Sample records for ftir theoretical structural

  1. DFT, FT-IR, FT-Raman and vibrational studies of 3-methoxyphenyl boronic acid

    NASA Astrophysics Data System (ADS)

    Patil, N. R.; Hiremath, Sudhir M.; Hiremath, C. S.

    2018-05-01

    The aim of this work is to study the possible stable, geometrical molecular structure, experimental and theoretical FT-IR and FT-Raman spectroscopic methods of 3-Methoxyphenyl boronic acid (3MPBA). FT-IR and FT-Raman spectra were recorded in the region of 4000-400 cm-1 and 40000-50 cm-1 respectively. The optimized geometric structure and vibrational wavenumbers of the title compound were searched by B3LYP hybrid density functional theory method with 6-311++G (d, p) basis set. The Selectedexperimentalbandswereassignedandcharacterizedonthebasisofthescaledtheoreticalwavenumbersby their potential energy distribution (PED) of the vibrational modes obtained from VEDA 4 program. Finally, the predicted calculation results were applied to simulated FT-IR and FT-Raman spectra of the title compound, which show agreement with the observed spectra. Whereas, it is observed that, the theoretical frequencies are more than the experimental one for O-H stretching vibration modes of the title molecule.

  2. Vibrational (FT-IR, Raman) and DFT analysis on the structure of labile drugs. The case of crystalline tebipenem and its ester

    NASA Astrophysics Data System (ADS)

    Paczkowska, Magdalena; Mizera, Mikołaj; Dzitko, Jakub; Lewandowska, Kornelia; Zalewski, Przemysław; Cielecka-Piontek, Judyta

    2017-04-01

    A tebipenem is active form of the first, oral carbapenem antibiotic - tebipenem pivoxyl. The optimized conformations of tebipenem pivoxyl and tebipenem were determinated by quantum-chemical calculations performed with the use of B3LYP functional and 6-31G(d,p) as a basis set. For the most stable conformations of tebipenem and its ester were established theoretical Raman and FT-IR spectra. The theoretical approach in significant part was support for identification of experimental Raman (400-4000 cm-1) and FT-IR (100-4000 cm-1) of tebipenem and tebipenem pivoxil. The geometric structure of molecules, HOMO and LUMO orbitals and molecular electrostatic potential were also determined. The benefits of applying FT-IR and Raman scattering spectroscopy for characterization of tebipenem and its ester consisted in demonstrating differences in their spectral properties.

  3. Experimental and theoretical studies of the structure of tellurate-borate glasses network.

    PubMed

    Rada, Simona; Culea, Eugen; Neumann, Manfred

    2010-08-01

    The structural properties of the xTeO(2) x (1-x)B(2)O(3) glasses (x = 0.6; 0.7) were investigated by FT-IR spectroscopy. From the analysis of the FTIR spectra, it is reasonable to assume that by the increasing of boron ions content, the tetrahedral [BO(4)] units are gradually replaced by the trigonal [BO(3)] units. The increase in the number of non-bridging oxygen atoms would decrease the connectivity of the glass network and will yield the depolymerization of the borate chains. The molecular structure and vibrational frequencies of the proposed structural models have been studied by exploring the density functional theory (DFT) calculations. The FTIR spectra of the xTeO(2) x (1-x)B(2)O(3) vitreous systems were compared with the calculated spectrum. This procedure allowed us to assign most of the observed IR bands.

  4. The spectroscopic (FT-IR, FT-Raman, UV) and first order hyperpolarizability, HOMO and LUMO analysis of 3-aminobenzophenone by density functional method

    NASA Astrophysics Data System (ADS)

    Karabacak, M.; Kurt, M.; Cinar, M.; Ayyappan, S.; Sudha, S.; Sundaraganesan, N.

    In this work, experimental and theoretical study on the molecular structure and the vibrational spectra of 3-aminobenzophenone (3-ABP) is presented. The vibrational frequencies of the title compound were obtained theoretically by DFT/B3LYP calculations employing the standard 6-311++G(d,p) basis set for optimized geometry and were compared with Fourier transform infrared spectrum (FTIR) in the region of 400-4000 cm-1 and with Fourier Transform Raman spectrum in the region of 50-4000 cm-1. Complete vibrational assignments, analysis and correlation of the fundamental modes for the title compound were carried out. The vibrational harmonic frequencies were scaled using scale factor, yielding a good agreement between the experimentally recorded and the theoretically calculated values.

  5. Experimental and theoretical studies on the structural, spectroscopic and hydrogen bonding on 4-nitro-n-(2,4-dinitrophenyl) benzenamine

    NASA Astrophysics Data System (ADS)

    Subhapriya, G.; Kalyanaraman, S.; Jeyachandran, M.; Ragavendran, V.; Krishnakumar, V.

    2018-04-01

    Synthesized 4-nitro-N-(2,4-dinitrophenyl) benzenamine (NDPBA) molecule was confirmed applying the tool of NMR. Theoretical prediction addressed the NMR chemical shifts and correlated well with the experimental data. The molecule subjected to theoretical DFT at 6-311++G** level unraveled the spectroscopic and structural properties of the NDPBA molecule. Moreover the structural features proved the occurrence of intramolecular Nsbnd H· · O hydrogen bonding in the molecule which was further confirmed with the help of Frontier molecular orbital analysis. Vibrational spectroscopic characterization through FT-IR and Raman experimentally and theoretically gave an account for the vibrational properties. An illustration of the topology of the molecule theoretically helped also in finding the hydrogen bonding energy.

  6. Determination of Structural and Vibrational Properties of 5-QUINOLINECARBOXALDEHYDE Using Experimental Ft-Ir Ft-Raman Techniques and Theoretical HF and DFT Methods

    NASA Astrophysics Data System (ADS)

    Kumru, Mustafa; Kocademir, Mustafa; Bardakci, Tayyibe

    2013-06-01

    Quinoline derivatives have been used in several pharmaceuticals. They have vital roles in regulating the functions of DNA and cancerous cells. It's necessary to determine the structures and spectroscopic properties of quinoline derivates. In this study, the FT-IR (including mid and far regions) and FT-Raman spectra of 5-quinolinecarboxaldehyde have been investigated. Hartree-Fock (HF) and density functional B3LYP calculations have also been employed with the 6-311++G(d,p) basis set for investigating the structural and spectroscopic properties of the cis and trans conformers of 5-quinolinecarboxaldehyde. Experimental and theoretical results have been compared and the results are in good agreement with each other. Keywords: 5-quinolinecarboxaldehyde; Vibrational Spectroscopy; FT-IR spectra; FT-Raman spectra; Vibrational Modes; HF; DFT [1] V. Kucuk, A. Altun, M. Kumru, Spectrochim. Acta Part A 85(2012)92-98 [2] M. Kumru, V. Kucuk, T. Bardakci, Spectrochim. Acta Part A 90(2012)28-34 [3] M. Kumru, V. Kucuk, M. Kocademir, Spectrochim. Acta Part A, 96 (2012) 242-251 We thank the Turkish Scientific and Technical Research Council (TUBITAK) for their financial support through National Postdoctoral Research Scholarship Programme and Scientific Research Fund of Fatih University under the project number P50011001 G (1457).

  7. Comparative theoretical and experimental study on novel tri-quinoline system and its anticancer studies

    NASA Astrophysics Data System (ADS)

    Gayathri, Kasirajan; Radhika, Ramachandran; Shankar, Ramasamy; Malathi, Mahalingam; Savithiri, Krishnaswamy; Sparkes, Hazel A.; Howard, Judith A. K.; Mohan, Palathurai Subramaniam

    2017-04-01

    A novel compound 2-chloro-3,6-bis-(quinolin-8-yloxymethyl)-quinoline 3 bearing a tri-quinoline moiety has been synthesized from 2-chloro-3,6-dimethyl quinoline 1 and 8-hydroxy quinoline 2 using dry acetone and K2CO3 as a base. 3 has been characterized by using FT-IR, FT-Raman, UV-Vis, 1H NMR, 13C NMR spectra and single crystal X-ray diffraction methods. We have also made a combined experimental and theoretical study on the molecular structure, vibrational spectra, NMR, FT-IR, FT-Raman and UV-Vis spectra of 2-chloro-3,6-bis-(quinolin-8-yloxymethyl)-quinoline. The theoretical studies of the title compound have been evaluated by using density functional theory calculations using B3LYP/6-31+G(d,p) and M06-2X/6-31+G(d,p) level of theories. The calculated theoretical values were found to be in good agreement with the experimental findings. The single crystal structure 3 crystallized in the orthorhombic space group Pna21. The compound 3 exhibits higher cytotoxicity in human cervical cancer cell lines (HeLa) than human breast cancer cell lines (MCF7).

  8. Estimation of the rotamerization constants of different conformations of N-acetylalanine: a theoretical and matrix-isolation FT-IR study.

    PubMed

    Boeckx, Bram; Maes, Guido

    2012-02-01

    The conformational landscape of N-acetylalanine has been investigated by a theoretical and matrix-isolation FT-IR study. Optimizations of N-acetylalanine structures has been conducted at successive higher levels of theory HF/3-21G, DFT(B3LYP)/6-31++G** and MP2/6-31++G**. This resulted in three stable conformations. Among these, one conformation contains an intramolecular H-bond. The vibrational properties of these conformations were calculated and used to identify the conformations in a cryogenic argon matrix. The intensities of some bands assigned to a particular conformation were used to estimate the rotamerization constants K(r12) and K(r13) for the equilibria NAA1 NAA2 and NAA1 NAA3, respectively. The obtained experimental values were in agreement with the theoretical predictions. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. FT-IR, FT-Raman, and DFT computational studies of melaminium nitrate molecular-ionic crystal

    NASA Astrophysics Data System (ADS)

    Tanak, Hasan; Marchewka, Mariusz K.

    2013-02-01

    The experimental and theoretical vibrational spectra of melaminium nitrate were studied. The Raman and infrared (FT-IR) spectra of the melaminium nitrate and its deuterated analogue were recorded in the solid phase. Molecular geometry and vibrational frequency values of melaminium nitrate in the electronic ground state were calculated using the density functional method (B3LYP) with the 6-31++G(d,p) basis set. The calculated results show that the optimized geometry can well reproduce the crystal structure, and the theoretical vibrational frequency values show good agreement with experimental values. The NBO analysis reveals that the N-H···O and N-H···N intermolecular interactions significantly influence crystal packing in this molecule.

  10. Theoretical insights of proton transfer and hydrogen bonded charge transfer complex of 1,2-dimethylimidazolium-3,5-dinitrobenzoate crystal

    NASA Astrophysics Data System (ADS)

    Afroz, Ziya; Faizan, Mohd.; Alam, Mohammad Jane; Ahmad, Shabbir; Ahmad, Afaq

    2018-04-01

    Proton transfer (PT) and hydrogen bonded charge transfer (HBCT) 1:1 complex of 1,2-dimethylimidazole (DMI) and 3,5-dinitrobenzoic acid (DNBA) have been theoretically analyzed and compared with reported experimental results. Both the structures in the isolated gaseous state have been optimized at DFT/B3LYP/6-311G(d,p) level of theory and further, the PT energy barrier has been calculated from potential energy surface scan. Along with structural investigations, theoretical vibrational spectra have been inspected and compared with the FTIR spectrum. Moreover, frontier molecular analysis has also been carried out.

  11. Structural, spectroscopic (FT-IR, FT-Raman) and theoretical studies of the 1:1 cocrystal of isoniazid with p-coumaric acid

    NASA Astrophysics Data System (ADS)

    Ravikumar, N.; Gaddamanugu, Gopikrishna; Anand Solomon, K.

    2013-02-01

    The 1:1 cocrystal of isoniazid (INH) with p-coumaric acid (pCA) has been prepared by slow evaporation method in methanol, which was crystallized in monoclinic P21/n space group having four molecules in the asymmetric unit. The cocrystal has been characterized by single crystal X-ray analysis, FTIR, FT Raman and DFT calculations. The crystal structure was stabilized by Osbnd Hphenol⋯Npyridine, Nsbnd H⋯Odbnd C, COOH⋯Nsbnd H and Csbnd H⋯O hydrogen bonding interactions. The geometry optimized structure of the cocrystal at the B3LYP/6-31G(d,p) level of theory has been used to calculate the vibrational frequencies.

  12. Quantum chemical investigations on the molecular structure, FTIR, UV-Vis and HOMO-LUMO analysis of 15-16-epoxy-7b, 9a dihydroxylabdane 13(16), 14-dien-6-one

    NASA Astrophysics Data System (ADS)

    Uppal, Anshul; Pathania, Kamni; Khajuria, Yugal

    2018-05-01

    The structural, spectroscopic (Fourier Transform Infrared (FT-IR), Ultra-Violet Visible (UV-VIS)) and thermodynamic properties of 15, 16-epoxy-7b, 9a dihydroxylabdane-13(16), 14-dien-6-one were studied by using both experimental techniques and theoretical methods. The FTIR spectrum of the title compound was recorded in the spectral range 4000-400 cm-1. The UV-VIS spectrum was measured in the spectral range 190-800 nm. The quantum chemistry calculations have been performed to compute optimized geometry, molecular parameters, vibrational frequencies along with intensities using Hartree Fock (HF) theory and Density Functional Theory (DFT) with 6-31G basis set. The calculated HOMO-LUMO energies show that the charge transfer occurs within the molecule. The temperature dependence of the thermodynamic properties like heat capacity, entropy and enthalpy of the optimized structure were obtained. Finally, a comparison between the experimental data and the calculated results presented a good agreement.

  13. NMR, FT-IR, Raman and UV-Vis spectroscopic investigation and DFT study of 6-Bromo-3-Pyridinyl Boronic Acid

    NASA Astrophysics Data System (ADS)

    Dikmen, Gökhan; Alver, Özgür

    2015-11-01

    Possible stable conformers and geometrical molecular structures of 6-Bromo-3-Pyridinyl Boronic acid (6B3PBA; C5H5BBrNO2) were studied experimentally and theoretically using FT-IR and Raman spectroscopic methods. FT-IR and Raman spectra were recorded in the region of 4000-400 cm-1 and 3700-400 cm-1, respectively. The structural properties were investigated further, using 1H, 13C, 1H coupled 13C, HETCOR, COSY and APT NMR techniques. The optimized geometric structures were searched by Becke-3-Lee-Yang-Parr (B3LYP) hybrid density functional theory method with 6-311++G(d, p) basis set. Vibrational wavenumbers of 6B3PBA were calculated whereby B3LYP density functional methods including 6-311++G(d, p), 6-311G(d, p), 6-311G(d), 6-31G(d, p) and 6-31G(d) basis sets. The comparison of the experimentally and theoretically obtained results using mean absolute error and experimental versus calculated correlation coefficients for the vibrational wavenumbers indicates that B3LYP method with 6-311++G(d, p) gives more satisfactory results for predicting vibrational wavenumbers when compared to the 6-311G(d, p), 6-311G(d), 6-31G(d, p) and 6-31G(d) basis sets. However, this method and none of the mentioned methods here seem suitable for the calculations of OH stretching modes, most likely because increasing unharmonicity in the high wave number region and possible intra and inter molecular interactions at OH edges lead some deviations between experimental and theoretical results. Moreover, reliable vibrational assignments were made on the basis of total energy distribution (TED) calculated using scaled quantum mechanical (SQM) method.

  14. A new Schiff base compound N,N'-(2,2-dimetylpropane)-bis(dihydroxylacetophenone): synthesis, experimental and theoretical studies on its crystal structure, FTIR, UV-visible, 1H NMR and 13C NMR spectra.

    PubMed

    Saheb, Vahid; Sheikhshoaie, Iran

    2011-10-15

    The Schiff base compound, N,N'-(2,2-dimetylpropane)-bis(dihydroxylacetophenone) (NDHA) is synthesized through the condensation of 2-hydroxylacetophenone and 2,2-dimethyl 1,3-amino propane in methanol at ambient temperature. The yellow crystalline precipitate is used for X-ray single-crystal determination and measuring Fourier transform infrared (FTIR), UV-visible, (1)H NMR and (13)C NMR spectra. Electronic structure calculations at the B3LYP, PBEPBE and PW91PW91 levels of theory are performed to optimize the molecular geometry and to calculate the FTIR, (1)H NMR and (13)C NMR spectra of the compound. Time-dependent density functional theory (TDDFT) method is used to calculate the UV-visible spectrum of NDHA. Vibrational frequencies are determined experimentally and compared with those obtained theoretically. Vibrational assignments and analysis of the fundamental modes of the compound are also performed. All theoretical methods can well reproduce the structure of the compound. The (1)H NMR and (13)C NMR chemical shifts calculated by all DFT methods are consistent with the experimental data. However, the NMR shielding tensors computed at the B3LYP/6-31+G(d,p) level of theory are in better agreement with experimental (1)H NMR and (13)C NMR spectra. The electronic absorption spectrum calculated at the B3LYP/6-31+G(d,p) level by using TD-DFT method is in accordance with the observed UV-visible spectrum of NDHA. In addition, some quantum descriptors of the molecule are calculated and conformational analysis is performed and the results were compared with the crystallographic data. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Structural characterization, solvent effects on nuclear magnetic shielding tensors, experimental and theoretical DFT studies on the vibrational and NMR spectra of 3-(acrylamido)phenylboronic acid

    NASA Astrophysics Data System (ADS)

    Alver, Özgür; Kaya, Mehmet Fatih; Dikmen, Gökhan

    2015-12-01

    Structural elucidation of 3-(acrylamido)phenylboronic acid (C9H10BNO3) was carried out with 1H, 13C and HETCOR NMR techniques. Solvent effects on nuclear magnetic shielding tensors were examined with deuterated dimethyl sulfoxide, acetone, methanol and water solvents. The correct order of appearance of carbon and hydrogen atoms on NMR scale from highest magnetic field region to the lowest one were investigated using different types of theoretical levels and the details of the levels were presented in this study. Stable structural conformers and vibrational band analysis of the title molecule (C9H10BNO3) were studied both experimental and theoretical viewpoints using FT-IR, Raman spectroscopic methods and density functional theory (DFT). FT-IR and Raman spectra were obtained in the region of 4000-400 cm-1, and 3700-10 cm-1, respectively. Becke-3-Lee-Yang-Parr (B3LYP) hybrid density functional theory method with 6-31++G(d, p) basis set was included in the search for optimized structures and vibrational wavenumbers. Experimental and theoretical results show that after application of a suitable scaling factor density functional B3LYP method resulted in acceptable results for predicting vibrational wavenumbers except OH and NH stretching modes which is most likely arising from increasing unharmonicity in the high wave number region and possible intra and inter molecular interaction at OH edges those of which are not fully taken into consideration in theoretical processes. To make a more quantitative vibrational assignments, potential energy distribution (PED) values were calculated using VEDA 4 (Vibrational Energy Distribution Analysis) program.

  16. Molecular structure, spectral studies, NBO, HOMO-LUMO profile, MEP and Mulliken analysis of 3β,6β-dichloro-5α-hydroxy-5α-cholestane

    NASA Astrophysics Data System (ADS)

    Alam, Mahboob; Park, Soonheum

    2018-05-01

    The synthesis of 3β,6β-dichloro-5α-hydroxy-5α-cholestane (in general, steroidal chlorohydrin or steroidal halohydrin) and theoretical study of the structure are reported in this paper. The individuality of chlorohydrin was confirmed by FT-IR, NMR, MS, CHN microanalysis and X-ray crystallography. DFT calculations on the titled molecule have been performed. The molecular structure and spectra explained by Gaussian hybrid computational analysis theory (B3LYP) are found to be in correlation with the experimental data obtained from the various spectrophotometric techniques. The theoretical geometry optimization data were compared with the X-ray data. The vibrational bands appearing in the FT-IR are assigned with accuracy using harmonic frequencies along with intensities and animated modes. Molecular properties like NBO, HOMO-LUMO analysis, chemical reactivity descriptors, MEP mapping and dipole moment have been dealt at same level of theory. The calculated electronic spectrum of chlorohydrin is interpreted on the basis of TD-DFT calculations.

  17. FT-IR, UV-vis, 1H and 13C NMR spectra and the equilibrium structure of organic dye molecule disperse red 1 acrylate: a combined experimental and theoretical analysis.

    PubMed

    Cinar, Mehmet; Coruh, Ali; Karabacak, Mehmet

    2011-12-01

    This study reports the characterization of disperse red 1 acrylate compound by spectral techniques and quantum chemical calculations. The spectroscopic properties were analyzed by FT-IR, UV-vis, (1)H NMR and (13)C NMR techniques. FT-IR spectrum in solid state was recorded in the region 4000-400 cm(-1). The UV-vis absorption spectrum of the compound that dissolved in methanol was recorded in the range of 200-800 nm. The (1)H and (13)C NMR spectra were recorded in CDCl(3) solution. The structural and spectroscopic data of the molecule in the ground state were calculated using density functional theory (DFT) employing B3LYP exchange correlation and the 6-311++G(d,p) basis set. The vibrational wavenumbers were calculated and scaled values were compared with experimental FT-IR spectrum. A satisfactory consistency between the experimental and theoretical spectra was obtained and it shows that the hybrid DFT method is very useful in predicting accurate vibrational structure, especially for high-frequency region. The complete assignments were performed on the basis of the experimental results and total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method. Isotropic chemical shifts were calculated using the gauge-invariant atomic orbital (GIAO) method. A study on the electronic properties were performed by timedependent DFT (TD-DFT) and CIS(D) approach. To investigate non linear optical properties, the electric dipole moment μ, polarizability α, anisotropy of polarizability Δα and molecular first hyperpolarizability β were computed. The linear polarizabilities and first hyperpolarizabilities of the studied molecule indicate that the compound can be a good candidate of nonlinear optical materials. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. 4-Methyl-1H-Indazole-5-Boronic acid: Crystal structure, vibrational spectra and DFT simulations

    NASA Astrophysics Data System (ADS)

    Dikmen, Gökhan

    2017-12-01

    Molecular structure, conformer forms, geometric parameters and vibrational assignments and properties of 4-Methyl-1H-Indazole-5-Boronic Acid (4M1HI5BA) were theoretically and experimentally studied using Raman, FT-IR, XRD spectroscopic methods and quantum chemical calculations. Raman and FT-IR spectra were examined range from 4000 to 400 cm-1. Moreover, single crystals of 4M1HI5BA were prepared in order to use in XRD experiments. Vibrational assignments were carried out using total energy distribution (TED) values. Furthermore, HOMO and LUMO were calculated for 4M1HI5BA. Four different conformations of 4M1HI5BA were calculated in only gas phase. The theoretical and experimental results show that in order to predict vibrational wavenumbers B3LYP/6-311++G(d,p) may provide acceptable results and the most stable conformer of 4M1HI5BA is predicted to be envelope conformer.

  19. Characterization of 1,5-dimethoxynaphthalene by vibrational spectroscopy (FT-IR and FT-Raman) and density functional theory calculations.

    PubMed

    Kandasamy, M; Velraj, G; Kalaichelvan, S; Mariappan, G

    2015-01-05

    In this work, we reported a combined experimental and theoretical study on molecular structure, vibrational spectra and natural bond orbital (NBO) analysis of 1,5-dimethoxynaphthalene. The optimized molecular structure, atomic charges, vibrational frequencies and natural bond orbital analysis of 1,5-dimethoxynaphthalene have been studied by performing DFT/B3LYP/6-31G(d,p) level of theory. The FTIR, FT-Raman spectra were recorded in the region of 4000-400 cm(-1) and 3500-50 cm(-1) respectively. The scaled wavenumbers are compared with the experimental values. The difference between the observed and scaled wavenumber values of the most fundamentals is very small. The formation of hydrogen bond was investigated in terms of the charge density by the NBO analysis. Natural Population Analysis (NPA) was used for charge determination in the title molecule. Besides, molecular electrostatic potential (MEP), frontier molecular orbitals (FMO) analysis were investigated using theoretical calculations. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. DFT simulation, quantum chemical electronic structure, spectroscopic and structure-activity investigations of 4-acetylpyridine

    NASA Astrophysics Data System (ADS)

    Atilgan, A.; Yurdakul, Ş.; Erdogdu, Y.; Güllüoğlu, M. T.

    2018-06-01

    The spectroscopic (UV-Vis and infrared), structural and some electronic property observations of the 4-acetylpyridine (4-AP) were reported, which are investigated by using some spectral methods and DFT calculations. FT-IR spectra were obtained for 4-AP at room temperature in the region 4000 cm-1- 400 cm-1. In the DFT calculations, the B3LYP functional with 6-311G++G(d,p) basis set was applied to carry out the quantum mechanical calculations. The Fourier Transform Infrared (FT-IR) and FT-Raman spectra were interpreted by using of normal coordinate analysis based on scaled quantum mechanical force field. The present work expands our understanding of the both the vibrational and structural properties as well as some electronic properties of the 4-AP by means of the theoretical and experimental methods.

  1. FT-IR spectrum of grape seed oil and quantum models of fatty acids triglycerides

    NASA Astrophysics Data System (ADS)

    Berezin, K. V.; Antonova, E. M.; Shagautdinova, I. T.; Chernavina, M. L.; Dvoretskiy, K. N.; Grechukhina, O. N.; Vasilyeva, L. M.; Rybakov, A. V.; Likhter, A. M.

    2018-04-01

    FT-IR spectra of grape seed oil and glycerol were registered in the 650-4000 cm-1 range. Molecular models of glycerol and some fatty acids that compose the oil under study - linoleic, oleic, palmitic and stearic acids - as well as their triglycerides were developed within B3LYP/6-31G(d) density functional model. A vibrating FT-IR spectrum of grape seed oil was modeled on the basis of calculated values of vibrating wave numbers and IR intensities of the fatty acids triglycerides and with regard to their percentage. Triglyceride spectral bands that were formed by glycerol linkage vibrations were revealed. It was identified that triglycerol linkage has a small impact on the structure of fatty acids and, consequently, on vibrating wave numbers. The conducted molecular modeling became a basis for theoretical interpretation on 10 experimentally observed absorption bands in FT-IR spectrum of grape seed oil.

  2. Vibrational spectroscopy (FT-IR and Laser-Raman) investigation, and computational (M06-2X and B3LYP) analysis on the structure of 4-(3-fluorophenyl)-1-(propan-2-ylidene)-thiosemicarbazone.

    PubMed

    Sert, Yusuf; Miroslaw, Barbara; Çırak, Çağrı; Doğan, Hatice; Szulczyk, Daniel; Struga, Marta

    2014-07-15

    In this study, the experimental and theoretical vibrational spectral analysis of 4-(3-fluorophenyl)-1-(propan-2-ylidene)-thiosemicarbazone have been carried out. The experimental FT-IR (4000-400 cm(-1)) and Laser-Raman spectra (4000-100 cm(-1)) have been recorded for the solid state samples. The theoretical vibrational frequencies and the optimized geometric parameters (bond lengths and angles) have been calculated for gas phase using density functional theory (DFT/B3LYP: Becke, 3-parameter, Lee-Yang-Parr) and M06-2X (the highly parametrized, empirical exchange correlation function) quantum chemical methods with 6-311++G(d,p) basis set. The diversity in molecular geometry of fluorophenyl substituted thiosemicarbazones has been discussed based on the X-ray crystal structure reports and theoretical calculation results from the literature. The assignments of the vibrational frequencies have been done on the basis of potential energy distribution (PED) analysis by using VEDA4 software. A good correlation was found between the computed and experimental geometric and vibrational data. In addition, the highest occupied (HOMO) and lowest unoccupied (LUMO) molecular orbital energy levels and other related molecular energy values of the compound have been determined using the same level of theoretical calculations. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Synthesis, molecular structure, FT-IR, Raman, XRD and theoretical investigations of (2E)-1-(5-chlorothiophen-2-yl)-3-(naphthalen-2-yl)prop-2-en-1-one.

    PubMed

    Chidan Kumar, Chandraju Sadolalu; Fun, Hoong Kun; Parlak, Cemal; Rhyman, Lydia; Ramasami, Ponnadurai; Tursun, Mahir; Chandraju, Siddegowda; Quah, Ching Kheng

    2014-11-11

    A novel (2E)-1-(5-chlorothiophen-2-yl)-3-(naphthalen-2-yl)prop-2-en-1-one [C17H11ClOS] compound has been synthesized and its structure has been characterized by FT-IR, Raman and single-crystal X-ray diffraction techniques. The isomers, optimized geometrical parameters, normal mode frequencies and corresponding vibrational assignments of the compound have been examined by means of the density functional theory method, employing, the Becke-3-Lee-Yang-Parr functional and the 6-311+G(3df,p) basis set. Reliable vibrational assignments and molecular orbitals have been investigated by the potential energy distribution and natural bonding orbital analyses, respectively. The compound crystallizes in the monoclinic space group P2₁/c with the unit cell parameters a=5.7827(8)Å, b=14.590(2)Å, c=16.138(2)Å and β=89.987 (°). The CC bond of the central enone group adopts an E configuration. There is a good agreement between the theoretically predicted structural parameters and vibrational frequencies and those obtained experimentally. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Synthesis, spectroscopic characterization (FT-IR, FT-Raman, and NMR), quantum chemical studies and molecular docking of 3-(1-(phenylamino)ethylidene)-chroman-2,4-dione

    NASA Astrophysics Data System (ADS)

    Avdović, Edina H.; Milenković, Dejan; Dimitrić Marković, Jasmina M.; Đorović, Jelena; Vuković, Nenad; Vukić, Milena D.; Jevtić, Verica V.; Trifunović, Srećko R.; Potočňák, Ivan; Marković, Zoran

    2018-04-01

    The experimental and theoretical investigations of structure of the 3-(1-(phenylamino)ethylidene)-chroman-2,4-dione were performed. X-ray structure analysis and spectroscopic methods (FTIR and FT-Raman, 1H and 13C NMR), along with the density functional theory calculations (B3LYP functional with empirical dispersion corrections D3BJ in combination with the 6-311 + G(d,p) basis set), were used in order to characterize the molecular structure and spectroscopic behavior of the investigated coumarin derivative. Molecular docking analysis was carried out to identify the potency of inhibition of the title molecule against human's Ubiquinol-Cytochrome C Reductase Binding Protein (UQCRB) and Methylenetetrahydrofolate reductase (MTHFR). The inhibition activity was obtained for ten conformations of ligand inside the proteins.

  5. Experimental and theoretical studies of the molecular structure of 7-Methyl-3-[(3-methyl-3-mesityl-cyclobutyl]-5-phenyl-5H-thiazolo[3,2-α]pyrimidine-6-carboxylic acid ethyl ester

    NASA Astrophysics Data System (ADS)

    Acar, Betül; Yilmaz, Ibrahim; Çalışkan, Nezihe; Cukurovali, Alaaddin

    2017-07-01

    In this work, the title molecule, 7-Methyl-3-[(3-methyl-3-mesityl-cyclobutyl]-5-phenyl-5H-thiazolo[3,2-α]pyrimidine-6-carboxylic acid ethyl ester (C30H34N2O2S1), was synthesized and characterized by FT-IR spectroscopy and single crystal X-ray diffraction. The compound crystallizes in the triclinic space group P21/c. with Z = 4, a = 14.1988(6), b = 19.0893(5), c = 10.1325(4) Å, V = 2674.56(17) A3. The optimized structure parameters of the studied molecule was determined theoretically using HF/6-31G(d) and B3LYP/6-31G(d) methods for ground state, and compared with previously reported experimental findings. The calculated harmonic vibrational frequencies are scaled and they are compared with experimental frequencies obtained by FT-IR spectra. The electronic properties, such as HOMO and LUMO energies, and molecular electrostatic potential (MEP) are also performed.

  6. Experimental and DFT studies on the vibrational spectra of 1H-indene-2-boronic acid

    NASA Astrophysics Data System (ADS)

    Alver, Özgur; Kaya, Mehmet Fatih

    2014-11-01

    Stable conformers and geometrical molecular structures of 1H-indene-2-boronic acid (I-2B(OH)2) were studied experimentally and theoretically using FT-IR and FT-Raman spectroscopic methods. FT-IR and FT-Raman spectra were recorded in the region of 4000-400 cm-1, and 3700-400 cm-1, respectively. The optimized geometric structures were searched by Becke-3-Lee-Yang-Parr (B3LYP) hybrid density functional theory method with 6-31++G(d,p) basis set. Vibrational wavenumbers of I-2B(OH)2 were calculated using B3LYP density functional methods including 6-31++G(d,p) basis set. Experimental and theoretical results show that density functional B3LYP method gives satisfactory results for predicting vibrational wavenumbers except OH stretching modes which is probably due to increasing unharmonicity in the high wave number region and possible intra and inter molecular interaction at OH edges. To support the assigned vibrational wavenumbers, the potential energy distribution (PED) values were also calculated using VEDA 4 (Vibrational Energy Distribution Analysis) program.

  7. 3-Iodobenzaldehyde: XRD, FT-IR, Raman and DFT studies.

    PubMed

    Kumar, Chandraju Sadolalu Chidan; Parlak, Cemal; Tursun, Mahir; Fun, Hoong-Kun; Rhyman, Lydia; Ramasami, Ponnadurai; Alswaidan, Ibrahim A; Keşan, Gürkan; Chandraju, Siddegowda; Quah, Ching Kheng

    2015-06-15

    The structure of 3-iodobenzaldehyde (3IB) was characterized by FT-IR, Raman and single-crystal X-ray diffraction techniques. The conformational isomers, optimized geometric parameters, normal mode frequencies and corresponding vibrational assignments of 3IB were examined using density functional theory (DFT) method, with the Becke-3-Lee-Yang-Parr (B3LYP) functional and the 6-311+G(3df,p) basis set for all atoms except for iodine. The LANL2DZ effective core basis set was used for iodine. Potential energy distribution (PED) analysis of normal modes was performed to identify characteristic frequencies. 3IB crystallizes in monoclinic space group P21/c with the O-trans form. There is a good agreement between the theoretically predicted structural parameters, and vibrational frequencies and those obtained experimentally. In order to understand halogen effect, 3-halogenobenzaldehyde [XC6H4CHO; X=F, Cl and Br] was also studied theoretically. The free energy difference between the isomers is small but the rotational barrier is about 8kcal/mol. An atypical behavior of fluorine affecting conformational preference is observed. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Theoretical (in B3LYP/6-3111++G** level), spectroscopic (FT-IR, FT-Raman) and thermogravimetric studies of gentisic acid and sodium, copper(II) and cadmium(II) gentisates.

    PubMed

    Regulska, E; Kalinowska, M; Wojtulewski, S; Korczak, A; Sienkiewicz-Gromiuk, J; Rzączyńska, Z; Swisłocka, R; Lewandowski, W

    2014-11-11

    The DFT calculations (B3LYP method with 6-311++G(d,p) mixed with LanL2DZ for transition metals basis sets) for different conformers of 2,5-dihydroxybenzoic acid (gentisic acid), sodium 2,5-dihydroxybenzoate (gentisate) and copper(II) and cadmium(II) gentisates were done. The proposed hydrated structures of transition metal complexes were based on the results of experimental findings. The theoretical geometrical parameters and atomic charge distribution were discussed. Moreover Na, Cu(II) and Cd(II) gentisates were synthesized and the composition of obtained compounds was revealed by means of elemental and thermogravimetric analyses. The FT-IR and FT-Raman spectra of gentisic acid and gentisates were registered and the effect of metals on the electronic charge distribution of ligand was discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Experimental and theoretical studies on the structure and spectroscopic properties of (E)-1-(2-aminophenyl)-3-(pyridine-4-yl) prop-2-en-1-one

    NASA Astrophysics Data System (ADS)

    Cruz Ortiz, Andrés Felipe; Sánchez López, Alberto; García Ríos, Alejandro; Cuenú Cabezas, Fernando; Rozo Correa, Ciro Eduardo

    2015-10-01

    (E)-1-(2-aminophenyl)-3-(pyridine-4-yl)prop-2-en-1-one (or simply 2-aminochalcone) was synthetized and characterized by elemental analysis, FT-IR, NMR, MS and XRD. Molecular geometry optimization, vibrational harmonic frequencies, 1H and 13C NMR chemical shifts were calculated by ab initio (HF and MP2) and density functional theory (DFT) methods, with B3LYP and B3PW91 functionals, using GAUSSIAN 09 program package without any constraint on the geometry. With VEDA software vibrational frequencies were assigned in terms of the potential energy distribution. A detailed interpretation of the FT-IR, NMR and XRD, experimental and calculated, is reported. The HOMO and LUMO energy gap that reflects the chemical activity of the molecule were also studied by DFT and above basis set. All theoretical results correspond to a great extent to experimental ones.

  10. Experimental and theoretical study on the structure and vibrational spectra of β-2-aminopyridinium dihydrogenphosphate

    NASA Astrophysics Data System (ADS)

    Çırak, Çağrı; Demir, Selçuk; Ucun, Fatih; Çubuk, Osman

    2011-08-01

    Experimental and theoretical vibrational spectra of β-2-aminopyridinium dihydrogenphosphate (β-2APDP) have been investigated. The FT-IR spectrum of β-2APDP was recorded in the region 4000-400 cm -1. The optimized molecular structure and theoretical vibrational frequencies of β-2APDP have been investigated using ab initio Hartree-Fock (HF) and density functional B3LYP method with 6-311++G(d,p) basis set. The optimized geometric parameters (bond lengths and bond angles) and theoretical frequencies have been compared with the corresponding experimental data and it is found that they agree well with each other. All the assignments of the theoretical frequencies were performed by potential energy distributions using VEDA 4 program. Furthermore, the used scale factors were obtained from the ratio of the frequency values of the strongest peaks in the experimental and theoretical IR spectra. From the results it was concluded that the B3LYP method is superior to the HF method for the vibrational frequencies.

  11. Study on molecular structure, spectroscopic properties (FTIR and UV-Vis), NBO, QTAIM, HOMO-LUMO energies and docking studies of 5-fluorouracil, a substance used to treat cancer

    NASA Astrophysics Data System (ADS)

    Almeida, Michell O.; Barros, Daiane A. S.; Araujo, Sheila C.; Faria, Sergio H. D. M.; Maltarollo, Vinicius G.; Honorio, Kathia M.

    2017-09-01

    Cancer cells can expand to other parts of body through blood system and nodes from a mechanism known as metastasis. Due to the large annual growth of cancer cases, various biological targets have been studied and related to this disorder. A very interesting target related to cancer is human epidermal growth factor receptor 2 (HER2). In this study, we analyzed the main intermolecular interactions between a drug used in the cancer treatment (5-fluorouracil) and HER2. Molecular modeling methods were also employed to assess the molecular structure, spectroscopic properties (FTIR and UV-Vis), NBO, QTAIM and HOMO-LUMO energies of 5-FU. From the docking simulations it was possible to analyze the interactions that occur between some residues in the binding site of HER2 and 5-FU. To validate the choice of basis set that was used in the NBO and QTAIM analyses, theoretical calculations were performed to obtain FT-IR and UV/Vis spectra, and the theoretical results are consistent with the experimental data, showing that the basis set chosen is suitable. For the maximum λ from the theoretical calculation (254.89 nm) of UV/Vis, the electronic transition from HOMO to LUMO occurs at 4.89 eV. From NBO analyses, we observed interactions between Asp863 and 5-FU, i.e. the orbitals with high transfer of electrons are LP O15 (donor NBO) and BD* (π) N1-H10 (acceptor NBO), being that the value of this interaction is 7.72 kcal/mol. Results from QTAIM indicate one main intermolecular H bond, which is necessary to stabilize the complex formed between the ligands and the biological target. Therefore, this study allowed a careful evaluation on the main structural, spectroscopic and electronic properties involved in the interaction between 5-FU and HER2, an important biological complex related to the cancer treatment.

  12. X-ray, DFT, FTIR and thermal study of the antimicrobial N-benzenesulfonyl-1H-1,2,3-benzotriazole

    NASA Astrophysics Data System (ADS)

    Komrovsky, Fabián; Sperandeo, Norma R.; Vera, D. Mariano A.; Caira, Mino R.; Mazzieri, María R.

    2018-07-01

    N-benzenesulfonyl-1H-1,2,3-benzotriazole (NBSBZT) is a compound with significant trypanocidal and bactericidal activities, which we reported previously. In this work a combined experimental and theoretical study of its structural and molecular properties is communicated. The crystal structure of NBSBZT was determined by single crystal X-ray diffraction. The molecular vibrations and behavior on heating of NBSBZT were investigated by Fourier Transform Infrared (FTIR) Spectroscopy, Differential Scanning Calorimetry (DSC), Thermogravimetry (TG) and Hot Stage Microscopy (HSM). In parallel, Quantum Chemical calculations based on Density Functional Theory (DFT) and Scaled Quantum Mechanics methods were used to determine the geometrical, energetic and vibrational characteristics of NBSBZT. The study demonstrated that NBSBZT crystallized in the triclinic space group P‾1 (No. 2) with two inversion-related molecules in the unit cell (Z = 2). Its overall molecular conformation can be described by two torsion angles, namely φ1 (N2sbnd N1sbnd S10sbnd C13) = -94.5(2)° and φ2 (N1sbnd S10sbnd C13sbnd C14) = 84.2(2)°. The minimum energy structures found by theoretical calculations showed φ1 = -67.6° and φ2 = 88.0° in vacuum; however, in water, the torsion angles were -77.5° and 88.7°, respectively. The differences in φ1 (Δφ1solid state-vacuum = 26.9° and Δφ1solid state-water = 17.0°) could be attributed to the high intermolecular cohesive forces present in the crystal of NBSBZT. A good correlation between the experimental and theoretical mid-FTIR spectra was found. The DSC, TG and HSM results indicated that NBSBZT was a solvent-free solid, which melted at 128.8 °C but decomposed above 130 °C.

  13. The use of UV, FT-IR and Raman spectra for the identification of the newest penem analogs: solutions based on mathematic procedure and the density functional theory.

    PubMed

    Cielecka-Piontek, J; Lewandowska, K; Barszcz, B; Paczkowska, M

    2013-02-15

    The application of ultraviolet, FT-IR and Raman spectra was proposed for identification studies of the newest penem analogs (doripenem, biapenem and faropenem). An identification of the newest penem analogs based on their separation from related substances was achieved after the application of first derivative of direct spectra in ultraviolet which permitted elimination of overlapping effects. A combination of experimental and theoretical studies was performed for analyzing the structure and vibrational spectra (FT-IR and Raman spectra) of doripenem, biapenem and faropenem. The calculations were conducted using the density functional theory with the B3LYP hybrid functional and 6-31G(d,p) basis set. The confirmation of the applicability of the DFT methodology for interpretation of vibrational IR and Raman spectra of the newest penem analogs contributed to determination of changes of vibrations in the area of the most labile bonds. By employing the theoretical approach it was possible to eliminate necessity of using reference standards which - considering the instability of penem analogs - require that correction coefficients are factored in. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Characterization of Meldrum's acid derivative 5-(5-Ethyl-1,3,4-thiadiazol-2-ylamino)methylene-2,2-dimethyl-1,3-dioxane-4,6-dione by Raman and FT-IR spectroscopy and DFT calculations

    NASA Astrophysics Data System (ADS)

    de Toledo, T. A.; da Silva, L. E.; Teixeira, A. M. R.; Freire, P. T. C.; Pizani, P. S.

    2015-07-01

    In this study, the structural and vibrational properties of Meldrum's acid derivative 5-(5-Ethyl-1,3,4-thiadiazol-2-ylamino)methylene-2,2-dimethyl-1,3-dioxane-4,6-dione, C11H13N3O4S were studied combining experimental techniques such as Raman and FT-IR spectroscopy and density functional theory (DFT) calculations. The Raman and FT-IR spectra were recorded at room conditions in the regions from 80 to 3400 cm-1 and 400 to 4000 cm-1, respectively. Vibrational wavenumbers were predicted using DFT calculations with the hybrid functional B3LYP and basis set 6-31G(d,p). A comparison between experimental and theoretical data is provided for the Raman and FT-IR spectra. The descriptions of the normal modes were carried by means of potential energy distribution (PED).

  15. Experimental (FT-IR, FT-Raman, 1H, 13C NMR) and theoretical study of alkali metal 2-aminobenzoates

    NASA Astrophysics Data System (ADS)

    Samsonowicz, M.; Świsłocka, R.; Regulska, E.; Lewandowski, W.

    2008-09-01

    The influence of lithium, sodium, potassium, rubidium and cesium on the electronic system of the 2-aminobenzoic acid was studied by the methods of molecular spectroscopy. The vibrational (FT-IR, FT-Raman) and NMR ( 1H and 13C) spectra for 2-aminobenzoic acid and its alkali metal salts were recorded. The assignment of vibrational spectra was done on the basis of literature data, theoretical calculations and our previous experience. Characteristic shifts of bands and changes in intensities of bands along the metal series were observed. The changes of chemical shifts of protons ( 1H NMR) and carbons ( 13C NMR) in the series of studied alkali metal 2-aminobenzoates were observed too. Optimized geometrical structures of studied compounds were calculated by B3LYP method using 6-311++G ∗∗ basis set. Geometric aromaticity indices, dipole moments and energies were also calculated. The theoretical wavenumbers and intensities of IR and Raman spectra were obtained. The calculated parameters were compared to experimental characteristic of studied compounds.

  16. T-dependence of the vibrational dynamics of IBP/diME-β-CD in solid state: A FT-IR spectral and quantum chemical study

    NASA Astrophysics Data System (ADS)

    Crupi, V.; Guella, G.; Majolino, D.; Mancini, I.; Rossi, B.; Stancanelli, R.; Venuti, V.; Verrocchio, P.; Viliani, G.

    2010-05-01

    Solid inclusion complex of the non-steroidal anti-inflammatory drug Ibuprofen (IBP, (2-[4-(2-methylpropyl)phenyl]-propanoic acid) with (2,6-dimethyl)-β-cyclodextrin (diME-β-CD) has been investigated by Fourier transform infrared spectroscopy in attenuated total reflectance geometry (FTIR-ATR spectroscopy) and numerical simulation. The complexation-induced changes in the FTIR-ATR spectrum of IBP have been interpreted by comparison with the theoretical vibrational wavenumbers and IR intensities of dimeric structures of IBP, derived from symmetric hydrogen bonding of the two carboxylic groups, computed by using Density Functional Theory (DFT) calculations. From temperature-dependent studies, the enthalpy change ΔH associated with the binding of IBP with diME-β-CD for 1:1 stoichiometry, in solid phase, has been estimated.

  17. Synthesis, spectroscopic characterization (FT-IR, FT-Raman, and NMR), quantum chemical studies and molecular docking of 3-(1-(phenylamino)ethylidene)-chroman-2,4-dione.

    PubMed

    Avdović, Edina H; Milenković, Dejan; Dimitrić Marković, Jasmina M; Đorović, Jelena; Vuković, Nenad; Vukić, Milena D; Jevtić, Verica V; Trifunović, Srećko R; Potočňák, Ivan; Marković, Zoran

    2018-04-15

    The experimental and theoretical investigations of structure of the 3-(1-(phenylamino)ethylidene)-chroman-2,4-dione were performed. X-ray structure analysis and spectroscopic methods (FTIR and FT-Raman, 1 H and 13 C NMR), along with the density functional theory calculations (B3LYP functional with empirical dispersion corrections D3BJ in combination with the 6-311 + G(d,p) basis set), were used in order to characterize the molecular structure and spectroscopic behavior of the investigated coumarin derivative. Molecular docking analysis was carried out to identify the potency of inhibition of the title molecule against human's Ubiquinol-Cytochrome C Reductase Binding Protein (UQCRB) and Methylenetetrahydrofolate reductase (MTHFR). The inhibition activity was obtained for ten conformations of ligand inside the proteins. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Vibrational Study of Melatonin and its Radioprotective Activity towards Hydroxyl Radical

    NASA Astrophysics Data System (ADS)

    Singh, Gurpreet; Kaur, Sarvpreet; Saini, G. S. S.

    2011-12-01

    Vibrational study of Melatonin (N-acetyl 5-methoxytrypatamin) was done using FTIR and Raman spectroscopy. DFT calculations were employed to the structural analysis of melatonin and to the end products. The theoretical calculations confirmed the different observed vibrational modes. The optimized structure energy calculations of the different end products confirmed the most probable site of the hydroxyl radical attack is the hydrogen attached to nitrogen present in the indole ring.

  19. FTIR of binary lead borate glass: Structural investigation

    NASA Astrophysics Data System (ADS)

    Othman, H. A.; Elkholy, H. S.; Hager, I. Z.

    2016-02-01

    The glass samples were prepared according to the following formula: (100-x) B2O3 - x PbO, where x = 20-80 mol% by melt quenching method. The density of the prepared samples was measured and molar volume was calculated. IR spectra were measured for the prepared samples to investigate the glass structure. The IR spectra were deconvoluted using curves of Gaussian shape at approximately the same frequencies. The deconvoluted data were used to study the effect of PbO content on all the structural borate groups. Some structural parameters such as density, packing density, bond length and bond force constant were theoretically calculated and were compared to the obtained experimental results. Deviation between the experimental and theoretically calculated parameters reflects the dual role of PbO content on the network of borate glass.

  20. Angular acceptance analysis of an infrared focal plane array with a built-in stationary Fourier transform spectrometer.

    PubMed

    Gillard, Frédéric; Ferrec, Yann; Guérineau, Nicolas; Rommeluère, Sylvain; Taboury, Jean; Chavel, Pierre

    2012-06-01

    Stationary Fourier transform spectrometry is an interesting concept for building reliable field or embedded spectroradiometers, especially for the mid- and far- IR. Here, a very compact configuration of a cryogenic stationary Fourier transform IR (FTIR) spectrometer is investigated, where the interferometer is directly integrated in the focal plane array (FPA). We present a theoretical analysis to explain and describe the fringe formation inside the FTIR-FPA structure when illuminated by an extended source positioned at a finite distance from the detection plane. The results are then exploited to propose a simple front lens design compatible with a handheld package.

  1. Chalcogen analogues of nicotine lactam studied by NMR, FTIR, DFT and X-ray methods

    NASA Astrophysics Data System (ADS)

    Jasiewicz, Beata; Malczewska-Jaskóła, Karolina; Kowalczyk, Iwona; Warżajtis, Beata; Rychlewska, Urszula

    2014-07-01

    The selenoanalogue of nicotine has been synthesized and characterized by spectroscopic and X-ray diffraction methods. The crystals of selenonicotine are isomorphic with the thionicotine homologue and consist of molecules engaged in columnar π⋯π stacking interactions between antiparallely arranged pyridine moieties. These interactions, absent in other crystals containing nicotine fragments, seem to be induced by the presence of a lactam group. The molecular structures in the vacuum of the oxo-, thio- and selenonicotine homologues have been calculated by the DFT method and compared with the available X-ray data. The delocalized structure of thionicotine is stabilized by intramolecular Csbnd H⋯S hydrogen bond, which becomes weaker in the partial zwitterionic resonance structure of selenonicotine in favor of multiple Csbnd H⋯Se intermolecular hydrogen-bonds. The calculated data allow a complete assignment of vibration modes in the solid state FTIR spectra. The 1H and 13C NMR chemical shifts were calculated by the GIAO method with B3LYP/6-311G(3df) level. A comparison between experimental and calculated theoretical results indicates that the density functional B3LYP method provided satisfactory results for predicting FTIR, 1H, 13C NMR spectra properties.

  2. FT-IR and DFT study of lemon peel

    NASA Astrophysics Data System (ADS)

    Berezin, K. V.; Likhter, A. M.; Shagautdinova, I. T.; Chernavina, M. L.; Novoselova, A. V.

    2017-03-01

    Experimental FT-IR spectra of lemon peel are registered in the 650 - 3800 cm-1 range. The influence of peel artificial and natural dehydration on its vibrational spectrum is studied. The colored outer surface of lemon peel is proved not to have a significant impact on FT-IR spectrum. It is determined that only dehydration processes affect the FT-IR vibrational spectrum of the peel when a lemon is stored for 28 days under natural laboratory conditions. Polymer molecule models for dietary fibers, such as cellulose, hemicellulose, pectin, lignin, as well as hesperidin - flavonoid glycoside, and free moisture cluster are developed within the framework of DFT/B3LYP/6-31G(d) theoretical method. By implementing supramolecular approach, modeling of the vibrational FT-IR spectrum of lemon peel is carried out and its detailed theoretical interpretation is presented.

  3. Molecular structure and vibrational study of diprotonated guanazolium using DFT calculations and FT-IR and FT-Raman spectroscopies.

    PubMed

    Guennoun, L; Zaydoun, S; El Jastimi, J; Marakchi, K; Komiha, N; Kabbaj, O K; El Hajji, A; Guédira, F

    2012-11-01

    The purpose of this manuscript is to discuss our investigations of diprotonated guanazolium chloride using vibrational spectroscopy and quantum chemical methods. The solid phase FT-IR and FT-Raman spectra were recorded in the regions 4000-400cm(-1) and 3600-50cm(-1) respectively, and the band assignments were supported by deuteration effects. Different sites of diprotonation have been theoretically examined at the B3LYP/6-31G level. The results of energy calculations show that the diprotonation process occurs with the two pyridine-like nitrogen N2 and N4 of the triazole ring. The molecular structure, harmonic vibrational wave numbers, infrared intensities and Raman activities were calculated for this form by DFT/B3LYP methods, using a 6-31G basis set. Both the optimized geometries and the theoretical and experimental spectra for diprotonated guanazolium under a stable form are compared with theoretical and experimental data of the neutral molecule reported in our previous work. This comparison reveals that the diprotonation occurs on the triazolic nucleus, and provide information about the hydrogen bonding in the crystal. The scaled vibrational wave number values of the diprotonated form are in close agreement with the experimental data. The normal vibrations were characterized in terms of potential energy distribution (PED) using the VEDA 4 program. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Molecular structure and vibrational study of diprotonated guanazolium using DFT calculations and FT-IR and FT-Raman spectroscopies

    NASA Astrophysics Data System (ADS)

    Guennoun, L.; Zaydoun, S.; El jastimi, J.; Marakchi, K.; Komiha, N.; Kabbaj, O. K.; El Hajji, A.; Guédira, F.

    2012-11-01

    The purpose of this manuscript is to discuss our investigations of diprotonated guanazolium chloride using vibrational spectroscopy and quantum chemical methods. The solid phase FT-IR and FT-Raman spectra were recorded in the regions 4000-400 cm-1 and 3600-50 cm-1 respectively, and the band assignments were supported by deuteration effects. Different sites of diprotonation have been theoretically examined at the B3LYP/6-31G∗ level. The results of energy calculations show that the diprotonation process occurs with the two pyridine-like nitrogen N2 and N4 of the triazole ring. The molecular structure, harmonic vibrational wave numbers, infrared intensities and Raman activities were calculated for this form by DFT/B3LYP methods, using a 6-31G∗ basis set. Both the optimized geometries and the theoretical and experimental spectra for diprotonated guanazolium under a stable form are compared with theoretical and experimental data of the neutral molecule reported in our previous work. This comparison reveals that the diprotonation occurs on the triazolic nucleus, and provide information about the hydrogen bonding in the crystal. The scaled vibrational wave number values of the diprotonated form are in close agreement with the experimental data. The normal vibrations were characterized in terms of potential energy distribution (PED) using the VEDA 4 program.

  5. Growth, structure, Hirshfeld surface and spectroscopic properties of 2-amino-4-hydroxy-6-methylpyrimidinium-2,3-pyrazinedicorboxylate single crystal

    NASA Astrophysics Data System (ADS)

    Faizan, Mohd; Alam, Mohammad Jane; Afroz, Ziya; Rodrigues, Vítor Hugo Nunes; Ahmad, Shabbir

    2018-03-01

    The present work is focused on the crystal structure, vibrational spectroscopy and DFT calculations of hydrogen bonded 2,3-pyrazinedicorboxylic acid and 2-amino-4-hydroxy-6-methylpyrimidine (PDCA-.AHMP+) crystal. The crystal structure has been determined using single crystal X-ray diffraction analysis which shows that the crystal belongs to monoclinic space group P21/n. The PDCA-.AHMP+ crystal has been characterized by FTIR, FT-Raman and FT-NMR spectroscopic techniques. The FTIR and FT-Raman spectra of the complex have unique spectroscopic feature as compared with those of the starting material to confirm salt formation. The theoretical vibrational studies have been performed to understand the modes of the vibrations of asymmetric unit of the complex by DFT methods. Hirschfeld surface and 2D fingerprint plots analyses were carried out to investigate the intermolecular interactions and its contribution in the building of PDCA-.AHMP+ crystal. The experimental and simulated 13C and 1H NMR studies have assisted in structural analysis of PDCA-.AHMP+ crystal. The electronic spectroscopic properties of the complex were explored by the experimental as well as theoretical electronic spectra simulated using TD-DFT/IEF-PCM method at B3LYP/6-311++G (d,p) level of theory. In addition, frontier molecular orbitals, molecular electrostatic potential map (MEP) and nonlinear optical (NLO) properties using DFT method have been also presented.

  6. The structural and spectroscopic investigation of 2-chloro-3-methylquinoline by DFT method and UV-Vis, NMR and vibrational spectral techniques combined with molecular docking analysis

    NASA Astrophysics Data System (ADS)

    Kose, Etem; Atac, Ahmet; Bardak, Fehmi

    2018-07-01

    This study comprises the structural and spectroscopic evaluation of a quinoline derivative, 2-chloro-3-methylquinoline (2Cl3MQ), via UV-Vis, 1H and 13C NMR, FT-IR and FT-Raman techniques experimentally, theoretically with DFT and TD-DFT quantum chemical calculations at B3LYP/6-311++G (d, p) level of theory, and investigation of the in silico pharmaceutical potent of 2Cl3MQ in comparison to 2ClnMQ (n = 3,4,7,8,9,10) substituted quinolines. The experimental measurements were recorded as follows; UV-vis spectra were obtained in the range of 200-400 nm in the water and ethanol solvents. 1H and 13C NMR spectra were recorded in CDCl3. Vibrational spectra were obtained in the region of 4000-400 cm-1 and 3500-10 cm-1 for FT-IR and FT-Raman spectra, respectively. Structural and spectroscopic features obtained through theoretical evaluations include: electrostatic features, atomic charges and molecular electrostatic potential surface, the frontier molecular orbital characteristics, the density of states and their overlapping nature, the electronic transition properties, thermodynamical and nonlinear optical characteristics, and predicted UV-Vis, 1H and 13C NMR, FT-IR and FT-Raman spectra. Ligand-enzyme interactions of 2ClnMQ (n = 3,4,7,8,9,10) substituted quinolines with Malate Synthase from Mycobacterium Tuberculosis (MtbMS) were investigated via molecular docking. The role of position of methyl substitution on the inhibitor character of the ligands was discussed on the basis of noncovalent interaction profiles.

  7. A novel tridentate Schiff base dioxo-molybdenum(VI) complex: synthesis, experimental and theoretical studies on its crystal structure, FTIR, UV-visible, ¹H NMR and ¹³C NMR spectra.

    PubMed

    Saheb, Vahid; Sheikhshoaie, Iran; Stoeckli-Evans, Helen

    2012-09-01

    A new dioxo-molybdenum(VI) complex [MoO(2)(L)(H(2)O)] has been synthesized, using 5-methoxy 2-[(2-hydroxypropylimino)methyl]phenol as tridentate ONO donor Schiff base ligand (H(2)L) and MoO(2)(acac)(2). The yellow crystals of the compound are used for single-crystal X-ray analysis and measuring Fourier Transform Infrared (FTIR), UV-visible, (1)H NMR and (13)C NMR spectra. Electronic structure calculations at the B3LYP and PW91PW91 levels of theory are performed to optimize the molecular geometry and to calculate the UV-visible, FTIR, (1)H NMR and (13)C NMR spectra of the compound. Vibrational assignments and analysis of the fundamental modes of the compound are performed. Time-dependent density functional theory (TDDFT) method is used to calculate the electronic transitions of the complex. All theoretical methods can well reproduce the structure of the compound. The (1)H NMR shielding tensors computed at the B3LYP/DGDZVP level of theory is in agreement with experimental (1)H NMR spectra. However, the (13)C NMR shielding tensors computed at the B3LYP level, employing a combined basis set of DGDZVP for Mo and 6-31+G(2df,p) for other atoms, are in better agreement with experimental (13)C NMR spectra. The electronic transitions calculated at the B3LYP/DGDZVP level by using TD-DFT method is in accordance with the observed UV-visible spectrum of the compound. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Molecular structure, vibrational spectral assignments (FT-IR and FT-RAMAN), NMR, NBO, HOMO-LUMO and NLO properties of O-methoxybenzaldehyde based on DFT calculations

    NASA Astrophysics Data System (ADS)

    Vennila, P.; Govindaraju, M.; Venkatesh, G.; Kamal, C.

    2016-05-01

    Fourier transform - Infra red (FT-IR) and Fourier transform - Raman (FT-Raman) spectroscopic techniques have been carried out to analyze O-methoxy benzaldehyde (OMB) molecule. The fundamental vibrational frequencies and intensity of vibrational bands were evaluated using density functional theory (DFT). The vibrational analysis of stable isomer of OMB has been carried out by FT-IR and FT-Raman in combination with theoretical method simultaneously. The first-order hyperpolarizability and the anisotropy polarizability invariant were computed by DFT method. The atomic charges, hardness, softness, ionization potential, electronegativity, HOMO-LUMO energies, and electrophilicity index have been calculated. The 13C and 1H Nuclear magnetic resonance (NMR) have also been obtained by GIAO method. Molecular electronic potential (MEP) has been calculated by the DFT calculation method. Electronic excitation energies, oscillator strength and excited states characteristics were computed by the closed-shell singlet calculation method.

  9. Molecular structure, vibrational spectroscopic, first order hyperpolarizability and HOMO-LUMO studies of 7-amino-8-oxo-3-vinyl-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid

    NASA Astrophysics Data System (ADS)

    Ramalingam, M.; Sethuraman, V.; Sundaraganesan, N.

    2011-02-01

    The FT-IR and FT-Raman spectra of 7-amino-8-oxo-3-vinyl-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid (7AVCA) were recorded in the region 4000-400 cm -1 and 3500-10 cm -1, respectively. Quantum chemical calculations of energies, geometrical structure and vibrational wavenumbers were carried out by ab initio HF and density functional theoretical methods invoking 6-311G(d,p) basis set. The differences between the observed and scaled wavenumber values of most of the fundamentals are very small. The electric dipole moment ( μ) and the first order hyperpolarizability ( β0) values have been computed quantum mechanically. The calculated results show that 7AVCA may have microscopic nonlinear optical (NLO) behavior with non-zero values. A detailed interpretation of the FT-IR and FT-Raman spectra of 7AVCA is reported. The theoretical IR and Raman spectra of 7AVCA have also been constructed. The calculated HOMO and LUMO energies show that the charge transfer occurs within the molecule.

  10. Molecular structure, vibrational spectroscopic, first order hyperpolarizability and HOMO-LUMO studies of 7-amino-8-oxo-3-vinyl-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid.

    PubMed

    Ramalingam, M; Sethuraman, V; Sundaraganesan, N

    2011-02-01

    The FT-IR and FT-Raman spectra of 7-amino-8-oxo-3-vinyl-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid (7AVCA) were recorded in the region 4000-400 cm(-1) and 3500-10 cm(-1), respectively. Quantum chemical calculations of energies, geometrical structure and vibrational wavenumbers were carried out by ab initio HF and density functional theoretical methods invoking 6-311G(d,p) basis set. The differences between the observed and scaled wavenumber values of most of the fundamentals are very small. The electric dipole moment (μ) and the first order hyperpolarizability (β0) values have been computed quantum mechanically. The calculated results show that 7AVCA may have microscopic nonlinear optical (NLO) behavior with non-zero values. A detailed interpretation of the FT-IR and FT-Raman spectra of 7AVCA is reported. The theoretical IR and Raman spectra of 7AVCA have also been constructed. The calculated HOMO and LUMO energies show that the charge transfer occurs within the molecule. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. Structural and vibrational spectroscopy investigation of the 5-[(diphenyl) amino] isophthalic acid molecule

    NASA Astrophysics Data System (ADS)

    Kurt, M.; Şaş, E. Babur; Can, M.; Okur, S.; Icli, S.; Demic, S.

    2014-10-01

    The molecular structure and vibrations of 5-(diphenyl) amino] isophthalic acid (DPIFA) were investigated by different spectroscopic techniques (such as infrared and Raman). FT-IR, FT-Raman and dispersive Raman spectra were recorded in the solid phase. HOMO-LUMO analyses were performed. The theoretical calculations for the molecular structure and spectroscopic studies were performed with DFT (B3LYP) and 6-311G(d,p) basis set calculations using the Gaussian 09 program. After optimizing the geometry of the molecule, vibration wavenumbers and fundamental vibrations wavenumbers were assigned on the basis of the potential energy distribution (PED) of the vibrational modes calculated with VEDA 4 program. The results of theoretical calculations for the spectra of the title compound were compared with the observed spectra.

  12. Molecular structure and vibrational spectra of Irinotecan: a density functional theoretical study.

    PubMed

    Chinna Babu, P; Sundaraganesan, N; Sudha, S; Aroulmoji, V; Murano, E

    2012-12-01

    The solid phase FTIR and FT-Raman spectra of Irinotecan have been recorded in the regions 400-4000 and 50-4000 cm(-1), respectively. The spectra were interpreted in terms of fundamentals modes, combination and overtone bands. The structure of the molecule was optimized and the structural characteristics were determined by density functional theory (DFT) using B3LYP method with 6-31G(d) as basis set. The vibrational frequencies were calculated for Irinotecan by DFT method and were compared with the experimental frequencies, which yield good agreement between observed and calculated frequencies. The infrared spectrum was also simulated from the calculated intensities. Besides, molecular electrostatic potential (MEP), frontier molecular orbitals (FMO) analysis were investigated using theoretical calculations. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. [Raman, FTIR spectra and normal mode analysis of acetanilide].

    PubMed

    Liang, Hui-Qin; Tao, Ya-Ping; Han, Li-Gang; Han, Yun-Xia; Mo, Yu-Jun

    2012-10-01

    The Raman and FTIR spectra of acetanilide (ACN) were measured experimentally in the regions of 3 500-50 and 3 500-600 cm(-1) respectively. The equilibrium geometry and vibration frequencies of ACN were calculated based on density functional theory (DFT) method (B3LYP/6-311G(d, p)). The results showed that the theoretical calculation of molecular structure parameters are in good agreement with previous report and better than the ones calculated based on 6-31G(d), and the calculated frequencies agree well with the experimental ones. Potential energy distribution of each frequency was worked out by normal mode analysis, and based on this, a detailed and accurate vibration frequency assignment of ACN was obtained.

  14. Synthesis, X-ray crystallography characterization, vibrational spectroscopic, molecular electrostatic potential maps, thermodynamic properties studies of N,N'-di(p-thiazole)formamidine.

    PubMed

    Rofouei, M K; Fereyduni, E; Sohrabi, N; Shamsipur, M; Attar Gharamaleki, J; Sundaraganesan, N

    2011-01-01

    In this work, we will report a combined experimental and theoretical study on molecular and vibrational structure of N,N'-di(p-thiazole)formamidine (DpTF). DpTF has been synthesized and characterized by elemental analysis, FT-IR, FT-Raman, 1H NMR, 13C NMR spectroscopy and X-ray single crystal diffraction. The FT-IR and FT-Raman spectra of DpTF were recorded in the solid phase. The optimized geometry was calculated by HF and B3LYP methods using 6-31G(d) basis set. The FT-IR and FT-Raman spectra of DpTF was calculated at the HF/B3LYP/6-31G(d) level and were interpreted in terms of potential energy distribution (PED) analysis. The scaled theoretical wavenumber showed very good agreement with the experimental values. A detailed interpretation of the infrared and Raman spectra of DpTF was reported. On the basis of vibrational analyses, the thermodynamic properties of the title compound at different temperatures have been calculated, revealing the correlations between Cp,m°, Sm°, Hm° and temperatures. Furthermore, molecular electrostatic potential maps (MESP) and total dipole moment properties of the compound have been calculated. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. The spectroscopic (FT-IR, FT-Raman and 1H, 13C NMR) and theoretical studies of cinnamic acid and alkali metal cinnamates

    NASA Astrophysics Data System (ADS)

    Kalinowska, Monika; Świsłocka, Renata; Lewandowski, Włodzimierz

    2007-05-01

    The effect of alkali metals (Li → Na → K → Rb → Cs) on the electronic structure of cinnamic acid (phenylacrylic acid) was studied. In this research many miscellaneous analytical methods, which complement one another, were used: infrared (FT-IR), Raman (FT-Raman), nuclear magnetic resonance ( 1H, 13C NMR) and quantum mechanical calculations. The spectroscopic studies lead to conclusions concerning the distribution of the electronic charge in molecule, the delocalization energy of π-electrons and the reactivity of metal complexes. The change of metal along with the series: Li → Na → K → Rb → Cs caused: (1) the change of electronic charge distribution in cinnamate anion what is seen via the occurrence of the systematic shifts of several bands in the experimental and theoretical IR and Raman spectra of cinnamates, (2) systematic chemical shifts for protons 1H and 13C nuclei.

  16. Structure analysis and spectroscopic characterization of 2-Fluoro-3-Methylpyridine-5-Boronic Acid with experimental (FT-IR, Raman, NMR and XRD) techniques and quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Alver, Özgür; Dikmen, Gökhan

    2016-03-01

    Possible stable conformers, geometrical molecular structures, vibrational properties as well as band assignments, nuclear magnetic shielding tensors of 2-Fluoro-3-Methylpyridine-5-Boronic Acid (2F3MP5BA) were studied experimentally and theoretically using FT-IR, Raman, (CP/MAS) NMR and XRD spectroscopic methods. FT-IR and Raman spectra were evaluated in the region of 3500-400 cm-1, and 3200-400 cm-1, respectively. The optimized geometric structures, vibrational wavenumbers and nuclear magnetic shielding tensors were examined using Becke-3-Lee-Yang-Parr (B3LYP) hybrid density functional theory method with 6-311++G(d, p) basis set. 1H, 13C NMR chemical shifts were calculated using the gauge invariant atomic orbital (GIAO) method. 1H, 13C, APT and HETCOR NMR experiments of title molecule were carried out in DMSO solution. 13C CP/MAS NMR measurement was done with 4 mm zirconium rotor and glycine was used as an external standard. Single crystal of 2F3MP5BA was also prepared for XRD measurements. Assignments of vibrational wavenumbers were also strengthened by calculating the total energy distribution (TED) values using scaled quantum mechanical (SQM) method.

  17. Structural properties and FTIR-Raman spectra of the anti-hypertensive clonidine hydrochloride agent and their dimeric species

    NASA Astrophysics Data System (ADS)

    Romano, Elida; Davies, Lilian; Brandán, Silvia Antonia

    2017-04-01

    The structural and vibrational properties of the α-adrenergic agonist clonidine hydrochloride agent and their anionic and dimeric species were studied combining the experimental FT-IR and Raman spectra in solid phase with ab-initio calculations based on the density functional theory (DFT). All the calculations were performed by using the hybrid B3LYP with the 6-31G* and 6-311++G** basis sets. The structural properties for those species were studied employing the Natural Bond Orbital (NBO), Atoms in Molecules theory (AIM) and frontier orbitals calculations. The complete assignments of the FTIR and Raman spectra were performed combining the DFT calculations with the Pulay's Scaled Quantum Mechanics Force Field (SQMFF) methodology. Very good concordances between the theoretical and experimental spectra were found. In addition, the force constants for those three species were computed and compared with the values reported for similar antihypertensive agents. The ionic nature of the H→Cl bond and the high value of the LP(1)N4 → LP*(1)H18 charge transfer could explain the high reactivity of clonidine hydrochloride in relation to other antihypertensive agent and the strong shifthing of the band assigned to the Nsbnd H stretching mode linked to the Hsbnd Cl bond toward lower wavenumbers.

  18. Spectroscopic characteristic (FT-IR, FT-Raman, UV, 1H and 13C NMR), theoretical calculations and biological activity of alkali metal homovanillates

    NASA Astrophysics Data System (ADS)

    Samsonowicz, M.; Kowczyk-Sadowy, M.; Piekut, J.; Regulska, E.; Lewandowski, W.

    2016-04-01

    The structural and vibrational properties of lithium, sodium, potassium, rubidium and cesium homovanillates were investigated in this paper. Supplementary molecular spectroscopic methods such as: FT-IR, FT-Raman in the solid phase, UV and NMR were applied. The geometrical parameters and energies were obtained from density functional theory (DFT) B3LYP method with 6-311++G** basis set calculations. The geometry of the molecule was fully optimized, vibrational spectra were calculated and fundamental vibrations were assigned. Geometric and magnetic aromaticity indices, atomic charges, dipole moments, HOMO and LUMO energies were also calculated. The microbial activity of investigated compounds was tested against Bacillus subtilis (BS), Pseudomonas aeruginosa (PA), Escherichia coli (EC), Staphylococcus aureus (SA) and Candida albicans (CA). The relationship between the molecular structure of tested compounds and their antimicrobial activity was studied. The principal component analysis (PCA) was applied in order to attempt to distinguish the biological activities of these compounds according to selected band wavenumbers. Obtained data show that the FT-IR spectra can be a rapid and reliable analytical tool and a good source of information for the quantitative analysis of the relationship between the molecular structure of the compound and its biological activity.

  19. Theoretical study on Curcumin: A comparison of calculated spectroscopic properties with NMR, UV vis and IR experimental data

    NASA Astrophysics Data System (ADS)

    Benassi, Rois; Ferrari, Erika; Lazzari, Sandra; Spagnolo, Ferdinando; Saladini, Monica

    2008-12-01

    The main target of this study is a high-level computational analysis of Curcumin, employing DFT approach with two different sets of basis functions (B3LYP/6-31G ∗ and B3LYP/6-311G ∗∗). Accurate quantum mechanical studies, both in vacuum and in methanol medium, are carried out with the aim to analyze the conformational equilibria, to find the most stable equilibrium structure and to define the nature of the molecular orbitals, fundamental to explain Curcumin binding characteristic. Our theoretical calculations, performed at B3LYP/6-31G ∗ and B3LYP/6-311G ∗∗ levels both in vacuum and in methanol medium, confirm that the keto-enolic forms are more stable than the di-keto one, whose extremely low population suggests that this structure should not influence Curcumin properties. Keto-enolic form C results the most stable, independently on calculation level and solvent (methanol) effect. HOMO and LUMO molecular orbitals are calculated for all the structures with the two sets of basis with very similar results. MEPs show that the negative charge is localized on the oxygen atoms, which, in the keto-enolic forms, point in the same direction enabling metal coordination. NMR, UV-vis and FT-IR experimental data are employed in the comparison with electronic and conformational properties of Curcumin resulting from theoretical calculations. The two different calculation levels (B3LYP/6-31G ∗ and B3LYP/6-311G ∗∗) give very similar results. Good linear correlations between the experimental 1H and 13C NMR chemical shifts ( δexp), in methanol- d4 (MeOD) and DMSO- d6 (DMSO), and calculated magnetic isotropic shielding tensors ( σcalc) are found ( δexp = a · σcalc + b). A good prediction of UV-vis experimental maximum absorption ( λmax) on the basis of conformer populations is obtained. A linear relation with a good correlation coefficient is observed plotting the FT-IR experimental wavenumbers vs . the calculated ones, allowing to predict FT-IR spectra.

  20. Study on molecular structure, spectroscopic properties (FTIR and UV-Vis), NBO, QTAIM, HOMO-LUMO energies and docking studies of 5-fluorouracil, a substance used to treat cancer.

    PubMed

    Almeida, Michell O; Barros, Daiane A S; Araujo, Sheila C; Faria, Sergio H D M; Maltarollo, Vinicius G; Honorio, Kathia M

    2017-09-05

    Cancer cells can expand to other parts of body through blood system and nodes from a mechanism known as metastasis. Due to the large annual growth of cancer cases, various biological targets have been studied and related to this disorder. A very interesting target related to cancer is human epidermal growth factor receptor 2 (HER2). In this study, we analyzed the main intermolecular interactions between a drug used in the cancer treatment (5-fluorouracil) and HER2. Molecular modeling methods were also employed to assess the molecular structure, spectroscopic properties (FTIR and UV-Vis), NBO, QTAIM and HOMO-LUMO energies of 5-FU. From the docking simulations it was possible to analyze the interactions that occur between some residues in the binding site of HER2 and 5-FU. To validate the choice of basis set that was used in the NBO and QTAIM analyses, theoretical calculations were performed to obtain FT-IR and UV/Vis spectra, and the theoretical results are consistent with the experimental data, showing that the basis set chosen is suitable. For the maximum λ from the theoretical calculation (254.89nm) of UV/Vis, the electronic transition from HOMO to LUMO occurs at 4.89eV. From NBO analyses, we observed interactions between Asp863 and 5-FU, i.e. the orbitals with high transfer of electrons are LP O 15 (donor NBO) and BD* (π) N 1 -H 10 (acceptor NBO), being that the value of this interaction is 7.72kcal/mol. Results from QTAIM indicate one main intermolecular H bond, which is necessary to stabilize the complex formed between the ligands and the biological target. Therefore, this study allowed a careful evaluation on the main structural, spectroscopic and electronic properties involved in the interaction between 5-FU and HER2, an important biological complex related to the cancer treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Molecular structure, spectroscopic studies and first-order molecular hyperpolarizabilities of ferulic acid by density functional study

    NASA Astrophysics Data System (ADS)

    Sebastian, S.; Sundaraganesan, N.; Manoharan, S.

    2009-10-01

    Quantum chemical calculations of energies, geometrical structure and vibrational wavenumbers of ferulic acid (FA) (4-hydroxy-3-methoxycinnamic acid) were carried out by using density functional (DFT/B3LYP/BLYP) method with 6-31G(d,p) as basis set. The optimized geometrical parameters obtained by DFT calculations are in good agreement with single crystal XRD data. The vibrational spectral data obtained from solid phase FT-IR and FT-Raman spectra are assigned based on the results of the theoretical calculations. The observed spectra are found to be in good agreement with calculated values. The electric dipole moment ( μ) and the first hyperpolarizability ( β) values of the investigated molecule have been computed using ab initio quantum mechanical calculations. The calculation results also show that the FA molecule might have microscopic nonlinear optical (NLO) behavior with non-zero values. A detailed interpretation of the infrared and Raman spectra of FA was also reported. The energy and oscillator strength calculated by time-dependent density functional theory (TD-DFT) results complements with the experimental findings. The calculated HOMO and LUMO energies shows that charge transfer occur within the molecule. The theoretical FT-IR and FT-Raman spectra for the title molecule have been constructed.

  2. Experimental (FTIR, Raman, UV-visible and PL) and theoretical (DFT and TDDFT) studies on bis(8-hydroxyquinolinium) tetrachlorocobaltate(II) compound

    NASA Astrophysics Data System (ADS)

    Chaouachi, Soumaya; Elleuch, Slim; Hamdi, Besma; Zouari, Ridha

    2016-12-01

    The purpose of this paper is to present the chemical preparation, crystal structure, vibrational study and optical features for new organic-inorganic compound [C9H8NO]2CoCl4 abbreviated [8-HQ]2CoCl4. The structural study by X-ray diffraction prove that this compound crystallize in a monoclinic unit-cell with space group C2/c (point group 2/m = C2h). It is built of tetrahedra [CoCl4]2- anions and (C9H8NO)+ cations in the 1/2 ratio. The crystal structure is stabilized by network three-dimensional of Nsbnd H⋯Cl, Nsbnd H⋯O, Osbnd H⋯Cl, Csbnd H⋯Cl hydrogen bonds, and offset π-π stacking interactions. Also, the Hirshfeld Surface projections and Fingerprint plots were elucidated the relative contribution of the type, nature and explore the H⋯Cl, C⋯H, C⋯C, C⋯N, H⋯O intermolecular contacts in the crystal in a visual manner. Furthermore, vibrational analysis of the structural groups in the compound was carried out by both Fourier transforms infrared (FT-IR) and Raman spectra. The spectral data are complemented by good information at the region characteristic of metal-ligand, which evidences coordination through the compound. The optical properties of the crystal were studied by using optical absorption UV-visible and photoluminescence (PL) spectroscopy studies. Theoretical calculations were performed using density functional theory (DFT) at (DFT/B3LYP/LanL2DZ) level in the aim of aiding in studying structural, vibrational and optical properties of the investigated compound. Good relationship consistency is found between the experimental and theoretical studies. Inspection of the optical properties has lead to confirm the exhibition of a green photoluminescence and the occurrence of charge transfer phenomenon in this material.

  3. Energy profile, spectroscopic (FT-IR, FT-Raman and FT-NMR) and DFT studies of 4-bromoisophthalic acid

    NASA Astrophysics Data System (ADS)

    Arjunan, V.; Thirunarayanan, S.; Mohan, S.

    2018-04-01

    The stable conformer of 4-bromoisophthalic acid (BIPA) has been identified by potential energy profile analysis. All the structural parameters of 4-bromoisophthalic acid are determined by B3LYP method with 6-311++G**, 6-31G** and cc-pVTZ basis sets. The fundamental vibrations are analysed with the use of FT-IR (4000-400 cm-1) and FT-Raman (4000-100 cm-1) spectra. The harmonic vibrational frequencies are theoretically calculated and compared with experimental FTIR and FT-Raman frequencies. The 1H and 13C NMR spectra have been analysed and compared with theoretical 1H and 13C NMR chemical shifts calculated by gauge independent atomic orbital (GIAO) method. The electronic properties, such as HOMO (highest occupied molecular orbital) and LUMO (lowest unoccupied molecular orbital) energies are determined by B3LYP/cc-pVTZ method. The electron density distribution and site of chemical reactivity of BIPA molecule have been obtained by mapping electron density isosurface with molecular electrostatic potential (MEP). Stability of the molecules arising from hyperconjugative interactions, charge delocalizations have been analysed by using natural bond orbital (NBO) analysis. The thermodynamic properties and atomic natural charges of the compound are analysed and the reactive sites of the molecule are identified. The global and local reactivity descriptors are evaluated to analyse the chemical reactivity and site selectivity of molecule through Fukui functions.

  4. Molecular structure and vibrational spectra of three substituted 4-thioflavones by density functional theory and ab initio Hartree-Fock calculations

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Hong; Liu, Xiang-Ru; Zhang, Xian-Zhou

    2011-01-01

    The vibrational frequencies of three substituted 4-thioflavones in the ground state have been calculated using the Hartree-Fock and density functional method (B3LYP) with 6-31G* and 6-31+G** basis sets. The structural analysis shows that there exists H-bonding in the selected compounds and the hydrogen bond lengths increase with the augment of the conjugate parameters of the substituent group on the benzene ring. A complete vibrational assignment aided by the theoretical harmonic wavenumber analysis was proposed. The theoretical spectrograms for FT-IR spectra of the title compounds have been constructed. In addition, it is noted that the selected compounds show significant activity against Shigella flexniri. Several electronic properties and thermodynamic parameters were also calculated.

  5. Phase transition analysis of V-shaped liquid crystal: Combined temperature-dependent FTIR and density functional theory approach

    NASA Astrophysics Data System (ADS)

    Singh, Swapnil; Singh, Harshita; Karthick, T.; Tandon, Poonam; Prasad, Veena

    2018-01-01

    Temperature-dependent Fourier transform infrared spectroscopy (FTIR) combined with density functional theory (DFT) is employed to study the mechanism of phase transitions of V-shaped bent-core liquid crystal. Since it has a large number of flexible bonds, one-dimensional potential energy scan (PES) was performed on the flexible bonds and predicted the most stable conformer I. A detailed analysis of vibrational normal modes of conformer I have been done on the basis of potential energy distribution. The good agreement between the calculated spectrum of conformer I and observed FTIR spectrum at room temperature validates our theoretical structure model. Furthermore, the prominent changes observed in the stretching vibrational bands of CH3/CH2, Cdbnd O, ring CC, ring CO, ring CH in-plane bending, and ring CH out-of-plane bending at Iso → nematic phase transition (at 155 °C) have been illustrated. However, the minor changes in the spectral features observed for the other phase transitions might be due to the shape or bulkiness of molecules. Combined FTIR and PES study beautifully explained the dynamics of the molecules, molecular realignment, H-bonding, and conformational changes at the phase transitions.

