Science.gov

Sample records for ftable generation method

  1. Method of grid generation

    DOEpatents

    Barnette, Daniel W.

    2002-01-01

    The present invention provides a method of grid generation that uses the geometry of the problem space and the governing relations to generate a grid. The method can generate a grid with minimized discretization errors, and with minimal user interaction. The method of the present invention comprises assigning grid cell locations so that, when the governing relations are discretized using the grid, at least some of the discretization errors are substantially zero. Conventional grid generation is driven by the problem space geometry; grid generation according to the present invention is driven by problem space geometry and by governing relations. The present invention accordingly can provide two significant benefits: more efficient and accurate modeling since discretization errors are minimized, and reduced cost grid generation since less human interaction is required.

  2. Inflow Turbulence Generation Methods

    NASA Astrophysics Data System (ADS)

    Wu, Xiaohua

    2017-01-01

    Research activities on inflow turbulence generation methods have been vigorous over the past quarter century, accompanying advances in eddy-resolving computations of spatially developing turbulent flows with direct numerical simulation, large-eddy simulation (LES), and hybrid Reynolds-averaged Navier-Stokes-LES. The weak recycling method, rooted in scaling arguments on the canonical incompressible boundary layer, has been applied to supersonic boundary layer, rough surface boundary layer, and microscale urban canopy LES coupled with mesoscale numerical weather forecasting. Synthetic methods, originating from analytical approximation to homogeneous isotropic turbulence, have branched out into several robust methods, including the synthetic random Fourier method, synthetic digital filtering method, synthetic coherent eddy method, and synthetic volume forcing method. This article reviews major progress in inflow turbulence generation methods with an emphasis on fundamental ideas, key milestones, representative applications, and critical issues. Directions for future research in the field are also highlighted.

  3. Bismuth generator method

    DOEpatents

    Bray, Lane Allan; DesChane, Jaquetta R.

    1998-01-01

    A method for separating .sup.213 Bi from a solution of radionuclides wherein the solution contains a concentration of the chloride ions and hydrogen ions adjusted to allow the formation of a chloride complex. The solution is then brought into contact with an anion exchange resin, whereupon .sup.213 Bi is absorbed from the solution and adhered onto the anion exchange resin in the chloride complex. Other non-absorbing radionuclides such as .sup.225 Ra, .sup.225 Ac, and .sup.221 Fr, along with HCl are removed from the anion exchange resin with a scrub solution. The .sup.213 Bi is removed from the anion exchange resin by washing the anion exchange resin with a stripping solution free of chloride ions and with a reduced hydrogen ion concentration which breaks the chloride anionic complex, releasing the .sup.213 Bi as a cation. In a preferred embodiment of the present invention, the anion exchange resin is provided as a thin membrane, allowing for extremely rapid adherence and stripping of the .sup.213 Bi. A preferred stripping solution for purification of .sup.213 Bi for use in medical applications includes sodium acetate, pH 5.5. A protein conjugated with bifunctional chelating agents in vivo with the NaOAc, to receive the .sup.213 Bi as it is being released from the anion exchange resin.

  4. Bismuth generator method

    DOEpatents

    Bray, L.A.; DesChane, J.R.

    1998-05-05

    A method is described for separating {sup 213}Bi from a solution of radionuclides wherein the solution contains a concentration of the chloride ions and hydrogen ions adjusted to allow the formation of a chloride complex. The solution is then brought into contact with an anion exchange resin, whereupon {sup 213}Bi is absorbed from the solution and adhered onto the anion exchange resin in the chloride complex. Other non-absorbing radionuclides such as {sup 225}Ra, {sup 225}Ac, and {sup 221}Fr, along with HCl are removed from the anion exchange resin with a scrub solution. The {sup 213}Bi is removed from the anion exchange resin by washing the anion exchange resin with a stripping solution free of chloride ions and with a reduced hydrogen ion concentration which breaks the chloride anionic complex, releasing the {sup 213}Bi as a cation. In a preferred embodiment of the present invention, the anion exchange resin is provided as a thin membrane, allowing for extremely rapid adherence and stripping of the {sup 213}Bi. A preferred stripping solution for purification of {sup 213}Bi for use in medical applications includes sodium acetate, pH 5.5. A protein conjugated with bifunctional chelating agents in vivo with the NaOAc receives the {sup 213}Bi as it is being released from the anion exchange resin. 10 figs.

  5. Method of generating chemiluminescent light

    DOEpatents

    Spurlin, Stanford R.; Yeung, Edward S.

    1986-01-01

    A method of chemiluminescently determining a sulfide which is either hydrogen sulfide or methyl mercaptan by reacting the sulfide with chlorine dioxide at low pressure and under conditions which allow a longer reaction time in emission of a single photon for every two sulfide containing species, and thereafter, chemiluminescently detecting and determining the sulfide. The invention also relates not only to the detection method, but the novel chemical reaction that generates chemiluminescent light and a specifically designed chemiluminescence detection cell for the reaction.

  6. Utility Solar Generation Valuation Methods

    SciTech Connect

    Hansen, Thomas N.; Dion, Phillip J.

    2009-06-30

    Tucson Electric Power (TEP) developed, tested and verified the results of a new and appropriate method for accurately evaluating the capacity credit of time variant solar generating sources and reviewed new methods to appropriately and fairly evaluate the value of solar generation to electric utilities. The project also reviewed general integrated approaches for adequately compensating owners of solar generation for their benefits to utilities. However, given the limited funding support and time duration of this project combined with the significant differences between utilities regarding rate structures, solar resource availability and coincidence of solar generation with peak load periods, it is well beyond the scope of this project to develop specific rate, rebate, and interconnection approaches to capture utility benefits for all possible utilities. The project developed computer software based evaluation method models to compare solar generation production data measured in very short term time increments called Sample Intervals over a typical utility Dispatch Cycle during an Evaluation Period against utility system load data. Ten second resolution generation production data from the SGSSS and actual one minute resolution TEP system load data for 2006 and 2007, along with data from the Pennington Street Garage 60 kW DC capacity solar unit installed in downtown Tucson will be applied to the model for testing and verification of the evaluation method. Data was provided by other utilities, but critical time periods of data were missing making results derived from that data inaccurate. The algorithms are based on previous analysis and review of specific 2005 and 2006 SGSSS production data. The model was built, tested and verified by in house TEP personnel. For this phase of the project, TEP communicated with, shared solar production data with and collaborated on the development of solar generation valuation tools with other utilities, including Arizona Public

  7. Method of generating chemiluminescent light

    DOEpatents

    Spurlin, S.R.; Yeung, E.S.

    1986-03-11

    A method of chemiluminescently determining a sulfide which is either hydrogen sulfide or methyl mercaptan by reacting the sulfide with chlorine dioxide at low pressure and under conditions which allow a longer reaction time in emission of a single photon for every two sulfide containing species, and thereafter, chemiluminescently detecting and determining the sulfide. The invention also relates not only to the detection method, but the novel chemical reaction that generates chemiluminescent light and a specifically designed chemiluminescence detection cell for the reaction. 4 figs.

  8. Experimental Methods for Studying Generations.

    ERIC Educational Resources Information Center

    Wieting, Stephen G.

    This paper represents two intentions: to discuss the need for theoretical advance in generational studies, and to make suggestions about expanding the design repertoire of generational studies in the interests of these theory developments. First, because generational phenomena on the face seem intransigent to experiment, a comment on…

  9. Reducing gas generators and methods for generating a reducing gas

    DOEpatents

    Scotto, Mark Vincent; Perna, Mark Anthony

    2015-11-03

    One embodiment of the present invention is a unique reducing gas generator. Another embodiment is a unique method for generating a reducing gas. Other embodiments include apparatuses, systems, devices, hardware, methods, and combinations for generating reducing gas. Further embodiments, forms, features, aspects, benefits, and advantages of the present application will become apparent from the description and figures provided herewith.

  10. Power generation systems and methods

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor); Chao, Yi (Inventor)

    2011-01-01

    A power generation system includes a plurality of submerged mechanical devices. Each device includes a pump that can be powered, in operation, by mechanical energy to output a pressurized output liquid flow in a conduit. Main output conduits are connected with the device conduits to combine pressurized output flows output from the submerged mechanical devices into a lower number of pressurized flows. These flows are delivered to a location remote of the submerged mechanical devices for power generation.

  11. Method of and arrangement for generating hydrogen

    SciTech Connect

    Gladstone, E.

    1989-05-09

    A method is described of generating diatomic hydrogen, comprising the steps of: (a) generating diatomic oxygen and hydrogen hydride by subjecting hydroride to cryogenic temperature and subatmospheric pressure conditions; (b) generating diatomic- hydrogen and hydroride by reacting the hydrogen hydride generated in step (a) with water; (c) recycling the hydroride generated in step (b) for use in step (a); and (d) removing the diatomic hydrogen generated in step (b).

  12. Apparatuses and methods for generating electric fields

    DOEpatents

    Scott, Jill R; McJunkin, Timothy R; Tremblay, Paul L

    2013-08-06

    Apparatuses and methods relating to generating an electric field are disclosed. An electric field generator may include a semiconductive material configured in a physical shape substantially different from a shape of an electric field to be generated thereby. The electric field is generated when a voltage drop exists across the semiconductive material. A method for generating an electric field may include applying a voltage to a shaped semiconductive material to generate a complex, substantially nonlinear electric field. The shape of the complex, substantially nonlinear electric field may be configured for directing charged particles to a desired location. Other apparatuses and methods are disclosed.

  13. Method for protecting an electric generator

    DOEpatents

    Kuehnle, Barry W.; Roberts, Jeffrey B.; Folkers, Ralph W.

    2008-11-18

    A method for protecting an electrical generator which includes providing an electrical generator which is normally synchronously operated with an electrical power grid; providing a synchronizing signal from the electrical generator; establishing a reference signal; and electrically isolating the electrical generator from the electrical power grid if the synchronizing signal is not in phase with the reference signal.

  14. Microplasma generator and methods therefor

    DOEpatents

    Hopwood, Jeffrey A

    2015-04-14

    A low-temperature, atmospheric-pressure microplasma generator comprises at least one strip of metal on a dielectric substrate. A first end of the strip is connected to a ground plane and the second end of the strip is adjacent to a grounded electrode, with a gap being defined between the second end of the strip and the grounded electrode. High frequency power is supplied to the strip. The frequency is selected so that the length of the strip is an odd integer multiple of 1/4 of the wavelength traveling on the strip. A microplasma forms in the gap between the second end of the strip and the grounded electrode due to electric fields in that region. A microplasma generator array comprises a plurality of strongly-coupled resonant strips in close proximity to one another. At least one of the strips has an input for high-frequency electrical power. The remaining strips resonate due to coupling from the at least one powered strip. The array can provide a continuous line or ring of plasma. The microplasma generator can be used to alter the surface of a substrate, such as by adding material (deposition), removal of material (etching), or modifying surface chemistry.

  15. Green Tool

    EPA Pesticide Factsheets

    The Green Tool represents infiltration-based stormwater control practices. It allows modelers to select a BMP type, channel shape and BMP unit dimensions, outflow control devices, and infiltration method. The program generates an HSPF-formatted FTABLE.

  16. Method of generating a surface mesh

    SciTech Connect

    Shepherd, Jason F.; Benzley, Steven; Grover, Benjamin T.

    2008-03-04

    A method and machine-readable medium provide a technique to generate and modify a quadrilateral finite element surface mesh using dual creation and modification. After generating a dual of a surface (mesh), a predetermined algorithm may be followed to generate and modify a surface mesh of quadrilateral elements. The predetermined algorithm may include the steps of generating two-dimensional cell regions in dual space, determining existing nodes in primal space, generating new nodes in the dual space, and connecting nodes to form the quadrilateral elements (faces) for the generated and modifiable surface mesh.

  17. Vapor generation methods for explosives detection research

    SciTech Connect

    Grate, Jay W.; Ewing, Robert G.; Atkinson, David A.

    2012-12-01

    The generation of calibrated vapor samples of explosives compounds remains a challenge due to the low vapor pressures of the explosives, adsorption of explosives on container and tubing walls, and the requirement to manage (typically) multiple temperature zones as the vapor is generated, diluted, and delivered. Methods that have been described to generate vapors can be classified as continuous or pulsed flow vapor generators. Vapor sources for continuous flow generators are typically explosives compounds supported on a solid support, or compounds contained in a permeation or diffusion device. Sources are held at elevated isothermal temperatures. Similar sources can be used for pulsed vapor generators; however, pulsed systems may also use injection of solutions onto heated surfaces with generation of both solvent and explosives vapors, transient peaks from a gas chromatograph, or vapors generated by s programmed thermal desorption. This article reviews vapor generator approaches with emphasis on the method of generating the vapors and on practical aspects of vapor dilution and handling. In addition, a gas chromatographic system with two ovens that is configurable with up to four heating ropes is proposed that could serve as a single integrated platform for explosives vapor generation and device testing. Issues related to standards, calibration, and safety are also discussed.

  18. Iterative method for generating correlated binary sequences

    NASA Astrophysics Data System (ADS)

    Usatenko, O. V.; Melnik, S. S.; Apostolov, S. S.; Makarov, N. M.; Krokhin, A. A.

    2014-11-01

    We propose an efficient iterative method for generating random correlated binary sequences with a prescribed correlation function. The method is based on consecutive linear modulations of an initially uncorrelated sequence into a correlated one. Each step of modulation increases the correlations until the desired level has been reached. The robustness and efficiency of the proposed algorithm are tested by generating sequences with inverse power-law correlations. The substantial increase in the strength of correlation in the iterative method with respect to single-step filtering generation is shown for all studied correlation functions. Our results can be used for design of disordered superlattices, waveguides, and surfaces with selective transport properties.

  19. Methods of Generating and Evaluating Hypertext.

    ERIC Educational Resources Information Center

    Blustein, James; Staveley, Mark S.

    2001-01-01

    Focuses on methods of generating and evaluating hypertext. Highlights include historical landmarks; nonlinearity; literary hypertext; models of hypertext; manual, automatic, and semi-automatic generation of hypertext; mathematical models for hypertext evaluation, including computing coverage and correlation; human factors in evaluation; and…

  20. New Methods For Generating Gear Surfaces

    NASA Technical Reports Server (NTRS)

    Coy, John J.; Handschuh, Robert F.; Litvin, F. L.; Tsung, W.-J.; Tsay, C.-B. P.

    1989-01-01

    Report presents new methods for generating spur, helical, and spiral-bevel gears. Computer programs for analysis of tooth contacts developed for gears. Applied to spiral-bevel gears by use of currently available machinery and tools.

  1. Power generation method including membrane separation

    DOEpatents

    Lokhandwala, Kaaeid A.

    2000-01-01

    A method for generating electric power, such as at, or close to, natural gas fields. The method includes conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas by means of a membrane separation step. This step creates a leaner, sweeter, drier gas, which is then used as combustion fuel to run a turbine, which is in turn used for power generation.

  2. The Generative Potential of Mixed Methods Inquiry

    ERIC Educational Resources Information Center

    Greene, Jennifer C.

    2005-01-01

    A mixed method approach to educational and social inquiry is presented as an important counterpoint to the contemporary debate about what constitutes valid, rigorous, and "scientific" research. By welcoming all legitimate methodological traditions, mixed method inquiry meaningfully engages with difference and thus offers some generative potential…

  3. Method of operating a thermoelectric generator

    DOEpatents

    Reynolds, Michael G; Cowgill, Joshua D

    2013-11-05

    A method for operating a thermoelectric generator supplying a variable-load component includes commanding the variable-load component to operate at a first output and determining a first load current and a first load voltage to the variable-load component while operating at the commanded first output. The method also includes commanding the variable-load component to operate at a second output and determining a second load current and a second load voltage to the variable-load component while operating at the commanded second output. The method includes calculating a maximum power output of the thermoelectric generator from the determined first load current and voltage and the determined second load current and voltage, and commanding the variable-load component to operate at a third output. The commanded third output is configured to draw the calculated maximum power output from the thermoelectric generator.

  4. Method and apparatus for thermal power generation

    DOEpatents

    Mangus, James D.

    1979-01-01

    A method and apparatus for power generation from a recirculating superheat-reheat circuit with multiple expansion stages which alleviates complex control systems and minimizes thermal cycling of system components, particularly the reheater. The invention includes preheating cold reheat fluid from the first expansion stage prior to its entering the reheater with fluid from the evaporator or drum component.

  5. Apparatus and method for thermal power generation

    DOEpatents

    Cohen, Paul; Redding, Arnold H.

    1978-01-01

    An improved thermal power plant and method of power generation which minimizes thermal stress and chemical impurity buildup in the vaporizing component, particularly beneficial under loss of normal feed fluid and startup conditions. The invention is particularly applicable to a liquid metal fast breeder reactor plant.

  6. Lexicon generation methods, lexicon generation devices, and lexicon generation articles of manufacture

    DOEpatents

    Carter, Richard J [Richland, WA; McCall, Jonathon D [West Richland, WA; Whitney, Paul D [Richland, WA; Gregory, Michelle L [Richland, WA; Turner, Alan E [Kennewick, WA; Hetzler, Elizabeth G [Kennewick, WA; White, Amanda M [Kennewick, WA; Posse, Christian [Seattle, WA; Nakamura, Grant C [Kennewick, WA

    2010-10-26

    Lexicon generation methods, computer implemented lexicon editing methods, lexicon generation devices, lexicon editors, and articles of manufacture are described according to some aspects. In one aspect, a lexicon generation method includes providing a seed vector indicative of occurrences of a plurality of seed terms within a plurality of text items, providing a plurality of content vectors indicative of occurrences of respective ones of a plurality of content terms within the text items, comparing individual ones of the content vectors with respect to the seed vector, and responsive to the comparing, selecting at least one of the content terms as a term of a lexicon usable in sentiment analysis of text.

  7. Method for generating heat from waste fuel

    SciTech Connect

    Lamb, F.H.; Lefcort, M.D.; Rada, P.

    1981-11-17

    A combustion method is disclosed in which heat is generated from particulate laden combustible gas containing mineral matter created from gasifying waste wood, coke or other combustible material. The waste is fed into a pile, under-fire combustion air dries and gasifies the waste, oxidizing the fixed carbon in a first chamber to generate heat at a temperature less than the melting temperature of the non-combustible material so as not to form slag. Air is added in the first chamber in an amount less than stoichiometric with the air introduced in a swirling fashion to move the particulate laterally away from the discharge of the primary chamber, impeding the movement of this particulate also by adding secondary combustion air in a downward swirling direction in the secondary chamber so that very little noncombustible material reaches the second chamber where melting can occur.

  8. Formal methods for test case generation

    NASA Technical Reports Server (NTRS)

    Rushby, John (Inventor); De Moura, Leonardo Mendonga (Inventor); Hamon, Gregoire (Inventor)

    2011-01-01

    The invention relates to the use of model checkers to generate efficient test sets for hardware and software systems. The method provides for extending existing tests to reach new coverage targets; searching *to* some or all of the uncovered targets in parallel; searching in parallel *from* some or all of the states reached in previous tests; and slicing the model relative to the current set of coverage targets. The invention provides efficient test case generation and test set formation. Deep regions of the state space can be reached within allotted time and memory. The approach has been applied to use of the model checkers of SRI's SAL system and to model-based designs developed in Stateflow. Stateflow models achieving complete state and transition coverage in a single test case are reported.

  9. Plasma generators, reactor systems and related methods

    SciTech Connect

    Kong, Peter C.; Pink, Robert J.; Lee, James E.

    2007-06-19

    A plasma generator, reactor and associated systems and methods are provided in accordance with the present invention. A plasma reactor may include multiple sections or modules which are removably coupled together to form a chamber. Associated with each section is an electrode set including three electrodes with each electrode being coupled to a single phase of a three-phase alternating current (AC) power supply. The electrodes are disposed about a longitudinal centerline of the chamber and are arranged to provide and extended arc and generate an extended body of plasma. The electrodes are displaceable relative to the longitudinal centerline of the chamber. A control system may be utilized so as to automatically displace the electrodes and define an electrode gap responsive to measure voltage or current levels of the associated power supply.

  10. Method of generating hydrogen and using the generated hydrogen

    SciTech Connect

    Papineau, R. I.

    1985-10-15

    The present invention is directed to a hydrogen generating system which produces hydrogen instantaneously from water ready for use upon demand. The system includes a reactor that has reaction zones wherein catalyst and elevated temperatures generate hydrogen from steam. The zones in the reactor can be in the form of tubes about a heat generating chamber, and the zones are adapted to be interconnected to each other, to atmosphere, and to the source of steam, all to maximize the generation of hydrogen by providing a reactor of optimum flexibility. The present invention also is directed to systems which include the hydrogen generating system and which utilize the generated hydrogen as a fuel or a chemical.

  11. Oxygen gas generator and method of manufacturing the gas generator

    SciTech Connect

    Marion, F.A.

    1981-12-01

    A gas generator is capable of being stored in a stable form for long periods of time without deteriorating in quality. The gas generator provides a substantial amount of gases, and particularly oxygen, carbon monoxide or carbon dioxide without producing any harmful or hazardous chemicals. The gas generator includes in some embodiments a minimum of fuel so that a maximum amount of oxygen in the generator is capable of being liberated. The oxygen is liberated by the combustion of a fuel at localized positions in a refractory binder, which has the property of preventing the salt residue from becoming molten and the oxidizer from flowing and thereby preventing the combustion from becoming extinguished. The gas generator includes a suitable refractory material (such as clay) as a binder, a suitable oxidizer such as chlorate and a fuel having properties of combusting with oxygen liberated by the oxidizer and having a granular construction and having relatively poor thermal conductivity through the granules to provide the combustion at localized positions in the refractory material. The fuel may constitute a plant by-product having a cellular structure and a high compression strength. The fuel may specifically constitute dried plant life such as corn cobs. The gas generator is formed by mixing the refractory material, the fuel and the oxidizer without the addition of any water and then compressing the mixture into a suitable form such as briquettes.

  12. Methods for generating and colonizing gnotobiotic zebrafish

    PubMed Central

    Pham, Linh N.; Kanther, Michelle; Semova, Ivana; Rawls, John F.

    2008-01-01

    Vertebrates are colonized at birth by complex and dynamic communities of microorganisms that can contribute significantly to host health and disease. The ability to raise animals in the absence of microorganisms has been a powerful tool for elucidating the relationships between animal hosts and their microbial residents. The optical transparency of the developing zebrafish and relative ease of generating germ-free zebrafish makes it an attractive model organism for gnotobiotic research. Here we provide a protocol for: generating zebrafish embryos; deriving and rearing germ-free zebrafish; and colonizing zebrafish with microorganisms. Using these methods, we typically obtain 80–90% sterility rates in our germ-free derivations with 90% survival in germ-free animals and 50–90% survival in colonized animals through larval stages. Obtaining embryos for derivation requires approximately 1–2 hours with a 3–8 hour incubation period prior to derivation. Derivation of germ-free animals takes 1–1.5 hours, and daily maintenance requires 1–2 hours. PMID:19008873

  13. Method and apparatus for generating acoustic energy

    DOEpatents

    Guerrero, Hector N.

    2002-01-01

    A method and apparatus for generating and emitting amplified coherent acoustic energy. A cylindrical transducer is mounted within a housing, the transducer having an acoustically open end and an acoustically closed end. The interior of the transducer is filled with an active medium which may include scattering nuclei. Excitation of the transducer produces radially directed acoustic energy in the active medium, which is converted by the dimensions of the transducer, the acoustically closed end thereof, and the scattering nuclei, to amplified coherent acoustic energy directed longitudinally within the transducer. The energy is emitted through the acoustically open end of the transducer. The emitted energy can be used for, among other things, effecting a chemical reaction or removing scale from the interior walls of containment vessels.

  14. Apparatus and method for generating mechanical waves

    DOEpatents

    Allensworth, D.L.; Chen, P.J.

    1982-10-25

    Mechanical waves are generated in a medium by subjecting an electromechanical element to an alternating electric field having a frequency which induces mechanical resonance therein and is below any electrical resonance frequency thereof.

  15. Apparatus and method for generating mechanical waves

    DOEpatents

    Allensworth, Dwight L.; Chen, Peter J.

    1985-01-01

    Mechanical waves are generated in a medium by subjecting an electromechanical element to an alternating electric field having a frequency which induces mechanical resonance therein and is below any electrical resonance frequency thereof.

  16. Combustion apparatus and method of generating gas

    SciTech Connect

    Van Berkum, R.A.

    1988-05-31

    A combustion apparatus for converting carbon-based fuels in combustible gas is described comprising: a housing which defines an internal reaction chamber; fuel supply means for supplying fuel to the reaction chamber such that a fuel pile of generally constant configuration is maintained in the reaction chamber; a means for supporting the fuel pile, the fuel pile supporting means being disposed adjacent a bottom of the reaction chamber and permitting the flow of gas therethrough; a gas inlet disposed below the fuel pile supporting means for supplying an oxygen-carrying gas through the supporting means to react chemically with the fuel in the fuel pile to generate the combustible gas; ash removal for removing reaction by-products from adjacent the supporting means; a gas outlet for transporting the generated combustible gas from the housing; and, means for partially combusting the generated combustible gas to inhibit condensation of the vapors from the gas.

  17. Generating partially correlated noise—A comparison of methods

    PubMed Central

    Hartmann, William M.; Cho, Yun Jin

    2011-01-01

    There are three standard methods for generating two channels of partially correlated noise: the two-generator method, the three-generator method, and the symmetric-generator method. These methods allow an experimenter to specify a target cross correlation between the two channels, but actual generated noises show statistical variability around the target value. Numerical experiments were done to compare the variability for those methods as a function of the number of degrees of freedom. The results of the experiments quantify the stimulus uncertainty in diverse binaural psychoacoustical experiments: incoherence detection, perceived auditory source width, envelopment, noise localization∕lateralization, and the masking level difference. The numerical experiments found that when the elemental generators have unequal powers, the different methods all have similar variability. When the powers are constrained to be equal, the symmetric-generator method has much smaller variability than the other two. PMID:21786899

  18. Plasma plume MHD power generator and method

    DOEpatents

    Hammer, James H.

    1993-01-01

    Highly-conducting plasma plumes are ejected across the interplanetary magnetic field from a situs that is moving relative to the solar wind, such as a spacecraft or an astral body, such as the moon, having no magnetosphere that excludes the solar wind. Discrete plasma plumes are generated by plasma guns at the situs extending in opposite directions to one another and at an angle, preferably orthogonal, to the magnetic field direction of the solar wind plasma. The opposed plumes are separately electrically connected to their source by a low impedance connection. The relative movement between the plasma plumes and the solar wind plasma creates a voltage drop across the plumes which is tapped by placing the desired electrical load between the electrical connections of the plumes to their sources. A portion of the energy produced may be used in generating the plasma plumes for sustained operation.

  19. Digitally programmable signal generator and method

    DOEpatents

    Priatko, Gordon J.; Kaskey, Jeffrey A.

    1989-01-01

    A digitally programmable waveform generator for generating completely arbitrary digital or analog waveforms from very low frequencies to frequencies in the gigasample per second range. A memory array with multiple parallel outputs is addressed; then the parallel output data is latched into buffer storage from which it is serially multiplexed out at a data rate many times faster than the access time of the memory array itself. While data is being multiplexed out serially, the memory array is accessed with the next required address and presents its data to the buffer storage before the serial multiplexing of the last group of data is completed, allowing this new data to then be latched into the buffer storage for smooth continuous serial data output. In a preferred implementation, a plurality of these serial data outputs are paralleled to form the input to a digital to analog converter, providing a programmable analog output.

  20. A polygonal method for haptic force generation

    SciTech Connect

    Anderson, T. |

    1996-12-31

    Algorithms for computing forces and associated surface deformations (graphical and physical) are given, which, together with a force feedback device can be used to haptically display virtual objects. The Bendable Polygon algorithm, created at Sandia National Labs and the University of New Mexico, for visual rendering of computer generated surfaces is also presented. An implementation using the EIGEN virtual reality environment, and the PHANToM (Trademark) haptic interface, is reported together with suggestions for future research.

  1. Entropy generation method to quantify thermal comfort

    NASA Technical Reports Server (NTRS)

    Boregowda, S. C.; Tiwari, S. N.; Chaturvedi, S. K.

    2001-01-01

    The present paper presents a thermodynamic approach to assess the quality of human-thermal environment interaction and quantify thermal comfort. The approach involves development of entropy generation term by applying second law of thermodynamics to the combined human-environment system. The entropy generation term combines both human thermal physiological responses and thermal environmental variables to provide an objective measure of thermal comfort. The original concepts and definitions form the basis for establishing the mathematical relationship between thermal comfort and entropy generation term. As a result of logic and deterministic approach, an Objective Thermal Comfort Index (OTCI) is defined and established as a function of entropy generation. In order to verify the entropy-based thermal comfort model, human thermal physiological responses due to changes in ambient conditions are simulated using a well established and validated human thermal model developed at the Institute of Environmental Research of Kansas State University (KSU). The finite element based KSU human thermal computer model is being utilized as a "Computational Environmental Chamber" to conduct series of simulations to examine the human thermal responses to different environmental conditions. The output from the simulation, which include human thermal responses and input data consisting of environmental conditions are fed into the thermal comfort model. Continuous monitoring of thermal comfort in comfortable and extreme environmental conditions is demonstrated. The Objective Thermal Comfort values obtained from the entropy-based model are validated against regression based Predicted Mean Vote (PMV) values. Using the corresponding air temperatures and vapor pressures that were used in the computer simulation in the regression equation generates the PMV values. The preliminary results indicate that the OTCI and PMV values correlate well under ideal conditions. However, an experimental study

  2. Method and system for radioisotope generation

    DOEpatents

    Toth, James J.; Soderquist, Chuck Z.; Greenwood, Lawrence R.; Mattigod, Shas V.; Fryxell, Glen E.; O'Hara, Matthew J.

    2014-07-15

    A system and a process for producing selected isotopic daughter products from parent materials characterized by the steps of loading the parent material upon a sorbent having a functional group configured to selectively bind the parent material under designated conditions, generating the selected isotopic daughter products, and eluting said selected isotopic daughter products from the sorbent. In one embodiment, the process also includes the step of passing an eluent formed by the elution step through a second sorbent material that is configured to remove a preselected material from said eluent. In some applications a passage of the material through a third sorbent material after passage through the second sorbent material is also performed.

  3. Method and composition for generating nitrogen gas

    SciTech Connect

    Pietz, J.F.

    1988-01-26

    A solid composition is described for generating nitrogen gas substantially free of noxious and toxic impurities for inflating an air cushion in a vehicle passenger restraint system and capable of substantially fully inflating such cushion in the elapsed time between the occurrence of a primary collision of the vehicle with another object and secondary collisions occurring as a result thereof; comprising a mixture of alkali metal azide and at least a stoichiometric amount of a metal oxide selected from the group consisting of iron, titanium and copper oxides and mixtures thereof. The metal oxide is capable of reacting exothermically with the alkaki metal azide and wherein the metal of the oxide is lower in the electromotive series than the alkali metal of the azide and is a metal other than (the) an alkali metal.

  4. A method of billing third generation computer users

    NASA Technical Reports Server (NTRS)

    Anderson, P. N.; Hyter, D. R.

    1973-01-01

    A method is presented for charging users for the processing of their applications on third generation digital computer systems is presented. For background purposes, problems and goals in billing on third generation systems are discussed. Detailed formulas are derived based on expected utilization and computer component cost. These formulas are then applied to a specific computer system (UNIVAC 1108). The method, although possessing some weaknesses, is presented as a definite improvement over use of second generation billing methods.

  5. Structured adaptive grid generation using algebraic methods

    NASA Technical Reports Server (NTRS)

    Yang, Jiann-Cherng; Soni, Bharat K.; Roger, R. P.; Chan, Stephen C.

    1993-01-01

    The accuracy of the numerical algorithm depends not only on the formal order of approximation but also on the distribution of grid points in the computational domain. Grid adaptation is a procedure which allows optimal grid redistribution as the solution progresses. It offers the prospect of accurate flow field simulations without the use of an excessively timely, computationally expensive, grid. Grid adaptive schemes are divided into two basic categories: differential and algebraic. The differential method is based on a variational approach where a function which contains a measure of grid smoothness, orthogonality and volume variation is minimized by using a variational principle. This approach provided a solid mathematical basis for the adaptive method, but the Euler-Lagrange equations must be solved in addition to the original governing equations. On the other hand, the algebraic method requires much less computational effort, but the grid may not be smooth. The algebraic techniques are based on devising an algorithm where the grid movement is governed by estimates of the local error in the numerical solution. This is achieved by requiring the points in the large error regions to attract other points and points in the low error region to repel other points. The development of a fast, efficient, and robust algebraic adaptive algorithm for structured flow simulation applications is presented. This development is accomplished in a three step process. The first step is to define an adaptive weighting mesh (distribution mesh) on the basis of the equidistribution law applied to the flow field solution. The second, and probably the most crucial step, is to redistribute grid points in the computational domain according to the aforementioned weighting mesh. The third and the last step is to reevaluate the flow property by an appropriate search/interpolate scheme at the new grid locations. The adaptive weighting mesh provides the information on the desired concentration

  6. Fossil fuel combined cycle power generation method

    DOEpatents

    Labinov, Solomon D [Knoxville, TN; Armstrong, Timothy R [Clinton, TN; Judkins, Roddie R [Knoxville, TN

    2008-10-21

    A method for converting fuel energy to electricity includes the steps of converting a higher molecular weight gas into at least one mixed gas stream of lower average molecular weight including at least a first lower molecular weight gas and a second gas, the first and second gases being different gases, wherein the first lower molecular weight gas comprises H.sub.2 and the second gas comprises CO. The mixed gas is supplied to at least one turbine to produce electricity. The mixed gas stream is divided after the turbine into a first gas stream mainly comprising H.sub.2 and a second gas stream mainly comprising CO. The first and second gas streams are then electrochemically oxidized in separate fuel cells to produce electricity. A nuclear reactor can be used to supply at least a portion of the heat the required for the chemical conversion process.

  7. Method and system for storing and generating hydrogen

    NASA Technical Reports Server (NTRS)

    Kindler, Andrew (Inventor); Narayanan, Sri R. (Inventor); Huang, Yuhong (Inventor)

    2011-01-01

    A method and system for storing and generating hydrogen. The method comprises generating hydrogen and heat from the reaction of a metal or metal compound with water. The heat generated from this reaction may then be converted to other forms of energy such as by passing the heat through a thermal electric device to recover electrical energy for storage in a battery. In an alternative and preferred embodiment, the heat is used to drive additional reactions for generating more hydrogen and is preferably used to drive an endothermic dehydrogenation reaction resulting in increased hydrogen generation and consumption of the heat.

  8. Exploratory Factor Analysis, Theory Generation, and Scientific Method

    ERIC Educational Resources Information Center

    Haig, Brian D.

    2005-01-01

    This article examines the methodological foundations of exploratory factor analysis (EFA) and suggests that it is properly construed as a method for generating explanatory theories. In the first half of the article it is argued that EFA should be understood as an abductive method of theory generation that exploits an important precept of…

  9. Method to implement the CCD timing generator based on FPGA

    NASA Astrophysics Data System (ADS)

    Li, Binhua; Song, Qian; He, Chun; Jin, Jianhui; He, Lin

    2010-07-01

    With the advance of the PFPA technology, the design methodology of digital systems is changing. In recent years we develop a method to implement the CCD timing generator based on FPGA and VHDL. This paper presents the principles and implementation skills of the method. Taking a developed camera as an example, we introduce the structure, input and output clocks/signals of a timing generator implemented in the camera. The generator is composed of a top module and a bottom module. The bottom one is made up of 4 sub-modules which correspond to 4 different operation modes. The modules are implemented by 5 VHDL programs. Frame charts of the architecture of these programs are shown in the paper. We also describe implementation steps of the timing generator in Quartus II, and the interconnections between the generator and a Nios soft core processor which is the controller of this generator. Some test results are presented in the end.

  10. An adaptive Cartesian grid generation method for Dirty geometry

    NASA Astrophysics Data System (ADS)

    Wang, Z. J.; Srinivasan, Kumar

    2002-07-01

    Traditional structured and unstructured grid generation methods need a water-tight boundary surface grid to start. Therefore, these methods are named boundary to interior (B2I) approaches. Although these methods have achieved great success in fluid flow simulations, the grid generation process can still be very time consuming if non-water-tight geometries are given. Significant user time can be taken to repair or clean a dirty geometry with cracks, overlaps or invalid manifolds before grid generation can take place. In this paper, we advocate a different approach in grid generation, namely the interior to boundary (I2B) approach. With an I2B approach, the computational grid is first generated inside the computational domain. Then this grid is intelligently connected to the boundary, and the boundary grid is a result of this connection. A significant advantage of the I2B approach is that dirty geometries can be handled without cleaning or repairing, dramatically reducing grid generation time. An I2B adaptive Cartesian grid generation method is developed in this paper to handle dirty geometries without geometry repair. Comparing with a B2I approach, the grid generation time with the I2B approach for a complex automotive engine can be reduced by three orders of magnitude. Copyright

  11. Unstructured viscous grid generation by advancing-front method

    NASA Technical Reports Server (NTRS)

    Pirzadeh, Shahyar

    1993-01-01

    A new method of generating unstructured triangular/tetrahedral grids with high-aspect-ratio cells is proposed. The method is based on new grid-marching strategy referred to as 'advancing-layers' for construction of highly stretched cells in the boundary layer and the conventional advancing-front technique for generation of regular, equilateral cells in the inviscid-flow region. Unlike the existing semi-structured viscous grid generation techniques, the new procedure relies on a totally unstructured advancing-front grid strategy resulting in a substantially enhanced grid flexibility and efficiency. The method is conceptually simple but powerful, capable of producing high quality viscous grids for complex configurations with ease. A number of two-dimensional, triangular grids are presented to demonstrate the methodology. The basic elements of the method, however, have been primarily designed with three-dimensional problems in mind, making it extendible for tetrahedral, viscous grid generation.

  12. Advancing-layers method for generation of unstructured viscous grids

    NASA Technical Reports Server (NTRS)

    Pirzadeh, Shahyar

    1993-01-01

    A novel approach for generating highly stretched grids which is based on a modified advancing-front technique and benefits from the generality, flexibility, and grid quality of the conventional advancing-front-based Euler grid generators is presented. The method is self-sufficient for the insertion of grid points in the boundary layer and beyond. Since it is based on a totally unstructured grid strategy, the method alleviates the difficulties stemming from the structural limitations of the prismatic techniques.

  13. Hyperbolic Methods for Surface and Field Grid Generation

    NASA Technical Reports Server (NTRS)

    Chan, William M.; VanDalsem, William R. (Technical Monitor)

    1996-01-01

    This chapter describes the use of hyperbolic partial differential equation methods for structured surface grid generation and field grid generation. While the surface grid generation equations are inherently three dimensional, the field grid generation equations can be formulated in two or three dimensions. The governing equations are derived from orthogonality relations and cell area/volume constraints; and are solved numerically by marching from an initial curve or surface. The marching step size and marching distance can be prescribedly the user. Exact specifications of the side and outer boundaries are not possible with a one sweep marching scheme but limited control is achievable. Excellent orthogonality and grid clustering characteristics are provided by hyperbolic methods with one to two orders of magnitude savings in time over typical elliptic methods. Since hyperbolic grid generation methods do not require the exact specifications of the side and outer boundaries of a grid, these methods are particularly well suited for the overlapping grid approach for solving problems on complex configurations. Grid generation software based on hyperbolic methods and their applications on several complex configurations will be described.

  14. The Rack-Gear Tool Generation Modelling. Non-Analytical Method Developed in CATIA, Using the Relative Generating Trajectories Method

    NASA Astrophysics Data System (ADS)

    Teodor, V. G.; Baroiu, N.; Susac, F.; Oancea, N.

    2016-11-01

    The modelling of a curl of surfaces associated with a pair of rolling centrodes, when it is known the profile of the rack-gear's teeth profile, by direct measuring, as a coordinate matrix, has as goal the determining of the generating quality for an imposed kinematics of the relative motion of tool regarding the blank. In this way, it is possible to determine the generating geometrical error, as a base of the total error. The generation modelling allows highlighting the potential errors of the generating tool, in order to correct its profile, previously to use the tool in machining process. A method developed in CATIA is proposed, based on a new method, namely the method of “relative generating trajectories”. They are presented the analytical foundation, as so as some application for knows models of rack-gear type tools used on Maag teething machines.

  15. A new method for generating a hollow Gaussian beam

    NASA Astrophysics Data System (ADS)

    Wei, Cun; Lu, Xingyuan; Wu, Gaofeng; Wang, Fei; Cai, Yangjian

    2014-04-01

    Hollow Gaussian beam (HGB) was introduced 10 years ago (Cai et al. in Opt Lett 28:1084, 2003). In this paper, we introduce a new method for generating a HGB through transforming a Laguerre-Gaussian beam with radial index 0 and azimuthal index l into a HGB with mode n = l/2. Furthermore, we report experimental generation of a HGB based on the proposed method, and we carry out experimental study of the focusing properties of the generated HGB. Our experimental results agree well with the theoretical predictions.

  16. Methods for prismatic/tetrahedral grid generation and adaptation

    NASA Astrophysics Data System (ADS)

    Kallinderis, Y.

    1995-10-01

    The present work involves generation of hybrid prismatic/tetrahedral grids for complex 3-D geometries including multi-body domains. The prisms cover the region close to each body's surface, while tetrahedra are created elsewhere. Two developments are presented for hybrid grid generation around complex 3-D geometries. The first is a new octree/advancing front type of method for generation of the tetrahedra of the hybrid mesh. The main feature of the present advancing front tetrahedra generator that is different from previous such methods is that it does not require the creation of a background mesh by the user for the determination of the grid-spacing and stretching parameters. These are determined via an automatically generated octree. The second development is a method for treating the narrow gaps in between different bodies in a multiply-connected domain. This method is applied to a two-element wing case. A High Speed Civil Transport (HSCT) type of aircraft geometry is considered. The generated hybrid grid required only 170 K tetrahedra instead of an estimated two million had a tetrahedral mesh been used in the prisms region as well. A solution adaptive scheme for viscous computations on hybrid grids is also presented. A hybrid grid adaptation scheme that employs both h-refinement and redistribution strategies is developed to provide optimum meshes for viscous flow computations. Grid refinement is a dual adaptation scheme that couples 3-D, isotropic division of tetrahedra and 2-D, directional division of prisms.

  17. Methods for prismatic/tetrahedral grid generation and adaptation

    NASA Technical Reports Server (NTRS)

    Kallinderis, Y.

    1995-01-01

    The present work involves generation of hybrid prismatic/tetrahedral grids for complex 3-D geometries including multi-body domains. The prisms cover the region close to each body's surface, while tetrahedra are created elsewhere. Two developments are presented for hybrid grid generation around complex 3-D geometries. The first is a new octree/advancing front type of method for generation of the tetrahedra of the hybrid mesh. The main feature of the present advancing front tetrahedra generator that is different from previous such methods is that it does not require the creation of a background mesh by the user for the determination of the grid-spacing and stretching parameters. These are determined via an automatically generated octree. The second development is a method for treating the narrow gaps in between different bodies in a multiply-connected domain. This method is applied to a two-element wing case. A High Speed Civil Transport (HSCT) type of aircraft geometry is considered. The generated hybrid grid required only 170 K tetrahedra instead of an estimated two million had a tetrahedral mesh been used in the prisms region as well. A solution adaptive scheme for viscous computations on hybrid grids is also presented. A hybrid grid adaptation scheme that employs both h-refinement and redistribution strategies is developed to provide optimum meshes for viscous flow computations. Grid refinement is a dual adaptation scheme that couples 3-D, isotropic division of tetrahedra and 2-D, directional division of prisms.

  18. Exploratory Factor Analysis, Theory Generation, and Scientific Method.

    PubMed

    Haig, Brian D

    2005-01-01

    This article examines the methodological foundations of exploratory factor analysis (EFA) and suggests that it is properly construed as a method for generating explanatory theories. In the first half of the article it is argued that EFA should be understood as an abductive method of theory generation that exploits an important precept of scientific inference known as the principle of the common cause. This characterization of the inferential nature of EFA coheres well with its interpretation as a latent variable method. The second half of the article outlines a broad theory of scientific method in which abductive reasoning figures prominently. It then discusses a number of methodological features of EFA in the light of that method. Specifically, it is argued that EFA helps researchers generate theories with genuine explanatory merit; that factor indeterminacy is a methodological challenge for both EFA and confirmatory factor analysis, but that the challenge can be satisfactorily met in each case; and, that EFA, as a useful method of theory generation, can be profitably employed in tandem with confirmatory factor analysis and other methods of theory evaluation.

  19. One-eighth look-up table method for effectively generating computer-generated hologram patterns

    NASA Astrophysics Data System (ADS)

    Cho, Sungjin; Ju, Byeong-Kwon; Kim, Nam-Young; Park, Min-Chul

    2014-05-01

    To generate ideal digital holograms, a computer-generated hologram (CGH) has been regarded as a solution. However, it has an unavoidable problem in that the computational burden for generating CGH is very large. Recently, many studies have been conducted to investigate different solutions in order to reduce the computational complexity of CGH by using particular methods such as look-up tables (LUTs) and parallel processing. Each method has a positive effectiveness about reducing computational time for generating CGH. However, it appears to be difficult to apply both methods simultaneously because of heavy memory consumption of the LUT technique. Therefore, we proposed a one-eighth LUT method where the memory usage of the LUT is reduced, making it possible to simultaneously apply both of the fast computing methods for the computation of CGH. With the one-eighth LUT method, only one-eighth of the zone plates were stored in the LUT. All of the zone plates were accessed by indexing method. Through this method, we significantly reduced memory usage of LUT. Also, we confirmed the feasibility of reducing the computational time of the CGH by using general-purpose graphic processing units while reducing the memory usage.

  20. System and method for key generation in security tokens

    DOEpatents

    Evans, Philip G.; Humble, Travis S.; Paul, Nathanael R.; Pooser, Raphael C.; Prowell, Stacy J.

    2015-10-27

    Functional randomness in security tokens (FRIST) may achieve improved security in two-factor authentication hardware tokens by improving on the algorithms used to securely generate random data. A system and method in one embodiment according to the present invention may allow for security of a token based on storage cost and computational security. This approach may enable communication where security is no longer based solely on onetime pads (OTPs) generated from a single cryptographic function (e.g., SHA-256).

  1. Method and apparatus for generating a natural crack

    DOEpatents

    Fulton, Fred J.; Honodel, Charles A.; Holman, William R.; Weingart, Richard C.

    1984-01-01

    A method and apparatus for generating a measurable natural crack includes forming a primary notch in the surface of a solid material. A non-sustained single pressure pulse is then generated in the vicinity of the primary notch, resulting in the formation of a shock wave which travels through the material. The shock wave creates a measurable natural crack within the material which extends from the primary notch. The natural crack formed possesses predictable geometry, location and orientation.

  2. Method and apparatus for generating a natural crack

    DOEpatents

    Fulton, F.J.; Honodel, C.A.; Holman, W.R.; Weingart, R.C.

    1982-05-06

    A method and apparatus for generating a measurable natural crack includes forming a primary notch in the surface of a solid material. A nonsustained single pressure pulse is then generated in the vicinity of the primary notch, reuslting in the formation of a shock wave which travels through the material. The shock wave creates a measurable natural crack within the material which extends from the primary notch. The natural crack formed possesses predictable geometry, location and orientation.

  3. Guided wave methods and apparatus for nonlinear frequency generation

    DOEpatents

    Durfee, III, Charles G.; Rundquist, Andrew; Kapteyn, Henry C.; Murnane, Margaret M.

    2000-01-01

    Methods and apparatus are disclosed for the nonlinear generation of sum and difference frequencies of electromagnetic radiation propagating in a nonlinear material. A waveguide having a waveguide cavity contains the nonlinear material. Phase matching of the nonlinear generation is obtained by adjusting a waveguide propagation constant, the refractive index of the nonlinear material, or the waveguide mode in which the radiation propagates. Phase matching can be achieved even in isotropic nonlinear materials. A short-wavelength radiation source uses phase-matched nonlinear generation in a waveguide to produce high harmonics of a pulsed laser.

  4. Fast calculation method for spherical computer-generated holograms.

    PubMed

    Tachiki, Mark L; Sando, Yusuke; Itoh, Masahide; Yatagai, Toyohiko

    2006-05-20

    The synthesis of spherical computer-generated holograms is investigated. To deal with the staggering calculation times required to synthesize the hologram, a fast calculation method for approximating the hologram distribution is proposed. In this method, the diffraction integral is approximated as a convolution integral, allowing computation using the fast-Fourier-transform algorithm. The principles of the fast calculation method, the error in the approximation, and results from simulations are presented.

  5. A Scenario Generation Method for Wind Power Ramp Events Forecasting

    SciTech Connect

    Cui, Ming-Jian; Ke, De-Ping; Sun, Yuan-Zhang; Gan, Di; Zhang, Jie; Hodge, Bri-Mathias

    2015-07-03

    Wind power ramp events (WPREs) have received increasing attention in recent years due to their significant impact on the reliability of power grid operations. In this paper, a novel WPRE forecasting method is proposed which is able to estimate the probability distributions of three important properties of the WPREs. To do so, a neural network (NN) is first proposed to model the wind power generation (WPG) as a stochastic process so that a number of scenarios of the future WPG can be generated (or predicted). Each possible scenario of the future WPG generated in this manner contains the ramping information, and the distributions of the designated WPRE properties can be stochastically derived based on the possible scenarios. Actual data from a wind power plant in the Bonneville Power Administration (BPA) was selected for testing the proposed ramp forecasting method. Results showed that the proposed method effectively forecasted the probability of ramp events.

  6. A two-dimensional adaptive mesh generation method

    NASA Astrophysics Data System (ADS)

    Altas, Irfan; Stephenson, John W.

    1991-05-01

    The present, two-dimensional adaptive mesh-generation method allows selective modification of a small portion of the mesh without affecting large areas of adjacent mesh-points, and is applicable with or without boundary-fitted coordinate-generation procedures. The cases of differential equation discretization by, on the one hand, classical difference formulas designed for uniform meshes, and on the other the present difference formulas, are illustrated through the application of the method to the Hiemenz flow for which the Navier-Stokes equation's exact solution is known, as well as to a two-dimensional viscous internal flow problem.

  7. Isentropic compressive wave generator and method of making same

    DOEpatents

    Barker, L.M.

    An isentropic compressive wave generator and method of making same are disclosed. The wave generator comprises a disk or flat pillow member having component materials of different shock impedances formed in a configuration resulting in a smooth shock impedance gradient over the thickness thereof for interpositioning between an impactor member and a target specimen for producing a shock wave of a smooth predictable rise time. The method of making the pillow member comprises the reduction of the component materials to a powder form and forming the pillow member by sedimentation and compressive techniques.

  8. Offspring Generation Method for interactive Genetic Algorithm considering Multimodal Preference

    NASA Astrophysics Data System (ADS)

    Ito, Fuyuko; Hiroyasu, Tomoyuki; Miki, Mitsunori; Yokouchi, Hisatake

    In interactive genetic algorithms (iGAs), computer simulations prepare design candidates that are then evaluated by the user. Therefore, iGA can predict a user's preferences. Conventional iGA problems involve a search for a single optimum solution, and iGA were developed to find this single optimum. On the other hand, our target problems have several peaks in a function and there are small differences among these peaks. For such problems, it is better to show all the peaks to the user. Product recommendation in shopping sites on the web is one example of such problems. Several types of preference trend should be prepared for users in shopping sites. Exploitation and exploration are important mechanisms in GA search. To perform effective exploitation, the offspring generation method (crossover) is very important. Here, we introduced a new offspring generation method for iGA in multimodal problems. In the proposed method, individuals are clustered into subgroups and offspring are generated in each group. The proposed method was applied to an experimental iGA system to examine its effectiveness. In the experimental iGA system, users can decide on preferable t-shirts to buy. The results of the subjective experiment confirmed that the proposed method enables offspring generation with consideration of multimodal preferences, and the proposed mechanism was also shown not to adversely affect the performance of preference prediction.

  9. Freely available conformer generation methods: how good are they?

    PubMed

    Ebejer, Jean-Paul; Morris, Garrett M; Deane, Charlotte M

    2012-05-25

    Conformer generation has important implications in cheminformatics, particularly in computational drug discovery where the quality of conformer generation software may affect the outcome of a virtual screening exercise. We examine the performance of four freely available small molecule conformer generation tools (Balloon, Confab, Frog2, and RDKit) alongside a commercial tool (MOE). The aim of this study is 3-fold: (i) to identify which tools most accurately reproduce experimentally determined structures; (ii) to examine the diversity of the generated conformational set; and (iii) to benchmark the computational time expended. These aspects were tested using a set of 708 drug-like molecules assembled from the OMEGA validation set and the Astex Diverse Set. These molecules have varying physicochemical properties and at least one known X-ray crystal structure. We found that RDKit and Confab are statistically better than other methods at generating low rmsd conformers to the known structure. RDKit is particularly suited for less flexible molecules while Confab, with its systematic approach, is able to generate conformers which are geometrically closer to the experimentally determined structure for molecules with a large number of rotatable bonds (≥10). In our tests RDKit also resulted as the second fastest method after Frog2. In order to enhance the performance of RDKit, we developed a postprocessing algorithm to build a diverse and representative set of conformers which also contains a close conformer to the known structure. Our analysis indicates that, with postprocessing, RDKit is a valid free alternative to commercial, proprietary software.

  10. Design method of coaxial reflex hollow beam generator

    NASA Astrophysics Data System (ADS)

    Wang, Jiake; Xu, Jia; Fu, Yuegang; He, Wenjun; Zhu, Qifan

    2016-10-01

    In view of the light energy loss in central obscuration of coaxial reflex optical system, the design method of a kind of hollow beam generator is introduced. First of all, according to the geometrical parameter and obscuration ratio of front-end coaxial reflex optical system, calculate the required physical dimension of hollow beam, and get the beam expanding rate of the hollow beam generator according to the parameters of the light source. Choose the better enlargement ratio of initial expanding system using the relational expression of beam expanding rate and beam expanding rate of initial system; the traditional design method of the reflex optical system is used to design the initial optical system, and then the position of rotation axis of the hollow beam generator can be obtained through the rotation axis translation formula. Intercept the initial system bus bar using the rotation axis after the translation, and rotate the bus bar around the rotation axis for 360°, so that two working faces of the hollow beam generator can be got. The hollow beam generator designed by this method can get the hollow beam that matches the front-end coaxial reflex optical system, improving the energy utilization ratio of beam and effectively reducing the back scattering of transmission system.

  11. Cost Evaluation Method of Wind Turbine Generation System

    NASA Astrophysics Data System (ADS)

    Ichita, Hajime; Takahashi, Rion; Tamura, Junji; Kimura, Mamoru; Ichinose, Masaya; Futami, Moto-O.; Ide, Kazumasa

    In recent years, many wind turbine generation systems (WTGSs) have been installed in many countries from a point of view of grobal environment due to CO2 emission. But wind turbine generator output and annual energy production are dependent on wind characteristic of each area and a kind of WTGS. Authors' previous paper presented the analyses about annual electrical energy production and capacity facotor of WTGS for each area with different wind data. This paper presents a method to calculate each cost of WTGS component such as drive train system, generator and other equipments, and also to evaluate generation cost obtained from WTGS cost and annual electrical energy production. Based on these results, the optimal kind of WTGS can be determined for each installation area from an economical point of view.

  12. Reducing waste generation and radiation exposure by analytical method modification

    SciTech Connect

    Ekechukwu, A.A.

    1996-10-01

    The primary goal of an analytical support laboratory has traditionally been to provide accurate data in a timely and cost effective fashion. Added to this goal is now the need to provide the same high quality data while generating as little waste as possible. At the Savannah River Technology Center (SRTC), we have modified and reengineered several methods to decrease generated waste and hence reduce radiation exposure. These method changes involved improving detection limits (which decreased the amount of sample required for analysis), decreasing reaction and analysis time, decreasing the size of experimental set-ups, recycling spent solvent and reagents, and replacing some methods. These changes had the additional benefits of reducing employee radiation exposure and exposure to hazardous chemicals. In all cases, the precision, accuracy, and detection limits were equal to or better than the replaced method. Most of the changes required little or no expenditure of funds. This paper describes these changes and discusses some of their applications.

  13. Method of generating ploynucleotides encoding enhanced folding variants

    DOEpatents

    Bradbury, Andrew M.; Kiss, Csaba; Waldo, Geoffrey S.

    2017-05-02

    The invention provides directed evolution methods for improving the folding, solubility and stability (including thermostability) characteristics of polypeptides. In one aspect, the invention provides a method for generating folding and stability-enhanced variants of proteins, including but not limited to fluorescent proteins, chromophoric proteins and enzymes. In another aspect, the invention provides methods for generating thermostable variants of a target protein or polypeptide via an internal destabilization baiting strategy. Internally destabilization a protein of interest is achieved by inserting a heterologous, folding-destabilizing sequence (folding interference domain) within DNA encoding the protein of interest, evolving the protein sequences adjacent to the heterologous insertion to overcome the destabilization (using any number of mutagenesis methods), thereby creating a library of variants. The variants in the library are expressed, and those with enhanced folding characteristics selected.

  14. Automatic image generation by genetic algorithms for testing halftoning methods

    NASA Astrophysics Data System (ADS)

    Mantere, Timo J.; Alander, Jarmo T.

    2000-10-01

    Automatic test image generation by genetic algorithms is introduced in this work. In general the proposed method has potential in functional software testing. This study was done by joining two different projects: the first one concentrates on software test data generation by genetic algorithms and the second one studied digital halftoning for an ink jet marking machine also by genetic algorithm optimization. The object software halftones images with different image filters. The goal was to reveal, if genetic algorithm is able to generate images that re difficult for the object software to halftone, in other words to find if some prominent characteristics of the original image disappear or ghost images appear due to the halftoning process. The preliminary results showed that genetic algorithm is able to find images that are considerable changed when halftoned, and thus reveal potential problems with the halftoning method, i.e. essentially tests for errors in the halftoning software.

  15. Photonic arbitrary waveform generator based on Taylor synthesis method.

    PubMed

    Liao, Shasha; Ding, Yunhong; Dong, Jianji; Yan, Siqi; Wang, Xu; Zhang, Xinliang

    2016-10-17

    Arbitrary waveform generation has been widely used in optical communication, radar system and many other applications. We propose and experimentally demonstrate a silicon-on-insulator (SOI) on chip optical arbitrary waveform generator, which is based on Taylor synthesis method. In our scheme, a Gaussian pulse is launched to some cascaded microrings to obtain first-, second- and third-order differentiations. By controlling amplitude and phase of the initial pulse and successive differentiations, we can realize an arbitrary waveform generator according to Taylor expansion. We obtain several typical waveforms such as square waveform, triangular waveform, flat-top waveform, sawtooth waveform, Gaussian waveform and so on. Unlike other schemes based on Fourier synthesis or frequency-to-time mapping, our scheme is based on Taylor synthesis method. Our scheme does not require any spectral disperser or large dispersion, which are difficult to fabricate on chip. Our scheme is compact and capable for integration with electronics.

