Science.gov

Sample records for fts catalytic evaluation

  1. Electrostatic Evaluation of the ARES I FTS Antenna Materials

    NASA Technical Reports Server (NTRS)

    Hogue, Michael D.; Calle, Carlos I.

    2010-01-01

    Surface resistivity and volume resistivity data show all the tested non-metallic materials of the Ares I FTS antenna assembly to be insulative. The external materials (White foam, phenolic) should be able to develop a large surface charge density upon tribocharging with ice crystal impingement. Dielectric breakdown tests on the FTS antenna housing materials show that each of the insulative materials are very resistive to electrical breakdown. The thicknesses of these materials in a nominal housing should protect the antenna from direct breakdown from external triboelectric charging potentials. Per data from the Air Force study, a maximum external electric potential in the range of 100kV can be developed on surfaces tribocharged by ice crystal impingement. Testing showed that under operational pressure ranges, this level of exterior voltage can result in a potential of about 6 kV induced on the electrically floating interior antenna vanes. Testing the vanes up to this voltage level showed that electrostatic discharges can occur between the electrically floating vanes and the center, grounded screw heads. Repeated tests with multiple invisible and visible discharges caused only superficial physical damage to the vanes. Fourier analysis of the discharge signals showed that the frequency range of credible discharges would not interfere with the nominal operation of the FTS antenna. However, due to the limited scope, short timetable, and limited funding of this study, a direct measurement of the triboelectric charge that could be generated on the Ares I antenna housing when the rocket traverses an ice cloud at supersonic speeds was not performed. Instead, data for the limited Air Force study [3] was used as input for our experiments. The Air Force data used was not collected with a sensor located to provide us with the best approximation at the geometry of the Ares I rocket, namely that of the windshield electrometer, because brush discharges to the metal frame of the

  2. Synthesis and Evaluation of Quinazolines as Inhibitors of the Bacterial Cell Division Protein FtsZ.

    PubMed

    Nepomuceno, Gabriella M; Chan, Katie M; Huynh, Valerie; Martin, Kevin S; Moore, Jared T; O'Brien, Terrence E; Pollo, Luiz A E; Sarabia, Francisco J; Tadeus, Clarissa; Yao, Zi; Anderson, David E; Ames, James B; Shaw, Jared T

    2015-03-12

    The bacterial cell division protein FtsZ is one of many potential targets for the development of novel antibiotics. Recently, zantrin Z3 was shown to be a cross-species inhibitor of FtsZ; however, its specific interactions with the protein are still unknown. Herein we report the synthesis of analogues that contain a more tractable core structure and an analogue with single-digit micromolar inhibition of FtsZ's GTPase activity, which represents the most potent inhibitor of Escherichia coli FtsZ reported to date. In addition, the zantrin Z3 core has been converted to two potential photo-cross-linking reagents for proteomic studies that could shed light on the molecular interactions between FtsZ and molecules related to zantrin Z3.

  3. Synthesis and Evaluation of Quinazolines as Inhibitors of the Bacterial Cell Division Protein FtsZ

    PubMed Central

    2015-01-01

    The bacterial cell division protein FtsZ is one of many potential targets for the development of novel antibiotics. Recently, zantrin Z3 was shown to be a cross-species inhibitor of FtsZ; however, its specific interactions with the protein are still unknown. Herein we report the synthesis of analogues that contain a more tractable core structure and an analogue with single-digit micromolar inhibition of FtsZ’s GTPase activity, which represents the most potent inhibitor of Escherichia coli FtsZ reported to date. In addition, the zantrin Z3 core has been converted to two potential photo-cross-linking reagents for proteomic studies that could shed light on the molecular interactions between FtsZ and molecules related to zantrin Z3. PMID:25815151

  4. Technology identification, evaluation, selection, and demonstration processes for space qualification of subsystems for FTS sensors

    NASA Astrophysics Data System (ADS)

    Glumb, Ronald J.; Macoy, Norman H.; Jordan, David C.; Predina, Joe P.

    1999-10-01

    Development of space-qualified Fourier Transform Spectrometer (FTS) systems for long-life operational space missions requires development of new technologies. ITT Industries has been developing these new FTS technologies for the past 5 years, in anticipation of their use in FTS systems for operational meteorological satellites and other long-life space applications. Our objectives are to identify FTS technologies that have important mission advantages, design and build new components using these technologies, and prove the new technologies in a complete FTS interferometer technology testbed. This paper describes the process used at ITT to identify and develop these new technologies, the Dynamically Aligned Porch Swing (DAPS) interferometer technology testbed used to prove the new technologies, characterization tests of the DAPS used to verify the performance of the new technologies, and space qualification efforts now underway to verify that the new technologies can survive space environments.

  5. FTS evolution

    NASA Technical Reports Server (NTRS)

    Provost, David E.

    1990-01-01

    Viewgraphs on flight telerobotic servicer evolution are presented. Topics covered include: paths for FTS evolution; frequently performed actions; primary task states; EPS radiator panel installation; generic task definitions; path planning; non-contact alignment; contact planning and control; and human operator interface.

  6. Improved ACE-FTS observations of carbon tetrachloride (CCl4)

    NASA Astrophysics Data System (ADS)

    Harrison, Jeremy; Chipperfield, Martyn; Boone, Chris; Bernath, Peter

    2016-04-01

    The Atmospheric Chemistry Experiment Fourier transform spectrometer (ACE-FTS), on board the SCISAT satellite, has been recording solar occultation spectra through the Earth's atmosphere since 2004 and continues to take measurements with only minor loss in performance. ACE-FTS time series are available for a range of chlorine 'source' gases, including CCl3F (CFC-11), CCl2F2 (CFC-12), CHF2Cl (HCFC-22), CH3Cl and CCl4. Recently there has been much community interest in carbon tetrachloride (CCl4), a substance regulated by the Montreal Protocol because it leads to the catalytic destruction of stratospheric ozone. Estimated sources and sinks of CCl4 remain inconsistent with observations of its abundance. Satellite observations of CCl4 in the stratosphere are particularly useful in validating stratospheric loss (photolysis) rates; in fact the atmospheric loss of CCl4 is essentially all due to photolysis in the stratosphere. However, the latest ACE-FTS v3.5 CCl4 retrieval is biased high by ˜ 20-30%. A new ACE-FTS retrieval scheme utilising new laboratory spectroscopic measurements of CCl4 and improved microwindow selection has recently been developed. This improves upon the v3.5 retrieval and resolves the issue of the high bias; this new scheme will form the basis for the upcoming v4 processing version of ACE-FTS data. This presentation will outline the improvements made in the retrieval, and a subset of data will be compared with modelled CCl4 distributions from SLIMCAT, a state-of-the-art three-dimensional chemical transport model. The use of ACE-FTS data to evaluate the modelled stratospheric loss rate of CCl4 will also be discussed. The evaluated model, which also includes a treatment of surface soil and ocean sinks, will then be used to quantify current uncertainties in the global budget of CCl4.

  7. Design, synthesis and evaluation of novel 2,5,6-trisubstituted benzimidazoles targeting FtsZ as antitubercular agents.

    PubMed

    Park, Bora; Awasthi, Divya; Chowdhury, Soumya R; Melief, Eduard H; Kumar, Kunal; Knudson, Susan E; Slayden, Richard A; Ojima, Iwao

    2014-05-01

    Filamenting temperature-sensitive protein Z (FtsZ), an essential cell division protein, is a promising target for the drug discovery of new-generation antibacterial agents against various bacterial pathogens. As a part of SAR studies on benzimidazoles, we have synthesized a library of 376 novel 2,5,6-trisubstituted benzimidazoles, bearing ether or thioether linkage at the 6-position. In a preliminary HTP screening against Mtb H37Rv, 108 compounds were identified as hits at a cut off concentration of 5 μg/mL. Among those hits, 10 compounds exhibited MIC values in the range of 0.63-12.5 μg/mL. Light scattering assay and TEM analysis with the most potent compound 5a clearly indicate that its molecular target is Mtb-FtsZ. Also, the Kd of 5a with Mtb-FtsZ was determined to be 1.32 μM.

  8. ACE-FTS measurements of HCFC-22

    NASA Astrophysics Data System (ADS)

    Kolonjari, F.; Walker, K. A.; Boone, C. D.; Strahan, S.; McLinden, C. A.; Manney, G. L.; Daffer, W. H.; Bernath, P. F.

    2012-04-01

    In the 1980s scientists discovered an annual springtime minimum in stratospheric ozone over the Antarctic. It was determined that the decline in ozone concentration was primarily caused by catalytic reactions of ozone and chlorine. The emissions of anthropogenic chlorofluorocarbons (CFCs) were determined to be major sources of the chlorine. The Montreal Protocol on Substances that Deplete the Ozone Layer (with its subsequent amendments) restricts the emissions of ozone depleting substances. To fulfill the need for safe, stable replacements of CFCs, hydrochlorofluorocarbons (HCFCs) and hydrofluorocarbons (HFCs) were developed. The use of HCFC-22 as a replacement has led to an increase in its atmospheric abundance. This is of concern due to its ozone depletion potential and its global warming potential. The Atmospheric Chemistry Experiment (ACE) is a mission on-board the Canadian satellite SCISAT. The primary instrument on SCISAT is a high-resolution infrared Fourier Transform Spectrometer (ACE-FTS). With its wide spectral range, the ACE-FTS is capable of measuring an extensive range of gases including key CFC and HCFC species. The altitude distribution from the ACE-FTS profiles provides information that is complementary to the ground-based measurements that have been used to monitor these species. The global distribution of HCFC-22 has been computed from measurements by ACE-FTS. Both seasonal variations and an inter-hemispheric difference are observed. Additionally, a rapid increase in the global concentration of HCFC-22 has been observed since the start of the ACE mission in 2004. Comparisons to ground-based and air-borne measurements show good agreement with the ACE-FTS measurements. The global distributions of HCFC-22 have also been compared to a chemistry and transport model (CTM), the Global Modelling Initiative Combined Stratospheric-Tropospheric Model. There are distinct differences between the model results and ACE-FTS measurements. The causes and

  9. FTS3: Quantitative Monitoring

    NASA Astrophysics Data System (ADS)

    Riahi, H.; Salichos, M.; Keeble, O.; Andreeva, J.; Ayllon, A. A.; Di Girolamo, A.; Magini, N.; Roiser, S.; Simon, M. K.

    2015-12-01

    The overall success of LHC data processing depends heavily on stable, reliable and fast data distribution. The Worldwide LHC Computing Grid (WLCG) relies on the File Transfer Service (FTS) as the data movement middleware for moving sets of files from one site to another. This paper describes the components of FTS3 monitoring infrastructure and how they are built to satisfy the common and particular requirements of the LHC experiments. We show how the system provides a complete and detailed cross-virtual organization (VO) picture of transfers for sites, operators and VOs. This information has proven critical due to the shared nature of the infrastructure, allowing a complete view of all transfers on shared network links between various workflows and VOs using the same FTS transfer manager. We also report on the performance of the FTS service itself, using data generated by the aforementioned monitoring infrastructure both during the commissioning and the first phase of production. We also explain how this monitoring information and network metrics produced can be used both as a starting point for troubleshooting data transfer issues, but also as a mechanism to collect information such as transfer efficiency between sites, achieved throughput and its evolution over time, most common errors, etc, and take decision upon them to further optimize transfer workflows. The service setup is subject to sites policies to control the network resource usage, as well as all the VOs making use of the Grid resources at the site to satisfy their requirements. FTS3 is the new version of FTS and has been deployed in production in August 2014.

  10. SOFIS FTS EM test results

    NASA Astrophysics Data System (ADS)

    Soucy, Marc-Andre A.; Levesque, Luc E.; Tanii, Jun; Kawashima, Takahiro; Nakajima, Hideaki

    2003-04-01

    The Solar Occultation FTS for Inclined-orbit Satellite (SOFIS) is a solar occultation Fourier transform spectrometer developed by the Ministry of the Environment (MOE) in Japan for the Global Change Observation Mission-A1 (GCOM-A1) satellite. GCOM-A1 will be placed in a 650 km non-sun-synchronous orbit, with an inclination angle of 69 degrees. ABB-Bomem is a sub-contractor of NTSpace (NEC-Toshiba Space) for the design and manufacturing of the FTS Engineering Model of SOFIS. SOFIS measures the vertical profile of the atmospheric constituents with 0.2 cm-1 spectral resolution for the spectral range covering 3-13 μm. The atmospheric vertical resolution of SOFIS is 1 km. The target of SOFIS measurements is a global distribution of O3, HNO3, NO2, N2O, CH4, H2O, CO2, CFC-11, CFC-12, ClONO2, aerosol extinction, atmospheric pressure and temperature. NTSpace in Japan is the prime contractor of SOFIS. The spectrometer is an adapted version of the classical Michelson interferometer using an optimized optical layout and moving retro-reflectors. A solid-state laser diode operating at 1550 nm is used as metrology source of the interferometer. Its highly folded optical design results in a high performance instrument with a compact size. SOFIS FTS implements high performance control techniques to achieve outstanding speed stability of the moving mechanism. This paper describes the test activities of the SOFIS-FTS Engineering Model (EM) and preliminary results. The performances of the FTS are presented in terms of key parameters like signal-to-noise ratio, modulation efficiency and stability. Spectra acquired are shown and test methodology and analyses are presented. Lessons learned during assembly, integration and testing are described as well as improvements planned to be implemented in the Flight Model.

  11. Biological activity of Pinus nigra terpenes--evaluation of FtsZ inhibition by selected compounds as contribution to their antimicrobial activity.

    PubMed

    Sarac, Zorica; Matejić, Jelena S; Stojanović-Radić, Zorica Z; Veselinović, Jovana B; Džamić, Ana M; Bojović, Srdjan; Marin, Petar D

    2014-11-01

    In the current work, in vitro antioxidant, antibacterial, and antifungal activites of the needle terpenes of three taxa of Pinus nigra from Serbia (ssp. nigra, ssp. pallasiana, and var. banatica) were analyzed. The black pine essential oils showed generally weak antioxidative properties tested by two methods (DPPH and ABTS scavenging assays), where the highest activity was identified in P. nigra var. banatica (IC50=25.08 mg/mL and VitC=0.67 mg (vitamin C)/g when tested with the DPPH and ABTS reagents, respectively). In the antimicrobial assays, one fungal (Aspergilus niger) and two bacterial strains (Staphylococcus aureus and Bacillus cereus) showed sensitivity against essential oils of all three P. nigra taxa. The tested oils have been shown to possess inhibitory action in the range from 20.00 to 0.62 mg/mL, where var. banatica exhibited the highest and ssp. nigra the lowest antimicrobial action. In order to determine potential compounds that are responsible for alternative mode of action, molecular docking simulations inside FtsZ (a prokaryotic homolog of tubulin) were performed. Tested compounds were the most abundant terpenoid (germacrene D-4-ol) and its structurally similar terpene (germacrene D), both present in all three essential oils. It was determined that the oxygenated form of the molecule creates stable bonds with investigated enzyme FtsZ, and that this compound, through this mechanism of action participates in the antimicrobial activity.

  12. Hydrogen-oxygen catalytic ignition and thruster investigation. Volume 1: Catalytic ignition and low pressure thruster evaluations

    NASA Technical Reports Server (NTRS)

    Johnson, R. J.

    1972-01-01

    An experimental and analytical program was conducted to evaluate catalytic igniter operational limits, igniter scaling criteria, and delivered performance of cooled, flightweight gaseous hydrogen-oxygen reaction control thrusters. Specific goals were to: (1) establish operating life and environmental effects for both Shell 405-ABSG and Engelhard MFSA catalysts, (2) provide generalized igniter design guidelines for high response without flashback, and (3) to determine overall performance of thrusters at chamber pressures of 15 and 300 psia (103 and 2068 kN/sq m) and thrust levels of 30 and 1500 lbf, respectively. The experimental results have demonstrated the feasibility of reliable, high response catalytic ignition and the effectiveness of ducted chamber cooling for a high performance flightweight thruster. This volume presents the results of the catalytic igniter and low pressure thruster evaluations are presented.

  13. Identification and Partial Characterization of Potential FtsL and FtsQ Homologs of Chlamydia

    PubMed Central

    Ouellette, Scot P.; Rueden, Kelsey J.; AbdelRahman, Yasser M.; Cox, John V.; Belland, Robert J.

    2015-01-01

    Chlamydia is amongst the rare bacteria that lack the critical cell division protein FtsZ. By annotation, Chlamydia also lacks several other essential cell division proteins including the FtsLBQ complex that links the early (e.g., FtsZ) and late (e.g., FtsI/Pbp3) components of the division machinery. Here, we report chlamydial FtsL and FtsQ homologs. Ct271 aligned well with Escherichia coli FtsL and shared sequence homology with it, including a predicted leucine-zipper like motif. Based on in silico modeling, we show that Ct764 has structural homology to FtsQ in spite of little sequence similarity. Importantly, ct271/ftsL and ct764/ftsQ are present within all sequenced chlamydial genomes and are expressed during the replicative phase of the chlamydial developmental cycle, two key characteristics for a chlamydial cell division gene. GFP-Ct764 localized to the division septum of dividing transformed chlamydiae, and, importantly, over-expression inhibited chlamydial development. Using a bacterial two-hybrid approach, we show that Ct764 interacted with other components of the chlamydial division apparatus. However, Ct764 was not capable of complementing an E. coli FtsQ depletion strain in spite of its ability to interact with many of the same division proteins as E. coli FtsQ, suggesting that chlamydial FtsQ may function differently. We previously proposed that Chlamydia uses MreB and other rod-shape determining proteins as an alternative system for organizing the division site and its apparatus. Chlamydial FtsL and FtsQ homologs expand the number of identified chlamydial cell division proteins and suggest that Chlamydia has likely kept the late components of the division machinery while substituting the Mre system for the early components. PMID:26617598

  14. Methane cross-validation between three Fourier transform spectrometers: SCISAT ACE-FTS, GOSAT TANSO-FTS, and ground-based FTS measurements in the Canadian high Arctic

    NASA Astrophysics Data System (ADS)

    Holl, Gerrit; Walker, Kaley A.; Conway, Stephanie; Saitoh, Naoko; Boone, Chris D.; Strong, Kimberly; Drummond, James R.

