to agree, but there is a large discrepancy when comparing whole-body doses assessed using biodosimetry and whole-body doses assessed using the dose rate coefficients.

  14. Evaluation of computational models and cross sections used by MCNP6 for simulation of characteristic X-ray emission from thick targets bombarded by kiloelectronvolt electrons

    NASA Astrophysics Data System (ADS)

    Poškus, A.

    2016-09-01

    This paper evaluates the accuracy of the single-event (SE) and condensed-history (CH) models of electron transport in MCNP6.1 when simulating characteristic Kα, total K (=Kα + Kβ) and Lα X-ray emission from thick targets bombarded by electrons with energies from 5 keV to 30 keV. It is shown that the MCNP6.1 implementation of the CH model for the K-shell impact ionization leads to underestimation of the K yield by 40% or more for the elements with atomic numbers Z < 15 and overestimation of the Kα yield by more than 40% for the elements with Z > 25. The Lα yields are underestimated by more than an order of magnitude in CH mode, because MCNP6.1 neglects X-ray emission caused by electron-impact ionization of L, M and higher shells in CH mode (the Lα yields calculated in CH mode reflect only X-ray fluorescence, which is mainly caused by photoelectric absorption of bremsstrahlung photons). The X-ray yields calculated by MCNP6.1 in SE mode (using ENDF/B-VII.1 library data) are more accurate: the differences of the calculated and experimental K yields are within the experimental uncertainties for the elements C, Al and Si, and the calculated Kα yields are typically underestimated by (20-30)% for the elements with Z > 25, whereas the Lα yields are underestimated by (60-70)% for the elements with Z > 49. It is also shown that agreement of the experimental X-ray yields with those calculated in SE mode is additionally improved by replacing the ENDF/B inner-shell electron-impact ionization cross sections with the set of cross sections obtained from the distorted-wave Born approximation (DWBA), which are also used in the PENELOPE code system. The latter replacement causes a decrease of the average relative difference of the experimental X-ray yields and the simulation results obtained in SE mode to approximately 10%, which is similar to accuracy achieved with PENELOPE. This confirms that the DWBA inner-shell impact ionization cross sections are significantly more

  15. Tally and geometry definition influence on the computing time in radiotherapy treatment planning with MCNP Monte Carlo code.

    PubMed

    Juste, B; Miro, R; Gallardo, S; Santos, A; Verdu, G

    2006-01-01

    The present work has simulated the photon and electron transport in a Theratron 780 (MDS Nordion) (60)Co radiotherapy unit, using the Monte Carlo transport code, MCNP (Monte Carlo N-Particle), version 5. In order to become computationally more efficient in view of taking part in the practical field of radiotherapy treatment planning, this work is focused mainly on the analysis of dose results and on the required computing time of different tallies applied in the model to speed up calculations.

  16. MCNP simulation of the dose distribution in liver cancer treatment for BNC therapy

    NASA Astrophysics Data System (ADS)

    Krstic, Dragana; Jovanovic, Zoran; Markovic, Vladimir; Nikezic, Dragoslav; Urosevic, Vlade

    2014-10-01

    The Boron Neutron Capture Therapy ( BNCT) is based on selective uptake of boron in tumour tissue compared to the surrounding normal tissue. Infusion of compounds with boron is followed by irradiation with neutrons. Neutron capture on 10B, which gives rise to an alpha particle and recoiled 7Li ion, enables the therapeutic dose to be delivered to tumour tissue while healthy tissue can be spared. Here, therapeutic abilities of BNCT were studied for possible treatment of liver cancer using thermal and epithermal neutron beam. For neutron transport MCNP software was used and doses in organs of interest in ORNL phantom were evaluated. Phantom organs were filled with voxels in order to obtain depth-dose distributions in them. The result suggests that BNCT using an epithermal neutron beam could be applied for liver cancer treatment.

  17. Dosimetric comparison of Monte Carlo codes (EGS4, MCNP, MCNPX) considering external and internal exposures of the Zubal phantom to electron and photon sources.

    PubMed

    Chiavassa, S; Lemosquet, A; Aubineau-Lanièce, I; de Carlan, L; Clairand, I; Ferrer, L; Bardiès, M; Franck, D; Zankl, M

    2005-01-01

    This paper aims at comparing dosimetric assessments performed with three Monte Carlo codes: EGS4, MCNP4c2 and MCNPX2.5e, using a realistic voxel phantom, namely the Zubal phantom, in two configurations of exposure. The first one deals with an external irradiation corresponding to the example of a radiological accident. The results are obtained using the EGS4 and the MCNP4c2 codes and expressed in terms of the mean absorbed dose (in Gy per source particle) for brain, lungs, liver and spleen. The second one deals with an internal exposure corresponding to the treatment of a medullary thyroid cancer by 131I-labelled radiopharmaceutical. The results are obtained by EGS4 and MCNPX2.5e and compared in terms of S-values (expressed in mGy per kBq and per hour) for liver, kidney, whole body and thyroid. The results of these two studies are presented and differences between the codes are analysed and discussed.

  18. 10 CFR 40.32 - General requirements for issuance of specific licenses.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false General requirements for issuance of specific licenses. 40.32 Section 40.32 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF SOURCE MATERIAL License... applicant is qualified by reason of training and experience to use the source material for the purpose...

  19. Neutron flux measurements on a mock-up of a storage cask for high-level nuclear waste using 2.5 MeV neutrons.

    PubMed

    Suárez, H Saurí; Becker, F; Klix, A; Pang, B; Döring, T

    2018-06-07

    To store and dispose spent nuclear fuel, shielding casks are employed to reduce the emitted radiation. To evaluate the exposure of employees handling such casks, Monte Carlo radiation transport codes can be employed. Nevertheless, to assess the reliability of these codes and nuclear data, experimental checks are required. In this study, a neutron generator (NG) producing neutrons of 2.5 MeV was employed to simulate neutrons produced in spent nuclear fuel. Different configurations of shielding layers of steel and polyethylene were positioned between the target of the NG and a NE-213 detector. The results of the measurements of neutron and γ radiation and the corresponding simulations with the code MCNP6 are presented. Details of the experimental set-up as well as neutron and photon flux spectra are provided as reference points for such NG investigations with shielding structures.

  20. Pediatric dosimetry for intrapleural lung injections of 32P chromic phosphate

    NASA Astrophysics Data System (ADS)

    Konijnenberg, Mark W.; Olch, Arthur

    2010-10-01

    Intracavitary injections of 32P chromic phosphate are used in the therapy of pleuropulmonary blastoma and pulmonary sarcomas in children. The lung dose, however, has never been calculated despite the potential risk of lung toxicity from treatment. In this work the dosimetry has been calculated in target tissue and lung for pediatric phantoms. Pleural cavities were modeled in the Monte Carlo code MCNP within the pediatric MIRD phantoms. Both the depth-dose curves in the pleural lining and into the lung as well as 3D dose distributions were calculated for either homogeneous or inhomogeneous 32P activity distributions. Dose-volume histograms for the lung tissue and isodose graphs were generated. The results for the 2D depth-dose curve to the pleural lining and tumor around the pleural cavity correspond well with the point kernel model-based recommendations. With a 2 mm thick pleural lining, one-third of the lung parenchyma volume gets a dose more than 30 Gy (V30) for 340 MBq 32P in a 10 year old. This is close to lung tolerance. Younger children will receive a larger dose to the lung when the lung density remains equal to the adult value; the V30 relative lung volume for a 5 year old is 35% at an activity of 256 MBq and for a 1 year old 165 MBq yields a V30 of 43%. At higher densities of the lung tissue V30 stays below 32%. All activities yield a therapeutic dose of at least 225 Gy in the pleural lining. With a more normal pleural lining thickness (0.5 mm instead of 2 mm) the injected activities will have to be reduced by a factor 5 to obtain tolerable lung doses in pediatric patients. Previous dosimetry recommendations for the adult apply well down to lung surface areas of 400 cm2. Monte Carlo dosimetry quantitates the three-dimensional dose distribution, providing a better insight into the maximum tolerable activity for this therapy.

  1. 10 CFR 32.31 - Certain industrial devices containing byproduct material: Safety criteria.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Certain industrial devices containing byproduct material: Safety criteria. (a) An applicant for a license... 10 Energy 1 2014-01-01 2014-01-01 false Certain industrial devices containing byproduct material: Safety criteria. 32.31 Section 32.31 Energy NUCLEAR REGULATORY COMMISSION SPECIFIC DOMESTIC LICENSES TO...

  2. 10 CFR 32.31 - Certain industrial devices containing byproduct material: Safety criteria.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Certain industrial devices containing byproduct material: Safety criteria. (a) An applicant for a license... 10 Energy 1 2013-01-01 2013-01-01 false Certain industrial devices containing byproduct material: Safety criteria. 32.31 Section 32.31 Energy NUCLEAR REGULATORY COMMISSION SPECIFIC DOMESTIC LICENSES TO...

  3. Assessment of doses caused by electrons in thin layers of tissue-equivalent materials, using MCNP.

    PubMed

    Heide, Bernd

    2013-10-01

    Absorbed doses caused by electron irradiation were calculated with Monte Carlo N-Particle transport code (MCNP) for thin layers of tissue-equivalent materials. The layers were so thin that the calculation of energy deposition was on the border of the scope of MCNP. Therefore, in this article application of three different methods of calculation of energy deposition is discussed. This was done by means of two scenarios: in the first one, electrons were emitted from the centre of a sphere of water and also recorded in that sphere; and in the second, an irradiation with the PTB Secondary Standard BSS2 was modelled, where electrons were emitted from an (90)Sr/(90)Y area source and recorded inside a cuboid phantom made of tissue-equivalent material. The speed and accuracy of the different methods were of interest. While a significant difference in accuracy was visible for one method in the first scenario, the difference in accuracy of the three methods was insignificant for the second one. Considerable differences in speed were found for both scenarios. In order to demonstrate the need for calculating the dose in thin small zones, a third scenario was constructed and simulated as well. The third scenario was nearly equal to the second one, but a pike of lead was assumed to be inside the phantom in addition. A dose enhancement (caused by the pike of lead) of ∼113 % was recorded for a thin hollow cylinder at a depth of 0.007 cm, which the basal-skin layer is referred to in particular. Dose enhancements between 68 and 88 % were found for a slab with a radius of 0.09 cm for all depths. All dose enhancements were hardly noticeable for a slab with a cross-sectional area of 1 cm(2), which is usually applied to operational radiation protection.

  4. Testing actinide fission yield treatment in CINDER90 for use in MCNP6 burnup calculations

    DOE PAGES

    Fensin, Michael Lorne; Umbel, Marissa

    2015-09-18

    Most of the development of the MCNPX/6 burnup capability focused on features that were applied to the Boltzman transport or used to prepare coefficients for use in CINDER90, with little change to CINDER90 or the CINDER90 data. Though a scheme exists for best solving the coupled Boltzman and Bateman equations, the most significant approximation is that the employed nuclear data are correct and complete. Thus, the CINDER90 library file contains 60 different actinide fission yields encompassing 36 fissionable actinides (thermal, fast, high energy and spontaneous fission). Fission reaction data exists for more than 60 actinides and as a result, fissionmore » yield data must be approximated for actinides that do not possess fission yield information. Several types of approximations are used for estimating fission yields for actinides which do not possess explicit fission yield data. The objective of this study is to test whether or not certain approximations of fission yield selection have any impact on predictability of major actinides and fission products. Further we assess which other fission products, available in MCNP6 Tier 3, result in the largest difference in production. Because the CINDER90 library file is in ASCII format and therefore easily amendable, we assess reasons for choosing, as well as compare actinide and major fission product prediction for the H. B. Robinson benchmark for, three separate fission yield selection methods: (1) the current CINDER90 library file method (Base); (2) the element method (Element); and (3) the isobar method (Isobar). Results show that the three methods tested result in similar prediction of major actinides, Tc-99 and Cs-137; however, certain fission products resulted in significantly different production depending on the method of choice.« less

  5. 32 CFR 223.2 - Applicability and scope.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 2 2011-07-01 2011-07-01 false Applicability and scope. 223.2 Section 223.2 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) MISCELLANEOUS DEPARTMENT OF DEFENSE UNCLASSIFIED CONTROLLED NUCLEAR INFORMATION (DOD UCNI) § 223.2 Applicability...

  6. Characterizing scintillator detector response for correlated fission experiments with MCNP and associated packages

    DOE PAGES

    Andrews, M. T.; Rising, M. E.; Meierbachtol, K.; ...

    2018-06-15

    Wmore » hen multiple neutrons are emitted in a fission event they are correlated in both energy and their relative angle, which may impact the design of safeguards equipment and other instrumentation for non-proliferation applications. The most recent release of MCNP 6 . 2 contains the capability to simulate correlated fission neutrons using the event generators CGMF and FREYA . These radiation transport simulations will be post-processed by the detector response code, DRiFT , and compared directly to correlated fission measurements. DRiFT has been previously compared to single detector measurements, its capabilities have been recently expanded with correlated fission simulations in mind. Finally, this paper details updates to DRiFT specific to correlated fission measurements, including tracking source particle energy of all detector events (and non-events), expanded output formats, and digitizer waveform generation.« less

  7. Characterizing scintillator detector response for correlated fission experiments with MCNP and associated packages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrews, M. T.; Rising, M. E.; Meierbachtol, K.

    Wmore » hen multiple neutrons are emitted in a fission event they are correlated in both energy and their relative angle, which may impact the design of safeguards equipment and other instrumentation for non-proliferation applications. The most recent release of MCNP 6 . 2 contains the capability to simulate correlated fission neutrons using the event generators CGMF and FREYA . These radiation transport simulations will be post-processed by the detector response code, DRiFT , and compared directly to correlated fission measurements. DRiFT has been previously compared to single detector measurements, its capabilities have been recently expanded with correlated fission simulations in mind. Finally, this paper details updates to DRiFT specific to correlated fission measurements, including tracking source particle energy of all detector events (and non-events), expanded output formats, and digitizer waveform generation.« less

  8. Simulations of neutron transport at low energy: a comparison between GEANT and MCNP.

    PubMed

    Colonna, N; Altieri, S

    2002-06-01

    The use of the simulation tool GEANT for neutron transport at energies below 20 MeV is discussed, in particular with regard to shielding and dose calculations. The reliability of the GEANT/MICAP package for neutron transport in a wide energy range has been verified by comparing the results of simulations performed with this package in a wide energy range with the prediction of MCNP-4B, a code commonly used for neutron transport at low energy. A reasonable agreement between the results of the two codes is found for the neutron flux through a slab of material (iron and ordinary concrete), as well as for the dose released in soft tissue by neutrons. These results justify the use of the GEANT/MICAP code for neutron transport in a wide range of applications, including health physics problems.

  9. Monte Carlo simulations in Nuclear Medicine

    NASA Astrophysics Data System (ADS)

    Loudos, George K.

    2007-11-01

    Molecular imaging technologies provide unique abilities to localise signs of disease before symptoms appear, assist in drug testing, optimize and personalize therapy, and assess the efficacy of treatment regimes for different types of cancer. Monte Carlo simulation packages are used as an important tool for the optimal design of detector systems. In addition they have demonstrated potential to improve image quality and acquisition protocols. Many general purpose (MCNP, Geant4, etc) or dedicated codes (SimSET etc) have been developed aiming to provide accurate and fast results. Special emphasis will be given to GATE toolkit. The GATE code currently under development by the OpenGATE collaboration is the most accurate and promising code for performing realistic simulations. The purpose of this article is to introduce the non expert reader to the current status of MC simulations in nuclear medicine and briefly provide examples of current simulated systems, and present future challenges that include simulation of clinical studies and dosimetry applications.

  10. 10 CFR 32.54 - Same: Labeling of devices.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... NUCLEAR REGULATORY COMMISSION SPECIFIC DOMESTIC LICENSES TO MANUFACTURE OR TRANSFER CERTAIN ITEMS... licensed under § 32.53 to manufacture, assemble, or initially transfer devices containing tritium or.... The receipt, possession, use, and transfer of this device, Model* _______, Serial No.* ___, containing...

  11. 10 CFR 32.54 - Same: Labeling of devices.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... NUCLEAR REGULATORY COMMISSION SPECIFIC DOMESTIC LICENSES TO MANUFACTURE OR TRANSFER CERTAIN ITEMS... licensed under § 32.53 to manufacture, assemble, or initially transfer devices containing tritium or.... The receipt, possession, use, and transfer of this device, Model* _______, Serial No.* ___, containing...

  12. 32 CFR 761.9 - Entry Control Commanders.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the Army or the Defense Nuclear Agency. (h) Senior naval commander in defense area. Emergency... 32 National Defense 5 2011-07-01 2011-07-01 false Entry Control Commanders. 761.9 Section 761.9 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY ISLANDS UNDER NAVY JURISDICTION...

  13. 32 CFR 761.9 - Entry Control Commanders.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... the Army or the Defense Nuclear Agency. (h) Senior naval commander in defense area. Emergency... 32 National Defense 5 2012-07-01 2012-07-01 false Entry Control Commanders. 761.9 Section 761.9 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY ISLANDS UNDER NAVY JURISDICTION...

  14. 32 CFR 761.9 - Entry Control Commanders.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the Army or the Defense Nuclear Agency. (h) Senior naval commander in defense area. Emergency... 32 National Defense 5 2014-07-01 2014-07-01 false Entry Control Commanders. 761.9 Section 761.9 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY ISLANDS UNDER NAVY JURISDICTION...

  15. 32 CFR 761.9 - Entry Control Commanders.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the Army or the Defense Nuclear Agency. (h) Senior naval commander in defense area. Emergency... 32 National Defense 5 2013-07-01 2013-07-01 false Entry Control Commanders. 761.9 Section 761.9 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY ISLANDS UNDER NAVY JURISDICTION...

  16. 10 CFR 32.11 - Introduction of byproduct material in exempt concentrations into products or materials, and...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... concentrations into products or materials, and transfer of ownership or possession: Requirements for license. 32.11 Section 32.11 Energy NUCLEAR REGULATORY COMMISSION SPECIFIC DOMESTIC LICENSES TO MANUFACTURE OR TRANSFER CERTAIN ITEMS CONTAINING BYPRODUCT MATERIAL Exempt Concentrations and Items § 32.11 Introduction...

  17. 10 CFR 32.11 - Introduction of byproduct material in exempt concentrations into products or materials, and...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... concentrations into products or materials, and transfer of ownership or possession: Requirements for license. 32.11 Section 32.11 Energy NUCLEAR REGULATORY COMMISSION SPECIFIC DOMESTIC LICENSES TO MANUFACTURE OR TRANSFER CERTAIN ITEMS CONTAINING BYPRODUCT MATERIAL Exempt Concentrations and Items § 32.11 Introduction...

  18. Detection of explosives, shielded nuclear materials and other hazardous substances in cargo containers

    NASA Astrophysics Data System (ADS)

    Kuznetsov, Andrey; Evsenin, Alexey; Vakhtin, Dmitry; Gorshkov, Igor; Osetrov, Oleg; Kalinin, Valery

    2006-05-01

    Nanosecond Neutron Analysis / Associated Particles Technique (NNA/APT) has been used to create devices for detection of explosives, radioactive and heavily shielded nuclear materials in cargo containers. Explosives and other hazardous materials are detected by analyzing secondary high-energy gamma-rays form reactions of fast neutrons with the materials inside the container. Depending on the dimensions of the inspected containers, the detecting system consists of one or several detection modules, each of which contains a small neutron generator with built-in position sensitive detector of associated alpha-particles and several scintillator-based gamma-ray detectors. The same gamma-ray detectors are used to detect unshielded radioactive and nuclear materials. Array of several detectors of fast neutrons is used to detect neutrons from spontaneous and induced fission of nuclear materials. These neutrons can penetrate thick layers of lead shielding, which can be used to conceal gamma-radioactivity from nuclear materials. Coincidence and timing analysis allows one to discriminate between fission neutrons and scattered probing neutrons. Mathematical modeling by MCNP5 code was used to estimate the sensitivity of the device and its optimal configuration. Capability of the device to detect 1 kg of explosive imitator inside container filled with suitcases and other baggage items has been confirmed experimentally. First experiments with heavily shielded nuclear materials have been carried out.