  16. Methods for generating phosphorylation site-specific immunological reagents

    DOEpatents

    Anderson, Carl W.; Appella, Ettore; Sakaguchi, Kazuyasu

    2001-01-01

    The present invention provides methods for generating phosphorylation site-specific immunological reagents. More specifically, a phosphopeptide mimetic is incorporated into a polypeptide in place of a phosphorylated amino acid. The polypeptide is used as antigen by standard methods to generate either monoclonal or polyclonal antibodies which cross-react with the naturally phosphorylated polypeptide. The phosphopeptide mimetic preferably contains a non-hydrolyzable linkage from the appropriate carbon atom of the amino acid residue to a phosphate group. A preferred linkage is a CF.sub.2 group. Such a linkage is used to generate the phosphoserine mimetic F.sub.2 Pab, which is incorporated into a polypeptide sequence derived from p53 to produce antibodies which recognize a specific phosphorylation state of p53. A CF.sub.2 group linkage is also used to produce the phosphothreonine mimetic F.sub.2 Pmb, and to produce the phosphotyrosine mimetic, F.sub.2 Pmp.

  17. Methane generation in tropical landfills: simplified methods and field results.

    PubMed

    Machado, Sandro L; Carvalho, Miriam F; Gourc, Jean-Pierre; Vilar, Orencio M; do Nascimento, Julio C F

    2009-01-01

    This paper deals with the use of simplified methods to predict methane generation in tropical landfills. Methane recovery data obtained on site as part of a research program being carried out at the Metropolitan Landfill, Salvador, Brazil, is analyzed and used to obtain field methane generation over time. Laboratory data from MSW samples of different ages are presented and discussed; and simplified procedures to estimate the methane generation potential, Lo, and the constant related to the biodegradation rate, k are applied. The first order decay method is used to fit field and laboratory results. It is demonstrated that despite the assumptions and the simplicity of the adopted laboratory procedures, the values Lo and k obtained are very close to those measured in the field, thus making this kind of analysis very attractive for first approach purposes.

  18. Proposal generation method for object detection in infrared image

    NASA Astrophysics Data System (ADS)

    Sun, Ning; Jiang, Feng; Yan, Hengchao; Liu, Jixin; Han, Guang

    2017-03-01

    In an infrared image, there is a significant difference between the region of the interested object and its surrounding background. Based on this observation, we propose an effective and efficient proposal generation method which uses a Multi-layer and Multi-size Superpixel Segmentation (MMSS) scheme for object detection in the infrared image. The SLIC (Simple Linear Iterative Clustering) algorithm is applied to partition an infrared image into multi-layer and multi-size superpixels. In each layer, only the individual superpixel and the merging of two adjacent superpixels are used to create the candidate pool of object proposals. A superpixel-based center-surround feature is then defined to measure the discrepancy between the region of the proposal and its surrounding background. To evaluate the performance of the MMSS-based method of proposal generation method, we create an Infrared Interested Object Image Dataset (IIOID), in which the infrared images are collected from several benchmarks and the ground-truth of the interested object segmentation is manually labeled. Compared with several state-of-the-art methods of proposal generation on IIOID, the MMSS-based method has overwhelming superiority in detection recall under different Intersection over Union (IoU) thresholds and is convenient for computation. Furthermore, we implement the MMSS-based method as a processing step for pedestrian detection. Experimental results on benchmark infrared pedestrian image dataset show that the detectors with our method of proposal generation method can greatly reduce the number of candidate windows to be detected and also suppress false positives.

  19. Method of generating features optimal to a dataset and classifier

    SciTech Connect

    Bruillard, Paul J.; Gosink, Luke J.; Jarman, Kenneth D.

    2016-10-18

    A method of generating features optimal to a particular dataset and classifier is disclosed. A dataset of messages is inputted and a classifier is selected. An algebra of features is encoded. Computable features that are capable of describing the dataset from the algebra of features are selected. Irredundant features that are optimal for the classifier and the dataset are selected.

  20. First Generation College Student Leadership Potential: A Mixed Methods Analysis

    ERIC Educational Resources Information Center

    Hojan-Clark, Jane M.

    2010-01-01

    This mixed methods research compared the leadership potential of traditionally aged first generation college students to that of college students whose parents are college educated. A college education provides advantages to those who can obtain it (Baum & Payea, 2004; Black Issues in Higher Education, 2005; Education and the Value of…

  1. Decluttering Methods for Computer-Generated Graphic Displays

    NASA Technical Reports Server (NTRS)

    Schultz, E. Eugene, Jr.

    1986-01-01

    Symbol simplification and contrasting enhance viewer's ability to detect particular symbol. Report describes experiments designed to indicate how various decluttering methods affect viewer's abilities to distinguish essential from nonessential features on computer-generated graphic displays. Results indicate partial removal of nonessential graphic features through symbol simplification effective in decluttering as total removal of nonessential graphic features.

  2. Generator Coordinate Method Analysis of Xe and Ba Isotopes

    NASA Astrophysics Data System (ADS)

    Higashiyama, Koji; Yoshinaga, Naotaka; Teruya, Eri

    Nuclear structure of Xe and Ba isotopes is studied in terms of the quantum-number projected generator coordinate method (GCM). The GCM reproduces well the energy levels of high-spin states as well as low-lying states. The structure of the low-lying states is analyzed through the GCM wave functions.

  3. CODING METHODS FOR USE WITH LOW POWER LASER GENERATED ULTRASOUND

    SciTech Connect

    Cleary, A.; Veres, I.; Thursby, G.; McKee, C.; Pierce, S. G.; Culshaw, B.

    2010-02-22

    We describe how the application of maximum-length sequence (m-sequence) coding can be used to improve the measured signal-to-noise ratio of ultrasonic waves generated by a low power laser diode. Lamb waves were generated in thin metallic plates using a pulsed excitation. To improve the signal-to-noise ratio of the detected signal, various signal processing methods have been evaluated, with m-sequences described here. We also show how the spectral content of the ultrasonic wave can be controlled by using a modified m-sequence approach.

  4. A Transfer Voltage Simulation Method for Generator Step Up Transformers

    NASA Astrophysics Data System (ADS)

    Funabashi, Toshihisa; Sugimoto, Toshirou; Ueda, Toshiaki; Ametani, Akihiro

    It has been found from measurements for 13 sets of GSU transformers that a transfer voltage of a generator step-up (GSU) transformer involves one dominant oscillation frequency. The frequency can be estimated from the inductance and capacitance values of the GSU transformer low-voltage-side. This observation has led to a new method for simulating a GSU transformer transfer voltage. The method is based on the EMTP TRANSFORMER model, but stray capacitances are added. The leakage inductance and the magnetizing resistance are modified using approximate curves for their frequency characteristics determined from the measured results. The new method is validated in comparison with the measured results.

  5. System, method and apparatus for generating phrases from a database

    NASA Technical Reports Server (NTRS)

    McGreevy, Michael W. (Inventor)

    2004-01-01

    A phrase generation is a method of generating sequences of terms, such as phrases, that may occur within a database of subsets containing sequences of terms, such as text. A database is provided and a relational model of the database is created. A query is then input. The query includes a term or a sequence of terms or multiple individual terms or multiple sequences of terms or combinations thereof. Next, several sequences of terms that are contextually related to the query are assembled from contextual relations in the model of the database. The sequences of terms are then sorted and output. Phrase generation can also be an iterative process used to produce sequences of terms from a relational model of a database.

  6. Seismic wave generation systems and methods for cased wells

    DOEpatents

    Minto, James [Houston, TX; Sorrells, Martin H [Huffman, TX; Owen, Thomas E [Helotes, TX; Schroeder, Edgar C [San Antonio, TX

    2011-03-29

    A vibration source (10) includes an armature bar (12) having a major length dimension, and a driver (20A) positioned about the armature bar. The driver (20A) is movably coupled to the armature bar (12), and includes an electromagnet (40). During operation the electromagnet (40) is activated such that the driver (20A) moves with respect to the armature bar (12) and a vibratory signal is generated in the armature bar. A described method for generating a vibratory signal in an object includes positioning the vibration source (10) in an opening of the object, coupling the armature bar (12) to a surface of the object within the opening, and activating the electromagnet (40) of the driver (20A) such that the driver moves with respect to the armature bar (12) and a vibratory signal is generated in the armature bar and the object.

  7. Fast calculation method for computer-generated cylindrical holograms.

    PubMed

    Yamaguchi, Takeshi; Fujii, Tomohiko; Yoshikawa, Hiroshi

    2008-07-01

    Since a general flat hologram has a limited viewable area, we usually cannot see the other side of a reconstructed object. There are some holograms that can solve this problem. A cylindrical hologram is well known to be viewable in 360 deg. Most cylindrical holograms are optical holograms, but there are few reports of computer-generated cylindrical holograms. The lack of computer-generated cylindrical holograms is because the spatial resolution of output devices is not great enough; therefore, we have to make a large hologram or use a small object to fulfill the sampling theorem. In addition, in calculating the large fringe, the calculation amount increases in proportion to the hologram size. Therefore, we propose what we believe to be a new calculation method for fast calculation. Then, we print these fringes with our prototype fringe printer. As a result, we obtain a good reconstructed image from a computer-generated cylindrical hologram.

  8. Graphical method for profiling hob mill that generate cycloid worms

    NASA Astrophysics Data System (ADS)

    Teodor, V.; Berbinschi, S.; Baroiu, N.; Oancea, N.

    2015-11-01

    The hob mill for generating ordered curls of cycloid surface with non involute profiles may be profiled based on the fundamental theorems of surface enveloping - Olivier - as surface reciprocally enveloping with point like contact. In this paper, is proposed a methodology based on a complementary theorem of the surface enveloping in a graphical expression developed in a graphical design environment - CATIA. The graphical method presented in this paper is developed in two stages: determining of the rack gear model based on the solid model of the surface to be generated, using an original algorithm, following this, based on 3D modelling is determined the solid model of the primary peripheral surface of the hob mill. An application for a cycloid worm is presented - a central screw of helical pumps. In order to prove the quality of method, the analytical and graphical solutions are comparatively presented.

  9. [Method on ozone generation with strong ionization discharge].

    PubMed

    Zhang, Z; Han, H; Chu, Q; Bai, X

    2001-03-01

    This paper presents the formed methods of strong ionization discharge of dielectric barrier and plasma chemical reaction process of ozone generation. Ozone combination and decomposition are controlled by electric field intensity and electron energy. Therefore, new technologies with thinner dielectric layers (230 microns) of model alpha Al2O3 and narrow discharge gap (110 microns) are introduced, and strong ionization discharge is gained which reduced field (E) and electron average energy are more than 400Td and 10 eV respectively. Ozone concentration reaches to 200 g/m3 and ozone producing efficiency is 100 g/(kW.h). Ozone generator of big yield and miniaturization with module assembled method is realized.

  10. Advanced numerical methods in mesh generation and mesh adaptation

    SciTech Connect

    Lipnikov, Konstantine; Danilov, A; Vassilevski, Y; Agonzal, A

    2010-01-01

    Numerical solution of partial differential equations requires appropriate meshes, efficient solvers and robust and reliable error estimates. Generation of high-quality meshes for complex engineering models is a non-trivial task. This task is made more difficult when the mesh has to be adapted to a problem solution. This article is focused on a synergistic approach to the mesh generation and mesh adaptation, where best properties of various mesh generation methods are combined to build efficiently simplicial meshes. First, the advancing front technique (AFT) is combined with the incremental Delaunay triangulation (DT) to build an initial mesh. Second, the metric-based mesh adaptation (MBA) method is employed to improve quality of the generated mesh and/or to adapt it to a problem solution. We demonstrate with numerical experiments that combination of all three methods is required for robust meshing of complex engineering models. The key to successful mesh generation is the high-quality of the triangles in the initial front. We use a black-box technique to improve surface meshes exported from an unattainable CAD system. The initial surface mesh is refined into a shape-regular triangulation which approximates the boundary with the same accuracy as the CAD mesh. The DT method adds robustness to the AFT. The resulting mesh is topologically correct but may contain a few slivers. The MBA uses seven local operations to modify the mesh topology. It improves significantly the mesh quality. The MBA method is also used to adapt the mesh to a problem solution to minimize computational resources required for solving the problem. The MBA has a solid theoretical background. In the first two experiments, we consider the convection-diffusion and elasticity problems. We demonstrate the optimal reduction rate of the discretization error on a sequence of adaptive strongly anisotropic meshes. The key element of the MBA method is construction of a tensor metric from hierarchical edge

  11. Method for repairing a steam turbine or generator rotor

    SciTech Connect

    Clark, R.E.; Amos, D.R.

    1987-01-06

    A method is described for repairing low alloy steel steam turbine or generator rotors, the method comprising: a. machining mating attachments on a replacement end and a remaining portion of the original rotor; b. mating the replacement end and the original rotor; c. welding the replacement end to the original rotor by narrow-gap gas metal arc or submerged arc welding up to a depth of 1/2-2 inches from the rotor surface; d. gas tungsten arc welding the remaining 1/2-2 inches; e. boring out the mating attachment and at least the inside 1/4 inch of the welding; and f. inspecting the bore.

  12. Ortho Image and DTM Generation with Intelligent Methods

    NASA Astrophysics Data System (ADS)

    Bagheri, H.; Sadeghian, S.

    2013-10-01

    Nowadays the artificial intelligent algorithms has considered in GIS and remote sensing. Genetic algorithm and artificial neural network are two intelligent methods that are used for optimizing of image processing programs such as edge extraction and etc. these algorithms are very useful for solving of complex program. In this paper, the ability and application of genetic algorithm and artificial neural network in geospatial production process like geometric modelling of satellite images for ortho photo generation and height interpolation in raster Digital Terrain Model production process is discussed. In first, the geometric potential of Ikonos-2 and Worldview-2 with rational functions, 2D & 3D polynomials were tested. Also comprehensive experiments have been carried out to evaluate the viability of the genetic algorithm for optimization of rational function, 2D & 3D polynomials. Considering the quality of Ground Control Points, the accuracy (RMSE) with genetic algorithm and 3D polynomials method for Ikonos-2 Geo image was 0.508 pixel sizes and the accuracy (RMSE) with GA algorithm and rational function method for Worldview-2 image was 0.930 pixel sizes. For more another optimization artificial intelligent methods, neural networks were used. With the use of perceptron network in Worldview-2 image, a result of 0.84 pixel sizes with 4 neurons in middle layer was gained. The final conclusion was that with artificial intelligent algorithms it is possible to optimize the existing models and have better results than usual ones. Finally the artificial intelligence methods, like genetic algorithms as well as neural networks, were examined on sample data for optimizing interpolation and for generating Digital Terrain Models. The results then were compared with existing conventional methods and it appeared that these methods have a high capacity in heights interpolation and that using these networks for interpolating and optimizing the weighting methods based on inverse

  13. Generational differences of baccalaureate nursing students' preferred teaching methods and faculty use of teaching methods

    NASA Astrophysics Data System (ADS)

    Delahoyde, Theresa

    Nursing education is experiencing a generational phenomenon with student enrollment spanning three generations. Classrooms of the 21st century include the occasional Baby Boomer and a large number of Generation X and Generation Y students. Each of these generations has its own unique set of characteristics that have been shaped by values, trends, behaviors, and events in society. These generational characteristics create vast opportunities to learn, as well as challenges. One such challenge is the use of teaching methods that are congruent with nursing student preferences. Although there is a wide range of studies conducted on student learning styles within the nursing education field, there is little research on the preferred teaching methods of nursing students. The purpose of this quantitative, descriptive study was to compare the preferred teaching methods of multi-generational baccalaureate nursing students with faculty use of teaching methods. The research study included 367 participants; 38 nursing faculty and 329 nursing students from five different colleges within the Midwest region. The results of the two-tailed t-test found four statistically significant findings between Generation X and Y students and their preferred teaching methods including; lecture, listening to the professor lecture versus working in groups; actively participating in group discussion; and the importance of participating in group assignments. The results of the Analysis of Variance (ANOVA) found seventeen statistically significant findings between levels of students (freshmen/sophomores, juniors, & seniors) and their preferred teaching methods. Lecture was found to be the most frequently used teaching method by faculty as well as the most preferred teaching method by students. Overall, the support for a variety of teaching methods was also found in the analysis of data.

  14. System and method for generating motion corrected tomographic images

    DOEpatents

    Gleason, Shaun S [Knoxville, TN; Goddard, Jr., James S.

    2012-05-01

    A method and related system for generating motion corrected tomographic images includes the steps of illuminating a region of interest (ROI) to be imaged being part of an unrestrained live subject and having at least three spaced apart optical markers thereon. Simultaneous images are acquired from a first and a second camera of the markers from different angles. Motion data comprising 3D position and orientation of the markers relative to an initial reference position is then calculated. Motion corrected tomographic data obtained from the ROI using the motion data is then obtained, where motion corrected tomographic images obtained therefrom.

  15. A method for generating a synthetic spectrum within Zemax

    NASA Astrophysics Data System (ADS)

    Gibson, Steven R.; Wishnow, Edward H.

    2016-08-01

    A method using non-sequential Zemax to produce a pixelated synthetic spectrum is described. This simulation was developed for the Keck Planet Finder (KPF) instrument, and will prove useful for engineering performance analyses (stability, stray light, order cross-talk, distortion, etc.). It has also provided a set of synthetic spectra to be used during the development of the data pipeline. Various aspects concerning the construction of the spectrum are described, including: converting a model from sequential to non-sequential Zemax, the creation of Zemax coating files for echelle blaze functions, and the generation of spectrum source files (solar, thorium-argon, incandescent, Fabry-Perot etalon and laser frequency comb).

  16. Unconstrained paving and plastering method for generating finite element meshes

    DOEpatents

    Staten, Matthew L.; Owen, Steven J.; Blacker, Teddy D.; Kerr, Robert

    2010-03-02

    Computer software for and a method of generating a conformal all quadrilateral or hexahedral mesh comprising selecting an object with unmeshed boundaries and performing the following while unmeshed voids are larger than twice a desired element size and unrecognizable as either a midpoint subdividable or pave-and-sweepable polyhedra: selecting a front to advance; based on sizes of fronts and angles with adjacent fronts, determining which adjacent fronts should be advanced with the selected front; advancing the fronts; detecting proximities with other nearby fronts; resolving any found proximities; forming quadrilaterals or unconstrained columns of hexahedra where two layers cross; and establishing hexahedral elements where three layers cross.

  17. Electrical motor/generator drive apparatus and method

    SciTech Connect

    Su, Gui Jia

    2013-02-12

    The present disclosure includes electrical motor/generator drive systems and methods that significantly reduce inverter direct-current (DC) bus ripple currents and thus the volume and cost of a capacitor. The drive methodology is based on a segmented drive system that does not add switches or passive components but involves reconfiguring inverter switches and motor stator winding connections in a way that allows the formation of multiple, independent drive units and the use of simple alternated switching and optimized Pulse Width Modulation (PWM) schemes to eliminate or significantly reduce the capacitor ripple current.

  18. Method and apparatus for automated, modular, biomass power generation

    DOEpatents

    Diebold, James P [Lakewood, CO; Lilley, Arthur [Finleyville, PA; Browne, Kingsbury III [Golden, CO; Walt, Robb Ray [Aurora, CO; Duncan, Dustin [Littleton, CO; Walker, Michael [Longmont, CO; Steele, John [Aurora, CO; Fields, Michael [Arvada, CO; Smith, Trevor [Lakewood, CO

    2011-03-22

    Method and apparatus for generating a low tar, renewable fuel gas from biomass and using it in other energy conversion devices, many of which were designed for use with gaseous and liquid fossil fuels. An automated, downdraft gasifier incorporates extensive air injection into the char bed to maintain the conditions that promote the destruction of residual tars. The resulting fuel gas and entrained char and ash are cooled in a special heat exchanger, and then continuously cleaned in a filter prior to usage in standalone as well as networked power systems.

  19. Method and apparatus for automated, modular, biomass power generation

    DOEpatents

    Diebold, James P; Lilley, Arthur; Browne, III, Kingsbury; Walt, Robb Ray; Duncan, Dustin; Walker, Michael; Steele, John; Fields, Michael; Smith, Trevor

    2013-11-05

    Method and apparatus for generating a low tar, renewable fuel gas from biomass and using it in other energy conversion devices, many of which were designed for use with gaseous and liquid fossil fuels. An automated, downdraft gasifier incorporates extensive air injection into the char bed to maintain the conditions that promote the destruction of residual tars. The resulting fuel gas and entrained char and ash are cooled in a special heat exchanger, and then continuously cleaned in a filter prior to usage in standalone as well as networked power systems.

  20. A probability generating function method for stochastic reaction networks

    NASA Astrophysics Data System (ADS)

    Kim, Pilwon; Lee, Chang Hyeong

    2012-06-01

    In this paper we present a probability generating function (PGF) approach for analyzing stochastic reaction networks. The master equation of the network can be converted to a partial differential equation for PGF. Using power series expansion of PGF and Padé approximation, we develop numerical schemes for finding probability distributions as well as first and second moments. We show numerical accuracy of the method by simulating chemical reaction examples such as a binding-unbinding reaction, an enzyme-substrate model, Goldbeter-Koshland ultrasensitive switch model, and G2/M transition model.

  1. A probability generating function method for stochastic reaction networks.

    PubMed

    Kim, Pilwon; Lee, Chang Hyeong

    2012-06-21

    In this paper we present a probability generating function (PGF) approach for analyzing stochastic reaction networks. The master equation of the network can be converted to a partial differential equation for PGF. Using power series expansion of PGF and Padé approximation, we develop numerical schemes for finding probability distributions as well as first and second moments. We show numerical accuracy of the method by simulating chemical reaction examples such as a binding-unbinding reaction, an enzyme-substrate model, Goldbeter-Koshland ultrasensitive switch model, and G(2)/M transition model.

  2. Interactive computer methods for generating mineral-resource maps

    USGS Publications Warehouse

    Calkins, James Alfred; Crosby, A.S.; Huffman, T.E.; Clark, A.L.; Mason, G.T.; Bascle, R.J.

    1980-01-01

    Inasmuch as maps are a basic tool of geologists, the U.S. Geological Survey's CRIB (Computerized Resources Information Bank) was constructed so that the data it contains can be used to generate mineral-resource maps. However, by the standard methods used-batch processing and off-line plotting-the production of a finished map commonly takes 2-3 weeks. To produce computer-generated maps more rapidly, cheaply, and easily, and also to provide an effective demonstration tool, we have devised two related methods for plotting maps as alternatives to conventional batch methods. These methods are: 1. Quick-Plot, an interactive program whose output appears on a CRT (cathode-ray-tube) device, and 2. The Interactive CAM (Cartographic Automatic Mapping system), which combines batch and interactive runs. The output of the Interactive CAM system is final compilation (not camera-ready) paper copy. Both methods are designed to use data from the CRIB file in conjunction with a map-plotting program. Quick-Plot retrieves a user-selected subset of data from the CRIB file, immediately produces an image of the desired area on a CRT device, and plots data points according to a limited set of user-selected symbols. This method is useful for immediate evaluation of the map and for demonstrating how trial maps can be made quickly. The Interactive CAM system links the output of an interactive CRIB retrieval to a modified version of the CAM program, which runs in the batch mode and stores plotting instructions on a disk, rather than on a tape. The disk can be accessed by a CRT, and, thus, the user can view and evaluate the map output on a CRT immediately after a batch run, without waiting 1-3 days for an off-line plot. The user can, therefore, do most of the layout and design work in a relatively short time by use of the CRT, before generating a plot tape and having the map plotted on an off-line plotter.

  3. Simple method of generating and distributing frequency-entangled qudits

    NASA Astrophysics Data System (ADS)

    Jin, Rui-Bo; Shimizu, Ryosuke; Fujiwara, Mikio; Takeoka, Masahiro; Wakabayashi, Ryota; Yamashita, Taro; Miki, Shigehito; Terai, Hirotaka; Gerrits, Thomas; Sasaki, Masahide

    2016-11-01

    High-dimensional, frequency-entangled photonic quantum bits (qudits for d-dimension) are promising resources for quantum information processing in an optical fiber network and can also be used to improve channel capacity and security for quantum communication. However, up to now, it is still challenging to prepare high-dimensional frequency-entangled qudits in experiments, due to technical limitations. Here we propose and experimentally implement a novel method for a simple generation of frequency-entangled qudts with d\\gt 10 without the use of any spectral filters or cavities. The generated state is distributed over 15 km in total length. This scheme combines the technique of spectral engineering of biphotons generated by spontaneous parametric down-conversion and the technique of spectrally resolved Hong-Ou-Mandel interference. Our frequency-entangled qudits will enable quantum cryptographic experiments with enhanced performances. This distribution of distinct entangled frequency modes may also be useful for improved metrology, quantum remote synchronization, as well as for fundamental test of stronger violation of local realism.

  4. Method of generating multiple sets of experimental phantom data.

    PubMed

    Sitek, Arkadiusz; Reutter, Bryan W; Huesman, Ronald H; Gullberg, Grant T

    2006-07-01

    Currently, 2 types of phantoms (physical and computer generated) are used for testing and comparing tomographic reconstruction methods. Data from physical phantoms include all physical effects associated with the detection of radiation. However, with physical phantoms it is difficult to control the number of detected counts, simulate the dynamics of uptake and washout, or create multiple noise realizations of an acquisition. Computer-generated phantoms can overcome some of the disadvantages of physical phantoms, but simulation of all factors affecting the detection of radiation is extremely complex and in some cases impossible. To overcome the problems with both types of phantoms, we developed a physical and computer-generated hybrid phantom that allows the creation of multiple noise realizations of tomographic datasets of the dynamic uptake governed by kinetic models. The method is phantom and camera specific. We applied it to an anthropomorphic torso phantom with a cardiac insert, using a SPECT system with attenuation correction. First, real data were acquired. For each compartment (heart, blood pool, liver, and background) of the physical phantom, large numbers of short tomographic projections were acquired separately for each angle. Sinograms were built from a database of projections by summing the projections of each compartment of the phantom. The amount of activity in each phantom compartment was regulated by the number of added projections. Sinograms corresponding to various projection times, configurations and numbers of detector heads, numbers of noise realizations, numbers of phantom compartments, and compartment-specific time-activity curves in MBq/cm3 were assembled from the database. The acquisition produced a database of 120 projection angles ranging over 360 degrees . For each angle, 300 projections of 0.5 s each were stored in 128 x 128 matrices for easy access. The acquired database was successful in the generation of static and dynamic sinograms

  5. Next Generation Nuclear Plant Methods Technical Program Plan

    SciTech Connect

    Schultz, Richard R.; Ougouag, Abderrafi M.; Nigg, David W.; Gougar, Hans D.; Johnson, Richard W; Terry, William K.; Oh, Chang H.; McEligot, Donald W.; Johnsen, Gary W.; McCreery, Glenn E.; Yoon, Woo Y.; Sterbentz, James W.; Herring, J. Steve; Taiwo, Temitope A.; Wei, Thomas Y. C.; Pointer, William D.; Yang, Won S.; Farmer, Michael T.; Khalil, Hussein S.; Feltus, Madeline A.

    2010-12-01

    One of the great challenges of designing and licensing the Very High Temperature Reactor (VHTR) is to confirm that the intended VHTR analysis tools can be used confidently to make decisions and to assure all that the reactor systems are safe and meet the performance objectives of the Generation IV Program. The research and development (R&D) projects defined in the Next Generation Nuclear Plant (NGNP) Design Methods Development and Validation Program will ensure that the tools used to perform the required calculations and analyses can be trusted. The Methods R&D tasks are designed to ensure that the calculational envelope of the tools used to analyze the VHTR reactor systems encompasses, or is larger than, the operational and transient envelope of the VHTR itself. The Methods R&D focuses on the development of tools to assess the neutronic and thermal fluid behavior of the plant. The fuel behavior and fission product transport models are discussed in the Advanced Gas Reactor (AGR) program plan. Various stress analysis and mechanical design tools will also need to be developed and validated and will ultimately also be included in the Methods R&D Program Plan. The calculational envelope of the neutronics and thermal-fluids software tools intended to be used on the NGNP is defined by the scenarios and phenomena that these tools can calculate with confidence. The software tools can only be used confidently when the results they produce have been shown to be in reasonable agreement with first-principle results, thought-problems, and data that describe the “highly ranked” phenomena inherent in all operational conditions and important accident scenarios for the VHTR.

  6. Next Generation Nuclear Plant Methods Technical Program Plan -- PLN-2498

    SciTech Connect

    Richard R. Schultz; Abderrafi M. Ougouag; David W. Nigg; Hans D. Gougar; Richard W. Johnson; William K. Terry; Chang H. Oh; Donald W. McEligot; Gary W. Johnsen; Glenn E. McCreery; Woo Y. Yoon; James W. Sterbentz; J. Steve Herring; Temitope A. Taiwo; Thomas Y. C. Wei; William D. Pointer; Won S. Yang; Michael T. Farmer; Hussein S. Khalil; Madeline A. Feltus

    2010-09-01

    One of the great challenges of designing and licensing the Very High Temperature Reactor (VHTR) is to confirm that the intended VHTR analysis tools can be used confidently to make decisions and to assure all that the reactor systems are safe and meet the performance objectives of the Generation IV Program. The research and development (R&D) projects defined in the Next Generation Nuclear Plant (NGNP) Design Methods Development and Validation Program will ensure that the tools used to perform the required calculations and analyses can be trusted. The Methods R&D tasks are designed to ensure that the calculational envelope of the tools used to analyze the VHTR reactor systems encompasses, or is larger than, the operational and transient envelope of the VHTR itself. The Methods R&D focuses on the development of tools to assess the neutronic and thermal fluid behavior of the plant. The fuel behavior and fission product transport models are discussed in the Advanced Gas Reactor (AGR) program plan. Various stress analysis and mechanical design tools will also need to be developed and validated and will ultimately also be included in the Methods R&D Program Plan. The calculational envelope of the neutronics and thermal-fluids software tools intended to be used on the NGNP is defined by the scenarios and phenomena that these tools can calculate with confidence. The software tools can only be used confidently when the results they produce have been shown to be in reasonable agreement with first-principle results, thought-problems, and data that describe the “highly ranked” phenomena inherent in all operational conditions and important accident scenarios for the VHTR.

  7. Next Generation Nuclear Plant Methods Technical Program Plan

    SciTech Connect

    Richard R. Schultz; Abderrafi M. Ougouag; David W. Nigg; Hans D. Gougar; Richard W. Johnson; William K. Terry; Chang H. Oh; Donald W. McEligot; Gary W. Johnsen; Glenn E. McCreery; Woo Y. Yoon; James W. Sterbentz; J. Steve Herring; Temitope A. Taiwo; Thomas Y. C. Wei; William D. Pointer; Won S. Yang; Michael T. Farmer; Hussein S. Khalil; Madeline A. Feltus

    2010-12-01

    One of the great challenges of designing and licensing the Very High Temperature Reactor (VHTR) is to confirm that the intended VHTR analysis tools can be used confidently to make decisions and to assure all that the reactor systems are safe and meet the performance objectives of the Generation IV Program. The research and development (R&D) projects defined in the Next Generation Nuclear Plant (NGNP) Design Methods Development and Validation Program will ensure that the tools used to perform the required calculations and analyses can be trusted. The Methods R&D tasks are designed to ensure that the calculational envelope of the tools used to analyze the VHTR reactor systems encompasses, or is larger than, the operational and transient envelope of the VHTR itself. The Methods R&D focuses on the development of tools to assess the neutronic and thermal fluid behavior of the plant. The fuel behavior and fission product transport models are discussed in the Advanced Gas Reactor (AGR) program plan. Various stress analysis and mechanical design tools will also need to be developed and validated and will ultimately also be included in the Methods R&D Program Plan. The calculational envelope of the neutronics and thermal-fluids software tools intended to be used on the NGNP is defined by the scenarios and phenomena that these tools can calculate with confidence. The software tools can only be used confidently when the results they produce have been shown to be in reasonable agreement with first-principle results, thought-problems, and data that describe the “highly ranked” phenomena inherent in all operational conditions and important accident scenarios for the VHTR.

  8. Method for predicting impulsive noise generated by wind turbine rotors

    NASA Technical Reports Server (NTRS)

    Viterna, L. A.

    1982-01-01

    Large wind turbines can generate both broad band and impulsive noises. These noises can be controlled by proper choice of rotor design parameters such as rotor location with respect to the supporting tower, tower geometry and tip speed. A method was developed to calculate the impulsive noise generated when the wind turbine blade experiences air forces that are periodic functions of the rotational frequency. This phenomenon can occur when the blades operate in the wake of the support tower and the nonuniform velocity field near the ground due to wind shear. Results from this method were compared with measured sound spectra taken at locations of one to two rotor diameters from the DOE/NASA Mod-1 wind turbine. The calculated spectra generally agreed with the measured data in both the amplitude of the predominant harmonics and the roll of rate with frequency. Measured sound pressure levels far from the Mod-1 (15 rotor diameters), however, were higher than predicted. Simultaneous measurements in the near and far field indicated that the propagation effects could enhance the sound levels by more than 10 dB above that expected by spherical dispersion. These propagation effects are believed to be due to terrain and atmospheric characteristics of the Mod-1 site.

  9. An improved method for generating axenic entomopathogenic nematodes.

    PubMed

    Yadav, Shruti; Shokal, Upasana; Forst, Steven; Eleftherianos, Ioannis

    2015-09-19

    Steinernema carpocapsae are parasitic nematodes that invade and kill insects. The nematodes are mutualistically associated with the bacteria Xenorhabdus nematophila and together form an excellent model to study pathogen infection processes and host anti-nematode/antibacterial immune responses. To determine the contribution of S. carpocapsae and their associated X. nematophila to the successful infection of insects as well as to investigate the interaction of each mutualistic partner with the insect immune system, it is important to develop and establish robust methods for generating nematodes devoid of their bacteria. To produce S. carpocapsae nematodes without their associated X. nematophila bacteria, we have modified a previous method, which involves the use of a X. nematophila rpoS mutant strain that fails to colonize the intestine of the worms. We confirmed the absence of bacteria in the nematodes using a molecular diagnostic and two rounds of an axenicity assay involving appropriate antibiotics and nematode surface sterilization. We used axenic and symbiotic S. carpocapsae to infect Drosophila melanogaster larvae and found that both types of nematodes were able to cause insect death at similar rates. Generation of entomopathogenic nematodes lacking their mutualistic bacteria provides an excellent tool to dissect the molecular and genetic basis of nematode parasitism and to identify the insect host immune factors that participate in the immune response against nematode infections.

  10. Method of generating electricity using an endothermic coal gasifier and MHD generator

    DOEpatents

    Marchant, David D.; Lytle, John M.

    1982-01-01

    A system and method of generating electrical power wherein a mixture of carbonaceous material and water is heated to initiate and sustain the endothermic reaction of carbon and water thereby providing a gasified stream containing carbon monoxide, hydrogen and nitrogen and waste streams of hydrogen sulfide and ash. The gasified stream and an ionizing seed material and pressurized air from a preheater go to a burner for producing ionized combustion gases having a temperature of about 5000.degree. to about 6000.degree. F. which are accelerated to a velocity of about 1000 meters per second and passed through an MHD generator to generate DC power and thereafter through a diffuser to reduce the velocity. The gases from the diffuser go to an afterburner and from there in heat exchange relationship with the gasifier to provide heat to sustain the endothermic reaction of carbon and water and with the preheater to preheat the air prior to combustion with the gasified stream. Energy from the afterburner can also be used to energize other parts of the system.

  11. Determination of feature generation methods for PTZ camera object tracking

    NASA Astrophysics Data System (ADS)

    Doyle, Daniel D.; Black, Jonathan T.

    2012-06-01

    Object detection and tracking using computer vision (CV) techniques have been widely applied to sensor fusion applications. Many papers continue to be written that speed up performance and increase learning of artificially intelligent systems through improved algorithms, workload distribution, and information fusion. Military application of real-time tracking systems is becoming more and more complex with an ever increasing need of fusion and CV techniques to actively track and control dynamic systems. Examples include the use of metrology systems for tracking and measuring micro air vehicles (MAVs) and autonomous navigation systems for controlling MAVs. This paper seeks to contribute to the determination of select tracking algorithms that best track a moving object using a pan/tilt/zoom (PTZ) camera applicable to both of the examples presented. The select feature generation algorithms compared in this paper are the trained Scale-Invariant Feature Transform (SIFT) and Speeded Up Robust Features (SURF), the Mixture of Gaussians (MoG) background subtraction method, the Lucas- Kanade optical flow method (2000) and the Farneback optical flow method (2003). The matching algorithm used in this paper for the trained feature generation algorithms is the Fast Library for Approximate Nearest Neighbors (FLANN). The BSD licensed OpenCV library is used extensively to demonstrate the viability of each algorithm and its performance. Initial testing is performed on a sequence of images using a stationary camera. Further testing is performed on a sequence of images such that the PTZ camera is moving in order to capture the moving object. Comparisons are made based upon accuracy, speed and memory.

  12. Optimized shear wave generation using hybrid beamforming methods.

    PubMed

    Nabavizadeh, Alireza; Greenleaf, James F; Fatemi, Mostafa; Urban, Matthew W

    2014-01-01

    Elasticity imaging is a medical imaging modality that measures tissue elasticity as an aid in the diagnosis of certain diseases. Shear wave-based methods have been developed to perform elasticity measurements in soft tissue. These methods often use the radiation force mechanism of focused ultrasound to induce shear waves in soft tissue such as liver, kidney, breast, thyroid and skeletal muscle. The efficiency of the ultrasound beam in producing broadband extended shear waves in soft tissue is very important to the widespread use of this modality. Hybrid beamforming combines two types of focusing, conventional spherical focusing and axicon focusing, to produce a beam for generating a shear wave that has increased depth-of-field (DOF) so that measurements can be made with a shear wave with a consistent wave front. Spherical focusing is used in many applications to achieve high lateral resolution, but has low DOF. Axicon focusing, with a cone-shaped transducer, can provide good lateral resolution with large DOF. We describe our linear aperture design and beam optimization performed using angular spectrum simulations. We performed a large parametric simulation study in which we varied the focal depth for the spherical focusing portion of the aperture, the numbers of elements devoted to the spherical and axicon focusing portions of the aperture and the opening angle used for axicon focusing. The hybrid beamforming method was experimentally tested in two phantoms, and shear wave speed measurement accuracy and DOF for each hybrid beam were evaluated. We compared our results with those for shear waves generated using only spherical focusing. The results of this study indicate that hybrid beamforming is capable of producing a beam with increased DOF over which accurate shear wave speed measurements can be made for different-size apertures and at different focal depths.

  13. Generation of synthetic flood hydrographs by hydrological donors (SHYDONHY method)

    NASA Astrophysics Data System (ADS)

    Paquet, Emmanuel

    2017-04-01

    For the design of hydraulic infrastructures like dams, a design hydrograph is required in most of the cases. Some of its features (e.g. peak value, duration, volume) corresponding to a given return period are computed thanks to a wide range of methods: historical records, mono or multivariate statistical analysis, stochastic simulation, etc. Then various methods have been proposed to construct design hydrographs having such characteristics, ranging from traditional unit-hydrograph to statistical methods (Yue et al., 2002). A new method to build design hydrographs (or more generally synthetic hydrographs) is introduced here, named SHYDONHY, French acronym for "Synthèse d'HYdrogrammes par DONneurs HYdrologiques". It is based on an extensive database of 100 000 flood hydrographs recorded at hourly time-step on 1300 gauging stations in France and Switzerland, covering a wide range of catchment size and climatology. For each station, an average of two hydrographs per year of record has been selected by a peak-over-threshold (POT) method with independence criteria (Lang et al., 1999). This sampling ensures that only hydrographs of intense floods are gathered in the dataset. For a given catchment, where few or no hydrograph is available at the outlet, a sub-set of 10 "donor stations" is selected within the complete dataset, considering several criteria: proximity, size, mean annual values and regimes for both total runoff and POT-selected floods. This sub-set of stations (and their corresponding flood hydrographs) will allow to: • Estimate a characteristic duration of flood hydrographs (e.g. duration for which the discharge is above 50% of the peak value). • For a given duration (e.g. one day), estimate the average peak-to- volume ratio of floods. • For a given duration and peak-to-volume ratio, generation of a synthetic reference hydrograph by combining appropriate hydrographs of the sub-set. • For a given daily discharge sequence, being observed or generated

  14. A new method to generate dust with astrophysical properties

    SciTech Connect

    Hansen, J F; van Breugel, W; Bringa, E M; Graham, G A; Remington, B A; Taylor, E A; Tielens, A G

    2010-04-21

    In interstellar and interplanetary space, the size distribution and composition of dust grains play an important role. For example, dust grains determine optical and ultraviolet extinction levels in astronomical observations, dominate the cooling rate of our Galaxy, and sets the thermal balance and radiative cooling rates in molecular clouds, which are the birth place of stars. Dust grains are also a source of damage and failure to space hardware and thus present a hazard to space flight. To model the size distribution and composition of dust grains, and their effect in the above scenarios, it is vital to understand the mechanism of dust-shock interaction. We demonstrate a new experiment which employs a laser to subject dust grains to pressure spikes similar to those of colliding astrophysical dust, and which accelerates the grains to astrophysical velocities. The new method generates much larger data sets than earlier methods; we show how large quantities (thousands) of grains are accelerated at once, rather than accelerating individual grains, as is the case of earlier methods using electric fields.

  15. Method for generating a plasma wave to accelerate electrons

    DOEpatents

    Umstadter, Donald; Esarey, Eric; Kim, Joon K.

    1997-01-01

    The invention provides a method and apparatus for generating large amplitude nonlinear plasma waves, driven by an optimized train of independently adjustable, intense laser pulses. In the method, optimal pulse widths, interpulse spacing, and intensity profiles of each pulse are determined for each pulse in a series of pulses. A resonant region of the plasma wave phase space is found where the plasma wave is driven most efficiently by the laser pulses. The accelerator system of the invention comprises several parts: the laser system, with its pulse-shaping subsystem; the electron gun system, also called beam source, which preferably comprises photo cathode electron source and RF-LINAC accelerator; electron photo-cathode triggering system; the electron diagnostics; and the feedback system between the electron diagnostics and the laser system. The system also includes plasma source including vacuum chamber, magnetic lens, and magnetic field means. The laser system produces a train of pulses that has been optimized to maximize the axial electric field amplitude of the plasma wave, and thus the electron acceleration, using the method of the invention.

  16. Method for generating a plasma wave to accelerate electrons

    DOEpatents

    Umstadter, D.; Esarey, E.; Kim, J.K.

    1997-06-10

    The invention provides a method and apparatus for generating large amplitude nonlinear plasma waves, driven by an optimized train of independently adjustable, intense laser pulses. In the method, optimal pulse widths, interpulse spacing, and intensity profiles of each pulse are determined for each pulse in a series of pulses. A resonant region of the plasma wave phase space is found where the plasma wave is driven most efficiently by the laser pulses. The accelerator system of the invention comprises several parts: the laser system, with its pulse-shaping subsystem; the electron gun system, also called beam source, which preferably comprises photo cathode electron source and RF-LINAC accelerator; electron photo-cathode triggering system; the electron diagnostics; and the feedback system between the electron diagnostics and the laser system. The system also includes plasma source including vacuum chamber, magnetic lens, and magnetic field means. The laser system produces a train of pulses that has been optimized to maximize the axial electric field amplitude of the plasma wave, and thus the electron acceleration, using the method of the invention. 21 figs.

  17. A method for generating double-ring-shaped vector beams

    NASA Astrophysics Data System (ADS)

    Huan, Chen; Xiao-Hui, Ling; Zhi-Hong, Chen; Qian-Guang, Li; Hao, Lv; Hua-Qing, Yu; Xu-Nong, Yi

    2016-07-01

    We propose a method for generating double-ring-shaped vector beams. A step phase introduced by a spatial light modulator (SLM) first makes the incident laser beam have a nodal cycle. This phase is dynamic in nature because it depends on the optical length. Then a Pancharatnam-Berry phase (PBP) optical element is used to manipulate the local polarization of the optical field by modulating the geometric phase. The experimental results show that this scheme can effectively create double-ring-shaped vector beams. It provides much greater flexibility to manipulate the phase and polarization by simultaneously modulating the dynamic and the geometric phases. Project supported by the National Natural Science Foundation of China (Grant No. 11547017), the Hubei Engineering University Research Foundation, China (Grant No. z2014001), and the Natural Science Foundation of Hubei Province, China (Grant No. 2014CFB578).

  18. Generation of Submicron Bubbles using Venturi Tube Method

    NASA Astrophysics Data System (ADS)

    Wiraputra, I. G. P. A. E.; Edikresnha, D.; Munir, M. M.; Khairurrijal

    2016-08-01

    In this experiment, submicron bubbles that have diameters less than 1 millimeter were generated by mixing water and gas by hydrodynamic cavitation method. The water was forced to pass through a venturi tube in which the speed of the water will increase in the narrow section, the throat, of the venturi. When the speed of water increased, the pressure would drop at the throat of the venturi causing the outside air to be absorbed via the gas inlet. The gas was then trapped inside the water producing bubbles. The effects of several physical parameters on the characteristics of the bubbles will be discussed thoroughly in this paper. It was found that larger amount of gas pressure during compression will increase the production rate of bubbles and increase the density of bubble within water.

  19. Thermoelectric generator cooling system and method of control

    SciTech Connect

    Prior, Gregory P; Meisner, Gregory P; Glassford, Daniel B

    2012-10-16

    An apparatus is provided that includes a thermoelectric generator and an exhaust gas system operatively connected to the thermoelectric generator to heat a portion of the thermoelectric generator with exhaust gas flow through the thermoelectric generator. A coolant system is operatively connected to the thermoelectric generator to cool another portion of the thermoelectric generator with coolant flow through the thermoelectric generator. At least one valve is controllable to cause the coolant flow through the thermoelectric generator in a direction that opposes a direction of the exhaust gas flow under a first set of operating conditions and to cause the coolant flow through the thermoelectric generator in the direction of exhaust gas flow under a second set of operating conditions.

  20. Methods and apparatus for cooling wind turbine generators

    DOEpatents

    Salamah, Samir A.; Gadre, Aniruddha Dattatraya; Garg, Jivtesh; Bagepalli, Bharat Sampathkumaran; Jansen, Patrick Lee; Carl, Jr., Ralph James

    2008-10-28

    A wind turbine generator includes a stator having a core and a plurality of stator windings circumferentially spaced about a generator longitudinal axis. A rotor is rotatable about the generator longitudinal axis, and the rotor includes a plurality of magnetic elements coupled to the rotor and cooperating with the stator windings. The magnetic elements are configured to generate a magnetic field and the stator windings are configured to interact with the magnetic field to generate a voltage in the stator windings. A heat pipe assembly thermally engaging one of the stator and the rotor to dissipate heat generated in the stator or rotor.

  1. Method of generating hydrogen by catalytic decomposition of water

    DOEpatents

    Balachandran, Uthamalingam; Dorris, Stephen E.; Bose, Arun C.; Stiegel, Gary J.; Lee, Tae-Hyun

    2002-01-01

    A method for producing hydrogen includes providing a feed stream comprising water; contacting at least one proton conducting membrane adapted to interact with the feed stream; splitting the water into hydrogen and oxygen at a predetermined temperature; and separating the hydrogen from the oxygen. Preferably the proton conducting membrane comprises a proton conductor and a second phase material. Preferable proton conductors suitable for use in a proton conducting membrane include a lanthanide element, a Group VIA element and a Group IA or Group IIA element such as barium, strontium, or combinations of these elements. More preferred proton conductors include yttrium. Preferable second phase materials include platinum, palladium, nickel, cobalt, chromium, manganese, vanadium, silver, gold, copper, rhodium, ruthenium, niobium, zirconium, tantalum, and combinations of these. More preferably second phase materials suitable for use in a proton conducting membrane include nickel, palladium, and combinations of these. The method for generating hydrogen is preferably preformed in the range between about 600.degree. C. and 1,700.degree. C.

  2. Design of time interval generator based on hybrid counting method

    NASA Astrophysics Data System (ADS)

    Yao, Yuan; Wang, Zhaoqi; Lu, Houbing; Chen, Lian; Jin, Ge

    2016-10-01

    Time Interval Generators (TIGs) are frequently used for the characterizations or timing operations of instruments in particle physics experiments. Though some "off-the-shelf" TIGs can be employed, the necessity of a custom test system or control system makes the TIGs, being implemented in a programmable device desirable. Nowadays, the feasibility of using Field Programmable Gate Arrays (FPGAs) to implement particle physics instrumentation has been validated in the design of Time-to-Digital Converters (TDCs) for precise time measurement. The FPGA-TDC technique is based on the architectures of Tapped Delay Line (TDL), whose delay cells are down to few tens of picosecond. In this case, FPGA-based TIGs with high delay step are preferable allowing the implementation of customized particle physics instrumentations and other utilities on the same FPGA device. A hybrid counting method for designing TIGs with both high resolution and wide range is presented in this paper. The combination of two different counting methods realizing an integratable TIG is described in detail. A specially designed multiplexer for tap selection is emphatically introduced. The special structure of the multiplexer is devised for minimizing the different additional delays caused by the unpredictable routings from different taps to the output. A Kintex-7 FPGA is used for the hybrid counting-based implementation of a TIG, providing a resolution up to 11 ps and an interval range up to 8 s.

  3. Capacitive charge generation apparatus and method for testing circuits

    DOEpatents

    Cole, E.I. Jr.; Peterson, K.A.; Barton, D.L.

    1998-07-14

    An electron beam apparatus and method for testing a circuit are disclosed. The electron beam apparatus comprises an electron beam incident on an outer surface of an insulating layer overlying one or more electrical conductors of the circuit for generating a time varying or alternating current electrical potential on the surface; and a measurement unit connected to the circuit for measuring an electrical signal capacitively coupled to the electrical conductors to identify and map a conduction state of each of the electrical conductors, with or without an electrical bias signal being applied to the circuit. The electron beam apparatus can further include a secondary electron detector for forming a secondary electron image for registration with a map of the conduction state of the electrical conductors. The apparatus and method are useful for failure analysis or qualification testing to determine the presence of any open-circuits or short-circuits, and to verify the continuity or integrity of electrical conductors buried below an insulating layer thickness of 1-100 {micro}m or more without damaging or breaking down the insulating layer. The types of electrical circuits that can be tested include integrated circuits, multi-chip modules, printed circuit boards and flexible printed circuits. 7 figs.

  4. Capacitive charge generation apparatus and method for testing circuits

    DOEpatents

    Cole, Jr., Edward I.; Peterson, Kenneth A.; Barton, Daniel L.

    1998-01-01

    An electron beam apparatus and method for testing a circuit. The electron beam apparatus comprises an electron beam incident on an outer surface of an insulating layer overlying one or more electrical conductors of the circuit for generating a time varying or alternating current electrical potential on the surface; and a measurement unit connected to the circuit for measuring an electrical signal capacitively coupled to the electrical conductors to identify and map a conduction state of each of the electrical conductors, with or without an electrical bias signal being applied to the circuit. The electron beam apparatus can further include a secondary electron detector for forming a secondary electron image for registration with a map of the conduction state of the electrical conductors. The apparatus and method are useful for failure analysis or qualification testing to determine the presence of any open-circuits or short-circuits, and to verify the continuity or integrity of electrical conductors buried below an insulating layer thickness of 1-100 .mu.m or more without damaging or breaking down the insulating layer. The types of electrical circuits that can be tested include integrated circuits, multi-chip modules, printed circuit boards and flexible printed circuits.

  5. A Novel Coarsening Method for Scalable and Efficient Mesh Generation

    SciTech Connect

    Yoo, A; Hysom, D; Gunney, B

    2010-12-02

    matrix-vector multiplication can be performed locally on each processor and hence to minimize communication. Furthermore, a good graph partitioning scheme ensures the equal amount of computation performed on each processor. Graph partitioning is a well known NP-complete problem, and thus the most commonly used graph partitioning algorithms employ some forms of heuristics. These algorithms vary in terms of their complexity, partition generation time, and the quality of partitions, and they tend to trade off these factors. A significant challenge we are currently facing at the Lawrence Livermore National Laboratory is how to partition very large meshes on massive-size distributed memory machines like IBM BlueGene/P, where scalability becomes a big issue. For example, we have found that the ParMetis, a very popular graph partitioning tool, can only scale to 16K processors. An ideal graph partitioning method on such an environment should be fast and scale to very large meshes, while producing high quality partitions. This is an extremely challenging task, as to scale to that level, the partitioning algorithm should be simple and be able to produce partitions that minimize inter-processor communications and balance the load imposed on the processors. Our goals in this work are two-fold: (1) To develop a new scalable graph partitioning method with good load balancing and communication reduction capability. (2) To study the performance of the proposed partitioning method on very large parallel machines using actual data sets and compare the performance to that of existing methods. The proposed method achieves the desired scalability by reducing the mesh size. For this, it coarsens an input mesh into a smaller size mesh by coalescing the vertices and edges of the original mesh into a set of mega-vertices and mega-edges. A new coarsening method called brick algorithm is developed in this research. In the brick algorithm, the zones in a given mesh are first grouped into fixed size

  6. Versatile method to generate multiple types of micropatterns.

    PubMed

    Segerer, Felix Jakob; Röttgermann, Peter Johan Friedrich; Schuster, Simon; Piera Alberola, Alicia; Zahler, Stefan; Rädler, Joachim Oskar

    2016-03-22

    Micropatterning techniques have become an important tool for the study of cell behavior in controlled microenvironments. As a consequence, several approaches for the creation of micropatterns have been developed in recent years. However, the diversity of substrates, coatings, and complex patterns used in cell science is so great that no single existing technique is capable of fabricating designs suitable for all experimental conditions. Hence, there is a need for patterning protocols that are flexible with regard to the materials used and compatible with different patterning strategies to create more elaborate setups. In this work, the authors present a versatile approach to micropatterning. The protocol is based on plasma treatment, protein coating, and a poly(L-lysine)-grafted-poly(ethylene glycol) backfill step, and produces homogeneous patterns on a variety of substrates. Protein density within the patterns can be controlled, and density gradients of surface-bound protein can be formed. Moreover, by combining the method with microcontact printing, it is possible to generate patterns composed of three different components within one iteration of the protocol. The technique is simple to implement and should enable cell science labs to create a broad range of complex and highly specialized microenvironments.

  7. Finite volume methods for submarine debris flows and generated waves

    NASA Astrophysics Data System (ADS)

    Kim, Jihwan; Løvholt, Finn; Issler, Dieter

    2016-04-01

    Submarine landslides can impose great danger to the underwater structures and generate destructive tsunamis. Submarine debris flows often behave like visco-plastic materials, and the Herschel-Bulkley rheological model is known to be appropriate for describing the motion. In this work, we develop numerical schemes for the visco-plastic debris flows using finite volume methods in Eulerian coordinates with two horizontal dimensions. We provide parameter sensitivity analysis and demonstrate how common ad-hoc assumptions such as including a minimum shear layer depth influence the modeling of the landslide dynamics. Hydrodynamic resistance forces, hydroplaning, and remolding are all crucial terms for underwater landslides, and are hence added into the numerical formulation. The landslide deformation is coupled to the water column and simulated in the Clawpack framework. For the propagation of the tsunamis, the shallow water equations and the Boussinesq-type equations are employed to observe how important the wave dispersion is. Finally, two cases in central Norway, i.e. the subaerial quick clay landslide at Byneset in 2012, and the submerged tsunamigenic Statland landslide in 2014, are both presented for validation. The research leading to these results has received funding from the Research Council of Norway under grant number 231252 (Project TsunamiLand) and the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement 603839 (Project ASTARTE).

  8. System and method for generating a relationship network

    DOEpatents

    Franks, Kasian [Kensington, CA; Myers, Cornelia A [St. Louis, MO; Podowski, Raf M [Pleasant Hill, CA

    2011-07-26

    A computer-implemented system and process for generating a relationship network is disclosed. The system provides a set of data items to be related and generates variable length data vectors to represent the relationships between the terms within each data item. The system can be used to generate a relationship network for documents, images, or any other type of file. This relationship network can then be queried to discover the relationships between terms within the set of data items.

  9. System and method for generating a relationship network

    DOEpatents

    Franks, Kasian; Myers, Cornelia A; Podowski, Raf M

    2015-05-05

    A computer-implemented system and process for generating a relationship network is disclosed. The system provides a set of data items to be related and generates variable length data vectors to represent the relationships between the terms within each data item. The system can be used to generate a relationship network for documents, images, or any other type of file. This relationship network can then be queried to discover the relationships between terms within the set of data items.

  10. Optical Spatial integration methods for ambiguity function generation

    NASA Technical Reports Server (NTRS)

    Tamura, P. N.; Rebholz, J. J.; Daehlin, O. T.; Lee, T. C.

    1981-01-01

    A coherent optical spatial integration approach to ambiguity function generation is described. It uses one dimensional acousto-optic Bragg cells as input tranducers in conjunction with a space variant linear phase shifter, a passive optical element, to generate the two dimensional ambiguity function in one exposure. Results of a real time implementation of this system are shown.

  11. Apparatus and method for generating partially coherent illumination for photolithography

    DOEpatents

    Sweatt, W.C.

    1999-07-06

    The present invention relates an apparatus and method for creating a bright, uniform source of partially coherent radiation for illuminating a pattern, in order to replicate an image of said pattern with a high degree of acuity. The present invention introduces a novel scatter plate into the optical path of source light used for illuminating a replicated object. The scatter plate has been designed to interrupt a focused, incoming light beam by introducing between about 8 to 24 diffraction zones blazed onto the surface of the scatter plate which intercept the light and redirect it to a like number of different positions in the condenser entrance pupil each of which is determined by the relative orientation and the spatial frequency of the diffraction grating in each of the several zones. Light falling onto the scatter plate, therefore, generates a plurality of unphased sources of illumination as seen by the back half of the optical system. The system includes a high brightness source, such as a laser, creating light which is taken up by a beam forming optic which focuses the incoming light into a condenser which in turn, focuses light into a field lens creating Kohler illumination image of the source in a camera entrance pupil. The light passing through the field lens illuminates a mask which interrupts the source light as either a positive or negative image of the object to be replicated. Light passing by the mask is focused into the entrance pupil of the lithographic camera creating an image of the mask onto a receptive media. 7 figs.

  12. Apparatus and method for generating partially coherent illumination for photolithography

    DOEpatents

    Sweatt, William C.

    1999-01-01

    The present invention relates an apparatus and method for creating a bright, uniform source of partially coherent radiation for illuminating a pattern, in order to replicate an image of said pattern with a high degree of acuity. The present invention introduces a novel scatter plate into the optical path of source light used for illuminating a replicated object. The scatter plate has been designed to interrupt a focused, incoming light beam by introducing between about 8 to 24 diffraction zones blazed onto the surface of the scatter plate which intercept the light and redirect it to a like number of different positions in the condenser entrance pupil each of which is determined by the relative orientation and the spatial frequency of the diffraction grating in each of the several zones. Light falling onto the scatter plate, therefore, generates a plurality of unphased sources of illumination as seen by the back half of the optical system. The system includes a high brightness source, such as a laser, creating light which is taken up by a beam forming optic which focuses the incoming light into a condenser which in turn, focuses light into a field lens creating Kohler illumination image of the source in a camera entrance pupil. The light passing through the field lens illuminates a mask which interrupts the source light as either a positive or negative image of the object to be replicated. Light passing by the mask is focused into the entrance pupil of the lithographic camera creating an image of the mask onto a receptive media.