  6. Hydroxyapatite substituted by transition metals: experiment and theory.

    PubMed

    Zilm, M E; Chen, L; Sharma, V; McDannald, A; Jain, M; Ramprasad, R; Wei, M

    2016-06-28

    Bioceramics are versatile materials for hard tissue engineering. Hydroxyapatite (HA) is a widely studied biomaterial for bone grafting and tissue engineering applications. The crystal structure of HA allows for a wide range of substitutions, which allows for tailoring materials properties. Transition metals and lanthanides are of interest since substitution in HA can result in magnetic properties. In this study, experimental results were compared to theoretical calculations of HA substituted with a transition metal. Calculation of a 10 atomic percent substitution of a transition metal ion Mn(2+), Fe(2+), and Co(2+) substituted HA samples lead to magnetic moments of 5, 4, and 3 Bohr magnetons, respectively. Hydroxyapatite substituted by transition metals (MHA) was fabricated through an ion exchange procedure and characterized with X-ray diffraction, Fourier transform infra-red spectroscopy (FTIR), X-ray photoelectron spectroscopy, and vibrating sample magnetometer, and results were compared to theoretical calculations. All the substitutions resulted in phase-pure M(2+)HA with lattice parameters and FTIR spectra in good agreement with calculations. Magnetic measurements revealed that the substitution of Mn(2+) has the greatest effect on the magnetic properties of HA followed by the substitution of Fe(2+) and then Co(2+). The present work underlines the power of synergistic theoretical-experimental work in guiding the rational design of materials.

  7. Quantum computational studies, spectroscopic (FT-IR, FT-Raman and UV-Vis) profiling, natural hybrid orbital and molecular docking analysis on 2,4 Dibromoaniline

    NASA Astrophysics Data System (ADS)

    Abraham, Christina Susan; Prasana, Johanan Christian; Muthu, S.; Rizwana B, Fathima; Raja, M.

    2018-05-01

    The research exploration will comprise of investigating the molecular structure, vibrational assignments, bonding and anti-bonding nature, nonlinear optical, electronic and thermodynamic nature of the molecule. The research is conducted at two levels: First level employs the spectroscopic techniques - FT-IR, FT-Raman and UV-Vis characterizing techniques; at second level the data attained experimentally is analyzed through theoretical methods using and Density Function Theories which involves the basic principle of solving the Schrodinger equation for many body systems. A comparison is drawn between the two levels and discussed. The probability of the title molecule being bio-active theoretically proved by the electrophilicity index leads to further property analyzes of the molecule. The target molecule is found to fit well with Centromere associated protein inhibitor using molecular docking techniques. Higher basis set 6-311++G(d,p) is used to attain results more concurrent to the experimental data. The results of the organic amine 2, 4 Dibromoaniline is analyzed and discussed.

  8. Intramolecular hydrogen bonding in N-salicylideneaniline: FT-IR spectrum and quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Moosavi-Tekyeh, Zainab; Dastani, Najmeh

    2015-12-01

    FT-IR and FT-Raman spectra of N-salicylideneaniline (SAn) and its deuterated analogue (D-SAn) are recorded, and the theoretical calculations are performed on their molecular structures and vibrational frequencies. The same calculations are performed for SAn in different solutions using the polarizable conductor continuum model (CPCM) method. Comparisons between the spectra obtained and the corresponding theoretical calculations are used to assign the vibrational frequencies for these compounds. The spectral behavior of SAn upon deuteration is also used to distinguish the positions of OH vibrational frequencies. The hydrogen bond strength of SAn is investigated by applying the atoms-in-molecules (AIM) theory, natural bond orbital (NBO) analysis, and geometry calculations. The harmonic vibrational frequencies of SAn are calculated at B3LYP and X3LYP levels of theory using 6-31G*, 6-311G**, and 6-311++G** basis sets. The AIM results support a medium hydrogen bonding in SAn. The observed νOH/νOD and γOH/γOD for SAn appear at 2940/2122 and 830/589 cm-1, respectively.

  9. A vibrational study of inulin by means of experimental and theoretical methods

    NASA Astrophysics Data System (ADS)

    Balan, C.; Chis, M. I.; Rachisan, A. L.; Baia, M.

    2018-07-01

    Inulin, a natural polymer formed by several units of fructose and just one unit of glucose, is found in different plants or directly in some fruits or vegetables. Due to its structure it has been used in many applications from medicine, pharmacology or food industry. In spite of this, a complete vibrational analysis of the molecule is missing in the literature. Moreover, there are contradictory results regarding the assignment of certain vibrational modes. Therefore, the aim of this study was to obtain a comprehensive vibrational investigation of inulin by means of experimental (FT-IR and Raman spectroscopy) and theoretical (density functional theory -DFT simulations) methods.

  10. Synthesis and characterization of a series of isoniazid hydrazones. Spectroscopic and theoretical study

    NASA Astrophysics Data System (ADS)

    Ferraresi-Curotto, Verónica; Echeverría, Gustavo A.; Piro, Oscar E.; Pis-Diez, Reinaldo; González-Baró, Ana C.

    2017-04-01

    A family of hydrazones of isoniazid and a group of hydroxybenzalaldehydes (vanillin, 5-bromovanillin, 5-chlorosalicylaldehyde and 5-bromosalicylaldehyde) were obtained and fully characterized. The results, including theoretical data, are comparatively analyzed along with the already reported hydrazone of o-vanillin. The crystal structures of three compounds were determined. The hydrazones obtained from halogenated aldehydes are isomorphic and chiral to each other. Structures are further stabilized by (pyr)NH+⋯Cl- and OwH⋯Cl- bonds. The vanillin hydrazone shows a conformer that differs from the previously reported. Neighboring molecules are linked to each other through OH⋯N(pyr) bonds, giving rise to a nearly planar polymeric structure. The conformational space was searched and geometries were optimized both in the gas phase and including solvent effects by DFT. Results are extended to describe the 5-bromovanillin hydrazone. FTIR, NMR and electronic spectra were measured and assigned with the help of computational calculations.

  11. Catalysis of GTP Hydrolysis by Small GTPases at Atomic Detail by Integration of X-ray Crystallography, Experimental, and Theoretical IR Spectroscopy*

    PubMed Central

    Rudack, Till; Jenrich, Sarah; Brucker, Sven; Vetter, Ingrid R.; Gerwert, Klaus; Kötting, Carsten

    2015-01-01

    Small GTPases regulate key processes in cells. Malfunction of their GTPase reaction by mutations is involved in severe diseases. Here, we compare the GTPase reaction of the slower hydrolyzing GTPase Ran with Ras. By combination of time-resolved FTIR difference spectroscopy and QM/MM simulations we elucidate that the Mg2+ coordination by the phosphate groups, which varies largely among the x-ray structures, is the same for Ran and Ras. A new x-ray structure of a Ran·RanBD1 complex with improved resolution confirmed this finding and revealed a general problem with the refinement of Mg2+ in GTPases. The Mg2+ coordination is not responsible for the much slower GTPase reaction of Ran. Instead, the location of the Tyr-39 side chain of Ran between the γ-phosphate and Gln-69 prevents the optimal positioning of the attacking water molecule by the Gln-69 relative to the γ-phosphate. This is confirmed in the RanY39A·RanBD1 crystal structure. The QM/MM simulations provide IR spectra of the catalytic center, which agree very nicely with the experimental ones. The combination of both methods can correlate spectra with structure at atomic detail. For example the FTIR difference spectra of RasA18T and RanT25A mutants show that spectral differences are mainly due to the hydrogen bond of Thr-25 to the α-phosphate in Ran. By integration of x-ray structure analysis, experimental, and theoretical IR spectroscopy the catalytic center of the x-ray structural models are further refined to sub-Å resolution, allowing an improved understanding of catalysis. PMID:26272610

  12. Catalysis of GTP hydrolysis by small GTPases at atomic detail by integration of X-ray crystallography, experimental, and theoretical IR spectroscopy.

    PubMed

    Rudack, Till; Jenrich, Sarah; Brucker, Sven; Vetter, Ingrid R; Gerwert, Klaus; Kötting, Carsten

    2015-10-02

    Small GTPases regulate key processes in cells. Malfunction of their GTPase reaction by mutations is involved in severe diseases. Here, we compare the GTPase reaction of the slower hydrolyzing GTPase Ran with Ras. By combination of time-resolved FTIR difference spectroscopy and QM/MM simulations we elucidate that the Mg(2+) coordination by the phosphate groups, which varies largely among the x-ray structures, is the same for Ran and Ras. A new x-ray structure of a Ran·RanBD1 complex with improved resolution confirmed this finding and revealed a general problem with the refinement of Mg(2+) in GTPases. The Mg(2+) coordination is not responsible for the much slower GTPase reaction of Ran. Instead, the location of the Tyr-39 side chain of Ran between the γ-phosphate and Gln-69 prevents the optimal positioning of the attacking water molecule by the Gln-69 relative to the γ-phosphate. This is confirmed in the RanY39A·RanBD1 crystal structure. The QM/MM simulations provide IR spectra of the catalytic center, which agree very nicely with the experimental ones. The combination of both methods can correlate spectra with structure at atomic detail. For example the FTIR difference spectra of RasA18T and RanT25A mutants show that spectral differences are mainly due to the hydrogen bond of Thr-25 to the α-phosphate in Ran. By integration of x-ray structure analysis, experimental, and theoretical IR spectroscopy the catalytic center of the x-ray structural models are further refined to sub-Å resolution, allowing an improved understanding of catalysis. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Molecular structure, spectroscopic (FT-IR, FT Raman, UV, NMR and THz) investigation and hyperpolarizability studies of 3-(2-Chloro-6-fluorophenyl)-1-(2-thienyl) prop-2-en-1-one

    NASA Astrophysics Data System (ADS)

    Kumar, Rajesh; Kumar, Amit; Deval, Vipin; Gupta, Archana; Tandon, Poonam; Patil, P. S.; Deshmukh, Prathmesh; Chaturvedi, Deepika; Watve, J. G.

    2017-02-01

    In the present work, a combined experimental and theoretical study on ground state molecular structure, spectroscopic and nonlinear optical properties of the chalcone derivative 3-(2-Chloro-6-fluorophenyl)-1-(2-thienyl) prop-2-en-1-one (2C6F2SC) is reported. Initial geometry generated from single crystal X-ray diffraction parameters was minimized at DFT level employing B3LYP/6-311++G (d,p) without any constraint to the potential energy surface. The molecule has been characterized using various experimental techniques FT-IR, FT-Raman, UV-Vis, 1H NMR, TD-THz and the spectroscopic data have been analyzed theoretically by Density Functional Theory (DFT) method. Harmonic vibrational frequencies were calculated theoretically using the optimized ground state geometry and the spectra were interpreted by means of potential energy distribution. Time Dependent Density Functional Theory (TD-DFT) has been used to calculate energies, absorption wavelengths, oscillator strengths of electronic singlet-singlet transitions. The calculated energy and oscillator strength complement with the experimental findings. The HOMO-LUMO energy gap explains the charge interaction taking place within the molecule. Good correlations between the experimental 1H NMR chemical shifts and calculated GIAO shielding tensors were found. Stability of the molecule, hyperconjugative interactions and charge delocalization has been analyzed by natural bond orbital (NBO) analysis. The first order hyperpolarizability (β) of this molecular system and related properties (μ, <α> and Δα) have been calculated using the finite-field approach.

  14. Spectroscopic investigation (FT-IR, FT-Raman), HOMO-LUMO, NBO, and molecular docking analysis of N-ethyl-N-nitrosourea, a potential anticancer agent

    NASA Astrophysics Data System (ADS)

    Singh, Priyanka; Islam, S. S.; Ahmad, Hilal; Prabaharan, A.

    2018-02-01

    Nitrosourea plays an important role in the treatment of cancer. N-ethyl-N-nitrosourea, also known as ENU, (chemical formula C3H7N3O2), is a highly potent mutagen. The chemical is an alkylating agent and acts by transferring the ethyl group of ENU to nucleobases (usually thymine) in nucleic acids. The molecular structure of N-ethyl-N-nitrosourea has been elucidated using experimental (FT-IR and FT-Raman) and theoretical (DFT) techniques. APT charges, Mulliken atomic charges, Natural bond orbital, Electrostatic potential, HOMO-LUMO and AIM analysis were performed to identify the reactive sites and charge transfer interactions. Furthermore, to evaluate the anticancer activity of ENU molecular docking studies were carried out against 2JIU protein.

  15. Synthesis, spectroscopic and structural characterization of 5-benzoyl-4-phenyl-2-methylthio-1H-pyrimidine with theoretical calculations using density functional theory.

    PubMed

    Inkaya, Ersin; Dinçer, Muharrem; Sahan, Emine; Yıldırım, Ismail

    2013-10-01

    In this paper, we will report a combined experimental and theoretical investigation of the molecular structure and spectroscopic parameters (FT-IR, (1)H NMR, (13)C NMR) of 5-benzoyl-4-phenyl-2-methylthio-1H-pyrimidine. The compound crystallizes in the triclinic space group P-1 with Z=2. The molecular geometry was also optimized using density functional theory (DFT/B3LYP) method with the 6-311G(d,p) and 6-311++G(d,p) basis sets in ground state and compared with the experimental data. All the assignments of the theoretical frequencies were performed by potential energy distributions using VEDA 4 program. Information about the size, shape, charge density distribution and site of chemical reactivity of the molecules has been obtained by mapping electron density isosurface with electrostatic potential (ESP). Also, non-linear optical properties of the title compound were performed at B3LYP/6-311++G(d,p) level. The theoretical results showed an excellent agreement with the experimental values. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Synthesis, spectroscopic and structural characterization of 5-benzoyl-4-phenyl-2-methylthio-1H-pyrimidine with theoretical calculations using density functional theory

    NASA Astrophysics Data System (ADS)

    İnkaya, Ersin; Dinçer, Muharrem; Şahan, Emine; Yıldırım, İsmail

    2013-10-01

    In this paper, we will report a combined experimental and theoretical investigation of the molecular structure and spectroscopic parameters (FT-IR, 1H NMR, 13C NMR) of 5-benzoyl-4-phenyl-2-methylthio-1H-pyrimidine. The compound crystallizes in the triclinic space group P-1 with Z = 2. The molecular geometry was also optimized using density functional theory (DFT/B3LYP) method with the 6-311G(d,p) and 6-311++G(d,p) basis sets in ground state and compared with the experimental data. All the assignments of the theoretical frequencies were performed by potential energy distributions using VEDA 4 program. Information about the size, shape, charge density distribution and site of chemical reactivity of the molecules has been obtained by mapping electron density isosurface with electrostatic potential (ESP). Also, non-linear optical properties of the title compound were performed at B3LYP/6-311++G(d,p) level. The theoretical results showed an excellent agreement with the experimental values.

  17. Synthesis and characterization of Y2O3 nano-material: An experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Ahmad, Sheeraz; Faizan, Mohd; Ahmad, Shabbir; Ikram, Mohd

    2018-04-01

    We made an attempt to synthesize pure Y2O3 nanomaterial by using the sol-gel method followed by annealing at 600°C and 900°C. The synthesized Y2O3 nanoparticle was characterized by using XRD, FTIR, and UV-Vis spectroscopy. The structural refinement was performed using FULLPROF software by the Rietveld method. The refinement parameters such as lattice constant, atomic position, occupancy, R-factor and goodness of fit (χ2) were calculated. The nanoparticle has a single phase cubic structure with Ia -3 space group. The main absorption band in FTIR spectra centered at 560 cm-1 is attributed to Y-O vibration while the broadband at 3450 cm-1 arises due to O-H vibration. The band gap was obtained from the reflectance spectra using the K-M function F(R∞). The optimized structural parameters and UV-Vis spectrum were calculated using DFT and TD-DFT/B3LYP methods in bulk phase of Y2O3 and compared with experimental UV-Vis spectra in nanophase.

  18. An experimental and theoretical study of molecular structure and vibrational spectra of 2-methylphenyl boronic acid by density functional theory calculations

    NASA Astrophysics Data System (ADS)

    Hiremath, Sudhir M.; Hiremath, C. S.; Khemalapure, S. S.; Patil, N. R.

    2018-05-01

    This paper reports the experimental and theoretical study on the structure and vibrations of 2-Methylphenyl boronic acid (2MPBA). The different spectroscopic techniques such as FT-IR (4000-400 cm-1) and FT-Raman (4000-50 cm-1) of the title molecule in the solid phase were recorded. The geometry of the molecule was fully optimized using density functional theory (DFT) (B3LYP) with 6-311++G(d, p) basis set calculations. The vibrational wavenumbers were also corrected with scale factor to take better results for the calculated data. Vibrational spectra were calculated and fundamental vibrations were assigned on the basis of the potential energy distribution (PED) of the vibrational modes obtained from VEDA 4 program. The calculated wavenumbers showed the best agreement with the experimental results. Whereas, it is observed that, the theoretical frequencies are more than the experimental one for O-H stretching vibration modes of the title molecule.

  19. A new tridentate Schiff base Cu(II) complex: synthesis, experimental and theoretical studies on its crystal structure, FT-IR and UV-Visible spectra.

    PubMed

    Saheb, Vahid; Sheikhshoaie, Iran; Setoodeh, Nasim; Rudbari, Hadi Amiri; Bruno, Giuseppe

    2013-06-01

    A new Cu(II) complex [Cu(L)(NCS)] has been synthesized, using 1-(N-salicylideneimino)-2-(N,N-methyl)-aminoethane as tridentate ONN donor Schiff base ligand (HL). The dark green crystals of the compound are used for single-crystal X-ray analysis and measuring Fourier Transform Infrared (FT-IR) and UV-Visible spectra. Electronic structure calculations at the B3LYP and MP2 levels of theory are performed to optimize the molecular geometry and to calculate the UV-Visible and FT-IR spectra of the compound. Vibrational assignments and analysis of the fundamental modes of the compound are performed. Time-dependent density functional theory (TD-DFT) method is used to calculate the electronic transitions of the complex. A scaling factor of 1.015 is obtained for vibrational frequencies computed at the B3LYP level using basis sets 6-311G(d,p). It is found that solvent has a profound effect on the electronic absorption spectrum. The UV-Visible spectrum of the complex recorded in DMSO and DMF solution can be correctly predicted by a model in which DMSO and DMF molecules are coordinated to the central Cu atom via their oxygen atoms. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Infrared spectroscopy as a tool to characterise starch ordered structure--a joint FTIR-ATR, NMR, XRD and DSC study.

    PubMed

    Warren, Frederick J; Gidley, Michael J; Flanagan, Bernadine M

    2016-03-30

    Starch has a heterogeneous, semi-crystalline granular structure and the degree of ordered structure can affect its behaviour in foods and bioplastics. A range of methodologies are employed to study starch structure; differential scanning calorimetry, (13)C nuclear magnetic resonance, X-ray diffraction and Fourier transform infrared spectroscopy (FTIR). Despite the appeal of FTIR as a rapid, non-destructive methodology, there is currently no systematically defined quantitative relationship between FTIR spectral features and other starch structural measures. Here, we subject 61 starch samples to structural analysis, and systematically correlate FTIR spectra with other measures of starch structure. A hydration dependent peak position shift in the FTIR spectra of starch is observed, resulting from increased molecular order, but with complex, non-linear behaviour. We demonstrate that FTIR is a tool that can quantitatively probe short range interactions in starch structure. However, the assumptions of linear relationships between starch ordered structure and peak ratios are overly simplistic. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Synthesis, crystal structure, vibrational spectra and theoretical calculations of quantum chemistry of a potential antimicrobial Meldrum's acid derivative

    NASA Astrophysics Data System (ADS)

    Campelo, M. J. M.; Freire, P. T. C.; Mendes Filho, J.; de Toledo, T. A.; Teixeira, A. M. R.; da Silva, L. E.; Bento, R. R. F.; Faria, J. L. B.; Pizani, P. S.; Gusmão, G. O. M.; Coutinho, H. D. M.; Oliveira, M. T. A.

    2017-10-01

    A new derivative of Meldrum's acid 5-((5-chloropyridin-2-ylamino)methylene)-2,2-dimethyl-1,3-dioxane-4,6-dione (CYMM) of molecular formula C12H11ClN2O4 was synthesized and structurally characterized using single crystal X-ray diffraction technique. The vibrational properties of the crystal were studied by Fourier Transform infrared (FT-IR), Fourier Transform Raman (FT-Raman) techniques and theoretical calculations of quantum chemistry using Density functional theory (DFT) and Density functional perturbation theory (DFPT). A comparison with experimental spectra allowed the assignment of all the normal modes. The descriptions of the normal modes were carried by means of potential energy distribution (PED). Additionally, analysis of the antimicrobial activity and antibiotic resistance modulatory activity was carried out to evaluate the antibacterial potential of the CYMM.

  2. FT-IR, FT-Raman, UV, NMR spectra and molecular structure investigation of (E)-2-(3-chloropyrazin-2-yl)-1-(3-ethyl-2, 6-diphenyl piperidin-4-ylidene) hydrazine: A combined experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Therasa Alphonsa, A.; Loganathan, C.; Athavan Alias Anand, S.; Kabilan, S.

    2015-11-01

    This work presents the characterization of (E)-2-(3-chloropyrazin-2-yl)-1-(3-ethyl-2, 6-diphenyl piperidin-4-ylidene) hydrazine (HDE) by quantum chemical calculations and spectral techniques. The structure was investigated by FT-IR, FT-Raman, UV-vis and NMR techniques. The geometrical parameters and energies have been obtained from Density functional theory (DFT) B3LYP (6-31G (d, p)) basis set calculations. The geometry of the molecule was fully optimized, vibrational spectra were calculated and fundamental vibrations were assigned on the basis of total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method. 1H and 13C NMR chemical shifts of the molecule were calculated using Gauge-independent atomic orbital method (GIAO). The electronic properties such as excitation energies, wavelength, HOMO, LUMO energies performed by Time dependent density functional theory (TD-DFT) results complements with the experimental findings. NBO analysis has been performed for analyzing charge delocalization throughout the molecule. The calculation results were applied to simulate spectra of the title compound, which show excellent agreement with observed spectra. To provide information about the interactions between human cytochrome protein and the novel compound theoretically, docking studies were carried out using Schrödinger software.

  3. The spectroscopic (FTIR, FT-IR gas phase and FT-Raman), first order hyperpolarizabilities, NMR analysis of 2,4-dichloroaniline by ab initio HF and density functional methods.

    PubMed

    Sundaraganesan, N; Karpagam, J; Sebastian, S; Cornard, J P

    2009-07-01

    In this work, the experimental and theoretical study on molecular structure and vibrational spectra of 2,4-dichloroaniline (2,4-DCA) were studied. The Fourier transform infrared (gas phase) and Fourier transform Raman spectra of 2,4-DCA were recorded. The molecular geometry and vibrational frequencies of 2,4-DCA in the ground state were calculated by using the Hartree-Fock (HF) and density functional (DF) methods (BLYP, B3LYP and SVWN) with 6-31G(d,p) as basis set. Comparison of the observed fundamental vibrational frequencies of 2,4-DCA with calculated results by HF and density functional methods indicates that BLYP is superior to other methods for molecular vibrational problems. The difference between the observed and scaled wave number values of most of the fundamentals is very small. The electric dipole moment (micro) and the first hyperpolarizability (beta) values of the investigated molecule were computed using ab initio quantum mechanical calculations. The calculated results also show that the 2,4-DCA molecule might have microscopic nonlinear optical (NLO) behavior with non-zero values. Natural atomic charges of 2,4-DCA and 4-chloroaniline was calculated and compared. The isotropic chemical shift computed by (13)C NMR analyses also shows good agreement with experimental observations. The theoretically predicted FTIR and FT-Raman spectra of the title molecule have been constructed.

  4. Application of FTIR spectroscopy to study the thermal stability of magnesium aspartate-arginine

    NASA Astrophysics Data System (ADS)

    Hacura, Andrzej; Marcoin, Wacława; Pasterny, Karol

    2012-03-01

    FTIR spectroscopy has been applied to study the thermal stability of magnesium aspartatearginine. An attempt has been made, using theoretically predicted IR spectra, to relate the changes in the experimental spectra with the decomposition process of the studied magnesium complex.

  5. SbCl3-catalyzed one-pot synthesis of 4,4′-diaminotriarylmethanes under solvent-free conditions: Synthesis, characterization, and DFT studies

    PubMed Central

    2011-01-01

    Summary A simple, efficient, and mild procedure for a solvent-free one-step synthesis of various 4,4′-diaminotriarylmethane derivatives in the presence of antimony trichloride as catalyst is described. Triarylmethane derivatives were prepared in good to excellent yields and characterized by elemental analysis, FTIR, 1H and 13C NMR spectroscopic techniques. The structural and vibrational analysis were investigated by performing theoretical calculations at the HF and DFT levels of theory by standard 6-31G*, 6-31G*/B3LYP, and B3LYP/cc-pVDZ methods and good agreement was obtained between experimental and theoretical results. PMID:21445373

  6. FT-IR, FT-Raman spectra and DFT calculations of melaminium perchlorate monohydrate

    NASA Astrophysics Data System (ADS)

    Kanagathara, N.; Marchewka, M. K.; Drozd, M.; Renganathan, N. G.; Gunasekaran, S.; Anbalagan, G.

    2013-08-01

    Melaminium perchlorate monohydrate (MPM), an organic material has been synthesized by slow solvent evaporation method at room temperature. Powder X-ray diffraction analysis confirms that MPM crystal belongs to triclinic system with space group P-1. FTIR and FT Raman spectra are recorded at room temperature. Functional group assignment has been made for the melaminium cations and perchlorate anions. Vibrational spectra have also been discussed on the basis of quantum chemical density functional theory (DFT) calculations using Firefly (PC GAMESS) version 7.1 G. Vibrational frequencies are calculated and scaled values are compared with experimental values. The assignment of the bands has been made on the basis of the calculated PED. The Mulliken charges, HOMO-LUMO orbital energies are analyzed directly from Firefly program log files and graphically illustrated. HOMO-LUMO energy gap and other related molecular properties are also calculated. The theoretically constructed FT-IR and FT-Raman spectra of MPM coincide with the experimental one. The chemical structure of the compound has been established by 1H and 13C NMR spectra. No detectable signal was observed during powder test for second harmonic generation.

  7. Zn(II), Cd(II) and Hg(I) complexes of cinnamic acid: FT-IR, FT-Raman, 1H and 13C NMR studies

    NASA Astrophysics Data System (ADS)

    Kalinowska, M.; Świsłocka, R.; Lewandowski, W.

    2011-05-01

    The effect of zinc, cadmium(II) and mercury(I) ions on the electronic structure of cinnamic acid (phenylacrylic acid) was studied. In this research many miscellaneous analytical methods, which complement one another, were used: infrared (FT-IR), Raman (FT-Raman), nuclear magnetic resonance ( 1H, 13C NMR) and quantum mechanical calculations. The spectroscopic studies provide some knowledge on the distribution of the electronic charge in molecule, the delocalization energy of π-electrons and the reactivity of metal complexes. In the series of Zn(II) → Cd(II) → Hg(I) cinnamates: (1) systematic shifts of several bands in the experimental and theoretical IR and Raman spectra and (2) regular chemical shifts for protons 1H and 13C nuclei were observed.

  8. Structural study, NCA, FT-IR, FT-Raman spectral investigations, NBO analysis, thermodynamic functions of N-acetyl-l-phenylalanine.

    PubMed

    Raja, B; Balachandran, V; Revathi, B

    2015-03-05

    The FT-IR and FT-Raman spectra of N-acetyl-l-phenylalanine were recorded and analyzed. Natural bond orbital analysis has been carried out for various intramolecular interactions that are responsible for the stabilization of the molecule. HOMO-LUMO energy gap has been computed with the help of density functional theory. The statistical thermodynamic functions (heat capacity, entropy, vibrational partition function and Gibbs energy) were obtained for the range of temperature 100-1000K. The polarizability, first hyperpolarizability, anisotropy polarizability invariant has been computed using quantum chemical calculations. The infrared and Raman spectra were also predicted from the calculated intensities. Comparison of the experimental and theoretical spectra values provides important information about the ability of the computational method to describe the vibrational modes. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. N-Sulfinylimine compounds, R-NSO: a chemistry family with strong temperament

    NASA Astrophysics Data System (ADS)

    Romano, R. M.; Della Védova, C. O.

    2000-04-01

    In this review, an update on the structural properties and theoretical studies of N-sulfinylimine compounds (R-NSO) is reported. They were deduced using several experimental techniques: gas-electron diffraction (GED), X-ray diffraction, 17O NMR, ultraviolet-visible absorption spectroscopy (UV-Vis), FTIR (including matrix studies of molecular randomisation) and Raman (including pre-resonant Raman spectra). Data are compared with those obtained by theoretical calculations. With these tools, excited state geometry using the time-dependent theory was calculated for these kinds of compounds. The existence of pre-resonant Raman effect was reported recently for R-NSO compounds. The configuration of R-NSO compounds was checked for this series confirming the existence of only one syn configuration. This finding is corroborated by theoretical calculations. The method of preparation is also summarised.

  10. Synthesis, geometry optimization, spectroscopic investigations (UV/Vis, excited states, FT-IR) and application of new azomethine dyes

    NASA Astrophysics Data System (ADS)

    Shahab, Siyamak; Sheikhi, Masoome; Filippovich, Liudmila; Kumar, Rakesh; Dikusar, Evgenij; Yahyaei, Hooriye; Khaleghian, Mehrnoosh

    2017-11-01

    In the present work, the quantum theoretical calculations of the molecular structures of the four new synthesized azomethine dyes such as: (E)-N-(4-butoxybenzylidene)-4-((E)-phenyldiazenyl)aniline (PAZB-6), (E)-N-(4-(benzyloxy)benzylidene)-4-((E))-phenyldiazenyl)aniline (PAZB-7), 4-((E)-4-((E)-phenyldiazenyl)phenyl)imino)methyl)phenol (PAZB-8), (E)-N-(4-methoxybenzylidene)-4-((E))-phenyldiazenyl)aniline (PAZB-9) have been predicted using Density Functional Theory in the solvent Dimethylformamide. The geometries of the azomethine dyes were optimized by PBE1PBE/6-31+G* level of theory. The electronic spectra of the title compounds in the solvent DMF was carried out by TDPBE1PBE/6-31+G* method. FT-IR spectra of the title compounds are recorded and discussed. Frontier molecular orbitals, molecular electrostatic potential, electronic properties, natural charges and Natural Bond Orbital (NBO) analysis of the mentioned compounds were investigated and discussed by theoretical calculations. The azomethine dyes were synthesized after quantum chemical modeling for optical applications. A new study of anisotropy of thermal and electrical conductivity of the colored stretched PVA-films have been undertaken.

  11. Detection of tautomer proportions of dimedone in solution: a new approach based on theoretical and FT-IR viewpoint

    NASA Astrophysics Data System (ADS)

    Karabulut, Sedat; Namli, Hilmi; Leszczynski, Jerzy

    2013-08-01

    Molecular structures of stable tautomers of dimedone [5,5-dimethyl-cyclohexane-1,3-dione ( 1) and 3-hydroxy-5,5-dimethylcyclohex-2-enone ( 2)] were optimized and vibrational frequencies were calculated in five different organic solvents (dimethylsulfoxide, methanol, acetonitrile, dichloromethane and chloroform). Geometry optimizations and harmonic vibrational frequency calculations were performed at DFT 6-31+G(d,p), DFT 6-311++G(2d,2p), MP2 6-311++G (2d,2p) and MP2 aug-cc-pVDZ levels for both stable forms of dimedone. Experimental FT-IR spectra of dimedone have also been recorded in the same solvents. A new approach was developed in order to determine tautomers' ratio using both experimental and theoretical data in Lambert-Beer equation. Obtained results were compared with experimental results published in literature. It has been concluded that while DFT 6-31+G(d,p) method provides accurate enol ratio in DMSO, MeOH, and DCM, in order to obtain accurate results for the other solvents the MP2 aug-cc-pVDZ level calculations should be used for CH3CN and CHCl3 solutions.

  12. Synthesis, crystal structure, vibrational spectroscopy, optical properties and theoretical studies of a new organic-inorganic hybrid material: [((CH3)2NH2)(+)]6·[(BiBr6)(3-)]2.

    PubMed

    Ben Ahmed, A; Feki, H; Abid, Y

    2014-12-10

    A new organic-inorganic hybrid material, [((CH3)2NH2)(+)]6·[(BiBr6)(3-)]2, has been synthesized and characterized by X-ray diffraction, FT-IR, Raman spectroscopy and UV-Visible absorption. The studied compound crystallizes in the triclinic system, space group P1¯ with the following parameters: a=8.4749(6)(Å), b=17.1392(12)(Å), c=17.1392(12)(Å), α=117.339(0)°, β=99.487(0)°, γ=99.487(0)° and Z=2. The crystal lattice is composed of a two discrete (BiBr6)(3-) anions surrounded by six ((CH3)2NH2)(+) cations. Complex hydrogen bonding interactions between (BiBr6)(3-) and organic cations from a three-dimensional network. Theoretical calculations were performed using density functional theory (DFT) for studying the molecular structure, vibrational spectra and optical properties of the investigated molecule in the ground state. The full geometry optimization of designed system is performed using DFT method at B3LYP/LanL2DZ level of theory using the Gaussian03. The optimized geometrical parameters obtained by DFT calculations are in good agreement with single crystal XRD data. The vibrational spectral data obtained from FT-IR and Raman spectra are assigned based on the results of the theoretical calculations. The energy and oscillator strength calculated by Time-Dependent Density Functional Theory (TD-DFT) results complements with the experimental findings. The simulated spectra satisfactorily coincide with the experimental UV-Visible spectrum. The results show good consistent with the experiment and confirm the contribution of metal orbital to the HOMO-LUMO boundary. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Resonant tunneling in frustrated total internal reflection.

    PubMed

    Longhi, Stefano

    2005-10-15

    Anomalous light transmission and resonant tunneling in frustrated total internal reflection (FTIR) are theoretically predicted to occur at periodically curved interfaces. For a low-contrast index and for grazing incidence, it is shown that FTIR resonant tunneling provides an optical realization of field-induced barrier transparency in quantum tunneling.

  14. Enzyme Active Site Interactions by Raman/FTIR, NMR, and Ab Initio Calculations

    PubMed Central

    Deng, Hua

    2017-01-01

    Characterization of enzyme active site structure and interactions at high resolution is important for the understanding of the enzyme catalysis. Vibrational frequency and NMR chemical shift measurements of enzyme-bound ligands are often used for such purpose when X-ray structures are not available or when higher resolution active site structures are desired. This review is focused on how ab initio calculations may be integrated with vibrational and NMR chemical shift measurements to quantitatively determine high-resolution ligand structures (up to 0.001 Å for bond length and 0.01 Å for hydrogen bonding distance) and how interaction energies between bound ligand and its surroundings at the active site may be determined. Quantitative characterization of substrate ionic states, bond polarizations, tautomeric forms, conformational changes and its interactions with surroundings in enzyme complexes that mimic ground state or transition state can provide snapshots for visualizing the substrate structural evolution along enzyme-catalyzed reaction pathway. Our results have shown that the integration of spectroscopic studies with theoretical computation greatly enhances our ability to interpret experimental data and significantly increases the reliability of the theoretical analysis. PMID:24018325

  15. Experimental (X-ray, FT-IR and UV-vis spectra) and theoretical methods (DFT study) of (E)-3-methoxy-2-[(p-tolylimino)methyl]phenol.

    PubMed

    Demircioğlu, Zeynep; Albayrak, Çiğdem; Büyükgüngör, Orhan

    2014-07-15

    A suitable single crystal of (E)-3-methoxy-2-[(p-tolylimino)methyl]phenol, formulated as C15H15N1O2, reveals that the structure is adopted to its E configuration about the azomethine C=N double bond. The compound adopts a enol-imine tautomeric form with a strong intramolecular O-H⋯N hydrogen bond. The single crystal X-ray diffraction analysis at 296K crystallizes in the monoclinic space group P21/c with a = 13.4791(11) Å, b = 6.8251(3) Å, c = 18.3561(15) Å, α = 90°, β = 129.296(5)°, γ = 90° and Z = 4. Comprehensive theoretical and experimental structural studies on the molecule have been carried out by FT-IR and UV-vis spectrometry. Optimized molecular structure and harmonic vibrational frequencies have been investigated by DFT/B3LYP method with 6-31G(d,p) basis set. Stability of the molecule, hyperconjugative interactions, charge delocalization and intramolecular hydrogen bond has been analyzed by using natural bond orbital (NBO) analysis. Electronic structures were discussed by TD-DFT method and the relocation of the electron density were determined. The energetic behavior of the title compound has been examined in solvent media using polarizable continuum model (PCM). Molecular electrostatic potential (MEP), Mulliken population method and natural population analysis (NPA) have been studied. Nonlinear optical (NLO) properties were also investigated. In addition, frontier molecular orbitals analysis have been performed from the optimized geometry. An ionization potential (I), electron affinity (A), electrophilicity index (ω), chemical potential (μ), electronegativity (χ), hardness (η), and softness (S), have been investigated. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Molecular structure, nonlinear optical studies and spectroscopic analysis of chalcone derivative (2E)-3-[4-(methylsulfanyl) phenyl]-1-(3-bromophenyl) prop-2-en-1-one by DFT calculations

    NASA Astrophysics Data System (ADS)

    Kumar, Amit; Kumar, Rajesh; Gupta, Archana; Tandon, Poonam; D'silva, E. Deepak

    2017-12-01

    A collective experimental and theoretical study was conducted on the molecular structure and vibrational spectra of nonlinear optical chalcone derivative (2E)-3-[4-(methylsulfanyl) phenyl]-1-(3-bromophenyl) prop-2-en-1-one (3Br4MSP). The FT-IR and FT-Raman spectra of the molecule in the solid phase have been recorded. Density functional theory (DFT) calculations at B3LYP level with 6-311++G (d,p) basis set have been carried out to derive useful information about the molecular structure and to assign the relevant electronic and vibrational features. These calculations reveal that the optimized geometry closely resembles the experimental XRD data. The vibrational spectra were analyzed on the basis of the potential energy distribution (PED) of each vibrational mode, which allowed us to obtain a quantitative as well as qualitative interpretation of FT-IR and FT-Raman spectra. The UV-vis spectrum was recorded in methanol solution. The excited state properties have been determined by TD-DFT method and the effect of solvent was analyzed by PCM model. The most prominent transition corresponds to π→π∗. The reactivity parameters as chemical potential, global hardness, and electrophilicity index have also been calculated. To provide an explicit assignment and analysis of 13C and 1H NMR spectra, theoretical calculations on chemical shift of the title compound were done through GIAO method at B3LYP/6-311++G (d,p) level. The Mulliken's population analysis shows one of the simplest pictures of charge distribution. The standard statistical thermodynamic functions like heat capacity at constant pressure (Cop,m), entropy (Som) and enthalpy (Hom) were obtained from the theoretical harmonic frequencies for the optimized molecule. The nonlinear optical properties of title molecule are also addressed theoretically. Two contributions, vibrational and electronic, to the electrical properties polarizability and first order hyperpolarizability of 3Br4MSP have been evaluated using the self-consistent field wave functions within the double harmonic oscillator approximation.

  17. Structural, vibrational and nuclear magnetic resonance investigations of 4-bromoisoquinoline by experimental and theoretical DFT methods.

    PubMed

    Arjunan, V; Thillai Govindaraja, S; Jayapraksh, A; Mohan, S

    2013-04-15

    Quantum chemical calculations of energy, structural parameters and vibrational wavenumbers of 4-bromoisoquinoline (4BIQ) were carried out by using B3LYP method using 6-311++G(**), cc-pVTZ and LANL2DZ basis sets. The optimised geometrical parameters obtained by DFT calculations are in good agreement with electron diffraction data. Interpretations of the experimental FTIR and FT-Raman spectra have been reported with the aid of the theoretical wavenumbers. The differences between the observed and scaled wavenumber values of most of the fundamentals are very small. The thermodynamic parameters have also been computed. Electronic properties of the molecule were discussed through the molecular electrostatic potential surface, HOMO-LUMO energy gap and NBO analysis. To provide precise assignments of (1)H and (13)CNMR spectra, isotropic shielding and chemical shifts were calculated with the Gauge-Invariant Atomic Orbital (GIAO) method. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. The structure elucidation of mequindox and 1,4-bisdesoxymequindox: NMR analyses, FT-IR spectra, DFT calculations and thermochemical studies

    NASA Astrophysics Data System (ADS)

    Zhang, Jiaheng; He, Xin; Gao, Haixiang

    2011-10-01

    In the current work, we report a combined experimental and theoretical study on the molecular conformation, vibrational spectra, and nuclear magnetic resonance (NMR) spectra of mequindox (MEQ) and 1,4-bisdesoxymequindox (1,4-BDM). The geometric structure and vibrational frequencies of MEQ and 1,4-BDM have been calculated by density functional theory employing the B3LYP functional and 6-311++G(d,p) basis set. The 1H and 13C NMR chemical shifts have been calculated by gauge-including atomic orbital method with B3LYP 6-311++G(2df,2pd) approach. The calculation results have been applied to simulate the infrared and NMR spectra of the compounds. The theoretical results agree well with the observed spectra. The bond dissociation enthalpy of MEQ and the heat of formation of MEQ and 1,4-BDM have also been computed.

  19. Spectral and structural studies of the anti-cancer drug Flutamide by density functional theoretical method

    NASA Astrophysics Data System (ADS)

    Mariappan, G.; Sundaraganesan, N.

    2014-01-01

    A comprehensive screening of the more recent DFT theoretical approach to structural analysis is presented in this section of theoretical structural analysis. The chemical name of 2-methyl-N-[4-nitro-3-(trifluoromethyl)phenyl]-propanamide is usually called as Flutamide (In the present study it is abbreviated as FLT) and is an important and efficacious drug in the treatment of anti-cancer resistant. The molecular geometry, vibrational spectra, electronic and NMR spectral interpretation of Flutamide have been studied with the aid of density functional theory method (DFT). The vibrational assignments of the normal modes were performed on the basis of the PED calculations using the VEDA 4 program. Comparison of computational results with X-ray diffraction results of Flutamide allowed the evaluation of structure predictions and confirmed B3LYP/6-31G(d,p) as accurate for structure determination. Application of scaling factors for IR and Raman frequency predictions showed good agreement with experimental values. This is supported the assignment of the major contributors of the vibration modes of the title compound. Stability of the molecule arising from hyperconjugative interactions leading to its bioactivity, charge delocalization have been analyzed using natural bond orbital (NBO) analysis. NMR chemical shifts of the molecule were calculated using the gauge independent atomic orbital (GIAO) method. The comparison of measured FTIR, FT-Raman, and UV-Visible data to calculated values allowed assignment of major spectral features of the title molecule. Besides, Frontier molecular orbital analyze was also investigated using theoretical calculations.

  20. Experimental and theoretical spectroscopic studies of anticancer drug rosmarinic acid using HF and density functional theory.

    PubMed

    Mariappan, G; Sundaraganesan, N; Manoharan, S

    2012-11-01

    In this work, we reported a combined experimental and theoretical study on molecular structure, vibrational spectra and NBO analysis of anticancer drug of rosmarinic acid. The optimized molecular structure, atomic charges, vibrational frequencies, natural bond orbital analysis and ultraviolet-visible spectral interpretation of rosmarinic acid have been studied by performing HF and DFT/B3LYP/6-31G(d,p) level of theory. The FT-IR (solid and solution phase), FT-Raman (solid phase) spectra were recorded in the region 4000-400 and 3500-50 cm(-1), respectively. The UV-Visible absorption spectra of the compound that dissolved in ethanol were recorded in the range of 200-800 nm. The scaled wavenumbers are compared with the experimental values. The difference between the observed and scaled wavenumber values of most of the fundamentals is very small. The formation of hydrogen bond was investigated in terms of the charge density by the NBO calculations. Based on the UV spectra and TD-DFT calculations, the electronic structure and the assignments of the absorption bands were carried out. Besides, molecular electrostatic potential (MEP), frontier molecular orbitals (FMO) analysis were investigated using theoretical calculations. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Raman investigation with group theoretical method on structural polymorphism of the nonlinear optical hexamine: p-nitrophenol cocrystals

    NASA Astrophysics Data System (ADS)

    Vijayalakshmi, S.; Kalyanaraman, S.; Ravindran, T. R.

    2014-09-01

    We have synthesized organic non-centrosymmetric cocrystals of 1:1 and 1:2 mole ratios of non-proton-transferred hexamine and p-nitrophenol complexes by using a slow evaporation method. The cocrystal with different stoichiometric variation gets crystallized into different crystallographic structures. The non-proton-transfer process of the complexes and the charge transfer (CT) interaction are established through Fourier transform infrared (FTIR) spectroscopy. The contribution of the water molecule in the 1:2 adduct is explained through FTIR analysis. The result has an important bearing in our present study. Existence of two different crystallographic structures (polymorphism) is confirmed by the lower frequency modes that appeared in Raman spectra. The variation in the Raman active modes at lower frequencies that arise on account of polymorphism is addressed through factor group analysis. From the UV-vis analysis, the interesting result of hyperchromic and hypochromic shifts being observed in the 1:1 and 1:2 adducts, respectively, supports the polymorphic behavior. On seeing the variation in properties, particularly nonlinear optical properties, the higher second harmonic generation (SHG) efficiency compared with KDP is observed by using the Kurtz-Perry method for both complexes.

  2. FTIR, FT-RAMAN, NMR, spectra, normal co-ordinate analysis, NBO, NLO and DFT calculation of N,N-diethyl-4-methylpiperazine-1-carboxamide molecule

    NASA Astrophysics Data System (ADS)

    Muthu, S.; Elamurugu Porchelvi, E.

    2013-11-01

    The Fourier Transform Infrared (FT-IR) and FT-Raman of N,N-diethyl-4-methylpiperazine-1-carboxamide (NND4MC) have been recorded and analyzed. The structure of the compound was optimized and the structural characteristics were determined by density functional theory (DFT) using B3LYP method with 6-31G(d,p) and 6-311G(d,p) basis sets. The difference between the observed and scaled wavenumber values of most of the fundamentals is very small. The theoretically predicted FT-IR and FT-Raman spectra of the title molecule have been constructed. The detailed interpretation of the vibrational spectra has been carried out with aid of normal coordinate analysis (NCA) following the scaled quantum mechanical force field methodology. Stability of the molecule arising from hyperconjugative interactions and charge delocalization has been analyzed using natural bond orbital (NBO) analysis. The results show that electron density (ED) in the σ* and π* antibonding orbitals and second order delocalization energies (E2) confirm the occurrence of intramolecular charge transfer (ICT) within the molecule. The electronic dipole moment (μD) and the first hyperpolarizability (βtot) values of the investigated molecule were computed using Density Functional Theory (DFT/B3LYP) with 6-31G(d,p) and 6-311G(d,p) basis sets. The calculated results also show that the NND4MC molecule may have microscopy nonlinear optical (NLO) behavior with non zero values. Mulliken atomic charges of NND4MC were calculated. The 13C nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated by the gauge independent atomic orbital (GIAO) method and compared with experimental results. The UV-Vis spectrum of the compound was recorded. The theoretical electronic absorption spectra have been calculated by using CIS, TD-DFT methods. A study on the electronic properties, such as HOMO and LUMO energies, molecular electrostatic potential (MEP) were also performed.

  3. Red/blue shifting hydrogen bonds in acetonitrile-dimethyl sulphoxide solutions: FTIR and theoretical studies

    NASA Astrophysics Data System (ADS)

    Kannan, P. P.; Karthick, N. K.; Mahendraprabu, A.; Shanmugam, R.; Elangovan, A.; Arivazhagan, G.

    2017-07-01

    FTIR spectra of neat acetonitrile (AN), dimethyl sulphoxide (DMSO) and their binary solutions at various mole fractions have been recorded at room temperature. Theoretical calculations have also been carried out on acetonitrile (monomer, dimer), dimethyl sulphoxide (monomer, dimer) and AN - DMSO complex molecules. 1:2 (AN:DMSO) and 2:1 complexation through the red shifting (AN) C - H ⋯ O = S(DMSO) and blue shifting (DMSO) C - H ⋯ N ≡ C(AN) hydrogen bonds has been identified. The experimental and theoretical studies favour the presence of both the monomer and dimer in liquid AN, but only closed dimers in DMSO. The dipole-dipole interactions existed in AN and DMSO dimers disappear in the complex molecules. Partial π bond between S and O atoms, and three lone pair of electrons on oxygen atom of DMSO have been noticed theoretically.

  4. Spectroscopic notes of Methyl Red (MR) dye.

    PubMed

    El-Mansy, M A M; Yahia, I S

    2014-09-15

    In the present work, a combined experimental and theoretical study on molecular structure and vibrational frequencies of MR were reported. The FT-IR spectrum of MR is recorded in the solid phase. The equilibrium geometries, harmonic vibrational frequencies, thermo-chemical parameters, total dipole moment and HOMO-LUMO energies are calculated by DFT/B3LYP utilizing 6-311G(d,p) basis set. Results showed that MR is highly recommended to be a promising structure for many applications in optoelectronic devices due to its high calculated dipole moment value (7.2 Debye) and lower HOMO-LUMO energy gap of 3.5 eV. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Density functional theory studies on molecular structure and vibrational spectra of NLO crystal L-phenylalanine phenylalanium nitrate for THz application

    NASA Astrophysics Data System (ADS)

    Amalanathan, M.; Hubert Joe, I.; Rastogi, V. K.

    2011-12-01

    Molecular structure, FT-IR and Raman spectra of L-phenylalanine phenylalanium nitrate have been investigated using density functional theory calculation. The polarizability and hyperpolarizability value of the crystal is also calculated. Natural bond orbital analysis confirms the presence of intramolecular charge transfer and the hydrogen bonding interaction. Simultaneous activation of ring C sbnd C stretching modes shows the non-centrosymmetric symmetry. Terahertz time-domain spectroscopy has been used to detect the absorption spectra in the frequency range from 0.05 to 1.3 THz. Theoretically predicted β value exhibits the high nonlinear optical activity.

  6. Molecular structure and vibrational analysis of Trifluoperazine by FT-IR, FT-Raman and UV-Vis spectroscopies combined with DFT calculations.

    PubMed

    Rajesh, P; Gunasekaran, S; Gnanasambandan, T; Seshadri, S

    2015-02-25

    The complete vibrational assignment and analysis of the fundamental vibrational modes of Trifluoperazine (TFZ) was carried out using the experimental FT-IR, FT-Raman and UV-Vis data and quantum chemical studies. The observed vibrational data were compared with the wavenumbers derived theoretically for the optimized geometry of the compound from the DFT-B3LYP gradient calculations employing 6-31G (d,p) basis set. Thermodynamic properties like entropy, heat capacity and enthalpy have been calculated for the molecule. The HOMO-LUMO energy gap has been calculated. The intramolecular contacts have been interpreted using natural bond orbital (NBO) and natural localized molecular orbital (NLMO) analysis. Important non-linear properties such as first hyperpolarizability of TFZ have been computed using B3LYP quantum chemical calculation. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Synthesis, characterization and theoretical studies of 5-(benzylthio)-1-cylopentyl-1H-tetrazole

    NASA Astrophysics Data System (ADS)

    Saglam, S.; Disli, A.; Erdogdu, Y.; Marchewka, M. K.; Kanagathara, N.; Bay, B.; Güllüoğlu, M. T.

    2015-01-01

    In this study, 5-(benzylthio)-1-cylopentyl-1H-tetrazole (5B1C1HT) have been synthesized. Boiling points of the obtained compound have been determined and it has been characterized by FT-IR, 1H NMR, 13C-APT and LC-MS spectroscopy techniques. The FT-IR, 1H NMR and 13C-APT spectral measurements of the 5B1C1HT compound and complete assignment of the vibrational bands observed in spectra has been discussed. The spectra were interpreted with the aid of normal coordinate analysis following full structure optimization and force field calculations based on Density Functional Theory (DFT) at 6-311++G**, cc-pVDZ and cc-pVTZ basis sets. The optimized geometry with 6-311++G** basis sets were used to determine the total energy distribution, harmonic vibrational frequencies, IR intensities.

  8. Synthesis, characterization and theoretical studies of 5-(benzylthio)-1-cylopentyl-1H-tetrazole.

    PubMed

    Saglam, S; Disli, A; Erdogdu, Y; Marchewka, M K; Kanagathara, N; Bay, B; Güllüoğlu, M T

    2015-01-25

    In this study, 5-(benzylthio)-1-cylopentyl-1H-tetrazole (5B1C1HT) have been synthesized. Boiling points of the obtained compound have been determined and it has been characterized by FT-IR, (1)H NMR, (13)C-APT and LC-MS spectroscopy techniques. The FT-IR, (1)H NMR and (13)C-APT spectral measurements of the 5B1C1HT compound and complete assignment of the vibrational bands observed in spectra has been discussed. The spectra were interpreted with the aid of normal coordinate analysis following full structure optimization and force field calculations based on Density Functional Theory (DFT) at 6-311++G(**), cc-pVDZ and cc-pVTZ basis sets. The optimized geometry with 6-311++G(**) basis sets were used to determine the total energy distribution, harmonic vibrational frequencies, IR intensities. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. (2E)-1-(5-Chlorothiophen-2-yl)-3-{4-[(E)-2-phenylethenyl]phenyl}prop-2-en-1-one: Synthesis, XRD, FT-IR, Raman and DFT studies.

    PubMed

    Parlak, Cemal; Ramasami, Ponnadurai; Kumar, Chandraju Sadolalu Chidan; Tursun, Mahir; Quah, Ching Kheng; Rhyman, Lydia; Bilge, Metin; Fun, Hoong-Kun; Chandraju, Siddegowda

    2015-01-01

    A novel (2E)-1-(5-chlorothiophen-2-yl)-3-{4-[(E)-2-phenylethenyl]phenyl}prop-2-en-1-one [C21H15ClOS] compound has been synthesized and its structure has been characterized by FT-IR, Raman and single-crystal X-ray diffraction techniques. The conformational isomers, optimized geometric parameters, normal mode frequencies and corresponding vibrational assignments of the compound have been examined by means of HF, MP2, BP86, BLYP, BMK, B3LYP, B3PW91, B3P86 and M06-2X functionals. Reliable vibrational assignments and molecular orbitals have been investigated by the potential energy distribution and natural bonding orbital analyses, respectively. The compound crystallizes in the triclinic space group P-1 with the cis-trans-trans form. There is a good agreement between the experimentally determined structural parameters and vibrational frequencies of the compound and those predicted theoretically using the density functional theory with the BLYP and BP86 functionals. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Synthesis and spectroscopical study of rhodanine derivative using DFT approaches

    NASA Astrophysics Data System (ADS)

    Anbarasan, R.; Dhandapani, A.; Manivarman, S.; Subashchandrabose, S.; Saleem, H.

    2015-07-01

    The optimized molecular structure, vibrational frequencies, corresponding vibrational assignments of (E)-5-benzylidene-2-thioxothiazolidine-4-one (E5BTTO) have been investigated experimentally and theoretically based on Density Functional Theory (DFT) approach. The FT-Raman and FT-IR spectra of E5BTTO were recorded in solid phase. Theoretical calculations were performed at the DFT level using the Gaussian 03 program. The experimental bands were assigned and characterized on the basis of the scaled theoretical wavenumber by their Total Energy Distribution (TED). The results of the calculation were applied to simulate infrared and raman spectra of the title compound which showed good agreement with the observed spectra. The calculated HOMO and LUMO energies show that charge transfer occur within the molecule. Stability arising from hyperconjugative interactions leading to its NLO activity and charge delocalization were analyzed using Natural Bond Orbital (NBO) analysis.

  11. Structural characterization, surface characteristics and non covalent interactions of a heterocyclic Schiff base: Evaluation of antioxidant potential by UV-visible spectroscopy and DFT

    NASA Astrophysics Data System (ADS)

    Chithiraikumar, S.; Gandhimathi, S.; Neelakantan, M. A.

    2017-06-01

    A heterocyclic Schiff base, (E)-4-(1-((pyridin-2-ylmethyl)imino)ethyl)benzene-1,3-diol (L) was synthesized and isolated as single crystals. Its structure was characterized by FT-IR, UV, 1H and 13C NMR, and further confirmed by X-ray crystallography. Qualitatively and quantitatively the various interactions in the crystal structure of L has been analyzed by Hirshfeld surfaces and 2D fingerprint plots. Non covalent interactions have been studied by electron localization function (ELF) and mapped with reduced density gradient (RDG) analysis. The molecular structure was studied computationally by DFT-B3LYP/6-311G(d,p) calculations. HOMO-LUMO energy levels, chemical reactivity descriptors and thermodynamic parameters have been investigated at the same level of theory. The antioxidant potential of L was evaluated experimentally by measuring DPPH free radical scavenging effect using UV-visible spectroscopy and theoretically by DFT. Theoretical parameters, such as bond dissociation enthalpy (BDE) and spin density calculated suggests that antioxidant potential of L is due to H atom abstraction from the sbnd OH group.

  12. FTIR spectroscopy as a tool for nano-material characterization

    NASA Astrophysics Data System (ADS)

    Baudot, Charles; Tan, Cher Ming; Kong, Jeng Chien

    2010-11-01

    Covalently grafting functional molecules to carbon nanotubes (CNTs) is an important step to leverage the excellent properties of that nano-fiber in order to exploit its potential in improving the mechanical and thermal properties of a composite material. While Fourier Transform Infra Red (FTIR) spectroscopy can display the various chemical bonding in a material, we found that the existing database in FTIR library does not cover all the bonding information present in functionalized CNTs because the bond between the grafted molecule and the CNT is new in the FTIR study. In order to extend the applicability of FTIR to nano-material, we present a theoretical method to derive FTIR spectroscopy and compare it with our experimental results. In particular, we illustrate a method for the identification of functional molecules grafted on CNTs, and we are able to confirm that the functional molecules are indeed covalently grafted on the CNTs without any alterations to its functional groups.

  13. FT-IR, FT-Raman spectra and DFT calculations of melaminium perchlorate monohydrate.

    PubMed

    Kanagathara, N; Marchewka, M K; Drozd, M; Renganathan, N G; Gunasekaran, S; Anbalagan, G

    2013-08-01

    Melaminium perchlorate monohydrate (MPM), an organic material has been synthesized by slow solvent evaporation method at room temperature. Powder X-ray diffraction analysis confirms that MPM crystal belongs to triclinic system with space group P-1. FTIR and FT Raman spectra are recorded at room temperature. Functional group assignment has been made for the melaminium cations and perchlorate anions. Vibrational spectra have also been discussed on the basis of quantum chemical density functional theory (DFT) calculations using Firefly (PC GAMESS) version 7.1 G. Vibrational frequencies are calculated and scaled values are compared with experimental values. The assignment of the bands has been made on the basis of the calculated PED. The Mulliken charges, HOMO-LUMO orbital energies are analyzed directly from Firefly program log files and graphically illustrated. HOMO-LUMO energy gap and other related molecular properties are also calculated. The theoretically constructed FT-IR and FT-Raman spectra of MPM coincide with the experimental one. The chemical structure of the compound has been established by (1)H and (13)C NMR spectra. No detectable signal was observed during powder test for second harmonic generation. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Structural, spectral and NBO analysis of 3-(1-(3-hydroxypropylamino)ethylidene)chroman-2,4-dione

    NASA Astrophysics Data System (ADS)

    Avdović, Edina H.; Milenković, Dejan; Dimitrić-Marković, Jasmina M.; Vuković, Nenad; Trifunović, Srećko R.; Marković, Zoran

    2017-11-01

    The structure of the newly synthesized coumarin derivative, 3-(1-(3-hydroxypropylamino)-ethylidene)-chroman-2,4-dione, was investigated experimentally and theoretically. FTIR, 1H and 13C NMR spectroscopic methods along with the density functional theory calculations, with B3LYP functional (and with empirical dispersion corrections D3BJ) in combination with the 6-311+G(d,p) basis set, are performed in order to characterize the molecular structure and spectroscopic behavior of the investigated coumarin derivative. Molecular docking analysis was carried out in order to identify the potency of inhibition of the title molecule against human C-reactive protein. The inhibition activity was obtained for ten conformations of ligand inside protein.

  15. Spectral and structural studies of the anti-cancer drug Flutamide by density functional theoretical method.

    PubMed

    Mariappan, G; Sundaraganesan, N

    2014-01-03

    A comprehensive screening of the more recent DFT theoretical approach to structural analysis is presented in this section of theoretical structural analysis. The chemical name of 2-methyl-N-[4-nitro-3-(trifluoromethyl)phenyl]-propanamide is usually called as Flutamide (In the present study it is abbreviated as FLT) and is an important and efficacious drug in the treatment of anti-cancer resistant. The molecular geometry, vibrational spectra, electronic and NMR spectral interpretation of Flutamide have been studied with the aid of density functional theory method (DFT). The vibrational assignments of the normal modes were performed on the basis of the PED calculations using the VEDA 4 program. Comparison of computational results with X-ray diffraction results of Flutamide allowed the evaluation of structure predictions and confirmed B3LYP/6-31G(d,p) as accurate for structure determination. Application of scaling factors for IR and Raman frequency predictions showed good agreement with experimental values. This is supported the assignment of the major contributors of the vibration modes of the title compound. Stability of the molecule arising from hyperconjugative interactions leading to its bioactivity, charge delocalization have been analyzed using natural bond orbital (NBO) analysis. NMR chemical shifts of the molecule were calculated using the gauge independent atomic orbital (GIAO) method. The comparison of measured FTIR, FT-Raman, and UV-Visible data to calculated values allowed assignment of major spectral features of the title molecule. Besides, Frontier molecular orbital analyze was also investigated using theoretical calculations. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Vibrational and theoretical study of selected diacetylenes.

    PubMed

    Roman, Maciej; Baranska, Malgorzata

    2013-11-01

    Six commonly used disubstituted diacetylenes with short side-chains (RCCCCR, where R=CH2OH, CH2OPh, C(CH3)2OH, C(CH3)3, Si(CH3)3, and Ph) were analyzed using vibrational spectroscopy and quantum-chemical calculations to shed new light on structural and spectroscopic properties of these compounds. Prior to that the conformational analysis of diacetylenes was performed to search the Potential Energy Surface for low-energy minima. Theoretical investigations were followed by the potential energy distribution (PED) analysis to gain deeper insight into FT-Raman and FT-IR spectra that, in some cases, were recorded for the first time for the studied compounds. The analysis was focused mainly on spectral features of the diacetylene system sensitive to the substitution. Shifts of the characteristic bands and changes in bond lengths were observed when changing the substituent. Furthermore, Fermi resonance was observed in the vibrational spectra of some diacetylenes. FT-IR spectra were measured by using two methods, i.e. transmission (with KBr substrate) and Attenuated Total Reflection (ATR), showing the latter adequate and fast tool for IR measurements of diacetylenes. Additionally, Surface Enhanced Raman Spectroscopy (SERS) was applied for phenyl derivative for the first time to study its interaction with metallic nanoparticles that seems to be perpendicular. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Polypeptides Based Molecular Electronics

    DTIC Science & Technology

    2008-10-06

    average of 0.82 nm, corresponding to the theoretical height of a MPTMS monolayer of 0.87nm. Fourier Transform Infrared Spectroscopy (FTIR) spectrum of 3... Infrared Spectroscopy (FTIR) of 3-Mercaptopropyl trimethoxysilane (MPTMS) layer on Si wafer Figure 23a. Topographical image of peptide on MPTMS...transform infrared spectroscopy . Peptide with COOH group is proven to attach to Aminopropyltrimethoxysilane (APTES) functionalized silicon substrate

  18. Vibrational spectroscopic studies and DFT calculations of 4-aminoantipyrine

    NASA Astrophysics Data System (ADS)

    Swaminathan, J.; Ramalingam, M.; Sethuraman, V.; Sundaraganesan, N.; Sebastian, S.

    2009-08-01

    The pyrazole derivative, 4-aminoantipyrine (4AAP), used as an intermediate for the synthesis of pharmaceuticals especially antipyretic and analgesic drugs has been analyzed experimentally and theoretically for its vibrational frequencies. The FTIR and FT Raman spectra of the title compound have been compared with the theoretically computed frequencies invoking the standard 6-311g(d,p) and cc-pVDZ basis sets at DFT level of theory (B3LYP). The harmonic vibrational frequencies at B3LYP/cc-pVDZ after appropriate scaling method seem to coincide satisfactorily with the experimental observations rather than B3LYP/6-311g(d,p) results. The theoretical spectrograms for FT-IR and FT-Raman spectra of 4AAP have been also constructed and compared with the experimental spectra. Additionally, thermodynamic data have also been calculated and discussed.

  19. Structural investigation of a new antimicrobial thiazolidine compound

    NASA Astrophysics Data System (ADS)

    Cozar, I. B.; Pırnǎu, A.; Vedeanu, N.; Nastasǎ, C.

    2013-11-01

    Thiazoles and their derivatives have attracted the interest over the last decades because of their varied biological activities: antibacterial, antiviral, antifungal, inflammation or in the treatment of allergies. A new synthesized compound 3-[2-(4-Methyl-2-phenyl-thiazol-5-yl)-2-oxo-ethyl]-thazolidine-2,4-dione was investigated by FT-IR, FT-Raman, 1H, 13C NMR spectroscopies and also by DFT calculations at B3LYP/6-31G(d) level of theory. The very good correlation found between the experimental and theoretical data shows that the optimized molecular structure is very close to reality. Also the NMR spectra show a monomeric behaviour of this compound in solutions.

  20. Structural investigation of a new antimicrobial thiazolidine compound

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cozar, I. B.; Pîrnău, A.; Vedeanu, N.

    2013-11-13

    Thiazoles and their derivatives have attracted the interest over the last decades because of their varied biological activities: antibacterial, antiviral, antifungal, inflammation or in the treatment of allergies. A new synthesized compound 3-[2-(4-Methyl-2-phenyl-thiazol-5-yl)-2-oxo-ethyl]-thazolidine-2,4-dione was investigated by FT-IR, FT-Raman, {sup 1}H, {sup 13}C NMR spectroscopies and also by DFT calculations at B3LYP/6-31G(d) level of theory. The very good correlation found between the experimental and theoretical data shows that the optimized molecular structure is very close to reality. Also the NMR spectra show a monomeric behaviour of this compound in solutions.

  1. Spectroscopic (FT-IR, FT-Raman, UV and NMR) investigation and NLO, HOMO-LUMO, NBO analysis of organic 2,4,5-trichloroaniline.

    PubMed

    Govindarajan, M; Karabacak, M; Periandy, S; Tanuja, D

    2012-11-01

    In this work, the experimental and theoretical study on the molecular structure and vibrational spectra of 2,4,5-trichloroaniline (C(6)H(4)NCl(3), abbreviated as 2,4,5-TClA) were studied. The FT-IR and FT-Raman spectra were recorded. The molecular geometry and vibrational frequencies in the ground state were calculated by using the Hartree-Fock (HF) and density functional theory (DFT) methods (B3LYP) with 6-311++G(d,p) basis set. Comparison of the observed fundamental vibrational frequencies of 2,4,5-TClA with calculated results by HF and DFT indicates that B3LYP is superior to HF method for molecular vibrational problems. The difference between the observed and scaled wavenumber values of most of the fundamentals is very small. The theoretically predicted FT-IR and FT-Raman spectra of the title molecule have been constructed. A study on the electronic properties, such as HOMO and LUMO energies, were performed by time-dependent DFT (TD-DFT) approach. Besides, molecular electrostatic potential (MEP) and thermodynamic properties were performed. The electric dipole moment (μ) and the first hyperpolarizability (β) values of the investigated molecule were computed using ab initio quantum mechanical calculations. The calculated results also show that the 2,4,5-TClA molecule may have microscopic nonlinear optical (NLO) behavior with non-zero values. Mulliken atomic charges of 2,4,5-TClA was calculated and compared with aniline and chlorobenzene molecules. The (13)C nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated by the gauge independent atomic orbital (GIAO) method and compared with experimental results. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Structure, IR and Raman spectra of phosphotrihydrazide studied by DFT

    NASA Astrophysics Data System (ADS)

    Furer, V. L.; Vandyukov, A. E.; Majoral, J. P.; Caminade, A. M.; Kovalenko, V. I.

    2016-09-01

    The FTIR and FT Raman measurements of the phosphotrihydrazide (S)P[N(Me)-NH2]3 have been performed. This compound is a zero generation dendrimer G0 with terminal amine groups. Structural optimization and normal mode analysis were obtained for G0 by the density functional theory (DFT). Optimized geometric bond length and angles obtained by DFT show good agreement with experiment. The amine terminal groups are characterized by the well-defined bands at 3321, 3238, 1614 cm- 1 in the experimental IR spectrum and by bands at 3327, 3241 cm- 1 in the Raman spectrum of G0. The experimental frequencies of asymmetric and symmetric NH2 stretching vibrations of amine group are lower than theoretical values due to intramolecular Nsbnd H ⋯ S hydrogen bond. This hydrogen bond is also responsible for higher experimental infrared intensity of these bands as compared with theoretical values. Relying on DFT calculations a complete vibrational assignment is proposed for the studied dendrimer.

  3. Vibrational studies on (E)-1-((pyridine-2-yl)methylene)semicarbazide using experimental and theoretical method

    NASA Astrophysics Data System (ADS)

    Subashchandrabose, S.; Ramesh Babu, N.; Saleem, H.; Syed Ali Padusha, M.

    2015-08-01

    The (E)-1-((pyridine-2-yl)methylene)semicarbazide (PMSC) was synthesized. The experimental and theoretical study on molecular structure and vibrational spectra were carried out. The FT-IR (400-4000 cm-1), FT-Raman (50-3500 cm-1) and UV-Vis (200-500 nm) spectra of PMSC were recorded. The geometric structure, conformational analysis, vibrational wavenumbers of PMSC in the ground state have been calculated using B3LYP method of 6-311++G(d,p) basis set. The complete vibrational assignments were made on the basis of TED, calculated by SQM method. The Non-linear optical activity was measured by means of first order hyperpolarizability calculation and π-electrons of conjugative bond in the molecule. The intra-molecular charge transfer, mode hyperconjugative interaction and molecular stabilization energies were calculated. The band gap energies between occupied and unoccupied molecular orbitals were analyzed; it proposes lesser band gap with more reactivity. To understand the electronic properties of this molecule the Mulliken charges were also calculated.

  4. Synthesis, spectral and structural characterization of isobutyl 4-(2-chlorophenyl)-5-cyano-6-(((dimethylamino)methylene)amino)-2-methyl-4H-pyran-3-carboxylate

    NASA Astrophysics Data System (ADS)

    Udhaya Kumar, C.; Velayutham Pillai, M.; Gokula Krishnan, K.; Ramalingan, C.

    2017-09-01

    A fascinating selectivity in the direction of the formation of the formamidine was observed upon the reaction of isobutyl 6-amino-4-(2-chlorophenyl)-5-cyano-2-methyl-4H-pyran-3-carboxylate with N,N-dimethyl formamide. A development in selectivity is explored and a probable mechanism for the reaction is also proposed. The formamidine has been analyzed by FT-IR, FT-Raman, LC-MS and NMR (1D and 2D (1H-1H COSY, 1H-13C COSY and HMBC)) spectra. The experimental findings are compared with the theoretical data calculated by using DFT-B3LYP with 6-311++G(d,p) basis set. A good agreement has been observed between experimental and theoretical data. Single crystal X-ray structural analysis of isobutyl 4-(2-chlorophenyl)-5-cyano-6-(((dimethylamino)methylene)amino)-2-methyl-4H-pyran-3-carboxylate (PDMF), evidences the conformation of pyran ring as "flattened-boat".

  5. Molecular structure and vibrational spectra of Bis(melaminium) terephthalate dihydrate: A DFT computational study

    NASA Astrophysics Data System (ADS)

    Tanak, Hasan; Marchewka, Mariusz K.; Drozd, Marek

    2013-03-01

    The experimental and theoretical vibrational spectra of Bis(melaminium) terephthalate dihydrate were studied. The Fourier transform infrared (FT-IR) spectra of the Bis(melaminium) terephthalate dihydrate and its deuterated analogue were recorded in the solid phase. The molecular geometry and vibrational frequencies of Bis(melaminium) terephthalate dihydrate in the ground state have been calculated by using the density functional method (B3LYP) with 6-31++G(d,p) basis set. The results of the optimized molecular structure are presented and compared with the experimental X-ray diffraction. The molecule contains the weak hydrogen bonds of Nsbnd H⋯O, Nsbnd H⋯N and Osbnd H⋯O types, and those bonds are calculated with DFT method. In addition, molecular electrostatic potential, frontier molecular orbitals and natural bond orbital analysis of the title compound were investigated by theoretical calculations. The lack of the second harmonic generation (SHG) confirms the presence of macroscopic center of inversion.

  6. Molecular structure and vibrational spectra of Bis(melaminium) terephthalate dihydrate: a DFT computational study.

    PubMed

    Tanak, Hasan; Marchewka, Mariusz K; Drozd, Marek

    2013-03-15

    The experimental and theoretical vibrational spectra of Bis(melaminium) terephthalate dihydrate were studied. The Fourier transform infrared (FT-IR) spectra of the Bis(melaminium) terephthalate dihydrate and its deuterated analogue were recorded in the solid phase. The molecular geometry and vibrational frequencies of Bis(melaminium) terephthalate dihydrate in the ground state have been calculated by using the density functional method (B3LYP) with 6-31++G(d,p) basis set. The results of the optimized molecular structure are presented and compared with the experimental X-ray diffraction. The molecule contains the weak hydrogen bonds of N-H···O, N-H···N and O-H···O types, and those bonds are calculated with DFT method. In addition, molecular electrostatic potential, frontier molecular orbitals and natural bond orbital analysis of the title compound were investigated by theoretical calculations. The lack of the second harmonic generation (SHG) confirms the presence of macroscopic center of inversion. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Spectroscopic (FT-IR, FT-Raman, UV absorption, 1H and 13C NMR) and theoretical (in B3LYP/6-311++G** level) studies on alkali metal salts of caffeic acid.

    PubMed

    Świsłocka, Renata

    2013-01-01

    The effect of some metals on the electronic system of benzoic and nicotinic acids has recently been investigated by IR, Raman and UV spectroscopy [1-3]. Benzoic and nicotinic acids are regarded model systems representing a wide group of aromatic ligands which are incorporated into enzymes. In this work the FT-IR (in solid state and in solution), FT-Raman, UV absorption and (1)H and (13)C NMR spectra of caffeic acid (3,4-dihydroxycinnamic acid) and its salts with lithium, sodium, potassium, rubidium and caesium were registered, assigned and analyzed. The effect of alkali metals on the electronic system of ligands was discussed. Studies of differences in the number and position of bands from the IR, Raman, UV absorption spectra and chemical shifts from NMR spectra allowed to conclude on the distribution of electronic charge in the molecules, the delocalization energy of π electrons and the reactivity of ligands in metal complexes. Optimized geometrical structures of studied compounds were calculated by B3LYP method using 6-311++G** basis set. Bond lengths, angles and dipole moments for the optimized structures of caffeic acid and lithium, sodium, potassium caffeinates were also calculated. The theoretical wavenumbers and intensities of IR spectra were obtained. The calculated parameters were compared to the experimental characteristics of investigated compounds. Microbial activity of studied compounds was tested against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Proteus vulgaris. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. X-ray structure determination, Hirshfeld surface analysis, spectroscopic (FT-IR, NMR, UV-Vis, fluorescence), non-linear optical properties, Fukui function and chemical activity of 4‧-(2,4-dimethoxyphenyl)-2,2‧:6‧,2″-terpyridine

    NASA Astrophysics Data System (ADS)

    Demircioğlu, Zeynep; Yeşil, Ahmet Emin; Altun, Mehmet; Bal-Demirci, Tülay; Özdemir, Namık

    2018-06-01

    The compound 4‧-(2,4-dimethoxyphenyl)-2,2‧:6‧,2″-terpyridine (Mtpyr) was synthesized and investigated using X-ray single crystal structure determination, combined with Hirshfeld topology analysis of the molecular packing. In addition, Mtpyr was characterized by experimental and theoretical FT-IR, UV-Vis, 1H NMR, 13C NMR and fluorescence emission spectra. The optimized molecular geometry (bond length, bond angle, torsion angle), the complete vibrational frequency and all other theoretical computations were calculated by using density functional theory (DFT) B3LYP method with the help of 6-311++G(d,p) basis set. From the recorded UV-Vis spectrum, the electronic properties such as excitation energies, wavelength and oscillator strength are evaluated by TD-DFT in chloroform solution. The 1H and 13C nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated by the gauge-independent atomic orbital (GIAO) method and compared with experimental results. The calculated HOMO-LUMO band gap energies confirmed that charge transfer and chemical stability within the molecule. The hyperconjugative interaction energy E(2) and electron densities of donor (i) and acceptor (j) bonds were calculated using natural bond orbital (NBO) analysis. Besides Mulliken and natural population charges (NPA), non-linear optic properties (NLO), Fukui Function analysis, molecular electrostatic potential (MEP) were also computed which helps to identifying the electrophilic/nucleophilic nature.

  9. Comparative studies of structural, thermal, optical, and electrochemical properties of azines with different end groups with their azomethine analogues toward application in (opto)electronics.

    PubMed

    Sek, Danuta; Siwy, Mariola; Bijak, Katarzyna; Grucela-Zajac, Marzena; Malecki, Grzegorz; Smolarek, Karolina; Bujak, Lukasz; Mackowski, Sebastian; Schab-Balcerzak, Ewa

    2013-10-10

    Two series of azines and their azomethine analogues were prepared via condensation reaction of benzaldehyde, 2-hydroxybenzaldehyde, 4-pyridinecarboxaldehyde, 2-thiophenecarboxaldehyde, and 4-(diphenylamino)benzaldehyde with hydrazine monohydrate and 1,4-phenylenediamine, respectively. The structures of given compounds were characterized by FTIR, (1)H NMR, and (13)C NMR spectroscopy as well as elemental analysis. Optical, electrochemical, and thermal properties of all compounds were investigated by means of differential scanning calorimetry (DSC), UV-vis spectroscopy, stationary and time-resolved photoluminescence spectroscopy, and cycling voltammetry (CV). Additionally, the electronic properties, that is, orbital energies and resulting energy gap were calculated theoretically by density functional theory (DFT). Influence of chemical structure of the compounds on their properties was analyzed.

  10. Application of spectroscopic methods (FT-IR, Raman, ECD and NMR) in studies of identification and optical purity of radezolid

    NASA Astrophysics Data System (ADS)

    Michalska, Katarzyna; Gruba, Ewa; Mizera, Mikołaj; Lewandowska, Kornelia; Bednarek, Elżbieta; Bocian, Wojciech; Cielecka-Piontek, Judyta

    2017-08-01

    In the presented study, N-{[(5S)-3-(2-fluoro-4‧-{[(1H-1,2,3-triazol-5-ylmethyl)amino]methyl}biphenyl-4-yl)-2-oxo-1,3-oxazolidin-5-yl]methyl}acetamide (radezolid) was synthesized and characterized using FT-IR, Raman, ECD and NMR. The aim of this work was to assess the possibility of applying classical spectral methods such as FT-IR, Raman, ECD and NMR spectroscopy for studies on the identification and optical purity of radezolid. The experimental interpretation of FT-IR and Raman spectra of radezolid was conducted in combination with theoretical studies. Density functional theory (DFT) with the B3LYP hybrid functional was used for obtaining radezolid spectra. Full identification was carried out by COSY, 1H {13C} HSQC and 1H {13C} HMBC experiments. The experimental NMR chemical shifts and spin-spin coupling constants were compared with theoretical calculations using the DFT method and B3LYP functional employing the 6-311 ++G(d,p) basis set and the solvent polarizable continuum model (PCM). The experimental ECD spectra of synthesized radezolid were compared with experimental spectra of the reference standard of radezolid. Theoretical calculations enabled us to conduct HOMO and LUMO analysis and molecular electrostatic potential maps were used to determine the active sites of microbiologically active form of radezolid enantiomer. The relationship between results of ab initio calculations and knowledge about chemical-biological properties of S-radezolid and other oxazolidinone derivatives are also discussed.

  11. FT-IR, FT-Raman, NMR and UV-Vis spectra and DFT calculations of 5-bromo-2-ethoxyphenylboronic acid (monomer and dimer structures)

    NASA Astrophysics Data System (ADS)

    Sas, E. B.; Kose, E.; Kurt, M.; Karabacak, M.

    2015-02-01

    In this study, the Fourier Transform Infrared (FT-IR) and Fourier Transform Raman (FT-Raman) spectra of 5-bromo-2-ethoxyphenylboronic acid (5Br2EPBA) are recorded in the solid phase in the region 4000-400 cm-1 and 3500-10 cm-1, respectively. The 1H, 13C and DEPT nuclear magnetic resonance (NMR) spectra are recorded in DMSO solution. The UV-Vis absorption spectrum of 5Br2EPBA is saved in the range of 200-400 nm in ethanol and water. The following theoretical calculations for monomeric and dimeric structures are supported by experimental results. The molecular geometry and vibrational frequencies in the ground state are calculated by using DFT methods with 6-31G(d,p) and 6-311G(d,p) basis sets. There are four conformers for the present molecule. The computational results diagnose the most stable conformer of 5Br2EPBA as Trans-Cis (TC) form. The complete assignments are performed on the basis of the total energy distribution (TED) of vibrational modes, calculated with scaled quantum mechanics (SQM) method in parallel quantum solutions (PQS) program. The 1H and 13C NMR chemical shifts of 5Br2EPBA molecule are calculated by using the Gauge Invariant Atomic Orbital (GIAO) method in DMSO and gas phase for monomer and dimer structures of the most stable conformer. Moreover, electronic properties, such as the HOMO and LUMO energies (by TD-DFT and CIS methods) and molecular electrostatic potential surface (MEPs) are investigated. Stability of the molecule arising from hyper-conjugative interactions, charge delocalization is analyzed using natural bond orbital (NBO) analysis. Nonlinear optical (NLO) properties and thermodynamic features are presented. All calculated results are compared with the experimental data of the title molecule. The correlation of theoretical and experimental results provides a detailed description of the structural and physicochemical properties of the title molecule.

  12. FT-IR, FT-Raman, NMR and UV-Vis spectra and DFT calculations of 5-bromo-2-ethoxyphenylboronic acid (monomer and dimer structures).

    PubMed

    Sas, E B; Kose, E; Kurt, M; Karabacak, M

    2015-02-25

    In this study, the Fourier Transform Infrared (FT-IR) and Fourier Transform Raman (FT-Raman) spectra of 5-bromo-2-ethoxyphenylboronic acid (5Br2EPBA) are recorded in the solid phase in the region 4000-400 cm(-1) and 3500-10 cm(-1), respectively. The (1)H, (13)C and DEPT nuclear magnetic resonance (NMR) spectra are recorded in DMSO solution. The UV-Vis absorption spectrum of 5Br2EPBA is saved in the range of 200-400 nm in ethanol and water. The following theoretical calculations for monomeric and dimeric structures are supported by experimental results. The molecular geometry and vibrational frequencies in the ground state are calculated by using DFT methods with 6-31G(d,p) and 6-311G(d,p) basis sets. There are four conformers for the present molecule. The computational results diagnose the most stable conformer of 5Br2EPBA as Trans-Cis (TC) form. The complete assignments are performed on the basis of the total energy distribution (TED) of vibrational modes, calculated with scaled quantum mechanics (SQM) method in parallel quantum solutions (PQS) program. The (1)H and (13)C NMR chemical shifts of 5Br2EPBA molecule are calculated by using the Gauge Invariant Atomic Orbital (GIAO) method in DMSO and gas phase for monomer and dimer structures of the most stable conformer. Moreover, electronic properties, such as the HOMO and LUMO energies (by TD-DFT and CIS methods) and molecular electrostatic potential surface (MEPs) are investigated. Stability of the molecule arising from hyper-conjugative interactions, charge delocalization is analyzed using natural bond orbital (NBO) analysis. Nonlinear optical (NLO) properties and thermodynamic features are presented. All calculated results are compared with the experimental data of the title molecule. The correlation of theoretical and experimental results provides a detailed description of the structural and physicochemical properties of the title molecule. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. The study on molecular structure and microbiological activity of alkali metal 3-hydroxyphenylycetates

    NASA Astrophysics Data System (ADS)

    Samsonowicz, M.; Regulska, E.; Kowczyk-Sadowy, M.; Butarewicz, A.; Lewandowski, W.