  19. Comparison of penumbra regions produced by ancient Gamma knife model C and Gamma ART 6000 using Monte Carlo MCNP6 simulation.

    PubMed

    Banaee, Nooshin; Asgari, Sepideh; Nedaie, Hassan Ali

    2018-07-01

    The accuracy of penumbral measurements in radiotherapy is pivotal because dose planning computers require accurate data to adequately modeling the beams, which in turn are used to calculate patient dose distributions. Gamma knife is a non-invasive intracranial technique based on principles of the Leksell stereotactic system for open deep brain surgeries, invented and developed by Professor Lars Leksell. The aim of this study is to compare the penumbra widths of Leksell Gamma Knife model C and Gamma ART 6000. Initially, the structure of both systems were simulated by using Monte Carlo MCNP6 code and after validating the accuracy of simulation, beam profiles of different collimators were plotted. MCNP6 beam profile calculations showed that the penumbra values of Leksell Gamma knife model C and Gamma ART 6000 for 18, 14, 8 and 4 mm collimators are 9.7, 7.9, 4.3, 2.6 and 8.2, 6.9, 3.6, 2.4, respectively. The results of this study showed that since Gamma ART 6000 has larger solid angle in comparison with Gamma Knife model C, it produces better beam profile penumbras than Gamma Knife model C in the direct plane. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. 32 CFR 338.1 - Ordering DNA issuances.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 2 2010-07-01 2010-07-01 false Ordering DNA issuances. 338.1 Section 338.1... DOD INFORMATION AVAILABILITY TO THE PUBLIC OF DEFENSE NUCLEAR AGENCY (DNA) INSTRUCTIONS AND CHANGES THERETO § 338.1 Ordering DNA issuances. (a) The DNA issuances published in the DNA indexes are published...

  1. 32 CFR 338.1 - Ordering DNA issuances.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 2 2011-07-01 2011-07-01 false Ordering DNA issuances. 338.1 Section 338.1... DOD INFORMATION AVAILABILITY TO THE PUBLIC OF DEFENSE NUCLEAR AGENCY (DNA) INSTRUCTIONS AND CHANGES THERETO § 338.1 Ordering DNA issuances. (a) The DNA issuances published in the DNA indexes are published...

  2. 32 CFR 338.1 - Ordering DNA issuances.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 2 2014-07-01 2014-07-01 false Ordering DNA issuances. 338.1 Section 338.1... DOD INFORMATION AVAILABILITY TO THE PUBLIC OF DEFENSE NUCLEAR AGENCY (DNA) INSTRUCTIONS AND CHANGES THERETO § 338.1 Ordering DNA issuances. (a) The DNA issuances published in the DNA indexes are published...

  3. 32 CFR 338.1 - Ordering DNA issuances.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 2 2012-07-01 2012-07-01 false Ordering DNA issuances. 338.1 Section 338.1... DOD INFORMATION AVAILABILITY TO THE PUBLIC OF DEFENSE NUCLEAR AGENCY (DNA) INSTRUCTIONS AND CHANGES THERETO § 338.1 Ordering DNA issuances. (a) The DNA issuances published in the DNA indexes are published...

  4. 32 CFR 338.1 - Ordering DNA issuances.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 2 2013-07-01 2013-07-01 false Ordering DNA issuances. 338.1 Section 338.1... DOD INFORMATION AVAILABILITY TO THE PUBLIC OF DEFENSE NUCLEAR AGENCY (DNA) INSTRUCTIONS AND CHANGES THERETO § 338.1 Ordering DNA issuances. (a) The DNA issuances published in the DNA indexes are published...

  5. Results on the neutron energy distribution measurements at the RECH-1 Chilean nuclear reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aguilera, P., E-mail: paguilera87@gmail.com; Romero-Barrientos, J.; Universidad de Chile, Dpto. de Física, Facultad de Ciencias, Las Palmeras 3425, Nuñoa, Santiago

    2016-07-07

    Neutron activations experiments has been perform at the RECH-1 Chilean Nuclear Reactor to measure its neutron flux energy distribution. Samples of pure elements was activated to obtain the saturation activities for each reaction. Using - ray spectroscopy we identify and measure the activity of the reaction product nuclei, obtaining the saturation activities of 20 reactions. GEANT4 and MCNP was used to compute the self shielding factor to correct the cross section for each element. With the Expectation-Maximization algorithm (EM) we were able to unfold the neutron flux energy distribution at dry tube position, near the RECH-1 core. In this work,more » we present the unfolding results using the EM algorithm.« less

  6. Nuclear medicine. Bibliography from Nuclear Science Abstracts, Volumes 31--33

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1976-12-01

    References to 4362 publications related to nuclear medicine announced in Nuclear Science Abstracts (NSA) volumes 31(Jan.--June 1975), 32(July--Dec. 1975), and 33(Jan.--June 1976) are contained in this bibliography. References are arranged in order by the original NSA abstract number which approximately places them in chronological order. Sequence numbers appear beside each reference, and the indexes refer to these sequence numbers. Indexes included are: Corporate, Personal Author, Subject, and Report Number.

  7. Calculation of Absorbed Dose in Target Tissue and Equivalent Dose in Sensitive Tissues of Patients Treated by BNCT Using MCNP4C

    NASA Astrophysics Data System (ADS)

    Zamani, M.; Kasesaz, Y.; Khalafi, H.; Pooya, S. M. Hosseini

    Boron Neutron Capture Therapy (BNCT) is used for treatment of many diseases, including brain tumors, in many medical centers. In this method, a target area (e.g., head of patient) is irradiated by some optimized and suitable neutron fields such as research nuclear reactors. Aiming at protection of healthy tissues which are located in the vicinity of irradiated tissue, and based on the ALARA principle, it is required to prevent unnecessary exposure of these vital organs. In this study, by using numerical simulation method (MCNP4C Code), the absorbed dose in target tissue and the equiavalent dose in different sensitive tissues of a patiant treated by BNCT, are calculated. For this purpose, we have used the parameters of MIRD Standard Phantom. Equiavelent dose in 11 sensitive organs, located in the vicinity of target, and total equivalent dose in whole body, have been calculated. The results show that the absorbed dose in tumor and normal tissue of brain equal to 30.35 Gy and 0.19 Gy, respectively. Also, total equivalent dose in 11 sensitive organs, other than tumor and normal tissue of brain, is equal to 14 mGy. The maximum equivalent doses in organs, other than brain and tumor, appear to the tissues of lungs and thyroid and are equal to 7.35 mSv and 3.00 mSv, respectively.

  8. Uranium, radium and thorium in soils with high-resolution gamma spectroscopy, MCNP-generated efficiencies, and VRF non-linear full-spectrum nuclide shape fitting

    NASA Astrophysics Data System (ADS)

    Metzger, Robert; Riper, Kenneth Van; Lasche, George

    2017-09-01

    A new method for analysis of uranium and radium in soils by gamma spectroscopy has been developed using VRF ("Visual RobFit") which, unlike traditional peak-search techniques, fits full-spectrum nuclide shapes with non-linear least-squares minimization of the chi-squared statistic. Gamma efficiency curves were developed for a 500 mL Marinelli beaker geometry as a function of soil density using MCNP. Collected spectra were then analyzed using the MCNP-generated efficiency curves and VRF to deconvolute the 90 keV peak complex of uranium and obtain 238U and 235U activities. 226Ra activity was determined either from the radon daughters if the equilibrium status is known, or directly from the deconvoluted 186 keV line. 228Ra values were determined from the 228Ac daughter activity. The method was validated by analysis of radium, thorium and uranium soil standards and by inter-comparison with other methods for radium in soils. The method allows for a rapid determination of whether a sample has been impacted by a man-made activity by comparison of the uranium and radium concentrations to those that would be expected from a natural equilibrium state.

  9. Shielding analysis of the Microtron MT-25 bunker using the MCNP-4C code and NCRP Report 51.

    PubMed

    Casanova, A O; López, N; Gelen, A; Guevara, M V Manso; Díaz, O; Cimino, L; D'Alessandro, K; Melo, J C

    2004-01-01

    A cyclic electron accelerator Microtron MT-25 will be installed in Havana, Cuba. Electrons, neutrons and gamma radiation up to 25 MeV can be produced in the MT-25. A detailed shielding analysis for the bunker is carried out using two ways: the NCRP-51 Report and the Monte Carlo Method (MCNP-4C Code). The walls and ceiling thicknesses are estimated with dose constraints of 0.5 and 20 mSv y(-1), respectively, and an area occupancy factor of 1/16. Both results are compared and a preliminary bunker design is shown. Copyright 2004 Oxford University Press

  10. Implementation and testing of the on-the-fly thermal scattering Monte Carlo sampling method for graphite and light water in MCNP6

    DOE PAGES

    Pavlou, Andrew T.; Ji, Wei; Brown, Forrest B.

    2016-01-23

    Here, a proper treatment of thermal neutron scattering requires accounting for chemical binding through a scattering law S(α,β,T). Monte Carlo codes sample the secondary neutron energy and angle after a thermal scattering event from probability tables generated from S(α,β,T) tables at discrete temperatures, requiring a large amount of data for multiscale and multiphysics problems with detailed temperature gradients. We have previously developed a method to handle this temperature dependence on-the-fly during the Monte Carlo random walk using polynomial expansions in 1/T to directly sample the secondary energy and angle. In this paper, the on-the-fly method is implemented into MCNP6 andmore » tested in both graphite-moderated and light water-moderated systems. The on-the-fly method is compared with the thermal ACE libraries that come standard with MCNP6, yielding good agreement with integral reactor quantities like k-eigenvalue and differential quantities like single-scatter secondary energy and angle distributions. The simulation runtimes are comparable between the two methods (on the order of 5–15% difference for the problems tested) and the on-the-fly fit coefficients only require 5–15 MB of total data storage.« less

  11. An MCNP-based model of a medical linear accelerator x-ray photon beam.

    PubMed

    Ajaj, F A; Ghassal, N M

    2003-09-01

    The major components in the x-ray photon beam path of the treatment head of the VARIAN Clinac 2300 EX medical linear accelerator were modeled and simulated using the Monte Carlo N-Particle radiation transport computer code (MCNP). Simulated components include x-ray target, primary conical collimator, x-ray beam flattening filter and secondary collimators. X-ray photon energy spectra and angular distributions were calculated using the model. The x-ray beam emerging from the secondary collimators were scored by considering the total x-ray spectra from the target as the source of x-rays at the target position. The depth dose distribution and dose profiles at different depths and field sizes have been calculated at a nominal operating potential of 6 MV and found to be within acceptable limits. It is concluded that accurate specification of the component dimensions, composition and nominal accelerating potential gives a good assessment of the x-ray energy spectra.

  12. 10 CFR 32.18 - Manufacture, distribution and transfer of exempt quantities of byproduct material: Requirements...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Manufacture, distribution and transfer of exempt quantities of byproduct material: Requirements for license. 32.18 Section 32.18 Energy NUCLEAR REGULATORY COMMISSION SPECIFIC DOMESTIC LICENSES TO MANUFACTURE OR TRANSFER CERTAIN ITEMS CONTAINING BYPRODUCT MATERIAL...

  13. Treating voxel geometries in radiation protection dosimetry with a patched version of the Monte Carlo codes MCNP and MCNPX.

    PubMed

    Burn, K W; Daffara, C; Gualdrini, G; Pierantoni, M; Ferrari, P

    2007-01-01

    The question of Monte Carlo simulation of radiation transport in voxel geometries is addressed. Patched versions of the MCNP and MCNPX codes are developed aimed at transporting radiation both in the standard geometry mode and in the voxel geometry treatment. The patched code reads an unformatted FORTRAN file derived from DICOM format data and uses special subroutines to handle voxel-to-voxel radiation transport. The various phases of the development of the methodology are discussed together with the new input options. Examples are given of employment of the code in internal and external dosimetry and comparisons with results from other groups are reported.

  14. Quantitative comparison between PGNAA measurements and MCNP calculations in view of the characterization of radioactive wastes in Germany and France

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mauerhofer, E.; Havenith, A.; Kettler, J.

    The Forschungszentrum Juelich GmbH (FZJ), together with the Aachen University Rheinisch-Westfaelische Technische Hochschule (RWTH) and the French Alternative Energies and Atomic Energy Commission (CEA Cadarache) are involved in a cooperation aiming at characterizing toxic and reactive elements in radioactive waste packages by means of Prompt Gamma Neutron Activation Analysis (PGNAA). The French and German waste management agencies have indeed defined acceptability limits concerning these elements in view of their projected geological repositories. A first measurement campaign was performed in the new Prompt Gamma Neutron Activation Analysis (PGNAA) facility called MEDINA, at FZJ, to assess the capture gamma-ray signatures of somemore » elements of interest in large samples up to waste drums with a volume of 200 liter. MEDINA is the acronym for Multi Element Detection based on Instrumental Neutron Activation. This paper presents MCNP calculations of the MEDINA facility and quantitative comparison between measurement and simulation. Passive gamma-ray spectra acquired with a high purity germanium detector and calibration sources are used to qualify the numerical model of the crystal. Active PGNAA spectra of a sodium chloride sample measured with MEDINA then allow for qualifying the global numerical model of the measurement cell. Chlorine indeed constitutes a usual reference with reliable capture gamma-ray production data. The goal is to characterize the entire simulation protocol (geometrical model, nuclear data, and postprocessing tools) which will be used for current measurement interpretation, extrapolation of the performances to other types of waste packages or other applications, as well as for the study of future PGNAA facilities.« less

  15. Quantitative comparison between PGNAA measurements and MCNP calculations in view of the characterization of radioactive wastes in Germany and France

    NASA Astrophysics Data System (ADS)

    Mauerhofer, E.; Havenith, A.; Carasco, C.; Payan, E.; Kettler, J.; Ma, J. L.; Perot, B.

    2013-04-01

    The Forschungszentrum Jülich GmbH (FZJ), together with the Aachen University Rheinisch-Westfaelische Technische Hochschule (RWTH) and the French Alternative Energies and Atomic Energy Commission (CEA Cadarache) are involved in a cooperation aiming at characterizing toxic and reactive elements in radioactive waste packages by means of Prompt Gamma Neutron Activation Analysis (PGNAA) [1]. The French and German waste management agencies have indeed defined acceptability limits concerning these elements in view of their projected geological repositories. A first measurement campaign was performed in the new Prompt Gamma Neutron Activation Analysis (PGNAA) facility called MEDINA, at FZJ, to assess the capture gamma-ray signatures of some elements of interest in large samples up to waste drums with a volume of 200 liter. MEDINA is the acronym for Multi Element Detection based on Instrumental Neutron Activation. This paper presents MCNP calculations of the MEDINA facility and quantitative comparison between measurement and simulation. Passive gamma-ray spectra acquired with a high purity germanium detector and calibration sources are used to qualify the numerical model of the crystal. Active PGNAA spectra of a sodium chloride sample measured with MEDINA then allow for qualifying the global numerical model of the measurement cell. Chlorine indeed constitutes a usual reference with reliable capture gamma-ray production data. The goal is to characterize the entire simulation protocol (geometrical model, nuclear data, and postprocessing tools) which will be used for current measurement interpretation, extrapolation of the performances to other types of waste packages or other applications, as well as for the study of future PGNAA facilities.

  16. 32 CFR 806.28 - Records with special disclosure procedures.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 6 2014-07-01 2014-07-01 false Records with special disclosure procedures. 806.28 Section 806.28 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE...-501, Tort Claims. (p) AFI 51-503, Aircraft, Missile, Nuclear and Space Accident Investigations. (q...

  17. 32 CFR 806.28 - Records with special disclosure procedures.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 6 2012-07-01 2012-07-01 false Records with special disclosure procedures. 806.28 Section 806.28 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE...-501, Tort Claims. (p) AFI 51-503, Aircraft, Missile, Nuclear and Space Accident Investigations. (q...

  18. Evaluation of RAPID for a UNF cask benchmark problem

    NASA Astrophysics Data System (ADS)

    Mascolino, Valerio; Haghighat, Alireza; Roskoff, Nathan J.

    2017-09-01

    This paper examines the accuracy and performance of the RAPID (Real-time Analysis for Particle transport and In-situ Detection) code system for the simulation of a used nuclear fuel (UNF) cask. RAPID is capable of determining eigenvalue, subcritical multiplication, and pin-wise, axially-dependent fission density throughout a UNF cask. We study the source convergence based on the analysis of the different parameters used in an eigenvalue calculation in the MCNP Monte Carlo code. For this study, we consider a single assembly surrounded by absorbing plates with reflective boundary conditions. Based on the best combination of eigenvalue parameters, a reference MCNP solution for the single assembly is obtained. RAPID results are in excellent agreement with the reference MCNP solutions, while requiring significantly less computation time (i.e., minutes vs. days). A similar set of eigenvalue parameters is used to obtain a reference MCNP solution for the whole UNF cask. Because of time limitation, the MCNP results near the cask boundaries have significant uncertainties. Except for these, the RAPID results are in excellent agreement with the MCNP predictions, and its computation time is significantly lower, 35 second on 1 core versus 9.5 days on 16 cores.

  19. Calculated effects of backscattering on skin dosimetry for nuclear fuel fragments.

    PubMed

    Aydarous, A Sh

    2008-01-01

    The size of hot particles contained in nuclear fallout ranges from 10 nm to 20 microm for the worldwide weapons fallout. Hot particles from nuclear power reactors can be significantly bigger (100 microm to several millimetres). Electron backscattering from such particles is a prominent secondary effect in beta dosimetry for radiological protection purposes, such as skin dosimetry. In this study, the effect of electron backscattering due to hot particles contamination on skin dose is investigated. These include parameters such as detector area, source radius, source energy, scattering material and source density. The Monte-Carlo Neutron Particle code (MCNP4C) was used to calculate the depth dose distribution for 10 different beta sources and various materials. The backscattering dose factors (BSDF) were then calculated. A significant dependence is shown for the BSDF magnitude upon detector area, source radius and scatterers. It is clearly shown that the BSDF increases with increasing detector area. For high Z scatterers, the BSDF can reach as high as 40 and 100% for sources with radii 0.1 and 0.0001 cm, respectively. The variation of BSDF with source radius, source energy and source density is discussed.

  20. MCNP study for epithermal neutron irradiation of an isolated liver at the Finnish BNCT facility.

    PubMed

    Kotiluoto, P; Auterinen, I

    2004-11-01

    A successful boron neutron capture treatment (BNCT) of a patient with multiple liver metastases has been first given in Italy, by placing the removed organ into the thermal neutron column of the Triga research reactor of the University of Pavia. In Finland, FiR 1 Triga reactor with an epithermal neutron beam well suited for BNCT has been extensively used to irradiate patients with brain tumors such as glioblastoma and recently also head and neck tumors. In this work we have studied by MCNP Monte Carlo simulations, whether it would be beneficial to treat an isolated liver with epithermal neutrons instead of thermal ones. The results show, that the epithermal field penetrates deeper into the liver and creates a build-up distribution of the boron dose. Our results strongly encourage further studying of irradiation arrangement of an isolated liver with epithermal neutron fields.

  1. Adjoint acceleration of Monte Carlo simulations using TORT/MCNP coupling approach: a case study on the shielding improvement for the cyclotron room of the Buddhist Tzu Chi General Hospital.

    PubMed

    Sheu, R J; Sheu, R D; Jiang, S H; Kao, C H

    2005-01-01

    Full-scale Monte Carlo simulations of the cyclotron room of the Buddhist Tzu Chi General Hospital were carried out to improve the original inadequate maze design. Variance reduction techniques are indispensable in this study to facilitate the simulations for testing a variety of configurations of shielding modification. The TORT/MCNP manual coupling approach based on the Consistent Adjoint Driven Importance Sampling (CADIS) methodology has been used throughout this study. The CADIS utilises the source and transport biasing in a consistent manner. With this method, the computational efficiency was increased significantly by more than two orders of magnitude and the statistical convergence was also improved compared to the unbiased Monte Carlo run. This paper describes the shielding problem encountered, the procedure for coupling the TORT and MCNP codes to accelerate the calculations and the calculation results for the original and improved shielding designs. In order to verify the calculation results and seek additional accelerations, sensitivity studies on the space-dependent and energy-dependent parameters were also conducted.