  13. Method and apparatus for generating low energy nuclear particles

    DOEpatents

    Powell, J.R.; Reich, M.; Ludewig, H.; Todosow, M.

    1999-02-09

    A particle accelerator generates an input particle beam having an initial energy level above a threshold for generating secondary nuclear particles. A thin target is rotated in the path of the input beam for undergoing nuclear reactions to generate the secondary particles and correspondingly decrease energy of the input beam to about the threshold. The target produces low energy secondary particles and is effectively cooled by radiation and conduction. A neutron scatterer and a neutron filter are also used for preferentially degrading the secondary particles into a lower energy range if desired. 18 figs.

  14. Method and apparatus for generating low energy nuclear particles

    DOEpatents

    Powell, James R.; Reich, Morris; Ludewig, Hans; Todosow, Michael

    1999-02-09

    A particle accelerator (12) generates an input particle beam having an initial energy level above a threshold for generating secondary nuclear particles. A thin target (14) is rotated in the path of the input beam for undergoing nuclear reactions to generate the secondary particles and correspondingly decrease energy of the input beam to about the threshold. The target (14) produces low energy secondary particles and is effectively cooled by radiation and conduction. A neutron scatterer (44) and a neutron filter (42) are also used for preferentially degrading the secondary particles into a lower energy range if desired.

  15. Steam drive recovery method utilizing a downhole steam generator

    SciTech Connect

    Snavely, E. S.; Hopkins, D. N.

    1984-09-18

    Viscous oil is recovered from a subterranean, viscous oil-containing formation by a steam flooding technique wherein steam is generated in a downhole steam generator located in an injection well by spontaneous combustion of a pressurized mixture of a water-soluble fuel such as sugars and alcohols dissolved in water and substantially pure oxygen. The generated mixture of steam and combustion gases pass through the formation, displacing oil and reducing the oil's viscosity and the mobilized oil is produced from the formation via a spaced-apart production well.

  16. Steam drive oil recovery method utilizing a downhole steam generator

    SciTech Connect

    Nopkins, D. N.; Snavely, E. S.

    1984-10-23

    Viscous oil is recovered from a subterranean, viscous oil-containing formation by a steam flooding technique wherein steam is generated in a downhole steam generator located in an injection well by spontaneous combustion of a pressurized mixture of a water-soluble fuel such as sugars and alcohols dissolved in water or a stable hydrocarbon fuel-in-water emulsion and substantially pure oxygen. The generated mixture of steam and combustion gases pass through the formation, displacing oil and reducing the oil's viscosity and the mobilized oil is produced from the formation via a spaced-apart production well.

  17. A grid spacing control technique for algebraic grid generation methods

    NASA Technical Reports Server (NTRS)

    Smith, R. E.; Kudlinski, R. A.; Everton, E. L.

    1982-01-01

    A technique which controls the spacing of grid points in algebraically defined coordinate transformations is described. The technique is based on the generation of control functions which map a uniformly distributed computational grid onto parametric variables defining the physical grid. The control functions are smoothed cubic splines. Sets of control points are input for each coordinate directions to outline the control functions. Smoothed cubic spline functions are then generated to approximate the input data. The technique works best in an interactive graphics environment where control inputs and grid displays are nearly instantaneous. The technique is illustrated with the two-boundary grid generation algorithm.

  18. Spline methods for approximating quantile functions and generating random samples

    NASA Technical Reports Server (NTRS)

    Schiess, J. R.; Matthews, C. G.

    1985-01-01

    Two cubic spline formulations are presented for representing the quantile function (inverse cumulative distribution function) of a random sample of data. Both B-spline and rational spline approximations are compared with analytic representations of the quantile function. It is also shown how these representations can be used to generate random samples for use in simulation studies. Comparisons are made on samples generated from known distributions and a sample of experimental data. The spline representations are more accurate for multimodal and skewed samples and to require much less time to generate samples than the analytic representation.

  19. Methods of Attosecond X-Ray Pulse Generation

    SciTech Connect

    Zholents, Alexander

    2005-05-08

    We review several proposals for generation of solitary attosecond pulses using two types of free electron lasers which are envisioned as future light sources for studies of ultra-fast dynamics using soft and hard x-rays.

  20. Emerging methods to generate artificial germ cells from stem cells.

    PubMed

    Zeng, Fanhui; Huang, Fajun; Guo, Jingjing; Hu, Xingchang; Liu, Changbai; Wang, Hu

    2015-04-01

    Germ cells are responsible for the transmission of genetic and epigenetic information across generations. At present, the number of infertile couples is increasing worldwide; these infertility problems can be traced to environmental pollutions, infectious diseases, cancer, psychological or work-related stress, and other factors, such as lifestyle and genetics. Notably, lack of germ cells and germ cell loss present real obstacles in infertility treatment. Recent research aimed at producing gametes through artificial germ cell generation from stem cells may offer great hope for affected couples to treat infertility in the future. Therefore, this rapidly emerging area of artificial germ cell generation from nongermline cells has gained considerable attention from basic and clinical research in the fields of stem cell biology, developmental biology, and reproductive biology. Here, we review the state of the art in artificial germ cell generation. © 2015 by the Society for the Study of Reproduction, Inc.

  1. Thermoelectric generator and method for the fabrication thereof

    DOEpatents

    Benson, D.K.; Tracy, C.E.

    1984-08-01

    A thermoelectric generator using semiconductor elements for responding to a temperature gradient to produce electrical energy with all of the semiconductor elements being of the same type is disclosed. A continuous process for forming substrates on which the semiconductor elements and superstrates are deposited and a process for forming the semiconductor elements on the substrates are also disclosed. The substrates with the semiconductor elements thereon are combined with superstrates to form modules for use as thermoelectric generators.

  2. Cold weather hydrogen generation system and method of operation

    DOEpatents

    Dreier, Ken Wayne; Kowalski, Michael Thomas; Porter, Stephen Charles; Chow, Oscar Ken; Borland, Nicholas Paul; Goyette, Stephen Arthur

    2010-12-14

    A system for providing hydrogen gas is provided. The system includes a hydrogen generator that produces gas from water. One or more heat generation devices are arranged to provide heating of the enclosure during different modes of operation to prevent freezing of components. A plurality of temperature sensors are arranged and coupled to a controller to selectively activate a heat source if the temperature of the component is less than a predetermined temperature.

  3. Thermoelectric generator and method for the fabrication thereof

    DOEpatents

    Benson, David K.; Tracy, C. Edwin

    1987-01-01

    A thermoelectric generator using semiconductor elements for responding to a temperature gradient to produce electrical energy with all of the semiconductor elements being of the same type is disclosed. A continuous process for forming substrates on which the semiconductor elements and superstrates are deposited and a process for forming the semiconductor elements on the substrates are also disclosed. The substrates with the semiconductor elements thereon are combined with superstrates to form modules for use thermoelectric generators.

  4. 40 CFR 799.6756 - TSCA partition coefficient (n-octanol/water), generator column method.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .../water), generator column method. 799.6756 Section 799.6756 Protection of Environment ENVIRONMENTAL... coefficient (n-octanol/water), generator column method. (a) Scope—(1) Applicability. This section is intended... liquid chromatographic (DCCLC) technique, a technique commonly referred to as the generator column method...

  5. 40 CFR 799.6756 - TSCA partition coefficient (n-octanol/water), generator column method.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .../water), generator column method. 799.6756 Section 799.6756 Protection of Environment ENVIRONMENTAL... coefficient (n-octanol/water), generator column method. (a) Scope—(1) Applicability. This section is intended... liquid chromatographic (DCCLC) technique, a technique commonly referred to as the generator column method...

  6. 40 CFR 799.6756 - TSCA partition coefficient (n-octanol/water), generator column method.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .../water), generator column method. 799.6756 Section 799.6756 Protection of Environment ENVIRONMENTAL... coefficient (n-octanol/water), generator column method. (a) Scope—(1) Applicability. This section is intended... liquid chromatographic (DCCLC) technique, a technique commonly referred to as the generator column method...

  7. Observed Methods for Generating Analogies in Scientific Problem Solving. Revised.

    ERIC Educational Resources Information Center

    Clement, John

    Evidence from video tapes of experts thinking aloud and using analogies in scientific problem solving is presented. Four processes appear to be important in using an analogy: (1) generating the analogy; (2) establishing confidence in the validity of the analogy relation; (3) understanding the analogous case; and (4) applying findings to the…

  8. Inhibitions within Idea Generating Groups: An Alternative Method of Brainstorming.

    ERIC Educational Resources Information Center

    Kochery, Tim

    Alex F. Osborn's group brainstorming treatment remains the most frequently applied procedure for the creative generation of ideas despite considerable evidence that demonstrates its ineffectiveness. This paper synthesizes many findings that challenge the premise that Osborn's traditional "group" brainstorming treatment is the optimal…

  9. A Method for Generating Oxygen from Consumer Chemicals

    NASA Astrophysics Data System (ADS)

    Wright, Stephen W.

    2003-10-01

    The rapidly accelerated combustion of wood, paper, carbon, a candle, and steel wool in oxygen gas is presented. The oxygen gas is generated as needed in the bottles used for the demonstration using chemicals readily available on the retail market: liquid chlorine bleach and 3% hydrogen peroxide.

  10. Making Human Stars: A New Method to Generate Human Astrocytes.

    PubMed

    Allen, Nicola J

    2017-08-16

    Human astrocytes are increasingly appreciated as important contributors to brain function in health and disease, but techniques to study them are limited. In this issue of Neuron, Sloan and colleagues (2017) describe a new 3D culture model that generates mature human astrocytes, opening the door to future studies of their function. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Method and apparatus for automobile actuated power generation

    SciTech Connect

    Rosenblum, J.

    1984-03-13

    A plurality of cylindrical rollers are embedded in a roadway over which wheeled vehicles move such that the vehicle wheels rotate the contacted rollers. A shaft transverse to the roadway supports the rollers and turns with them to transfer power from vehicle contact to an electrical generating apparatus. Power accumulating apparatus, such as a water or hydraulic fluid reservoir, may intervene between the shaft and the generator to smooth the power flow when vehicle travel is intermittent. Alternate apparatus may directly link the shaft to an electrical generator which may, in turn, charge batteries or pump water upwardly to accumulate power for response to later demand. The rollers may be housed in a metal or concrete trough and cross one or more lanes of traffic to a median power collector such as a spider and bevel gear arrangement that is capable of receiving rotating motion from four right angle directions at once. In its simplest form, power is taken from auto wheels to turn the rollers and their shaft or shafts, and shaft rotation is communicated directly to an electrical generator to supply demand.

  12. Advanced materials and methods for next generation spintronics

    NASA Astrophysics Data System (ADS)

    Siegel, Gene Phillip

    The modern age is filled with ever-advancing electronic devices. The contents of this dissertation continue the desire for faster, smaller, better electronics. Specifically, this dissertation addresses a field known as "spintronics", electronic devices based on an electron's spin, not just its charge. The field of spintronics originated in 1990 when Datta and Das first proposed a "spin transistor" that would function by passing a spin polarized current from a magnetic electrode into a semiconductor channel. The spins in the channel could then be manipulated by applying an electrical voltage across the gate of the device. However, it has since been found that a great amount of scattering occurs at the ferromagnet/semiconductor interface due to the large impedance mismatch that exists between the two materials. Because of this, there were three updated versions of the spintronic transistor that were proposed to improve spin injection: one that used a ferromagnetic semiconductor electrode, one that added a tunnel barrier between the ferromagnet and semiconductor, and one that utilized a ferromagnetic tunnel barrier which would act like a spin filter. It was next proposed that it may be possible to achieve a "pure spin current", or a spin current with no concurrent electric current (i.e., no net flow of electrons). One such method that was discovered is the spin Seebeck effect, which was discovered in 2008 by Uchida et al., in which a thermal gradient in a magnetic material generates a spin current which can be injected into adjacent material as a pure spin current. The first section of this dissertation addresses this spin Seebeck effect (SSE). The goal was to create such a device that both performs better than previously reported devices and is capable of operating without the aid of an external magnetic field. We were successful in this endeavor. The trick to achieving both of these goals was found to be in the roughness of the magnetic layer. A rougher magnetic

  13. Perspective methods for the generation of COIL gain medium

    NASA Astrophysics Data System (ADS)

    Zagidullin, Marsel V.; Nikolaev, Valery D.; Svistun, Michael I.; Khvatov, Nikolay A.

    2007-04-01

    An ejector nozzle bank powered by centrifugal bubbling SOG is considered like highly efficient gain generating system for COIL. A high potential recovered pressure ~100 torr of the gain medium flow with a small signal gain higher than 1% cm -1 and low oxygen plenum pressure has been demonstrated. A centrifugal bubbling SOG is an efficient source of oxygen at high pressure with high depletion of the BHP in the single burn dawn. A high 0 II(1Δ) yield and chlorine utilization higher than 90% have been obtained at chlorine gas loading up to 6 mmole/s per 1 cm2 of the bubbler surface. The ejector COIL powered by centrifugal bubbling SOG demonstrated ~25% of chemical efficiency with specific power 6 kJ per 1 litre of the BHP in the single burn dawn. The combination of centrifugal bubble SOG with ejector nozzle bank can be considered as a promising gain medium flow generation system for COIL.

  14. Wind turbine/generator set and method of making same

    DOEpatents

    Bevington, Christopher M.; Bywaters, Garrett L.; Coleman, Clint C.; Costin, Daniel P.; Danforth, William L.; Lynch, Jonathan A.; Rolland, Robert H.

    2013-06-04

    A wind turbine comprising an electrical generator that includes a rotor assembly. A wind rotor that includes a wind rotor hub is directly coupled to the rotor assembly via a simplified connection. The wind rotor and generator rotor assembly are rotatably mounted on a central spindle via a bearing assembly. The wind rotor hub includes an opening having a diameter larger than the outside diameter of the central spindle adjacent the bearing assembly so as to allow access to the bearing assembly from a cavity inside the wind rotor hub. The spindle is attached to a turret supported by a tower. Each of the spindle, turret and tower has an interior cavity that permits personnel to traverse therethrough to the cavity of the wind rotor hub. The wind turbine further includes a frictional braking system for slowing, stopping or keeping stopped the rotation of the wind rotor and rotor assembly.

  15. Further Methods for the Generation of Ultrashort Optical Pulses

    NASA Astrophysics Data System (ADS)

    Hirlimann, C.

    Up to the beginning of the sixties, the shortest measurable time duration was of the order of one nanosecond (10-9 s). Short pulses were produced through the generation of short electrical discharges. After the laser was invented in 1960, the situation quite rapidly changed. In 1965, the picosecond (10-12 s) regime was reached by placing a saturable absorber inside a laser cavity. Twenty years of continuous progress led to the production of light pulses of less than 10 femtoseconds. In the race towards ever shorter pulses, recent developments in the generation of tabletop X-ray lasers have opened the way to dynamical studies in the attosecond (10-18 s)regime [4.1-2]. In the meantime, progress was made on the tunability of the pulsed-laser sources. Today's tunability extends from the near ultraviolet to the near infrared [4.2-6].

  16. Halftoning method for the generation of motion stimuli

    NASA Technical Reports Server (NTRS)

    Mulligan, Jeffrey B.; Stone, Leland S.

    1989-01-01

    This paper describes a novel computer-graphic technique for the generation of a broad class of motion stimuli for vision research, which uses color table animation in conjunction with a single base image. Using this technique, contrast and temporal frequency can be varied with a negligible amount of computation, once a single-base image is produced. Since only two-bit planes are needed to display a single drifting grating, an eight-bit/pixel display can be used to generate four-component plaids, in which each component of the plaid has independently programmable contrast and temporal frequency. Because the contrast and temporal frequencies of the various components are mutually independent, a large number of two-dimensional stimulus motions can be produced from a single image file.

  17. Method for changing removable bearing for a wind turbine generator

    DOEpatents

    Bagepalli, Bharat Sampathkumaran; Jansen, Patrick Lee , Gadre; Aniruddha Dattatraya

    2008-04-22

    A wind generator having removable change-out bearings includes a rotor and a stator, locking bolts configured to lock the rotor and stator, a removable bearing sub-assembly having at least one shrunk-on bearing installed, and removable mounting bolts configured to engage the bearing sub-assembly and to allow the removable bearing sub-assembly to be removed when the removable mounting bolts are removed.

  18. Method for changing removable bearing for a wind turbine generator

    DOEpatents

    Bagepalli, Bharat Sampathkumaran; Jansen, Patrick Lee; Gadre, Aniruddha Dattatraya

    2008-04-22

    A wind generator having removable change-out bearings includes a rotor and a stator, locking bolts configured to lock the rotor and stator, a removable bearing sub-assembly having at least one shrunk-on bearing installed, and removable mounting bolts configured to engage the bearing sub-assembly and to allow the removable bearing sub-assembly to be removed when the removable mounting bolts are removed.

  19. Investigation of advancing front method for generating unstructured grid

    NASA Astrophysics Data System (ADS)

    Thomas, A. M.; Tiwari, S. N.

    1992-06-01

    The advancing front technique is used to generate an unstructured grid about simple aerodynamic geometries. Unstructured grids are generated using VGRID2D and VGRID3D software. Specific problems considered are a NACA 0012 airfoil, a bi-plane consisting of two NACA 0012 airfoil, a four element airfoil in its landing configuration, and an ONERA M6 wing. Inviscid time dependent solutions are computed on these geometries using USM3D and the results are compared with standard test results obtained by other investigators. A grid convergence study is conducted for the NACA 0012 airfoil and compared with a structured grid. A structured grid is generated using GRIDGEN software and inviscid solutions computed using CFL3D flow solver. The results obtained by unstructured grid for NACA 0012 airfoil showed an asymmetric distribution of flow quantities, and a fine distribution of grid was required to remove this asymmetry. On the other hand, the structured grid predicted a very symmetric distribution, but when the total number of points were compared to obtain the same results it was seen that structured grid required more grid points.

  20. Investigation of advancing front method for generating unstructured grid

    NASA Technical Reports Server (NTRS)

    Thomas, A. M.; Tiwari, S. N.

    1992-01-01

    The advancing front technique is used to generate an unstructured grid about simple aerodynamic geometries. Unstructured grids are generated using VGRID2D and VGRID3D software. Specific problems considered are a NACA 0012 airfoil, a bi-plane consisting of two NACA 0012 airfoil, a four element airfoil in its landing configuration, and an ONERA M6 wing. Inviscid time dependent solutions are computed on these geometries using USM3D and the results are compared with standard test results obtained by other investigators. A grid convergence study is conducted for the NACA 0012 airfoil and compared with a structured grid. A structured grid is generated using GRIDGEN software and inviscid solutions computed using CFL3D flow solver. The results obtained by unstructured grid for NACA 0012 airfoil showed an asymmetric distribution of flow quantities, and a fine distribution of grid was required to remove this asymmetry. On the other hand, the structured grid predicted a very symmetric distribution, but when the total number of points were compared to obtain the same results it was seen that structured grid required more grid points.

  1. Methods for generating or increasing revenues from crops

    DOEpatents

    Copenhaver, Gregory P.; Keith, Kevin; Preuss, Daphne

    2007-03-20

    The present invention provides methods of doing business and providing services. For example, methods of increasing the revenue of crops are provided. To this end, the method includes the use of a nucleic acid sequences of plant centromeres. This will permit construction of stably inherited recombinant DNA constructs and mini chromosomes which can serve as vectors for the construction of transgenic plant and animal cells.

  2. A User Study on Tactile Graphic Generation Methods

    ERIC Educational Resources Information Center

    Krufka, S. E.; Barner, K. E.

    2006-01-01

    Methods to automatically convert graphics into tactile representations have been recently investigated, creating either raised-line or relief images. In particular, we briefly review one raised-line method where important features are emphasized. This paper focuses primarily on the effects of such emphasis and on comparing both raised-line and…

  3. A User Study on Tactile Graphic Generation Methods

    ERIC Educational Resources Information Center

    Krufka, S. E.; Barner, K. E.

    2006-01-01

    Methods to automatically convert graphics into tactile representations have been recently investigated, creating either raised-line or relief images. In particular, we briefly review one raised-line method where important features are emphasized. This paper focuses primarily on the effects of such emphasis and on comparing both raised-line and…

  4. Study on predicative evaluation method of noise generated by engine

    SciTech Connect

    Hirakawa, Nobuo; Mihara, Akira; Suwa, Junichi

    1995-12-31

    The engine noise accounts for a relatively large percentage among the noises generated by a motorcycle. Among the Parts of the engine, the cover is important in design as well as a source of the engine noise, being at the end of the vibration transfer path. This paper clarifies that the natural frequency of the cover with a flat surface clearly affects its vibration and noise radiation and by a modal analysis of its vibration characteristics. In addition, the authors confirmed that the calculated value of the radiated noise from the cover agrees well with the measured value.

  5. Method and apparatus for automatically generating airfoil performance tables

    NASA Technical Reports Server (NTRS)

    van Dam, Cornelis P. (Inventor); Mayda, Edward A. (Inventor); Strawn, Roger Clayton (Inventor)

    2006-01-01

    One embodiment of the present invention provides a system that facilitates automatically generating a performance table for an object, wherein the object is subject to fluid flow. The system operates by first receiving a description of the object and testing parameters for the object. The system executes a flow solver using the testing parameters and the description of the object to produce an output. Next, the system determines if the output of the flow solver indicates negative density or pressure. If not, the system analyzes the output to determine if the output is converging. If converging, the system writes the output to the performance table for the object.

  6. Decluttering methods for high density computer-generated graphic displays

    NASA Technical Reports Server (NTRS)

    Schultz, E. E., Jr.; Nichols, D. A.; Curran, P. S.

    1985-01-01

    Several decluttering methods were compared with respect to the speed and accuracy of user performance which resulted. The presence of a map background was also manipulated. Partial removal of nonessential graphic features through symbol simplification was as effective a decluttering technique as was total removal of nonessential graphic features. The presence of a map background interacted with decluttering conditions when response time was the dependent measure. Results indicate that the effectiveness of decluttering methods depends upon the degree to which each method makes essential graphic information distinctive from nonessential information. Practical implications are discussed.

  7. Generation IV PR and PP Methods and Applications

    SciTech Connect

    Bari,R.A.

    2008-10-13

    This paper presents an evaluation methodology for proliferation resistance and physical protection (PR&PP) of Generation IV nuclear energy systems (NESs). For a proposed NES design, the methodology defines a set of challenges, analyzes system response to these challenges, and assesses outcomes. The challenges to the NES are the threats posed by potential actors (proliferant States or sub-national adversaries). The characteristics of Generation IV systems, both technical and institutional, are used to evaluate the response of the system and determine its resistance against proliferation threats and robustness against sabotage and terrorism threats. The outcomes of the system response are expressed in terms of six measures for PR and three measures for PP, which are the high-level PR&PP characteristics of the NES. The methodology is organized to allow evaluations to be performed at the earliest stages of system design and to become more detailed and more representative as design progresses. Uncertainty of results are recognized and incorporated into the evaluation at all stages. The results are intended for three types of users: system designers, program policy makers, and external stakeholders. Particular current relevant activities will be discussed in this regard. The methodology has been illustrated in a series of demonstration and case studies and these will be summarized in the paper.

  8. Modern Methods for fast generation of digital holograms

    NASA Astrophysics Data System (ADS)

    Tsang, P. W. M.; Liu, J. P.; Cheung, K. W. K.; Poon, T.-C.

    2010-06-01

    With the advancement of computers, digital holography (DH) has become an area of interest that has gained much popularity. Research findings derived from this technology enables holograms representing three dimensional (3-D) scenes to be acquired with optical means, or generated with numerical computation. In both cases, the holograms are in the form of numerical data that can be recorded, transmitted, and processed with digital techniques. On top of that, the availability of high capacity digital storage and wide-band communication technologies also cast light on the emergence of real time video holographic systems, enabling animated 3-D contents to be encoded as holographic data, and distributed via existing medium. At present, development in DH has reached a reasonable degree of maturity, but at the same time the heavy computation involved also imposes difficulty in practical applications. In this paper, a summary on a number of successful accomplishments that have been made recently in overcoming this problem is presented. Subsequently, we shall propose an economical framework that is suitable for real time generation and transmission of holographic video signals over existing distribution media. The proposed framework includes an aspect of extending the depth range of the object scene, which is important for the display of large-scale objects. [Figure not available: see fulltext.

  9. Method of generating hydrogen gas from sodium borohydride

    DOEpatents

    Kravitz, Stanley H.; Hecht, Andrew M.; Sylwester, Alan P.; Bell, Nelson S.

    2007-12-11

    A compact solid source of hydrogen gas, where the gas is generated by contacting water with micro-disperse particles of sodium borohydride in the presence of a catalyst, such as cobalt or ruthenium. The micro-disperse particles can have a substantially uniform diameter of 1-10 microns, and preferably about 3-5 microns. Ruthenium or cobalt catalytic nanoparticles can be incorporated in the micro-disperse particles of sodium borohydride, which allows a rapid and complete reaction to occur without the problems associated with caking and scaling of the surface by the reactant product sodium metaborate. A closed loop water management system can be used to recycle wastewater from a PEM fuel cell to supply water for reacting with the micro-disperse particles of sodium borohydride in a compact hydrogen gas generator. Capillary forces can wick water from a water reservoir into a packed bed of micro-disperse fuel particles, eliminating the need for using an active pump.

  10. Ionospheric Method of Detecting Tsunami-Generating Earthquakes.

    ERIC Educational Resources Information Center

    Najita, Kazutoshi; Yuen, Paul C.

    1978-01-01

    Reviews the earthquake phenomenon and its possible relation to ionospheric disturbances. Discusses the basic physical principles involved and the methods upon which instrumentation is being developed for possible use in a tsunami disaster warning system. (GA)

  11. Ionospheric Method of Detecting Tsunami-Generating Earthquakes.

    ERIC Educational Resources Information Center

    Najita, Kazutoshi; Yuen, Paul C.

    1978-01-01

    Reviews the earthquake phenomenon and its possible relation to ionospheric disturbances. Discusses the basic physical principles involved and the methods upon which instrumentation is being developed for possible use in a tsunami disaster warning system. (GA)

  12. Efficient and Robust Cartesian Mesh Generation for Building-Cube Method

    NASA Astrophysics Data System (ADS)

    Ishida, Takashi; Takahashi, Shun; Nakahashi, Kazuhiro

    In this study, an efficient and robust Cartesian mesh generation method for Building-Cube Method (BCM) is proposed. It can handle “dirty” geometry data whose surface has cracks, overlaps, and reverse of triangle. BCM mesh generation is implemented by two procedures; cube generation and cell generation in each cube. The cell generation procedure in this study is managed in each cube individually, and parallelized by OpenMP. Efficiency of the parallelized BCM mesh generation is demonstrated for several three-dimensional test cases using a multi-core PC.

  13. High temperature adhesive silicone foam composition, foam generating system and method of generating foam

    DOEpatents

    Mead, Judith W.; Montoya, Orelio J.; Rand, Peter B.; Willan, Vernon O.

    1984-01-01

    Access to a space is impeded by generation of a sticky foam from a silicone polymer and a low boiling solvent such as a halogenated hydrocarbon. In a preferred aspect, the formulation is polydimethylsiloxane gel mixed with F502 Freon as a solvent and blowing agent, and pressurized with CO.sub.2 in a vessel to about 250 PSI, whereby when the vessel is opened, a sticky and solvent resistant foam is deployed. The foam is deployable, over a wide range of temperatures, adhering to wet surfaces as well as dry, is stable over long periods of time and does not propagate flame or lose adhesive properties during an externally supported burn.

  14. Externally pressurized porous cylinder for multiple surface aerosol generation and method of generation

    DOEpatents

    Apel, Charles T.; Layman, Lawrence R.; Gallimore, David L.

    1988-01-01

    A nebulizer for generating aerosol having small droplet sizes and high efficiency at low sample introduction rates. The nebulizer has a cylindrical gas permeable active surface. A sleeve is disposed around the cylinder and gas is provided from the sleeve to the interior of the cylinder formed by the active surface. In operation, a liquid is provided to the inside of the gas permeable surface. The gas contacts the wetted surface and forms small bubbles which burst to form an aerosol. Those bubbles which are large are carried by momentum to another part of the cylinder where they are renebulized. This process continues until the entire sample is nebulized into aerosol sized droplets.

  15. New methods of generation of ultrashort laser pulses for ranging

    NASA Technical Reports Server (NTRS)

    Jelinkova, Helena; Hamal, Karel; Kubecek, V.; Prochazka, Ivan

    1993-01-01

    To reach the millimeter satellite laser ranging accuracy, the goal for nineties, new laser ranging techniques have to be applied. To increase the laser ranging precision, the application of the ultrashort laser pulses in connection with the new signal detection and processing techniques, is inevitable. The two wavelength laser ranging is one of the ways to measure the atmospheric dispersion to improve the existing atmospheric correction models and hence, to increase the overall system ranging accuracy to the desired value. We are presenting a review of several nonstandard techniques of ultrashort laser pulses generation, which may be utilized for laser ranging: compression of the nanosecond pulses using stimulated Brillouin and Raman backscattering; compression of the mode-locked pulses using Raman backscattering; passive mode-locking technique with nonlinear mirror; and passive mode-locking technique with the negative feedback.

  16. Method and apparatus for generating electric power by waves

    SciTech Connect

    Watabe, T.; Dote, Y.; Kondo, H.; Matsuda, T.; Takagi, M.; Yano, K.

    1984-12-25

    At least one caisson which is part or all of a breakwater forms a water chamber therein whose closure is a pendulum having a natural period in rocking or oscillating the same as a period of stationary wave surges caused in the water chamber by rocking movement of the pendulum owing to wave force impinging against the pendulum. At least one double-acting piston and cylinder assembly is connected to the pendulum, so that when a piston of the assembly is reciprocatively moved by the pendulum, pressure difference between cylinder chambers on both sides of the piston of the assembly controls a change-over valve which in turn controls hydraulic pressure discharged from the cylinder chambers to be supplied to a plurality of hydraulic motors respectively having accumulators of a type wherein accumulated pressure and volume of the hydraulic liquid are proportional to each other, whereby driving a common generator alternately by the hydraulic motors.

  17. Superconducting generators and motors and methods for employing same

    DOEpatents

    Tomsic, Michael J.; Long, Larry

    2017-08-29

    A superconducting electrical generator or motor having a plurality of cryostats is described. The cryostats contain coolant and a first cryostat encloses at least one of a plurality of superconducting coils. A first coil is in superconducting electrical communication with a second coil contained in a second cryostat through a superconducting conduction cooling cable enclosing a conductor. The first cryostat and the second cryostat may be in fluid communication through at least one cryogen channel within the at least one superconducting conduction cooling cable. In other embodiments, none of the plurality of cryostats may be in fluid communication and the cable may be cooled by conduction along the conductor from the first or second cryostat, or from both. The conductor may have different segments at temperatures equal to or above the temperature of the coolant and the superconducting conduction cooling cables may be connected through quick connect fittings.

  18. Method and apparatus for generating microshells of refractory materials

    NASA Technical Reports Server (NTRS)

    Lee, Mark C. (Inventor); Schilling, Christopher (Inventor); Ladner, Jr., George O. (Inventor); Wang, Taylor G. (Inventor)

    1987-01-01

    A system is described for forming accurately spherical and centered fluid-filled shells, especially of high melting temperature material. Material which is to form the shells is placed in a solid form in a container, and the material is rapidly heated to a molten temperature to avoid recrystallization and the possible generation of unwanted microbubbles in the melt. Immediately after the molten shells are formed, they drop through a drop tower whose upper end is heated along a distance of at least one foot to provide time for dissipation of surface waves on the shells while they cool to a highly viscous, or just above melting temperature so that the bubble within the shell will not rise and become off centered. The rest of the tower is cryogenically cooled to cool the shell to a solid state.

  19. System and method for generating current by selective electron heating

    DOEpatents

    Fisch, Nathaniel J.; Boozer, Allen H.

    1984-01-01

    A system for the generation of toroidal current in a plasma which is prepared in a toroidal magnetic field. The system utilizes the injection of high-frequency waves into the plasma by means of waveguides. The wave frequency and polarization are chosen such that when the waveguides are tilted in a predetermined fashion, the wave energy is absorbed preferentially by electrons traveling in one toroidal direction. The absorption of energy in this manner produces a toroidal electric current even when the injected waves themselves do not have substantial toroidal momentum. This current can be continuously maintained at modest cost in power and may be used to confine the plasma. The system can operate efficiently on fusion grade tokamak plasmas.

  20. Method and Apparatus for Generating Flight-Optimizing Trajectories

    NASA Technical Reports Server (NTRS)

    Ballin, Mark G. (Inventor); Wing, David J. (Inventor)

    2015-01-01

    An apparatus for generating flight-optimizing trajectories for a first aircraft includes a receiver capable of receiving second trajectory information associated with at least one second aircraft. The apparatus also includes a traffic aware planner (TAP) module operably connected to the receiver to receive the second trajectory information. The apparatus also includes at least one internal input device on board the first aircraft to receive first trajectory information associated with the first aircraft and a TAP application capable of calculating an optimal trajectory for the first aircraft based at least on the first trajectory information and the second trajectory information. The optimal trajectory at least avoids conflicts between the first trajectory information and the second trajectory information.

  1. Alternative method for steam generation for thermal oxidation of silicon

    NASA Astrophysics Data System (ADS)

    Spiegelman, Jeffrey J.

    2010-02-01

    Thermal oxidation of silicon is an important process step in MEMS device fabrication. Thicker oxide layers are often used as structural components and can take days or weeks to grow, causing high gas costs, maintenance issues, and a process bottleneck. Pyrolytic steam, which is generated from hydrogen and oxygen combustion, was the default process, but has serious drawbacks: cost, safety, particles, permitting, reduced growth rate, rapid hydrogen consumption, component breakdown and limited steam flow rates. Results from data collected over a 24 month period by a MEMS manufacturer supports replacement of pyrolytic torches with RASIRC Steamer technology to reduce process cycle time and enable expansion previously limited by local hydrogen permitting. Data was gathered to determine whether Steamers can meet or exceed pyrolytic torch performance. The RASIRC Steamer uses de-ionized water as its steam source, eliminating dependence on hydrogen and oxygen. A non-porous hydrophilic membrane selectively allows water vapor to pass. All other molecules are greatly restricted, so contaminants in water such as dissolved gases, ions, total organic compounds (TOC), particles, and metals can be removed in the steam phase. The MEMS manufacturer improved growth rate by 7% over the growth range from 1μm to 3.5μm. Over a four month period, wafer uniformity, refractive index, wafer stress, and etch rate were tracked with no significant difference found. The elimination of hydrogen generated a four-month return on investment (ROI). Mean time between failure (MTBF) was increased from 3 weeks to 32 weeks based on three Steamers operating over eight months.

  2. Method of inhibiting dislocation generation in silicon dendritic webs

    DOEpatents

    Spitznagel, John A.; Seidensticker, Raymond G.; McHugh, James P.

    1990-11-20

    A method of tailoring the heat balance of the outer edge of the dendrites adjacent the meniscus to produce thinner, smoother dendrites, which have substantially less dislocation sources contiguous with the dendrites, by changing the view factor to reduce radiation cooling or by irradiating the dendrites with light from a quartz lamp or a laser to raise the temperature of the dendrites.

  3. Methods and devices for generation of broadband pulsed radiation

    DOEpatents

    Borguet, Eric; Isaienko, Oleksandr

    2013-05-14

    Methods and apparatus for non-collinear optical parametric ampliffication (NOPA) are provided. Broadband phase matching is achieved with a non-collinear geometry and a divergent signal seed to provide bandwidth gain. A chirp may be introduced into the pump pulse such that the white light seed is amplified in a broad spectral region.

  4. An Efficient Method for Generation of Transgenic Rats Avoiding Embryo Manipulation.

    PubMed

    Pradhan, Bhola Shankar; Majumdar, Subeer S

    2016-03-08

    Although rats are preferred over mice as an animal model, transgenic animals are generated predominantly using mouse embryos. There are limitations in the generation of transgenic rat by embryo manipulation. Unlike mouse embryos, most of the rat embryos do not survive after male pronuclear DNA injection which reduces the efficiency of generation of transgenic rat by this method. More importantly, this method requires hundreds of eggs collected by killing several females for insertion of transgene to generate transgenic rat. To this end, we developed a noninvasive and deathless technique for generation of transgenic rats by integrating transgene into the genome of the spermatogonial cells by testicular injection of DNA followed by electroporation. After standardization of this technique using EGFP as a transgene, a transgenic disease model displaying alpha thalassemia was successfully generated using rats. This efficient method will ease the generation of transgenic rats without killing the lives of rats while simultaneously reducing the number of rats used for generation of transgenic animal.

  5. Externally pressurized porous cylinder for multiple surface aerosol generation and method of generation

    DOEpatents

    Apel, C.T.; Layman, L.R.; Gallimore, D.L.

    1988-05-10

    A nebulizer is described for generating aerosol having small droplet sizes and high efficiency at low sample introduction rates. The nebulizer has a cylindrical gas permeable active surface. A sleeve is disposed around the cylinder and gas is provided from the sleeve to the interior of the cylinder formed by the active surface. In operation, a liquid is provided to the inside of the gas permeable surface. The gas contacts the wetted surface and forms small bubbles which burst to form an aerosol. Those bubbles which are large are carried by momentum to another part of the cylinder where they are renebulized. This process continues until the entire sample is nebulized into aerosol sized droplets. 2 figs.

  6. Practical methods for generating alternating magnetic fields for biomedical research

    NASA Astrophysics Data System (ADS)

    Christiansen, Michael G.; Howe, Christina M.; Bono, David C.; Perreault, David J.; Anikeeva, Polina

    2017-08-01

    Alternating magnetic fields (AMFs) cause magnetic nanoparticles (MNPs) to dissipate heat while leaving surrounding tissue unharmed, a mechanism that serves as the basis for a variety of emerging biomedical technologies. Unfortunately, the challenges and costs of developing experimental setups commonly used to produce AMFs with suitable field amplitudes and frequencies present a barrier to researchers. This paper first presents a simple, cost-effective, and robust alternative for small AMF working volumes that uses soft ferromagnetic cores to focus the flux into a gap. As the experimental length scale increases to accommodate animal models (working volumes of 100s of cm3 or greater), poor thermal conductivity and volumetrically scaled core losses render that strategy ineffective. Comparatively feasible strategies for these larger volumes instead use low loss resonant tank circuits to generate circulating currents of 1 kA or greater in order to produce the comparable field amplitudes. These principles can be extended to the problem of identifying practical routes for scaling AMF setups to humans, an infrequently acknowledged challenge that influences the extent to which many applications of MNPs may ever become clinically relevant.

  7. Apparatus and method for generating partially coherent illumination for photolithography

    DOEpatents

    Sweatt, William C.

    2001-01-01

    The present invention introduces a novel scatter plate into the optical path of source light used for illuminating a replicated object. The scatter plate has been designed to interrupt a focused, incoming light beam by introducing between about 8 to 24 diffraction zones blazed onto the surface of the scatter plate which intercept the light and redirect it to a like number of different positions in the condenser entrance pupil each of which is determined by the relative orientation and the spatial frequency of the diffraction grating in each of the several zones. Light falling onto the scatter plate, therefore, generates a plurality of unphased sources of illumination as seen by the back half of the optical system. The system comprises a high brightness source, such as a laser, creating light which is taken up by a beam forming optic which focuses the incoming light into a condenser which in turn, focuses light into a field lens creating Kohler illumination image of the source in a camera entrance pupil. The light passing through the field lens illuminates a mask which interrupts the source light as either a positive or negative image of the object to be replicated. Light passing by the mask is focused into the entrance pupil of the lithographic camera creating an image of the mask onto a receptive media.

  8. Systems and methods for generation of hydrogen peroxide vapor

    DOEpatents

    Love, Adam H; Eckels, Joel Del; Vu, Alexander K; Alcaraz, Armando; Reynolds, John G

    2014-12-02

    A system according to one embodiment includes a moisture trap for drying air; at least one of a first container and a second container; and a mechanism for at least one of: bubbling dried air from the moisture trap through a hydrogen peroxide solution in the first container for producing a hydrogen peroxide vapor, and passing dried air from the moisture trap into a headspace above a hydrogen peroxide solution in the second container for producing a hydrogen peroxide vapor. A method according one embodiment includes at least one of bubbling dried air through a hydrogen peroxide solution in a container for producing a first hydrogen peroxide vapor, and passing dried air from the moisture trap into a headspace above the hydrogen peroxide solution in a container for producing a second hydrogen peroxide vapor. Additional systems and methods are also presented.

  9. Automated Test Case Generator for Phishing Prevention Using Generative Grammars and Discriminative Methods

    ERIC Educational Resources Information Center

    Palka, Sean

    2015-01-01

    This research details a methodology designed for creating content in support of various phishing prevention tasks including live exercises and detection algorithm research. Our system uses probabilistic context-free grammars (PCFG) and variable interpolation as part of a multi-pass method to create diverse and consistent phishing email content on…

  10. Automated Test Case Generator for Phishing Prevention Using Generative Grammars and Discriminative Methods

    ERIC Educational Resources Information Center

    Palka, Sean

    2015-01-01

    This research details a methodology designed for creating content in support of various phishing prevention tasks including live exercises and detection algorithm research. Our system uses probabilistic context-free grammars (PCFG) and variable interpolation as part of a multi-pass method to create diverse and consistent phishing email content on…

  11. Electrochemical methods for generation of a biological proton motive force

    DOEpatents

    Zeikus, Joseph Gregory; Shin, Hyoun S.; Jain, Mahendra K.

    2008-12-02

    Disclosed are methods using neutral red to mediate the interconversion of chemical and electrical energy. Electrically reduced neutral red has been found to promote cell growth and formation of reduced products by reversibly increasing the ratio of the reduced:oxidized forms of NAD(H) or NADP(H). Electrically reduced neutral red is able to serve as the sole source of reducing power for microbial cell growth. Neutral red is also able to promote conversion of chemical energy to electrical energy by facilitating the transfer of electrons from microbial reducing power to a fuel cell cathode.

  12. Photo-voltaic power generating means and methods

    DOEpatents

    Kroger, Ferdinand A.; Rod, Robert L.; Panicker, M. P. Ramachandra

    1983-08-23

    A photo-voltaic power cell based on a photoelectric semiconductor compound and the method of using and making the same. The semiconductor compound in the photo-voltaic power cell of the present invention can be electrolytically formed at a cathode in an electrolytic solution by causing discharge or decomposition of ions or molecules of a non-metallic component with deposition of the non-metallic component on the cathode and simultaneously providing ions of a metal component which discharge and combine with the non-metallic component at the cathode thereby forming the semiconductor compound film material thereon. By stoichiometrically adjusting the amounts of the components, or otherwise by introducing dopants into the desired amounts, an N-type layer can be formed and thereafter a P-type layer can be formed with a junction therebetween. The invention is effective in producing homojunction semiconductor materials and heterojunction semiconductor materials. The present invention also provides a method of using three electrodes in order to form the semiconductor compound material on one of these electrodes. Various examples are given for manufacturing different photo-voltaic cells in accordance with the present invention.

  13. Photo-voltaic power generating means and methods

    SciTech Connect

    Kroger, F.A.; Panicker, M.P.R.; Rod, R.L.

    1983-08-23

    A photo-voltaic power cell is disclosed, based on a photoelectric semiconductor compound and the method of using and making the same. The semiconductor compound in the photo-voltaic power cell of the present invention can be electrolytically formed at a cathode in an electrolytic solution by causing discharge or decomposition of ions or molecules of a non- metallic component with deposition of the non-metallic component on the cathode and simultaneously providing ions of a metal component which discharge and combine with the non-metallic component at the cathode thereby forming the semiconductor compound film material thereon. By stoichiometrically adjusting the amounts of the components, or otherwise by introducing dopants into the desired amounts, an N-type layer can be formed and thereafter a P-type layer can be formed with a junction therebetween. The invention is effective in producing homojunction semiconductor materials and heterojunction semiconductor materials. The present invention also provides a method of using three electrodes in order to form the semiconductor compound material on one of these electrodes. Various examples are given for manufacturing different photo-voltaic cells in accordance with the present invention.

  14. Photo-voltaic power generating means and methods

    DOEpatents

    Kroger, Ferdinand A.; Rod, Robert L.; Panicker, Ramachandra M. P.; Knaster, Mark B.

    1984-01-10

    A photo-voltaic power cell based on a photoelectric semiconductor compound and the method of using and making the same. The semiconductor compound in the photo-voltaic power cell of the present invention can be electrolytically formed at a cathode in an electrolytic solution by causing discharge or decomposition of ions or molecules of a non-metallic component with deposition of the non-metallic component on the cathode and simultaneously providing ions of a metal component which discharge and combine with the non-metallic component at the cathode thereby forming the semiconductor compound film material thereon. By stoichiometrically adjusting the amounts of the components, or otherwise by introducing dopants into the desired amounts, an N-type layer can be formed and thereafter a P-type layer can be formed with a junction therebetween. The invention is effective in producing homojunction semiconductor materials and heterojunction semiconductor materials. The present invention also provides a method of using three electrodes in order to form the semiconductor compound material on one of these electrodes. Various examples are given for manufacturing different photo-voltaic cells in accordance with the present invention.

  15. A Model-Based Method for Content Validation of Automatically Generated Test Items

    ERIC Educational Resources Information Center

    Zhang, Xinxin; Gierl, Mark

    2016-01-01

    The purpose of this study is to describe a methodology to recover the item model used to generate multiple-choice test items with a novel graph theory approach. Beginning with the generated test items and working backward to recover the original item model provides a model-based method for validating the content used to automatically generate test…

  16. 40 CFR 799.6786 - TSCA water solubility: Generator column method.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 32 2011-07-01 2011-07-01 false TSCA water solubility: Generator...: Generator column method. (a) Scope—(1) Applicability. This section is intended to meet the testing... the saturated solutions produced by the generator column. After extraction onto a chromatographic...

  17. 40 CFR 799.6786 - TSCA water solubility: Generator column method.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 32 2014-07-01 2014-07-01 false TSCA water solubility: Generator...: Generator column method. (a) Scope—(1) Applicability. This section is intended to meet the testing... the saturated solutions produced by the generator column. After extraction onto a chromatographic...

  18. 40 CFR 799.6786 - TSCA water solubility: Generator column method.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 33 2012-07-01 2012-07-01 false TSCA water solubility: Generator...: Generator column method. (a) Scope—(1) Applicability. This section is intended to meet the testing... the saturated solutions produced by the generator column. After extraction onto a chromatographic...

  19. 40 CFR 799.6786 - TSCA water solubility: Generator column method.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 33 2013-07-01 2013-07-01 false TSCA water solubility: Generator...: Generator column method. (a) Scope—(1) Applicability. This section is intended to meet the testing... the saturated solutions produced by the generator column. After extraction onto a chromatographic...

  20. Unique Method for Generating Design Earthquake Time Histories

    SciTech Connect

    R. E. Spears

    2008-07-01

    A method has been developed which takes a seed earthquake time history and modifies it to produce given design response spectra. It is a multi-step process with an initial scaling step and then multiple refinement steps. It is unique in the fact that both the acceleration and displacement response spectra are considered when performing the fit (which primarily improves the low frequency acceleration response spectrum accuracy). Additionally, no matrix inversion is needed. The features include encouraging the code acceleration, velocity, and displacement ratios and attempting to fit the pseudo velocity response spectrum. Also, “smoothing” is done to transition the modified time history to the seed time history at its start and end. This is done in the time history regions below a cumulative energy of 5% and above a cumulative energy of 95%. Finally, the modified acceleration, velocity, and displacement time histories are adjusted to start and end with an amplitude of zero (using Fourier transform techniques for integration).

  1. Online Optimization Method for Operation of Generators in a Micro Grid

    NASA Astrophysics Data System (ADS)

    Hayashi, Yasuhiro; Miyamoto, Hideki; Matsuki, Junya; Iizuka, Toshio; Azuma, Hitoshi

    Recently a lot of studies and developments about distributed generator such as photovoltaic generation system, wind turbine generation system and fuel cell have been performed under the background of the global environment issues and deregulation of the electricity market, and the technique of these distributed generators have progressed. Especially, micro grid which consists of several distributed generators, loads and storage battery is expected as one of the new operation system of distributed generator. However, since precipitous load fluctuation occurs in micro grid for the reason of its smaller capacity compared with conventional power system, high-accuracy load forecasting and control scheme to balance of supply and demand are needed. Namely, it is necessary to improve the precision of operation in micro grid by observing load fluctuation and correcting start-stop schedule and output of generators online. But it is not easy to determine the operation schedule of each generator in short time, because the problem to determine start-up, shut-down and output of each generator in micro grid is a mixed integer programming problem. In this paper, the authors propose an online optimization method for the optimal operation schedule of generators in micro grid. The proposed method is based on enumeration method and particle swarm optimization (PSO). In the proposed method, after picking up all unit commitment patterns of each generators satisfied with minimum up time and minimum down time constraint by using enumeration method, optimal schedule and output of generators are determined under the other operational constraints by using PSO. Numerical simulation is carried out for a micro grid model with five generators and photovoltaic generation system in order to examine the validity of the proposed method.

  2. Domain Decomposition By the Advancing-Partition Method for Parallel Unstructured Grid Generation

    NASA Technical Reports Server (NTRS)

    Pirzadeh, Shahyar Z.; Zagaris, George

    2009-01-01

    A new method of domain decomposition has been developed for generating unstructured grids in subdomains either sequentially or using multiple computers in parallel. Domain decomposition is a crucial and challenging step for parallel grid generation. Prior methods are generally based on auxiliary, complex, and computationally intensive operations for defining partition interfaces and usually produce grids of lower quality than those generated in single domains. The new technique, referred to as "Advancing Partition," is based on the Advancing-Front method, which partitions a domain as part of the volume mesh generation in a consistent and "natural" way. The benefits of this approach are: 1) the process of domain decomposition is highly automated, 2) partitioning of domain does not compromise the quality of the generated grids, and 3) the computational overhead for domain decomposition is minimal. The new method has been implemented in NASA's unstructured grid generation code VGRID.

  3. A New Method for Growth and Analysis of Next-generation Infrared (IR) Detector Materials

    DTIC Science & Technology

    2009-03-01

    A New Method for Growth and Analysis of Next-generation Infrared (IR) Detector Materials by John D. Demaree and Stefan Svensson ARL-TR...5069 ARL-TR-4739 March 2009 A New Method for Growth and Analysis of Next-generation Infrared (IR) Detector Materials John D. Demaree...Analysis of Next-generation Infrared (IR) Detector Materials 5c. PROGRAM ELEMENT NUMBER 5d. PROJECT NUMBER 5e. TASK NUMBER 6. AUTHOR(S) John

  4. Generating Non-normal Data for Simulation of Structural Equation Models Using Mattson's Method.

    ERIC Educational Resources Information Center

    Reinartz, Werner J.; Echambadi, Raj; Cin, Wynne W.

    2002-01-01

    Tested empirically the applicability of a method developed by S. Mattson for generating data on latent variables with controlled skewness and kurtosis of the observed variables. Monte Carlo simulation results suggest that Mattson's method appears to be a good approach to generate data with defined levels of skewness and kurtosis. (SLD)

  5. An improved path flux analysis with multi generations method for mechanism reduction

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Gou, Xiaolong

    2016-03-01

    An improved path flux analysis with a multi generations (IMPFA) method is proposed to eliminate unimportant species and reactions, and to generate skeletal mechanisms. The production and consumption path fluxes of each species at multiple reaction paths are calculated and analysed to identify the importance of the species and of the elementary reactions. On the basis of the indexes of each reaction path of the first, second, and third generations, the improved path flux analysis with two generations (IMPFA2) and improved path flux analysis with three generations (IMPFA3) are used to generate skeletal mechanisms that contain different numbers of species. The skeletal mechanisms are validated in the case of homogeneous autoignition and perfectly stirred reactor of methane and n-decane/air mixtures. Simulation results of the skeletal mechanisms generated by IMPFA2 and IMPFA3 are compared with those obtained by path flux analysis (PFA) with two and three generations, respectively. The comparisons of ignition delay times, final temperatures, and temperature dependence on flow residence time show that the skeletal mechanisms generated by the present IMPFA method are more accurate than those obtained by the PFA method, with almost the same number of species under a range of initial conditions. By considering the accuracy and computational efficiency, when using the IMPFA (or PFA) method, three generations may be the best choice for the reduction of large-scale detailed chemistry.

  6. Analysis of the Two-Fraction Method for Generating Primitive Pythagoras Triples

    ERIC Educational Resources Information Center

    Babajee, Diyashvir Kreetee Rajiv

    2012-01-01

    Finding methods for generating Pythagorean triples have been of great interest to Mathematicians since the Babylonians (from 1900 to 1600 BC). One of these methods is the less known two-fraction method which works for any two fractions whose product is 2. In this work, we analyse the method and show that it can be obtained from the fact that the…

  7. An Efficient Functional Test Generation Method For Processors Using Genetic Algorithms

    NASA Astrophysics Data System (ADS)

    Hudec, Ján; Gramatová, Elena

    2015-07-01

    The paper presents a new functional test generation method for processors testing based on genetic algorithms and evolutionary strategies. The tests are generated over an instruction set architecture and a processor description. Such functional tests belong to the software-oriented testing. Quality of the tests is evaluated by code coverage of the processor description using simulation. The presented test generation method uses VHDL models of processors and the professional simulator ModelSim. The rules, parameters and fitness functions were defined for various genetic algorithms used in automatic test generation. Functionality and effectiveness were evaluated using the RISC type processor DP32.

  8. Algorithms for Zonal Methods and Development of Three Dimensional Mesh Generation Procedures.

    DTIC Science & Technology

    1984-02-01

    zonal methods and 4D-grid generation procedures for application of finite difference methods to solve complex aircraft con- figurations. For the task...this research has been to further develop grid generation procedures and zonal methods so as to extend the applications of nonlinear finite difference ...C - - A CHIMERA GRID SCHEME .................... 51 APPENDIX D - - A CONSERVATIVE FINITE DIFFERENCE ALGORITHM FOR THE UNSTEADY TRANSONIC POTENTIAL

  9. Generations.

    PubMed

    Chambers, David W

    2005-01-01

    Groups naturally promote their strengths and prefer values and rules that give them an identity and an advantage. This shows up as generational tensions across cohorts who share common experiences, including common elders. Dramatic cultural events in America since 1925 can help create an understanding of the differing value structures of the Silents, the Boomers, Gen Xers, and the Millennials. Differences in how these generations see motivation and values, fundamental reality, relations with others, and work are presented, as are some applications of these differences to the dental profession.

  10. Photovoltaic Generation Data Cleaning Method Based on Approximately Periodic Time Series

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Zhang, Sh; Liang, J.; Tian, B.; Hou, Z.; Liu, B. Zh

    2017-05-01

    Data cleaning of photovoltaic (PV) power generation is an important step during data preprocessing for further utilization, such as PV power generation forecasting. The PV power generation data can be treated as a time series. An improved data cleaning method based on approximately periodic time series is proposed. First, the abnormal data in the PV data time series is classified with three types of the outliers. Then these three types of outliers are quantified based on the physical characters of PV power generation, and the effective corresponding cleaning implementations are described considering the rate capacity of PV station and period of PV data time series. Finally, the data cleaning method is tested on the PV generation data from a certain real power grid. The results show that this data cleaning method can effectively improve the PV data quality, and provide an effective support tool for the further application of PV data.

  11. The complementary graphical method used for profiling side mill for generation of helical surface

    NASA Astrophysics Data System (ADS)

    Baroiu, N.; Berbinschi, S.; Teodor, V. G.; Susac, F.; Oancea, N.

    2017-08-01

    This paper presents a method developed in CATIA design environment, for profiling tools bounded by revolution peripheral surfaces — side mill tool. The graphical method is based on a complementary theorem of surface enveloping. They are presented specific algorithms and an example for profiling generating tools of helical flutes of compressors rotors with three lobes. The obtained results with graphical method are compared with those obtained by a classical method — the Nikolaev theorem. The graphical method is very intuitive and, at the same time, very rigorous. It is characterized by the simplicity of application and avoids the ambiguity case of solutions, which are frequently met in numerical methods, as profiles overlapping, generating of revolving surfaces or rotating a spatial curve around the tool’s axis. Other advantage of using graphical methods is that CNC machines tools, used for generating profiled tools, allows importing the files, which directly result from graphical modeling.

  12. Log-Cubic Method for Generation of Soil Particle Size Distribution Curve

    PubMed Central

    2013-01-01

    Particle size distribution (PSD) is a fundamental physical property of soils. Traditionally, the PSD curve was generated by hand from limited data of particle size analysis, which is subjective and may lead to significant uncertainty in the freehand PSD curve and graphically estimated cumulative particle percentages. To overcome these problems, a log-cubic method was proposed for the generation of PSD curve based on a monotone piecewise cubic interpolation method. The log-cubic method and commonly used log-linear and log-spline methods were evaluated by the leave-one-out cross-validation method for 394 soil samples extracted from UNSODA database. Mean error and root mean square error of the cross-validation show that the log-cubic method outperforms two other methods. What is more important, PSD curve generated by the log-cubic method meets essential requirements of a PSD curve, that is, passing through all measured data and being both smooth and monotone. The proposed log-cubic method provides an objective and reliable way to generate a PSD curve from limited soil particle analysis data. This method and the generated PSD curve can be used in the conversion of different soil texture schemes, assessment of grading pattern, and estimation of soil hydraulic parameters and erodibility factor. PMID:23766698

  13. Log-cubic method for generation of soil particle size distribution curve.

    PubMed

    Shang, Songhao

    2013-01-01

    Particle size distribution (PSD) is a fundamental physical property of soils. Traditionally, the PSD curve was generated by hand from limited data of particle size analysis, which is subjective and may lead to significant uncertainty in the freehand PSD curve and graphically estimated cumulative particle percentages. To overcome these problems, a log-cubic method was proposed for the generation of PSD curve based on a monotone piecewise cubic interpolation method. The log-cubic method and commonly used log-linear and log-spline methods were evaluated by the leave-one-out cross-validation method for 394 soil samples extracted from UNSODA database. Mean error and root mean square error of the cross-validation show that the log-cubic method outperforms two other methods. What is more important, PSD curve generated by the log-cubic method meets essential requirements of a PSD curve, that is, passing through all measured data and being both smooth and monotone. The proposed log-cubic method provides an objective and reliable way to generate a PSD curve from limited soil particle analysis data. This method and the generated PSD curve can be used in the conversion of different soil texture schemes, assessment of grading pattern, and estimation of soil hydraulic parameters and erodibility factor.

  14. On the applications of algebraic grid generation methods based on transfinite interpolation

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung Lee

    1989-01-01

    Algebraic grid generation methods based on transfinite interpolation called the two-boundary and four-boundary methods are applied for generating grids with highly complex boundaries. These methods yield grid point distributions that allow for accurate application to regions of sharp gradients in the physical domain or time-dependent problems with small length scale phenomena. Algebraic grids are derived using the two-boundary and four-boundary methods for applications in both two- and three-dimensional domains. Grids are developed for distinctly different geometrical problems and the two-boundary and four-boundary methods are demonstrated to be applicable to a wide class of geometries.