    2016-05-01

    We present cross-validation of remote sensing measurements of methane profiles in the Canadian high Arctic. Accurate and precise measurements of methane are essential to understand quantitatively its role in the climate system and in global change. Here, we show a cross-validation between three data sets: two from spaceborne instruments and one from a ground-based instrument. All are Fourier transform spectrometers (FTSs). We consider the Canadian SCISAT Atmospheric Chemistry Experiment (ACE)-FTS, a solar occultation infrared spectrometer operating since 2004, and the thermal infrared band of the Japanese Greenhouse Gases Observing Satellite (GOSAT) Thermal And Near infrared Sensor for carbon Observation (TANSO)-FTS, a nadir/off-nadir scanning FTS instrument operating at solar and terrestrial infrared wavelengths, since 2009. The ground-based instrument is a Bruker 125HR Fourier transform infrared (FTIR) spectrometer, measuring mid-infrared solar absorption spectra at the Polar Environment Atmospheric Research Laboratory (PEARL) Ridge Laboratory at Eureka, Nunavut (80° N, 86° W) since 2006. For each pair of instruments, measurements are collocated within 500 km and 24 h. An additional collocation criterion based on potential vorticity values was found not to significantly affect differences between measurements. Profiles are regridded to a common vertical grid for each comparison set. To account for differing vertical resolutions, ACE-FTS measurements are smoothed to the resolution of either PEARL-FTS or TANSO-FTS, and PEARL-FTS measurements are smoothed to the TANSO-FTS resolution. Differences for each pair are examined in terms of profile and partial columns. During the period considered, the number of collocations for each pair is large enough to obtain a good sample size (from several hundred to tens of thousands depending on pair and configuration). Considering full profiles, the degrees of freedom for signal (DOFS) are between 0.2 and 0.7 for TANSO-FTS and

  15. Methane cross-validation between three Fourier Transform Spectrometers: SCISAT ACE-FTS, GOSAT TANSO-FTS, and ground-based FTS measurements in the Canadian high Arctic

    NASA Astrophysics Data System (ADS)

    Holl, G.; Walker, K. A.; Conway, S.; Saitoh, N.; Boone, C. D.; Strong, K.; Drummond, J. R.

    2015-12-01

    We present cross-validation of remote sensing measurements of methane profiles in the Canadian high Arctic. Accurate and precise measurements of methane are essential to understand quantitatively its role in the climate system and in global change. Here, we show a cross-validation between three datasets: two from spaceborne instruments and one from a ground-based instrument. All are Fourier Transform Spectrometers (FTSs). We consider the Canadian SCISAT Atmospheric Chemistry Experiment (ACE)-FTS, a solar occultation infrared spectrometer operating since 2004, and the thermal infrared band of the Japanese Greenhouse Gases Observing Satellite (GOSAT) Thermal And Near infrared Sensor for carbon Observation (TANSO)-FTS, a nadir/off-nadir scanning FTS instrument operating at solar and terrestrial infrared wavelengths, since 2009. The ground-based instrument is a Bruker 125HR Fourier Transform Infrared (FTIR) spectrometer, measuring mid-infrared solar absorption spectra at the Polar Environment Atmospheric Research Laboratory (PEARL) Ridge Lab at Eureka, Nunavut (80° N, 86° W) since 2006. For each pair of instruments, measurements are collocated within 500 km and 24 h. An additional criterion based on potential vorticity values was found not to significantly affect differences between measurements. Profiles are regridded to a common vertical grid for each comparison set. To account for differing vertical resolutions, ACE-FTS measurements are smoothed to the resolution of either PEARL-FTS or TANSO-FTS, and PEARL-FTS measurements are smoothed to the TANSO-FTS resolution. Differences for each pair are examined in terms of profile and partial columns. During the period considered, the number of collocations for each pair is large enough to obtain a good sample size (from several hundred to tens of thousands depending on pair and configuration). Considering full profiles, the degrees of freedom for signal (DOFS) are between 0.2 and 0.7 for TANSO-FTS and between 1.5 and 3

  16. Domain-swapping analysis of FtsI, FtsL, and FtsQ, bitopic membrane proteins essential for cell division in Escherichia coli.

    PubMed Central

    Guzman, L M; Weiss, D S; Beckwith, J

    1997-01-01

    FtsI, FtsL, and FtsQ are three membrane proteins required for assembly of the division septum in the bacterium Escherichia coli. Cells lacking any of these three proteins form long, aseptate filaments that eventually lyse. FtsI, FtsL, and FtsQ are not homologous but have similar overall structures: a small cytoplasmic domain, a single membrane-spanning segment (MSS), and a large periplasmic domain that probably encodes the primary functional activities of these proteins. The periplasmic domain of FtsI catalyzes transpeptidation and is involved in the synthesis of septal peptidoglycan. The precise functions of FtsL and FtsQ are not known. To ask whether the cytoplasmic domain and MSS of each protein serve only as a membrane anchor or have instead a more sophisticated function, we have used molecular genetic techniques to swap these domains among the three Fts proteins and one membrane protein not involved in cell division, MalF. In the cases of FtsI and FtsL, replacement of the cytoplasmic domain and/or MSS resulted in the loss of the ability to support cell division. For FtsQ, MSS swaps supported cell division but cytoplasmic domain swaps did not. We discuss several potential interpretations of these results, including that the essential domains of FtsI, FtsL, and FtsQ have a role in regulating the localization and/or activity of these proteins to ensure that septum formation occurs at the right place in the cell and at the right time during the division cycle. PMID:9260951

  17. 3-Phenyl substituted 6,7-dimethoxyisoquinoline derivatives as FtsZ-targeting antibacterial agents

    PubMed Central

    Kelley, Cody; Zhang, Yongzheng; Parhi, Ajit; Kaul, Malvika; Pilch, Daniel S.; LaVoie, Edmond J.

    2014-01-01

    The emergence of multidrug-resistant bacteria has created an urgent need for antibiotics with a novel mechanism of action. The bacterial cell division protein FtsZ is an attractive target for the development of novel antibiotics. The benzo[c]phenanthridinium sanguinarine and the dibenzo[a,g]quinolizin-7-ium berberine are two structurally similar plant alkaloids that alter FtsZ function. The presence of a hydrophobic functionality at either the 1-position of 5-methylbenzo[c]phenanthridinium derivatives or the 2-position of dibenzo[a,g]quinolizin-7-ium derivatives is associated with significantly enhanced antibacterial activity. 3-Phenylisoquinoline represents a subunit within the ring-systems of both of these alkaloids. Several 3-phenylisoquinolines and 3-phenylisoquinolinium derivatives have been synthesized and evaluated for antibacterial activity against Staphylococcus aureus and Enterococcus faecalis, including multidrug-resistant strains of methicillin-resistant S. aureus (MRSA) and vancomycin-resistant E. faecalis (VRE). A number of derivatives were found to have activity against both MRSA and VRE. The binding of select compounds to S. aureus FtsZ (SaFtsZ) was demonstrated and characterized using fluorescence spectroscopy. In addition, the compounds were shown to act as stabilizers of SaFtsZ polymers and concomitant inhibitors of SaFtsZ GTPase activity. Toxicological assessment of select compounds revealed minimal cross-reaction mammalian β-tubulin as well as little or no human cytotoxicity. PMID:23127490

  18. Evaluation of catalytic combustion of actual coal-derived gas

    NASA Technical Reports Server (NTRS)

    Blanton, J. C.; Shisler, R. A.

    1982-01-01

    The combustion characteristics of a Pt-Pl catalytic reactor burning coal-derived, low-Btu gas were investigated. A large matrix of test conditions was explored involving variations in fuel/air inlet temperature and velocity, reactor pressure, and combustor exit temperature. Other data recorded included fuel gas composition, reactor temperatures, and exhaust emissions. Operating experience with the reactor was satisfactory. Combustion efficiencies were quite high (over 95 percent) over most of the operating range. Emissions of NOx were quite high (up to 500 ppm V and greater), owing to the high ammonia content of the fuel gas.

  19. Catalytic test reactions for the evaluation of hierarchical zeolites.

    PubMed

    Hartmann, Martin; Machoke, Albert Gonche; Schwieger, Wilhelm

    2016-06-13

    Hierarchical zeolites have received increasing attention in the last decade due to their outstanding catalytic performance. Several types of hierarchical zeolites can be prepared by a large number of different techniques. Hierarchical zeolites combine the intrinsic catalytic properties of conventional zeolites and the facilitated access and transport in the additional meso- or macropore system. In this tutorial review, we discuss several test reactions that have been explored to show the benefit of the hierarchical pore system with respect to their suitability to prove the positive effects of hierarchical porous zeolites. It is important to note that positive effects on activity, stability and less frequently selectivity observed for hierarchically structured catalysts not necessarily are only a consequence of the additional meso- or macropores but also the number, strength and location of active sites as well as defects and impurities. With regard to these aspects, the test reaction has to be chosen carefully and potential changes in the chemistry of the catalyst have to be considered as well. In addition to the determination of conversion, yield and selectivity, we will show that the calculation of the activation energy and the determination of the Thiele modulus and the effectiveness factor are good indicators of the presence or absence of diffusion limitations in hierarchical zeolites compared to their parent materials.

  20. FtsZ Placement in Nucleoid-Free Bacteria

    PubMed Central

    Pazos, Manuel; Casanova, Mercedes; Palacios, Pilar; Margolin, William; Natale, Paolo; Vicente, Miguel

    2014-01-01

    We describe the placement of the cytoplasmic FtsZ protein, an essential component of the division septum, in nucleoid-free Escherichia coli maxicells. The absence of the nucleoid is accompanied in maxicells by degradation of the SlmA protein. This protein, together with the nucleoid, prevents the placement of the septum in the regions occupied by the chromosome by a mechanism called nucleoid occlusion (NO). A second septum placement mechanism, the MinCDE system (Min) involving a pole-to-pole oscillation of three proteins, nonetheless remains active in maxicells. Both Min and NO act on the polymerization of FtsZ, preventing its assembly into an FtsZ-ring except at midcell. Our results show that even in the total absence of NO, Min oscillations can direct placement of FtsZ in maxicells. Deletion of the FtsZ carboxyl terminal domain (FtsZ*), a central hub that receives signals from a variety of proteins including MinC, FtsA and ZipA, produces a Min-insensitive form of FtsZ unable to interact with the membrane-anchoring FtsA and ZipA proteins. This protein produces a totally disorganized pattern of FtsZ localization inside the maxicell cytoplasm. In contrast, FtsZ*-VM, an artificially cytoplasmic membrane-anchored variant of FtsZ*, forms helical or repetitive ring structures distributed along the entire length of maxicells even in the absence of NO. These results show that membrane anchoring is needed to organize FtsZ into rings and underscore the role of the C-terminal hub of FtsZ for their correct placement. PMID:24638110

  1. FtsZ placement in nucleoid-free bacteria.

    PubMed

    Pazos, Manuel; Casanova, Mercedes; Palacios, Pilar; Margolin, William; Natale, Paolo; Vicente, Miguel

    2014-01-01

    We describe the placement of the cytoplasmic FtsZ protein, an essential component of the division septum, in nucleoid-free Escherichia coli maxicells. The absence of the nucleoid is accompanied in maxicells by degradation of the SlmA protein. This protein, together with the nucleoid, prevents the placement of the septum in the regions occupied by the chromosome by a mechanism called nucleoid occlusion (NO). A second septum placement mechanism, the MinCDE system (Min) involving a pole-to-pole oscillation of three proteins, nonetheless remains active in maxicells. Both Min and NO act on the polymerization of FtsZ, preventing its assembly into an FtsZ-ring except at midcell. Our results show that even in the total absence of NO, Min oscillations can direct placement of FtsZ in maxicells. Deletion of the FtsZ carboxyl terminal domain (FtsZ*), a central hub that receives signals from a variety of proteins including MinC, FtsA and ZipA, produces a Min-insensitive form of FtsZ unable to interact with the membrane-anchoring FtsA and ZipA proteins. This protein produces a totally disorganized pattern of FtsZ localization inside the maxicell cytoplasm. In contrast, FtsZ*-VM, an artificially cytoplasmic membrane-anchored variant of FtsZ*, forms helical or repetitive ring structures distributed along the entire length of maxicells even in the absence of NO. These results show that membrane anchoring is needed to organize FtsZ into rings and underscore the role of the C-terminal hub of FtsZ for their correct placement.

  2. FtsZ polymerization assays: simple protocols and considerations.

    PubMed

    Król, Ewa; Scheffers, Dirk-Jan

    2013-11-16

    During bacterial cell division, the essential protein FtsZ assembles in the middle of the cell to form the so-called Z-ring. FtsZ polymerizes into long filaments in the presence of GTP in vitro, and polymerization is regulated by several accessory proteins. FtsZ polymerization has been extensively studied in vitro using basic methods including light scattering, sedimentation, GTP hydrolysis assays and electron microscopy. Buffer conditions influence both the polymerization properties of FtsZ, and the ability of FtsZ to interact with regulatory proteins. Here, we describe protocols for FtsZ polymerization studies and validate conditions and controls using Escherichia coli and Bacillus subtilis FtsZ as model proteins. A low speed sedimentation assay is introduced that allows the study of the interaction of FtsZ with proteins that bundle or tubulate FtsZ polymers. An improved GTPase assay protocol is described that allows testing of GTP hydrolysis over time using various conditions in a 96-well plate setup, with standardized incubation times that abolish variation in color development in the phosphate detection reaction. The preparation of samples for light scattering studies and electron microscopy is described. Several buffers are used to establish suitable buffer pH and salt concentration for FtsZ polymerization studies. A high concentration of KCl is the best for most of the experiments. Our methods provide a starting point for the in vitro characterization of FtsZ, not only from E. coli and B. subtilis but from any other bacterium. As such, the methods can be used for studies of the interaction of FtsZ with regulatory proteins or the testing of antibacterial drugs which may affect FtsZ polymerization.

  3. Geostationary Fourier Transform Spectrometer (GeoFTS)

    NASA Astrophysics Data System (ADS)

    Sander, S. P.; Bekker, D. L.; Blavier, J. L.; Duren, R. M.; Eldering, A.; Frankenberg, C.; Key, R.; Manatt, K.; Miller, C. E.; Natraj, V.; Rider, D. M.; Wu, Y.

    2012-12-01

    In order to confidently project the future evolution of climate and support efforts to mitigate the climate change, quantifying the emissions of CO2 and CH4 is a national and international priority. To accomplish this goal, new observational approaches are required that operate over spatial scales ranging from regional to global, and temporal scales from diurnal to decadal. Geostationary satellite observations of CO2, CH4 and correlative quantities such as CO and chlorophyll fluorescence provide a new measurement approach to deliver the quantity and quality of data needed for improved flux estimates and an improved understanding of the partitioning between biogenic and anthropogenic sources. GeoFTS is an exciting new concept that combines the game changing technology of imaging Fourier Transform Spectroscopy with the observational advantages of a geostationary orbit. The GeoFTS observations enable well-posed surface-atmospheric carbon exchange assessments as well as quantify the atmospheric signatures of anthropogenic CO2 and CH4 emissions. GeoFTS uses a single instrument to make measurements in the near-infrared spectral region at high spectral resolution. The imaging FTS measures atmospheric CO2, CH4, and CO to deliver high-resolution maps multiple times per day. A half-meter-sized cube, the instrument is designed to be a secondary "hosted" payload on a commercial GEO satellite. The instrument leverages recent NASA technology investments, uses a flight-proven interferometer and sensor chip assemblies, and requires no new technology development. NASA and other government agencies have adopted the hosted payload implementation approach because it substantially reduces the overall mission cost. Dense continuous mapping (4 km x 4 km pixels at 40 deg. latitude) is a transformational advance beyond, and complementary to, the capabilities of the NASA missions of record in low earth orbit, providing two to three orders of magnitude improvement in the number of

  4. Contribution of individual promoters in the ddlB-ftsZ region to the transcription of the essential cell-division gene ftsZ in Escherichia coli.

    PubMed

    Flärdh, K; Garrido, T; Vicente, M

    1997-06-01

    The essential cell-division gene ftsZ is transcribed in Escherichia coli from at least six promoters found within the coding regions of the upstream ddlB, ftsQ, and ftsA genes. The contribution of each one to the final yield of ftsZ transcription has been estimated using transcriptional lacZ fusions. The most proximal promoter, ftsZ2p, contributes less than 5% of the total transcription from the region that reaches ftsZ. The ftsZ4p and ftsZ3p promoters, both located inside ftsA, produce almost 37% of the transcription. An ftsAp promoter within the ftsQ gene yields nearly 12% of total transcription from the region. A large proportion of transcription (approximately 46%) derives from promoters ftsQ2p and ftsQ1p, which are located inside the upstream ddlB gene. Thus, the ftsQAZ genes are to a large extent transcribed as a polycistronic mRNA. However, we find that the ftsZ proximal region is necessary for full expression, which is in agreement with a recent report that mRNA cleavage by RNase E at the end of the ftsA cistron has a significant role in the contol of ftsZ expression.