  2. Covariance Data File Formats for Whisper-1.0 & Whisper-1.1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Forrest B.; Rising, Michael Evan

    2017-01-09

    Whisper is a statistical analysis package developed in 2014 to support nuclear criticality safety (NCS) validation. It uses the sensitivity profile data for an application as computed by MCNP6 along with covariance files for the nuclear data to determine a baseline upper-subcritical-limit (USL) for the application. Whisper version 1.0 was first developed and used at LANL in 2014. During 2015-2016, Whisper was updated to version 1.1 and is to be included with the upcoming release of MCNP6.2. This report describes the file formats used for the covariance data in both Whisper-1.0 and Whisper-1.1.

  3. An evaluation of a manganese bath system having a new geometry through MCNP modelling.

    PubMed

    Khabaz, Rahim

    2012-12-01

    In this study, an approximate symmetric cylindrical manganese bath system with equal diameter and height was appraised using a Monte Carlo simulation. For nine sizes of the tank filled with MnSO(4).H(2)O solution of three different concentrations, the necessary correction factors involved in the absolute measurement of neutron emission rate were determined by a detailed modelling of the MCNP4C code with the ENDF/B-VII.0 neutron cross section data library. The results obtained were also used to determine the optimum dimensions of the bath for each concentration of solution in the calibration of (241)Am-Be and (252)Cf sources. Also, the amount of gamma radiation produced as a result of (n,γ) the reaction with the nuclei of the manganese sulphate solution that escaped from the boundary of each tank was evaluated. This gamma can be important for the background in NaI(Tl) detectors and issues concerned with radiation protection.

  4. Monte-Carlo Simulations of the Nuclear Energy Deposition Inside the CARMEN-1P Differential Calorimeter Irradiated into OSIRIS Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amharrak, H.; Reynard-Carette, C.; Carette, M.

    calorimeter were carried out. A preliminary analysis shows that the numerical results overestimate the measurements by about 20 %. A new approach has been developed in order to estimate the nuclear heating by two methods (energy deposition or KERMA) by considering the whole complete geometry of the sensor. This new approach will contribute to the interpretation of the irradiation campaign and will be useful to improve the out-of-pile calibration procedure of the sensor and its thermal response during irradiations. The aim of this paper is to present simulations made by using MCNP5 Monte-Carlo transport code (using ENDF/B-VI nuclear data library) for the nuclear heating inside the different parts of the calorimeter (head, rod and base). Calculations into two steps will be realized. We will use as an input source in the model new spectra (neutrons, prompt-photons and delayed-photons) calculated with the Monte Carlo code TRIPOLI-4{sup R} inside different experimental channels (water) located into the OSIRIS periphery and used during the CARMEN-1P irradiation campaign. We will consider Neutrons- Photons-Electrons and Photons-Electrons modes. We will begin by a brief description of the differential-calorimeter device geometry. Then the MCNP5 model used for the calculations of nuclear heating inside the calorimeter elements will be introduced. The energy deposition due to the prompt-gamma, delayed-gamma and neutrons, the neutron-activation of the device will be considered. The different components of the nuclear heating inside the different parts of the calorimeter will be detailed. Moreover, a comparison between KERMA and nuclear energy deposition estimations will be given. Finally, a comparison between this total nuclear heating Calculation and Experiment in graphite sample will be determined. (authors)« less

  5. 10 CFR 32.14 - Certain items containing byproduct material; requirements for license to apply or initially...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... for license to apply or initially transfer. 32.14 Section 32.14 Energy NUCLEAR REGULATORY COMMISSION SPECIFIC DOMESTIC LICENSES TO MANUFACTURE OR TRANSFER CERTAIN ITEMS CONTAINING BYPRODUCT MATERIAL Exempt... or initially transfer. An application for a specific license to apply byproduct material to, or to...

  6. An improved MCNP version of the NORMAN voxel phantom for dosimetry studies.

    PubMed

    Ferrari, P; Gualdrini, G

    2005-09-21

    In recent years voxel phantoms have been developed on the basis of tomographic data of real individuals allowing new sets of conversion coefficients to be calculated for effective dose. Progress in radiation studies brought ICRP to revise its recommendations and a new report, already circulated in draft form, is expected to change the actual effective dose evaluation method. In the present paper the voxel phantom NORMAN developed at HPA, formerly NRPB, was employed with MCNP Monte Carlo code. A modified version of the phantom, NORMAN-05, was developed to take into account the new set of tissues and weighting factors proposed in the cited ICRP draft. Air kerma to organ equivalent dose and effective dose conversion coefficients for antero-posterior and postero-anterior parallel photon beam irradiations, from 20 keV to 10 MeV, have been calculated and compared with data obtained in other laboratories using different numerical phantoms. Obtained results are in good agreement with published data with some differences for the effective dose calculated employing the proposed new tissue weighting factors set in comparison with previous evaluations based on the ICRP 60 report.

  7. 32 CFR 32.43 - Competition.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... NON-PROFIT ORGANIZATIONS Post-Award Requirements Procurement Standards § 32.43 Competition. All... 32 National Defense 1 2010-07-01 2010-07-01 false Competition. 32.43 Section 32.43 National... free competition. The recipient shall be alert to organizational conflicts of interest as well as...

  8. 32 CFR 291.9 - For official use only (FOUO).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 2 2012-07-01 2012-07-01 false For official use only (FOUO). 291.9 Section 291.9 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) FREEDOM OF INFORMATION ACT PROGRAM DEFENSE NUCLEAR AGENCY (DNA) FREEDOM OF INFORMATION ACT PROGRAM § 291.9...

  9. 32 CFR 291.9 - For official use only (FOUO).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 2 2014-07-01 2014-07-01 false For official use only (FOUO). 291.9 Section 291.9 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) FREEDOM OF INFORMATION ACT PROGRAM DEFENSE NUCLEAR AGENCY (DNA) FREEDOM OF INFORMATION ACT PROGRAM § 291.9...

  10. 32 CFR 291.9 - For official use only (FOUO).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 2 2010-07-01 2010-07-01 false For official use only (FOUO). 291.9 Section 291.9 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) FREEDOM OF INFORMATION ACT PROGRAM DEFENSE NUCLEAR AGENCY (DNA) FREEDOM OF INFORMATION ACT PROGRAM § 291.9...

  11. 32 CFR 635.32 - General.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 4 2011-07-01 2011-07-01 false General. 635.32 Section 635.32 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) LAW ENFORCEMENT AND CRIMINAL INVESTIGATIONS LAW ENFORCEMENT REPORTING Army Quarterly Trends and Analysis Report § 635.32 General. (a) This...

  12. 32 CFR 635.32 - General.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 4 2013-07-01 2013-07-01 false General. 635.32 Section 635.32 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) LAW ENFORCEMENT AND CRIMINAL INVESTIGATIONS LAW ENFORCEMENT REPORTING Army Quarterly Trends and Analysis Report § 635.32 General. (a) This...

  13. 32 CFR 635.32 - General.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 4 2014-07-01 2013-07-01 true General. 635.32 Section 635.32 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) LAW ENFORCEMENT AND CRIMINAL INVESTIGATIONS LAW ENFORCEMENT REPORTING Army Quarterly Trends and Analysis Report § 635.32 General. (a) This...

  14. 32 CFR 635.32 - General.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 4 2012-07-01 2011-07-01 true General. 635.32 Section 635.32 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) LAW ENFORCEMENT AND CRIMINAL INVESTIGATIONS LAW ENFORCEMENT REPORTING Army Quarterly Trends and Analysis Report § 635.32 General. (a) This...

  15. 32 CFR 635.32 - General.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 4 2010-07-01 2010-07-01 true General. 635.32 Section 635.32 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) LAW ENFORCEMENT AND CRIMINAL INVESTIGATIONS LAW ENFORCEMENT REPORTING Army Quarterly Trends and Analysis Report § 635.32 General. (a) This...

  16. 32 CFR 3.2 - Background.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 1 2010-07-01 2010-07-01 false Background. 3.2 Section 3.2 National Defense Department of Defense OFFICE OF THE SECRETARY OF DEFENSE ACQUISITION TRANSACTIONS OTHER THAN CONTRACTS, GRANTS, OR COOPERATIVE AGREEMENTS FOR PROTOTYPE PROJECTS § 3.2 Background. “Other transactions” is the...

  17. Prompt Radiation Protection Factors

    DTIC Science & Technology

    2018-02-01

    dimensional Monte-Carlo radiation transport code MCNP (Monte Carlo N-Particle) and the evaluation of the protection factors (ratio of dose in the open to...radiation was performed using the three dimensional Monte- Carlo radiation transport code MCNP (Monte Carlo N-Particle) and the evaluation of the protection...by detonation of a nuclear device have placed renewed emphasis on evaluation of the consequences in case of such an event. The Defense Threat

  18. 32 CFR 651.32 - Introduction.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 4 2010-07-01 2010-07-01 true Introduction. 651.32 Section 651.32 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) ENVIRONMENTAL QUALITY ENVIRONMENTAL ANALYSIS OF ARMY ACTIONS (AR 200-2) Environmental Assessment § 651.32 Introduction. (a) An EA is intended to facilitate agency planning and...

  19. Detection of special nuclear materials with the associate particle technique

    NASA Astrophysics Data System (ADS)

    Carasco, Cédric; Deyglun, Clément; Pérot, Bertrand; Eléon, Cyrille; Normand, Stéphane; Sannié, Guillaume; Boudergui, Karim; Corre, Gwenolé; Konzdrasovs, Vladimir; Pras, Philippe

    2013-04-01

    In the frame of the French trans-governmental R&D program against chemical, biological, radiological, nuclear and explosives (CBRN-E) threats, CEA is studying the detection of Special Nuclear Materials (SNM) by neutron interrogation with fast neutrons produced by an associated particle sealed tube neutron generator. The deuterium-tritium fusion reaction produces an alpha particle and a 14 MeV neutron almost back to back, allowing tagging neutron emission both in time and direction with an alpha particle position-sensitive sensor embedded in the generator. Fission prompt neutrons and gamma rays induced by tagged neutrons which are tagged by an alpha particle are detected in coincidence with plastic scintillators. This paper presents numerical simulations performed with the MCNP-PoliMi Monte Carlo computer code and with post processing software developed with the ROOT data analysis package. False coincidences due to neutron and photon scattering between adjacent detectors (cross talk) are filtered out to increase the selectivity between nuclear and benign materials. Accidental coincidences, which are not correlated to an alpha particle, are also taken into account in the numerical model, as well as counting statistics, and the time-energy resolution of the data acquisition system. Such realistic calculations show that relevant quantities of SNM (few kg) can be distinguished from cargo and shielding materials in 10 min acquisitions. First laboratory tests of the system under development in CEA laboratories are also presented.

  20. 10 CFR 32.22 - Self-luminous products containing tritium, krypton-85 or promethium-147: Requirements for license...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... promethium-147: Requirements for license to manufacture, process, produce, or initially transfer. 32.22 Section 32.22 Energy NUCLEAR REGULATORY COMMISSION SPECIFIC DOMESTIC LICENSES TO MANUFACTURE OR TRANSFER... containing tritium, krypton-85 or promethium-147: Requirements for license to manufacture, process, produce...

  1. 10 CFR 32.22 - Self-luminous products containing tritium, krypton-85 or promethium-147: Requirements for license...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... promethium-147: Requirements for license to manufacture, process, produce, or initially transfer. 32.22 Section 32.22 Energy NUCLEAR REGULATORY COMMISSION SPECIFIC DOMESTIC LICENSES TO MANUFACTURE OR TRANSFER..., or initially transfer. (a) An application for a specific license to manufacture, process, or produce...

  2. 10 CFR 32.21 - Radioactive drug: Manufacture, preparation, or transfer for commercial distribution of capsules...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Radioactive drug: Manufacture, preparation, or transfer for commercial distribution of capsules containing carbon-14 urea each for âin vivoâ diagnostic use for humans to persons exempt from licensing; Requirements for a license. 32.21 Section 32.21 Energy NUCLEAR REGULATORY COMMISSION SPECIFIC DOMESTIC...

  3. 10 CFR 32.71 - Manufacture and distribution of byproduct material for certain in vitro clinical or laboratory...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... certain in vitro clinical or laboratory testing under general license. 32.71 Section 32.71 Energy NUCLEAR... certain in vitro clinical or laboratory testing under general license. An application for a specific... only by physicians, veterinarians in the practice of veterinary medicine, clinical laboratories or...

  4. Interaction between Herpes Simplex Virus Type 1 IE63 Protein and Cellular Protein p32

    PubMed Central

    Bryant, Helen E.; Matthews, David A.; Wadd, Sarah; Scott, James E.; Kean, Joy; Graham, Susan; Russell, William C.; Clements, J. Barklie

    2000-01-01

    The herpes simplex virus type 1 (HSV-1) immediate-early gene IE63 (ICP27), the only HSV-1 regulatory gene with a homologue in every mammalian and avian herpesvirus sequenced so far, is a multifunctional protein which regulates transcriptional and posttranscriptional processes. One of its posttranscriptional effects is the inhibition of splicing of viral and cellular transcripts. We previously identified heterogeneous nuclear ribonucleoprotein (hnRNP) K and casein kinase 2 (CK2) as two protein partners of IE63 (H. Bryant et al., J. Biol. Chem. 274:28991–28998, 1999). Here, using a yeast two-hybrid assay, we identify another partner of IE63, the cellular protein p32. Confirmation of this interaction was provided by coimmunoprecipitation from virus-infected cells and recombinant p32 binding assays. A p32-hnRNP K-CK2 complex, which required IE63 to form, was isolated from HSV-1-infected cells, and coimmunoprecipitating p32 was phosphorylated by CK2. Expression of IE63 altered the cytoplasmic distribution of p32, with some now colocalizing with IE63 in the nuclei of infected and transfected cells. As p32 copurifies with splicing factors and can inhibit splicing, we propose that IE63 together with p32, possibly with other IE63 partner proteins, acts to disrupt or regulate pre-mRNA splicing. As well as contributing to host cell shutoff, this effect could facilitate splicing-independent nuclear export of viral transcripts. PMID:11070032

  5. Interaction between herpes simplex virus type 1 IE63 protein and cellular protein p32.

    PubMed

    Bryant, H E; Matthews, D A; Wadd, S; Scott, J E; Kean, J; Graham, S; Russell, W C; Clements, J B

    2000-12-01

    The herpes simplex virus type 1 (HSV-1) immediate-early gene IE63 (ICP27), the only HSV-1 regulatory gene with a homologue in every mammalian and avian herpesvirus sequenced so far, is a multifunctional protein which regulates transcriptional and posttranscriptional processes. One of its posttranscriptional effects is the inhibition of splicing of viral and cellular transcripts. We previously identified heterogeneous nuclear ribonucleoprotein (hnRNP) K and casein kinase 2 (CK2) as two protein partners of IE63 (H. Bryant et al., J. Biol. Chem. 274:28991-28998, 1999). Here, using a yeast two-hybrid assay, we identify another partner of IE63, the cellular protein p32. Confirmation of this interaction was provided by coimmunoprecipitation from virus-infected cells and recombinant p32 binding assays. A p32-hnRNP K-CK2 complex, which required IE63 to form, was isolated from HSV-1-infected cells, and coimmunoprecipitating p32 was phosphorylated by CK2. Expression of IE63 altered the cytoplasmic distribution of p32, with some now colocalizing with IE63 in the nuclei of infected and transfected cells. As p32 copurifies with splicing factors and can inhibit splicing, we propose that IE63 together with p32, possibly with other IE63 partner proteins, acts to disrupt or regulate pre-mRNA splicing. As well as contributing to host cell shutoff, this effect could facilitate splicing-independent nuclear export of viral transcripts.

  6. 10 CFR 32.102 - Schedule C-prototype tests for calibration or reference sources containing americium-241 or...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Schedule C-prototype tests for calibration or reference sources containing americium-241 or radium-226. 32.102 Section 32.102 Energy NUCLEAR REGULATORY COMMISSION SPECIFIC DOMESTIC LICENSES TO MANUFACTURE OR TRANSFER CERTAIN ITEMS CONTAINING BYPRODUCT MATERIAL Generally...

  7. Upgrade of the MIT Linear Electrostatic Ion Accelerator (LEIA) for nuclear diagnostics development for Omega, Z and the NIF.

    PubMed

    Sinenian, N; Manuel, M J-E; Zylstra, A B; Rosenberg, M; Waugh, C J; Rinderknecht, H G; Casey, D T; Sio, H; Ruszczynski, J K; Zhou, L; Gatu Johnson, M; Frenje, J A; Séguin, F H; Li, C K; Petrasso, R D; Ruiz, C L; Leeper, R J

    2012-04-01

    The MIT Linear Electrostatic Ion Accelerator (LEIA) generates DD and D(3)He fusion products for the development of nuclear diagnostics for Omega, Z, and the National Ignition Facility (NIF). Significant improvements to the system in recent years are presented. Fusion reaction rates, as high as 10(7) s(-1) and 10(6) s(-1) for DD and D(3)He, respectively, are now well regulated with a new ion source and electronic gas control system. Charged fusion products are more accurately characterized, which allows for better calibration of existing nuclear diagnostics. In addition, in situ measurements of the on-target beam profile, made with a CCD camera, are used to determine the metrology of the fusion-product source for particle-counting applications. Finally, neutron diagnostics development has been facilitated by detailed Monte Carlo N-Particle Transport (MCNP) modeling of neutrons in the accelerator target chamber, which is used to correct for scattering within the system. These recent improvements have resulted in a versatile platform, which continues to support the existing nuclear diagnostics while simultaneously facilitating the development of new diagnostics in aid of the National Ignition Campaign at the National Ignition Facility. © 2012 American Institute of Physics

  8. Analysis of MCNP simulated gamma spectra of CdTe detectors for boron neutron capture therapy.

    PubMed

    Winkler, Alexander; Koivunoro, Hanna; Savolainen, Sauli

    2017-06-01

    The next step in the boron neutron capture therapy (BNCT) is the real time imaging of the boron concentration in healthy and tumor tissue. Monte Carlo simulations are employed to predict the detector response required to realize single-photon emission computed tomography in BNCT, but have failed to correctly resemble measured data for cadmium telluride detectors. In this study we have tested the gamma production cross-section data tables of commonly used libraries in the Monte Carlo code MCNP in comparison to measurements. The cross section data table TENDL-2008-ACE is reproducing measured data best, whilst the commonly used ENDL92 and other studied libraries do not include correct tables for the gamma production from the cadmium neutron capture reaction that is occurring inside the detector. Furthermore, we have discussed the size of the annihilation peaks of spectra obtained by cadmium telluride and germanium detectors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Cracking the ANP32 whips: Important functions, unequal requirement, and hints at disease implications

    PubMed Central

    Reilly, Patrick T; Yu, Yun; Hamiche, Ali; Wang, Lishun

    2014-01-01

    The acidic (leucine-rich) nuclear phosphoprotein 32 kDa (ANP32) family is composed of small, evolutionarily conserved proteins characterized by an N-terminal leucine-rich repeat domain and a C-terminal low-complexity acidic region. The mammalian family members (ANP32A, ANP32B, and ANP32E) are ascribed physiologically diverse functions including chromatin modification and remodelling, apoptotic caspase modulation, protein phosphatase inhibition, as well as regulation of intracellular transport. In addition to reviewing the widespread literature on the topic, we present a concept of the ANP32s as having a whip-like structure. We also present hypotheses that ANP32C and other intronless sequences should not currently be considered bona fide family members, that their disparate necessity in development may be due to compensatory mechanisms, that their contrasting roles in cancer are likely context-dependent, along with an underlying hypothesis that ANP32s represent an important node of physiological regulation by virtue of their diverse biochemical activities. PMID:25156960

  10. 32 CFR 32.52 - Financial reporting.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 1 2011-07-01 2011-07-01 false Financial reporting. 32.52 Section 32.52 National Defense Department of Defense OFFICE OF THE SECRETARY OF DEFENSE DoD GRANT AND AGREEMENT..., HOSPITALS, AND OTHER NON-PROFIT ORGANIZATIONS Post-Award Requirements Reports and Records § 32.52 Financial...