  15. Acceleration of computer-generated holograms using tilted wavefront recording plane method.

    PubMed

    Arai, Daisuke; Shimobaba, Tomoyoshi; Murano, Koki; Endo, Yutaka; Hirayama, Ryuji; Hiyama, Daisuke; Kakue, Takashi; Ito, Tomoyoshi

    2015-01-26

    Computer Generated Holograms (CGH) are generated on computers; however, a great deal of computational power is required because the quality of the image is proportional to the number of point light sources of a 3D object. The Wavefront Recording Plane (WRP) method is an algorithm that enables reduction of the amount of calculations required. However, the WRP method also has a defect; it is not effective in the case of a 3D object with a deep structure. In this study, we propose two improved WRP methods: "Least Square Tilted WRP method" and "RANSAC Multi-Tilted WRP method."

  16. Partial multidimensional grid generation method for efficient calculation of nuclear wavefunctions

    NASA Astrophysics Data System (ADS)

    Iordanov, Tzvetelin; Billeter, Salomon R.; Webb, Simon P.; Hammes-Schiffer, Sharon

    2001-04-01

    A partial multidimensional grid generation method for the efficient calculation of nuclear wavefunctions is presented. This method substantially decreases the number of potential energy calculations by avoiding this calculation for grid points with high potential energy. The application of this method to the calculation of three-dimensional hydrogen nuclear wavefunctions for hydride transfer in the enzyme liver alcohol dehydrogenase is presented. The results indicate that the partial multidimensional grid generation method is nearly as accurate as and significantly faster than the standard full grid method.

  17. Inculcation Method of Character Education Based on Personality Types Classification in Realizing Indonesia Golden Generation

    ERIC Educational Resources Information Center

    Sunarto, M. J. Dewiyani; Sagirani, Tri

    2014-01-01

    "The rise of Indonesia Golden Generation" is the theme of National Education Day in 2012. In an effort to create a golden generation; education must be interpreted as a complex problem, in particular the cultivation of character education that was originally using indoctrination method. Given the shifting of the changing times,…

  18. Mixed Methods Case Study of Generational Patterns in Responses to Shame and Guilt

    ERIC Educational Resources Information Center

    Ng, Tony

    2013-01-01

    Moral socialization and moral learning are antecedents of moral motivation. As many as 4 generations interact in workplace and education settings; hence, a deeper understanding of the moral motivation of members of those generations is needed. The purpose of this convergent mixed methods case study was to understand the moral motivation of 5…

  19. The Rational Set Generator: A Method for Creating Concept Examples for Teaching and Testing.

    ERIC Educational Resources Information Center

    Driscoll, Marcy P.; Tessmer, Martin

    1985-01-01

    Discusses development of rational set generator--an overall method for creating a rational set of examples to teach concepts and evaluate student knowledge levels--which combines formulas for creating examples measuring discrimination and generalization. Also discussed are results of a study to test the efficacy of a rational set generator. (MBR)

  20. Mixed Methods Case Study of Generational Patterns in Responses to Shame and Guilt

    ERIC Educational Resources Information Center

    Ng, Tony

    2013-01-01

    Moral socialization and moral learning are antecedents of moral motivation. As many as 4 generations interact in workplace and education settings; hence, a deeper understanding of the moral motivation of members of those generations is needed. The purpose of this convergent mixed methods case study was to understand the moral motivation of 5…

  1. A method of generating scratched look calligraphy characters using mathematical morphology

    NASA Astrophysics Data System (ADS)

    Li, Wei; Hagiwara, Ichiro; Yasui, Takao; Chen, Hu-Awei

    2003-10-01

    We propose a method to generate scratched look calligraphy characters by mathematical morphology, and it can decide on the number of times of thinning computation and the structuring element and also can know whether the sizes of generated calligraphy characters are same as the original one in theory. By different changed structuring elements, we can get various scratched look calligraphy characters.

  2. Improved method for calculating the radiation heat generation in the BOR-60 reactor

    SciTech Connect

    Varivtsev, A. V. Zhemkov, I. Yu.

    2014-12-15

    The results of theoretical and experimental studies aimed at determining the radiation heat generation in the BOR-60 reactor reveal the drawbacks of the computational methods used at present. An algorithm that is free from these drawbacks and allows one to determine the radiation heat generation computationally is proposed.

  3. Orthodontic forces generated by a simulated archwire appliance evaluated by the finite element method.

    PubMed

    Fotos, P G; Spyrakos, C C; Bernard, D O

    1990-01-01

    The finite element method has been used to determine the stress distribution generated by the initial placement of a simulated preset bracket-type orthodontic appliance utilizing titanium-nickel alloy archwire.

  4. Applicability of the minimum entropy generation method for optimizing thermodynamic cycles

    NASA Astrophysics Data System (ADS)

    Cheng, Xue-Tao; Liang, Xin-Gang

    2013-01-01

    Entropy generation is often used as a figure of merit in thermodynamic cycle optimizations. In this paper, it is shown that the applicability of the minimum entropy generation method to optimizing output power is conditional. The minimum entropy generation rate and the minimum entropy generation number do not correspond to the maximum output power when the total heat into the system of interest is not prescribed. For the cycles whose working medium is heated or cooled by streams with prescribed inlet temperatures and prescribed heat capacity flow rates, it is theoretically proved that both the minimum entropy generation rate and the minimum entropy generation number correspond to the maximum output power when the virtual entropy generation induced by dumping the used streams into the environment is considered. However, the minimum principle of entropy generation is not tenable in the case that the virtual entropy generation is not included, because the total heat into the system of interest is not fixed. An irreversible Carnot cycle and an irreversible Brayton cycle are analysed. The minimum entropy generation rate and the minimum entropy generation number do not correspond to the maximum output power if the heat into the system of interest is not prescribed.

  5. A convenient method to measure the quantity of the acid generated by PAGs and acid amplifiers

    NASA Astrophysics Data System (ADS)

    Wang, Liyuan; Chu, Zhanxing; Sheng, Liying

    2005-05-01

    A convenient method was set up to measure the amounts of acid generated by PAGs and acid amplifiers based on the UV absorbance change of bromophenol blue aqueous solution with the addition of acid. The acid generating property of three different kinds of PAGs and acidolysis property of two 1-substituted cis-1,2-cyclohexanediol monosulfonates were investigated and discussed with this method. The measurements were performed in aqueous solution.

  6. Method for generating a highly reactive plasma for exhaust gas aftertreatment and enhanced catalyst reactivity

    DOEpatents

    Whealton, John H.; Hanson, Gregory R.; Storey, John M.; Raridon, Richard J.; Armfield, Jeffrey S.; Bigelow, Timothy S.; Graves, Ronald L.

    2001-01-01

    A method for non-thermal plasma aftertreatment of exhaust gases the method comprising the steps of providing short risetime (about 40 ps), high frequency (about 5G hz), high power bursts of low-duty factor microwaves sufficient to generate a dielectric barrier discharge and passing a gas to treated through the discharge so as to cause dissociative reduction of the exhaust gases. The invention also includes a reactor for generating the non-thermal plasma.

  7. Photonic methods of millimeter-wave generation based on Brillouin fiber laser

    NASA Astrophysics Data System (ADS)

    Al-Dabbagh, R. K.; Al-Raweshidy, H. S.

    2016-05-01

    In optical communication link, generation and delivering millimeter-wave (mm-waves) in radio over fiber (RoF) systems has limitation due to fiber non-linearity effects. To solve this problem, photonic methods of mm-wave generation based on characterizations of Brillouin fiber laser are proposed in this work for the first time. Three novel photonic approaches for mm-wave generation methods based on Brillouin fiber laser and phase modulator are proposed and demonstrated by simulation. According to our theoretical analysis and simulation, mm-waves with frequency up to 80 GHz and good signal to noise ratio (SNR) up to 90 dB are generated by new and cost effective methods of generation that make them suitable for applications of the fifth generation (5G) networks. The proposed configurations increase the stability and the quality of the mm-wave generation system by using a single laser source as a pump wave and the fiber non-linearity effects are reduced. A key advantage of this research is that proposed a number of very simple generation methods and cost effective which only use standard components of optical telecommunications. Stimulated Brillouin Scattering (SBS) effect that exists in the optical fiber is studied with the characterization of phase modulator. An all optically stable mm-wave carriers are achieved successfully in the three different methods with different frequencies from 20 GHz up to 80 GHz. Simulation results show that all these carriers have low phase noise, good SNR ranging between 60 and 90 dB and tuning capability in comparison with previous methods reported. This makes them suitable for mm-wave transmission in RoF systems to transmit data in the next generation networks.

  8. Highly accurate spatial mode generation using spatial cross modulation method for mode division multiplexing

    NASA Astrophysics Data System (ADS)

    Sakuma, Hiroki; Okamoto, Atsushi; Shibukawa, Atsushi; Goto, Yuta; Tomita, Akihisa

    2016-02-01

    We propose a spatial mode generation technology using spatial cross modulation (SCM) for mode division multiplexing (MDM). The most well-known method for generating arbitrary complex amplitude fields is to display an off-axis computer-generated hologram (CGH) on a spatial light modulator (SLM). However, in this method, a desired complex amplitude field is obtained with first order diffraction light. This critically lowers the light utilization efficiency. On the other hand, in the SCM, the desired complex field is provided with zeroth order diffraction light. For this reason, our technology can generate spatial modes with large light utilization efficiency in addition to high accuracy. In this study, first, a numerical simulation was performed to verify that the SCM is applicable for spatial mode generation. Next, we made a comparison from two view points of the coupling efficiency and the light utilization between our technology and the technology using an off-axis amplitude hologram as a representative complex amplitude generation method. The simulation results showed that our technology can achieve considerably high light utilization efficiency while maintaining the enough coupling efficiency comparable to the technology using an off-axis amplitude hologram. Finally, we performed an experiment on spatial modes generation using the SCM. Experimental results showed that our technology has the great potential to realize the spatial mode generation with high accuracy.

  9. Practical method for color computer-generated rainbow holograms of real-existing objects.

    PubMed

    Shi, Yile; Wang, Hui; Li, Yong; Jin, Hongzhen; Ma, Lihong

    2009-07-20

    A novel method for computer-generated rainbow holograms (CGRHs) of full-color objects is proposed. First, a new algorithm for fabricating full-color CGRHs of real-existing objects is proposed based on the interrelationship between coding of a CGRH and reconstruction of the hologram. Second, a color rainbow hologram for a real-existing object is generated by combining the proposed algorithm and computer-generated hologram generating system. Finally, the hologram is outputted by an auto-microfilming system. The principle of the algorithm, the process of hologram calculation, and the hologram generating system for real-existing objects and experimental results are presented. The experimental results demonstrate that the new method is feasible.

  10. Numerical Study of Multigrid Methods with Various Smoothers for the Elliptical Grid Generation Equations

    NASA Technical Reports Server (NTRS)

    Golik, W. L.

    1996-01-01

    A robust solver for the elliptic grid generation equations is sought via a numerical study. The system of PDEs is discretized with finite differences, and multigrid methods are applied to the resulting nonlinear algebraic equations. Multigrid iterations are compared with respect to the robustness and efficiency. Different smoothers are tried to improve the convergence of iterations. The methods are applied to four 2D grid generation problems over a wide range of grid distortions. The results of the study help to select smoothing schemes and the overall multigrid procedures for elliptic grid generation.

  11. A high-performance fringe pattern generation method for fringe projection profilometry

    NASA Astrophysics Data System (ADS)

    Yang, Tao; Li, Huan Huan; Zhou, Xiang; Li, Yu Qin; Guo, Jia Yu; Gao, Xiao Fei

    2017-06-01

    Fringe projection profilometry (FPP) has been one of the most popular non-contact methods for 3D surface measurement in recent years. In FPP, the quality of the fringe pattern determines the measurement accuracy and measurement range to a great extent. In this paper, we proposed a high-quality fringe projection method using a biaxial MEMS scanning mirror and a laser diode (LD). The fringe pattern is produced by a very low NA (numerical aperture) scanning laser beam. Compared with pixel array based fringe pattern generation method, such as DLP and LCOS, the generation method can produce higher performance fringe pattern, which is high contrast, narrow pitch and long depth. In this paper, we also did a contrast between different fringe pattern generation methods.

  12. NLA-QAM - A method for generating high-power QAM signals through nonlinear amplification

    NASA Astrophysics Data System (ADS)

    Morais, D. H.; Feher, K.

    1982-03-01

    A generalized technique for generating quadrature amplitude modulated (QAM) signals that permits nonlinear amplification is presented. With this technique a high-power (2 to the 2n power)-state QAM signal is generated by combining n unfiltered, nonlinear amplified, QPSK signals, n being a positive integer. The specific methods of generating 16- and 64-state signals using this technique are presented. An attractive feature of the technique is that despite significant difference with the conventional method of generating QAM signals, the same straightforward demodulation techniques apply to both, and the Pe versus S/N performances are essentially identical. In the 16-state version employing traveling wave tubes (TWT's) or GaAs FET amplifiers, the technique is shown to result in a transmitter output power advantage that is on the order of 5 dB compared to the conventional method. This advantage is achieved, however, at the expense of an additional output power amplifier.

  13. Orthogonal grid generation of an irregular region using a local polynomial collocation method

    NASA Astrophysics Data System (ADS)

    Wu, Nan-Jing; Tsay, Ting-Kuei; Yang, Tun-Chi; Chang, Hung-Yuan

    2013-06-01

    In this study, a 2-D orthogonal grid generation model is developed by solving the governing equations of coordinate transformation with a local polynomial collocation method accompanied with the moving least squares (MLS) approach. This method was developed in a way that on the boundaries both the governing equation and boundary condition are satisfied, so it is more robust and accurate than conventional collocation methods. Though the method used to solve the coordinate transforming equations is meshless, it does not deteriorate the value of present work, because most numerical models in modern use are grid-dependent, and grid generation of service to these models is still strongly desired, particularly for finite difference models in irregular domains. Before applying to grid generation problems, the performance of present method is tested by a bench mark potential flow problem. Additional to two basic grid generation problems, a bottleneck problem of previous works, which contains zero-degree corners in the domain, is carried out. Finally, the model is applied to the orthogonal grid generation in a multi-connected domain. The correctness is testified by checking the orthogonality of the generated results.

  14. A new method for detection of loss-of-excitation of synchronous generators

    SciTech Connect

    Rostamkolai, N.; Butts, R.G.

    1996-11-01

    This paper presents a new method for detection of loss-of-excitation of synchronous generators. By utilizing the apparent system resistance and reactance, and their rate-of-change, a new method of detection for loss-of-excitation was developed. Simulation results verified the reliability of the proposed algorithm, and it showed that the new method is faster and more secure than the existing protection methods.

  15. A parallel multiple path tracing method based on OptiX for infrared image generation

    NASA Astrophysics Data System (ADS)

    Wang, Hao; Wang, Xia; Liu, Li; Long, Teng; Wu, Zimu

    2015-12-01

    Infrared image generation technology is being widely used in infrared imaging system performance evaluation, battlefield environment simulation and military personnel training, which require a more physically accurate and efficient method for infrared scene simulation. A parallel multiple path tracing method based on OptiX was proposed to solve the problem, which can not only increase computational efficiency compared to serial ray tracing using CPU, but also produce relatively accurate results. First, the flaws of current ray tracing methods in infrared simulation were analyzed and thus a multiple path tracing method based on OptiX was developed. Furthermore, the Monte Carlo integration was employed to solve the radiation transfer equation, in which the importance sampling method was applied to accelerate the integral convergent rate. After that, the framework of the simulation platform and its sensor effects simulation diagram were given. Finally, the results showed that the method could generate relatively accurate radiation images if a precise importance sampling method was available.

  16. Method for generating high-energy and high repetition rate laser pulses from CW amplifiers

    SciTech Connect

    Zhang, Shukui

    2013-06-18

    A method for obtaining high-energy, high repetition rate laser pulses simultaneously using continuous wave (CW) amplifiers is described. The method provides for generating micro-joule level energy in pico-second laser pulses at Mega-hertz repetition rates.

  17. New generation methods for spur, helical, and spiral-bevel gears

    NASA Technical Reports Server (NTRS)

    Litvin, F. L.; Tsung, W.-J.; Coy, J. J.; Handschuh, R. F.; Tsay, C.-B. P.

    1987-01-01

    New methods for generating spur, helical, and spiral-bevel gears are proposed. These methods provide the gears with conjugate gear tooth surfaces, localized bearing contact, and reduced sensitivity to gear misalignment. Computer programs have been developed for simulating gear meshing and bearing contact.

  18. New generation methods for spur, helical, and spiral-bevel gears

    NASA Technical Reports Server (NTRS)

    Litvin, F. L.; Tsung, W.-J.; Coy, J. J.; Handschuh, R. F.; Tsay, C.-B. P.

    1986-01-01

    New methods for generating spur, helical, and spiral-bevel gears are proposed. These methods provide the gears with conjugate gear tooth surfaces, localized bearing contact, and reduced sensitivity to gear misalignment. Computer programs have been developed for simulating gear meshing and bearing contact.

  19. Generator-Absorber heat exchange transfer apparatus and method using an intermediate liquor

    DOEpatents

    Phillips, Benjamin A.; Zawacki, Thomas S.

    1996-11-05

    Numerous embodiments and related methods for generator-absorber heat exchange (GAX) are disclosed, particularly for absorption heat pump systems. Such embodiments and related methods use the working solution of the absorption system for the heat transfer medium where the working solution has an intermediate liquor concentration.

  20. An improved method for rapid generation and screening of Bacillus thuringiensis phage-resistant mutants.

    PubMed

    Gillis, Annika; Mahillon, Jacques

    2014-11-01

    A simple method to isolate, screen and select phage-resistant mutants of Bacillus thuringiensis was developed. The traditional double-layer agar method was improved by a combination of the spotting assay using a lytic phage, to generate the bacterial-resistant mutants, with an inverted spotting assay (ISA), to rapidly screen the candidate-resistant mutants.

  1. Addressing Next Generation Science Standards: A Method for Supporting Classroom Teachers

    ERIC Educational Resources Information Center

    Pellien, Tamara; Rothenburger, Lisa

    2014-01-01

    The Next Generation Science Standards (NGSS) will define science education for the foreseeable future, yet many educators struggle to see the bridge between current practice and future practices. The inquiry-based methods used by Extension professionals (Kress, 2006) can serve as a guide for classroom educators. Described herein is a method of…

  2. New generation methods for spur, helical, and spiral-bevel gears

    NASA Technical Reports Server (NTRS)

    Litvin, F. L.; Tsung, W.-J.; Coy, J. J.; Handschuh, R. F.; Tsay, C.-B. P.

    1987-01-01

    New methods for generating spur, helical, and spiral-bevel gears are proposed. These methods provide the gears with conjugate gear tooth surfaces, localized bearing contact, and reduced sensitivity to gear misalignment. Computer programs have been developed for simulating gear meshing and bearing contact.

  3. Addressing Next Generation Science Standards: A Method for Supporting Classroom Teachers

    ERIC Educational Resources Information Center

    Pellien, Tamara; Rothenburger, Lisa

    2014-01-01

    The Next Generation Science Standards (NGSS) will define science education for the foreseeable future, yet many educators struggle to see the bridge between current practice and future practices. The inquiry-based methods used by Extension professionals (Kress, 2006) can serve as a guide for classroom educators. Described herein is a method of…

  4. Optical phase step method for absolute ranging interferometry using computer-generated holograms

    NASA Astrophysics Data System (ADS)

    Deininger, Martin; Wang, Lingli; Gerstner, Klaus; Tschudi, Theo

    1995-09-01

    One main problem of an interferometric measurement is to evaluate the object distance from the interference function. One of the known methods that delivers the object phase is the phase step method. Here we introduce computer-generated holograms to realize parallel phase steps without phase modulation of the reference path.

  5. An algebraic homotopy method for generating quasi-three-dimensional grids for high-speed configurations

    NASA Technical Reports Server (NTRS)

    Moitra, Anutosh

    1989-01-01

    A fast and versatile procedure for algebraically generating boundary conforming computational grids for use with finite-volume Euler flow solvers is presented. A semi-analytic homotopic procedure is used to generate the grids. Grids generated in two-dimensional planes are stacked to produce quasi-three-dimensional grid systems. The body surface and outer boundary are described in terms of surface parameters. An interpolation scheme is used to blend between the body surface and the outer boundary in order to determine the field points. The method, albeit developed for analytically generated body geometries is equally applicable to other classes of geometries. The method can be used for both internal and external flow configurations, the only constraint being that the body geometries be specified in two-dimensional cross-sections stationed along the longitudinal axis of the configuration. Techniques for controlling various grid parameters, e.g., clustering and orthogonality are described. Techniques for treating problems arising in algebraic grid generation for geometries with sharp corners are addressed. A set of representative grid systems generated by this method is included. Results of flow computations using these grids are presented for validation of the effectiveness of the method.

  6. Selecting the optimum method of heat transfer intensification to improve efficiency of thermoelectric generator

    NASA Astrophysics Data System (ADS)

    Leontyev, A. I.; Onishchenko, D. O.; Arutyunyan, G. A.

    2016-09-01

    The relevance of applying the methods of energy recovery from exhaust gases is substantiated. The principle of operation of a thermoelectric generator is described, the variant of its design is proposed, and the efficiency of various design methods of heat exchange intensification is compared. Designs are compared with a baseline configuration without heat transfer intensifiers in terms of coefficients of gas dynamic resistance ξ/ξ0 and the ratio of dimensionless criteria Nu/Nu0. The results of comparative analysis have proved the applicability of the methods of heat exchange intensification in the design of thermoelectric generators of various vehicles.

  7. Specialized CFD Grid Generation Methods for Near-Field Sonic Boom Prediction

    NASA Technical Reports Server (NTRS)

    Park, Michael A.; Campbell, Richard L.; Elmiligui, Alaa; Cliff, Susan E.; Nayani, Sudheer N.

    2014-01-01

    Ongoing interest in analysis and design of low sonic boom supersonic transports re- quires accurate and ecient Computational Fluid Dynamics (CFD) tools. Specialized grid generation techniques are employed to predict near- eld acoustic signatures of these con- gurations. A fundamental examination of grid properties is performed including grid alignment with ow characteristics and element type. The issues a ecting the robustness of cylindrical surface extrusion are illustrated. This study will compare three methods in the extrusion family of grid generation methods that produce grids aligned with the freestream Mach angle. These methods are applied to con gurations from the First AIAA Sonic Boom Prediction Workshop.

  8. Design of a new torque standard machine based on a torque generation method using electromagnetic force

    NASA Astrophysics Data System (ADS)

    Nishino, Atsuhiro; Ueda, Kazunaga; Fujii, Kenichi

    2017-02-01

    To allow the application of torque standards in various industries, we have been developing torque standard machines based on a lever deadweight system, i.e. a torque generation method using gravity. However, this method is not suitable for expanding the low end of the torque range, because of the limitations to the sizes of the weights and moment arms. In this study, the working principle of the torque generation method using an electromagnetic force was investigated by referring to watt balance experiments used for the redefinition of the kilogram. Applying this principle to a rotating coordinate system, an electromagnetic force type torque standard machine was designed and prototyped. It was experimentally demonstrated that SI-traceable torque could be generated by converting electrical power to mechanical power. Thus, for the first time, SI-traceable torque was successfully realized using a method other than that based on the force of gravity.

  9. GPU implementation of the Rosenbluth generation method for static Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Guo, Yachong; Baulin, Vladimir A.

    2017-07-01

    We present parallel version of Rosenbluth Self-Avoiding Walk generation method implemented on Graphics Processing Units (GPUs) using CUDA libraries. The method scales almost linearly with the number of CUDA cores and the method efficiency has only hardware limitations. The method is introduced in two realizations: on a cubic lattice and in real space. We find a good agreement between serial and parallel implementations and consistent results between lattice and real space realizations of the method for linear chain statistics. The developed GPU implementations of Rosenbluth algorithm can be used in Monte Carlo simulations and other computational methods that require large sampling of molecules conformations.

  10. Evaluation Of Methods To Measure Hydrogen Generation Rate In A Shielded Cell Environment And A Method Recommendation

    SciTech Connect

    Stone, M. E.

    2012-11-07

    The purpose of this document is to describe the current state of the art for determination of hydrogen generation rates of radioactive slurries and solutions to provide a basis for design, fabrication, testing, and implementation of a measurement method for Hydrogen Generation Rate (HGR) during qualification of waste feeds for the Hanford Waste Treatment and Immobilization Plant (WTP). The HGR measurement will be performed on samples of the Low Activity Waste (LAW) and High Level Waste (HLW) staged waste feeds for the WTP as well as on samples from selected unit operations testing during the qualification program. SRNL has performed a review of techniques utilized to measure HGR of high level radioactive waste slurries, evaluated the Hanford 222-S Laboratory method for measurement of hydrogen, and reviewed the hydrogen generation rate models for Hanford waste.Based on the literature review, method evaluation, and SRNL experience with measuring hydrogen generation rate, SRNL recommends that a continuous flow system with online gas analysis be used as the HGR measurement method during waste qualification.

  11. Domain decomposition by the advancing-partition method for parallel unstructured grid generation

    NASA Technical Reports Server (NTRS)

    Pirzadeh, Shahyar Z. (Inventor); Banihashemi, legal representative, Soheila (Inventor)

    2012-01-01

    In a method for domain decomposition for generating unstructured grids, a surface mesh is generated for a spatial domain. A location of a partition plane dividing the domain into two sections is determined. Triangular faces on the surface mesh that intersect the partition plane are identified. A partition grid of tetrahedral cells, dividing the domain into two sub-domains, is generated using a marching process in which a front comprises only faces of new cells which intersect the partition plane. The partition grid is generated until no active faces remain on the front. Triangular faces on each side of the partition plane are collected into two separate subsets. Each subset of triangular faces is renumbered locally and a local/global mapping is created for each sub-domain. A volume grid is generated for each sub-domain. The partition grid and volume grids are then merged using the local-global mapping.

  12. Integrated circuit test-port architecture and method and apparatus of test-port generation

    DOEpatents

    Teifel, John

    2016-04-12

    A method and apparatus are provided for generating RTL code for a test-port interface of an integrated circuit. In an embodiment, a test-port table is provided as input data. A computer automatically parses the test-port table into data structures and analyzes it to determine input, output, local, and output-enable port names. The computer generates address-detect and test-enable logic constructed from combinational functions. The computer generates one-hot multiplexer logic for at least some of the output ports. The one-hot multiplexer logic for each port is generated so as to enable the port to toggle between data signals and test signals. The computer then completes the generation of the RTL code.

  13. Electrode assemblies, plasma apparatuses and systems including electrode assemblies, and methods for generating plasma

    DOEpatents

    Kong, Peter C; Grandy, Jon D; Detering, Brent A; Zuck, Larry D

    2013-09-17

    Electrode assemblies for plasma reactors include a structure or device for constraining an arc endpoint to a selected area or region on an electrode. In some embodiments, the structure or device may comprise one or more insulating members covering a portion of an electrode. In additional embodiments, the structure or device may provide a magnetic field configured to control a location of an arc endpoint on the electrode. Plasma generating modules, apparatus, and systems include such electrode assemblies. Methods for generating a plasma include covering at least a portion of a surface of an electrode with an electrically insulating member to constrain a location of an arc endpoint on the electrode. Additional methods for generating a plasma include generating a magnetic field to constrain a location of an arc endpoint on an electrode.

  14. Device and method for generating a beam of acoustic energy from a borehole, and applications thereof

    SciTech Connect

    Vu, Cung Khac; Sinha, Dipen N.; Pantea, Cristian; Nihei, Kurt T.; Schmitt, Denis P.; Skelt, Chirstopher

    2013-10-15

    In some aspects of the invention, a method of generating a beam of acoustic energy in a borehole is disclosed. The method includes generating a first acoustic wave at a first frequency; generating a second acoustic wave at a second frequency different than the first frequency, wherein the first acoustic wave and second acoustic wave are generated by at least one transducer carried by a tool located within the borehole; transmitting the first and the second acoustic waves into an acoustically non-linear medium, wherein the composition of the non-linear medium produces a collimated beam by a non-linear mixing of the first and second acoustic waves, wherein the collimated beam has a frequency based upon a difference between the first frequency range and the second frequency, and wherein the non-linear medium has a velocity of sound between 100 m/s and 800 m/s.

  15. Orientation in methylation and phenylation of alkylbenzenes by cations generated by the nuclear chemical method

    SciTech Connect

    Sinotova, E.N.; Krylov, E.N.

    1987-11-10

    The distribution of the isomers and the relative activity of alkylbenzenes in electrophilic methylation and phenylation with methyl and phenyl cations generated by the nuclear chemical method are examined. These reactions are a convenient model of aromatic electrophilic substitution. Free methyl cations were generated by radioactive ..beta../sup -/ decay of tritium in totally tritiated methane. Free phenyl cations were generated from totally tritiated benzene C/sub 6/T/sub 6/ according to a similar scheme. During the reaction with alkylbenzenes methyl cations form isomeric alkyltoluenes and tritium-labeled toluene. The phenyl cations react with the alkylbenzenes and form isomeric alkyldiphenyls and tritium-labeled diphenyl. Both the Nathan-Baker substrate and position effects caused by the steric effect of the alkyl substitutents are observed in methylation and phenylation of alkylbenzenes by CT/sub 3//sup +/ and C/sub 6/T/sub 5//sup +/ cations generated by the nuclear chemical method.

  16. Device and method for generating a beam of acoustic energy from a borehole, and applications thereof

    DOEpatents

    Vu, Cung Khac; Sinha, Dipen N; Pantea, Cristian; Nihei, Kurt T; Schmitt, Denis P; Skelt, Christopher

    2013-10-01

    In some aspects of the invention, a method of generating a beam of acoustic energy in a borehole is disclosed. The method includes generating a first acoustic wave at a first frequency; generating a second acoustic wave at a second frequency different than the first frequency, wherein the first acoustic wave and second acoustic wave are generated by at least one transducer carried by a tool located within the borehole; transmitting the first and the second acoustic waves into an acoustically non-linear medium, wherein the composition of the non-linear medium produces a collimated beam by a non-linear mixing of the first and second acoustic waves, wherein the collimated beam has a frequency based upon a difference between the first frequency and the second frequency; and transmitting the collimated beam through a diverging acoustic lens to compensate for a refractive effect caused by the curvature of the borehole.

  17. Scenario generation for stochastic optimization problems via the sparse grid method

    SciTech Connect

    Chen, Michael; Mehrotra, Sanjay; Papp, David

    2015-04-19

    We study the use of sparse grids in the scenario generation (or discretization) problem in stochastic programming problems where the uncertainty is modeled using a continuous multivariate distribution. We show that, under a regularity assumption on the random function involved, the sequence of optimal objective function values of the sparse grid approximations converges to the true optimal objective function values as the number of scenarios increases. The rate of convergence is also established. We treat separately the special case when the underlying distribution is an affine transform of a product of univariate distributions, and show how the sparse grid method can be adapted to the distribution by the use of quadrature formulas tailored to the distribution. We numerically compare the performance of the sparse grid method using different quadrature rules with classic quasi-Monte Carlo (QMC) methods, optimal rank-one lattice rules, and Monte Carlo (MC) scenario generation, using a series of utility maximization problems with up to 160 random variables. The results show that the sparse grid method is very efficient, especially if the integrand is sufficiently smooth. In such problems the sparse grid scenario generation method is found to need several orders of magnitude fewer scenarios than MC and QMC scenario generation to achieve the same accuracy. As a result, it is indicated that the method scales well with the dimension of the distribution--especially when the underlying distribution is an affine transform of a product of univariate distributions, in which case the method appears scalable to thousands of random variables.

  18. An estimation method of the fault wind turbine power generation loss based on correlation analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Tao; Zhu, Shourang; Wang, Wei

    2017-01-01

    A method for estimating the power generation loss of a fault wind turbine is proposed in this paper. In this method, the wind speed is estimated and the estimated value of the loss of power generation is given by combining the actual output power characteristic curve of the wind turbine. In the wind speed estimation, the correlation analysis is used, and the normal operation of the wind speed of the fault wind turbine is selected, and the regression analysis method is used to obtain the estimated value of the wind speed. Based on the estimation method, this paper presents an implementation of the method in the monitoring system of the wind turbine, and verifies the effectiveness of the proposed method.

  19. Method and apparatus for optimizing operation of a power generating plant using artificial intelligence techniques

    SciTech Connect

    Wroblewski, David; Katrompas, Alexander M.; Parikh, Neel J.

    2009-09-01

    A method and apparatus for optimizing the operation of a power generating plant using artificial intelligence techniques. One or more decisions D are determined for at least one consecutive time increment, where at least one of the decisions D is associated with a discrete variable for the operation of a power plant device in the power generating plant. In an illustrated embodiment, the power plant device is a soot cleaning device associated with a boiler.

  20. Generator coordinate method and nuclear collective motions (VII): the preservation of symmetry properties

    SciTech Connect

    XU Gong-ou

    1985-01-01

    In order to preserve all the symmetry properties for the effective collective Hamiltonian obtained with the generator coordinate method, it is necessary for the trial wave function to have proper transformation properties. The generator coordinates should then transform in the same way as the represented collective operators. Also, the center-of-mass motion should be independent of the internal motion in conformity with the invariance of the nuclear Hamiltonian with respect to space rotation and Galilean transformation.

  1. Communication systems, transceivers, and methods for generating data based on channel characteristics

    SciTech Connect

    Forman, Michael A; Young, Derek

    2012-09-18

    Examples of methods for generating data based on a communications channel are described. In one such example, a processing unit may generate a first vector representation based in part on at least two characteristics of a communications channel. A constellation having at least two dimensions may be addressed with the first vector representation to identify a first symbol associated with the first vector representation. The constellation represents a plurality of regions, each region associated with a respective symbol. The symbol may be used to generate data, which may stored in an electronic storage medium and used as a cryptographic key or a spreading code or hopping sequence in a modulation technique.

  2. A method of computer aided design with self-generative models in NX Siemens environment

    NASA Astrophysics Data System (ADS)

    Grabowik, C.; Kalinowski, K.; Kempa, W.; Paprocka, I.

    2015-11-01

    Currently in CAD/CAE/CAM systems it is possible to create 3D design virtual models which are able to capture certain amount of knowledge. These models are especially useful in an automation of routine design tasks. These models are known as self-generative or auto generative and they can behave in an intelligent way. The main difference between the auto generative and fully parametric models consists in the auto generative models ability to self-organizing. In this case design model self-organizing means that aside from the possibility of making of automatic changes of model quantitative features these models possess knowledge how these changes should be made. Moreover they are able to change quality features according to specific knowledge. In spite of undoubted good points of self-generative models they are not so often used in design constructional process which is mainly caused by usually great complexity of these models. This complexity makes the process of self-generative time and labour consuming. It also needs a quite great investment outlays. The creation process of self-generative model consists of the three stages it is knowledge and information acquisition, model type selection and model implementation. In this paper methods of the computer aided design with self-generative models in NX Siemens CAD/CAE/CAM software are presented. There are the five methods of self-generative models preparation in NX with: parametric relations model, part families, GRIP language application, knowledge fusion and OPEN API mechanism. In the paper examples of each type of the self-generative model are presented. These methods make the constructional design process much faster. It is suggested to prepare this kind of self-generative models when there is a need of design variants creation. The conducted research on assessing the usefulness of elaborated models showed that they are highly recommended in case of routine tasks automation. But it is still difficult to distinguish

  3. Developing a Method to Generate Indoorgml Data from the Omni-Directional Image

    NASA Astrophysics Data System (ADS)

    Kim, M.; Lee, J.

    2015-10-01

    Recently, many applications for indoor space are developed. The most realistic way to service an indoor space application is on the omni-directional image so far. Due to limitations of positioning technology and indoor space modelling, however, indoor navigation service can't be implemented properly. In 2014, IndoorGML is approved as an OGC's standard. This is an indoor space data model which is for the indoor navigation service. Nevertheless, the IndoorGML is defined, there is no method to generate the IndoorGML data except manually. This paper is aimed to propose a method to generate the IndoorGML data semi-automatically from the omni-directional image. In this paper, image segmentation and classification method are adopted to generate the IndoorGML data. The edge detection method is used to extract the features from the image. After doing the edge detection method, image classification method with ROI is adopted to find the features that we want. The following step is to convert the extracted area to the point which is regarded as state and connect to shooting point's state. This is the IndoorGML data at the shooting point. It can be expanded to the floor's IndoorGML data by connecting the each shooting points after repeating the process. Also, IndoorGML data of building can be generated by connecting the floor's IndoorGML data. The proposed method is adopted at the testbed, and the IndoorGML data is generated. By using the generated IndoorGML data, it can be applied to the various applications for indoor space information service.

  4. Effect of excitation methods on electrical characteristics of fully superconducting generator model

    NASA Astrophysics Data System (ADS)

    Muta, Itsuya; Tsukiji, H.; Handa, N.; Hoshino, Tsutomu; Mukai, E.

    1994-07-01

    We have fabricated a fully superconducting generator of 20 kW class, in which both of armature and field coils are made of superconductors. Two different types of excitation system were selected and tested: a brushless excitation method consisted of 'magnetic flux pump' and a conventional excitation method equipped with collector ring and brushes. The paper describes the experimental machine model and the comparison of test results between the two different types of excitation methods.

  5. Method and apparatus for lead-unity-lag electric power generation system

    NASA Technical Reports Server (NTRS)

    Ganev, Evgeni (Inventor); Warr, William (Inventor); Salam, Mohamed (Arif) (Inventor)

    2013-01-01

    A method employing a lead-unity-lag adjustment on a power generation system is disclosed. The method may include calculating a unity power factor point and adjusting system parameters to shift a power factor angle to substantially match an operating power angle creating a new unity power factor point. The method may then define operation parameters for a high reactance permanent magnet machine based on the adjusted power level.

  6. Two methods for estimating limits to large-scale wind power generation

    PubMed Central

    Miller, Lee M.; Brunsell, Nathaniel A.; Mechem, David B.; Gans, Fabian; Monaghan, Andrew J.; Vautard, Robert; Keith, David W.; Kleidon, Axel

    2015-01-01

    Wind turbines remove kinetic energy from the atmospheric flow, which reduces wind speeds and limits generation rates of large wind farms. These interactions can be approximated using a vertical kinetic energy (VKE) flux method, which predicts that the maximum power generation potential is 26% of the instantaneous downward transport of kinetic energy using the preturbine climatology. We compare the energy flux method to the Weather Research and Forecasting (WRF) regional atmospheric model equipped with a wind turbine parameterization over a 105 km2 region in the central United States. The WRF simulations yield a maximum generation of 1.1 We⋅m−2, whereas the VKE method predicts the time series while underestimating the maximum generation rate by about 50%. Because VKE derives the generation limit from the preturbine climatology, potential changes in the vertical kinetic energy flux from the free atmosphere are not considered. Such changes are important at night when WRF estimates are about twice the VKE value because wind turbines interact with the decoupled nocturnal low-level jet in this region. Daytime estimates agree better to 20% because the wind turbines induce comparatively small changes to the downward kinetic energy flux. This combination of downward transport limits and wind speed reductions explains why large-scale wind power generation in windy regions is limited to about 1 We⋅m−2, with VKE capturing this combination in a comparatively simple way. PMID:26305925

  7. Two methods for estimating limits to large-scale wind power generation.

    PubMed

    Miller, Lee M; Brunsell, Nathaniel A; Mechem, David B; Gans, Fabian; Monaghan, Andrew J; Vautard, Robert; Keith, David W; Kleidon, Axel

    2015-09-08

    Wind turbines remove kinetic energy from the atmospheric flow, which reduces wind speeds and limits generation rates of large wind farms. These interactions can be approximated using a vertical kinetic energy (VKE) flux method, which predicts that the maximum power generation potential is 26% of the instantaneous downward transport of kinetic energy using the preturbine climatology. We compare the energy flux method to the Weather Research and Forecasting (WRF) regional atmospheric model equipped with a wind turbine parameterization over a 10(5) km2 region in the central United States. The WRF simulations yield a maximum generation of 1.1 We⋅m(-2), whereas the VKE method predicts the time series while underestimating the maximum generation rate by about 50%. Because VKE derives the generation limit from the preturbine climatology, potential changes in the vertical kinetic energy flux from the free atmosphere are not considered. Such changes are important at night when WRF estimates are about twice the VKE value because wind turbines interact with the decoupled nocturnal low-level jet in this region. Daytime estimates agree better to 20% because the wind turbines induce comparatively small changes to the downward kinetic energy flux. This combination of downward transport limits and wind speed reductions explains why large-scale wind power generation in windy regions is limited to about 1 We⋅m(-2), with VKE capturing this combination in a comparatively simple way.

  8. Validation of microinjection methods for generating knockout mice by CRISPR/Cas-mediated genome engineering

    PubMed Central

    Horii, Takuro; Arai, Yuji; Yamazaki, Miho; Morita, Sumiyo; Kimura, Mika; Itoh, Masahiro; Abe, Yumiko; Hatada, Izuho

    2014-01-01

    The CRISPR/Cas system, in which the Cas9 endonuclease and a guide RNA complementary to the target are sufficient for RNA-guided cleavage of the target DNA, is a powerful new approach recently developed for targeted gene disruption in various animal models. However, there is little verification of microinjection methods for generating knockout mice using this approach. Here, we report the verification of microinjection methods of the CRISPR/Cas system. We compared three methods for injection: (1) injection of DNA into the pronucleus, (2) injection of RNA into the pronucleus, and (3) injection of RNA into the cytoplasm. We found that injection of RNA into the cytoplasm was the most efficient method in terms of the numbers of viable blastocyst stage embryos and full-term pups generated. This method also showed the best overall knockout efficiency. PMID:24675426

  9. Gait Generation for a Small Biped Robot using Approximated Optimization Method

    NASA Astrophysics Data System (ADS)

    Nguyen, Tinh; Tao, Linh; Hasegawa, Hiroshi

    2016-11-01

    This paper proposes a novel approach for gait pattern generation of a small biped robot to enhance its walking behavior. This is to aim to make the robot gait more natural and more stable in the walking process. In this study, we mention the approximated optimization method which applied the Differential Evolution algorithm (DE) to objective function approximated by Artificial Neural Network (ANN). In addition, we also present a new humanlike foot structure with toes for the biped robot in this paper. To evaluate this method achievement, the robot was simulated by multi-body dynamics simulation software, Adams (MSC software, USA). As a result, we confirmed that the biped robot with the proposed foot structure can walk naturally. The approximated optimization method based on DE algorithm and ANN is an effective approach to generate a gait pattern for the locomotion of the biped robot. This method is simpler than the conventional methods using Zero Moment Point (ZMP) criterion.

  10. Validation of microinjection methods for generating knockout mice by CRISPR/Cas-mediated genome engineering.

    PubMed

    Horii, Takuro; Arai, Yuji; Yamazaki, Miho; Morita, Sumiyo; Kimura, Mika; Itoh, Masahiro; Abe, Yumiko; Hatada, Izuho

    2014-03-28

    The CRISPR/Cas system, in which the Cas9 endonuclease and a guide RNA complementary to the target are sufficient for RNA-guided cleavage of the target DNA, is a powerful new approach recently developed for targeted gene disruption in various animal models. However, there is little verification of microinjection methods for generating knockout mice using this approach. Here, we report the verification of microinjection methods of the CRISPR/Cas system. We compared three methods for injection: (1) injection of DNA into the pronucleus, (2) injection of RNA into the pronucleus, and (3) injection of RNA into the cytoplasm. We found that injection of RNA into the cytoplasm was the most efficient method in terms of the numbers of viable blastocyst stage embryos and full-term pups generated. This method also showed the best overall knockout efficiency.

  11. Some advanced parametric methods for assessing waveform distortion in a smart grid with renewable generation

    NASA Astrophysics Data System (ADS)

    Alfieri, Luisa

    2015-12-01

    Power quality (PQ) disturbances are becoming an important issue in smart grids (SGs) due to the significant economic consequences that they can generate on sensible loads. However, SGs include several distributed energy resources (DERs) that can be interconnected to the grid with static converters, which lead to a reduction of the PQ levels. Among DERs, wind turbines and photovoltaic systems are expected to be used extensively due to the forecasted reduction in investment costs and other economic incentives. These systems can introduce significant time-varying voltage and current waveform distortions that require advanced spectral analysis methods to be used. This paper provides an application of advanced parametric methods for assessing waveform distortions in SGs with dispersed generation. In particular, the Standard International Electrotechnical Committee (IEC) method, some parametric methods (such as Prony and Estimation of Signal Parameters by Rotational Invariance Technique (ESPRIT)), and some hybrid methods are critically compared on the basis of their accuracy and the computational effort required.

  12. Method for generating a photonic NOON state with quantum dots in coupled nanocavities

    NASA Astrophysics Data System (ADS)

    Kamide, Kenji; Ota, Yasutomo; Iwamoto, Satoshi; Arakawa, Yasuhiko

    2017-07-01

    We propose a method to generate path-entangled NOON-state photons from quantum dots and coupled nanocavities. In the systems we considered, cavity mode frequencies are tuned close to the biexciton two-photon resonance. Under appropriate conditions, the system can have the target NOON state in the energy eigenstate, as a consequence of destructive quantum interference. The NOON state can be generated by a resonant laser excitation. This method, first introduced for a two-photon NOON state (N =2 ), can be extended toward a higher NOON state (N >2 ) based on our recipe, which is applied to the case of N =4 as an example.

  13. Isentropic compressive wave generator impact pillow and method of making same

    DOEpatents

    Barker, Lynn M.

    1985-01-01

    An isentropic compressive wave generator and method of making same. The w generator comprises a disk or flat "pillow" member having component materials of different shock impedances formed in a configuration resulting in a smooth shock impedance gradient over the thickness thereof for interpositioning between an impactor member and a target specimen for producing a shock wave of a smooth predictable rise time. The method of making the pillow member comprises the reduction of the component materials to a powder form and forming the pillow member by sedimentation and compressive techniques.

  14. A high-throughput method for generating uniform microislands for autaptic neuronal cultures

    PubMed Central

    Sgro, Allyson E.; Nowak, Amy L.; Austin, Naola S.; Custer, Kenneth L.; Allen, Peter B.; Chiu, Daniel T.; Bajjalieh, Sandra M.

    2013-01-01

    Generating microislands of culture substrate on coverslips by spray application of poly-D lysine is a commonly used method for culturing isolated neurons that form self (autaptic) synapses. This preparation has multiple advantages for studying synaptic transmission in isolation; however, generating microislands by spraying produces islands of non-uniform size and thus cultures vary widely in the number of islands containing single neurons. To address these problems, we developed a high-throughput method for reliably generating uniformly-shaped microislands of culture substrate. Stamp molds formed of poly(dimethylsiloxane) (PDMS) were fabricated with arrays of circles and used to generate stamps made of 9.2% agarose. The agarose stamps were capable of loading sufficient poly D-lysine and collagen dissolved in acetic acid to rapidly generate coverslips containing at least 64 microislands per coverslip. When hippocampal neurons were cultured on these coverslips, there were significantly more single-neuron islands per coverslip. We noted that single neurons tended to form one of three distinct neurite-arbor morphologies, which varied with island size and the location of the cell body on the island. To our surprise, the number of synapses per autaptic neuron did not correlate with arbor shape or island size, suggesting that other factors regulate the number of synapses formed by isolated neurons. The stamping method we report can be used to increase the number of single-neuron islands per culture and aid in the rapid visualization of microislands. PMID:21515305

  15. DEVELOPMENT OF ANALYTICAL METHODS FOR DETERMINING SUPPRESSOR CONCENTRATION IN THE MCU NEXT GENERATION SOLVENT (NGS)

    SciTech Connect

    Taylor-Pashow, K.; Fondeur, F.; White, T.; Diprete, D.; Milliken, C.

    2013-07-31

    Savannah River National Laboratory (SRNL) was tasked with identifying and developing at least one, but preferably two methods for quantifying the suppressor in the Next Generation Solvent (NGS) system. The suppressor is a guanidine derivative, N,N',N"-tris(3,7-dimethyloctyl)guanidine (TiDG). A list of 10 possible methods was generated, and screening experiments were performed for 8 of the 10 methods. After completion of the screening experiments, the non-aqueous acid-base titration was determined to be the most promising, and was selected for further development as the primary method. {sup 1}H NMR also showed promising results from the screening experiments, and this method was selected for further development as the secondary method. Other methods, including {sup 36}Cl radiocounting and ion chromatography, also showed promise; however, due to the similarity to the primary method (titration) and the inability to differentiate between TiDG and TOA (tri-n-ocytlamine) in the blended solvent, {sup 1}H NMR was selected over these methods. Analysis of radioactive samples obtained from real waste ESS (extraction, scrub, strip) testing using the titration method showed good results. Based on these results, the titration method was selected as the method of choice for TiDG measurement. {sup 1}H NMR has been selected as the secondary (back-up) method, and additional work is planned to further develop this method and to verify the method using radioactive samples. Procedures for analyzing radioactive samples of both pure NGS and blended solvent were developed and issued for the both methods.

  16. Semi-automated virtual unfolded view generation method of stomach from CT volumes.

    PubMed

    Oda, Masahiro; Suito, Tomoaki; Hayashi, Yuichiro; Kitasaka, Takayuki; Furukawa, Kazuhiro; Miyahara, Ryoji; Hirooka, Yoshiki; Goto, Hidemi; Iinuma, Gen; Misawa, Kazunari; Nawano, Shigeru; Mori, Kensaku

    2013-01-01

    CT image-based diagnosis of the stomach is developed as a new way of diagnostic method. A virtual unfolded (VU) view is suitable for displaying its wall. In this paper, we propose a semi-automated method for generating VU views of the stomach. Our method requires minimum manual operations. The determination of the unfolding forces and the termination of the unfolding process are automated. The unfolded shape of the stomach is estimated based on its radius. The unfolding forces are determined so that the stomach wall is deformed to the expected shape. The iterative deformation process is terminated if the difference of the shapes between the deformed shape and expected shape is small. Our experiments using 67 CT volumes showed that our proposed method can generate good VU views for 76.1% cases.

  17. A low-voltage spark-discharge method for generation of consistent oscillating bubbles.

    PubMed

    Goh, B H T; Oh, Y D A; Klaseboer, E; Ohl, S W; Khoo, B C

    2013-01-01

    Underwater spark-discharge methods have been widely utilized for experimental studies in many fields such as material processing, water treatment, and cavitation bubble dynamics. However, the precise control of bubble size using this method has been difficult. This poses challenges to better understand the complex interactions of non-spherical cavitation bubble growth and collapse, which require fine and careful control of bubble size. A novel low-voltage (60.0 V) underwater spark-discharge method using a metal-oxide-semiconductor field effect transistor is presented here. We are able to repeatedly generate oscillating bubbles of consistent maximum radius, a. The dependency of the total circuit resistance to spark-generated bubble size in this method is discussed.

  18. Robot Path Generation Method for a Welding System Based on Pseudo Stereo Visual Servo Control

    NASA Astrophysics Data System (ADS)

    Pachidis, Theodore P.; Tarchanidis, Kostas N.; Lygouras, John N.; Tsalides, Philippos G.

    2005-12-01

    A path generation method for robot-based welding systems is proposed. The method that is a modification of the method "teaching by showing" is supported by the recently developed pseudo stereovision system (PSVS). A path is generated by means of the target-object (TOB), PSVS, and the pseudo stereo visual servo control scheme proposed. A part of the new software application, called humanPT, permits the communication of a user with the robotic system. Here, PSVS, the robotic system, the TOB, the estimation of robot poses by means of the TOB, and the control and recording algorithm are described. Some new concepts concerning segmentation and point correspondence are applied as a complex image is processed. A method for calibrating the endpoint of TOB is also explained. Experimental results demonstrate the effectiveness of the proposed system.

  19. Apparatus and method for recharging a string a avalanche transistors within a pulse generator

    DOEpatents

    Fulkerson, E. Stephen

    2000-01-01

    An apparatus and method for recharging a string of avalanche transistors within a pulse generator is disclosed. A plurality of amplification stages are connected in series. Each stage includes an avalanche transistor and a capacitor. A trigger signal, causes the apparatus to generate a very high voltage pulse of a very brief duration which discharges the capacitors. Charge resistors inject current into the string of avalanche transistors at various points, recharging the capacitors. The method of the present invention includes the steps of supplying current to charge resistors from a power supply; using the charge resistors to charge capacitors connected to a set of serially connected avalanche transistors; triggering the avalanche transistors; generating a high-voltage pulse from the charge stored in the capacitors; and recharging the capacitors through the charge resistors.

  20. Development of Closed-Loop Simulation Methods for a Next-Generation Terminal Area Automation System

    NASA Technical Reports Server (NTRS)

    Robinson, John E., III; Isaacson, Douglas R.

    2002-01-01

    A next-generation air traffic decision support tool, known as the Active Final Approach Spacing Tool (aFAST), will generate heading, speed and altitude commands to achieve more precise separation of aircraft in the terminal area. The techniques used to analyze the performance of earlier generation decision support tools are not adequate to analyze the performance of aFAST. This paper summarizes the development of a new and innovative fully closed-loop testing method for aFAST. This method, called trajectory feedback testing, closes each aircraft's control loop inside of the aFAST scheduling algorithm. Validation of trajectory feedback testing by examination of the variation of aircraft time-of-arrival predictions between schedule updates and the variation of aircraft excess separation distances between simulation runs is presented.

  1. Development of Closed-Loop Simulation Methods for a Next-Generation Terminal Area Automation System

    NASA Technical Reports Server (NTRS)

    Robinson, John E., III; Isaacson, Douglas R.

    2002-01-01

    A next-generation air traffic decision support tool, known as the Active Final Approach Spacing Tool (aFAST), will generate heading, speed and altitude commands to achieve more precise separation of aircraft in the terminal area. The techniques used to analyze the performance of earlier generation decision support tools are not adequate to analyze the performance of aFAST. This paper summarizes the development of a new and innovative fully closed-loop testing method for aFAST. This method, called trajectory feedback testing, closes each aircraft's control loop inside of the aFAST scheduling algorithm. Validation of trajectory feedback testing by examination of the variation of aircraft time-of-arrival predictions between schedule updates and the variation of aircraft excess separation distances between simulation runs is presented.

  2. Development of Generation-Transmission Expansion Planning Method Based on a Hierarchical Model

    NASA Astrophysics Data System (ADS)

    Fukutome, Suguru; Azuma, Hitoshi; Honjou, Nobuyuki; Chen, Luonan

    Generation expansion planning and transmission planning are strongly related. It is increasingly demanded in power industry to optimize such a generation-transmission planning so that whole power system can be operated in a more economic and reliable manner. So far most of existing methods are to either solve generation expansion planning or transmission planning due to the computational burdens, in particular for a large-scale system, and also there are no commercial packages available to solve such a problem directly. In this paper, we propose a bi-level model that divides the original problem into a master problem and two sub-problems. Optimization for such bi-level model is facilitated by using the long-term nodal marginal costs, which is acted as economic signals for the master problem and the sub-problems. To demonstrate the proposed method, we adopt several test systems, which verify the effectiveness of the proposed algorithm.

  3. Method and apparatus for generating radiation utilizing DC to AC conversion with a conductive front

    DOEpatents

    Dawson, John M.; Mori, Warren B.; Lai, Chih-Hsiang; Katsouleas, Thomas C.

    1998-01-01

    Method and apparatus for generating radiation of high power, variable duration and broad tunability over several orders of magnitude from a laser-ionized gas-filled capacitor array. The method and apparatus convert a DC electric field pattern into a coherent electromagnetic wave train when a relativistic ionization front passes between the capacitor plates. The frequency and duration of the radiation is controlled by the gas pressure and capacitor spacing.

  4. Microwave Plasma Based Single-Step Method for Generation of Carbon Nanostructures

    DTIC Science & Technology

    2013-07-01

    31st ICPIG, July 14-19, 2013, Granada, Spain Microwave plasma based single-step method for generation of carbon nanostructures A. Dias 1 , E...Nowadays, carbon based two-dimensional (2D) nanostructures are one of the ongoing strategic research areas in science and technology. Graphene, an...fabrication, to obtain transferable sheets [1]. A plasma based method to synthesize substrate free, i.e., “free–standing” graphene at ambient conditions has

  5. Improved polygon-based method for subwavelength pixel pitch computer generated holograms

    NASA Astrophysics Data System (ADS)

    Li, Xin; Liu, Juan; Pan, Yijie; Wang, Yongtian

    2017-05-01

    An improved polygon-based method is proposed for subwavelength pixel pitch computer generated holograms (CGHs). By employing the basic principle of image-plane holograms, and by optimizing the parameters, objects are reconstructed with high quality from the CGHs whose pixel pitch is smaller than wavelength. It is believed that the proposed method is potentially promising for future large viewing angle holographic 3D displays.

  6. Quantitative assessment method for computer-generated holograms free from the effect of viewpoint.

    PubMed

    Kiwaki, Taichi; Shimobaba, Tomoyoshi; Masuda, Nobuyuki; Ito, Tomoyoshi

    2010-04-01

    A quantitative assessment method for computer-generated holograms is presented. Our scheme is based on a simple evaluation quantity reflecting the optical radiating power from the holograms; this assures the overall validity of our method as a three-dimensional (3D) display assessment technique. Moreover, the effect of location from which the 3D view is observed is ruled out from the result. This contributes to both economy of computation and conciseness of the result.

  7. Method and apparatus for generating radiation utilizing DC to AC conversion with a conductive front

    DOEpatents

    Dawson, J.M.; Mori, W.B.; Lai, C.H.; Katsouleas, T.C.

    1998-07-14

    Method and apparatus ar disclosed for generating radiation of high power, variable duration and broad tunability over several orders of magnitude from a laser-ionized gas-filled capacitor array. The method and apparatus convert a DC electric field pattern into a coherent electromagnetic wave train when a relativistic ionization front passes between the capacitor plates. The frequency and duration of the radiation is controlled by the gas pressure and capacitor spacing. 4 figs.

  8. Automatic data generation scheme for finite-element method /FEDGE/ - Computer program

    NASA Technical Reports Server (NTRS)

    Akyuz, F.

    1970-01-01

    Algorithm provides for automatic input data preparation for the analysis of continuous domains in the fields of structural analysis, heat transfer, and fluid mechanics. The computer program utilizes the natural coordinate systems concept and the finite element method for data generation.

  9. Analysis and modeling of localized heat generation by tumor-targeted nanoparticles (Monte Carlo methods)

    NASA Astrophysics Data System (ADS)

    Sanattalab, Ehsan; SalmanOgli, Ahmad; Piskin, Erhan

    2016-04-01

    We investigated the tumor-targeted nanoparticles that influence heat generation. We suppose that all nanoparticles are fully functionalized and can find the target using active targeting methods. Unlike the commonly used methods, such as chemotherapy and radiotherapy, the treatment procedure proposed in this study is purely noninvasive, which is considered to be a significant merit. It is found that the localized heat generation due to targeted nanoparticles is significantly higher than other areas. By engineering the optical properties of nanoparticles, including scattering, absorption coefficients, and asymmetry factor (cosine scattering angle), the heat generated in the tumor's area reaches to such critical state that can burn the targeted tumor. The amount of heat generated by inserting smart agents, due to the surface Plasmon resonance, will be remarkably high. The light-matter interactions and trajectory of incident photon upon targeted tissues are simulated by MIE theory and Monte Carlo method, respectively. Monte Carlo method is a statistical one by which we can accurately probe the photon trajectories into a simulation area.