    2017-10-01

    The biological activity of chemical compounds depends on their molecular structure. In this paper molecular structure of 3-hydroxyphenylacetates in comparison to 3-hydroxyphenylacetic acid was studied. FT-IR, FT-Raman and NMR spectroscopy and density functional theory (DFT) calculations was used. The B3LYP/6-311++G(d,p) hybrid functional method was used to calculate optimized geometrical structures of studied compounds. The Mulliken, APT, MK, ChelpG and NBO atomic charges as well as dipole moment and energy values were calculated. Theoretical chemical shifts in NMR spectra and the wavenumbers and intensities of the bands in vibrational spectra were analyzed. Calculated parameters were compared to experimental characteristic of studied compounds. Microbiological analysis of studied compounds was performed relative to: Bacillus subtilis, Pseudomonas aeruginosa, Escherichia coli and Klebsiella oxytoca. The relationship between spectroscopic and structure parameters of studied compounds in regard to their activity was analyzed.

  14. Experimental and computational study on molecular structure and vibrational analysis of an antihyperglycemic biomolecule: Gliclazide

    NASA Astrophysics Data System (ADS)

    Karakaya, Mustafa; Kürekçi, Mehmet; Eskiyurt, Buse; Sert, Yusuf; Çırak, Çağrı

    2015-01-01

    In present study, the experimental and theoretical harmonic vibrational frequencies of gliclazide molecule have been investigated. The experimental FT-IR (400-4000 cm-1) and Laser-Raman spectra (100-4000 cm-1) of the molecule in the solid phase were recorded. Theoretical vibrational frequencies and geometric parameters (bond lengths and bond angles) have been calculated using ab initio Hartree Fock (HF), density functional theory (B3LYP hybrid function) methods with 6-311++G(d,p) and 6-31G(d,p) basis sets by Gaussian 09W program. The assignments of the vibrational frequencies were performed by potential energy distribution (PED) analysis by using VEDA 4 program. Theoretical optimized geometric parameters and vibrational frequencies have been compared with the corresponding experimental data, and they have been shown to be in a good agreement with each other. Also, the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies have been found.

  15. Experimental and computational study on molecular structure and vibrational analysis of a modified biomolecule: 5-Bromo-2'-deoxyuridine

    NASA Astrophysics Data System (ADS)

    Çırak, Çağrı; Sert, Yusuf; Ucun, Fatih

    In the present study, the experimental and theoretical vibrational spectra of 5-bromo-2'-deoxyuridine were investigated. The experimental FT-IR (400-4000 cm-1) and μ-Raman spectra (100-4000 cm-1) of the molecule in the solid phase were recorded. Theoretical vibrational frequencies and geometric parameters (bond lengths and bond angles) were calculated using ab initio Hartree Fock (HF) and density functional B3LYP method with 6-31G(d), 6-31G(d,p), 6-311++G(d) and 6-311++G(d,p) basis sets by Gaussian program, for the first time. The assignments of vibrational frequencies were performed by potential energy distribution by using VEDA 4 program. The optimized geometric parameters and theoretical vibrational frequencies are compared with the corresponding experimental data and they were seen to be in a good agreement with the each other. Also, the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies were found.

  16. Experimental and computational study on molecular structure and vibrational analysis of an antihyperglycemic biomolecule: gliclazide.

    PubMed

    Karakaya, Mustafa; Kürekçi, Mehmet; Eskiyurt, Buse; Sert, Yusuf; Çırak, Çağrı

    2015-01-25

    In present study, the experimental and theoretical harmonic vibrational frequencies of gliclazide molecule have been investigated. The experimental FT-IR (400-4000 cm(-1)) and Laser-Raman spectra (100-4000 cm(-1)) of the molecule in the solid phase were recorded. Theoretical vibrational frequencies and geometric parameters (bond lengths and bond angles) have been calculated using ab initio Hartree Fock (HF), density functional theory (B3LYP hybrid function) methods with 6-311++G(d,p) and 6-31G(d,p) basis sets by Gaussian 09W program. The assignments of the vibrational frequencies were performed by potential energy distribution (PED) analysis by using VEDA 4 program. Theoretical optimized geometric parameters and vibrational frequencies have been compared with the corresponding experimental data, and they have been shown to be in a good agreement with each other. Also, the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies have been found. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Experimental (FT-IR, FT-Raman, 1H NMR) and theoretical study of magnesium, calcium, strontium, and barium picolinates.

    PubMed

    Swiderski, G; Kalinowska, M; Wojtulewski, S; Lewandowski, W

    2006-05-01

    The experimental IR, Raman, and 1H NMR spectra of picolinic acid, as well as magnesium, calcium, strontium, and barium picolinates were registered, assigned and studied. Characteristic changes in the spectra of metal picolinates in comparison with the spectrum of ligand were observed, which lead to the conclusion that perturbation of the aromatic system of picolinates increases along with the series Mg-->Ca-->Sr-->Ba. Theoretical structures of beryllium and magnesium picolinates, as well as theoretical IR spectrum of magnesium picolinate were calculated in B3PW91/6-311++G(d, p) level. On the basis of calculated bond lengths in pyridine ring geometric, aromaticity indexes HOMA were calculated. The idea of these indexes is based on the fact that the essential factor in aromatic stabilization is the pi delocalization manifested in: planar geometry, equalization of the bond lengths and angles, and symmetry. The decidedly lower value of HOMA for magnesium picolinate (i.e. 0.545; 0.539) than that for beryllium picolinate (i.e. 0.998; 0.998) indicate higher aromatic properties of Be picolinate than of Mg picolinate. The comparison of theoretical and literature experimental structures of magnesium picolinate was done. The experimental structure contains two water molecules, so the calculations for hydrated magnesium picolinate were carried on, and the influence of coordinated water molecule on the structure of picolinates was discussed. The HOMAs for hydrated experimental and calculated Mg picolinate amount to 0.870; 0.743, and 0.900; 0.890, respectively, whereas for anhydrous structure, it is as described above, i.e. 0.545; 0.539. Thus, the calculations clearly showed that water molecules coordinated to the central atom weakens the effect of metal on the electronic system of ligand.

  18. Experimental (FT-IR, FT-Raman, 1H NMR) and theoretical study of magnesium, calcium, strontium, and barium picolinates

    NASA Astrophysics Data System (ADS)

    Świderski, G.; Kalinowska, M.; Wojtulewski, S.; Lewandowski, W.

    2006-05-01

    The experimental IR, Raman, and 1H NMR spectra of picolinic acid, as well as magnesium, calcium, strontium, and barium picolinates were registered, assigned and studied. Characteristic changes in the spectra of metal picolinates in comparison with the spectrum of ligand were observed, which lead to the conclusion that perturbation of the aromatic system of picolinates increases along with the series Mg → Ca → Sr → Ba. Theoretical structures of beryllium and magnesium picolinates, as well as theoretical IR spectrum of magnesium picolinate were calculated in B3PW91/6-311++G(d, p) level. On the basis of calculated bond lengths in pyridine ring geometric, aromaticity indexes HOMA were calculated. The idea of these indexes is based on the fact that the essential factor in aromatic stabilization is the π delocalization manifested in: planar geometry, equalization of the bond lengths and angles, and symmetry. The decidedly lower value of HOMA for magnesium picolinate (i.e. 0.545; 0.539) than that for beryllium picolinate (i.e. 0.998; 0.998) indicate higher aromatic properties of Be picolinate than of Mg picolinate. The comparison of theoretical and literature experimental structures of magnesium picolinate was done. The experimental structure contains two water molecules, so the calculations for hydrated magnesium picolinate were carried on, and the influence of coordinated water molecule on the structure of picolinates was discussed. The HOMAs for hydrated experimental and calculated Mg picolinate amount to 0.870; 0.743, and 0.900; 0.890, respectively, whereas for anhydrous structure, it is as described above, i.e. 0.545; 0.539. Thus, the calculations clearly showed that water molecules coordinated to the central atom weakens the effect of metal on the electronic system of ligand.

  19. Molecular structure, FT-IR, FT-Raman, NMR studies and first order molecular hyperpolarizabilities by the DFT method of mirtazapine and its comparison with mianserin

    NASA Astrophysics Data System (ADS)

    Sagdinc, Seda G.; Sahinturk, Ayse Erbay

    2013-03-01

    Mirtazapine (±)-1,2,3,4,10,14b-hexahydro-2-methylpyrazino(2,1-a)pyrido(2,3-c)(2)benzazepine is a compound with antidepressant therapeutic effects. It is the 6-aza derivative of the tetracyclic antidepressant mianserin (±)-2-methyl-1,2,3,4,10,14b-hexahydrodibenzo[c,f]pyrazino[1,2-a]azepine. The FT-IR and FT-Raman spectra of mirtazapine have been recorded in 4000-400 cm-1 and 3500-10 cm-1, respectively. The optimized geometry, energies, nonlinear optical properties, vibrational frequencies, 13C, 1H and 15N NMR chemical shift values of mirtazapine have been determined using the density functional theory (DFT/B3LYP) method. A comparison of the experimental and theoretical results of mirtazapine indicates that the density-functional B3LYP method is able to provide satisfactory results for predicting vibrational and NMR properties. The experimental and calculated results for mirtazapine have also been compared with mianserin.

  20. Quantum mechanical, spectroscopic study (FT-IR and FT - Raman), NBO analysis, HOMO-LUMO, first order hyperpolarizability and docking studies of a non-steroidal anti-inflammatory compound

    NASA Astrophysics Data System (ADS)

    Sakthivel, S.; Alagesan, T.; Muthu, S.; Abraham, Christina Susan; Geetha, E.

    2018-03-01

    Experimental and theoretical studies on the optimized geometrical structure, electronic and vibrational characteristics of (+)-(S)-2-(6-methoxynaphthalen-2-yl) propanoic acid are presented employing B3LYP/6-311++G (d,p) basis set. Simulated FT-IR and FT-Raman spectra were in concurrence with the observed spectra attained in a spectral range of FT-IR (4000 - 400 cm-1) and FT-Raman (4000 - 100 cm-1). Quantum chemical calculations and the comprehensive vibrational assignments of wavenumbers of the optimized geometry using Potential Energy Distribution (PED) were calculated with scaled quantum mechanics. The infrared intensities and Raman intensities of (+)-(S)-2-(6-methoxynaphthalen-2-yl) propanoic acid were reported. Frontier molecular orbital analysis and reactivity parameters were calculated. Molecular Electrostatic Potential (MEP), Natural Bond Orbital (NBO) analysis, Non Linear Optical (NLO) behavior and thermodynamic properties were studied. In addition, the Mulliken charge distribution and Fukui function were analyzed. Molecular docking was used to dock in the title molecule into the active site of the protein 5L9B which belongs to the class of proteins exhibiting the property as a HIF1A (Hypoxia-inducible factor 1-alpha) expression inhibitor and the minimum binding energy was detected to be -6.2 kcal/mol.

  1. Symmetry and structure of carbon-nitrogen complexes in gallium arsenide from infrared spectroscopy and first-principles calculations

    NASA Astrophysics Data System (ADS)

    Künneth, Christopher; Kölbl, Simon; Wagner, Hans Edwin; Häublein, Volker; Kersch, Alfred; Alt, Hans Christian

    2018-04-01

    Molecular-like carbon-nitrogen complexes in GaAs are investigated both experimentally and theoretically. Two characteristic high-frequency stretching modes at 1973 and 2060 cm-1, detected by Fourier transform infrared absorption (FTIR) spectroscopy, appear in carbon- and nitrogen-implanted and annealed layers. From isotopic substitution, it is deduced that the chemical composition of the underlying complexes is CN2 and C2N, respectively. Piezospectroscopic FTIR measurements reveal that both centers have tetragonal symmetry. For density functional theory (DFT) calculations, linear entities are substituted for the As anion, with the axis oriented along the 〈1 0 0 〉 direction, in accordance with the experimentally ascertained symmetry. The DFT calculations support the stability of linear N-C-N and C-C-N complexes in the GaAs host crystal in the charge states ranging from + 3 to -3. The valence bonds of the complexes are analyzed using molecular-like orbitals from DFT. It turns out that internal bonds and bonds to the lattice are essentially independent of the charge state. The calculated vibrational mode frequencies are close to the experimental values and reproduce precisely the isotopic mass splitting from FTIR experiments. Finally, the formation energies show that under thermodynamic equilibrium CN2 is more stable than C2N.

  2. A coumarin-pyrazolone based fluorescent probe for selective colorimetric and fluorimetric fluoride detection: Synthesis, spectroscopic properties and DFT calculations

    NASA Astrophysics Data System (ADS)

    Babür, Banu; Seferoğlu, Nurgül; Seferoğlu, Zeynel

    2018-06-01

    A novel coumarin based fluorescence anion chemosensor (P-1) bearing pyrazolone as a receptoric part was synthesized and characterized by using FT-IR, 1H/13C NMR and HRMS for the purpose of recognition of anions in DMSO. P-1 has four tautomeric structures and the most stable tautomeric form of P-1 was determined experimentally and theoretically. The chemosensor P-1 consists two receptoric parts as free amide Nsbnd H and enamine Nsbnd H which is stabilized intramolecular H-bonding with coumarin carbonyl oxygen. P-1 interacts selectively with fluoride anion via amide Nsbnd H. The selectivity and sensitivity of probe to various anions were determined with spectrophotometric and 1H NMR titration techniques as experimentally and all results were also explained by theoretical calculations.

  3. Antimycobacterial, antimicrobial activity, experimental (FT-IR, FT-Raman, NMR, UV-Vis, DSC) and DFT (transition state, chemical reactivity, NBO, NLO) studies on pyrrole-isonicotinyl hydrazine

    NASA Astrophysics Data System (ADS)

    Rawat, Poonam; Singh, R. N.; Ranjan, Alok; Ahmad, Sartaj; Saxena, Rajat

    2017-05-01

    As part of a study of pyrrole hydrazone, we have investigated quantum chemical calculations, molecular geometry, relative energy, vibrational properties and antimycobacterial/antimicrobial activity of pyrrole-2-carboxaldehyde isonicotinyl hydrazone (PCINH), by applying the density functional theory (DFT) and Hartree Fock (HF). Good reproduction of experimental values is obtained and with small percentage error in majority of the cases in comparison to theoretical result (DFT). The experimental FT-IR and Raman wavenumbers were compared with the respective theoretical values obtained from DFT calculations and found to agree well. In crystal structure studies the hydrated PCINH (syn-syn conformer) shows different conformation than from anhydrous form (syn-anti conformer). The rotational barrier between syn-syn and syn-anti conformers of PCINH is 12.7 kcal/mol in the gas phase. In this work, use of FT-IR, FT-Raman, 1H NMR, 13C NMR and UV-Vis spectroscopies has been made for full characterization of PCINH. A detailed interpretation of the vibrational spectrum was carried out with the aid of normal coordinate analysis using single scaling factor. Our results support the hydrogen bonding pattern proposed by reported crystalline structure. The calculated nature of electronic transitions within molecule found to be π → π*. The electronic descriptors study indicates that PCINH can be used as robust synthon for synthesis of new heterocyclic compounds. The first static hyperpolarizability (β0) of PCINH is calculated as 33.89 × 10- 30 esu, (gas phase); 68.79 × 10- 30 (CHCl3), esu; 76.76 × 10- 30 esu (CH2Cl2), 85.16 × 10- 30 esu (DMSO). The solvent induced effects on the first static hyperpolarizability were studied and found to increase as dielectric constants of the solvents increases. Investigated molecule shows better NLO value than Para nitroaniline (PNA). The compound PCINH shows good antifungal and antibacterial activity against Aspergillus niger and gram-positive bacteria Bacillus subtilis, respectively. The compound also shows good antituberculosis activity against Mycobacterium tuberculosis H37Rv using the microplate alamar blue assay (MABA).

  4. FTIR, FT-RAMAN, NMR, spectra, normal co-ordinate analysis, NBO, NLO and DFT calculation of N,N-diethyl-4-methylpiperazine-1-carboxamide molecule.

    PubMed

    Muthu, S; Elamurugu Porchelvi, E

    2013-11-01

    The Fourier Transform Infrared (FT-IR) and FT-Raman of N,N-diethyl-4-methylpiperazine-1-carboxamide (NND4MC) have been recorded and analyzed. The structure of the compound was optimized and the structural characteristics were determined by density functional theory (DFT) using B3LYP method with 6-31G(d,p) and 6-311G(d,p) basis sets. The difference between the observed and scaled wavenumber values of most of the fundamentals is very small. The theoretically predicted FT-IR and FT-Raman spectra of the title molecule have been constructed. The detailed interpretation of the vibrational spectra has been carried out with aid of normal coordinate analysis (NCA) following the scaled quantum mechanical force field methodology. Stability of the molecule arising from hyperconjugative interactions and charge delocalization has been analyzed using natural bond orbital (NBO) analysis. The results show that electron density (ED) in the σ(*) and π(*) antibonding orbitals and second order delocalization energies (E2) confirm the occurrence of intramolecular charge transfer (ICT) within the molecule. The electronic dipole moment (μD) and the first hyperpolarizability (βtot) values of the investigated molecule were computed using Density Functional Theory (DFT/B3LYP) with 6-31G(d,p) and 6-311G(d,p) basis sets. The calculated results also show that the NND4MC molecule may have microscopy nonlinear optical (NLO) behavior with non zero values. Mulliken atomic charges of NND4MC were calculated. The (13)C nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated by the gauge independent atomic orbital (GIAO) method and compared with experimental results. The UV-Vis spectrum of the compound was recorded. The theoretical electronic absorption spectra have been calculated by using CIS, TD-DFT methods. A study on the electronic properties, such as HOMO and LUMO energies, molecular electrostatic potential (MEP) were also performed. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Carbohydrate and lipid spectroscopic molecular structures of different alfalfa hay and their relationship with nutrient availability in ruminants

    PubMed Central

    Yari, Mojtaba; Valizadeh, Reza; Nnaserian, Abbas Ali; Jonker, Arjan; Yu, Peiqiang

    2017-01-01

    Objective This study was conducted to determine molecular structures related to carbohydrates and lipid in alfalfa hay cut at early bud, late bud and early flower and in the afternoon and next morning using Fourier transform infrared spectroscopy (FT/IR) and to determine their relationship with alfalfa hay nutrient profile and availability in ruminants. Methods Chemical composition analysis, carbohydrate fractionation, in situ ruminal degradability, and DVE/OEB model were used to measure nutrient profile and availability of alfalfa hay. Univariate analysis, hierarchical cluster analysis (CLA) and principal components analysis (PCA) were conducted to identify FT/IR spectra differences. Results The FT/IR non-structural carbohydrate (NSCHO) to total carbohydrates and NSCHO to structural carbohydrate ratios decreased (p<0.05), while lignin to NSCHO and lipid CH3 symmetric to CH2 symmetric ratios increased with advancing maturity (p<0.05). The FT/IR spectra related to structural carbohydrates, lignin and lipids were distinguished for alfalfa hay at three maturities by PCA and CLA, while FT/IR molecular structures related to carbohydrates and lipids were similar between alfalfa hay cut in the morning and afternoon when analyzed by PCA and CLA analysis. Positive correlations were found for FT/IR NSCHO to total carbohydrate and NSCHO to structural carbohydrate ratios with non-fiber carbohydrate (by wet chemistry), ruminal fast and intermediately degradable carbohydrate fractions and total ruminal degradability of carbohydrates and predicted intestinal nutrient availability in dairy cows (r≥0.60; p<0.05) whereas FT/IR lignin to NSCHO and CH3 to CH2 symmetric stretching ratio had negative correlation with predicted ruminal and intestinal nutrient availability of alfalfa hay in dairy cows (r≥−0.60; p<0.05). Conclusion FT/IR carbohydrate and lipid molecular structures in alfalfa hay changed with advancing maturity from early bud to early flower, but not during the day, and these molecular structures correlated with predicted nutrient supply of alfalfa hay in ruminants. PMID:28335093

  6. Synthesis and characterization of new N-heterocyclic carbene ligands: 1,3-Bis(acetamide)imidazol-3-ium bromide and 3-(acetamide)-1-(3-aminopropyl)-1H-imidazol-3-ium bromide

    NASA Astrophysics Data System (ADS)

    Turkyilmaz, Murat; Uluçam, Gühergül; Aktaş, Şaban; Okan, S. Erol

    2017-05-01

    Two new pincer type N-heterocyclic carbene ligands were synthesized. The compounds were characterized by FTIR, NMR (1H, 13C) GC-MS and elemental analyses. They were also both modelled by DFT calculations as the crystal structure of 1,3-bis(acetamide)imidazol-3-ium bromide was determined by XRD which is an orthorhombic system with space group P21212. The structural analyses in gas phase were realized by comparing the experimental NMR and IR spectra with those of the theoretical calculations. In vitro biological activities of the molecules were determined and found that one of them exhibits significant cytotoxic activity.

  7. Step-Scan T-Cell Fourier Transform Infrared Photoacoustic Spectroscopy (FTIR-PAS) for Monitoring Environmental Air Pollutants

    NASA Astrophysics Data System (ADS)

    Liu, Lixian; Mandelis, Andreas; Melnikov, Alexander; Michaelian, Kirk; Huan, Huiting; Haisch, Christoph

    2016-07-01

    Air pollutants have adverse effects on the Earth's climate system. There is an urgent need for cost-effective devices capable of recognizing and detecting various ambient pollutants. An FTIR photoacoustic spectroscopy (FTIR-PAS) method based on a commercial FTIR spectrometer developed for air contamination monitoring will be presented. A resonant T-cell was determined to be the most appropriate resonator in view of the low-frequency requirement and space limitations in the sample compartment. Step-scan FTIR-PAS theory for regular cylinder resonator has been described as a reference for prediction of T-cell vibration principles. Both simulated amplitude and phase responses of the T-cell show good agreement with measurement data Carbon dioxide IR absorption spectra were used to demonstrate the capacity of the FTIR-PAS method to detect ambient pollutants. The theoretical detection limit for carbon dioxide was found to be 4 ppmv. A linear response to carbon dioxide concentration was found in the range from 2500 ppmv to 5000 ppmv. The results indicate that it is possible to use step-scan FTIR-PAS with a T-cell as a quantitative method for analysis of ambient contaminants.

  8. Molecular and structural characteristics in toxic algae cultures of Ostreopsis ovata and Ostreopsis spp. evidenced by FTIR and FTNIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Mecozzi, Mauro; Pietroletti, Marco; Tornambè, Andrea

    2011-05-01

    In this article we investigated the compositional and structural characteristics of the principal biomolecules such as carbohydrates, proteins, lipids, nucleic acids and chlorophyll pigments present in biofilm cultures of Ostreopsis spp. and in batch cultures of Ostreopsis ovata. Our approach based on the use of infrared (FTIR) and near infrared (FTNIR) spectroscopy showed the marked differences existing between biofilm cultures and batch cultures. FTIR spectroscopy showed the higher contents of polysaccharides and chlorophyll pigments in O. ovata from batch cultures with respect to Ostreopsis spp. Second derivative FTIR spectroscopy showed different features concerning the secondary structure of proteins because in O. ovata samples the beta sheet and beta turn structures were observed whereas in Ostreopsis spp. samples the alpha helix structure was the most evident. FTNIR spectroscopy showed other structural differences observed existing between O. ovata and Ostreopsis spp. mainly related to hydrogen bond interactions determining more packed structures in the nucleus of O. ovata. In addition, the interpretation of FTIR and FTNIR spectral information was also supported by the application of two statistical methods, the independent component analysis (ICA) and the spectral cross correlation analysis (SCCA). ICA was used as spectral deconvolution technique to separate the effects of the interference bicarbonate ion from algal FTIR spectra so to verify the high similar qualitative composition of the three biofilm samples of Ostreopsis spp. At last, SCCA applied to FTIR and FTNIR spectra was useful to evidence some structural differences involving -CH and CH 2 groups of aliphatic chains in O. ovata and Ostreopsis spp. samples. Though preliminary, these results agree with some previous studies suggesting that the presence of different ecophysiological characteristics in O. ovata and Ostreopsis spp. depending on the parameters related to the condition growth.

  9. Vibrational spectra (FT-IR, Raman and MI-IR) of α- and β-alanine

    NASA Astrophysics Data System (ADS)

    Rosado, Mário Túlio S.; Duarte, Maria Leonor R. S.; Fausto, Rui

    1997-06-01

    The vibrational spectra of α- and β-alaine molecules in both their zwitterionic and neutral forms are studied by FT-IR, Raman and MI-IR spectroscopy. Together with results from theoretical SCF-MO ab initio calculations, the spectroscopic data obtained under the various experimental conditions used in this study (crystalline phase; low temperature matrix isolated molecules) enable to undertake a detailed assignment of the vibrational spectra of the studied compounds.

  10. Conformational analysis, spectroscopic, structure-activity relations and quantum chemical simulation studies of 4-(trifluoromethyl)benzylamine

    NASA Astrophysics Data System (ADS)

    Arjunan, V.; Devi, L.; Mohan, S.

    2018-05-01

    The FT-IR and FT-Raman spectra of 4-trifluoromethylbenzylamine (TFMBA) have been recorded in the range 4000-450 and 4000-100 cm-1 respectively. The conformational analysis of the compound has been carried out to attain stable geometry of the compound. The complete vibrational assignment and analysis of the fundamental modes of the compound are carried out using the experimental FTIR and FT-Raman data and quantum chemical studies. The experimental vibrational frequencies are compared with the wavenumbers obtained theoretically from the B3LYP gradient calculations employing the standard high level 6-311++G** and cc-pVTZ basis sets for the optimised geometry of the compound. The structural parameters, thermodynamic properties and vibrational frequencies of the normal modes obtained from the B3LYP methods are in good agreement with the experimental data. The 1H (400 MHz; CDCl3) and 13C (100 MHz; CDCl3) nuclear magnetic resonance (NMR) spectra were also recorded. The electronic properties, highest occupied molecular orbital and lowest unoccupied molecular orbital energies are measured by DFT approach. The charges of the atoms by natural bond orbital (NBO) analysis are determined by B3LYP/cc-pVTZ method. The structure-chemical reactivity relations of the compound are determined through chemical potential, global hardness, global softness, electronegativity, electrophilicity and local reactivity descriptors by conceptual DFT methods.

  11. Structural investigation of a self-assembled monolayer material 5-[(3-methylphenyl) (phenyl) amino] isophthalic acid for organic light-emitting devices.

    PubMed

    Saş, E Babur; Kurt, M; Can, M; Okur, S; İçli, S; Demiç, S

    2014-12-10

    The molecular structure and vibrations of 5-[(3-methylphenyl) (phenyl) amino] isophthalic acid (MePIFA) were investigated by infrared and Raman spectroscopies, UV-Vis, (1)H and (13)C NMR spectroscopic techniques and NBO analysis. FT-IR, FT-Raman and dispersive Raman spectra were recorded in the solid phase. (1)H and (13)C NMR spectra and UV-Vis spectrum were recorded in DMSO solution. HOMO-LUMO analysis and molecular electrostatic potential (MEP) analysis were performed. The theoretical calculations for the molecular structure and spectroscopies were performed with DFT (B3LYP) and 6-311G(d,p) basis set calculations using the Gaussian 09 program. After the geometry of the molecule was optimized, vibration wavenumbers and fundamental vibration wavenumbers were assigned on the basis of the potential energy distribution (PED) of the vibrational modes calculated with VEDA 4 program. The total (TDOS), partial (PDOS) density of state and overlap population density of state (OPDOS) diagrams analysis were made using GaussSum 2.2 program. The results of theoretical calculations for the spectra of the title compound were compared with the observed spectra. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Structural investigation of a self-assembled monolayer material 5-[(3-methylphenyl) (phenyl) amino] isophthalic acid for organic light-emitting devices

    NASA Astrophysics Data System (ADS)

    Saş, E. Babur; Kurt, M.; Can, M.; Okur, S.; İçli, S.; Demiç, S.

    2014-12-01

    The molecular structure and vibrations of 5-[(3-methylphenyl) (phenyl) amino] isophthalic acid (MePIFA) were investigated by infrared and Raman spectroscopies, UV-Vis, 1H and 13C NMR spectroscopic techniques and NBO analysis. FT-IR, FT-Raman and dispersive Raman spectra were recorded in the solid phase. 1H and 13C NMR spectra and UV-Vis spectrum were recorded in DMSO solution. HOMO-LUMO analysis and molecular electrostatic potential (MEP) analysis were performed. The theoretical calculations for the molecular structure and spectroscopies were performed with DFT (B3LYP) and 6-311G(d,p) basis set calculations using the Gaussian 09 program. After the geometry of the molecule was optimized, vibration wavenumbers and fundamental vibration wavenumbers were assigned on the basis of the potential energy distribution (PED) of the vibrational modes calculated with VEDA 4 program. The total (TDOS), partial (PDOS) density of state and overlap population density of state (OPDOS) diagrams analysis were made using GaussSum 2.2 program. The results of theoretical calculations for the spectra of the title compound were compared with the observed spectra.

  13. Ab initio and DFT study of hydrogen bond interactions between ascorbic acid and dimethylsulfoxide based on FT-IR and FT-Raman spectra

    NASA Astrophysics Data System (ADS)

    Niazazari, Naser; Zatikyan, Ashkhen L.; Markarian, Shiraz A.

    2013-06-01

    The hydrogen bonding of 1:1 complexes formed between L-ascorbic acid (LAA) and dimethylsulfoxide (DMSO) has been studied by means of ab initio and density functional theory (DFT) calculations. Solutions of L-ascorbic acid (AA) in dimethylsulfoxide (DMSO) have been studied by means of both FT-IR (4000-220 cm-1) and FT-Raman spectroscopy. Ab initio Hartree-Fock (HF) and DFT methods have been used to determine the structure and energies of stable conformers of various types of L-AA/DMSO complexes in gas phase and solution. The basis sets 6-31++G∗∗ and 6-311+G∗ were used to describe the structure, energy, charges and vibrational frequencies of interacting complexes in the gas phase. The optimized geometric parameters and interaction energies for various complexes at different theories have been estimated. Binding energies have been corrected for basis set superposition error (BSSE) and harmonic vibrational frequencies of the structures have been calculated to obtain the stable forms of the complexes. The self-consistent reaction field (SCRF) has been used to calculate the effect of DMSO as the solvent on the geometry, energy and charges of complexes. The solvent effect has been studied using the Onsager models. It is shown that the polarity of the solvent plays an important role on the structures and relative stabilities of different complexes. The results obtained show that there is a satisfactory correlation between experimental and theoretical predictions.

  14. Synthesis, structural characterization and theoretical studies of a new Schiff base 4-(((3-(tert-Butyl)-(1-phenyl)pyrazol-5-yl) imino)methyl)phenol

    NASA Astrophysics Data System (ADS)

    Cuenú, Fernando; Londoño-Salazar, Jennifer; Torres, John Eduard; Abonia, Rodrigo; D'Vries, Richard F.

    2018-01-01

    4-(((3-(tert-Butyl)-(1-phenyl)pyrazol-5-yl)imino)methyl)phenol (4-OHFPz) was synthesized and characterized by FT-IR, MS, NMR, and single-crystal X-ray diffraction. Optimization of molecular geometry, vibrational frequencies, and chemical shifts were calculated by using the methods of density functional theory (DFT) with B3LYP and B3PW91 as functionals and Hartree-Fock with 6-311G++(d,p) as basis set using the GAUSSIAN 09 program package. With the VEDA 4 software, the vibrational frequencies were assigned in terms of the potential energy distribution (PED). The equilibrium geometries calculated by all methods were compared with X-ray diffraction results, indicating that the theoretical results matches well with the experimental ones. The data obtained from the vibrational analysis and the calculated NMR are consistent with the experimental spectra.

  15. Formation of insulin amyloid fibrils followed by FTIR simultaneously with CD and electron microscopy.

    PubMed Central

    Bouchard, M.; Zurdo, J.; Nettleton, E. J.; Dobson, C. M.; Robinson, C. V.

    2000-01-01

    Fourier transform infrared spectroscopy (FTIR), circular dichroism (CD), and electron microscopy (EM) have been used simultaneously to follow the temperature-induced formation of amyloid fibrils by bovine insulin at acidic pH. The FTIR and CD data confirm that, before heating, insulin molecules in solution at pH 2.3 have a predominantly native-like alpha-helical structure. On heating to 70 degrees C, partial unfolding occurs and results initially in aggregates that are shown by CD and FT-IR spectra to retain a predominantly helical structure. Following this step, changes in the CD and FTIR spectra occur that are indicative of the extensive conversion of the molecular conformation from alpha-helical to beta-sheet structure. At later stages, EM shows the development of fibrils with well-defined repetitive morphologies including structures with a periodic helical twist of approximately 450 A. The results indicate that formation of fibrils by insulin requires substantial unfolding of the native protein, and that the most highly ordered structures result from a slow evolution of the morphology of the initially formed fibrillar species. PMID:11106169

  16. Conformational, structural, vibrational and quantum chemical analysis on 4-aminobenzohydrazide and 4-hydroxybenzohydrazide--a comparative study.

    PubMed

    Arjunan, V; Jayaprakash, A; Carthigayan, K; Periandy, S; Mohan, S

    2013-05-01

    Experimental and theoretical quantum chemical studies were carried out on 4-hydroxybenzohydrazide (4HBH) and 4-aminobenzohydrazide (4ABH) using FTIR and FT-Raman spectral data. The structural characteristics and vibrational spectroscopic analysis were carried performed by quantum chemical methods with the hybrid exchange-correlation functional B3LYP using 6-31G(**), 6-311++G(**) and aug-cc-pVDZ basis sets. The most stable conformer of the title compounds have been determined from the analysis of potential energy surface. The stable molecular geometries, electronic and thermodynamic parameters, IR intensities, harmonic vibrational frequencies, depolarisation ratio and Raman intensities have been computed. Molecular electrostatic potential and frontier molecular orbitals were constructed to understand the electronic properties. The potential energy distributions (PEDs) were calculated to explain the mixing of fundamental modes. The theoretical geometrical parameters and the fundamental frequencies were compared with the experimental. The interactions of hydroxy and amino group substitutions on the characteristic vibrations of the ring and hydrazide group have been analysed. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Hydrothermal synthesis, experimental and theoretical characterization of a novel cocrystal compound in the 2:1 stoichiometric ratio containing 6-methyluracil and dipicolinic acid

    NASA Astrophysics Data System (ADS)

    Eshtiagh-Hosseini, H.; Aghabozorg, H.; Mirzaei, M.; Beyramabadi, S. A.; Eshghi, H.; Morsali, A.; Shokrollahi, A.; Aghaei, R.

    2011-05-01

    This paper reports the hydrothermal synthesis, experimental and theoretical studies of a novel cocrystal compound in the 2:1 stoichiometric ratio of 6-methyluracil (6mu) and dipicolinic acid (pydcH 2) formulated as [6mu] 2[pydcH 2] (1), for the first time. DFT calculations were performed to access the most possible geometry of the title cocrystal compound. All calculations were carried out with the B3LYP hybrid density functional level and 6-311+G(d,p) basis sets. The vibrational frequencies together with the 1H and 13C NMR chemical shifts have been calculated on the fully optimized geometry of 1. The theoretical results are in good agreement with the experimental and solution data. The theoretical, solution, and experimental (elemental analysis, mass spectrometry, FTIR, 1H and 13C NMR spectroscopies) results confirmed our proposed structure for 1 in the 2:1 stoichiometric ratio of 6mu and pydcH 2, respectively. The protonation and equilibrium constants of 6mu and pydcH 2 and constituent systems were determined by potentiometric studies and the corresponding distribution diagrams depicted.

  18. Evaluation of the structural, electronic, topological and vibrational properties of N-(3,4-dimethoxybenzyl)-hexadecanamide isolated from Maca (Lepidium meyenii) using different spectroscopic techniques

    NASA Astrophysics Data System (ADS)

    Chain, Fernando; Iramain, Maximiliano Alberto; Grau, Alfredo; Catalán, César A. N.; Brandán, Silvia Antonia

    2017-01-01

    N-(3,4-dimethoxybenzyl)-hexadecanamide (DMH) was characterized by using Fourier Transform infrared (FT-IR) and Raman (FT-Raman), Ultraviolet- Visible (UV-Visible) and Hydrogen and Carbon Nuclear Magnetic Resonance (1H and 13C NMR) spectroscopies. The structural, electronic, topological and vibrational properties were evaluated in gas phase and in n-hexane employing ONIOM and self-consistent force field (SCRF) calculations. The atomic charges, molecular electrostatic potentials, stabilization energies and topological properties of DMH were analyzed and compared with those calculated for N-(3,4-dimethoxybenzyl)-acetamide (DMA) in order to evaluate the effect of the side chain on the properties of DMH. The reactivity and behavior of this alkamide were predicted by using the gap energies and some descriptors. Force fields and the corresponding force constants were reported for DMA only in gas phase and n-hexane due to the high number of vibration normal modes showed by DMH, while the complete vibrational assignments are presented for DMA and both forms of DMH. The comparisons between the experimental FTIR, FT-Raman, UV-Visible and 1H and 13C NMR spectra with the corresponding theoretical ones showed a reasonable concordance.

  19. Facet-Dependent Cr(VI) Adsorption of Hematite Nanocrystals.

    PubMed

    Huang, Xiaopeng; Hou, Xiaojing; Song, Fahui; Zhao, Jincai; Zhang, Lizhi

    2016-02-16

    In this study, the adsorption process of Cr(VI) on the hematite facets was systematically investigated with synchrotron-based Cr K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy, in situ attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, density-functional theory calculation, and surface complexation models. Structural model fitting of EXAFS spectroscopy suggested that the interatomic distances of Cr-Fe were, respectively, 3.61 Å for the chromate coordinated hematite nanoplates with exposed {001} facets, 3.60 and 3.30 Å for the chromate coordinated hematite nanorods with exposed {001} and {110} facets, which were characteristic of inner-sphere complexation. In situ ATR-FTIR spectroscopy analysis confirmed the presence of two inner-sphere surface complexes with C3ν and C2ν symmetry, while the C3ν and C2ν species were assigned to monodentate and bidentate inner-sphere surface complexes with average Cr-Fe interatomic distances of 3.60 and 3.30 Å, respectively. On the basis of these experimental and theoretical results, we concluded that HCrO4(-) as dominated Cr(VI) species was adsorbed on {001} and {110} facets in inner-sphere monodentate mononuclear and bidentate binuclear configurations, respectively. Moreover, the Cr(VI) adsorption performance of hematite facets was strongly dependent on the chromate complexes formed on the hematite facets.

  20. Linoleic acid and its potassium and sodium salts: A combined experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Gocen, Tuğba; Haman Bayarı, Sevgi; Haluk Guven, Mehmet

    2017-12-01

    Linoleic acid (cis, cis-9,12-octodecadienoic acid) is the main polyunsaturated -omega 6- essential fatty acid. The conformational behaviour of linoleic acid (LA) in the gas phase was investigated by means of density functional theory (DFT). The structures of conformers of LA were fully optimized by using the B3LYP/6-311++G(d,p) method. The theory showed that the tttttts‧CssCs‧tt conformation of LA (conformer I) is the more stable than the other conformations. Fourier Transform Infrared (FTIR) and micro-Raman spectra of pure LA in liquid form were recorded in the region 4000-450 and 3500-100 cm-1, respectively. The DFT calculations on the molecular structure and vibrational spectra of the dimer form of most stable conformer of LA were also performed using the same method. The assignment of the vibrational modes was made based on calculated potential energy distributions (PEDs). The simulated spectra of dimer form of LA are in reasonably good agreement with the experimental spectra. The sodium and potassium salts of LA were synthesized and characterized by FTIR and Raman spectroscopy, X-ray diffraction and DFT calculations. Several molecular and electronic properties of LA and its salts such as HOMO-LUMO energies, chemical hardness and electronegativity were also calculated and interpreted.

  1. Investigation of antimicrobial activities, DNA interaction, structural and spectroscopic properties of 2-chloro-6-(trifluoromethyl)pyridine

    NASA Astrophysics Data System (ADS)

    Evecen, Meryem; Kara, Mehmet; Idil, Onder; Tanak, Hasan

    2017-06-01

    2-Chloro-6-(trifluoromethyl)pyridine has been characterized by FT-IR, 1H and 13C NMR experiment. FT-IR spectra of the molecule has been recorded in the 4000-400 cm-1 region. The molecular structural parameters and vibrational frequencies were computed using the HF and DFT (B3LYP, B3PW91) methods with the 6-31+G(d,p) and 6-311++G(d,p) basis sets. 1H and 13C NMR Gauge Including Atomic Orbital (GIAO) chemical shifts of the compound were calculated using the density functional method (B3LYP) with the 6-311++G(d,p) basis set. The vibrational wavenumbers and chemical shifts were compared with the experimental data of the compound. Using the TD-DFT methodology, electronic absorption spectra of the compound have been computed. Besides, solvent effects on the excitation energies and chemical shifts were carried out using the integral equation formalism of the polarisable continuum model (IEF-PCM). DFT calculations of the compound, Mulliken's charges, molecular electrostatic potential (MEP), natural bond orbital (NBO) and thermodynamic properties were also obtained theoretically. In addition, the antimicrobial activities were tested by using minimal inhibitory concentration method (MIC) and also the effect of the molecule on pBR322 plasmid DNA was monitored byagarose gel electrophoresis experiments.

  2. Physical and optical properties of DCJTB dye for OLED display applications: Experimental and theoretical investigation

    NASA Astrophysics Data System (ADS)

    Kurban, Mustafa; Gündüz, Bayram

    2017-06-01

    In this study, 4-(dicyanomethylene)-2-tert-butyl-6-(1,1,7,7-tetramethyljulolidin-4-yl-vinyl)-4H-pyran (DCJTB) was achieved using the experimental and theoretical studies. The electronic, optical and spectroscopic properties of DCJTB molecule were first investigated by performing experimental both solution and thin film techniques and then theoretical calculations. Theoretical results showed that one intense electronic transition is 505.26 nm a quite reasonable and agreement with the measured experimental data 505.00 and 503 nm with solution technique and film technique, respectively. Experimental and simple models were also taken into consideration to calculate the optical refractive index (n) of DCJTB molecule. The structural and electronic properties were next calculated using density functional theory (DFT) with B3LYP/6-311G (d, p) basis set. UV, FT-IR spectra characteristics and the electronic properties, such as frontier orbitals, and band gap energy (Eg) of DCJTB were also recorded time-dependent (TD) DFT approach. The theoretical Eg value were found to be 2.269 eV which is consistent with experimental results obtained from solution technique for THF solvent (2.155 eV) and literature (2.16 eV). The results herein obtained reveal that solution is simple, cost-efficient and safe for optoelectronic applications when compared with film technique.

  3. Chloromethyl-oxirane and chloromethyl-thiirane in liquid phase: A joint experimental and quantum chemical study

    NASA Astrophysics Data System (ADS)

    Campetella, M.; Bencivenni, L.; Caminiti, R.; Zazza, C.; Di Trapani, S.; Martino, A.; Gontrani, L.

    2016-07-01

    The X-ray diffraction spectra of liquid chloromethyl-oxirane (ClMO) and chloromethyl-thiirane (ClMT) have been recorded for the first time. The interpretation of X-ray measurements was based on ab initio molecular dynamics simulations at finite temperature conditions. Both liquids show conformational equilibrium, which is discussed in terms of Gauche-2, Gauche-1 and Cis structures. The occurrence of the various forms estimated from X-ray and AIMD data has been compared with spectroscopy data from the literature, with the FTIR spectra of the liquids newly recorded in this work, and with theoretical in vacuo calculations.

  4. 1-Formyl-3-phenyl-5-(4-isopropylphenyl)-2-pyrazoline: Synthesis, characterization, antimicrobial activity and DFT studies

    NASA Astrophysics Data System (ADS)

    Sid, Assia; Messai, Amel; Parlak, Cemal; Kazancı, Nadide; Luneau, Dominique; Keşan, Gürkan; Rhyman, Lydia; Alswaidan, Ibrahim A.; Ramasami, Ponnadurai

    2016-10-01

    The structure of 1-formyl-3-phenyl-5-(4-isopropylphenyl)-2-pyrazoline synthesized as single crystal was investigated by FTIR, NMR, XRD. Experimental data were complemented by quantum mechanical calculations. XRD data show that the compound crystallizes in the triclinic system (P-1) via trans isomer (a = 6.4267(4) Å, b = 10.9259(12) Å, c = 12.4628(9) Å and α = 102.894(8)°, β = 102.535(6)°, γ = 101.633(7)°). Anti-microbial screening results indicate that the compound shows promising activity. The theoretically predicted and experimentally obtained parameters reveal further insight into pyrazoline systems.

  5. Gamma ray shielding and structural properties of Bi2O3-PbO-B2O3-V2O5 glass system

    NASA Astrophysics Data System (ADS)

    Kaur, Kulwinder; Singh, K. J.; Anand, Vikas

    2014-04-01

    The present work has been undertaken to evaluate the applicability of Bi2O3-PbO-B2O3-V2O5 glass system as gamma ray shielding material. Gamma ray mass attenuation coefficient has been determined theoretically using WinXcom computer software developed by National Institute of Standards and Technology. A meaningful comparison of their radiation shielding properties has been made in terms of their half value layer parameter with standard radiation shielding concrete 'barite'. Structural properties of the prepared glass system have been investigated in terms of XRD and FTIR techniques in order to check the possibility of their commercial utility as alternate to conventional concrete for gamma ray shielding applications.

  6. Main chemical species and molecular structure of deep eutectic solvent studied by experiments with DFT calculation: a case of choline chloride and magnesium chloride hexahydrate.

    PubMed

    Zhang, Chao; Jia, Yongzhong; Jing, Yan; Wang, Huaiyou; Hong, Kai

    2014-08-01

    The infrared spectrum of deep eutectic solvent of choline chloride and magnesium chloride hexahydrate was measured by the FTIR spectroscopy and analyzed with the aid of DFT calculations. The main chemical species and molecular structure in deep eutectic solvent of [MgClm(H2O)6-m]2-m and [ChxCly]x+y complexes were mainly identified and the active ion of magnesium complex during the electrochemical process was obtained. The mechanism of the electrochemical process of deep eutectic solvent of choline chloride and magnesium chloride hexahydrate was well explained by combination theoretical calculations and experimental. Besides, based on our results we proposed a new system for the dehydration study of magnesium chloride hexahydrate.

  7. Spectroscopic and structural studies of a new para-iodo-N-benzyl amide of salinomycin

    NASA Astrophysics Data System (ADS)

    Antoszczak, Michał; Janczak, Jan; Rutkowski, Jacek; Brzezinski, Bogumił; Huczyński, Adam

    2017-11-01

    A new para-iodo-N-benzyl amide of salinomycin was synthesized and characterized by NMR, FT-IR, DFT, single crystal X-ray diffraction and theoretical methods. The results obtained for the crystal, in solution and in gas phase provided evidence of pseudo-cyclic structure of this compound stabilized by intramolecular hydrogen bonds. It was shown that the compound studied forms stable 1:1 complexes with monovalent (Li+, Na+, K+, Rb+ and Cs+) and divalent (Mg2+, Ca2+, Sr2+ and Ba2+) cations demonstrating that the chemical modification of salinomycin carboxyl group considerably changes the ionophoretic properties of this antibiotic. For the first time, the ESI MS fragmentations of the complex of para-iodo-N-benzyl amide of salinomycin with Na+ are also discussed in details.

  8. Synthesis, X-ray diffraction method, spectroscopic characterization (FT-IR, 1H and 13C NMR), antimicrobial activity, Hirshfeld surface analysis and DFT computations of novel sulfonamide derivatives

    NASA Astrophysics Data System (ADS)

    Demircioğlu, Zeynep; Özdemir, Fethi Ahmet; Dayan, Osman; Şerbetçi, Zafer; Özdemir, Namık

    2018-06-01

    Synthesized compounds of N-(2-aminophenyl)benzenesulfonamide 1 and (Z)-N-(2-((2-nitrobenzylidene)amino)phenyl)benzenesulfonamide 2 were characterized by antimicrobial activity, FT-IR, 1H and 13C NMR. Two new Schiff base ligands containing aromatic sulfonamide fragment of (Z)-N-(2-((3-nitrobenzylidene)amino)phenyl)benzenesulfonamide 3 and (Z)-N-(2-((4-nitrobenzylidene)amino)phenyl)benzenesulfonamide 4 were synthesized and investigated by spectroscopic techniques including 1H and 13C NMR, FT-IR, single crystal X-ray diffraction, Hirshfeld surface, theoretical method analyses and by antimicrobial activity. The molecular geometry obtained from the X-ray structure determination was optimized Density Functional Theory (DFT/B3LYP) method with the 6-311++G(d,p) basis set in ground state. From the optimized geometry of the molecules of 3 and 4, the geometric parameters, vibrational wavenumbers and chemical shifts were computed. The optimized geometry results, which were well represented the X-ray data, were shown that the chosen of DFT/B3LYP 6-311G++(d,p) was a successful choice. After a successful optimization, frontier molecular orbitals, chemical activity, non-linear optical properties (NLO), molecular electrostatic mep (MEP), Mulliken population method, natural population analysis (NPA) and natural bond orbital analysis (NBO), which cannot be obtained experimentally, were calculated and investigated.

  9. Composition-driven Cu-speciation and reducibility in Cu-CHA zeolite catalysts: a multivariate XAS/FTIR approach to complexity† †Electronic supplementary information (ESI) available: Sample description and synthesis details, experimental setup for in situ XAS and FTIR spectroscopy, details on the MCR-ALS method, details on DFT-assisted XANES simulations, details on the determination of N pure by PCA, MCR-ALS results for downsized and upsized component spaces, additional information to support the assignment of theoretical XANES curves, details on EXAFS analysis, details on IR spectral deconvolution. See DOI: 10.1039/c7sc02266b Click here for additional data file.

    PubMed Central

    Martini, A.; Lomachenko, K. A.; Pankin, I. A.; Negri, C.; Berlier, G.; Beato, P.; Falsig, H.; Bordiga, S.; Lamberti, C.

    2017-01-01

    The small pore Cu-CHA zeolite is attracting increasing attention as a versatile platform to design novel single-site catalysts for deNOx applications and for the direct conversion of methane to methanol. Understanding at the atomic scale how the catalyst composition influences the Cu-species formed during thermal activation is a key step to unveil the relevant composition–activity relationships. Herein, we explore by in situ XAS the impact of Cu-CHA catalyst composition on temperature-dependent Cu-speciation and reducibility. Advanced multivariate analysis of in situ XANES in combination with DFT-assisted simulation of XANES spectra and multi-component EXAFS fits as well as in situ FTIR spectroscopy of adsorbed N2 allow us to obtain unprecedented quantitative structural information on the complex dynamics during the speciation of Cu-sites inside the framework of the CHA zeolite. PMID:29147509

  10. Pentachlorophenol radical cations generated on Fe(III)-montmorillonite initiate octachlorodibenzo-p-dioxin formation in clays: DFT and FTIR studies

    PubMed Central

    Gu, Cheng; Liu, Cun; Johnston, Cliff T.; Teppen, Brian J.; Li, Hui; Boyd, Stephen A.

    2011-01-01

    Octachlorodibenzodioxin (OCDD) forms spontaneously from pentachlorophenol (PCP) on the surfaces of Fe(III)-saturated smectite clay (1). Here, we used in situ FTIR methods and quantum mechanical calculations to determine the mechanism by which this reaction is initiated. As the clay was dehydrated, vibrational spectra showed new peaks that grew and then reversibly disappeared as the clay rehydrated. First principle DFT calculations of hydrated Fe-PCP clusters reproduced these transient FTIR peaks when inner-sphere complexation and concomitant electron transfer produced Fe(II) and PCP radical cations. Thus, our experimental (FTIR) and theoretical (quantum mechanical) results mutually support the hypothesis that OCDD formation on Fe-smectite surfaces is initiated by the reversible formation of metastable PCP radical cations via single electron transfer from PCP to Fe(III). The negatively charged clay surface apparently selects for this reaction mechanism by stabilizing PCP radical cations. PMID:21254769

  11. The OH-Initiated Oxidation of CS2 in the Presence of NO: FTIR Matrix-Isolation and Theoretical Studies.

    PubMed

    Bil, A; Grzechnik, K; Sałdyka, M; Mielke, Z

    2016-09-01

    We studied the photochemistry of the carbon disulfide-nitrous acid system with the help of Fourier transform infrared (FTIR) matrix isolation spectroscopy and theoretical methods. The irradiation of the CS2···HONO complexes, isolated in solid argon, with the filtered output of the mercury lamp (λ > 345 nm) was found to produce OCS, SO2, and HNCS; HSCN was also tentatively identified. The (13)C, (15)N, and (2)H isotopic shifts as well as literature data were used for product identifications. The evolution of the measured FTIR spectra with irradiation time and the changes in the spectra after matrix annealing indicated that the identified molecules are the products of different reaction channels: OCS being a product of another reaction path than SO2 and HNCS or HSCN. The possible reaction channels between SC(OH)S/SCS(OH) radicals and NO were studied using DFT/B3LYP/aug-cc-pVTZ method. The SC(OH)S and/or SCS(OH) intermediates are formed when HONO attached to CS2 photodissociates into OH and NO. The calculations indicated that SC(OH)S radical can form with NO two stable adducts. The more stable SC(OH)S···NO structure is a reactant for a simple one-step process leading to OCS and HONS molecules. An alternative, less-stable complex formed between SC(OH)S and NO leads to formation of OCS and HSNO. The calculations predict only one stable complex between SCS(OH) radical and NO, which can dissociate along two channels leading to HNCS and SO2 or HSCN and SO2 as the end products. The identified photoproducts indicate that both SC(OH)S and SCS(OH) adducts are intermediates in the CS2 + OH + NO reaction leading to different reaction products.

  12. Dielectric compound parabolic concentrating solar collector with a frustrated total internal reflection absorber.

    PubMed

    Hull, J R

    1989-01-01

    Coupling a dielectric compound parabolic concentrator (DCPC) to an absorber across a vacuum gap by means of frustrated total internal reflection (FTIR) can theoretically approach the maximum concentration permitted by physical laws, thus allowing higher radiative fluxes in thermal applications. The calculated optical performance of 2-D DCPCs with FTIR absorbers indicates that the ratio of gap thickness to optical wavelength must be <0.22 before the optical performance of the DCPC is superior to that of the nondielectric CPC.

  13. Antimicrobial activity, structural evaluation and vibrational (FT-IR and FT-Raman) study of pyrrole containing vinyl derivatives

    NASA Astrophysics Data System (ADS)

    Singh, R. N.; Rawat, Poonam; Sahu, Sangeeta; Kumar, Yashvinder

    2016-02-01

    In this paper we present structural and vibrational study of three vinylpyrrole derivatives: 2-Cyano-3-(1H-pyrrol-2-yl)-acrylamide (CPA), 1-(1H-Pyrrol-2-yl)-Pent-1-en-3-one (PP) and 1-(1H-Pyrrol-2-yl)-but-1-en-3-one (PB), using ab initio, DFT and experimental approaches. The quantum chemical calculation have been performed on B3LYP method and 6-311 + G(d,p) basis set. The experimental FT-IR and Raman wavenumbers were compared with the respective theoretical values obtained from DFT calculations and found to agree well. The experimental FT-IR and Raman study clearly indicate that the compound exist as dimer in solid state. The binding energies of (CPA), (PP) and (PB) dimers are found to be 20.95, 18.75 and 19.18 kcal/mol, respectively. The vibrational analysis shows red shifts in vN-H and vCdbnd O stretching as result of dimer formation. Stability of the molecule arising from hyperconjugative interactions and charge delocalization has been analyzed using NBO analysis. Topological and energetic parameters reveal the nature of interactions in dimer. The local electronic descriptors analyses were used to predict the reactive sites in the molecule. Calculated first static hyperpolarizability of CPA, PP and PB is found to be 10.41 × 10- 30, 18.93 × 10- 30, 18.29 × 10- 30 esu, respectively, shows that investigated molecules will have non-linear optical response and might be used as non-linear optical (NLO) material. These vinylpyrrole compounds (CPA), (PP) and (PB) showed antifungal and antibacterial activity against Aspergillus niger and gram-positive bacteria Bacillus subtili.

  14. FT-IR and Raman vibrational analysis, B3LYP and M06-2X simulations of 4-bromomethyl-6-tert-butyl-2H-chromen-2-one

    NASA Astrophysics Data System (ADS)

    Sert, Yusuf; Puttaraju, K. B.; Keskinoğlu, Sema; Shivashankar, K.; Ucun, Fatih

    2015-01-01

    In this study, the experimental and theoretical vibrational frequencies of a newly synthesized bacteriostatic and anti-tumor molecule namely, 4-bromomethyl-6-tert-butyl-2H-chromen-2-one have been investigated. The experimental FT-IR (4000-400 cm-1) and Raman spectra (4000-100 cm-1) of the compound in solid phase have been recorded. The theoretical vibrational frequencies and optimized geometric parameters have been calculated using density functional theory (DFT/B3LYP: Becke, 3-parameter, Lee-Yang-Parr and DFT/M06-2X: highly parametrized, empirical exchange correlation function) with 6-311++G(d, p) basis set by Gaussian 03 software, for the first time. The assignments of the vibrational frequencies have been done by potential energy distribution (PED) analysis using VEDA 4 software. The theoretical optimized geometric parameters and vibrational frequencies have been found to be in good agreement with the corresponding experimental data and results in the literature. In addition, the highest occupied molecular orbital (HOMO) energy, the lowest unoccupied molecular orbital (LUMO) energy and the other related molecular energy values of the compound have been investigated using the same theoretical calculations.

  15. Experimental and theoretical infrared spectra of famotidine and its interaction with ofloxacin

    NASA Astrophysics Data System (ADS)

    Sagdinc, Seda; Bayarı, Sevgi

    2005-06-01

    We present FTIR spectrum of B polymorphic forms of famotidine (fam) that is a powerful histamine H2-receptor antagonist used in the treatment of peptic ulcer. Molecular mechanics and semi empirical AM1, PM3, MNDO and MINDO3 methods have been used to study the molecular geometry, and the harmonic vibrational spectra with the purpose to assist the experimental assignments of famotidine. The calculated geometric parameters have been compared to the corresponding X-ray structure of famotidine and it is found that AM1 structure in agreement with the crystal data. We are also investigated the interaction of famotidine with ofloxacin which is a synthetic antimicrobial agent. The changes observed in the some bands (wavenumber, shape) of interacted compound indicated that there is a weak interaction between two molecules. PM3 calculations are also carried out to determine the possible molecular structure of the interacted compound.

  16. X-Ray Photoelectron Spectroscopic Characterization of Iron Oxide Nanoparticles

    NASA Astrophysics Data System (ADS)

    Radu, T.; Iacovita, C.; Benea, D.; Turcu, R.

    2017-05-01

    We report X-ray photoelectron spectroscopy (XPS) results on iron oxide magnetic nanoparticle (Fe3O4) synthesized using solvothermal reduction in the presence of polyethylene glycol. The magnetite obtained was employed as precursor for the synthesis of γ-Fe2O3 (by oxygen dissociation) which in turn was transformed into α-Fe2O3. We confirmed the magnetite, maghemite and hematite structure by Fourier Transformed Spectroscopy (FTIR) and X-ray diffraction (XRD). The analysis of the XPS core level and valence band (VB) photoemission spectra for all investigated samples is discussed in terms of the degree of iron oxidation. This is of fundamental importance to better understand the electronic structure of the obtained iron oxide nanoparticles in order to control and improve their quality for specific biomedical applications. Moreover, theoretical band structure calculations are performed for magnetite and the separate contributions of Fe in tetragonal and octahedral environment are shown.

  17. Conformational, structural, vibrational, electronic and quantum chemical investigations of cis-2-methoxycinnamic acid

    NASA Astrophysics Data System (ADS)

    Arjunan, V.; Anitha, R.; Marchewka, M. K.; Mohan, S.; Yang, Haifeng

    2015-01-01

    The Fourier transform infrared (FTIR) and FT-Raman spectra of cis-2-methoxycinnamic acid have been measured in the range 4000-400 and 4000-100 cm-1, respectively. Complete vibrational assignment and analysis of the fundamental modes of the compound were carried out using the observed FTIR and FT-Raman data. The geometry was optimised without any symmetry constrains using the DFT/B3LYP method utilising 6-311++G∗∗ and cc-pVTZ basis sets. The thermodynamic stability and chemical reactivity descriptors of the molecule have been determined. The exact environment of C and H of the molecule has been analysed by NMR spectroscopies through 1H and 13C NMR chemical shifts of the molecule. The energies of the frontier molecular orbitals have also been determined. Complete NBO analysis was also carried out to find out the intramolecular electronic interactions and their stabilisation energy. The vibrational frequencies which were determined experimentally are compared with those obtained theoretically from density functional theory (DFT) gradient calculations employing the B3LYP/6-311++G∗∗ and cc-pVTZ methods.

  18. Effects of Processing on Structure and Thermal Properties of Powdered Preterm Infant Formula.

    PubMed

    Sun, Xiaomeng; Wang, Cuina; Wang, Hao; Guo, Mingruo

    2018-06-01

    Powdered infant formula is usually manufactured by ingredients mixing, homogenization, pasteurization, evaporation and spray drying. Effects of unit operations on the microstructure, thermal properties and other characteristics of preterm infant formula, fat (F), serum (S), and pellet (P) fractions on centrifugation were investigated using Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Differential Scanning Calorimetry (DSC), and Fourier Transform Infrared (FTIR) spectroscopy. After homogenization, particles which may be casein and denatured whey proteins were observed on the surface of F fraction in microstructure images. DSC results showed that the onset temperature of the second endothermic peak of F fraction shifted to higher temperature, and an endothermic transition appeared at 173.3 °C in P fraction. The -CH 2 group corresponding to F fraction showed less intensity in FTIR spectrum after homogenization. Microstructure images for S and P fractions showed larger aggregates due to the pasteurization processing. Apparent exothermic transition in DSC curve occurred at 101.6 °C indicated whey protein aggregation. Spray drying resulted in some open areas in F fraction and lager aggregates in S fraction revealed by microstructure pictures. A new exothermic transition appeared at 93.6 °C in DSC curve of S fraction. Changes in amide I and amide II regions in FTIR spectra of samples resulted from pasteurization and spray drying indicated the changes in secondary structure of casein and whey proteins. All results indicated that homogenization, pasteurization, and spray drying exhibited pronounced impacts on the microstructure, thermal properties and structural characteristics of samples. Preterm infant formula is an important dairy food for preborn infants. Our results indicate that unit operations especially homogenization, pasteurization, and spray drying during the processing have the most impacts on the microstructure, thermal properties and other characteristics of infant formula. This work provides further understanding of component interactions during the processing of infant formula and theoretical basis for the production of dairy food. © 2018 Institute of Food Technologists®.

  19. Structural, vibrational and theoretical studies of anilinium trichloroacetate: New hydrogen bonded molecular crystal with nonlinear optical properties

    NASA Astrophysics Data System (ADS)

    Tanak, H.; Pawlus, K.; Marchewka, M. K.; Pietraszko, A.

    2014-01-01

    In this work, we report a combined experimental and theoretical study on molecular structure, vibrational spectra and NBO analysis of the potential nonlinear optical (NLO) material anilinium trichloroacetate. The FT-IR and FT-Raman spectra of the compound have been recorded together between 4000-80 cm-1 and 3600-80 cm-1 regions, respectively. The compound crystallizes in the noncentrosymmetric space group of monoclinic system. The optimized molecular structure, vibrational wavenumbers, IR intensities and Raman activities have been calculated by using density functional method (B3LYP) with 6-311++G(d,p) as higher basis set. The obtained vibrational wavenumbers and optimized geometric parameters were seen to be in good agreement with the experimental data. DSC measurements on powder samples do not indicate clearly on the occurrence of phase transitions in the temperature 113-293 K. The Kurtz and Perry powder reflection technique appeared to be very effective in studies of second-order nonlinear optical properties of the molecule. The non-linear optical properties are also addressed theoretically. The predicted NLO properties of the title compound are much greater than ones of urea. In addition, DFT calculations of the title compound, molecular electrostatic potential, frontier orbitals and thermodynamic properties were also performed at 6-311++G(d,p) level of theory. For title crystal the SHG efficiency was estimated by Kurtz-Perry method to be deff = 0.70 deff (KDP).

  20. Structural, vibrational and theoretical studies of anilinium trichloroacetate: new hydrogen bonded molecular crystal with nonlinear optical properties.

    PubMed

    Tanak, H; Pawlus, K; Marchewka, M K; Pietraszko, A

    2014-01-24

    In this work, we report a combined experimental and theoretical study on molecular structure, vibrational spectra and NBO analysis of the potential nonlinear optical (NLO) material anilinium trichloroacetate. The FT-IR and FT-Raman spectra of the compound have been recorded together between 4000-80 cm(-1) and 3600-80 cm(-1) regions, respectively. The compound crystallizes in the noncentrosymmetric space group of monoclinic system. The optimized molecular structure, vibrational wavenumbers, IR intensities and Raman activities have been calculated by using density functional method (B3LYP) with 6-311++G(d,p) as higher basis set. The obtained vibrational wavenumbers and optimized geometric parameters were seen to be in good agreement with the experimental data. DSC measurements on powder samples do not indicate clearly on the occurrence of phase transitions in the temperature 113-293 K. The Kurtz and Perry powder reflection technique appeared to be very effective in studies of second-order nonlinear optical properties of the molecule. The non-linear optical properties are also addressed theoretically. The predicted NLO properties of the title compound are much greater than ones of urea. In addition, DFT calculations of the title compound, molecular electrostatic potential, frontier orbitals and thermodynamic properties were also performed at 6-311++G(d,p) level of theory. For title crystal the SHG efficiency was estimated by Kurtz-Perry method to be d(eff)=0.70 d(eff) (KDP). Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Responsivity-based criterion for accurate calibration of FTIR emission spectra: theoretical development and bandwidth estimation.

    PubMed

    Rowe, Penny M; Neshyba, Steven P; Walden, Von P

    2011-03-14

    An analytical expression for the variance of the radiance measured by Fourier-transform infrared (FTIR) emission spectrometers exists only in the limit of low noise. Outside this limit, the variance needs to be calculated numerically. In addition, a criterion for low noise is needed to identify properly calibrated radiances and optimize the instrument bandwidth. In this work, the variance and the magnitude of a noise-dependent spectral bias are calculated as a function of the system responsivity (r) and the noise level in its estimate (σr). The criterion σr/r<0.3, applied to downwelling and upwelling FTIR emission spectra, shows that the instrument bandwidth is specified properly for one instrument but needs to be restricted for another.

  2. Comparison of red blood cells from gastric cancer patients and healthy persons using FTIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Hui; Su, Qinglong; Sheng, Daping; Zheng, Wei; Wang, Xin

    2017-02-01

    In this paper, FTIR spectroscopy was used to compare gastric cancer patients' red blood cells (RBCs) with healthy persons' RBCs. IR spectra were acquired with high resolution. The A1653/A1543 (the protein secondary structures), A1543/A2958 (the relative content of proteins and lipids), A1106/A1166 (the structure and content changes of sugars) and A1543/A1106 (the relative content of proteins and sugars) ratios of gastric cancer patients' RBCs were significantly different from those of healthy persons' RBCs. Curve fitting results showed that the protein secondary structures and sugars' structures had differences between gastric cancer patients' and healthy persons' RBCs. Additionally, FTIR spectroscopy could obtain 95% sensitivity, 70% specificity, 84.2% accuracy and 80.9% positive predictive value in combination with canconical discriminant analysis. The above results indicate FTIR spectroscopy may be useful for diagnosing gastric cancer.

  3. Crystal structure, vibrational, spectral investigation, quantum chemical DFT calculations and thermal behavior of Diethyl [hydroxy (phenyl) methyl] phosphonate

    NASA Astrophysics Data System (ADS)

    Ouksel, Louiza; Chafaa, Salah; Bourzami, Riadh; Hamdouni, Noudjoud; Sebais, Miloud; Chafai, Nadjib

    2017-09-01

    Single Diethyl [hydroxy (phenyl) methyl] phosphonate (DHPMP) crystal with chemical formula C11H17O4P, was synthesized via the base-catalyzed Pudovik reaction and Lewis acid as catalyst. The results of SXRD analyzes indicate that this compound crystallizes into a mono-clinic system with space group P21/n symmetry and Z = 4. The crystal structure parameters are a = 9.293 Å, b = 8.103 Å, c = 17.542 Å, β = 95.329° and V = 1315.2 Å3, the structure displays one inter-molecular O-H⋯O hydrogen bonding. The UV-Visible absorption spectrum shows that the crystal exhibits a good optical transmission in the visible domain, and strong absorption in middle ultraviolet one. The vibrational frequencies of various functional groups present in DHPMP crystal have been deduced from FT-IR and FT-Raman spectra and then compared with theoretical values performed with DFT (B3LYP) method using 6-31G (p, d) basis sets. Chemical and thermodynamic parameters such as: ionization potential (I), electron affinity (A), hardness (σ), softness (η), electronegativity (χ) and electrophilicity index (ω), are also calculated using the same theoretical method. The thermal decomposition behavior of DHPMP, studied by using thermogravimetric analysis (TDG), shows a thermal stability until to 125 °C.

  4. Electronic structure and vibrational spectra of cis-diammine(orotato)platinum(II), a potential cisplatin analogue: DFT and experimental study

    NASA Astrophysics Data System (ADS)

    Wysokiński, Rafał; Hernik, Katarzyna; Szostak, Roman; Michalska, Danuta

    2007-03-01

    Orotic acid (vitamin B 13) is a key intermediate in biosynthesis of the pyrimidine nucleotides in living organisms, moreover, it may serve as the biological carrier for some metal ions. cis-Diammine(orotato)platinum(II), cis-[Pt(C 5H 2N 2O 4)(NH 3) 2] can be considered as a new potential cisplatin analogue. The FT-Raman and FT-IR spectra of the title complex are reported, for the first time. The molecular structure, vibrational frequencies, and the theoretical infrared and Raman intensities have been calculated by the density functional mPW1PW91 method. The detailed vibrational assignment has been made on the basis of the calculated potential energy distribution. The theoretically predicted IR and Raman spectra show very good agreement with experiment. Natural bond orbital (NBO) analyses were performed for cisplatin, carboplatin and the title complex. The results provided new data on the nature of platinum-ligand bonding in these compounds. Strong intramolecular hydrogen bond between the orotate ligand and the coordinated ammonia group stabilizes the structure of the platinum(II) complex. Thus, it is suggested that the orotate ligand in the title complex is more inert to the substitution reactions than the chloride ligands in cisplatin.

  5. Synthesis, spectral, structural prediction and computational studies of octylcarbazole ornamented 3-phenothiazinal

    NASA Astrophysics Data System (ADS)

    Karuppasamy, Ayyanar; Udhaya kumar, Chandran; Karthikeyan, Subramanian; Velayutham Pillai, Muthiah Pillai; Ramalingan, Chennan

    2017-11-01

    A novel conjugated octylcarbazole ornamented 3-phenothiazinal, 10-(9-octyl-9H-carbazol-3-yl)-10H-phenothiazine-3-carbaldehyde (OCPTC) was synthesized and fully characterized by 1H-NMR, 13C-NMR, elemental and single crystal XRD analyses. The optimized geometrical structure, vibrational frequencies and NMR have been computed with M06-2X method using 6-31+G(d,p) basis set. Total electronic energies and HOMO-LUMO energy gaps in gas phase are discussed. The geometrical parameters of the title compound obtained from single crystal XRD studies have been found in accord with the calculated (DFT) values. The experimental and theoretical FT-IR and NMR results of the title molecule have been investigated. The experimentally observed vibrational frequencies have been compared with the calculated ones, which are in good agreement with each other. Single crystal X-ray structural analysis of OCPTC, evidences the ''butterfly conformation'' of phenothiazine ring with nearly perpendicular orientation of the carbazole structural motif to the phenothiazine moiety.

  6. Hirshfeld surface analyses and crystal structures of supramolecular self-assembly thiourea derivatives directed by non-covalent interactions

    NASA Astrophysics Data System (ADS)

    Gumus, Ilkay; Solmaz, Ummuhan; Binzet, Gun; Keskin, Ebru; Arslan, Birdal; Arslan, Hakan

    2018-04-01

    The novel N-(bis(3,5-dimethoxybenzyl)carbamothioyl)-4-R-benzamide (R: H, Cl, CH3 and OCH3) compounds have been synthesized and characterized by FT-IR, 1H NMR and 13C NMR spectroscopy. Their crystal structures were also determined by single-crystal X-ray diffraction studies. Hirshfeld surfaces analysis and their associated two dimensional fingerprint plots of compounds were used as theoretical approach to assess driving force for crystal structure formation via the intermolecular interactions in the crystal lattices of synthesized compounds. The study of X-ray single crystal diffraction and Hirshfeld surfaces analysis of the prepared compounds shows that hydrogen bonding and other weaker interactions such as Nsbnd H⋯S, weak Csbnd H⋯S, Csbnd H⋯O, Csbnd H⋯N and Csbnd H···π intermolecular interactions and π-π stacking, among molecules of synthesized compounds participate in a cooperative way to stabilize the supramolecular structures.

  7. Comparison of molecular structure of alkali metal o-, m- and p-nitrobenzoates

    NASA Astrophysics Data System (ADS)

    Regulska, E.; Świsłocka, R.; Samsonowicz, M.; Lewandowski, W.

    2008-09-01

    The influence of nitro-substituent in ortho, meta and para positions as well as lithium, sodium, potassium, rubidium and cesium on the electronic system of aromatic ring and the distribution of electronic charge in carboxylic group of the nitrobenzoates were estimated. Optimized geometrical structures were calculated (B3LYP/6-311++G ∗∗). To make quantitative evaluation of aromaticity of studied molecules the geometric (A J, BAC, I 6 and HOMA) as well as magnetic (NICS) aromaticity indices were calculated. Electronic charge distribution was also examined by molecular spectroscopic study, which may be the source of quality criterion for aromaticity. Experimental and theoretical FT-IR, FT-Raman and NMR ( 1H and 13C) spectra of the title compounds were analyzed. The calculated parameters were compared to experimental characteristics of these molecules.

  8. A new look into conformational, vibrational and electronic structure analysis of 3,4-dimethoxybenzonitrile.

    PubMed

    Arjunan, V; Devi, L; Remya, P; Mohan, S

    2013-09-01

    The FTIR and FT-Raman spectra of 3,4-dimethoxybenzonitrile (34DMBN) have been analysed. Quantum chemical studies were performed with B3LYP method using 6-311++G(d,p), 6-31G(d,p) and cc-pVTZ basis sets. The electron donating effect of -OCH3 and electron withdrawing effect of -C≡N groups on the ring parameters were thoroughly analysed. The structural parameters, energies, thermodynamic properties, vibrational frequencies and the NBO charges of 34DMBN were determined. The (1)H and (13)C chemical shifts with respect to TMS were investigated and also calculated theoretically using the gauge independent atomic orbital method and compared with the experimental data. The delocalisation energy of different types of bonding interactions was investigated. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Microwave Assisted Synthesis, Physicochemical, Photophysical, Single Crystal X-ray and DFT Studies of Novel Push-Pull Chromophores.

    PubMed

    Khan, Salman A; Asiri, Abdullah M; Basisi, Hadi Mussa; Arshad, Muhammad Nadeem; Sharma, Kamlesh

    2015-11-01

    Two push-pull chromophores were synthesized by knoevenagel condensation under microwave irradiation. The structure of synthesized chromophores were established by spectroscopic (FT-IR, (1)H NMR, (13)C NMR, EI-MS) and elemental analysis. Structure of the chromophores was further conformed by X-ray crystallographic. UV-Vis and fluorescence spectroscopy measurements provided that chromophores were good absorbent and fluorescent properties. Fluorescence polarity studies demonstrated that chromophores were sensitive to the polarity of the microenvironment provided by different solvents. Physicochemical parameters, including singlet absorption, extinction coefficient, stokes shift, oscillator strength, dipole moment and flurescence quantum yield were investigated in order to explore the analytical potential of the synthesized chromophores. In addition, the total energy, frontier molecular orbitals, hardness, electron affinity, ionization energy, electrostatic potential map were also studied computationally by using density functional theoretical method.

  10. Molecular structure and interactions in the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide.

    PubMed

    Dhumal, Nilesh R; Noack, Kristina; Kiefer, Johannes; Kim, Hyung J

    2014-04-03

    Electronic structure theory (density functional and Møller-Plesset perturbation theory) and vibrational spectroscopy (FT-IR and Raman) are employed to study molecular interactions in the room-temperature ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. Different conformers of a cation-anion pair based on their molecular interactions are simulated in the gas phase and in a dielectric continuum solvent environment. Although the ordering of conformers in energy varies with theoretical methods, their predictions for three lowest energy conformers in the gas phase are similar. Strong C-H---N interactions between the acidic hydrogen atom of the cation imidazole ring and the nitrogen atom of the anion are predicted for either the lowest or second lowest energy conformer. In a continuum solvent, different theoretical methods yield the same ion-pair conformation for the lowest energy state. In both phases, the density functional method predicts that the anion is in a trans conformation in the lowest energy ion pair state. The theoretical results are compared with experimental observations from Raman scattering and IR absorption spectroscopies and manifestations of the molecular interactions in the vibrational spectra are discussed. The directions of the frequency shifts of the characteristic vibrations relative to the free anion and cation are explained by calculating the difference electron density coupled with electron density topography.

  11. Synthesis, molecular structure, Hirshfeld surface, spectral investigations and molecular docking study of 3-(5-bromo-2-thienyl)-1-(4-fluorophenyl)-3-acetyl-2-pyrazoline (2) by DFT method

    NASA Astrophysics Data System (ADS)

    Sathish, M.; Meenakshi, G.; Xavier, S.; Sebastian, S.; Periandy, S.; Ahmad, NoorAisyah; Jamalis, Joazaizulfazli; Rosli, MohdMustaqim; Fun, Hoong-Kun

    2018-07-01

    The 3-(5-Bromo-2-thienyl)-1-(4-fluorophenyl)-3-acetyl-2-pyrazoline (2) (BTFA) was synthesized from condensation of thiophenechalcone (1) and hydrazine hydrate. The compound was characterized by FT-IR, 1H and 13C NMR. Crystal structure of this compound was determined using X-ray diffraction technique. The data of the geometry is compared with the optimized structure of the compound obtained using B3LYP functional with 6-311++G (d,p) basis set. The fundamental modes of vibrations are assigned using VEDA software with the PED assignments, and compared with data obtained from theoretical methods. The deviations are widely discussed and analyzed. The intermolecular interaction of the crystal structure was analyzed using Hirshfeld and fingerprint analysis. The chemical shift of the NMR for 13C and 1H are observed and computational data are computed using Gauge independent atomic orbital (GIAO) using B3LYP/6-311++G (d,p). The electronic and optical properties like absorption of wavelengths, excitation energy, dipole moment and frontier molecular orbital energies are computed with TD-SCF method using the above theoretical method. The antiviral nature of the molecule is also analyzed and the compound is docked in non-small cell lung cancer and human collapsin response mediator protein-1study exhibits its activity.

  12. FTIR, FT-Raman spectra and ab initio, DFT vibrational analysis of 2,4-dinitrophenylhydrazine.

    PubMed

    Sundaraganesan, N; Ayyappan, S; Umamaheswari, H; Joshua, B Dominic

    2007-01-01

    The FTIR and FT-Raman spectra of 2,4-dinitrophenylhydrazine (2,4-DNPH) has been recorded in the region 4000-400 and 3500-50cm-1, respectively. The optimized geometry, frequency and intensity of the vibrational bands of 2,4-DNPH were obtained by the ab initio and density functional theory (DFT) levels of theory with complete relaxation in the potential energy surface using 6-31G(d,p) and 6-311G(d,p) basis sets. The harmonic vibrational frequencies were calculated and the scaled values have been compared with experimental FTIR and FT-Raman spectra. The observed and the calculated frequencies are found to be in good agreement. The experimental spectra also coincide satisfactorily with those of theoretically constructed bar type spectrograms.

  13. FTIR, FT-Raman spectra and ab initio, DFT vibrational analysis of 2,4-dinitrophenylhydrazine

    NASA Astrophysics Data System (ADS)

    Sundaraganesan, N.; Ayyappan, S.; Umamaheswari, H.; Dominic Joshua, B.

    2007-01-01

    The FTIR and FT-Raman spectra of 2,4-dinitrophenylhydrazine (2,4-DNPH) has been recorded in the region 4000-400 and 3500-50 cm -1, respectively. The optimized geometry, frequency and intensity of the vibrational bands of 2,4-DNPH were obtained by the ab initio and density functional theory (DFT) levels of theory with complete relaxation in the potential energy surface using 6-31G(d,p) and 6-311G(d,p) basis sets. The harmonic vibrational frequencies were calculated and the scaled values have been compared with experimental FTIR and FT-Raman spectra. The observed and the calculated frequencies are found to be in good agreement. The experimental spectra also coincide satisfactorily with those of theoretically constructed bar type spectrograms.

  14. The biomolecule, 2-[(2-methoxyl)sulfanyl]-4-(2-methylpropyl)-6-oxo-1,6-dihydropyrimidine-5-carbonitrile: FT-IR, Laser-Raman spectra and DFT

    NASA Astrophysics Data System (ADS)

    Sert, Yusuf; El-Emam, Ali A.; Al-Deeb, Omar A.; Al-Turkistani, Abdulghafoor A.; Ucun, Fatih; Çırak, Çağrı

    In this study, the experimental and theoretical vibrational frequencies of a newly synthesized potential chemotherapeutic agent namely, 2-[(2-methoxyl)sulfanyl]-4-(2-methylpropyl)-6-oxo-1,6-dihydropyrimidine-5-carbonitrile have been investigated. The experimental FT-IR (4000-400 cm-1) and Laser-Raman spectra (4000-100 cm-1) of the molecule in solid phase have been recorded. The theoretical vibrational frequencies and optimized geometric parameters (bond lengths and bond angles) have been calculated by using density functional theory (DFT/B3LYP: Becke, 3-parameter, Lee-Yang-Parr) and M06-2X (the highly parametrized, empirical exchange correlation function) quantum chemical methods with 6-311++G(d,p) basis set by Gaussian 09W software, for the first time. The assignments of the vibrational frequencies have been done by potential energy distribution (PED) analysis by using VEDA 4 software. The theoretical optimized geometric parameters and vibrational frequencies have been found to be in good agreement with the corresponding experimental data, and with the results in the literature. In addition, the highest occupied molecular orbital (HOMO) energy, the lowest unoccupied molecular orbital (LUMO) energy and the other related molecular energy values of the compound have been investigated using the same theoretical calculations.

  15. FT-IR, Laser-Raman spectra and quantum chemical calculations of methyl 4-(trifluoromethyl)-1H-pyrrole-3-carboxylate-A DFT approach.