  11. 32 CFR 32.52 - Financial reporting.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 1 2014-07-01 2014-07-01 false Financial reporting. 32.52 Section 32.52 National Defense Department of Defense OFFICE OF THE SECRETARY OF DEFENSE DoD GRANT AND AGREEMENT..., HOSPITALS, AND OTHER NON-PROFIT ORGANIZATIONS Post-Award Requirements Reports and Records § 32.52 Financial...

  12. 32 CFR 32.52 - Financial reporting.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 1 2012-07-01 2012-07-01 false Financial reporting. 32.52 Section 32.52 National Defense Department of Defense OFFICE OF THE SECRETARY OF DEFENSE DoD GRANT AND AGREEMENT..., HOSPITALS, AND OTHER NON-PROFIT ORGANIZATIONS Post-Award Requirements Reports and Records § 32.52 Financial...

  13. 32 CFR 32.52 - Financial reporting.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 1 2013-07-01 2013-07-01 false Financial reporting. 32.52 Section 32.52 National Defense Department of Defense OFFICE OF THE SECRETARY OF DEFENSE DoD GRANT AND AGREEMENT..., HOSPITALS, AND OTHER NON-PROFIT ORGANIZATIONS Post-Award Requirements Reports and Records § 32.52 Financial...

  14. Comparison of the thermal neutron scattering treatment in MCNP6 and GEANT4 codes

    NASA Astrophysics Data System (ADS)

    Tran, H. N.; Marchix, A.; Letourneau, A.; Darpentigny, J.; Menelle, A.; Ott, F.; Schwindling, J.; Chauvin, N.

    2018-06-01

    To ensure the reliability of simulation tools, verification and comparison should be made regularly. This paper describes the work performed in order to compare the neutron transport treatment in MCNP6.1 and GEANT4-10.3 in the thermal energy range. This work focuses on the thermal neutron scattering processes for several potential materials which would be involved in the neutron source designs of Compact Accelerator-based Neutrons Sources (CANS), such as beryllium metal, beryllium oxide, polyethylene, graphite, para-hydrogen, light water, heavy water, aluminium and iron. Both thermal scattering law and free gas model, coming from the evaluated data library ENDF/B-VII, were considered. It was observed that the GEANT4.10.03-patch2 version was not able to account properly the coherent elastic process occurring in crystal lattice. This bug is treated in this work and it should be included in the next release of the code. Cross section sampling and integral tests have been performed for both simulation codes showing a fair agreement between the two codes for most of the materials except for iron and aluminium.

  15. Calculation of the store house worker dose in a lost wax foundry using MCNP-4C.

    PubMed

    Alegría, Natalia; Legarda, Fernando; Herranz, Margarita; Idoeta, Raquel

    2005-01-01

    Lost wax casting is an industrial process which permits the transmutation into metal of models made in wax. The wax model is covered with a silicaceous shell of the required thickness and once this shell is built the set is heated and wax melted. Liquid metal is then cast into the shell replacing the wax. When the metal is cool, the shell is broken away in order to recover the metallic piece. In this process zircon sands are used for the preparation of the silicaceous shell. These sands have varying concentrations of natural radionuclides: 238U, 232Th and 235U together with their progenics. The zircon sand is distributed in bags of 50 kg, and 30 bags are on a pallet, weighing 1,500 kg. The pallets with the bags have dimensions 80 cm x 120 cm x 80 cm, and constitute the radiation source in this case. The only pathway of exposure to workers in the store house is external radiation. In this case there is no dust because the bags are closed and covered by plastic, the store house has a good ventilation rate and so radon accumulation is not possible. The workers do not touch with their hands the bags and consequently skin contamination will not take place. In this study all situations of external irradiation to the workers have been considered; transportation of the pallets from vehicle to store house, lifting the pallets to the shelf, resting of the stock on the shelf, getting down the pallets, and carrying the pallets to production area. Using MCNP-4C exposure situations have been simulated, considering that the source has a homogeneous composition, the minimum stock in the store house is constituted by 7 pallets, and the several distances between pallets and workers when they are at work. The photons flux obtained by MCNP-4C is multiplied by the conversion factor of Flux to Kerma for air by conversion factor to Effective Dose by Kerma unit, and by the number of emitted photons. Those conversion factors are obtained of ICRP 74 table 1 and table 17 respectively. This

  16. 32 CFR 32.52 - Financial reporting.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 1 2010-07-01 2010-07-01 false Financial reporting. 32.52 Section 32.52..., HOSPITALS, AND OTHER NON-PROFIT ORGANIZATIONS Post-Award Requirements Reports and Records § 32.52 Financial reporting. (a) The following forms or such other forms as may be approved by OMB are authorized for...

  17. 28 CFR 32.32 - Time for filing claim.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 28 Judicial Administration 1 2010-07-01 2010-07-01 false Time for filing claim. 32.32 Section 32.32 Judicial Administration DEPARTMENT OF JUSTICE PUBLIC SAFETY OFFICERS' DEATH, DISABILITY, AND EDUCATIONAL ASSISTANCE BENEFIT CLAIMS Educational Assistance Benefit Claims § 32.32 Time for filing claim. (a...

  18. 28 CFR 32.32 - Time for filing claim.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 28 Judicial Administration 1 2011-07-01 2011-07-01 false Time for filing claim. 32.32 Section 32.32 Judicial Administration DEPARTMENT OF JUSTICE PUBLIC SAFETY OFFICERS' DEATH, DISABILITY, AND EDUCATIONAL ASSISTANCE BENEFIT CLAIMS Educational Assistance Benefit Claims § 32.32 Time for filing claim. (a...

  19. MCNP modelling of vaginal and uterine applicators used in intracavitary brachytherapy and comparison with radiochromic film measurements

    NASA Astrophysics Data System (ADS)

    Ceccolini, E.; Gerardy, I.; Ródenas, J.; van Dycke, M.; Gallardo, S.; Mostacci, D.

    Brachytherapy is an advanced cancer treatment that is minimally invasive, minimising radiation exposure to the surrounding healthy tissues. Microselectron© Nucletron devices with 192Ir source can be used for gynaecological brachytherapy, in patients with vaginal or uterine cancer. Measurements of isodose curves have been performed in a PMMA phantom and compared with Monte Carlo calculations and TPS (Plato software of Nucletron BPS 14.2) evaluation. The isodose measurements have been performed with radiochromic films (Gafchromic EBT©). The dose matrix has been obtained after digitalisation and use of a dose calibration curve obtained with a 6 MV photon beam provided by a medical linear accelerator. A comparison between the calculated and the measured matrix has been performed. The calculated dose matrix is obtained with a simulation using the MCNP5 Monte Carlo code (F4MESH tally).

  20. MCNP Simulation Benchmarks for a Portable Inspection System for Narcotics, Explosives, and Nuclear Material Detection

    NASA Astrophysics Data System (ADS)

    Alfonso, Krystal; Elsalim, Mashal; King, Michael; Strellis, Dan; Gozani, Tsahi

    2013-04-01

    MCNPX simulations have been used to guide the development of a portable inspection system for narcotics, explosives, and special nuclear material (SNM) detection. The system seeks to address these threats to national security by utilizing a high-yield, compact neutron source to actively interrogate the threats and produce characteristic signatures that can then be detected by radiation detectors. The portability of the system enables rapid deployment and proximity to threats concealed in small spaces. Both dD and dT electronic neutron generators (ENG) were used to interrogate ammonium nitrate fuel oil (ANFO) and cocaine hydrochloride, and the detector response of NaI, CsI, and LaBr3 were compared. The effect of tungsten shielding on the neutron flux in the gamma ray detectors was investigated, while carbon, beryllium, and polyethylene ENG moderator materials were optimized by determining the reaction rate density in the threats. In order to benchmark the modeling results, experimental measurements are compared with MCNPX simulations. In addition, the efficiency and die-away time of a portable differential die-away analysis (DDAA) detector using 3He proportional counters for SNM detection has been determined.

  1. MCNP simulation of radiation doses distributions in a water phantoms simulating interventional radiology patients

    NASA Astrophysics Data System (ADS)

    He, Wenjun; Mah, Eugene; Huda, Walter; Selby, Bayne; Yao, Hai

    2011-03-01

    Purpose: To investigate the dose distributions in water cylinders simulating patients undergoing Interventional Radiological examinations. Method: The irradiation geometry consisted of an x-ray source, dose-area-product chamber, and image intensifier as currently used in Interventional Radiology. Water cylinders of diameters ranging between 17 and 30 cm were used to simulate patients weighing between 20 and 90 kg. X-ray spectra data with peak x-ray tube voltages ranging from 60 to 120 kV were generated using XCOMP3R. Radiation dose distributions inside the water cylinder (Dw) were obtained using MCNP5. The depth dose distribution along the x-ray beam central axis was normalized to free-in-air air kerma (AK) that is incident on the phantom. Scattered radiation within the water cylinders but outside the directly irradiated region was normalized to the dose at the edge of the radiation field. The total absorbed energy to the directly irradiated volume (Ep) and indirectly irradiated volume (Es) were also determined and investigated as a function of x-ray tube voltage and phantom size. Results: At 80 kV, the average Dw/AK near the x-ray entrance point was 1.3. The ratio of Dw near the entrance point to Dw near the exit point increased from ~ 26 for the 17 cm water cylinder to ~ 290 for the 30 cm water cylinder. At 80 kV, the relative dose for a 17 cm water cylinder fell to 0.1% at 49 cm away from the central ray of the x-ray beam. For a 30 cm water cylinder, the relative dose fell to 0.1% at 53 cm away from the central ray of the x-ray beam. At a fixed x-ray tube voltage of 80 kV, increasing the water cylinder diameter from 17 to 30 cm increased the Es/(Ep+Es) ratio by about 50%. At a fixed water cylinder diameter of 24 cm, increasing the tube voltage from 60 kV to 120 kV increased the Es/(Ep+Es) ratio by about 12%. The absorbed energy from scattered radiation was between 20-30% of the total energy absorbed by the water cylinder, and was affected more by patient size

  2. Physical models, cross sections, and numerical approximations used in MCNP and GEANT4 Monte Carlo codes for photon and electron absorbed fraction calculation.

    PubMed

    Yoriyaz, Hélio; Moralles, Maurício; Siqueira, Paulo de Tarso Dalledone; Guimarães, Carla da Costa; Cintra, Felipe Belonsi; dos Santos, Adimir

    2009-11-01

    Radiopharmaceutical applications in nuclear medicine require a detailed dosimetry estimate of the radiation energy delivered to the human tissues. Over the past years, several publications addressed the problem of internal dose estimate in volumes of several sizes considering photon and electron sources. Most of them used Monte Carlo radiation transport codes. Despite the widespread use of these codes due to the variety of resources and potentials they offered to carry out dose calculations, several aspects like physical models, cross sections, and numerical approximations used in the simulations still remain an object of study. Accurate dose estimate depends on the correct selection of a set of simulation options that should be carefully chosen. This article presents an analysis of several simulation options provided by two of the most used codes worldwide: MCNP and GEANT4. For this purpose, comparisons of absorbed fraction estimates obtained with different physical models, cross sections, and numerical approximations are presented for spheres of several sizes and composed as five different biological tissues. Considerable discrepancies have been found in some cases not only between the different codes but also between different cross sections and algorithms in the same code. Maximum differences found between the two codes are 5.0% and 10%, respectively, for photons and electrons. Even for simple problems as spheres and uniform radiation sources, the set of parameters chosen by any Monte Carlo code significantly affects the final results of a simulation, demonstrating the importance of the correct choice of parameters in the simulation.

  3. Command and Control in New Nuclear States: Implications for Stability

    DTIC Science & Technology

    1994-06-01

    dangerous" scenario being one of nuclear proliferation "well- managed by the current nuclear powers."’’ Inside of Mearsheimer’s paradigm for peace and...expanded (but managed ) nuclear proliferation would tend to equalize military power amoung states and thus bolster stratigic stability generally. B...31Ashton B. Carter, John D. Steinbruner and Charles A. Zraket, ed., Managing Nuclear Orerations, (Washington, DC: Brookings,1987), 1. 32Webster’s New

  4. 10 CFR 32.51 - Byproduct material contained in devices for use under § 31.5; requirements for license to...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...§ 31.5; requirements for license to manufacture, or initially transfer. 32.51 Section 32.51 Energy NUCLEAR REGULATORY COMMISSION SPECIFIC DOMESTIC LICENSES TO MANUFACTURE OR TRANSFER CERTAIN ITEMS... use under § 31.5; requirements for license to manufacture, or initially transfer. (a) An application...

  5. Interleukin-32 induces the differentiation of monocytes into macrophage-like cells.

    PubMed

    Netea, Mihai G; Lewis, Eli C; Azam, Tania; Joosten, Leo A B; Jaekal, Jun; Bae, Su-Young; Dinarello, Charles A; Kim, Soo-Hyun

    2008-03-04

    After emigration from the bone marrow to the peripheral blood, monocytes enter tissues and differentiate into macrophages, the prototype scavenger of the immune system. By ingesting and killing microorganisms and removing cellular debris, macrophages also process antigens as a first step in mounting a specific immune response. IL-32 is a cytokine inducing proinflammatory cytokines and chemokines via p38-MAPK and NF-kappaB. In the present study, we demonstrate that IL-32 induces differentiation of human blood monocytes as well as THP-1 leukemic cells into macrophage-like cells with functional phagocytic activity for live bacteria. Muramyl dipepide (MDP), the ligand for the intracellular nuclear oligomerization domain (NOD) 2 receptor, has no effect on differentiation alone but augments the monocyte-to-macrophage differentiation by IL-32. Unexpectedly, IL-32 reversed GM-CSF/IL-4-induced dendritic cell differentiation to macrophage-like cells. Whereas the induction of TNFalpha, IL-1beta, and IL-6 by IL-32 is mediated by p38-MAPK, IL-32-induced monocyte-to-macrophage differentiation is mediated through nonapoptotic, caspase-3-dependent mechanisms. Thus, IL-32 not only contributes to host responses through the induction of proinflammatory cytokines but also directly affects specific immunity by differentiating monocytes into macrophage-like cells.

  6. MCNP Simulations of Measurement of Insulation Compaction in the Cryogenic Rocket Fuel Tanks at Kennedy Space Center by Fast/Thermal Neutron Techniques

    NASA Technical Reports Server (NTRS)

    Livingston, R. A.; Schweitzer, J. S.; Parsons, A. M.; Arens, E. E.

    2010-01-01

    MCNP simulations have been run to evaluate the feasibility of using a combination of fast and thermal neutrons as a nondestructive method to measure of the compaction of the perlite insulation in the liquid hydrogen and oxygen cryogenic storage tanks at John F. Kennedy Space Center (KSC). Perlite is a feldspathic volcanic rock made up of the major elements Si, AI, Na, K and 0 along with some water. When heated it expands from four to twenty times its original volume which makes it very useful for thermal insulation. The cryogenic tanks at Kennedy Space Center are spherical with outer diameters of 69-70 feet and lined with a layer of expanded perlite with thicknesses on the order of 120 cm. There is evidence that some of the perlite has compacted over time since the tanks were built 1965, affecting the thermal properties and possibly also the structural integrity of the tanks. With commercially available portable neutron generators it is possible to produce simultaneously fluxes of neutrons in two energy ranges: fast (14 Me V) and thermal (25 me V). The two energy ranges produce complementary information. Fast neutrons produce gamma rays by inelastic scattering, which is sensitive to Fe and O. Thermal neutrons produce gamma rays by prompt gamma neutron activation (PGNA) and this is sensitive to Si, Al, Na, K and H. The compaction of the perlite can be measured by the change in gamma ray signal strength which is proportional to the atomic number densities of the constituent elements. The MCNP simulations were made to determine the magnitude of this change. The tank wall was approximated by a I-dimensional slab geometry with an 11/16" outer carbon steel wall, an inner stainless wall and 120 cm thick perlite zone. Runs were made for cases with expanded perlite, compacted perlite or with various void fractions. Runs were also made to simulate the effect of adding a moderator. Tallies were made for decay-time analysis from t=0 to 10 ms; total detected gamma

  7. Combinedatomic–nuclear decay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dzyublik, A. Ya., E-mail: dzyublik@ukr.net

    We analyzed in details the combined decay of the atomic-nuclear state, which consists of the excited 3/2{sup +} level of {sub 63}{sup 153}Eu and K hole, formed in the K capture by {sup 153}Gd. This decay proceeds in two stages. First, the nucleus transfers its energy to 2p electron, which flies into the continuum spectrum, and then returns into 1s hole, emitting γ quantum with the energy equal to the sum of energies of the nuclear and atomic transitions. We estimated the decay probability to be 2.2 × 10{sup −13}, that is much less than the recent experimental findings.

  8. 32 CFR 516.32 - Requests for indemnification.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 3 2010-07-01 2010-07-01 true Requests for indemnification. 516.32 Section 516.32 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY AID OF CIVIL AUTHORITIES AND PUBLIC RELATIONS LITIGATION Individual Liability § 516.32 Requests for indemnification. (a) Policy...

  9. 32 CFR 634.32 - Traffic violation reports.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 4 2011-07-01 2011-07-01 false Traffic violation reports. 634.32 Section 634.32... CRIMINAL INVESTIGATIONS MOTOR VEHICLE TRAFFIC SUPERVISION Traffic Supervision § 634.32 Traffic violation reports. (a) Most traffic violations occurring on DOD installations (within the UNITED STATES or its...

  10. 32 CFR 634.32 - Traffic violation reports.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 4 2010-07-01 2010-07-01 true Traffic violation reports. 634.32 Section 634.32... CRIMINAL INVESTIGATIONS MOTOR VEHICLE TRAFFIC SUPERVISION Traffic Supervision § 634.32 Traffic violation reports. (a) Most traffic violations occurring on DOD installations (within the UNITED STATES or its...

  11. Kaempferol impedes IL-32-induced monocyte-macrophage differentiation.

    PubMed

    Nam, Sun-Young; Jeong, Hyun-Ja; Kim, Hyung-Min

    2017-08-25

    Kaempferol possesses a wide range of therapeutic properties, including antioxidant, anti-inflammatory, and anticancer properties. The present study sought to evaluate the effects and possible pharmacological mechanisms of kaempferol on interleukin (IL)-32-induced monocyte-macrophage differentiation. In this study, we performed flow cytometry assay, immunocytochemical staining, quantitative real-time PCR, enzyme-linked immuno sorbent assay, caspase-1 assay, and Western blotting to observe the effects and underlying mechanisms of kaempferol using the human monocyte cell line THP-1. The flow cytometry, immunocytochemical staining, and real-time PCR results show that kaempferol attenuated IL-32-induced monocyte differentiation to product macrophage-like cells. Kaempferol decreased the production and mRNA expression of pro-inflammatory cytokines, in this case thymic stromal lymphopoietin (TSLP), IL-1β, tumor necrosis factor (TNF)-α, and IL-8. Furthermore, kaempferol inhibited the IL-32-induced activation of p38 and nuclear factor-κB in a dose-dependent manner in THP-1 cells. Kaempferol also ameliorated the lipopolysaccharide-induced production of the inflammatory mediators TSLP, IL-1β, TNF-α, IL-8, and nitric oxide of macrophage-like cells differentiated by IL-32. In brief, our findings may provide new mechanistic insights into the anti-inflammatory effects of kaempferol. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. 32 CFR 643.32 - Policy-Endangered species.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ESTATE Policy § 643.32 Policy—Endangered species. The Endangered Species Act of 1973 (16 U.S.C. 1531 et seq.), declares the intention of Congress to conserve threatened and endangered species of fish... 32 National Defense 4 2011-07-01 2011-07-01 false Policy-Endangered species. 643.32 Section 643.32...

  13. 32 CFR 643.32 - Policy-Endangered species.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ESTATE Policy § 643.32 Policy—Endangered species. The Endangered Species Act of 1973 (16 U.S.C. 1531 et seq.), declares the intention of Congress to conserve threatened and endangered species of fish... 32 National Defense 4 2013-07-01 2013-07-01 false Policy-Endangered species. 643.32 Section 643.32...