  10. A comparison between different fractal grid generation methods coupled with lattice Boltzmann approach

    NASA Astrophysics Data System (ADS)

    Chiappini, D.; Donno, A.

    2016-06-01

    In this paper we present a comparison of three different grids generated with a fractal method and used for fluid dynamic simulations through a kinetic approach. We start from the theoretical element definition and we introduce some optimizations in order to fulfil requirements. The study is performed with analysing results both in terms of friction factor at different Reynolds regimes and streamlines paths.

  11. Spur gears: Optimal geometry, methods for generation and Tooth Contact Analysis (TCA) program

    NASA Technical Reports Server (NTRS)

    Litvin, Faydor L.; Zhang, Jiao

    1988-01-01

    The contents of this report include the following: (1) development of optimal geometry for crowned spur gears; (2) methods for their generation; and (3) tooth contact analysis (TCA) computer programs for the analysis of meshing and bearing contact on the crowned spur gears. The method developed for synthesis is used for the determination of the optimal geometry for crowned pinion surface and is directed to reduce the sensitivity of the gears to misalignment, localize the bearing contact, and guarantee the favorable shape and low level of the transmission errors. A new method for the generation of the crowned pinion surface has been proposed. This method is based on application of the tool with a surface of revolution that slightly deviates from a regular cone surface. The tool can be used as a grinding wheel or as a shaver. The crowned pinion surface can also be generated by a generating plane whose motion is provided by an automatic grinding machine controlled by a computer. The TCA program simulates the meshing and bearing contact of the misaligned gears. The transmission errors are also determined.

  12. A Comparison of Diary Method Variations for Enlightening Form Generation in the Design Process

    ERIC Educational Resources Information Center

    Babapour, Maral; Rehammar, Bjorn; Rahe, Ulrike

    2012-01-01

    This paper presents two studies in which an empirical approach was taken to understand and explain form generation and decisions taken in the design process. In particular, the activities addressing aesthetic aspects when exteriorising form ideas in the design process have been the focus of the present study. Diary methods were the starting point…

  13. Simple method for measuring acid generation quantum efficiency at 193 nm

    NASA Astrophysics Data System (ADS)

    Szmanda, Charles R.; Kavanagh, Robert J.; Bohland, John F.; Cameron, James F.; Trefonas, Peter, III; Blacksmith, Robert F.

    1999-06-01

    Traditional methods of measuring the Dill C Parameter involve monitoring the absorbance of a resist as a function of exposure. In chemically amplified resist, absorbance changes with exposure are small and frequently have little correlation to the amount of photoacid generated.

  14. Next generation sequencers: methods and applications in food-borne pathogens

    USDA-ARS?s Scientific Manuscript database

    Next generation sequencers are able to produce millions of short sequence reads in a high-throughput, low-cost way. The emergence of these technologies has not only facilitated genome sequencing but also started to change the landscape of life sciences. This chapter will survey their methods and app...

  15. Generator coordinate method and nuclear collective motions: VI on the problem of overcompleteness

    SciTech Connect

    Xu Gong-ou

    1984-01-01

    The problem of overcompleteness in the generator coordinate method is generally studied. It is shown that the effective operator (ON/sup -1/) as a whole excludes the coupling between the physical and unphysical states and the problem of overcompleteness is resolved in this sense. This conclusion is illustrated with an example of boson representations of the SU(6) group.

  16. Development of a zero-method interferometer by means of dynamic generation of reference wave front

    NASA Astrophysics Data System (ADS)

    Hanayama, Ryohei; Ishii, Katsuhiro

    2013-04-01

    In this report, we propose a zero-method interferometer by means of dynamic generation of reference wave front using liquid crystal type spatial light modulator (LCoS-SLM). This interferometer was developed to aim to measure the shape of complex plane, such as aspherical plane. It is difficult for interferometer to measure such a surface which include large inclination, because of the problem of saturation of interference fringe. To overcome this problem, and to enlarge the dynamic range of interferometer, we attempted to combine interferometer and zero-method. Zero-method is characterized by its wide dynamic range. To apply zero-method to interferometer, SLM is adopted to configure variable reference surface. The basic configuration of the developed interferometer is Twyman-Green interferometer. A SLM is placed instead of reference mirror. In this interferometer, the shape of a target is measured using interference between object wave front and reference wave front that is generated using SLM. At first, the SLM generates flat wave front. And the detected phase map is fed back to the SLM. Then the difference between object wave front and detected phase map in the first turn. The operation is recursively repeated until the phase range of detected phase map becomes under the threshold. Then the generated wave front should become equal to the target shape. In this report, the basic idea of zeromethod interferometer using LCoS-SLM is verified through several numbers of simulative experiments.

  17. Exploring a direct injection method for microfluidic generation of polymer microgels.

    PubMed

    Wang, Yihe; Tumarkin, Ethan; Velasco, Diego; Abolhasani, Milad; Lau, Willie; Kumacheva, Eugenia

    2013-07-07

    Microfluidics (MFs) offers a promising method for the preparation of polymer microgels with exquisite control over their dimensions, shapes and morphologies. A challenging task in this process is the generation of droplets (precursors for microgels) from highly viscous polymer solutions. Spatial separation of MF emulsification and gelation of the precursor droplets on chip can address this challenge. In the present work, we explored the application of the "direct injection" method for the preparation of microgels by adding a highly concentrated polymer solution or a gelling agent directly into the precursor droplets. In the first system, primary droplets were generated from a dilute aqueous solution of agarose, followed by the injection of the concentrated agarose solution directly in the primary droplets. The secondary droplets served as precursors for microgels. In the second system, primary droplets were generated from the low-viscous solution of methyl-β-cyclodextrin and poly(ethylene glycol) end-terminated with octadecyl hydrophobic groups. Addition of surfactant directly into the primary droplets led to the binding of methyl-β-cyclodextrin to the surfactant, thereby releasing hydrophobized poly(ethylene glycol) to form polymer microgels. Our results show that, when optimized, the direct injection method can be used for microgel preparation from highly viscous liquids and thus this method expands the range of polymers used for MF generation of microgels.

  18. A highly efficient recombineering-based method for generating conditional knockout mutations.

    PubMed

    Liu, Pentao; Jenkins, Nancy A; Copeland, Neal G

    2003-03-01

    Phage-based Escherichia coli homologous recombination systems have recently been developed that now make it possible to subclone or modify DNA cloned into plasmids, BACs, or PACs without the need for restriction enzymes or DNA ligases. This new form of chromosome engineering, termed recombineering, has many different uses for functional genomic studies. Here we describe a new recombineering-based method for generating conditional mouse knockout (cko) mutations. This method uses homologous recombination mediated by the lambda phage Red proteins, to subclone DNA from BACs into high-copy plasmids by gap repair, and together with Cre or Flpe recombinases, to introduce loxP or FRT sites into the subcloned DNA. Unlike other methods that use short 45-55-bp regions of homology for recombineering, our method uses much longer regions of homology. We also make use of several new E. coli strains, in which the proteins required for recombination are expressed from a defective temperature-sensitive lambda prophage, and the Cre or Flpe recombinases from an arabinose-inducible promoter. We also describe two new Neo selection cassettes that work well in both E. coli and mouse ES cells. Our method is fast, efficient, and reliable and makes it possible to generate cko-targeting vectors in less than 2 wk. This method should also facilitate the generation of knock-in mutations and transgene constructs, as well as expedite the analysis of regulatory elements and functional domains in or near genes.

  19. Generation of major human excretory and circulating drug metabolites using a hepatocyte relay method.

    PubMed

    Ballard, T Eric; Orozco, Christine C; Obach, R Scott

    2014-05-01

    The prediction of human drug metabolites using in vitro experiments containing human-derived reagents is an important approach in modern drug research; however, this can be challenging for drugs that are slowly metabolized. In this report, we describe the use of a recently developed human hepatocyte relay method for the purpose of predicting human drug metabolite profiles. Five compounds for which in vivo human metabolism data were available were selected for the investigation of this method, and the results were compared with data gathered in hepatocyte suspensions as well as previous data from a micropatterned hepatocyte coculture method. The hepatocyte relay method demonstrated an improved performance (generation of 75% of human in vivo metabolites) for those drugs for which previous methods showed a relatively low rate of success (50% of human in vivo metabolites). Metabolites included those arising from both oxidative and conjugative reactions and metabolites that required sequential reactions. Two 4-hour relays were shown to adequately generate metabolites, and no further benefit was derived from more relays. Overall, it can be concluded that the hepatocyte relay assay method can be successfully used in the generation of relevant human metabolites, even for challenging drugs.

  20. Maximum Power Point Tracking with Dichotomy and Gradient Method for Automobile Exhaust Thermoelectric Generators

    NASA Astrophysics Data System (ADS)

    Fang, W.; Quan, S. H.; Xie, C. J.; Tang, X. F.; Wang, L. L.; Huang, L.

    2016-03-01

    In this study, a direct-current/direct-current (DC/DC) converter with maximum power point tracking (MPPT) is developed to down-convert the high voltage DC output from a thermoelectric generator to the lower voltage required to charge batteries. To improve the tracking accuracy and speed of the converter, a novel MPPT control scheme characterized by an aggregated dichotomy and gradient (ADG) method is proposed. In the first stage, the dichotomy algorithm is used as a fast search method to find the approximate region of the maximum power point. The gradient method is then applied for rapid and accurate tracking of the maximum power point. To validate the proposed MPPT method, a test bench composed of an automobile exhaust thermoelectric generator was constructed for harvesting the automotive exhaust heat energy. Steady-state and transient tracking experiments under five different load conditions were carried out using a DC/DC converter with the proposed ADG and with three traditional methods. The experimental results show that the ADG method can track the maximum power within 140 ms with a 1.1% error rate when the engine operates at 3300 rpm@71 NM, which is superior to the performance of the single dichotomy method, the single gradient method and the perturbation and observation method from the viewpoint of improved tracking accuracy and speed.

  1. Efficient algorithm for generating spectra using line-by-lne methods

    SciTech Connect

    Sonnad, V; iglesias, C A

    2010-11-01

    A method is presented for efficient generation of spectra using line-by-line approaches. The only approximation is replacing the line shape function with an interpolation procedure, which makes the method independent of the line profile functional form. The resulting computational savings for large number of lines is proportional to the number of frequency points in the spectral range. Therefore, for large-scale problems the method can provide speedups of two orders of magnitude or more. A method was presented to generate line-by-line spectra efficiently. The first step was to replace the explicit calculation of the profile by the Newton divided-differences interpolating polynomial. The second step is to accumulate the lines effectively reducing their number to the number of frequency points. The final step is recognizing the resulting expression as a convolution and amenable to FFT methods. The reduction in computational effort for a configuration-to-configuration transition array with large number of lines is proportional to the number of frequency points. The method involves no approximations except for replacing the explicit profile evaluation by interpolation. Specifically, the line accumulation and convolution are exact given the interpolation procedure. Furthermore, the interpolation makes the method independent of the line profile functional form contrary to other schemes using FFT methods to generate line-by-line spectra but relying on the analytic form of the profile Fourier transform. Finally, the method relies on a uniform frequency mesh. For non-uniform frequency meshes, however, the method can be applied by using a suitable temporary uniform mesh and the results interpolated onto the final mesh with little additional cost.

  2. A simple method for generating full length cDNA from low abundance partial genomic clones

    PubMed Central

    Wang, Yongxin; Fugaro, Joseph M; Siddiq, Fauzia; Goparaju, Chandra Mouli V; Lonardo, Fulvio; Wali, Anil; Lechner, John F; Pass, Harvey I

    2000-01-01

    Background PCR amplification of target molecules involves sequence specific primers that flank the region to be amplified. While this technique is generally routine, its applicability may not be sufficient to generate a desired target molecule from two separate regions involving intron /exon boundaries. For these situations, the generation of full-length complementary DNAs from two partial genomic clones becomes necessary for the family of low abundance genes. Results The first approach we used for the isolation of full-length cDNA from two known genomic clones of Hox genes was based on fusion PCR. Here we describe a simple and efficient method of amplification for homeobox D13 (HOXD13) full length cDNA from two partial genomic clones. Specific 5' and 3' untranslated region (UTR) primer pairs and website program (primer3_www.cgv0.2) were key steps involved in this process. Conclusions We have devised a simple, rapid and easy method for generating cDNA clone from genomic sequences. The full length HOXD13 clone (1.1 kb) generated with this technique was confirmed by sequence analysis. This simple approach can be utilized to generate full-length cDNA clones from available partial genomic sequences. PMID:11114844

  3. Oxygen transport membrane reactor based method and system for generating electric power

    DOEpatents

    Kelly, Sean M.; Chakravarti, Shrikar; Li, Juan

    2017-02-07

    A carbon capture enabled system and method for generating electric power and/or fuel from methane containing sources using oxygen transport membranes by first converting the methane containing feed gas into a high pressure synthesis gas. Then, in one configuration the synthesis gas is combusted in oxy-combustion mode in oxygen transport membranes based boiler reactor operating at a pressure at least twice that of ambient pressure and the heat generated heats steam in thermally coupled steam generation tubes within the boiler reactor; the steam is expanded in steam turbine to generate power; and the carbon dioxide rich effluent leaving the boiler reactor is processed to isolate carbon. In another configuration the synthesis gas is further treated in a gas conditioning system configured for carbon capture in a pre-combustion mode using water gas shift reactors and acid gas removal units to produce hydrogen or hydrogen-rich fuel gas that fuels an integrated gas turbine and steam turbine system to generate power. The disclosed method and system can also be adapted to integrate with coal gasification systems to produce power from both coal and methane containing sources with greater than 90% carbon isolation.

  4. A Rapid and Improved Method to Generate Recombinant Dengue Virus Vaccine Candidates.

    PubMed

    Govindarajan, Dhanasekaran; Guan, Liming; Meschino, Steven; Fridman, Arthur; Bagchi, Ansu; Pak, Irene; ter Meulen, Jan; Casimiro, Danilo R; Bett, Andrew J

    2016-01-01

    Dengue is one of the most important mosquito-borne infections accounting for severe morbidity and mortality worldwide. Recently, the tetravalent chimeric live attenuated Dengue vaccine Dengvaxia® was approved for use in several dengue endemic countries. In general, live attenuated vaccines (LAV) are very efficacious and offer long-lasting immunity against virus-induced disease. Rationally designed LAVs can be generated through reverse genetics technology, a method of generating infectious recombinant viruses from full length cDNA contained in bacterial plasmids. In vitro transcribed (IVT) viral RNA from these infectious clones is transfected into susceptible cells to generate recombinant virus. However, the generation of full-length dengue virus cDNA clones can be difficult due to the genetic instability of viral sequences in bacterial plasmids. To circumvent the need for a single plasmid containing a full length cDNA, in vitro ligation of two or three cDNA fragments contained in separate plasmids can be used to generate a full-length dengue viral cDNA template. However, in vitro ligation of multiple fragments often yields low quality template for IVT reactions, resulting in inconsistent low yield RNA. These technical difficulties make recombinant virus recovery less efficient. In this study, we describe a simple, rapid and efficient method of using LONG-PCR to recover recombinant chimeric Yellow fever dengue (CYD) viruses as potential dengue vaccine candidates. Using this method, we were able to efficiently generate several viable recombinant viruses without introducing any artificial mutations into the viral genomes. We believe that the techniques reported here will enable rapid and efficient recovery of recombinant flaviviruses for evaluation as vaccine candidates and, be applicable to the recovery of other RNA viruses.

  5. A Rapid and Improved Method to Generate Recombinant Dengue Virus Vaccine Candidates

    PubMed Central

    Govindarajan, Dhanasekaran; Guan, Liming; Meschino, Steven; Fridman, Arthur; Bagchi, Ansu; Pak, Irene; ter Meulen, Jan; Casimiro, Danilo R.; Bett, Andrew J.

    2016-01-01

    Dengue is one of the most important mosquito-borne infections accounting for severe morbidity and mortality worldwide. Recently, the tetravalent chimeric live attenuated Dengue vaccine Dengvaxia® was approved for use in several dengue endemic countries. In general, live attenuated vaccines (LAV) are very efficacious and offer long-lasting immunity against virus-induced disease. Rationally designed LAVs can be generated through reverse genetics technology, a method of generating infectious recombinant viruses from full length cDNA contained in bacterial plasmids. In vitro transcribed (IVT) viral RNA from these infectious clones is transfected into susceptible cells to generate recombinant virus. However, the generation of full-length dengue virus cDNA clones can be difficult due to the genetic instability of viral sequences in bacterial plasmids. To circumvent the need for a single plasmid containing a full length cDNA, in vitro ligation of two or three cDNA fragments contained in separate plasmids can be used to generate a full-length dengue viral cDNA template. However, in vitro ligation of multiple fragments often yields low quality template for IVT reactions, resulting in inconsistent low yield RNA. These technical difficulties make recombinant virus recovery less efficient. In this study, we describe a simple, rapid and efficient method of using LONG-PCR to recover recombinant chimeric Yellow fever dengue (CYD) viruses as potential dengue vaccine candidates. Using this method, we were able to efficiently generate several viable recombinant viruses without introducing any artificial mutations into the viral genomes. We believe that the techniques reported here will enable rapid and efficient recovery of recombinant flaviviruses for evaluation as vaccine candidates and, be applicable to the recovery of other RNA viruses. PMID:27008550

  6. GeneNetWeaver: in silico benchmark generation and performance profiling of network inference methods.

    PubMed

    Schaffter, Thomas; Marbach, Daniel; Floreano, Dario

    2011-08-15

    Over the last decade, numerous methods have been developed for inference of regulatory networks from gene expression data. However, accurate and systematic evaluation of these methods is hampered by the difficulty of constructing adequate benchmarks and the lack of tools for a differentiated analysis of network predictions on such benchmarks. Here, we describe a novel and comprehensive method for in silico benchmark generation and performance profiling of network inference methods available to the community as an open-source software called GeneNetWeaver (GNW). In addition to the generation of detailed dynamical models of gene regulatory networks to be used as benchmarks, GNW provides a network motif analysis that reveals systematic prediction errors, thereby indicating potential ways of improving inference methods. The accuracy of network inference methods is evaluated using standard metrics such as precision-recall and receiver operating characteristic curves. We show how GNW can be used to assess the performance and identify the strengths and weaknesses of six inference methods. Furthermore, we used GNW to provide the international Dialogue for Reverse Engineering Assessments and Methods (DREAM) competition with three network inference challenges (DREAM3, DREAM4 and DREAM5). GNW is available at http://gnw.sourceforge.net along with its Java source code, user manual and supporting data. Supplementary data are available at Bioinformatics online. dario.floreano@epfl.ch.

  7. Spectrum-based method to generate good decoy libraries for spectral library searching in peptide identifications.

    PubMed

    Cheng, Chia-Ying; Tsai, Chia-Feng; Chen, Yu-Ju; Sung, Ting-Yi; Hsu, Wen-Lian

    2013-05-03

    As spectral library searching has received increasing attention for peptide identification, constructing good decoy spectra from the target spectra is the key to correctly estimating the false discovery rate in searching against the concatenated target-decoy spectral library. Several methods have been proposed to construct decoy spectral libraries. Most of them construct decoy peptide sequences and then generate theoretical spectra accordingly. In this paper, we propose a method, called precursor-swap, which directly constructs decoy spectral libraries directly at the "spectrum level" without generating decoy peptide sequences by swapping the precursors of two spectra selected according to a very simple rule. Our spectrum-based method does not require additional efforts to deal with ion types (e.g., a, b or c ions), fragment mechanism (e.g., CID, or ETD), or unannotated peaks, but preserves many spectral properties. The precursor-swap method is evaluated on different spectral libraries and the results of obtained decoy ratios show that it is comparable to other methods. Notably, it is efficient in time and memory usage for constructing decoy libraries. A software tool called Precursor-Swap-Decoy-Generation (PSDG) is publicly available for download at http://ms.iis.sinica.edu.tw/PSDG/.

  8. A method of generating initial conditions for cosmological N-body simulations

    SciTech Connect

    Joyce, M.; Levesque, D.; Marcos, B.

    2005-11-15

    We investigate the possibility of generating initial conditions for cosmological N-body simulations by simulating a system whose correlations at thermal equilibrium approximate well those of cosmological density perturbations. The system is an appropriately modified version of the standard 'one component plasma' (OCP). We show first how a well-known semianalytic method can be used to determine the potential required to produce the desired correlations, and then verify our results for some cosmological type spectra with simulations of the full molecular dynamics. The advantage of the method, compared to the standard one, is that it gives by construction an accurate representation of both the real and reciprocal space correlation properties of the theoretical model. Furthermore the distributions are also statistically homogeneous and isotropic. We discuss briefly the modifications needed to implement the method to produce configurations appropriate for large N-body simulations in cosmology, and also the generation of initial velocities in this context.

  9. A low-complexity method to generate delay power profile in wideband high frequency channel simulator

    NASA Astrophysics Data System (ADS)

    Liu, Yu-juan; Chen, Jin; Zhang, Yu-ming

    2011-10-01

    Delay power profile (DPP) characterizes the delay dispersion in wide-band high frequency (WBHF) channels, which determines whether the WBHF channel simulator can be used for the evaluation of WBHF communication systems. Newton's iterative method is commonly used to generate DPP for WBHF channels. But it has large computational complexity, so is not fit for applying to the implementation of WBHF channel simulators. We propose a new method to generate DPP based on look-up table. Compared to Newton's iterative method, Look-up table needs fewer multiplications and additions operations and avoids log operations, having lower computational complexity. Simulation results demonstrate that the decline of precision of DPP brought by look-up table can be neglected if the memory resources are great.

  10. Variational method for the minimization of entropy generation in solar cells

    SciTech Connect

    Smit, Sjoerd; Kessels, W. M. M.

    2015-04-07

    In this work, a method is presented to extend traditional solar cell simulation tools to make it possible to calculate the most efficient design of practical solar cells. The method is based on the theory of nonequilibrium thermodynamics, which is used to derive an expression for the local entropy generation rate in the solar cell, making it possible to quantify all free energy losses on the same scale. The framework of non-equilibrium thermodynamics can therefore be combined with the calculus of variations and existing solar cell models to minimize the total entropy generation rate in the cell to find the most optimal design. The variational method is illustrated by applying it to a homojunction solar cell. The optimization results in a set of differential algebraic equations, which determine the optimal shape of the doping profile for given recombination and transport models.

  11. Gradation representation method using binary-weighted computer-generated hologram

    NASA Astrophysics Data System (ADS)

    Fujiwara, Masato; Takada, Naoki; Araki, Hiromitsu; Ikawa, Shohei; Niwase, Hiroaki; Maeda, Yuki; Nakayama, Hirotaka; Kakue, Takashi; Shimobaba, Tomoyoshi; Ito, Tomoyoshi

    2017-02-01

    We propose a simple gradation representation method for a reconstructed three-dimensional (3-D) image without controlling the brightness of the reference light. In the proposed method, we use multiple bit planes comprised of binary-weighted computer-generated holograms (CGHs) with various light transmittances. Binary-weighted CGH is generated by changing the white in the conventional binary CGH to gray. The light transmittance of a binary-weighted CGH is less than that of a conventional binary CGH. The object points of a 3-D object are assigned to multiple bit planes according to the gray level of the object points. The multiple bit planes are displayed sequentially in a time-division multiplex manner. Consequently, the proposed method realizes a gradation representation of a reconstructed 3-D object.

  12. Applying the INTACT method to purify endosperm nuclei and to generate parental-specific epigenome profiles.

    PubMed

    Moreno-Romero, Jordi; Santos-González, Juan; Hennig, Lars; Köhler, Claudia

    2017-02-01

    The early endosperm tissue of dicot species is very difficult to isolate by manual dissection. This protocol details how to apply the INTACT (isolation of nuclei tagged in specific cell types) system for isolating early endosperm nuclei of Arabidopsis at high purity and how to generate parental-specific epigenome profiles. As a Protocol Extension, this article describes an adaptation of an existing Nature Protocol that details the use of the INTACT method for purification of root nuclei. We address how to obtain the INTACT lines, generate the starting material and purify the nuclei. We describe a method that allows purity assessment, which has not been previously addressed. The purified nuclei can be used for ChIP and DNA bisulfite treatment followed by next-generation sequencing (seq) to study histone modifications and DNA methylation profiles, respectively. By using two different Arabidopsis accessions as parents that differ by a large number of single-nucleotide polymorphisms (SNPs), we were able to distinguish the parental origin of epigenetic modifications. Our protocol describes the only working method to our knowledge for generating parental-specific epigenome profiles of the early Arabidopsis endosperm. The complete protocol, from silique collection to finished libraries, can be completed in 2 d for bisulfite-seq (BS-seq) and 3 to 4 d for ChIP-seq experiments.This protocol is an extension to: Nat. Protoc. 6, 56-68 (2011); doi:10.1038/nprot.2010.175; published online 16 December 2010.

  13. Generating National Dental PBRN Research Ideas Through the ToP Consensus Method Workshop.

    PubMed

    Mungia, Rahma; Hayes, Holly; Reyes, Stephanie; Theisen, Sarah; Buchberg, Meredith; Dolan, Colleen; Oates, Thomas

    2015-01-01

    The purpose of this article is to illustrate the research idea generation process employed by the Southwest Region of the National Dental Practice-Based Research Network (PBRN; www.NationalDentalPBRN.org) based on the Technology of Participation (ToP) Consensus Method Workshop. This method encourages a high level of participation in the decision-making process through individual, small group, and large group discussions. This approach to idea generation has predominately been used by nonprofit organizations and community groups both nationally and internationally, but offers great potential to study concept development for PBRNs. Five independent workshops were designed over a 12-month period. Workshops were held at three academic institutions, one National Dental PBRN meeting, and one as part of a continuing education program. The sessions were directed at general dentists, dental hygienists, and dental researchers to identify research ideas appropriate for examination through the PBRN mechanism. Five groups ranging in size from 11 to 53 (197 participants total) participated in the consensus workshops and generated 205 research ideas. Ideas across the five sessions were collated into novel and common categories of interest, and identified key participants interested in developing research concepts. Participant reaction to the sessions was positive based on evaluation comments and personal interactions. Practitioners effectively generated research ideas based on their current needs and daily clinical experience. The experiences presented in this article suggest continued use of the ToP consensus workshop methods within the PBRNs may help bridge the gap between research and practice.

  14. Pulsed arrays: A new method of flaw detection by generating a frequency dependent angle of propagation

    NASA Astrophysics Data System (ADS)

    Hill, S. J.; Dixon, S. M.

    2012-05-01

    A new method of using an array of generation sources, pulsed simultaneously to generate a wavefront with a frequency dependant angle of propagation, has been developed. If pulsed arrays are used to generate a wave with a frequency dependent angle of propagation, the angle at which the wave was launched can be identified by measuring the frequency of the detected wave. In an isotropic material this means that it is possible use a second transducer to locate the position of the scatterer, whereas with a conventional single element generator method, it can only be located onto an ellipse. In addition to an increased scan speed, the resolution of detection should also be improved. A theoretical framework is put forward to explain how the wavefront is created from the superposition of the waves from the individual elements, and how the frequency varies along the wavefront. Finite element models and experimental measurements were also carried out, and both agreed with the analytic model. This method will have applications within NDE, but could also extend to sonar and radar techniques.

  15. Comparison of Two Methods for the Generation of Spatially Modulated Ultrasound Radiation Force

    PubMed Central

    Elegbe, Etana C.; Menon, Manoj G.; McAleavey, Stephen A.

    2012-01-01

    Spatially modulated ultrasound radiation force (SMURF) imaging is an elastographic technique that involves generating a radiation force beam with a lateral intensity variation of a defined spatial frequency. This results in a shear wave of known wavelength. By using the displacements induced by the shear wave and standard Doppler or speckle-tracking methods, the shear wave frequency, and thus material shear modulus, is estimated. In addition to generating a pushing beam pattern with a specified lateral intensity variation, it is generally desirable to induce larger displacements so that the displacement data signal-to-noise ratio is higher. We provide an analysis of two beam forming methods for generating SMURF in an elastic material: the focal Fraunhofer and intersecting plane wave methods. Both techniques generate beams with a defined spatial frequency. However, as a result of the trade-offs associated with each technique, the peak acoustic intensity outputs in the region of interest differs for the same combinations of parameters (e.g., the focal depth, the width of the area of interest, and ultrasonic attenuation coefficient). Assuming limited transducer drive voltage, we provide a decision plot to determine which of the two techniques yields the greater pushing force for a specific configuration. PMID:21768019

  16. Entropy generation of nanofluid in presence of magnetic field using Lattice Boltzmann Method

    NASA Astrophysics Data System (ADS)

    Sheikholeslami, Mohsen; Ganji, Davood Domiri

    2015-01-01

    In this paper magnetohydrodynamic free convection flow of CuO-water nanofluid in a square enclosure with a rectangular heated body is investigated numerically using Lattice Boltzmann Method (LBM) scheme. The effective thermal conductivity and viscosity of nanofluid are calculated by KKL (Koo-Kleinstreuer-Li) correlation. The influence of pertinent parameters such as Hartmann number, nanoparticle volume fraction and Rayleigh number on the flow, heat transfer and entropy generation have been examined. The results show that the heat transfer rate and Dimensionless entropy generation number increase with increase of the Rayleigh number and nanoparticle volume fraction but it decreases with increase of the Hartmann number.

  17. Static analysis of rectifier cabinet for nuclear power generating stations based on finite element method

    NASA Astrophysics Data System (ADS)

    Yin, Qiang; Chen, Tian-jin; Li, Wei-yang; Xiong, Ze-cheng; Ma, Rui

    2017-09-01

    In order to obtain the deformation map and equivalent stress distribution of rectifier cabinet for nuclear power generating stations, the quality distribution of structure and electrical are described, the tensile bond strengths of the rings are checked, and the finite element model of cabinet is set up by ANSYS. The transport conditions of the hoisting state and fork loading state are analyzed. The deformation map and equivalent stress distribution are obtained. The attentive problems are put forward. It is a reference for analysis method and the obtained results for the transport of rectifier cabinet for nuclear power generating stations.

  18. A Practical Method for Assessing the Effectiveness of Vector Surge Relays for Distributed Generation Applications

    SciTech Connect

    Freitas, Walmir; Huang, Zhenyu; Xu, Wilsun

    2005-01-01

    This paper presents simple and reliable method for predicting the islanding detection performance of vector surge relays. The relay performance is characterized by a tripping-time versus power-imbalance curve. With the curve, one can determine the time taken by a vector surge relay to detect islanding for any generation-load mismatch level. The main contribution of this paper is the development of analytical formulas for directly determining the behavior of vector surge relays. As a result, efforts needed to asses the relay performance for a given distributed generation scheme can be simplified significantly. The accuracy of the formulas has been verified by extensive simulation study results.

  19. Realistic expression for full-parallax computer-generated holograms with the ray-tracing method.

    PubMed

    Ichikawa, Tsubasa; Yamaguchi, Kazuhiro; Sakamoto, Yuji

    2013-01-01

    This paper presents a calculation method of computer-generated holograms that involves removing the hidden surface and provides realistic rendering. The method was based on the ray-tracing method that simulates rays traveling paths. Rays are cast from every elementary hologram into virtual objects and then the traveling paths of the rays are determined. Since the method is considering intersection with objects, absorption, reflection, and refraction, the method is capable of rendering realistic images. Multiple reflections and refraction are expressed by casting additional rays into the reflection direction and the transmission direction and calculating the length of the light path. To express the quality of materials, the Phong reflection model and Cook-Torrance reflection model were used. Results of optical reconstructions show that the hidden surface removal was conducted. Moreover, the texture of material appeared as well as other effects by the proposed method.

  20. Depth compensating calculation method of computer-generated holograms using symmetry and similarity of zone plates

    NASA Astrophysics Data System (ADS)

    Wei, Hui; Gong, Guanghong; Li, Ni

    2017-10-01

    Computer-generated hologram (CGH) is a promising 3D display technology while it is challenged by heavy computation load and vast memory requirement. To solve these problems, a depth compensating CGH calculation method based on symmetry and similarity of zone plates is proposed and implemented on graphics processing unit (GPU). An improved LUT method is put forward to compute the distances between object points and hologram pixels in the XY direction. The concept of depth compensating factor is defined and used for calculating the holograms of points with different depth positions instead of layer-based methods. The proposed method is suitable for arbitrary sampling objects with lower memory usage and higher computational efficiency compared to other CGH methods. The effectiveness of the proposed method is validated by numerical and optical experiments.

  1. Comparison of methods for acid quantification: impact of resist components on acid-generating efficiency

    NASA Astrophysics Data System (ADS)

    Cameron, James F.; Fradkin, Leslie; Moore, Kathryn; Pohlers, Gerd

    2000-06-01

    Chemically amplified deep UV (CA-DUV) positive resists are the enabling materials for manufacture of devices at and below 0.18 micrometer design rules in the semiconductor industry. CA-DUV resists are typically based on a combination of an acid labile polymer and a photoacid generator (PAG). Upon UV exposure, a catalytic amount of a strong Bronsted acid is released and is subsequently used in a post-exposure bake step to deprotect the acid labile polymer. Deprotection transforms the acid labile polymer into a base soluble polymer and ultimately enables positive tone image development in dilute aqueous base. As CA-DUV resist systems continue to mature and are used in increasingly demanding situations, it is critical to develop a fundamental understanding of how robust these materials are. One of the most important factors to quantify is how much acid is photogenerated in these systems at key exposure doses. For the purpose of quantifying photoacid generation several methods have been devised. These include spectrophotometric methods, ion conductivity methods and most recently an acid-base type titration similar to the standard addition method. This paper compares many of these techniques. First, comparisons between the most commonly used acid sensitive dye, tetrabromophenol blue sodium salt (TBPB) and a less common acid sensitive dye, Rhodamine B base (RB) are made in several resist systems. Second, the novel acid-base type titration based on the standard addition method is compared to the spectrophotometric titration method. During these studies, the make up of the resist system is probed as follows: the photoacid generator and resist additives are varied to understand the impact of each of these resist components on the acid generation process.

  2. Scenario generation for stochastic optimization problems via the sparse grid method

    DOE PAGES

    Chen, Michael; Mehrotra, Sanjay; Papp, David

    2015-04-19

    We study the use of sparse grids in the scenario generation (or discretization) problem in stochastic programming problems where the uncertainty is modeled using a continuous multivariate distribution. We show that, under a regularity assumption on the random function involved, the sequence of optimal objective function values of the sparse grid approximations converges to the true optimal objective function values as the number of scenarios increases. The rate of convergence is also established. We treat separately the special case when the underlying distribution is an affine transform of a product of univariate distributions, and show how the sparse grid methodmore » can be adapted to the distribution by the use of quadrature formulas tailored to the distribution. We numerically compare the performance of the sparse grid method using different quadrature rules with classic quasi-Monte Carlo (QMC) methods, optimal rank-one lattice rules, and Monte Carlo (MC) scenario generation, using a series of utility maximization problems with up to 160 random variables. The results show that the sparse grid method is very efficient, especially if the integrand is sufficiently smooth. In such problems the sparse grid scenario generation method is found to need several orders of magnitude fewer scenarios than MC and QMC scenario generation to achieve the same accuracy. As a result, it is indicated that the method scales well with the dimension of the distribution--especially when the underlying distribution is an affine transform of a product of univariate distributions, in which case the method appears scalable to thousands of random variables.« less

  3. Evaluation of geospatial methods to generate subnational HIV prevalence estimates for local level planning

    PubMed Central

    2016-01-01

    Objective: There is evidence of substantial subnational variation in the HIV epidemic. However, robust spatial HIV data are often only available at high levels of geographic aggregation and not at the finer resolution needed for decision making. Therefore, spatial analysis methods that leverage available data to provide local estimates of HIV prevalence may be useful. Such methods exist but have not been formally compared when applied to HIV. Design/methods: Six candidate methods – including those used by the Joint United Nations Programme on HIV/AIDS to generate maps and a Bayesian geostatistical approach applied to other diseases – were used to generate maps and subnational estimates of HIV prevalence across three countries using cluster level data from household surveys. Two approaches were used to assess the accuracy of predictions: internal validation, whereby a proportion of input data is held back (test dataset) to challenge predictions; and comparison with location-specific data from household surveys in earlier years. Results: Each of the methods can generate usefully accurate predictions of prevalence at unsampled locations, with the magnitude of the error in predictions similar across approaches. However, the Bayesian geostatistical approach consistently gave marginally the strongest statistical performance across countries and validation procedures. Conclusions: Available methods may be able to furnish estimates of HIV prevalence at finer spatial scales than the data currently allow. The subnational variation revealed can be integrated into planning to ensure responsiveness to the spatial features of the epidemic. The Bayesian geostatistical approach is a promising strategy for integrating HIV data to generate robust local estimates. PMID:26919737

  4. Fast generation of weak lensing maps by the inverse-Gaussianization method

    NASA Astrophysics Data System (ADS)

    Yu, Yu; Zhang, Pengjie; Jing, Yipeng

    2016-10-01

    To take full advantage of the unprecedented power of upcoming weak lensing surveys, understanding the noise, such as cosmic variance and geometry/mask effects, is as important as understanding the signal itself. Accurately quantifying the noise requires a large number of statistically independent mocks for a variety of cosmologies. This is impractical for weak lensing simulations, which are costly for simultaneous requirements of large box size (to cover a significant fraction of the past light cone) and high resolution (to robustly probe the small scale where most lensing signal resides). Therefore, fast mock generation methods are desired and are under intensive investigation. We propose a new fast weak lensing map generation method, named the inverse-Gaussianization method, based on the finding that a lensing convergence field can be Gaussianized to excellent accuracy by a local transformation [43 Y. Yu, P. Zhang, W. Lin, W. Cui, and J. N. Fry, Phys. Rev. D 84, 023523 (2011).]. Given a simulation, it enables us to produce as many as infinite statistically independent lensing maps as fast as producing the simulation initial conditions. The proposed method is tested against simulations for each tomography bin centered at lens redshift z ˜0.5 , 1, and 2, with various statistics. We find that the lensing maps generated by our method have reasonably accurate power spectra, bispectra, and power spectrum covariance matrix. Therefore, it will be useful for weak lensing surveys to generate realistic mocks. As an example of application, we measure the probability distribution function of the lensing power spectrum, from 16384 lensing maps produced by the inverse-Gaussianization method.

  5. Real-time convolution method for generating light diffusion profiles of layered turbid media.

    PubMed

    Kim, Hoe-Min; Ko, Kwang Hee; Lee, Kwan H

    2011-06-01

    In this paper we present a technique to obtain a diffusion profile of layered turbid media in real time by using the quasi fast Hankel transform (QFHT) and the latest graphics processing unit technique. We apply the QFHT to convolve the diffusion profiles of each layer so as to dramatically reduce the time for the convolution step while maintaining the accuracy. In addition, we also introduce an accelerated technique to generate individual discrete diffusion profiles for each layer through parallel processing. The proposed method is 2 orders of magnitude faster than the existing method, and we validate its efficiency by comparing it with Monte Carlo simulation and another relevant methods.

  6. Analysis of self-excited induction generators using an iterative method

    SciTech Connect

    Chan, T.F.

    1995-09-01

    This paper describes the steady-state analysis of self-excited induction generators (SEIG) using an iterative method. By considering the conductances connected across the air gap nodes, an iteration procedure is developed of the determination of the self-excited per unit frequency, which enables the equivalent circuit to be completely solved. The proposed method involves only simple algebraic calculations, but the accuracy is good an convergence is rapid. The method is subsequently extended to include core loss effects and the analysis of SEIG with series capacitance compensation. Very good agreement between experimental and computed results has been obtained on a 2-kW laboratory machine.

  7. An improved method for computer generation of three-dimensional digital holography

    NASA Astrophysics Data System (ADS)

    Hu, Yanlei; Ma, Jianqiang; Chen, Yuhang; Li, Jiawen; Huang, Wenhao; Chu, Jiaru

    2013-12-01

    A novel method is proposed for designing optimized three-dimensional computer-generated holograms (CGHs). A series of spherical wave factors are introduced into the conventional optimal rotation angle (ORA) algorithm to achieve a varying amount of defocus along the optical axis, and the distraction terms are minimized during the iterative process. Both numerical simulation and experimental reconstructions are presented to demonstrate that this method is able to yield excellent multilayer patterns with high uniformity and signal-to-noise ratio (SNR). This method is significant for applications in laser 3D printing and multilayer data recording.

  8. Hydrogen generation systems and methods utilizing sodium silicide and sodium silica gel materials

    DOEpatents

    Wallace, Andrew P.; Melack, John M.; Lefenfeld, Michael

    2015-08-11

    Systems, devices, and methods combine thermally stable reactant materials and aqueous solutions to generate hydrogen and a non-toxic liquid by-product. The reactant materials can sodium silicide or sodium silica gel. The hydrogen generation devices are used in fuels cells and other industrial applications. One system combines cooling, pumping, water storage, and other devices to sense and control reactions between reactant materials and aqueous solutions to generate hydrogen. Springs and other pressurization mechanisms pressurize and deliver an aqueous solution to the reaction. A check valve and other pressure regulation mechanisms regulate the pressure of the aqueous solution delivered to the reactant fuel material in the reactor based upon characteristics of the pressurization mechanisms and can regulate the pressure of the delivered aqueous solution as a steady decay associated with the pressurization force. The pressure regulation mechanism can also prevent hydrogen gas from deflecting the pressure regulation mechanism.

  9. Switching robust control for ozone generators using the attractive ellipsoid method.

    PubMed

    Poznyak, T; Chairez, I; Perez, C; Poznyak, A

    2014-11-01

    This paper deals with a switching robust tracking feedback design for a corona-effect ozone generator. The generator is considered as a switched systems in the presence of bounded model uncertainties as well as external perturbations. Three nonlinear dynamic models under arbitrary switching mechanisms are considered assuming that a sample-switching times are known. The stabilization issue is achieved in the sense of a practical stability. We apply the newly elaborated (extended) version of the conventional attractive ellipsoid method (AEM) for this purpose. The same analysis was efficient to obtain the minimal size of region where the tracking error between the trajectories of the ozone generator and reference states converges. The numerically implementable sufficient conditions for the practical stability of systems are derived based on bilinear matrix inequalities (BMIs).

  10. Calculation method of reflectance distributions for computer-generated holograms using the finite-difference time-domain method.

    PubMed

    Ichikawa, Tsubasa; Sakamoto, Yuji; Subagyo, Agus; Sueoka, Kazuhisa

    2011-12-01

    The research on reflectance distributions in computer-generated holograms (CGHs) is particularly sparse, and the textures of materials are not expressed. Thus, we propose a method for calculating reflectance distributions in CGHs that uses the finite-difference time-domain method. In this method, reflected light from an uneven surface made on a computer is analyzed by finite-difference time-domain simulation, and the reflected light distribution is applied to the CGH as an object light. We report the relations between the surface roughness of the objects and the reflectance distributions, and show that the reflectance distributions are given to CGHs by imaging simulation. © 2011 Optical Society of America

  11. Systems, methods and apparatus for generation and verification of policies in autonomic computing systems

    NASA Technical Reports Server (NTRS)

    Hinchey, Michael G. (Inventor); Rash, James L. (Inventor); Truszkowski, Walter F. (Inventor); Rouff, Christopher A. (Inventor); Sterritt, Roy (Inventor); Gracanin, Denis (Inventor)

    2011-01-01

    Described herein is a method that produces fully (mathematically) tractable development of policies for autonomic systems from requirements through to code generation. This method is illustrated through an example showing how user formulated policies can be translated into a formal mode which can then be converted to code. The requirements-based programming method described provides faster, higher quality development and maintenance of autonomic systems based on user formulation of policies.Further, the systems, methods and apparatus described herein provide a way of analyzing policies for autonomic systems and facilities the generation of provably correct implementations automatically, which in turn provides reduced development time, reduced testing requirements, guarantees of correctness of the implementation with respect to the policies specified at the outset, and provides a higher degree of confidence that the policies are both complete and reasonable. The ability to specify the policy for the management of a system and then automatically generate an equivalent implementation greatly improves the quality of software, the survivability of future missions, in particular when the system will operate untended in very remote environments, and greatly reduces development lead times and costs.

  12. Second harmonic generation in one-dimensional nonlinear photonic crystals solved by the transfer matrix method

    NASA Astrophysics Data System (ADS)

    Li, Jing-Juan; Li, Zhi-Yuan; Zhang, Dao-Zhong

    2007-05-01

    The transfer matrix method has been widely used to calculate the scattering of electromagnetic waves. In this paper, we develop the conventional transfer matrix method to analyze the problem of second harmonic generation in a one-dimensional multilayer nonlinear optical structure. In the designed nonlinear photonic crystal structure, the linear and nonlinear optical parameters are both periodically modulated. We have taken into account the multiple reflection and interference effects of both the linear and nonlinear optical waves during the construction of the transfer matrix for each composite layer. Application of this method to multilayer nonlinear photonic crystal structures with different refractive indices indicates that the proposed method is an exact approach and can simulate the generation of the second harmonic field precisely. In an optimum structure, the second harmonic generation efficiency can be several orders of magnitude larger than in a conventional quasi-phase-matched nonlinear structure with the same sample length. The reason is that, due to the presence of photonic band gap edges, the density of states of the electromagnetic fields is large, the group velocity is small, and the local field is enhanced. All three factors contribute to significant enhancement of the nonlinear optical interactions.

  13. Method for generating spatial and temporal synthetic hourly rainfall in the Valley of Mexico

    NASA Astrophysics Data System (ADS)

    Mendoza-Resendiz, Alejandro; Arganis-Juarez, Maritza; Dominguez-Mora, Ramon; Echavarria, Bernardo

    2013-10-01

    Hydrological risk analyses require a dense pluviometer network and a long period of records with an adequate time resolution; usually pluviometer networks have short periods of simultaneous records, so it is required to extend the number of records by means of synthetically generated rainfall events. This paper describes the development and implementation of a method based on a daily rainfall disaggregation for generating synthetic rainfall events distributed spatially and temporally. It uses the information recorded in 49 rain-gauge stations in the network of the basin of the Valley of Mexico during the rainy season from 1988 to 2006. Within various methods found in the literature, we consider that this one provides a greater simplicity for a practical implementation. The tests carried out showed that rainfall events generated with this method properly reproduce the statistical parameters of the historical records, including those that are not implicitly incorporated in the model, as is the case of the synthetic hourly rainfall, whose statistical values are virtually identical to the historical ones despite that the proposed method only uses the probability distribution of maximum daily rainfall.

  14. Alginate-based microcapsules generated with the coaxial electrospray method for clinical application.

    PubMed

    Barron, Catherine; He, Jia-Qiang

    2017-09-01

    Alginate-based microencapsulation of cells has made a significant impact on the fields of regenerative medicine and tissue engineering mainly because of its ability to provide immunoisolation for the encapsulated material. This characteristic has allowed for the successful transplantation of non-autologous cells in several clinical trials for life threatening conditions, such as diabetes, myocardial infarction, and neurodegenerative disorders. Methods for alginate hydrogel microencapsulation have been well developed for various types of cells and can generate microcapsules of different diameters, degradation time, and composition. It appears the most prominent and successful method in clinical applications is the coaxial electrospray method, which can be used to generate both homogenous and non-homogeneous microcapsules with uniform size on the order of 100 μm. The present review aims to discuss why alginate hydrogel is an ideal biomaterial for the encapsulation of cells, how alginate-based microcapsules are generated, and methods of modifying the microcapsules for specific clinical treatments. This review will also discuss clinical applications that have utilized alginate-based microencapsulation in the treatment of diabetes, ischemic heart disease, and neurodegenerative diseases.

  15. Efficient method for generation of bacteriophage insensitive mutants of Streptococcus thermophilus yoghurt and mozzarella strains.

    PubMed

    Mills, S; Coffey, A; McAuliffe, O E; Meijer, W C; Hafkamp, B; Ross, R P

    2007-07-01

    Bacteriophage infection of Streptococcus thermophilus is becoming increasingly problematic in many industry fermentations such as yoghurt and mozzarella manufacture. This study describes the development of an efficient and rapid 3-step approach for the generation of bacteriophage insensitive mutants (BIMs) of these starter strains. The method initially involves infection of a culture in solid media at a multiplicity of infection (M.O.I.) of 10 which is then incubated in milk overnight. BIMs are then isolated following successive rounds (20-25) of growth in 10% reconstituted skimmed milk (RSM) in the presence of high phage titres. The method selects for BIMs which can grow efficiently in milk. Using this approach BIMs of two industrial strains were generated, whose starter performance was comparable to the parent starters in terms of performance in milk. Genomic fingerprinting used to validate the identity of each BIM, revealed a number of restriction fragment length polymorphisms (RFLPs) in two of the resultant BIMs. This method provides a simple and reliable method for generation of BIMs of industrial starters which does not require any specialised equipment and should be widely applicable.

  16. Modeling, mesh generation, and adaptive numerical methods for partial differential equations

    SciTech Connect

    Babuska, I.; Henshaw, W.D.; Oliger, J.E.; Flaherty, J.E.; Hopcroft, J.E.; Tezduyar, T.

    1995-12-31

    Mesh generation is one of the most time consuming aspects of computational solutions of problems involving partial differential equations. It is, furthermore, no longer acceptable to compute solutions without proper verification that specified accuracy criteria are being satisfied. Mesh generation must be related to the solution through computable estimates of discretization errors. Thus, an iterative process of alternate mesh and solution generation evolves in an adaptive manner with the end result that the solution is computed to prescribed specifications in an optimal, or at least efficient, manner. While mesh generation and adaptive strategies are becoming available, major computational challenges remain. One, in particular, involves moving boundaries and interfaces, such as free-surface flows and fluid-structure interactions. A 3-week program was held from July 5 to July 23, 1993 with 173 participants and 66 keynote, invited, and contributed presentations. This volume represents written versions of 21 of these lectures. These proceedings are organized roughly in order of their presentation at the workshop. Thus, the initial papers are concerned with geometry and mesh generation and discuss the representation of physical objects and surfaces on a computer and techniques to use this data to generate, principally, unstructured meshes of tetrahedral or hexahedral elements. The remainder of the papers cover adaptive strategies, error estimation, and applications. Several submissions deal with high-order p- and hp-refinement methods where mesh refinement/coarsening (h-refinement) is combined with local variation of method order (p-refinement). Combinations of mathematically verified and physically motivated approaches to error estimation are represented. Applications center on fluid mechanics. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  17. Method of delivering lunar generated fluid to earth orbit using an external tank

    NASA Technical Reports Server (NTRS)

    Butterfield, Ansel J. (Inventor); Goslee, John W. (Inventor)

    1992-01-01

    A method and apparatus are provided for delivering lunar generated fluid to Earth orbit from lunar orbit. Transport takes place in an external tank of a shuttle which has been suitably outfitted in Earth orbit for reusable travel between Earth orbit and a lunar orbit. The outfitting of the external tank includes the adding of an engine, an electrical system, a communication system, a guidance system, an aerobraking device, and a plurality of interconnected fluid storage tanks to the hydrogen and oxygen tanks of the external tank. The external tank is then propelled to lunar orbit the first time using Earth-based propellant. In lunar orbit, the storage tanks are filled with the lunar generated fluid with the remainder tank volumes filled with lunar generated liquid oxygen and hydrogen which serve as propellants for returning the tank to Earth orbit where the fluid is off-loaded. The remaining lunar generated oxygen and hydrogen is then sufficient to return the external tank to lunar orbit so that a subsequent cycle of fluid delivery is repeated. A space station in a higher Earth orbit is preferably used to outfit the external tank, and a lunar node in lunar orbit is used to store and transfer the fluid and liquid oxygen and hydrogen to the external tank. The lunar generated fluid is preferably .sup.3 He.

  18. Improved look-up table method of computer-generated holograms.

    PubMed

    Wei, Hui; Gong, Guanghong; Li, Ni

    2016-11-10

    Heavy computation load and vast memory requirements are major bottlenecks of computer-generated holograms (CGHs), which are promising and challenging in three-dimensional displays. To solve these problems, an improved look-up table (LUT) method suitable for arbitrarily sampled object points is proposed and implemented on a graphics processing unit (GPU) whose reconstructed object quality is consistent with that of the coherent ray-trace (CRT) method. The concept of distance factor is defined, and the distance factors are pre-computed off-line and stored in a look-up table. The results show that while reconstruction quality close to that of the CRT method is obtained, the on-line computation time is dramatically reduced compared with the LUT method on the GPU and the memory usage is lower than that of the novel-LUT considerably. Optical experiments are carried out to validate the effectiveness of the proposed method.

  19. Methods and evaluations of MRI content-adaptive finite element mesh generation for bioelectromagnetic problems.

    PubMed

    Lee, W H; Kim, T-S; Cho, M H; Ahn, Y B; Lee, S Y

    2006-12-07

    In studying bioelectromagnetic problems, finite element analysis (FEA) offers several advantages over conventional methods such as the boundary element method. It allows truly volumetric analysis and incorporation of material properties such as anisotropic conductivity. For FEA, mesh generation is the first critical requirement and there exist many different approaches. However, conventional approaches offered by commercial packages and various algorithms do not generate content-adaptive meshes (cMeshes), resulting in numerous nodes and elements in modelling the conducting domain, and thereby increasing computational load and demand. In this work, we present efficient content-adaptive mesh generation schemes for complex biological volumes of MR images. The presented methodology is fully automatic and generates FE meshes that are adaptive to the geometrical contents of MR images, allowing optimal representation of conducting domain for FEA. We have also evaluated the effect of cMeshes on FEA in three dimensions by comparing the forward solutions from various cMesh head models to the solutions from the reference FE head model in which fine and equidistant FEs constitute the model. The results show that there is a significant gain in computation time with minor loss in numerical accuracy. We believe that cMeshes should be useful in the FEA of bioelectromagnetic problems.

  20. Methods and evaluations of MRI content-adaptive finite element mesh generation for bioelectromagnetic problems

    NASA Astrophysics Data System (ADS)

    Lee, W. H.; Kim, T.-S.; Cho, M. H.; Ahn, Y. B.; Lee, S. Y.

    2006-12-01

    In studying bioelectromagnetic problems, finite element analysis (FEA) offers several advantages over conventional methods such as the boundary element method. It allows truly volumetric analysis and incorporation of material properties such as anisotropic conductivity. For FEA, mesh generation is the first critical requirement and there exist many different approaches. However, conventional approaches offered by commercial packages and various algorithms do not generate content-adaptive meshes (cMeshes), resulting in numerous nodes and elements in modelling the conducting domain, and thereby increasing computational load and demand. In this work, we present efficient content-adaptive mesh generation schemes for complex biological volumes of MR images. The presented methodology is fully automatic and generates FE meshes that are adaptive to the geometrical contents of MR images, allowing optimal representation of conducting domain for FEA. We have also evaluated the effect of cMeshes on FEA in three dimensions by comparing the forward solutions from various cMesh head models to the solutions from the reference FE head model in which fine and equidistant FEs constitute the model. The results show that there is a significant gain in computation time with minor loss in numerical accuracy. We believe that cMeshes should be useful in the FEA of bioelectromagnetic problems.

  1. Discretization error estimation and exact solution generation using the method of nearby problems.

    SciTech Connect

    Sinclair, Andrew J.; Raju, Anil; Kurzen, Matthew J.; Roy, Christopher John; Phillips, Tyrone S.

    2011-10-01

    The Method of Nearby Problems (MNP), a form of defect correction, is examined as a method for generating exact solutions to partial differential equations and as a discretization error estimator. For generating exact solutions, four-dimensional spline fitting procedures were developed and implemented into a MATLAB code for generating spline fits on structured domains with arbitrary levels of continuity between spline zones. For discretization error estimation, MNP/defect correction only requires a single additional numerical solution on the same grid (as compared to Richardson extrapolation which requires additional numerical solutions on systematically-refined grids). When used for error estimation, it was found that continuity between spline zones was not required. A number of cases were examined including 1D and 2D Burgers equation, the 2D compressible Euler equations, and the 2D incompressible Navier-Stokes equations. The discretization error estimation results compared favorably to Richardson extrapolation and had the advantage of only requiring a single grid to be generated.

  2. Device and method for generating a beam of acoustic energy from a borehole, and applications thereof

    DOEpatents

    Vu, Cung Khac; Sinha, Dipen N; Pantea, Cristian; Nihei, Kurt T; Schmitt, Denis P; Skelt, Christopher

    2013-10-01

    In some aspects of the invention, a method of generating a beam of acoustic energy in a borehole is disclosed. The method includes generating a first broad-band acoustic pulse at a first broad-band frequency range having a first central frequency and a first bandwidth spread; generating a second broad-band acoustic pulse at a second broad-band frequency range different than the first frequency range having a second central frequency and a second bandwidth spread, wherein the first acoustic pulse and second acoustic pulse are generated by at least one transducer arranged on a tool located within the borehole; and transmitting the first and the second broad-band acoustic pulses into an acoustically non-linear medium, wherein the composition of the non-linear medium produces a collimated pulse by a non-linear mixing of the first and second acoustic pulses, wherein the collimated pulse has a frequency equal to the difference in frequencies between the first central frequency and the second central frequency and a bandwidth spread equal to the sum of the first bandwidth spread and the second bandwidth spread.

  3. Life cycle design metrics for energy generation technologies: Method, data, and case study

    NASA Astrophysics Data System (ADS)

    Cooper, Joyce; Lee, Seung-Jin; Elter, John; Boussu, Jeff; Boman, Sarah

    A method to assist in the rapid preparation of Life Cycle Assessments of emerging energy generation technologies is presented and applied to distributed proton exchange membrane fuel cell systems. The method develops life cycle environmental design metrics and allows variations in hardware materials, transportation scenarios, assembly energy use, operating performance and consumables, and fuels and fuel production scenarios to be modeled and comparisons to competing systems to be made. Data and results are based on publicly available U.S. Life Cycle Assessment data sources and are formulated to allow the environmental impact weighting scheme to be specified. A case study evaluates improvements in efficiency and in materials recycling and compares distributed proton exchange membrane fuel cell systems to other distributed generation options. The results reveal the importance of sensitivity analysis and system efficiency in interpreting case studies.

  4. Effects of instruction on learners' ability to generate an effective pathway in the method of loci.

    PubMed

    Massen, Cristina; Vaterrodt-Plünnecke, Bianca; Krings, Lucia; Hilbig, Benjamin E

    2009-10-01

    One of the most effective mnemonic techniques is the well-known method of loci. Learning and retention, especially of sequentially ordered information, is facilitated by this technique which involves mentally combining salient loci on a well-known path with the material to be learned. There are several variants of this technique that differ in the kind of path that is suggested to the user and it is implicitly assumed that these variants are comparable in effectiveness. The experiments reported in this study were designed to test this assumption. The data of two experiments show that participants who are instructed to generate and apply loci on a route to their work recall significantly more items in a memory test than participants who are instructed to generate and apply loci on a route in their house. These results have practical implications for the instruction and application of the method of loci.