  5. The transmembrane domains of the bacterial cell division proteins FtsB and FtsL form a stable high-order oligomer.

    PubMed

    Khadria, Ambalika S; Senes, Alessandro

    2013-10-29

    FtsB and FtsL are two essential integral membrane proteins of the bacterial division complex or "divisome", both characterized by a single transmembrane helix and a juxtamembrane coiled coil domain. The two domains are important for the association of FtsB and FtsL, a key event for their recruitment to the divisome, which in turn allows the recruitment of the late divisomal components to the Z-ring and subsequent completion of the division process. Here we present a biophysical analysis performed in vitro that shows that the transmembrane domains of FtsB and FtsL associate strongly in isolation. Using Förster resonance energy transfer, we have measured the oligomerization of fluorophore-labeled transmembrane domains of FtsB and FtsL in both detergent and lipid. The data indicate that the transmembrane helices are likely a major contributor to the stability of the FtsB-FtsL complex. Our analyses show that FtsB and FtsL form a 1:1 higher-order oligomeric complex, possibly a tetramer. This finding suggests that the FtsB-FtsL complex is capable of multivalent binding to FtsQ and other divisome components, a hypothesis that is consistent with the possibility that the FtsB-FtsL complex has a structural role in the stabilization of the Z-ring.

  6. Targeting the Bacterial Division Protein FtsZ.

    PubMed

    Hurley, Katherine A; Santos, Thiago M A; Nepomuceno, Gabriella M; Huynh, Valerie; Shaw, Jared T; Weibel, Douglas B

    2016-08-11

    Similar to its eukaryotic counterpart, the prokaryotic cytoskeleton is essential for the structural and mechanical properties of bacterial cells. The essential protein FtsZ is a central player in the cytoskeletal family, forms a cytokinetic ring at mid-cell, and recruits the division machinery to orchestrate cell division. Cells depleted of or lacking functional FtsZ do not divide and grow into long filaments that eventually lyse. FtsZ has been studied extensively as a target for antibacterial development. In this Perspective, we review the structural and biochemical properties of FtsZ, its role in cell biochemistry and physiology, the different mechanisms of inhibiting FtsZ, small molecule antagonists (including some misconceptions about mechanisms of action), and their discovery strategies. This collective information will inform chemists on different aspects of FtsZ that can be (and have been) used to develop successful strategies for devising new families of cell division inhibitors.

  7. Structural/surface characterization and catalytic evaluation of rare-earth (Y, Sm and La) doped ceria composite oxides for CH3SH catalytic decomposition

    NASA Astrophysics Data System (ADS)

    He, Dedong; Chen, Dingkai; Hao, Husheng; Yu, Jie; Liu, Jiangping; Lu, Jichang; Liu, Feng; Wan, Gengping; He, Sufang; Luo, Yongming

    2016-12-01

    A series of rare earth (Y, Sm and La) doped ceria composite oxides and pure CeO2 were synthesized and evaluated by conducting CH3SH catalytic decomposition test. Several characterization studies, including XRD, BET, Raman, H2-TPR, XPS, FT-IR, CO2-TPD and CH3SH-TPD, were undertaken to correlate structural and surface properties of the obtained ceria-based catalysts with their catalytic performance for CH3SH decomposition. More oxygen vacancies and increased basic sites exhibited in the rare earth doped ceria catalysts. Y doped ceria sample (Ce0.75Y0.25O2-δ), with a moderate increase in basic sites, contained more oxygen vacancies. More structural defects and active sites could be provided, and a relatively small amount of sulfur would accumulate, which resulted in better catalytic performance. The developed catalyst presented good catalytic behavior with stability very similar to that of typical zeolite-based catalysts reported previously. However, La doped ceria catalyst (Ce0.75La0.25O2-δ) with the highest alkalinity was not the most active one. More sulfur species would be adsorbed and a large amount of cerium sulfide species (Ce2S3) would accumulate, which caused deactivation of the catalysts. The combined effect of increased oxygen vacancies and alkalinity led to the catalytic stability of Ce0.75Sm0.25O2-δ sample was comparable to that of pure CeO2 catalyst.

  8. Synthesis, characterisation, and catalytic evaluation of hierarchical faujasite zeolites: milestones, challenges, and future directions.

    PubMed

    Verboekend, D; Nuttens, N; Locus, R; Van Aelst, J; Verolme, P; Groen, J C; Pérez-Ramírez, J; Sels, B F

    2016-06-13

    Faujasite (X, Y, and USY) zeolites represent one of the most widely-applied and abundant catalysts and sorbents in the chemical industry. In the last 5 years substantial progress was made in the synthesis, characterisation, and catalytic exploitation of hierarchically-structured variants of these zeolites. Hererin, we provide an overview of these contributions, highlighting the main advancements regarding the evaluation of the nature and functionality of introduced secondary porosity. The novelty, efficiency, versatility, and sustainability of the reported bottom-up and (predominately) top-down strategies are discussed. The crucial role of the relative stability of faujasites in aqueous media is highlighted. The interplay between the physico-chemical properties of the hierarchical zeolites and their use in petrochemical and biomass-related catalytic processes is assessed.

  9. DCS/FTS Commercial Satellite Communications System

    NASA Astrophysics Data System (ADS)

    Shimabukuro, T.; Rosner, R.; Pearsall, C.

    In order to control the rising costs of telephonic services and meeting the increasing demand for wideband video and data services within U.S. Federal Government agencies, the Defense Communications Agency and the General Services Administration have begun the implementation of a leased Commercial Satellite Communications System. Service volume demand, commonality of service requirements, and common geographic communities of interest facilitate economies of scale in the course of meeting DOD and other Federal agencies' objectives. The service, which incorporates the Federal Telecommunications Service and is therefore designated DCS/FTS, is presently studied with respect to military and national objectives.

  10. The FtsZ-Like Protein FtsZm of Magnetospirillum gryphiswaldense Likely Interacts with Its Generic Homolog and Is Required for Biomineralization under Nitrate Deprivation

    PubMed Central

    Müller, Frank D.; Raschdorf, Oliver; Nudelman, Hila; Messerer, Maxim; Katzmann, Emanuel; Plitzko, Jürgen M.; Zarivach, Raz

    2014-01-01

    Midcell selection, septum formation, and cytokinesis in most bacteria are orchestrated by the eukaryotic tubulin homolog FtsZ. The alphaproteobacterium Magnetospirillum gryphiswaldense (MSR-1) septates asymmetrically, and cytokinesis is linked to splitting and segregation of an intracellular chain of membrane-enveloped magnetite crystals (magnetosomes). In addition to a generic, full-length ftsZ gene, MSR-1 contains a truncated ftsZ homolog (ftsZm) which is located adjacent to genes controlling biomineralization and magnetosome chain formation. We analyzed the role of FtsZm in cell division and biomineralization together with the full-length MSR-1 FtsZ protein. Our results indicate that loss of FtsZm has a strong effect on microoxic magnetite biomineralization which, however, could be rescued by the presence of nitrate in the medium. Fluorescence microscopy revealed that FtsZm-mCherry does not colocalize with the magnetosome-related proteins MamC and MamK but is confined to asymmetric spots at midcell and at the cell pole, coinciding with the FtsZ protein position. In Escherichia coli, both FtsZ homologs form distinct structures but colocalize when coexpressed, suggesting an FtsZ-dependent recruitment of FtsZm. In vitro analyses indicate that FtsZm is able to interact with the FtsZ protein. Together, our data suggest that FtsZm shares key features with its full-length homolog but is involved in redox control for magnetite crystallization. PMID:24272781

  11. Conformational transition of the lid helix covering the protease active site is essential for the ATP-dependent protease activity of FtsH.

    PubMed

    Suno, Ryoji; Shimoyama, Masakazu; Abe, Akiko; Shimamura, Tatsuro; Shimodate, Natsuka; Watanabe, Yo-hei; Akiyama, Yoshinori; Yoshida, Masasuke

    2012-09-21

    When bound to ADP, ATP-dependent protease FtsH subunits adopt either an "open" or "closed" conformation. In the open state, the protease catalytic site is located in a narrow space covered by a lidlike helix. This space disappears in the closed form because the lid helix bends at Gly448. Here, we replaced Gly448 with various residues that stabilize helices. Most mutants retained low ATPase activity and bound to the substrate protein, but lost protease activity. However, a mutant proline substitution lost both activities. Our study shows that the conformational transition of the lid helix is essential for the function of FtsH.

  12. Resilient FTS3 service at GridKa

    NASA Astrophysics Data System (ADS)

    Hartmann, T.; Bubeliene, J.; Hoeft, B.; Obholz, L.; Petzold, A.; Wisniewski, K.

    2015-12-01

    The FTS (File Transfer Service) service provides a transfer job scheduler to distribute and replicate vast amounts of data over the heterogeneous WLCG infrastructures. Compared to the channel model of the previous versions, the most recent version of FTS simplifies and improves the flexibility of the service while reducing the load to the service components. The improvements allow to handle a higher number of transfers with a single FTS3 setup. Covering now continent-wide transfers compared to the previous version, whose installations handled only transfers within specific clouds, a resilient system becomes even more necessary with the increased number of depending users. Having set up a FTS3 services at the German T1 site GridKa at KIT in Karlsruhe, we present our experiences on the preparations for a high-availability FTS3 service. Trying to avoid single points of failure, we rely on a database cluster as fault tolerant data back-end and the FTS3 service deployed on an own cluster setup to provide a resilient infrastructure for the users. With the database cluster providing a basic resilience for the data back-end, we ensure on the FTS3 service level a consistent and reliable database access through a proxy solution. On each FTS3 node a HAproxy instance is monitoring the integrity of each database node and distributes database queries over the whole cluster for load balancing during normal operations; in case of a broken database node, the proxy excludes it transparently to the local FTS3 service. The FTS3 service itself consists of a main and a backup instance, which takes over the identity of the main instance, i.e., IP, in case of an error using a CTDB (Cluster Trivial Database) infrastructure offering clients a consistent service.

  13. The bacterial cell division proteins FtsA and FtsZ self-organize into dynamic cytoskeletal patterns.

    PubMed

    Loose, Martin; Mitchison, Timothy J

    2014-01-01

    Bacterial cytokinesis is commonly initiated by the Z-ring, a cytoskeletal structure that assembles at the site of division. Its primary component is FtsZ, a tubulin superfamily GTPase, which is recruited to the membrane by the actin-related protein FtsA. Both proteins are required for the formation of the Z-ring, but if and how they influence each other's assembly dynamics is not known. Here, we reconstituted FtsA-dependent recruitment of FtsZ polymers to supported membranes, where both proteins self-organize into complex patterns, such as fast-moving filament bundles and chirally rotating rings. Using fluorescence microscopy and biochemical perturbations, we found that these large-scale rearrangements of FtsZ emerge from its polymerization dynamics and a dual, antagonistic role of FtsA: recruitment of FtsZ filaments to the membrane and negative regulation of FtsZ organization. Our findings provide a model for the initial steps of bacterial cell division and illustrate how dynamic polymers can self-organize into large-scale structures.

  14. An Evaluation of the Vapor Phase Catalytic Ammonia Removal Process for Use in a Mars Transit Vehicle

    NASA Technical Reports Server (NTRS)

    Flynn, Michael; Borchers, Bruce

    1998-01-01

    An experimental program has been developed to evaluate the potential of the Vapor Phase Catalytic Ammonia Reduction (VPCAR) technology for use as a Mars Transit Vehicle water purification system. Design modifications which will be required to ensure proper operation of the VPCAR system in reduced gravity are also evaluated. The VPCAR system is an integrated wastewater treatment technology that combines a distillation process with high temperature catalytic oxidation. The distillation portion of the system utilizes a vapor compression distillation process to provide an energy efficient phase change separation. This portion of the system removes any inorganic salts and large molecular weight, organic contaminates, i.e., non-volatile, from the product water stream and concentrates these contaminates into a byproduct stream. To oxidize the volatile organic compounds and ammonia, a vapor phase, high temperature catalytic oxidizer is used. This catalytic system converts these compounds along with the aqueous product into CO2, H2O, and N2O. A secondary catalytic bed can then be used to reduce the N2O to nitrogen and oxygen (although not evaluated in this study). This paper describes the design specification of the VPCAR process, the relative benefits of its utilization in a Mars Transit Vehicle, and the design modification which will be required to ensure its proper operation in reduced gravity. In addition, the results of an experimental evaluation of the processors is presented. This evaluation presents the processors performance based upon product water purity, water recovery rates, and power.

  15. Two types of FtsZ proteins in mitochondria and red-lineage chloroplasts: the duplication of FtsZ is implicated in endosymbiosis.

    PubMed

    Miyagishima, Shin-ya; Nozaki, Hisayoshi; Nishida, Keishin; Nishida, Keiji; Matsuzaki, Motomichi; Kuroiwa, Tsuneyoshi

    2004-03-01

    The ancestors of plastids and mitochondria were once free-living bacteria that became organelles as a result of endosymbiosis. According to this theory, a key bacterial division protein, FtsZ, plays a role in plastid division in algae and plants as well as in mitochondrial division in lower eukaryotes. Recent studies have shown that organelle division is a process that combines features derived from the bacterial division system with features contributed by host eukaryotic cells. Two nonredundant versions of FtsZ, FtsZ1 and FtsZ2, have been identified in green-lineage plastids, whereas most bacteria have a single ftsZ gene. To examine whether there is also more than one type of FtsZ in red-lineage chloroplasts (red algal chloroplasts and chloroplasts that originated from the secondary endosymbiosis of red algae) and in mitochondria, we obtained FtsZ sequences from the complete sequence of the primitive red alga Cyanidioschyzon merolae and the draft sequence of the stramenopile (heterokont) Thalassiosira pseudonana. Phylogenetic analyses that included known FtsZ proteins identified two types of chloroplast FtsZ in red algae (FtsZA and FtsZB) and stramenopiles (FtsZA and FtsZC). These analyses also showed that FtsZB emerged after the red and green lineages diverged, while FtsZC arose by the duplication of an ftsZA gene that in turn descended from a red alga engulfed by the ancestor of stramenopiles. A comparison of the predicted proteins showed that like bacterial FtsZ and green-lineage FtsZ2, FtsZA has a short conserved C-termmal sequence (the C-terminal core domain), whereas FtsZB and FtsZC, like the green-lineage FtsZ1, lack this sequence. In addition, the Cyanidioschyzon and Dictyostelium genomes encode two types of mitochondrial FtsZ proteins, one of which lacks the C-terminal variable domain. These results suggest that the acquisition of an additional FtsZ protein with a modified C terminus was common to the primary and secondary endosymbioses that produced

  16. Recent Topics about the GOSAT TANSO-FTS SWIR L2 Retrievals

    NASA Astrophysics Data System (ADS)

    Yoshida, Y.; Kikuchi, N.; Inoue, M.; Morino, I.; Uchino, O.; Yokota, T.

    2014-12-01

    The column-averaged dry air mole fractions of carbon dioxide and methane (XCO2 and XCH4) have been retrieved globally from the Short-Wavelength InfraRed (SWIR) spectral data observed with the Thermal And Near-infrared Sensor for carbon Observation Fourier Transform Spectrometer (TANSO-FTS) onboard Greenhouse gases Observing SATellite (GOSAT). The retrieval results have been released as the GOSAT TANSO-FTS SWIR L2 product, and there are two related topics recently. From mid-June, 2014, the TANSO-FTS has recorded interferograms with the zero-path difference (ZPD) position shifted about 800 fringes from its nominal position to avoid the operation with an unstable condition after the sudden shutdown of GOSAT by solar paddle accident at the end of May, 2014. This brings slightly, but non-negligible lower spectral resolution on the observed spectrum. If the nominal instrumental line shape function (ILSF) is used in the retrieval analysis, a beat structure is appeared in the residual spectrum and the retrieved XCO2 and XCH4 show negative bias. The ILSF considering the 800-fringe bias of the ZPD position is provided by JAXA, and the most of the beat structure are disappeared by using this ILSF. The retrieval accuracy and precision will be evaluated until the presentation. Other topic is the evaluation of the sample of the new TANSO-FTS L1B product. JAXA plans to implement following items for SWIR spectrum in the new version; (i) new sampling interval non-uniformity correction (SINUC), (ii) updated non-linearity correction, and (iii) unified spectral resolution to avoid the ZPD position shift. Preliminary evaluation shows that the new SINUC can remove a small bias in the XCO2 and XCH4 due to the scan direction. Further evaluation as well as the latest status of the L2 version up are also presented.

  17. Evaluation of on-board diagnosis methods for three-way catalytic converters.

    PubMed

    Tsinoglou, Dimitrios N; Koltsakis, Grigorios C; Samaras, Zissis C

    2002-12-01

    On-board diagnosis (OBD) aims at detecting malfunctions of emission-related components of road vehicles. It is required by legislation in United States and the European Union, as it is considered to be beneficial for the reduction of vehicle-related air pollution. On-board diagnosis of the catalytic converter is a challenging task, as it relies on indirect assessments of catalyst activity. Several methods have been proposed for catalyst diagnosis, presenting a varying degree of correlation between the quantities used as OBD indexes and the actual tailpipe emissions. This paper evaluates two methods, with the support of mathematical modeling; in the first one, which is commonly used by vehicle manufacturers, malfunction detection relies on the oxygen storage properties of the catalyst, while in the second, detection relies on the heat released by the chemical reactions in the catalyst. Both are found to be sufficient for the diagnosis of catalytic converters for current legislation requirements. However, the thermal method presents higher sensitivity to low levels of catalyst deactivation and could therefore be more suitable for diagnosis of future, ultra-low-emitting vehicles.