  14. 32 CFR 643.32 - Policy-Endangered species.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... ESTATE Policy § 643.32 Policy—Endangered species. The Endangered Species Act of 1973 (16 U.S.C. 1531 et seq.), declares the intention of Congress to conserve threatened and endangered species of fish... 32 National Defense 4 2012-07-01 2011-07-01 true Policy-Endangered species. 643.32 Section 643.32...

  15. 32 CFR 643.32 - Policy-Endangered species.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... ESTATE Policy § 643.32 Policy—Endangered species. The Endangered Species Act of 1973 (16 U.S.C. 1531 et seq.), declares the intention of Congress to conserve threatened and endangered species of fish... 32 National Defense 4 2014-07-01 2013-07-01 true Policy-Endangered species. 643.32 Section 643.32...

  16. 32 CFR 643.32 - Policy-Endangered species.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ESTATE Policy § 643.32 Policy—Endangered species. The Endangered Species Act of 1973 (16 U.S.C. 1531 et seq.), declares the intention of Congress to conserve threatened and endangered species of fish... 32 National Defense 4 2010-07-01 2010-07-01 true Policy-Endangered species. 643.32 Section 643.32...

  17. Calibration with MCNP of NaI detector for the determination of natural radioactivity levels in the field.

    PubMed

    Cinelli, Giorgia; Tositti, Laura; Mostacci, Domiziano; Baré, Jonathan

    2016-05-01

    In view of assessing natural radioactivity with on-site quantitative gamma spectrometry, efficiency calibration of NaI(Tl) detectors is investigated. A calibration based on Monte Carlo simulation of detector response is proposed, to render reliable quantitative analysis practicable in field campaigns. The method is developed with reference to contact geometry, in which measurements are taken placing the NaI(Tl) probe directly against the solid source to be analyzed. The Monte Carlo code used for the simulations was MCNP. Experimental verification of the calibration goodness is obtained by comparison with appropriate standards, as reported. On-site measurements yield a quick quantitative assessment of natural radioactivity levels present ((40)K, (238)U and (232)Th). On-site gamma spectrometry can prove particularly useful insofar as it provides information on materials from which samples cannot be taken. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. 32 CFR 32.48 - Contract provisions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 1 2012-07-01 2012-07-01 false Contract provisions. 32.48 Section 32.48 National Defense Department of Defense OFFICE OF THE SECRETARY OF DEFENSE DoD GRANT AND AGREEMENT... provision to the effect that the recipient, the Department of Defense, the Comptroller General of the United...

  19. 32 CFR 32.48 - Contract provisions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 1 2013-07-01 2013-07-01 false Contract provisions. 32.48 Section 32.48 National Defense Department of Defense OFFICE OF THE SECRETARY OF DEFENSE DoD GRANT AND AGREEMENT... provision to the effect that the recipient, the Department of Defense, the Comptroller General of the United...

  20. 32 CFR 32.48 - Contract provisions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 1 2011-07-01 2011-07-01 false Contract provisions. 32.48 Section 32.48 National Defense Department of Defense OFFICE OF THE SECRETARY OF DEFENSE DoD GRANT AND AGREEMENT... provision to the effect that the recipient, the Department of Defense, the Comptroller General of the United...

  1. 32 CFR 32.48 - Contract provisions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 1 2010-07-01 2010-07-01 false Contract provisions. 32.48 Section 32.48 National Defense Department of Defense OFFICE OF THE SECRETARY OF DEFENSE DoD GRANT AND AGREEMENT... provision to the effect that the recipient, the Department of Defense, the Comptroller General of the United...

  2. 32 CFR 32.36 - Intangible property.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 1 2011-07-01 2011-07-01 false Intangible property. 32.36 Section 32.36 National Defense Department of Defense OFFICE OF THE SECRETARY OF DEFENSE DoD GRANT AND AGREEMENT..., including Governmentwide regulations issued by the Department of Commerce at 37 CFR part 401, “Rights to...

  3. 32 CFR 32.36 - Intangible property.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 1 2014-07-01 2014-07-01 false Intangible property. 32.36 Section 32.36 National Defense Department of Defense OFFICE OF THE SECRETARY OF DEFENSE DoD GRANT AND AGREEMENT..., including Governmentwide regulations issued by the Department of Commerce at 37 CFR part 401, “Rights to...

  4. 32 CFR 32.36 - Intangible property.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 1 2012-07-01 2012-07-01 false Intangible property. 32.36 Section 32.36 National Defense Department of Defense OFFICE OF THE SECRETARY OF DEFENSE DoD GRANT AND AGREEMENT..., including Governmentwide regulations issued by the Department of Commerce at 37 CFR part 401, “Rights to...

  5. 32 CFR 32.36 - Intangible property.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 1 2013-07-01 2013-07-01 false Intangible property. 32.36 Section 32.36 National Defense Department of Defense OFFICE OF THE SECRETARY OF DEFENSE DoD GRANT AND AGREEMENT..., including Governmentwide regulations issued by the Department of Commerce at 37 CFR part 401, “Rights to...

  6. 32 CFR 32.36 - Intangible property.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 1 2010-07-01 2010-07-01 false Intangible property. 32.36 Section 32.36 National Defense Department of Defense OFFICE OF THE SECRETARY OF DEFENSE DoD GRANT AND AGREEMENT..., including Governmentwide regulations issued by the Department of Commerce at 37 CFR part 401, “Rights to...

  7. Testing of the ABBN-RF multigroup data library in photon transport calculations

    NASA Astrophysics Data System (ADS)

    Koscheev, Vladimir; Lomakov, Gleb; Manturov, Gennady; Tsiboulia, Anatoly

    2017-09-01

    Gamma radiation is produced via both of nuclear fuel and shield materials. Photon interaction is known with appropriate accuracy, but secondary gamma ray production known much less. The purpose of this work is studying secondary gamma ray production data from neutron induced reactions in iron and lead by using MCNP code and modern nuclear data as ROSFOND, ENDF/B-7.1, JEFF-3.2 and JENDL-4.0. Results of calculations show that all of these nuclear data have different photon production data from neutron induced reactions and have poor agreement with evaluated benchmark experiment. The ABBN-RF multigroup cross-section library is based on the ROSFOND data. It presented in two forms of micro cross sections: ABBN and MATXS formats. Comparison of group-wise calculations using both ABBN and MATXS data to point-wise calculations with the ROSFOND library shows a good agreement. The discrepancies between calculation and experimental C/E results in neutron spectra are in the limit of experimental errors. For the photon spectrum they are out of experimental errors. Results of calculations using group-wise and point-wise representation of cross sections show a good agreement both for photon and neutron spectra.

  8. 32 CFR 32.24 - Program income.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 1 2010-07-01 2010-07-01 false Program income. 32.24 Section 32.24 National... income. (a) DoD Components shall apply the standards set forth in this section in requiring recipient organizations to account for program income related to projects financed in whole or in part with Federal funds...

  9. Upgrade of the MIT Linear Electrostatic Ion Accelerator (LEIA) for nuclear diagnostics development for Omega, Z and the NIF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinenian, N.; Manuel, M. J.-E.; Zylstra, A. B.

    2012-04-15

    The MIT Linear Electrostatic Ion Accelerator (LEIA) generates DD and D{sup 3}He fusion products for the development of nuclear diagnostics for Omega, Z, and the National Ignition Facility (NIF). Significant improvements to the system in recent years are presented. Fusion reaction rates, as high as 10{sup 7} s{sup -1} and 10{sup 6} s{sup -1} for DD and D{sup 3}He, respectively, are now well regulated with a new ion source and electronic gas control system. Charged fusion products are more accurately characterized, which allows for better calibration of existing nuclear diagnostics. In addition, in situ measurements of the on-target beam profile,more » made with a CCD camera, are used to determine the metrology of the fusion-product source for particle-counting applications. Finally, neutron diagnostics development has been facilitated by detailed Monte Carlo N-Particle Transport (MCNP) modeling of neutrons in the accelerator target chamber, which is used to correct for scattering within the system. These recent improvements have resulted in a versatile platform, which continues to support the existing nuclear diagnostics while simultaneously facilitating the development of new diagnostics in aid of the National Ignition Campaign at the National Ignition Facility.« less

  10. An approach to design a 90Sr radioisotope thermoelectric generator using analytical and Monte Carlo methods with ANSYS, COMSOL, and MCNP.

    PubMed

    Khajepour, Abolhasan; Rahmani, Faezeh

    2017-01-01

    In this study, a 90 Sr radioisotope thermoelectric generator (RTG) with power of milliWatt was designed to operate in the determined temperature (300-312K). For this purpose, the combination of analytical and Monte Carlo methods with ANSYS and COMSOL software as well as the MCNP code was used. This designed RTG contains 90 Sr as a radioisotope heat source (RHS) and 127 coupled thermoelectric modules (TEMs) based on bismuth telluride. Kapton (2.45mm in thickness) and Cryotherm sheets (0.78mm in thickness) were selected as the thermal insulators of the RHS, as well as a stainless steel container was used as a generator chamber. The initial design of the RHS geometry was performed according to the amount of radioactive material (strontium titanate) as well as the heat transfer calculations and mechanical strength considerations. According to the Monte Carlo simulation performed by the MCNP code, approximately 0.35 kCi of 90 Sr is sufficient to generate heat power in the RHS. To determine the optimal design of the RTG, the distribution of temperature as well as the dissipated heat and input power to the module were calculated in different parts of the generator using the ANSYS software. Output voltage according to temperature distribution on TEM was calculated using COMSOL. Optimization of the dimension of the RHS and heat insulator was performed to adapt the average temperature of the hot plate of TEM to the determined hot temperature value. This designed RTG generates 8mW in power with an efficiency of 1%. This proposed approach of combination method can be used for the precise design of various types of RTGs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Benchmark of Atucha-2 PHWR RELAP5-3D control rod model by Monte Carlo MCNP5 core calculation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pecchia, M.; D'Auria, F.; Mazzantini, O.

    2012-07-01

    Atucha-2 is a Siemens-designed PHWR reactor under construction in the Republic of Argentina. Its geometrical complexity and peculiarities require the adoption of advanced Monte Carlo codes for performing realistic neutronic simulations. Therefore core models of Atucha-2 PHWR were developed using MCNP5. In this work a methodology was set up to collect the flux in the hexagonal mesh by which the Atucha-2 core is represented. The scope of this activity is to evaluate the effect of obliquely inserted control rod on neutron flux in order to validate the RELAP5-3D{sup C}/NESTLE three dimensional neutron kinetic coupled thermal-hydraulic model, applied by GRNSPG/UNIPI formore » performing selected transients of Chapter 15 FSAR of Atucha-2. (authors)« less

  12. Benchmarking the MCNP Monte Carlo code with a photon skyshine experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olsher, R.H.; Hsu, Hsiao Hua; Harvey, W.F.

    1993-07-01

    The MCNP Monte Carlo transport code is used by the Los Alamos National Laboratory Health and Safety Division for a broad spectrum of radiation shielding calculations. One such application involves the determination of skyshine dose for a variety of photon sources. To verify the accuracy of the code, it was benchmarked with the Kansas State Univ. (KSU) photon skyshine experiment of 1977. The KSU experiment for the unshielded source geometry was simulated in great detail to include the contribution of groundshine, in-silo photon scatter, and the effect of spectral degradation in the source capsule. The standard deviation of the KSUmore » experimental data was stated to be 7%, while the statistical uncertainty of the simulation was kept at or under 1%. The results of the simulation agreed closely with the experimental data, generally to within 6%. At distances of under 100 m from the silo, the modeling of the in-silo scatter was crucial to achieving close agreement with the experiment. Specifically, scatter off the top layer of the source cask accounted for [approximately]12% of the dose at 50 m. At distance >300m, using the [sup 60]Co line spectrum led to a dose overresponse as great as 19% at 700 m. It was necessary to use the actual source spectrum, which includes a Compton tail from photon collisions in the source capsule, to achieve close agreement with experimental data. These results highlight the importance of using Monte Carlo transport techniques to account for the nonideal features of even simple experiments''.« less

  13. 32 CFR 1901.32 - Requests for expedited processing.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 6 2013-07-01 2013-07-01 false Requests for expedited processing. 1901.32 Section 1901.32 National Defense Other Regulations Relating to National Defense CENTRAL INTELLIGENCE AGENCY PUBLIC RIGHTS UNDER THE PRIVACY ACT OF 1974 Additional Administrative Matters § 1901.32 Requests...

  14. 32 CFR 1901.32 - Requests for expedited processing.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 6 2011-07-01 2011-07-01 false Requests for expedited processing. 1901.32 Section 1901.32 National Defense Other Regulations Relating to National Defense CENTRAL INTELLIGENCE AGENCY PUBLIC RIGHTS UNDER THE PRIVACY ACT OF 1974 Additional Administrative Matters § 1901.32 Requests...

  15. Verification of Plutonium Content in PuBe Sources Using MCNP® 6.2.0 Beta with TENDL 2012 Libraries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lockhart, Madeline Louise; McMath, Garrett Earl

    Although the production of PuBe neutron sources has discontinued, hundreds of sources with unknown or inaccurately declared plutonium content are in existence around the world. Institutions have undertaken the task of assaying these sources, measuring, and calculating the isotopic composition, plutonium content, and neutron yield. The nominal plutonium content, based off the neutron yield per gram of pure 239Pu, has shown to be highly inaccurate. New methods of measuring the plutonium content allow a more accurate estimate of the true Pu content, but these measurements need verification. Using the TENDL 2012 nuclear data libraries, MCNP6 has the capability to simulatemore » the (α, n) interactions in a PuBe source. Theoretically, if the source is modeled according to the plutonium content, isotopic composition, and other source characteristics, the calculated neutron yield in MCNP can be compared to the experimental yield, offering an indication of the accuracy of the declared plutonium content. In this study, three sets of PuBe sources from various backgrounds were modeled in MCNP6 1.2 Beta, according to the source specifications dictated by the individuals who assayed the source. Verification of the source parameters with MCNP6 also serves as a means to test the alpha transport capabilities of MCNP6 1.2 Beta with TENDL 2012 alpha transport libraries. Finally, good agreement in the comparison would indicate the accuracy of the source parameters in addition to demonstrating MCNP's capabilities in simulating (α, n) interactions.« less

  16. Verification of Plutonium Content in PuBe Sources Using MCNP® 6.2.0 Beta with TENDL 2012 Libraries

    DOE PAGES

    Lockhart, Madeline Louise; McMath, Garrett Earl

    2017-10-26

    Although the production of PuBe neutron sources has discontinued, hundreds of sources with unknown or inaccurately declared plutonium content are in existence around the world. Institutions have undertaken the task of assaying these sources, measuring, and calculating the isotopic composition, plutonium content, and neutron yield. The nominal plutonium content, based off the neutron yield per gram of pure 239Pu, has shown to be highly inaccurate. New methods of measuring the plutonium content allow a more accurate estimate of the true Pu content, but these measurements need verification. Using the TENDL 2012 nuclear data libraries, MCNP6 has the capability to simulatemore » the (α, n) interactions in a PuBe source. Theoretically, if the source is modeled according to the plutonium content, isotopic composition, and other source characteristics, the calculated neutron yield in MCNP can be compared to the experimental yield, offering an indication of the accuracy of the declared plutonium content. In this study, three sets of PuBe sources from various backgrounds were modeled in MCNP6 1.2 Beta, according to the source specifications dictated by the individuals who assayed the source. Verification of the source parameters with MCNP6 also serves as a means to test the alpha transport capabilities of MCNP6 1.2 Beta with TENDL 2012 alpha transport libraries. Finally, good agreement in the comparison would indicate the accuracy of the source parameters in addition to demonstrating MCNP's capabilities in simulating (α, n) interactions.« less

  17. Gamma Spectroscopy by Artificial Neural Network Coupled with MCNP

    NASA Astrophysics Data System (ADS)

    Sahiner, Huseyin

    While neutron activation analysis is widely used in many areas, sensitivity of the analysis depends on how the analysis is conducted. Even though the sensitivity of the techniques carries error, compared to chemical analysis, its range is in parts per million or sometimes billion. Due to this sensitivity, the use of neutron activation analysis becomes important when analyzing bio-samples. Artificial neural network is an attractive technique for complex systems. Although there are neural network applications on spectral analysis, training by simulated data to analyze experimental data has not been made. This study offers an improvement on spectral analysis and optimization on neural network for the purpose. The work considers five elements that are considered as trace elements for bio-samples. However, the system is not limited to five elements. The only limitation of the study comes from data library availability on MCNP. A perceptron network was employed to identify five elements from gamma spectra. In quantitative analysis, better results were obtained when the neural fitting tool in MATLAB was used. As a training function, Levenberg-Marquardt algorithm was used with 23 neurons in the hidden layer with 259 gamma spectra in the input. Because the interest of the study deals with five elements, five neurons representing peak counts of five isotopes in the input layer were used. Five output neurons revealed mass information of these elements from irradiated kidney stones. Results showing max error of 17.9% in APA, 24.9% in UA, 28.2% in COM, 27.9% in STRU type showed the success of neural network approach in analyzing gamma spectra. This high error was attributed to Zn that has a very long decay half-life compared to the other elements. The simulation and experiments were made under certain experimental setup (3 hours irradiation, 96 hours decay time, 8 hours counting time). Nevertheless, the approach is subject to be generalized for different setups.

  18. Control of the Low-energy X-rays by Using MCNP5 and Numerical Analysis for a New Concept Intra-oral X-ray Imaging System

    NASA Astrophysics Data System (ADS)

    Huh, Jangyong; Ji, Yunseo; Lee, Rena

    2018-05-01

    An X-ray control algorithm to modulate the X-ray intensity distribution over the FOV (field of view) has been developed by using numerical analysis and MCNP5, a particle transport simulation code on the basis of the Monte Carlo method. X-rays, which are widely used in medical diagnostic imaging, should be controlled in order to maximize the performance of the X-ray imaging system. However, transporting X-rays, like a liquid or a gas is conveyed through a physical form such as pipes, is not possible. In the present study, an X-ray control algorithm and technique to uniformize the Xray intensity projected on the image sensor were developed using a flattening filter and a collimator in order to alleviate the anisotropy of the distribution of X-rays due to intrinsic features of the X-ray generator. The proposed method, which is combined with MCNP5 modeling and numerical analysis, aimed to optimize a flattening filter and a collimator for a uniform distribution of X-rays. Their size and shape were estimated from the method. The simulation and the experimental results both showed that the method yielded an intensity distribution over an X-ray field of 6×4 cm2 at SID (source to image-receptor distance) of 5 cm with a uniformity of more than 90% when the flattening filter and the collimator were mounted on the system. The proposed algorithm and technique are not only confined to flattening filter development but can also be applied for other X-ray related research and development efforts.

  19. Experimental validation of depletion calculations with VESTA 2.1.5 using JEFF-3.2

    NASA Astrophysics Data System (ADS)

    Haeck, Wim; Ichou, Raphaëlle

    2017-09-01

    The removal of decay heat is a significant safety concern in nuclear engineering for the operation of a nuclear reactor both in normal and accidental conditions and for intermediate and long term waste storage facilities. The correct evaluation of the decay heat produced by an irradiated material requires first of all the calculation of the composition of the irradiated material by depletion codes such as VESTA 2.1, currently under development at IRSN in France. A set of PWR assembly decay heat measurements performed by the Swedish Central Interim Storage Facility (CLAB) located in Oskarshamm (Sweden) have been calculated using different nuclear data libraries: ENDF/B-VII.0, JEFF-3.1, JEFF-3.2 and JEFF-3.3T1. Using these nuclear data libraries, VESTA 2.1 calculates the assembly decay heat for almost all cases within 4% of the measured decay heat. On average, the ENDF/B-VII.0 calculated decay heat values appear to give a systematic underestimation of only 0.5%. When using the JEFF-3.1 library, this results a systematic underestimation of about 2%. By switching to the JEFF-3.2 library, this systematic underestimation is improved slighty (up to 1.5%). The changes made in the JEFF-3.3T1 beta library appear to be overcorrecting, as the systematic underestimation is transformed into a systematic overestimation of about 1.5%.