  5. Comparison of different simulation methods for effective medium computer generated holograms.

    PubMed

    Eckstein, Wiebke; Kley, Ernst-Bernhard; Tünnermann, Andreas

    2013-05-20

    The arrangement of binary subwavelength structures is a promising alternative to the conventional multiheight level technique to generate computer generated holograms (CGHs). However, the current heuristic design approach leads to a slight mismatch between the target signal and experimental data. To evaluate this deviation, a diffractive beam splitter design is investigated rigorously using a finite-difference time-domain (FDTD) method. Since the use of a rigorous Maxwell-equation solver like FDTD requires a massive computational effort, an alternative scalar approach, a fast Fourier transform beam propagation method (FFT-BPM), is investigated with a substantial higher computing speed, showing still a good agreement with the FDTD simulation and experimental data. Therefore, an implementation of this scalar approach into the CGH design process offers the possibility to significantly increase the accuracy.

  6. Development of quadruped walking locomotion gait generator using a hybrid method

    NASA Astrophysics Data System (ADS)

    Jasni, F.; Shafie, A. A.

    2013-12-01

    The earth, in many areas is hardly reachable by the wheeled or tracked locomotion system. Thus, walking locomotion system is becoming a favourite option for mobile robot these days. This is because of the ability of walking locomotion to move on the rugged and unlevel terrains. However, to develop a walking locomotion gait for a robot is not a simple task. Central Pattern Generator (CPGs) method is a biological inspired method that is introduced as a method to develop the gait for the walking robot recently to tackle the issue faced by the conventional method of pre-designed trajectory based method. However, research shows that even the CPG method do have some limitations. Thus, in this paper, a hybrid method that combines CPG and the pre-designed trajectory based method is introduced to develop a walking gait for quadruped walking robot. The 3-D foot trajectories and the joint angle trajectories developed using the proposed method are compared with the data obtained via the conventional method of pre-designed trajectory to confirm the performance.

  7. A new field method to characterise the runoff generation potential of burned hillslopes

    NASA Astrophysics Data System (ADS)

    Sheridan, Gary; Lane, Patrick; Langhans, Christoph

    2016-04-01

    The prediction of post fire runoff generation is critical for the estimation of post fire erosion processes and rates. Typical field measures for determining infiltration model parameters include ring infiltrometers, tension infiltrometers, rainfall simulators and natural runoff plots. However predicting the runoff generating potential of post-fire hillslopes is difficult due to the high spatial variability of soil properties relative to the size of the measurement method, the poorly understood relationship between water repellence and runoff generation, known scaling issues with all the above hydraulic measurements, and logistical limitations for measurements in remote environments. In this study we tested a new field method for characterizing surface runoff generation potential that overcomes these limitations and is quick, simple and cheap to apply in the field. The new field method involves the manual application of a 40mm depth of Brilliant Blue FCF food dye along a 10cm wide and 5m long transect along the contour under slightly-ponded conditions. After 24 hours the transect is excavated to a depth of 10cm and the percentage dyed area within the soil profile recorded manually. The dyed area is an index of infiltration potential of the soil during intense rainfall events, and captures both spatial variability and water repellence effects. The dye measurements were made adjacent to long term instrumented post fire rainfall-runoff plots on 7 contrasting soil types over a 6 month period, and the results show surprisingly strong correlations (r2 = 0.9) between the runoff-ratio from the plots and the dyed area. The results are used to develop an initial conceptual model that links the dye index with an infiltration model and parameters suited to burnt hillslopes. The capacity of this method to provide a simple, and reliable indicator of post fire runoff potential from different fire severities, soil types and treatments is explored in this presentation.

  8. Generator coordinate method and nuclear collective motions (IV)-TDGCM versus ATDHF

    SciTech Connect

    Xu, G.

    1982-04-01

    Considering the time-dependent generator coordinate method, the time-dependent Schroedinger equation for nuclear collective motions is obtained. It is then possible to obtain through the Wigner matrix a variational expression for mean collective properties q-bar(t) and p-bar(t) in classical limits. Under adiabatic approximation this is just the expression by which Villars has obtained the ATDHF results.

  9. Validation of Vortex-Lattice Method for Loads on Wings in Lift-Generated Wakes

    NASA Technical Reports Server (NTRS)

    Rossow, Vernon J.

    1995-01-01

    A study is described that evaluates the accuracy of vortex-lattice methods when they are used to compute the loads induced on aircraft as they encounter lift-generated wakes. The evaluation is accomplished by the use of measurements made in the 80 by 120 ft Wind Tunnel of the lift, rolling moment, and downwash in the wake of three configurations of a model of a subsonic transport aircraft. The downwash measurements are used as input for a vortex-lattice code in order to compute the lift and rolling moment induced on wings that have a span of 0.186, 0.510, or 1.022 times the span of the wake-generating model. Comparison of the computed results with the measured lift and rolling-moment distributions the vortex-lattice method is very reliable as long as the span of the encountering or following wing is less than about 0.2 of the generator span. As the span of the following wing increases above 0.2, the vortex-lattice method continues to correctly predict the trends and nature of the induced loads, but it overpredicts the magnitude of the loads by increasing amounts.

  10. Remembrance of phases past: An autoregressive method for generating realistic atmospheres in simulations

    NASA Astrophysics Data System (ADS)

    Srinath, Srikar; Poyneer, Lisa A.; Rudy, Alexander R.; Ammons, S. M.

    2014-08-01

    The advent of expensive, large-aperture telescopes and complex adaptive optics (AO) systems has strengthened the need for detailed simulation of such systems from the top of the atmosphere to control algorithms. The credibility of any simulation is underpinned by the quality of the atmosphere model used for introducing phase variations into the incident photons. Hitherto, simulations which incorporate wind layers have relied upon phase screen generation methods that tax the computation and memory capacities of the platforms on which they run. This places limits on parameters of a simulation, such as exposure time or resolution, thus compromising its utility. As aperture sizes and fields of view increase the problem will only get worse. We present an autoregressive method for evolving atmospheric phase that is efficient in its use of computation resources and allows for variability in the power contained in frozen flow or stochastic components of the atmosphere. Users have the flexibility of generating atmosphere datacubes in advance of runs where memory constraints allow to save on computation time or of computing the phase at each time step for long exposure times. Preliminary tests of model atmospheres generated using this method show power spectral density and rms phase in accordance with established metrics for Kolmogorov models.

  11. Hierarchical Methods for the Generation, Publication and Visualization of Huge Astronomical Data Cube Surveys

    NASA Astrophysics Data System (ADS)

    Fernique, P.; Allen, M.; Boch, T.; Bonnarel, F.; Oberto, A.

    2015-09-01

    The CDS has developed and validated new methods to generate, publish and display huge astronomical image data cubes based on the Hierarchical Progressive Survey (HiPS) framework. Data cubes with two spatial dimensions and an additional spectral or temporal dimension can be mapped onto HEALPix grids at different resolutions, which supports zooming and panning of the data across the sky with the ability to explore the third dimension of the cube. These methods are successfully applied to different sorts of cube data, and surveys of cube data.

  12. Application of a variational method for generating adaptive grids. [for gas dynamics past airfoils

    NASA Technical Reports Server (NTRS)

    Kreis, R. I.; Hassan, H. A.; Thames, F. C.

    1985-01-01

    The application of variational methods for generating adaptive grids is not as straightforward as one is led to believe. Proper scaling, suitable weight functions and appropriate clustering on boundaries must be employed to obtain a satisfactory grid. This work, which is based on the framework developed by Brackbill and Saltzman, provides simple methods for determining scaling and investigates possible options for selecting the weight function and clustering points on the boundaries. The concepts developed here are applied to two two-dimensional problems: a model problem based on Burger's equation which contains two length scales and, transonic flow past airfoils using the Euler equations.

  13. [Crowdsourcing is a new method for generating data for scientific research].

    PubMed

    Bækgaard, Josefine Stokholm; Hallas, Peter

    2015-01-05

    Crowdsourcing (CS) is a rapidly emerging method in scientific research. In CS, large groups of people generate new data or try to find solutions to specific research questions, mainly by online collaboration. Examples of the current use of CS in medicine include disease surveillance as well as diagnosis of rare conditions. CS techniques are rapid, low cost and geographically independent - traits lacking in traditional types of study design. However, CS as a method has not yet found its place in the evidence rating scale and a standard for conducting and reporting CS studies does not yet exist.

  14. Generation and detection of thermoelastic waves in metals by a photothermal mirror method

    NASA Astrophysics Data System (ADS)

    Capeloto, O. A.; Zanuto, V. S.; Lukasievicz, G. V. B.; Malacarne, L. C.; Bialkowski, S. E.; Požar, T.; Astrath, N. G. C.

    2016-11-01

    We investigate the thermoelastic waves launched by a localized heat deposition. Pulsed laser excitation is used to generate mechanical perturbations in metals that are detected using the photothermal mirror method. This method detects the wavefront distortion of the probe beam reflected from the perturbed sample surface. Nanometer scale expansion of the material is induced just under the irradiated surface releasing transient thermoelastic waves of much smaller amplitudes on the surface. Numerical predictions and the experimental results are in a good agreement and represent both the thermal diffusion of the large amplitude, long-lasting outward bulge, and the released elastic waves.

  15. Method for generating a highly reactive plasma for exhaust gas aftertreatment and enhanced catalyst reactivity

    DOEpatents

    Whealton, John H.; Hanson, Gregory R.; Storey, John M.; Raridon, Richard J.; Armfield, Jeffrey S.; Bigelow, Timothy S.; Graves, Ronald L.

    2002-01-01

    A method for non-thermal plasma aftertreatment of exhaust gases the method comprising the steps of providing short risetime, high frequency, high power bursts of low-duty factor microwaves sufficient to generate a plasma discharge and passing a gas to be treated through the discharge so as to cause dissociative reduction of the exhaust gases and enhanced catalyst reactivity through application of the pulsed microwave fields directly to the catalyst material sufficient to cause a polarizability catastrophe and enhanced heating of the metal crystallite particles of the catalyst, and in the presence or absence of the plasma. The invention also includes a reactor for aftertreatment of exhaust gases.

  16. Method of computer-generated hologram compression and transmission using quantum back-propagation neural network

    NASA Astrophysics Data System (ADS)

    Liu, Mengjia; Yang, Guanglin; Xie, Haiyan

    2017-02-01

    A method for computer-generated hologram (CGH) compression and transmission using a quantum back-propagation neural network (QBPNN) is proposed, with the Fresnel transform technique adopted for image reconstruction of the compressed and transmitted CGH. Experiments of simulation were conducted to compare the reconstructed images from CGHs processed using a QBPNN with those processed using a back-propagation neural network (BPNN) at the optimal learning coefficients. The experimental results show that the method using a QBPNN could produce reconstructed images with a better quality than those obtained using a BPNN despite the use of fewer learning iterations at the same compression ratio.

  17. An interface-fitted mesh generator and virtual element methods for elliptic interface problems

    NASA Astrophysics Data System (ADS)

    Chen, Long; Wei, Huayi; Wen, Min

    2017-04-01

    A simple and efficient interface-fitted mesh generation algorithm which can produce a semi-structured interface-fitted mesh in two and three dimensions quickly is developed in this paper. Elements in such interface-fitted meshes are not restricted to simplices but can be polygons or polyhedra. Especially in 3D, the polyhedra instead of tetrahedra can avoid slivers. Virtual element methods are applied to solve elliptic interface problems with solutions and flux jump conditions. Algebraic multigrid solvers are used to solve the resulting linear algebraic system. Numerical results are presented to illustrate the effectiveness of our method.

  18. Method for generation of spiral bevel gears with conjugate gear tooth surfaces

    NASA Technical Reports Server (NTRS)

    Litvin, F. L.; Coy, J. J.; Heine, C.; Tsung, Wei-Jiung

    1987-01-01

    A method for generation of spiral bevel gears is proposed that provides conjugate gear tooth surfaces. This method is based on a new principle for the performance of parallel motion of a straight line that slides along two mating ellipses with related dimensions and parameters of orientation. The parallel motion of the straight line, that is, the contact normal, is performed parallel to the line which passes through the foci of symmetry of the related ellipses. The manufacturing of gears can be performed with the existing Gleason's equipment.

  19. Simple method for the generation of multiple homogeneous field volumes inside the bore of superconducting magnets.

    PubMed

    Chou, Ching-Yu; Ferrage, Fabien; Aubert, Guy; Sakellariou, Dimitris

    2015-07-17

    Standard Magnetic Resonance magnets produce a single homogeneous field volume, where the analysis is performed. Nonetheless, several modern applications could benefit from the generation of multiple homogeneous field volumes along the axis and inside the bore of the magnet. In this communication, we propose a straightforward method using a combination of ring structures of permanent magnets in order to cancel the gradient of the stray field in a series of distinct volumes. These concepts were demonstrated numerically on an experimentally measured magnetic field profile. We discuss advantages and limitations of our method and present the key steps required for an experimental validation.

  20. A new phase generated carrier demodulation method based on fixed phase delay

    NASA Astrophysics Data System (ADS)

    Shi, Qingping; Wang, Liwei; Zhang, Huayong; Tian, Changdong; Zhang, Min; Tian, Qian; Liao, Yanbiao

    2010-11-01

    Phase Generated Carrier (PGC) with directly Frequency Modulation (FM) is one of the most important demodulation methods for optical fiber interferometric sensor system. Previous research has confirmed that system performance using Orthogonal Demodulation Type PGC (ODT-PGC) method is determined by many parameters, such as signal phase delay, FM depth, laser intensity accompanying modulation. This article proposes a new PGC demodulation method based on Fixed Phase Delay (FPD-PGC) by 3x2 directional coupler, using second-harmonic components of two interferometric signals to demodulate. The demodulation principle of the new method is described in detail and its performances have been studied. Theoretical analysis and experimental results show that the new method combines main advantages of directional coupler method and ODT-PGC method, and eliminates, to a great extent, the impacts of FM depth, signal phase delay, intensity modulation. Signal-to-total-Harmonic Ratio (SHR) of new method increases more than 30dB compare with ODT-PGC method under the condition of intensity modulation coefficient is 0.4. Besides that, Signal to Noise Ratio (SNR) also improves significantly.

  1. TELP, a sensitive and versatile library construction method for next-generation sequencing

    PubMed Central

    Peng, Xu; Wu, Jingyi; Brunmeir, Reinhard; Kim, Sun-Yee; Zhang, Qiongyi; Ding, Chunming; Han, Weiping; Xie, Wei; Xu, Feng

    2015-01-01

    Next-generation sequencing has been widely used for the genome-wide profiling of histone modifications, transcription factor binding and gene expression through chromatin immunoprecipitated DNA sequencing (ChIP-seq) and cDNA sequencing (RNA-seq). Here, we describe a versatile library construction method that can be applied to both ChIP-seq and RNA-seq on the widely used Illumina platforms. Standard methods for ChIP-seq library construction require nanograms of starting DNA, substantially limiting its application to rare cell types or limited clinical samples. By minimizing the DNA purification steps that cause major sample loss, our method achieved a high sensitivity in ChIP-seq library preparation. Using this method, we achieved the following: (i) generated high-quality epigenomic and transcription factor-binding maps using ChIP-seq for murine adipocytes; (ii) successfully prepared a ChIP-seq library from as little as 25 pg of starting DNA; (iii) achieved paired-end sequencing of the ChIP-seq libraries; (iv) systematically profiled gene expression dynamics during murine adipogenesis using RNA-seq and (v) preserved the strand specificity of the transcripts in RNA-seq. Given its sensitivity and versatility in both double-stranded and single-stranded DNA library construction, this method has wide applications in genomic, epigenomic, transcriptomic and interactomic studies. PMID:25223787

  2. A novel method for detecting second harmonic ultrasonic components generated from fastened bolts

    NASA Astrophysics Data System (ADS)

    Fukuda, Makoto; Imano, Kazuhiko

    2012-09-01

    This study examines the use of ultrasonic second harmonic components in the quality control of bolt-fastened structures. An improved method for detecting the second harmonic components, from a bolt fastened with a nut, using the transmission method is constructed. A hexagon head iron bolt (12-mm diameter and 25-mm long) was used in the experiments. The bolt was fastened using a digital torque wrench. The second harmonic component increased by approximately 20 dB before and after the bolt was fastened. The sources of second harmonic components were contact acoustic nonlinearity in the screw thread interfaces of the bolt-nut and were the plastic deformation in the bolt with fastening bolt. This result was improved by approximately 10 dB compared with previous our method. Consequently, usefulness of the novel method for detecting second harmonic ultrasonic components generated from fastened bolt was confirmed.

  3. Research on Finite Element Model Generating Method of General Gear Based on Parametric Modelling

    NASA Astrophysics Data System (ADS)

    Lei, Yulong; Yan, Bo; Fu, Yao; Chen, Wei; Hou, Liguo

    2017-06-01

    Aiming at the problems of low efficiency and poor quality of gear meshing in the current mainstream finite element software, through the establishment of universal gear three-dimensional model, and explore the rules of unit and node arrangement. In this paper, a finite element model generation method of universal gear based on parameterization is proposed. Visual Basic program is used to realize the finite element meshing, give the material properties, and set the boundary / load conditions and other pre-processing work. The dynamic meshing analysis of the gears is carried out with the method proposed in this pape, and compared with the calculated values to verify the correctness of the method. The method greatly shortens the workload of gear finite element pre-processing, improves the quality of gear mesh, and provides a new idea for the FEM pre-processing.

  4. Computer-generated holograms by multiple wavefront recording plane method with occlusion culling.

    PubMed

    Symeonidou, Athanasia; Blinder, David; Munteanu, Adrian; Schelkens, Peter

    2015-08-24

    We propose a novel fast method for full parallax computer-generated holograms with occlusion processing, suitable for volumetric data such as point clouds. A novel light wave propagation strategy relying on the sequential use of the wavefront recording plane method is proposed, which employs look-up tables in order to reduce the computational complexity in the calculation of the fields. Also, a novel technique for occlusion culling with little additional computation cost is introduced. Additionally, the method adheres a Gaussian distribution to the individual points in order to improve visual quality. Performance tests show that for a full-parallax high-definition CGH a speedup factor of more than 2,500 compared to the ray-tracing method can be achieved without hardware acceleration.

  5. Structured background grids for generation of unstructured grids by advancing front method

    NASA Technical Reports Server (NTRS)

    Pirzadeh, Shahyar

    1991-01-01

    A new method of background grid construction is introduced for generation of unstructured tetrahedral grids using the advancing-front technique. Unlike the conventional triangular/tetrahedral background grids which are difficult to construct and usually inadequate in performance, the new method exploits the simplicity of uniform Cartesian meshes and provides grids of better quality. The approach is analogous to solving a steady-state heat conduction problem with discrete heat sources. The spacing parameters of grid points are distributed over the nodes of a Cartesian background grid by interpolating from a few prescribed sources and solving a Poisson equation. To increase the control over the grid point distribution, a directional clustering approach is used. The new method is convenient to use and provides better grid quality and flexibility. Sample results are presented to demonstrate the power of the method.

  6. A Modified Thermodynamics Method to Generate Exact Solutions of Einstein Equations

    NASA Astrophysics Data System (ADS)

    Tan, Hong-Wei; Yang, Jin-Bo; He, Tang-Mei; Zhang, Jing-Yi

    2017-01-01

    We modify the method to generate the exact solutions of the Einstein equations basing on the laws of thermodynamics. Firstly, the Komar mass is used to take the place of the Misner-Sharp energy which is used in the original methods, and then several exact solutions of Einstein equations are obtained, including the black hole solution which surrounded by quintessence. Moreover, the geometry surface gravity defined by Komar mass is obtained. Secondly, we use both the Komar mass and the ADM mass to modify such method, and the similar results are obtained. Moreover, with some generalize added to the definition of the ADM mass, our method can be generalized to global monopole sapcetime.

  7. Generation of a Bioengineered Lacrimal Gland by Using the Organ Germ Method.

    PubMed

    Hirayama, Masatoshi; Tsubota, Kazuo; Tsuji, Takashi

    2017-01-01

    In organogenesis including lacrimal gland development, cell arrangement within a tissue plays an important role. The lacrimal gland develops from embryonic ocular surface epithelium through reciprocal epithelial and mesenchymal interaction, which is organized by interactive regulation of various pathways of signaling molecules. Current development of an in vitro three-dimensional cell manipulation procedure to generate a bioengineered organ germ, named as the organ germ method, has shown the regeneration of a histologically correct and fully functional bioengineered lacrimal gland after engraftment in vivo. This method demonstrated a possibility of lacrimal gland organ replacement to treat dry eye disease, which has been a public health problem leading reduction of visual function. Here, we describe protocols for lacrimal gland germ regeneration using the organ germ method and methods for analyzing the function of the bioengineered lacrimal gland after its transplantation in vivo.

  8. Retrospective analysis showing the water method increased adenoma detection rate — a hypothesis generating observation

    PubMed Central

    Leung, Joseph W; Do, Lynne D; Siao-Salera, Rodelei M; Ngo, Catherine; Parikh, Dhavan A; Mann, Surinder K

    2011-01-01

    Background A water method developed to attenuate discomfort during colonoscopy enhanced cecal intubation in unsedated patients. Serendipitously a numerically increased adenoma detection rate (ADR) was noted. Objective To explore databases of sedated patients examined by the air and water methods to identify hypothesis-generating findings. Design: Retrospective analysis. Setting: VA endoscopy center. Patients: creening colonoscopy. Interventions: From 1/2000–6/2006 the air method was used - judicious air insufflation to permit visualization of the lumen to aid colonoscope insertion and water spray for washing mucosal surfaces. From 6/2006–11/2009 the water method was adopted - warm water infusion in lieu of air insufflation and suction removal of residual air to aid colonoscope insertion. During colonoscope withdrawal adequate air was insufflated to distend the colonic lumen for inspection, biopsy and polypectomy in a similar fashion in both periods. Main outcome measurements: ADR. Results The air (n=683) vs. water (n=495) method comparisons revealed significant differences in overall ADR 26.8% (183 of 683) vs. 34.9% (173 of 495) and ADR of adenomas >9 mm, 7.2% vs. 13.7%, respectively (both P<0.05, Fisher's exact test). Limitations: Non-randomized data susceptible to bias by unmeasured parameters unrelated to the methods. Conclusion Confirmation of the serendipitous observation of an impact of the water method on ADR provides impetus to call for randomized controlled trials to test hypotheses related to the water method as an approach to improving adenoma detection. Because of recent concerns over missed lesions during colonoscopy, the provocative hypothesis-generating observations warrant presentation. PMID:21686105

  9. A grid generation and flow solution method for the Euler equations on unstructured grids

    SciTech Connect

    Anderson, W.K. )

    1994-01-01

    A grid generation and flow solution algorithm for the Euler equations on unstructured grids is presented. The grid generation scheme utilizes Delaunay triangulation and self-generates the field points for the mesh based on cell aspect ratios and allows for clustering near solid surfaces. The flow solution method is an implicit algorithm in which the linear set or equations arising at each time step is solved using a Gauss Seidel procedure which is completely vectorizable. In addition, a study is conducted to examine the number of subiterations required for good convergence of the overall algorithm. Grid generation results are shown in two dimensions for a NACA 0012 airfoil as well as two-element configuration. Flow solution results are shown for two-dimensional flow over the NACA 0012 airfoil and for a two-element configuration in which the solution has been obtained through an adaptation procedure and compared to an exact solution. Preliminary three-dimensional results are also shown in which subsonic flow over a business jet is computed. 31 refs. 30 figs.

  10. Grid generation and flow solution method for Euler equations on unstructured grids

    NASA Technical Reports Server (NTRS)

    Anderson, W. Kyle

    1992-01-01

    A grid generation and flow solution algorithm for the Euler equations on unstructured grids is presented. The grid generation scheme, which uses Delaunay triangulation, generates the field points for the mesh based on cell aspect ratios and allows clustering of grid points near solid surfaces. The flow solution method is an implicit algorithm in which the linear set of equations arising at each time step is solved using a Gauss-Seidel procedure that is completely vectorizable. Also, a study is conducted to examine the number of subiterations required for good convergence of the overall algorithm. Grid generation results are shown in two dimensions for an NACA 0012 airfoil as well as a two element configuration. Flow solution results are shown for a two dimensional flow over the NACA 0012 airfoil and for a two element configuration in which the solution was obtained through an adaptation procedure and compared with an exact solution. Preliminary three dimensional results also are shown in which the subsonic flow over a business jet is computed.

  11. Method and apparatus for steam mixing a nuclear fueled electricity generation system

    DOEpatents

    Tsiklauri, Georgi V.; Durst, Bruce M.

    1996-01-01

    A method and apparatus for improving the efficiency and performance of a nuclear electrical generation system that comprises the addition of steam handling equipment to an existing plant that results in a surprising increase in plant performance. More particularly, a gas turbine electrical generation system with heat recovery boiler is installed along with a micro-jet high pressure and a low pressure mixer superheater. Depending upon plant characteristics, the existing moisture separator reheater (MSR) can be either augmented or done away with. The instant invention enables a reduction in T.sub.hot without a derating of the reactor unit, and improves efficiency of the plant's electrical conversion cycle. Coupled with this advantage is a possible extension of the plant's fuel cycle length due to an increased electrical conversion efficiency. The reduction in T.sub.hot further allows for a surprising extension of steam generator life. An additional advantage is the reduction in erosion/corrosion of secondary system components including turbine blades and diaphragms. The gas turbine generator used in the instant invention can also replace or augment existing peak or emergency power needs. Another benefit of the instant invention is the extension of plant life and the reduction of downtime due to refueling.

  12. Method and apparatus for improving the performance of a nuclear power electrical generation system

    DOEpatents

    Tsiklauri, Georgi V.; Durst, Bruce M.

    1995-01-01

    A method and apparatus for improving the efficiency and performance a of nuclear electrical generation system that comprises the addition of steam handling equipment to an existing plant that results in a surprising increase in plant performance. More particularly, a gas turbine electrical generation system with heat recovery boiler is installed along with a high pressure and a low pressure mixer superheater. Depending upon plant characteristics, the existing moisture separator reheater (MSR) can be either augmented or done away with. The instant invention enables a reduction in T.sub.hot without a derating of the reactor unit, and improves efficiency of the plant's electrical conversion cycle. Coupled with this advantage is a possible extension of the plant's fuel cycle length due to an increased electrical conversion efficiency. The reduction in T.sub.hot further allows for a surprising extension of steam generator life. An additional advantage is the reduction in erosion/corrosion of secondary system components including turbine blades and diaphragms. The gas turbine generator used in the instant invention can also replace or augment existing peak or emergency power needs.

  13. A grid generation and flow solution method for the Euler equations on unstructured grids

    NASA Technical Reports Server (NTRS)

    Anderson, W. Kyle

    1994-01-01

    A grid generation and flow solution algorithm for the Euler equations on unstructured grids is presented. The grid generation scheme utilizes Delaunay triangulation and self-generates the field points for the mesh based on cell aspect ratios and allows for clustering near solid surfaces. The flow solution method is an implicit algorithm in which the linear set of equations arising at each time step is solved using a Gauss Seidel procedure which is completely vectorizable. In addition, a study is conducted to examine the number of subiterations required for good convergence of the overall algorithm. Grid generation results are shown in two dimensions for a National Advisory Committee for Aeronautics (NACA) 0012 airfoil as well as a two-element configuration. Flow solution results are shown for two-dimensional flow over the NACA 0012 airfoil and for a two-element configuration in which the solution has been obtained through an adaptation procedure and compared to an exact solution. Preliminary three-dimensional results are also shown in which subsonic flow over a business jet is computed.

  14. a Method of Generating Panoramic Street Strip Image Map with Mobile Mapping System

    NASA Astrophysics Data System (ADS)

    Tianen, Chen; Yamamoto, Kohei; Tachibana, Kikuo

    2016-06-01

    This paper explores a method of generating panoramic street strip image map which is called as "Pano-Street" here and contains both sides, ground surface and overhead part of a street with a sequence of 360° panoramic images captured with Point Grey's Ladybug3 mounted on the top of Mitsubishi MMS-X 220 at 2m intervals along the streets in urban environment. On-board GPS/IMU, speedometer and post sequence image analysis technology such as bundle adjustment provided much more accuracy level position and attitude data for these panoramic images, and laser data. The principle for generating panoramic street strip image map is similar to that of the traditional aero ortho-images. A special 3D DEM(3D-Mesh called here) was firstly generated with laser data, the depth map generated from dense image matching with the sequence of 360° panoramic images, or the existing GIS spatial data along the MMS trajectory, then all 360° panoramic images were projected and stitched on the 3D-Mesh with the position and attitude data. This makes it possible to make large scale panoramic street strip image maps for most types of cities, and provides another kind of street view way to view the 360° scene along the street by avoiding the switch of image bubbles like Google Street View and Bing Maps Streetside.

  15. A New Method for Generating Probability Tables in the Unresolved Resonance Region

    DOE PAGES

    Holcomb, Andrew M.; Leal, Luiz C.; Rahnema, Farzad; ...

    2017-04-18

    One new method for constructing probability tables in the unresolved resonance region (URR) has been developed. This new methodology is an extensive modification of the single-level Breit-Wigner (SLBW) pseudo-resonance pair sequence method commonly used to generate probability tables in the URR. The new method uses a Monte Carlo process to generate many pseudo-resonance sequences by first sampling the average resonance parameter data in the URR and then converting the sampled resonance parameters to the more robust R-matrix limited (RML) format. Furthermore, for each sampled set of pseudo-resonance sequences, the temperature-dependent cross sections are reconstructed on a small grid around themore » energy of reference using the Reich-Moore formalism and the Leal-Hwang Doppler broadening methodology. We then use the effective cross sections calculated at the energies of reference to construct probability tables in the URR. The RML cross-section reconstruction algorithm has been rigorously tested for a variety of isotopes, including 16O, 19F, 35Cl, 56Fe, 63Cu, and 65Cu. The new URR method also produced normalized cross-section factor probability tables for 238U that were found to be in agreement with current standards. The modified 238U probability tables were shown to produce results in excellent agreement with several standard benchmarks, including the IEU-MET-FAST-007 (BIG TEN), IEU-MET-FAST-003, and IEU-COMP-FAST-004 benchmarks.« less

  16. A method for generating unfolded views of the stomach based on volumetric image deformation

    NASA Astrophysics Data System (ADS)

    Mori, Kensaku; Oka, Hiroki; Kitasaka, Takayuki; Suenaga, Yasuhito

    2005-04-01

    This paper presents a method for virtually generating unfolded views of the stomach using volumetric image deformation. When we observe an organ with a large cavity in it, such as the stomach or the colon, by using a virtual endoscopy system, many changes of viewpoint and view direction are required. If virtually unfolded views of a target organ could be generated, doctors could easily diagnose the organ's inner walls only by one or a several views. In the proposed method, we extract a stomach wall region from a 3-D abdominal CT images and the obtained region is shrunken. For every voxel of the shrunken image, we allocate a hexahedron. In the deformation process, nodes and springs are allocated on the vertices, edges, and diagonals of each hexahedron. Neighboring hexahedrons share nodes and springs, except for the hexahedrons on the cutting line that a user specifies. The hexahedrons are deformed by adding forces that direct the nodes to the stretching plane to the nodes existing on the cutting line. The hexahedrons are deformed using iterative deformation calculation. By using the geometrical relations between hexahedrons before and after deformation, a volumetric image in which the stomach region is unfolded. Finally, the unfolded views are obtained by visualizing the reconstructed volume can be constructed. We applied the proposed method to eleven cases of 3-D abdominal CT images. The results show that the proposed method can accurately reproduce folds and lesions on the stomach.

  17. The influence of the inactives subset generation on the performance of machine learning methods

    PubMed Central

    2013-01-01

    Background A growing popularity of machine learning methods application in virtual screening, in both classification and regression tasks, can be observed in the past few years. However, their effectiveness is strongly dependent on many different factors. Results In this study, the influence of the way of forming the set of inactives on the classification process was examined: random and diverse selection from the ZINC database, MDDR database and libraries generated according to the DUD methodology. All learning methods were tested in two modes: using one test set, the same for each method of inactive molecules generation and using test sets with inactives prepared in an analogous way as for training. The experiments were carried out for 5 different protein targets, 3 fingerprints for molecules representation and 7 classification algorithms with varying parameters. It appeared that the process of inactive set formation had a substantial impact on the machine learning methods performance. Conclusions The level of chemical space limitation determined the ability of tested classifiers to select potentially active molecules in virtual screening tasks, as for example DUDs (widely applied in docking experiments) did not provide proper selection of active molecules from databases with diverse structures. The study clearly showed that inactive compounds forming training set should be representative to the highest possible extent for libraries that undergo screening. PMID:23561266

  18. Assessing directed evolution methods for the generation of biosynthetic enzymes with potential in drug biosynthesis

    PubMed Central

    Nannemann, David P; Birmingham, William R; Scism, Robert A; Bachmann, Brian O

    2011-01-01

    To address the synthesis of increasingly structurally diverse small-molecule drugs, methods for the generation of efficient and selective biological catalysts are becoming increasingly important. ‘Directed evolution’ is an umbrella term referring to a variety of methods for improving or altering the function of enzymes using a nature-inspired twofold strategy of mutagenesis followed by selection. This article provides an objective assessment of the effectiveness of directed evolution campaigns in generating enzymes with improved catalytic parameters for new substrates from the last decade, excluding studies that aimed to select for only improved physical properties and those that lack kinetic characterization. An analysis of the trends of methodologies and their success rates from 81 qualifying examples in the literature reveals the average fold improvement for kcat (or Vmax), Km and kcat/Km to be 366-, 12- and 2548-fold, respectively, whereas the median fold improvements are 5.4, 3 and 15.6. Further analysis by enzyme class, library-generation methodology and screening methodology explores relationships between successful campaigns and the methodologies employed. PMID:21644826

  19. Assessing directed evolution methods for the generation of biosynthetic enzymes with potential in drug biosynthesis.

    PubMed

    Nannemann, David P; Birmingham, William R; Scism, Robert A; Bachmann, Brian O

    2011-05-01

    To address the synthesis of increasingly structurally diverse small-molecule drugs, methods for the generation of efficient and selective biological catalysts are becoming increasingly important. 'Directed evolution' is an umbrella term referring to a variety of methods for improving or altering the function of enzymes using a nature-inspired twofold strategy of mutagenesis followed by selection. This article provides an objective assessment of the effectiveness of directed evolution campaigns in generating enzymes with improved catalytic parameters for new substrates from the last decade, excluding studies that aimed to select for only improved physical properties and those that lack kinetic characterization. An analysis of the trends of methodologies and their success rates from 81 qualifying examples in the literature reveals the average fold improvement for k (cat) (or V (max)), K (m) and k (cat)/K (m) to be 366-, 12- and 2548-fold, respectively, whereas the median fold improvements are 5.4, 3 and 15.6. Further analysis by enzyme class, library-generation methodology and screening methodology explores relationships between successful campaigns and the methodologies employed.

  20. Intergenerational mobility in the post-1965 immigration era: estimates by an immigrant generation cohort method.

    PubMed

    Park, Julie; Myers, Dowell

    2010-05-01

    The new second generation of the post-1965 immigration era is observed as children with their parents in 1980 and again as adults 25 years later. Intergenerational mobility is assessed for both men and women in four major racial/ethnic groups, both in regard to children's status attainment relative to parents and with regard to the rising societal standards proxied by native-born non-Hispanic whites. A profile of intergenerational mobility is prepared using multiple indicators of status attainment: high school and college completion, upper white-collar occupation, poverty, and homeownership. The immigrant generation cohort method we introduce accounts for four distinct temporal dimensions of immigrant progress, clarifying inconsistencies in the literature and highlighting differences in mobility between racial/ethnic groups and with respect to different outcome measures. The immigrant generation cohort method consistently finds greater intergenerational mobility than suggested by alternative approaches. Our analysis also shows that the intergenerational progress of women is greater than that of men and provides a more complete record of immigrant mobility overall. Findings for individual racial/ethnic groups accord with some expectations in the literature and contradict others.

  1. A sparse grid based method for generative dimensionality reduction of high-dimensional data

    NASA Astrophysics Data System (ADS)

    Bohn, Bastian; Garcke, Jochen; Griebel, Michael

    2016-03-01

    Generative dimensionality reduction methods play an important role in machine learning applications because they construct an explicit mapping from a low-dimensional space to the high-dimensional data space. We discuss a general framework to describe generative dimensionality reduction methods, where the main focus lies on a regularized principal manifold learning variant. Since most generative dimensionality reduction algorithms exploit the representer theorem for reproducing kernel Hilbert spaces, their computational costs grow at least quadratically in the number n of data. Instead, we introduce a grid-based discretization approach which automatically scales just linearly in n. To circumvent the curse of dimensionality of full tensor product grids, we use the concept of sparse grids. Furthermore, in real-world applications, some embedding directions are usually more important than others and it is reasonable to refine the underlying discretization space only in these directions. To this end, we employ a dimension-adaptive algorithm which is based on the ANOVA (analysis of variance) decomposition of a function. In particular, the reconstruction error is used to measure the quality of an embedding. As an application, the study of large simulation data from an engineering application in the automotive industry (car crash simulation) is performed.

  2. Studies on Aspirin Crystals Generated by a Modified Vapor Diffusion Method.

    PubMed

    Mittal, Amit; Malhotra, Deepak; Jain, Preeti; Kalia, Anupama; Shunmugaperumal, Tamilvanan

    2016-08-01

    The objectives of the current investigation were (1) to study the influence of selected two different non-solvents (diethylether and dichloromethane) on the drug crystal formation of a model drug, aspirin (ASP-I) by the modified vapor diffusion method and (2) to characterize and compare the generated crystals (ASP-II and ASP-III) using different analytical techniques with that of unprocessed ASP-I. When compared to the classical vapor diffusion method which consumes about 15 days to generate drug crystals, the modified method needs only 12 h to get the same. Fourier transform-infrared spectroscopy (FT-IR) reveals that the internal structures of ASP-II and ASP-III crystals were identical when compared with ASP-I. Although the drug crystals showed a close similarity in X-ray diffraction patterns, the difference in the relative intensities of some of the diffraction peaks (especially at 2θ values of around 7.7 and 15.5) could be attributed to the crystal habit or crystal size modification. Similarly, the differential scanning calorimetry (DSC) study speculates that only the crystal habit modifications might occur but without involving any change in internal structure of the generated drug polymorphic form I. This is further substantiated from the scanning electron microscopy (SEM) pictures that indicated the formation of platy shape for the ASP-II crystals and needle shape for the ASP-III crystals. In addition, the observed slow dissolution of ASP crystals should indicate polymorph form I formation. Thus, the modified vapor diffusion method could routinely be used to screen and legally secure all possible forms of other drug entities too.

  3. Fungal spore fragmentation as a function of airflow rates and fungal generation methods

    NASA Astrophysics Data System (ADS)

    Kanaani, Hussein; Hargreaves, Megan; Ristovski, Zoran; Morawska, Lidia

    The aim of this study was to characterise and quantify the fungal fragment propagules derived and released from several fungal species ( Penicillium, Aspergillus niger and Cladosporium cladosporioides) using different generation methods and different air velocities over the colonies. Real time fungal spore fragmentation was investigated using an Ultraviolet Aerodynamic Particle Sizer (UVASP) and a Scanning Mobility Particle Sizer (SMPS). The study showed that there were significant differences ( p < 0.01) in the fragmentation percentage between different air velocities for the three generation methods, namely the direct, the fan and the fungal spore source strength tester (FSSST) methods. The percentage of fragmentation also proved to be dependent on fungal species. The study found that there was no fragmentation for any of the fungal species at an air velocity ≤0.4 m s -1 for any method of generation. Fluorescent signals, as well as mathematical determination also showed that the fungal fragments were derived from spores. Correlation analysis showed that the number of released fragments measured by the UVAPS under controlled conditions can be predicted on the basis of the number of spores, for Penicillium and A. niger, but not for C. cladosporioides. The fluorescence percentage of fragment samples was found to be significantly different to that of non-fragment samples ( p < 0.0001) and the fragment sample fluorescence was always less than that of the non-fragment samples. Size distribution and concentration of fungal fragment particles were investigated qualitatively and quantitatively, by both UVAPS and SMPS, and it was found that the UVAPS was more sensitive than the SMPS for measuring small sample concentrations, whilethe results obtained from the UVAPS and SMAS were not identical for the same samples.

  4. A Novel Videography Method for Generating Crack-Extension Resistance Curves in Small Bone Samples

    PubMed Central

    Katsamenis, Orestis L.; Jenkins, Thomas; Quinci, Federico; Michopoulou, Sofia; Sinclair, Ian; Thurner, Philipp J.

    2013-01-01

    Assessment of bone quality is an emerging solution for quantifying the effects of bone pathology or treatment. Perhaps one of the most important parameters characterising bone quality is the toughness behaviour of bone. Particularly, fracture toughness, is becoming a popular means for evaluating bone quality. The method is moving from a single value approach that models bone as a linear-elastic material (using the stress intensity factor, K) towards full crack extension resistance curves (R-curves) using a non-linear model (the strain energy release rate in J-R curves). However, for explanted human bone or small animal bones, there are difficulties in measuring crack-extension resistance curves due to size constraints at the millimetre and sub-millimetre scale. This research proposes a novel “whitening front tracking” method that uses videography to generate full fracture resistance curves in small bone samples where crack propagation cannot typically be observed. Here we present this method on sharp edge notched samples (<1 mm×1 mm×Length) prepared from four human femora tested in three-point bending. Each sample was loaded in a mechanical tester with the crack propagation recorded using videography and analysed using an algorithm to track the whitening (damage) zone. Using the “whitening front tracking” method, full R-curves and J-R curves could be generated for these samples. The curves for this antiplane longitudinal orientation were similar to those found in the literature, being between the published longitudinal and transverse orientations. The proposed technique shows the ability to generate full “crack” extension resistance curves by tracking the whitening front propagation to overcome the small size limitations and the single value approach. PMID:23405186

  5. PETSTEP: Generation of synthetic PET lesions for fast evaluation of segmentation methods

    PubMed Central

    Berthon, Beatrice; Häggström, Ida; Apte, Aditya; Beattie, Bradley J.; Kirov, Assen S.; Humm, John L.; Marshall, Christopher; Spezi, Emiliano; Larsson, Anne; Schmidtlein, C. Ross

    2016-01-01

    Purpose This work describes PETSTEP (PET Simulator of Tracers via Emission Projection): a faster and more accessible alternative to Monte Carlo (MC) simulation generating realistic PET images, for studies assessing image features and segmentation techniques. Methods PETSTEP was implemented within Matlab as open source software. It allows generating three-dimensional PET images from PET/CT data or synthetic CT and PET maps, with user-drawn lesions and user-set acquisition and reconstruction parameters. PETSTEP was used to reproduce images of the NEMA body phantom acquired on a GE Discovery 690 PET/CT scanner, and simulated with MC for the GE Discovery LS scanner, and to generate realistic Head and Neck scans. Finally the sensitivity (S) and Positive Predictive Value (PPV) of three automatic segmentation methods were compared when applied to the scanner-acquired and PETSTEP-simulated NEMA images. Results PETSTEP produced 3D phantom and clinical images within 4 and 6 min respectively on a single core 2.7 GHz computer. PETSTEP images of the NEMA phantom had mean intensities within 2% of the scanner-acquired image for both background and largest insert, and 16% larger background Full Width at Half Maximum. Similar results were obtained when comparing PETSTEP images to MC simulated data. The S and PPV obtained with simulated phantom images were statistically significantly lower than for the original images, but led to the same conclusions with respect to the evaluated segmentation methods. Conclusions PETSTEP allows fast simulation of synthetic images reproducing scanner-acquired PET data and shows great promise for the evaluation of PET segmentation methods. PMID:26321409

  6. The generation of NGF-secreting primary rat monocytes: A comparison of different transfer methods

    PubMed Central

    Hohsfield, Lindsay A.; Geley, Stephan; Reindl, Markus; Humpel, Christian

    2013-01-01

    Nerve growth factor (NGF), a member of the neurotrophin family, is responsible for the maintenance and survival of cholinergic neurons in the basal forebrain. The degeneration of cholinergic neurons and reduced acetycholine levels are hallmarks of Alzheimer's disease (AD) as well as associated with learning and memory deficits. Thus far, NGF has proven the most potent neuroprotective molecule against cholinergic neurodegeneration. However, delivery of this factor into the brain remains difficult. Recent studies have begun to elucidate the potential use of monocytes as vehicles for therapeutic delivery into the brain. In this study, we employed different transfection and transduction methods to generate NGF-secreting primary rat monocytes. Specifically, we compared five methods for generating NGF-secreting monocytes: (1) cationic lipid-mediated transfection (Effectene and FuGene), (2) classical electroporation, (3) nucleofection, (4) protein delivery (Bioporter) and (5) lentiviral vectors. Here, we report that classical transfection methods (lipid-mediated transfection, electroporation, nucleofection) are inefficient tools for proper gene transfer into primary rat monocytes. We demonstrate that lentiviral infection and Bioporter can successfully transduce/load primary rat monocytes and produce effective NGF secretion. Furthermore, our results indicate that NGF is bioactive and that Bioporter-loaded monocytes do not appear to exhibit any functional disruptions (i.e. in their ability to differentiate and phagocytose beta-amyloid). Taken together, our results show that primary monocytes can be effectively loaded or transduced with NGF and provides information on the most effective method for generating NGF-secreting primary rat monocytes. This study also provides a basis for further development of primary monocytes as therapeutic delivery vehicles to the diseased AD brain. PMID:23474426

  7. Use of recursively generated intermediates in state selective multireference coupled-cluster method: A numerical example

    SciTech Connect

    Ghose, K.B.; Adamowicz, L.

    1995-12-01

    The present work represents the first attempt to utilize the idea of recursively generated intermediates (RGI) in the framework of the state-selective multi-reference coupled-cluster method truncated at triple excitations [SS CCSD(T)]. The expressions for stepwise generation of intermediates are so structured that the spin and point symmetry simplifications can be easily applied during computation. Suitable modifications in SS CCSD(T) equations are introduced to allow for optional quasilinearization of nonlinear terms in difficult convergence situations. The computational code is, as expected, much faster than the SS CCSD(T) code without RGI adaptation. This has been numerically demonstrated by potential energy surface (PES) calculation of the HF molecule using a double zeta basis. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  8. Study on Voltage Regulation Methods for Distribution Systems with Dispersed Generators

    NASA Astrophysics Data System (ADS)

    Kondoh, Junji; Aki, Hirohisa; Yamaguchi, Hiroshi; Murata, Akinobu; Ishii, Itaru

    Connection of a large number of the dispersed generators to distribution networks is not easy due to various technical considerations. Thus we have been trying to devise a concept for future electrical distribution systems with a lot of dispersed generators. In this work, it has been considered that each customer’s load and each generator’s active and reactive power should be controlled in order to stabilize and optimize the networks. Under this consideration, two control methods for future distribution systems are proposed, a cooperative control and an independent control. We have confirmed experimentally that the voltage regulation ability is higher with the cooperative control than with the independent control, especially in the cases of an eccentric load profile in a feeder and a heavy load.

  9. Systems and methods that generate height map models for efficient three dimensional reconstruction from depth information

    DOEpatents

    Frahm, Jan-Michael; Pollefeys, Marc Andre Leon; Gallup, David Robert

    2015-12-08

    Methods of generating a three dimensional representation of an object in a reference plane from a depth map including distances from a reference point to pixels in an image of the object taken from a reference point. Weights are assigned to respective voxels in a three dimensional grid along rays extending from the reference point through the pixels in the image based on the distances in the depth map from the reference point to the respective pixels, and a height map including an array of height values in the reference plane is formed based on the assigned weights. An n-layer height map may be constructed by generating a probabilistic occupancy grid for the voxels and forming an n-dimensional height map comprising an array of layer height values in the reference plane based on the probabilistic occupancy grid.

  10. A Microbiome DNA Enrichment Method for Next-Generation Sequencing Sample Preparation.

    PubMed

    Yigit, Erbay; Feehery, George R; Langhorst, Bradley W; Stewart, Fiona J; Dimalanta, Eileen T; Pradhan, Sriharsa; Slatko, Barton; Gardner, Andrew F; McFarland, James; Sumner, Christine; Davis, Theodore B

    2016-07-01

    "Microbiome" is used to describe the communities of microorganisms and their genes in a particular environment, including communities in association with a eukaryotic host or part of a host. One challenge in microbiome analysis concerns the presence of host DNA in samples. Removal of host DNA before sequencing results in greater sequence depth of the intended microbiome target population. This unit describes a novel method of microbial DNA enrichment in which methylated host DNA such as human genomic DNA is selectively bound and separated from microbial DNA before next-generation sequencing (NGS) library construction. This microbiome enrichment technique yields a higher fraction of microbial sequencing reads and improved read quality resulting in a reduced cost of downstream data generation and analysis. © 2016 by John Wiley & Sons, Inc.

  11. Simplified calculation method for computer-generated holographic stereograms from multi-view images.

    PubMed

    Takaki, Yasuhiro; Ikeda, Kyohei

    2013-04-22

    A simple calculation method to synthesize computer-generated holographic stereograms, which does not involve diffraction calculations, is proposed. It is assumed that three-dimension (3D) image generation by holographic stereograms is similar to that of multi-view autostereoscopic displays, in that multiple parallax images are displayed with rays converging to corresponding viewpoints. Therefore, a wavefront is calculated, whose amplitude is the square root of an intensity distribution of a parallax image and whose phase is a quadric phase distribution of a spherical wave converging to a viewpoint. Multiple wavefronts calculated for multiple viewpoints are summed up to obtain an object wave, which is then used to determine a hologram pattern. The proposed technique was experimentally verified.

  12. A Novel Generation Method of Dielectric Barrier Discharge and Ozone Production Using a Piezoelectric Transformer

    NASA Astrophysics Data System (ADS)

    Teranishi, Kenji; Suzuki, Susumu; Itoh, Haruo

    2004-09-01

    A novel generation method of a dielectric barrier discharge (DBD) using a piezoelectric transformer (PT) is proposed. Spatio-temporal variations of microdischarges were investigated and discussed on the basis of the observations using a charge-coupled device (CCD) camera. As an example of a practical application of the DBD to a plasma reactor, an ozonizer using the PT was developed and ozone productions were performed in air and oxygen. Maximum ozone concentrations of 3.38 and 20.3 g/Nm3 were obtained in air and oxygen, respectively. The ozonizer can be designed in a compact configuration and driven with low applied voltages because the PT serves as both a high-voltage generator and a discharge electrode.

  13. Feasibility study consisting of a review of contour generation methods from stereograms

    NASA Technical Reports Server (NTRS)

    Kim, C. J.; Wyant, J. C.

    1980-01-01

    A review of techniques for obtaining contour information from stereo pairs is given. Photogrammetric principles including a description of stereoscopic vision are presented. The use of conventional contour generation methods, such as the photogrammetric plotting technique, electronic correlator, and digital correlator are described. Coherent optical techniques for contour generation are discussed and compared to the electronic correlator. The optical techniques are divided into two categories: (1) image plane operation and (2) frequency plane operation. The description of image plane correlators are further divided into three categories: (1) image to image correlator, (2) interferometric correlator, and (3) positive negative transparencies. The frequency plane correlators are divided into two categories: (1) correlation of Fourier transforms, and (2) filtering techniques.

  14. A column-generation-based method for multi-criteria direct aperture optimization

    NASA Astrophysics Data System (ADS)

    Salari, Ehsan; Unkelbach, Jan

    2013-02-01

    Navigation-based multi-criteria optimization has been introduced to radiotherapy planning in order to allow the interactive exploration of trade-offs between conflicting clinical goals. However, this has been mainly applied to fluence map optimization. The subsequent leaf sequencing step may cause dose discrepancy, leading to human iteration loops in the treatment planning process that multi-criteria methods were meant to avoid. To circumvent this issue, this paper investigates the application of direct aperture optimization methods in the context of multi-criteria optimization. We develop a solution method to directly obtain a collection of apertures that can adequately span the entire Pareto surface. To that end, we extend the column generation method for direct aperture optimization to a multi-criteria setting in which apertures that can improve the entire Pareto surface are sequentially identified and added to the treatment plan. Our proposed solution method can be embedded in a navigation-based multi-criteria optimization framework, in which the treatment planner explores the trade-off between treatment objectives directly in the space of deliverable apertures. Our solution method is demonstrated for a paraspinal case where the trade-off between target coverage and spinal-cord sparing is studied. The computational results validate that our proposed method obtains a balanced approximation of the Pareto surface over a wide range of clinically relevant plans.

  15. Full parallax computer generated hologram using GPU-accelerated ray tracing method

    NASA Astrophysics Data System (ADS)

    Ichikawa, Tsubasa; Sakamoto, Yuji

    2012-03-01

    In Computer Generated Hologram (CGH), the hidden surface removal is needed to display 3D objects. Some methods of the hidden surface removal for a CGH have been proposed. However, these methods are unsuitable to make realistic images that have the complicated reflection, refraction and shadowing. We propose a calculation method of CGH using the ray tracing method. In the ray tracing method, complicated descriptions are expressed with a simple algorithm. The ray tracing method is avoided ever in CGH having a very high resolution because of enormous calculation cost. In order to speed up, we attained improvement of the calculation time using a graphics processing unit (GPU). The ray tracing from one viewpoint is unable to express full parallax CGHs. In this study, a hologram plane is divided into elementary holograms, and the center of each elementary hologram is made the starting point of the ray. Then, sets of point light every elementary hologram are constructed by the ray tracing method. As a result of optical reconstruction, it was confirmed that hidden surface removal was conducted when plural objects were in one scene. Moreover the texture of material and shadows by a front object were expressed.

  16. Direct-substitution method for studying second harmonic generation in arbitrary optical superlattices

    NASA Astrophysics Data System (ADS)

    Chen, Ying; Yang, Xiangbo

    In this paper, we present the direct-substitution (DS) method to study the second-harmonic generation (SHG) in arbitrary one-dimensional optical superlattices (OS). Applying this method to Fibonacci and generalized Fibonacci systems, we obtain the relative intensity of SHG and compare them with previous works. We confirmed the validity of the proposed DS method by comparing our results of SHG in quasiperiodic Fibonacci OS with previous works using analytical Fourier transform method. Furthermore, the three-dimension SHG spectra obtained by DS method present the properties of SHG in Fibonacci OS more distinctly. What's more important, the DS method demands very few limits and can be used to compute directly and conveniently the intensity of SHG in arbitrary OS where the quasi-phase-matching (QPM) can be achieved. It shows that the DS method is powerful for the calculation of electric field and intensity of SHG and can help experimentalists conveniently to estimate the distributions of SHG in any designed polarized systems.

  17. A method for generating numerical pilot opinion ratings using the optimal pilot model

    NASA Technical Reports Server (NTRS)

    Hess, R. A.

    1976-01-01

    A method for generating numerical pilot opinion ratings using the optimal pilot model is introduced. The method is contained in a rating hypothesis which states that the numerical rating which a human pilot assigns to a specific vehicle and task can be directly related to the numerical value of the index of performance resulting from the optimal pilot modeling procedure as applied to that vehicle and task. The hypothesis is tested using the data from four piloted simulations. The results indicate that the hypothesis is reasonable, but that the predictive capability of the method is a strong function of the accuracy of the pilot model itself. This accuracy is, in turn, dependent upon the parameters which define the optimal modeling problem. A procedure for specifying the parameters for the optimal pilot model in the absence of experimental data is suggested.

  18. A simple and direct method for generating travelling wave solutions for nonlinear equations

    SciTech Connect

    Bazeia, D. Das, Ashok; Silva, A.

    2008-05-15

    We propose a simple and direct method for generating travelling wave solutions for nonlinear integrable equations. We illustrate how nontrivial solutions for the KdV, the mKdV and the Boussinesq equations can be obtained from simple solutions of linear equations. We describe how using this method, a soliton solution of the KdV equation can yield soliton solutions for the mKdV as well as the Boussinesq equations. Similarly, starting with cnoidal solutions of the KdV equation, we can obtain the corresponding solutions for the mKdV as well as the Boussinesq equations. Simple solutions of linear equations can also lead to cnoidal solutions of nonlinear systems. Finally, we propose and solve some new families of KdV equations and show how soliton solutions are also obtained for the higher order equations of the KdV hierarchy using this method.

  19. Systematic method of generating new integrable systems via inverse Miura maps

    SciTech Connect

    Tsuchida, Takayuki

    2011-05-15

    We provide a new natural interpretation of the Lax representation for an integrable system; that is, the spectral problem is the linearized form of a Miura transformation between the original system and a modified version of it. On the basis of this interpretation, we formulate a systematic method of identifying modified integrable systems that can be mapped to a given integrable system by Miura transformations. Thus, this method can be used to generate new integrable systems from known systems through inverse Miura maps; it can be applied to both continuous and discrete systems in 1 + 1 dimensions as well as in 2 + 1 dimensions. The effectiveness of the method is illustrated using examples such as the nonlinear Schroedinger (NLS) system, the Zakharov-Ito system (two-component KdV), the three-wave interaction system, the Yajima-Oikawa system, the Ablowitz-Ladik lattice (integrable space-discrete NLS), and two (2 + 1)-dimensional NLS systems.

  20. Accurate calculation of computer-generated holograms using angular-spectrum layer-oriented method.

    PubMed

    Zhao, Yan; Cao, Liangcai; Zhang, Hao; Kong, Dezhao; Jin, Guofan

    2015-10-05

    Fast calculation and correct depth cue are crucial issues in the calculation of computer-generated hologram (CGH) for high quality three-dimensional (3-D) display. An angular-spectrum based algorithm for layer-oriented CGH is proposed. Angular spectra from each layer are synthesized as a layer-corresponded sub-hologram based on the fast Fourier transform without paraxial approximation. The proposed method can avoid the huge computational cost of the point-oriented method and yield accurate predictions of the whole diffracted field compared with other layer-oriented methods. CGHs of versatile formats of 3-D digital scenes, including computed tomography and 3-D digital models, are demonstrated with precise depth performance and advanced image quality.

  1. An improved prediction method for the noise generated in flight by circular jets

    NASA Technical Reports Server (NTRS)

    Stone, J. R.; Montegani, F. J.

    1980-01-01

    A semi-empirical model for predicting the noise generated by jets exhausting from circular nozzles is presented and compared with small-scale static and simulated-flight data. The present method is an updated version of that part of the original NASA aircraft noise prediction program relating to circular jet noise. The earlier method agreed reasonably well with experimental static and flight data for jet velocities up to approximately 520 m/sec. The poorer agreement at higher jet velocities appeared to be due primarily to the manner in which supersonic convection effects were formulated. The purely empirical supersonic convection formulation is replaced in the present method by one based on theoretical considerations. Other improvements of an empirical nature were included based on model-jet/free-jet simulated-flight tests. The effects of nozzle size, jet velocity, jet temperature, and flight are included.