  18. Relating FTS Catalyst Properties to Performance

    NASA Technical Reports Server (NTRS)

    Ma, Wenping; Ramana Rao Pendyala, Venkat; Gao, Pei; Jermwongratanachai, Thani; Jacobs, Gary; Davis, Burton H.

    2016-01-01

    During the reporting period June 23, 2011 to August 31, 2013, CAER researchers carried out research in two areas of fundamental importance to the topic of cobalt-based Fischer-Tropsch Synthesis (FTS): promoters and stability. The first area was research into possible substitute promoters that might be used to replace the expensive promoters (e.g., Pt, Re, and Ru) that are commonly used. To that end, three separate investigations were carried out. Due to the strong support interaction of ?-Al2O3 with cobalt, metal promoters are commonly added to commercial FTS catalysts to facilitate the reduction of cobalt oxides and thereby boost active surface cobalt metal sites. To date, the metal promoters examined have been those up to and including Group 11. Because two Group 11 promoters (i.e., Ag and Au) were identified to exhibit positive impacts on conversion, selectivity, or both, research was undertaken to explore metals in Groups 12 - 14. The three metals selected for this purpose were Cd, In, and Sn. At a higher loading of 25%Co on alumina, 1% addition of Cd, In, or Sn was found to-on average-facilitate reduction by promoting a heterogeneous distribution of cobalt consisting of larger lesser interacting cobalt clusters and smaller strongly interacting cobalt species. The lesser interacting species were identified in TPR profiles, where a sharp low temperature peak occurred for the reduction of larger, weakly interacting, CoO species. In XANES, the Cd, In, and Sn promoters were found to exist as oxides, whereas typical promoters (e.g., Re, Ru, Pt) were previously determined to exist in an metallic state in atomic coordination with cobalt. The larger cobalt clusters significantly decreased the active site density relative to the unpromoted 25%Co/Al2O3 catalyst. Decreasing the cobalt loading to 15%Co eliminated the large non-interacting species. The TPR peak for reduction of strongly interacting CoO in the Cd promoted catalyst occurred at a measurably lower temperature

  19. An outline of a method for evaluating liquid products obtained by catalytic conversion of biomass

    SciTech Connect

    Burton, A.; De Zutter, D.; Churin, E.; Poncelet, G.; Grange, P. )

    1987-04-01

    The authors propose an analytical procedure for the evaluation of the products of catalytic liquefaction of wood (mild hydrogenolysis). The analysis starts with a vacuum distillation giving a light fraction and water. The light fraction is constituted of the solvent and a phenolic fraction which is separated by alkaline extraction. The residue of distillation is a heavy fraction, which is extracted in a Soxhlet for recovery of benzene soluble products. A precipitation by pentane allows the separation of neutral and phenolic fractions from asphaltenes. The identification of the major components in the different fractions is performed principally by GC/MS and NMR. This methodology can potentially be extended to the analysis of complex products obtained by thermochemical treatments of biomass, in particular, virgin pyrolysis oil or treated oil.

  20. Preparation of gold nanoparticles using Salicornia brachiata plant extract and evaluation of catalytic and antibacterial activity

    NASA Astrophysics Data System (ADS)

    Ayaz Ahmed, Khan Behlol; Subramanian, Swetha; Sivasubramanian, Aravind; Veerappan, Ganapathy; Veerappan, Anbazhagan

    2014-09-01

    The current study deals with the synthesis of gold nanoparticles (AuNPs) using Salicornia brachiata (Sb) and evaluation of their antibacterial and catalytic activity. The SbAuNPs showed purple color with a characteristic surface plasmon resonance peak at 532 nm. Scanning electron microscopy and transmission electron microscopy revealed polydispersed AuNPs with the size range from 22 to 35 nm. Energy dispersive X-ray and thin layer X-ray diffraction analysis clearly shows that SbAuNPs was pure and crystalline in nature. As prepared gold nanoparticles was used as a catalyst for the sodium borohydride reduction of 4-nitro phenol to 4-amino phenol and methylene blue to leucomethylene blue. The green synthesized nanoparticles exhibited potent antibacterial activity against the pathogenic bacteria, as evidenced by their zone of inhibition. In addition, we showed that the SbAuNPs in combination with the regular antibiotic, ofloxacin, exhibit superior antibacterial activity than the individual.

  1. FtsK actively segregates sister chromosomes in Escherichia coli.

    PubMed

    Stouf, Mathieu; Meile, Jean-Christophe; Cornet, François

    2013-07-02

    Bacteria use the replication origin-to-terminus polarity of their circular chromosomes to control DNA transactions during the cell cycle. Segregation starts by active migration of the region of origin followed by progressive movement of the rest of the chromosomes. The last steps of segregation have been studied extensively in the case of dimeric sister chromosomes and when chromosome organization is impaired by mutations. In these special cases, the divisome-associated DNA translocase FtsK is required. FtsK pumps chromosomes toward the dif chromosome dimer resolution site using polarity of the FtsK-orienting polar sequence (KOPS) DNA motifs. Assays based on monitoring dif recombination have suggested that FtsK acts only in these special cases and does not act on monomeric chromosomes. Using a two-color system to visualize pairs of chromosome loci in living cells, we show that the spatial resolution of sister loci is accurately ordered from the point of origin to the dif site. Furthermore, ordered segregation in a region ∼200 kb long surrounding dif depended on the oriented translocation activity of FtsK but not on the formation of dimers or their resolution. FtsK-mediated segregation required the MatP protein, which delays segregation of the dif-surrounding region until cell division. We conclude that FtsK segregates the terminus region of sister chromosomes whether they are monomeric or dimeric and does so in an accurate and ordered manner. Our data are consistent with a model in which FtsK acts to release the MatP-mediated cohesion and/or interaction with the division apparatus of the terminus region in a KOPS-oriented manner.

  2. FTS measurements of submillimeter-wave opacity at Pampa la Bola

    NASA Astrophysics Data System (ADS)

    Matsuo, Hiroshi; Sakamoto, Akihiro; Matsushita, Satoki

    1998-07-01

    The first measurement of submillimeter-wave atmospheric opacity spectra at the Pampa la Bola site (Northern Chile, Atacama 4800 m altitude) has been performed during the winter season using a Fourier transform spectrometer (FTS). Atmospheric emission spectra, as a function of airmass, were measured under various weather conditions. Atmospheric opacity was evaluated from sky temperature at zenith as well as from tipping measurements, which are independent measure but give consistent results. The FTS opacity measurements also show good match with 220 GHz radiometer measurements. Correlations between millimeter-wave and submillimeter-wave opacities get worse when 220 GHz opacity is larger than 0.1. Deviations from the opacity correlation at each frequency show good correlations themselves but have different relative variations at each frequency. This indicates that atmospheric transparency cannot be characterized only by millimeter-wave opacity buy requires simultaneous opacity measurements at millimeter and submillimeter-wavelengths.

  3. Correction of scan-speed instability of TANSO-FTS on GOSAT

    NASA Astrophysics Data System (ADS)

    Suto, H.; Kuze, A.

    2010-12-01

    To characterize the performance of Thermal and Near Infrared Sensor for Carbon Observation- Fourier Transform Spectrometer (TANSO-FTS) on GOSAT observe global column density of carbon dioxide (CO2) and methane (CH4) from space with high accuracy, the impacts of FTS scan-speed instability induced by the moving components on GOSAT have been investigated. The newly developed correction algorithm is also demonstrated. Moving components such as Reaction Wheel (RW), Inertia Reference Unit (IRU), Earth Sensor Head (ESH), Paddle Drive Motor (PDM), and Mechanical Cooler for MCT detector are predicted as the disturbance sources on-orbit. As an index of micro vibration effect on spectrum, the ghost signal intensity related to monochromatic light source has been evaluated. To derive accurate spectrum, the non-distorted interferogram has been conducted by applying a complex interferogram and re-sampling technique. The corrected spectrum show minimized offset caused by micro-vibration.

  4. Incorporation of catalytic dehydrogenation into fischer-tropsch synthesis to significantly reduce carbon dioxide emissions

    DOEpatents

    Huffman, Gerald P.

    2012-11-13

    A new method of producing liquid transportation fuels from coal and other hydrocarbons that significantly reduces carbon dioxide emissions by combining Fischer-Tropsch synthesis with catalytic dehydrogenation is claimed. Catalytic dehydrogenation (CDH) of the gaseous products (C1-C4) of Fischer-Tropsch synthesis (FTS) can produce large quantities of hydrogen while converting the carbon to multi-walled carbon nanotubes (MWCNT). Incorporation of CDH into a FTS-CDH plant converting coal to liquid fuels can eliminate all or most of the CO.sub.2 emissions from the water-gas shift (WGS) reaction that is currently used to elevate the H.sub.2 level of coal-derived syngas for FTS. Additionally, the FTS-CDH process saves large amounts of water used by the WGS reaction and produces a valuable by-product, MWCNT.

  5. Evaluation of Catalytic and Thermal Cracking in a JP-8 Fueled Pulsed Detonation Engine (Postprint)

    DTIC Science & Technology

    2007-09-01

    Additionally, a zeolite catalytic coating is applied to the heat-exchanger surfaces to stimulate further cracking of the fuel and reduce coke deposition. To...concentric-counter-flow heat exchangers to elevate the fuel temperature levels sufficiently to induce thermal cracking. Additionally, a zeolite catalytic ...to elevate the fuel temperatures sufficiently to crack the fuel thermally with the assistance of a zeolite catalytic coating. II. Background

  6. NDK Interacts with FtsZ and Converts GDP to GTP to Trigger FtsZ Polymerisation - A Novel Role for NDK

    PubMed Central

    Mishra, Saurabh; Jakkala, Kishor; Srinivasan, Ramanujam; Arumugam, Muthu; Ranjeri, Raghavendra; Gupta, Prabuddha; Rajeswari, Haryadi; Ajitkumar, Parthasarathi

    2015-01-01

    Introduction Nucleoside diphosphate kinase (NDK), conserved across bacteria to humans, synthesises NTP from NDP and ATP. The eukaryotic homologue, the NDPK, uses ATP to phosphorylate the tubulin-bound GDP to GTP for tubulin polymerisation. The bacterial cytokinetic protein FtsZ, which is the tubulin homologue, also uses GTP for polymerisation. Therefore, we examined whether NDK can interact with FtsZ to convert FtsZ-bound GDP and/or free GDP to GTP to trigger FtsZ polymerisation. Methods Recombinant and native NDK and FtsZ proteins of Mycobacterium smegmatis and Mycobacterium tuberculosis were used as the experimental samples. FtsZ polymersation was monitored using 90° light scattering and FtsZ polymer pelleting assays. The γ32P-GTP synthesised by NDK from GDP and γ32P-ATP was detected using thin layer chromatography and quantitated using phosphorimager. The FtsZ bound 32P-GTP was quantitated using phosphorimager, after UV-crosslinking, followed by SDS-PAGE. The NDK-FtsZ interaction was determined using Ni2+-NTA-pulldown assay and co-immunoprecipitation of the recombinant and native proteins in vitro and ex vivo, respectively. Results NDK triggered instantaneous polymerisation of GDP-precharged recombinant FtsZ in the presence of ATP, similar to the polymerisation of recombinant FtsZ (not GDP-precharged) upon the direct addition of GTP. Similarly, NDK triggered polymerisation of recombinant FtsZ (not GDP-precharged) in the presence of free GDP and ATP as well. Mutant NDK, partially deficient in GTP synthesis from ATP and GDP, triggered low level of polymerisation of MsFtsZ, but not of MtFtsZ. As characteristic of NDK’s NTP substrate non-specificity, it used CTP, TTP, and UTP also to convert GDP to GTP, to trigger FtsZ polymerisation. The NDK of one mycobacterial species could trigger the polymerisation of the FtsZ of another mycobacterial species. Both the recombinant and the native NDK and FtsZ showed interaction with each other in vitro and ex vivo, alluding

  7. Contribution of the FtsQ Transmembrane Segment to Localization to the Cell Division Site▿

    PubMed Central

    Scheffers, Dirk-Jan; Robichon, Carine; Haan, Gert Jan; den Blaauwen, Tanneke; Koningstein, Gregory; van Bloois, Edwin; Beckwith, Jon; Luirink, Joen

    2007-01-01

    The Escherichia coli cell division protein FtsQ is a central component of the divisome. FtsQ is a bitopic membrane protein with a large C-terminal periplasmic domain. In this work we investigated the role of the transmembrane segment (TMS) that anchors FtsQ in the cytoplasmic membrane. A set of TMS mutants was made and analyzed for the ability to complement an ftsQ mutant. Study of the various steps involved in FtsQ biogenesis revealed that one mutant (L29/32R;V38P) failed to functionally insert into the membrane, whereas another mutant (L29/32R) was correctly assembled and interacted with FtsB and FtsL but failed to localize efficiently to the cell division site. Our results indicate that the FtsQ TMS plays a role in FtsQ localization to the division site. PMID:17693520

  8. Roles of the essential protein FtsA in cell growth and division in Streptococcus pneumoniae.

    PubMed

    Mura, Andrea; Fadda, Daniela; Perez, Amilcar J; Danforth, Madeline L; Musu, Daniela; Rico, Ana Isabel; Krupka, Marcin; Denapaite, Dalia; Tsui, Ho-Ching T; Winkler, Malcolm E; Branny, Pavel; Vicente, Miguel; Margolin, William; Massidda, Orietta

    2016-11-21

    Streptococcus pneumoniae is an ovoid-shaped Gram-positive bacterium that grows by carrying out peripheral and septal peptidoglycan (PG) synthesis, analogous to model bacilli such as Escherichia coli and Bacillus subtilis In the model bacilli, FtsZ and FtsA proteins assemble into a ring at midcell and are dedicated to septal PG synthesis, but not peripheral PG synthesis; hence inactivation of FtsZ or FtsA results in long filamentous cells unable to divide. Here we demonstrate that FtsA and FtsZ colocalize at midcell in S. pneumoniae and that partial depletion of FtsA perturbs septum synthesis, resulting in elongated cells with multiple FtsZ rings that fail to complete septation. Unexpectedly, complete depletion of FtsA resulted in delocalization of FtsZ rings and ultimately cell ballooning and lysis. In contrast, depletion or deletion of gpsB and sepF, which in B. subtilis are synthetically lethal with ftsA, resulted in enlarged and elongated cells, with multiple FtsZ rings, the latter mimicking partial depletion of FtsA. Notably, cell ballooning was not observed, consistent with later recruitment of these proteins to midcell after Z ring assembly. Overproduction of FtsA stimulates septation and suppresses the cell division defects caused by deletion of sepF and gpsB under some conditions, supporting the notion that FtsA shares overlapping functions with GpsB and SepF at later steps in the division process. Our results indicate that, in S. pneumoniae, both GpsB and SepF are involved in septal PG synthesis, whereas FtsA and FtsZ coordinate both peripheral and septal PG synthesis and are codependent for localization at midcell.

  9. Dimer dynamics and filament organization of the bacterial cell division protein FtsA.

    PubMed

    Hsin, Jen; Fu, Rui; Huang, Kerwyn Casey

    2013-11-15

    FtsA is a bacterial actin homolog and one of the core proteins involved in cell division. While previous studies have demonstrated the capability of FtsA to polymerize, little is known about its polymerization state in vivo or if polymerization is necessary for FtsA function. Given that one function of FtsA is to tether FtsZ filaments to the membrane, in vivo polymerization of FtsA imposes geometric constraints and requires a specific polymer curvature direction. Here, we report a series of molecular dynamics simulations probing the structural dynamics of FtsA as a dimer and as a tetrameric single filament. We found that the FtsA polymer exhibits a preferred bending direction that would allow for its placement parallel with FtsZ polymers underneath the cytoplasmic membrane. We also identified key interfacial amino acids that mediate FtsA-FtsA interaction and propose that some amino acids play more critical roles than others. We performed in silico mutagenesis on FtsA and demonstrated that, while a moderate mutation at the polymerization interface does not significantly affect polymer properties such as bending direction and association strength, more drastic mutations change both features and could lead to non-functional FtsA.