    PubMed

    Sert, Yusuf; Sreenivasa, S; Doğan, H; Manojkumar, K E; Suchetan, P A; Ucun, Fatih

    2014-06-05

    In this study the experimental and theoretical vibrational frequencies of a newly synthesized anti-tumor and anti-inflammatory agent namely, methyl 4-(trifluoromethyl)-1H-pyrrole-3-carboxylate have been investigated. The experimental FT-IR (4000-400cm(-1)) and Laser-Raman spectra (4000-100cm(-1)) of the molecule in solid phase have been recorded. The theoretical vibrational frequencies and optimized geometric parameters (bond lengths, bond angles and torsion angles) have been calculated using density functional theory (DFT/B3LYP: Becke, 3-parameter, Lee-Yang-Parr and DFT/M06-2X: highly parameterized, empirical exchange correlation function) with 6-311++G(d,p) basis set by Gaussian 03 software, for the first time. The assignments of the vibrational frequencies have been done by potential energy distribution (PED) analysis using VEDA 4 software. The theoretical optimized geometric parameters and vibrational frequencies have been found to be in good agreement with the corresponding experimental data and results in the literature. In addition, the highest occupied molecular orbital (HOMO) energy, the lowest unoccupied molecular orbital (LUMO) energy and the other related molecular energy values of the compound have been investigated using the same theoretical calculations. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. FT-IR, Laser-Raman spectra and computational analysis of 5-Methyl-3-phenylisoxazole-4-carboxylic acid.

    PubMed

    Sert, Yusuf; Mahendra, M; Keskinoğlu, S; Chandra; Srikantamurthy, N; Umesha, K B; Çırak, Ç

    2015-03-15

    In this study the experimental and theoretical vibrational frequencies of a newly synthesized anti-tumor, antiviral, hypoglycemic, antifungal and anti-HIV agent namely, 5-Methyl-3-phenylisoxazole-4-carboxylic acid has been investigated. The experimental FT-IR (4000-400 cm(-1)) and Laser-Raman spectra (4000-100 cm(-1)) of the molecule in solid phase have been recorded. The theoretical vibrational frequencies and optimized geometric parameters (bond lengths, bond angles and torsion angles) have been calculated by using density functional theory (DFT/B3LYP: Becke, 3-parameter, Lee-Yang-Parr and DFT/M06-2X: highly parametrized, empirical exchange correlation function) with 6-311++G(d,p) basis set by Gaussian 09W software, for the first time. The assignments of the vibrational frequencies have been done by potential energy distribution (PED) analysis by using VEDA 4 software. The theoretical optimized geometric parameters and vibrational frequencies have been found to be in good agreement with the corresponding experimental data and results in the literature. In addition, the highest occupied molecular orbital (HOMO) energy, the lowest unoccupied molecular orbital (LUMO) energy and the other related molecular energy values of the compound have been investigated by using the same theoretical calculations. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. FT-IR, Laser-Raman spectra and quantum chemical calculations of methyl 4-(trifluoromethyl)-1H-pyrrole-3-carboxylate-A DFT approach

    NASA Astrophysics Data System (ADS)

    Sert, Yusuf; Sreenivasa, S.; Doğan, H.; Manojkumar, K. E.; Suchetan, P. A.; Ucun, Fatih

    2014-06-01

    In this study the experimental and theoretical vibrational frequencies of a newly synthesized anti-tumor and anti-inflammatory agent namely, methyl 4-(trifluoromethyl)-1H-pyrrole-3-carboxylate have been investigated. The experimental FT-IR (4000-400 cm-1) and Laser-Raman spectra (4000-100 cm-1) of the molecule in solid phase have been recorded. The theoretical vibrational frequencies and optimized geometric parameters (bond lengths, bond angles and torsion angles) have been calculated using density functional theory (DFT/B3LYP: Becke, 3-parameter, Lee-Yang-Parr and DFT/M06-2X: highly parameterized, empirical exchange correlation function) with 6-311++G(d,p) basis set by Gaussian 03 software, for the first time. The assignments of the vibrational frequencies have been done by potential energy distribution (PED) analysis using VEDA 4 software. The theoretical optimized geometric parameters and vibrational frequencies have been found to be in good agreement with the corresponding experimental data and results in the literature. In addition, the highest occupied molecular orbital (HOMO) energy, the lowest unoccupied molecular orbital (LUMO) energy and the other related molecular energy values of the compound have been investigated using the same theoretical calculations.

  18. FT-IR, Laser-Raman spectra and computational analysis of 5-Methyl-3-phenylisoxazole-4-carboxylic acid

    NASA Astrophysics Data System (ADS)

    Sert, Yusuf; Mahendra, M.; Keskinoğlu, S.; Chandra; Srikantamurthy, N.; Umesha, K. B.; Çırak, Ç.

    2015-03-01

    In this study the experimental and theoretical vibrational frequencies of a newly synthesized anti-tumor, antiviral, hypoglycemic, antifungal and anti-HIV agent namely, 5-Methyl-3-phenylisoxazole-4-carboxylic acid has been investigated. The experimental FT-IR (4000-400 cm-1) and Laser-Raman spectra (4000-100 cm-1) of the molecule in solid phase have been recorded. The theoretical vibrational frequencies and optimized geometric parameters (bond lengths, bond angles and torsion angles) have been calculated by using density functional theory (DFT/B3LYP: Becke, 3-parameter, Lee-Yang-Parr and DFT/M06-2X: highly parametrized, empirical exchange correlation function) with 6-311++G(d,p) basis set by Gaussian 09W software, for the first time. The assignments of the vibrational frequencies have been done by potential energy distribution (PED) analysis by using VEDA 4 software. The theoretical optimized geometric parameters and vibrational frequencies have been found to be in good agreement with the corresponding experimental data and results in the literature. In addition, the highest occupied molecular orbital (HOMO) energy, the lowest unoccupied molecular orbital (LUMO) energy and the other related molecular energy values of the compound have been investigated by using the same theoretical calculations.

  19. Comparative matrix isolation infrared spectroscopy study of 1,3- and 1,4-diene monoterpenes (α-phellandrene and γ-terpinene).

    PubMed

    Marzec, K M; Reva, I; Fausto, R; Proniewicz, L M

    2011-05-05

    In the present work, γ-terpinene (a 1,4-diene derivative) and α-phellandrene (1,3-diene derivative) were isolated in cryogenic argon matrices and their structures, vibrational spectra, and photochemistries were characterized with the aid of FTIR spectroscopy and quantum chemical calculations performed at the DFT/B3LYP/6-311++G(d,p) level of approximation. The molecules bear one conformationally relevant internal rotation axis, corresponding to the rotation of the isopropyl group. The calculations provide evidence of three minima on the potential energy surfaces of the studied molecules, where the isopropyl group assumes the trans, gauche+, and gauche- conformations (T, G+, G-). The signatures of all these conformers were identified in the experimental matrix infrared spectra, with the T forms dominating, in agreement with the theoretical predicted abundances in gas phase at room temperature. In situ UV (λ > 200 nm) irradiation of matrix-isolated α-phellandrene led to its isomerization into an open-ring species. The photoproduct was found to exhibit the ZE configuration of its backbone, which to be formed from the reactant molecule does not require extensive structural rearrangements of both the reagent and matrix. γ-Terpinene was photostable when subjected to irradiation under the same experimental conditions. In addition, the liquid compounds at room temperature were also investigated by FTIR-ATR and FT-Raman spectroscopies.

  20. Molecular structure, vibrational spectra, AIM, HOMO-LUMO, NBO, UV, first order hyperpolarizability, analysis of 3-thiophenecarboxylic acid monomer and dimer by Hartree-Fock and density functional theory

    NASA Astrophysics Data System (ADS)

    Issaoui, Noureddine; Ghalla, Houcine; Muthu, S.; Flakus, H. T.; Oujia, Brahim

    2015-02-01

    In this work, the molecular structure, harmonic vibrational frequencies, UV, NBO and AIM of 3-thiophenecarboxilic acid (abbreviated as 3-TCA) monomer and dimer has been investigated. The FT-IR and FT-Raman spectra were recorded. The ground-state molecular geometry and vibrational frequencies have been calculated by using the Hartree-Fock (HF) and density functional theory (DFT)/B3LYP methods and 6-311++G(d,p) as a basis set. The fundamental vibrations were assigned on the basis of the total energy distribution (TED) of the vibrational modes, calculated with VEDA program. Comparison of the observed fundamental vibrational frequencies of 3-TCA with calculated results by HF and DFT methods indicates that B3LYP is better to HF method for molecular vibrational problems. The difference between the observed and scaled wavenumber values is very small. The theoretically predicted FT-IR and FT-Raman spectra of the title compound have been constructed. A study on the Mulliken atomic charges, the electronic properties were performed by time-dependent DFT (TD-DFT) approach, frontier molecular orbitals (HOMO-LUMO), molecular electrostatic potential (MEP) and thermodynamic properties have been performed. The electric dipole moment (μ) and the first hyperpolarizability (β) values of the investigated molecule have been also computed.

  1. Molecular structure, vibrational spectra, AIM, HOMO-LUMO, NBO, UV, first order hyperpolarizability, analysis of 3-thiophenecarboxylic acid monomer and dimer by Hartree-Fock and density functional theory.

    PubMed

    Issaoui, Noureddine; Ghalla, Houcine; Muthu, S; Flakus, H T; Oujia, Brahim

    2015-02-05

    In this work, the molecular structure, harmonic vibrational frequencies, UV, NBO and AIM of 3-thiophenecarboxilic acid (abbreviated as 3-TCA) monomer and dimer has been investigated. The FT-IR and FT-Raman spectra were recorded. The ground-state molecular geometry and vibrational frequencies have been calculated by using the Hartree-Fock (HF) and density functional theory (DFT)/B3LYP methods and 6-311++G(d,p) as a basis set. The fundamental vibrations were assigned on the basis of the total energy distribution (TED) of the vibrational modes, calculated with VEDA program. Comparison of the observed fundamental vibrational frequencies of 3-TCA with calculated results by HF and DFT methods indicates that B3LYP is better to HF method for molecular vibrational problems. The difference between the observed and scaled wavenumber values is very small. The theoretically predicted FT-IR and FT-Raman spectra of the title compound have been constructed. A study on the Mulliken atomic charges, the electronic properties were performed by time-dependent DFT (TD-DFT) approach, frontier molecular orbitals (HOMO-LUMO), molecular electrostatic potential (MEP) and thermodynamic properties have been performed. The electric dipole moment (μ) and the first hyperpolarizability (β) values of the investigated molecule have been also computed. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Molecular structure, vibrational, electronic and thermal properties of 4-vinylcyclohexene by quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Nagabalasubramanian, P. B.; Periandy, S.; Karabacak, Mehmet; Govindarajan, M.

    2015-06-01

    The solid phase FT-IR and FT-Raman spectra of 4-vinylcyclohexene (abbreviated as 4-VCH) have been recorded in the region 4000-100 cm-1. The optimized molecular geometry and vibrational frequencies of the fundamental modes of 4-VCH have been precisely assigned and analyzed with the aid of structure optimizations and normal coordinate force field calculations based on density functional theory (DFT) method at 6-311++G(d,p) level basis set. The theoretical frequencies were properly scaled and compared with experimentally obtained FT-IR and FT-Raman spectra. Also, the effect due the substitution of vinyl group on the ring vibrational frequencies was analyzed and a detailed interpretation of the vibrational spectra of this compound has been made on the basis of the calculated total energy distribution (TED). The time dependent DFT (TD-DFT) method was employed to predict its electronic properties, such as electronic transitions by UV-Visible analysis, HOMO and LUMO energies, molecular electrostatic potential (MEP) and various global reactivity and selectivity descriptors (chemical hardness, chemical potential, softness, electrophilicity index). Stability of the molecule arising from hyper conjugative interaction, charge delocalization has been analyzed using natural bond orbital (NBO) analysis. Atomic charges obtained by Mulliken population analysis and NBO analysis are compared. Thermodynamic properties (heat capacity, entropy and enthalpy) of the title compound at different temperatures are also calculated.

  3. Vibrational spectroscopy and theoretical studies on 2,4-dinitrophenylhydrazine

    NASA Astrophysics Data System (ADS)

    Chiş, V.; Filip, S.; Miclăuş, V.; Pîrnău, A.; Tănăselia, C.; Almăşan, V.; Vasilescu, M.

    2005-06-01

    In this work, we will report a combined experimental and theoretical study on molecular and vibrational structure of 2,4-dinitrophenylhydrazine. FT-IR, FT-IR/ATR and Raman spectra of normal and deuterated DNPH have been recorded and analyzed in order to get new insights into molecular structure and properties of this molecule, with particular emphasize on its intra- and intermolecular hydrogen bonds (HB's). For computational purposes we used density functional theory (DFT) methods, with B3LYP and BLYP exchange-correlation functionals, in conjunction with 6-31G(d) basis set. All experimental vibrational bands have been discussed and assigned to normal modes on the basis of DFT calculations and isotopic shifts and by comparison to other dinitro- substituted compounds [V. Chiş, Chem. Phys., 300 (2004) 1]. To aid in mode assignments, we based on the direct comparison between experimental and calculated spectra by considering both the frequency sequence and the intensity pattern of the experimental and computed vibrational bands. It is also shown that semiempirical AM1 method predicts geometrical parameters and vibrational frequencies related to the HB in a pleasant agreement with experiment, being surprisingly accurate from this perspective.

  4. Molecular structure, vibrational spectra, NBO analysis and molecular packing prediction of 3-nitroacetanilide by ab initio HF and density functional theory.

    PubMed

    Li, Xiao-Hong; Li, Tong-Wei; Ju, Wei-Wei; Yong, Yong-Liang; Zhang, Xian-Zhou

    2014-01-24

    Quantum chemical calculations of geometries and vibrational wavenumbers of 3-nitroacetanilide (C8H8N2O3) in the ground state were carried out by using ab initio HF and density functional theory (DFT/B3LYP) methods with 6-31+G(*) basis set. The -311++G(**) basis set is also used for B3LYP level. The scaled harmonic vibrational frequencies have been compared with experimental FT-IR spectra. Theoretical vibrational spectra of the title compound were interpreted by means of potential energies distributions (PEDs) using MOLVIB program. The theoretical spectrograms for IR spectra of the title compound have been constructed. The shortening of C-H bond length and the elongation of N-H bond length suggest the existence of weak C-H⋯O and N-H⋯O hydrogen bonds, which is confirmed by the natural bond orbital analysis. In addition, the crystal structure obtained by molecular mechanics belongs to the P2(1) space group, with lattice parameters Z=4, a=14.9989 Å, b=4.0367 Å, c=12.9913 Å, ρ=0.998 g cm(-3). Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Molecular structure, vibrational spectra, NBO analysis and molecular packing prediction of 3-nitroacetanilide by ab initio HF and density functional theory

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Hong; Li, Tong-Wei; Ju, Wei-Wei; Yong, Yong-Liang; Zhang, Xian-Zhou

    2014-01-01

    Quantum chemical calculations of geometries and vibrational wavenumbers of 3-nitroacetanilide (C8H8N2O3) in the ground state were carried out by using ab initio HF and density functional theory (DFT/B3LYP) methods with 6-31+G* basis set. The -311++G** basis set is also used for B3LYP level. The scaled harmonic vibrational frequencies have been compared with experimental FT-IR spectra. Theoretical vibrational spectra of the title compound were interpreted by means of potential energies distributions (PEDs) using MOLVIB program. The theoretical spectrograms for IR spectra of the title compound have been constructed. The shortening of Csbnd H bond length and the elongation of Nsbnd H bond length suggest the existence of weak Csbnd H⋯O and Nsbnd H⋯O hydrogen bonds, which is confirmed by the natural bond orbital analysis. In addition, the crystal structure obtained by molecular mechanics belongs to the P21 space group, with lattice parameters Z = 4, a = 14.9989 Å, b = 4.0367 Å, c = 12.9913 Å, ρ = 0.998 g cm-3.

  6. Theoretical investigations on molecular structure, vibrational spectra, HOMO, LUMO, NBO analysis and hyperpolarizability calculations of thiophene-2-carbohydrazide.

    PubMed

    Balachandran, V; Janaki, A; Nataraj, A

    2014-01-24

    The Fourier-Transform infrared and Fourier-Transform Raman spectra of thiophene-2-carbohydrazide (TCH) was recorded in the region 4000-400 cm(-1) and 3500-100 cm(-1). Quantum chemical calculations of energies, geometrical structure and vibrational wavenumbers of TCH were carried out by DFT (B3LYP) method with 6-311++G(d,p) as basis set. The difference between the observed and scaled wavenumber values of most of the fundamentals is very small. Stability of the molecule arising from hyper conjugative interaction and charge delocalization has been analyzed using natural bond orbital (NBO) analysis. UV spectrum was measured in different solvent. The energy and oscillator strength are calculated by Time Dependant Density Functional Theory (TD-DFT) results. The calculated HOMO and LUMO energies also confirm that charge transfer occurs within the molecule. The complete assignments were performed on the basis of the potential energy distribution (PED) of vibrational modes, calculated with scaled quantum mechanics (SQM) method. Finally the theoretical FT-IR, FT-Raman, and UV spectra of the title molecule have also been constructed. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Synthesis, crystal structures and spectroscopic properties of triazine-based hydrazone derivatives; a comparative experimental-theoretical study.

    PubMed

    Arshad, Muhammad Nadeem; Bibi, Aisha; Mahmood, Tariq; Asiri, Abdullah M; Ayub, Khurshid

    2015-04-03

    We report here a comparative theoretical and experimental study of four triazine-based hydrazone derivatives. The hydrazones are synthesized by a three step process from commercially available benzil and thiosemicarbazide. The structures of all compounds were determined by using the UV-Vis., FT-IR, NMR (1H and 13C) spectroscopic techniques and finally confirmed unequivocally by single crystal X-ray diffraction analysis. Experimental geometric parameters and spectroscopic properties of the triazine based hydrazones are compared with those obtained from density functional theory (DFT) studies. The model developed here comprises of geometry optimization at B3LYP/6-31G (d, p) level of DFT. Optimized geometric parameters of all four compounds showed excellent correlations with the results obtained from X-ray diffraction studies. The vibrational spectra show nice correlations with the experimental IR spectra. Moreover, the simulated absorption spectra also agree well with experimental results (within 10-20 nm). The molecular electrostatic potential (MEP) mapped over the entire stabilized geometries of the compounds indicated their chemical reactivates. Furthermore, frontier molecular orbital (electronic properties) and first hyperpolarizability (nonlinear optical response) were also computed at the B3LYP/6-31G (d, p) level of theory.

  8. Characterization of food additive-potato starch complexes by FTIR and X-ray diffraction.

    PubMed

    Dankar, Iman; Haddarah, Amira; Omar, Fawaz E L; Pujolà, Montserrat; Sepulcre, Francesc

    2018-09-15

    Fourier-transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) techniques were used to study the effect of four food additives, agar, alginate, lecithin and glycerol, at three different concentrations, 0.5, 1 and 1.5%, on the molecular structure of potato puree prepared from commercial potato powder. Vibrational spectra revealed that the amylose-amylopectin skeleton present in the raw potato starch was missing in the potato powder but could be fully recovered upon water addition when the potato puree was prepared. FTIR peaks corresponding to water were clearly present in the potato powder, indicating the important structural role of water molecules in the recovery of the initial molecular conformation. None of the studied puree samples presented a crystalline structure or strong internal order. A comparison of the FTIR and XRD results revealed that the additives exerted some effects, mainly on the long-range order of the starch structure via interacting with and changing -OH and hydrogen bond interactions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Synthesis, spectral characterization and density functional theory exploration of 1-(quinolin-3-yl)piperidin-2-ol

    NASA Astrophysics Data System (ADS)

    Suresh, M.; Syed Ali Padusha, M.; Bharanidharan, S.; Saleem, H.; Dhandapani, A.; Manivarman, S.

    2015-06-01

    The experimental and theoretical vibrational frequencies of a newly synthesized compound, namely 1-(quinolin-3-yl)piperidin-2-ol (QPPO) are analyzed. The experimental FT-IR (4000-400 cm-1) and FT-Raman (4000-100 cm-1) of the molecule in solid phase have been recorded. The optimized molecular structure, vibrational assignments of QPPO have been investigated experimentally and theoretically using Gaussian03W software package. The stability of the molecule arising from hyper-conjugative interaction and charge delocalization has been analyzed using NBO analysis. The first order hyperpolarizability (β0) is calculated to find its character in non-linear optics. Gauge including atomic orbital (GIAO) method is used to calculate 1H NMR chemical shift calculations were carried out and compared with experimental data. The electronic properties like UV-Visible spectral analysis and HOMO-LUMO energies were reported. The energy gap shows that the charge transfer occurs within the molecule. Thermodynamic parameters of the title compound were calculated at various temperatures.

  10. Structural, vibrational spectroscopic and quantum chemical studies on indole-3-carboxaldehyde

    NASA Astrophysics Data System (ADS)

    Premkumar, R.; Asath, R. Mohamed; Mathavan, T.; Benial, A. Milton Franklin

    2017-05-01

    The potential energy surface (PES) scan was performed for indole-3-carboxaldehyde (ICA) and the most stable optimized conformer was predicted using DFT/B3LYP method with 6-31G basis set. The vibrational frequencies of ICA were theoretically calculated by the DFT/B3LYP method with cc-pVTZ basis set using Gaussian 09 program. The vibrational spectra were experimentally recorded by Fourier transform-infrared (FT-IR) and Fourier transform-Raman spectrometer (FT-Raman). The computed vibrational frequencies were scaled by scaling factors to yield a good agreement with observed vibrational frequencies. The theoretically calculated and experimentally observed vibrational frequencies were assigned on the basis of potential energy distribution (PED) calculation using VEDA 4.0 program. The molecular interaction, stability and intramolecular charge transfer of ICA were studied using frontier molecular orbitals (FMOs) analysis and Mulliken atomic charge distribution shows the distribution of the atomic charges. The presence of intramolecular charge transfer was studied using natural bond orbital (NBO) analysis.

  11. Phosphine polymerization by nitric oxide: experimental characterization and theoretical predictions of mechanism.

    PubMed

    Zhao, Yi-Lei; Flora, Jason W; Thweatt, William David; Garrison, Stephen L; Gonzalez, Carlos; Houk, K N; Marquez, Manuel

    2009-02-02

    A yellow solid material [P(x)H(y)] has been obtained in the reaction of phosphine (PH(3)) and nitric oxide (NO) at room temperature and characterized by thermogravimetric analysis mass spectrometry (TGA-MS) and attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. In this work using complete basis set (CBS-QB3) methods a plausible mechanism has been investigated for phosphine polymerization in the presence of nitric oxide (NO). Theoretical explorations with the ab initio method suggest (a) instead of the monomer the nitric oxide dimer acts as an initial oxidant, (b) the resulting phosphine oxides (H(3)P=O <--> H(3)P(+)O(-)) in the gas phase draw each other via strong dipolar interactions between the P-O groups, and (c) consequently an autocatalyzed polymerization occurs among the phosphine oxides, forming P-P chemical bonds and losing water. The possible structures of polyhydride phosphorus polymer were discussed. In the calculations a series of cluster models was computed to simulate polymerization.

  12. Chemical composition and surfactant characteristics of marine foams investigated by means of UV-vis, FTIR and FTNIR spectroscopy.

    PubMed

    Mecozzi, Mauro; Pietroletti, Marco

    2016-11-01

    In this study, we collected the ultraviolet-visible (UV-vis), Fourier transform infrared (FTIR) and Fourier transform near-infrared (FTNIR) spectra of marine foams from different sites and foams produced by marine living organisms (i.e. algae and molluscs) to retrieve information about their molecular and structural composition. UV-vis spectra gave information concerning the lipid and pigment contents of foams. FTIR spectroscopy gave a more detailed qualitative information regarding carbohydrates, lipids and proteins in addition with information about the mineral contents of foams. FTNIR spectra confirmed the presence of carbohydrates, lipids and proteins in foams. Then, due to the higher content of structural information of FTIR spectroscopy with respect to FTNIR and UV-vis, we join the FTIR spectra of marine foams to those of humic substance from marine sediments and to the spectra of foams obtained by living organisms. We submitted this resulting FTIR spectral dataset to statistical multivariate methods to investigate specific aspects of foams such as structural similarity among foams and in addition, contributions from the organic matter of living organisms. Cluster analysis (CA) evidenced several cases (i.e. clusters) of marine foams having high structural similarity with foams from vegetal and animal samples and with humic substance extracted from sediments. These results suggested that all the living organisms of the marine environment can give contributions to the chemical composition of foams. Moreover, as CA also evidenced cases of structural differences within foam samples, we applied two-dimensional correlation analysis (2DCORR) to the FTIR spectra of marine foams to investigate the molecular characteristics which caused these structural differences. Asynchronous spectra of two-dimensional correlation analysis showed that the structural heterogeneity among foam samples depended reasonably on the presence and on the qualitative difference of electrostatic (hydrogen bonds) and nonpolar (van der Waals and π-π) interactions involving carbohydrate proteins and lipids present. The presence and relevance of these interactions agree with the supramolecular and surfactant characteristics of marine organic matter described in the scientific literature.

  13. PCM/TD-DFT analysis of 1-bromo-2,3-dichlorobenzene--a combined study of experimental (FT-IR and FT-Raman) and theoretical calculations.

    PubMed

    Arivazhagan, M; Muniappan, P; Meenakshi, R; Rajavel, G

    2013-03-15

    This study represents an integral approach towards understanding the electronic and structural aspects of 1-bromo-2,3-dichlorobenzene (BDCB). The experimental spectral bands were structurally assigned with the theoretical calculation, and the thermodynamic properties of the studied compound were obtained from the theoretically calculated frequencies. The relationship between the structure and absorption spectrum and effects of solvents have been discussed. It turns that the hybrid PBE1PBE functional with 6-311+G(d,p) basis provide reliable λ(max) when solvent effects are included in the model. The NBO analysis reveals that the studied compound presents a structural characteristic of electron-transfer within the compound. The frontier molecular orbitals (HOMO-LUMO) are responsible for the electron polarization and electron-transfer properties. The reactivity sites are identified by mapping the electron density into electrostatic potential surface (MESP). Besides, (13)C and (1)H have been calculated using the gauge-invariant atomic orbital (GIAO) method. The thermodynamic properties at different temperatures were calculated, revealing the correlations between standard heat capacity, standard entropy, standard enthalpy changes and temperatures. Furthermore, the studied compound can be used as a good nonlinear optical material due to the higher value of first hyper polarizability (5.7 times greater than that of urea (0.37289×10(-30) esu)). Finally, it is worth to mentioning that solvent induces a considerable red shift of the absorption maximum going from the gas phase, and a slight blue shift of the transition S(0)→S(1) going from less polar to more polar solvents. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Revisiting the formation of cyclic clusters in liquid ethanol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balanay, Mannix P.; Fan, Haiyan, E-mail: haiyan.fan@nu.edu.kz; Kim, Dong Hee

    2016-04-21

    The liquid phase of ethanol in pure and in non-polar solvents was studied at room temperature using Fourier transform infrared (FT-IR) and {sup 1}H nuclear magnetic resonance (NMR) spectroscopies together with theoretical approach. The FT-IR spectra for pure ethanol and solution in cyclohexane at different dilution stages are consistent with {sup 1}H NMR results. The results from both methods were best explained by the results of the density functional theory based on a multimeric model. It is suggested that cyclic trimers and tetramers are dominated in the solution of cyclohexane/hexane with the concentration greater than 0.5M at room temperature. Inmore » liquid ethanol, while the primary components at room temperature are cyclic trimers and tetramers, there is a certain amount (∼14%) of open hydroxide group representing the existence of chain like structures in the equilibria. The cyclic cluster model in the liquid and concentrated solution phase (>0.5M) can be used to explain the anomalously lower freezing point of ethanol (159 K) than that of water (273 K) at ambient conditions. In addition, {sup 1}H NMR at various dilution stages reveals the dynamics for the formation of cyclic clusters.« less

  15. Quantum chemical calculations and analysis of FTIR, FT-Raman and UV-Vis spectra of temozolomide molecule

    NASA Astrophysics Data System (ADS)

    Bhat, Sheeraz Ahmad; Ahmad, Shabbir

    2015-11-01

    A combined experimental and theoretical study of the structure, vibrational and electronic spectra of temozolomide molecule, which is largely used in the treatment of brain tumours, is presented. FTIR (4000-400 cm-1) and FT-Raman spectra (4000‒50 cm-1) have been recorded and analysed using anharmonic frequency calculations using VPT2, VSCF and CC-VSCF levels of theory within B3LYP/6-311++G(d,p) framework. Anharmonic methods give accurate frequencies of fundamental modes, overtones as well as Fermi resonances and account for coupling of different modes. The anharmonic frequencies calculated using VPT2 and CC-VSCF methods show better agreement with the experimental data. Harmonic frequencies including solvent effects are also computed using IEF-PCM model. The magnitudes of coupling between pair of modes have been calculated using coupling integral based on 2MR-QFF approximation. Intermolecular interactions are discussed for three possible dimers of temozolomide. UV-Vis spectrum, examined in ethanol solvent, is compared with the calculated spectrum at TD-DFT/6-311++G(d,p) level of theory. The electronic properties, such as excitation energy, frontier molecular orbital energies and the assignments of the absorption bands are also discussed.

  16. Experimental and theoretical study of p-nitroacetanilide

    NASA Astrophysics Data System (ADS)

    Gnanasambandan, T.; Gunasekaran, S.; Seshadri, S.

    2014-01-01

    The spectroscopic properties of the p-nitroacetanilide (PNA) were examined by FT-IR, FT-Raman and UV-Vis techniques. FT-IR and FT-Raman spectra in solid state were observed in the region 4000-400 cm-1 and 3500-100 cm-1, respectively. The UV-Vis absorption spectrum of the compound that dissolved in ethanol was recorded in the range of 200-400 nm. The structural and spectroscopic data of the molecule in the ground state were calculated by using density functional theory (DFT) employing B3LYP methods with the 6-31G(d,p) and 6-311+G(d,p) basis sets. The geometry of the molecule was fully optimized, vibrational spectra were calculated and fundamental vibrations were assigned on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method. Thermodynamic properties like entropy, heat capacity and enthalpy have been calculated for the molecule. HOMO-LUMO energy gap has been calculated. The intramolecular contacts have been interpreted using natural bond orbital (NBO) and natural localized molecular orbital (NLMO) analysis. Important non-linear optical (NLO) properties such as electric dipole moment and first hyperpolarizability have been computed using B3LYP quantum chemical calculation.

  17. Spectroscopic (FT-IR and UV-Vis) and theoretical (HF and DFT) investigation of 2-Ethyl-N-[(5-nitrothiophene-2-yl)methylidene]aniline

    NASA Astrophysics Data System (ADS)

    Ceylan, Ümit; Tarı, Gonca Özdemir; Gökce, Halil; Ağar, Erbil

    2016-04-01

    Crystal structure of the title compound, 2-Ethyl-N-[(5-nitrothiophene-2-yl)methylidene]aniline, C13H12N2O2S, has been synthesized and characterized by FT-IR and UV-Vis spectrum. The compound crystallized in the monoclinic space group P 21/c with a = 11.3578 (4) Å, b = 7.4923 (2) Å, c = 14.9676 (6) Å and β = 99.589 (3)° and Z = 4 in the unit cell. The molecular geometry was also calculated using the Gaussian 03 software and structure was optimized using the HF and DFT/B3LYP methods with the 6-311++G(d,p) basis set in ground state. Using the TD-DFT method, the electronic absorption spectra of the title compound was computed in both the gas phase and ethanol solvent. The harmonic vibrational frequencies of the title compound were calculated using the same methods with the 6-311++G(d,p) basis set. The calculated results were compared with the experimental determination results of the compound. It was seen that the optimized structure was in excellent agreement with the X-ray crystal structure. The energetic behaviors of the title compound in solvent media were examined using the HF and DFT/B3LYP methods with the 6-311++G(d,p) basis set applying the polarizable continuum model (PCM). In addition, the molecular orbitals (FMOs) analysis, molecular electrostatic potential (MEP), nonlinear optical and thermodynamic properties of the title compound were performed using the same methods with the 6-311++G(d,p) basis set.

  18. FT-IR, FT-Raman, UV-visible, and NMR spectroscopy and vibrational properties of the labdane-type diterpene 13-epi-sclareol.

    PubMed

    Chain, Fernando E; Leyton, Patricio; Paipa, Carolina; Fortuna, Mario; Brandán, Silvia A

    2015-03-05

    In this work, FT-IR, FT-Raman, UV-Visible and NMR spectroscopies and density functional theory (DFT) calculations were employed to study the structural and vibrational properties of the labdane-type diterpene 13-epi-sclareol using the hybrid B3LYP method together with the 6-31G(∗) basis set. Three stable structures with minimum energy found on the potential energy curves (PES) were optimized, and the corresponding molecular electrostatic potentials, atomic charges, bond orders, stabilization energies and topological properties were computed at the same approximation level. The complete assignment of the bands observed in the vibrational spectrum of 13-epi-sclareol was performed taking into account the internal symmetry coordinates for the three structures using the scaled quantum mechanical force field (SQMFF) methodology at the same level of theory. In addition, the force constants were calculated and compared with those reported in the literature for similar compounds. The predicted vibrational spectrum and the calculated (1)H NMR and (13)C NMR chemical shifts are in good agreement with the corresponding experimental results. The theoretical UV-Vis spectra for the most stable structure of 13-epi-sclareol demonstrate a better correlation with the corresponding experimental spectrum. The study of the three conformers by means of the theory of atoms in molecules (AIM) revealed different H bond interactions and a strong dependence of the interactions on the distance between the involved atoms. Furthermore, the natural bond orbital (NBO) calculations showed the characteristics of the electronic delocalization for the two six-membered rings with chair conformations. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Investigation of gamma ray shielding, structural and dissolution rate properties of Bi2O3-BaO-B2O3-Na2O glass system

    NASA Astrophysics Data System (ADS)

    Dogra, Mridula; Singh, K. J.; Kaur, Kulwinder; Anand, Vikas; Kaur, Parminder; Singh, Prabhjot; Bajwa, B. S.

    2018-03-01

    In the present study, quaternary system of the composition (0.45 + x) Bi2O3-(0.25 - x) BaO-0.15 B2O3-0.15 Na2O (where 0 ≤ x ≤ 0.2 mol fraction) has been prepared by using melt-quenching technique for investigation of gamma ray shielding properties. Mass attenuation coefficients and half value layer parameters have been determined experimentally at 662 keV by using 137Cs source. It has been found that experimental results of these parameters hold good agreement with theoretical values. The density, molar volume, XRD, FTIR, Raman and UV-visible studies have been used to determine structural properties of the prepared glass samples. Dissolution rate of the samples has also been measured to check their utility as long term durable glasses.

  20. Synthesis, crystal structure, biological activity and theoretical calculations of novel isoxazole derivatives

    NASA Astrophysics Data System (ADS)

    Jin, R. Y.; Sun, X. H.; Liu, Y. F.; Long, W.; Chen, B.; Shen, S. Q.; Ma, H. X.

    2016-01-01

    Series of isoxazole derivatives were synthesized by substituted chalcones and 2-chloro-6-fluorobenzene formaldehyde oxime with 1,3-dipolar cycloaddition. The target compounds were determined by melting point, IR, 1H NMR, elemental analyses and HRMS. The crystal structure of compound 3a was detected by X-ray diffraction and it crystallizes in the triclinic space group p2(1)/c with z = 4. The molecular geometry of compound 3a was optimized using density functional theory (DFT/B3LYP) method with the 6-31G+(d,p) basis set in the ground state. From the optimized geometry of the molecule, FT-IR, FT-Raman, HOMO-LUMO and natural bond orbital (NBO) were calculated at B3LYP/6-31G+(d,p) level. Finally, the antifungal activity of the synthetic compounds were evaluated against Pythium solani, Gibberella nicotiancola, Fusarium oxysporium f.sp. niveum and Gibberella saubinetii.

  1. DFT, FT-IR, FT-Raman and NMR studies of 4-(substituted phenylazo)-3,5-diacetamido-1H-pyrazoles

    NASA Astrophysics Data System (ADS)

    Kınalı, Selin; Demirci, Serkan; Çalışır, Zühre; Kurt, Mustafa; Ataç, Ahmet

    2011-05-01

    We present a detailed analysis of the structural and vibrational spectra of some novel azo dyes. 2-(Substituted phenylazo)malononitriles were synthesized by the coupling reaction of the diazonium salts, which were prepared with the use of various aniline derivatives with malononitrile, and then 4-(substituted phenylazo)-3,5-diamino-1H-pyrazole azo dyes were obtained via the ring closure of the azo compounds with hydrazine monohydrate. The experimental and theoretical vibrational spectra of azo dyes were studied. The structural and spectroscopic analysis of the molecules were carried out by using Becke's three-parameters hybrid functional (B3LYP) and density functional harmonic calculations. The 1H nuclear magnetic resonance (NMR) chemical shifts of the azo dye molecules were calculated using the gauge-invariant-atomic orbital (GIAO) method. The calculated vibrational wavenumbers and chemical shifts were compared with the experimental data of the molecules.

  2. Studies on the weak interactions and CT complex formations between chloranilic acid, 2,3-dichloro-5,6-dicyano-p-benzoquinone, tetracyanoethylene and papaverine in acetonitrile and their thermodynamic properties, theoretically, spectrophotometrically aided by FTIR

    NASA Astrophysics Data System (ADS)

    Datta, Asim Sagar; (Chattaraj), Seema Bagchi; Chakrabortty, Ashutosh; Lahiri, Sujit Chandra

    2015-07-01

    Spectrophotometric, FTIR and theoretical studies of the charge-transfer complexes between mild narcotic drug papaverine and the acceptors chloranilic acid (Cl-A), 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ) and tetracyanoethylene (TCNE) in acetonitrile, their association constants, thermodynamic (ΔG0, ΔH0 and ΔS0) and other related properties had been described. Papaverine was found to form colored charge-transfer complexes with Cl-A, DDQ and TCNE in acetonitrile. The absorption maxima of the complexes were 518.5, 584.0 and 464.0 nm for Cl-A complex, DDQ complex, and TCNE complex respectively. The compositions of the papaverine complexes were determined to be 1:1 from Job's method of continuous variation. Solid complexes formed between papaverine and the acceptors were isolated. Comparison of the FTIR spectra of the solid complexes between papaverine and the acceptors and their constituents showed considerable shift in absorption peaks, changes in intensities of the peaks and formation of the new bands on complexation. However, no attempt has been made to purify the complexes and study the detailed spectra both theoretically and experimentally. The energies hνCT of the charge-transfer complexes were compared with the theoretical values of hνCT of the complexes obtained from HOMO and LUMO of the donor and the acceptors. The reasons for the differences in hνCT values were explained. Density function theory was used for calculation. hνCT (experimental) values of the transition energies of the complexes in acetonitrile differed from hνCT (theoretical) values. IDV value of papaverine was calculated. Charge-transfer complexes were assumed to be partial electrovalent compounds with organic dative ions D+ and A- (in the excited state) and attempts had been made to correlate the energy changes for the formation of the complexes with the energy changes for the formation of electrovalent compounds between M+ and X- ions.

  3. Synthesis of 2-(bis(cyanomethyl)amino)-2-oxoethyl methacrylate monomer molecule and its characterization by experimental and theoretical methods

    NASA Astrophysics Data System (ADS)

    Sas, E. B.; Cankaya, N.; Kurt, M.

    2018-06-01

    In this work 2-(bis(cyanomethyl)amino)-2-oxoethyl methacrylate monomer has been synthesized as newly, characterized both experimentally and theoretically. Experimentally, it has been characterized by FT-IR, FT-Raman, 1H and 13C NMR spectroscopy techniques. The theoretical calculations have been performed with Density Functional Theory (DFT) including B3LYP method. The scaled theoretical wavenumbers have been assigned based on total energy distribution (TED). Electronic properties of monomer have been performed using time-dependent TD-DFT/B3LYP/B3LYP/6-311G++(d,p) method. The results of experimental have been compared with theoretical values. Both experimental and theoretical methods have shown that the monomer was suitable for the literature.

  4. Axial and equatorial hydrogen-bond conformers between (CH2)3S and H(D)F: Fourier transform infrared spectroscopy and ab initio calculations.

    PubMed

    Madebène, B; Asselin, P; Soulard, P; Alikhani, M E

    2011-08-21

    The coexistence of axial and equatorial hydrogen-bonded conformers of 1 : 1 (CH(2))(3)S-HF (and -DF) has been observed in the same adiabatic expansion of a supersonic jet seeded with argon and in a static absorption cell at room temperature. High level calculations computed the axial conformer to be the most stable one with a small energy difference with respect to the equatorial one, in full agreement with previous microwave experiments. On the grounds of band contour simulations of FTIR spectra and ab initio energetic and anharmonic vibrational calculations, two pairs of ν(s) HF donor stretching bands, observed in a series of jet-FTIR spectra at 3457.9 and 3480.5 cm(-1) have been respectively assigned to the axial and equatorial forms of the 1 : 1 complex. In the jet-FTIR spectra series with HF, the assignment of an additional broad band (about 200 cm(-1) higher in frequency with respect to ν(s)) to a 1 : 2 complex has been supported by theoretical investigations. Experimental detection of both axial and equatorial forms of a cyclic trimer has been confirmed by calculated energetic and vibrational properties. The nature of hydrogen bonding has been examined within topological frameworks. The energetic partitioning within the 1 : 1 dimers has been elucidated with SAPT techniques. Interestingly, the interconversion pathway between two 1 : 1 structures has been explored and it was seen that the formation of the 1 : 1 complex affects the interconversion barrier on the ring puckering motion. The band contour analysis of gas phase FTIR experiments provided a consistent set of vibrational frequencies and anharmonic coupling constants, in good agreement with ab initio anharmonic vibrational calculations. Finally, from a series of cell-FTIR spectra recorded at different partial pressures of (CH(2))(3)S and HF monomers, the absorption signal of the 1 : 1 complex could be isolated which enabled to estimate the equilibrium constant K(p) = 0.023 at 298 K for the dimerization.

  5. Experimental and theoretical studies of (FT-IR, FT-Raman, UV-Visible and DFT) 4-(6-methoxynaphthalen-2-yl) butan-2-one.

    PubMed

    Govindasamy, P; Gunasekaran, S

    2015-01-01

    In this work, the vibrational spectral analysis was carried out by using FT-Raman and FT-IR spectroscopy in the range 4000-50 cm(-1) and 4000-450 cm(-1) respectively for 4-(6-methoxynaphthalen-2-yl) butan-2-one (abbreviated as 4MNBO) molecule. Theoretical calculations were performed by density functional theory (DFT/B3LYP) method using 6-311G(d,p) and 6-311++G(d,p) basis sets. The difference between the observed and calculated wavenumber value of most of the fundamentals were very small. The complete vibrational assignments of wavenumbers were made on the basis of potential energy distribution (PED). The UV-Vis spectrum was recorded in the methanol solution. The energy, wavelength and oscillator's strength were calculated by Time Dependent Density Functional Theory (TD-DFT) and matched to the experimental findings. The intramolecular contacts have been interpreted using natural bond orbital (NBO) and natural localized molecular orbital (NLMO) analysis. Thermodynamic properties of 4MNBO at different temperature have been calculated. The molecular electrostatic potential surface (MESP) and Frontier molecular orbital's (FMO's) analysis were investigated using theoretical calculations. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Experimental FT-IR, Laser-Raman and DFT spectroscopic analysis of 2,3,4,5,6-Pentafluoro-trans-cinnamic acid

    NASA Astrophysics Data System (ADS)

    Sert, Yusuf; Doğan, Hatice; Navarrete, Angélica; Somanathan, Ratnasamy; Aguirre, Gerardo; Çırak, Çağrı

    2014-07-01

    In this study, the experimental and theoretical vibrational frequencies of a newly synthesized 2,3,4,5,6-Pentafluoro-trans-cinnamic acid have been investigated. The experimental FT-IR (4000-400 cm-1) and Laser-Raman spectra (4000-100 cm-1) of the molecule in solid phase have been recorded. The theoretical vibrational frequencies and optimized geometric parameters (bond lengths and bond angles) have been calculated by using density functional theory (DFT/B3LYP: Becke, 3-parameter, Lee-Yang-Parr) and DFT/M06-2X (the highly parameterized, empirical exchange correlation function) quantum chemical methods with 6-311++G(d,p) basis set by Gaussian 09W software, for the first time. The assignments of the vibrational frequencies have been done by potential energy distribution (PED) analysis by using VEDA 4 software. The theoretical optimized geometric parameters and vibrational frequencies have been found to be in good agreement with the corresponding experimental data, and with the results in the literature. In addition, the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) energies and the other related molecular energy values have been calculated and depicted.

  7. Theoretical and experimental vibrational spectroscopy study on rotational isomer of 4-phenylbutylamine

    NASA Astrophysics Data System (ADS)

    Ünal, A.; Okur, M.

    2017-02-01

    The possible four stable rotational isomers of 4-phenylbutylamine (4PBA) molecule were experimentally and theoretically studied by vibrational spectroscopy. The FT-IR (4000-400 cm-1) and Raman (3700-60 cm-1) spectra of 4PBA were recorded at room temperature in liquid phase. The complete vibrational wavenumbers and corresponding vibrational assignments of 4PBA molecule were discussed assisted with B3LYP/6-311++G(d,p) level of theory along with scaled quantum mechanics force field (SQM-FF) method. Results from experimental and theoretical data the most stable form of 4PBA molecule was obtained.

  8. Vibrational spectroscopic and quantum chemical calculations of (E)-N-Carbamimidoyl-4-((naphthalen-1-yl-methylene)amino)benzene sulfonamide.

    PubMed

    Chandran, Asha; Varghese, Hema Tresa; Mary, Y Sheena; Panicker, C Yohannan; Manojkumar, T K; Van Alsenoy, Christian; Rajendran, G

    2012-02-15

    FT-IR and FT-Raman spectra of (E)-N-Carbamimidoyl-4-((naphthalen-1-yl-methylene)amino)benzene sulfonamide were recorded and analyzed. The vibrational wavenumbers were computing at various levels of theory. The data obtained from theoretical calculations are used to assign vibrational bands obtained experimentally. The results indicate that B3LYP method is able to provide satisfactory results for predicting vibrational frequencies and structural parameters. The calculated first hyperpolarizability is comparable with reported values of similar derivatives and is an attractive object for future studies of non-linear optics. The geometrical parameters of the title compound are in agreement with that of similar derivatives. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. The biomolecule, 2-[(2-methoxyl)sulfanyl]-4-(2-methylpropyl)-6-oxo-1,6-dihydropyrimidine-5-carbonitrile: FT-IR, Laser-Raman spectra and DFT.

    PubMed

    Sert, Yusuf; El-Emam, Ali A; Al-Deeb, Omar A; Al-Turkistani, Abdulghafoor A; Ucun, Fatih; Cırak, Cağrı

    2014-05-21

    In this study, the experimental and theoretical vibrational frequencies of a newly synthesized potential chemotherapeutic agent namely, 2-[(2-methoxyl)sulfanyl]-4-(2-methylpropyl)-6-oxo-1,6-dihydropyrimidine-5-carbonitrile have been investigated. The experimental FT-IR (4000-400cm(-1)) and Laser-Raman spectra (4000-100cm(-1)) of the molecule in solid phase have been recorded. The theoretical vibrational frequencies and optimized geometric parameters (bond lengths and bond angles) have been calculated by using density functional theory (DFT/B3LYP: Becke, 3-parameter, Lee-Yang-Parr) and M06-2X (the highly parametrized, empirical exchange correlation function) quantum chemical methods with 6-311++G(d,p) basis set by Gaussian 09W software, for the first time. The assignments of the vibrational frequencies have been done by potential energy distribution (PED) analysis by using VEDA 4 software. The theoretical optimized geometric parameters and vibrational frequencies have been found to be in good agreement with the corresponding experimental data, and with the results in the literature. In addition, the highest occupied molecular orbital (HOMO) energy, the lowest unoccupied molecular orbital (LUMO) energy and the other related molecular energy values of the compound have been investigated using the same theoretical calculations. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Structural investigation of (2E)-2-(ethoxycarbonyl)-3-[(4-methoxyphenyl)amino]prop-2-enoic acid: X-ray crystal structure, spectroscopy and DFT

    NASA Astrophysics Data System (ADS)

    Venkatesan, Perumal; Rajakannan, Venkatachalam; Venkataramanan, Natarajan S.; Ilangovan, Andivelu; Sundius, Tom; Thamotharan, Subbiah

    2016-09-01

    The title compound, (2E)-2-(ethoxycarbonyl)-3-[(4-methoxyphenyl)amino]prop-2-enoic acid is characterized by means of X-ray crystallography, spectroscopic methods and quantum chemical calculations. The title compound crystallizes in centrosymmetric space group P21/c. Moreover, the crystal structure is primarily stabilized through intramolecular Nsbnd H⋯O and Osbnd H⋯O and intermolecular Nsbnd H⋯O and Csbnd H⋯O interactions along with carbonyl⋯carbonyl and Csbnd H⋯C contacts. These intermolecular interactions are analysed and quantified by using Hirshfeld surface analysis, PIXEL energy, NBO, AIM and DFT calculations. The overall lattice energies of the title and parent compounds suggest that the title compound is stabilized by a 4.5 kcal mol-1 higher energy than the parent compound. The additional stabilization force comes from the methoxy substitution on the title molecule, which is evident since the methoxy group is involved in the intermolecular Csbnd H⋯O interaction as an acceptor. The vibrational modes of the interacting groups are investigated using both experimental and theoretical FT-IR and FT-Raman spectra. The experimental and theoretical UV-Vis spectra agree well. The time dependent DFT spectra show that the ligand-to-ligand charge transfer is responsible for the intense absorbance of the compound.

  11. An experimental and theoretical vibrational study of interaction of adenine and thymine with artificial seawaters: A prebiotic chemistry experiment.

    PubMed

    Anizelli, Pedro R; Baú, João P T; Nabeshima, Henrique S; da Costa, Marcello F; de Santana, Henrique; Zaia, Dimas A M

    2014-05-21

    Nucleic acid bases play important roles in living beings. Thus, their interaction with salts the prebiotic Earth could be an important issue for the understanding of origin of life. In this study, the effect of pH and artificial seawaters on the structure of adenine and thymine was studied via parallel determinations using FT-IR, Raman spectroscopy and theoretical calculations. Thymine and adenine lyophilized in solutions at basic and acidic conditions showed characteristic bands of the enol-imino tautomer due to the deprotonation and the hydrochloride form due to protonation, respectively. The interaction of thymine and adenine with different seawaters representative of different geological periods on Earth was also studied. In the case of thymine a strong interaction with Sr(2+) promoted changes in the Raman and infrared spectra. For adenine changes in infrared and Raman spectra were observed in the presence of salts from all seawaters tested. The experimental results were compared to theoretical calculations, which showed structural changes due to the presence of ions Na(+), Mg(2+), Ca(2+) and Sr(2+) of artificial seawaters. For thymine the bands arising from C4=C5 and C6=O stretching were shifted to lower values, and for adenine, a new band at 1310cm(-1) was observed. The reactivity of adenine and thymine was studied by comparing changes in nucleophilicity and energy of the HOMO orbital. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Attenuated Total Reflection Fourier Transform Infrared (ATR FT-IR) Spectroscopy as an Analytical Method to Investigate the Secondary Structure of a Model Protein Embedded in Solid Lipid Matrices.

    PubMed

    Zeeshan, Farrukh; Tabbassum, Misbah; Jorgensen, Lene; Medlicott, Natalie J

    2018-02-01

    Protein drugs may encounter conformational perturbations during the formulation processing of lipid-based solid dosage forms. In aqueous protein solutions, attenuated total reflection Fourier transform infrared (ATR FT-IR) spectroscopy can investigate these conformational changes following the subtraction of spectral interference of solvent with protein amide I bands. However, in solid dosage forms, the possible spectral contribution of lipid carriers to protein amide I band may be an obstacle to determine conformational alterations. The objective of this study was to develop an ATR FT-IR spectroscopic method for the analysis of protein secondary structure embedded in solid lipid matrices. Bovine serum albumin (BSA) was chosen as a model protein, while Precirol AT05 (glycerol palmitostearate, melting point 58 ℃) was employed as the model lipid matrix. Bovine serum albumin was incorporated into lipid using physical mixing, melting and mixing, or wet granulation mixing methods. Attenuated total reflection FT-IR spectroscopy and size exclusion chromatography (SEC) were performed for the analysis of BSA secondary structure and its dissolution in aqueous media, respectively. The results showed significant interference of Precirol ATO5 with BSA amide I band which was subtracted up to 90% w/w lipid content to analyze BSA secondary structure. In addition, ATR FT-IR spectroscopy also detected thermally denatured BSA solid alone and in the presence of lipid matrix indicating its suitability for the detection of denatured protein solids in lipid matrices. Despite being in the solid state, conformational changes occurred to BSA upon incorporation into solid lipid matrices. However, the extent of these conformational alterations was found to be dependent on the mixing method employed as indicated by area overlap calculations. For instance, the melting and mixing method imparted negligible effect on BSA secondary structure, whereas the wet granulation mixing method promoted more changes. Size exclusion chromatography analysis depicted the complete dissolution of BSA in the aqueous media employed in the wet granulation method. In conclusion, an ATR FT-IR spectroscopic method was successfully developed to investigate BSA secondary structure in solid lipid matrices following the subtraction of lipid spectral interference. The ATR FT-IR spectroscopy could further be applied to investigate the secondary structure perturbations of therapeutic proteins during their formulation development.

  13. Histopathology mapping of biochemical changes in myocardial infarction by Fourier transform infrared spectral imaging.

    PubMed

    Yang, Tian T; Weng, Shi F; Zheng, Na; Pan, Qing H; Cao, Hong L; Liu, Liang; Zhang, Hai D; Mu, Da W

    2011-04-15

    Fourier transform infrared (FTIR) imaging and microspectroscopy have been extensively applied in the identification and investigation of both healthy and diseased tissues. FTIR imaging can be used to determine the biodistribution of several molecules of interest (carbohydrates, lipids, proteins) for tissue analysis, without the need for prior staining of these tissues. Molecular structure data, such as protein secondary structure and collagen triple helix exhibits, can also be obtained from the same analysis. Thus, several histopathological lesions, for example myocardial infarction, can be identified from FTIR-analyzed tissue images, the latter which can allow for more accurate discrimination between healthy tissues and pathological lesions. Accordingly, we propose FTIR imaging as a new tool integrating both molecular and histopathological assessment to investigate the degree of pathological changes in tissues. In this study, myocardial infarction is presented as an illustrative example of the wide potential of FTIR imaging for biomedical applications. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  14. Distinction of broken cellular wall Ganoderma lucidum spores and G. lucidum spores using FTIR microspectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Xianliang; Liu, Xingcun; Sheng, Daping; Huang, Dake; Li, Weizu; Wang, Xin

    2012-11-01

    In this paper, FTIR microspectroscopy was used to identify broken cellular wall Ganoderma lucidum spores and G. lucidum spores. For IR spectra, broken cellular wall G. lucidum spores and G. lucidum spores were mainly different in the regions of 3000-2800, 1660-1600, 1400-1200 and 1100-1000 cm-1. For curve fitting, the results showed the differences in the protein secondary structures and the polysaccharide structures/content between broken cellular wall G. lucidum spores and G. lucidum spores. Moreover, the value of A1078/A1741 might be a potentially useful factor to distinguish broken cellular wall G. lucidum spores from G. lucidum spores. Additionally, FTIR microspectroscopy could identify broken cellular wall G. lucidum spores and G. lucidum spores accurately when it was combined with hierarchical cluster analysis. The result suggests FTIR microspectroscopy is very simple and efficient for distinction of broken cellular wall G. lucidum spores and G. lucidum spores. The result also indicates FTIR microspectroscopy may be useful for TCM identification.

  15. In-situ chemical analyses of trans-polyisoprene by histochemical staining and Fourier transform infrared microspectroscopy in a rubber-producing plant, Eucommia ulmoides Oliver.

    PubMed

    Bamba, Takeshi; Fukusaki, Ei-Ichiro; Nakazawa, Yoshihisa; Kobayashi, Akio

    2002-10-01

    The localization of polyisoprene in young stem tissues of Eucommia ulmoides Oliver was investigated by histochemical staining and Fourier transform infrared (FT-IR) microspectroscopy. The fibrous structures were stained with Oil Red O. FT-IR microspectroscopic analysis proved that the fibrous structures were trans-polyisoprene. Granular structures stained with the dye, and characteristic absorptions at 2,960 cm(-1) and 1,430 cm(-1) in FT-IR suggested that trans-polyisoprene accumulated in the vicinity of the cambium layer. We have thus successfully shown for the first time the localization of trans-polyisoprene in plant tissues, and our histological investigation allowed us to presume the main sites of biosynthesis and accumulation of trans-rubber. Furthermore, a new technical approach, the preparation of sections using an electronic freezing unit and the in situ analysis of polyisoprene using FT-IR microspectroscopy, is demonstrated to be a promising method for determining the accumulation of polyisoprene as well as other metabolites.

  16. Vibrational spectroscopy investigation using M06-2X and B3LYP methods analysis on the structure of 2-Trifluoromethyl-10H-benzo[4,5]-imidazo[1,2-a]pyrimidin-4-one.

    PubMed

    Sert, Yusuf; Mahendra, M; Chandra; Shivashankar, K; Puttaraju, K B; Doğan, H; Çırak, Çagrı; Ucun, Fatih

    2014-07-15

    In this study, the experimental and theoretical vibrational frequencies of a newly synthesized bioactive agent namely, 2-Trifluoromethyl-10H-benzo[4,5]-imidazo[1,2-a]pyrimidin-4-one (TIP) have been investigated. The experimental FT-IR (4000-400 cm(-1)) and Laser-Raman spectra (4000-100 cm(-1)) of the molecule in solid phase have been recorded. The theoretical vibrational frequencies and the optimized geometric parameters (bond lengths and bond angles) have been calculated using density functional theory (DFT/B3LYP: Becke, 3-parameter, Lee-Yang-Parr) and M06-2X (the highly parametrized, empirical exchange correlation function) quantum chemical methods with 6-311++G(d,p) basis set by Gaussian 09W software, for the first time. The assignments of the vibrational frequencies have been done by potential energy distribution (PED) analysis using VEDA 4 software. The theoretical optimized geometric parameters and vibrational frequencies have been found to be in good agreement with the corresponding experimental data and results in the literature. In addition, the highest occupied molecular orbital (HOMO) energy, the lowest unoccupied molecular orbital (LUMO) energy and the other related molecular energy values of the compound have been investigated using the same theoretical calculations. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Vibrational spectroscopy investigation using M06-2X and B3LYP methods analysis on the structure of 2-Trifluoromethyl-10H-benzo[4,5]-imidazo[1,2-a]pyrimidin-4-one

    NASA Astrophysics Data System (ADS)

    Sert, Yusuf; Mahendra, M.; Chandra; Shivashankar, K.; Puttaraju, K. B.; Doğan, H.; Çırak, Çagrı; Ucun, Fatih

    2014-07-01

    In this study, the experimental and theoretical vibrational frequencies of a newly synthesized bioactive agent namely, 2-Trifluoromethyl-10H-benzo[4,5]-imidazo[1,2-a]pyrimidin-4-one (TIP) have been investigated. The experimental FT-IR (4000-400 cm-1) and Laser-Raman spectra (4000-100 cm-1) of the molecule in solid phase have been recorded. The theoretical vibrational frequencies and the optimized geometric parameters (bond lengths and bond angles) have been calculated using density functional theory (DFT/B3LYP: Becke, 3-parameter, Lee-Yang-Parr) and M06-2X (the highly parametrized, empirical exchange correlation function) quantum chemical methods with 6-311++G(d,p) basis set by Gaussian 09W software, for the first time. The assignments of the vibrational frequencies have been done by potential energy distribution (PED) analysis using VEDA 4 software. The theoretical optimized geometric parameters and vibrational frequencies have been found to be in good agreement with the corresponding experimental data and results in the literature. In addition, the highest occupied molecular orbital (HOMO) energy, the lowest unoccupied molecular orbital (LUMO) energy and the other related molecular energy values of the compound have been investigated using the same theoretical calculations.

  18. Structure and vibrational spectra of melaminium bis(trifluoroacetate) trihydrate: FT-IR, FT-Raman and quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Sangeetha, V.; Govindarajan, M.; Kanagathara, N.; Marchewka, M. K.; Gunasekaran, S.; Anbalagan, G.

    Melaminium bis(trifluoroacetate) trihydrate (MTFA), an organic material has been synthesized and single crystals of MTFA have been grown by the slow solvent evaporation method at room temperature. X-ray powder diffraction analysis confirms that MTFA crystal belongs to the monoclinic system with space group P2/c. The molecular geometry, vibrational frequencies and intensity of the vibrational bands have been interpreted with the aid of structure optimization based on density functional theory (DFT) B3LYP method with 6-311G(d,p) and 6-311++G(d,p) basis sets. The X-ray diffraction data have been compared with the data of optimized molecular structure. The theoretical results show that the crystal structure can be reproduced by optimized geometry and the vibrational frequencies show good agreement with the experimental values. The nuclear magnetic resonance (NMR) chemical shift of the molecule has been calculated by the gauge independent atomic orbital (GIAO) method and compared with experimental results. HOMO-LUMO, and other related molecular and electronic properties are calculated. The Mulliken and NBO charges have also been calculated and interpreted.

  19. FTIR, FT-Raman, FT-NMR and quantum chemical investigations of 3-acetylcoumarin

    NASA Astrophysics Data System (ADS)

    Arjunan, V.; Sakiladevi, S.; Marchewka, M. K.; Mohan, S.

    2013-05-01

    3-Acetylcoumarin (3AC) was synthesised by a Knoevenagel reaction. Conformational analysis using the B3LYP method was also carried out to determine the most stable conformation of the compound. FTIR and FT-Raman spectra of 3AC have been recorded in the range 4000-400 and 4000-100 cm-1, respectively. 1H and 13C NMR spectra have also been recorded. The complete vibrational assignment and analysis of the fundamental modes of the compound were carried out using the experimental FTIR and FT-Raman data and quantum mechanical studies. The experimental vibrational frequencies were compared with the wavenumbers obtained theoretically from the DFT-B3LYP/B3PW91 gradient calculations employing the standard 6-31G**, high level 6-311++G** and cc-pVTZ basis sets for optimised geometry of the compound. The frontier molecular orbital energies of the compound are determined by DFT method.

  20. Growth, crystalline perfection, spectral, thermal and theoretical studies on imidazolium L-tartrate crystals.

    PubMed

    Meena, K; Muthu, K; Meenatchi, V; Rajasekar, M; Bhagavannarayana, G; Meenakshisundaram, S P

    2014-04-24

    Transparent optical quality single crystals of imidazolium L-tartrate (IMLT) were grown by conventional slow evaporation solution growth technique. Crystal structure of the as-grown IMLT was determined by single crystal X-ray diffraction analysis. Thermal analysis reveals the purity of the crystal and the sample is stable up to the melting point. Good transmittance in the visible region is observed and the band gap energy is estimated using diffuse reflectance data by the application of Kubelka-Munk algorithm. The powder X-ray diffraction study reveals the crystallinity of the as-grown crystal and it is compared with that of the experimental one. An additional peak in high resolution X-ray diffraction (HRXRD) indicates the presence of an internal structural low angle boundary. Second harmonic generation (SHG) activity of IMLT is significant as estimated by Kurtz and Perry powder technique. HOMO-LUMO energies and first-order molecular hyperpolarizability of IMLT have been evaluated using density functional theory (DFT) employing B3LYP functional and 6-31G(d,p) basis set. The optimized geometry closely resembles the ORTEP. The vibrational patterns present in the molecule are confirmed by FT-IR coinciding with theoretical patterns. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Spectroscopic investigation on cocrystal formation between adenine and fumaric acid based on infrared and Raman techniques

    NASA Astrophysics Data System (ADS)

    Du, Yong; Fang, Hong Xia; Zhang, Qi; Zhang, Hui Li; Hong, Zhi

    2016-01-01

    As an important component of double-stranded DNA, adenine has powerful hydrogen-bond capability, due to rich hydrogen bond donors and acceptors existing within its molecular structure. Therefore, it is easy to form cocrystal between adenine and other small molecules with intermolecular hydrogen-bond effect. In this work, cocrystal of adenine and fumaric acid has been characterized as model system by FT-IR and FT-Raman spectral techniques. The experimental results show that the cocrystal formed between adenine and fumaric acid possesses unique spectroscopical characteristic compared with that of starting materials. Density functional theory (DFT) calculation has been performed to optimize the molecular structures and simulate vibrational modes of adenine, fumaric acid and the corresponding cocrystal. Combining the theoretical and experimental vibrational results, the characteristic bands corresponding to bending and stretching vibrations of amino and carbonyl groups within cocrystal are shifted into lower frequencies upon cocrystal formation, and the corresponding bond lengths show some increase due to the effect of intermolecular hydrogen bonding. Different vibrational modes shown in the experimental spectra have been assigned based on the simulation DFT results. The study could provide experimental and theoretical benchmarks to characterize cocrystal formed between active ingredients and cocrystal formers and also the intermolecular hydrogen-bond effect within cocrystal formation process by vibrational spectroscopic techniques.

  2. Theoretical investigations on the structure and properties of p-n-alkoxy benzoic acid based liquid crystals

    NASA Astrophysics Data System (ADS)

    Subhapriya, P.; Dhanapal, V.; Sadasivam, K.; Vijayanand, P. S.

    2016-05-01

    The present study focused on the structural conformations, alkoxy chain lengths and mesogenic properties of two mole of alkoxy benzoic acid(nOBA) and one mole of suberic acid (SA) hydrogen bonded (nOBASA) complexes (n=8 to 10) by density functional theory (DFT) calculations and the Fourier Transform Infrared (FT-IR) spectrum. The intermolecular hydrogen bond formation was confirmed by the optimized geometric bond lengths and bond angles obtained by computation. Using the natural bond orbital (NBO) analysis, the stability of the molecule arising from hyper conjugative interactions and charge delocalization has been analyzed. Results obtained shows that the charge in electron density (ED) in σ*and π* antibonding orbital and second order delocalization energies E(2) authorizes the occurrence of intermolecular charge transfer. The molecular electrostatic potential (MEP) surface map is plotted over the optimized geometry of the molecule to obtain the chemical reactivity of the molecule. From the local charge distributions, the mesomorphic behavior and the nematic phase stabilities for each of the molecule have been predicted. Finally the calculated result is applied to simulated infrared spectra of 8OBASA mesogens which shows good agreement with the observed spectra. The comparison of the theoretical results obtained with the experimental ones shows the reliability of this DFT method.

  3. DFT calculations and experimental FT-IR, FT-Raman, NMR, UV-Vis spectral studies of 3-fluorophenylboronic acid

    NASA Astrophysics Data System (ADS)

    Karabacak, M.; Kose, E.; Sas, E. B.; Kurt, M.; Asiri, A. M.; Atac, A.

    2015-02-01

    The spectroscopic (FT-IR, FT-Raman, 1H and 13C NMR, UV-Vis), structural, electronic and thermodynamical properties of 3-fluorophenylboronic acid (C6H4FB(OH)2), 3FPBA) were submitted by using both experimental techniques and theoretical methods (quantum chemical calculations) in this work. The experimental infrared and Raman spectra were obtained in the region 4000-400 cm-1 and 3500-10 cm-1, respectively. The equilibrium geometry and vibrational spectra were calculated by using DFT (B3LYP) with 6-311++G(d,p) basis set. The vibrational wavenumbers were also corrected with scale factor to take better results for the calculated data. The total energy distributions (TED) of the vibrational modes were performed for the assignments of the title molecule by using scaled quantum mechanics (SQM) method. The NMR chemical shifts (1H and 13C) were recorded in DMSO solution. The 1H and 13C NMR spectra were computed by using the gauge-invariant atomic orbital (GIAO) method, showing a good agreement with the experimental ones. The last one UV-Vis absorption spectra were analyzed in two solvents (ethanol and water), saved in the range of 200-400 nm. In addition these, HOMO and LUMO energies, the excitation energies, density of states (DOS) diagrams, thermodynamical properties and molecular electrostatic potential surface (MEPs) were presented. Nonlinear optical (NLO) properties and thermodynamic features were performed. The experimental results are combined with the theoretical calculations using DFT calculations to fortification of the paper. At the end of this work, the results were proved our paper had been indispensable for the literature backing.

  4. Spectroscopic characteristic (FT-IR, 1H, 13C NMR and UV-Vis) and theoretical calculations (MEP, DOS, HOMO-LUMO, PES, NBO analysis and keto-enol tautomerism) of new tetradentate N,N‧-bis(4-hydroxysalicylidene)-1,4-phenylenediamine ligand as chelating agent for the synthesis of dinuclear Co(II), Ni(II), Cu(II) and Zn(II) complexes

    NASA Astrophysics Data System (ADS)

    Rajaei, Iman; Mirsattari, Seyed Nezamoddin

    2018-07-01

    The synthesis and characterization of a novel symmetrical Schiff base ligand N,Nʹ-bis(4-hydroxysalicylidene)-1,4-phenylenediamine (BHSP) was presented in this study and characterized by FT-IR, NMR (1H and 13C) and UV-Vis spectroscopy experimentally and theoretically. Also a series of binuclear Co(II), Ni(II), Cu(II) and Zn(II) complexes of BHSP ligand have been synthesized by conventional sequential route in 1:1 equivalent of L:M ratio and characterized by routine physicochemical characterizations. The molecular geometry and vibrational frequencies of the BHSP in the ground state were calculated by using density functional theory (DFT) B3LYP method invoking 6-31G(d,p) and 6-31++G(d,p) basis sets. To study different conformations of the molecule, potential energy surface (PES) scan investigations were performed. The energetic behavior of the ligand compound (BHSP) in solvent media has been examined using B3LYP method with the 6-31G(d,p) and 6-31++G(d,p) basis sets by applying the polarized continuum model (PCM). In addition, DFT calculations of the BHSP ligand, molecular electrostatic potential (MEP), contour map, natural bond orbital (NBO) analysis, frontier molecular orbitals (FMO) analysis, NMR analysis and TD-DFT calculations were conducted. The calculated properties are in agreement with the available experimental data and closely related molecule BSP. The calculated results show that the optimized geometry can well reproduce the crystal structural parameters.

  5. DFT calculations and experimental FT-IR, FT-Raman, NMR, UV-Vis spectral studies of 3-fluorophenylboronic acid.

    PubMed

    Karabacak, M; Kose, E; Sas, E B; Kurt, M; Asiri, A M; Atac, A

    2015-02-05

    The spectroscopic (FT-IR, FT-Raman, (1)H and (13)C NMR, UV-Vis), structural, electronic and thermodynamical properties of 3-fluorophenylboronic acid (C6H4FB(OH)2), 3FPBA) were submitted by using both experimental techniques and theoretical methods (quantum chemical calculations) in this work. The experimental infrared and Raman spectra were obtained in the region 4000-400 cm(-1) and 3500-10 cm(-1), respectively. The equilibrium geometry and vibrational spectra were calculated by using DFT (B3LYP) with 6-311++G(d,p) basis set. The vibrational wavenumbers were also corrected with scale factor to take better results for the calculated data. The total energy distributions (TED) of the vibrational modes were performed for the assignments of the title molecule by using scaled quantum mechanics (SQM) method. The NMR chemical shifts ((1)H and (13)C) were recorded in DMSO solution. The (1)H and (13)C NMR spectra were computed by using the gauge-invariant atomic orbital (GIAO) method, showing a good agreement with the experimental ones. The last one UV-Vis absorption spectra were analyzed in two solvents (ethanol and water), saved in the range of 200-400 nm. In addition these, HOMO and LUMO energies, the excitation energies, density of states (DOS) diagrams, thermodynamical properties and molecular electrostatic potential surface (MEPs) were presented. Nonlinear optical (NLO) properties and thermodynamic features were performed. The experimental results are combined with the theoretical calculations using DFT calculations to fortification of the paper. At the end of this work, the results were proved our paper had been indispensable for the literature backing. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Proteolytically-induced changes of secondary structural protein conformation of bovine serum albumin monitored by Fourier transform infrared (FT-IR) and UV-circular dichroism spectroscopy

    NASA Astrophysics Data System (ADS)

    Güler, Günnur; Vorob'ev, Mikhail M.; Vogel, Vitali; Mäntele, Werner

    2016-05-01

    Enzymatically-induced degradation of bovine serum albumin (BSA) by serine proteases (trypsin and α-chymotrypsin) in various concentrations was monitored by means of Fourier transform infrared (FT-IR) and ultraviolet circular dichroism (UV-CD) spectroscopy. In this study, the applicability of both spectroscopies to monitor the proteolysis process in real time has been proven, by tracking the spectral changes together with secondary structure analysis of BSA as proteolysis proceeds. On the basis of the FTIR spectra and the changes in the amide I band region, we suggest the progression of proteolysis process via conversion of α-helices (1654 cm- 1) into unordered structures and an increase in the concentration of free carboxylates (absorption of 1593 and 1402 cm- 1). For the first time, the correlation between the degree of hydrolysis and the concentration of carboxylic groups measured by FTIR spectroscopy was revealed as well. The far UV-CD spectra together with their secondary structure analysis suggest that the α-helical content decreases concomitant with an increase in the unordered structure. Both spectroscopic techniques also demonstrate that there are similar but less spectral changes of BSA for the trypsin attack than for α-chymotrypsin although the substrate/enzyme ratio is taken the same.

  7. Combine experimental and theoretical investigation on an alkaloid-Dimethylisoborreverine

    NASA Astrophysics Data System (ADS)

    Singh, Swapnil; Singh, Harshita; Karthick, T.; Agarwal, Parag; Erande, Rohan D.; Dethe, Dattatraya H.; Tandon, Poonam

    2016-01-01

    A combined experimental (FT-IR, 1H and 13C NMR) and theoretical approach is used to study the structure and properties of antimalarial drug dimethylisoborreverine (DMIB). Conformational analysis, has been performed by plotting one dimensional potential energy curve that was computed using density functional theory (DFT) with B3LYP/6-31G method and predicted conformer A1 as the most stable conformer. After full geometry optimization, harmonic wavenumbers were computed for conformer A1 at the DFT/B3LYP/6-311++G(d,P) level. A complete vibrational assignment of all the vibrational modes have been performed on the bases of the potential energy distribution (PED) and theoretical results were found to be in good agreement with the observed data. To predict the solvent effect, the UV-Vis spectra were calculated in different solvents by polarizable continuum model using TD-DFT method. Molecular docking studies were performed to test the biological activity of the sample using SWISSDOCK web server and Hex 8.0.0 software. The molecular electrostatic potential (MESP) was plotted to identify the reactive sites of the molecule. Natural bond orbital (NBO) analysis was performed to get a deep insight of intramolecular charge transfer. Thermodynamical parameters were calculated to predict the direction of chemical reaction.

  8. Vibrational spectroscopic study, structural analysis, photophysical properties and theoretical calculations of cis-(±)-2,4,5-tris(pyridin-2-yl)imidazoline

    NASA Astrophysics Data System (ADS)

    Baldenebro-López, Jesús; Báez-Castro, Alberto; Glossman-Mitnik, Daniel; Höpfl, Herbert; Cruz-Enríquez, Adriana; Miranda-Soto, Valentín; Parra-Hake, Miguel; Campos-Gaxiola, José J.

    2017-02-01

    cis-(±)-2,4,5-tris(pyridin-2-yl)imidazoline has been fully characterized by FT-IR, FT-Raman, UV-Vis and fluorescence spectroscopy, one- and two-dimensional NMR spectroscopy (1H, 1H-1H gCOSY, 1H-1H gNOESY,13C{1H} ATP, 1H-13C and 1H-15N gHSQC and 1H-13C gHMBC), high-resolution mass spectrometry (HR-FAB+), TG-DSC analysis and low-temperature single-crystal X-ray diffraction analysis. Additionally, the molecular geometry and the vibrational infrared and Raman frequencies were calculated by density functional theory using the M06/6-31G(d) level of theory, showing good agreement with the experimental results. The title compound showed interesting photophysical properties, which were studied experimentally in solution and in the solid state by UV-Vis and fluorescence spectroscopy and compared to the theoretically obtained parameters using TD-DFT calculations. Natural and Mulliken atomic charges and the molecular electrostatic potential (MEP) have been mapped.

  9. Fourier Transform Infrared (FTIR) Spectroscopy, Ultraviolet Resonance Raman (UVRR) Spectroscopy, and Atomic Force Microscopy (AFM) for Study of the Kinetics of Formation and Structural Characterization of Tau Fibrils.

    PubMed

    Ramachandran, Gayathri

    2017-01-01

    Kinetic studies of tau fibril formation in vitro most commonly employ spectroscopic probes such as thioflavinT fluorescence and laser light scattering or negative stain transmission electron microscopy. Here, I describe the use of Fourier transform infrared (FTIR) spectroscopy, ultraviolet resonance Raman (UVRR) spectroscopy, and atomic force microscopy (AFM) as complementary probes for studies of tau aggregation. The sensitivity of vibrational spectroscopic techniques (FTIR and UVRR) to secondary structure content allows for measurement of conformational changes that occur when the intrinsically disordered protein tau transforms into cross-β-core containing fibrils. AFM imaging serves as a gentle probe of structures populated over the time course of tau fibrillization. Together, these assays help further elucidate the structural and mechanistic complexity inherent in tau fibril formation.

  10. Experimental FT-IR, Laser-Raman and DFT spectroscopic analysis of 2,3,4,5,6-Pentafluoro-trans-cinnamic acid.

    PubMed

    Sert, Yusuf; Doğan, Hatice; Navarrete, Angélica; Somanathan, Ratnasamy; Aguirre, Gerardo; Çırak, Çağrı

    2014-07-15

    In this study, the experimental and theoretical vibrational frequencies of a newly synthesized 2,3,4,5,6-Pentafluoro-trans-cinnamic acid have been investigated. The experimental FT-IR (4000-400 cm(-1)) and Laser-Raman spectra (4000-100 cm(-1)) of the molecule in solid phase have been recorded. The theoretical vibrational frequencies and optimized geometric parameters (bond lengths and bond angles) have been calculated by using density functional theory (DFT/B3LYP: Becke, 3-parameter, Lee-Yang-Parr) and DFT/M06-2X (the highly parameterized, empirical exchange correlation function) quantum chemical methods with 6-311++G(d,p) basis set by Gaussian 09W software, for the first time. The assignments of the vibrational frequencies have been done by potential energy distribution (PED) analysis by using VEDA 4 software. The theoretical optimized geometric parameters and vibrational frequencies have been found to be in good agreement with the corresponding experimental data, and with the results in the literature. In addition, the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) energies and the other related molecular energy values have been calculated and depicted. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Experimental (FT-IR, NMR and UV) and theoretical (M06-2X and DFT) investigation, and frequency estimation analyses on (E)-3-(4-bromo-5-methylthiophen-2-yl)acrylonitrile

    NASA Astrophysics Data System (ADS)

    Sert, Yusuf; Balakit, Asim A.; Öztürk, Nuri; Ucun, Fatih; El-Hiti, Gamal A.

    2014-10-01

    The spectroscopic properties of (E)-3-(4-bromo-5-methylthiophen-2-yl)acrylonitrile have been investigated by FT-IR, UV, 1H and 13C NMR techniques. The theoretical vibrational frequencies and optimized geometric parameters (bond lengths and angles) have been calculated using density functional theory (DFT/B3LYP: Becke, 3-parameter, Lee-Yang-Parr) and DFT/M06-2X (the highly parameterized, empirical exchange correlation function) quantum chemical methods with 6-311++G(d,p) basis set by Gaussian 03 software, for the first time. The assignments of the vibrational frequencies have been carried out by potential energy distribution (PED) analysis by using VEDA 4 software. The theoretical optimized geometric parameters and vibrational frequencies were in good agreement with the corresponding experimental data, and with the results in the literature. 1H and 13C NMR chemical shifts were calculated by using the gauge-invariant atomic orbital (GIAO) method. The electronic properties, such as excitation energies, oscillator strength wavelengths were performed by B3LYP methods. In addition, the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) energies and the other related molecular energy values have been calculated and depicted.

  12. Vibrational spectroscopic studies of an organic non-linear optical crystal 8-hydroxyquinolinium picrate

    NASA Astrophysics Data System (ADS)

    Krishna Kumar, V.; Nagalakshmi, R.

    2007-04-01

    8-Hydroxyquinolinium picrate (8-HQP) was synthesized by the addition of equimolar quantities of 8-hydroxyquinoline (8-HQ) and picric acid (PA). Single crystals were grown from N, N dimethyl formamide (DMF) by restricted evaporation method at room temperature. The solubility of 8-HQP was determined in different solvents at various temperatures. The structural characterization of the grown crystals was carried out by X-ray diffraction. Vibrational modes were classified on the basis of group theoretical analysis and the spectral bands were compared with those of parent compounds in order to propose a tentative assignment by recording FT-IR, FT-Raman and polarized Raman spectra in different crystal orientations. The crystal possess lower cut-off at 230 nm and good transparency as confirmed by optical transmittance studies.

  13. Distinction of broken cellular wall Ganoderma lucidum spores and G. lucidum spores using FTIR microspectroscopy.

    PubMed

    Chen, Xianliang; Liu, Xingcun; Sheng, Daping; Huang, Dake; Li, Weizu; Wang, Xin

    2012-11-01

    In this paper, FTIR microspectroscopy was used to identify broken cellular wall Ganoderma lucidum spores and G. lucidum spores. For IR spectra, broken cellular wall G. lucidum spores and G. lucidum spores were mainly different in the regions of 3000-2800, 1660-1600, 1400-1200 and 1100-1000 cm(-1). For curve fitting, the results showed the differences in the protein secondary structures and the polysaccharide structures/content between broken cellular wall G. lucidum spores and G. lucidum spores. Moreover, the value of A1078/A1741 might be a potentially useful factor to distinguish broken cellular wall G. lucidum spores from G. lucidum spores. Additionally, FTIR microspectroscopy could identify broken cellular wall G. lucidum spores and G. lucidum spores accurately when it was combined with hierarchical cluster analysis. The result suggests FTIR microspectroscopy is very simple and efficient for distinction of broken cellular wall G. lucidum spores and G. lucidum spores. The result also indicates FTIR microspectroscopy may be useful for TCM identification. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Structural and theoretical study of 1-[1-oxo-3-phenyl-(2-benzosulfonamide)-propyl amido] - anthracene-9,10-dione to be i-motif inhibitor

    NASA Astrophysics Data System (ADS)

    Vatsal, Manu; Devi, Vandna; Awasthi, Pamita

    2018-04-01

    The 1-[1-oxo-3-phenyl-(2-benzosulfonamide)-propyl amido] - anthracene-9,10-dione (BPAQ) an analogue of anthracenedione class of antibiotic has been synthesized. To characterize molecular functional groups FT-IR and FT-Raman spectrum were recorded and vibrational frequencies were assigned accordingly. The optimized geometrical parameters, vibrational assignments, chemical shifts and thermodynamic properties of title compound were computed by ab initio calculations at Density Functional Theory (DFT) method with 6-31G(d,p) as basis set. The calculated harmonic vibrational frequencies of molecule were then analysed in comparison to experimental FT-IR and Raman spectrum. Gauge independent atomic orbital (GIAO) method was used for determining, (1H) and carbon (13C) nuclear magnetic resonance (NMR) spectra of the molecule. Molecular parameters were calculated along with its periodic boundary conditions calculation (PBC) analysis supported by X-ray diffraction studies. The frontier molecular orbital (HOMO, LUMO) analysis describes charge distribution and stability of the molecule which concluded that nucleophilic substitution is more preferred and the mullikan charge analysis also confirmed the same. Further the title compound showed an inhibitory action at d(TCCCCC), an intermolecular i-motif sequence, hence molecular docking study suggested the inhibitory activity of the compound at these junction.