  2. Quinones as photosensitizer for photodynamic therapy: ROS generation, mechanism and detection methods.

    PubMed

    Rajendran, M

    2016-03-01

    Photodynamic therapy (PDT) is based on the dye-sensitized photooxidation of biological matter in the target tissue, and utilizes light activated drugs for the treatment of a wide variety of malignancies. Quinones and porphyrins moiety are available naturally and involved in the biological process. Quinone metabolites perform a variety of key functions in plants which includes pathogen protection, oxidative phosphorylation, and redox signaling. Quinones and porphyrin are biologically accessible and will not create any allergic effects. In the field of photodynamic therapy, porphyrin derivatives are widely used, because it absorb in the photodynamic therapy window region (600-900 nm). Hence, researchers synthesize drugs based on porphyrin structure. Benzoquinone and its simple polycyclic derivatives such as naphthaquinone and anthraquinones absorb at lower wavelength region (300-400 nm), which is lower than porphyrin. Hence they are not involved in PDT studies. However, higher polycyclic quinones absorb in the photodynamic therapy window region (600-900 nm), because of its conjugation and can be used as PDT agents. Redox cycling has been proposed as a possible mechanism of action for many quinone species. Quinones are involved in the photodynamic as well as enzymatic generation of reactive oxygen species (ROS). Generations of ROS may be measured by optical, phosphorescence and EPR methods. The photodynamically generated ROS are also involved in many biological events. The photo-induced DNA cleavage by quinones correlates with the ROS generating efficiencies of the quinones. In this review basic reactions involving photodynamic generation of ROS by quinones and their biological applications were discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Time evolution of diameter of micro-bubbles generated by a pressurized dissolution method

    NASA Astrophysics Data System (ADS)

    Ishii, Kazuya; Fujimoto, Shudai; Hosokawa, Shigeo; Tomiyama, Akio; Ito, Yoshihiro; Maeda, Yasunari

    2014-04-01

    Size distributions of micro-bubbles and concentrations of dissolved oxygen in water in a square duct downstream of the decompression nozzle were measured to investigate the time evolution of bubble diameter and the mass transfer of dissolved gas between bubbles and water after bubble generation in a pressurized dissolution method. A numerical simulation based on the Rayleigh-Plesset equation was also carried out to predict time evolutions of bubble diameter and concentration of dissolves gas. The validity of the prediction was discussed through the comparison between the predictions and the experiments. As a result, the following conclusions were obtained: (1) When cavitation does not occur in the decompression nozzle, few micro-bubbles are generated at the nozzle and the mass transfer rate between bubbles and water in the downstream region of the nozzle is low due to a low interface area concentration. The mass transfer due to bubble nucleation is negligibly small in the downstream region of the decompression nozzle in spite of the supersaturated concentration of the dissolved gas. (2) When cavitation occurs in the nozzle, a lot of micro-bubbles are generated at the nozzle and therefore, the mass transfer rate between the phases becomes high. Hence, the bubble diameter and the void fraction increase and the concentration of dissolved gas in water decreases with the time elapsed after the bubble generation. (3) The proposed numerical method can reasonably predict time evolution of bubble size distributions, void fractions and concentrations of dissolved gas, provided that a reliable initial condition is available. Since the numerical simulation assumes that no bubble nucleation occurs in the downstream region of the nozzle, the agreement between the prediction and the experiments proves low influence of the bubble nucleation on the mass transfer between the phases.

  4. Physical methods for generating and decoding neural activity in Hirudo verbana

    NASA Astrophysics Data System (ADS)

    Migliori, Benjamin John

    The interface between living nervous systems and hardware is an excellent proving ground for precision experimental methods and information classification systems. Nervous systems are complex (104 -- 10 15(!) connections), fragile, and highly active in intricate, constantly evolving patterns. However, despite the conveniently electrical nature of neural transmission, the interface between nervous systems and hardware poses significant experimental difficulties. As the desire for direct interfaces with neural signals continues to expand, the need for methods of generating and measuring neural activity with high spatiotemporal precision has become increasingly critical. In this thesis, I describe advances I have made in the ability to modify, generate, measure, and understand neural signals both in- and ex-vivo. I focus on methods developed for transmitting and extracting signals in the intact nervous system of Hirudo verbana (the medicinal leech), an animal with a minimally complex nervous system (10000 neurons distributed in packets along a nerve cord) that exhibits a diverse array of behaviors. To introduce artificial activity patterns, I developed a photothermal activation system in which a highly focused laser is used to irradiate carbon microparticles in contact with target neurons. The resulting local temperature increase generates an electrical current that forces the target neuron to fire neural signals, thereby providing a unique neural input mechanism. These neural signals can potentially be used to alter behavioral choice or generate specific behavioral output, and can be used endogenously in many animal models. I also describe new tools developed to expand the application of this method. In complement to this input system, I describe a new method of analyzing neural output signals involved in long-range coordination of behaviors. Leech behavioral signals are propagated between neural packets as electrical pulses in the nerve connective, a bundle of

  5. PAPNC, a novel method to calculate nucleotide diversity from large scale next generation sequencing data

    PubMed Central

    Shao, Wei; Kearney, Mary F.; Boltz, Valerie F.; Spindler, Jonathan E.; Mellors, John W.; Maldarelli, Frank; Coffin, John M.

    2014-01-01

    Estimating viral diversity in infected patients can provide insight into pathogen evolution and emergence of drug resistance. With the widespread adoption of deep sequencing, it is important to develop tools to accurately calculate population diversity from very large datasets. Current methods for estimating diversity that are based on multiple alignments are not practical to apply to such data. In this study, the authors report a novel method (Pairwise Alignment Positional Nucleotide Counting, PAPNC) for estimating population diversity from 454 sequence data. The diversity measurements determined using this method were comparable to those calculated by average pairwise difference (APD) of multiply aligned sequences using MEGA5. Diversities were estimated for 9 patient plasma HIV samples sequenced with Titanium 454 technology and by single-genome sequencing (SGS). Diversities calculated from deep sequencing using PAPNC ranged from 0.002 to 0.021 while APD measurements calculated from SGS data ranged proximately from 0.001 to 0.018, with the difference being attributable to PCR error (contributing background diversity of 0.0016 in a control sample). Comparison of APDs estimated from 100 sets of sequences drawn at random from 454 generated data and from corresponding SGS data showed very close correlation between the two methods with R2 of 0.96, and differing on average by about 1% (after correction for PCR error). The authors have developed a novel method that is good for calculating genetic diversities for large scale datasets from next generation sequencing. It can be implemented easily as a function in available variation calling programs like SAM tools or haplotype reconstruction software for nucleotide genetic diversity calculation. A Perl script implementing this method is available upon request. PMID:24681054

  6. PAPNC, a novel method to calculate nucleotide diversity from large scale next generation sequencing data.

    PubMed

    Shao, Wei; Kearney, Mary F; Boltz, Valerie F; Spindler, Jonathan E; Mellors, John W; Maldarelli, Frank; Coffin, John M

    2014-07-01

    Estimating viral diversity in infected patients can provide insight into pathogen evolution and emergence of drug resistance. With the widespread adoption of deep sequencing, it is important to develop tools to accurately calculate population diversity from very large datasets. Current methods for estimating diversity that are based on multiple alignments are not practical to apply to such data. In this study, the authors report a novel method (Pairwise Alignment Positional Nucleotide Counting, PAPNC) for estimating population diversity from 454 sequence data. The diversity measurements determined using this method were comparable to those calculated by average pairwise difference (APD) of multiply aligned sequences using MEGA5. Diversities were estimated for 9 patient plasma HIV samples sequenced with Titanium 454 technology and by single-genome sequencing (SGS). Diversities calculated from deep sequencing using PAPNC ranged from 0.002 to 0.021 while APD measurements calculated from SGS data ranged proximately from 0.001 to 0.018, with the difference being attributable to PCR error (contributing background diversity of 0.0016 in a control sample). Comparison of APDs estimated from 100 sets of sequences drawn at random from 454 generated data and from corresponding SGS data showed very close correlation between the two methods with R(2) of 0.96, and differing on average by about 1% (after correction for PCR error). The authors have developed a novel method that is good for calculating genetic diversities for large scale datasets from next generation sequencing. It can be implemented easily as a function in available variation calling programs like SAMtools or haplotype reconstruction software for nucleotide genetic diversity calculation. A Perl script implementing this method is available upon request. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Performance of a Web-based Method for Generating Synoptic Reports

    PubMed Central

    Renshaw, Megan A.; Renshaw, Scott A.; Mena-Allauca, Mercy; Carrion, Patricia P.; Mei, Xiaorong; Narciandi, Arniris; Gould, Edwin W.; Renshaw, Andrew A.

    2017-01-01

    Context: The College of American Pathologists (CAP) requires synoptic reporting of all tumor excisions. Objective: To compare the performance of different methods of generating synoptic reports. Methods: Completeness, amendment rates, rate of timely ordering of ancillary studies (KRAS in T4/N1 colon carcinoma), and structured data file extraction were compared for four different synoptic report generating methods. Results: Use of the printed tumor protocols directly from the CAP website had the lowest completeness (84%) and highest amendment (1.8%) rates. Reformatting these protocols was associated with higher completeness (94%, P < 0.001) and reduced amendment (1%, P = 0.20) rates. Extraction into a structured data file was successful 93% of the time. Word-based macros improved completeness (98% vs. 94%, P < 0.001) but not amendment rates (1.5%). KRAS was ordered before sign out 89% of the time. In contrast, a web-based product with a reminder flag when items were missing, an embedded flag for data extraction, and a reminder to order KRAS when appropriate resulted in improved completeness (100%, P = 0.005), amendment rates (0.3%, P = 0.03), KRAS ordering before sign out (100%, P = 0.23), and structured data extraction (100%, P < 0.001) without reducing the speed (P = 0.34) or accuracy (P = 1.00) of data extraction by the reader. Conclusion: Completeness, amendment rates, ancillary test ordering rates, and data extraction rates vary significantly with the method used to construct the synoptic report. A web-based method compares favorably with all other methods examined and does not reduce reader usability. PMID:28382227

  8. Comparison of predictive ability of water solubility QSPR models generated by MLR, PLS and ANN methods.

    PubMed

    Erös, Dániel; Kéri, György; Kövesdi, István; Szántai-Kis, Csaba; Mészáros, György; Orfi, László

    2004-02-01

    ADME/Tox computational screening is one of the most hot topics of modern drug research. About one half of the potential drug candidates fail because of poor ADME/Tox properties. Since the experimental determination of water solubility is time-consuming also, reliable computational predictions are needed for the pre-selection of acceptable "drug-like" compounds from diverse combinatorial libraries. Recently many successful attempts were made for predicting water solubility of compounds. A comprehensive review of previously developed water solubility calculation methods is presented here, followed by the description of the solubility prediction method designed and used in our laboratory. We have selected carefully 1381 compounds from scientific publications in a unified database and used this dataset in the calculations. The externally validated models were based on calculated descriptors only. The aim of model optimization was to improve repeated evaluations statistics of the predictions and effective descriptor scoring functions were used to facilitate quick generation of multiple linear regression analysis (MLR), partial least squares method (PLS) and artificial neural network (ANN) models with optimal predicting ability. Standard error of prediction of the best model generated with ANN (with 39-7-1 network structure) was 0.72 in logS units while the cross validated squared correlation coefficient (Q(2)) was better than 0.85. These values give a good chance for successful pre-selection of screening compounds from virtual libraries, based on the predicted water solubility.

  9. Cosolvent-Based Molecular Dynamics for Ensemble Docking: Practical Method for Generating Druggable Protein Conformations.

    PubMed

    Uehara, Shota; Tanaka, Shigenori

    2017-04-07

    Protein flexibility is a major hurdle in current structure-based virtual screening (VS). In spite of the recent advances in high-performance computing, protein-ligand docking methods still demand tremendous computational cost to take into account the full degree of protein flexibility. In this context, ensemble docking has proven its utility and efficiency for VS studies, but it still needs a rational and efficient method to select and/or generate multiple protein conformations. Molecular dynamics (MD) simulations are useful to produce distinct protein conformations without abundant experimental structures. In this study, we present a novel strategy that makes use of cosolvent-based molecular dynamics (CMD) simulations for ensemble docking. By mixing small organic molecules into a solvent, CMD can stimulate dynamic protein motions and induce partial conformational changes of binding pocket residues appropriate for the binding of diverse ligands. The present method has been applied to six diverse target proteins and assessed by VS experiments using many actives and decoys of DEKOIS 2.0. The simulation results have revealed that the CMD is beneficial for ensemble docking. Utilizing cosolvent simulation allows the generation of druggable protein conformations, improving the VS performance compared with the use of a single experimental structure or ensemble docking by standard MD with pure water as the solvent.

  10. A new method for generating and maintaining rigid formats in NASTRAN

    NASA Technical Reports Server (NTRS)

    Pamidi, P. R.; Brown, W. K.

    1983-01-01

    A new method for generating and updating Rigid Formats in NASTRAN is discussed. The heart of this method is a Rigid Format data base that is in card-image format and that can therefore be easily maintained by the use of standard text editors. Each Rigid Format entry in this data base will contain the Direct Matrix Abstraction Program (DMAP) for that Rigid Format along with the related restart, subset and substructure control tables. NASTRAN will read this data base directly in every NASTRAN run and perform the necessary transformations to allow the DMAP to be processed and compiled by the NASTRAN executive. This approach will permit Rigid Formats to be changed without unnecessary compilations and relinking of NASTRAN. Furthermore, this approach will also make it very easy for users to make permanent changes to existing Rigid Formats as well as to generate their own Rigid Formats. This new method will be incorporated in a future release of the public version of NASTRAN.

  11. TMSmesh: A Robust Method for Molecular Surface Mesh Generation Using a Trace Technique.

    PubMed

    Chen, Minxin; Lu, Benzhuo

    2011-01-11

    Qualified, stable, and efficient molecular surface meshing appears to be necessitated by recent developments for realistic mathematical modeling and numerical simulation of biomolecules, especially in implicit solvent modeling (e.g., see a review in B. Z. Lu et al. Commun. Comput. Phys. 2008, 3, 973-1009). In this paper, we present a new method: tracing molecular surface for meshing (TMSmesh) the Gaussian surface of biomolecules. The method computes the surface points by solving a nonlinear equation directly, polygonizes by connecting surface points through a trace technique, and finally outputs a triangulated mesh. TMSmesh has a linear complexity with respect to the number of atoms and is shown to be capable of handling molecules consisting of more than one million atoms, which is usually difficult for the existing methods for surface generation used in molecular visualization and geometry analysis. Moreover, the meshes generated by TMSmesh are successfully tested in boundary element solutions of the Poisson-Boltzmann equation, which directly gives rise to a route to simulate electrostatic solvation of large-scale molecular systems. The binary version of TMSmesh and a set of representative PQR benchmark molecules are downloadable at our Web page http://lsec.cc.ac.cn/∼lubz/Meshing.html .

  12. Thermodynamic method for generating random stress distributions on an earthquake fault

    USGS Publications Warehouse

    Barall, Michael; Harris, Ruth A.

    2012-01-01

    This report presents a new method for generating random stress distributions on an earthquake fault, suitable for use as initial conditions in a dynamic rupture simulation. The method employs concepts from thermodynamics and statistical mechanics. A pattern of fault slip is considered to be analogous to a micro-state of a thermodynamic system. The energy of the micro-state is taken to be the elastic energy stored in the surrounding medium. Then, the Boltzmann distribution gives the probability of a given pattern of fault slip and stress. We show how to decompose the system into independent degrees of freedom, which makes it computationally feasible to select a random state. However, due to the equipartition theorem, straightforward application of the Boltzmann distribution leads to a divergence which predicts infinite stress. To avoid equipartition, we show that the finite strength of the fault acts to restrict the possible states of the system. By analyzing a set of earthquake scaling relations, we derive a new formula for the expected power spectral density of the stress distribution, which allows us to construct a computer algorithm free of infinities. We then present a new technique for controlling the extent of the rupture by generating a random stress distribution thousands of times larger than the fault surface, and selecting a portion which, by chance, has a positive stress perturbation of the desired size. Finally, we present a new two-stage nucleation method that combines a small zone of forced rupture with a larger zone of reduced fracture energy.

  13. Validation of Vortex-Lattice Method for loads on wings in lift-generated wakes

    NASA Technical Reports Server (NTRS)

    Rossow, J.

    1994-01-01

    A study is described that evaluates the accuracy of vortex-lattice methods when they are used to compute the loads induced on aircraft as they encounter lift-generated wakes. The evaluation is accomplished by use of measurements made in the 80- by 120-foot wind tunnel of the lift, rolling-moment, and downwash in the wake of three configurations of a model of a subsonic transport aircraft. The downwash measurements are used as input for a vortex-lattice code in order to compute the lift and rolling moment induced on wings that have a span of 0.186, 0.510, or 1.022 times the span of the wake-generating model. Comparison of the computed results with the measured lift and rolling moment distributions are used to determine the accuracy of the vortex-lattice code. It was found that the vortex-lattice method is very reliable as long as the span of the encountering of following wing is less than about 0.2 of the generator span. As the span of the following wing increases above 0.2, the vortex-lattice method continues to correctly predict the trends and nature of the induced loads, but it overpredicts the magnitude of the loads by increasing amounts. The increase in deviation of the computed from the measured loads with size of the following wing is attributed to the increase in distortion of the structure of the vortex wake as it approaches and passes the larger following wings.

  14. PETSTEP: Generation of synthetic PET lesions for fast evaluation of segmentation methods.

    PubMed

    Berthon, Beatrice; Häggström, Ida; Apte, Aditya; Beattie, Bradley J; Kirov, Assen S; Humm, John L; Marshall, Christopher; Spezi, Emiliano; Larsson, Anne; Schmidtlein, C Ross

    2015-12-01

    This work describes PETSTEP (PET Simulator of Tracers via Emission Projection): a faster and more accessible alternative to Monte Carlo (MC) simulation generating realistic PET images, for studies assessing image features and segmentation techniques. PETSTEP was implemented within Matlab as open source software. It allows generating three-dimensional PET images from PET/CT data or synthetic CT and PET maps, with user-drawn lesions and user-set acquisition and reconstruction parameters. PETSTEP was used to reproduce images of the NEMA body phantom acquired on a GE Discovery 690 PET/CT scanner, and simulated with MC for the GE Discovery LS scanner, and to generate realistic Head and Neck scans. Finally the sensitivity (S) and Positive Predictive Value (PPV) of three automatic segmentation methods were compared when applied to the scanner-acquired and PETSTEP-simulated NEMA images. PETSTEP produced 3D phantom and clinical images within 4 and 6 min respectively on a single core 2.7 GHz computer. PETSTEP images of the NEMA phantom had mean intensities within 2% of the scanner-acquired image for both background and largest insert, and 16% larger background Full Width at Half Maximum. Similar results were obtained when comparing PETSTEP images to MC simulated data. The S and PPV obtained with simulated phantom images were statistically significantly lower than for the original images, but led to the same conclusions with respect to the evaluated segmentation methods. PETSTEP allows fast simulation of synthetic images reproducing scanner-acquired PET data and shows great promise for the evaluation of PET segmentation methods. Copyright © 2015 Associazione Italiana di Fisica Medica. All rights reserved.

  15. Validation of Vortex-Lattice Method for loads on wings in lift-generated wakes

    NASA Technical Reports Server (NTRS)

    Rossow, J.

    1994-01-01

    A study is described that evaluates the accuracy of vortex-lattice methods when they are used to compute the loads induced on aircraft as they encounter lift-generated wakes. The evaluation is accomplished by use of measurements made in the 80- by 120-foot wind tunnel of the lift, rolling-moment, and downwash in the wake of three configurations of a model of a subsonic transport aircraft. The downwash measurements are used as input for a vortex-lattice code in order to compute the lift and rolling moment induced on wings that have a span of 0.186, 0.510, or 1.022 times the span of the wake-generating model. Comparison of the computed results with the measured lift and rolling moment distributions are used to determine the accuracy of the vortex-lattice code. It was found that the vortex-lattice method is very reliable as long as the span of the encountering of following wing is less than about 0.2 of the generator span. As the span of the following wing increases above 0.2, the vortex-lattice method continues to correctly predict the trends and nature of the induced loads, but it overpredicts the magnitude of the loads by increasing amounts. The increase in deviation of the computed from the measured loads with size of the following wing is attributed to the increase in distortion of the structure of the vortex wake as it approaches and passes the larger following wings.

  16. Generation of hybrid human immunodeficiency virus utilizing the cotransfection method and analysis of cellular tropism.

    PubMed Central

    Velpandi, A; Nagashunmugam, T; Murthy, S; Cartas, M; Monken, C; Srinivasan, A

    1991-01-01

    Human immunodeficiency viruses (HIV) isolated from infected individuals show tremendous genetic and biologic diversity. To delineate the genetic determinants underlying specific biologic characteristics, such as rate of replication, cytopathic effects, and ability to infect macrophages and T4 lymphoid cells, generation of hybrid HIV using viruses which exhibit distinct biologic features is essential. To develop methods for generating hybrid HIV, we constructed truncated HIV proviral DNA plasmids. Upon digestion with restriction enzymes, these plasmid DNAs were cotransfected into human rhabdomyosarcoma cells to generate hybrid HIV. The hybrid HIVs derived by this method were infectious upon transmission to both phytohemagglutinin-stimulated peripheral blood lymphocytes and established human leukemic T-cell lines. The virus derived from molecular clone pHXB2 (HIVHTLV-III) productively infected CEMx174 cells. On the other hand, molecular clone pARV (HIVSF2)-derived virus did not show productive infection of CEMx174 cells when used as a cell-free virus. The hybrid HIV containing the 3' end of the genome from pARV and the 5' end of the genome from pHXB2 was effective in infecting CEMx174 cells, but the converse hybrid containing 5' pARV and 3' pHXB2 was not effective in infecting CEMx174 cells. These results suggest that differences in the genes outside of env and nef play a role in the ability of the virus to infect a certain cell type. The intracellular ligation method should be useful in the analysis of related and unrelated HIV-1 isolates with common restriction enzyme cleavage sites. Images PMID:1678438

  17. The fluid dynamic approach to equidistribution methods for grid generation and adaptation

    SciTech Connect

    Delzanno, Gian Luca; Finn, John M

    2009-01-01

    The equidistribution methods based on L{sub p} Monge-Kantorovich optimization [Finn and Delzanno, submitted to SISC, 2009] and on the deformation [Moser, 1965; Dacorogna and Moser, 1990, Liao and Anderson, 1992] method are analyzed primarily in the context of grid generation. It is shown that the first class of methods can be obtained from a fluid dynamic formulation based on time-dependent equations for the mass density and the momentum density, arising from a variational principle. In this context, deformation methods arise from a fluid formulation by making a specific assumption on the time evolution of the density (but with some degree of freedom for the momentum density). In general, deformation methods do not arise from a variational principle. However, it is possible to prescribe an optimal deformation method, related to L{sub 1} Monge-Kantorovich optimization, by making a further assumption on the momentum density. Some applications of the L{sub p} fluid dynamic formulation to imaging are also explored.

  18. Applicability Comparison of Methods for Acid Generation Assessment of Rock Samples

    NASA Astrophysics Data System (ADS)

    Oh, Chamteut; Ji, Sangwoo; Yim, Giljae; Cheong, Youngwook

    2014-05-01

    Minerals including various forms of sulfur could generate AMD (Acid Mine Drainage) or ARD (Acid Rock Drainage), which can have serious effects on the ecosystem and even on human when exposed to air and/or water. To minimize the hazards by acid drainage, it is necessary to assess in advance the acid generation possibility of rocks and estimate the amount of acid generation. Because of its relatively simple and effective experiment procedure, the method of combining the results of ABA (Acid Base Accounting) and NAG (Net Acid Generation) tests have been commonly used in determining acid drainage conditions. The simplicity and effectiveness of the above method however, are derived from massive assumptions of simplified chemical reactions and this often leads to results of classifying the samples as UC (Uncertain) which would then require additional experimental or field data to reclassify them properly. This paper therefore, attempts to find the reasons that cause samples to be classified as UC and suggest new series of experiments where samples can be reclassified appropriately. Study precedents on evaluating potential acid generation and neutralization capacity were reviewed and as a result three individual experiments were selected in the light of applicability and compatibility of minimizing unnecessary influence among other experiments. The proposed experiments include sulfur speciation, ABCC (Acid Buffering Characteristic Curve), and Modified NAG which are all improved versions of existing experiments of Total S, ANC (Acid Neutralizing Capacity), and NAG respectively. To assure the applicability of the experiments, 36 samples from 19 sites with diverse geologies, field properties, and weathering conditions were collected. The samples were then subject to existing experiments and as a result, 14 samples which either were classified as UC or could be used as a comparison group had been selected. Afterwards, the selected samples were used to conduct the suggested

  19. Generator-absorber-heat exchange heat transfer apparatus and method and use thereof in a heat pump

    DOEpatents

    Phillips, Benjamin A.; Zawacki, Thomas S.; Marsala, Joseph

    1994-11-29

    Numerous embodiments and related methods for generator-absorber heat exchange (GAX) are disclosed, particularly for absorption heat pump systems. Such embodiments and related methods use the working solution of the absorption system for the heat transfer medium.

  20. Optical Device, System, and Method of Generating High Angular Momentum Beams

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy A. (Inventor); Matsko, Andrey B. (Inventor); Strekalov, Dmitry V. (Inventor); Grudinin, Ivan S. (Inventor); Maleki, Lute (Inventor)

    2009-01-01

    An optical device, optical system, and method of generating optical beams having high angular momenta are provided. The optical device includes a whispering gallery mode resonator defining a resonator radius and an elongated wavegWde having a length defined between a first end and a second end of the waveguide. The waveguide defines a waveguide radius which increases at least along a portion of the length of the waveguide in a direction from the first end to the second end. The waveguide radius at the first end of the waveguide is smaller than the resonator radius and the resonator is integrally formed with the first end of the waveguide.

  1. Method and apparatus for generating power utilizing pressure-retarded osmosis

    SciTech Connect

    Loeb, S.

    1980-03-18

    A method and apparatus are described for generating power utilizing pressure-retarded osmosis, in which a concentrated solution at a high hydraulic pressure is passed along one face of a semi-permeable membrane, and a dilute solution at a low hydraulic pressure is passed along the opposite face of the membrane to effect, by pressure-retarded-osmosis, the passage of at least a part of the dilute solution through the membrane forming a pressurized mixed solution. The potential energy stored in the pressurized mixed solution is converted to useful energy by depressurizing and repressurizing only the dilute solution.

  2. Method of making compost and spawned compost, mushroom spawn and generating methane gas

    SciTech Connect

    Stoller, B.B.

    1981-04-28

    Newly designed ribbon-type mixers provide an improved method for making composts, aerating composts, growing mushroom spawn, generating methane gas, and filling conveyors in the mushroom-growing industry. The mixers may be the double-ribbon type for purely mixing operations or the single-ribbon type for moving the material from one place to another. Both types can operate under pressure. In preparing compost for mushroom growing, operators can first use the airtight mixers for a preliminary anaerobic fermentation to produce methane, then by changing the atmosphere to an oxidizing one, complete the compost preparation under the necessary aerobic conditions.

  3. Photochemical method for generating superoxide radicals (O.sub.2.sup.-) in aqueous solutions

    DOEpatents

    Holroyd, Richard A.; Bielski, Benon H. J.

    1980-01-01

    A photochemical method and apparatus for generating superoxide radicals (ub.2.sup.-) in an aqueous solution by means of a vacuum-ultraviolet lamp of simple design. The lamp is a microwave powered rare gas device that emits far-ultraviolet light. The lamp includes an inner loop of high purity quartz tubing through which flows an oxygen-saturated sodium formate solution. The inner loop is designed so that the solution is subjected to an intense flux of far-ultraviolet light. This causes the solution to photodecompose and form the product radical (O.sub.2.sup.-).

  4. Method and means for generation of tunable laser sidebands in the far-infrared region

    NASA Technical Reports Server (NTRS)

    Pickett, Herbert M. (Inventor); Farhoomand, Jam (Inventor)

    1987-01-01

    A method for generating tunable far-infrared radiation is described. The apparatus includes a Schottky-barrier diode which has one side coupled through a conductor to a waveguide that carries a tunable microwave frequency; the diode has an opposite side which is coupled through a radiating whisker to a bias source. Infrared light is directed at the diode, and infrared light with tunable sidebands is radiated by the whisker through an open space to a reflector. The original infrared is separated from a tunable infrared sideband by a polarizing Michelson interferometer.

  5. Magnetic filter apparatus and method for generating cold plasma in semicoductor processing

    DOEpatents

    Vella, Michael C.

    1996-01-01

    Disclosed herein is a system and method for providing a plasma flood having a low electron temperature to a semiconductor target region during an ion implantation process. The plasma generator providing the plasma is coupled to a magnetic filter which allows ions and low energy electrons to pass therethrough while retaining captive the primary or high energy electrons. The ions and low energy electrons form a "cold plasma" which is diffused in the region of the process surface while the ion implantation process takes place.

  6. Magnetic filter apparatus and method for generating cold plasma in semiconductor processing

    DOEpatents

    Vella, M.C.

    1996-08-13

    Disclosed herein is a system and method for providing a plasma flood having a low electron temperature to a semiconductor target region during an ion implantation process. The plasma generator providing the plasma is coupled to a magnetic filter which allows ions and low energy electrons to pass therethrough while retaining captive the primary or high energy electrons. The ions and low energy electrons form a ``cold plasma`` which is diffused in the region of the process surface while the ion implantation process takes place. 15 figs.

  7. Spatial frequency sampling look-up table method for computer-generated hologram

    NASA Astrophysics Data System (ADS)

    Zhao, Kai; Huang, Yingqing; Jiang, Xiaoyu; Yan, Xingpeng

    2016-04-01

    A spatial frequency sampling look-up table method is proposed to generate a hologram. The three-dimensional (3-D) scene is sampled as several intensity images by computer rendering. Each object point on the rendered images has a defined spatial frequency. The basis terms for calculating fringe patterns are precomputed and stored in a table to improve the calculation speed. Both numerical simulations and optical experiments are performed. The results show that the proposed approach can easily realize color reconstructions of a 3-D scene with a low computation cost. The occlusion effects and depth information are all provided accurately.

  8. a Spiral-Based Downscaling Method for Generating 30 M Time Series Image Data

    NASA Astrophysics Data System (ADS)

    Liu, B.; Chen, J.; Xing, H.; Wu, H.; Zhang, J.

    2017-09-01

    The spatial detail and updating frequency of land cover data are important factors influencing land surface dynamic monitoring applications in high spatial resolution scale. However, the fragmentized patches and seasonal variable of some land cover types (e. g. small crop field, wetland) make it labor-intensive and difficult in the generation of land cover data. Utilizing the high spatial resolution multi-temporal image data is a possible solution. Unfortunately, the spatial and temporal resolution of available remote sensing data like Landsat or MODIS datasets can hardly satisfy the minimum mapping unit and frequency of current land cover mapping / updating at the same time. The generation of high resolution time series may be a compromise to cover the shortage in land cover updating process. One of popular way is to downscale multi-temporal MODIS data with other high spatial resolution auxiliary data like Landsat. But the usual manner of downscaling pixel based on a window may lead to the underdetermined problem in heterogeneous area, result in the uncertainty of some high spatial resolution pixels. Therefore, the downscaled multi-temporal data can hardly reach high spatial resolution as Landsat data. A spiral based method was introduced to downscale low spatial and high temporal resolution image data to high spatial and high temporal resolution image data. By the way of searching the similar pixels around the adjacent region based on the spiral, the pixel set was made up in the adjacent region pixel by pixel. The underdetermined problem is prevented to a large extent from solving the linear system when adopting the pixel set constructed. With the help of ordinary least squares, the method inverted the endmember values of linear system. The high spatial resolution image was reconstructed on the basis of high spatial resolution class map and the endmember values band by band. Then, the high spatial resolution time series was formed with these high spatial

  9. New Generation Methods for Spur, Helical, and Spiral-Bevel Gears.

    DTIC Science & Technology

    1986-11-01

    Helical , and Spiral -Bevel Gears F.L. Litvin and W.-J. Tsung University of Illinois at Chicago Chicago, Illinois J.J. Coy and R.F. Handschuh Propulsion...SPUR, HELICAL ,f B IDistribt 0!7n/ AND SPIRAL -BEVEL GEARS Av:! iit Codes F.L. Litvin and W.-J. Tsung i University of Illinois at Chicago Chicago...Ohio and( C.-B.P. Tsay National Chiao Tung University Taiwan, Republic of China SUMMARY New methods for generating spur, helical , and spiral --bevel

  10. Application of the generator coordinate method to neutron-rich Se and Ge isotopes

    NASA Astrophysics Data System (ADS)

    Higashiyama, Koji; Yoshinaga, Naotaka

    2014-03-01

    The quantum-number projected generator coordinate method (GCM) is applied to the neutron-rich Se and Ge isotopes, where the monopole and quadrupole pairing plus quadrupole-quadrupole interaction is employed as an effective interaction. The energy spectra obtained by the GCM are compared to both the shell model results and the experimental data. The GCM reproduces well the energy levels of high-spin states as well as the low-lying states. The structure of the low-lying collective states is analyzed through the GCM wave functions.

  11. Fracture Mechanics Method for Word Embedding Generation of Neural Probabilistic Linguistic Model.

    PubMed

    Bi, Size; Liang, Xiao; Huang, Ting-Lei

    2016-01-01

    Word embedding, a lexical vector representation generated via the neural linguistic model (NLM), is empirically demonstrated to be appropriate for improvement of the performance of traditional language model. However, the supreme dimensionality that is inherent in NLM contributes to the problems of hyperparameters and long-time training in modeling. Here, we propose a force-directed method to improve such problems for simplifying the generation of word embedding. In this framework, each word is assumed as a point in the real world; thus it can approximately simulate the physical movement following certain mechanics. To simulate the variation of meaning in phrases, we use the fracture mechanics to do the formation and breakdown of meaning combined by a 2-gram word group. With the experiments on the natural linguistic tasks of part-of-speech tagging, named entity recognition and semantic role labeling, the result demonstrated that the 2-dimensional word embedding can rival the word embeddings generated by classic NLMs, in terms of accuracy, recall, and text visualization.

  12. Fracture Mechanics Method for Word Embedding Generation of Neural Probabilistic Linguistic Model

    PubMed Central

    Bi, Size; Liang, Xiao

    2016-01-01

    Word embedding, a lexical vector representation generated via the neural linguistic model (NLM), is empirically demonstrated to be appropriate for improvement of the performance of traditional language model. However, the supreme dimensionality that is inherent in NLM contributes to the problems of hyperparameters and long-time training in modeling. Here, we propose a force-directed method to improve such problems for simplifying the generation of word embedding. In this framework, each word is assumed as a point in the real world; thus it can approximately simulate the physical movement following certain mechanics. To simulate the variation of meaning in phrases, we use the fracture mechanics to do the formation and breakdown of meaning combined by a 2-gram word group. With the experiments on the natural linguistic tasks of part-of-speech tagging, named entity recognition and semantic role labeling, the result demonstrated that the 2-dimensional word embedding can rival the word embeddings generated by classic NLMs, in terms of accuracy, recall, and text visualization. PMID:27698659

  13. A nonparametric stochastic method for generating daily climate-adjusted streamflows

    NASA Astrophysics Data System (ADS)

    Stagge, J. H.; Moglen, G. E.

    2013-10-01

    A daily stochastic streamflow generation model is presented, which successfully replicates statistics of the historical streamflow record and can produce climate-adjusted daily time series. A monthly climate model relates general circulation model (GCM)-scale climate indicators to discrete climate-streamflow states, which in turn control parameters in a daily streamflow generation model. Daily flow is generated by a two-state (increasing/decreasing) Markov chain, with rising limb increments randomly sampled from a Weibull distribution and the falling limb modeled as exponential recession. When applied to the Potomac River, a 38,000 km2 basin in the Mid-Atlantic United States, the model reproduces the daily, monthly, and annual distribution and dynamics of the historical streamflow record, including extreme low flows. This method can be used as part of water resources planning, vulnerability, and adaptation studies and offers the advantage of a parsimonious model, requiring only a sufficiently long historical streamflow record and large-scale climate data. Simulation of Potomac streamflows subject to the Special Report on Emissions Scenarios (SRES) A1b, A2, and B1 emission scenarios predict a slight increase in mean annual flows over the next century, with the majority of this increase occurring during the winter and early spring. Conversely, mean summer flows are projected to decrease due to climate change, caused by a shift to shorter, more sporadic rain events. Date of the minimum annual flow is projected to shift 2-5 days earlier by the 2070-2099 period.

  14. Generating rate equations for complex enzyme systems by a computer-assisted systematic method

    PubMed Central

    Qi, Feng; Dash, Ranjan K; Han, Yu; Beard, Daniel A

    2009-01-01

    Background While the theory of enzyme kinetics is fundamental to analyzing and simulating biochemical systems, the derivation of rate equations for complex mechanisms for enzyme-catalyzed reactions is cumbersome and error prone. Therefore, a number of algorithms and related computer programs have been developed to assist in such derivations. Yet although a number of algorithms, programs, and software packages are reported in the literature, one or more significant limitation is associated with each of these tools. Furthermore, none is freely available for download and use by the community. Results We have implemented an algorithm based on the schematic method of King and Altman (KA) that employs the topological theory of linear graphs for systematic generation of valid reaction patterns in a GUI-based stand-alone computer program called KAPattern. The underlying algorithm allows for the assumption steady-state, rapid equilibrium-binding, and/or irreversibility for individual steps in catalytic mechanisms. The program can automatically generate MathML and MATLAB output files that users can easily incorporate into simulation programs. Conclusion A computer program, called KAPattern, for generating rate equations for complex enzyme system is a freely available and can be accessed at . PMID:19653903

  15. The design and evaluation of a generic method for generating mosaicked multispectral filter arrays.

    PubMed

    Miao, Lidan; Qi, Hairong

    2006-09-01

    The technology of color filter arrays (CFA) has been widely used in the digital camera industry since it provides several advantages like low cost, exact registration, and strong robustness. The same motivations also drive the design of multispectral filter arrays (MSFA), in which more than three spectral bands are used. Although considerable research has been reported to optimally reconstruct the full-color image using various demosaicking algorithms, studies on the intrinsic properties of these filter arrays as well as the underlying design principles have been very limited. Given a set of representative spectral bands, the design of an MSFA involves two issues: the selection of tessellation mechanisms and the arrangement/layout of different spectral bands. We develop a generic MSFA generation method starting from a checkerboard pattern. We show, through case studies, that most of the CFAs currently used by the industry can be derived as special cases of MSFAs generated using the generic algorithm. The performance of different MSFAs are evaluated based on their intrinsic properties, namely, the spatial uniformity and the spectral consistency. We design two metrics, static coefficient and consistency coefficient, to measure these two parameters, respectively. The experimental results demonstrate that the generic algorithm can generate optimal or near-optimal MSFAs in both the rectangular and the hexagonal domains.

  16. Generator-absorber-heat exchange heat transfer apparatus and method and use thereof in a heat pump

    DOEpatents

    Phillips, Benjamin A.; Zawacki, Thomas S.

    1998-07-21

    Numerous embodiments and related methods for generator-absorber heat exchange (GAX) are disclosed, particularly for absorption heat pump systems. Such embodiments and related methods use, as the heat transfer medium, the working fluid of the absorption system taken from the generator at a location where the working fluid has a rich liquor concentration.

  17. Generator-absorber-heat exchange heat transfer apparatus and method and use thereof in a heat pump

    DOEpatents

    Phillips, B.A.; Zawacki, T.S.

    1998-07-21

    Numerous embodiments and related methods for generator-absorber heat exchange (GAX) are disclosed, particularly for absorption heat pump systems. Such embodiments and related methods use, as the heat transfer medium, the working fluid of the absorption system taken from the generator at a location where the working fluid has a rich liquor concentration. 5 figs.

  18. Automatic query generation using word embeddings for retrieving passages describing experimental methods

    PubMed Central

    Aydın, Ferhat; Hüsünbeyi, Zehra Melce; Özgür, Arzucan

    2017-01-01

    Information regarding the physical interactions among proteins is crucial, since protein–protein interactions (PPIs) are central for many biological processes. The experimental techniques used to verify PPIs are vital for characterizing and assessing the reliability of the identified PPIs. A lot of information about PPIs and the experimental methods are only available in the text of the scientific publications that report them. In this study, we approach the problem of identifying passages with experimental methods for physical interactions between proteins as an information retrieval search task. The baseline system is based on query matching, where the queries are generated by utilizing the names (including synonyms) of the experimental methods in the Proteomics Standard Initiative–Molecular Interactions (PSI-MI) ontology. We propose two methods, where the baseline queries are expanded by including additional relevant terms. The first method is a supervised approach, where the most salient terms for each experimental method are obtained by using the term frequency–relevance frequency (tf.rf) metric over 13 articles from our manually annotated data set of 30 full text articles, which is made publicly available. On the other hand, the second method is an unsupervised approach, where the queries for each experimental method are expanded by using the word embeddings of the names of the experimental methods in the PSI-MI ontology. The word embeddings are obtained by utilizing a large unlabeled full text corpus. The proposed methods are evaluated on the test set consisting of 17 articles. Both methods obtain higher recall scores compared with the baseline, with a loss in precision. Besides higher recall, the word embeddings based approach achieves higher F-measure than the baseline and the tf.rf based methods. We also show that incorporating gene name and interaction keyword identification leads to improved precision and F-measure scores for all three evaluated

  19. Automatic query generation using word embeddings for retrieving passages describing experimental methods.

    PubMed

    Aydın, Ferhat; Hüsünbeyi, Zehra Melce; Özgür, Arzucan

    2017-01-01

    Information regarding the physical interactions among proteins is crucial, since protein-protein interactions (PPIs) are central for many biological processes. The experimental techniques used to verify PPIs are vital for characterizing and assessing the reliability of the identified PPIs. A lot of information about PPIs and the experimental methods are only available in the text of the scientific publications that report them. In this study, we approach the problem of identifying passages with experimental methods for physical interactions between proteins as an information retrieval search task. The baseline system is based on query matching, where the queries are generated by utilizing the names (including synonyms) of the experimental methods in the Proteomics Standard Initiative-Molecular Interactions (PSI-MI) ontology. We propose two methods, where the baseline queries are expanded by including additional relevant terms. The first method is a supervised approach, where the most salient terms for each experimental method are obtained by using the term frequency-relevance frequency (tf.rf) metric over 13 articles from our manually annotated data set of 30 full text articles, which is made publicly available. On the other hand, the second method is an unsupervised approach, where the queries for each experimental method are expanded by using the word embeddings of the names of the experimental methods in the PSI-MI ontology. The word embeddings are obtained by utilizing a large unlabeled full text corpus. The proposed methods are evaluated on the test set consisting of 17 articles. Both methods obtain higher recall scores compared with the baseline, with a loss in precision. Besides higher recall, the word embeddings based approach achieves higher F-measure than the baseline and the tf.rf based methods. We also show that incorporating gene name and interaction keyword identification leads to improved precision and F-measure scores for all three evaluated methods

  20. A Hybrid Maximum Power Point Tracking Method for Automobile Exhaust Thermoelectric Generator

    NASA Astrophysics Data System (ADS)

    Quan, Rui; Zhou, Wei; Yang, Guangyou; Quan, Shuhai

    2016-08-01

    To make full use of the maximum output power of automobile exhaust thermoelectric generator (AETEG) based on Bi2Te3 thermoelectric modules (TEMs), taking into account the advantages and disadvantages of existing maximum power point tracking methods, and according to the output characteristics of TEMs, a hybrid maximum power point tracking method combining perturb and observe (P&O) algorithm, quadratic interpolation and constant voltage tracking method was put forward in this paper. Firstly, it searched the maximum power point with P&O algorithms and a quadratic interpolation method, then, it forced the AETEG to work at its maximum power point with constant voltage tracking. A synchronous buck converter and controller were implemented in the electric bus of the AETEG applied in a military sports utility vehicle, and the whole system was modeled and simulated with a MATLAB/Simulink environment. Simulation results demonstrate that the maximum output power of the AETEG based on the proposed hybrid method is increased by about 3.0% and 3.7% compared with that using only the P&O algorithm and the quadratic interpolation method, respectively. The shorter tracking time is only 1.4 s, which is reduced by half compared with that of the P&O algorithm and quadratic interpolation method, respectively. The experimental results demonstrate that the tracked maximum power is approximately equal to the real value using the proposed hybrid method,and it can preferentially deal with the voltage fluctuation of the AETEG with only P&O algorithm, and resolve the issue that its working point can barely be adjusted only with constant voltage tracking when the operation conditions change.

  1. A Hybrid Maximum Power Point Tracking Method for Automobile Exhaust Thermoelectric Generator

    NASA Astrophysics Data System (ADS)

    Quan, Rui; Zhou, Wei; Yang, Guangyou; Quan, Shuhai

    2017-05-01

    To make full use of the maximum output power of automobile exhaust thermoelectric generator (AETEG) based on Bi2Te3 thermoelectric modules (TEMs), taking into account the advantages and disadvantages of existing maximum power point tracking methods, and according to the output characteristics of TEMs, a hybrid maximum power point tracking method combining perturb and observe (P&O) algorithm, quadratic interpolation and constant voltage tracking method was put forward in this paper. Firstly, it searched the maximum power point with P&O algorithms and a quadratic interpolation method, then, it forced the AETEG to work at its maximum power point with constant voltage tracking. A synchronous buck converter and controller were implemented in the electric bus of the AETEG applied in a military sports utility vehicle, and the whole system was modeled and simulated with a MATLAB/Simulink environment. Simulation results demonstrate that the maximum output power of the AETEG based on the proposed hybrid method is increased by about 3.0% and 3.7% compared with that using only the P&O algorithm and the quadratic interpolation method, respectively. The shorter tracking time is only 1.4 s, which is reduced by half compared with that of the P&O algorithm and quadratic interpolation method, respectively. The experimental results demonstrate that the tracked maximum power is approximately equal to the real value using the proposed hybrid method,and it can preferentially deal with the voltage fluctuation of the AETEG with only P&O algorithm, and resolve the issue that its working point can barely be adjusted only with constant voltage tracking when the operation conditions change.

  2. A Novel and Simple Method for Rapid Generation of Recombinant Porcine Adenoviral Vectors for Transgene Expression

    PubMed Central

    Ma, Jing; Wang, Wenbin; Zhang, Lu; Tikoo, Suresh K.; Yang, Zengqi

    2015-01-01

    Many human (different serotypes) and nonhuman adenovirus vectors are being used for gene delivery. However, the current system for isolating recombinant adenoviral vectors is either time-consuming or expensive, especially for the generation of recombinant non-human adenoviral vectors. We herein report a new and simple cloning approach for the rapid generation of a porcine adenovirus (PAdV-3) vector which shows promise for gene transfer to human cells and evasion of human adenovirus type 5 (HAdV-5) immunity. Based on the final cloning plasmid, pFPAV3-CcdB-Cm, and our modified SLiCE strategy (SLiCE cloning and lethal CcdB screening), the process for generating recombinant PAdV-3 plasmids required only one step in 3 days, with a cloning efficiency as high as 620±49.56 clones/ng and zero background (100% accuracy). The recombinant PAdV-3 plasmids could be successfully rescued in porcine retinal pigment epithelium cells (VR1BL), which constitutively express the HAdV-5 E1 and PAdV-3 E1B 55k genes, and the foreign genes were highly expressed at 24 h after transduction into swine testicle (ST) cells. In conclusion, this strategy for generating recombinant PAdV-3 vectors based on our modified SLiCE cloning system was rapid and cost-efficient, which could be used as universal cloning method for modification the other regions of PAdV-3 genome as well as other adenoviral genomes. PMID:26011074

  3. Quantum entanglement generation in trapped ions using coherent and dissipative methods

    NASA Astrophysics Data System (ADS)

    Lin, Yiheng

    Entangled states are a key resource in fundamental quantum physics, quantum cryptography, and quantum computation. In this thesis, we focus on the demonstrations of two novel methods to generate entanglement. First, we implement dissipative production of a maximally entangled steady state on two trapped ions. Dissipative and coherent processes are combined and implemented in a continuous time-independent fashion, analogous to optical pumping of atomic states, continuously driving the system towards the steady entangled state. With this method, we obtain a Bell state fidelity up to 0.89(2). Second, we propose and demonstrate a novel coherent process to confine quantum evolution in a subspace between an initial separable state and the target entangled state. We demonstrate this scheme on two and three ions obtaining a Bell state fidelity up to 0.992(2). Both of these methods are robust against certain types of experimental noise and decoherence. Additionally, we demonstrate sympathetic cooling of ion chains to near the ground state of motion with an electromagnetically-induced-transparency (EIT) method. This results in roughly an order of magnitude faster cooling time while using significantly lower laser power compared to the conventional resolved sideband cooling method. These techniques may be helpful for scaled-up quantum computing.

  4. Are three generations of quantitative molecular methods sufficient in medical virology? Brief review.

    PubMed

    Clementi, Massimo; Bagnarelli, Patrizia

    2015-10-01

    In the last two decades, development of quantitative molecular methods has characterized the evolution of clinical virology more than any other methodological advancement. Using these methods, a great deal of studies has addressed efficiently in vivo the role of viral load, viral replication activity, and viral transcriptional profiles as correlates of disease outcome and progression, and has highlighted the physio-pathology of important virus diseases of humans. Furthermore, these studies have contributed to a better understanding of virus-host interactions and have sharply revolutionized the research strategies in basic and medical virology. In addition and importantly from a medical point of view, quantitative methods have provided a rationale for the therapeutic intervention and therapy monitoring in medically important viral diseases. Despite the advances in technology and the development of three generations of molecular methods within the last two decades (competitive PCR, real-time PCR, and digital PCR), great challenges still remain for viral testing related not only to standardization, accuracy, and precision, but also to selection of the best molecular targets for clinical use and to the identification of thresholds for risk stratification and therapeutic decisions. Future research directions, novel methods and technical improvements could be important to address these challenges.

  5. Fast polygon-based method for calculating computer-generated holograms in three-dimensional display.

    PubMed

    Pan, Yijie; Wang, Yongtian; Liu, Juan; Li, Xin; Jia, Jia

    2013-01-01

    In the holographic three-dimensional (3D) display, the numerical synthesis of the computer-generated holograms needs tremendous calculation. To solve the problem, a fast polygon-based method based on two-dimensional Fourier analysis of 3D affine transformation is proposed. From one primitive polygon, the proposed method calculates the diffracted optical field of each arbitrary polygon in the 3D model, where the pseudo-inverse matrix, the interpolation, and the compensation of the power spectral density are employed. The proposed method could save the computation time in the hologram synthesis since it does not need the fast Fourier transform for each polygonal surface and the additional diffusion computation. The numerical simulation and the optical experimental results are presented to demonstrate the effectiveness of the method. The results reveal the proposed method could reconstruct the 3D scene with the solid effect and without the depth limitation. The factors that influence the image quality are discussed, and the thresholds are proposed to ensure the reconstruction quality.

  6. High temperature adhesive silicone foam composition, foam generating system and method of generating foam. [For access denial

    DOEpatents

    Mead, J.W.; Montoya, O.J.; Rand, P.B.; Willan, V.O.

    1983-12-21

    Access to a space is impeded by generation of a sticky foam from a silicone polymer and a low boiling solvent such as a halogenated hydrocarbon. In a preferred aspect, the formulation is polydimethylsiloxane gel mixed with F502 Freon as a solvent and blowing agent, and pressurized with CO/sub 2/ in a vessel to about 250 PSI, whereby when the vessel is opened, a sticky and solvent resistant foam is deployed. The foam is deployable, over a wide range of temperatures, adhering to wet surfaces as well as dry, is stable over long periods of time and does not propagate flame or lose adhesive properties during an externally supported burn.

  7. System and method for generating a deselect mapping for a focal plane array

    DOEpatents

    Bixler, Jay V; Brandt, Timothy G; Conger, James L; Lawson, Janice K

    2013-05-21

    A method for generating a deselect mapping for a focal plane array according to one embodiment includes gathering a data set for a focal plane array when exposed to light or radiation from a first known target; analyzing the data set for determining which pixels or subpixels of the focal plane array to add to a deselect mapping; adding the pixels or subpixels to the deselect mapping based on the analysis; and storing the deselect mapping. A method for gathering data using a focal plane array according to another embodiment includes deselecting pixels or subpixels based on a deselect mapping; gathering a data set using pixels or subpixels in a focal plane array that are not deselected upon exposure thereof to light or radiation from a target of interest; and outputting the data set.

  8. Method of controlling temperature of a thermoelectric generator in an exhaust system

    DOEpatents

    Prior, Gregory P; Reynolds, Michael G; Cowgill, Joshua D

    2013-05-21

    A method of controlling the temperature of a thermoelectric generator (TEG) in an exhaust system of an engine is provided. The method includes determining the temperature of the heated side of the TEG, determining exhaust gas flow rate through the TEG, and determining the exhaust gas temperature through the TEG. A rate of change in temperature of the heated side of the TEG is predicted based on the determined temperature, the determined exhaust gas flow rate, and the determined exhaust gas temperature through the TEG. Using the predicted rate of change of temperature of the heated side, exhaust gas flow rate through the TEG is calculated that will result in a maximum temperature of the heated side of the TEG less than a predetermined critical temperature given the predicted rate of change in temperature of the heated side of the TEG. A corresponding apparatus is provided.

  9. Endoscopic laser-induced steam generator: a new method of treatment for early gastric cancer

    NASA Astrophysics Data System (ADS)

    Hayashi, Takuya; Arai, Tsunenori; Tajiri, Hisao; Nogami, Yashiroh; Hino, Kunihiko; Kikuchi, Makoto

    1996-05-01

    The minimum invasive endoscopic treatment for early gastric cancer has been popular in Japan. The endoscopic mucosal resection and laser coagulation by Nd:YAG laser irradiation has been the popular treatment method in this field. However, the submucosal cancer has not been successfully treated by these methods. To treat the submucosal cancer endoscopically, we developed a new coagulation therapy using hot steam generated by Nd:YAG laser. The steam of which temperature was over 10 deg. in Celsius was generated by the laser power of 30 W with 5 ml/min. of saline. The steam was emitted to canine gastric wall under laparotomy or endoscopy for 50 s respectively. Follow up endoscopy was performed on 3, 7, 14, 28 days after the treatment. Histological examination was studied on 7, 28 days, and just after the emission. In the acute observation, the submucosal layer was totally coagulated. On the 7th day, ulceration with white coat was seen. The mucosal defect, submucosal coagulation, and marked edema without muscle degeneration were found by the histological study. On the 14th day, the ulcer advanced in the scar stage. On the 28th day, it completely healed into white scar with mucosal regeneration and mucosal muscle thickening. We could obtain reproducible coagulation up to deep submucosal layer with large area in a short operation time. Moreover there were no degeneration of proper muscle. This treatment effectiveness could be easily controlled by the steam temperature and emission duration. We think that this method can be applied to early gastric cancer including the submucosal cancer, in particular poor risk case for operation. Further study should be done to apply this method to clinical therapy.

  10. Next Generation Nuclear Plant Methods Research and Development Technical Program Plan -- PLN-2498

    SciTech Connect

    Richard R. Schultz; Abderrafi M. Ougouag; David W. Nigg; Hans D. Gougar; Richard W. Johnson; William K. Terry; Chang H. Oh; Donald W. McEligot; Gary W. Johnsen; Glenn E. McCreery; Woo Y. Yoon; James W. Sterbentz; J. Steve Herring; Temitope A. Taiwo; Thomas Y. C. Wei; William D. Pointer; Won S. Yang; Michael T. Farmer; Hussein S. Khalil; Madeline A. Feltus

    2008-09-01

    One of the great challenges of designing and licensing the Very High Temperature Reactor (VHTR) is to confirm that the intended VHTR analysis tools can be used confidently to make decisions and to assure all that the reactor systems are safe and meet the performance objectives of the Generation IV Program. The research and development (R&D) projects defined in the Next Generation Nuclear Plant (NGNP) Design Methods Development and Validation Program will ensure that the tools used to perform the required calculations and analyses can be trusted. The Methods R&D tasks are designed to ensure that the calculational envelope of the tools used to analyze the VHTR reactor systems encompasses, or is larger than, the operational and transient envelope of the VHTR itself. The Methods R&D focuses on the development of tools to assess the neutronic and thermal fluid behavior of the plant. The fuel behavior and fission product transport models are discussed in the Advanced Gas Reactor (AGR) program plan. Various stress analysis and mechanical design tools will also need to be developed and validated and will ultimately also be included in the Methods R&D Program Plan. The calculational envelope of the neutronics and thermal-fluids software tools intended to be used on the NGNP is defined by the scenarios and phenomena that these tools can calculate with confidence. The software tools can only be used confidently when the results they produce have been shown to be in reasonable agreement with first-principle results, thought-problems, and data that describe the “highly ranked” phenomena inherent in all operational conditions and important accident scenarios for the VHTR.

  11. A new method to generate a high-resolution global distribution map of lake chlorophyll

    USGS Publications Warehouse

    Sayers, Michael J; Grimm, Amanda G.; Shuchman, Robert A.; Deines, Andrew M.; Bunnell, David B.; Raymer, Zachary B; Rogers, Mark W.; Woelmer, Whitney; Bennion, David; Brooks, Colin N.; Whitley, Matthew A.; Warner, David M.; Mychek-Londer, Justin G.

    2015-01-01

    A new method was developed, evaluated, and applied to generate a global dataset of growing-season chlorophyll-a (chl) concentrations in 2011 for freshwater lakes. Chl observations from freshwater lakes are valuable for estimating lake productivity as well as assessing the role that these lakes play in carbon budgets. The standard 4 km NASA OceanColor L3 chlorophyll concentration products generated from MODIS and MERIS sensor data are not sufficiently representative of global chl values because these can only resolve larger lakes, which generally have lower chl concentrations than lakes of smaller surface area. Our new methodology utilizes the 300 m-resolution MERIS full-resolution full-swath (FRS) global dataset as input and does not rely on the land mask used to generate standard NASA products, which masks many lakes that are otherwise resolvable in MERIS imagery. The new method produced chl concentration values for 78,938 and 1,074 lakes in the northern and southern hemispheres, respectively. The mean chl for lakes visible in the MERIS composite was 19.2 ± 19.2, the median was 13.3, and the interquartile range was 3.90–28.6 mg m−3. The accuracy of the MERIS-derived values was assessed by comparison with temporally near-coincident and globally distributed in situmeasurements from the literature (n = 185, RMSE = 9.39, R2 = 0.72). This represents the first global-scale dataset of satellite-derived chl estimates for medium to large lakes.

  12. Time Resolved Temperature Measurement of Hypervelocity Impact Generated Plasma Using a Global Optimization Method

    NASA Astrophysics Data System (ADS)

    Hew, Y. M.; Linscott, I.; Close, S.

    2015-12-01

    Meteoroids and orbital debris, collectively referred to as hypervelocity impactors, travel between 7 and 72 km/s in free space. Upon their impact onto the spacecraft, the energy conversion from kinetic to ionization/vaporization occurs within a very brief timescale and results in a small and dense expanding plasma with a very strong optical flash. The radio frequency (RF) emission produced by this plasma can potentially lead to electrical anomalies within the spacecraft. In addition, space weather, such as solar activity and background plasma, can establish spacecraft conditions which can exaggerate the damages done by these impacts. During the impact, a very strong impact flash will be generated. Through the studying of this emission spectrum of the impact, we hope to study the impact generated gas cloud/plasma properties. The impact flash emitted from a ground-based hypervelocity impact test is long expected by many scientists to contain the characteristics of the impact generated plasma, such as plasma temperature and density. This paper presents a method for the time-resolved plasma temperature estimation using three-color visible band photometry data with a global pattern search optimization method. The equilibrium temperature of the plasma can be estimated using an optical model which accounts for both the line emission and continuum emission from the plasma. Using a global pattern search based optimizer, the model can isolate the contribution of the continuum emission versus the line emission from the plasma. The plasma temperature can thus be estimated. Prior to the optimization step, a Gaussian process is also applied to extract the optical emission signal out of the noisy background. The resultant temperature and line-to-continuum emission weighting factor are consistent with the spectrum of the impactor material and current literature.