  10. Evaluation of variation in the phosphoinositide-3-kinase catalytic subunit alpha oncogene and breast cancer risk

    PubMed Central

    Stevens, K N; Garcia-Closas, M; Fredericksen, Z; Kosel, M; Pankratz, V S; Hopper, J L; Dite, G S; Apicella, C; Southey, M C; Schmidt, M K; Broeks, A; Van ‘t Veer, L J; Tollenaar, R A E M; Fasching, P A; Beckmann, M W; Hein, A; Ekici, A B; Johnson, N; Peto, J; dos Santos Silva, I; Gibson, L; Sawyer, E; Tomlinson, I; Kerin, M J; Chanock, S; Lissowska, J; Hunter, D J; Hoover, R N; Thomas, G D; Milne, R L; Pérez, JI Arias; González-Neira, A; Benítez, J; Burwinkel, B; Meindl, A; Schmutzler, R K; Bartrar, C R; Hamann, U; Ko, Y D; Brüning, T; Chang-Claude, J; Hein, R; Wang-Gohrke, S; Dörk, T; Schürmann, P; Bremer, M; Hillemanns, P; Bogdanova, N; Zalutsky, J V; Rogov, Y I; Antonenkova, N; Lindblom, A; Margolin, S; Mannermaa, A; Kataja, V; Kosma, V-M; Hartikainen, J; Chenevix-Trench, G; Chen, X; Peterlongo, P; Bonanni, B; Bernard, L; Manoukian, S; Wang, X; Cerhan, J; Vachon, C M; Olson, J; Giles, G G; Baglietto, L; McLean, C A; Severi, G; John, E M; Miron, A; Winqvist, R; Pylkäs, K; Jukkola-Vuorinen, A; Grip, M; Andrulis, I; Knight, J A; Glendon, G; Mulligan, A M; Cox, A; Brock, I W; Elliott, G; Cross, S S; Pharoah, P P; Dunning, A M; Pooley, K A; Humphreys, M K; Wang, J; Kang, D; Yoo, K-Y; Noh, D-Y; Sangrajrang, S; Gabrieau, V; Brennan, P; McKay, J; Anton-Culver, H; Ziogas, A; Couch, F J; Easton, D F

    2011-01-01

    Background: Somatic mutations in phosphoinositide-3-kinase catalytic subunit alpha (PIK3CA) are frequent in breast tumours and have been associated with oestrogen receptor (ER) expression, human epidermal growth factor receptor-2 overexpression, lymph node metastasis and poor survival. The goal of this study was to evaluate the association between inherited variation in this oncogene and risk of breast cancer. Methods: A single-nucleotide polymorphism from the PIK3CA locus that was associated with breast cancer in a study of Caucasian breast cancer cases and controls from the Mayo Clinic (MCBCS) was genotyped in 5436 cases and 5280 controls from the Cancer Genetic Markers of Susceptibility (CGEMS) study and in 30 949 cases and 29 788 controls from the Breast Cancer Association Consortium (BCAC). Results: Rs1607237 was significantly associated with a decreased risk of breast cancer in MCBCS, CGEMS and all studies of white Europeans combined (odds ratio (OR)=0.97, 95% confidence interval (CI) 0.95–0.99, P=4.6 × 10−3), but did not reach significance in the BCAC replication study alone (OR=0.98, 95% CI 0.96–1.01, P=0.139). Conclusion: Common germline variation in PIK3CA does not have a strong influence on the risk of breast cancer PMID:22033276

  11. Experimental evaluation of premixing-prevaporizing fuel injection concepts for a gas turbine catalytic combustor

    NASA Technical Reports Server (NTRS)

    Tacina, R. R.

    1977-01-01

    Experiments were performed to evolve and evaluate a premixing-prevaporizing fuel system to be used with a catalytic combustor for possible application in an automotive gas turbine. Spatial fuel distribution and degree of vaporization were measured using Jet A fuel. Three types of air blast injectors, an air assist nozzle and a simplex pressure atomizer were tested. Air swirlers with vane angles up to 30 deg were used to improve the spatial fuel distribution. The work was done in a 12-cm (4.75-in.) diameter tubular rig. Test conditions were: a pressure of 0.3 and 0.5 MPa (3 and 5 atm), inlet air temperatures up to 800 K (980 F), velocity of 20 m/sec (66 ft/sec) and fuel-air ratios of 0.01 and 0.025. Uniform spatial fuel distributions that were within plus or minus 10 percent of the mean were obtained. Complete vaporization of the fuel was achieved with air blast configurations at inlet air temperatures of 550 K (530 F) and higher. The total pressure loss was less than 0.5 percent for configurations without air swirlers and less than 1 percent for configurations with a 30 deg vane angle air swirler.

  12. Seasonal variability of upper tropospheric acetone using ACE-FTS observations and LMDz-INCA model simulations

    NASA Astrophysics Data System (ADS)

    Dufour, Gaëlle; Harrison, Jeremy; Szopa, Sophie; Bernath, Peter

    2014-05-01

    The vertically-resolved distributions of oxygenated organic compounds (oVOCs) are mainly inferred from surface and airborne measurements with limited spatial and temporal coverage. This results in a limited understanding of the atmospheric budget of these compounds and of their impact on the upper tropospheric chemistry. In the last decade, satellite observations which complement in-situ measurements have become available, providing global distributions of several oVOCs. For example, Scisat-1, also known as the Atmospheric Chemistry Experiment (ACE) has measured several oVOCs including methanol and formaldehyde. ACE is a Canadian-led satellite mission for remote sensing of the Earth's atmosphere that has been in operation since 2004. The primary instrument on board is a Fourier transform spectrometer (FTS) featuring broad spectral coverage in the infrared (750-4400 cm-1) with high spectral resolution (0.02 cm-1). The FTS instrument can measure down to 5 km altitude with a high signal-to-noise ratio using solar occultation. The ACE-FTS has the ability to measure seasonal and height-resolved distributions of minor tropospheric constituents on a near-global scale and provides the opportunity to evaluate our understanding of important atmospheric oxygenated organic species. ACE-FTS acetone retrievals will be presented. The spatial distribution and seasonal variability of acetone will be described and compared to LMDz-INCA model simulations.

  13. Commissioning of the FTS-2 Data Reduction Pipeline

    NASA Astrophysics Data System (ADS)

    Sherwood, M.; Naylor, D.; Gom, B.; Bell, G.; Friberg, P.; Bintley, D.

    2015-09-01

    FTS-2 is the intermediate resolution Fourier Transform Spectrometer coupled to the SCUBA-2 facility bolometer camera at the James Clerk Maxwell Telescope in Hawaii. Although in principle FTS instruments have the advantage of relatively simple optics compared to other spectrometers, they require more sophisticated data processing to compute spectra from the recorded interferogram signal. In the case of FTS-2, the complicated optical design required to interface with the existing telescope optics introduces performance compromises that complicate spectral and spatial calibration, and the response of the SCUBA-2 arrays introduce interferogram distortions that are a challenge for data reduction algorithms. We present an overview of the pipeline and discuss new algorithms that have been written to correct the noise introduced by unexpected behavior of the SCUBA-2 arrays.

  14. A new Escherichia coli cell division gene, ftsK.

    PubMed Central

    Begg, K J; Dewar, S J; Donachie, W D

    1995-01-01

    A mutation in a newly discovered Escherichia coli cell division gene, ftsK, causes a temperature-sensitive late-stage block in division but does not affect chromosome replication or segregation. This defect is specifically suppressed by deletion of dacA, coding for the peptidoglycan DD-carboxypeptidase, PBP 5. FtsK is a large polypeptide (147 kDa) consisting of an N-terminal domain with several predicted membrane-spanning regions, a proline-glutamine-rich domain, and a C-terminal domain with a nucleotide-binding consensus sequence. FtsK has extensive sequence identity with a family of proteins from a wide variety of prokaryotes and plasmids. The plasmid proteins are required for intercellular DNA transfer, and one of the bacterial proteins (the SpoIIIE protein of Bacillus subtilis) has also been implicated in intracellular chromosomal DNA transfer. PMID:7592387

  15. SCUBA-2 Fourier transform spectrometer (FTS-2) commissioning results

    NASA Astrophysics Data System (ADS)

    Gom, Brad G.; Naylor, David A.; Friberg, Per; Bell, Graham S.; Bintley, Daniel; Abdelazim, Sherif; Sherwood, Matt

    2014-07-01

    We present the latest commissioning results and instrument performance for the SCUBA-2 imaging Fourier Transform Spectrometer (FTS-2) installed at the James Clerk Maxwell Telescope (JCMT). This ancillary instrument provides intermediate spectral resolution (R ~10 to 5000) across both the 450 and 850 μm atmospheric transmission windows with a FOV of ~5 arcmin2. The superconducting TES sensors and SQUID readout of SCUBA-2 present unique challenges for operation of an FTS; the sensitivity requirements demand high detector linearity and stability in addition to control of systematic atmospheric and optical spillover effects. We discuss the challenges encountered during commissioning and ongoing efforts to mitigate their effects.

  16. ARC3, a chloroplast division factor, is a chimera of prokaryotic FtsZ and part of eukaryotic phosphatidylinositol-4-phosphate 5-kinase.

    PubMed

    Shimada, Hiroshi; Koizumi, Masato; Kuroki, Kouta; Mochizuki, Mariko; Fujimoto, Hitoshi; Ohta, Hiroyuki; Masuda, Tatsuru; Takamiya, Ken-ichiro

    2004-08-01

    The arc3 (accumulation and replication of chloroplast) mutant of Arabidopsis thaliana has a small number of abnormally large chloroplasts in the cell, suggesting that chloroplast division is arrested in the mutant and ARC3 has an important role in the initiation of chloroplast division. To elucidate the role of ARC3, first we identified the ARC3 gene, and determined the location of ARC3 protein during chloroplast division because the localization and spatial orientation of such division factors are vital for correct chloroplast division. Sequencing analysis showed that ARC3 was a fusion of the prokaryotic FtsZ and part of the eukaryotic phosphatidylinositol-4-phosphate 5-kinase (PIP5K) genes. The PIP5K-homologous region of ARC3 had no catalytic domain but a membrane-occupation-and-recognition-nexus (MORN) repeat motif. Immunofluorescence microscopy, Western blotting analysis and in vitro chloroplast import and protease protection assays revealed that ARC3 protein was soluble, and located on the outer surface of the chloroplast in a ring-like structure at the early stage of chloroplast division. Prokaryotes have one FtsZ as a gene for division but have no ARC3 counterparts, the chimera of FtsZ and PIP5K, suggesting that the ARC3 gene might have been generated from FtsZ as another division factor during the evolution of chloroplast by endosymbiosis.

  17. Ruthenium red-induced bundling of bacterial cell division protein, FtsZ.

    PubMed

    Santra, Manas Kumar; Beuria, Tushar K; Banerjee, Abhijit; Panda, Dulal

    2004-06-18

    The assembly of FtsZ plays a major role in bacterial cell division, and it is thought that the assembly dynamics of FtsZ is a finely regulated process. Here, we show that ruthenium red is able to modulate FtsZ assembly in vitro. In contrast to the inhibitory effects of ruthenium red on microtubule polymerization, we found that a substoichiometric concentration of ruthenium red strongly increased the light-scattering signal of FtsZ assembly. Further, sedimentable polymer mass was increased by 1.5- and 2-fold in the presence of 2 and 10 microm ruthenium red, respectively. In addition, ruthenium red strongly reduced the GTPase activity and prevented dilution-induced disassembly of FtsZ polymers. Electron microscopic analysis showed that 4-10 microm of ruthenium red produced thick bundles of FtsZ polymers. The significant increase in the light-scattering signal and pelletable polymer mass in the presence of ruthenium red seemed to be due to the bundling of FtsZ protofilaments into larger polymers rather than the actual increase in the level of polymeric FtsZ. Furthermore, ruthenium red was found to copolymerize with FtsZ, and the copolymerization of substoichiometric amounts of ruthenium red with FtsZ polymers promoted cooperative assembly of FtsZ that produced large bundles. Calcium inhibited the binding of ruthenium red to FtsZ. However, a concentration of calcium 1000-fold higher than that of ruthenium red was required to produce similar effects on FtsZ assembly. Ruthenium red strongly modulated FtsZ polymerization, suggesting the presence of an important regulatory site on FtsZ and suggesting that a natural ligand, which mimics the action of ruthenium red, may regulate the assembly of FtsZ in bacteria.

  18. Borrelia burgdorferi ftsZ Plays a Role in Cell Division

    PubMed Central

    Dubytska, Lydia; Godfrey, Henry P.; Cabello, Felipe C.

    2006-01-01

    ftsZ is essential for cell division in many microorganisms. In Escherichia coli and Bacillus subtilis, FtsZ plays a role in ring formation at the leading edge of the cell division septum. An ftsZ homologue is present in the Borrelia burgdorferi genome (ftsZBbu). Its gene product (FtsZBbu) is strongly homologous to other bacterial FtsZ proteins, but its function has not been established. Because loss-of-function mutants of ftsZBbu might be lethal, the tetR/tetO system was adapted for regulated control of this gene in B. burgdorferi. Sixty-two nucleotides of an ftsZBbu antisense DNA sequence under the control of a tetracycline-responsive modified hybrid borrelial promoter were cloned into pKFSS1. This construct was electroporated into a B. burgdorferi host strain carrying a chromosomally located tetR under the control of the B. burgdorferi flaB promoter. After induction by anhydrotetracycline, expression of antisense ftsZ RNA resulted in generation of filamentous B. burgdorferi that were unable to divide and grew more slowly than uninduced cells. To determine whether FtsZBbu could interfere with the function of E. coli FtsZ, ftsZBbu was amplified from chromosomal DNA and placed under the control of the tetracycline-regulated hybrid promoter. After introduction of the construct into E. coli and induction with anhydrotetracycline, overexpression of ftsZBbu generated a filamentous phenotype. This suggested interference of ftsZBbu with E. coli FtsZ function and confirmed the role of ftsZBbu in cell division. This is the first report of the generation of a B. burgdorferi conditional lethal mutant equivalent by tetracycline-controlled expression of antisense RNA. PMID:16484209

  19. FtsH11 Proteases play a critical role in high temperature stress tolerance in plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    FtsHs (Filamentous temperature sensitive H), ATP-dependent zinc metalloproteases of the AAA-superfamily, play essential roles in the turn over of thylakoid proteins damaged by high light stress during photosynthesis. Here, we show that FtsH11, one of the 12 FtsH members in Arabidopsis, plays critic...

  20. Cationic lipid enhances assembly of bacterial cell division protein FtsZ: a possible role of bacterial membrane in FtsZ assembly dynamics.

    PubMed

    Kuchibhatla, Anuradha; Bellare, Jayesh; Panda, Dulal

    2011-11-01

    The assembly of FtsZ plays an important role in bacterial cell division. Lipids in the bacterial cell membrane have been suggested to play a role in directing the site of FtsZ assembly. Using lipid monolayer and bilayer (liposome) systems, we directly examined the effects of cationic lipids on FtsZ assembly. We found that cationic lipids enhanced the assembly of FtsZ in association with an increase in the GTPase activity of FtsZ. The system consisting of lipid monolayer and bilayer (liposome) may mimic the bacterial membrane and therefore, the data might indicate the influence of bacterial membrane on the assembly of FtsZ protofilaments.

  1. FtsZ Condensates: An In Vitro Electron Microscopy Study

    PubMed Central

    Popp, David; Iwasa, Mitsusada; Narita, Akihiro; Erickson, Harold P.; Maéda, Yuichiro

    2009-01-01

    In vivo cell division protein FtsZ from E. coli forms rings and spirals which have only been observed by low resolution light microscopy. We show that these suprastructures are likely formed by molecular crowding which is a predominant factor in prokaryotic cells and enhances the weak lateral bonds between proto-filaments. Although FtsZ assembles into single proto-filaments in dilute aqueous buffer, with crowding agents above a critical concentration, it forms polymorphic supramolecular structures including rings and toroids (with multiple protofilaments) about 200 nm in diameter, similar in appearance to DNA toroids, and helices with pitches of several hundred nm as well as long, linear bundles. Helices resemble those observed in vivo, whereas the rings and toroids may represent a novel energy minimized state of FtsZ, at a later stage of Z-ring constriction. We shed light on the molecular arrangement of FtsZ filaments within these suprastructures using high resolution electron microscopy. PMID:19137575

  2. FtsZ-Dependent Elongation of a Coccoid Bacterium

    PubMed Central

    Pereira, Ana R.; Hsin, Jen; Król, Ewa; Tavares, Andreia C.; Flores, Pierre; Hoiczyk, Egbert; Ng, Natalie; Dajkovic, Alex; Brun, Yves V.; VanNieuwenhze, Michael S.; Roemer, Terry; Carballido-Lopez, Rut; Huang, Kerwyn Casey

    2016-01-01

    ABSTRACT A mechanistic understanding of the determination and maintenance of the simplest bacterial cell shape, a sphere, remains elusive compared with that of more complex shapes. Cocci seem to lack a dedicated elongation machinery, and a spherical shape has been considered an evolutionary dead-end morphology, as a transition from a spherical to a rod-like shape has never been observed in bacteria. Here we show that a Staphylococcus aureus mutant (M5) expressing the ftsZG193D allele exhibits elongated cells. Molecular dynamics simulations and in vitro studies indicate that FtsZG193D filaments are more twisted and shorter than wild-type filaments. In vivo, M5 cell wall deposition is initiated asymmetrically, only on one side of the cell, and progresses into a helical pattern rather than into a constricting ring as in wild-type cells. This helical pattern of wall insertion leads to elongation, as in rod-shaped cells. Thus, structural flexibility of FtsZ filaments can result in an FtsZ-dependent mechanism for generating elongated cells from cocci. PMID:27601570

  3. Synthesis and biological evaluation of 6-substituted indolizinoquinolinediones as catalytic DNA topoisomerase I inhibitors.