  15. Experimental and theoretical study of p-nitroacetanilide.

    PubMed

    Gnanasambandan, T; Gunasekaran, S; Seshadri, S

    2014-01-03

    The spectroscopic properties of the p-nitroacetanilide (PNA) were examined by FT-IR, FT-Raman and UV-Vis techniques. FT-IR and FT-Raman spectra in solid state were observed in the region 4000-400 cm(-1) and 3500-100 cm(-1), respectively. The UV-Vis absorption spectrum of the compound that dissolved in ethanol was recorded in the range of 200-400 nm. The structural and spectroscopic data of the molecule in the ground state were calculated by using density functional theory (DFT) employing B3LYP methods with the 6-31G(d,p) and 6-311+G(d,p) basis sets. The geometry of the molecule was fully optimized, vibrational spectra were calculated and fundamental vibrations were assigned on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method. Thermodynamic properties like entropy, heat capacity and enthalpy have been calculated for the molecule. HOMO-LUMO energy gap has been calculated. The intramolecular contacts have been interpreted using natural bond orbital (NBO) and natural localized molecular orbital (NLMO) analysis. Important non-linear optical (NLO) properties such as electric dipole moment and first hyperpolarizability have been computed using B3LYP quantum chemical calculation. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. New asymmetric and symmetric 2-((pyridin-4-yl)methylenamino)-3 aminomaleo nitrile and 2,3-bis((pyridin-4-yl)methylenamino)maleonitrile Schiff bases: Synthesis, experimental characterization along with theoretical studies

    NASA Astrophysics Data System (ADS)

    Zare, Nahid; Zabardasti, Abedien; Dusek, Michal; Eigner, Vaclav

    2018-07-01

    Two novel Schiff bases 2-((pyridin-4-yl)methelenamino)-3-aminomaleonitrile (L1) and 2,3-bis((pyridin-yl)methylenamino)maleonitrile (L2) were synthesized by the condensation of 2,3-diaminomaleonitrile and 4-pyridine carboxaldehyde using the reflux in absolute methanol. The light yellow crystalline precipitates of L1 were used for single-crystal X-ray crystallography. Two ligans L1 and L2 were characterized by UV-Vis, FT-IR and 1H/13C NMR spectroscopy. Also the FT-IR, 1H NMR and 13C NMR spectra of the compounds were calculated at the B3LYP/6-31 + G(d) level of theory. The Schiff base L1 with unit cell parameters: a = 19.8380(9), b = 4.7221(2), c = 12.9703(6) Å, V = 1215.02(9) Å3, Z = 4 crystallizes in the orthorhombic crystal system with space group Pna21. The crystal structure was solved by charge flipping using single crystal X-ray diffraction data collected at 120 K. For both ligands, the experimentally obtained NMR and IR spectra were a good agreement with their calculated counterparts.

  17. Synthesis and catalytic activity of polysaccharide templated nanocrystalline sulfated zirconia

    NASA Astrophysics Data System (ADS)

    Sherly, K. B.; Rakesh, K.

    2014-01-01

    Nanoscaled materials are of great interest due to their unique enhanced optical, electrical and magnetic properties. Sulfate-promoted zirconia has been shown to exhibit super acidic behavior and high activity for acid catalyzed reactions. Nanocrystalline zirconia was prepared in the presence of polysaccharide template by interaction between ZrOCl2ṡ8H2O and chitosan template. The interaction was carried out in aqueous phase, followed by the removal of templates by calcination at optimum temperature and sulfation. The structural and textural features were characterized by powder XRD, TG, SEM and TEM. XRD patterns showed the peaks of the diffractogram were in agreement with the theoretical data of zirconia with the catalytically active tetragonal phase and average crystalline size of the particles was found to be 9 nm, which was confirmed by TEM. TPD using ammonia as probe, FTIR and BET surface area analysis were used for analyzing surface features like acidity and porosity. The BET surface area analysis showed the sample had moderately high surface area. FTIR was used to find the type species attached to the surface of zirconia. UV-DRS found the band gap of the zirconia was found to be 2.8 eV. The benzylation of o-xylene was carried out batchwise in atmospheric pressure and 433K temperature using sulfated zirconia as catalyst.

  18. Synthesis and characterization of an anticoagulant 4-hydroxy-1-thiocoumarin by FTIR, FT-Raman, NMR, DFT, NBO and HOMO-LUMO analysis

    NASA Astrophysics Data System (ADS)

    Arjunan, V.; Santhanam, R.; Sakiladevi, S.; Marchewka, M. K.; Mohan, S.

    2013-04-01

    Experimental and theoretical investigations on the molecular structural, electronic and the vibrational characteristics of 4-hydroxy-1-thiocoumarin are presented. Conformational analysis was carried out to obtain the more stable configuration of the compound. The vibrational frequencies were obtained by DFT/B3LYP calculations employing 6-311++G(d,p), 6-31G(d,p), cc-pVTZ basic sets and B3PW91 method with 6-311++G(d,p) basis set and are compared with FTIR and FT-Raman spectral data recorded in the region of 4000-400 and 4000-100 cm-1, respectively. The total electron density and molecular electrostatic potential surfaces of the molecule were constructed to display electrostatic potential (electron + nuclei) distribution. The electronic properties HOMO and LUMO energies were measured. 1H and 13C NMR spectra were recorded and 1H and 13C nuclear magnetic resonance chemical shifts of the molecule were calculated by using the Gauge-Independent Atomic Orbital (GIAO) method and analyzed. The picture of localized bonds and lone pairs, stabilization energy of the delocalization of electrons, the charge and hybridisation of the atoms of 4-hydroxy-1-thiocoumarin were clearly explained by NBO analysis.

  19. Synthesis, characterization, crystal structure and theoretical study of a compound with benzodiazole ring: antimicrobial activity and DNA binding.

    PubMed

    Latha, P; Kodisundaram, P; Sundararajan, M L; Jeyakumar, T

    2014-08-14

    2-(Thiophen-2-yl)-1-((thiophen-2-yl)methyl)-1H-1,3-benzodiazole (HL) is synthesized and characterized by elemental analysis, UV-Vis, FT-IR, (1)H, (13)C NMR, mass spectra, scanning electron microscope (SEM) and single crystal X-ray diffraction. The crystal structure is stabilized by intermolecular CH⋯N and CH⋯π interactions. The molecular structure is also optimized at the B3LYP/6-31G level using density functional theory (DFT). The structural parameters from the theory are nearer to those of crystal, the calculated total energy of coordination is -1522.814a.u. The energy of HOMO-LUMO and the energy gap are -0.20718, -0.04314, 0.16404a.u, respectively. All data obtained from the spectral studies support the structural properties of the compound HL. The benzimidazole ring is essentially planar. The in vitro biological screening effects of the synthesized compound is tested against four bacterial and four fungal strains by well diffusion method. Antioxidant property and DNA binding behaviour of the compound has been investigated using spectrophotometric method. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Synthesis, spectroscopic, thermal and structural properties of [M(3-aminopyridine)2Ni(μ-CN)2(CN)2]n (M(II) = Co and Cu) heteropolynuclear cyano-bridged complexes

    NASA Astrophysics Data System (ADS)

    Kartal, Zeki

    2016-01-01

    Two novel cyano-bridged heteropolynuclear complexes, [Co(3-aminopyridine)2Ni(μ-CN)2(CN)2]n and [Cu(3-aminopyridine)2Ni(μ-CN)2(CN)2]n have been synthesized and characterized by elemental, thermal, FT-IR and FT-Raman spectroscopies. The structures of complexes have been determined by X-ray powder diffraction. The FT-IR and FT-Raman spectra of complexes have been recorded in the region of 3500-400 cm-1 and 3500-100 cm-1, respectively. General information was acquired about structural properties of these complexes from FT-IR and FT-Raman spectra by considering changes at characteristic peaks of the cyano group and 3AP. The splitting of the ν(Ctbnd N) stretching bands in the FT-IR spectra for complexes indicates the presence of terminal and bridging cyanides. The thermal behaviors of these complexes have been also investigated in the range of 25-950 °C using TG and DTG methods. Magnetic susceptibility measurements were made at room temperature using Gouy-balance.

  1. Synchrotron FTIR microspectroscopy reveals early adipogenic differentiation of human mesenchymal stem cells at single-cell level

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Zhixiao; University of Chinese Academy of Science, Beijing 100049; Tang, Yuzhao

    Human mesenchymal stem cells (hMSCs) have been used as an ideal in vitro model to study human adipogenesis. However, little knowledge of the early stage differentiation greatly hinders our understanding on the mechanism of the adipogenesis processes. In this study, synchrotron radiation-based Fourier transform infrared (SR-FTIR) microspectroscopy was applied to track the global structural and compositional changes of lipids, proteins and nucleic acids inside individual hMSCs along the time course. The multivariate analysis of the SR-FTIR spectra distinguished the dynamic and significant changes of the lipids and nucleic acid at early differentiation stage. Importantly, changes of lipid structure during early daysmore » (Day 1–3) of differentiation might serve as a potential biomarker in identifying the state in early differentiation at single cell level. These results proved that SR-FTIR is a powerful tool to study the stem cell fate determination and early lipogenesis events. - Highlights: • Molecular events occur in the early adipogenic differentiation stage of hMSCs are studied by SR-FTIR. • SR-FTIR data suggest that lipids may play an important role in hMSCs determination. • As potential biomarkers, lipids peaks can identify the state of cell in early differentiation stage at single-cell level.« less

  2. Structural characterization, spectroscopic signatures, nonlinear optical response, and antioxidant property of 4-benzyloxybenzaldehyde and its binding activity with microtubule-associated tau protein

    NASA Astrophysics Data System (ADS)

    Anbu, V.; Vijayalakshmi, K. A.; Karthick, T.; Tandon, Poonam; Narayana, B.

    2017-09-01

    In the proposed work, the non-linear optical response, spectroscopic signature and binding activity of 4-Benzyloxybenzaldehyde (4BB) has been investigated. In order to find the vibrational contribution of functional groups in mixed or coupled modes in the experimental FT-IR and FT-Raman spectra, the potential energy distribution (PED) based on the internal coordinates have been computed. Since the molecule exists in the form of dimer in solid state, the electronic structure of dimer has been proposed in order to explain the intermolecular hydrogen bonding interactions via aldehyde group. The experimental and simulated powder X-ray diffraction data was compared and the miller indices which define the crystallographic planes in the crystal lattices were identified. Optical transmittance and absorbance measurement were taken at ambient temperature in order to investigate the transparency and optical band gap. For screening the material for nonlinear applications, theoretical second order hyperpolarizability studies were performed and compared with the standard reference urea. To validate the theoretical results, powder second harmonic generation (SHG) studies were carried out using Kurtz and Perry technique. The results show that the molecule studied in this work exhibit considerable non-linear optical (NLO) response. In addition to the characterization and NLO studies, we also claimed based on the experimental and theoretical data that the molecule shows antioxidant property and inhibition capability. Since the title molecule shows significant binding with Tau protein that helps to stabilize microtubules in the nervous system, the molecular docking investigation was performed to find the inhibition constant, binding affinity and active binding residues.

  3. FT-IR, FT-Raman, UV spectra and DFT calculations on monomeric and dimeric structure of 2-amino-5-bromobenzoic acid.

    PubMed

    Karabacak, Mehmet; Cinar, Mehmet

    2012-02-01

    In this work, the molecular conformation, vibrational and electronic transition analysis of 2-amino-5-bromobenzoic acid (2A5BrBA) were presented for the ground state using experimental techniques (FT-IR, FT-Raman and UV) and density functional theory (DFT) employing B3LYP exchange correlation with the 6-311++G(d,p) basis set. FT-IR and FT-Raman spectra were recorded in the regions of 400-4000 cm(-1) and 50-4000 cm(-1), respectively. There are four conformers, C1, C2, C3 and C4 for this molecule. The geometrical parameters, energies and wavenumbers have been obtained for all four conformers. The computational results diagnose the most stable conformer of 2A5BrBA as the C1 form. The complete assignments of fundamental vibrations were performed on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method. Raman activities calculated by DFT method have been converted to the corresponding Raman intensities using Raman scattering theory. The UV spectra of investigated compound were recorded in the region of 200-400 nm for ethanol and water solutions. The electronic properties were evaluated with help of time-dependent DFT (TD-DFT) theoretically and results were compared with experimental observations. The thermodynamic properties of the studied compound at different temperatures were calculated, revealing the correlations between standard heat capacity, standard entropy, standard enthalpy changes and temperatures. The observed and the calculated geometric parameters, vibrational wavenumbers and electronic transitions were compared with observed data and found to be in good agreement. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Structural, vibrational and NMR spectroscopic investigations of newly synthesized 3-((ethylthio)(4-nitrophenyl)methyl)-1H-indole

    NASA Astrophysics Data System (ADS)

    Bhat, Sheeraz Ahmad; Dar, Ajaz A.; Ahmad, Shabbir; Khan, Abu T.

    2017-10-01

    The compound 3-((ethylthio)(4-nitrophenyl)methyl)-1H-indole was synthesized at room temperature through one-pot three-component reaction from 1H-indole, 4-nitrobenzaldehyde, and ethanethiol using hydrated ferric sulfate as a Lewis acid catalyst. The structure was characterised by single crystal XRD, FTIR (4000-400 cm-1), FT-Raman (4000-50 cm-1) and 1H and 13C NMR analysis. The compound crystallizes in the monoclinic with volume 3238.3(9) Å3. The experimental vibrational data find the theoretical support through anharmonic frequency calculations using DFT/B3LYP level of theory in combination with 6-31G(d,p) basis set. It is observed that the predicted geometry well reproduces the XRD structural parameters. The experimental 1H and 13C NMR spectra in CDCl3 solvent and the simulated spectra predicted using gauge independent atomic orbital (GIAO) approach are also found in agreement with each other. HOMO-LUMO, MEP, atomic charges and various other thermodynamic and NLO properties of the title molecule are also reported in this paper.

  5. Halide salts and their structural properties in presence of secondary amine based molecule: A combined experimental and theoretical analysis

    NASA Astrophysics Data System (ADS)

    Ghosh, Pritam; Hazra, Abhijit; Ghosh, Meenakshi; Chandra Murmu, Naresh; Banerjee, Priyabrata

    2018-04-01

    Biologically relevant halide salts and its solution state structural properties are always been significant. In general, exposure of halide salts into polar solution medium results in solvation which in turn separates the cationic and anionic part of the salt. However, the conventional behaviour of salts might alter in presence of any secondary amine based compound, i.e.; moderately strong Lewis acid. In its consequence, to investigate the effect of secondary amine based compound in the salt solution, novel (E)-2-(4-bromobenzylidene)-1-(perfluorophenyl) hydrazine has been synthesized and used as secondary amine source. The secondary amine compound interestingly shows a drastic color change upon exposure to fluoride salts owing to hydrogen bonding interaction. Several experimental methods, e.g.; SCXRD, UV-Vis, FT-IR, ESI-MS and DLS together with modern DFT (i.e.; DFT-D3) have been performed to explore the structural properties of the halide salts upon exposure to secondary amine based compound. The effect of counter cation of the fluoride salt in binding with secondary amine source has also been investigated.

  6. Synthesis and characterization of d10 metal complexes of 3-Me-5-FcPz: Structural, theoretical and third order nonlinear optical properties

    NASA Astrophysics Data System (ADS)

    Senthilkumar, Kabali; Thirumoorthy, Krishnan; Vinitha, G.; Soni, Kiran; Bhuvanesh, Nattamai S. P.; Palanisami, Nallasamy

    2017-01-01

    The d10 metal complexes based on 3-methyl-5-ferrocenyl-1H-pyrazole (L = 3-Me-5-FcPz) ligand [M(L)4(NO3)2] Zn=(1) and Cd=(2), [Hg(L)4(NO3)2].dmf (3) have been synthesized and characterized by FT-IR, NMR, UV-Vis and elemental analysis. The molecular structure of compound 2 and its crystal packing were determined by single crystal X-ray diffraction. The nitrate anions are also involved in intermolecular hydrogen bonding with adjacent ferrocene units and it forms zig-zag one-dimensional polymeric structure. UV-Vis investigations on the positive solvatochromic behavior of 1-3 revealed that the solvation of the push-pull character increases with increasing polarity. The third-order nonlinear optical (NLO) properties of 1-3 have been determined by Z-scan technique and the results indicate that compounds 1-3 exhibits the strong self-defocusing effect. The nonlinear susceptibility χ(3) values are calculated in the order of 10-6 esu.

  7. Two-dimensional (2D) infrared correlation study of the structural characterization of a surface immobilized polypeptide film stimulated by pH

    NASA Astrophysics Data System (ADS)

    Chae, Boknam; Son, Seok Ho; Kwak, Young Jun; Jung, Young Mee; Lee, Seung Woo

    2016-11-01

    The pH-induced structural changes to surface immobilized poly (L-glutamic acid) (PLGA) films were examined by Fourier transform infrared (FTIR) spectroscopy and two-dimensional (2D) correlation analysis. Significant spectral changes were observed in the FTIR spectra of the surface immobilized PLGA film between pH 6 and 7. The 2D correlation spectra constructed from the pH-dependent FTIR spectra of the surface immobilized PLGA films revealed the spectral changes induced by the alternations of the protonation state of the carboxylic acid group in the PLGA side chain. When the pH was increased from 6 to 8, weak spectral changes in the secondary structure of the PLGA main chain were induced by deprotonation of the carboxylic acid side group.

  8. Crystal Structure and Antitumor Activity of the Novel Zwitterionic Complex of tri-n-Butyltin(IV) with 2-Thiobarbituric Acid

    PubMed Central

    Balas, Vasilios I.; Hadjikakou, Sotiris K.; Hadjiliadis, Nick; Kourkoumelis, Nikolaos; Light, Mark E.; Hursthouse, Mike; Metsios, Apostolos K.; Karkabounas, Spyros

    2008-01-01

    A novel tri-n-butyl(IV) derivative of 2-thiobarbituric acid (HTBA) of formula [(n-Bu)3Sn(TBA) H2O] (1) has been synthesized and characterized by elemental analysis and 119Sn-NMR and FT-IR spectroscopic techniques. The crystal structure of complex 1 has been determined by single crystal X-ray diffraction analysis at 120(2) K. The geometry around Sn(IV) is trigonal bipyramidal. Three n-butyl groups and one oxygen atom from a deprotonated 2-thiobarbituric ligand are bonded to the metal center. The geometry is completed with one oxygen from a water molecule. Compound 1 exhibits potent, in vitro, cytotoxicity against sarcoma cancer cells (mesenchymal tissue) from the Wistar rat, polycyclic aromatic hydrocarbons (PAH, benzo[a]pyrene) carcinogenesis. In addition, the inhibition caused by 1, in the rate of lipoxygenase (LOX) catalyzed oxidation reaction of linoleic acid to hyperoxolinoleic acid, has been also kinetically and theoretically studied. The results are compared to that of cisplatin. PMID:18401456

  9. Spectroscopic, quantum chemical calculation and molecular docking of dipfluzine

    NASA Astrophysics Data System (ADS)

    Srivastava, Karnica; Srivastava, Anubha; Tandon, Poonam; Sinha, Kirti; Wang, Jing

    2016-12-01

    Molecular structure and vibrational analysis of dipfluzine (C27H29FN2O) were presented using FT-IR and FT-Raman spectroscopy and quantum chemical calculations. The theoretical ground state geometry and electronic structure of dipfluzine are optimized by the DFT/B3LYP/6-311++G (d,p) method and compared with those of the crystal data. The 1D potential energy scan was performed by varying the dihedral angle using B3LYP functional at 6-31G(d,p) level of theory and thus the most stable conformer of the compound were determined. Molecular electrostatic potential surface (MEPS), frontier orbital analysis and electronic reactivity descriptor were used to predict the chemical reactivity of molecule. Energies of intra- and inter-molecular hydrogen bonds in molecule and their electronic aspects were investigated by natural bond orbital (NBO). To find out the anti-apoptotic activity of the title compound molecular docking studies have been performed against protein Fas.

  10. Synthesis and characterization of a novel bio-based resin from maleated soybean oil polyols

    NASA Astrophysics Data System (ADS)

    Li, Y. T.; Yang, L. T.; Zhang, H.

    2017-02-01

    In this paper, a novel bio-based resin was prepared by the radical copolymerization of maleated soybean oil polyols (MSBOP) and styrene (ST). Structure of the product was studied by Fourier transformation infrared spectrometer (FT-IR), and the result was found to be consistent with that of theoretical structure. Swelling experiments indicated that the crosslinking degree increased with the increase of hydroxyl value. Thermal analysis by differential scanning calorimetry (DSC) and thermo-gravimetric analysis (TG) revealed that glass transition temperature (Tg) of the polymer increased with increasing hydroxyl values, and that its thermal stability showed a good correlation with the hydroxyl value. The tensile strength and impact strength were significantly affected by the hydroxyl value of soybean oil polyols. With increasing hydroxyl value, the tensile strength presented an increasing trend, while the impact strength showed a decreasing one. Moreover, the property of the polymer from elastomer to plastic character also depended on the functionality of the hydroxyl value of soybean oil polyols.

  11. Characterization of adsorbed water in MIL-53(Al) by FTIR spectroscopy and ab-initio calculations.

    PubMed

    Salazar, J M; Weber, G; Simon, J M; Bezverkhyy, I; Bellat, J P

    2015-03-28

    Here, we report ab-initio calculations developed with a twofold purpose: understand how adsorbed water molecules alter the infrared spectrum of the metal-organic framework MIL-53(Al) and to investigate which are the associated physico-chemical processes. The analyzed structures are the two anhydrous narrow (np⊘) and large (lp⊘) pore forms and the hydrated narrow pore form (np-H2O) of the MIL-53(Al). For these structures, we determined their corresponding infrared spectra (FTIR) and we identified the vibrational modes associated to the dominant spectral lines. We show that wagging and scissoring modes of CO2 give flexibility to the structure for facilitating the lp⊘- np⊘ transition. In our studies, this transition is identified by eight vibrational modes including the δCH(18a) vibrational mode currently used to identify the mentioned transition. We report an exhaustive band identification of the infrared spectra associated to the analyzed structures. Moreover, the FTIR for the np-H2O structure allowed us to identify four types of water molecules linked to the host structure by one to three hydrogen bonds.

  12. Experimental and theoretical (FT-IR, FT-Raman, UV-vis, NMR) spectroscopic analysis and first order hyperpolarizability studies of non-linear optical material: (2E)-3-[4-(methylsulfanyl) phenyl]-1-(4-nitrophenyl) prop-2-en-1-one using density functional theory.

    PubMed

    Kumar, Amit; Deval, Vipin; Tandon, Poonam; Gupta, Archana; Deepak D'silva, E

    2014-09-15

    A combined experimental and theoretical investigation on FT-IR, FT-Raman, NMR, UV-vis spectra of a chalcone derivative (2E)-3-[4-(methylsulfanyl) phenyl]-1-(4-nitrophenyl) prop-2-en-1-one (4N4MSP) has been reported. 4N4MSP has two planar rings connected through conjugated double bond and it provides a necessary configuration to show non-linear optical (NLO) response. The molecular structure, fundamental vibrational frequencies and intensity of the vibrational bands are interpreted with the aid of structure optimizations and normal coordinate force field calculations based on density functional theory (DFT) with B3LYP functional and 6-311++G(d,p) basis set combination. The analysis of the fundamental modes was made with the help of potential energy distribution (PED). Molecular electrostatic potential (MEP) surface was plotted over the geometry primarily for predicting sites and relative reactivities towards electrophilic and nucleophilic attack. The delocalization of electron density of various constituents of the molecule has been discussed with the aid of NBO analysis. The electronic properties, such as excitation energies, oscillator strength, wavelengths, HOMO and LUMO energies, were calculated by time-dependent density functional theory (TD-DFT) and the results complement the experimental findings. The recorded and calculated 1H chemical shifts in gas phase and MeOD solution are gathered for reliable calculations of magnetic properties. Thermodynamic properties like heat capacity (C°p,m), entropy (S°m), enthalpy (H°m) have been calculated for the molecule at the different temperatures. Based on the finite-field approach, the non-linear optical (NLO) parameters such as dipole moment, mean polarizability, anisotropy of polarizability and first order hyperpolarizability of 4N4MSP molecule are calculated. The predicted first hyperpolarizability shows that the molecule has a reasonably good nonlinear optical (NLO) behavior. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Comment on ;Red/blue shifting hydrogen bonds in acetonitrile - Dimethyl sulphoxide solutions: FTIR and theoretical studies; DOI: 10.1016/j.molstruc.2017.03.036

    NASA Astrophysics Data System (ADS)

    Kiefer, Johannes

    2017-09-01

    In the title paper, the DMSO sample obviously contains large amounts of water. This leads to a misinterpretation of the infrared spectra. Taking the presence of water into account, the observations can be explained in a straightforward manner.

  14. Vibrational frequency analysis, FT-IR, DFT and M06-2X studies on tert-Butyl N-(thiophen-2yl)carbamate

    NASA Astrophysics Data System (ADS)

    Sert, Yusuf; Singer, L. M.; Findlater, M.; Doğan, Hatice; Çırak, Ç.

    2014-07-01

    In this study, the experimental and theoretical vibrational frequencies of a newly synthesized tert-Butyl N-(thiophen-2yl)carbamate have been investigated. The experimental FT-IR (4000-400 cm-1) spectrum of the molecule in the solid phase have been recorded. The theoretical vibrational frequencies and optimized geometric parameters (bond lengths and bond angles) have been calculated by using density functional theory (DFT/B3LYP: Becke, 3-parameter, Lee-Yang-Parr) and DFT/M06-2X (the highly parametrized, empirical exchange correlation function) quantum chemical methods with the 6-311++G(d,p) basis set by Gaussian 09W software, for the first time. The vibrational frequencies have been assigned using potential energy distribution (PED) analysis by using VEDA 4 software. The computational optimized geometric parameters and vibrational frequencies have been found to be in good agreement with the corresponding experimental data, and with related literature results. In addition, the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) energies and the other related molecular energy values have been calculated and are depicted.

  15. FT-IR spectroscopy combined with DFT calculation to explore solvent effects of vinyl acetate

    NASA Astrophysics Data System (ADS)

    Chen, Yi; Zhang, Hui; Liu, Qing

    The infrared vibration frequencies of vinyl acetate (VAc) in 18 different solvents were theoretically computed at Density Function Theory (DFT) B3LYP/6-311G* level based on Polarizable Continuum Model (PCM) and experimentally recorded by FT-IR spectroscopy. The solvent-induced long-range bulk electrostatic solvation free energies of VAc (ΔGelec) were calculated by the SMD model. The Cdbnd O stretching vibration frequencies of VAc were utilized as a measure of the chemical reactivities of the Cdbnd C group in VAc. The calculated and experimental Cdbnd O stretching vibration frequencies of VAc (νcal(Cdbnd O) and νexp(Cdbnd O)) were correlated with empirical solvent parameters including the KBM equation, the Swain equation and the linear solvation energy relationships (LSER). Through ab initio calculation, assignments of the two Cdbnd O absorption bands of VAc in alcohol solvents were achieved. The PCM, SMD and ab initio calculation offered supporting evidence to explain the FT-IR experimental observations from differing aspects.

  16. FTIR, FT-Raman, FT-NMR and quantum chemical investigations of 3-acetylcoumarin.

    PubMed

    Arjunan, V; Sakiladevi, S; Marchewka, M K; Mohan, S

    2013-05-15

    3-Acetylcoumarin (3AC) was synthesised by a Knoevenagel reaction. Conformational analysis using the B3LYP method was also carried out to determine the most stable conformation of the compound. FTIR and FT-Raman spectra of 3AC have been recorded in the range 4000-400 and 4000-100 cm(-1), respectively. (1)H and (13)C NMR spectra have also been recorded. The complete vibrational assignment and analysis of the fundamental modes of the compound were carried out using the experimental FTIR and FT-Raman data and quantum mechanical studies. The experimental vibrational frequencies were compared with the wavenumbers obtained theoretically from the DFT-B3LYP/B3PW91 gradient calculations employing the standard 6-31G(**), high level 6-311++G(**) and cc-pVTZ basis sets for optimised geometry of the compound. The frontier molecular orbital energies of the compound are determined by DFT method. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Structural, spectroscopic and theoretical studies of dimethylphenyl betaine complex with two molecules of 2,6-dichloro-4-nitro-phenol

    NASA Astrophysics Data System (ADS)

    Szafran, Mirosław; Komasa, Anna; Ostrowska, Kinga; Katrusiak, Andrzej; Dega-Szafran, Zofia

    2015-02-01

    The 1:2 complex (1) of dimethylphenyl betaine (DMPB) with two molecules of 2,6-dichloro-4-nitro-phenol (DCNP) was prepared and characterized by X-ray diffraction, B3LYP/6-311++G(d,p) and B3LYP-D3/6-311++G(d,p)calculations, FTIR and NMR spectroscopies. The crystal is monoclinic, space group P21/c with Z = 4. The protons at the oxygen atoms of phenols are bonded to each oxygen atoms of the DMPB carboxylate group by two nonequivalent H-bonds with the Osbnd H⋯O distances of 2.473(5) and 2.688(4) Å. Both H-bonds in the optimized structures 2 (in vacuum), 3 (in DMSO solution) and dispersion-correlated functional (D3) 4 (in vacuum) are comparable and are slightly shorter than O(6)sbnd H(O6)⋯O(2) in the crystal. The FTIR spectrum of 1 shows a broad absorption in the 3400-2000 cm-1 region corresponding to a longer hydrogen bond and a broad absorption in the 1800-500 cm-1 region caused by the shorter H-bond. The relations between the experimental 13C and 1H chemical shifts (δexp) of the investigated compound 1 in DMSO solution and GIAO/B3LYP/6-311++G(d,p) magnetic isotropic shielding constants (σcalc) obtained by using the screening solvation model (COSMO) for 3 are linear and reproduce well the experimental chemical shifts described by the equation: δexp = a + b σcalc.

  18. Molecular orbital studies (hardness, chemical potential, electronegativity and electrophilicity), vibrational spectroscopic investigation and normal coordinate analysis of 5-{1-hydroxy-2-[(propan-2-yl)amino]ethyl}benzene-1,3-diol

    NASA Astrophysics Data System (ADS)

    Muthu, S.; Renuga, S.

    2014-01-01

    FT-IR and FT-Raman spectra of 5-{1-hydroxy-2-[(propan-2-yl) amino] ethyl} benzene-1,3-diol (abbrevi- 54 ated as HPAEBD) were recorded in the region 4000-450 cm-1 and 4000-100 cm-1 respectively. The structure of the molecule was optimized and the structural characteristics were determined by density functional theory (B3LYP) and HF method with 6-31 G(d,p) as basis set. The theoretical wave numbers were scaled and compared with experimental FT-IR and FT-Raman spectra. A detailed interpretation of the vibrational spectra of this compound has been made on the basis of the calculated Potential energy distribution (PED). Stability of the molecule arising from hyperconjugation and charge delocalization is confirmed by the natural bond orbital analysis (NBO). The results show that electron density (ED) in the σ antibonding orbitals and E (2) energies confirm the occurrence of intra molecular charge transfer (ICT) within the molecule. The molecule orbital contributions were studied by using the total (TDOS), sum of α and β electron (αβDOS) density of States. Mulliken population analysis of atomic charges is also calculated. The calculated HOMO and LUMO energy gap shows that charge transfer occurs within the molecule. The electron density-based local reactivity descriptors such as Fukui functions were calculated to explain the chemical selectivity or reactivity site in this compound. On the basis of vibrational analyses, the thermodynamic properties of title compound at different temperatures have been calculated.

  19. Molecular structure investigation of neutral, dimer and anion forms of 3,4-pyridinedicarboxylic acid: A combined experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Karabacak, Mehmet; Bilgili, Sibel; Atac, Ahmet

    2015-01-01

    In this study, the structural and vibrational analysis of 3,4-pyridinedicarboxylic acid (3,4-PDCA) are presented using experimental techniques as FT-IR, FT-Raman, NMR, UV and quantum chemical calculations. FT-IR and FT-Raman spectra of 3,4-pyridinedicarboxylic acid in the solid phase are recorded in the region 4000-400 cm-1 and 4000-50 cm-1, respectively. The geometrical parameters and energies of all different and possible monomer, dimer, anion-1 and anion-2 conformers of 3,4-PDCA are obtained from Density Functional Theory (DFT) with B3LYP/6-311++G(d,p) basis set. There are sixteen conformers (C1sbnd C16) for this molecule (neutral form). The most stable conformer of 3,4-PDCA is the C1 conformer. The complete assignments are performed on the basis of the total energy distribution (TED) of the vibrational modes calculated with scaled quantum mechanics (SQM) method. 1H and 13C NMR spectra are recorded and the chemical shifts are calculated by using DFT/B3LYP methods with 6-311++G(d,p) basis set. The UV absorption spectrum of the studied compound is recorded in the range of 200-400 nm by dissolved in ethanol. The optimized geometric parameters were compared with experimental data via the X-ray results derived from complexes of this molecule. In addition these, molecular electrostatic potential (MEP), thermodynamic and electronic properties, HOMO-LUMO energies and Mulliken atomic charges, are performed.

  20. Molecular structure investigation of neutral, dimer and anion forms of 3,4-pyridinedicarboxylic acid: a combined experimental and theoretical study.

    PubMed

    Karabacak, Mehmet; Bilgili, Sibel; Atac, Ahmet

    2015-01-25

    In this study, the structural and vibrational analysis of 3,4-pyridinedicarboxylic acid (3,4-PDCA) are presented using experimental techniques as FT-IR, FT-Raman, NMR, UV and quantum chemical calculations. FT-IR and FT-Raman spectra of 3,4-pyridinedicarboxylic acid in the solid phase are recorded in the region 4000-400 cm(-1) and 4000-50 cm(-1), respectively. The geometrical parameters and energies of all different and possible monomer, dimer, anion(-1) and anion(-2) conformers of 3,4-PDCA are obtained from Density Functional Theory (DFT) with B3LYP/6-311++G(d,p) basis set. There are sixteen conformers (C1C16) for this molecule (neutral form). The most stable conformer of 3,4-PDCA is the C1 conformer. The complete assignments are performed on the basis of the total energy distribution (TED) of the vibrational modes calculated with scaled quantum mechanics (SQM) method. (1)H and (13)C NMR spectra are recorded and the chemical shifts are calculated by using DFT/B3LYP methods with 6-311++G(d,p) basis set. The UV absorption spectrum of the studied compound is recorded in the range of 200-400 nm by dissolved in ethanol. The optimized geometric parameters were compared with experimental data via the X-ray results derived from complexes of this molecule. In addition these, molecular electrostatic potential (MEP), thermodynamic and electronic properties, HOMO-LUMO energies and Mulliken atomic charges, are performed. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Conformational stability, spectroscopic (FT-IR, FT-Raman and UV-Vis) analysis, NLO, NBO, FMO and Fukui function analysis of 4-hexylacetophenone by density functional theory.

    PubMed

    Saravanan, S; Balachandran, V

    2015-03-05

    The experimental and theoretical study on the structures and vibrations of 4-hexylacetophenone (abbreviated as 4HAP) are presented. The FT-IR and FT-Raman spectra of the title compound have been recorded in the region 4000-400cm(-1) and 3500-100cm(-1) respectively. The molecular structures, vibrational wavenumbers, infrared intensities and Raman activities were calculated using DFT (B3LYP and LSDA) method with 6-311++G(d,p) basis set. The most stable conformer of 4HAP is identified from the computational results. The assignments of the vibrational spectra have been carried out with the aid of normal coordinate analysis (NCA) following the scaled quantum mechanical force field methodology (SQMEF). The linear polarizability (α) and the first hyperpolarizability (βtot) values of the investigated molecule have been computed using B3LYP and LSDA with 6-311++G(d,p) basis set. Stability of the molecule arising from hyper conjugative interaction and charge transfer delocalization has been analyzed using natural bond orbital (NBO) analysis. The molecule orbital contributions are studied by density of energy states (DOSs). UV-Vis spectrum and effects of solvents have been discussed effects of solvents have been discussed and the electronic properties such as HOMO and LUMO energies were determined by time-dependent TD-DFT approach. Fukui function and Mulliken analysis on atomic charges of the title compound have been calculated. Finally, electrophilic and nucleophilic descriptors of the title molecule have been calculated. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Structure of Co-Doped Alq3 thin films investigated by grazing incidence X-ray absorption fine structure and Fourier transform infrared spectroscopy.

    PubMed

    Lin, Liang; Pang, Zhiyong; Fang, Shaojie; Wang, Fenggong; Song, Shumei; Huang, Yuying; Wei, Xiangjun; Yu, Haisheng; Han, Shenghao

    2011-02-10

    The structural properties of Co-doped tris(8-hydroxyquinoline)aluminum (Alq(3)) have been studied by grazing incidence X-ray absorption fine structure (GIXAFS) and Fourier transform infrared spectroscopy (FTIR). GIXAFS analysis suggests that there are multivalent Co-Alq(3) complexes and the doped Co atoms tend to locate at the attraction center with respect to N and O atoms and bond with them. The FTIR spectra indicate that the Co atoms interact with the meridional (mer) isomer of Alq(3) rather than forming inorganic compounds.

  3. Structure and vibrational spectra of melaminium bis(trifluoroacetate) trihydrate: FT-IR, FT-Raman and quantum chemical calculations.

    PubMed

    Sangeetha, V; Govindarajan, M; Kanagathara, N; Marchewka, M K; Gunasekaran, S; Anbalagan, G

    2014-05-05

    Melaminium bis(trifluoroacetate) trihydrate (MTFA), an organic material has been synthesized and single crystals of MTFA have been grown by the slow solvent evaporation method at room temperature. X-ray powder diffraction analysis confirms that MTFA crystal belongs to the monoclinic system with space group P2/c. The molecular geometry, vibrational frequencies and intensity of the vibrational bands have been interpreted with the aid of structure optimization based on density functional theory (DFT) B3LYP method with 6-311G(d,p) and 6-311++G(d,p) basis sets. The X-ray diffraction data have been compared with the data of optimized molecular structure. The theoretical results show that the crystal structure can be reproduced by optimized geometry and the vibrational frequencies show good agreement with the experimental values. The nuclear magnetic resonance (NMR) chemical shift of the molecule has been calculated by the gauge independent atomic orbital (GIAO) method and compared with experimental results. HOMO-LUMO, and other related molecular and electronic properties are calculated. The Mulliken and NBO charges have also been calculated and interpreted. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Methodological effects in Fourier transform infrared (FTIR) spectroscopy: Implications for structural analyses of biomacromolecular samples

    NASA Astrophysics Data System (ADS)

    Kamnev, Alexander A.; Tugarova, Anna V.; Dyatlova, Yulia A.; Tarantilis, Petros A.; Grigoryeva, Olga P.; Fainleib, Alexander M.; De Luca, Stefania

    2018-03-01

    A set of experimental data obtained by Fourier transform infrared (FTIR) spectroscopy (involving the use of samples ground and pressed with KBr, i.e. in a polar halide matrix) and by matrix-free transmission FTIR or diffuse reflectance infrared Fourier transform (DRIFT) spectroscopic methodologies (involving measurements of thin films or pure powdered samples, respectively) were compared for several different biomacromolecular substances. The samples under study included poly-3-hydroxybutyrate (PHB) isolated from cell biomass of the rhizobacterium Azospirillum brasilense; dry PHB-containing A. brasilense biomass; pectin (natural carboxylated heteropolysaccharide of plant origin; obtained from apple peel) as well as its chemically modified derivatives obtained by partial esterification of its galacturonide-chain hydroxyl moieties with palmitic, oleic and linoleic acids. Significant shifts of some FTIR vibrational bands related to polar functional groups of all the biomacromolecules under study, induced by the halide matrix used for preparing the samples for spectroscopic measurements, were shown and discussed. A polar halide matrix used for preparing samples for FTIR measurements was shown to be likely to affect band positions not only per se, by affecting band energies or via ion exchange (e.g., with carboxylate moieties), but also by inducing crystallisation of metastable amorphous biopolymers (e.g., PHB of microbial origin). The results obtained have important implications for correct structural analyses of polar, H-bonded and/or amphiphilic biomacromolecular systems using different methodologies of FTIR spectroscopy.

  5. Characterising protein, salt and water interactions with combined vibrational spectroscopic techniques.

    PubMed

    Perisic, Nebojsa; Afseth, Nils Kristian; Ofstad, Ragni; Hassani, Sahar; Kohler, Achim

    2013-05-01

    In this paper a combination of NIR spectroscopy and FTIR and Raman microspectroscopy was used to elucidate the effects of different salts (NaCl, KCl and MgSO(4)) on structural proteins and their hydration in muscle tissue. Multivariate multi-block technique Consensus Principal Component Analysis enabled integration of different vibrational spectroscopic techniques: macroscopic information obtained by NIR spectroscopy is directly related to microscopic information obtained by FTIR and Raman microspectroscopy. Changes in protein secondary structure observed at different concentrations of salts were linked to changes in protein hydration affinity. The evidence for this was given by connecting the underlying FTIR bands of the amide I region (1700-1600 cm(-1)) and the water region (3500-3000 cm(-1)) with water vibrations obtained by NIR spectroscopy. In addition, Raman microspectroscopy demonstrated that different cations affected structures of aromatic amino acid residues differently, which indicates that cation-π interactions play an important role in determination of the final structure of protein molecules. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. FTIR studies of gluten matrix dehydration after fibre polysaccharide addition.

    PubMed

    Nawrocka, Agnieszka; Krekora, Magdalena; Niewiadomski, Zbigniew; Miś, Antoni

    2018-06-30

    FTIR spectroscopy was used to determine changes in secondary structure, as well as water state, in gluten and model doughs supplemented by four fibre polysaccharides (microcrystalline cellulose, inulin, apple pectin and citrus pectin). The gluten and model doughs were obtained from commercially available wheat gluten and model flour, respectively. The polysaccharides were used in five concentrations: 3%, 6%, 9%, 12% and 18%. Analysis of the FTIR spectra indicated that polysaccharides could be divided into two groups: first - microcrystalline cellulose and inulin, second - apple and citrus pectins that induced opposite structural changes. Changes in secondary structure concern mainly β-sheets and β-turns that form aggregated β-structures, suggesting dehydration of the gluten matrix as a result of competition for water between gluten proteins and polysaccharides. Moreover, the positive band at ca. 1226 cm -1 in the spectra of pectin-modified samples indicates formation of 'ether' type hydrogen bonds between gluten proteins and pectins. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Cross-validation of IASI/MetOp derived tropospheric δD with TES and ground-based FTIR observations

    NASA Astrophysics Data System (ADS)

    Lacour, J.-L.; Clarisse, L.; Worden, J.; Schneider, M.; Barthlott, S.; Hase, F.; Risi, C.; Clerbaux, C.; Hurtmans, D.; Coheur, P.-F.

    2014-11-01

    The Infrared Atmospheric Sounding Interferometer (IASI) flying on-board MetOpA and MetOpB is able to capture fine isotopic variations of the HDO to H2O ratio (δD) in the troposphere. Such observations at the high spatio temporal resolution of the sounder are of great interest to improve our understanding of the mechanisms controlling humidity in the troposphere. In this study we aim to empirically assess the validity of our error estimation previously evaluated theoretically. To achieve this, we compare IASI δD retrieved profiles with other available profiles of δD, from the TES infrared sounder onboard AURA and from three ground-based FTIR stations produced within the MUSICA project: the NDACC (Network for the Detection of Atmospheric Composition Change) sites Kiruna and Izana, and the TCCON site Karlsruhe, which in addition to near-infrared TCCON spectra also records mid-infrared spectra. We describe the achievable level of agreement between the different retrievals and show that these theoretical errors are in good agreement with empirical differences. The comparisons are made at different locations from tropical to Arctic latitudes, above sea and above land. Generally IASI and TES are similarly sensitive to δD in the free troposphere which allows to compare their measurements directly. At tropical latitudes where IASI's sensitivity is lower than that of TES, we show that the agreement improves when taking into account the sensitivity of IASI in the TES retrieval. For the comparison IASI-FTIR only direct comparisons are performed because of similar sensitivities. We identify a quasi negligible bias in the free troposphere (-3‰) between IASI retrieved δD with the TES one, which are bias corrected, but an important with the ground-based FTIR reaching -47‰. We also suggest that model-satellite observations comparisons could be optimized with IASI thanks to its high spatial and temporal sampling.

  8. Characterisations of collagen-silver-hydroxyapatite nanocomposites

    NASA Astrophysics Data System (ADS)

    Ciobanu, C. S.; Popa, C. L.; Petre, C. C.; Jiga, G.; Trusca, R.; Predoi, D.

    2016-05-01

    The XRD analysis were performed to confirm the formation of hydroxyapatite structure in collagen-silver-hydroxyapatite nanocomposites. The molecular interaction in collagen-hydroxyapatite nanocomposites was highlighted by Fourier transform infrared spectroscopy (FTIR) analysis. The SEM showed a nanostructure of collagen-silverhydroxyapatite nanocomposites composed of nano needle-like particles in a veil with collagen texture. The presence of vibrational groups characteristics to the hydroxyapatite structure in collagen-silver-hydroxyapatite (AgHApColl) nanocomposites was investigated by FTIR.

  9. Spectroscopic investigation on cocrystal formation between adenine and fumaric acid based on infrared and Raman techniques.

    PubMed

    Du, Yong; Fang, Hong Xia; Zhang, Qi; Zhang, Hui Li; Hong, Zhi

    2016-01-15

    As an important component of double-stranded DNA, adenine has powerful hydrogen-bond capability, due to rich hydrogen bond donors and acceptors existing within its molecular structure. Therefore, it is easy to form cocrystal between adenine and other small molecules with intermolecular hydrogen-bond effect. In this work, cocrystal of adenine and fumaric acid has been characterized as model system by FT-IR and FT-Raman spectral techniques. The experimental results show that the cocrystal formed between adenine and fumaric acid possesses unique spectroscopical characteristic compared with that of starting materials. Density functional theory (DFT) calculation has been performed to optimize the molecular structures and simulate vibrational modes of adenine, fumaric acid and the corresponding cocrystal. Combining the theoretical and experimental vibrational results, the characteristic bands corresponding to bending and stretching vibrations of amino and carbonyl groups within cocrystal are shifted into lower frequencies upon cocrystal formation, and the corresponding bond lengths show some increase due to the effect of intermolecular hydrogen bonding. Different vibrational modes shown in the experimental spectra have been assigned based on the simulation DFT results. The study could provide experimental and theoretical benchmarks to characterize cocrystal formed between active ingredients and cocrystal formers and also the intermolecular hydrogen-bond effect within cocrystal formation process by vibrational spectroscopic techniques. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Structural characterization, vibrational study, NLO and DFT calculations of a novel organic sulfate monohydrate templated with (S)-(-)-2,6-diammonium-4,5,6,7-tetrahydrobenzothiazole

    NASA Astrophysics Data System (ADS)

    Barhoumi, Abir; Mhiri, Tahar; Dammak, Thameur; Suñol, Joan Josep; Belhouchet, Mohamed

    2017-01-01

    A single crystal of (S)-(-)-2,6-diammonium-4,5,6,7-tetrahydrobenzothiazole sulfate monohydrate has been synthesized and grown at room temperature by slow evaporation of aqueous solution. The studied compound crystallizes in the space group P212121 of the orthorhombic system with cell parameters a = 7.0014(12), b = 8.7631(15), c = 19.773(3) Å. We report the molecular structure and the theoretical and experimental vibrational spectra of the synthesized compound. The atomic arrangement, which is an alternation of organic inorganic layers linked together through hydrogen bonds, gives rise to three types of rings formed by the interconnection of organic-inorganic entities. The experimental FT-IR and the Raman spectra the synthesized compound were recorded and analyzed. The peaks assignment has been made unambiguously from the literature. To confirm the assignment, the experimental spectra were compared with theoretical spectra obtained with the Gaussian 98 program by the Density Functional Theory (DFT) method using B3LYP function with the LanL2DZ basis set. Moreover, to study the nonlinear optical (NLO) property of this compound, the hyperpolarizability βtot, the electric dipole μtot and the polarizability αtot were calculated using the DFT. Based on our calculation the synthesized compound has a non-zero hyperpolarizability suggesting that it may be used in some NLO applications.

  11. Structural transformation of synthetic hydroxyapatite under simulated in vivo conditions studied with ATR-FTIR spectroscopic imaging

    NASA Astrophysics Data System (ADS)

    Sroka-Bartnicka, Anna; Borkowski, Leszek; Ginalska, Grazyna; Ślósarczyk, Anna; Kazarian, Sergei G.

    2017-01-01

    Hydroxyapatite and carbonate-substituted hydroxyapatite are widely used in bone tissue engineering and regenerative medicine. Both apatite materials were embedded into recently developed ceramic/polymer composites, subjected to Simulated Body Fluid (SBF) for 30 days and characterized using ATR-FTIR spectroscopic imaging to assess their behaviour and structures. The specific aim was to detect the transition phases between both types of hydroxyapatite during the test and to analyze the surface modification caused by SBF. ATR-FTIR spectroscopic imaging was successfully applied to characterise changes in the hydroxyapatite lattice due to the elastic properties of the scaffolds. It was observed that SBF treatment caused a replacement of phosphates in the lattice of non-substituted hydroxyapatite by carbonate ions. A detailed study excluded the formation of pure A type carbonate apatite. In turn, CO32- content in synthetic carbonate-substituted hydroxyapatite decreased. The usefulness of ATR-FTIR spectroscopic imaging studies in the evaluation of elastic and porous β-glucan hydroxyapatite composites has been demonstrated.

  12. Rapid approach to analyze biochemical variation in rat organs by ATR FTIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Staniszewska, Emilia; Malek, Kamilla; Baranska, Malgorzata

    2014-01-01

    ATR FTIR spectra were collected from rat tissue homogenates (myocardium, brain, liver, lung, intestine, and kidney) to analyze their biochemical content. Based on the second derivative of an average spectral profile it was possible to assign bands e.g. to triglycerides and cholesterol esters, proteins, phosphate macromolecules (DNA, RNA, phospholipids, phosphorylated proteins) and others (glycogen, lactate). Peaks in the region of 1600-1700 cm-1 related to amide I mode revealed the secondary structure of proteins. The collected spectra do not characterize morphological structure of the investigated tissues but show their different composition. The comparison of spectral information gathered from FTIR spectra of the homogenates and those obtained previously from FTIR imaging of the tissue sections implicates that the presented here approach can be successfully employed in the investigations of biochemical variation in animal tissues. Moreover, it can be used in the pharmacological and pharmacokinetic studies to correlate the overall biochemical status of the tissue with the pathological changes it has undergone.

  13. Experimental FT-IR, Laser-Raman and DFT spectroscopic analysis of a potential chemotherapeutic agent 6-(2-methylpropyl)-4-oxo-2-sulfanylidene-1,2,3,4-tetrahydropyrimidine-5-carbonitrile.

    PubMed

    Sert, Yusuf; Al-Turkistani, Abdulghafoor A; Al-Deeb, Omar A; El-Emam, Ali A; Ucun, Fatih; Çırak, Çağrı

    2014-01-01

    In this study, the experimental and theoretical vibrational frequencies of a newly synthesized potential chemotherapeutic agent namely, 6-(2-methylpropyl)-4-oxo-2-sulfanylidene-1,2,3,4-tetrahydropyrimidine-5-carbonitrile have been investigated. The experimental FT-IR (4000-400 cm(-1)) and Laser-Raman spectra (4000-100 cm(-1)) of the molecule in solid phase have been recorded. The theoretical vibrational frequencies and optimized geometric parameters (bond lengths and bond angles) have been calculated by using density functional theory (DFT/B3LYP: Becke, 3-parameter, Lee-Yang-Parr) and M06-2X (the highly parametrized, empirical exchange correlation function) quantum chemical methods with 6-311++G(d,p) basis set by Gaussian 09 W software, for the first time. The assignments of the vibrational frequencies have been done by potential energy distribution (PED) analysis by using VEDA 4 software. The theoretical optimized geometric parameters and vibrational frequencies have been found to be in good agreement with the corresponding experimental data, and with the results in the literature. In addition, the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) energies and the other related molecular energy values have been calculated and depicted. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Experimental (FT-IR, NMR and UV) and theoretical (M06-2X and DFT) investigation, and frequency estimation analyses on (E)-3-(4-bromo-5-methylthiophen-2-yl)acrylonitrile.

    PubMed

    Sert, Yusuf; Balakit, Asim A; Öztürk, Nuri; Ucun, Fatih; El-Hiti, Gamal A

    2014-10-15

    The spectroscopic properties of (E)-3-(4-bromo-5-methylthiophen-2-yl)acrylonitrile have been investigated by FT-IR, UV, (1)H and (13)C NMR techniques. The theoretical vibrational frequencies and optimized geometric parameters (bond lengths and angles) have been calculated using density functional theory (DFT/B3LYP: Becke, 3-parameter, Lee-Yang-Parr) and DFT/M06-2X (the highly parameterized, empirical exchange correlation function) quantum chemical methods with 6-311++G(d,p) basis set by Gaussian 03 software, for the first time. The assignments of the vibrational frequencies have been carried out by potential energy distribution (PED) analysis by using VEDA 4 software. The theoretical optimized geometric parameters and vibrational frequencies were in good agreement with the corresponding experimental data, and with the results in the literature. (1)H and (13)C NMR chemical shifts were calculated by using the gauge-invariant atomic orbital (GIAO) method. The electronic properties, such as excitation energies, oscillator strength wavelengths were performed by B3LYP methods. In addition, the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) energies and the other related molecular energy values have been calculated and depicted. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Rationally Designed 2D Covalent Organic Framework with a Brick-Wall Topology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Song-Liang; Zhang, Kai; Tan, Jing-Bo

    In this paper, we report the design and synthesis of an imine-based two-dimensional covalent organic framework (2D COF) with a novel brick-wall topology by judiciously choosing a tritopic T-shaped building block and a ditopic linear linker. Unlike the main body of COF frameworks reported to-date, which consists of higher-symmetry 2D topologies, the unconventional layered brick-wall topology have only been proposed but never been realized experimentally. The brick-wall structure was characterized by powder X-ray diffraction analysis, FT-IR, solid state 13C NMR spectroscopy, nitrogen, and carbon oxide adsorption-desorption measurements as well as theoretical simulations. Lastly, our present work opens the door tomore » the design of novel 2D COFs and will broaden the scope of emerging COF materials.« less

  16. Rationally Designed 2D Covalent Organic Framework with a Brick-Wall Topology

    DOE PAGES

    Cai, Song-Liang; Zhang, Kai; Tan, Jing-Bo; ...

    2016-11-23

    In this paper, we report the design and synthesis of an imine-based two-dimensional covalent organic framework (2D COF) with a novel brick-wall topology by judiciously choosing a tritopic T-shaped building block and a ditopic linear linker. Unlike the main body of COF frameworks reported to-date, which consists of higher-symmetry 2D topologies, the unconventional layered brick-wall topology have only been proposed but never been realized experimentally. The brick-wall structure was characterized by powder X-ray diffraction analysis, FT-IR, solid state 13C NMR spectroscopy, nitrogen, and carbon oxide adsorption-desorption measurements as well as theoretical simulations. Lastly, our present work opens the door tomore » the design of novel 2D COFs and will broaden the scope of emerging COF materials.« less

  17. 4-Mercaptophenylboronic acid: conformation, FT-IR, Raman, OH stretching and theoretical studies.

    PubMed

    Parlak, Cemal; Ramasami, Ponnadurai; Tursun, Mahir; Rhyman, Lydia; Kaya, Mehmet Fatih; Atar, Necip; Alver, Özgür; Şenyel, Mustafa

    2015-06-05

    4-Mercaptophenylboronic acid (4-mpba, C6H7BO2S) was investigated experimentally by vibrational spectroscopy. The molecular structure and spectroscopic parameters were studied by computational methods. The molecular dimer was investigated for intermolecular hydrogen bonding. Potential energy distribution analysis of normal modes was performed to identify characteristic frequencies. The present work provides a simple physical picture of the OH stretch vibrational spectra of 4-mpba and analogues of the compound studied. When the different computational methods are compared, there is a strong evidence of the better performance of the BLYP functional than the popular B3LYP functional to describe hydrogen bonding in the dimer. The findings of this research work should be useful to experimentalists in their quests for functionalised 4-mpba derivatives. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Fourier transform infrared spectroscopic study of intact cells of the nitrogen-fixing bacterium Azospirillum brasilense

    NASA Astrophysics Data System (ADS)

    Kamnev, A. A.; Ristić, M.; Antonyuk, L. P.; Chernyshev, A. V.; Ignatov, V. V.

    1997-06-01

    The data of Fourier transform infrared (FTIR) spectroscopic measurements performed on intact cells of the soil nitrogen-fixing bacterium Azospirillum brasilense grown in a standard medium and under the conditions of an increased metal uptake are compared and discussed. The structural FTIR information obtained is considered together with atomic absorption spectrometry (AAS) data on the content of metal cations in the bacterial cells. Some methodological aspects concerning preparation of bacterial cell samples for FTIR measurements are also discussed.

  19. FT-IR and Zeta potential measurements on TiO nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Jaiveer; Rathore, Ravi; Kaurav, Netram, E-mail: netramkaurav@yahoo.co.uk

    2016-05-23

    In the present investigation, ultrafine TiO particles have been synthesized successfully by thermal decomposition method. The sample was characterized by X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. As-synthesized TiO nanoparticles have a cubic structure as characterized by power X-ray diffraction (XRD), which shows that TiO nanoparticles have narrow size distribution with particle size 11.5 nm. FTIR data shows a strong peak at 1300 cm{sup −1}, assignable to the Ti-O stretching vibrations mode.

  20. Synthesis, spectroscopic characterization, theoretical study and anti-hepatic cancer activity study of 4-(1E,3Z,6E)-3-hydroxy-7-(4-hydroxy-3-methoxyphenyl)-5-oxohepta-1,3,6-trien-1-yl)-2-methoxyphenyl 4-nitrobenzoate, a novel curcumin congener

    NASA Astrophysics Data System (ADS)

    Srivastava, Sangeeta; Gupta, Preeti; Singh, Ranvijay Pratap; Jafri, Asif; Arshad, M.; Banerjee, Monisha

    2017-08-01

    In the present work 4-(1E,3Z,6E)-3-hydroxy-7-(4-hydroxy-3-methoxyphenyl)-5-oxohepta-1,3,6-trien-1-yl)-2-methoxyphenyl 4-nitrobenzoate (2), a novel curcumin ester was synthesized. The molecular structure and spectroscopic analysis were performed using experimental techniques like FT-IR, 1H,13C NMR, mass and UV-visible as well as theoretical calculations. The theoretical calculations were done by DFT level of theory using B3LYP/6-31G (d,p) basis set. The vibrational wavenumbers were calculated using DFT method and assigned with the help of potential energy distribution (PED). The electronic properties such as frontier orbitals and band gap energies have been calculated using time dependent density functional theory (TD-DFT). The strength and nature of weak intramolecular interactions have been studied by AIM approach. Global and local reactivity descriptors have been computed to predict reactivity and reactive sites in the molecule. First hyperpolarizability values have been calculated to describe the nonlinear optical (NLO) property of the synthesized compounds. Molecular electrostatic potential (MEP) analysis has also been carried out. The anti-hepatic cancer activity of compound 2 was also carried out.

  1. Crystal growth, characterization and theoretical studies of 4-aminopyridinium picrate

    NASA Astrophysics Data System (ADS)

    Aditya Prasad, A.; Muthu, K.; Rajasekar, M.; Meenatchi, V.; Meenakshisundaram, S. P.

    2015-01-01

    Single crystals of 4-aminopyridinium picrate (APP) were grown by slow evaporation of a mixed solvent system methanol-acetone (1:1, v/v) containing equimolar quantities of 4-aminopyridine and picric acid. Structure is elucidated by single crystal XRD analysis and the crystal belongs to monoclinic system with four molecules in the unit cell (space group P21/c) and the cell parameter values are, a = 8.513 Å (±0.015), b = 11.33 Å (±0.02), c = 14.33 Å (±0.03) and β = 104.15° (±0.019), V = 1340 A3 (±6) with refined R factors R1 = 0.0053 and wR2 = 0.0126. The electron density mapping is interpreted to find coordinates for each atom in the crystallized molecules. The various functional groups present in the molecule are confirmed by FT-IR analysis. UV-visible spectral analysis was used to determine the band gap energy of 4-aminopyridinium picrate. Powder X-ray diffraction pattern reveals the crystallinity of the as-grown crystal and it closely resembles the simulated XRD from the single crystal XRD analysis. Scanning electron microscopy reveals the surface morphology of the grown crystal. Optimized geometry is derived by Hartree-Fock theory calculations and the first-order molecular hyperpolarizability (β), theoretically calculated bond length, bond angles and excited state energy from theoretical UV-vis spectrum were estimated.

  2. Low temperature FTIR, Raman, NMR spectroscopic and theoretical study of hydroxyethylammonium picrate

    NASA Astrophysics Data System (ADS)

    Sudharsana, N.; Sharma, A.; Kuş, N.; Fausto, R.; Luísa Ramos, M.; Krishnakumar, V.; Pal, R.; Guru Row, T. N.; Nagalakshmi, R.

    2016-01-01

    A combined experimental (infrared, Raman and NMR) and theoretical quantum chemical study is performed on the charge-transfer complex hydroxyethylammonium picrate (HEAP). The infrared (IR) spectra for HEAP were recorded at various temperatures, ranging from 16 K to 299 K, and the Raman spectrum was recorded at room temperature. A comparison of the experimental IR and Raman spectra with the corresponding calculated spectra was done, in order to facilitate interpretation of the experimental data. Formation of the HEAP complex is evidenced by the presence of the most prominent characteristic bands of the constituting groups of the charge-transfer complex [e.g., NH3+, CO- and NO2]. Vibrational spectroscopic analysis, together with natural bond orbital (NBO) and theoretical charge density analysis in the crystalline phase, was used to shed light on relevant structural details of HEAP resulting from deprotonation of picric acid followed by formation of a hydrogen bond of the N-H⋯OC type between the hydroxyethylammonium cation and the picrate. 13C and 1H NMR spectroscopic analysis are also presented for the DMSO-d6 solution of the compound revealing that in that medium the HEAP crystal dissolves forming the free picrate and hydroxyethylammonium ions. Finally, the electron excitation analysis of HEAP was performed in an attempt to determine the nature of the most important excited states responsible for the NLO properties exhibited by the compound.

  3. Spectroscopic analysis of normal and neoplastic (WI-FTC) thyroid tissue.

    PubMed

    Depciuch, Joanna; Stanek-Widera, Agata; Lange, Dariusz; Biskup-Frużyńska, Magdalena; Stanek-Tarkowska, Jadwiga; Czarny, Wojciech; Cebulski, Jozef

    2018-06-07

    Thyroid cancer holds the first place of the malignant tumors of the endocrine system. One of the less common thyroid cancers is follicular thyroid carcinoma (FTC), which is very difficult to diagnose because it gives the same image as adenoma, which is benign. Certainty of the diagnosis is gained only when FTC gives metastases. Therefore, it was decided to compare normal and neoplastic (FTC) thyroid tissues with Fourier Transform Infrared (FTIR) spectroscopy. The obtained FTIR spectra and Principal Component Analysis (PCA) allowed us to conclude that there are differences in the FTIR spectrum between normal tissues and those affected by cancer. In addition, the results indicate that there is a decrease in the number of functional groups that build cellular and tissue structures in tumoral tissues. The shifts of wave numbers corresponding to the protein and lipid function group vibrations, as well as the calculated second derivative of the FTIR spectra showed the structural changes in neoplastic tissues. Moreover, the deconvolution of the amide I massif indicates that in cancerous tissues the prevailing secondary structure is β-sheet structure, while in normal tissues it is α-helix. The obtained results allow us to conclude that infrared spectroscopy, in addition to providing information on the composition of tested samples, can be an excellent diagnostic tool contributing to understanding the FTC substrate. Copyright © 2018. Published by Elsevier B.V.

  4. Optical study of gamma irradiated sodium metaphosphate glasses containing divalent metal oxide MO (ZnO or CdO)

    NASA Astrophysics Data System (ADS)

    Nabhan, E.; Abd-Allah, W. M.; Ezz-El-Din, F. M.

    Sodium metaphosphate glasses containing divalent metal oxide, ZnO or CdO with composition 50 P2O5 - (50 - x) Na2O - x MO (ZnO, or CdO) where x = 0, 10, 20 (mol%) were prepared by conventional melt method. UV/visible spectroscopy and FTIR spectroscopy are measured before and after exposing to successive gamma irradiation doses (5-80 kGy). The optical absorption spectra results of the samples before irradiation reveal a strong UV absorption band at (∼230 nm) which is related to unavoided iron impurities. The effects of gamma irradiation on the optical spectral properties of the various glasses have been compared. From the optical absorption spectral data, the optical band gap is evaluated. The main structural groups and the influence of both divalent metal oxide and gamma irradiation effect on the structural vibrational groups are realized through IR spectroscopy. The FTIR spectra of γ-irradiated samples are characterized by the stability of the number and position for the main characteristic band of phosphate groups. To better understood the structural changes during γ-irradiation, a deconvolution of FTIR spectra in the range 650-1450 cm-1 is made. The FTIR deconvolution results found evidence that, the changes occurring after gamma irradiation have been related to irradiation induced structural defects and compositional changes.

  5. Synthesis and catalytic activity of polysaccharide templated nanocrystalline sulfated zirconia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sherly, K. B.; Rakesh, K.

    Nanoscaled materials are of great interest due to their unique enhanced optical, electrical and magnetic properties. Sulfate-promoted zirconia has been shown to exhibit super acidic behavior and high activity for acid catalyzed reactions. Nanocrystalline zirconia was prepared in the presence of polysaccharide template by interaction between ZrOCl{sub 2}⋅8H{sub 2}O and chitosan template. The interaction was carried out in aqueous phase, followed by the removal of templates by calcination at optimum temperature and sulfation. The structural and textural features were characterized by powder XRD, TG, SEM and TEM. XRD patterns showed the peaks of the diffractogram were in agreement with themore » theoretical data of zirconia with the catalytically active tetragonal phase and average crystalline size of the particles was found to be 9 nm, which was confirmed by TEM. TPD using ammonia as probe, FTIR and BET surface area analysis were used for analyzing surface features like acidity and porosity. The BET surface area analysis showed the sample had moderately high surface area. FTIR was used to find the type species attached to the surface of zirconia. UV-DRS found the band gap of the zirconia was found to be 2.8 eV. The benzylation of o-xylene was carried out batchwise in atmospheric pressure and 433K temperature using sulfated zirconia as catalyst.« less

  6. The theoretical and experimental study on dicalcium phosphate dehydrate loading with protocatechuic aldehyde.

    PubMed

    Guo, Yuehua; Qu, Shuxin; Lu, Xiong; Xie, Haodong; Zhang, Hongping; Weng, Jie

    2010-07-01

    The aim of this study is to investigate the interaction between dicalcium phosphate dihydrate (CaHPO(4) x 2H(2)O, DCPD) and Protocatechuic aldehyde (C(7)H(6)O(3), Pca), which is the water-soluble constituents of Chinese Medicine, Salvia Miltiorrhiza Bunge (SMB), by calculating the absorption energy through molecular dynamics simulation. Furthermore, the effects of functional groups of Pca and temperature on Pca adsorbed by DCPD are calculated respectively. DCPD/Pca and DCPD were analyzed by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TG). The simulation results showed that Pca mostly absorbed on the (0 2 0) surface of DCPD. The aldehyde group of Pca played a moren important role on the adsorption of Pca on DCPD than hydroxyl did, while temperature had no distinct effects on the adsorption. XRD results indicated that Pca induced the preferential growth of (0 2 0) crystal surface in DCPC/Pca whereas it had no influence on the crystal structure, the crystallinity and grain size of DCPD. FTIR and TG results showed that the characteristic peak of Pca was at 1295 cm(-1) and the content of Pca in DCPD was 16%, respectively. The present results show that molecular dynamics simulation is a very effective and complementary method to study the interaction between materials and medicine.

  7. Synthesis and structural study on (1E,2E,1'E,2'E)-3,3'-bis[(4-bromophenyl)-3,3'-(4-methy-1,2-phenylene diimine)] acetaldehyde dioxime: A combined experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Topal, T.; Kart, H. H.; Tunay Taşlı, P.; Karapınar, E.

    2015-06-01

    Tetradentate (1E,2E,1'E,2'E)-3,3'-bis[(4-bromophenyl)-3,3'-(4-methy-1,2-phenylene diimine)] acetaldehyde dioxime which possess N4 donor sets derived from the condensation of isonitroso- p-bromoacetophenone and 3,4-diaminotoluene are synthesized and characterized. The characterization of tetradentate Schiff base ligand has been deduced from LC-MS, FTIR, 13C and 1H NMR spectra and elemental analysis. Furthermore, the molecular geometry, infrared and NMR spectra of the title molecule in the ground state have been calculated by using the quantum chemical computational methods such as density functional theory (DFT) and ab initio Hartree-Fock (HF) methods with the 6-31G(d) and 6-311G(d) basis sets. The computed bond lengths and bond angles by using the both methods show the good agreement with each other. Moreover, the vibrational frequencies have been calculated and the scaled values have been compared with the experimental FTIR spectroscopic data. Assignments of the vibrational modes are made on the basis of potential energy distribution (PED) calculated from by using VEDA program. The correlations between the observed and calculated frequencies are in good agreement with each other as well as the correlation of the NMR data.

  8. Syntheses, spectroscopic and thermal analyses of cyanide bridged heteronuclear polymeric complexes: [M(L)2Ni(CN)4]n (Ldbnd N-methylethylenediamine or N-ethylethylenediamine; Mdbnd Ni(II), Cu(II), Zn(II) or Cd(II))

    NASA Astrophysics Data System (ADS)

    Karaağaç, Dursun; Kürkçüoğlu, Güneş Süheyla

    2016-02-01

    Polymeric tetracyanonickelate(II) complexes of the type [M(L)2Ni(CN)4]n (Ldbnd N-methylethylenediamine (men) or N-ethylethylenediamine (neen); Mdbnd Ni(II), Cu(II), Zn(II) or Cd(II)) have been prepared and characterized by FT-IR, Raman spectroscopy, thermal and elemental analysis techniques. Additionally, FT-IR and Raman spectral analyses of men and neen have experimentally and theoretically investigated in the range of 4000-250 cm-1. The corresponding vibration assignments of men and neen are performed by using B3LYP density functional theory (DFT) method together with 6-31 G(d) basis set. The spectral features of the complexes suggest that the coordination environment of the M(II) ions are surrounded by the two symmetry related men and neen ligands and the two symmetry related N atom of cyanide groups, whereas the Ni(II) atoms are coordinated with a square-planar to four C atoms of the cyanide groups. Polymeric structures of the complexes consist of one dimensional alternative chains of [M(L)2]2+ and [Ni(CN)4]2- moieties. The thermal decompositions in the temperature range 30-700 °C of the complexes were investigated in the static air atmosphere.

  9. Synthesis, single crystal X-ray, spectroscopic (FT-IR, UV-vis, fluorescence, 1H &13C NMR), computational (DFT/B3LYP) studies of some imidazole based picrates

    NASA Astrophysics Data System (ADS)

    Arockia doss, M.; Rajarajan, G.; Thanikachalam, V.; Selvanayagam, S.; Sridhar, B.

    2018-04-01

    2,4,5-triphenyl-1H-imidazol-3-ium picrate (1), 2-(4-fluorophenyl)-4,5-diphenyl-1H-imidazol-3-ium picrate (2), 2-(4-methylphenyl)-4,5-diphenyl-1H-imidazol-3-ium picrate (3) were synthesised. These compounds 1-3 were characterized by elemental, FT-IR, 1H NMR and 13C NMR analyses. The structure of compound 3 was further confirmed by single crystal X-ray diffraction. The studies reveal that the molecule is associated with weak Nsbnd H⋯O and Csbnd H⋯N and van der Waals interactions which are responsible for the formation and strengthening of supramolecular assembly. The nature of the interactions and their importance are explored using the Hirshfeld surface method. The physicochemical properties of the compounds 1-3 were evaluated by UV-vis spectroscopy, fluorescence spectroscopy, and thermogravimetric analysis. According to thermal data the salts possess excellent thermal stabilities with decomposition temperatures ranging from 220 to 280 °C. Second-harmonic generation (SHG) results exposed that the picrates 1-3 were about 1.13-1.50 times greater than potassium dihydrogen phosphate (KDP). Here we also used Density functional theory (DFT) calculations in order to investigate the opto-electronic properties. The obtained theoretical results validate with available experimental data.

  10. Optimization of monomethoxy polyethyleneglycol-modified oxalate decarboxylase by response surface methodology.

    PubMed

    Long, Han; Cai, XingHua; Yang, Hui; He, JunBin; Wu, Jia; Lin, RiHui

    2017-09-01

    In order to improve the stability of oxalate decarboxylase (Oxdc), response surface methodology (RSM), based on a four-factor three-level Box-Behnken central composite design was used to optimize the reaction conditions of oxalate decarboxylase (Oxdc) modified with monomethoxy polyethyleneglycol (mPEG5000). Four independent variables such as the ratio of mPEG-aldehyde to Oxdc, reaction time, temperature, and reaction pH were investigated in this work. The structure of modified Oxdc was identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and Fourier transform infrared (FTIR) spectroscopy, the stability of the modified Oxdc was also investigated. The optimal conditions were as follows: the mole ratio of mPEG-aldehyde to Oxdc of 1:47.6, time of 13.1 h, temperature at 29.9 °C, and the reaction pH of 5.3. Under optimal conditions, experimental modified rate (MR = 73.69%) and recovery rate (RR = 67.58%) were matched well with the predicted value (MR = 75.11%) and (RR = 69.17%). SDS-PAGE and FTIR analysis showed that mPEG was covalently bound to the Oxdc. Compared with native Oxdc, the modified Oxdc (mPEG-Oxdc) showed higher thermal stability and better tolerance to trypsin or different pH treatment. This work will provide a further theoretical reference for enzyme modification and conditional optimization.

  11. Comprehensive quantum chemical and spectroscopic (FTIR, FT-Raman, 1H, 13C NMR) investigations of O-desmethyltramadol hydrochloride an active metabolite in tramadol - An analgesic drug

    NASA Astrophysics Data System (ADS)

    Arjunan, V.; Santhanam, R.; Marchewka, M. K.; Mohan, S.

    2014-03-01

    O-desmethyltramadol is one of the main metabolites of tramadol widely used clinically and has analgesic activity. The FTIR and FT-Raman spectra of O-desmethyl tramadol hydrochloride are recorded in the solid phase in the regions 4000-400 cm-1 and 4000-100 cm-1, respectively. The observed fundamentals are assigned to different normal modes of vibration. Theoretical studies have been performed as its hydrochloride salt. The structure of the compound has been optimised with B3LYP method using 6-31G** and cc-pVDZ basis sets. The optimised bond length and bond angles are correlated with the X-ray data. The experimental wavenumbers were compared with the scaled vibrational frequencies determined by DFT methods. The IR and Raman intensities are determined with B3LYP method using cc-pVDZ and 6-31G(d,p) basic sets. The total electron density and molecular electrostatic potential surfaces of the molecule are constructed by using B3LYP/cc-pVDZ method to display electrostatic potential (electron + nuclei) distribution. The electronic properties HOMO and LUMO energies were measured. Natural bond orbital analysis of O-desmethyltramadol hydrochloride has been performed to indicate the presence of intramolecular charge transfer. The 1H and 13C NMR chemical shifts of the molecule have been anlysed.

  12. Effect of intermolecular hydrogen bonding, vibrational analysis and molecular structure of a biomolecule: 5-Hydroxymethyluracil

    NASA Astrophysics Data System (ADS)

    Çırak, Çağrı; Sert, Yusuf; Ucun, Fatih

    2014-06-01

    In the present work, the experimental and theoretical vibrational spectra of 5-hydroxymethyluracil were investigated. The FT-IR (4000-400 cm-1) spectrum of the molecule in the solid phase was recorded. The geometric parameters (bond lengths and bond angles), vibrational frequencies, Infrared intensities of the title molecule in the ground state were calculated using density functional B3LYP and M06-2X methods with the 6-311++G(d,p) basis set for the first time. The optimized geometric parameters and theoretical vibrational frequencies were found to be in good agreement with the corresponding experimental data, and with the results found in the literature. The vibrational frequencies were assigned based on the potential energy distribution using the VEDA 4 program. The dimeric form of 5-hydroxymethyluracil molecule was also simulated to evaluate the effect of intermolecular hydrogen bonding on its vibrational frequencies. It was observed that the Nsbnd H stretching modes shifted to lower frequencies, while its in-plane and out-of-plane bending modes shifted to higher frequencies due to the intermolecular Nsbnd H⋯O hydrogen bond. Also, the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies and diagrams were presented.

  13. Investigation of electronic and magnetic properties of Ni0.5Cu0.5Fe2O4: theoretical and experimental

    NASA Astrophysics Data System (ADS)

    Sharma, Uma Shankar; Shah, Rashmi

    2018-05-01

    In present study, Ni0.5Cu0.5Fe2O4 been was synthesized with Co-precipitation method and prepared samples were annealed at 300°C and 500°C. The single phase formation of nickel ferrite was confirmed through powder X-ray diffraction (XRD). The presence of various functional groups was confirmed through FTIR analysis. The effects of the annealing temperature on the particle sizes and magnetic properties of the ferrite samples were investigated and interpret with valid reasons. The structural and magnetic properties of the ferrite samples were strongly affected by the annealing temperature. The annealing temperature increases coercivity and saturation magnetization values are continuously increased. Spin­ polarization calculations are performed on the Ni0.5Cu0.5Fe2O4, compounds within density functional theory (DFT) and find out equilibrium lattice constants 8.2 Å and DOS show there exists large spin splitting between the spin up and spin down channels near the Fermi level confirm p-d hybridization. The theoretical calculated magnetic are slightly higher than our experimental results. The other results have been discussed in detail.

  14. Structural analysis of the industrial grade calcite

    NASA Astrophysics Data System (ADS)

    Shah, Rajiv P.; Raval, Kamlesh G.

    2017-05-01

    The chemical, optical and structural characterization of the industrial grade Calcite by EDAX, FT-IR and XRD. EDAX is a widely used technique to analyze the chemical components in a material, FT-IR stands for Fourier Transform Infra-Red, the preferred method of infrared spectroscopy. The resultant spectrum represents the molecular absorption and transmission, creating a molecular fingerprint of the sample, The atomic planes of a crystal cause an incident beam of X-rays to interfere with one another as they leave the crystal. The phenomenon is called X ray diffraction.(XRD). Data analysis of EDAX, FT-IR and XRD has been carried out with help of various instruments and software and find out the results of the these industrial grade materials which are mostly used in ceramics industries

  15. Fourier transform infrared spectroscopy of DNA from Borrelia burgdorferi sensu lato and Ixodes ricinus ticks

    NASA Astrophysics Data System (ADS)

    Muntean, Cristina M.; Stefan, Razvan; Bindea, Maria; Cozma, Vasile

    2013-06-01

    In this work we present a method for detection of motile and immotile Borrelia burgdorferi genomic DNA, in relation with infectious and noninfectious spirochetes. An FT-IR study of DNA isolated from B. burgdorferi sensu lato strains and from positive and negative Ixodes ricinus ticks, respectively, is reported. Motile bacterial cells from the species B. burgdorferi sensu stricto, Borrelia garinii and Borrelia afzelii were of interest. Also, FT-IR absorbance spectra of DNA from immotile spirochetes of B. burgdorferi sensu stricto, in the absence and presence of different antibiotics (doxycycline, erythromycin, gentamicin, penicillin V or phenoxymethylpenicillin, tetracycline, respectively) were investigated. FT-IR spectra, providing a high molecular structural information, have been analyzed in the wavenumber range 400-1800 cm-1. FT-IR signatures, spectroscopic band assignments and structural interpretations of these DNAs are reported. Spectral differences between FT-IR absorbances of DNAs from motile bacterial cells and immotile spirochetes, respectively, have been found. Particularly, alterations of the sugar-phosphate B-form chain in the case of DNA from Borrelia immotile cells, as compared with DNA from B. burgdorferi sensu lato motile cells have been observed. Based on this work, specific B. burgdorferi sensu lato and I. ricinus DNA-ligand interactions, respectively, might be further investigated using Fourier transform infrared spectroscopy.

  16. Vibrational spectroscopic studies of Isoleucine by quantum chemical calculations.

    PubMed

    Moorthi, P P; Gunasekaran, S; Ramkumaar, G R

    2014-04-24

    In this work, we reported a combined experimental and theoretical study on molecular structure, vibrational spectra and NBO analysis of Isoleucine (2-Amino-3-methylpentanoic acid). The optimized molecular structure, vibrational frequencies, corresponding vibrational assignments, thermodynamics properties, NBO analyses, NMR chemical shifts and ultraviolet-visible spectral interpretation of Isoleucine have been studied by performing MP2 and DFT/cc-pVDZ level of theory. The FTIR, FT-Raman spectra were recorded in the region 4000-400 cm(-1) and 3500-50 cm(-1) respectively. The UV-visible absorption spectra of the compound were recorded in the range of 200-800 nm. Computational calculations at MP2 and B3LYP level with basis set of cc-pVDZ is employed in complete assignments of Isoleucine molecule on the basis of the potential energy distribution (PED) of the vibrational modes, calculated using VEDA-4 program. The calculated wavenumbers are compared with the experimental values. The difference between the observed and calculated wavenumber values of most of the fundamentals is very small. (13)C and (1)H nuclear magnetic resonance chemical shifts of the molecule were calculated using the gauge independent atomic orbital (GIAO) method and compared with experimental results. The formation of hydrogen bond was investigated in terms of the charge density by the NBO calculations. Based on the UV spectra and TD-DFT calculations, the electronic structure and the assignments of the absorption bands were carried out. Besides, molecular electrostatic potential (MEP) were investigated using theoretical calculations. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Exfoliation of Hexagonal Boron Nitride via Ferric Chloride Intercalation

    NASA Technical Reports Server (NTRS)

    Hung, Ching-cheh; Hurst, Janet; Santiago, Diana; Rogers, Richard B.

    2014-01-01

    Sodium fluoride (NaF) was used as an activation agent to successfully intercalate ferric chloride (FeCl3) into hexagonal boron nitride (hBN). This reaction caused the hBN mass to increase by approx.100 percent, the lattice parameter c to decrease from 6.6585 to between 6.6565 and 6.6569 ?, the x-ray diffraction (XRD) (002) peak to widen from 0.01deg to 0.05deg of the full width half maximum value, the Fourier transform infrared (FTIR) spectrum's broad band (1277/cm peak) to change shape, and new FTIR bands to emerge at 3700 to 2700 and 1600/cm. This indicates hBN's structural and chemical properties are significantly changed. The intercalated product was hygroscopic and interacted with moisture in the air to cause further structural and chemical changes (from XRD and FTIR). During a 24-h hold at room temperature in air with 100 percent relative humidity, the mass increased another 141 percent. The intercalated product, hydrated or not, can be heated to 750 C in air to cause exfoliation. Exfoliation becomes significant after two intercalation-air heating cycles, when 20-nm nanosheets are commonly found. Structural and chemical changes indicated by XRD and FTIR data were nearly reversed after the product was placed in hydrochloric acid (HCl), resulting in purified, exfoliated, thin hBN products.

  18. Evaluation of inflammatory processes by FTIR spectroscopy.

    PubMed

    Rodrigues, Laís Morandini; Carvalho, Luís Felipe das Chagas E Silva; Bonnier, Franck; Anbinder, Ana Lia; Martinho, Herculano da Silva; Almeida, Janete Dias

    2018-04-01

    Fourier transform infrared (FTIR) spectroscopy is a powerful diagnosis technique and has been used to identify patterns of molecular changes based on vibration modes. The objective of this study was to evaluate inflammatory fibrous hyperplasia (IFH) lesions and oral normal mucosa (NM) initially with histopathological exam and then using micro-FTIR spectroscopy to analyse the samples. Eleven IFH and 11 NM samples were analysed at five different points to cover the largest area possible by the micro-FTIR technique. Bands were observed between 970 and 1743 cm -1 which corresponded to different structural components like collagen, lipids, fatty acids, proteins and amino acids. Spectral bands were more intense mostly for IFH lesions, including collagen bands, which are an important component of inflammatory fibrous hyperplasia. This study demonstrated that differentiation in the inflammatory tissue was observed in FTIR spectral differences, in terms of biochemical composition.