  20. 32 CFR 32.15 - Metric system of measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 1 2013-07-01 2013-07-01 false Metric system of measurement. 32.15 Section 32..., HOSPITALS, AND OTHER NON-PROFIT ORGANIZATIONS Pre-Award Requirements § 32.15 Metric system of measurement...) declares that the metric system is the preferred measurement system for U.S. trade and commerce, and for...

  1. 32 CFR 32.15 - Metric system of measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 1 2014-07-01 2014-07-01 false Metric system of measurement. 32.15 Section 32..., HOSPITALS, AND OTHER NON-PROFIT ORGANIZATIONS Pre-Award Requirements § 32.15 Metric system of measurement...) declares that the metric system is the preferred measurement system for U.S. trade and commerce, and for...

  2. 32 CFR 32.15 - Metric system of measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 1 2010-07-01 2010-07-01 false Metric system of measurement. 32.15 Section 32..., HOSPITALS, AND OTHER NON-PROFIT ORGANIZATIONS Pre-Award Requirements § 32.15 Metric system of measurement...) declares that the metric system is the preferred measurement system for U.S. trade and commerce, and for...

  3. 32 CFR 32.15 - Metric system of measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 1 2012-07-01 2012-07-01 false Metric system of measurement. 32.15 Section 32..., HOSPITALS, AND OTHER NON-PROFIT ORGANIZATIONS Pre-Award Requirements § 32.15 Metric system of measurement...) declares that the metric system is the preferred measurement system for U.S. trade and commerce, and for...

  4. 32 CFR 32.15 - Metric system of measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 1 2011-07-01 2011-07-01 false Metric system of measurement. 32.15 Section 32..., HOSPITALS, AND OTHER NON-PROFIT ORGANIZATIONS Pre-Award Requirements § 32.15 Metric system of measurement...) declares that the metric system is the preferred measurement system for U.S. trade and commerce, and for...

  5. 32 CFR 32.3 - Effect on other issuances.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 1 2010-07-01 2010-07-01 false Effect on other issuances. 32.3 Section 32.3 National Defense Department of Defense OFFICE OF THE SECRETARY OF DEFENSE DoD GRANT AND AGREEMENT..., HOSPITALS, AND OTHER NON-PROFIT ORGANIZATIONS General § 32.3 Effect on other issuances. For awards subject...

  6. 32 CFR 516.32 - Requests for indemnification.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 3 2011-07-01 2009-07-01 true Requests for indemnification. 516.32 Section 516.32 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY AID OF CIVIL AUTHORITIES... allied papers. (c) Supervisory and SJA procedures. The request for indemnification will be submitted...

  7. 32 CFR 516.32 - Requests for indemnification.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 3 2014-07-01 2014-07-01 false Requests for indemnification. 516.32 Section 516.32 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY AID OF CIVIL AUTHORITIES... allied papers. (c) Supervisory and SJA procedures. The request for indemnification will be submitted...

  8. 32 CFR 516.32 - Requests for indemnification.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 3 2013-07-01 2013-07-01 false Requests for indemnification. 516.32 Section 516.32 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY AID OF CIVIL AUTHORITIES... allied papers. (c) Supervisory and SJA procedures. The request for indemnification will be submitted...

  9. 32 CFR 516.32 - Requests for indemnification.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 3 2012-07-01 2009-07-01 true Requests for indemnification. 516.32 Section 516.32 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY AID OF CIVIL AUTHORITIES... allied papers. (c) Supervisory and SJA procedures. The request for indemnification will be submitted...

  10. 32 CFR 32.37 - Property trust relationship.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 1 2011-07-01 2011-07-01 false Property trust relationship. 32.37 Section 32.37 National Defense Department of Defense OFFICE OF THE SECRETARY OF DEFENSE DoD GRANT AND AGREEMENT... trust relationship. Real property, equipment, intangible property and debt instruments that are acquired...

  11. 32 CFR 32.37 - Property trust relationship.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 1 2010-07-01 2010-07-01 false Property trust relationship. 32.37 Section 32.37... trust relationship. Real property, equipment, intangible property and debt instruments that are acquired or improved with Federal funds shall be held in trust by the recipient as trustee for the...

  12. PFM2: a 32 × 32 processor for X-ray diffraction imaging at FELs

    NASA Astrophysics Data System (ADS)

    Manghisoni, M.; Fabris, L.; Re, V.; Traversi, G.; Ratti, L.; Grassi, M.; Lodola, L.; Malcovati, P.; Vacchi, C.; Pancheri, L.; Benkechcache, M. E. A.; Dalla Betta, G.-F.; Xu, H.; Verzellesi, G.; Ronchin, S.; Boscardin, M.; Batignani, G.; Bettarini, S.; Casarosa, G.; Forti, F.; Giorgi, M.; Paladino, A.; Paoloni, E.; Rizzo, G.; Morsani, F.

    2016-11-01

    This work is concerned with the design of a readout chip for application to experiments at the next generation X-ray Free Electron Lasers (FEL). The ASIC, named PixFEL Matrix (PFM2), has been designed in a 65 nm CMOS technology and consists of 32 × 32 pixels. Each cell covers an area of 110 × 110 μm2 and includes a low-noise charge sensitive amplifier (CSA) with dynamic signal compression, a time-variant shaper used to process the preamplifier output signal, a 10-bit successive approximation register (SAR) analog-to-digital converter (ADC) and digital circuitry for channel control and data readout. Two different solutions for the readout channel, based on different versions of the time-variant filter, have been integrated in the chip. Both solutions can be operated in such a way to cope with the high frame rate (exceeding 1 MHz) foreseen for future X-ray FEL machines. The ASIC will be bump bonded to a slim/active edge pixel sensor to form the first demonstrator for the PixFEL X-ray imager. This work has been carried out in the frame of the PixFEL project funded by Istituto Nazionale di Fisica Nucleare (INFN), Italy.

  13. A proposed benchmark problem for cargo nuclear threat monitoring

    NASA Astrophysics Data System (ADS)

    Wesley Holmes, Thomas; Calderon, Adan; Peeples, Cody R.; Gardner, Robin P.

    2011-10-01

    There is currently a great deal of technical and political effort focused on reducing the risk of potential attacks on the United States involving radiological dispersal devices or nuclear weapons. This paper proposes a benchmark problem for gamma-ray and X-ray cargo monitoring with results calculated using MCNP5, v1.51. The primary goal is to provide a benchmark problem that will allow researchers in this area to evaluate Monte Carlo models for both speed and accuracy in both forward and inverse calculational codes and approaches for nuclear security applications. A previous benchmark problem was developed by one of the authors (RPG) for two similar oil well logging problems (Gardner and Verghese, 1991, [1]). One of those benchmarks has recently been used by at least two researchers in the nuclear threat area to evaluate the speed and accuracy of Monte Carlo codes combined with variance reduction techniques. This apparent need has prompted us to design this benchmark problem specifically for the nuclear threat researcher. This benchmark consists of conceptual design and preliminary calculational results using gamma-ray interactions on a system containing three thicknesses of three different shielding materials. A point source is placed inside the three materials lead, aluminum, and plywood. The first two materials are in right circular cylindrical form while the third is a cube. The entire system rests on a sufficiently thick lead base so as to reduce undesired scattering events. The configuration was arranged in such a manner that as gamma-ray moves from the source outward it first passes through the lead circular cylinder, then the aluminum circular cylinder, and finally the wooden cube before reaching the detector. A 2 in.×4 in.×16 in. box style NaI (Tl) detector was placed 1 m from the point source located in the center with the 4 in.×16 in. side facing the system. The two sources used in the benchmark are 137Cs and 235U.

  14. 32 CFR 728.32 - Application for care.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 5 2012-07-01 2012-07-01 false Application for care. 728.32 Section 728.32 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY PERSONNEL MEDICAL AND DENTAL CARE... medical and dental care may be rendered except in emergencies. When required inpatient or outpatient care...

  15. Performance Study of Monte Carlo Codes on Xeon Phi Coprocessors — Testing MCNP 6.1 and Profiling ARCHER Geometry Module on the FS7ONNi Problem

    NASA Astrophysics Data System (ADS)

    Liu, Tianyu; Wolfe, Noah; Lin, Hui; Zieb, Kris; Ji, Wei; Caracappa, Peter; Carothers, Christopher; Xu, X. George

    2017-09-01

    This paper contains two parts revolving around Monte Carlo transport simulation on Intel Many Integrated Core coprocessors (MIC, also known as Xeon Phi). (1) MCNP 6.1 was recompiled into multithreading (OpenMP) and multiprocessing (MPI) forms respectively without modification to the source code. The new codes were tested on a 60-core 5110P MIC. The test case was FS7ONNi, a radiation shielding problem used in MCNP's verification and validation suite. It was observed that both codes became slower on the MIC than on a 6-core X5650 CPU, by a factor of 4 for the MPI code and, abnormally, 20 for the OpenMP code, and both exhibited limited capability of strong scaling. (2) We have recently added a Constructive Solid Geometry (CSG) module to our ARCHER code to provide better support for geometry modelling in radiation shielding simulation. The functions of this module are frequently called in the particle random walk process. To identify the performance bottleneck we developed a CSG proxy application and profiled the code using the geometry data from FS7ONNi. The profiling data showed that the code was primarily memory latency bound on the MIC. This study suggests that despite low initial porting e_ort, Monte Carlo codes do not naturally lend themselves to the MIC platform — just like to the GPUs, and that the memory latency problem needs to be addressed in order to achieve decent performance gain.

  16. 32 CFR 32.14 - Special award conditions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 1 2012-07-01 2012-07-01 false Special award conditions. 32.14 Section 32.14 National Defense Department of Defense OFFICE OF THE SECRETARY OF DEFENSE DoD GRANT AND AGREEMENT... part, if an applicant or recipient: (1) Has a history of poor performance; (2) Is not financially...

  17. 32 CFR 32.14 - Special award conditions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 1 2014-07-01 2014-07-01 false Special award conditions. 32.14 Section 32.14 National Defense Department of Defense OFFICE OF THE SECRETARY OF DEFENSE DoD GRANT AND AGREEMENT... part, if an applicant or recipient: (1) Has a history of poor performance; (2) Is not financially...

  18. 32 CFR 32.14 - Special award conditions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 1 2013-07-01 2013-07-01 false Special award conditions. 32.14 Section 32.14 National Defense Department of Defense OFFICE OF THE SECRETARY OF DEFENSE DoD GRANT AND AGREEMENT... part, if an applicant or recipient: (1) Has a history of poor performance; (2) Is not financially...

  19. 32 CFR 32.14 - Special award conditions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 1 2010-07-01 2010-07-01 false Special award conditions. 32.14 Section 32.14 National Defense Department of Defense OFFICE OF THE SECRETARY OF DEFENSE DoD GRANT AND AGREEMENT... part, if an applicant or recipient: (1) Has a history of poor performance; (2) Is not financially...

  20. 32 CFR 32.14 - Special award conditions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 1 2011-07-01 2011-07-01 false Special award conditions. 32.14 Section 32.14 National Defense Department of Defense OFFICE OF THE SECRETARY OF DEFENSE DoD GRANT AND AGREEMENT... part, if an applicant or recipient: (1) Has a history of poor performance; (2) Is not financially...

  1. 32 CFR 32.26 - Non-Federal audits.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 1 2010-07-01 2010-07-01 false Non-Federal audits. 32.26 Section 32.26 National Defense Department of Defense OFFICE OF THE SECRETARY OF DEFENSE DoD GRANT AND AGREEMENT REGULATIONS ADMINISTRATIVE REQUIREMENTS FOR GRANTS AND AGREEMENTS WITH INSTITUTIONS OF HIGHER EDUCATION, HOSPITALS, AND OTHER NON-PROFIT ORGANIZATIONS...

  2. Performance of the MTR core with MOX fuel using the MCNP4C2 code.

    PubMed

    Shaaban, Ismail; Albarhoum, Mohamad

    2016-08-01

    The MCNP4C2 code was used to simulate the MTR-22 MW research reactor and perform the neutronic analysis for a new fuel namely: a MOX (U3O8&PuO2) fuel dispersed in an Al matrix for One Neutronic Trap (ONT) and Three Neutronic Traps (TNTs) in its core. Its new characteristics were compared to its original characteristics based on the U3O8-Al fuel. Experimental data for the neutronic parameters including criticality relative to the MTR-22 MW reactor for the original U3O8-Al fuel at nominal power were used to validate the calculated values and were found acceptable. The achieved results seem to confirm that the use of MOX fuel in the MTR-22 MW will not degrade the safe operational conditions of the reactor. In addition, the use of MOX fuel in the MTR-22 MW core leads to reduce the uranium fuel enrichment with (235)U and the amount of loaded (235)U in the core by about 34.84% and 15.21% for the ONT and TNTs cases, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Calculations of the thermal and fast neutron fluxes in the Syrian miniature neutron source reactor using the MCNP-4C code.

    PubMed

    Khattab, K; Sulieman, I

    2009-04-01

    The MCNP-4C code, based on the probabilistic approach, was used to model the 3D configuration of the core of the Syrian miniature neutron source reactor (MNSR). The continuous energy neutron cross sections from the ENDF/B-VI library were used to calculate the thermal and fast neutron fluxes in the inner and outer irradiation sites of MNSR. The thermal fluxes in the MNSR inner irradiation sites were also measured experimentally by the multiple foil activation method ((197)Au (n, gamma) (198)Au and (59)Co (n, gamma) (60)Co). The foils were irradiated simultaneously in each of the five MNSR inner irradiation sites to measure the thermal neutron flux and the epithermal index in each site. The calculated and measured results agree well.

  4. China’s Future Nuclear Submarine Force. Insights from Chinese Writings

    DTIC Science & Technology

    2007-01-01

    ts056058.pdf. 115. , , [Lu Jiaben, Wang Shen- glong, Liu Wen, et al.], “‘ ’ ” [Evaluation of Health Protective Effects of “Silver Ginseng ...Based on his instructions, in the course of developing nuclear-powered submarines, we formed a seamless and effective nuclear safety mechanism by...the manner in which France strives to maximize the effectiveness of its second-tier nuclear submarine force.32 The September 2005 issue of (Naval

  5. Consequence Management of a Yield-Producing Nuclear Detonation INCONUS: is NORTHCOM Ready

    DTIC Science & Technology

    2009-05-04

    command between Title 10 and Title 32 forces that would respond to a nuclear disaster will be a critical weakness. The CBRNE (Chemical, Biological...management response at the tactical level. The transportation requirements for the CCMRF response to a nuclear disaster will be significant and may affect the

  6. Effects of the Application of the New Nuclear Data Library ENDF/B to the Criticality Analysis of AP1000

    NASA Astrophysics Data System (ADS)

    Kuntoro, Iman; Sembiring, T. M.; Susilo, Jati; Deswandri; Sunaryo, G. R.

    2018-02-01

    Calculations of criticality of the AP1000 core due to the use of new edition of nuclear data library namely ENDF/B-VII and ENDF/B-VII.1 have been done. This work is aimed to know the accuracy of ENDF/B-VII.1 compared to ENDF/B-VII and ENDF/B-VI.8. in determining the criticality parameter of AP1000. Analysis ws imposed to core at cold zero power (CZP) conditions. The calculations have been carried out by means of MCNP computer code for 3 dimension geometry. The results show that criticality parameter namely effective multiplication factor of the AP1000 core are higher than that ones resulted from ENDF/B-VI.8 with relative differences of 0.39% for application of ENDF/B-VII and of 0.34% for application of ENDF/B-VII.1.

  7. REACTOR PHYSICS MODELING OF SPENT RESEARCH REACTOR FUEL FOR TECHNICAL NUCLEAR FORENSICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nichols, T.; Beals, D.; Sternat, M.

    2011-07-18

    Technical nuclear forensics (TNF) refers to the collection, analysis and evaluation of pre- and post-detonation radiological or nuclear materials, devices, and/or debris. TNF is an integral component, complementing traditional forensics and investigative work, to help enable the attribution of discovered radiological or nuclear material. Research is needed to improve the capabilities of TNF. One research area of interest is determining the isotopic signatures of research reactors. Research reactors are a potential source of both radiological and nuclear material. Research reactors are often the least safeguarded type of reactor; they vary greatly in size, fuel type, enrichment, power, and burn-up. Manymore » research reactors are fueled with highly-enriched uranium (HEU), up to {approx}93% {sup 235}U, which could potentially be used as weapons material. All of them have significant amounts of radiological material with which a radioactive dispersal device (RDD) could be built. Therefore, the ability to attribute if material originated from or was produced in a specific research reactor is an important tool in providing for the security of the United States. Currently there are approximately 237 operating research reactors worldwide, another 12 are in temporary shutdown and 224 research reactors are reported as shut down. Little is currently known about the isotopic signatures of spent research reactor fuel. An effort is underway at Savannah River National Laboratory (SRNL) to analyze spent research reactor fuel to determine these signatures. Computer models, using reactor physics codes, are being compared to the measured analytes in the spent fuel. This allows for improving the reactor physics codes in modeling research reactors for the purpose of nuclear forensics. Currently the Oak Ridge Research reactor (ORR) is being modeled and fuel samples are being analyzed for comparison. Samples of an ORR spent fuel assembly were taken by SRNL for analytical and

  8. 32 CFR 32.50 - Purpose of reports and records.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 1 2012-07-01 2012-07-01 false Purpose of reports and records. 32.50 Section 32.50 National Defense Department of Defense OFFICE OF THE SECRETARY OF DEFENSE DoD GRANT AND AGREEMENT..., HOSPITALS, AND OTHER NON-PROFIT ORGANIZATIONS Post-Award Requirements Reports and Records § 32.50 Purpose of...

  9. 32 CFR 32.50 - Purpose of reports and records.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 1 2013-07-01 2013-07-01 false Purpose of reports and records. 32.50 Section 32.50 National Defense Department of Defense OFFICE OF THE SECRETARY OF DEFENSE DoD GRANT AND AGREEMENT..., HOSPITALS, AND OTHER NON-PROFIT ORGANIZATIONS Post-Award Requirements Reports and Records § 32.50 Purpose of...

  10. 32 CFR 32.50 - Purpose of reports and records.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 1 2010-07-01 2010-07-01 false Purpose of reports and records. 32.50 Section 32.50 National Defense Department of Defense OFFICE OF THE SECRETARY OF DEFENSE DoD GRANT AND AGREEMENT..., HOSPITALS, AND OTHER NON-PROFIT ORGANIZATIONS Post-Award Requirements Reports and Records § 32.50 Purpose of...

  11. 32 CFR 32.50 - Purpose of reports and records.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 1 2011-07-01 2011-07-01 false Purpose of reports and records. 32.50 Section 32.50 National Defense Department of Defense OFFICE OF THE SECRETARY OF DEFENSE DoD GRANT AND AGREEMENT..., HOSPITALS, AND OTHER NON-PROFIT ORGANIZATIONS Post-Award Requirements Reports and Records § 32.50 Purpose of...

  12. 32 CFR 32.50 - Purpose of reports and records.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 1 2014-07-01 2014-07-01 false Purpose of reports and records. 32.50 Section 32.50 National Defense Department of Defense OFFICE OF THE SECRETARY OF DEFENSE DoD GRANT AND AGREEMENT..., HOSPITALS, AND OTHER NON-PROFIT ORGANIZATIONS Post-Award Requirements Reports and Records § 32.50 Purpose of...

  13. Exclusive data-based modeling of neutron-nuclear reactions below 20 MeV

    NASA Astrophysics Data System (ADS)

    Savin, Dmitry; Kosov, Mikhail

    2017-09-01

    We are developing CHIPS-TPT physics library for exclusive simulation of neutron-nuclear reactions below 20 MeV. Exclusive modeling reproduces each separate scattering and thus requires conservation of energy, momentum and quantum numbers in each reaction. Inclusive modeling reproduces only selected values while averaging over the others and imposes no such constraints. Therefore the exclusive modeling allows to simulate additional quantities like secondary particle correlations and gamma-lines broadening and avoid artificial fluctuations. CHIPS-TPT is based on the formerly included in Geant4 CHIPS library, which follows the exclusive approach, and extends it to incident neutrons with the energy below 20 MeV. The NeutronHP model for neutrons below 20 MeV included in Geant4 follows the inclusive approach like the well known MCNP code. Unfortunately, the available data in this energy region is mostly presented in ENDF-6 format and semi-inclusive. Imposing additional constraints on secondary particles complicates modeling but also allows to detect inconsistencies in the input data and to avoid errors that may remain unnoticed in inclusive modeling.