    PubMed

    Yu, Le-Mao; Zhang, Xiao-Ru; Li, Xiao-Bing; Yang, Yuan; Wei, Hong-Yu; He, Xi-Xin; Gu, Lian-Quan; Huang, Zhi-Shu; Pommier, Yves; An, Lin-Kun

    2015-08-28

    In our previous work, indolizinoquinolinedione derivative 1 was identified as a Top1 catalytic inhibitor. Herein, a series of 6-substituted indolizinoquinolinedione derivatives were synthesized through modification of the parent compound 1. Top1 cleavage and relaxation assays indicate that none of these novel compounds act as classical Top1 poison, and that the compounds with alkylamino terminus at C-6 side chain, including 8, 11-16, 18-21, 25, 26 and 28-30, are the most potent Top1 catalytic inhibitors. Top1-mediated unwinding assay demonstrated that 14, 22 and 26 were Top1 catalytic inhibitors without Top1-mediated unwinding effect. Moreover, MTT results showed that compounds 26, 28-30 exhibit significant cytotoxicity against human leukemia HL-60 cells, and that compound 26 exerts potent cytotoxicity against A549 lung cancer cells at nanomolar range.

  4. Synthesis and biological evaluation of 6-substituted indolizinoquinolinediones as catalytic DNA topoisomerase I inhibitors

    PubMed Central

    Yu, Le-Mao; Zhang, Xiao-Ru; Li, Xiao-Bing; Yang, Yuan; Wei, Hong-Yu; He, Xi-Xin; Gu, Lian-Quan; Huang, Zhi-Shu; Pommier, Yves; An, Lin-Kun

    2015-01-01

    In our previous work, indolizinoquinolinedione derivative 1 was identified as a Top1 catalytic inhibitor. Herein, a series of 6-substituted indolizinoquinolinedione derivatives were synthesized through modification of the parent compound 1. Top1 cleavage and relaxation assays indicate that none of these novel compounds act as classical Top1 poison, and that the compounds with alkylamino terminus at C-6 side chain, including 8, 11–16, 18–21, 25, 26 and 28–30, are the most potent Top1 catalytic inhibitors. Top1-mediated unwinding assay demonstrated that 14, 22 and 26 were Top1 catalytic inhibitors without Top1-mediated unwinding effect. Moreover, MTT results showed that compounds 26, 28–30 exhibit significant cytotoxicity against human leukemia HL-60 cells, and that compound 26 exerts potent cytotoxicity against A549 lung cancer cells at nanomolar range. PMID:26188908

  5. Polymer Stability Plays an Important Role in the Positional Regulation of FtsZ

    PubMed Central

    Levin, Petra Anne; Schwartz, Rachel L.; Grossman, Alan D.

    2001-01-01

    We conducted a series of experiments examining the effect of polymer stability on FtsZ localization dynamics in Bacillus subtilis. A loss-of-function mutation in ezrA, a putative polymer-destabilizing factor, suppresses the defects in FtsZ polymer stability associated with minCD overexpression. In addition, a mutation that is predicted to stabilize the FtsZ polymer leads to the formation of polar FtsZ rings. These data support the hypothesis that carefully balanced polymer stability is important for the assembly and localization of FtsZ during the bacterial cell cycle. PMID:11514533

  6. Life without Division: Physiology of Escherichia coli FtsZ-Deprived Filaments

    PubMed Central

    Sánchez-Gorostiaga, Alicia; Palacios, Pilar; Martínez-Arteaga, Rocío; Sánchez, Manuel; Casanova, Mercedes

    2016-01-01

    ABSTRACT When deprived of FtsZ, Escherichia coli cells (VIP205) grown in liquid form long nonseptated filaments due to their inability to assemble an FtsZ ring and their failure to recruit subsequent divisome components. These filaments fail to produce colonies on solid medium, in which synthesis of FtsZ is induced, upon being diluted by a factor greater than 4. However, once the initial FtsZ levels are recovered in liquid culture, they resume division, and their plating efficiency returns to normal. The potential septation sites generated in the FtsZ-deprived filaments are not annihilated, and once sufficient FtsZ is accumulated, they all become active and divide to produce cells of normal length. FtsZ-deprived cells accumulate defects in their physiology, including an abnormally high number of unsegregated nucleoids that may result from the misplacement of FtsK. Their membrane integrity becomes compromised and the amount of membrane proteins, such as FtsK and ZipA, increases. FtsZ-deprived cells also show an altered expression pattern, namely, transcription of several genes responding to DNA damage increases, whereas transcription of some ribosomal or global transcriptional regulators decreases. We propose that the changes caused by the depletion of FtsZ, besides stopping division, weaken the cell, diminishing its resiliency to minor challenges, such as dilution stress. PMID:27729511

  7. FtsZ does not initiate membrane constriction at the onset of division

    PubMed Central

    Daley, Daniel O.; Skoglund, Ulf; Söderström, Bill

    2016-01-01

    The source of constriction required for division of a bacterial cell remains enigmatic. FtsZ is widely believed to be a key player, because in vitro experiments indicate that it can deform liposomes when membrane tethered. However in vivo evidence for such a role has remained elusive as it has been challenging to distinguish the contribution of FtsZ from that of peptidoglycan-ingrowth. To differentiate between these two possibilities we studied the early stages of division in Escherichia coli, when FtsZ is present at the division site but peptidoglycan synthesizing enzymes such as FtsI and FtsN are not. Our approach was to use correlative cryo-fluorescence and cryo-electron microscopy (cryo-CLEM) to monitor the localization of fluorescently labeled FtsZ, FtsI or FtsN correlated with the septal ultra-structural geometry in the same cell. We noted that the presence of FtsZ at the division septum is not sufficient to deform membranes. This observation suggests that, although FtsZ can provide a constrictive force, the force is not substantial at the onset of division. Conversely, the presence of FtsN always correlated with membrane invagination, indicating that allosteric activation of peptidoglycan ingrowth is the trigger for constriction of the cell envelope during cell division in E. coli. PMID:27609565

  8. Life without Division: Physiology of Escherichia coli FtsZ-Deprived Filaments.

    PubMed

    Sánchez-Gorostiaga, Alicia; Palacios, Pilar; Martínez-Arteaga, Rocío; Sánchez, Manuel; Casanova, Mercedes; Vicente, Miguel

    2016-10-11

    When deprived of FtsZ, Escherichia coli cells (VIP205) grown in liquid form long nonseptated filaments due to their inability to assemble an FtsZ ring and their failure to recruit subsequent divisome components. These filaments fail to produce colonies on solid medium, in which synthesis of FtsZ is induced, upon being diluted by a factor greater than 4. However, once the initial FtsZ levels are recovered in liquid culture, they resume division, and their plating efficiency returns to normal. The potential septation sites generated in the FtsZ-deprived filaments are not annihilated, and once sufficient FtsZ is accumulated, they all become active and divide to produce cells of normal length. FtsZ-deprived cells accumulate defects in their physiology, including an abnormally high number of unsegregated nucleoids that may result from the misplacement of FtsK. Their membrane integrity becomes compromised and the amount of membrane proteins, such as FtsK and ZipA, increases. FtsZ-deprived cells also show an altered expression pattern, namely, transcription of several genes responding to DNA damage increases, whereas transcription of some ribosomal or global transcriptional regulators decreases. We propose that the changes caused by the depletion of FtsZ, besides stopping division, weaken the cell, diminishing its resiliency to minor challenges, such as dilution stress.

  9. Evaluation of Secondary Aerosol Formation from Primary Amines and Implications to Selective Catalytic Reduction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With the mandated reduction of NOx, advanced emission control technologies are being implemented. One strategy is the adaptation of selective catalytic reduction units with urea as a focus. However, urea suffers from issues such as stability at elevated temperatures and the tendency to form deposits...

  10. FtsZ filament capping by MciZ, a developmental regulator of bacterial division.

    PubMed

    Bisson-Filho, Alexandre W; Discola, Karen F; Castellen, Patrícia; Blasios, Valdir; Martins, Alexandre; Sforça, Maurício L; Garcia, Wanius; Zeri, Ana Carolina M; Erickson, Harold P; Dessen, Andréa; Gueiros-Filho, Frederico J

    2015-04-28

    Cytoskeletal structures are dynamically remodeled with the aid of regulatory proteins. FtsZ (filamentation temperature-sensitive Z) is the bacterial homolog of tubulin that polymerizes into rings localized to cell-division sites, and the constriction of these rings drives cytokinesis. Here we investigate the mechanism by which the Bacillus subtilis cell-division inhibitor, MciZ (mother cell inhibitor of FtsZ), blocks assembly of FtsZ. The X-ray crystal structure reveals that MciZ binds to the C-terminal polymerization interface of FtsZ, the equivalent of the minus end of tubulin. Using in vivo and in vitro assays and microscopy, we show that MciZ, at substoichiometric levels to FtsZ, causes shortening of protofilaments and blocks the assembly of higher-order FtsZ structures. The findings demonstrate an unanticipated capping-based regulatory mechanism for FtsZ.

  11. Organization of FtsZ filaments in the bacterial division ring measured from polarized fluorescence microscopy.

    PubMed

    Si, Fangwei; Busiek, Kimberly; Margolin, William; Sun, Sean X

    2013-11-05

    Cytokinesis in bacteria is accomplished by a ring-shaped cell-division complex (the Z-ring). The primary component of the Z-ring is FtsZ, a filamentous tubulin homolog that serves as a scaffold for the recruitment of other cell-division-related proteins. FtsZ forms filaments and bundles. In the cell, it has been suggested that FtsZ filaments form the arcs of the ring and are aligned in the cell-circumferential direction. Using polarized fluorescence microscopy in live Escherichia coli cells, we measure the structural organization of FtsZ filaments in the Z-ring. The data suggest a disordered organization: a substantial portion of FtsZ filaments are aligned in the cell-axis direction. FtsZ organization in the Z-ring also appears to depend on the bacterial species. Taken together, the unique arrangement of FtsZ suggests novel unexplored mechanisms in bacterial cell division.

  12. Preferential cytoplasmic location of FtsZ, a protein essential for Escherichia coli septation.

    PubMed

    Pla, J; Sánchez, M; Palacios, P; Vicente, M; Aldea, M

    1991-07-01

    An ftsZ thermonull mutant has been constructed in which the ftsZ gene has been deleted from the Escherichia coli chromosome while maintaining a wild-type copy of the gene in a thermosensitive plasmid. Under conditions in which the ftsZ+ allele is unable to be replicated at the same pace as the chromosome, the cells become non-viable and grow as filaments, indicating that, contrary to other reports, FtsZ performs a function essential for cell survival. Antibodies raised against FtsZ have been used to detect the cellular location of FtsZ and its contents per cell. Fractionation experiments indicate that most of the total FtsZ present in the cell stays in the cytoplasm.

  13. HDO measurements from ACE-FTS and Odin/SMR: Validation comparisons

    NASA Astrophysics Data System (ADS)

    Walker, Kaley; Dupuy, Eric; Urban, Joachim; Boone, Chris; Kasai, Yasuko; Baron, Philippe; Bernath, Peter; Murtagh, Donal P.

    Understanding the trend in atmospheric water vapor (H2 O) is of critical importance for predicting climate change and ozone layer evolution. Accurate measurements of H2 O isotopologues, such as HDO, can contribute to a better understanding of water vapor distribution. Therefore, recent satellite missions have included measurements of H2 O isotopologues. A key step in the development of these data products is quality evaluation or validation. The Atmospheric Chemistry Experiment (ACE) is a Canadian-led satellite mission launched on 12 August 2003 in a 74° -inclination orbit at an altitude of 650 km. The primary instrument on-board ACE is an infrared Fourier Transform Spectrometer (ACE-FTS) operating in the spectral range 750-4400 cm-1 at high spectral resolution (0.02 cm-1 ). ACE-FTS uses the solar occultation technique to measure atmospheric absorption spectra. Vertical profiles of trace constituent abundances, temperature and pressure are provided over altitudes ranging from 5 km to the lower thermosphere. Odin is a Swedish-led international satellite mission launched on 20 February 2001 in a sunsynchronous polar orbit (inclination 98° ) at an altitude of ˜600 km. The Sub-Millimetre Radiometer (SMR) is one of two instruments aboard the platform. It performs limb-sounding measurements of thermal emission from molecular species in the frequency range 486 to 581 GHz. Volume mixing ratio profiles of the target molecules are retrieved mainly in the stratosphere and mesosphere. Deuterated water or HDO is one of the isotopologues of water vapor measured by both instruments. This paper will present the joint effort aiming at a comprehensive validation of the HDO products retrieved from the ACE-FTS and Odin/SMR observations. The first conclusions regarding the quality assessment of both HDO products will be given.

  14. Manned Evaluation of a Diver Heater for SDV Applications Using Hydrogen Catalytic Reactions

    DTIC Science & Technology

    2005-06-01

    DIVER HEATER FOR SDV APPLICATIONS USING HYDROGEN CATALYTIC REACTIONS GAS CIRCUIT The basic heater design uses a gas ejector pump to recirculate the gas...entrance of the gas ejector pump. In this manner the hydrogen is mixed inside the pressure vessel with the recirculated gas and the fresh incoming air to...recirculatory flow then passes through a gas-to-water heat exchanger where the heat is removed and some of the water vapor condenses . The recirculatory flow then

  15. Energetics and Geometry of FtsZ Polymers: Nucleated Self-Assembly of Single Protofilaments☆

    PubMed Central

    Huecas, Sonia; Llorca, Oscar; Boskovic, Jasminka; Martín-Benito, Jaime; Valpuesta, José María; Andreu, José Manuel

    2008-01-01

    Essential cell division protein FtsZ is an assembling GTPase which directs the cytokinetic ring formation in dividing bacterial cells. FtsZ shares the structural fold of eukaryotic tubulin and assembles forming tubulin-like protofilaments, but does not form microtubules. Two puzzling problems in FtsZ assembly are the nature of protofilament association and a possible mechanism for nucleated self-assembly of single-stranded protofilaments above a critical FtsZ concentration. We assembled two-dimensional arrays of FtsZ on carbon supports, studied linear polymers of FtsZ with cryo-electron microscopy of vitrified unsupported solutions, and formulated possible polymerization models. Nucleated self-assembly of FtsZ from Escherichia coli with GTP and magnesium produces flexible filaments 4–6 nm-wide, only compatible with a single protofilament. This agrees with previous scanning transmission electron microscopy results and is supported by recent cryo-electron tomography studies of two bacterial cells. Observations of double-stranded FtsZ filaments in negative stain may come from protofilament accretion on the carbon support. Preferential protofilament cyclization does not apply to FtsZ assembly. The apparently cooperative polymerization of a single protofilament with identical intermonomer contacts is explained by the switching of one inactive monomer into the active structure preceding association of the next, creating a dimer nucleus. FtsZ behaves as a cooperative linear assembly machine. PMID:18024502

  16. Energetics and geometry of FtsZ polymers: nucleated self-assembly of single protofilaments.

    PubMed

    Huecas, Sonia; Llorca, Oscar; Boskovic, Jasminka; Martín-Benito, Jaime; Valpuesta, José María; Andreu, José Manuel

    2008-03-01

    Essential cell division protein FtsZ is an assembling GTPase which directs the cytokinetic ring formation in dividing bacterial cells. FtsZ shares the structural fold of eukaryotic tubulin and assembles forming tubulin-like protofilaments, but does not form microtubules. Two puzzling problems in FtsZ assembly are the nature of protofilament association and a possible mechanism for nucleated self-assembly of single-stranded protofilaments above a critical FtsZ concentration. We assembled two-dimensional arrays of FtsZ on carbon supports, studied linear polymers of FtsZ with cryo-electron microscopy of vitrified unsupported solutions, and formulated possible polymerization models. Nucleated self-assembly of FtsZ from Escherichia coli with GTP and magnesium produces flexible filaments 4-6 nm-wide, only compatible with a single protofilament. This agrees with previous scanning transmission electron microscopy results and is supported by recent cryo-electron tomography studies of two bacterial cells. Observations of double-stranded FtsZ filaments in negative stain may come from protofilament accretion on the carbon support. Preferential protofilament cyclization does not apply to FtsZ assembly. The apparently cooperative polymerization of a single protofilament with identical intermonomer contacts is explained by the switching of one inactive monomer into the active structure preceding association of the next, creating a dimer nucleus. FtsZ behaves as a cooperative linear assembly machine.