  19. Fourier transform infrared and Raman spectroscopy studies on magnetite/Ag/antibiotic nanocomposites

    NASA Astrophysics Data System (ADS)

    Ivashchenko, Olena; Jurga-Stopa, Justyna; Coy, Emerson; Peplinska, Barbara; Pietralik, Zuzanna; Jurga, Stefan

    2016-02-01

    This article presents a study on the detection of antibiotics in magnetite/Ag/antibiotic nanocomposites using Fourier transform infrared (FTIR) and Raman spectroscopy. Antibiotics with different spectra of antimicrobial activities, including rifampicin, doxycycline, cefotaxime, and ceftriaxone, were studied. Mechanical mixtures of antibiotics and magnetite/Ag nanocomposites, as well as antibiotics and magnetite nanopowder, were investigated in order to identify the origin of FTIR bands. FTIR spectroscopy was found to be an appropriate technique for this task. The spectra of the magnetite/Ag/antibiotic nanocomposites exhibited very weak (for doxycycline, cefotaxime, and ceftriaxone) or even no (for rifampicin) antibiotic bands. This FTIR "invisibility" of antibiotics is ascribed to their adsorbed state. FTIR and Raman measurements show altered Csbnd O, Cdbnd O, and Csbnd S bonds, indicating adsorption of the antibiotic molecules on the magnetite/Ag nanocomposite structure. In addition, a potential mechanism through which antibiotic molecules interact with magnetite/Ag nanoparticle surfaces is proposed.

  20. A study of Ganoderma lucidum spores by FTIR microspectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Chen, Xianliang; Qi, Zeming; Liu, Xingcun; Li, Weizu; Wang, Shengyi

    2012-06-01

    In order to obtain unique information of Ganoderma lucidum spores, FTIR microspectroscopy was used to study G. lucidum spores from Anhui Province (A), Liaoning Province (B) and Shangdong Province (C) of China. IR micro-spectra were acquired with high-resolution and well-reproducibility. The IR spectra of G. lucidum spores from different areas were similar and mainly made up of the absorption bands of polysaccharide, sterols, proteins, fatty acids, etc. The results of curve fitting indicated the protein secondary structures were dissimilar among the above G. lucidum spores. To identify G. lucidum spores from different areas, the H1078/H1640 value might be a potentially useful factor, furthermore FTIR microspectroscopy could realize this identification efficiently with the help of hierarchical cluster analysis. The result indicates FTIR microspectroscopy is an efficient tool for identification of G. lucidum spores from different areas. The result also suggests FTIR microspectroscopy is a potentially useful tool for the study of TCM.

  1. Effects of curing conditions on the structure of sodium carboxymethyl starch/mineral matrix system: FT-IR investigation.

    PubMed

    Kaczmarska, Karolina; Grabowska, Beata; Bobrowski, Artur; Cukrowicz, Sylwia

    2018-04-24

    Strength properties of the microwave cured molding sands containing binders in a form of the aqueous solution of sodium carboxymethyl starch (CMS-Na) are higher than the same molding composition cured by conventional heating. Finding the reason of this effect was the main purpose in this study. Structural changes caused by both physical curing methods of molding sands systems containing mineral matrix (silica sand) and polymer water-soluble binder (CMS-Na) were compared. It was shown, by means of the FT-IR spectroscopic studies, that the activation of the polar groups in the polymer macromolecules structure as well as silanol groups on the mineral matrix surfaces was occurred in the microwave radiation. Binding process in microwave-cured samples was an effect of formation the hydrogen bonds network between hydroxyl and/or carbonyl groups present in polymer and silanol groups present in mineral matrix. FT-IR studies of structural changes in conventional and microwave cured samples confirm that participation of hydrogen bonds is greater after microwave curing than conventional heating. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. External cavity-quantum cascade laser infrared spectroscopy for secondary structure analysis of proteins at low concentrations

    PubMed Central

    Schwaighofer, Andreas; Alcaráz, Mirta R.; Araman, Can; Goicoechea, Héctor; Lendl, Bernhard

    2016-01-01

    Fourier transform infrared (FTIR) and circular dichroism (CD) spectroscopy are analytical techniques employed for the analysis of protein secondary structure. The use of CD spectroscopy is limited to low protein concentrations (<2 mg ml−1), while FTIR spectroscopy is commonly used in a higher concentration range (>5 mg ml−1). Here we introduce a quantum cascade laser (QCL)-based IR transmission setup for analysis of protein and polypeptide secondary structure at concentrations as low as 0.25 mg ml−1 in deuterated buffer solution. We present dynamic QCL-IR spectra of the temperature-induced α-helix to β-sheet transition of poly-L-lysine. The concentration dependence of the α-β transition temperature between 0.25 and 10 mg ml−1 was investigated by QCL-IR, FTIR and CD spectroscopy. By using QCL-IR spectroscopy it is possible to perform IR spectroscopic analysis in the same concentration range as CD spectroscopy, thus enabling a combined analysis of biomolecules secondary structure by CD and IR spectroscopy. PMID:27633337

  3. External cavity-quantum cascade laser infrared spectroscopy for secondary structure analysis of proteins at low concentrations.

    PubMed

    Schwaighofer, Andreas; Alcaráz, Mirta R; Araman, Can; Goicoechea, Héctor; Lendl, Bernhard

    2016-09-16

    Fourier transform infrared (FTIR) and circular dichroism (CD) spectroscopy are analytical techniques employed for the analysis of protein secondary structure. The use of CD spectroscopy is limited to low protein concentrations (<2 mg ml(-1)), while FTIR spectroscopy is commonly used in a higher concentration range (>5 mg ml(-1)). Here we introduce a quantum cascade laser (QCL)-based IR transmission setup for analysis of protein and polypeptide secondary structure at concentrations as low as 0.25 mg ml(-1) in deuterated buffer solution. We present dynamic QCL-IR spectra of the temperature-induced α-helix to β-sheet transition of poly-L-lysine. The concentration dependence of the α-β transition temperature between 0.25 and 10 mg ml(-1) was investigated by QCL-IR, FTIR and CD spectroscopy. By using QCL-IR spectroscopy it is possible to perform IR spectroscopic analysis in the same concentration range as CD spectroscopy, thus enabling a combined analysis of biomolecules secondary structure by CD and IR spectroscopy.

  4. Fourier-transform infrared spectroscopic study of characteristic molecular structure in cancer cells of esophagus: an exploratory study.

    PubMed

    Maziak, Donna E; Do, Minh T; Shamji, Farid M; Sundaresan, Sudhir R; Perkins, D Garth; Wong, Patrick T T

    2007-01-01

    To investigate the structural changes at the molecular level and to assess the usefulness of Fourier-transform infrared (FTIR) spectroscopy in the diagnosis of esophageal cancer. A pilot study was established of 10 consecutive patients with adenocarcinoma of the esophagus. Tissue samples from the diseased and normal sites of the resected specimens were analyzed and compared using FTIR spectroscopy and histopathology. Specific changes were observed in the FTIR spectral features of esophageal cancer and thus spectral criteria were established for the detection of malignancy in esophagus tissues by FTIR spectroscopy. The spectral changes in cancer were the results of characteristic structural alterations at the molecular level in the esophageal cancer specimens. These alternations included an increase in the nuclei-to-cytoplasm ratio, an increase in the relative amount of DNA while a decrease in the relative amount of RNA, an enhancement in the phosphorylation of proteins, a decrease in the glycogen level, a loss of hydrogen bonding of the COH groups in the amino acid residues of proteins, a tighter intermolecular packing and a stronger intermolecular interaction among the DNA molecules, an increase in the distribution of protein segments with the conformation of beta-sheet and unordered turns and a tighter packing of the alpha-helical segments in overall tissue proteins, a decrease in the overall CH(3)-to-CH(2) ratio and an accumulation of triglycerides. FTIR is an automated method that has shown promise in differentiating cancer in the esophagus and may play a role in surveillance programs in premalignant conditions.

  5. Synthesis, crystal structure analysis, spectral (NMR, FT-IR, FT-Raman and UV-Vis) investigations, molecular docking studies, antimicrobial studies and quantum chemical calculations of a novel 4-chloro-8-methoxyquinoline-2(1H)-one: An effective antimicrobial agent and an inhibition of DNA gyrase and lanosterol-14α-demethylase enzymes

    NASA Astrophysics Data System (ADS)

    Murugavel, S.; Sundramoorthy, S.; Lakshmanan, D.; Subashini, R.; Pavan Kumar, P.

    2017-03-01

    The novel title compound 4-chloro-8-methoxyquinoline-2(1H)-one (4CMOQ) has been synthesized by slow evaporation solution growth technique at room temperature. The synthesized 4CMOQ molecule was characterized experimentally by FT-IR, FT-Raman, UV-Vis, NMR and single crystal diffraction (XRD) and theoretically by quantum chemical calculations. The molecular geometry was also optimized using density functional theory (DFT/B3LYP) method with the 6-311++G (d,p) basis set in ground state and compared with the experimental data. The entire vibrational assignments of wave numbers were made on the basis of potential energy distribution (PED) by VEDA 4 programme. The nuclear magnetic resonance spectra (1H and 13C NMR) are obtained by using the gauge-invariant atomic orbital (GIAO) method. The change in electron density (ED) in the antibonding orbital's and stabilization energies E(2) of the molecule have been evaluated by natural bond orbital (NBO) analysis to give clear evidence of stabilization. Moreover, electronic characteristics such as HOMO and LUMO energies, Mulliken atomic charges and molecular electrostatic potential surface are investigated. Absorption spectrum analysis, nonlinear optical properties, chemical reactivity descriptors and thermodynamic features are also outlined theoretically. Molecular docking studies were executed to understand the inhibitory activity of 4CMOQ against DNA gyrase and Lanosterol 14 α-demethylase. The antimicrobial activity of 4CMOQ was determined against bacterial strains such as Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa and fungal strains such as Aspergillus niger, Monascus purpureus and Penicillium citrinum. The obtained results show that the compound exhibited good to moderate antimicrobial activity.

  6. Synthesis, spectroscopic analyses, chemical reactivity and molecular docking study and anti-tubercular activity of pyrazine and condensed oxadiazole derivatives

    NASA Astrophysics Data System (ADS)

    Al-Tamimi, Abdul-Malek S.; Mary, Y. Sheena; Miniyar, Pankaj B.; Al-Wahaibi, Lamya H.; El-Emam, Ali A.; Armaković, Stevan; Armaković, Sanja J.

    2018-07-01

    The FT-IR spectral analysis and theoretical calculations of the wavenumbers of three oxadiazole derivatives, 2-(5-(2-chlorophenyl)-1,3,4-oxadiazol-2-yl)pyrazine (ORTHOPHPZ), 2-(5-(3-chlorophenyl)-1,3,4-oxadiazol-2-yl)pyrazine (METAPHPZ) and 2-(5-(4-chlorophenyl)-1,3,4-oxadiazol-2-yl)pyrazine (PARAPHPZ) were reported in the present work. The theoretically predicted values of polarizability give the nonlinear behaviour of the compounds. The frontier molecular orbital analysis show the chemical stability of the title compounds and the NBO analysis gives the interactions in the molecular systems. Understanding of reactivity of newly synthetiszed oxadiazole derivatives in this study has been achieved thanks to combination of density functional theory (DFT) calculations, molecular dynamics (MD) simulations and molecular docking procedures. New oxadiazole derivatives have also been characterized experimentally through FT-IR and NMR approaches, thanks to which detailed structural properties have been understood. Both global and local reactivity properties have been investigated by calculations of quantum molecular descriptors such as molecular electrostatic potential (MEP), local average ionization energy (ALIE), Fukui functions, bond dissociation energies for hydrogen abstraction (H-BDE), radial distribution functions and binding energies of ligand against selected protein. The first hyperpolarizabilities of ORTHOPHPZ, METAPHPZ and PARAPHPZ are respectively, 84.62, 94.71 and 184.10 times that of urea. The docked ligands form stable complexes with the receptor 1-phosphatidylinositol phosphodiesterase and the results suggest that these compounds can be developed as new anti-cancer drugs. The anti-TB activity of PM series against M. tuberculosis H37RV strain was performed by Middlebrooke 7H-9 method. The compounds, ORTHOPHPZ, METAPHPZ and PARAPHPZ were moderately active between 25 and 50 μg/ml concentration as compared with the standard anti-TB agents and the -log MIC activity was found in the range of 1.011-1.274 as compared with isoniazid (INH) (1.137) and pyrazinamide (PZA) (1.115) standard anti-TB agents.

  7. The spectroscopic (FT-IR, UV-vis), Fukui function, NLO, NBO, NPA and tautomerism effect analysis of (E)-2-[(2-hydroxy-6-methoxybenzylidene)amino]benzonitrile.

    PubMed

    Demircioğlu, Zeynep; Kaştaş, Çiğdem Albayrak; Büyükgüngör, Orhan

    2015-03-15

    A new o-hydroxy Schiff base, (E)-2-[(2-hydroxy-6-methoxybenzylidene)amino]benzonitrile was isolated and investigated by experimental and theoretical methodologies. The solid state molecular structure was determined by X-ray diffraction method. The vibrational spectral analysis was carried out by using FT-IR spectroscopy in the range of 4000-400cm(-)(1). Theoretical calculations were performed by density functional theory (DFT) method using 6-31G(d,p) basis set. The results of the calculations were applied to simulated spectra of the title compound, which show excellent agreement with observed spectra. The UV-vis spectrum of the compound was recorded in the region 200-800 nm in several solvents and electronic properties such as excitation energies, and wavelengths were calculated by TD-DFT/B3LYP method. The most prominent transitions were corresponds to π→π∗. Hybrid density functional theory (DFT) was used to investigate the enol-imine and keto-amine tautomers of titled compound. The titled compound showed the preference of enol form, as supported by X-ray and spectroscopic analysis results. The geometric and molecular properties were compaired for both enol-imine and keto-amine forms. Additionally, geometry optimizations in solvent media were performed with the same level of theory by the integral equation formalism polarizable continuum (IEF-PCM). Stability of the molecule arises from hyperconjugative interactions, charge delocalization and intramolecular hydrogen bond has been analyzed using natural bond orbital (NBO) analysis. Mulliken population method and natural population analysis (NPA) have been studied. Also, condensed Fukui function and relative nucleophilicity indices calculated from charges obtained with orbital charge calculation methods (NPA). Molecular electrostatic potential (MEP) and non linear optical (NLO) properties are also examined. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Structural, physicochemical characterization, theoretical studies of carboxamides and their Cu(II), Zn(II) complexes having antibacterial activities against E. coli

    NASA Astrophysics Data System (ADS)

    Aktan, Ebru; Gündüzalp, Ayla Balaban; Özmen, Ümmühan Özdemir

    2017-01-01

    The carboxamides; N,N‧-bis(thiophene-2-carboxamido)-1,3-diaminopropanol (L1) and N,N‧-bis(furan-2-carboxamido)-1,3-diaminopropanol (L2) were synthesized and characterized using 1H NMR, 13C NMR, LC-MS and FT-IR spectrum. The molecular geometries of these molecules were optimized by DFT/B3LYP method with 6-311G(d,p) basis set in Gaussian 09 software. The geometrical parameters, frontier molecular orbitals (FMOs) and molecular electrostatic potential (MEP) mapped surfaces were calculated by the same basis set. Dinuclear Cu(II) and Zn(II) complexes having general formula as [MLCl]2Cl2.nH2O (in which M = Cu(II),Zn(II); n = 0,2) were also synthesized and characterized using LC-MS and FT-IR spectrum, thermogravimetric analysis (TGA/DTA curves), magnetic moments and molar conductivities. Coordination was found to be through carbonyl oxygen and two chlorine atoms as bridging in distorted tetrahedral geometry. The optimized structures, geometrical parameters, frontier molecular orbitals (FMOs) and dipole moments of metal complexes were also obtained by DFT/B3LYP method with LanL2DZ basis set. Antibacterial activities of the compounds were screened against E. coli using microdilution method (MIC's in μg/mL). The activity results show that the corresponding compounds exhibit good to moderate antibacterial effects when compared with sulfamethoxazole and sulfisoxazole antibiotics as positive controls. Also, metal complexes have remarkable increase in their activities than parent ligands against E. coli which is mostly effected by [Cu(L2)Cl]2Cl2 complex as potential antibacterial agent.

  9. Molecular orbital studies (hardness, chemical potential, electronegativity and electrophilicity), vibrational spectroscopic investigation and normal coordinate analysis of 5-{1-hydroxy-2-[(propan-2-yl)amino]ethyl}benzene-1,3-diol.

    PubMed

    Muthu, S; Renuga, S

    2014-01-24

    FT-IR and FT-Raman spectra of 5-{1-hydroxy-2-[(propan-2-yl) amino] ethyl} benzene-1,3-diol (abbrevi- 54 ated as HPAEBD) were recorded in the region 4000-450 cm(-1) and 4000-100 cm(-1) respectively. The structure of the molecule was optimized and the structural characteristics were determined by density functional theory (B3LYP) and HF method with 6-31 G(d,p) as basis set. The theoretical wave numbers were scaled and compared with experimental FT-IR and FT-Raman spectra. A detailed interpretation of the vibrational spectra of this compound has been made on the basis of the calculated Potential energy distribution (PED). Stability of the molecule arising from hyperconjugation and charge delocalization is confirmed by the natural bond orbital analysis (NBO). The results show that electron density (ED) in the σ antibonding orbitals and E (2) energies confirm the occurrence of intra molecular charge transfer (ICT) within the molecule. The molecule orbital contributions were studied by using the total (TDOS), sum of α and β electron (αβDOS) density of States. Mulliken population analysis of atomic charges is also calculated. The calculated HOMO and LUMO energy gap shows that charge transfer occurs within the molecule. The electron density-based local reactivity descriptors such as Fukui functions were calculated to explain the chemical selectivity or reactivity site in this compound. On the basis of vibrational analyses, the thermodynamic properties of title compound at different temperatures have been calculated. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Inclusion complexes of cypermethrin and permethrin with monochlorotriazinyl-beta-cyclodextrin: A combined spectroscopy, TG/DSC and DFT study

    NASA Astrophysics Data System (ADS)

    Yao, Qi; You, Bin; Zhou, Shuli; Chen, Meng; Wang, Yujiao; Li, Wei

    2014-01-01

    The suitable size hydrophobic cavity and monochlorotriazinyl group as a reactive anchor make MCT-β-CD to be widely used in fabric finishing. In this paper, the inclusion complexes of monochlorotriazinyl-beta-cyclodextrin (MCT-β-CD) with cypermethrin (CYPERM) and permethrin (PERM) are synthesized and analyzed by TG/DSC, FT-IR and Raman spectroscopy. TG/DSC reveals that the decomposed temperatures of inclusion complexes are lower by 25-30 °C than that of physical mixtures. DFT calculations in conjunction with FT-IR and Raman spectral analyses are used to study the structures of MCT-β-CD and their inclusion complexes. Four isomers of trisubstituted MCT-β-CD are designed and DFT calculations reveal that 1,3,5-trisubstituted MCT-β-CD has the lowest energy and can be considered as main component of MCT-β-CD. The ground-state geometries, vibrational wavenumbers, IR and Raman intensities of MCT-β-CD and their inclusion complexes were calculated at B3LYP/6-31G (d) level of theory. Upon examining the optimized geometry of inclusion complex, we find that the CYPERM and PERM are inserted into the toroid of MCT-β-CD from the larger opening. The band at 1646 cm-1 in IR and at 1668 cm-1 in Raman spectrum reveals that monochloroazinyl group of MCT-β-CD exists in ketone form but not in anion form. The noticeable IR and Raman shift of phenyl reveals that these two benzene rings of CYPERM and PERM stays inside the cavity of MCT-β-CD and has weak interaction with MCT-β-CD. This spectroscopy conclusion is consistent with theoretical predicted structure.

  11. Exploration of Thermochromic Materials Using Experimental and Theoretical Infrared and UV-Visible Spectroscopy

    ERIC Educational Resources Information Center

    Costello, Kelsey; Doan, Kevin Thinh; Organtini, Kari Lynn; Wilson, John; Boyer, Morgan; Gibbs, Greglynn; Tribe, Lorena

    2014-01-01

    This laboratory was developed by undergraduate students in collaboration with the course instructor as part of a peer-developed and peer-led lab curriculum in a general chemistry course. The goal was to explore the hypothesis that crystal violet lactone was responsible for the thermochromic properties of a sipping straw using a FT-IR for…

  12. A theoretical and matrix-isolation FT-IR investigation of the conformational landscape of N-acetylcysteine

    NASA Astrophysics Data System (ADS)

    Boeckx, Bram; Ramaekers, Riet; Maes, Guido

    2010-06-01

    The conformational landscape of N-acetylcysteine (NAC) has been investigated by a combined experimental matrix-isolation FT-IR and theoretical methodology. This combination is a powerful tool to study the conformational behavior of relatively small molecules. Geometry optimizations at the HF/3-21 level resulted in 438 different geometries with an energy difference smaller than 22 kJ mol -1. Among these, six conformations were detected with a relative energy difference smaller than 10 kJ mol -1 at the DFT(B3LYP)/6-31++G∗∗ level of theory. These were finally subjected to MP2/6-31++G∗∗ optimizations which resulted in five minima. The vibrational and thermodynamical properties of these conformations were calculated at both the DFT and MP2 methodologies. Experimentally NAC was isolated in an argon matrix at 16 K after being sublimated at 323 K. The most stable MP2 form appeared to be dominant in the experimental spectra but the presence of three other conformations with Δ EMP2 < 10 kJ mol -1 was also demonstrated. The experimentally observed abundance of the H-bond containing conformations appeared to be in good accordance with the predicted MP2 value.

  13. Vibrational frequency analysis, FT-IR, DFT and M06-2X studies on tert-Butyl N-(thiophen-2yl)carbamate.

    PubMed

    Sert, Yusuf; Singer, L M; Findlater, M; Doğan, Hatice; Çırak, Ç

    2014-07-15

    In this study, the experimental and theoretical vibrational frequencies of a newly synthesized tert-Butyl N-(thiophen-2yl)carbamate have been investigated. The experimental FT-IR (4000-400 cm(-1)) spectrum of the molecule in the solid phase have been recorded. The theoretical vibrational frequencies and optimized geometric parameters (bond lengths and bond angles) have been calculated by using density functional theory (DFT/B3LYP: Becke, 3-parameter, Lee-Yang-Parr) and DFT/M06-2X (the highly parametrized, empirical exchange correlation function) quantum chemical methods with the 6-311++G(d,p) basis set by Gaussian 09W software, for the first time. The vibrational frequencies have been assigned using potential energy distribution (PED) analysis by using VEDA 4 software. The computational optimized geometric parameters and vibrational frequencies have been found to be in good agreement with the corresponding experimental data, and with related literature results. In addition, the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) energies and the other related molecular energy values have been calculated and are depicted. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. XRD and FTIR structural investigation of gadolinium-zinc-borate glass ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borodi, G.; Pascuta, P.; Dan, V.

    2013-11-13

    X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy measurements have been employed to investigate the (Gd{sub 2}O{sub 3}){sub x}⋅(B{sub 2}O{sub 3}){sub (60−x)}⋅(ZnO){sub 40} glass ceramics system, with 0 ≤ x ≤ 15 mol%. After heat treatment applied at 860 °C for 2 h, some structural changes were observed and new crystalline phases appeared in the structure of the samples. In these glass ceramics four crystalline phases were identified using powder diffraction files (PDF 2), namely ZnB{sub 4}O{sub 7}, Zn{sub 4}O(B{sub 6}O{sub 12}), Zn{sub 3}(BO{sub 3}){sub 2} and GdBO{sub 3}. From the XRD data, the average unit-cell parameter and themore » quantitative ratio of the crystallographic phases in the studied samples were evaluated. FTIR data revealed that the BO{sub 3}, BO{sub 4} and ZnO{sub 4} are the main structural units of these glass ceramics network. The compositional dependence of the different structural units which appear in the studied samples was followed.« less

  15. FT-IR SOLUTION SPECTRA OF PROPYL SULFIDE, PROPYL SULFOXIDE, AND PROPYL SULFONE

    EPA Science Inventory

    FT-IR spectra were obtained of 0.5% volumetric solutions of propyl sulfide, propyl sulfoxide, and propyl sulfone in hexane, CCl4, CS2, and CHCl3 to assist in the assignment of FT-IR-PAS spectra of propyl sulfoxide sorbed within the structure of several peats and onto cellulose. T...

  16. Synthesis of zinc sulfide nanoparticles and their incorporation into poly(hydroxybutyrate) matrix in the formation of a novel nanocomposite

    NASA Astrophysics Data System (ADS)

    Riaz, Shahina; Raza, Zulfiqar Ali; Majeed, Muhammad Irfan; Jan, Tariq

    2018-05-01

    In the present study, zinc sulfide (ZnS) nanoparticles (NPs) were successfully synthesized through a modified chemical precipitation protocol and then mediated into poly(hydroxybutyrate) (PHB) matrix to get ZnS/PHB nanocomposite. Mean diameter and zeta potential of ZnS NPs, as determined using dynamic light scattering technique (DLS), were observed to be 53 nm and ‑89 mV, respectively. The structural investigations performed using x-ray diffraction (XRD) technique depicted the phase purity of ZnS NPs exhibiting cubic crystal structure. Fourier transform infrared (FTIR) spectroscopic analysis was conducted to identify the presence or absence of bonding vibrational modes on the surface of synthesized single phase ZnS NPs. The FTIR analysis confirmed the metal to sulphur bond formation by showing the characteristic band at 1123 cm‑1. The UV–vis absorption spectra of ZnS NPs confirmed the synthesis of particles in nanoscale regime showing a λ max of 302 nm. These NPs were then successfully incorporated into PHB matrix to synthesize ZnS/PHB nanocomposite. The synthesis of nanocomposite was confirmed by EDX analysis. The chemical bonding and structural properties of ZnS/PHB nanocomposite were determined by FTIR and XRD analysis, respectively. The FTIR analysis confirmed the synthesis of ZnS/PHB nanocomposite. Moreover, XRD analysis showed that structure of nanocomposite was completely controlled by ZnS NPs as pure PHB exhibited orthorhombic crystal structure while the nanocomposite demonstrated cubic crystal structure of ZnS. Thermal properties of nanocomposite were studied through thermogravimetric analysis revealing that the incorporation of ZnS NPs into PHB matrix lead to enhance heat resistance properties of PHB.

  17. Using FT-IR Spectroscopy to Elucidate the Structures of Ablative Polymers

    NASA Technical Reports Server (NTRS)

    Fan, Wendy

    2011-01-01

    The composition and structure of an ablative polymer has a multifaceted influence on its thermal, mechanical and ablative properties. Understanding the molecular level information is critical to the optimization of material performance because it helps to establish correlations with the macroscopic properties of the material, the so-called structure-property relationship. Moreover, accurate information of molecular structures is also essential to predict the thermal decomposition pathways as well as to identify decomposition species that are fundamentally important to modeling work. In this presentation, I will describe the use of infrared transmission spectroscopy (FT-IR) as a convenient tool to aid the discovery and development of thermal protection system materials.

  18. Interaction of SDS with β-galactosidase. A FT-IR study of the influence of detergent concentration and temperature.

    NASA Astrophysics Data System (ADS)

    Muga, A.; Castresana, J.; Arrondo, J. L. R.; López, S.; Bernabeu, C.

    1988-05-01

    The major structure of the enzyme β-galactosidase as studied by FT-IR is β-sheet with maxima in the amide I band at 1639 and 1655 cm -1 in H 2O and 1634 in D 2O. α-helix structure is also present with contribution from β-turns and less-ordered structure. Temperature induces a rearrangement of the structure producing a β-sheet-like conformation. In the presence of the surfactant SDS no big difference in structure is seen at 1% SDS (w:ww) concentration but there is a decrease of 5°C in the midpoint thermal denaturation. In the presence of 10% SDS a different picture is obtained with a higher random structure content.

  19. Supercritical fluid assisted production of chitosan oligomers micrometric powders.

    PubMed

    Du, Zhe; Shen, Yu-Bin; Tang, Chuan; Guan, Yi-Xin; Yao, Shan-Jing; Zhu, Zi-Qiang

    2014-02-15

    Chitosan oligomers (O-chitosan) micrometric particles were produced from aqueous solution using a novel process, i.e. supercritical fluid assisted atomization introduced by hydrodynamic cavitation mixer (SAA-HCM). Hydrodynamic cavitation was introduced to enhance mass transfer and facilitate the mixing between SC-CO2 and liquid solution for fine particles formation. Well defined, separated and spherical microparticles were obtained, and the particles size could be well controlled with narrow distribution ranging from 0.5 μm to 3 μm. XRD patterns showed amorphous structure of O-chitosan microparticles. FTIR, TGA and DSC analyses confirmed that no change in molecular structure and thermal stability after SAA-HCM processing, while the water content was between 5.8% and 8.4%. Finally, tap densities were determined to be below 0.45 g/cm(3) indicating hollow or porous structures of microparticles. By tuning process parameters, theoretical mass median aerodynamic sizes lied inside respirable range of 1-2 μm, which presented the potential of the O-chitosan microparticles in application as inhaled dry powders. SAA-HCM was demonstrated to be very useful in particle size engineering. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Vibrational and structural study of onopordopicrin based on the FTIR spectrum and DFT calculations.

    PubMed

    Chain, Fernando E; Romano, Elida; Leyton, Patricio; Paipa, Carolina; Catalán, César A N; Fortuna, Mario; Brandán, Silvia Antonia

    2015-01-01

    In the present work, the structural and vibrational properties of the sesquiterpene lactone onopordopicrin (OP) were studied by using infrared spectroscopy and density functional theory (DFT) calculations together with the 6-31G(∗) basis set. The harmonic vibrational wavenumbers for the optimized geometry were calculated at the same level of theory. The complete assignment of the observed bands in the infrared spectrum was performed by combining the DFT calculations with Pulay's scaled quantum mechanical force field (SQMFF) methodology. The comparison between the theoretical and experimental infrared spectrum demonstrated good agreement. Then, the results were used to predict the Raman spectrum. Additionally, the structural properties of OP, such as atomic charges, bond orders, molecular electrostatic potentials, characteristics of electronic delocalization and topological properties of the electronic charge density were evaluated by natural bond orbital (NBO), atoms in molecules (AIM) and frontier orbitals studies. The calculated energy band gap and the chemical potential (μ), electronegativity (χ), global hardness (η), global softness (S) and global electrophilicity index (ω) descriptors predicted for OP low reactivity, higher stability and lower electrophilicity index as compared with the sesquiterpene lactone cnicin containing similar rings. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Structural, quantum chemical, vibrational and thermal studies of a hydrogen bonded zwitterionic co-crystal (nicotinic acid: pyrogallol)

    NASA Astrophysics Data System (ADS)

    Prabha, E. Arockia Jeya Yasmi; Kumar, S. Suresh; Athimoolam, S.; Sridhar, B.

    2017-02-01

    In the present work, a new co-crystal of nicotinic acid with pyrogallol (NICPY) has been grown in the zwitterionic form and the corresponding structural, vibrational, thermal, solubility and anti-cancer characteristics have been reported. The single crystal X-ray diffraction analysis confirms that the structural molecular packing of the crystal stabilized through N-H⋯O and O-H⋯O hydrogen bond. The stabilization energy of the hydrogen bond motifs were calculated in the solid state. Vibrational spectral studies such as Fourier transform-infrared (FT-IR) and FT-Raman were adopted to understand the zwitterionic co-crystalline nature of the compound, which has been compared with theoretically calculated vibrational frequencies. The thermal stability of the grown co-crystal was analyzed by TG/DTA study. The solubility of the NICPY co-crystal was investigated in water at different temperature and compared with that of the nicotinic acid, which is the parent compound of NICPY co-crystal. The grown crystals were treated with human cervical cancer cell line (HeLa) to analyze the cytotoxicity of NICPY crystals and compared with the parent compound, which shows that NICPY has moderate activity against human cervical cancer cell line.

  2. Structural, antimicrobial and computational characterization of 1-benzoyl-3-(5-chloro-2-hydroxyphenyl)thiourea.

    PubMed

    Atiş, Murat; Karipcin, Fatma; Sarıboğa, Bahtiyar; Taş, Murat; Çelik, Hasan

    2012-12-01

    A new thiourea derivative, 1-benzoyl-3-(5-chloro-2-hydroxyphenyl)thiourea (bcht) has been synthesized from the reaction of 2-amino-4-chlorophenol with benzoyl isothiocyanate. The title compound has been characterized by elemental analyses, FT-IR, (13)C, (1)H NMR spectroscopy and the single crystal X-ray diffraction analysis. The structure of bcht derived from X-ray diffraction of a single crystal has been presented. The structural and spectroscopic data of the molecule in the ground state were calculated by using density functional method using 6-311++G(d,p) basis set. The complete assignments of all vibrational modes were performed on the basis of the total energy distributions (TED). Isotropic chemical shifts ((13)C NMR and (1)H NMR) were calculated using the gauge-invariant atomic orbital (GIAO) method. Theoretical calculations of bond parameters, harmonic vibration frequencies and nuclear magnetic resonance are in good agreement with experimental results. The UV absorption spectra of the compound that dissolved in ACN and MeOH were recorded. Bcht was also screened for antimicrobial activity against pathogenic bacteria and fungi. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. A novel polydentate ligand chromophore for simultaneously colorimetric detection of trace Ag + and Fe3 +

    NASA Astrophysics Data System (ADS)

    Yan, Zhengquan; Zhao, Qi; Wen, Meijun; Hu, Lei; Zhang, Xuezhong; You, Jinmao

    2017-11-01

    A novel polydentate ligand chromophore, 3,6-di-(N-ethyl-N-ethoxyl phenylazo) acridine (EEPA), was identified and synthesized. After its structure was characterized by FTIR, 1H NMR, mass spectra and element analyses, it was noted to find that there was a simultaneously colorimetric response to Ag+ and Fe3 + accompanying with different color changes, i.e., from brown to light purple for Ag+ and further to purple-red for Fe3 +, respectively. Their different action mechanisms, a 1:2 complex mode for EEPA-Ag+ and 1:1 for EEPA-Fe3 +, were investigated and confirmed by means of Job's plot and theoretical calculation. EEPA would be a potential colorimetric chemo-dosimeter for simultaneous detection of Ag+ and Fe3 + with the detection limits of 1.6 nmol·L- 1 and 69 nmol·L- 1, respectively.

  4. Azomethine diimides end-capped with anthracene moieties: Experimental and theoretical investigations

    NASA Astrophysics Data System (ADS)

    Schab-Balcerzak, Ewa; Grucela, Marzena; Malecki, Grzegorz; Kotowicz, Sonia; Siwy, Mariola; Janeczek, Henryk; Golba, Sylwia; Praski, Aleksander

    2017-01-01

    New arylene bisimide derivatives containing imine linkages and anthracene units were synthesized. Azomethine diimides were prepared via condensation reaction of 9-anthracenecarboxaldehyde and diamines with phthalic diimide or naphthalene diimide core and Schiff base linkers. They were characterized by FTIR spectroscopy, elemental analysis and mass spectrometry (MALDI-TOF-MS). The synthesized compounds exhibited high resistance against thermal decomposition up to 400 °C. Investigated compounds are electrochemically active and undergo reversible electrochemical reduction and irreversible oxidation processes as was found in cyclic voltammetry studies. The photoluminescence measurements of synthesized compounds in solid state as thin film on glass substrate revealed their ability to emission of the blue light with quantum yield efficiency about 2%. The electronic structure and spectroscopic properties of prepared azomethine diimides were also calculated by the density functional theory (DFT). The electrical properties of the diimide derivatives were preliminary investigated by current-voltage measurements.

  5. Molecular structure, vibrational spectra and DFT molecular orbital calculations (TD-DFT and NMR) of the antiproliferative drug Methotrexate

    NASA Astrophysics Data System (ADS)

    Ayyappan, S.; Sundaraganesan, N.; Aroulmoji, V.; Murano, E.; Sebastian, S.

    2010-09-01

    The FT-IR and FT-Raman spectral studies of the Methotrexate (MTX) were carried out. The equilibrium geometry, various bonding features and harmonic vibrational frequencies of MTX have been investigated with the help of B3LYP density functional theory (DFT) using 6-31G(d) as basis set. Detailed analysis of the vibrational spectra has been made with the aid of theoretically predicted vibrational frequencies. The vibrational analysis confirms the differently acting ring modes, steric repulsion, conjugation and back-donation. The energy and oscillator strength calculated by Time-Dependent Density Functional Theory (TD-DFT) results complement with the experimental findings. The calculated HOMO and LUMO energies show that charge transfer occur within the molecule. Good correlations between the experimental 1H and 13C NMR chemical shifts in DMSO solution and calculated GIAO shielding tensors were found.

  6. [Analysis and identification of emulsifying viscosity reducer by FTIR and 1H NMR].

    PubMed

    Zhu, Hong; Guan, Run-ling; Shen, Jing-mei

    2007-01-01

    Separation and purification of viscosity reducer for crude oil were performed with distillation and dissolution-precipitation. The functional group of its main component was identified by FTIR It was deduced that the main component of the crude oil viscosity reducer is the tricopolymer of poly ethyl acrylate/methyl methacrylate/acrylic acid. The structure of the component was also ascertained and quantitively analysed with 1 H NMR and MS. The mol ratio of the three monomers is 37. 1 : 25. 8 : 37. 1, and the mass ratio is 41. 1 : 28. 8 : 29. 8. The structure of the part soluble in methanol was identified by FTIR. The result showed that the nonionic sufactant is poly ethylene oxide with the moleculear mass range of 800-1600, and the anionic surfactant is alkylbenzene sulfonate. The residue is accessory ingredient and water.

  7. Synthesis of nanocrystalline Gd2Ti2O7 by combustion process and its structural, optical and dielectric properties

    NASA Astrophysics Data System (ADS)

    Jeyasingh, T.; Saji, S. K.; Wariar, P. R. S.

    2017-07-01

    Nanosized pyrochlore material Gadolinium Titanate (Gd2Ti2O7) powder was prepared by modified single step auto-ignition combustion process. The phase formation has been investigated using X-Ray diffraction analysis (XRD). The crystalline pyrochlore phase is further confirmed by the presence of metal-oxygen bonds in the FT-IR spectra. XRD analysis revealed that Gd2Ti2O7 has a cubic structure with Fd3m space group. The combustion powder was sintered to high density (97% of theoretical density) at ˜13000 C for 4h and the surface morphology was examined by Scanning Electron Microscopy (SEM). The optical band gap of Gd2Ti2O7 determined from the absorption spectrum is found to be 4.2 eV, which corresponds to direct allowed transitions. The dielectric measurements were carried out using LCR meter in the radio frequency region at room temperature. The sintered Gd2Ti2O7 has a dielectric constant (Ɛr) = 40 and dielectric loss (tan δ) = 0.01 at 1MHz.

  8. Syntheses, structural characterization, and DPPH radical scavenging activity of cocrystals of caffeine with 1- and 2-naphthoxyacetic acids

    NASA Astrophysics Data System (ADS)

    Suresh Kumar, G. S.; Seethalakshmi, P. G.; Sumathi, D.; Bhuvanesh, N.; Kumaresan, S.

    2013-03-01

    Caffeine:1-naphthoxyacetic acid [(caf)(1-naa)] and caffeine:2-naphthoxyacetic acid [(caf)(2-naa)] cocrystals have been synthesized and single crystals were grown by slow evaporation technique. The structures of the grown crystals were elucidated using single crystal X-ray diffraction analysis. Both the cocrystals belong to the monoclinic crystallographic system with space group P21/c, Z = 4, and α = γ = 90°, whereas β = 111.4244(18)° for [(caf)(1-naa)] and β = 109.281(6)° for [(caf)(2-naa)]. The crystal packing is predominantly stabilized by hydrogen bonding and π-π stacking interactions. The presence of unionized -COOH functional group in both the cocrystals was identified by FTIR spectral analysis. Thermal behavior and stability of both the cocrystals were studied by TGA/DTA analyses. Solvent-free formation of these cocrystals was confirmed by powder X-ray diffraction analyses. The theoretical energy of cocrystals showed that the formers have higher energy than cocrystals 1 and 2. DPPH radical scavenging activity of cocrystals 1 and 2 is slightly greater than the formers.

  9. Synthesis, structure characterization, and anticancer activity of a novel oxygen-bridged tricyclic Biginelli adduct

    NASA Astrophysics Data System (ADS)

    Ibrahim, Mohamed M.; El-Sheshtawy, Hamdy S.; El-Kemary, Maged; Al-Juaid, Salih; Youssef, Mohamed; El-Azab, Islam H.

    2017-06-01

    Herein, we report the one-pot cyclization of Biginelli Adduct, ethyl 4-(2-hydroxyphenyl)-6-methyl-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate (I) to the oxygen-bridged adduct, ethyl 2-methyl-4-thioxo-3,4,5,6-tetrahydro-2H-2,6-methanobenzo[g] [1,3,5]oxadiazocine-11-carboxylate (II) in a high yield and purity under mild reaction condition using zinc(II) perchlorate hexahydrate as a highly efficient catalyst. The cyclic product (II) was characterized both in the solid state and in solution using FT-IR, 1H NMR, and UV-visible spectroscopy. Theoretical calculations using density functional theory with B3LYP/6-311++G(d,p) level were used to further investigate the structure properties. DFT calculations (gas phase) revealed the stability of cyclic compound II (3.45 kcal/mol) than compound I. In addition, the anticancer activity of II was investigated using MCF-7 human breast cell line. The results revealed a moderate activity with 223.55 μg/ml IC50 value.

  10. Synthesis, molecular structure and spectroscopic investigations of novel fluorinated spiro heterocycles.

    PubMed

    Islam, Mohammad Shahidul; Al-Majid, Abdullah Mohammed; Barakat, Assem; Soliman, Saied M; Ghabbour, Hazem A; Quah, Ching Kheng; Fun, Hoong-Kun

    2015-05-07

    This paper describes an efficient and regioselective method for the synthesis of novel fluorinated spiro-heterocycles in excellent yield by cascade [5+1] double Michael addition reactions. The compounds 7,11-bis(4-fluorophenyl)-2,4-dimethyl- 2,4-diazaspiro[5.5] undecane-1,3,5,9-tetraone (3a) and 2,4-dimethyl-7,11-bis (4-(trifluoromethyl)phenyl)-2,4-diazaspiro[5.5]undecane-1,3,5,9-tetraone (3b) were characterized by single-crystal X-ray diffraction, FT-IR and NMR techniques. The optimized geometrical parameters, infrared vibrational frequencies and NMR chemical shifts of the studied compounds have also been calculated using the density functional theory (DFT) method, using Becke-3-Lee-Yang-Parr functional and the 6-311G(d,p) basis set. There is good agreement between the experimentally determined structural parameters, vibrational frequencies and NMR chemical shifts of the studied compounds and those predicted theoretically. The calculated natural atomic charges using NBO method showed higher polarity of 3a compared to 3b.The calculated electronic spectra are also discussed based on the TD-DFT calculations.

  11. Organic compounds containing methoxy and cyanoacrylic acid: Synthesis, characterization, crystal structures, and theoretical studies

    NASA Astrophysics Data System (ADS)

    Khalaji, A. D.; Maddahi, E.; Dusek, M.; Fejfarova, K.; Chow, T. J.

    2015-12-01

    Metal-free organic compounds 24-SC (( E)-2-cyano-3-(2,4-dimethoxyphenyl)acrylic acid) and 34-SC (( E)-2-cyano-3-(3,4-dimethoxyphenyl)acrylic acid), containing methoxy groups as a donor and the acrylic acid as an acceptor were synthesized and characterized by CHN, FT-IR, UV-Vis, 1H-NMR and single crystal X-ray diffraction and used as photosensitizers for the application of dye-sensitized solar cells (DSSC). The sensitizing characteristics of them were evaluated. Both compounds contain the natural molecule, its anionic form and the piperidinium cation and they differ by number of these molecules in the asymmetric unit. To get further insight into the effect of molecular structure on the performance of DSSC, their geometry and energies of HOMO and LUMO were optimized by density functional theory calculation at the B3LYP/6-31G(d) level with Gaussian 03. Overall conversion efficiencies of 0.78 under full sunlight irradiation are obtained for DSSCs based on the new metal-free organic dyes 24-SC and 34-SC.

  12. Synthesis, structural and vibrational investigation on 2-phenyl-N-(pyrazin-2-yl)acetamide combining XRD diffraction, FT-IR and NMR spectroscopies with DFT calculations.

    PubMed

    Lukose, Jilu; Yohannan Panicker, C; Nayak, Prakash S; Narayana, B; Sarojini, B K; Van Alsenoy, C; Al-Saadi, Abdulaziz A

    2015-01-25

    The optimized molecular structure, vibrational frequencies, corresponding vibrational assignments of 2-phenyl-N-(pyrazin-2-yl)acetamide have been investigated experimentally and theoretically using Gaussian09 software package. The title compound was optimized by using the HF/6-31G(6D,7F) and B3LYP/6-31G(6D,7F) calculations. The geometrical parameters are in agreement with the XRD data. The stability of the molecule arising from hyper-conjugative interaction and charge delocalization has been analyzed using NBO analysis. Gauge-including atomic orbital (1)H-NMR chemical shifts calculations were carried out and compared with experimental data. The HOMO and LUMO analysis is used to determine the charge transfer within the molecule. Molecular electrostatic potential was performed by the DFT method. First hyperpolarizability is calculated in order to find its role in non linear optics. From the XRD data, in the crystal, molecules are held together by strong C-H⋯O and N-H⋯O intermolecular interactions. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Temperature and composition dependent density of states extracted using overlapping large polaron tunnelling model in MnxCo1-xFe2O4 (x=0.25, 0.5, 0.75) nanoparticles

    NASA Astrophysics Data System (ADS)

    Jamil, Arifa; Afsar, M. F.; Sher, F.; Rafiq, M. A.

    2017-03-01

    We report detailed ac electrical and structural characterization of manganese cobalt ferrite nanoparticles, prepared by coprecipitation technique. X-ray diffraction (XRD) confirmed single-phase cubic spinel structure of the nanoparticles. Tetrahedral (A) and octahedral (B) group complexes were present in the spinel lattice as determined by Fourier Transform Infrared Spectroscopy (FTIR). Scanning Electron Microscope (SEM) images revealed presence of spherical shape nanoparticles having an average diameter 50-80 nm. Composition, temperature and frequency dependent ac electrical study of prepared nanoparticles interpreted the role of cationic distribution between A and B sites. Overlapping large polaron tunnelling (OLPT) conduction mechanism was observed from 290 to 200 K. Frequency exponent s was fitted theoretically using OLPT model. High values of Density of States (DOS) of the order of 1022-1024 eV-1 cm-3 were extracted from ac conductivity for different compositions. We found that DOS was dependent on distribution of cations in the tunnel-type cavities along the a and b axis.

  14. Synthesis and properties of a novel bio-based polymer from modified soybean oil

    NASA Astrophysics Data System (ADS)

    Li, Y. T.; Yang, L. T.; Zhang, H.; Tang, Z. J.

    2017-02-01

    Maleated acrylated epoxidized soybean oil (MAESO) was prepared by acrylated epoxidized soybean oil (AESO) and maleic anhydride. AESO were obtained by the reaction of epoxidized soybean oil (ESO) with acrylic acid as the ring-opening reagent. The polymer was prepared by MAESO react with styrene. The structures of the products were studied by Fourier transformation infrared spectrometer (FT-IR), and were consistent with the theoretical structures. Swelling experiment indicated that the crosslinking degree increased with increasing epoxy value of ESO. Thermal properties was tested by thermo-gravimetric analysis (TG) and differential scanning calorimetry analysis (DSC), indicating that glass transition temperature (Tg) of the polymer increased with increasing epoxy value of ESO, and thermal stability of polymer have a good correlation with the crosslinking degree. Mechanical properties analysis presented that tensile strength and impact strength affected by epoxy value of ESO. With the increase of epoxy value, the tensile strength increase, while the impact strength decrease. The property of the polymer ranged from elastomer to plastic character depended on the functionality of the ESO.

  15. Mono azo dyes derived from 5-nitroanthranilic acid: Synthesis, absorption properties and DFT calculations

    NASA Astrophysics Data System (ADS)

    Karabacak Atay, Çiğdem; Gökalp, Merve; Kart, Sevgi Özdemir; Tilki, Tahir

    2017-08-01

    Four new azo dyes: 2-[(3,5-diamino-1H-pyrazol-4-yl)diazenyl]-5-nitrobenzoic acid (A), 2-[(3-hydroxy-5-methyl-1H-pyrazol-4-yl)diazenyl]-5-nitrobenzoic acid (B), 2-[(3,5-dimethyl-1H-pyrazol-4-yl)diazenyl]-5-nitrobenzoic acid (C) and 2-[(5-amino-3-methyl-1H-pyrazol-4-yl)diazenyl]-5-nitrobenzoic acid (D) which have the same 4-nitrobenzene/azo/pyrazole skeleton and different substituted groups are synthesized in this work. The structures and spectroscopic properties of these new azo dyes are characterized by using spectroscopic methods such as FT-IR, 1H NMR, 13C NMR and UV-vis. Their solvatochromic properties in chloroform, acetic acid, methanol, dimethylformamide (DMF) and dimethylsulphoxide (DMSO) are studied. Moreover, molecular structures and some spectroscopic properties of azo dyes are investigated by utilizing the quantum computational chemistry method based on Density Functional Theory (DFT) employing B3LYP hybrid functional level with 6-31G(d) basis set. It is seen that experimental and theoretical results are compatible with each other.

  16. Molecular and crystal structure of 2-{( E)-[(4-Methylphenyl)imino]methyl}-4-nitrophenol: A redetermination

    NASA Astrophysics Data System (ADS)

    Kaynar, Nihal Kan; Tanak, Hasan; Şahin, Songul; Dege, Necmi; Ağar, Erbil; Yavuz, Metin

    2016-03-01

    The crystal structure of the title compound, C14H12N2O3, was recently determined as a mixture of its neutral (OH containing) and zwitterionic (NH containing) forms, in a 0.60 (4): 0.40 (4) ratio using the X-ray determination. In this study, the title compound has been characterized by FT-IR and X-ray diffraction. The redetermination showed that the title compound has only enol (OH) form because of lack of the NH stretching vibration in FT-IR spectrum. In addition, the molecular structure and tautomerism of the title compound have been discussed.

  17. Molecular and crystal structure of 2-((E)-[(4-Methylphenyl)imino]methyl)-4-nitrophenol: A redetermination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaynar, Nihal Kan, E-mail: nihal-kan84@windowslive.com; Tanak, Hasan; Şahin, Songul

    The crystal structure of the title compound, C{sub 14}H{sub 12}N{sub 2}O{sub 3}, was recently determined as a mixture of its neutral (OH containing) and zwitterionic (NH containing) forms, in a 0.60 (4): 0.40 (4) ratio using the X-ray determination. In this study, the title compound has been characterized by FT-IR and X-ray diffraction. The redetermination showed that the title compound has only enol (OH) form because of lack of the NH stretching vibration in FT-IR spectrum. In addition, the molecular structure and tautomerism of the title compound have been discussed.

  18. Relating structure with morphology: A comparative study of perfect Langmuir Blodgett multilayers

    NASA Astrophysics Data System (ADS)

    Mukherjee, Smita; Datta, Alokmay; Giglia, Angelo; Mahne, Nichole; Nannarone, Stefano

    2008-01-01

    Atomic force microscopy and X-ray reflectivity of metal-stearate (MSt) Langmuir-Blodgett films on hydrophilic Silicon (1 0 0), show dramatic reduction in 'pinhole' defects when metal M is changed from Cd to Co, along with excellent periodicity in multilayer, with hydrocarbon tails tilted 9.6° from vertical for CoSt (untilted for CdSt). Near edge X-ray absorption fine structure (NEXAFS) and Fourier transform infra-red (FTIR) spectroscopies indicate bidentate bridging metal-carboxylate coordination in CoSt (unidentate in CdSt), underscoring role of headgroup structure in determining morphology. FTIR studies also show increased packing density in CoSt, consistent with increased coverage.

  19. Synthesis, spectroscopic characterization, X-ray structure and DFT studies on 2,6-bis(1-benzyl-1H-benzo[d]imidazol-2-yl)pyridine

    NASA Astrophysics Data System (ADS)

    İnkaya, Ersin; Günnaz, Salih; Özdemir, Namık; Dayan, Osman; Dinçer, Muharrem; Çetinkaya, Bekir

    2013-02-01

    The title molecule, 2,6-bis(1-benzyl-1H-benzo[d]imidazol-2-yl)pyridine (C33H25N5), was synthesized and characterized by elemental analysis, FT-IR spectroscopy, one- and two-dimensional NMR spectroscopies, and single-crystal X-ray diffraction. In addition, the molecular geometry, vibrational frequencies and gauge-independent atomic orbital (GIAO) 1H and 13C NMR chemical shift values of the title compound in the ground state have been calculated using the density functional theory at the B3LYP/6-311G(d,p) level, and compared with the experimental data. The complete assignments of all vibrational modes were performed by potential energy distributions using VEDA 4 program. The geometrical parameters of the optimized structure are in good agreement with the X-ray crystallographic data, and the theoretical vibrational frequencies and GIAO 1H and 13C NMR chemical shifts show good agreement with experimental values. Besides, molecular electrostatic potential (MEP) distribution, frontier molecular orbitals (FMO) and non-linear optical properties of the title compound were investigated by theoretical calculations at the B3LYP/6-311G(d,p) level. The linear polarizabilities and first hyper polarizabilities of the molecule indicate that the compound is a good candidate of nonlinear optical materials. The thermodynamic properties of the compound at different temperatures were calculated, revealing the correlations between standard heat capacity, standard entropy, standard enthalpy changes and temperatures.

  20. Crystal structure, DFT and HF calculations and radical scavenging activities of (E)-4,6-dibromo-3-methoxy-2-[(3-methoxyphenylimino)methyl]phenol.

    PubMed

    Alaşalvar, Can; Soylu, Mustafa Serkan; Güder, Aytaç; Albayrak, Çiğdem; Apaydın, Gökhan; Dilek, Nefise

    2014-05-05

    In this study, (E)-4,6-dibromo-3-methoxy-2-[(3-methoxyphenylimino)methyl]phenol has been synthesized and characterized by using X-ray technique and FT-IR experimentally and using B3LYP/6-31G(d,p) and HF/6-31G(d,p) methods theoretically. The intermolecular and intramolecular interactions of the title compound have been determined according to X-ray results. The molecular geometry, vibrational frequencies of the title compound in the ground state have been calculated using the density functional B3LYP and HF method with the 6-31G(d,p) basis set and calculated bond parameters and vibrational frequencies values show good agreement with experimental values. Theoretical and experimental results show that tautomeric form of the structure is phenol-imine form. Besides HOMO-LUMO energy gap, molecular electrostatic potential map were performed at B3LYP/6-31G(d,p) level. It is worthy note of that, the free radical scavenging activities of the title compound were assessed using DPPH˙, DMPD˙(+), and ABTS˙(+) assays. The obtained results show that the title compound has effective DPPH˙ (SC50 2.61±0.09 μg/mL), DMPD˙(+) (SC50 2.82±0.14 μg/mL), and ABTS˙(+) (SC50 4.91±0.18 μg/mL) radical scavenging activities when compared with standard antioxidants (BHA, rutin, and trolox). Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Quantum chemical density functional theory studies on the molecular structure and vibrational spectra of mannitol

    NASA Astrophysics Data System (ADS)

    Moorthi, P. P.; Gunasekaran, S.; Swaminathan, S.; Ramkumaar, G. R.

    2015-02-01

    A collective experimental and theoretical study was conducted on the molecular structure and vibrational spectra of mannitol. The FT-IR and FT-Raman spectra of mannitol were recorded in the solid phase. The molecular geometry, vibrational frequencies, thermodynamic functions and atomic charges of mannitol in the ground state have been calculated by using the ab initio HF (Hartree-Fock) and density functional methods (B3LYP) invoking cc-pVDZ basis set. The complete vibrational assignments were performed on the basis of Total Energy Distribution (TED) of the vibrational modes. The UV absorption spectra of the title compound dissolved in water. Natural bond orbital analysis has been carried out to explain the charge transfer or delocalization of charge due to the intra-molecular interactions. The 1H and 13C nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated by GIAO methods. The first order hyperpolarizability (β0) of this novel molecular system and related properties (β, α0 and Δα) of mannitol are calculated using B3LYP/cc-pVDZ and HF/cc-pVDZ methods on the finite-field approach. By using TD-DFT calculation, electronic absorption spectra of the title compound have been predicted and a good agreement with experimental one is established. In addition, the molecular electrostatic potential (MEP) have been investigated using theoretical calculations, the calculated HOMO and LUMO energies shows that the charge transfer within the molecule.

  2. Polymerization of room-temperature ionic liquid monomers by electron beam irradiation with the aim of fabricating three-dimensional micropolymer/nanopolymer structures.

    PubMed

    Minamimoto, H; Irie, H; Uematsu, T; Tsuda, T; Imanishi, A; Seki, S; Kuwabata, S

    2015-04-14

    A novel method for fabricating microsized and nanosized polymer structures from a room-temperature ionic liquid (RTIL) on a Si substrate was developed by the patterned irradiation of an electron beam (EB). An extremely low vapor pressure of the RTIL, 1-allyl-3-ethylimidazolium bis((trifluoromethane)sulfonyl)amide, allows it to be introduced into the high-vacuum chamber of an electron beam apparatus to conduct a radiation-induced polymerization in the nanoregion. We prepared various three-dimensional (3D) micro/nanopolymer structures having high aspect ratios of up to 5 with a resolution of sub-100 nm. In addition, the effects of the irradiation dose and beam current on the physicochemical properties of the deposited polymers were investigated by recording the FT-IR spectra and Young's modulus. Interestingly, the overall shapes of the obtained structures were different from those prepared in our recent study using a focused ion beam (FIB) even if the samples were irradiated in a similar manner. This may be due to the different transmission between the two types of beams as discussed on the basis of the theoretical calculations of the quantum beam trajectories. Perceptions obtained in this study provide facile preparation procedures for the micro/nanostructures.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tripathi, S., E-mail: shilpatr3@gmail.com; Shripathi, T.; Tripathi, J.

    The results are reported on solution cast PMMA-PCTFE blend films characterized using x-ray diffraction and FTIR. The nanocrystalline nature of PMMA is still seen in the blends, however, the bond modifications are clearly observed. The addition of PCTFE results in the modification in structural properties, as reflected in the XRD and FTIR spectra showing modifications in bonding as a function of PCTFE percentage.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tiwari, Pragya; Srivastava, A. K.; Khattak, B. Q.

    Polymethyl methacrylate (PMMA) is characterized for electron beam interactions in the resist layer in lithographic applications. PMMA thin films (free standing) were prepared by solvent casting method. These films were irradiated with 30keV electron beam at different doses. Structural and chemical properties of the films were studied by means of X-ray diffraction and Fourier transform infra-red (FTIR) spectroscopy The XRD results showed that the amorphization increases with electron beam irradiation dose. FTIR spectroscopic analysis reveals that electron beam irradiation promotes the scission of carbonyl group and depletes hydrogen and converts polymeric structure into hydrogen depleted carbon network.

  5. Structural studies of lead lithium borate glasses doped with silver oxide.

    PubMed

    Coelho, João; Freire, Cristina; Hussain, N Sooraj

    2012-02-01

    Silver oxide doped lead lithium borate (LLB) glasses have been prepared and characterized. Structural and composition characterization were accessed by XRD, FTIR, Raman, SEM and EDS. Results from FTIR and Raman spectra indicate that Ag(2)O acts as a network modifier even at small quantities by converting three coordinated to four coordinated boron atoms. Other physical properties, such as density, molar volume and optical basicity are also evaluated. Furthermore, they are also affected by the silver oxide composition. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Cross-validation of IASI/MetOp derived tropospheric δD with TES and ground-based FTIR observations

    NASA Astrophysics Data System (ADS)

    Lacour, J.-L.; Clarisse, L.; Worden, J.; Schneider, M.; Barthlott, S.; Hase, F.; Risi, C.; Clerbaux, C.; Hurtmans, D.; Coheur, P.-F.

    2015-03-01

    The Infrared Atmospheric Sounding Interferometer (IASI) flying onboard MetOpA and MetOpB is able to capture fine isotopic variations of the HDO to H2O ratio (δD) in the troposphere. Such observations at the high spatio-temporal resolution of the sounder are of great interest to improve our understanding of the mechanisms controlling humidity in the troposphere. In this study we aim to empirically assess the validity of our error estimation previously evaluated theoretically. To achieve this, we compare IASI δD retrieved profiles with other available profiles of δD, from the TES infrared sounder onboard AURA and from three ground-based FTIR stations produced within the MUSICA project: the NDACC (Network for the Detection of Atmospheric Composition Change) sites Kiruna and Izaña, and the TCCON site Karlsruhe, which in addition to near-infrared TCCON spectra also records mid-infrared spectra. We describe the achievable level of agreement between the different retrievals and show that these theoretical errors are in good agreement with empirical differences. The comparisons are made at different locations from tropical to Arctic latitudes, above sea and above land. Generally IASI and TES are similarly sensitive to δD in the free troposphere which allows one to compare their measurements directly. At tropical latitudes where IASI's sensitivity is lower than that of TES, we show that the agreement improves when taking into account the sensitivity of IASI in the TES retrieval. For the comparison IASI-FTIR only direct comparisons are performed because the sensitivity profiles of the two observing systems do not allow to take into account their differences of sensitivity. We identify a quasi negligible bias in the free troposphere (-3‰) between IASI retrieved δD with the TES, which are bias corrected, but important with the ground-based FTIR reaching -47‰. We also suggest that model-satellite observation comparisons could be optimized with IASI thanks to its high spatial and temporal sampling.

  7. FTIR Study of the Photoactivation Process of Xenopus (6-4) Photolyase†

    PubMed Central

    Yamada, Daichi; Zhang, Yu; Iwata, Tatsuya; Hitomi, Kenichi; Getzoff, Elizabeth D.; Kandori, Hideki

    2012-01-01

    Photolyases (PHRs) are blue-light activated DNA repair enzymes that maintain genetic integrity by reverting UV-induced photoproducts into normal bases. The FAD chromophore of PHRs has four different redox states: oxidized (FADox), anion radical (FAD•−), neutral radical (FADH•) and fully reduced (FADH−). We combined difference Fourier-transform infrared (FTIR) spectroscopy with UV-visible spectroscopy to study the detailed photoactivation process of Xenopus (6-4) PHR. Two photons produce the enzymatically active, fully reduced PHR from oxidized FAD: FADox is converted to semiquinone via light-induced one-electron and one-proton transfers, and then to FADH− by light-induced one-electron transfer. We successfully trapped FAD•− at 200 K, where electron transfer occurs, but proton transfer does not. UV-visible spectroscopy following 450-nm illumination of FADox at 277 K defined the FADH•/FADH− mixture and allowed calculation of difference FTIR spectra among the four redox states. The absence of a characteristic C=O stretching vibration indicated that the proton donor is not a protonated carboxylic acid. Structural changes in Trp and Tyr are suggested from UV-visible and FTIR analysis of FAD•− at 200 K. Spectral analysis of amide-I vibrations revealed structural perturbation of the protein’s β-sheet during initial electron transfer (FAD•− formation), transient increase in α-helicity during proton transfer (FADH• formation) and reversion to the initial amide-I signal following subsequent electron transfer (FADH− formation). Consequently, in (6-4) PHR, unlike cryptochrome-DASH, formation of enzymatically active FADH− did not perturb α-helicity. Protein structural changes in the photoactivation of (6-4) PHR are discussed on the basis of the present FTIR observations. PMID:22747528

  8. Structural and vibrational spectral investigations of melaminium maleate monohydrate by FTIR, FT-Raman and quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Arjunan, V.; Kalaivani, M.; Marchewka, M. K.; Mohan, S.

    2013-04-01

    The structural investigations of the molecular complex of melamine with maleic acid, namely melaminium maleate monohydrate have been carried out by quantum chemical methods in addition to FTIR, FT-Raman and far-infrared spectral studies. The quantum chemical studies were performed with DFT (B3LYP) method using 6-31G**, cc-pVDZ and 6-311++G** basis sets to determine the energy, structural and thermodynamic parameters of melaminium maleate monohydrate. The hydrogen atom from maleic acid was transferred to the melamine molecule giving the singly protonated melaminium cation. The ability of ions to form spontaneous three-dimensional structure through weak Osbnd H⋯O and Nsbnd H⋯O hydrogen bonds shows notable vibrational effects.

  9. Structural studies on Demospongiae sponges from Gökçeada Island in the Northern Aegean Sea

    NASA Astrophysics Data System (ADS)

    Bayari, Sevgi Haman; Şen, Elif Hilal; Ide, Semra; Topaloglu, Bülent

    2018-03-01

    The Demospongiae is the largest Class in the phylum Porifera (sponges). Most sponge species in the Class Demospongiae have a skeleton of siliceous spicules and/or protein spongin or both. The first aim of this study was to perform the morphological and structural characterization of the siliceous spicules of four species belonging to Class Demospongiae (Suberites domuncula, Axinella polypoides, Axinella damicornis and Agelas oroides) collected around Gökçeada Island-Turkey (Northern Aegean Sea). The characterizations were carried out using a combination of Scanning Electron Microscopy with Energy Dispersive X-ray Spectroscopy (SEM/EDX), Attenuated Total Reflection-Fourier Transform Infrared Spectroscopy (ATR-FTIR) and Small Angle X-ray Scattering (SAXS) techniques. The sponge Chondrosia reniformis (Porifera, Demospongiae) lacks a structural skeleton of spicules or the spongin. It consists mainly of a collagenous tissue. The collagen with sponge origin is an important source in biomedical and pharmaceutical applications. The second aim of this study was to provide more information on the molecular structure of collagen of outer (ectosome) and inner (choanosome) regions of the Chondrosia reniformis using ATR-FTIR spectroscopy. Hierarchical clustering analysis (HCA) was also used for the discrimination of ATR-FTIR spectra of species.

  10. Differentiation of Asian ginseng, American ginseng and Notoginseng by Fourier transform infrared spectroscopy combined with two-dimensional correlation infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Lu, Guang-hua; Zhou, Qun; Sun, Su-qin; Leung, Kelvin Sze-yin; Zhang, Hao; Zhao, Zhong-zhen

    2008-07-01

    The herbal materials of Asian ginseng (the root of Panax ginseng), American ginseng (the root of Panax quinquefolius) and Notoginseng (the root of Panax notoginseng) were differentiated by conventional Fourier transform infrared spectroscopy (1D-FTIR) and two-dimensional (2D) correlation FTIR applying a thermal perturbation. Altogether 30 samples were collected and analyzed. Their entire 1D-FTIR spectra in the range of 4000-400 cm -1 and 2D-FTIR spectra in the region of 850-1530 cm -1 were generally similar based on the peaks position and intensities. This indicated the chemical constituents in these species of herbs were not distinctively different. However, variation in peak intensity were observed at about 1640 cm -1, 1416 cm -1, 1372 cm -1 and 1048 cm -1 in the 1D-FTIR spectra among these species for their ease differentiation. Clustering analysis of 1D-FTIR showed that these species located in different clusters. Much difference in their second derivative FTIR pattern among the three species also provided information for easy differentiation. These species of herbs were further identified based on the positions and intensities of relatively strong auto-peaks, positive or negative cross-peaks in their 2D-FTIR spectra. The findings provide a rapid and new operational procedure for the differentiation of these notable herbs. The visual and colorful 2D-FTIR spectra can provide dynamic structural information of chemical components in analyte and demonstrated as a powerful and useful approach for herbs identification.

  11. Activation and thermodynamic parameter study of the heteronuclear C=O···H-N hydrogen bonding of diphenylurethane isomeric structures by FT-IR spectroscopy using the regularized inversion of an eigenvalue problem.

    PubMed

    Spegazzini, Nicolas; Siesler, Heinz W; Ozaki, Yukihiro

    2012-08-02

    The doublet of the ν(C=O) carbonyl band in isomeric urethane systems has been extensively discussed in qualitative terms on the basis of FT-IR spectroscopy of the macromolecular structures. Recently, a reaction extent model was proposed as an inverse kinetic problem for the synthesis of diphenylurethane for which hydrogen-bonded and non-hydrogen-bonded C=O functionalities were identified. In this article, the heteronuclear C=O···H-N hydrogen bonding in the isomeric structure of diphenylurethane synthesized from phenylisocyanate and phenol was investigated via FT-IR spectroscopy, using a methodology of regularization for the inverse reaction extent model through an eigenvalue problem. The kinetic and thermodynamic parameters of this system were derived directly from the spectroscopic data. The activation and thermodynamic parameters of the isomeric structures of diphenylurethane linked through a hydrogen bonding equilibrium were studied. The study determined the enthalpy (ΔH = 15.25 kJ/mol), entropy (TΔS = 14.61 kJ/mol), and free energy (ΔG = 0.6 kJ/mol) of heteronuclear C=O···H-N hydrogen bonding by FT-IR spectroscopy through direct calculation from the differences in the kinetic parameters (δΔ(‡)H, -TδΔ(‡)S, and δΔ(‡)G) at equilibrium in the chemical reaction system. The parameters obtained in this study may contribute toward a better understanding of the properties of, and interactions in, supramolecular systems, such as the switching behavior of hydrogen bonding.

  12. Characterization of southern yellow pine bark layers by Attenuated Total Reflectance (ATR) and Fourier Transform Infrared (FT-IR) Spectroscopy

    Treesearch

    Thomas L. Eberhardt

    2009-01-01

    The outer bark (rhytidome) of the southern yellow pines is a complex structure comprised of alternating layers of obliterated phloem and periderm tissues, with the latter comprised of three layers, those being phellem, phellogen, and phelloderm. An attenuated total reflectance (ATR) sampling accessory, coupled with a Fourier transform infrared (FTIR) spectrometer,...

  13. Development of a simultaneous SANS / FTIR measuring system and its application to polymer cocrystals

    NASA Astrophysics Data System (ADS)

    Kaneko, F.; Seto, N.; Sato, S.; Radulescu, A.; Schiavone, M. M.; Allgaier, J.; Ute, K.

    2016-09-01

    In order to provide plenty of structure information which would assist in the analysis and interpretation of small angle neutron scattering (SANS) profile, a novel method for the simultaneous time-resolved measurement of SANS and Fourier transform infrared (FTIR) spectroscopy has been developed. The method was realized by building a device consisting of a portable FTIR spectrometer and an optical system equipped with two aluminum coated quartz plates that are fully transparent to neutron beams but play as mirrors for infrared radiation. The optical system allows both a neutron beam and an infrared beam pass through the same position of a test specimen coaxially. The device was installed on a small angle neutron diffractometer, KWS2 of the Jülich Centre for Neutron Science (JCNS) outstation at Heinz Maier-Leibnitz Center (MLZ) in Garching, Germany. In order to check the performance of this simultaneous measuring system, the structural changes in the cocrystals of syndiotactic polystyrene during the course of heating were followed. It has been confirmed that FTIR spectra measured in parallel are able to provide information about the behavior of each component and also useful to grasp in real time what is actually happening in the sample system.

  14. Induced secondary structure and polymorphism in an intrinsically disordered structural linker of the CNS: solid-state NMR and FTIR spectroscopy of myelin basic protein bound to actin.

    PubMed

    Ahmed, Mumdooh A M; Bamm, Vladimir V; Shi, Lichi; Steiner-Mosonyi, Marta; Dawson, John F; Brown, Leonid; Harauz, George; Ladizhansky, Vladimir

    2009-01-01

    The 18.5 kDa isoform of myelin basic protein (MBP) is a peripheral membrane protein that maintains the structural integrity of the myelin sheath of the central nervous system by conjoining the cytoplasmic leaflets of oligodendrocytes and by linking the myelin membrane to the underlying cytoskeleton whose assembly it strongly promotes. It is a multifunctional, intrinsically disordered protein that behaves primarily as a structural stabilizer, but with elements of a transient or induced secondary structure that represent binding sites for calmodulin or SH3-domain-containing proteins, inter alia. In this study we used solid-state NMR (SSNMR) and Fourier transform infrared (FTIR) spectroscopy to study the conformation of 18.5 kDa MBP in association with actin microfilaments and bundles. FTIR spectroscopy of fully (13)C,(15)N-labeled MBP complexed with unlabeled F-actin showed induced folding of both protein partners, viz., some increase in beta-sheet content in actin, and increases in both alpha-helix and beta-sheet content in MBP, albeit with considerable extended structure remaining. Solid-state NMR spectroscopy revealed that MBP in MBP-actin assemblies is structurally heterogeneous but gains ordered secondary structure elements (both alpha-helical and beta-sheet), particularly in the terminal fragments and in a central immunodominant epitope. The overall conformational polymorphism of MBP is consistent with its in vivo roles as both a linker (membranes and cytoskeleton) and a putative signaling hub.

  15. Structural characterizations, Hirshfeld surface analyses, and third-order nonlinear optical properties of two novel chalcone derivatives

    NASA Astrophysics Data System (ADS)

    Maidur, Shivaraj R.; Jahagirdar, Jitendra R.; Patil, Parutagouda Shankaragouda; Chia, Tze Shyang; Quah, Ching Kheng

    2018-01-01

    We report synthesis, characterizations, structure-property relationships, and third-order nonlinear optical studies for two new chalcone derivatives, (2E)-1-(anthracen-9-yl)-3-(4-bromophenyl)prop-2-en-1-one (Br-ANC) and (2E)-1-(anthracen-9-yl)-3-(4-chlorophenyl)prop-2-en-1-one (Cl-ANC). These derivatives were crystallized in the centrosymmetric monoclinic P21/c crystal structure. The intermolecular interactions of both the crystals were visualized by Hirshfeld surface analyses (HSA). The crystals are thermally stable up to their melting points (180.82 and 191.16 °C for Cl-ANC and Br-ANC, respectively). The geometry optimizations, FT-IR spectra, 1H and 13C NMR spectra, electronic absorption spectra, electronic transitions, and HOMO-LUMO energy gaps were studied by Density Functional Theory (DFT) at B3LYP/6-311+G(d, p) level. The theoretical results provide excellent agreement with experimental findings. The electric dipole moments, static polarizabilities, molecular electrostatic potentials (MEP) and global chemical reactivity descriptors (GCRD) were also theoretically computed. The materials exhibited good nonlinear absorption (NLA), nonlinear refraction (NLR) and optical limiting (OL) behavior under diode-pumped solid-state (DPSS) continuous wave (CW) laser excitation (532 nm and 200 mW). The NLO parameters such as NLA coefficient (β∼10-5 cmW-1), NLR index (n2∼10-10 cm2 W-1) and third-order NLO susceptibilities (χ(3) ∼10-7 esu) were measured. Further, we estimated one-photon and two-photon figures of merit, which satisfy the demands (W > 1 and T < 1) for all-optical switching. Thus, the present chalcone derivatives with anthracene moiety are potential materials for OL and optical switching applications.

  16. The structure and vibrational frequencies of nitric acid hydrates crystals

    NASA Astrophysics Data System (ADS)

    Escribano, R.; Fernández, D.; Herrero, V. J.; Maté, B.; Medialdea, A.; Moreno, M. A.; Ortega, I. K.

    The relevance of nitric acid hydrates in stratospheric processes has prompted a large number of investigations on the structure and physicochemical properties of these species. We are carrying out in our lab a study on the spectroscopy of crystals of nitric acid and the mono-, di- and trihydrates, NAM, NAD and NAT, respectively, as a first step to addressing more elaborate systems, like binary or ternary mixtures of nitric acid with water, sulphuric acid or halogen compounds of atmospheric interest. Our work consists of a theoretical part, which deals with the determination of the crystalline structure of the species and the prediction of their infrared spectra, and of an experimental part, in which we record Reflection-Absorption infrared spectra of samples prepared under controlled conditions of low pressure and temperature. The theoretical calculations are carried out with the recently developed program SIESTA (acronym for Spanish Initiative for Electronic Simulation of Thousands of Atoms), which allows the ab initio study of periodic systems of large size, by a method that scales linearly in time and computer memory requirements with the number of atoms in a simulation cell. The experimental work is performed on a cryostat cell built in our laboratory. The cell has a number of inlet devices to allow gases to be expanded within, and infrared radiation from a FTIR spectrometer to enter and exit. Films of the species under study are formed by condensing the appropriate gases or mixtures of them on a polished surface of gold or aluminium, whose temperature is controlled externally and can be varied between 80 and 325 K. Examples of experimental and predicted spectra will be presented at the meeting, with a discussion on the proposed assignments.

  17. The spectroscopic (FTIR, FT-Raman and UV-Vis spectra), DFT and normal coordinate computations of m-nitromethylbenzoate

    NASA Astrophysics Data System (ADS)

    Gnanasambandan, T.; Gunasekaran, S.; Seshadri, S.

    2013-08-01

    A combined experimental and theoretical study on molecular structure, vibrational spectra, NBO and UV-spectral analysis of m-nitromethylbenzoate (MNMB) has been reported in the present work. The FT-IR solid phase (4000-400 cm-1) and FT-Raman spectra (3500-100 cm-1) of MNMB was recorded. The molecular geometry, harmonic vibrational frequencies and bonding features of MNMB in the ground-state have been calculated by using the density functional method B3LYP with 6-31G (d,p) and 6-31+G(d,p) basis sets. The assignments of the vibrational spectra have been carried out with the help of normal co-ordinate analysis (NCA) following the Scaled Quantum Mechanical Force Field Methodology (SQMFF). Stability of the molecule arising from hyperconjugative interactions, charge delocalization has been analyzed using natural bond orbital (NBO) analysis. The results show that charge in electron density (ED) in the σ∗ antibonding orbitals and E(2) energies confirms the occurrence of ICT (Intra-molecular Charge Transfer) within the molecule. The UV spectrum was measured in ethyl acetate solution. The energy and oscillator strength calculated by Time-Dependent Density Functional Theory (TD-DFT) result complements the experimental findings. The calculated HOMO and LUMO energies show that charge transfer occurs within the molecule. Finally the calculation results were applied to simulated infrared and Raman spectra of the title compound which show good agreement with observed spectra.

  18. The spectroscopic properties of anticancer drug Apigenin investigated by using DFT calculations, FT-IR, FT-Raman and NMR analysis

    NASA Astrophysics Data System (ADS)

    Mariappan, G.; Sundaraganesan, N.; Manoharan, S.

    2012-09-01

    The FT-Raman and FT-Infrared spectra of solid Apigenin sample were measured in order to elucidate the spectroscopic properties of title molecule in the spectral range of 3500-50 cm-1 and 4000-400 cm-1, respectively. The recorded FT-IR and FT-Raman spectral measurements favor the calculated (by B3LYP/6-31G(d,p) method) structural parameters which are further supported by spectral simulation. Additional support is given by the collected 1H and 13C NMR spectra recorded with the sample dissolved in DMSO. The predicted chemical shifts at the B3LYP/6-31G(d) level obtained using the Gauge-Invariant Atomic Orbitals (GIAO) method with and without inclusion of solvent using the Polarizable Continuum Model (PCM). By using TD-DFT method, electronic absorption spectra of the title compound have been predicted and a good agreement with the TD-DFT method and the experimental one is determined. The UV-visible absorption spectra of the compound that dissolved in Ethanol, Methanol and DMSO were recorded in the range of 800-200 nm. The formation of hydrogen bond and the most possible interaction are explained using natural bond orbital (NBO) analysis. In addition, the molecular electrostatic potential (MEP), frontier molecular orbitals (FMO) analysis and atomic charges of the title compound were investigated using theoretical calculations. The results are discussed herein and compared with similar molecules whenever appropriate.

  19. Effect of alkali metal ions on the pyrrole and pyridine π-electron systems in pyrrole-2-carboxylate and pyridine-2-carboxylate molecules: FT-IR, FT-Raman, NMR and theoretical studies

    NASA Astrophysics Data System (ADS)

    Świderski, G.; Wojtulewski, S.; Kalinowska, M.; Świsłocka, R.; Lewandowski, W.

    2011-05-01

    The FT-IR, FT-Raman and 1H and 13C NMR spectra of pyrrole-2-carboxylic acid (PCA) and lithium, sodium, potassium, rubidium and caesium pyrrole-2-carboxylates were recorded, assigned and compared in the Li → Na → K → Rb → Cs salt series. The effect of alkali metal ions on the electronic system of ligands was discussed. The obtained results were compared with previously reported ones for pyridine-2-carboxylic acid and alkali metal pyridine-2-carboxylates. Calculations for pyrrole-2-carboxylic acid and Li, Na, K pyrrole-2-carboxylates in B3LYP/6-311++G ** level and Møller-Plesset method in MP2/6-311++G ** level were made. Bond lengths, angles and dipole moments as well as aromaticity indices (HOMA, EN, GEO, I 6) for the optimized structures of pyrrole-2-carboxylic acid (PCA) and lithium, sodium, potassium pyrrole-2-carboxylates were also calculated. The degree of perturbation of the aromatic system of ligand under the influence of metals in the Li → Cs series was investigated with the use of statistical methods (linear correlation), calculated aromaticity indices and Mulliken, NBO and ChelpG population analysis method. Additionally, the Bader theory (AIM) was applied to setting the characteristic of the bond critical points what confirmed the influence of alkali metals on the pyrrole ring.

  20. Spectroscopic [FT-IR and FT-Raman] and theoretical [UV-Visible and NMR] analysis on α-Methylstyrene by DFT calculations

    NASA Astrophysics Data System (ADS)

    Karthikeyan, N.; Joseph Prince, J.; Ramalingam, S.; Periandy, S.

    2015-05-01

    In the present research work, the FT-IR, FT-Raman and 13C and 1H NMR spectra of the α-Methylstyrene were recorded. The observed fundamental frequencies in finger print as well as functional group regions were assigned according to their uniqueness region. The Gaussian computational calculations are carried out by HF and DFT (B3LYP and B3PW91) methods with 6-31++G(d,p) and 6-311++G(d,p) basis sets and the corresponding results were tabulated. The impact of the presence of vinyl group in phenyl structure of the compound is investigated. The modified vibrational pattern of the molecule associated vinyl group was analyzed. Moreover, 13C NMR and 1H NMR were calculated by using the gauge independent atomic orbital (GIAO) method with B3LYP methods and the 6-311++G(d,p) basis set and their spectra were simulated and the chemical shifts linked to TMS were compared. A study on the electronic and optical properties; absorption wavelengths, excitation energy, dipole moment and frontier molecular orbital energies were carried out. The kubo gap of the present compound was calculated related to HOMO and LUMO energies which confirm the occurring of charge transformation between the base and ligand. Besides frontier molecular orbitals (FMO), molecular electrostatic potential (MEP) was performed. The NLO properties related to Polarizability and hyperpolarizability based on the finite-field approach were also discussed.

  1. Comprehensive quantum chemical and spectroscopic (FTIR, FT-Raman, 1H, 13C NMR) investigations of O-desmethyltramadol hydrochloride an active metabolite in tramadol--an analgesic drug.