  14. Isospin diffusion in binary collisions of 32S+Ca,4840 and 32S+48Ti at 17.7 MeV/nucleon

    NASA Astrophysics Data System (ADS)

    Piantelli, S.; Valdré, S.; Barlini, S.; Casini, G.; Colonna, M.; Baiocco, G.; Bini, M.; Bruno, M.; Camaiani, A.; Carboni, S.; Cicerchia, M.; Cinausero, M.; D'Agostino, M.; Degerlier, M.; Fabris, D.; Gelli, N.; Gramegna, F.; Gruyer, D.; Kravchuk, V. L.; Mabiala, J.; Marchi, T.; Morelli, L.; Olmi, A.; Ottanelli, P.; Pasquali, G.; Pastore, G.

    2017-09-01

    The systems 32S+Ca,4840 and 32S+48Ti at 17.7 MeV/nucleon were investigated with the setup general array for fragment identification and for emitted light particles in dissipative collisions (GARFIELD) plus ring counter (RCo) at Laboratori Nazionali di Legnaro (LNL) of Istituto Nazionale di Fisica Nucleare (INFN). Fusion evaporation (FE), fusion fission (FF), and deep inelastic (DIC) events were identified, also through the comparison with the prediction of a transport model (stochastic mean field, SMF), coupled to GEMINI++ as an afterburner. This work mainly deals with the study of isospin transport phenomena in DIC events. In particular, the isospin diffusion is highlighted by comparing the average isotopic content of the quasiprojectile (QP) remnants observed when the target is the N =Z nucleus 40Ca and when it is the neutron-rich 48Ca. Also, the d /p and t /p ratios for particles forward emitted with respect to the QP were found to increase with increasing N /Z of the target.

  15. 32 CFR 32.23 - Cost sharing or matching.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 1 2014-07-01 2014-07-01 false Cost sharing or matching. 32.23 Section 32.23 National Defense Department of Defense OFFICE OF THE SECRETARY OF DEFENSE DoD GRANT AND AGREEMENT... efficient accomplishment of project or program objectives. (4) Are allowable under the applicable cost...

  16. 32 CFR 32.23 - Cost sharing or matching.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 1 2010-07-01 2010-07-01 false Cost sharing or matching. 32.23 Section 32.23 National Defense Department of Defense OFFICE OF THE SECRETARY OF DEFENSE DoD GRANT AND AGREEMENT... efficient accomplishment of project or program objectives. (4) Are allowable under the applicable cost...

  17. 32 CFR 32.23 - Cost sharing or matching.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 1 2011-07-01 2011-07-01 false Cost sharing or matching. 32.23 Section 32.23 National Defense Department of Defense OFFICE OF THE SECRETARY OF DEFENSE DoD GRANT AND AGREEMENT... efficient accomplishment of project or program objectives. (4) Are allowable under the applicable cost...

  18. 32 CFR 32.23 - Cost sharing or matching.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 1 2012-07-01 2012-07-01 false Cost sharing or matching. 32.23 Section 32.23 National Defense Department of Defense OFFICE OF THE SECRETARY OF DEFENSE DoD GRANT AND AGREEMENT... efficient accomplishment of project or program objectives. (4) Are allowable under the applicable cost...

  19. 32 CFR 32.23 - Cost sharing or matching.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 1 2013-07-01 2013-07-01 false Cost sharing or matching. 32.23 Section 32.23 National Defense Department of Defense OFFICE OF THE SECRETARY OF DEFENSE DoD GRANT AND AGREEMENT... efficient accomplishment of project or program objectives. (4) Are allowable under the applicable cost...

  20. Validation of absolute axial neutron flux distribution calculations with MCNP with 197Au(n,γ)198Au reaction rate distribution measurements at the JSI TRIGA Mark II reactor.

    PubMed

    Radulović, Vladimir; Štancar, Žiga; Snoj, Luka; Trkov, Andrej

    2014-02-01

    The calculation of axial neutron flux distributions with the MCNP code at the JSI TRIGA Mark II reactor has been validated with experimental measurements of the (197)Au(n,γ)(198)Au reaction rate. The calculated absolute reaction rate values, scaled according to the reactor power and corrected for the flux redistribution effect, are in good agreement with the experimental results. The effect of different cross-section libraries on the calculations has been investigated and shown to be minor. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. 32 CFR 32.45 - Cost and price analysis.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 1 2010-07-01 2010-07-01 false Cost and price analysis. 32.45 Section 32.45... price analysis. Some form of cost or price analysis shall be made and documented in the procurement files in connection with every procurement action. Price analysis may be accomplished in various ways...

  2. MCNP5 evaluation of photoneutron production from the Alexandria University 15 MV Elekta Precise medical LINAC.

    PubMed

    Abou-Taleb, W M; Hassan, M H; El Mallah, E A; Kotb, S M

    2018-05-01

    Photoneutron production, and the dose equivalent, in the head assembly of the 15 MV Elekta Precise medical linac; operating in the faculty of Medicine at Alexandria University were estimated with the MCNP5 code. Photoneutron spectra were calculated in air and inside a water phantom to different depths as a function of the radiation field sizes. The maximum neutron fluence is 3.346×10 -9 n/cm 2 -e for a 30×30 cm 2 field size to 2-4 cm-depth in the phantom. The dose equivalent due to fast neutron increases as the field size increases, being a maximum of 0.912 ± 0.05 mSv/Gy at depth between 2 and 4 cm in the water phantom for 40×40 cm 2 field size. Photoneutron fluence and dose equivalent are larger to 100 cm from the isocenter than to 35 cm from the treatment room wall. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. A method to optimize the shield compact and lightweight combining the structure with components together by genetic algorithm and MCNP code.

    PubMed

    Cai, Yao; Hu, Huasi; Pan, Ziheng; Hu, Guang; Zhang, Tao

    2018-05-17

    To optimize the shield for neutrons and gamma rays compact and lightweight, a method combining the structure and components together was established employing genetic algorithms and MCNP code. As a typical case, the fission energy spectrum of 235 U which mixed neutrons and gamma rays was adopted in this study. Six types of materials were presented and optimized by the method. Spherical geometry was adopted in the optimization after checking the geometry effect. Simulations have made to verify the reliability of the optimization method and the efficiency of the optimized materials. To compare the materials visually and conveniently, the volume and weight needed to build a shield are employed. The results showed that, the composite multilayer material has the best performance. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Determination of total plutonium content in spent nuclear fuel assemblies with the differential die-away self-interrogation instrument

    NASA Astrophysics Data System (ADS)

    Kaplan, Alexis C.; Henzl, Vladimir; Menlove, Howard O.; Swinhoe, Martyn T.; Belian, Anthony P.; Flaska, Marek; Pozzi, Sara A.

    2014-11-01

    As a part of the Next Generation Safeguards Initiative Spent Fuel project, we simulate the response of the Differential Die-away Self-Interrogation (DDSI) instrument to determine total elemental plutonium content in an assayed spent nuclear fuel assembly (SFA). We apply recently developed concepts that relate total plutonium mass with SFA multiplication and passive neutron count rate. In this work, the multiplication of the SFA is determined from the die-away time in the early time domain of the Rossi-Alpha distributions measured directly by the DDSI instrument. We utilize MCNP to test the method against 44 pressurized water reactor SFAs from a simulated spent fuel library with a wide dynamic range of characteristic parameters such as initial enrichment, burnup, and cooling time. Under ideal conditions, discounting possible errors of a real world measurement, a root mean square agreement between true and determined total Pu mass of 2.1% is achieved.

  5. Application of the Monte Carlo method to estimate doses due to neutron activation of different materials in a nuclear reactor

    NASA Astrophysics Data System (ADS)

    Ródenas, José

    2017-11-01

    All materials exposed to some neutron flux can be activated independently of the kind of the neutron source. In this study, a nuclear reactor has been considered as neutron source. In particular, the activation of control rods in a BWR is studied to obtain the doses produced around the storage pool for irradiated fuel of the plant when control rods are withdrawn from the reactor and installed into this pool. It is very important to calculate these doses because they can affect to plant workers in the area. The MCNP code based on the Monte Carlo method has been applied to simulate activation reactions produced in the control rods inserted into the reactor. Obtained activities are introduced as input into another MC model to estimate doses produced by them. The comparison of simulation results with experimental measurements allows the validation of developed models. The developed MC models have been also applied to simulate the activation of other materials, such as components of a stainless steel sample introduced into a training reactors. These models, once validated, can be applied to other situations and materials where a neutron flux can be found, not only nuclear reactors. For instance, activation analysis with an Am-Be source, neutrography techniques in both medical applications and non-destructive analysis of materials, civil engineering applications using a Troxler, analysis of materials in decommissioning of nuclear power plants, etc.

  6. Methodology for the nuclear design validation of an Alternate Emergency Management Centre (CAGE)

    NASA Astrophysics Data System (ADS)

    Hueso, César; Fabbri, Marco; de la Fuente, Cristina; Janés, Albert; Massuet, Joan; Zamora, Imanol; Gasca, Cristina; Hernández, Héctor; Vega, J. Ángel

    2017-09-01

    The methodology is devised by coupling different codes. The study of weather conditions as part of the data of the site will determine the relative concentrations of radionuclides in the air using ARCON96. The activity in the air is characterized depending on the source and release sequence specified in NUREG-1465 by RADTRAD code, which provides results of the inner cloud source term contribution. Known activities, energy spectra are inferred using ORIGEN-S, which are used as input for the models of the outer cloud, filters and containment generated with MCNP5. The sum of the different contributions must meet the conditions of habitability specified by the CSN (Spanish Nuclear Regulatory Body) (TEDE <50 mSv and equivalent dose to the thyroid <500 mSv within 30 days following the accident doses) so that the dose is optimized by varying parameters such as CAGE location, flow filtering need for recirculation, thicknesses and compositions of the walls, etc. The results for the most penalizing area meet the established criteria, and therefore the CAGE building design based on the methodology presented is radiologically validated.

  7. Consequences of Regional Scale Nuclear Conflicts and Acts of Individual Nuclear Terrorism

    NASA Astrophysics Data System (ADS)

    Toon, O. B.; Turco, R. P.; Robock, A.; Bardeen, C.; Oman, L.; Stenchikov, G. L.

    2006-12-01

    The number of nuclear warheads in the world has fallen by about a factor of three since its peak in 1986. However, the potential exists for numerous regional nuclear arms races, and for a significant expansion in the number of nuclear weapons states. Eight countries are known to have nuclear weapons, 2 are constructing them, and an additional 32 nations already have the fissile material needed to build weapons if they so desire. Population and economic activity worldwide are congregated to an increasing extent in "megacities", which are ideal targets for nuclear weapons. We find that low yield weapons, which new nuclear powers are likely to construct, can produce 100 times as many fatalities and 100 times as much smoke from fires per kt yield as high-yield weapons, if they are targeted at city centers. A single low-yield nuclear detonation in an urban center could lead to more fatalities, in some cases by orders of magnitude, than have occurred in major historical conflicts. A regional war between the smallest current nuclear states involving 100 15-kt explosions (less than 0.1% of the explosive yield of the current global nuclear arsenal) could produce direct fatalities comparable to all of those worldwide in World War II (WW-II), or to those once estimated for a "counterforce" nuclear war between the superpowers. Portions of megacities attacked with nuclear devices or exposed to fallout of long-lived isotopes, through armed conflict or terrorism, would likely be abandoned indefinitely, with severe national and international implications. Smoke from urban firestorms in a regional war might induce significant climatic and ozone anomalies on global scales. While there are many uncertainties in the issues we discuss here, the major uncertainties are the type and scale of conflict that might occur. Each of these potential hazards deserves careful analysis by governments worldwide advised by a broad section of the world scientific community, as well as widespread

  8. Anisn-Dort Neutron-Gamma Flux Intercomparison Exercise for a Simple Testing Model

    NASA Astrophysics Data System (ADS)

    Boehmer, B.; Konheiser, J.; Borodkin, G.; Brodkin, E.; Egorov, A.; Kozhevnikov, A.; Zaritsky, S.; Manturov, G.; Voloschenko, A.

    2003-06-01

    The ability of transport codes ANISN, DORT, ROZ-6, MCNP and TRAMO, as well as nuclear data libraries BUGLE-96, ABBN-93, VITAMIN-B6 and ENDF/B-6 to deliver consistent gamma and neutron flux results was tested in the calculation of a one-dimensional cylindrical model consisting of a homogeneous core and an outer zone with a single material. Model variants with H2O, Fe, Cr and Ni in the outer zones were investigated. The results are compared with MCNP-ENDF/B-6 results. Discrepancies are discussed. The specified test model is proposed as a computational benchmark for testing calculation codes and data libraries.

  9. Important comments on KERMA factors and DPA cross-section data in ACE files of JENDL-4.0, JEFF-3.2 and ENDF/B-VII.1

    NASA Astrophysics Data System (ADS)

    Konno, Chikara; Tada, Kenichi; Kwon, Saerom; Ohta, Masayuki; Sato, Satoshi

    2017-09-01

    We have studied reasons of differences of KERMA factors and DPA cross-section data among nuclear data libraries. Here the KERMA factors and DPA cross-section data included in the official ACE files of JENDL-4.0, ENDF/B-VII.1 and JEFF-3.2 are examined in more detail. As a result, it is newly found out that the KERMA factors and DPA cross-section data of a lot of nuclei are different among JENDL-4.0, ENDF/B-VII.1 and JEFF-3.2 and reasons of the differences are the followings: 1) large secondary particle production yield, 2) no secondary gamma data, 3) secondary gamma data in files12-15 mt = 3, 4) mt = 103-107 data without mt = 600 s-800 s data in file6. The issue 1) is considered to be due to nuclear data, while the issues 2)-4) seem to be due to NJOY. The ACE files of JENDL-4.0, ENDF/B-VII.1 and JEFF-3.2 with these problems should be revised after correcting wrong nuclear data and NJOY problems.

  10. Data feature: 1996 world nuclear electricity production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-12-01

    Detailed data on electricity supplied by nuclear power reactors in 1996 are provided. Figures from the International Atomic Energy Agency indicate that a total of 32 countries worldwide were operating 441 nuclear power plants with an installed capacity of 350,411 GWe, and that 36 commercial nuclear power plant units in 14 different countries with an aggregate installed capacity of 27,928 GWe were under construction. Worldwide nuclear generated electricity increased by 3.6% from 1995 to 1996, providing 17.3% of the world`s electricity production. Data for individual countries and regional totals, including generation and consumption data by source, are provided for Westernmore » Europe, Eastern Europe, the Commonwealth of Independent States, the Far East, Canada, and the United States. Other information provided includes 1996 commercial startups, decommissioning, reactor load factors, imports and exports, and gross electricity production.« less

  11. Digital Electronics for Nuclear Physics Experiments

    NASA Astrophysics Data System (ADS)

    Skulski, Wojtek; Hunter, David; Druszkiewicz, Eryk; Khaitan, Dev Ashish; Yin, Jun; Wolfs, Frank; SkuTek Instrumentation Team; Department of Physics; Astronomy, University of Rochester Team

    2015-10-01

    Future detectors in nuclear physics will use signal sampling as one of primary techniques of data acquisition. Using the digitized waveforms, the electronics can select events based on pulse shape, total energy, multiplicity, and the hit pattern. The DAQ for the LZ Dark Matter detector, now under development in Rochester, is a good example of the power of digital signal processing. This system, designed around 32-channel, FPGA-based, digital signal processors collects data from more than one thousand channels. The solutions developed for this DAQ can be applied to nuclear physics experiments. Supported by the Department of Energy Office of Science under Grant DE-SC0009543.

  12. Nuclear reactor control room construction

    DOEpatents

    Lamuro, Robert C.; Orr, Richard

    1993-01-01

    A control room 10 for a nuclear plant is disclosed. In the control room, objects 12, 20, 22, 26, 30 are no less than four inches from walls 10.2. A ceiling 32 contains cooling fins 35 that extend downwards toward the floor from metal plates 34. A concrete slab 33 is poured over the plates. Studs 36 are welded to the plates and are encased in the concrete.

  13. Nuclear-size correction to the Lamb shift of one-electron atoms

    NASA Astrophysics Data System (ADS)

    Yerokhin, Vladimir A.

    2011-01-01

    The nuclear-size effect on the one-loop self-energy and vacuum polarization is evaluated for the 1s, 2s, 3s, 2p1/2, and 2p3/2 states of hydrogen-like ions. The calculation is performed to all orders in the nuclear binding strength parameter Zα. Detailed comparison is made with previous all-order calculations and calculations based on the expansion in the parameter Zα. Extrapolation of the all-order numerical results obtained toward Z=1 provides results for the radiative nuclear-size effect on the hydrogen Lamb shift.

  14. 32 CFR Appendix A to Part 291 - Freedom of Information Act Request (DNA Form 524)

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 2 2011-07-01 2011-07-01 false Freedom of Information Act Request (DNA Form 524... OF DEFENSE (CONTINUED) FREEDOM OF INFORMATION ACT PROGRAM DEFENSE NUCLEAR AGENCY (DNA) FREEDOM OF INFORMATION ACT PROGRAM Pt. 291, App. A Appendix A to Part 291—Freedom of Information Act Request (DNA Form...

  15. 32 CFR Appendix A to Part 291 - Freedom of Information Act Request (DNA Form 524)

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 2 2010-07-01 2010-07-01 false Freedom of Information Act Request (DNA Form 524... OF DEFENSE (CONTINUED) FREEDOM OF INFORMATION ACT PROGRAM DEFENSE NUCLEAR AGENCY (DNA) FREEDOM OF INFORMATION ACT PROGRAM Pt. 291, App. A Appendix A to Part 291—Freedom of Information Act Request (DNA Form...

  16. 32 CFR Appendix A to Part 291 - Freedom of Information Act Request (DNA Form 524)

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 2 2014-07-01 2014-07-01 false Freedom of Information Act Request (DNA Form 524... OF DEFENSE (CONTINUED) FREEDOM OF INFORMATION ACT PROGRAM DEFENSE NUCLEAR AGENCY (DNA) FREEDOM OF INFORMATION ACT PROGRAM Pt. 291, App. A Appendix A to Part 291—Freedom of Information Act Request (DNA Form...

  17. 32 CFR Appendix A to Part 291 - Freedom of Information Act Request (DNA Form 524)

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 2 2013-07-01 2013-07-01 false Freedom of Information Act Request (DNA Form 524... OF DEFENSE (CONTINUED) FREEDOM OF INFORMATION ACT PROGRAM DEFENSE NUCLEAR AGENCY (DNA) FREEDOM OF INFORMATION ACT PROGRAM Pt. 291, App. A Appendix A to Part 291—Freedom of Information Act Request (DNA Form...

  18. 32 CFR Appendix A to Part 291 - Freedom of Information Act Request (DNA Form 524)

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 2 2012-07-01 2012-07-01 false Freedom of Information Act Request (DNA Form 524... OF DEFENSE (CONTINUED) FREEDOM OF INFORMATION ACT PROGRAM DEFENSE NUCLEAR AGENCY (DNA) FREEDOM OF INFORMATION ACT PROGRAM Pt. 291, App. A Appendix A to Part 291—Freedom of Information Act Request (DNA Form...

  19. The Leptospira outer membrane protein LipL32 induces tubulointerstitial nephritis-mediated gene expression in mouse proximal tubule cells.