  17. Imaging-based identification of a critical regulator of FtsZ protofilament curvature in Caulobacter

    PubMed Central

    Goley, Erin D.; Dye, Natalie A.; Werner, John N.; Gitai, Zemer; Shapiro, Lucy

    2010-01-01

    SUMMARY FtsZ is an essential bacterial GTPase that polymerizes at midcell, recruits the division machinery, and may generate constrictive forces necessary for cytokinesis. However, many of the mechanistic details underlying these functions are unknown. We sought to identify FtsZ-binding proteins that influence FtsZ function in Caulobacter crescentus. Here, we present a microscopy-based screen through which we discovered two FtsZ-binding proteins, FzlA and FzlC. FzlA is conserved in α-proteobacteria and was found to be functionally critical for cell division in Caulobacter. FzlA altered FtsZ structure both in vivo and in vitro, forming stable higher order structures that were resistant to depolymerization by MipZ, a spatial determinant of FtsZ assembly. Electron microscopy revealed that FzlA organizes FtsZ protofilaments into striking helical bundles. The degree of curvature induced by FzlA depended on the nucleotide bound to FtsZ. Induction of FtsZ curvature by FzlA carries implications for regulating FtsZ function by modulating its superstructure. PMID:20864042

  18. Transcription of the ftsZ gene and cell division in Escherichia coli.

    PubMed Central

    Robin, A; Joseleau-Petit, D; D'Ari, R

    1990-01-01

    The ftsZ gene of Escherichia coli, which lies in a cluster of cell division genes at 2 min on the genetic map, codes for a protein which is thought to play a key role in triggering cell division. Using an ftsZ::lacZ operon fusion, we have studied the transcription of the ftsZ gene under conditions in which cell division was either inhibited or synchronized in the bacterial population. In ftsZ, ftsA, ftsQ, and ftsI (or pbpB) mutants, there was no change in the differential rate of expression of the ftsZ gene in nonpermissive conditions, when cell division was completely blocked. Although the FtsZ protein is thought to be limiting for cell division, in synchronized cultures the ftsZ gene was expressed not only at the moment of septation initiation but throughout the cell cycle. Its expression, however, was not exponential but linear, with a rapid doubling in rate at a specific cell age; this age, about 20 min after division in a 60-min cycle, was different from the age at which the ftsZ::lacZ operon was duplicated. However, it was close to the age at which replication initiated and at which the rate of phospholipid synthesis doubled. During the transient division inhibition after a nutritional shift-up, ftsZ transcription again became linear, with two doublings in rate at intervals equal to the mass doubling time in the rich medium; it adopted the exponential rate typical of rich medium about 60 min after the shift-up, just before the bacterial population resumed cell division. The doubling in the rate of ftsZ transcription once per cycle in synchronized cultures and once per mass doubling time during the transition period after a nutritional shift-up reflects a new cell cycle event. PMID:2106510

  19. The GTPase Activity of Escherichia coli FtsZ Determines the Magnitude of the FtsZ Polymer Bundling by ZapA in Vitro†

    PubMed Central

    2009-01-01

    FtsZ polymerizes in a ring-like structure at mid cell to initiate cell division in Escherichia coli. The ring is stabilized by a number of proteins among which the widely conserved ZapA protein. Using antibodies against ZapA, we found surprisingly that the cellular concentration of ZapA is approximately equal to that of FtsZ. This raised the question of how the cell can prevent their interaction and thereby the premature stabilization of FtsZ protofilaments in nondividing cells. Therefore, we studied the FtsZ−ZapA interaction at the physiological pH of 7.5 instead of pH 6.5 (the optimal pH for FtsZ polymerization), under conditions that stimulate protofilament formation (5 mM MgCl2) and under conditions that stimulate and stabilize protofilaments (10 mM MgCl2). Using pelleting, light scattering, and GTPase assays, it was found that stabilization and bundling of FtsZ polymers by ZapA was inversely correlated to the GTPase activity of FtsZ. As GTP hydrolysis is the rate-limiting factor for depolymerization of FtsZ, we propose that ZapA will only enhance the cooperativity of polymer association during the transition from helical filament to mid cell ring and will not stabilize the short single protofilaments in the cytoplasm. All thus far published in vitro data on the interaction between FtsZ and ZapA have been obtained with His-ZapA. We found that in our case the presence of a His tag fused to ZapA prevented the protein to complement a ΔzapA strain in vivo and that it affected the interaction between FtsZ and ZapA in vitro. PMID:19842714

  20. Structure of the Z Ring-associated Protein, ZapD, Bound to the C-terminal Domain of the Tubulin-like Protein, FtsZ, Suggests Mechanism of Z Ring Stabilization through FtsZ Cross-linking.

    PubMed

    Schumacher, Maria A; Huang, Kuo-Hsiang; Zeng, Wenjie; Janakiraman, Anuradha

    2017-03-03

    Cell division in most bacteria is mediated by the tubulin-like FtsZ protein, which polymerizes in a GTP-dependent manner to form the cytokinetic Z ring. A diverse repertoire of FtsZ-binding proteins affects FtsZ localization and polymerization to ensure correct Z ring formation. Many of these proteins bind the C-terminal domain (CTD) of FtsZ, which serves as a hub for FtsZ regulation. FtsZ ring-associated proteins, ZapA-D (Zaps), are important FtsZ regulatory proteins that stabilize FtsZ assembly and enhance Z ring formation by increasing lateral assembly of FtsZ protofilaments, which then form the Z ring. There are no structures of a Zap protein bound to FtsZ; therefore, how these proteins affect FtsZ polymerization has been unclear. Recent data showed ZapD binds specifically to the FtsZ CTD. Thus, to obtain insight into the ZapD-CTD interaction and how it may mediate FtsZ protofilament assembly, we determined the Escherichia coli ZapD-FtsZ CTD structure to 2.67 Å resolution. The structure shows that the CTD docks within a hydrophobic cleft in the ZapD helical domain and adopts an unusual structure composed of two turns of helix separated by a proline kink. FtsZ CTD residue Phe-377 inserts into the ZapD pocket, anchoring the CTD in place and permitting hydrophobic contacts between FtsZ residues Ile-374, Pro-375, and Leu-378 with ZapD residues Leu-74, Trp-77, Leu-91, and Leu-174. The structural findings were supported by mutagenesis coupled with biochemical and in vivo studies. The combined data suggest that ZapD acts as a molecular cross-linking reagent between FtsZ protofilaments to enhance FtsZ assembly.

  1. Treadmilling by FtsZ filaments drives peptidoglycan synthesis and bacterial cell division.

    PubMed

    Bisson-Filho, Alexandre W; Hsu, Yen-Pang; Squyres, Georgia R; Kuru, Erkin; Wu, Fabai; Jukes, Calum; Sun, Yingjie; Dekker, Cees; Holden, Seamus; VanNieuwenhze, Michael S; Brun, Yves V; Garner, Ethan C

    2017-02-17

    The mechanism by which bacteria divide is not well understood. Cell division is mediated by filaments of FtsZ and FtsA (FtsAZ) that recruit septal peptidoglycan-synthesizing enzymes to the division site. To understand how these components coordinate to divide cells, we visualized their movements relative to the dynamics of cell wall synthesis during cytokinesis. We found that the division septum was built at discrete sites that moved around the division plane. FtsAZ filaments treadmilled circumferentially around the division ring and drove the motions of the peptidoglycan-synthesizing enzymes. The FtsZ treadmilling rate controlled both the rate of peptidoglycan synthesis and cell division. Thus, FtsZ treadmilling guides the progressive insertion of new cell wall by building increasingly smaller concentric rings of peptidoglycan to divide the cell.

  2. Evaluating and optimizing pretreatment technique for catalytic hydrogenolysis conversion of corn stalk into polyol.

    PubMed

    Sun, Yong Gang; Ma, Yulong; Wang, Zheng; Yao, Junkang

    2014-04-01

    A combinative pretreatment technology of steam explosion (SE) and alkali was applied to enhance hydrogenolysis conversion of corn stalk into polyol with Ni-W2C or Fe-Mn-K catalyst. The results showed that treatments corn stalk with 0.4 MPa SE and alkali removed 84.16 wt% of hemicellulose and 71.83 wt% of lignin and thereby increased the cellulose content from 31.54 to 80.41 wt%. But the glucose loss was insignificant during pretreatment. Data from catalytic hydrogenolysis showed that pretreatment corn stalk with 0.4 MPa SE and alkali improved the yield of polyol, and about 20.38 wt% of ethylene glycol and 52.36 wt% of glycerol were produced after catalysis with Ni-W2C/(coconut shell activated carbon, CSAC). Based on the yield of polyol, the catalytic performance of Ni-W2C/CSAC was significantly better than those of Ni-W2C/(coal-based activated carbon) and Fe-Mn-K/(amorphous carbon).

  3. Thermal and chemical approaches for oxygen catalytic recombination evaluation on ceramic materials at high temperature

    NASA Astrophysics Data System (ADS)

    Balat, M.; Czerniak, M.; Badie, J. M.

    1997-12-01

    During the atmospheric entry phase, the physico-chemical phenomena taking place on space shuttle walls can lead to an important excess of heating and damage of the protective materials. The aim of this work is the study of the catalytic recombination of atomic oxygen under plasma conditions chosen to simulate the atmospheric reentry. To do that, we have developed an experimental set-up MESOX (Moyen d'Essai Solaire d'OXydation), which associates a solar radiation concentrator and a microwave generator to reach high temperature, low enthalpy flow and low pressure plasma with an air gas flow. The study of atomic oxygen recombination on silicon- or aluminum-based ceramic materials, at high temperature (1000-1800 K) has been done for different pressures (200-2000 Pa) by a thermal and a chemical understanding. The results give a catalycity scale of materials (thermal recombination flux, qrec, and coefficient of atomic oxygen recombination, γ). The catalycity activity is weak for the sintered SiC target with atomic oxygen recombination flux reaching 35 kW/m 2, however, for a target of sintered Al 2O 3, catalytic effect is obtained with energy fluxes between 90 to 180 kW/m 2. The recombination coefficient γ confirms the catalycity scale of these ceramic materials.

  4. The development of FtsZ inhibitors as potential antibacterial agents.

    PubMed

    Ma, Siti; Ma, Shutao

    2012-07-01

    The emergence and prevalence of bacterial resistance has resulted in a clear demand for novel antibacterial drugs. As a tubulin homologue, FtsZ is an essential cell-division protein in prokaryotic organisms and is showing increasing promise as a target for antibacterial drug discovery. This review describes the role of FtsZ in bacterial cytokinesis and various FtsZ inhibitors, with particular focus on their discovery, antibacterial activities, mechanisms of action, synthetic methods, and representative analogues.

  5. Identification and characterization of two members of the FtsH gene family in maize (Zea mays L.).

    PubMed

    Yue, Guidong; Hu, Xiaorui; He, Ying; Yang, Aifang; Zhang, Juren

    2010-02-01

    Two full-length cDNAs, designated as ZmFtsH2A and ZmFtsH2B, were isolated from maize (Zea mays L.) by suppression subtractive hybridization coupled with in silico cloning approach. The predicted proteins of ZmFtsH2A and ZmFtsH2B both consisted of 677 amino acid residues and displayed high similarity to FtsH2 protease of Arabidopsis thaliana. DNA gel blotting analysis indicated that AtFtsH2-like genes exist as two copies in maize genome. The genomic sequences of ZmFtsH2A and ZmFtsH2B were cloned and the main difference was that the first intron of ZmFtsH2B was much longer than that of ZmFtsH2A. RT-PCR analysis revealed that both genes were constitutively expressed in all examined tissues and the expression level of ZmFtsH2B transcripts was higher than that of ZmFtsH2A. The responses of the two genes in maize seedlings to PEG, cold, high salt, and ABA treatments were compared, and the results showed that ZmFtsH2B transcription in leaves was markedly up-regulated by water deficit stress and ABA treatments while ZmFtsH2A constitutively expressed both in leaves and roots under all tested stressful conditions. Drought tolerance of transgenic tobaccos overexpressing ZmFtsH2A and ZmFtsH2B weren't improved compared to wild-type controls, which indicated that two genes might not be directly involved in plant drought tolerance or the number of functional FtsH heterocomplex might not be increased in this condition. Our current study provides fundamental information for the further investigation of the maize FtsH proteins.

  6. An FtsH protease is recruited to the mitochondrion of Plasmodium falciparum.

    PubMed

    Tanveer, Aiman; Allen, Stacey M; Jackson, Katherine E; Charan, Manish; Ralph, Stuart A; Habib, Saman

    2013-01-01

    The two organelles, apicoplast and mitochondrion, of the malaria parasite Plasmodium falciparum have unique morphology in liver and blood stages; they undergo complex branching and looping prior to division and segregation into daughter merozoites. Little is known about the molecular processes and proteins involved in organelle biogenesis in the parasite. We report the identification of an AAA+/FtsH protease homolog (PfFtsH1) that exhibits ATP- and Zn(2+)-dependent protease activity. PfFtsH1 undergoes processing, forms oligomeric assemblies, and is associated with the membrane fraction of the parasite cell. Generation of a transfectant parasite line with hemagglutinin-tagged PfFtsH1, and immunofluorescence assay with anti-PfFtsH1 Ab demonstrated that the protein localises to P. falciparum mitochondria. Phylogenetic analysis and the single transmembrane region identifiable in PfFtsH1 suggest that it is an i-AAA like inner mitochondrial membrane protein. Expression of PfFtsH1 in Escherichia coli converted a fraction of bacterial cells into division-defective filamentous forms implying a sequestering effect of the Plasmodium factor on the bacterial homolog, indicative of functional conservation with EcFtsH. These results identify a membrane-associated mitochondrial AAA+/FtsH protease as a candidate regulatory protein for organelle biogenesis in P. falciparum.

  7. Super-resolution imaging of the bacterial cytokinetic protein FtsZ.

    PubMed

    Jennings, Phoebe C; Cox, Guy C; Monahan, Leigh G; Harry, Elizabeth J

    2011-06-01

    The idea of a bacterial cytoskeleton arose just 10 years ago with the identification of the cell division protein, FtsZ, as a tubulin homolog. FtsZ plays a pivotal role in bacterial division, and is present in virtually all prokaryotes and in some eukaryotic organelles. The earliest stage of bacterial cell division is the assembly of FtsZ into a Z ring at the division site, which subsequently constricts during cytokinesis. FtsZ also assembles into dynamic helical structures along the bacterial cell, which are thought to act as precursors to the Z ring via a cell cycle-mediated FtsZ polymer remodelling. The fine structures of the FtsZ helix and ring are unknown but crucial for identifying the molecular details of Z ring assembly and its regulation. We now reveal using STED microscopy that the FtsZ helical structure in cells of the gram positive bacterium, Bacillus subtilis, is a highly irregular and discontinuous helix of FtsZ; very different to the smooth cable-like appearance observed by conventional fluorescence optics. STED also identifies a novel FtsZ helical structure of smaller pitch that is invisible to standard optical methods, identifying a possible third intermediate in the pathway to Z ring assembly, which commits bacterial cells to divide.

  8. Experimental evaluation of catalytic combustion with heat removal at near stoichiometric conditions

    NASA Technical Reports Server (NTRS)

    Bulzan, D. L.

    1980-01-01

    Two concentric tube configurations were tested. Tests were conducted at an inlet pressure of 150,000 Pa, inlet fuel air mixture temperatures from 780 to 960 K, combustion air flow rates from 0.78 to 1.5 g/s, equivalence ratios up to 0.90, and a range of cooling air flow rates. Propane and propylene fuels were used. Both configurations used air flowing through the center tube for cooling and combustion in the annulus on the catalytic surface. One configuration had the catalyst applied to the outside surface of the inner tube. Conversion of the fuel was very low for this configuration. The other configuration had the catalyst applied to the inside surface of the outer tube. Conversion of the fuel was considerably better in this configuration.

  9. Evaluation of humic fractions potential to produce bio-oil through catalytic hydroliquefaction.

    PubMed

    Lemée, L; Pinard, L; Beauchet, R; Kpogbemabou, D

    2013-12-01

    Humic substances were extracted from biodegraded lignocellulosic biomass (LCBb) and submitted to catalytic hydroliquefaction. The resulting bio-oils were compared with those of the initial biomass. Compared to fulvic and humic acids, humin presented a high conversion rate (74 wt.%) and the highest amount of liquid fraction (66 wt.%). Moreover it represented 78% of LCBb. Humin produced 43 wt.% of crude oil and 33 wt.% of hexane soluble fraction containing hydrocarbons which is a higher yield than those from other humic substances as well as from the initial biomass. Hydrocarbons were mainly aromatics, but humin produces the highest amount of aliphatics. Considering the quantity, the quality and the molecular composition of the humic fractions, a classification of the potential of the latter to produce fuel using hydroliquefaction process can be assess: Hu>AF>AH. The higher heating value (HHV) and oxygen content of HSF from humin were fully compatible with biofuel characteristics.

  10. Evaluation of the Catalytic Activity and Cytotoxicity of Palladium Nanocubes. The Role of Oxygen

    PubMed Central

    Dahal, Eshan; Curtiss, Jessica; Subedi, Deepak; Chen, Gen; Houston, Jessica P.; Smirnov, Sergei

    2015-01-01

    Recently it has been reported that palladium nanocubes (PdNC) are capable of generating singlet oxygen without photo-excitation simply via chemisorption of molecular oxygen on its surface. Such a trait would make PdNC a highly versatile catalyst suitable in organic synthesis and a Reactive Oxygen Species (ROS) inducing cancer treatment reagent. Here we thoroughly investigated the catalytic activity of PdNC with respect to their ability to produce singlet oxygen and to oxidize 3,5,3′,5′-tetramethyl-benzidine (TMB), as well as, analyzed the cytotoxic properties of PdNC on HeLa cells. Our findings showed no evidence of singlet oxygen production by PdNC. The nanocubes’ activity is not necessarily linked to activation of oxygen. The oxidation of substrate on PdNC can be a first step followed by PdNC regeneration with oxygen or other oxidant. The catalytic activity of PdNC towards oxidation of TMB is very high and shows direct two-electrons oxidation when the surface of PdNC is clean and the ratio of TMB/PdNC is not very high. Sequential one electron oxidation is observed when the pristine quality of PdNC surface is compromised by serum or uncontrolled impurities and/or the ratio of TMB/PdNC is high. Clean PdNC in serum-free media efficiently induce apoptosis of HeLa cells. It is the primary route of cell death and is associated with hyperpolarization of mitochondria, contrary to a common mitochondrial depolarization initiated by ROS. Again, the effects are very sensitive to how well the pristine surface of PdNC is preserved, suggesting that PdNC can be used as an apoptosis inducing agent but only with appropriate drug delivery system. PMID:25886644

  11. Catalytic Reforming

    SciTech Connect

    Little, D.M.