    PubMed

    Arjunan, V; Santhanam, R; Marchewka, M K; Mohan, S

    2014-03-25

    O-desmethyltramadol is one of the main metabolites of tramadol widely used clinically and has analgesic activity. The FTIR and FT-Raman spectra of O-desmethyl tramadol hydrochloride are recorded in the solid phase in the regions 4000-400 cm(-1) and 4000-100 cm(-1), respectively. The observed fundamentals are assigned to different normal modes of vibration. Theoretical studies have been performed as its hydrochloride salt. The structure of the compound has been optimised with B3LYP method using 6-31G(**) and cc-pVDZ basis sets. The optimised bond length and bond angles are correlated with the X-ray data. The experimental wavenumbers were compared with the scaled vibrational frequencies determined by DFT methods. The IR and Raman intensities are determined with B3LYP method using cc-pVDZ and 6-31G(d,p) basic sets. The total electron density and molecular electrostatic potential surfaces of the molecule are constructed by using B3LYP/cc-pVDZ method to display electrostatic potential (electron+nuclei) distribution. The electronic properties HOMO and LUMO energies were measured. Natural bond orbital analysis of O-desmethyltramadol hydrochloride has been performed to indicate the presence of intramolecular charge transfer. The (1)H and (13)C NMR chemical shifts of the molecule have been anlysed. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. XRD and FTIR studies the effect of heat treatment and doping the transition metal oxide on LiNbO3 and LiNb3O8 nano-crystallite phases in lithium borate glass system.

    PubMed

    Kashif, Ismail; Soliman, Ashia A; Sakr, Elham M; Ratep, Asmaa

    2013-09-01

    Glasses of various compositions in the system 90 Li2B4O7-10 Nb2O5 mixed with T.M ions (where T.M is the transition metal) were prepared by quenching technique. Heat-treatment of the parent glasses was performed at 540, 570 and 620 °C, for 5 and 16 h. The glass structure evolution during the controlled crystallization was examined by XRD and FT-IR spectroscopy analysis. The crystalline phases present in the glass ceramics were identified via X-ray diffraction as a function of heat treatment. The FT-IR data propose for these glasses and heat-treated glass network structures mainly built by: di-, tri-, tetra-, penta-and ortho-borate groups. It was found that the quantitative evolution of these various borate species in the glass structures is influenced by the transition metal. A detailed discussion relating to the N4 evolution with the T.M content was made. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Structural and diffusion characterizations of steam-stable mesostructured zeolitic UL-ZSM-5 materials.

    PubMed

    Vinh-Thang, Hoang; Huang, Qinglin; Ungureanu, Adrian; Eić, Mladen; Trong-On, Do; Kaliaguine, Serge

    2006-05-09

    A series of mesoporous UL-ZSM-5 materials (Si/Al = 50) with different micro- and mesoporosity as well as crystallinity was prepared following the procedure proposed in one of our recent studies (Trong-On, D.; Kaliaguine, S. Angew. Chem. Int. Ed. 2001, 40, 3248-3251. Trong-On, D.; Kaliaguine, S. U.S. Patent 6,669,924, B1, 2003). These materials have zeolitic structure in the form of nanoparticles intergrown in the walls of the amorphous wormhole-like aluminosilicate mesopores of Al-Meso-50, which was used as a precursor in the synthesis. The structure, crystallinity, and textural properties of the synthesized materials, as well as a reference ZSM-5 zeolite sample, were determined by X-ray diffraction (XRD), transmission electron microscopy (TEM)/scanning electron microscoy (SEM) analyses, Fourier transform infrared spectroscopy (FTIR), 27Al magic angle spinning (MAS) nuclear magnetic resonance (NMR), and nitrogen adsorption/desorption techniques. The acid properties were examined by FTIR of adsorbed pyridine. UL-ZSM-5 materials were shown to be highly hydrothermally stable. The diffusion of two C7 hydrocarbons, i.e., n-heptane and toluene, in four UL-ZSM-5 materials with different microporosities, related acidities, and crystallinities were investigated using the zero-length column (ZLC) method. Furthermore, the wormhole-like mesostructured aluminosilicate precursor (Al-Meso-50) and a reference MFI zeolite sample were also investigated using the same technique. A theoretical model considering a combination of mesopore diffusion (with surface slip in the main channels) with an activated, mainly surface diffusion mechanism in the intrawall biporous structure, was proposed and employed to interpret the experimental ZLC results. A classical Knudsen type of diffusion was replaced by an activated surface slip type of diffusion mechanism in the mesopores. The transport of n-heptane in UL-ZSM-5 materials was found to be mainly controlled by mesopore diffusion in the main-channel structure, while that of toluene was dominated by the intrawall diffusion process. Diffusion activation energies of n-heptane are about 2 times higher in comparison to toluene, which has a larger kinetic diameter. The main mesopore channel structure seems to appreciably contribute to the overall mass transport. Furthermore, the effect of hydrothermal treatment (20% steam at 800 degrees C for 24 h) on the diffusion of these two sorbates on UL-ZSM-5 materials was also evaluated.

  4. Effect of intermolecular hydrogen bonding, vibrational analysis and molecular structure of a biomolecule: 5-Hydroxymethyluracil.

    PubMed

    Çırak, Çağrı; Sert, Yusuf; Ucun, Fatih

    2014-06-05

    In the present work, the experimental and theoretical vibrational spectra of 5-hydroxymethyluracil were investigated. The FT-IR (4000-400cm(-1)) spectrum of the molecule in the solid phase was recorded. The geometric parameters (bond lengths and bond angles), vibrational frequencies, Infrared intensities of the title molecule in the ground state were calculated using density functional B3LYP and M06-2X methods with the 6-311++G(d,p) basis set for the first time. The optimized geometric parameters and theoretical vibrational frequencies were found to be in good agreement with the corresponding experimental data, and with the results found in the literature. The vibrational frequencies were assigned based on the potential energy distribution using the VEDA 4 program. The dimeric form of 5-hydroxymethyluracil molecule was also simulated to evaluate the effect of intermolecular hydrogen bonding on its vibrational frequencies. It was observed that the NH stretching modes shifted to lower frequencies, while its in-plane and out-of-plane bending modes shifted to higher frequencies due to the intermolecular NH⋯O hydrogen bond. Also, the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies and diagrams were presented. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Effect of intermolecular hydrogen bonding, vibrational analysis and molecular structure of 4-chlorobenzothioamide

    NASA Astrophysics Data System (ADS)

    Çırak, Çağrı; Sert, Yusuf; Ucun, Fatih

    2013-09-01

    In the present work, the experimental and theoretical vibrational spectra of 4-chlorobenzothioamide were investigated. The FT-IR (400-4000 cm-1) and μ-Raman spectra (100-4000 cm-1) of 4-chlorobenzothioamide in the solid phase were recorded. The geometric parameters (bond lengths and bond angles), vibrational frequencies, Infrared and Raman intensities of the title molecule in the ground state were calculated using ab initio Hartree-Fock and density functional theory (B3LYP) methods with the 6-311++G(d,p) basis set for the first time. The optimized geometric parameters and the theoretical vibrational frequencies were found to be in good agreement with the corresponding experimental data and with the results found in the literature. The vibrational frequencies were assigned based on the potential energy distribution using the VEDA 4 program. The dimeric form of 4-chlorobenzothioamide was also simulated to evaluate the effect of intermolecular hydrogen bonding on the vibrational frequencies. It was observed that the Nsbnd H stretching modes shifted to lower frequencies, while the in-plane and out-of-plane bending modes shifted to higher frequencies due to the intermolecular Nsbnd H⋯S hydrogen bond. Also, the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies and diagrams were presented.

  6. Vibrational spectra, optical properties, NBO and HOMO-LUMO analysis of L-Phenylalanine L-Phenylalaninium Perchlorate: DFT calculations

    NASA Astrophysics Data System (ADS)

    Elleuch, Nabil; Ben Ahmed, Ali; Feki, Habib; Abid, Younes; Minot, Christian

    2014-03-01

    In this work, we report a combined experimental and theoretical study of a nonlinear optical material, L-Phenylalanine L-Phenylalaninium Perchlorate. Single crystals of the title compound have been grown by slow evaporation of an aqueous solution at room temperature. Theoretical calculations were preceded by redetermination of the crystal X-ray structure. The compound crystallizes in the non-centro symmetric space group P212121 of the orthorhombic system. The FT-IR and Raman spectra of the crystal were recorded and analyzed. The density functional theory (DFT) computations have been performed at B3LYP/6-31G(d) level to derive equilibrium geometry, vibrational wavenumbers, intensity and NLO properties. All observed vibrational bands have been discussed and assigned to normal mode or to combinations on the basis of our DFT calculations as a primary source of attribution and also by comparison with the previous results for similar compounds. Natural bond orbital analysis was carried out to demonstrate the various inter-and intramolecular interaction that are responsible of the stabilization of the compound. The lowering of highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy gap appears to be the cause of its enhanced charge transfer interaction leading to high NLO activity.

  7. Vibrational, UV spectra, NBO, first order hyperpolarizability and HOMO-LUMO analysis of carvedilol

    NASA Astrophysics Data System (ADS)

    Swarnalatha, N.; Gunasekaran, S.; Nagarajan, M.; Srinivasan, S.; Sankari, G.; Ramkumaar, G. R.

    2015-02-01

    In this work, we have investigated experimentally and theoretically on the molecular structure, vibrational spectra, UV spectral analysis and NBO studies of cardio-protective drug carvedilol. The FT-Raman and FT-IR spectra for carvedilol in the solid phase have been recorded in the region 4000-100 cm-1 and 4000-400 cm-1 respectively. Theoretical calculations were performed by using density functional theory (DFT) method at B3LYP/6-31G(d,p) and B3LYP/6-31++G(d,p) basis set levels. The harmonic vibrational frequencies, the optimized geometric parameters have been interpreted and compared with the reported experimental values. The complete vibrational assignments were performed on the basis of potential energy distribution (PED) of the vibrational modes. The thermodynamic properties and molecular electrostatic potential surfaces of the molecule were constructed. The electronic absorption spectrum was recorded in the region 400-200 nm and electronic properties such as HOMO and LUMO energies were calculated. The stability of the molecule arising from hyper conjugative interactions and charge delocalization have been analyzed from natural bond orbital (NBO) analysis. The first order hyperpolarizability of the title molecule was also calculated. The photo stability of carvedilol under different storage conditions were analyzed using UV-Vis spectral technique.

  8. Spectral analysis, vibrational assignments, NBO analysis, NMR, UV-Vis, hyperpolarizability analysis of 2-aminofluorene by density functional theory.

    PubMed

    Jone Pradeepa, S; Sundaraganesan, N

    2014-05-05

    In this present investigation, the collective experimental and theoretical study on molecular structure, vibrational analysis and NBO analysis has been reported for 2-aminofluorene. FT-IR spectrum was recorded in the range 4000-400 cm(-1). FT-Raman spectrum was recorded in the range 4000-50 cm(-1). The molecular geometry, vibrational spectra, and natural bond orbital analysis (NBO) were calculated for 2-aminofluorene using Density Functional Theory (DFT) based on B3LYP/6-31G(d,p) model chemistry. (13)C and (1)H NMR chemical shifts of 2-aminofluorene were calculated using GIAO method. The computed vibrational and NMR spectra were compared with the experimental results. The total energy distribution (TED) was derived to deepen the understanding of different modes of vibrations contributed by respective wavenumber. The experimental UV-Vis spectra was recorded in the region of 400-200 nm and correlated with simulated spectra by suitably solvated B3LYP/6-31G(d,p) model. The HOMO-LUMO energies were measured with time dependent DFT approach. The nonlinearity of the title compound was confirmed by hyperpolarizabilty examination. Using theoretical calculation Molecular Electrostatic Potential (MEP) was investigated. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. FT-IR and FT-Raman characterization and investigation of reactive properties of N-(3-iodo-4-methylphenyl)pyrazine-2-carboxamide by molecular dynamics simulations and DFT calculations

    NASA Astrophysics Data System (ADS)

    Ranjith, P. K.; Al-Abdullah, Ebtehal S.; Al-Omary, Fatmah A. M.; El-Emam, Ali A.; Anto, P. L.; Sheena, Mary Y.; Armaković, Stevan; Armaković, Sanja J.; Zitko, Jan; Dolezal, Martin; Van Alsenoy, C.

    2017-05-01

    The FT-IR and FT-Raman spectra of N-(3-iodo-4-methylphenyl)pyrazine-2-carboxamide were recorded and the experimentally observed wavenumbers are compared with the theoretically obtained wavenumbers. The redshift of the Nsbnd H stretching mode in the IR spectrum from the computed value indicated the weakening of the Nsbnd H bond. The ring breathing modes of the phenyl ring and pyrazine ring are assigned at 819 and 952 cm-1 theoretically. Using natural bond orbital analysis, the stability of the molecule arising from hyperconjugative interaction and charge delocalization has been analyzed. The most reactive sites in the molecule were identified by molecular electrostatic potential map. The calculations of the average local ionization energy (ALIE) were used for visualization and determination of molecule sites possibly prone to electrophilic attacks. Further information on possible reactive centers of title molecule has been obtained by calculations of Fukui functions. Vulnerability of title molecule towards autoxidation mechanism was investigated by calculations of bond dissociation energies (BDE), while vulnerability towards hydrolysis was investigated by calculations of radial distribution functions (RDF) as obtained after molecular dynamics (MD) simulations. Molecular docking studies suggest that the compound might exhibit inhibitory activity against mGluRs.

  10. A Novel Optical Diagnostic for In Situ Measurements of Lithium Polysulfides in Battery Electrolytes.

    PubMed

    Saqib, Najmus; Silva, Cody J; Maupin, C Mark; Porter, Jason M

    2017-07-01

    An optical diagnostic technique to determine the order and concentration of lithium polysulfides in lithium-sulfur (Li-S) battery electrolytes has been developed. One of the major challenges of lithium-sulfur batteries is the problem of polysulfide shuttling between the electrodes, which leads to self-discharge and loss of active material. Here we present an optical diagnostic for quantitative in situ measurements of lithium polysulfides using attenuated total reflection Fourier transform infrared (FT-IR) spectroscopy. Simulated infrared spectra of lithium polysulfide molecules were generated using computational quantum chemistry routines implemented in Gaussian 09. The theoretical spectra served as a starting point for experimental characterization of lithium polysulfide solutions synthesized by the direct reaction of lithium sulfide and sulfur. Attenuated total reflection FT-IR spectroscopy was used to measure absorption spectra. The lower limit of detection with this technique is 0.05 M. Measured spectra revealed trends with respect to polysulfide order and concentration, consistent with theoretical predictions, which were used to develop a set of equations relating the order and concentration of lithium polysulfides in a sample to the position and area of a characteristic infrared absorption band. The diagnostic routine can measure the order and concentration to within 5% and 0.1 M, respectively.

  11. Vibrational spectroscopic study, charge transfer interaction and nonlinear optical properties of L-asparaginium picrate: a density functional theoretical approach.

    PubMed

    Elleuch, Nabil; Amamou, Walid; Ben Ahmed, Ali; Abid, Younes; Feki, Habib

    2014-07-15

    Single crystals of L-asparaginium picrate (LASP) were grown by slow evaporation technique at room temperature and were the subject of an X-ray powder diffraction study to confirm the crystalline nature of the synthesized compound. FT-IR and Raman spectra were recorded and analyzed with the aid of the density functional theory (DFT) calculations in order to make a suitable assignment of the observed bands. The optimum molecular geometry, normal mode wavenumbers, infrared and Raman intensities and the first hyperpolarizability were investigated with the help of B3LYP method using 6-31G(d) basis set. The theoretical FT-IR and Raman spectra of LASP were simulated and compared with the experimental data. A good agreement was shown and a reliable vibrational assignment was made. Natural bond orbital (NBO) analysis was carried out to demonstrate the various inter and intramolecular interactions that are responsible for the stabilization of the title compound leading to high NLO activity. A study on the electronic properties was performed by time-dependent DFT (TD-DFT) approach. The lowering in the HOMO and LUMO energy gap explains the eventual charge transfer interactions that take place within the molecules. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Structural and vibrational spectral investigations of melaminium maleate monohydrate by FTIR, FT-Raman and quantum chemical calculations.

    PubMed

    Arjunan, V; Kalaivani, M; Marchewka, M K; Mohan, S

    2013-04-15

    The structural investigations of the molecular complex of melamine with maleic acid, namely melaminium maleate monohydrate have been carried out by quantum chemical methods in addition to FTIR, FT-Raman and far-infrared spectral studies. The quantum chemical studies were performed with DFT (B3LYP) method using 6-31G(**), cc-pVDZ and 6-311++G(**) basis sets to determine the energy, structural and thermodynamic parameters of melaminium maleate monohydrate. The hydrogen atom from maleic acid was transferred to the melamine molecule giving the singly protonated melaminium cation. The ability of ions to form spontaneous three-dimensional structure through weak OH···O and NH···O hydrogen bonds shows notable vibrational effects. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Analysis of morphological and molecular composition changes in allergenic Artemisia vulgaris L. pollen under traffic pollution using SEM and FTIR spectroscopy.

    PubMed

    Depciuch, J; Kasprzyk, I; Roga, E; Parlinska-Wojtan, M

    2016-11-01

    Nowadays, pollen allergy becomes an increasing problem for human population. Common mugwort (Artemisia vulgaris L.) is one of the major allergenic plants in Europe. In this study, the influence of air pollution caused by traffic on the structure and chemical composition of common mugwort pollen was investigated. Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and curve-fitting analysis of amide I profile was applied to assess the morphological and structural changes of mugwort pollen grains collected from sites with different vehicle pollution levels. Microscopic observations support the conclusion, that the higher the car traffic, the smaller the pollen grains. The obtained results clearly show that air pollution had an impact on different maximum absorbance values of individual functional groups composing the chemical structure of pollen. Moreover, air pollution induced structural changes in macromolecules of mugwort pollen. In pollen collected from the unpolluted site, the content of sporopollenin (850 cm -1 ) was the highest, whereas polysaccharide concentration (1032 cm -1 ) was the lowest. Significant differences were observed in lipids. Pollen collected from the site with heavy traffic had the lowest content of lipids at 1709, 2071, and 2930 cm -1 . The largest differences were observed in the spectra regions corresponding to proteins. In pollen collected from unpolluted site, the highest level of β-sheet (1600 cm -1 ) and α-helix (1650 cm -1 ) was detected. The structural changes in proteins, observed in the second derivative of the FTIR spectrum and in the curve-fitting analysis of amide I profile, could be caused inter alia by air pollutants. Alterations in protein structure and in their content in the pollen may increase the sensitization and subsequent risk of allergy in predisposed people. The obtained results suggest that the changes in chemical composition of pollen may be a good indicator of air quality and that FTIR may be successfully applied in biomonitoring.

  14. Molecular structure of human aortic valve by μSR- FTIR microscopy

    NASA Astrophysics Data System (ADS)

    Borkowska, Anna M.; Nowakowski, Michał; Lis, Grzegorz J.; Wehbe, Katia; Cinque, Gianfelice; Kwiatek, Wojciech M.

    2017-11-01

    Aortic valve is a part of the heart most frequently affected by pathological processes in humans what constitute a very serious health problem. Therefore, studies of morphology and molecular microstructure of the AV are needed. μSR- FTIR spectroscopy and microscopy represent unique tools to study chemical composition of the tissue and to identify spectroscopic markers characteristic for structural and functional features. Normal AV reveals a multi-layered structure and the compositional and structural changes within particular layers may trigger degenerative processes within the valve. Thus, deep insight into the structure of the valve to understand pathological processes occurring in AV is needed. In order to identify differences between three layers of human AV, tissue sections of macroscopically normal AV were studied using μSR- FTIR spectroscopy in combination with histological and histochemical stainings. Tissue sections deposited onto CaF2 substrates were mapped and representative set of IR spectra collected from fibrosa, spongiosa and ventricularis were analysed by Principal Component Analysis (PCA) in the spectral range between 1850-1000 cm-1 and 3050-2750 cm-1. PCA revealed a layered molecular structure of the valve and it was possible to identify IR bands associated to different tissue parts. Spongiosa layer was well differentiated from other two layers mainly based on IR bands characteristic for the distribution of glycosaminoglycans (GAGs) in the tissue - like 1170 cm-1 (υas(C-O-S)) and 1380 cm-1 (acetyl amino group). Additionally, it was distinguished from fibrosa and ventricularis based on 1085 cm-1 and 1240 cm-1 bands characteristic for GAGs and for carbohydrates- ν(C-O) and ν(C-O-C) respectively and nucleic acids -νsym(PO2-) and νasym(PO2-) respectively, which were less specific for this layer. The use of μSR- FTIR spectroscopy demonstrated co-localization of GAGs and lipids in spongiosa layer what may indicate their contribution in the very early phase of aortic valve calcific degeneration.

  15. The effect of mutations on the structure of insulin fibrils studied by Fourier transform infrared (FTIR) spectroscopy and electron microscopy.

    PubMed

    Garriques, Liza Nielsen; Frokjaer, Sven; Carpenter, John F; Brange, Jens

    2002-12-01

    Fibril formation (aggregation) of human and bovine insulin and six human insulin mutants in hydrochloric acid were investigated by visual inspection, Thioflavin T fluorescence spectroscopy, transmission electron microscopy (TEM), and Fourier transform infrared (FTIR) spectroscopy. The fibrillation tendencies of the wild-type insulins and the insulin mutants were (in order of decreasing fibrillation tendencies): Glu(B1) + Glu(B27) = bovine < human < des-(B1,B2)-insulin < Ser(B2) + Asp(B10) < Glu(A13) + Glu(B10) = Gln(B17) < Asp(B10). Transmission electron micrographs showed that the protofibrils of the mutants were similar to those of wild-type insulins and had a diameter of 5-10 nm and lengths varying from 50 nm to several microns. The fibrils of human insulin mutants exhibited varying degrees of lateral aggregation. The Asp(B10) mutant and human insulin had greater tendency to form laterally aggregated fibrils arranged in parallel bundles, whereas fibrils of the other mutants and bovine insulin were mainly arranged in helical filaments. FTIR spectroscopy showed that the native secondary structure of the wild-type insulins and the human insulin mutants in hydrochloric acid were identical, whereas the secondary structure of the fibrils formed by heating at 50 degrees C depended on the amino acid substitution. FTIR spectra of fibrils of the human insulin mutants exhibited different beta-sheet bands at 1,620-1,640 cm(-1), indicating that the beta-sheet interactions in the fibrils depended on variations in the primary structure of insulin. Copyright 2002 Wiley-Liss, Inc. and the American Pharmaceutical Association J Pharm Sci 91:2473-2480, 2002

  16. Direct-Write Fabrication of Cellulose Nano-Structures via Focused Electron Beam Induced Nanosynthesis

    PubMed Central

    Ganner, Thomas; Sattelkow, Jürgen; Rumpf, Bernhard; Eibinger, Manuel; Reishofer, David; Winkler, Robert; Nidetzky, Bernd; Spirk, Stefan; Plank, Harald

    2016-01-01

    In many areas of science and technology, patterned films and surfaces play a key role in engineering and development of advanced materials. Here, we introduce a new generic technique for the fabrication of polysaccharide nano-structures via focused electron beam induced conversion (FEBIC). For the proof of principle, organosoluble trimethylsilyl-cellulose (TMSC) thin films have been deposited by spin coating on SiO2 / Si and exposed to a nano-sized electron beam. It turns out that in the exposed areas an electron induced desilylation reaction takes place converting soluble TMSC to rather insoluble cellulose. After removal of the unexposed TMSC areas, structured cellulose patterns remain on the surface with FWHM line widths down to 70 nm. Systematic FEBIC parameter sweeps reveal a generally electron dose dependent behavior with three working regimes: incomplete conversion, ideal doses and over exposure. Direct (FT-IR) and indirect chemical analyses (enzymatic degradation) confirmed the cellulosic character of ideally converted areas. These investigations are complemented by a theoretical model which suggests a two-step reaction process by means of TMSC → cellulose and cellulose → non-cellulose material conversion in excellent agreement with experimental data. The extracted, individual reaction rates allowed the derivation of design rules for FEBIC parameters towards highest conversion efficiencies and highest lateral resolution. PMID:27585861

  17. Synthesis, characterization, crystal structure and theoretical studies of 4-[(E)-(3-chloro-4-hydroxyphenyl) diazenyl]-1, 5-dimethyl-2-phenyl-1, 2-dihydro-3H-pyrazol-3-one

    NASA Astrophysics Data System (ADS)

    Athira, L. S.; Lakshmi, C. S. Nair; Balachandran, S.; Arul Dhas, D.; Hubert Joe, I.

    2017-11-01

    Crystals of new heterocyclic azo compound of 4-aminoantipyrine, 4-[(E)-(3-chloro-4-hydroxyphenyl)diazenyl]-1,5-dimethyl-2-phenyl-1,2-dihydro-3H-pyrazol-3-one have been grown by slow evaporation method at room temperature and its structural characterization was performed by X- ray diffraction method. The spectroscopic characterization was also performed by FT-IR, UV-Vis, 13C and 1H NMR techniques. The compound crystallizes in the monoclinic CC space group with cell dimensions a = 12.4842 (13), b = 16.4492 (16), c = 8.3389 (8) and β = 102.698 (3)°. The phenyl ring attached to the pyrazolone moiety is disordered over two positions with an occupancy ratio 52:48. The components of the disorder were refined. DFT calculations have been performed by using B3LYP/6-311G (d,p) level basis set. The calculated vibrational frequency showed a red shift for Cdbnd O and OH stretching. The natural bond orbital analysis of monomer, dimer and trimer structures reveals the absence of intramolecular hydrogen bonding; however intermolecular hydrogen bonding is observed. The cationic and anionic reactive sites of compound have been visualized on MEP surface.

  18. Copper(II) and zinc(II) as metal-carboxylate coordination complexes based on (1-methyl-1H-benzo[d]imidazol-2-yl) methanol derivative: Synthesis, crystal structure, spectroscopy, DFT calculations and antioxidant activity

    NASA Astrophysics Data System (ADS)

    Benhassine, Anfel; Boulebd, Houssem; Anak, Barkahem; Bouraiou, Abdelmalek; Bouacida, Sofiane; Bencharif, Mustapha; Belfaitah, Ali

    2018-05-01

    This work presents a combined experimental and theoretical study of two new metal-carboxylate coordination compounds. These complexes were prepared from (1-methyl-1H-benzimidazol-2-yl)methanol under mild conditions. The structures of the prepared compounds were characterized by single-crystal X-ray analysis, FTIR and UV-Vis spectroscopy. In the Cupper complex, the Cu(II) ion is coordinated by two ligands, which act as bidentate chelator through the non-substituted N and O atoms, and two carboxylicg oxygen atoms, displaying a hexa-coordinated compound in a distorted octahedral geometry, while in the Zinc complex the ligand is ligated to the Zn(II) ion in monodentate fashion through the N atom, and the metal ion is also bonded to carboxylic oxygen atoms. The tetra-coordinated compound displays a distorted tetrahedral shape. The density functional theory calculations are carried out for the determination of the optimized structures. The electronic transitions and fundamental vibrational wave numbers are calculated and are in good agreement with experimental. In addition, the ligand and its Cu(II) and Zn(II) complexes were screened and evaluated for their potential as DPPH radical scavenger.

  19. Synthesis, characterization, crystal structure and DFT study of two new polymorphs of a Schiff base (E)-2-((2,6-dichlorobenzylidene)amino)benzonitrile

    NASA Astrophysics Data System (ADS)

    Benarous, N.; Cherouana, A.; Aubert, Emmanuel; Durand, Pierrick; Dahaoui, S.

    2016-02-01

    Two new polymorphs of Schiff base, (E)-2-((2,6-dichlorobenzylidene)amino)benzonitrile, were prepared from the condensation of 4-amino-benzonitrile and 2,6-dichlorobenzaldehyde. The two polymorphs crystallize in two different space groups: P21/c for polymorph (I) with volume 1264.23(2) Å3 and Pbca for polymorph (II) with volume 2469.3(2) Å3. The two polymorphs have been characterized by FT-IR and UV-VIS spectroscopy. The crystal structures of both compounds were determined by single X-ray analysis. The difference between the two polymorphs was observed at the angle between the two phenyl rings which is 4.81° for the first one and 82.27° for the second one. Both crystal structures are built on the basis of moderate and weak hydrogen bonds. Theoretical calculations on isolated molecules at the MP2 cc-pVDZ level show that the two polymorphs correspond to two molecular conformations that are within less than 1 kJ mol-1 and DFT periodic calculations indicate that (II) is more stable than (I) by 4.1 kJ mol-1 of formula unit. Additionally, we performed TD-DFT calculation for free ligands to support the experimental data.

  20. Effect of gamma radiation on low density polyethylene (LDPE) films: optical, dielectric and FTIR studies.

    PubMed

    Moez, A Abdel; Aly, S S; Elshaer, Y H

    2012-07-01

    The low density polyethylene (LDPE) films were irradiated with gamma radiation in the dose range varied from 20 to 400 kGy. The induced changes in the chemical structure and dielectric properties for the irradiated films were investigated. The structure modifications: crystallinity as well as possible molecular changes of the polymer were recognized using Fourier Transform Infrared Spectroscopy (FTIR). The optical results were determined from transmission, reflection and absorption spectra for these films. The dielectric properties of these films were calculated using optical methods. Result indicates small variation in crystallinity which could be increased or decreased depending on the relative importance of the structural and chemical changes. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Applications of Micro-Fourier Transform Infrared Spectroscopy (FTIR) in the Geological Sciences—A Review

    PubMed Central

    Chen, Yanyan; Zou, Caineng; Mastalerz, Maria; Hu, Suyun; Gasaway, Carley; Tao, Xiaowan

    2015-01-01

    Fourier transform infrared spectroscopy (FTIR) can provide crucial information on the molecular structure of organic and inorganic components and has been used extensively for chemical characterization of geological samples in the past few decades. In this paper, recent applications of FTIR in the geological sciences are reviewed. Particularly, its use in the characterization of geochemistry and thermal maturation of organic matter in coal and shale is addressed. These investigations demonstrate that the employment of high-resolution micro-FTIR imaging enables visualization and mapping of the distributions of organic matter and minerals on a micrometer scale in geological samples, and promotes an advanced understanding of heterogeneity of organic rich coal and shale. Additionally, micro-FTIR is particularly suitable for in situ, non-destructive characterization of minute microfossils, small fluid and melt inclusions within crystals, and volatiles in glasses and minerals. This technique can also assist in the chemotaxonomic classification of macrofossils such as plant fossils. These features, barely accessible with other analytical techniques, may provide fundamental information on paleoclimate, depositional environment, and the evolution of geological (e.g., volcanic and magmatic) systems. PMID:26694380

  2. Applications of Micro-Fourier Transform Infrared Spectroscopy (FTIR) in the Geological Sciences--A Review.

    PubMed

    Chen, Yanyan; Zou, Caineng; Mastalerz, Maria; Hu, Suyun; Gasaway, Carley; Tao, Xiaowan

    2015-12-18

    Fourier transform infrared spectroscopy (FTIR) can provide crucial information on the molecular structure of organic and inorganic components and has been used extensively for chemical characterization of geological samples in the past few decades. In this paper, recent applications of FTIR in the geological sciences are reviewed. Particularly, its use in the characterization of geochemistry and thermal maturation of organic matter in coal and shale is addressed. These investigations demonstrate that the employment of high-resolution micro-FTIR imaging enables visualization and mapping of the distributions of organic matter and minerals on a micrometer scale in geological samples, and promotes an advanced understanding of heterogeneity of organic rich coal and shale. Additionally, micro-FTIR is particularly suitable for in situ, non-destructive characterization of minute microfossils, small fluid and melt inclusions within crystals, and volatiles in glasses and minerals. This technique can also assist in the chemotaxonomic classification of macrofossils such as plant fossils. These features, barely accessible with other analytical techniques, may provide fundamental information on paleoclimate, depositional environment, and the evolution of geological (e.g., volcanic and magmatic) systems.

  3. FTIR studies of the redox partner interaction in cytochrome P450: the Pdx-P450cam couple.

    PubMed

    Karyakin, Andrey; Motiejunas, Domantas; Wade, Rebecca C; Jung, Christiane

    2007-03-01

    Recently we have developed a new approach to study protein-protein interactions using Fourier transform infrared spectroscopy in combination with titration experiments and principal component analysis (FTIR-TPCA). In the present paper we review the FTIR-TPCA results obtained for the interaction between cytochrome P450 and the redox partner protein in two P450 systems, the Pseudomonas putida P450cam (CYP101) with putidaredoxin (P450cam-Pdx), and the Bacillus megaterium P450BM-3 (CYP102) heme domain with the FMN domain (P450BMP-FMND). Both P450 systems reveal similarities in the structural changes that occur upon redox partner complex formation. These involve an increase in beta-sheets and alpha-helix content, a decrease in the population of random coil/3(10)-helix structure, a redistribution of turn structures within the interacting proteins and changes in the protonation states or hydrogen-bonding of amino acid carboxylic side chains. We discuss in detail the P450cam-Pdx interaction in comparison with literature data and conclusions drawn from experiments obtained by other spectroscopic techniques. The results are also interpreted in the context of a 3D structural model of the Pdx-P450cam complex.

  4. Effect of microwave treatment on structure of binders based on sodium carboxymethyl starch: FT-IR, FT-Raman and XRD investigations

    NASA Astrophysics Data System (ADS)

    Kaczmarska, Karolina; Grabowska, Beata; Spychaj, Tadeusz; Zdanowicz, Magdalena; Sitarz, Maciej; Bobrowski, Artur; Cukrowicz, Sylwia

    2018-06-01

    The paper deals with the influence of the microwave treatment on sodium carboxymethyl starch (CMS-Na) applied as a binder for moulding sands. The Fourier transformation infrared spectrometry (FT-IR), Raman spectroscopy (FT-Raman) and XRD analysis data of native potato starch and three different carboxymethyl starches (CMS-Na) with various degree of substitution (DS) before and after exposition to microwave radiation have been compared. FT-IR studies showed that polar groups present in CMS-Na structure take part in the formation of new hydrogen bonds network after water evaporation. However, these changes depend on DS value of the modified starch. The FT-Raman study confirmed that due to the impact on the samples by microwave, the changes of intensity in the characteristic bands associated with the crystalline regions in the sample were noticed. The X-ray diffraction data for microwave treated CMS-Na samples have been compared with the diffractograms of initial materials and analysis of XRD patterns confirmed that microwave-treated samples exhibit completely amorphous structure. Analysis of structural changes allows to state that the binding of sand grains in moulding sand with CMS-Na polymeric binder consists in the formation of hydrogen bonds networks (physical cross-linking).

  5. Effect of microwave treatment on structure of binders based on sodium carboxymethyl starch: FT-IR, FT-Raman and XRD investigations.

    PubMed

    Kaczmarska, Karolina; Grabowska, Beata; Spychaj, Tadeusz; Zdanowicz, Magdalena; Sitarz, Maciej; Bobrowski, Artur; Cukrowicz, Sylwia

    2018-06-15

    The paper deals with the influence of the microwave treatment on sodium carboxymethyl starch (CMS-Na) applied as a binder for moulding sands. The Fourier transformation infrared spectrometry (FT-IR), Raman spectroscopy (FT-Raman) and XRD analysis data of native potato starch and three different carboxymethyl starches (CMS-Na) with various degree of substitution (DS) before and after exposition to microwave radiation have been compared. FT-IR studies showed that polar groups present in CMS-Na structure take part in the formation of new hydrogen bonds network after water evaporation. However, these changes depend on DS value of the modified starch. The FT-Raman study confirmed that due to the impact on the samples by microwave, the changes of intensity in the characteristic bands associated with the crystalline regions in the sample were noticed. The X-ray diffraction data for microwave treated CMS-Na samples have been compared with the diffractograms of initial materials and analysis of XRD patterns confirmed that microwave-treated samples exhibit completely amorphous structure. Analysis of structural changes allows to state that the binding of sand grains in moulding sand with CMS-Na polymeric binder consists in the formation of hydrogen bonds networks (physical cross-linking). Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Molecular docking, vibrational, structural, electronic and optical studies of {4 - (2, 6) dichlorophenyl amino 2 - methylidene 4 - oxobutanoic acid and 4- (2, 5)} dichlorophenyl amino 2 - methylidene 4 - oxobutanoic acid - A comparative study

    NASA Astrophysics Data System (ADS)

    Vanasundari, K.; Balachandran, V.; Kavimani, M.; Narayana, B.

    2018-03-01

    Spectroscopic and structural investigations of 4 - [(2, 6 - dichlorophenyl) amino] 2 -methylidene 4 - oxobutanoic acid (6DAMB) and 4-[(2, 5- dichlorophenyl) amino] 2 - methylidene 4 - oxobutanoic acid (5DAMB) are presented by using experimental (FT-IR and FT-Raman) spectra and theoretical (DFT approach) calculations. Seventy-two characteristic vibrational bands of the title compounds were assigned and compared with available experimental data. Stability of the molecule arising from hyper-conjugative interactions and charge delocalization was analyzed using natural bond orbital (NBO) analysis. Several descriptors determined from the energies of frontier molecular orbital (HOMO and LUMO) were applied to describe the reactivity of the title compound. The dipole moment and first hyperpolarizabilities of the studied compounds indicate that the compound is a good candidate of nonlinear optical materials. Theoretical Ultraviolet-Visible spectra of title compounds have been analyzed using the TD-DFT method. The noncovalent interactions like hydrogen bonding and Van der Waals interaction were identified from the molecular geometry and electron localization function. These interactions in molecules have been studied by using reduced density gradient (RDG) and graphed by Multiwfn. Auto-dock studies reveal that butanoic acid derivatives play a vital role in bonding and results draw us to the concluded that both compounds inhibit Placenta growth factor (PIGF-1) and that have good biological activities. This study may also provide further investigation on butanoic acid derivatives for pharmacological importance.

  7. Synthesis, spectroscopic characterization, X-ray structure and DFT studies on 2,6-bis(1-benzyl-1H-benzo[d]imidazol-2-yl)pyridine.

    PubMed

    İnkaya, Ersin; Günnaz, Salih; Özdemir, Namık; Dayan, Osman; Dinçer, Muharrem; Çetinkaya, Bekir

    2013-02-15

    The title molecule, 2,6-bis(1-benzyl-1H-benzo[d]imidazol-2-yl)pyridine (C(33)H(25)N(5)), was synthesized and characterized by elemental analysis, FT-IR spectroscopy, one- and two-dimensional NMR spectroscopies, and single-crystal X-ray diffraction. In addition, the molecular geometry, vibrational frequencies and gauge-independent atomic orbital (GIAO) (1)H and (13)C NMR chemical shift values of the title compound in the ground state have been calculated using the density functional theory at the B3LYP/6-311G(d,p) level, and compared with the experimental data. The complete assignments of all vibrational modes were performed by potential energy distributions using VEDA 4 program. The geometrical parameters of the optimized structure are in good agreement with the X-ray crystallographic data, and the theoretical vibrational frequencies and GIAO (1)H and (13)C NMR chemical shifts show good agreement with experimental values. Besides, molecular electrostatic potential (MEP) distribution, frontier molecular orbitals (FMO) and non-linear optical properties of the title compound were investigated by theoretical calculations at the B3LYP/6-311G(d,p) level. The linear polarizabilities and first hyper polarizabilities of the molecule indicate that the compound is a good candidate of nonlinear optical materials. The thermodynamic properties of the compound at different temperatures were calculated, revealing the correlations between standard heat capacity, standard entropy, standard enthalpy changes and temperatures. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Atomically Dispersed Pd–O Species on CeO 2(111) as Highly Active Sites for Low-Temperature CO Oxidation

    DOE PAGES

    Spezzati, Giulia; Su, Yaqiong; Hofmann, Jan P.; ...

    2017-09-07

    Ceria-supported Pd is a promising heterogeneous catalyst for CO oxidation relevant to environmental cleanup reactions. Pd loaded onto a nanorod form of ceria exposing predominantly (111) facets is already active at 50 °C. Here we report a combination of CO-FTIR spectroscopy and theoretical calculations that allows assigning different forms of Pd on the CeO 2(111) surface during reaction conditions. Single Pd atoms stabilized in the form of PdO and PdO 2 in a CO/O 2 atmosphere participate in a catalytic cycle involving very low activation barriers for CO oxidation. In conclusion, the presence of single Pd atoms on the Pd/CeOmore » 2-nanorod, corroborated by aberration-corrected TEM and CO-FTIR spectroscopy, is considered pivotal to its high CO oxidation activity.« less

  9. Atomically Dispersed Pd–O Species on CeO 2(111) as Highly Active Sites for Low-Temperature CO Oxidation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spezzati, Giulia; Su, Yaqiong; Hofmann, Jan P.

    Ceria-supported Pd is a promising heterogeneous catalyst for CO oxidation relevant to environmental cleanup reactions. Pd loaded onto a nanorod form of ceria exposing predominantly (111) facets is already active at 50 °C. Here we report a combination of CO-FTIR spectroscopy and theoretical calculations that allows assigning different forms of Pd on the CeO 2(111) surface during reaction conditions. Single Pd atoms stabilized in the form of PdO and PdO 2 in a CO/O 2 atmosphere participate in a catalytic cycle involving very low activation barriers for CO oxidation. In conclusion, the presence of single Pd atoms on the Pd/CeOmore » 2-nanorod, corroborated by aberration-corrected TEM and CO-FTIR spectroscopy, is considered pivotal to its high CO oxidation activity.« less

  10. Kinetics and evolved gas analysis for pyrolysis of food processing wastes using TGA/MS/FT-IR.

    PubMed

    Özsin, Gamzenur; Pütün, Ayşe Eren

    2017-06-01

    The objective of this study was to identify the pyrolysis of different bio-waste produced by food processing industry in a comprehensible manner. For this purpose, pyrolysis behaviors of chestnut shells (CNS), cherry stones (CS) and grape seeds (GS) were investigated by thermogravimetric analysis (TGA) combined with a Fourier-transform infrared (FT-IR) spectrometer and a mass spectrometer (MS). In order to make available theoretical groundwork for biomass pyrolysis, activation energies were calculated with the help of four different model-free kinetic methods. The results are attributed to the complex reaction schemes which imply parallel, competitive and complex reactions during pyrolysis. During pyrolysis, the evolution of volatiles was also characterized by FT-IR and MS. The main evolved gases were determined as H 2 O, CO 2 and hydrocarbons such as CH 4 and temperature dependent profiles of the species were obtained. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Vibrational analysis of 4-chloro-3-nitrobenzonitrile by quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Sert, Yusuf; Çırak, Çağrı; Ucun, Fatih

    2013-04-01

    In the present study, the experimental and theoretical harmonic and anharmonic vibrational frequencies of 4-chloro-3-nitrobenzonitrile were investigated. The experimental FT-IR (400-4000 cm-1) and μ-Raman spectra (100-4000 cm-1) of the molecule in the solid phase were recorded. Theoretical vibrational frequencies and geometric parameters (bond lengths and bond angles) were calculated using ab initio Hartree Fock (HF), density functional B3LYP and M06-2X methods with 6-311++G(d,p) basis set by Gaussian 09 W program, for the first time. The assignments of the vibrational frequencies were performed by potential energy distribution (PED) analysis by using VEDA 4 program. The theoretical optimized geometric parameters and vibrational frequencies were compared with the corresponding experimental data, and they were seen to be in a good agreement with each other. Also, the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies were found.

  12. C-Ni-Pd and CNT-Ni-Pd film's molecular and crystalline structure investigations by FTIR spectroscopy and XRD diffraction

    NASA Astrophysics Data System (ADS)

    Stepińska, Izabela; Czerwosz, ElŻbieta; Diduszko, Ryszard; Kozłowski, Mirosław; Wronka, Halina

    2017-08-01

    In this work molecular and crystalline structure of new type of nanocomposite films were investigated. These films compose of CNT decorated with palladium nanograins. They were prepared on a base of C-Ni films modified in CVD process. C-Ni nanocomposite films were obtained by PVD process and their modification by CVD leads to a growth of CNT film. CNTs-Ni or C-Ni films were treated with additional PVD process with palladium. Nickel and palladium acetate and fulleren C60 are precursors of films in PVD process. FTIR spectroscopy was used to studied the molecular structure of film in every stage of preparation . The crystalline structure of these films was studied by X-ray diffraction. SEM (scanning electron microscopy) was applied to investigate film's surface topography.

  13. Novel selenium containing boro-phosphate glasses: preparation and structural study.

    PubMed

    Ciceo-Lucacel, R; Radu, T; Ponta, O; Simon, V

    2014-06-01

    We synthesized a new boro-phosphate glass system with different %mol SeO2 content by conventional melt quenching technique. All samples were obtained in a glassy state with the vitreous structure confirmed by X-ray diffraction analysis. Scanning electron microscopy (SEM) revealed some non-homogeneous domains on the glasses surface, and their tendency to link each other once the selenium oxide content increases. Energy-dispersive X-ray analysis (EDAX) indicated similar elemental composition in different regions of each sample. X-ray photoelectron spectroscopy (XPS) was used to determine the nature of chemical bonding and the elemental composition at the sample surfaces, and Fourier transform infrared (FT-IR) spectroscopy was used to determine the structural groups in the obtained glass structure. Based on FT-IR results, the glass structure at short range order consists mainly of small phosphate units such as pyrophosphate (i.e. P2O7(4-) dimmers or terminating groups at the end of phosphate chains) and some metaphosphate (i.e. PO3(-) middle groups in the phosphate chains) units. The boron atoms are mainly placed in three-coordinated sites in BØ3 or BØ2O(-) units. A small contribution of BØ4(-) units was also detected from the FT-IR spectra of glasses. For SeO2 content higher than 5mol%, the modifier role of selenium ions is strongly reflected on the local structure dominated in this case by pyrophosphate units. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Secondary Structure and Subunit Composition of Soy Protein In Vitro Digested by Pepsin and Its Relation with Digestibility

    PubMed Central

    Yang, Yong; Wang, Zhongjiang; Wang, Rui; Sui, Xiaonan; Qi, Baokun; Han, Feifei; Li, Yang; Jiang, Lianzhou

    2016-01-01

    In the present study, in vitro digestibility and structure of soybean protein isolates (SPIs) prepared from five soybean varieties were investigated in simulated gastric fluid (SGF), using FT-IR microspectroscopy and SDS-PAGE. The result indicated that β-conformations were prone to be hydrolyzed by pepsin preferentially and transformed to unordered structure during in vitro digestion, followed by the digestion of α-helix and unordered structure. A negative linear correlation coefficient was found between the β-conformation contents of five SPIs and their in vitro digestibility values. The intensities of the protein bands corresponding to 7S and 11S fractions were decreased and many peptide bands appeared at 11~15 kDa during enzymatic hydrolysis. β-conglycinin was poorly hydrolyzed with pepsin, especially the β-7S subunit. On the other hand, basic polypeptides of glycinin degraded slower than acidic polypeptides and represented a large proportion of the residual protein after digestion. 11S-A3 of all SPIs disappeared after 1 h digestion. Moreover, a significant negative linear correlation coefficient (r = −0.89) was found between the β-7S contents of five SPIs and their in vitro digestibility values. These results are useful for further studies of the functional properties and bioactive properties of these varieties and laid theoretical foundations for the development of the specific functional soy protein isolate. PMID:27298825

  15. 3D holographic polymer photonic crystal for superprism application

    NASA Astrophysics Data System (ADS)

    Chen, Jiaqi; Jiang, Wei; Chen, Xiaonan; Wang, Li; Zhang, Sasa; Chen, Ray T.

    2007-02-01

    Photonic crystal based superprism offers a new way to design new optical components for beam steering and DWDM application. 3D photonic crystals are especially attractive as they could offer more control of the light beam based on the needs. A polygonal prism based holographic fabrication method has been demonstrated for a three-dimensional face-centered-cubic (FCC)-type submicron polymer photonic crystal using SU8 as the photo-sensitive material. Therefore antivibration equipment and complicated optical alignment system are not needed and the requirement for the coherence of the laser source is relaxed compared with the traditional holographic setup. By changing the top-cut prism structure, the polarization of the laser beam, the exposure and development conditions we can achieve different kinds of triclinic or orthorhombic photonic crystals on demand. Special fabrication treatments have been introduced to ensure the survivability of the fabricated large area (cm2) nano-structures. Scanning electron microscopy and diffraction results proved the good uniformity of the fabricated structures. With the proper design of the refraction prism we have achieved a partial bandgap for S+C band (1460-1565nm) in the [111] direction. The transmission and reflection spectra obtained by Fourier transform infrared spectroscopy (FTIR) are in good agreement with simulated band structure. The superprism effects around 1550nm wavelength for the fabricated 3D polymer photonic crystal have been theoretically calculated and such effects can be used for beam steering purpose.

  16. Spectroscopic and molecular structure investigation of 2-furanacrylic acid monomer and dimer using HF and DFT methods

    NASA Astrophysics Data System (ADS)

    Ghalla, H.; Issaoui, N.; Govindarajan, M.; Flakus, H. T.; Jamroz, M. H.; Oujia, B.

    2014-02-01

    In the present work, we reported a combined experimental and theoretical study on molecular structure and vibrational spectra of 2-furanacrylic acid (abbreviated as 2FAA). The FT-IR and FT-Raman spectra of 2FAA have been recorded in the regions 4000-400 and 4000-100 cm-1. The spectra were interpreted in terms of fundamentals modes, combination and overtone bands. The monomer and dimer structures of the title molecule have been obtained from Hartree-Fock (HF) and density functional theory (DFT) B3LYP methods with 6-311++G(d,p) as basis set calculations. The vibrational frequencies were calculated by DFT method and compared with the experimental frequencies, which yield good agreement between observed and calculated frequencies. Intermolecular OH⋯O hydrogen bonds are discussed in dimer structure of the molecule. The infrared and Raman spectra were also predicted from the calculated intensities. The polarizability and first order hyperpolarizabilty of the title molecule were calculated and interpreted. A study on the electronic properties, such as excitation energies, oscillator strength, wavelengths, HOMO and LUMO energies, are performed by time-dependent DFT (TD-DFT) approach. In addition, Milliken atomic charges, possible charge transfer, natural bond orbital (NBO) and AIM topological analysis were performed. Moreover, molecular electrostatic potential (MEP) and the thermodynamic properties (heat capacity, entropy, and enthalpy) of the title compound at different temperatures were calculated in gas phase.

  17. FT-IR and FT-Raman characterization of non-cellulosic polysaccharides fractions isolated from plant cell wall.

    PubMed

    Chylińska, Monika; Szymańska-Chargot, Monika; Zdunek, Artur

    2016-12-10

    The purpose of this work was to reveal the structural changes of cell wall polysaccharides' fractions during tomato fruit development by analysis of spectral data. Mature green and red ripe tomato fruit were taken into consideration. The FT-IR spectra of water soluble pectin (WSP), imidazole soluble pectin (ISP) and diluted alkali soluble pectin (DASP) contained bands typical for pectins. Whereas for KOH fraction spectra bands typical for hemicelluloses were present. The FT-IR spectra showed the drop down of esterification degree of WSP and ISP polysaccharides during maturation. The changes in polysaccharides structure revealed by spectra were the most visible in the case of pectic polysaccharides. The WSP and DASP fraction pectins molecules length were shortened during tomato maturation and ripening. Whereas the ISP fraction spectra analysis showed that this fraction contained rhamnogalacturonan I, but also for red ripe was rich in pectic galactan comparing with ISP fraction from mature green. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. FT-IR Spectroscopic Analysis of Normal and Malignant Human Oral Tissues

    NASA Astrophysics Data System (ADS)

    Krishnakumar, N.; Madhavan, R. Nirmal; Sumesh, P.; Palaniappan, Pl. Rm.; Venkatachalam, P.; Ramachandran, C. R.

    2008-11-01

    FT-IR spectroscopy has been used to explore the changes in the vibrational bands of normal and oral squamous cell carcinoma (OSCC) tissues in the region 4000-400 cm-1. Significant changes in the spectral features were observed. The spectral changes were the results of characteristics structural alterations at the molecular level in the malignant tissues. These alterations include structural changes of proteins and possible increase of its content, an increase in the nucleic-to-cytoplasm ratio, an increase in the relative amount of DNA, an increase in the rate of phosphorylation process induced by carcinogenesis, a loss of hydrogen bonding of the C-OH groups in the amino acid residues of proteins, a decrease in the relative amount of lipids compared to normal epithelial oral tissues. The results of the present study demonstrate that the FT-IR technique has the feasibility of discriminating malignant from normal tissues and other pathological states in a short period of time and may detect malignant transformation earlier than the standard histological examination stage.

  19. Detection of Maillard reaction products by a coupled HPLC-Fraction collector technique and FTIR characterization of Cu(II)-complexation with the isolated species

    NASA Astrophysics Data System (ADS)

    Ioannou, Aristos; Daskalakis, Vangelis; Varotsis, Constantinos

    2017-08-01

    The isolation of reaction products of asparagine with reducing sugars at alkaline pH and high temperature has been probed by a combination of high performance liquid chromatography (HPLC) coupled with a Fraction Collector. The UV-vis and FTIR spectra of the isolated Maillard reaction products showed structure-sensitive changes as depicted by deamination events and formation of asparagine-saccharide conjugates. The initial reaction species of the Asn-Gluc reaction were also characterized by Density Functional Theory (DFT) methods. Evidence for Cu (II) metal ion complexation with the Maillard reaction products is supported by UV-vis and FTIR spectroscopy.

  20. Rietveld refinement and FTIR analysis of bulk ceramic Co3-xMnxO4 compositions

    NASA Astrophysics Data System (ADS)

    Meena, P. L.; Kumar, Ravi; Sreenivas, K.

    2013-02-01

    Co3-xMnxO4 (x = 0.0, 0.6, 1.2) prepared by solid state reaction method and characterized by powder X-ray diffraction (XRD) and Fourier transform infrared (FTIR). Lattice parameters (a), oxygen parameter (u), and ionic radii of cations have been determined through Rietveld analysis. Both a and u parameters are related to expansion of octahedral site as Mn content in Co3O4. Analysis of XRD data show that Mn (x ≤ 1.2) is accommodated at the octahedral site, while retaining the cubic spinel structure. FTIR results also confirm the same and signify strong interactions due to overlapping of Co and Mn octahedra.

  1. Copolymers of polyaniline and poly-o-toluidine: Electrochemical synthesis and characterization

    NASA Astrophysics Data System (ADS)

    Yadav, Pooja C.; Deshmukh, Megha A.; Patil, Harshada K.; Bodkhe, Gajanan A.; Sayyad, Pasha W.; Ingle, Nikesh N.; Shirsat, Mahendra D.

    2018-05-01

    In the present study we have reported Electrochemical polymerization of poly(Aniline) (PANI), Poly(O-Toluidine) (POT) and poly(Aniline-co-O-Toluidine) (PAOT) copolymers. Electrochemical Synthesis of PANI, POT and Poly(Aniline-co-O-Toluidine) was done by using Cyclic Voltammetry technique. The morphological study done by Atomic Force Microscopy (AFM) which shows that formation of uniform granular structure and topographic changes in each respective thin film. Spectroscopic characterization was done by FTIR spectroscopy. The FT-IR study revealed the formation of PANI/POT/Poly(Aniline co O-Toluidine) with a absorption band are reported. For structural information done by X-ray diffraction(XRD) Characterization.

  2. Structural study of Cu(II) complexes with benzo[b]furancarboxylic acids

    NASA Astrophysics Data System (ADS)

    Kalinowska, Diana; Klepka, Marcin T.; Wolska, Anna; Drzewiecka-Antonik, Aleksandra; Ostrowska, Kinga; Struga, Marta

    2017-11-01

    Four Cu(II) complexes with 2- and 3-benzo[b]furancarboxylic acids have been synthesized and characterized using combination of two spectroscopic techniques. These techniques were: (i) FTIR and (ii) XAFS. FTIR analysis confirmed that complexes were formed and gave insight into identification of possible coordinating groups to the metallic center. XANES analysis indicated that the oxidation state of Cu is +2. EXAFS analysis allowed to identify that the first coordination sphere is formed by 4-5 oxygen atoms with the Cu-O distances around 2 Å. Combining these techniques it was possible to structurally describe novel Cu(II) complexes with benzo[b]furancarboxylic acids.

  3. Myoglobin Structure and Function: A Multiweek Biochemistry Laboratory Project

    ERIC Educational Resources Information Center

    Silverstein, Todd P.; Kirk, Sarah R.; Meyer, Scott C.; Holman, Karen L. McFarlane

    2015-01-01

    We have developed a multiweek laboratory project in which students isolate myoglobin and characterize its structure, function, and redox state. The important laboratory techniques covered in this project include size-exclusion chromatography, electrophoresis, spectrophotometric titration, and FTIR spectroscopy. Regarding protein structure,…

  4. Effect of storage and drying temperature on the gelation behavior and structural characteristics of sericin.

    PubMed

    Jo, Yoon Nam; Park, Byung-Dae; Um, In Chul

    2015-11-01

    Owing to unique properties, including the wound healing effect, sericin gel and films have attracted significant attention in the biomedical and cosmetic fields. The structural characteristics and properties of sericin gels and films are especially important owing to their effect on the performance of sericin in biomedical and cosmetic applications. In the present study, the effect of temperature on the gelation behavior, gel disruption, and sol-gel transition of sericin was examined using rheometry. In addition, the effect of the drying temperature on the structural characteristics of the sericin film was determined via Fourier transform infrared (FTIR) spectroscopy. The strength of the sericin gel increased and the gelation process was prolonged with decreasing storage temperatures. FTIR and differential scanning calorimetry (DSC) results also revealed that the crystallinity and the thermal decomposition temperature of the sericin film increased with decreasing drying temperature. The sericin gels were disrupted at a storage time of 40min when they were stored at temperatures higher than 50°C, and the corresponding gel strength decreased with increasing temperature. Furthermore, the thermo-reversible nature of gel-sol transition of sericin was confirmed by rheological and FTIR measurements. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. The Structure Of Intact Side Tissue Loss Based On FTIR Spectroscopic Measurements

    NASA Astrophysics Data System (ADS)

    Hussain, N.; Al-Hadithi, K. O.; Jaafar, M. S.

    2009-09-01

    Laser applications in dentistry were strongly evolved during the last three decades. Among those applications are laser ablation of dental hard tissue, caries inhibition treatments by localized surface heating, and surface conditioning for bonding. In addition, infra-red lasers are ideally suited for the selective and precise removal of carious dental hard tissue while minimizing the healthy tissue loss. In the present study we applied laser spectroscopy technique FTIR for the study of the structure of intact side tissue of teeth. The aim of the recent work is to study the effect of race and sex (genealogy) on the structure of intact side tissue loss. Our sample consists of twenty Malay females' teeth where the FTIR has been applied. The data show a decrease in the amounts of main substances (like Hydroxyapatite crystals ([Ca5(PO4)3(OH)4], CaF2) than those in healthy teeth. The measured spectra represent the enamel with the characteristic peaks due to the phosphate group in carbonated, hydroxyapatite at 1000 cm-1 and two small peaks near 1500 cm-1 due to the carbonate group. The data explains the effect of the several factors on the intact side tissue loss.

  6. Sensing the Structural Differences in Cellulose from Apple and Bacterial Cell Wall Materials by Raman and FT-IR Spectroscopy

    PubMed Central

    Szymańska-Chargot, Monika; Cybulska, Justyna; Zdunek, Artur

    2011-01-01

    Raman and Fourier Transform Infrared (FT-IR) spectroscopy was used for assessment of structural differences of celluloses of various origins. Investigated celluloses were: bacterial celluloses cultured in presence of pectin and/or xyloglucan, as well as commercial celluloses and cellulose extracted from apple parenchyma. FT-IR spectra were used to estimate of the Iβ content, whereas Raman spectra were used to evaluate the degree of crystallinity of the cellulose. The crystallinity index (XCRAMAN%) varied from −25% for apple cellulose to 53% for microcrystalline commercial cellulose. Considering bacterial cellulose, addition of xyloglucan has an impact on the percentage content of cellulose Iβ. However, addition of only xyloglucan or only pectins to pure bacterial cellulose both resulted in a slight decrease of crystallinity. However, culturing bacterial cellulose in the presence of mixtures of xyloglucan and pectins results in an increase of crystallinity. The results confirmed that the higher degree of crystallinity, the broader the peak around 913 cm−1. Among all bacterial celluloses the bacterial cellulose cultured in presence of xyloglucan and pectin (BCPX) has the most similar structure to those observed in natural primary cell walls. PMID:22163913

  7. Cadmium (II) macrocyclic Schiff-base complexes containing piperazine moiety: Synthesis, spectroscopic, X-ray structure, theoretical and antibacterial studies

    NASA Astrophysics Data System (ADS)

    Keypour, Hassan; Mahmoudabadi, Masoumeh; Shooshtari, Amir; Bayat, Mehdi; Mohsenzadeh, Fariba; Gable, Robert William

    2018-03-01

    The new Cd(II) macrocyclic Schiff-base complexes were prepared via the metal templated [1 + 1] cyclocondensation of 2,2'-(piperazine-1,4-diylbis (methylene))dianiline (A) and 2,6-pyridinedicarbaldehyde or 2,6-diacetylpyridine. The products were characterized by elemental analysis, mass spectrometry and spectroscopic methods such as: FT-IR, 1H and 13C-NMR, the crystal structure of [CdL1(ClO4)2](CH3CN) (1) complex was also obtained by single-crystal X-ray crystallography. The complexes were tested for in vitro antibacterial properties against some bacteria. The complexes had antibacterial properties and in some cases were active even more than standards. The geometries of the [CdLn (ClO4)2], (n = 1,2) complexes have been optimized at the BP86/def2-SVP level of theory. Also the nature of Cd←Ln (n = 1, 2) bonds in [CdLn (ClO4)2], (n = 1,2) complexes are studied with the help of NBO and Energy decomposition analysis (EDA). Results showed that the nature of metal-ligand bond in the complexes is slightly more electrostatic with a contribution of about 52% in total interaction energy.

  8. Molecular structure, FT-IR, FT-Raman, NBO, HOMO and LUMO, MEP, NLO and molecular docking study of 2-[(E)-2-(2-bromophenyl)ethenyl]quinoline-6-carboxylic acid.

    PubMed

    Ulahannan, Rajeev T; Panicker, C Yohannan; Varghese, Hema Tresa; Musiol, Robert; Jampilek, Josef; Van Alsenoy, Christian; War, Javeed Ahmad; Srivastava, S K

    2015-01-01

    The optimized molecular structure, vibrational frequencies, corresponding vibrational assignments of 2-[(E)-2-(2-bromophenyl)ethenyl]quinoline-6-carboxylic acid have been investigated experimentally and theoretically using Gaussian09 software package. Potential energy distribution of the normal modes of vibrations was done using GAR2PED program. (1)H NMR chemical shifts calculations were carried out by using B3LYP functional with SDD basis set. The HOMO and LUMO analysis is used to determine the charge transfer within the molecule. The stability of the molecule arising from hyper-conjugative interaction and charge delocalization has been analyzed using NBO analysis. MEP was performed by the DFT method and the predicted infrared intensities and Raman activities have also been reported. The calculated geometrical parameters are in agreement with that of similar derivatives. The title compound forms a stable complex with PknB as is evident from the binding affinity values and the molecular docking results suggest that the compound might exhibit inhibitory activity against PknB and this may result in development of new anti-tuberculostic agents. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Synthesis, structure-activity relationship and molecular docking of cyclohexenone based analogous as potent non-nucleoside reverse-transcriptase inhibitors

    NASA Astrophysics Data System (ADS)

    Nazar, Muhammad Faizan; Abdullah, Muhammad Imran; Badshah, Amir; Mahmood, Asif; Rana, Usman Ali; Khan, Salah Ud-Din

    2015-04-01

    The chalcones core in compounds is advantageously chosen effective synthons, which offer exciting perspectives in biological and pharmacological research. The present study reports the successful development of eight new cyclohexenone based anti-reverse transcriptase analogous using rational drug design synthesis principles. These new cyclohexenone derivatives (CDs) were synthesized by following a convenient route of Robinson annulation, and the molecular structure of these CDs were later confirmed by various analytical techniques such as 1H NMR, 13C NMR, FT-IR, UV-Vis spectroscopy and mass spectrometry. All the synthesized compounds were screened theoretically and experimentally against reverse transcriptase (RT) and found potentially active reverse transcriptase (RT) inhibitors. Of the compounds studied, the compound 2FC4 showed high interaction with RT at non-nucleoside binding site, contributing high free binding energy (ΔG -8.01 Kcal) and IC50 (0.207 μg/ml), respectively. Further results revealed that the compounds bearing more halogen groups, with additional hydrophobic character, offered superior anti-reverse transcriptase activity as compared to rest of compounds. It is anticipate that the present study would be very useful for the selection of potential reverse transcriptase inhibitors featuring inclusive pharmacological profiles.

  10. Theoretical and Experimental Study of Inclusion Complexes of β-Cyclodextrins with Chalcone and 2',4'-Dihydroxychalcone.

    PubMed

    Sancho, Matias I; Andujar, Sebastian; Porasso, Rodolfo D; Enriz, Ricardo D

    2016-03-31

    The inclusion complexes formed by chalcone and 2',4'-dihydroxychalcone with β-cyclodextrin have been studied combining experimental (phase solubility diagrams, Fourier transform infrared spectroscopy) and molecular modeling (molecular dynamics, quantum mechanics/molecular mechanics calculations) techniques. The formation constants of the complexes were determined at different temperatures, and the thermodynamic parameters of the process were obtained. The inclusion of chalcone in β-cyclodextrin is an exothermic process, while the inclusion of 2',4'-dihydroxychalcone is endothermic. Free energy profiles, derived from umbrella sampling using molecular dynamics simulations, were constructed to analyze the binding affinity and the complexation reaction at a molecular level. Hybrid QM/MM calculations were also employed to obtain a better description of the energetic and structural aspects of the complexes. The intermolecular interactions that stabilize both inclusion complexes were characterized by means of quantum atoms in molecules theory and reduce density gradient method. The calculated interactions were experimentally observed using FTIR.

  11. A combined experimental and DFT investigation of disazo dye having pyrazole skeleton

    NASA Astrophysics Data System (ADS)

    Şener, Nesrin; Bayrakdar, Alpaslan; Kart, Hasan Hüseyin; Şener, İzzet

    2017-02-01

    Disazo dye containing pyrazole skeleton has been synthesized. The structure of the dye has been confirmed by using FT-IR, 1H NMR, 13C NMR, HRMS spectral technique and elemental analysis. The molecular geometry and infrared spectrum are also calculated by the Density Functional Theory (DFT) employing B3LYP level with 6-311G (d,p) basis set. The chemical shifts calculation for 1H NMR of the title molecule is done by using by Gauge-Invariant Atomic Orbital (GIAO) method by utilizing the same basis sets. The total density of state, the partial density of state and the overlap population density of state diagram analysis are done via Gauss Sum 3.0 program. Frontier molecular orbitals such as highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) and molecular electrostatic potential surface on the title molecule are predicted for various intramolecular interactions that are responsible for the stabilization of the molecule. The experimental results and theoretical values have been compared.

  12. Substituent influence on the structural, vibrational and electronic properties of 2,5-dihydrothiophene-1,1-dioxide by experimental and DFT methods.

    PubMed

    Arjunan, V; Thirunarayanan, S; Durga Devi, G; Mohan, S

    2015-11-05

    Spectroscopic and theoretical quantum chemical studies of 2,5-dihydrothiophene-1,1-dioxide and 3-methyl-2,5-dihydrothiophene-1,1-dioxide have been carried out by FTIR and FT-Raman spectral techniques along with B3LYP methods. The geometry of the compounds have been optimised by B3LYP method with 6-311++G(∗∗) and cc-pVTZ basis sets. The geometrical parameters obtained at B3LYP levels have been compared with the experimental values. Molecular electrostatic potential surface, total electron density distribution and frontier molecular orbital are constructed at B3LYP/cc-pVTZ level to understand the electronic properties. The charge density distribution and sites of chemical reactivity of the molecules have been obtained by mapping electron density isosurface with electrostatic potential surfaces. Natural bond orbital analysis of the molecules are carried out and the occupancies and the atomic hybrid contributions are calculated. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Synthesis of a novel methyl(2E)-2-{[N-(2-formylphenyl)(4-methylbenzene) sulfonamido]methyl}-3-(2-methoxyphenyl)prop-2-enoate: Molecular structure, spectral, antimicrobial, molecular docking and DFT computational approaches

    NASA Astrophysics Data System (ADS)

    Murugavel, S.; Vetri velan, V.; Kannan, Damodharan; Bakthadoss, Manickam

    2017-01-01

    The title compound methyl(2E)-2-{[N-(2-formylphenyl)(4-methylbenzene)sulfonamido] methyl}-3-(2-methoxyphenyl)prop-2-enoate (MFMSM) has been synthesized and single crystals were grown by slow evaporation solution growth technique at room temperature. XRD, FT-IR and NMR spectra of MFMSM in the solid phase were recorded and analyzed. The optimized geometry and vibrational wave numbers were computed using DFT method. The NLO, Mulliken, MEP, HOMO-LUMO energy gap and thermodynamic properties were theoretically predicted. The NBO analysis explained the intramolecular hydrogen bonding. The global chemical reactivity descriptors are calculated for MFMSM and used to predict their relative stability and reactivity. All the calculations were carried out by B3LYP/6-311G (d,p) method. MFMSM has been screened for its antimicrobial activity and found to exhibit antifungal and antibacterial effects. Docking simulation has been performed.

  14. Structural changes that occur upon photolysis of the Fe(II)a3 - CO complex in the cytochrome ba3-oxidase of Thermus thermophilus: A combined X-ray crystallographic and infrared spectral study demonstrates CO binding to CuB

    PubMed Central

    Liu, Bin; Zhang, Yang; Sage, J. Timothy; Soltis, S. Michael; Doukov, Tzanko; Chen, Ying; Stout, C. David; Fee, James A.

    2012-01-01

    The purpose of the work was to provide a crystallographic demonstration of the venerable idea that CO photolyzed from ferrous heme-a3 moves to the nearby cuprous ion in the cytochrome c oxidases. Crystal structures of CO-bound cytochrome ba3-oxidase from Thermus thermophilus, determined at ~ 2.8 – 3.2 Å resolution, reveal a Fe-C distance of ~2.0 Å, a Cu-O distance of 2.4 Å and a Fe-C-O angle of ~126°. Upon photodissociation at 100 K, X-ray structures indicate loss of Fea3-CO and appearance of CuB-CO having a Cu-C distance of ~1.9 Å and an O-Fe distance of ~2.3 Å. Absolute FTIR spectra recorded from single crystals of reduced ba3–CO that had not been exposed to X-ray radiation, showed several peaks around 1975 cm−1; after photolysis at 100 K, the absolute FTIR spectra also showed a significant peak at 2050 cm−1. Analysis of the “light’ minus ‘dark’ difference spectra showed four very sharp CO stretching bands at 1970 cm−1, 1977 cm−1, 1981 cm−1, and 1985 cm−1, previously assigned to the Fea3-CO complex, and a significantly broader CO stretching band centered at ~2050 cm−1, previously assigned to the CO stretching frequency of CuB bound CO. As expected for light propagating along the tetragonal axis of the P43212 space group, the single crystal spectra exhibit negligible dichroism. Absolute FTIR spectrometry of a CO-laden ba3 crystal, exposed to an amount of X-ray radiation required to obtain structural data sets before FTIR characterization, showed a significant signal due to photogenerated CO2 at 2337 cm−1 and one from traces of CO at 2133 cm−1; while bands associated with CO bound to either Fea3 or to CuB in “light” minus “dark” FTIR difference spectra shifted and broadened in response to X-ray exposure. In spite of considerable radiation damage to the crystals, both X-ray analysis at 2.8 and 3.2 Å and FTIR spectra support the long-held position that photolysis of Fea3-CO in cytochrome c oxidases leads to significant trapping of the CO on the CuB atom; Fea3 and CuB ligation, at the resolutions reported here, are otherwise unaltered. PMID:22226917

  15. Raman and Fourier Transform Infrared (FT-IR) Mineral to Matrix Ratios Correlate with Physical Chemical Properties of Model Compounds and Native Bone Tissue.

    PubMed

    Taylor, Erik A; Lloyd, Ashley A; Salazar-Lara, Carolina; Donnelly, Eve

    2017-10-01

    Raman and Fourier transform infrared (FT-IR) spectroscopic imaging techniques can be used to characterize bone composition. In this study, our objective was to validate the Raman mineral:matrix ratios (ν 1 PO 4 :amide III, ν 1 PO 4 :amide I, ν 1 PO 4 :Proline + hydroxyproline, ν 1 PO 4 :Phenylalanine, ν 1 PO 4 :δ CH 2 peak area ratios) by correlating them to ash fraction and the IR mineral:matrix ratio (ν 3 PO 4 :amide I peak area ratio) in chemical standards and native bone tissue. Chemical standards consisting of varying ratios of synthetic hydroxyapatite (HA) and collagen, as well as bone tissue from humans, sheep, and mice, were characterized with confocal Raman spectroscopy and FT-IR spectroscopy and gravimetric analysis. Raman and IR mineral:matrix ratio values from chemical standards increased reciprocally with ash fraction (Raman ν 1 PO 4 /Amide III: P < 0.01, R 2  = 0.966; Raman ν 1 PO 4 /Amide I: P < 0.01, R 2  = 0.919; Raman ν 1 PO 4 /Proline + Hydroxyproline: P < 0.01, R 2  = 0.976; Raman ν 1 PO 4 /Phenylalanine: P < 0.01, R 2  = 0.911; Raman ν 1 PO 4 /δ CH 2 : P < 0.01, R 2  = 0.894; IR P < 0.01, R 2  = 0.91). Fourier transform infrared mineral:matrix ratio values from native bone tissue were also similar to theoretical mineral:matrix ratio values for a given ash fraction. Raman and IR mineral:matrix ratio values were strongly correlated ( P < 0.01, R 2  = 0.82). These results were confirmed by calculating the mineral:matrix ratio for theoretical IR spectra, developed by applying the Beer-Lambert law to calculate the relative extinction coefficients of HA and collagen over the same range of wavenumbers (800-1800 cm -1 ). The results confirm that the Raman mineral:matrix bone composition parameter correlates strongly to ash fraction and to its IR counterpart. Finally, the mineral:matrix ratio values of the native bone tissue are similar to those of both chemical standards and theoretical values, confirming the biological relevance of the chemical standards and the characterization techniques.

  16. Pressure effects on the structure, kinetic, and thermodynamic properties of heat-induced aggregation of protein studied by FT-IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Taniguchi, Y.; Okuno, A.; Kato, M.

    2010-03-01

    Pressure can retrain the heat-induced aggregation and dissociate the heat-induced aggregates. We observed the aggregation-preventing pressure effect and the aggregates-dissociating pressure effect to characterize the heat-induced aggregation of equine serum albumin (ESA) by FT-IR spectroscopy. The results suggest the α-helical structure collapses at the beginning of heat-induced aggregation through the swollen structure, and then the rearrangement of structure to the intermolecular β-sheet takes place through partially unfolded structure. We determined the activation volume for the heat-induced aggregation (ΔV# = +93 ml/mol) and the partial molar volume difference between native state and heat-induced aggregates (ΔV=+32 ml/mol). This positive partial molar volume difference suggests that the heat-induced aggregates have larger internal voids than the native structure. Moreover, the positive volume change implies that the formation of the intermolecular β-sheet is unfavorable under high pressure.

  17. Matching 4.7-Å XRD Spacing in Amelogenin Nanoribbons and Enamel Matrix

    PubMed Central

    Sanii, B.; Martinez-Avila, O.; Simpliciano, C.; Zuckermann, R.N.; Habelitz, S.

    2014-01-01

    The recent discovery of conditions that induce nanoribbon structures of amelogenin protein in vitro raises questions about their role in enamel formation. Nanoribbons of recombinant human full-length amelogenin (rH174) are about 17 nm wide and self-align into parallel bundles; thus, they could act as templates for crystallization of nanofibrous apatite comprising dental enamel. Here we analyzed the secondary structures of nanoribbon amelogenin by x-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) and tested if the structural motif matches previous data on the organic matrix of enamel. XRD analysis showed that a peak corresponding to 4.7 Å is present in nanoribbons of amelogenin. In addition, FTIR analysis showed that amelogenin in the form of nanoribbons was comprised of β-sheets by up to 75%, while amelogenin nanospheres had predominantly random-coil structure. The observation of a 4.7-Å XRD spacing confirms the presence of β-sheets and illustrates structural parallels between the in vitro assemblies and structural motifs in developing enamel. PMID:25048248

  18. A combined experimental and theoretical studies on FT-IR, FT-Raman and UV-vis spectra of 2-chloro-3-quinolinecarboxaldehyde

    NASA Astrophysics Data System (ADS)

    Prasad, M. V. S.; Udaya Sri, N.; Veeraiah, V.

    2015-09-01

    In the present study, the FT-IR and FT-Raman spectra of 2-chloro-3-quinolinecarboxaldehyde (2Cl3QC) have been recorded in the region 4000-400 and 3500-50 cm-1, respectively. The fundamental modes of vibrational frequencies of 2Cl3QC are assigned. Theoretical information on the optimized geometry, harmonic vibrational frequencies, infrared and Raman intensities were obtained by means of density functional theory (DFT) gradient calculations with complete relaxation in the potential energy surface using 6-31G(d,p) basis set. The vibrational frequencies which were determined experimentally from the spectral data are compared with those obtained theoretically from DFT calculations. A close agreement was achieved between the observed and calculated frequencies by refinement of the scale factors. The infrared and Raman spectra were also predicted from the calculated intensities. Thermodynamic properties like entropy, heat capacity, zero point energy, have been calculated for the molecule. The predicted first hyperpolarizability also shows that the molecule might have a reasonably good non-linear optical (NLO) behavior. The calculated HOMO-LUMO energy gap reveals that charge transfer occurs within the molecule. Stability of the molecule arising from hyper conjugative interactions, charge delocalization have been analyzed using natural bond orbitals (NBO) analysis. The results show that charge in electron density (ED) in the π∗ antibonding orbitals and E(2) energies confirms the occurrence of ICT (intra-molecular charge transfer) within the molecule. UV-visible spectrum of the title molecule has also been calculated using TD-DFT/CAM-B3LYP/6-31G(d,p) method. The calculated energy and oscillator strength almost exactly reproduces reported experimental data.

  19. Spectroscopic investigations (FT-IR, UV, 1H and 13C NMR) and DFT/TD-DFT calculations of potential analgesic drug 2-[2-(dimethylamino)ethyl]-6-methoxy-4-(pyridin-2-yl)-1(2H)-phthalazinone

    NASA Astrophysics Data System (ADS)

    Sroczyński, Dariusz; Malinowski, Zbigniew

    2017-12-01

    The theoretical molecular geometry and the IR, UV, 1H and 13C NMR spectroscopic properties of 2-[2-(dimethylamino)ethyl]-6-methoxy-4-(pyridin-2-yl)-1(2H)-phthalazinone with the previously demonstrated in vivo analgesic activity were characterized. The conformational analysis, performed using the molecular mechanics method with the General AMBER Force Field (GAFF) and the Density Functional Theory (DFT) approach with the B3LYP hybrid functional and the 6-31 + g(d) basis sets, allowed to determine the most stable rotamer. The theoretical molecular geometry of this conformer was then calculated at the B3LYP/6-311++g(d,p) level of theory, and its phthalazinone core was compared with the experimental geometry of 1(2H)-phthalazinone. The calculated vibrational frequencies and the potential energy distribution enabled to assign the theoretical vibrational modes to the experimental FT-IR bands. The UV spectrum calculated with the Time-Dependent Density Functional Theory (TD-DFT) method in methanol identified the main electronic transitions and their character. 1H and 13C NMR chemical shifts simulated by the Gauge-Independent Atomic Orbital (GIAO) method in chloroform confirmed the previous assignment of the experimental resonance signals. The stability of the molecule was considered taking into account the hyperconjugation and electron density delocalization effects evaluated by the Natural Bond Orbital (NBO) method. The calculated spatial distribution of molecular electrostatic potential made possible to estimate the regions with nucleophilic and electrophilic properties. The results of the potentiodynamic polarization measurements were also indicated the corrosion inhibition activity of the title compound on 100Cr6 bearing steel in 1 mol dm-3 HCl solution.

  20. A combined experimental and theoretical studies on FT-IR, FT-Raman and UV-vis spectra of 2-chloro-3-quinolinecarboxaldehyde.

    PubMed

    Prasad, M V S; Udaya Sri, N; Veeraiah, V

    2015-09-05

    In the present study, the FT-IR and FT-Raman spectra of 2-chloro-3-quinolinecarboxaldehyde (2Cl3QC) have been recorded in the region 4000-400 and 3500-50 cm(-1), respectively. The fundamental modes of vibrational frequencies of 2Cl3QC are assigned. Theoretical information on the optimized geometry, harmonic vibrational frequencies, infrared and Raman intensities were obtained by means of density functional theory (DFT) gradient calculations with complete relaxation in the potential energy surface using 6-31G(d,p) basis set. The vibrational frequencies which were determined experimentally from the spectral data are compared with those obtained theoretically from DFT calculations. A close agreement was achieved between the observed and calculated frequencies by refinement of the scale factors. The infrared and Raman spectra were also predicted from the calculated intensities. Thermodynamic properties like entropy, heat capacity, zero point energy, have been calculated for the molecule. The predicted first hyperpolarizability also shows that the molecule might have a reasonably good non-linear optical (NLO) behavior. The calculated HOMO-LUMO energy gap reveals that charge transfer occurs within the molecule. Stability of the molecule arising from hyper conjugative interactions, charge delocalization have been analyzed using natural bond orbitals (NBO) analysis. The results show that charge in electron density (ED) in the π(∗) antibonding orbitals and E((2)) energies confirms the occurrence of ICT (intra-molecular charge transfer) within the molecule. UV-visible spectrum of the title molecule has also been calculated using TD-DFT/CAM-B3LYP/6-31G(d,p) method. The calculated energy and oscillator strength almost exactly reproduces reported experimental data. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Photoacoustic FTIR spectroscopic study of undisturbed human cortical bone

    NASA Astrophysics Data System (ADS)

    Gu, Chunju; Katti, Dinesh R.; Katti, Kalpana S.

    2013-02-01

    Chemical pretreatment has been the prevailing sample preparation procedure for infrared (IR) spectroscopic studies on bone. However, experiments have indicated that chemical pretreatment can potentially affect the interactions between the components. Typically the IR techniques have involved transmission experiments. Here we report experimental studies using photoacoustic Fourier transform infrared spectroscopy (PA-FTIR). As a nondestructive technique, PA-FTIR can detect absorbance spectrum from a sample at controllable sampling depth and with little or no sample preparation. Additionally, the coupling inert gas, helium, which is utilized in the PA-FTIR system, can inhibit bacteria growth of bone by displacing oxygen. Therefore, we used this technique to study the undisturbed human cortical bone. It is found that photoacoustic mode (linear-scan, LS-PA-FTIR) can obtain basically similar spectra of bone as compared to the traditional transmission mode, but it seems more sensitive to amide III and ν2 carbonate bands. The ν3 phosphate band is indicative of detailed mineral structure and symmetry of native bone. The PA-FTIR depth profiling experiments on human cortical bone also indicate the influence of water on OH band and the cutting effects on amide I and mineral bands. Our results indicate that phosphate ion geometry appears less symmetric in its undisturbed state as detected by the PA-FTIR as compared to higher symmetry observed using transmission techniques on disturbed samples. Moreover, the PA-FTIR spectra indicate a band at 1747 cm-1 possibly resulting from Cdbnd O stretching of lipids, cholesterol esters, and triglycerides from the arteries. Comparison of the spectra in transverse and longitudinal cross-sections demonstrates that, the surface area of the longitudinal section bone appears to have more organic matrix exposed and with higher mineral stoichiometry.

  2. Preparation and characterization of a novel pH-sensitive hydrogel obtained from UV light-induced polymerization

    NASA Astrophysics Data System (ADS)

    Tian, R. Q.; Zhao, Y. G.; Cui, Y. Q.; Zhang, X. Y.; Zhang, J.; Liang, X. Y.; Shang, Q.