    PubMed

    Yang, Chih-Wei; Wu, Mai-Szu; Pan, Ming-Jeng; Hsieh, Wang-Ju; Vandewalle, Alain; Huang, Chiu-Ching

    2002-08-01

    Tubulointerstitial nephritis is a main renal manifestation caused by pathogenic leptospira that accumulate mostly in the proximal tubules, thereby inducing tubular injury and tubulointerstitial nephritis. To elucidate the role of leptospira outer membrane proteins in tubulointerstitial nephritis, outer membrane proteins from pathogenic Leptospira shermani and nonpathogenic Leptospira patoc extracted by Triton X-114 were administered to cultured mouse proximal tubule cells. A dose-dependent increase of monocyte chemoattractant protein-1 (MCP-1), RANTES, nitrite, and tumor necrosis factor-alpha (TNF-alpha) in the culture supernatant was observed 48 h after incubating Leptospira shermani outer membrane proteins with mouse proximal tubule cells. RT competitive-PCR experiments showed that Leptospira shermani outer membrane proteins (0.2 microg/ml) increased the expression of MCP-1, nitric oxide synthase (iNOS), RANTES, and TNF-alpha mRNA by 3.0-, 9.4-, 2.5-, and 2.5-fold, respectively, when compared with untreated cells. Outer membrane proteins extract from avirulent Leptospira patoc did not induce significant effects. The pathogenic outer membrane proteins extract contain a major component of a 32-kD lipoprotein (LipL32), which is absent in the nonpathogenic leptospira outer membrane. An antibody raised against LipL32 prevented the stimulatory effect of Leptospira shermani outer membrane proteins extract on MCP-1 and iNOS mRNA expression in cultured proximal tubule cells, whereas recombinant LipL32 significantly stimulated the expression of MCP-1 and iNOS mRNAs and augmented nuclear binding of nuclear factor-kappaB (NF-kappaB) and AP-1 transcription factors in proximal tubule cells. An antibody raised against LipL32 also blunted the effects induced by the recombinant LipL32. This study demonstrates that LipL32 is a major component of pathogenic leptospira outer membrane proteins involved in the pathogenesis of tubulointerstitial nephritis.

  20. The development of a thermal hydraulic feedback mechanism with a quasi-fixed point iteration scheme for control rod position modeling for the TRIGSIMS-TH application

    NASA Astrophysics Data System (ADS)

    Karriem, Veronica V.

    Nuclear reactor design incorporates the study and application of nuclear physics, nuclear thermal hydraulic and nuclear safety. Theoretical models and numerical methods implemented in computer programs are utilized to analyze and design nuclear reactors. The focus of this PhD study's is the development of an advanced high-fidelity multi-physics code system to perform reactor core analysis for design and safety evaluations of research TRIGA-type reactors. The fuel management and design code system TRIGSIMS was further developed to fulfill the function of a reactor design and analysis code system for the Pennsylvania State Breazeale Reactor (PSBR). TRIGSIMS, which is currently in use at the PSBR, is a fuel management tool, which incorporates the depletion code ORIGEN-S (part of SCALE system) and the Monte Carlo neutronics solver MCNP. The diffusion theory code ADMARC-H is used within TRIGSIMS to accelerate the MCNP calculations. It manages the data and fuel isotopic content and stores it for future burnup calculations. The contribution of this work is the development of an improved version of TRIGSIMS, named TRIGSIMS-TH. TRIGSIMS-TH incorporates a thermal hydraulic module based on the advanced sub-channel code COBRA-TF (CTF). CTF provides the temperature feedback needed in the multi-physics calculations as well as the thermal hydraulics modeling capability of the reactor core. The temperature feedback model is using the CTF-provided local moderator and fuel temperatures for the cross-section modeling for ADMARC-H and MCNP calculations. To perform efficient critical control rod calculations, a methodology for applying a control rod position was implemented in TRIGSIMS-TH, making this code system a modeling and design tool for future core loadings. The new TRIGSIMS-TH is a computer program that interlinks various other functional reactor analysis tools. It consists of the MCNP5, ADMARC-H, ORIGEN-S, and CTF. CTF was coupled with both MCNP and ADMARC-H to provide the

  1. MCNP6 unstructured mesh application to estimate the photoneutron distribution and induced activity inside a linac bunker

    NASA Astrophysics Data System (ADS)

    Juste, B.; Morató, S.; Miró, R.; Verdú, G.; Díez, S.

    2017-08-01

    Unwanted neutrons in radiation therapy treatments are typically generated by photonuclear reactions. High-energy beams emitted by medical Linear Accelerators (LinAcs) interact with high atomic number materials situated in the accelerator head and release neutrons. Since neutrons have a high relative biological effectiveness, even low neutron doses may imply significant exposure of patients. It is also important to study radioactivity induced by these photoneutrons when interacting with the different materials and components of the treatment head facility and the shielding room walls, since persons not present during irradiation (e.g. medical staff) may be exposed to them even when the accelerator is not operating. These problems are studied in this work in order to contribute to challenge the radiation protection in these treatment locations. The work has been performed by simulation using the latest state of the art of Monte-Carlo computer code MCNP6. To that, a detailed model of particles transport inside the bunker and treatment head has been carried out using a meshed geometry model. The LinAc studied is an Elekta Precise accelerator with a treatment photon energy of 15 MeV used at the Hospital Clinic Universitari de Valencia, Spain.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bily, T.

    Thermoluminescent dosimeters represent very useful tool for gamma fields parameters measurements at nuclear research reactors, especially at zero power ones. {sup 7}LiF:Mg,Ti and {sup 7}LiF:Mg,Cu,P type TL dosimeters enable determination of only gamma component in mixed neutron - gamma field. At VR-1 reactor operated within the Faculty of Nuclear Sciences and Physical Engineering at the Czech Technical University in Prague the integral characteristics of gamma rays field were investigated, especially its spatial distribution and time behaviour, i.e. the non-saturated delayed gamma ray emission influence. Measured spatial distributions were compared with monte carlo code MCNP5 calculations. Although MCNP cannot generate delayedmore » gamma rays from fission, the relative gamma dose rate distribution is within {+-} 15% with measured values. The experiments were carried out with core configuration C1 consisting of LEU fuel IRT-4M (19.7 %). (author)« less

  3. Sensitivity and uncertainty analysis for the tritium breeding ratio of a DEMO fusion reactor with a helium cooled pebble bed blanket

    NASA Astrophysics Data System (ADS)

    Nunnenmann, Elena; Fischer, Ulrich; Stieglitz, Robert

    2017-09-01

    An uncertainty analysis was performed for the tritium breeding ratio (TBR) of a fusion power plant of the European DEMO type using the MCSEN patch to the MCNP Monte Carlo code. The breeding blanket was of the type Helium Cooled Pebble Bed (HCPB), currently under development in the European Power Plant Physics and Technology (PPPT) programme for a fusion power demonstration reactor (DEMO). A suitable 3D model of the DEMO reactor with HCPB blanket modules, as routinely used for blanket design calculations, was employed. The nuclear cross-section data were taken from the JEFF-3.2 data library. For the uncertainty analysis, the isotopes H-1, Li-6, Li-7, Be-9, O-16, Si-28, Si-29, Si-30, Cr-52, Fe-54, Fe-56, Ni-58, W-182, W-183, W-184 and W-186 were considered. The covariance data were taken from JEFF-3.2 where available. Otherwise a combination of FENDL-2.1 for Li-7, EFF-3 for Be-9 and JENDL-3.2 for O-16 were compared with data from TENDL-2014. Another comparison was performed with covariance data from JEFF-3.3T1. The analyses show an overall uncertainty of ± 3.2% for the TBR when using JEFF-3.2 covariance data with the mentioned additions. When using TENDL-2014 covariance data as replacement, the uncertainty increases to ± 8.6%. For JEFF-3.3T1 the uncertainty result is ± 5.6%. The uncertainty is dominated by O-16, Li-6 and Li-7 cross-sections.

  4. 32 CFR 1900.32 - Procedures for information concerning other persons.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 6 2011-07-01 2011-07-01 false Procedures for information concerning other persons. 1900.32 Section 1900.32 National Defense Other Regulations Relating to National Defense CENTRAL INTELLIGENCE AGENCY PUBLIC ACCESS TO CIA RECORDS UNDER THE FREEDOM OF INFORMATION ACT (FOIA) Additional...

  5. 32 CFR 1900.32 - Procedures for information concerning other persons.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 6 2013-07-01 2013-07-01 false Procedures for information concerning other persons. 1900.32 Section 1900.32 National Defense Other Regulations Relating to National Defense CENTRAL INTELLIGENCE AGENCY PUBLIC ACCESS TO CIA RECORDS UNDER THE FREEDOM OF INFORMATION ACT (FOIA) Additional...

  6. Nuclear import of glucokinase in pancreatic beta-cells is mediated by a nuclear localization signal and modulated by SUMOylation.

    PubMed

    Johansson, Bente Berg; Fjeld, Karianne; Solheim, Marie Holm; Shirakawa, Jun; Zhang, Enming; Keindl, Magdalena; Hu, Jiang; Lindqvist, Andreas; Døskeland, Anne; Mellgren, Gunnar; Flatmark, Torgeir; Njølstad, Pål Rasmus; Kulkarni, Rohit N; Wierup, Nils; Aukrust, Ingvild; Bjørkhaug, Lise

    2017-10-15

    The localization of glucokinase in pancreatic beta-cell nuclei is a controversial issue. Although previous reports suggest such a localization, the mechanism for its import has so far not been identified. Using immunofluorescence, subcellular fractionation and mass spectrometry, we present evidence in support of glucokinase localization in beta-cell nuclei of human and mouse pancreatic sections, as well as in human and mouse isolated islets, and murine MIN6 cells. We have identified a conserved, seven-residue nuclear localization signal ( 30 LKKVMRR 36 ) in the human enzyme. Substituting the residues KK 31,32 and RR 35,36 with AA led to a loss of its nuclear localization in transfected cells. Furthermore, our data indicates that SUMOylation of glucokinase modulates its nuclear import, while high glucose concentrations do not significantly alter the enzyme nuclear/cytosolic ratio. Thus, for the first time, we provide data in support of a nuclear import of glucokinase mediated by a redundant mechanism, involving a nuclear localization signal, and which is modulated by its SUMOylation. These findings add new knowledge to the functional role of glucokinase in the pancreatic beta-cell. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. 32 CFR 32.53 - Retention and access requirements for records.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 1 2010-07-01 2010-07-01 false Retention and access requirements for records. 32.53 Section 32.53 National Defense Department of Defense OFFICE OF THE SECRETARY OF DEFENSE DoD... OF HIGHER EDUCATION, HOSPITALS, AND OTHER NON-PROFIT ORGANIZATIONS Post-Award Requirements Reports...

  8. 32 CFR 32.53 - Retention and access requirements for records.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 1 2011-07-01 2011-07-01 false Retention and access requirements for records. 32.53 Section 32.53 National Defense Department of Defense OFFICE OF THE SECRETARY OF DEFENSE DoD... OF HIGHER EDUCATION, HOSPITALS, AND OTHER NON-PROFIT ORGANIZATIONS Post-Award Requirements Reports...

  9. Preliminary study on new configuration with LEU fuel assemblies for the Dalat nuclear research reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Lam Pham; Vinh Vinh Le; Ton Nghiem Huynh

    2008-07-15

    The fuel conversion of the Dalat Nuclear Research Reactor (DNRR) is being realized. The DNRR is a pool type research reactor which was reconstructed from the 250 kW TRIGA- MARK II reactor. The reconstructed reactor attained its nominal power of 500 kW in February 1984. According to the results of design and safety analyses performed by the joint study between RERTR Program at Argonne National Laboratory (ANL) and Vietnam Atomic Energy Commission (VAEC) the mixed core of irradiated HEU and new LEU WWR-M2 fuel assemblies will be created soon. This paper presents the results of preliminary study on new configurationmore » with only LEU fuel assemblies for the DNRR. The codes MCNP, REBUS and VARI3D are used to calculate neutron flux performance in irradiation positions and kinetics parameters. The idea of change of Beryllium rod reloading enables to get working configuration assured shutdown margin, thermal-hydraulic safety and increase in thermal neutron flux in neutron trap at the center of DNRR active core. (author)« less

  10. 32 CFR 720.32 - Certificates of full faith and credit.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 5 2010-07-01 2010-07-01 false Certificates of full faith and credit. 720.32... Official Records § 720.32 Certificates of full faith and credit. The Judge Advocate General, the Deputy... full faith and credit certifying the signatures and authority of officers of the Department of the Navy...

  11. 32 CFR 720.32 - Certificates of full faith and credit.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 5 2014-07-01 2014-07-01 false Certificates of full faith and credit. 720.32... Official Records § 720.32 Certificates of full faith and credit. The Judge Advocate General, the Deputy... full faith and credit certifying the signatures and authority of officers of the Department of the Navy...

  12. 32 CFR 720.32 - Certificates of full faith and credit.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 5 2011-07-01 2011-07-01 false Certificates of full faith and credit. 720.32... Official Records § 720.32 Certificates of full faith and credit. The Judge Advocate General, the Deputy... full faith and credit certifying the signatures and authority of officers of the Department of the Navy...

  13. 32 CFR 720.32 - Certificates of full faith and credit.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 5 2012-07-01 2012-07-01 false Certificates of full faith and credit. 720.32... Official Records § 720.32 Certificates of full faith and credit. The Judge Advocate General, the Deputy... full faith and credit certifying the signatures and authority of officers of the Department of the Navy...

  14. 32 CFR 720.32 - Certificates of full faith and credit.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 5 2013-07-01 2013-07-01 false Certificates of full faith and credit. 720.32... Official Records § 720.32 Certificates of full faith and credit. The Judge Advocate General, the Deputy... full faith and credit certifying the signatures and authority of officers of the Department of the Navy...

  15. Measurement of the 23Na(n,2n) cross section in 235U and 252Cf fission neutron spectra

    NASA Astrophysics Data System (ADS)

    Košťál, Michal; Schulc, Martin; Rypar, Vojtěch; Losa, Evžen; Švadlenková, Marie; Baroň, Petr; Jánský, Bohumil; Novák, Evžen; Mareček, Martin; Uhlíř, Jan

    2017-09-01

    The presented paper aims to compare the calculated and experimental reaction rates of 23Na(n,2n)22Na in a well-defined reactor spectra and in the spontaneous fission spectrum of 252Cf. The experimentally determined reaction rate, derived using gamma spectroscopy of irradiated NaF sample, is used for average cross section determination.Estimation of this cross-section is important as it is included in International Reactor Dosimetry and Fusion File and is also relevant to the correct estimation of long-term activity of Na coolant in Sodium Fast Reactors. The calculations were performed with the MCNP6 code using ENDF/B-VII.0, JEFF-3.1, JEFF-3.2, JENDL-3.3, JENDL-4, ROSFOND-2010, CENDL-3.1 and IRDFF nuclear data libraries. In the case of reactor spectrum, reasonable agreement was not achieved with any library. However, in the case of 252Cf spectrum agreement was achieved with IRDFF, JEFF-3.1 and JENDL libraries.

  16. 32 CFR 776.32 - Department of the Navy as client.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 5 2010-07-01 2010-07-01 false Department of the Navy as client. 776.32 Section... Rules of Professional Conduct § 776.32 Department of the Navy as client. (a) Department of Navy as client: (1) Except when representing an individual client pursuant to paragraph (a)(6) of this section, a...

  17. Enrichment Zoning Options for the Small Nuclear Rocket Engine (SNRE)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruce G. Schnitzler; Stanley K. Borowski

    2010-07-01

    Advancement of U.S. scientific, security, and economic interests through a robust space exploration program requires high performance propulsion systems to support a variety of robotic and crewed missions beyond low Earth orbit. In NASA’s recent Mars Design Reference Architecture (DRA) 5.0 study (NASA-SP-2009-566, July 2009), nuclear thermal propulsion (NTP) was again selected over chemical propulsion as the preferred in-space transportation system option because of its high thrust and high specific impulse (-900 s) capability, increased tolerance to payload mass growth and architecture changes, and lower total initial mass in low Earth orbit. An extensive nuclear thermal rocket technology development effortmore » was conducted from 1955-1973 under the Rover/NERVA Program. The Small Nuclear Rocket Engine (SNRE) was the last engine design studied by the Los Alamos National Laboratory during the program. At the time, this engine was a state-of-the-art design incorporating lessons learned from the very successful technology development program. Past activities at the NASA Glenn Research Center have included development of highly detailed MCNP Monte Carlo transport models of the SNRE and other small engine designs. Preliminary core configurations typically employ fuel elements with fixed fuel composition and fissile material enrichment. Uniform fuel loadings result in undesirable radial power and temperature profiles in the engines. Engine performance can be improved by some combination of propellant flow control at the fuel element level and by varying the fuel composition. Enrichment zoning at the fuel element level with lower enrichments in the higher power elements at the core center and on the core periphery is particularly effective. Power flattening by enrichment zoning typically results in more uniform propellant exit temperatures and improved engine performance. For the SNRE, element enrichment zoning provided very flat radial power profiles with 551 of

  18. Shielding properties of 80TeO2-5TiO2-(15-x) WO3-xAnOm glasses using WinXCom and MCNP5 code

    NASA Astrophysics Data System (ADS)

    Dong, M. G.; El-Mallawany, R.; Sayyed, M. I.; Tekin, H. O.

    2017-12-01

    Gamma ray shielding properties of 80TeO2-5TiO2-(15-x) WO3-xAnOm glasses, where AnOm is Nb2O5 = 0.01, 5, Nd2O3 = 3, 5 and Er2O3 = 5 mol% have been achieved. Shielding parameters; mass attenuation coefficients, half value layers, and macroscopic effective removal cross section for fast neutrons have been computed by using WinXCom program and MCNP5 Monte Carlo code. In addition, by using Geometric Progression method (G-P), exposure buildup factor values were also calculated. Variations of shielding parameters are discussed for the effect of REO addition into the glasses and photon energy.

  19. IL-32γ promotes integrin αvβ6 expression through the activation of NF-κB in HSCs

    PubMed Central

    Liu, Hongcan; Pan, Xingfei; Cao, Hong; Shu, Xin; Sun, Haixia; Lu, Jianxi; Liang, Jiayin; Zhang, Ka; Zhu, Fengqin; Li, Gang; Zhang, Qi

    2017-01-01

    Hepatic stellate cell (HSC) activation is important in the pathogenesis of liver fibrosis. However, the molecular mechanism of HSC activation is not completely understood. In the present study, it was demonstrated that interleukin-32γ (IL-32γ) is capable of enhancing intefgrin αvβ6 expression by inducing integrin αvβ6 promoter activity in a dose-dependent manner in HSCs. Furthermore, it was determined that nuclear factor κB (NF-κB) activation is required for IL-32γ-induced integrin αvβ6 expression. Increased integrin αvβ6 expression is then able to activate HSCs. These results indicate that NF-κB activation is required for IL-32γ to induce integrin αvβ6 expression and consequently promote HSC activation. Therefore, IL-32γ activates HSCs and therefore may be associated with hepatic fibrogenesis. These results may enable the development of novel effective strategies to treat hepatic fibrosis. PMID:29042996

  20. Neutron Fluence And DPA Rate Analysis In Pebble-Bed HTR Reactor Vessel Using MCNP

    NASA Astrophysics Data System (ADS)

    Hamzah, Amir; Suwoto; Rohanda, Anis; Adrial, Hery; Bakhri, Syaiful; Sunaryo, Geni Rina

    2018-02-01

    In the Pebble-bed HTR reactor, the distance between the core and the reactor vessel is very close and the media inside are carbon and He gas. Neutron moderation capability of graphite material is theoretically lower than that of water-moderated reactors. Thus, it is estimated much more the fast neutrons will reach the reactor vessel. The fast neutron collisions with the atoms in the reactor vessel will result in radiation damage and could be reducing the vessel life. The purpose of this study was to obtain the magnitude of neutron fluence in the Pebble-bed HTR reactor vessel. Neutron fluence calculations in the pebble-bed HTR reactor vessel were performed using the MCNP computer program. By determining the tally position, it can be calculated flux, spectrum and neutron fluence in the position of Pebble-bed HTR reactor vessel. The calculations results of total neutron flux and fast neutron flux in the reactor vessel of 1.82x108 n/cm2/s and 1.79x108 n/cm2/s respectively. The fast neutron fluence in the reactor vessel is 3.4x1017 n/cm2 for 60 years reactor operation. Radiation damage in stainless steel material caused by high-energy neutrons (> 1.0 MeV) will occur when it has reached the neutron flux level of 1.0x1024 n/cm2. The neutron fluence results show that there is no radiation damage in the Pebble-bed HTR reactor vessel, so it is predicted that it will be safe to operate at least for 60 years.