  13. GOParGenPy: a high throughput method to generate gene ontology data matrices.

    PubMed

    Kumar, Ajay Anand; Holm, Liisa; Toronen, Petri

    2013-08-08

    Gene Ontology (GO) is a popular standard in the annotation of gene products and provides information related to genes across all species. The structure of GO is dynamic and is updated on a daily basis. However, the popular existing methods use outdated versions of GO. Moreover, these tools are slow to process large datasets consisting of more than 20,000 genes. We have developed GOParGenPy, a platform independent software tool to generate the binary data matrix showing the GO class membership, including parental classes, of a set of GO annotated genes. GOParGenPy is at least an order of magnitude faster than popular tools for Gene Ontology analysis and it can handle larger datasets than the existing tools. It can use any available version of the GO structure and allows the user to select the source of GO annotation. GO structure selection is critical for analysis, as we show that GO classes have rapid turnover between different GO structure releases. GOParGenPy is an easy to use software tool which can generate sparse or full binary matrices from GO annotated gene sets. The obtained binary matrix can then be used with any analysis environment and with any analysis methods.

  14. Molecular characterization and comparison of shale oils generated by different pyrolysis methods

    USGS Publications Warehouse

    Birdwell, Justin E.; Jin, Jang Mi; Kim, Sunghwan

    2012-01-01

    Shale oils generated using different laboratory pyrolysis methods have been studied using standard oil characterization methods as well as Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) with electrospray ionization (ESI) and atmospheric photoionization (APPI) to assess differences in molecular composition. The pyrolysis oils were generated from samples of the Mahogany zone oil shale of the Eocene Green River Formation collected from outcrops in the Piceance Basin, Colorado, using three pyrolysis systems under conditions relevant to surface and in situ retorting approaches. Significant variations were observed in the shale oils, particularly the degree of conjugation of the constituent molecules and the distribution of nitrogen-containing compound classes. Comparison of FT-ICR MS results to other oil characteristics, such as specific gravity; saturate, aromatic, resin, asphaltene (SARA) distribution; and carbon number distribution determined by gas chromatography, indicated correspondence between higher average double bond equivalence (DBE) values and increasing asphaltene content. The results show that, based on the shale oil DBE distributions, highly conjugated species are enriched in samples produced under low pressure, high temperature conditions, and under high pressure, moderate temperature conditions in the presence of water. We also report, for the first time in any petroleum-like substance, the presence of N4 class compounds based on FT-ICR MS data. Using double bond equivalence and carbon number distributions, structures for the N4 class and other nitrogen-containing compounds are proposed.

  15. Method to Generate Full-Span Ice Shape on Swept Wing Using Icing Tunnel Data

    NASA Technical Reports Server (NTRS)

    Lee, Sam; Camello, Stephanie

    2015-01-01

    There is a collaborative research program by NASA, FAA, ONERA, and university partners to improve the fidelity of experimental and computational simulation methods for swept-wing ice accretion formulations and resultant aerodynamic effects on large transport aircraft. This research utilizes a 65 scale Common Research Model as the baseline configuration. In order to generate the ice shapes for the aerodynamic testing, ice-accretion testing will be conducted in the NASA Icing Research Tunnel utilizing hybrid model from the 20, 64, and 83 spanwise locations. The models will have full-scale leading edges with truncated chord in order to fit the IRT test section. The ice shapes from the IRT tests will be digitized using a commercially available articulated-arm 3D laser scanning system. The methodology to acquire 3D ice shapes using a laser scanner was developed and validated in a previous research effort. Each of these models will yield a 1.5ft span of ice than can be used. However, a full-span ice accretion will require 75 ft span of ice. This means there will be large gaps between these spanwise ice sections that must be filled, while maintaining all of the important aerodynamic features. A method was developed to generate a full-span ice shape from the three 1.5 ft span ice shapes from the three models.

  16. MR-based synthetic CT generation using a deep convolutional neural network method.

    PubMed

    Han, Xiao

    2017-04-01

    Interests have been rapidly growing in the field of radiotherapy to replace CT with magnetic resonance imaging (MRI), due to superior soft tissue contrast offered by MRI and the desire to reduce unnecessary radiation dose. MR-only radiotherapy also simplifies clinical workflow and avoids uncertainties in aligning MR with CT. Methods, however, are needed to derive CT-equivalent representations, often known as synthetic CT (sCT), from patient MR images for dose calculation and DRR-based patient positioning. Synthetic CT estimation is also important for PET attenuation correction in hybrid PET-MR systems. We propose in this work a novel deep convolutional neural network (DCNN) method for sCT generation and evaluate its performance on a set of brain tumor patient images. The proposed method builds upon recent developments of deep learning and convolutional neural networks in the computer vision literature. The proposed DCNN model has 27 convolutional layers interleaved with pooling and unpooling layers and 35 million free parameters, which can be trained to learn a direct end-to-end mapping from MR images to their corresponding CTs. Training such a large model on our limited data is made possible through the principle of transfer learning and by initializing model weights from a pretrained model. Eighteen brain tumor patients with both CT and T1-weighted MR images are used as experimental data and a sixfold cross-validation study is performed. Each sCT generated is compared against the real CT image of the same patient on a voxel-by-voxel basis. Comparison is also made with respect to an atlas-based approach that involves deformable atlas registration and patch-based atlas fusion. The proposed DCNN method produced a mean absolute error (MAE) below 85 HU for 13 of the 18 test subjects. The overall average MAE was 84.8 ± 17.3 HU for all subjects, which was found to be significantly better than the average MAE of 94.5 ± 17.8 HU for the atlas-based method. The DCNN

  17. Spectrum-Based Calibration Method for Energy Discriminating CZT Detectors Using Commercial X-Ray Generators

    NASA Astrophysics Data System (ADS)

    Xing, Xiaoman; Xu, Pin; Chen, Shi; Yuan, Gang; Mo, Jingqing; Sun, Mingshan

    2017-05-01

    Cadmium zinc telluride array detectors are known to have large pixel-to-pixel heterogeneity, which is undesirable in spectral computed tomography, and is hard to be theoretically modeled. To get better image quality and reduce the ring artifact, spectral calibration has to be done for each pixel to get uniform energy responses. Traditionally, multiple radionuclides with known characteristic emission peaks are used to calibrate the detectors. Heterogeneity of pixel responses can be compensated by electronically adjusting the gain and offset. This method is straightforward and simple, but radionuclides may not be readily available to many laboratories. In this paper, we present a method to calibrate the spectral response of each pixel with the broad spectrum features of commercial X-ray generators. For our system, the spectral response was empirically assumed to be Gaussian. A simple recursive fitting method was used to identify the intrinsic amplification and offset properties of each pixel. Gain and offset calibration were done accordingly. This method is robust, accurate, and fast, which is potentially applicable to other detectors with adaption.

  18. An Automatic 3D Mesh Generation Method for Domains with Multiple Materials ★

    PubMed Central

    Zhang, Yongjie; Hughes, Thomas J.R.; Bajaj, Chandrajit L.

    2009-01-01

    This paper describes an automatic and efficient approach to construct unstructured tetrahedral and hexahedral meshes for a composite domain made up of heterogeneous materials. The boundaries of these material regions form non-manifold surfaces. In earlier papers, we developed an octree-based isocontouring method to construct unstructured 3D meshes for a single-material (homogeneous) domain with manifold boundary. In this paper, we introduce the notion of a material change edge and use it to identify the interface between two or several different materials. A novel method to calculate the minimizer point for a cell shared by more than two materials is provided, which forms a non-manifold node on the boundary. We then mesh all the material regions simultaneously and automatically while conforming to their boundaries directly from volumetric data. Both material change edges and interior edges are analyzed to construct tetrahedral meshes, and interior grid points are analyzed for proper hexahedral mesh construction. Finally, edge-contraction and smoothing methods are used to improve the quality of tetrahedral meshes, and a combination of pillowing, geometric flow and optimization techniques is used for hexahedral mesh quality improvement. The shrink set of pillowing schemes is defined automatically as the boundary of each material region. Several application results of our multi-material mesh generation method are also provided. PMID:20161555

  19. A Cartesian Grid Generation Method Considering a Complicated Cell Geometry at the Body Surface

    NASA Astrophysics Data System (ADS)

    Lahur, Paulus R.; Nakamura, Yoshiaki

    A cell-splitting method for Cartesian grid generation that has the capability of taking into account the cases of thin body and sharp edge is proposed in this paper. Such cases are frequently found when solving the flow around a very thin wing, such as that of a supersonic transport (SST). The method has also been extended to treat the problem of multiple solid regions within a cell, which is sometimes encountered at a highly curved body surface. Validation of the method proposed here is carried out on a sharp, thin double wedge in a supersonic flow, where significant improvements in accuracy are achieved at the cost of a small increase in the number of cells. Furthermore, application of the present method to a model of SST shows its effectiveness on a three-dimensional, realistic geometry. As a result of making a pseudo-planar approximation for body surface elements, the total number of body surface elements was reduced by a factor of about 3.2 in this application. Local grid refinement by relocating grid cells to a curved surface is also proposed, so that a more accurate solution is obtained with a reasonable number of cells.

  20. A genetic method for generating Drosophila eyes composed exclusively of mitotic clones of a single genotype.

    PubMed Central

    Stowers, R S; Schwarz, T L

    1999-01-01

    The genetic analysis of a gene at a late developmental stage can be impeded if the gene is required at an earlier developmental stage. The construction of mosaic animals, particularly in Drosophila, has been a means to overcome this obstacle. However, the phenotypic analysis of mitotic clones is often complicated because standard methods for generating mitotic clones render mosaic tissues that are a composite of both mutant and phenotypically normal cells. We describe here a genetic method (called EGUF/hid) that uses both the GAL4/UAS and FLP/FRT systems to overcome this limitation for the Drosophila eye by producing genetically mosaic flies that are otherwise heterozygous but in which the eye is composed exclusively of cells homozygous for one of the five major chromosome arms. These eyes are nearly wild type in size, morphology, and physiology. Applications of this genetic method include phenotypic analysis of existing mutations and F(1) genetic screens to identify as yet unknown genes involved in the biology of the fly eye. We illustrate the utility of the method by applying it to lethal mutations in the synaptic transmission genes synaptotagmin and syntaxin. PMID:10430588

  1. HLA genotyping in the clinical laboratory: comparison of next-generation sequencing methods.

    PubMed

    Profaizer, T; Lázár-Molnár, E; Close, D W; Delgado, J C; Kumánovics, A

    2016-07-01

    Implementation of human leukocyte antigen (HLA) genotyping by next-generation sequencing (NGS) in the clinical lab brings new challenges to the laboratories performing this testing. With the advent of commercially available HLA-NGS typing kits, labs must make numerous decisions concerning capital equipment and address labor considerations. Therefore, careful and unbiased evaluation of available methods is imperative. In this report, we compared our in-house developed HLA NGS typing with two commercially available kits from Illumina and Omixon using 10 International Histocompatibility Working Group (IHWG) and 36 clinical samples. Although all three methods employ long range polymerase chain reaction (PCR) and have been developed on the Illumina MiSeq platform, the methodologies for library preparation show significant variations. There was 100% typing concordance between all three methods at the first field when a HLA type could be assigned. Overall, HLA typing by NGS using in-house or commercially available methods is now feasible in clinical laboratories. However, technical variables such as hands-on time and indexing strategies are sufficiently different among these approaches to impact the workflow of the clinical laboratory. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Lake spray aerosol generation: a method for producing representative particles from freshwater wave breaking

    NASA Astrophysics Data System (ADS)

    May, Nathaniel W.; Axson, Jessica L.; Watson, Alexa; Pratt, Kerri A.; Ault, Andrew P.

    2016-09-01

    Wave-breaking action in bodies of freshwater produces atmospheric aerosols via a similar mechanism to sea spray aerosol (SSA) from seawater. The term lake spray aerosol (LSA) is proposed to describe particles formed by this mechanism, which have been observed over the Laurentian Great Lakes. Though LSA has been identified from size distribution measurements during a single measurement campaign, no measurements of LSA composition or relationship to bubble-bursting dynamics have been conducted. An LSA generator utilizing a plunging jet, similar to many SSA generators, was constructed for the generation of aerosol from freshwater samples and model salt solutions. To evaluate this new generator, bubble and aerosol number size distributions were measured for salt solutions representative of freshwater (CaCO3) and seawater (NaCl) at concentrations ranging from that of freshwater to seawater (0.05-35 g kg-1), synthetic seawater (inorganic), synthetic freshwater (inorganic), and a freshwater sample from Lake Michigan. Following validation of the bubble and aerosol size distributions using synthetic seawater, a range of salt concentrations were investigated. The systematic studies of the model salts, synthetic freshwater, and Lake Michigan sample indicate that LSA is characterized by a larger number size distribution mode diameter of 300 nm (lognormal), compared to seawater at 110 nm. Decreasing salt concentrations from seawater to freshwater led to greater bubble coalescence and formation of larger bubbles, which generated larger particles and lower aerosol number concentrations. This resulted in a bimodal number size distribution with a primary mode (180 ± 20 nm) larger than that of SSA, as well as a secondary mode (46 ± 6 nm) smaller than that of SSA. This new method for studying LSA under isolated conditions is needed as models, at present, utilize SSA parameterizations for freshwater systems, which do not accurately predict the different size distributions observed

  3. Incorporating operational flexibility into electric generation planning Impacts and methods for system design and policy analysis

    NASA Astrophysics Data System (ADS)

    Palmintier, Bryan S.

    This dissertation demonstrates how flexibility in hourly electricity operations can impact long-term planning and analysis for future power systems, particularly those with substantial variable renewables (e.g., wind) or strict carbon policies. Operational flexibility describes a power system's ability to respond to predictable and unexpected changes in generation or demand. Planning and policy models have traditionally not directly captured the technical operating constraints that determine operational flexibility. However, as demonstrated in this dissertation, this capability becomes increasingly important with the greater flexibility required by significant renewables (>= 20%) and the decreased flexibility inherent in some low-carbon generation technologies. Incorporating flexibility can significantly change optimal generation and energy mixes, lower system costs, improve policy impact estimates, and enable system designs capable of meeting strict regulatory targets. Methodologically, this work presents a new clustered formulation that tractably combines a range of normally distinct power system models, from hourly unit-commitment operations to long-term generation planning. This formulation groups similar generators into clusters to reduce problem size, while still retaining the individual unit constraints required to accurately capture operating reserves and other flexibility drivers. In comparisons against traditional unit commitment formulations, errors were generally less than 1% while run times decreased by several orders of magnitude (e.g., 5000x). Extensive numerical simulations, using a realistic Texas-based power system show that ignoring flexibility can underestimate carbon emissions by 50% or result in significant load and wind shedding to meet environmental regulations. Contributions of this dissertation include: 1. Demonstrating that operational flexibility can have an important impact on power system planning, and describing when and how these

  4. Modeling technology innovation: How science, engineering, and industry methods can combine to generate beneficial socioeconomic impacts

    PubMed Central

    2012-01-01

    Background Government-sponsored science, technology, and innovation (STI) programs support the socioeconomic aspects of public policies, in addition to expanding the knowledge base. For example, beneficial healthcare services and devices are expected to result from investments in research and development (R&D) programs, which assume a causal link to commercial innovation. Such programs are increasingly held accountable for evidence of impact—that is, innovative goods and services resulting from R&D activity. However, the absence of comprehensive models and metrics skews evidence gathering toward bibliometrics about research outputs (published discoveries), with less focus on transfer metrics about development outputs (patented prototypes) and almost none on econometrics related to production outputs (commercial innovations). This disparity is particularly problematic for the expressed intent of such programs, as most measurable socioeconomic benefits result from the last category of outputs. Methods This paper proposes a conceptual framework integrating all three knowledge-generating methods into a logic model, useful for planning, obtaining, and measuring the intended beneficial impacts through the implementation of knowledge in practice. Additionally, the integration of the Context-Input-Process-Product (CIPP) model of evaluation proactively builds relevance into STI policies and programs while sustaining rigor. Results The resulting logic model framework explicitly traces the progress of knowledge from inputs, following it through the three knowledge-generating processes and their respective knowledge outputs (discovery, invention, innovation), as it generates the intended socio-beneficial impacts. It is a hybrid model for generating technology-based innovations, where best practices in new product development merge with a widely accepted knowledge-translation approach. Given the emphasis on evidence-based practice in the medical and health fields and

  5. The generator coordinate Dirac-Fock method for open-shell atomic systems

    NASA Astrophysics Data System (ADS)

    Malli, Gulzari L.; Ishikawa, Yasuyuki

    1998-11-01

    Recently we developed generator coordinate Dirac-Fock and Dirac-Fock-Breit methods for closed-shell systems assuming finite nucleus and have reported Dirac-Fock and Dirac-Fock-Breit energies for the atoms He through Nobelium (Z=102) [see Refs. Reference 10Reference 11Reference 12Reference 13]. In this paper, we generalize our earlier work on closed-shell systems and develop a generator coordinate Dirac-Fock method for open-shell systems. We present results for a number of representative open-shell heavy atoms (with nuclear charge Z>80) including the actinide and superheavy transactinide (with Z>103) atomic systems: Fr (Z=87), Ac (Z=89), and Lr (Z=103) to E113 (eka-thallium, Z=113). The high accuracy obtained in our open-shell Dirac-Fock calculations is similar to that of our closed-shell calculations, and we attribute it to the fact that the representation of the relativistic dynamics of an electron in a spherical ball finite nucleus near the origin in terms of our universal Gaussian basis set is as accurate as that provided by the numerical finite difference method. The DF SCF energies calculated by Desclaux [At. Data. Nucl. Data Tables 12, 311 (1973)] (apart from a typographic error for Fr pointed out here) are higher than those reported here for atoms of some of the superheavy transactinide elements by as much as 5 hartrees (136 eV). We believe that this is due to the use by Desclaux of much larger atomic masses than the currently accepted values for these elements.

  6. SU-E-T-446: Group-Sparsity Based Angle Generation Method for Beam Angle Optimization

    SciTech Connect

    Gao, H

    2015-06-15

    Purpose: This work is to develop the effective algorithm for beam angle optimization (BAO), with the emphasis on enabling further improvement from existing treatment-dependent templates based on clinical knowledge and experience. Methods: The proposed BAO algorithm utilizes a priori beam angle templates as the initial guess, and iteratively generates angular updates for this initial set, namely angle generation method, with improved dose conformality that is quantitatively measured by the objective function. That is, during each iteration, we select “the test angle” in the initial set, and use group-sparsity based fluence map optimization to identify “the candidate angle” for updating “the test angle”, for which all the angles in the initial set except “the test angle”, namely “the fixed set”, are set free, i.e., with no group-sparsity penalty, and the rest of angles including “the test angle” during this iteration are in “the working set”. And then “the candidate angle” is selected with the smallest objective function value from the angles in “the working set” with locally maximal group sparsity, and replaces “the test angle” if “the fixed set” with “the candidate angle” has a smaller objective function value by solving the standard fluence map optimization (with no group-sparsity regularization). Similarly other angles in the initial set are in turn selected as “the test angle” for angular updates and this chain of updates is iterated until no further new angular update is identified for a full loop. Results: The tests using the MGH public prostate dataset demonstrated the effectiveness of the proposed BAO algorithm. For example, the optimized angular set from the proposed BAO algorithm was better the MGH template. Conclusion: A new BAO algorithm is proposed based on the angle generation method via group sparsity, with improved dose conformality from the given template. Hao Gao was partially supported by the

  7. A multiplier-based method of generating stochastic areal rainfall from point rainfalls

    NASA Astrophysics Data System (ADS)

    Ndiritu, J. G.

    Catchment modelling for water resources assessment is still mainly based on rain gauge measurements as these are more easily available and cover longer periods than radar and satellite-based measurements. Rain gauges however measure the rain falling on an extremely small proportion of the catchment and the areal rainfall obtained from these point measurements are consequently substantially uncertain. These uncertainties in areal rainfall estimation are generally ignored and the need to assess their impact on catchment modelling and water resources assessment is therefore imperative. A method that stochastically generates daily areal rainfall from point rainfall using multiplicative perturbations as a means of dealing with these uncertainties is developed and tested on the Berg catchment in the Western Cape of South Africa. The differences in areal rainfall obtained by alternately omitting some of the rain gauges are used to obtain a population of plausible multiplicative perturbations. Upper bounds on the applicable perturbations are set to prevent the generation of unrealistically large rainfall and to obtain unbiased stochastic rainfall. The perturbations within the set bounds are then fitted into probability density functions to stochastically generate the perturbations to impose on areal rainfall. By using 100 randomly-initialized calibrations of the AWBM catchment model and Sequent Peak Analysis, the effects of incorporating areal rainfall uncertainties on storage-yield-reliability analysis are assessed. Incorporating rainfall uncertainty is found to reduce the required storage by up to 20%. Rainfall uncertainty also increases flow-duration variability considerably and reduces the median flow-duration values by an average of about 20%.

  8. A new method to extract stable feature points based on self-generated simulation images

    NASA Astrophysics Data System (ADS)

    Long, Fei; Zhou, Bin; Ming, Delie; Tian, Jinwen

    2015-10-01

    Recently, image processing has got a lot of attention in the field of photogrammetry, medical image processing, etc. Matching two or more images of the same scene taken at different times, by different cameras, or from different viewpoints, is a popular and important problem. Feature extraction plays an important part in image matching. Traditional SIFT detectors reject the unstable points by eliminating the low contrast and edge response points. The disadvantage is the need to set the threshold manually. The main idea of this paper is to get the stable extremums by machine learning algorithm. Firstly we use ASIFT approach coupled with the light changes and blur to generate multi-view simulated images, which make up the set of the simulated images of the original image. According to the way of generating simulated images set, affine transformation of each generated image is also known. Instead of the traditional matching process which contain the unstable RANSAC method to get the affine transformation, this approach is more stable and accurate. Secondly we calculate the stability value of the feature points by the set of image with its affine transformation. Then we get the different feature properties of the feature point, such as DOG features, scales, edge point density, etc. Those two form the training set while stability value is the dependent variable and feature property is the independent variable. At last, a process of training by Rank-SVM is taken. We will get a weight vector. In use, based on the feature properties of each points and weight vector calculated by training, we get the sort value of each feature point which refers to the stability value, then we sort the feature points. In conclusion, we applied our algorithm and the original SIFT detectors to test as a comparison. While in different view changes, blurs, illuminations, it comes as no surprise that experimental results show that our algorithm is more efficient.

  9. Method of derivation and differentiation of mouse embryonic stem cells generating synchronous neuronal networks.

    PubMed

    Gazina, Elena V; Morrisroe, Emma; Mendis, Gunarathna D C; Michalska, Anna E; Chen, Joseph; Nefzger, Christian M; Rollo, Benjamin N; Reid, Christopher A; Pera, Martin F; Petrou, Steven

    2017-08-18

    Stem cells-derived neuronal cultures hold great promise for in vitro disease modelling and drug screening. However, currently stem cells-derived neuronal cultures do not recapitulate the functional properties of primary neurons, such as network properties. Cultured primary murine neurons develop networks which are synchronised over large fractions of the culture, whereas neurons derived from mouse embryonic stem cells (ESCs) display only partly synchronised network activity and human pluripotent stem cells-derived neurons have mostly asynchronous network properties. Therefore, strategies to improve correspondence of derived neuronal cultures with primary neurons need to be developed to validate the use of stem cell-derived neuronal cultures as in vitro models. By combining serum-free derivation of ESCs from mouse blastocysts with neuronal differentiation of ESCs in morphogen-free adherent culture we generated neuronal networks with properties recapitulating those of mature primary cortical cultures. After 35days of differentiation ESC-derived neurons developed network activity very similar to that of mature primary cortical neurons. Importantly, ESC plating density was critical for network development. Compared to the previously published methods this protocol generated more synchronous neuronal networks, with high similarity to the networks formed in mature primary cortical culture. We have demonstrated that ESC-derived neuronal networks recapitulating key properties of mature primary cortical networks can be generated by optimising both stem cell derivation and differentiation. This validates the approach of using ESC-derived neuronal cultures for disease modelling and in vitro drug screening. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. A method for the generation of YAC transgenic mice by pronuclear microinjection.

    PubMed Central

    Schedl, A; Larin, Z; Montoliu, L; Thies, E; Kelsey, G; Lehrach, H; Schütz, G

    1993-01-01

    Yeast artificial chromosomes (YACs) represent the latest generation of vectors which have the great advantage of large insert size. The introduction of YACs into mammalian cells and organisms has become an important goal, since it offers the potential to study the control of large and complex transcription units and identify genes by complementation. Microinjection into the nucleus is the most direct and efficient way of delivering YAC DNA into cells, but requires the purification of the YAC from the remaining yeast chromosomes. Here we describe a detailed method for the isolation of pure, intact and highly concentrated YAC DNA. As a model system the murine tyrosinase gene was chosen and four YACs covering this locus were isolated. Introduction by homologous recombination in yeast of sequences permitting YAC amplification greatly facilitated the isolation of YAC DNA at high concentrations. YAC DNA stabilized in a salt and polyamine containing buffer did not compromise the survival of microinjected oocytes and was suitable for the generation of transgenic mice. Applications and benefits of this technique will be discussed. Images PMID:8233827

  11. A method to engineer phase-encoded photon sieve for intensity pattern generations

    NASA Astrophysics Data System (ADS)

    Li, Zhenhua; Ma, Li; Gao, Yaru; Liu, Chunxiang; Xu, Shicai; Zhang, Meina; Cheng, Chuanfu

    2015-11-01

    We propose a novel type of photon sieve where phases of its sieved waves are encoded as radial positions of the pinholes and use such phase-encoded sieves for generating designed intensity patterns in Fresnel domain. The sieve pinholes are arranged around Fresnel-rings to eliminate the quadratic Fresnel phase factor of diffraction of the sieved waves, leading the wave propagation to be equivalent to Fraunhofer diffraction. The pinholes take constant size in this paper and realize equal amplitude in the multiple sieved waves. Their positions are adjusted radially from corresponding rings to encode wave phases, taking effect by resulting in different optical paths from them to the observation plane origin. Then along with wave propagation, the encoded phases are decoded and the required phase differences are obtained in the discrete waves. We first conduct numerical simulations to show satisfactory performance of such phase-encoded photon sieves in generating arbitrarily designed intensity patterns and describe the quality of the reconstructed patterns. Then for qualitatively verifying the phase-encoding method, we experimentally fabricate three such sieves with relatively small pinhole number and obtain the designed patterns.

  12. A Simple Method on Generating any Bi-Photon Superposition State with Linear Optics

    NASA Astrophysics Data System (ADS)

    Zhang, Ting-Ting; Wei, Jie; Wang, Qin

    2017-04-01

    We present a simple method on the generation of any bi-photon superposition state using only linear optics. In this scheme, the input states, a two-mode squeezed state and a bi-photon state, meet on a beam-splitter and the output states are post-selected with two threshold single-photon detectors. We carry out corresponding numerical simulations by accounting for practical experimental conditions, calculating both the Wigner function and the state fidelity of those generated bi-photon superposition states. Our simulation results demonstrate that not only distinct nonclassical characteristics but also very high state fidelities can be achieved even under imperfect experimental conditions. Supported by the National Natural Science Foundation of China under Grant Nos. 61475197, 61590932, 11274178, the Natural Science Foundation of the Jiangsu Higher Education Institutions under Grant No. 15KJA120002, the Outstanding Youth Project of Jiangsu Province under Grant No. BK20150039, and the Priority Academic Program Development of Jiangsu Higher Education Institutions under Grant No. YX002001

  13. A general method for generating bathymetric data for hydrodynamic computer models

    USGS Publications Warehouse

    Burau, J.R.; Cheng, R.T.

    1989-01-01

    To generate water depth data from randomly distributed bathymetric data for numerical hydrodymamic models, raw input data from field surveys, water depth data digitized from nautical charts, or a combination of the two are sorted to given an ordered data set on which a search algorithm is used to isolate data for interpolation. Water depths at locations required by hydrodynamic models are interpolated from the bathymetric data base using linear or cubic shape functions used in the finite-element method. The bathymetric database organization and preprocessing, the search algorithm used in finding the bounding points for interpolation, the mathematics of the interpolation formulae, and the features of the automatic generation of water depths at hydrodynamic model grid points are included in the analysis. This report includes documentation of two computer programs which are used to: (1) organize the input bathymetric data; and (2) to interpolate depths for hydrodynamic models. An example of computer program operation is drawn from a realistic application to the San Francisco Bay estuarine system. (Author 's abstract)

  14. Calculation reduction method for color digital holography and computer-generated hologram using color space conversion

    NASA Astrophysics Data System (ADS)

    Shimobaba, Tomoyoshi; Nagahama, Yuki; Kakue, Takashi; Takada, Naoki; Okada, Naohisa; Endo, Yutaka; Hirayama, Ryuji; Hiyama, Daisuke; Ito, Tomoyoshi

    2014-02-01

    A calculation reduction method for color digital holography (DH) and computer-generated holograms (CGHs) using color space conversion is reported. Color DH and color CGHs are generally calculated on RGB space. We calculate color DH and CGHs in other color spaces for accelerating the calculation (e.g., YCbCr color space). In YCbCr color space, a RGB image or RGB hologram is converted to the luminance component (Y), blue-difference chroma (Cb), and red-difference chroma (Cr) components. In terms of the human eye, although the negligible difference of the luminance component is well recognized, the difference of the other components is not. In this method, the luminance component is normal sampled and the chroma components are down-sampled. The down-sampling allows us to accelerate the calculation of the color DH and CGHs. We compute diffraction calculations from the components, and then we convert the diffracted results in YCbCr color space to RGB color space. The proposed method, which is possible to accelerate the calculations up to a factor of 3 in theory, accelerates the calculation over two times faster than the ones in RGB color space.

  15. A Novel Gaze Tracking Method Based on the Generation of Virtual Calibration Points

    PubMed Central

    Lee, Ji Woo; Heo, Hwan; Park, Kang Ryoung

    2013-01-01

    Most conventional gaze-tracking systems require that users look at many points during the initial calibration stage, which is inconvenient for them. To avoid this requirement, we propose a new gaze-tracking method with four important characteristics. First, our gaze-tracking system uses a large screen located at a distance from the user, who wears a lightweight device. Second, our system requires that users look at only four calibration points during the initial calibration stage, during which four pupil centers are noted. Third, five additional points (virtual pupil centers) are generated with a multilayer perceptron using the four actual points (detected pupil centers) as inputs. Fourth, when a user gazes at a large screen, the shape defined by the positions of the four pupil centers is a distorted quadrangle because of the nonlinear movement of the human eyeball. The gaze-detection accuracy is reduced if we map the pupil movement area onto the screen area using a single transform function. We overcame this problem by calculating the gaze position based on multi-geometric transforms using the five virtual points and the four actual points. Experiment results show that the accuracy of the proposed method is better than that of other methods. PMID:23959241

  16. Development of a new method for sulfide determination by vapor generator inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Colon, Mireia; Iglesias, Mònica; Hidalgo, Manuela

    2007-05-01

    A new sensitive methodology for the determination of total reduced sulfur species in natural waters and acid volatile sulfides in sediments at low levels (μg L - 1 ) is described. Reduced sulfur species were separated from the water matrix in the form of H 2S after reaction with hydrochloric acid in a commercial vapor generator coupled to an inductively coupled plasma quadrupole mass spectrometer (VG-ICP-QMS) equipped with a reaction cell. The method avoided the effect of polyatomic isobaric interferences at m/z 32 caused by 16O 16O + and 14N 18O + through the elimination of the aqueous matrix, a source of oxygen. By introducing a mixture of helium and hydrogen gases into the octopole reaction cell, a series of ion-molecule reactions were induced to reduce the interfering polyatomic species. Operating conditions of the octopole reaction cell system and the analyzer were optimized to get the best signal to background ratio for 32S; a full factorial 2 3 experimental design was developed in order to evaluate which variables had a significant effect and a simplex methodology was applied to find the optimum conditions for the variables. The new method was evaluated by comparison to the standard potentiometric method. The analytical methodology developed was applied to the analysis of reduced sulfur species in natural waters and acid volatile sulfides in sea sediments.

  17. An Estimation Method for Distribution System Load with Photovoltaic Power Generation based on ICA

    NASA Astrophysics Data System (ADS)

    Yamada, Takayoshi; Ishigame, Atsushi; Genji, Takamu

    A large number of Dispersed Generations (DGs) are expected to be installed in distribution systems. Therefore the state estimation is important problem for stable and reliable system operation. However, it is difficult to estimate the total power of DGs connected to a load-side system from a metering spot on the distribution line because at the metering spot only a sum of the active-power from various loads and DGs can be measured. In this paper, we propose an estimation method for unknown DG-outputs connected to a distribution system. This method enables to estimate DG-outputs by analyzing a power flow data measured at one spot using independent component analysis (ICA). The estimation by ICA needs the same number of observations as estimations. However the observation spot is extremely limited in existing distribution system. So we propose an estimation method which enables to estimate DG-outputs and load-changes from only an observation by using known information of load power and a priori knowledge of insolation.

  18. Methods to optimize the generation of cDNA from postmortem human brain tissue.

    PubMed

    Miller, Christine L; Yolken, Robert H

    2003-02-01

    The analysis of gene transcript levels in postmortem human brain is a valuable tool for the study of neurological and psychiatric diseases. Optimization of the methods of RNA extraction and cDNA generation is particularly important in this application because postmortem human brain tissue is in limited supply and generally yields less RNA than many other human tissues. We compared column extraction and solvent extraction for total RNA, reverse transcription (RT) with random hexamers versus oligo-dT priming, and incubation of the RNA with or without DNase for effect on the cDNA product derived from the same homogenized pool of postmortem human frontal cortex. The total RNA obtained from the solvent method was found to be less stable at room temperature and to contain a higher proportion of non-messenger RNA than that obtained from the column method. Evaluating the RT-PCR results per wet weight of tissue extracted, we found that the signal strength was increased >20-fold by a protocol of Qiagen RNeasy column extraction, random hexamer RT priming and omitting DNase treatment of the RNA.

  19. [Research on fractal tones generating method for tinnitus rehabilitation based on musical instrument digital interface technology].

    PubMed

    Wang, Lu; He, Peiyu; Pan, Fan

    2014-08-01

    Tinnitus is a subjective sensation of sound without external stimulation. It has become ubiquitous and has therefore aroused much attention in recent years. According to the survey, ameliorating tinnitus based on special music and reducing pressure have good effects on the treatment of it. Meantime, vicious cycle chains between tinnitus and bad feelings have been broken. However, tinnitus therapy has been restricted by using looping music. Therefore, a method of generating fractal tones based on musical instrument digital interface (MIDI) technology and pink noise has been proposed in this paper. The experimental results showed that the fractal fragments were self-similar, incompletely reduplicate, and no sudden changes in pitches and would have a referential significance for tinnitus therapy.

  20. Investigation of singlet oxygen generation in Vit C-Cu2+ -LDL system by chemiluminescence method

    NASA Astrophysics Data System (ADS)

    Wang, Juan; Xing, Da; Tan, Shici; Tang, Yonghong; He, Yonghong

    2002-04-01

    In this study, by chemiluminescence method using a Cypridina luciferin analog, 2-methyl-6-(p-methoxyphenyl)-3,7- dihydroimidazo[1,2-a]pyrazin-3-one (MCLA), as a selective and sensitive chemiluminescence probe, singlet oxygen (1O2) formation was observed in the vit C- LDL-Cu2+ reaction system. Another experimental evidence for the generation of 1O2 was the quenching effect of sodium azide (NaN3) on vit C-induced chemiluminescence in the reaction mixture of LDL- Cu2+-MCLA. Analysis based on the experimental results indicated the plausible reaction mechanism is that vit C converts Cu2+ to its reduced state and vit C becomes vit C radical itself, thereby stimulating the formation of peroxyl radicals, and bimolecular reaction of peroxyl radicals results in 1O2 production in the above systems.

  1. Variable cooling circuit for thermoelectric generator and engine and method of control

    DOEpatents

    Prior, Gregory P

    2012-10-30

    An apparatus is provided that includes an engine, an exhaust system, and a thermoelectric generator (TEG) operatively connected to the exhaust system and configured to allow exhaust gas flow therethrough. A first radiator is operatively connected to the engine. An openable and closable engine valve is configured to open to permit coolant to circulate through the engine and the first radiator when coolant temperature is greater than a predetermined minimum coolant temperature. A first and a second valve are controllable to route cooling fluid from the TEG to the engine through coolant passages under a first set of operating conditions to establish a first cooling circuit, and from the TEG to a second radiator through at least some other coolant passages under a second set of operating conditions to establish a second cooling circuit. A method of controlling a cooling circuit is also provided.

  2. Generation mechanism and reduction methods of post-passivation-etch silklike polymers

    NASA Astrophysics Data System (ADS)

    Young, Chung-Daw; Chen, Sen-Fu; Chen, Chia-Hsiang

    1999-04-01

    Silk-like polymers (SLP) are inspected after photoresist stripping at the post-passivation-etch stage. They mainly distribute on the scribe lines between the die chips, but partially generate from the bonding pads and stay on the passivation films. Their width is around 100 - 200 nm, but the length could be extended to several hundred micrometers. The SLP will act as a mask with respect to the following low-power CF4 plasma treatment and leave the SLP-shaped replicas on the passivation films. They even remain on the bonding pads to affect the bonding performance. An O2 plasma cleaning chemicals was found with the ability to successfully remove the SLP. The formation mechanism of the SLP will be investigated and the prevention methods also discussed in the study.

  3. Novel methods for improvement of a Penning ion source for neutron generator applications.

    PubMed

    Sy, A; Ji, Q; Persaud, A; Waldmann, O; Schenkel, T

    2012-02-01

    Penning ion source performance for neutron generator applications is characterized by the atomic ion fraction and beam current density, providing two paths by which source performance can be improved for increased neutron yields. We have fabricated a Penning ion source to investigate novel methods for improving source performance, including optimization of wall materials and electrode geometry, advanced magnetic confinement, and integration of field emitter arrays for electron injection. Effects of several electrode geometries on discharge characteristics and extracted ion current were studied. Additional magnetic confinement resulted in a factor of two increase in beam current density. First results indicate unchanged proton fraction and increased beam current density due to electron injection from carbon nanofiber arrays.

  4. Model predictive control system and method for integrated gasification combined cycle power generation

    SciTech Connect

    Kumar, Aditya; Shi, Ruijie; Kumar, Rajeeva; Dokucu, Mustafa

    2013-04-09

    Control system and method for controlling an integrated gasification combined cycle (IGCC) plant are provided. The system may include a controller coupled to a dynamic model of the plant to process a prediction of plant performance and determine a control strategy for the IGCC plant over a time horizon subject to plant constraints. The control strategy may include control functionality to meet a tracking objective and control functionality to meet an optimization objective. The control strategy may be configured to prioritize the tracking objective over the optimization objective based on a coordinate transformation, such as an orthogonal or quasi-orthogonal projection. A plurality of plant control knobs may be set in accordance with the control strategy to generate a sequence of coordinated multivariable control inputs to meet the tracking objective and the optimization objective subject to the prioritization resulting from the coordinate transformation.

  5. Acoustic methods for high-throughput protein crystal mounting at next-generation macromolecular crystallographic beamlines.

    PubMed

    Roessler, Christian G; Kuczewski, Anthony; Stearns, Richard; Ellson, Richard; Olechno, Joseph; Orville, Allen M; Allaire, Marc; Soares, Alexei S; Héroux, Annie

    2013-09-01

    To take full advantage of advanced data collection techniques and high beam flux at next-generation macromolecular crystallography beamlines, rapid and reliable methods will be needed to mount and align many samples per second. One approach is to use an acoustic ejector to eject crystal-containing droplets onto a solid X-ray transparent surface, which can then be positioned and rotated for data collection. Proof-of-concept experiments were conducted at the National Synchrotron Light Source on thermolysin crystals acoustically ejected onto a polyimide `conveyor belt'. Small wedges of data were collected on each crystal, and a complete dataset was assembled from a well diffracting subset of these crystals. Future developments and implementation will focus on achieving ejection and translation of single droplets at a rate of over one hundred per second.

  6. Ring-tool profiling - graphical method in CATIA based on Generating trajectories theorem

    NASA Astrophysics Data System (ADS)

    Frumuşanu, G.; Teodor, V.; Oancea, N.

    2016-11-01

    Machining of threads having high dimensions and multiple starts by turning is a challenging problem. An alternative possibility is to machine them by milling. The most productive milling solution is when using tools with inner active surface, namely ring tools. In the case of threads with multiple starts, the reciprocal enwrapped profile of the ring tool is considerably different to the shape of the thread axial (normal) section. In this paper, we suggest a methodology to profile the generator ring tool, based on a complementary theorem from enwrapped surfaces field. At the same time, a graphical algorithm aiming to find the ring tool profile, developed in CATIA graphical environment has been applied in the concrete case of a trapezoidal thread. The graphical profiling solution is presented in comparison to an analytical solution, in order to test the results precision. The graphical profiling method proves to be rigorous, easy to apply and highly intuitive.

  7. [Research on HBsAg: comparison between two methods of the third generation, RPHA and IEA].

    PubMed

    Moretti, R; Vujovic, A; Benda, N

    1982-06-01

    Two tests of the 3rd generation were evaluated for the identification of HBsAg: the reverse hemoagglutination and the enzymatic immunoassay. The results of the study, carried out on 2,434 sera of occasional and periodic donors, have been slightly discordant. It was confirmed the greater sensibility of the IEA test over the RHA and there was a high incidence of false positive results of the IEA test probably caused by the presence in the sera of an elevated concentration of lipid and/or Hb. However, we can consider the RHA a useful test adaptable as an emergency test while the IEA method, being more sensible, can be used as a basic screening test.

  8. System and method for generating and/or screening potential metal-organic frameworks

    DOEpatents

    Wilmer, Christopher E; Leaf, Michael; Snurr, Randall Q; Farha, Omar K; Hupp, Joseph T

    2014-12-02

    A system and method for systematically generating potential metal-organic framework (MOFs) structures given an input library of building blocks is provided herein. One or more material properties of the potential MOFs are evaluated using computational simulations. A range of material properties (surface area, pore volume, pore size distribution, powder x-ray diffraction pattern, methane adsorption capability, and the like) can be estimated, and in doing so, illuminate unidentified structure-property relationships that may only have been recognized by taking a global view of MOF structures. In addition to identifying structure-property relationships, this systematic approach to identify the MOFs of interest is used to identify one or more MOFs that may be useful for high pressure methane storage.

  9. System and method for generating and/or screening potential metal-organic frameworks

    DOEpatents

    Wilmer, Christopher E; Leaf, Michael; Snurr, Randall Q; Farha, Omar K; Hupp, Joseph T

    2015-04-21

    A system and method for systematically generating potential metal-organic framework (MOFs) structures given an input library of building blocks is provided herein. One or more material properties of the potential MOFs are evaluated using computational simulations. A range of material properties (surface area, pore volume, pore size distribution, powder x-ray diffraction pattern, methane adsorption capability, and the like) can be estimated, and in doing so, illuminate unidentified structure-property relationships that may only have been recognized by taking a global view of MOF structures. In addition to identifying structure-property relationships, this systematic approach to identify the MOFs of interest is used to identify one or more MOFs that may be useful for high pressure methane storage.

  10. Geometry Optimization of a Segmented Thermoelectric Generator Based on Multi-parameter and Nonlinear Optimization Method

    NASA Astrophysics Data System (ADS)

    Cai, Lanlan; Li, Peng; Luo, Qi; Zhai, Pengcheng; Zhang, Qingjie

    2017-01-01

    As no single thermoelectric material has presented a high figure-of-merit (ZT) over a very wide temperature range, segmented thermoelectric generators (STEGs), where the p- and n-legs are formed of different thermoelectric material segments joined in series, have been developed to improve the performance of thermoelectric generators. A crucial but difficult problem in a STEG design is to determine the optimal values of the geometrical parameters, like the relative lengths of each segment and the cross-sectional area ratio of the n- and p-legs. Herein, a multi-parameter and nonlinear optimization method, based on the Improved Powell Algorithm in conjunction with the discrete numerical model, was implemented to solve the STEG's geometrical optimization problem. The multi-parameter optimal results were validated by comparison with the optimal outcomes obtained from the single-parameter optimization method. Finally, the effect of the hot- and cold-junction temperatures on the geometry optimization was investigated. Results show that the optimal geometry parameters for maximizing the specific output power of a STEG are different from those for maximizing the conversion efficiency. Data also suggest that the optimal geometry parameters and the interfacial temperatures of the adjacent segments optimized for maximum specific output power or conversion efficiency vary with changing hot- and cold-junction temperatures. Through the geometry optimization, the CoSb3/Bi2Te3-based STEG can obtain a maximum specific output power up to 1725.3 W/kg and a maximum efficiency of 13.4% when operating at a hot-junction temperature of 823 K and a cold-junction temperature of 298 K.

  11. A method to evaluate the generation area of local wave climate

    NASA Astrophysics Data System (ADS)

    Perez, Jorge; Mendez, Fernando; Menendez, Melisa

    2013-04-01

    The description of wave conditions at a local scale is of paramount importance for off-shore and coastal engineering applications (maritime works, ship design and route definition, offshore structures design, harbours operability). However, wave characteristics at a specific location cannot be fully understood studying only information of such location. They are the integrated result of the dynamics of the ocean surface over an area of influence. The goal of this work is to provide a methodology to easily characterize the area of influence of any particular ocean location in the world. The method is based on a global scale analysis using both geographic and oceanographic criteria. The geographic criterion relies on the realistic assumption that deep water waves travel along great circle paths, taking into account the spherical shape of the Earth. This allows limiting the study area by neglecting energy that cannot reach a target point, as its path is blocked by land. The oceanographic criterion is applied to global wave reanalysis data (Reguero et al., 2012), considering different spectral parameters such as mean direction, directional spread, wave energy period and energy flux, and taking into account in its specific location, the fraction of energy of the directional sector that travels towards the target point. A better understanding of the spatial generation and propagation area and an estimation of the time span the waves take to arrive to the target point is obtained. We have applied the methodology worldwide to obtain detailed maps of the relative importance of different oceanic areas to the climate of any location. Results show important spatial patterns that cannot be inferred from local parameters and validation with different climate analysis of other authors (Izaguirre et al., 2012; Alves et al., 2006) confirm the robustness of the method. This methodology facilitates enormously the study of wave generation area that induces local wave climate.

  12. Geometry Optimization of a Segmented Thermoelectric Generator Based on Multi-parameter and Nonlinear Optimization Method

    NASA Astrophysics Data System (ADS)

    Cai, Lanlan; Li, Peng; Luo, Qi; Zhai, Pengcheng; Zhang, Qingjie

    2017-03-01

    As no single thermoelectric material has presented a high figure-of-merit (ZT) over a very wide temperature range, segmented thermoelectric generators (STEGs), where the p- and n-legs are formed of different thermoelectric material segments joined in series, have been developed to improve the performance of thermoelectric generators. A crucial but difficult problem in a STEG design is to determine the optimal values of the geometrical parameters, like the relative lengths of each segment and the cross-sectional area ratio of the n- and p-legs. Herein, a multi-parameter and nonlinear optimization method, based on the Improved Powell Algorithm in conjunction with the discrete numerical model, was implemented to solve the STEG's geometrical optimization problem. The multi-parameter optimal results were validated by comparison with the optimal outcomes obtained from the single-parameter optimization method. Finally, the effect of the hot- and cold-junction temperatures on the geometry optimization was investigated. Results show that the optimal geometry parameters for maximizing the specific output power of a STEG are different from those for maximizing the conversion efficiency. Data also suggest that the optimal geometry parameters and the interfacial temperatures of the adjacent segments optimized for maximum specific output power or conversion efficiency vary with changing hot- and cold-junction temperatures. Through the geometry optimization, the CoSb3/Bi2Te3-based STEG can obtain a maximum specific output power up to 1725.3 W/kg and a maximum efficiency of 13.4% when operating at a hot-junction temperature of 823 K and a cold-junction temperature of 298 K.

  13. A method for generating 3D thermal models with decoupled acquisition.

    PubMed

    Krefer, Andriy Guilherme; Lie, Maiko Min Ian; Borba, Gustavo Benvenutti; Gamba, Humberto Remigio; Lavarda, Marcos Dinís; Abreu de Souza, Mauren

    2017-11-01

    Both thermal imaging and 3D scanning offer convenient advantages for medical applications, namely, being contactless, non-invasive and fast. Consequently, many approaches have been proposed to combine both sensing modalities in order to acquire 3D thermal models. The predominant approach is to affix a 3D scanner and a thermal camera in the same support and calibrate them together. While this approach allows straightforward projection of thermal images over the 3D mesh, it requires their simultaneous acquisition. In this work, a method for generation of 3D thermal models that allows combination of separately acquired 3D mesh and thermal images is presented. Among the advantages of this decoupled acquisition are increased modularity of acquisition procedures and reuse of legacy equipment and data. The proposed method is based on the projection of thermal images over a 3D mesh. Unlike previous methods, it is considered that the 3D mesh and the thermal images are acquired separately, so camera pose estimation is required to determine the correct spatial positioning from which to project the images. This is done using Structure from Motion, which requires a series of interest points correspondences between the images, for which the SIFT method was used. As thermal images of human skin are predominantly homogeneous, an intensity transformation is proposed to increase the efficacy of interest point detection and make the approach feasible. Before projection, the adequate alignment of the 3D mesh in space is determined using Particle Swarm Optimization. For validation of the method, the design and implementation of a test object is presented. It can be used to validate other methods and can be reproduced with common printed circuit board manufacturing processes. The proposed approach is accurate, with an average displacement error of 1.41  mm (s = 0.74  mm) with the validation test object and 4.58 mm (s = 2.12  mm) with human subjects. The proposed method is able to

  14. Modeling technology innovation: how science, engineering, and industry methods can combine to generate beneficial socioeconomic impacts.

    PubMed

    Stone, Vathsala I; Lane, Joseph P

    2012-05-16

    Government-sponsored science, technology, and innovation (STI) programs support the socioeconomic aspects of public policies, in addition to expanding the knowledge base. For example, beneficial healthcare services and devices are expected to result from investments in research and development (R&D) programs, which assume a causal link to commercial innovation. Such programs are increasingly held accountable for evidence of impact-that is, innovative goods and services resulting from R&D activity. However, the absence of comprehensive models and metrics skews evidence gathering toward bibliometrics about research outputs (published discoveries), with less focus on transfer metrics about development outputs (patented prototypes) and almost none on econometrics related to production outputs (commercial innovations). This disparity is particularly problematic for the expressed intent of such programs, as most measurable socioeconomic benefits result from the last category of outputs. This paper proposes a conceptual framework integrating all three knowledge-generating methods into a logic model, useful for planning, obtaining, and measuring the intended beneficial impacts through the implementation of knowledge in practice. Additionally, the integration of the Context-Input-Process-Product (CIPP) model of evaluation proactively builds relevance into STI policies and programs while sustaining rigor. The resulting logic model framework explicitly traces the progress of knowledge from inputs, following it through the three knowledge-generating processes and their respective knowledge outputs (discovery, invention, innovation), as it generates the intended socio-beneficial impacts. It is a hybrid model for generating technology-based innovations, where best practices in new product development merge with a widely accepted knowledge-translation approach. Given the emphasis on evidence-based practice in the medical and health fields and "bench to bedside" expectations for

  15. Characteristic of nanoparticles generated from different nano-powders by using different dispersion methods

    NASA Astrophysics Data System (ADS)

    Tsai, Chuen-Jinn; Lin, Guan-Yu; Liu, Chun-Nan; He, Chi-En; Chen, Chun-Wan

    2012-03-01

    A standard rotating drum with a modified sampling train (RD), a vortex shaker (VS), and a SSPD (small-scale powder disperser) were used to investigate the emission characteristics of nano-powders, including nano-titanium dioxide (nano-TiO2, primary diameter: 21 nm), nano-zinc oxide (nano-ZnO, primary diameter: 30-50 nm), and nano-silicon dioxide (nano-SiO2, primary diameter: 10-30 nm). A TSI SMPS (scanning mobility particle sizer), a TSI APS (aerodynamic particle sizer), and a MSP MOUDI (micro-orifice uniform deposit impactor) were used to measure the number and mass distributions of generated particles. Significant differences in specific number and mass concentration or distributions were found among different methods and nano-powders with the most specific number and mass concentration and the smallest particles being generated by the most energetic SSPD, followed by VS and RD. Near uni-modal number or mass distributions were observed for the SSPD while bi-modal number or mass distributions existed for nano-powders except nano-SiO2 which also exhibited bimodal mass distributions. The 30-min average results showed that the mass median aerodynamic diameter (MMAD) and number median diameter (NMD) of the SSPD ranged 1.1-2.1 μm and 166-261 nm, respectively, for all three nano-powders, which were smaller than those of the VS (MMAD: 3.3-6.0 μm and NMD: 156-462 nm), and the RD (MMAD: 5.2-11.2 μm and NMD: 198-479 nm). For nano-particles (electric mobility diameter < 100 nm), specific mass concentrations were nearly negligible for all three nano-powders and test methods. Specific number concentrations of nano-particles were low for the RD tester but were elevated when more energetic VS and SSPD testers were used. The quantitative size and concentration data obtained in this study is useful to elucidate the field emission and personal exposure data in the future provided that particle loss in the generation system is carefully assessed.

  16. Generation of three-dimensional unstructured grids by the advancing-front method

    NASA Technical Reports Server (NTRS)

    Lohner, Rainald; Parikh, Paresh

    1988-01-01

    The generation of three-dimensional unstructured grids using the advancing-front technique is described. While this generation technique has been shown to be effective for the generation of unstructured grids in two dimensions, its extension to three-dimensional regions required the development of surface definition software and sophisticated data structures to avoid excessive CPU-time overheads for the search operations involved. After obtaining an initial triangulation of the surfaces, tetrahedrons are generated by successively deleting faces from the generation front. Details of the mesh generation algorithm are given, together with examples and timings.

  17. Stepwise threshold clustering: a new method for genotyping MHC loci using next-generation sequencing technology.

    PubMed

    Stutz, William E; Bolnick, Daniel I

    2014-01-01

    Genes of the vertebrate major histocompatibility complex (MHC) are of great interest to biologists because of their important role in immunity and disease, and their extremely high levels of genetic diversity. Next generation sequencing (NGS) technologies are quickly becoming the method of choice for high-throughput genotyping of multi-locus templates like MHC in non-model organisms. Previous approaches to genotyping MHC genes using NGS technologies suffer from two problems:1) a "gray zone" where low frequency alleles and high frequency artifacts can be difficult to disentangle and 2) a similar sequence problem, where very similar alleles can be difficult to distinguish as two distinct alleles. Here were present a new method for genotyping MHC loci--Stepwise Threshold Clustering (STC)--that addresses these problems by taking full advantage of the increase in sequence data provided by NGS technologies. Unlike previous approaches for genotyping MHC with NGS data that attempt to classify individual sequences as alleles or artifacts, STC uses a quasi-Dirichlet clustering algorithm to cluster similar sequences at increasing levels of sequence similarity. By applying frequency and similarity based criteria to clusters rather than individual sequences, STC is able to successfully identify clusters of sequences that correspond to individual or similar alleles present in the genomes of individual samples. Furthermore, STC does not require duplicate runs of all samples, increasing the number of samples that can be genotyped in a given project. We show how the STC method works using a single sample library. We then apply STC to 295 threespine stickleback (Gasterosteus aculeatus) samples from four populations and show that neighboring populations differ significantly in MHC allele pools. We show that STC is a reliable, accurate, efficient, and flexible method for genotyping MHC that will be of use to biologists interested in a variety of downstream applications.

  18. Adjustment method for microarray data generated using two-cycle RNA labeling protocol.

    PubMed

    Wang, Fugui; Chen, Rui; Ji, Dong; Bai, Shunong; Qian, Minping; Deng, Minghua

    2013-01-16

    Microarray technology is widely utilized for monitoring the expression changes of thousands of genes simultaneously. However, the requirement of relatively large amount of RNA for labeling and hybridization makes it difficult to perform microarray experiments with limited biological materials, thus leads to the development of many methods for preparing and amplifying mRNA. It is addressed that amplification methods usually bring bias, which may strongly hamper the following interpretation of the results. A big challenge is how to correct for the bias before further analysis. In this article, we observed the bias in rice gene expression microarray data generated with the Affymetrix one-cycle, two-cycle RNA labeling protocols, followed by validation with Real Time PCR. Based on these data, we proposed a statistical framework to model the processes of mRNA two-cycle linear amplification, and established a linear model for probe level correction. Maximum Likelihood Estimation (MLE) was applied to perform robust estimation of the Retaining Rate for each probe. After bias correction, some known pre-processing methods, such as PDNN, could be combined to finish preprocessing. Then, we evaluated our model and the results suggest that our model can effectively increase the quality of the microarray raw data: (i) Decrease the Coefficient of Variation for PM intensities of probe sets; (ii) Distinguish the microarray samples of five stages for rice stamen development more clearly; (iii) Improve the correlation coefficients among stamen microarray samples. We also discussed the necessity of model adjustment by comparing with another simple adjustment method. We conclude that the adjustment model is necessary and could effectively increase the quality of estimation for gene expression from the microarray raw data.

  19. 2002 Carolyn Sherif Award Address: Gender, Race, and Generation in a Midwest High School: Using Ethnographically Informed Methods in Psychology.

    ERIC Educational Resources Information Center

    Stewart, Abigail J.

    2003-01-01

    Suggests the value of ethnographically informed methods in the psychology of women, emphasizing the role of generation in psychology. Examines evidence from an ongoing, ethnographically informed study of high school graduates in the mid-1950s and late-1960s. The two generations of graduates have distinctive accounts of their experiences, with the…

  20. Assessing impacts of DNA extraction methods on next generation sequencing of water and wastewater samples.

    PubMed

    Walden, Connie; Carbonero, Franck; Zhang, Wen

    2017-10-01

    Next Generation Sequencing (NGS) is increasingly affordable and easier to perform. However, standard protocols prior to the sequencing step are only available for few selected sample types. Here we investigated the impact of DNA extraction methods on the consistency of NGS results. Four commercial DNA extraction kits (QIAamp DNA Mini Kit, QIAamp DNA Stool Mini Kit, MO BIO Power Water Kit, and MO BIO Power Soil DNA Isolation Kit) were used on sample sources including lake water and wastewater, and sample types including planktonic and biofilm bacteria communities. Sampling locations included a lake water reservoir, a trickling filter, and a moving bed biofilm reactor (MBBR). Unique genera such as Gemmatimonadetes, Elusimicrobia, and Latescibacteria were found in multiple samples. The Stool Mini Kit was least efficient in terms of diversity in sampling results with freshwater lake samples, and surprisingly the Power Water Kit was the least efficient across all sample types examined. Detailed NGS beta diversity comparisons indicated that the Mini Kit and PowerSoil Kit are best suited for studies that extract DNA from a variety of water and wastewater samples. We ultimately recommend application of Mini Kit or PowerSoil Kit as an improvement to NGS protocols for these sampling environments. These results are a step toward achieving accurate comparability of complex samples from water and wastewater environments by applying a single DNA extraction method, further streamlining future investigations. Copyright © 2017 Elsevier B.V. All rights reserved.