    2015-05-01

    The main aim of this study was to develop a novel pH-sensitive hydrogel prepared via an UV light-induced polymerization. Single-factor experiments were performed to acquire the optimum formula of final poly(MAA-co-PEGMA) hydrogel. Fourier transform infrared spectroscopy (FTIR) spectra were employed to confirm the successful preparation of the designed copolymers. Inner morphologies of the polymeric hydrogels were observed via an S-4800 scanning electron microscope (SEM). Swelling and reversible swelling-shrinking studies were carried out in different phosphate buffer solution (PBS) with various pH values. Drug-loading tests were performed with bovine serum albumin (BSA) as a model drug. The in vitro release profile was also investigated in PBS with the pH values of 1.2 and 7.4. FTIR spectra confirmed the preparation of the poly(MAA-co-PEGMA) copolymers without any residual monomers. The typical space grid structures were observed from the SEM photographs of hydrogels. The obtained hydrogel showed an excellent pH-sensibility and reversible swelling-shrinking property. The maximum drug-loading (40.9 %) was gained from the BSA concentration of 50.0 mg/mL. During the releasing process, only 5.8 ± 0.9 % of BSA was released at pH 1.2, but 82.1 ± 6.2 % was diffused at pH 7.4. These data suggested that such medicated hydrogel could deliver BSA to alkaline conditions (e.g., intestinal environments) site-specifically, which protected BSA from destroying by gastric acid or pepsase. Therefore, such hydrogel had a significant meaning in theoretical research and practical application.

  3. Spectroscopic [FT-IR and FT-Raman] and theoretical [UV-Visible and NMR] analysis on α-Methylstyrene by DFT calculations.

    PubMed

    Karthikeyan, N; Joseph Prince, J; Ramalingam, S; Periandy, S

    2015-05-15

    In the present research work, the FT-IR, FT-Raman and (13)C and (1)H NMR spectra of the α-Methylstyrene were recorded. The observed fundamental frequencies in finger print as well as functional group regions were assigned according to their uniqueness region. The Gaussian computational calculations are carried out by HF and DFT (B3LYP and B3PW91) methods with 6-31++G(d,p) and 6-311++G(d,p) basis sets and the corresponding results were tabulated. The impact of the presence of vinyl group in phenyl structure of the compound is investigated. The modified vibrational pattern of the molecule associated vinyl group was analyzed. Moreover, (13)C NMR and (1)H NMR were calculated by using the gauge independent atomic orbital (GIAO) method with B3LYP methods and the 6-311++G(d,p) basis set and their spectra were simulated and the chemical shifts linked to TMS were compared. A study on the electronic and optical properties; absorption wavelengths, excitation energy, dipole moment and frontier molecular orbital energies were carried out. The kubo gap of the present compound was calculated related to HOMO and LUMO energies which confirm the occurring of charge transformation between the base and ligand. Besides frontier molecular orbitals (FMO), molecular electrostatic potential (MEP) was performed. The NLO properties related to Polarizability and hyperpolarizability based on the finite-field approach were also discussed. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  4. Quantum mechanical and spectroscopic (FT-IR, FT-Raman) study, NBO analysis, HOMO-LUMO, first order hyperpolarizability and molecular docking study of methyl[(3R)-3-(2-methylphenoxy)-3-phenylpropyl]amine by density functional method

    NASA Astrophysics Data System (ADS)

    Kuruvilla, Tintu K.; Prasana, Johanan Christian; Muthu, S.; George, Jacob; Mathew, Sheril Ann

    2018-01-01

    Quantum chemical techniques such as density functional theory (DFT) have become a powerful tool in the investigation of the molecular structure and vibrational spectrum and are finding increasing use in application related to biological systems. The Fourier transform infrared (FT-IR) and Fourier transform Raman (FT-Raman) techniques are employed to characterize the title compound. The vibrational frequencies were obtained by DFT/B3LYP calculations with 6-31G(d,p) and 6-311 ++G(d,p) as basis sets. The geometry of the title compound was optimized. The vibrational assignments and the calculation of Potential Energy Distribution (PED) were carried out using the Vibrational Energy Distribution Analysis (VEDA) software. Molecular electrostatic potential was calculated for the title compound to predict the reactive sites for electrophilic and nucleophilic attack. In addition, the first-order hyperpolarizability, HOMO and LUMO energies, Fukui function and NBO were computed. The thermodynamic properties of the title compound were calculated at different temperatures, revealing the correlations between heat capacity (C), entropy (S) and enthalpy changes (H) with temperatures. Molecular docking studies were also conducted as part of this study. The paper further explains the experimental results which are in line with the theoretical calculations and provide optimistic evidence through molecular docking that the title compound can act as a good antidepressant. It also provides sufficient justification for the title compound to be selected as a good candidate for further studies related to NLO properties.

  5. Synthesis, characterization, nano-sized binuclear nickel complexes, DFT calculations and antibacterial evaluation of new macrocyclic Schiff base compounds

    NASA Astrophysics Data System (ADS)

    Parsaee, Zohreh; Mohammadi, Khosro

    2017-06-01

    Some new macrocyclic bridged dianilines tetradentate with N4coordination sphere Schiff base ligands and their nickel(II)complexes with general formula [{Ni2LCl4} where L = (C20H14N2X)2, X = SO2, O, CH2] have been synthesized. The compounds have been characterized by FT-IR, 1H and 13C NMR, mass spectroscopy, TGA, elemental analysis, molar conductivity and magnetic moment techniques. Scanning electron microscopy (SEM) shows nano-sized structures under 100 nm for nickel (II) complexes. NiO nanoparticle was achieved via the thermal decomposition method and analyzed by FT-IR, SEM and X-ray powder diffraction which indicates closeaccordance to standard pattern of NiO nanoparticle. All the Schiff bases and their complexes have been detected in vitro both for antibacterial activity against two gram-negative and two gram-positive bacteria. The nickel(II) complexes were found to be more active than the free macrocycle Schiff bases. In addition, computational studies of three ligands have been carried out at the DFT-B3LYP/6-31G+(d,p) level of theory on the spectroscopic properties, including IR, 1HNMR and 13CNMR spectroscopy. The correlation between the theoretical and the experimental vibrational frequencies, 1H NMR and 13C NMR of the ligands were 0.999, 0.930-0.973 and 0.917-0.995, respectively. Also, the energy gap was determined and by using HOMO and LUMO energy values, chemical hardness-softness, electronegativity and electrophilic index were calculated.

  6. The spectroscopic (FT-IR, FT-Raman, dispersive Raman and NMR) study of ethyl-6-chloronicotinate molecule by combined density functional theory

    NASA Astrophysics Data System (ADS)

    Karabacak, Mehmet; Calisir, Zuhre; Kurt, Mustafa; Kose, Etem; Atac, Ahmet

    2016-01-01

    In this study, ethyl-6-chloronicotinate (E-6-ClN) molecule is recorded in the region 4000-400 cm- 1 and 3500-100 cm- 1 (FT-IR, FT-Raman and dispersive Raman, respectively) in the solid phase. 1H and 13C nuclear magnetic resonance (NMR) spectra are recorded in DMSO solution. The structural and spectroscopic data of the molecule are obtained for two possible isomers (S1 and S2) from DFT (B3LYP) with 6-311++G(d,p) basis set calculations. The geometry of the molecule is fully optimized, vibrational spectra are calculated and fundamental vibrations are assigned on the basis of the potential energy distribution (PED) of the vibrational modes. 1H and 13C NMR chemical shifts are calculated by using the gauge-invariant atomic orbital (GIAO) method. The electronic properties, such as excitation energies, oscillator strengths, wavelengths, HOMO and LUMO energies, are performed by time-dependent density functional theory (TD-DFT). Total and partial density of state and overlap population density of state diagrams analysis are presented for E-6-ClN molecule. Furthermore, frontier molecular orbitals (FMO), molecular electrostatic potential, and thermodynamic features are performed. In addition to these, reduced density gradient of the molecule is performed and discussed. As a conclusion, the calculated results are compared with the experimental spectra of the title compound. The results of the calculations are applied to simulate the vibrational spectra of the molecule, which show excellent agreement with the observed ones. The theoretical and tentative results will give us a detailed description of the structural and physicochemical properties of the molecule. Natural bond orbital analysis is done to have more information stability of the molecule arising from charge delocalization, and to reveal the information regarding charge transfer within the molecules.

  7. Vibrational spectroscopy (FT-IR and FT-Raman) investigation, and hybrid computational (HF and DFT) analysis on the structure of 2,3-naphthalenediol.

    PubMed

    Shoba, D; Periandy, S; Karabacak, M; Ramalingam, S

    2011-12-01

    The FT-IR and FT-Raman vibrational spectra of 2,3-naphthalenediol (C(10)H(8)O(2)) have been recorded using Bruker IFS 66V spectrometer in the range of 4000-100 cm(-1) in solid phase. A detailed vibrational spectral analysis has been carried out and the assignments of the observed fundamental bands have been proposed on the basis of peak positions and relative intensities. The optimized molecular geometry and vibrational frequencies in the ground state are calculated by using the ab initio Hartree-Fock (HF) and DFT (LSDA and B3LYP) methods with 6-31+G(d,p) and 6-311+G(d,p) basis sets. There are three conformers, C1, C2 and C3 for this molecule. The computational results diagnose the most stable conformer of title molecule as the C1 form. The isotropic computational analysis showed good agreement with the experimental observations. Comparison of the fundamental vibrational frequencies with calculated results by HF and DFT methods. Comparison of the simulated spectra provides important information about the capability of computational method to describe the vibrational modes. A study on the electronic properties, such as absorption wavelengths, excitation energy, dipole moment and Frontier molecular orbital energies, are performed by time dependent DFT approach. The electronic structure and the assignment of the absorption bands in the electronic spectra of steady compounds are discussed. The calculated HOMO and LUMO energies show that charge transfer occurs within the molecule. On the basis of the thermodynamic properties of the title compound at different temperatures have been calculated. The statistical thermodynamic properties (standard heat capacities, standard entropies, and standard enthalpy changes) and their correlations with temperature have been obtained from the theoretical vibrations. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  8. High-performance polymer waveguide devices via low-cost direct photolithography process

    NASA Astrophysics Data System (ADS)

    Wang, Jianguo; Shustack, Paul J.; Garner, Sean M.

    2002-09-01

    All-optical networks provide unique opportunities for polymer waveguide devices because of their excellent mechanical, thermo-optic, and electro-optic properties. Polymer materials and components have been viewed as a viable solution for metropolitan and local area networks where high volume and low cost components are needed. In this paper, we present our recent progress on the design and development of photoresist-like highly fluorinated maleimide copolymers including waveguide fabrication and optical testing. We have developed and synthesized a series of thermally stable, (Tg>150 oC, Td>300 oC) highly fluorinated (>50%) maleimide copolymers by radical co-polymerization of halogenated maleimides with various halogenated co-monomers. A theoretical correlation between optical loss and different co-polymer structures has been quantitatively established from C-H overtone analysis. We studied this correlation through design and manipulation of the copolymer structure by changing the primary properties such as molecular weight, copolymer composition, copolymer sequence distribution, and variations of the side chain including photochemically functional side units. Detailed analysis has been obtained using various characterization methods such as (H, C13, F19) NMR, UV-NIR, FTIR, GPC and so forth. The co-polymers exhibit excellent solubility in ketone solvents and high quality thin films can be prepared by spin coating. The polymer films were found to have a refractive index range of 1.42-1.67 and optical loss in the range of 0.2 to 0.4 dB/cm at 1550nm depending on the composition as extrapolated from UV-NIR spectra. When glycidyl methacrylate is incorporated into the polymer backbone, the material behaves like a negative photoresist with the addition of cationic photoinitiator. The final crosslinked waveguides show excellent optical and thermal properties. The photolithographic processing of the highly fluorinated copolymer material was examined in detail using in-situ FTIR. The influence of various polymer

  9. Characterization of postmortem biochemical changes in rabbit plasma using ATR-FTIR combined with chemometrics: A preliminary study

    NASA Astrophysics Data System (ADS)

    Zhang, Ji; Li, Bing; Wang, Qi; Li, Chengzhi; Zhang, Yinming; Lin, Hancheng; Wang, Zhenyuan

    2017-02-01

    Postmortem interval (PMI) determination is one of the most challenging tasks in forensic medicine due to a lack of accurate and reliable methods. It is especially difficult for late PMI determination. Although many attempts with various types of body fluids based on chemical methods have been made to solve this problem, few investigations are focused on blood samples. In this study, we employed an attenuated total reflection (ATR)-Fourier transform infrared (FTIR) technique coupled with principle component analysis (PCA) to monitor biochemical changes in rabbit plasma with increasing PMI. Partial least square (PLS) model was used based on the spectral data for PMI prediction in an independent sample set. Our results revealed that postmortem chemical changes in compositions of the plasma were time-dependent, and various components including proteins, lipids and nucleic acids contributed to the discrimination of the samples at different time points. A satisfactory prediction within 48 h postmortem was performed by the combined PLS model with a good fitting between actual and predicted PMI of 0.984 and with an error of ± 1.92 h. In consideration of the simplicity and portability of ATR-FTIR, our preliminary study provides an experimental and theoretical basis for application of this technique in forensic practice.

  10. Matrix isolation FT-IR and theoretical DFT/B3LYP spectrum of 1-naphthol.

    PubMed

    Muzomwe, Mayawila; Boeckx, Bram; Maes, Guido; Kasende, Okuma E

    2013-05-01

    The FT-IR spectrum of 1-Naphthol isolated in an argon matrix is performed and compared to the infrared spectra calculated at the DFT (B3LYP)/6-31+G(d) level for cis-1-Naphthol and trans-1-Naphthol rotamers in order to clarify the existence of both rotamers in the standard temperature. Comparison of the computed and the experimental matrix spectra reveals the presence in 1-Naphthol argon matrices in the standard temperature of both cis and trans rotameric forms of 1-Naphthol, the last predominating. The relative stability of the trans-1-Naphthol rotamer has also been supported by a fit comparison between the difference of predicted total energy (ETC) of both rotamers of 0.00195 a.u. corresponding to 5.12 kJ mol(-1) and the variation of the standard free Gibbs energy of rotamerization (ΔGr°) of 5.06 kJ mol(-1). Almost all 51 active vibrational modes of 1-Naphthol have been assigned. The stretching vibration of the OH group (νOH) appears to be the unique vibrational mode distinguishing the cis-1-NpOH rotamer from the trans-1-NpOH rotamer in FT-IR spectrum. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Synthesis, characterization, computational studies and biological evaluation of S-benzyl-β-N-[3-(4-hydroxy-3-methoxy-phenylallylidene)]dithiocarbazate

    NASA Astrophysics Data System (ADS)

    Bhat, Rayees A.; Kumar, D.; Malla, Manzoor A.; Bhat, Sami U.; Khan, Md Shahzad; Manzoor, Ovais; Srivastava, Anurag; Naikoo, Rawoof A.; Mohsin, Mohd; Mir, Muzzaffar A.

    2018-03-01

    S-Benzyl-β-N-[3-(4-hydroxy-3-methoxy-phenylallylidene)]dithiocarbazate (HL1), Schiff base of S-benzyl dithiocarbazate, was synthesized by 1:1 condensation between S-benzyl dithiocarbazate and 4-hydroxy-3-methoxy cinnamaldehyde. The nitrogen-sulfur Schiff base (HL1) was characterized by Mass, FT-IR, H1-NMR, Raman, and UV-VIS spectroscopic techniques. Theoretical quantum chemical calculations were performed using DFT in combination with B3LYP exchange correlation functional and 6-311++ G (d, p) basis sets level. The calculated values of chemical potential (μ), HOMO-LUMO energy gap, chemical hardness, softness (S), ionization energy (IE), electron affinity (EA), dipole moment (D) and relative stabilization energy of the compound were 0.14881 eV, 0.12542 eV, 0.06271 eV, 3.37299 eV, -0.21152 eV, -0.08610 eV, 4.4090 Debye and -1753.350 eV respectively. Theoretically calculated parameters like H1-NMR, FT-IR, UV-VIS, Raman, electrostatic potential and HOMO-LUMO energy gap are in good agreement with experimental results. Also, in-vitro cytotoxicity studies were done against two habitually infection causing bacteria strains including gram-positive (S. aureus) and gram-negative (E. coli) for antibacterial activity. The results showed appreciable biological activity and the activity increased with increase in dose.

  12. Characterization of superabsorbent hydrogel based on epichlorohydrin crosslink and carboxymethyl functionalization of cassava starch

    NASA Astrophysics Data System (ADS)

    Muharam, S.; Yuningsih, L. M.; Sumitra, M. R.

    2017-07-01

    Superabsorbent hydrogel was prepared by epichlorohydrin crosslink of cassava starch. Their swelling improved with added carboxymethyl group on the starch-epichlorohydrin structure. The structure and properties of starch-epichlorohydrin-carboxymethyl hydrogel were measured by SEM, FTIR, water and physiological solution absorption test and water retention test. The result showed that hydrogel displayed macroporous with heterogenous distribution and irregular surface was formed by epichlorohydrin and carboxymethyl bond in the structure of hydrogel. It was confirmed also by the FTIR spectra. The swelling ratio of starch-epichlorohydrin hydrogel to the water is 518 % and increased to 1,028.5 % with carboxymethyl addition on the structure. The best influence of the physiological solution to the swelling ratio of starch-epichlorohydrin-carboxymethyl hydrogel is urea solution. The water retention of starch-epichlorohydrin-carboxymethyl hydrogel in NaCl solution is better than in CaCl2 solution.

  13. Structural and magnetic properties of chromium doped zinc ferrite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sebastian, Rintu Mary; Thankachan, Smitha; Xavier, Sheena

    2014-01-28

    Zinc chromium ferrites with chemical formula ZnCr{sub x}Fe{sub 2−x}O{sub 4} (x = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0) were prepared by Sol - Gel technique. The structural as well as magnetic properties of the synthesized samples have been studied and reported here. The structural characterizations of the samples were analyzed by using X – Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscope (SEM), and Transmission Electron Microscope (TEM). The single phase spinel cubic structure of all the prepared samples was tested by XRD and FTIR. The particle size was observed to decrease from 18.636 nm to 6.125more » nm by chromium doping and induced a tensile strain in all the zinc chromium mixed ferrites. The magnetic properties of few samples (x = 0.0, 0.4, 1.0) were investigated using Vibrating Sample Magnetometer (VSM)« less

  14. Microstructural and Photoacoustic Infrared Spectroscopic Studies of Human Cortical Bone with Osteogenesis Imperfecta

    NASA Astrophysics Data System (ADS)

    Gu, Chunju; Katti, Dinesh R.; Katti, Kalpana S.

    2016-04-01

    The molecular basis of bone disease osteogenesis imperfecta (OI) and the mineralization of hydroxyapatite in OI bone have been of significant research interest. To further investigate the mechanism of OI disease and bone mineralization, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy, and x-ray diffraction (XRD) are used in the present study to describe the structural and compositional differences between OI and healthy bone. OI bone exhibits more porous, fibrous features, abnormal collagen fibrils, and abnormal mineral deposits. Likewise, photoacoustic-FTIR experiments indicate an aberrant collagen structure and an altered mineral structure in OI. In contrast, there is neither significant difference in the non-collagenous proteins (NCPs) composition observed nor apparent change in the crystal structure between OI and healthy bone minerals as shown in XRD and energy-dispersive x-ray spectroscopy (EDS) results. This observation indicates that the biomineralization process is more controlled by the bone cells and non-collagenous phosphorylated proteins. The present study also confirms that there is an orientational influence on the stoichiometry of the mineral in OI bone. Also, a larger volume of the hydrated layer in the transverse plane than the longitudinal plane of the mineral crystal structure is proposed. The appearance of a new C-S band in the FTIR spectra in OI bone suggests the substitution of glycine by cysteine in collagen molecules or/and an increased amount of cysteine-rich osteonectin that relates to mineral nucleation and mineral crystal formation.

  15. Applications of Micro-Fourier Transform Infrared Spectroscopy (FTIR) in the Geological Sciences—A Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yanyan; Zou, Caineng; Mastalerz, Maria

    Fourier transform infrared spectroscopy (FTIR) can provide crucial information on the molecular structure of organic and inorganic components and has been used extensively for chemical characterization of geological samples in the past few decades. In this paper, recent applications of FTIR in the geological sciences are reviewed. Particularly, its use in the characterization of geochemistry and thermal maturation of organic matter in coal and shale is addressed. These investigations demonstrate that the employment of high-resolution micro-FTIR imaging enables visualization and mapping of the distributions of organic matter and minerals on a micrometer scale in geological samples, and promotes an advancedmore » understanding of heterogeneity of organic rich coal and shale. Additionally, micro-FTIR is particularly suitable for in situ, non-destructive characterization of minute microfossils, small fluid and melt inclusions within crystals, and volatiles in glasses and minerals. This technique can also assist in the chemotaxonomic classification of macrofossils such as plant fossils. These features, barely accessible with other analytical techniques, may provide fundamental information on paleoclimate, depositional environment, and the evolution of geological (e.g., volcanic and magmatic) systems.« less

  16. Applications of Micro-Fourier Transform Infrared Spectroscopy (FTIR) in the Geological Sciences—A Review

    DOE PAGES

    Chen, Yanyan; Zou, Caineng; Mastalerz, Maria; ...

    2015-12-18

    Fourier transform infrared spectroscopy (FTIR) can provide crucial information on the molecular structure of organic and inorganic components and has been used extensively for chemical characterization of geological samples in the past few decades. In this paper, recent applications of FTIR in the geological sciences are reviewed. Particularly, its use in the characterization of geochemistry and thermal maturation of organic matter in coal and shale is addressed. These investigations demonstrate that the employment of high-resolution micro-FTIR imaging enables visualization and mapping of the distributions of organic matter and minerals on a micrometer scale in geological samples, and promotes an advancedmore » understanding of heterogeneity of organic rich coal and shale. Additionally, micro-FTIR is particularly suitable for in situ, non-destructive characterization of minute microfossils, small fluid and melt inclusions within crystals, and volatiles in glasses and minerals. This technique can also assist in the chemotaxonomic classification of macrofossils such as plant fossils. These features, barely accessible with other analytical techniques, may provide fundamental information on paleoclimate, depositional environment, and the evolution of geological (e.g., volcanic and magmatic) systems.« less

  17. Electrical properties of samarium cobaltite nanoparticles synthesized using Sol–Gel autocombustion route

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sathyamoorthy, B.; Md Gazzali, P.M.; Murugesan, C.

    2014-05-01

    Highlights: • The structural evolution and its electrical properties of samarium cobaltite nanograins are discussed. • Optimization of SmCoO{sub 3} nanograins is achieved by post sintering as-prepared gel at 800 °C. • The impedance spectra indicate the semiconducting behavior SmCoO{sub 3} nanograins. - Abstract: Nanograins of SmCoO{sub 3} are prepared by citric acid assisted Sol–Gel autocombustion route. The characterizations of crystal structure, surface morphology and electrical properties of SmCoO{sub 3} powder are done using XRD, HRSEM, FTIR and BDS. The structural evolution of SmCoO{sub 3} upon increasing the annealing temperature is followed using XRD and FTIR analyses. The powder samplemore » contains polycrystalline grains with average size equal to 35 nm and orthorhombic perovskite structure with Pbnm space group. The vibrational bands observed in FTIR spectrum at 545 cm{sup −1} and 439 cm{sup −1} correspond to Co-O stretching modes in cobaltite system. HRSEM images of the sample show the formation of hexagonal shaped grains of samarium cobaltite. The AC electrical conductivity of 4.914 × 10{sup −5} S cm{sup −1} at 295 K is measured for SmCoO{sub 3} nanoparticles. The impedance spectra bring out the semiconducting behavior of the material.« less

  18. Comparative evaluation of bioactivity of crystalline trypsin for drying by Fourier-transformed infrared spectroscopy.

    PubMed

    Otsuka, Makoto; Fukui, Yuya; Ozaki, Yukihiro

    2009-03-01

    The purpose of this study was to evaluate the enzymatic stability of colloidal trypsin powder during heating in a solid-state by using Fourier transform infrared (FT-IR) spectra with chemoinformatics and generalized two-dimensional (2D) correlation spectroscopy. Colloidal crystalline trypsin powders were heated using differential scanning calorimetry. The enzymatic activity of trypsin was assayed by the kinetic degradation method. Spectra of 10 calibration sample sets were recorded three times with a FT-IR spectrometer. The maximum intensity at 1634cm(-1) of FT-IR spectra and enzymatic activity of trypsin decreased as the temperature increased. The FT-IR spectra of trypsin samples were analyzed by a principal component regression analysis (PCR). A plot of the calibration data obtained was made between the actual and predicted trypsin activity based on a two-component model with gamma(2)=0.962. On the other hand, a 2D method was applied to FT-IR spectra of heat-treated trypsin. The result was consistent with that of the chemoinformetrical method. The results for deactivation of colloidal trypsin powder by heat-treatment indicated that nano-structure of crystalline trypsin changed by heating reflecting that the beta-sheet was mainly transformed, since the peak at 1634cm(-1) decreased with dehydration. The FT-IR chemoinformetrical method allows for a solid-state quantitative analysis of the bioactivity of the bulk powder of trypsin during drying.

  19. Electron paramagnetic resonance and FT-IR spectroscopic studies of glycine anhydride and betaine hydrochloride

    NASA Astrophysics Data System (ADS)

    Halim Başkan, M.; Kartal, Zeki; Aydın, Murat

    2015-12-01

    Gamma irradiated powders of glycine anhydride and betaine hydrochloride have been investigated at room temperature by electron paramagnetic resonance (EPR). In these compounds, the observed paramagnetic species were attributed to the R1 and R2 radicals, respectively. It was determined that the free electron interacted with environmental protons and 14N nucleus in both radicals. The EPR spectra of gamma irradiated powder samples remained unchanged at room temperature for two weeks after irradiation. Also, the Fourier Transform Infrared (FT-IR), FT-Raman and thermal analyses of both compounds were investigated. The functional groups in the molecular structures of glycine anhydride and betaine hydrochloride were identified by vibrational spectroscopies (FT-IR and FT-Raman).

  20. Synthesis and characterization of β-napthalene sulphonic acid doped poly(o-anisidine)

    NASA Astrophysics Data System (ADS)

    Sangamithirai, D.; Narayanan, V.; Stephen, A.

    2014-04-01

    Poly(o-anisidine) doped with β-napthalene sulphonic acid (β-NSA) was synthesized using ammonium persulphate as an oxidizing agent. The polymer was characterized by using FTIR, XRD and conductivity measurements. The FTIR spectra reveal the presence of functional groups that account for the formation of polymer. The structure was characterized by XRD. The conductivity of the poly(o-anisidine) salt was found to be 2.25 × 10-6 S/m.

  1. Mechanisms of siderophore sorption to smectite and siderophore-enhanced release of structural Fe 3+

    NASA Astrophysics Data System (ADS)

    Haack, Elizabeth A.; Johnston, Cliff T.; Maurice, Patricia A.

    2008-07-01

    Sorption of the trihydroxamate siderophores desferrioxamine-B and -D (DFOB and DFOD, respectively) and of the monohydroxamate ligand acetohydroxamic acid (aHA) to smectite were examined in batch sorption studies (pH 5.5, 0.1 M ionic strength) coupled with X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. Both DFOB and DFOD, which have similar molecular structures but different charge properties (cationic versus neutral, respectively) showed a high affinity for smectite. In contrast, the smaller aHA molecule did not sorb appreciably. XRD analysis indicated that DFOB and DFOD each absorbed in the interlamellar region of the clay to give d-spacings of 13.4-13.7 Å at equilibrium solution concentrations <250 μM. FTIR spectra of sorbed DFOB and DFOD indicated that the conformation of each species was distinct from its conformation in the crystalline or dissolved states. At elevated initial solution concentrations of 500-1500 μM, DFOB formed a bilayer in the clay interlayer. Changes in the FTIR spectra of the DFOB-loaded clay samples at these higher surface loadings were consistent with the presence of a metal-siderophore complex in the interlayer. DFOB and DFOD both enhanced Fe and Al release from smectite, but aHA did not. Possible dissolution mechanisms are discussed in light of the FTIR and batch dissolution results.

  2. FTIR and Raman spectroscopic studies of selenium nanoparticles synthesised by the bacterium Azospirillum thiophilum

    NASA Astrophysics Data System (ADS)

    Tugarova, Anna V.; Mamchenkova, Polina V.; Dyatlova, Yulia A.; Kamnev, Alexander A.

    2018-03-01

    Vibrational (Fourier transform infrared (FTIR) and Raman) spectroscopic techniques can provide unique molecular-level information on the structural and compositional characteristics of complicated biological objects. Thus, their applications in microbiology and related fields are steadily increasing. In this communication, biogenic selenium nanoparticles (Se NPs) were obtained via selenite (SeO32-) reduction by the bacterium Azospirillum thiophilum (strain VKM B-2513) for the first time, using an original methodology for obtaining extracellular NPs. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) showed the Se NPs to have average diameters within 160-250 nm; their zeta potential was measured to be minus 18.5 mV. Transmission FTIR spectra of the Se NPs separated from bacterial cells showed typical proteinacious, polysaccharide and lipid-related bands, in line with TEM data showing a thin layer covering the Se NPs surface. Raman spectra of dried Se NPs layer in the low-frequency region (under 500 cm-1 down to 150 cm-1) showed a single very strong band with a maximum at 250 cm-1 which, in line with its increased width (ca. 30 cm-1 at half intensity), can be attributed to amorphous elementary Se. Thus, a combination of FTIR and Raman spectroscopic approaches is highly informative in non-destructive analysis of structural and compositional properties of biogenic Se NPs.

  3. XRD and FTIR crystallinity indices in sound human tooth enamel and synthetic hydroxyapatite.

    PubMed

    Reyes-Gasga, José; Martínez-Piñeiro, Esmeralda L; Rodríguez-Álvarez, Galois; Tiznado-Orozco, Gaby E; García-García, Ramiro; Brès, Etienne F

    2013-12-01

    The crystallinity index (CI) is a measure of the percentage of crystalline material in a given sample and it is also correlated to the degree of order within the crystals. In the literature two ways are reported to measure the CI: X-ray diffraction and infrared spectroscopy. Although the CI determined by these techniques has been adopted in the field of archeology as a structural order measure in the bone with the idea that it can help e.g. in the sequencing of the bones in chronological and/or stratigraphic order, some debate remains about the reliability of the CI values. To investigate similarities and differences between the two techniques, the CI of sound human tooth enamel and synthetic hydroxyapatite (HAP) was measured in this work by X-ray diffraction (XRD) and Fourier Transform Infrared spectroscopy (FTIR), at room temperature and after heat treatment. Although the (CI)XRD index is related to the crystal structure of the samples and the (CI)FTIR index is related to the vibration modes of the molecular bonds, both indices showed similar qualitative behavior for heat-treated samples. At room temperature, the (CI)XRD value indicated that enamel is more crystalline than synthetic HAP, while (CI)FTIR indicated the opposite. Scanning (SEM) and transmission (TEM) images were also used to corroborate the measured CI values. © 2013.

  4. Effect of intermolecular hydrogen bonding, vibrational analysis and molecular structure of 4-chlorobenzothioamide.

    PubMed

    Çırak, Çağrı; Sert, Yusuf; Ucun, Fatih

    2013-09-01

    In the present work, the experimental and theoretical vibrational spectra of 4-chlorobenzothioamide were investigated. The FT-IR (400-4000 cm(-1)) and μ-Raman spectra (100-4000 cm(-1)) of 4-chlorobenzothioamide in the solid phase were recorded. The geometric parameters (bond lengths and bond angles), vibrational frequencies, Infrared and Raman intensities of the title molecule in the ground state were calculated using ab initio Hartree-Fock and density functional theory (B3LYP) methods with the 6-311++G(d,p) basis set for the first time. The optimized geometric parameters and the theoretical vibrational frequencies were found to be in good agreement with the corresponding experimental data and with the results found in the literature. The vibrational frequencies were assigned based on the potential energy distribution using the VEDA 4 program. The dimeric form of 4-chlorobenzothioamide was also simulated to evaluate the effect of intermolecular hydrogen bonding on the vibrational frequencies. It was observed that the N-H stretching modes shifted to lower frequencies, while the in-plane and out-of-plane bending modes shifted to higher frequencies due to the intermolecular N-H···S hydrogen bond. Also, the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies and diagrams were presented. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Synthesis, spectroscopic analysis and theoretical study of new pyrrole-isoxazoline derivatives

    NASA Astrophysics Data System (ADS)

    Rawat, Poonam; Singh, R. N.; Baboo, Vikas; Niranjan, Priydarshni; Rani, Himanshu; Saxena, Rajat; Ahmad, Sartaj

    2017-02-01

    In the present work, we have efficiently synthesized the pyrrole-isoxazoline derivatives (4a-d) by cyclization of substituted 4-chalconylpyrrole (3a-d) with hydroxylamine hydrochloride. The reactivity of substituted 4-chalconylpyrrole (3a-d), towards nucleophiles hydroxylamine hydrochloride was evaluated on the basis of electrophilic reactivity descriptors (fk+, sk+, ωk+) and they were found to be high at unsaturated β carbon of chalconylpyrrole indicating its more proneness to nucleophilic attack and thereby favoring the formation of reported new pyrrole-isoxazoline compounds (4a-d). The structures of newly synthesized pyrrole-isoxazoline derivatives were derived from IR, 1H NMR, Mass, UV-Vis and elemental analysis. All experimental spectral data corroborate well with the calculated spectral data. The FT-IR analysis shows red shifts in vN-H and vC = O stretching due to dimer formation through intermolecular hydrogen bonding. On basis set superposition error correction, the intermolecular interaction energy for (4a-d) is found to be 10.10, 9.99, 10.18, 11.01 and 11.19 kcal/mol respectively. The calculated first hyperpolarizability (β0) values of (4a-d) molecules are in the range of 7.40-9.05 × 10-30 esu indicating their suitability for non-linear optical (NLO) applications. Experimental spectral results, theoretical data, analysis of chalcone intermediates and pyrrole-isoxazolines find usefulness in advancement of pyrrole-azole chemistry.

  6. Vibrational spectra, optical properties, NBO and HOMO-LUMO analysis of L-Phenylalanine L-Phenylalaninium Perchlorate: DFT calculations.

    PubMed

    Elleuch, Nabil; Ben Ahmed, Ali; Feki, Habib; Abid, Younes; Minot, Christian

    2014-01-01

    In this work, we report a combined experimental and theoretical study of a nonlinear optical material, L-Phenylalanine L-Phenylalaninium Perchlorate. Single crystals of the title compound have been grown by slow evaporation of an aqueous solution at room temperature. Theoretical calculations were preceded by redetermination of the crystal X-ray structure. The compound crystallizes in the non-centro symmetric space group P2(1)2(1)2(1) of the orthorhombic system. The FT-IR and Raman spectra of the crystal were recorded and analyzed. The density functional theory (DFT) computations have been performed at B3LYP/6-31G(d) level to derive equilibrium geometry, vibrational wavenumbers, intensity and NLO properties. All observed vibrational bands have been discussed and assigned to normal mode or to combinations on the basis of our DFT calculations as a primary source of attribution and also by comparison with the previous results for similar compounds. Natural bond orbital analysis was carried out to demonstrate the various inter-and intramolecular interaction that are responsible of the stabilization of the compound. The lowering of highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy gap appears to be the cause of its enhanced charge transfer interaction leading to high NLO activity. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. A comparison of the autohydrolysis and ammonia fiber explosion (AFEX) pretreatments on the subsequent enzymatic hydrolysis of coastal Bermuda grass.

    PubMed

    Lee, Jung Myoung; Jameel, Hasan; Venditti, Richard A

    2010-07-01

    Two distinct pretreatment technologies, autohydrolysis and AFEX, have been applied to coastal Bermuda grass (CBG) followed by enzymatic hydrolysis in order to compare the effects of pretreatment on the subsequent sugar generation. Furthermore, the influence of structural features from each pretreatment on biomass digestibility was characterized with SEM, ATR-FTIR, and XRD. Enzymatic conversion of pretreated solids from the pretreatments increased with elevated temperature and longer residence times. AFEX pretreatment at 100 degrees C for 30 min produced a sugar yield of 94.8% of theoretical possible with 30 FPU/g enzymatic loading, the maximum achieved with AFEX. It was also shown that with autohydrolysis at 170 degrees C for 60 min that 55.4% sugar yield of the theoretical possible was produced with a 30 FPU/g enzymatic loading, the maximum with autohydrolysis. AFEX pretreatment does not change the chemical composition of CBG but autohydrolysis reduces hemicellulose content in the pretreated solids. Both pretreatments cause re-localization of lignin components. There was no observed correlation between crystallinity and enzyme digestibility of the pretreated solids. AFEX pretreatment developed more enzymatic accessibility to pretreated solids of CBG than did autohydrolysis pretreatment, leading to more sugar generation through the whole process. The total amount of sugars accounted for with autohydrolysis decreases with increasing temperature, consistent with increased byproduct generation via thermal degradation reactions. Published by Elsevier Ltd.

  8. Fourier transform-infrared spectroscopy as a diagnostic tool for mosquito coil smoke inhalation toxicity in Swiss Albino mice

    NASA Astrophysics Data System (ADS)

    Anusha, Chidambaram; Sankar, Renu; Varunkumar, Krishnamoorthy; Sivasindhuja, Gnanasambantham; Ravikumar, Vilwanathan

    2017-12-01

    The goal of this study is to establish Fourier transform-infrared (FTIR) spectroscopy as a diagnostic tool for allethrin-based mosquito coil smoke inhalation induced toxicity in mice. Primarily, we confirmed mosquito coil smoke inhalation toxicity in mice via reduced the body, organ weight and major vital organ tissue morphological structure changes. Furthermore, FTIR spectra was collected from control and mosquito coil smoke inhalation (8 h per day for 30 days) mice various tissues like liver, kidney, lung, heart and brain, to investigate the functional groups and their corresponding biochemical content variations. The FTIR spectra result shown major bio macromolecules such as protein and lipid functional peaks were shifted (decreased) in the mosquito coil smoke inhalation group as compared to control. The drastic peak shift was noticed in the liver, kidney followed by lung and brain. It is therefore concluded that the FTIR spectroscopy can be a successful detection tool in mosquito coil smoke inhalation toxicity.

  9. Synthesis and structural studies of Mg doped LiNi0.5Mn0.5O2 cathode materials for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Murali, N.; Margarette, S. J.; Madhuri Sailaja, J.; Kondala Rao, V.; Himakar, P.; Kishore Babu, B.; Veeraiah, V.

    2018-02-01

    Layered Mg doped LiNi0.5Mn0.5O2 materials have been synthesized by sol-gel method. The physical properties of these materials were examined by XRD, FESEM and FT-IR studies. From XRD patterns, the phase formation of α-NaFeO2 layered structure with R\\bar 3m space group is confirmed. The surface morphology of the synthesized materials has been examined by FESEM analysis in which the average particle size is found to be about 2 - 2.5 µm. These materials show some changes in the local ion environment, as examined by FT-IR studies.

  10. Thermal Annealing Effect on Optical Properties of Binary TiO₂-SiO₂ Sol-Gel Coatings.

    PubMed

    Wang, Xiaodong; Wu, Guangming; Zhou, Bin; Shen, Jun

    2012-12-24

    TiO₂-SiO₂ binary coatings were deposited by a sol-gel dip-coating method using tetrabutyl titanate and tetraethyl orthosilicate as precursors. The structure and chemical composition of the coatings annealed at different temperatures were analyzed by Raman spectroscopy and Fourier Transform Infrared (FTIR) spectroscopy. The refractive indices of the coatings were calculated from the measured transmittance and reflectance spectra. An increase in refractive index with the high temperature thermal annealing process was observed. The Raman and FTIR results indicate that the refractive index variation is due to changes in the removal of the organic component, phase separation and the crystal structure of the binary coatings.

  11. Application of MCR-ALS to reveal intermediate conformations in the thermally induced α-β transition of poly-L-lysine monitored by FT-IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Alcaráz, Mirta R.; Schwaighofer, Andreas; Goicoechea, Héctor; Lendl, Bernhard

    2017-10-01

    Temperature-induced conformational transitions of poly-L-lysine were monitored with Fourier-transform infrared (FT-IR) spectroscopy between 10 °C and 70 °C. Chemometric analysis of dynamic IR spectra was performed by multivariate curve analysis-alternating least squares (MCR-ALS) of the amide I‧ and amide II‧ spectral region. With this approach, the pure spectral and concentration profiles of the conformational transition were obtained. Beside the initial α-helical, the intermediate random coil/extended helices and the final β-sheet structure, an additional intermediate PLL conformation was identified and attributed to a transient β-sheet structure.

  12. Fourier transform-infrared spectroscopic methods for microbial ecology: analysis of bacteria, bacteria-polymer mixtures and biofilms

    NASA Technical Reports Server (NTRS)

    Nichols, P. D.; Henson, J. M.; Guckert, J. B.; Nivens, D. E.; White, D. C.

    1985-01-01

    Fourier transform-infrared (FT-IR) spectroscopy has been used to rapidly and nondestructively analyze bacteria, bacteria-polymer mixtures, digester samples and microbial biofilms. Diffuse reflectance FT-IR (DRIFT) analysis of freeze-dried, powdered samples offered a means of obtaining structural information. The bacteria examined were divided into two groups. The first group was characterized by a dominant amide I band and the second group of organisms displayed an additional strong carbonyl stretch at approximately 1740 cm-1. The differences illustrated by the subtraction spectra obtained for microbes of the two groups suggest that FT-IR spectroscopy can be utilized to recognize differences in microbial community structure. Calculation of specific band ratios has enabled the composition of bacteria and extracellular or intracellular storage product polymer mixtures to be determined for bacteria-gum arabic (amide I/carbohydrate C-O approximately 1150 cm-1) and bacteria-poly-beta-hydroxybutyrate (amide I/carbonyl approximately 1740 cm-1). The key band ratios correlate with the compositions of the material and provide useful information for the application of FT-IR spectroscopy to environmental biofilm samples and for distinguishing bacteria grown under differing nutrient conditions. DRIFT spectra have been obtained for biofilms produced by Vibrio natriegens on stainless steel disks. Between 48 and 144 h, an increase in bands at approximately 1440 and 1090 cm-1 was seen in FT-IR spectra of the V. natriegens biofilm. DRIFT spectra of mixed culture effluents of anaerobic digesters show differences induced by shifts in input feedstocks. The use of flow-through attenuated total reflectance has permitted in situ real-time changes in biofilm formation to be monitored and provides a powerful tool for understanding the interactions within adherent microbial consortia.

  13. Rapid Characterization of Molecular Chemistry, Nutrient Make-Up and Microlocation of Internal Seed Tissue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu,P.; Block, H.; Niu, Z.

    2007-01-01

    Wheat differs from corn in biodegradation kinetics and fermentation characteristics. Wheat exhibits a relatively high rate (23% h{sup 01}) and extent (78% DM) of biodegradation, which can lead to metabolic problems such as acidosis and bloat in ruminants. The objective of this study was to rapidly characterize the molecular chemistry of the internal structure of wheat (cv. AC Barrie) and reveal both its structural chemical make-up and nutrient component matrix by analyzing the intensity and spatial distribution of molecular functional groups within the intact seed using advanced synchrotron-powered Fourier transform infrared (FTIR) microspectroscopy. The experiment was performed at the U2Bmore » station of the National Synchrotron Light Source at Brookhaven National Laboratory, New York, USA. The wheat tissue was imaged systematically from the pericarp, seed coat, aleurone layer and endosperm under the peaks at {approx}1732 (carbonyl C{double_bond}O ester), 1515 (aromatic compound of lignin), 1650 (amide I), 1025 (non-structural CHO), 1550 (amide II), 1246 (cellulosic material), 1160, 1150, 1080, 930, 860 (all CHO), 3350 (OH and NH stretching), 2928 (CH{sub 2} stretching band) and 2885 cm{sup -1} (CH{sub 3} stretching band). Hierarchical cluster analysis and principal component analysis were applied to analyze the molecular FTIR spectra obtained from the different inherent structures within the intact wheat tissues. The results showed that, with synchrotron-powered FTIR microspectroscopy, images of the molecular chemistry of wheat could be generated at an ultra-spatial resolution. The features of aromatic lignin, structural and non-structural carbohydrates, as well as nutrient make-up and interactions in the seeds, could be revealed. Both principal component analysis and hierarchical cluster analysis methods are conclusive in showing that they can discriminate and classify the different inherent structures within the seed tissue. The wheat exhibited distinguishable differences in the structural and nutrient make-up among the pericarp, seed coat, aleurone layer and endosperm. Such information on the molecular chemistry can be used for grain-breeding programs for selecting a superior variety of wheat targeted for food and feed purposes and for predicting wheat quality and nutritive value in humans and animals. Thus advanced synchrotron-powered FTIR technology can provide a greater understanding of the plant-animal interface.« less

  14. Structural characteristics and properties of the regenerated silk fibroin prepared from formic acid.

    PubMed

    Um, I C; Kweon, H Y; Park, Y H; Hudson, S

    2001-08-20

    Structural characteristics and thermal and solution properties of the regenerated silk fibroin (SF) prepared from formic acid (FU) were compared with those of SF from water (AU). According to the turbidity and shear viscosity measurement, SF formic acid solution was stable and transparent, no molecular aggregations occurred. The sample FU exhibited the beta-sheet structure, while AU random coil conformation using Fourier transform infrared (FTIR), X-ray diffraction (XRD), and differential scanning calorimetry. The effects of methanol treatment on samples were also examined. According to the measurement of crystallinity (XRD) and crystallinity index (FTIR), the concept of long/short-range ordered structure formation was proposed. Long-range ordered crystallites are predominantly formed for methanol treated SF film while SF film cast from formic acid favors the formation of short-range ordered structure. The relaxation temperatures of SF films measured by dynamic thermomechanical analysis supported the above mechanism due to the sensitivity of relaxation temperature on the short-range order.

  15. Pressure-Induced Polymorphic, Optical, and Electronic Transitions of Formamidinium Lead Iodide Perovskite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Pan; Guan, Jiwen; Galeschuk, Draven T. K.

    2017-04-28

    Formamidinium lead iodide (FAPbI3) perovskite as a superior solar cell material was investigated in two polymorphs at high pressures using in situ synchrotron X-ray diffraction, FTIR spectroscopy, photoluminescence (PL) spectroscopy, electrical conductivity (EC) measurements, and ab initio calculations. We identified two new structures (i.e., Imm2 and Immm) for α-FAPbI3 but only a structural distortion (in C2/c) for δ-FAPbI3 upon compression. A pressure-enhanced hydrogen bond plays a prominent role in structural modifications, as corroborated by FTIR spectroscopy. PL measurements and calculations consistently show the structure and pressure dependences of the band gap energies. Finally, EC measurements reveal drastically different transport propertiesmore » of α- and δ-FAPbI3 at low pressures but a common trend to metallic states at high pressures. All of these observations suggest strongly contrasting structural stabilities and pressure-tuned optoelectric properties of the two FAPbI3 polymorphs.« less

  16. Effects of oxygen plasma treatment power on Aramid fiber III/BMI composite humidity resistance properties

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Shi, Chen; Feng, Jiayue; Long, Xi; Meng, Lingzhi; Ren, Hang

    2018-01-01

    The effects of oxygen plasma treatment power on Aramid Fiber III chemical structure and its reinforced bismaleimides (BMI) composite humidity resistance properties were investigated in this work. The aramid fiber III chemical structure under different plasma treatment power were measured by FTIR. The composite bending strength and interlinear shear strength with different plasma treatment power before and after absorption water were tested respectively. The composite rupture morphology was observed by SEM. The FTIR results showed that oxygen plasma treatment do not change the fiber bulk chemical structure. The composite humidity resistance of bending strength and interlinear shear strength are similar for untreated and plasma treated samples. The retention rate of composite bending strength and interlinear shear strength are about 75% and 94%, respectively. The composite rupture mode turns to be the fiber failure after water absorption.

  17. Study on the conformation changes of Lysozyme induced by Hypocrellin A: The mechanism investigation

    NASA Astrophysics Data System (ADS)

    Ma, Fei; Huang, He-Yong; Zhou, Lin; Yang, Chao; Zhou, Jia-Hong; Liu, Zheng-Ming

    2012-11-01

    The interactions between Lysozyme and Hypocrellin A are investigated in details using time-resolved fluorescence, fourier transform infrared spectroscopy (FTIR), circular dichroism spectroscopy (CD), three-dimensional fluorescence spectra, and thermal gravimetric analysis (TGA) techniques. The results of time-resolved fluorescence suggest that the quenching mechanism is static quenching. FTIR and CD spectroscopy provide evidences of the reducing of α-helix after interaction. Hypocrellin A could change the micro-environmental of Lysozyme according to hydrophobic interaction between the aromatic ring and the hydrophobic amino acid residues, and the altered polypeptide backbone structures induce the reduction of α-helical structures. Moreover, TGA study further demonstrates the structure changes of Lysozyme on the effect of Hypocrellin A. This study could provide some important information for the derivatives of HA in pharmacy, pharmacology and biochemistry.

  18. Hydrogen and Carbon Groups in the Structures of Rock-Forming Minerals of Rocks of the Lithospheric Mantle: FTIR and STA + QMS Data

    NASA Astrophysics Data System (ADS)

    Babushkina, M. S.; Ugolkov, V. L.; Marin, Yu. B.; Nikitina, L. P.; Goncharov, A. G.

    2018-04-01

    Using IR-Fourier spectrometry (FTIR) and simultaneous thermal analysis combined with quadrupole mass spectrometry of thermal decomposition products (STA + QMS), olivines and clinopyroxene from xenolites of spinel and garnet lherzolites contained in kimberlites and alkaline basalts were studied to confirm the occurrence of hydrogen and carbon within the structure of the minerals, as well as to specify the forms of H and C. The presence of hydroxyl ions (OH-) and molecules of crystal hydrate water (H2Ocryst) along with CO2, CH, CH2, and CH3 groups was detected, which remained within the structures of mantle minerals up to 1300°C (by the data of both techniques). The total water (OH-and H2Ocryst) was the prevailing component of the C-O-H system.

  19. Structure of dimethylphenyl betaine hydrochloride studied by X-ray diffraction, DFT calculation, NMR and FTIR spectra

    NASA Astrophysics Data System (ADS)

    Szafran, M.; Katrusiak, A.; Dega-Szafran, Z.; Kowalczyk, I.

    2013-01-01

    The structure of dimethylphenyl betaine hydrochloride (1) has been studied by X-ray diffraction, DFT calculations, NMR and FTIR spectra. The crystals are monoclinic, space group P21/c. In the crystal, the Cl- anion is connected with protonated betaine through the O-H⋯Cl- hydrogen bond of 2.943(2) Å. The structures in the gas phase (2) and water solution (3) have been optimized by the B3LYP/6-311++G(d,p) approach and the geometrical results have been compared with the X-ray data of 1. The FTIR spectrum of the solid compound is consistent with the X-ray results. The probable assignments of the anharmonic experimental vibrational frequencies of the investigated chloride (1) based on the calculated harmonic frequencies in water solution (3) are proposed. The correlations between the experimental 1H and 13C NMR chemical shifts (δexp) of 1 in D2O and the magnetic isotropic shielding constants (σcalc) calculated by the GIAO/B3LYP/6-311G++(d,p) approach, using the screening solvation model (COSMO), δexp = a + b σcalc, for optimized molecule 3 in water solution are linear and correctly reproduce the experimental chemical shifts.

  20. Synthesis and Characterization of Titanium Dioxide Thin Film for Sensor Applications

    NASA Astrophysics Data System (ADS)

    Latha, H. K. E.; Lalithamba, H. S.

    2018-03-01

    Titanium oxide (TiO2) nanoparticles (metal oxide semiconductor) are successfully synthesized using hydrothermal method for sensor application. Titanium dioxide and Sodium hydroxide are used as precursors. These reactants are mixed and calcinated at 400 °C to produce TiO2 nanoparticles. The crystalline structure, morphology of synthesized TiO2 nanoparticles are studied using x-ray diffraction (XRD), Fourier Transform Infrared (FTIR) analysis and scanning electron microscopy (SEM). XRD results revealed that the prepared TiO2 sample is highly crystalline, having Anatase crystal structure. FT-IR spectra peak at 475 cm‑1 indicated characteristic absorption bands of TiO2 nanoparticles. The XRD and FTIR result confirmed the formation of high purity of TiO2 nanoparticles. The SEM image shows that TiO2 nanoparticles prepared in this study are spherical in shape. Synthesized TiO2 nanoparticles are deposited on glass substrate at room temperature using E beam evaporation method to determine gauge factor and found to be 4.7. The deposited TiO2 thin films offer tremendous potential in the applications of electronic and magneto–electric devices.

  1. A new chalcone structure of (E)-1-(4-Bromophenyl)-3-(napthalen-2-yl)prop-2-en-1-one: Synthesis, structural characterizations, quantum chemical investigations and biological evaluations.

    PubMed

    Thanigaimani, Kaliyaperumal; Arshad, Suhana; Khalib, Nuridayanti Che; Razak, Ibrahim Abdul; Arunagiri, C; Subashini, A; Sulaiman, Shaida Fariza; Hashim, Nurul Shafiqah; Ooi, Kheng Leong

    2015-01-01

    The structure of (E)-1-(4-Bromophenyl)-3-(napthalen-2-yl)prop-2-en-1-one (C19H13BrO) crystallized in the triclinic system of P-1 space group. The unit cell dimensions are: a=5.8944 (9)Å, b=7.8190 (12)Å, c=16.320 (2)Å, α=102.4364 (19)°, β=95.943 (2)°, γ=96.274 (2)° and Z=2. The physical properties of this compound was determined by the spectroscopic methods (FTIR and (1)H and (13)C NMR). Quantum chemical investigations have been employed to investigate the structural and spectral properties. The molecular structure, vibrational assignments, (1)H and (13)C NMR chemical shift values, non-linear optical (NLO) effect, HOMO-LUMO analysis and natural bonding orbital (NBO) analysis were calculated using HF and DFT/B3LYP methods with 6-311++G(d,p) basis set in the ground state. The results show that the theoretical calculation of the geometrical parameters, vibrational frequencies and chemical shifts are comparable with the experimental data. The crystal structure is influenced and stabilized by weak C-H⋯π interactions connecting the molecules into infinite supramolecular one dimensional ladder-like arrangement. Additionally, this compound is evaluated for their antibacterial activities against gram positive and gram negative strains using a micro dilution procedure and shows activities against a panel of microorganisms. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Protein Secondary Structures (alpha-helix and beta-sheet) at a Cellular Levle and Protein Fractions in Relation to Rumen Degradation Behaviours of Protein: A New Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu,P.

    2007-01-01

    Studying the secondary structure of proteins leads to an understanding of the components that make up a whole protein, and such an understanding of the structure of the whole protein is often vital to understanding its digestive behaviour and nutritive value in animals. The main protein secondary structures are the {alpha}-helix and {beta}-sheet. The percentage of these two structures in protein secondary structures influences protein nutritive value, quality and digestive behaviour. A high percentage of {beta}-sheet structure may partly cause a low access to gastrointestinal digestive enzymes, which results in a low protein value. The objectives of the present studymore » were to use advanced synchrotron-based Fourier transform IR (S-FTIR) microspectroscopy as a new approach to reveal the molecular chemistry of the protein secondary structures of feed tissues affected by heat-processing within intact tissue at a cellular level, and to quantify protein secondary structures using multicomponent peak modelling Gaussian and Lorentzian methods, in relation to protein digestive behaviours and nutritive value in the rumen, which was determined using the Cornell Net Carbohydrate Protein System. The synchrotron-based molecular chemistry research experiment was performed at the National Synchrotron Light Source at Brookhaven National Laboratory, US Department of Energy. The results showed that, with S-FTIR microspectroscopy, the molecular chemistry, ultrastructural chemical make-up and nutritive characteristics could be revealed at a high ultraspatial resolution ({approx}10 {mu}m). S-FTIR microspectroscopy revealed that the secondary structure of protein differed between raw and roasted golden flaxseeds in terms of the percentages and ratio of {alpha}-helixes and {beta}-sheets in the mid-IR range at the cellular level. By using multicomponent peak modelling, the results show that the roasting reduced (P <0.05) the percentage of {alpha}-helixes (from 47.1% to 36.1%: S-FTIR absorption intensity), increased the percentage of {beta}-sheets (from 37.2% to 49.8%: S-FTIR absorption intensity) and reduced the {alpha}-helix to {beta}-sheet ratio (from 0.3 to 0.7) in the golden flaxseeds, which indicated a negative effect of the roasting on protein values, utilisation and bioavailability. These results were proved by the Cornell Net Carbohydrate Protein System in situ animal trial, which also revealed that roasting increased the amount of protein bound to lignin, and well as of the Maillard reaction protein (both of which are poorly used by ruminants), and increased the level of indigestible and undegradable protein in ruminants. The present results demonstrate the potential of highly spatially resolved synchrotron-based infrared microspectroscopy to locate 'pure' protein in feed tissues, and reveal protein secondary structures and digestive behaviour, making a significant step forward in and an important contribution to protein nutritional research. Further study is needed to determine the sensitivities of protein secondary structures to various heat-processing conditions, and to quantify the relationship between protein secondary structures and the nutrient availability and digestive behaviour of various protein sources. Information from the present study arising from the synchrotron-based IR probing of the protein secondary structures of protein sources at the cellular level will be valuable as a guide to maintaining protein quality and predicting digestive behaviours.« less

  3. Biodegradable materials based on silk fibroin and keratin.

    PubMed

    Vasconcelos, Andreia; Freddi, Giuliano; Cavaco-Paulo, Artur

    2008-04-01

    Wool and silk were dissolved and used for the preparation of blended films. Two systems are proposed: (1) blend films of silk fibroin and keratin aqueous solutions and (2) silk fibroin and keratin dissolved in formic acid. The FTIR spectra of pure films cast from aqueous solutions indicated that the keratin secondary structure mainly consists of alpha-helix and random coil conformations. The IR spectrum of pure SF is characteristic of films with prevalently amorphous structure (random coil conformation). Pure keratin film cast from formic acid shows an increase in the amount of beta-sheet and disordered keratin structures. The FTIR pattern of SF dissolved in formic acid is characteristic of films with prevalently beta-sheet conformations with beta-sheet crystallites embedded in an amorphous matrix. The thermal behavior of the blends confirmed the FTIR results. DSC curve of pure SF is typical of amorphous SF and the curve of pure keratin show the characteristic melting peak of alpha-helices for the aqueous system. These patterns are no longer observed in the films cast from formic acid due to the ability of formic acid to induce crystallization of SF and to increase the amount of beta-sheet structures on keratin. The nonlinear trend of the different parameters obtained from FTIR analysis and DSC curves of both SF/keratin systems indicate that when proteins are mixed they do not follow additives rules but are able to establish intermolecular interactions. Degradable polymeric biomaterials are preferred candidates for medical applications. It was investigated the degradation behavior of both SF/keratin systems by in vitro enzymatic incubation with trypsin. The SF/keratin films cast from water underwent a slower biological degradation than the films cast from formic acid. The weight loss obtained is a function of the amount of keratin in the blend. This study encourages the further investigation of the type of matrices presented here to be applied whether in scaffolds for tissue engineering or as controlled release drug delivery vehicles.

  4. Synthesis, spectroscopic characterization, DFT studies and antifungal activity of (E)-4-amino-5-[N'-(2-nitro-benzylidene)-hydrazino]-2,4-dihydro-[1,2,4]triazole-3-thione

    NASA Astrophysics Data System (ADS)

    Joshi, Rachana; Pandey, Nidhi; Yadav, Swatantra Kumar; Tilak, Ragini; Mishra, Hirdyesh; Pokharia, Sandeep

    2018-07-01

    The hydrazino Schiff base (E)-4-amino-5-[N'-(2-nitro-benzylidene)-hydrazino]-2,4-dihydro-[1,2,4]triazole-3-thione was synthesized and structurally characterized by elemental analysis, FT-IR, Raman, 1H and 13C-NMR and UV-Vis studies. A density functional theory (DFT) based electronic structure calculations were accomplished at B3LYP/6-311++G(d,p) level of theory. A comparative analysis of calculated vibrational frequencies with experimental vibrational frequencies was carried out and significant bands were assigned. The results indicate a good correlation (R2 = 0.9974) between experimental and theoretical IR frequencies. The experimental 1H and 13C-NMR resonance signals were also compared to the calculated values. The theoretical UV-Vis spectral studies were carried out using time dependent-DFT method in gas phase and IEFPCM model in solvent field calculation. The geometrical parameters were calculated in the gas phase. Atomic charges at selected atoms were calculated by Mulliken population analysis (MPA), Hirshfeld population analysis (HPA) and Natural population analysis (NPA) schemes. The molecular electrostatic potential (MEP) map was calculated to assign reactive site on the surface of the molecule. The conceptual-DFT based global and local reactivity descriptors were calculated to obtain an insight into the reactivity behaviour. The frontier molecular orbital analysis was carried out to study the charge transfer within the molecule. The detailed natural bond orbital (NBO) analysis was performed to obtain an insight into the intramolecular conjugative electronic interactions. The titled compound was screened for in vitro antifungal activity against four fungal strains and the results obtained are explained through in silico molecular docking studies.

  5. Electronic structure investigations of 4-aminophthal hydrazide by UV-visible, NMR spectral studies and HOMO-LUMO analysis by ab initio and DFT calculations.

    PubMed

    Sambathkumar, K; Jeyavijayan, S; Arivazhagan, M

    2015-08-05

    Combined experimental and theoretical studies were conducted on the molecular structure and vibrational spectra of 4-AminoPhthalhydrazide (APH). The FT-IR and FT-Raman spectra of APH were recorded in the solid phase. The molecular geometry and vibrational frequencies of APH in the ground state have been calculated by using the ab initio HF (Hartree-Fock) and density functional methods (B3LYP) invoking 6-311+G(d,p) basis set. The optimized geometric bond lengths and bond angles obtained by HF and B3LYP method show best agreement with the experimental values. Comparison of the observed fundamental vibrational frequencies of APH with calculated results by HF and density functional methods indicates that B3LYP is superior to the scaled Hartree-Fock approach for molecular vibrational problems. The difference between the observed and scaled wave number values of most of the fundamentals is very small. A detailed interpretation of the NMR spectra of APH was also reported. The theoretical spectrograms for infrared and Raman spectra of the title molecule have been constructed. UV-vis spectrum of the compound was recorded and the electronic properties, such as HOMO and LUMO energies, were performed by time dependent density functional theory (TD-DFT) approach. Finally the calculations results were applied to simulated infrared and Raman spectra of the title compound which show good agreement with observed spectra. And the temperature dependence of the thermodynamic properties of constant pressure (Cp), entropy (S) and enthalpy change (ΔH0→T) for APH were also determined. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Improved solubility and bioactivity of theophylline (a bronchodilator drug) through its new nitrate salt analysed by experimental and theoretical approaches

    NASA Astrophysics Data System (ADS)

    Mary Novena, L.; Suresh Kumar, S.; Athimoolam, S.

    2016-07-01

    Synthesis, crystal structure, vibrational spectroscopy, quantum chemical studies and biological activity of the new semi organic compound, Theophyllinium Nitrate [C7H9N4 O2)+. (NO3)-], are reported here. Crystals of Theophyllinium nitrate (TN) were grown by slow solvent evaporation technique. The crystal packing is dominated by N-H···O intermolecular hydrogen bonds. The cations and anions are aggregated almost parallel leading to a lamellar structure. This molecular aggregation features two alternate hydrogen bonded chain C22(8) and C21(6) motifs. Further, a bifurcated ring R12(4) motifs is also seen. This aggregated molecular sheets are parallel to (2 bar 06) and (20 6 bar) planes of the crystal. The solubility test is carried out to enhance the physico-chemical activity of the compound. The atomic charge distribution on different atoms of TN has been calculated by Mulliken charge analysis. A detailed interpretation of FT-IR and FT-Raman spectra of TN show that most of the bands are matching between the experimental and theoretical methods. The strong intensity bands and shifting of bands due to intermolecular hydrogen bonds are also investigated. The NBO analysis is carried out to elucidate the stability of the molecule and charge delocalization within the molecule. The HOMO-LUMO analysis reveals molecular stability and chemical reactivity of the present compound. Also, the compound was examined for its antibacterial activity and found to exhibit notable activity against Pseudomonas aeruginosa. This shows that the present compound is a good candidate for the antimicrobial agent apart from its inherent Bronchodilator drug property. Hence, the new compound (TN) may be a good alternative for patients with Chronic Obstructive Pulmonary Disease (COPD) and bacterial infections.

  7. Molecular docking, TG/DTA, molecular structure, harmonic vibrational frequencies, natural bond orbital and TD-DFT analysis of diphenyl carbonate by DFT approach

    NASA Astrophysics Data System (ADS)

    Xavier, S.; Periandy, S.; Carthigayan, K.; Sebastian, S.

    2016-12-01

    Vibrational spectral analysis of Diphenyl Carbonate (DPC) is carried out by using FT-IR and FT-Raman spectroscopic techniques. It is found that all vibrational modes are in the expected region. Gaussian computational calculations were performed using B3LYP method with 6-311++G (d, p) basis set. The computed geometric parameters are in good agreement with XRD data. The observation shows that the structure of the carbonate group is unsymmetrical by ∼5° due to the attachment of the two phenyl rings. The stability of the molecule arising from hyperconjugative interaction and charge delocalization are analyzed by Natural Bond Orbital (NBO) study and the results show the lone pair transition has higher stabilization energy compared to all other. The 1H and 13C NMR chemical shifts are calculated using the Gauge-Including Atomic Orbital (GIAO) method with B3LYP/6-311++G (d, p) method. The chemical shifts computed theoretically go very closer to the experimental results. A study on the electronic and optical properties; absorption wavelengths, excitation energy, dipole moment and frontier molecular orbital energies and Molecular electrostatic potential (MEP) exhibit the high reactivity nature of the molecule. The non-linear optical property of the DPC molecule predicted theoretically found to be good candidate for NLO material. TG/DTA analysis was made and decomposition of the molecule with respect to the temperature was studied. DPC having the anthelmintic activity is docked in the Hemoglobin of Fasciola hepatica protein. The DPC has been screened to antimicrobial activity and found to exhibit antibacterial effects.

  8. Vibrational spectroscopy of water at interfaces

    PubMed Central

    Skinner, J. L.; Pieniazek, P. A.; Gruenbaum, S. M.

    2011-01-01

    Conspectus Recent experimental advances in vibrational spectroscopy, such as ultrafast pulses and heterodyne detection, have made it possible to probe the structure and dynamics of bulk and interfacial water in unprecedented detail. We consider three aqueous interfaces: the water liquid/vapor interface, the interface between water and the surfactant headgroups of reverse micelles, and the interface between water and the lipid headgroups of aligned multi-bilayers. In the first case, sum-frequency spectroscopy is used to probe the interface, while in the second and third cases, the confined water pools are sufficiently small that techniques of bulk spectroscopy such as FTIR, pump-probe, 2DIR, etc. can be used to probe the interfacial water. In this review, we discuss our attempts to model these three systems and interpret the existing experiments. In particular, for the water liquid/vapor interface we find that three-body interactions are essential for reproducing the experimental sum-frequency spectrum, and presumably for the structure of the interface as well. The observed spectrum is interpreted as arising from overlapping and cancelling positive and negative contributions from molecules in different hydrogen-bonding environments. For the reverse micelles, our theoretical models confirm that the experimentally observed blue shift of the water OD stretch (for dilute HOD in H2O) arises from weaker hydrogen bonding to sulfonate oxygens. We interpret the observed slow-down in water rotational dynamics as arising from curvature-induced frustration. For the water confined between lipid bilayers, our theoretical models confirm that the experimentally observed red shift of the water OD stretch arises from stronger hydrogen bonding to phosphate oxygens. We develop a model for heterogeneous vibrational lifetime distributions, and implement the model to calculate isotropic and anisotropic pump-probe decays, and compare with experiment. PMID:22032305

  9. Synthesis, characterization, spectroscopic and theoretical studies of new zinc(II), copper(II) and nickel(II) complexes based on imine ligand containing 2-aminothiophenol moiety

    NASA Astrophysics Data System (ADS)

    Shafaatian, Bita; Mousavi, S. Sedighe; Afshari, Sadegh

    2016-11-01

    New dimer complexes of zinc(II), copper(II) and nickel(II) were synthesized using the Schiff base ligand which was formed by the condensation of 2-aminothiophenol and 2-hydroxy-5-methyl benzaldehyde. This tridentate Schiff base ligand was coordinated to the metal ions through the NSO donor atoms. In order to prevent the oxidation of the thiole group during the formation of Schiff base and its complexes, all of the reactions were carried out under an inert atmosphere of argon. The X-ray structure of the Schiff base ligand showed that in the crystalline form the SH groups were oxidized to produce a disulfide Schiff base as a new double Schiff base ligand. The molar conductivity values of the complexes in dichloromethane implied the presence of non-electrolyte species. The fluorescence properties of the Schiff base ligand and its complexes were also studied in dichloromethane. The products were characterized by FT-IR, 1H NMR, UV/Vis spectroscopies, elemental analysis, and conductometry. The crystal structure of the double Schiff base was determined by single crystal X-ray diffraction. Furthermore, the density functional theory (DFT) calculations were performed at the B3LYP/6-31G(d,p) level of theory for the determination of the optimized structures of Schiff base complexes.

  10. Structural phase transition of as-synthesized Sr-Mn nanoferrites by annealing temperature

    NASA Astrophysics Data System (ADS)

    Amer, M. A.; Meaz, T. M.; Attalah, S. S.; Ghoneim, A. I.

    2015-11-01

    The Sr0.2Mn0.8Fe2O4 nanoparticle ferrites were synthesized by the co-precipitation method and annealed at different temperatures T. XRD, TEM, FT-IR, VSM and Mössbauer techniques were used to characterize the samples. This study proved that the structural phase of nanoferrites was transformed from cubic spinel for T≤500 °C to Z-type hexagonal for T≥700 °C. The structural transformation was attributed to Jahn-Teller effect of the Mn3+ ions and/or atomic disorder existed in the crystal lattice. The obtained spectra and parameters for the samples were affected by the transformation process. The lattice constant a showed a splitting to a and c for T>500 °C. The lattice constant c, grain and crystallite size R, strain, octahedral B-site band position and force constant, Debye temperature, coercivity Hc, remnant magnetization, squareness and magnetic moment, spontaneous magnetization and hyperfine magnetic fields showed increase against T. The lattice constant a, distortion and dislocation parameters, specific surface area, tetrahedral A-site band position and force constant, threshold frequency, Young's and bulk moduli, saturation magnetization Ms, area ratio of B-/A-sites, A-site line width were decreased with T. Experimental and theoretical densities, porosity, Poison ratio, stiffness constants, rigidity modulus, B-site line width and spontaneous magnetization showed dependence on T, whereas Ms and Hc proved dependence on R.

  11. X-ray diffraction, FTIR, UV-VIS and SEM studies on chromium (III) complexes

    NASA Astrophysics Data System (ADS)

    Mishra, Ashutosh; Dwivedi, Jagrati; Shukla, Kritika

    2015-06-01

    Five Chromium (III) complexes have been prepared using Schiff base ligands which derived from benzoin and five different amino acids (H2N-R). Samples were characterized by XRD, FTIR, UV-VIS and SEM method. X-Ray diffraction pattern analyzed that all chromium (III) complexes have hexagonal structure and crystalline, in nature, using Bruker D8 Advance instrument. Using VERTAX 70, FTIR spectroscopy reveals that Samples have (C=N), (C-O), (M-N) and (M-O) bonds in the range of 4000-400cm-1. UV-VIS spectroscopy give information that samples absorb the visible light which is in the range of 380-780nm. For this, Lambda 960 spectrometer used. SEM is designed for studying of the solid objects, using JEOL JSM 5600 instrument.

  12. Experimental and Theoretical Studies on the Viscosity-Structure Correlation for High Alumina-Silicate Melts

    NASA Astrophysics Data System (ADS)

    Talapaneni, Trinath; Yedla, Natraj; Pal, Snehanshu; Sarkar, Smarajit

    2017-06-01

    Blast furnaces are encountering high Alumina (Al2O3 > 25 pct) in the final slag due to the charging of low-grade ores. To study the viscosity behavior of such high alumina slags, synthetic slags are prepared in the laboratory scale by maintaining a chemical composition of Al2O3 (25 to 30 wt pct) CaO/SiO2 ratio (0.8 to 1.6) and MgO (8 to 16 wt pct). A chemical thermodynamic software FactSage 7.0 is used to predict liquidus temperature and viscosity of the above slags. Experimental viscosity measurements are performed above the liquidus temperature in the range of 1748 K to 1848 K (1475 °C to 1575 °C). The viscosity values obtained from FactSage closely fit with the experimental values. The viscosity and the slag structure properties are intent by Fourier Transform Infrared (FTIR) and Raman spectroscopy. It is observed that increase in CaO/SiO2 ratio and MgO content in the slag depolymerizes the silicate structure. This leads to decrease in viscosity and activation energy (167 to 149 kJ/mol) of the slag. Also, an addition of Al2O3 content increases the viscosity of slag by polymerization of alumino-silicate structure and activation energy from 154 to 161 kJ/mol. It is witnessed that the activation energy values obtained from experiment closely fit with the Shankar model based on Arrhenius equation.

  13. Use of thermal analysis coupled with differential scanning calorimetry, quadrupole mass spectrometry and infrared spectroscopy (TG-DSC-QMS-FTIR) to monitor chemical properties and thermal stability of fulvic and humic acids.

    PubMed

    Boguta, Patrycja; Sokołowska, Zofia; Skic, Kamil

    2017-01-01

    Thermogravimetry-coupled with differential scanning calorimetry, quadrupole mass spectrometry, and Fourier-transform infrared spectroscopy (TG-DSC-QMS-FTIR)-was applied to monitor the thermal stability (in an N2 pyrolytic atmosphere) and chemical properties of natural polymers, fulvic (FA) and humic acids (HA), isolated from chemically different soils. Three temperature ranges, R1, 40-220°C; R2, 220-430°C; and R3, 430-650°C, were distinguished from the DSC data, related to the main thermal processes of different structures (including transformations without weight loss). Weight loss (ΔM) estimated from TG curves at the above temperature intervals revealed distinct differences within the samples in the content of physically adsorbed water (at R1), volatile and labile functional groups (at R2) as well as recalcitrant and refractory structures (at R3). QMS and FTIR modules enabled the chemical identification (by masses and by functional groups, respectively) of gaseous species evolved during thermal decomposition at R1, R2 and R3. Variability in shape, area and temperature of TG, DSC, QMS and FTIR peaks revealed differences in thermal stability and chemical structure of the samples between the FAs and HAs fractions of different origin. The statistical analysis showed that the parameters calculated from QMS (areas of m/z = 16, 17, 18, 44), DSC (MaxDSC) and TG (ΔM) at R1, R2 and R3 correlated with selected chemical properties of the samples, such as N, O and COOH content as well as E2/E6 and E2/E4 indexes. This indicated a high potential for the coupled method to monitor the chemical changes of humic substances. A new humification parameter, HTD, based on simple calculations of weight loss at specific temperature intervals proved to be a good alternative to indexes obtained from other methods. The above findings showed that the TG-DSC-QMS-FTIR coupled technique can represent a useful tool for the comprehensive assessment of FAs and HAs properties related to their various origin.

  14. Use of thermal analysis coupled with differential scanning calorimetry, quadrupole mass spectrometry and infrared spectroscopy (TG-DSC-QMS-FTIR) to monitor chemical properties and thermal stability of fulvic and humic acids

    PubMed Central

    Sokołowska, Zofia; Skic, Kamil

    2017-01-01

    Thermogravimetry–coupled with differential scanning calorimetry, quadrupole mass spectrometry, and Fourier-transform infrared spectroscopy (TG-DSC-QMS-FTIR)–was applied to monitor the thermal stability (in an N2 pyrolytic atmosphere) and chemical properties of natural polymers, fulvic (FA) and humic acids (HA), isolated from chemically different soils. Three temperature ranges, R1, 40–220°C; R2, 220–430°C; and R3, 430–650°C, were distinguished from the DSC data, related to the main thermal processes of different structures (including transformations without weight loss). Weight loss (ΔM) estimated from TG curves at the above temperature intervals revealed distinct differences within the samples in the content of physically adsorbed water (at R1), volatile and labile functional groups (at R2) as well as recalcitrant and refractory structures (at R3). QMS and FTIR modules enabled the chemical identification (by masses and by functional groups, respectively) of gaseous species evolved during thermal decomposition at R1, R2 and R3. Variability in shape, area and temperature of TG, DSC, QMS and FTIR peaks revealed differences in thermal stability and chemical structure of the samples between the FAs and HAs fractions of different origin. The statistical analysis showed that the parameters calculated from QMS (areas of m/z = 16, 17, 18, 44), DSC (MaxDSC) and TG (ΔM) at R1, R2 and R3 correlated with selected chemical properties of the samples, such as N, O and COOH content as well as E2/E6 and E2/E4 indexes. This indicated a high potential for the coupled method to monitor the chemical changes of humic substances. A new humification parameter, HTD, based on simple calculations of weight loss at specific temperature intervals proved to be a good alternative to indexes obtained from other methods. The above findings showed that the TG-DSC-QMS-FTIR coupled technique can represent a useful tool for the comprehensive assessment of FAs and HAs properties related to their various origin. PMID:29240819

  15. Matching 4.7-Å XRD spacing in amelogenin nanoribbons and enamel matrix.

    PubMed

    Sanii, B; Martinez-Avila, O; Simpliciano, C; Zuckermann, R N; Habelitz, S

    2014-09-01

    The recent discovery of conditions that induce nanoribbon structures of amelogenin protein in vitro raises questions about their role in enamel formation. Nanoribbons of recombinant human full-length amelogenin (rH174) are about 17 nm wide and self-align into parallel bundles; thus, they could act as templates for crystallization of nanofibrous apatite comprising dental enamel. Here we analyzed the secondary structures of nanoribbon amelogenin by x-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) and tested if the structural motif matches previous data on the organic matrix of enamel. XRD analysis showed that a peak corresponding to 4.7 Å is present in nanoribbons of amelogenin. In addition, FTIR analysis showed that amelogenin in the form of nanoribbons was comprised of β-sheets by up to 75%, while amelogenin nanospheres had predominantly random-coil structure. The observation of a 4.7-Å XRD spacing confirms the presence of β-sheets and illustrates structural parallels between the in vitro assemblies and structural motifs in developing enamel. © International & American Associations for Dental Research.

  16. Step-scan T cell-based differential Fourier transform infrared photoacoustic spectroscopy (DFTIR-PAS) for detection of ambient air contaminants

    NASA Astrophysics Data System (ADS)

    Liu, Lixian; Mandelis, Andreas; Huan, Huiting; Melnikov, Alexander

    2016-10-01

    A step-scan differential Fourier transform infrared photoacoustic spectroscopy (DFTIR-PAS) using a commercial FTIR spectrometer was developed theoretically and experimentally for air contaminant monitoring. The configuration comprises two identical, small-size and low-resonance-frequency T cells satisfying the conflicting requirements of low chopping frequency and limited space in the sample compartment. Carbon dioxide (CO2) IR absorption spectra were used to demonstrate the capability of the DFTIR-PAS method to detect ambient pollutants. A linear amplitude response to CO2 concentrations from 100 to 10,000 ppmv was observed, leading to a theoretical detection limit of 2 ppmv. The differential mode was able to suppress the coherent noise, thereby imparting the DFTIR-PAS method with a better signal-to-noise ratio and lower theoretical detection limit than the single mode. The results indicate that it is possible to use step-scan DFTIR-PAS with T cells as a quantitative method for high sensitivity analysis of ambient contaminants.

  17. Synthesis, spectroscopic investigation and theoretical studies of 2-((E)-(2-(2-cyanoacetyl)hydrazono)methyl)-4-((E)-phenyldiazenyl)phenyl methyl carbonate

    NASA Astrophysics Data System (ADS)

    Arokiasamy, A.; Manikandan, G.; Thanikachalam, V.; Gokula Krishnan, K.

    2017-04-01

    Synthesis and computational optimization studies have been carried out by Hartree-Fock (HF) and Density Functional Theory (DFT-B3LYP) methods with 6-31+G(d, p) basis set for 2-((E)-(2-(2-cyanoacetyl)hydrazono)methyl)-4-((E)-phenyldiazenyl)phenyl methyl carbonate (CHPMC). The stable configuration of CHPMC was confirmed theoretically by potential energy surface scan analysis. The complete vibrational assignments were performed on the basis of total energy distribution (TED) analysis. The vibrational properties studied by IR and Raman spectroscopic data complemented by quantum chemical calculations support the formation of intramolecular hydrogen bond. Furthermore, the UV-Vis spectra are interpreted in terms of TD-DFT quantum chemical calculations. The shapes of the simulated absorption spectra are in good agreement with the experimental data. The comparison between the experimental and theoretical values of FT-IR, FT-Raman vibrational spectra, NMR (1H and 13C) and UV-Vis spectra have also been discussed.

  18. Vibrational analysis of 4-chloro-3-nitrobenzonitrile by quantum chemical calculations.

    PubMed

    Sert, Yusuf; Çırak, Çağrı; Ucun, Fatih

    2013-04-15

    In the present study, the experimental and theoretical harmonic and anharmonic vibrational frequencies of 4-chloro-3-nitrobenzonitrile were investigated. The experimental FT-IR (400-4000 cm(-1)) and μ-Raman spectra (100-4000 cm(-1)) of the molecule in the solid phase were recorded. Theoretical vibrational frequencies and geometric parameters (bond lengths and bond angles) were calculated using ab initio Hartree Fock (HF), density functional B3LYP and M06-2X methods with 6-311++G(d,p) basis set by Gaussian 09 W program, for the first time. The assignments of the vibrational frequencies were performed by potential energy distribution (PED) analysis by using VEDA 4 program. The theoretical optimized geometric parameters and vibrational frequencies were compared with the corresponding experimental data, and they were seen to be in a good agreement with each other. Also, the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies were found. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Primidone--an antiepileptic drug--characterisation by quantum chemical and spectroscopic (FTIR, FT-Raman, 1H, 13C NMR and UV-Visible) investigations.

    PubMed

    Arjunan, V; Santhanam, R; Subramanian, S; Mohan, S

    2013-05-15

    The solid phase FTIR and FT-Raman spectra of primidone were recorded in the regions 4000-400 cm(-1) and 4000-100 cm(-1), respectively. The vibrational spectra were analysed and the observed fundamentals were assigned and analysed. The experimental wavenumbers were compared with the theoretical scaled vibrational wavenumbers determined by DFT methods. The Raman intensities were also determined with B3LYP/6-31G(d,p) method. The total electron density and molecular electrostatic potential surface of the molecule were constructed by using B3LYP/6-311++G(d,p) method to display electrostatic potential (electron+nuclei) distribution. The HOMO and LUMO energies were measured. Natural bond orbital analysis of primidone has been performed to indicate the presence of intramolecular charge transfer. The (1)H and (13)C NMR spectra were recorded and the chemical shifts of the molecule were calculated. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. On the purity assessment of solid sodium borohydride

    NASA Astrophysics Data System (ADS)

    Botasini, Santiago; Méndez, Eduardo

    2012-01-01

    Since sodium borohydride has become extensively used as chemical hydrogen storage material in fuel cells, many techniques have been proposed to assess the purity of this substance. However, all of them are developed in aqueous media, where the reagent is unstable. In addition, its hygroscopic nature was difficults in any attempt to make precise quantifications. The present work compares three different methods, namely, voltammetric, titrimetric, and Fourier transformed infrared spectroscopy (FTIR) in order to assess the purity of sodium borohydride, using an expired and a new sodium borohydride samples as references. Our results show that only the FTIR measurements provide a simple and semi-quantitative means to assess the purity of sodium borohydride due to the fact that it is the only one that measures the sample in the solid state. A comparison between the experimental data and theoretical calculation reveals the identification of the absorption bands at 1437 cm-1 of sodium metaborate and 2291 cm-1 of sodium borohydride which represent a good fingerprint for the qualitative assessment of the sample quality.

Top