    1985-01-01

    Don Little's Catalytic Reforming deals exclusively with reforming. With the increasing need for unleaded gasoline, the importance of this volume has escalated since it combines various related aspects of reforming technology into a single publication. For those with no practical knowledge of catalytic reforming, the chemical reactions, flow schemes and how the cat reformer fits into the overall refinery process will be of interest. Contents include: Catalytic reforming in refinery processing: How catalytic reformers work - chemical reactions; Process design; The catalyst, process variables and unit operation; Commercial processes; BTX operation; Feed preparation; naphtha hydrotreating and catalytic reforming; Index.

  12. The Hetero-Hexameric Nature of a Chloroplast AAA+ FtsH Protease Contributes to Its Thermodynamic Stability

    PubMed Central

    Ziv, Tamar; Adam, Zach; Prag, Gali

    2012-01-01

    FtsH is an evolutionary conserved membrane-bound metalloprotease complex. While in most prokaryotes FtsH is encoded by a single gene, multiple FtsH genes are found in eukaryotes. Genetic and biochemical data suggest that the Arabidopsis chloroplast FtsH is a hetero-hexamer. This raises the question why photosynthetic organisms require a heteromeric complex, whereas in most bacteria a homomeric one is sufficient. To gain structural information of the possible complexes, the Arabidopsis FtsH2 (type B) and FtsH5 (type A) were modeled. An in silico study with mixed models of FtsH2/5 suggests that heteromeric hexamer structure with ratio of 4∶2 is more likely to exists. Specifically, calculation of the buried surface area at the interfaces between neighboring subunits revealed that a hetero-complex should be thermodynamically more stable than a homo-hexamer, due to the presence of additional hydrophobic and hydrophilic interactions. To biochemically assess this model, we generated Arabidopsis transgenic plants, expressing epitope-tagged FtsH2 and immuno-purified the protein. Mass-spectrometry analysis showed that FtsH2 is associated with FtsH1, FtsH5 and FtsH8. Interestingly, we found that ‘type B’ subunits (FtsH2 and FtsH8) were 2–3 fold more abundant than ‘type A’ (FtsH1 and FtsH5). The biochemical data corroborate the in silico model and suggest that the thylakoid FtsH hexamer is composed of two ‘type A’ and four ‘type B’ subunits. PMID:22558304

  13. Role of Escherichia coli FtsN protein in the assembly and stability of the cell division ring.

    PubMed

    Rico, Ana Isabel; García-Ovalle, Marta; Palacios, Pilar; Casanova, Mercedes; Vicente, Miguel

    2010-05-01

    Deprivation of FtsN, the last protein in the hierarchy of divisome assembly, causes the disassembly of other elements from the division ring, even extending to already assembled proto-ring proteins. Therefore the stability and function of the divisome to produce rings active in septation is not guaranteed until FtsN is recruited. Disassembly follows an inverse sequential pathway relative to assembly. In the absence of FtsN, the frequencies of FtsN and FtsQ rings are affected similarly. Among the proto-ring components, ZipA are more sensitive than FtsZ or FtsA rings. In contrast, removal of FtsZ leads to an almost simultaneous disappearance of the other elements from rings. Although restoration of FtsN allows for a quick reincorporation of ZipA into proto-rings, the de novo joint assembly of the three components when FtsZ levels are restored to FtsZ-deprived filaments is even faster. This suggests that the recruitment of ZipA into FtsZ-FtsA incomplete proto-rings may require first a period for the reversal of these partial assemblies.

  14. A novel membrane anchor for FtsZ is linked to cell wall hydrolysis in Caulobacter crescentus.

    PubMed

    Meier, Elizabeth L; Razavi, Shiva; Inoue, Takanari; Goley, Erin D

    2016-07-01

    In most bacteria, the tubulin-like GTPase FtsZ forms an annulus at midcell (the Z-ring) which recruits the division machinery and regulates cell wall remodeling. Although both activities require membrane attachment of FtsZ, few membrane anchors have been characterized. FtsA is considered to be the primary membrane tether for FtsZ in bacteria, however in Caulobacter crescentus, FtsA arrives at midcell after stable Z-ring assembly and early FtsZ-directed cell wall synthesis. We hypothesized that additional proteins tether FtsZ to the membrane and demonstrate that in C. crescentus, FzlC is one such membrane anchor. FzlC associates with membranes directly in vivo and in vitro and recruits FtsZ to membranes in vitro. As for most known membrane anchors, the C-terminal peptide of FtsZ is required for its recruitment to membranes by FzlC in vitro and midcell recruitment of FzlC in cells. In vivo, overproduction of FzlC causes cytokinesis defects whereas deletion of fzlC causes synthetic defects with dipM, ftsE and amiC mutants, implicating FzlC in cell wall hydrolysis. Our characterization of FzlC as a novel membrane anchor for FtsZ expands our understanding of FtsZ regulators and establishes a role for membrane-anchored FtsZ in the regulation of cell wall hydrolysis.

  15. Cytological Profile of Antibacterial FtsZ Inhibitors and Synthetic Peptide MciZ

    PubMed Central

    Araújo-Bazán, Lidia; Ruiz-Avila, Laura B.; Andreu, David; Huecas, Sonia; Andreu, José M.

    2016-01-01

    Cell division protein FtsZ is the organizer of the cytokinetic ring in almost all bacteria and a target for the discovery of new antibacterial agents that are needed to counter widespread antibiotic resistance. Bacterial cytological profiling, using quantitative microscopy, is a powerful approach for identifying the mechanism of action of antibacterial molecules affecting different cellular pathways. We have determined the cytological profile on Bacillus subtilis cells of a selection of small molecule inhibitors targeting FtsZ on different binding sites. FtsZ inhibitors lead to long undivided cells, impair the normal assembly of FtsZ into the midcell Z-rings, induce aberrant ring distributions, punctate FtsZ foci, membrane spots and also modify nucleoid length. Quantitative analysis of cell and nucleoid length combined, or the Z-ring distribution, allows categorizing FtsZ inhibitors and to distinguish them from antibiotics with other mechanisms of action, which should be useful for identifying new antibacterial FtsZ inhibitors. Biochemical assays of FtsZ polymerization and GTPase activity combined explain the cellular effects of the FtsZ polymer stabilizing agent PC190723 and its fragments. MciZ is a 40-aminoacid endogenous inhibitor of cell division normally expressed during sporulation in B. subtilis. Using FtsZ cytological profiling we have determined that exogenous synthetic MciZ is an effective inhibitor of B. subtilis cell division, Z-ring formation and localization. This finding supports our cell-based approach to screen for FtsZ inhibitors and opens new possibilities for peptide inhibitors of bacterial cell division. PMID:27752253

  16. Development of the GOSAT-2 FTS-2 Simulator and Preliminary Sensitivity Analysis for CO2 Retrieval

    NASA Astrophysics Data System (ADS)

    Kamei, A.; Yoshida, Y.; Dupuy, E.; Hiraki, K.; Yokota, Y.; Oishi, Y.; Murakami, K.; Morino, I.; Matsunaga, T.

    2013-12-01

    The Greenhouse Gases Observing Satellite-2 (GOSAT-2), which is a successor mission to the GOSAT, is planned to be launched in FY 2017. The Fourier Transform Spectrometer-2 (FTS-2) onboard the GOSAT-2 is a primary sensor to observe infrared light reflected and emitted from the Earth's surface and atmosphere. The FTS-2 obtains high-spectral resolution spectra with four bands from near to short-wavelength infrared (SWIR) region and one band in the thermal infrared (TIR) region. The column amounts of carbon dioxide (CO2) and methane (CH4) are retrieved from the obtained radiance spectra with SWIR bands. Compared to the FTS onboard the GOSAT, the FTS-2 includes an additional SWIR band to allow for carbon monoxide (CO) measurement. We have been developing a tool, named GOSAT-2 FTS-2 simulator, which is capable of simulating the spectral radiance data observed by the FTS-2 using the Pstar2 radiative transfer code. The purpose of the GOSAT-2 FTS-2 simulator is to obtain data which is exploited in the sensor specification, the optimization of parameters for Level 1 processing, and the improvement of Level 2 algorithms. The GOSAT-2 FTS-2 simulator, composed of the six components: 1) Overall control, 2) Onboarding platform, 3) Spectral radiance calculation, 4) Fourier transform, 5) L1B processing, and 6) L1B data output, has been installed on the GOSAT Research Computation Facility (GOSAT RCF), which is a large-scale, high-performance, and energy-efficient computer. We present the progress in the development of the GOSAT-2 FTS-2 simulator and the preliminary sensitivity analysis, relating to the engineering parameters, the aerosols and clouds, and so on, on the Level 1 processing for CO2 retrieval from the obtained data by simulating the FTS-2 SWIR observation using the GOSAT-2 FTS-2 simulator.

  17. Evaluating the catalytic contribution from the oxyanion hole in ketosteroid isomerase.

    PubMed

    Schwans, Jason P; Sunden, Fanny; Gonzalez, Ana; Tsai, Yingssu; Herschlag, Daniel

    2011-12-21

    Prior site-directed mutagenesis studies in bacterial ketosteroid isomerase (KSI) reported that substitution of both oxyanion hole hydrogen bond donors gives a 10(5)- to 10(8)-fold rate reduction, suggesting that the oxyanion hole may provide the major contribution to KSI catalysis. But these seemingly conservative mutations replaced the oxyanion hole hydrogen bond donors with hydrophobic side chains that could lead to suboptimal solvation of the incipient oxyanion in the mutants, thereby potentially exaggerating the apparent energetic benefit of the hydrogen bonds relative to water-mediated hydrogen bonds in solution. We determined the functional and structural consequences of substituting the oxyanion hole hydrogen bond donors and several residues surrounding the oxyanion hole with smaller residues in an attempt to create a local site that would provide interactions more analogous to those in aqueous solution. These more drastic mutations created an active-site cavity estimated to be ~650 Å(3) and sufficient for occupancy by 15-17 water molecules and led to a rate decrease of only ~10(3)-fold for KSI from two different species, a much smaller effect than that observed from more traditional conservative mutations. The results underscore the strong context dependence of hydrogen bond energetics and suggest that the oxyanion hole provides an important, but moderate, catalytic contribution relative to the interactions in the corresponding solution reaction.

  18. Design, synthesis and antibacterial activity of isatin derivatives as FtsZ inhibitors

    NASA Astrophysics Data System (ADS)

    Lian, Zhi-Min; Sun, Juan; Zhu, Hai-Liang

    2016-08-01

    Seven isatin derivatives have been designed, and their chemical structures were characterized by single crystal X-ray diffraction studies, 1H NMR, MS, and elemental analysis. Structural stabilization followed by intramolecular as well as intermolecular H-bonds makes these molecules as perfect examples in molecular recognition with self-complementary donor and acceptor units within a single molecule. These compounds were evaluated for antimicrobial activities. Docking simulations have been performed to position compounds into the FtsZ active site to determine their probable binding models. All of the compounds exhibited better antibacterial activities. Interestingly, compound 5c and 5d exhibited better antibacterial activities with IC50 values of 0.03 and 0.05 μmol/mL against Staphylococcus aureus, respectively. Compound 5g displays antibacterial activity with IC50 values of 0.672 and 0.830 μmol/mL against Escherichia coli and Pseudomonas aeruginosa, respectively.

  19. FTS Measurements of Submillimeter-Wave Atmospheric Opacity at Pampa la Bola

    NASA Astrophysics Data System (ADS)

    Matsuo, Hiroshi; Sakamoto, Akihiro; Matsushita, Satoki

    1998-06-01

    The first measurements of submillimeter-wave atmospheric opacity spectra at the Pampa la Bola site (Northern Chile, Atacama, 4800 m altitude) have been performed during the winter season using a Fourier transform spectrometer (FTS). Atmospheric emission spectra, as a function of airmass, were measured under various weather conditions. Atmospheric opacity was evaluated from sky temperature at the zenith as well as from tipping measurements, which are independent measures but give consistent results. Correlation diagrams between 220 GHz and 345 GHz, 410 GHz, 492 GHz, 675 GHz, 691 GHz, 809 GHz, 875 GHz are shown. Correlations between millimeter-wave and submillimeter-wave opacities get worse when 220 GHz opacity is larger than 0.1. Deviations from the opacity correlation at each frequency show good correlations themselves, but have different relative variations at each frequency. This indicates that atmospheric transparency cannot be characterized only by millimeter-wave opacity, but requires simultaneous opacity measurements at millimeter and submillimeter-wavelengths.

  20. Continuous treatment with FTS confers resistance to apoptosis and affects autophagy

    PubMed Central

    Schmukler, Eran; Wolfson, Eya; Elazar, Zvulun; Kloog, Yoel; Pinkas-Kramarski, Ronit

    2017-01-01

    High percentage of human cancers involves alteration or mutation in Ras proteins, including the most aggressive malignancies, such as lung, colon and pancreatic cancers. FTS (Salirasib) is a farnesylcysteine mimetic, which acts as a functional Ras inhibitor, and was shown to exert anti-tumorigenic effects in vitro and in vivo. Previously, we have demonstrated that short-term treatment with FTS also induces protective autophagy in several cancer cell lines. Drug resistance is frequently observed in cancer cells exposed to prolonged treatment, and is considered a major cause for therapy inefficiency. Therefore, in the present study, we examined the effect of a prolonged treatment with FTS on drug resistance of HCT-116 human colon cancer cells, and the involvement of autophagy in this process. We found that cells grown in the presence of FTS for 6 months have become resistant to FTS-induced cell growth inhibition and cell death. Furthermore, we discovered that the resistant cells exhibit altered autophagy, reduced apoptosis and changes in Ras-related signaling pathways following treatment with FTS. Moreover we found that while FTS induces an apoptosis-related cleavage of p62, the FTS-resistant cells were more resistant to apoptosis and p62 cleavage. PMID:28151959

  1. PILOT-SCALE EVALUATION OF THE IMPACT OF SELECTIVE CATALYTIC REDUCTION FOR NOx ON MERCURY SPECIATION

    SciTech Connect

    Dennis L. Laudal; John H. Pavlish; Kevin C. Galbreath; Jeffrey S. Thompson; Gregory F. Weber; Everett Sondreal

    2000-12-01

    Full-scale tests in Europe and bench-scale tests in the United States have indicated that the catalyst, normally vanadium/titanium metal oxide, used in the selective catalytic reduction (SCR) of NO{sub x}, may promote the formation of Hg{sup 2+} and/or particulate-bound mercury (Hg{sub p}). To investigate the impact of SCR on mercury speciation, pilot-scale screening tests were conducted at the Energy & Environmental Research Center. The primary research goal was to determine whether the catalyst or the injection of ammonia in a representative SCR system promotes the conversion of Hg{sup 0} to Hg{sup 2+} and/or Hg{sub p} and, if so, which coal types and parameters (e.g., rank and chemical composition) affect the degree of conversion. Four different coals, three eastern bituminous coals and a Powder River Basin (PRB) subbituminous coal, were tested. Three tests were conducted for each coal: (1) baseline, (2) NH{sub 3} injection, and (3) SCR of NO{sub x}. Speciated mercury, ammonia slip, SO{sub 3}, and chloride measurements were made to determine the effect the SCR reactor had on mercury speciation. It appears that the impact of SCR of NO{sub x} on mercury speciation is coal-dependent. Although there were several confounding factors such as temperature and ammonia concentrations in the flue gas, two of the eastern bituminous coals showed substantial increases in Hg{sub p} at the inlet to the ESP after passing through an SCR reactor. The PRB coal showed little if any change due to the presence of the SCR. Apparently, the effects of the SCR reactor are related to the chloride, sulfur and, possibly, the calcium content of the coal. It is clear that additional work needs to be done at the full-scale level.

  2. Cloning and characterization of ftsZ and pyrF from the archaeon Thermoplasma acidophilum

    NASA Technical Reports Server (NTRS)

    Yaoi, T.; Laksanalamai, P.; Jiemjit, A.; Kagawa, H. K.; Alton, T.; Trent, J. D.

    2000-01-01

    To characterize cytoskeletal components of archaea, the ftsZ gene from Thermoplasma acidophilum was cloned and sequenced. In T. acidophilum ftsZ, which is involved in cell division, was found to be in an operon with the pyrF gene, which encodes orotidine-5'-monophosphate decarboxylase (ODC), an essential enzyme in pyrimidine biosynthesis. Both ftsZ and pyrF from T. acidophilum were expressed in Escherichia coli and formed functional proteins. FtsZ expression in wild-type E. coli resulted in the filamentous phenotype characteristic of ftsZ mutants. T. acidophilum pyrF expression in an E. coli mutant lacking pyrF complemented the mutation and rescued the strain. Sequence alignments of ODCs from archaea, bacteria, and eukarya reveal five conserved regions, two of which have homology to 3-hexulose-6-phosphate synthase (HPS), suggesting a common substrate recognition and binding motif. Copyright 2000 Academic Press.

  3. Doxorubicin inhibits E. coli division by interacting at a novel site in FtsZ.

    PubMed

    Panda, Pragnya; Taviti, Ashoka Chary; Satpati, Suresh; Kar, Mitali Madhusmita; Dixit, Anshuman; Beuria, Tushar Kant

    2015-11-01

    The increase in antibiotic resistance has become a major health concern in recent times. It is therefore essential to identify novel antibacterial targets as well as discover and develop new antibacterial agents. FtsZ, a highly conserved bacterial protein, is responsible for the initiation of cell division in bacteria. The functions of FtsZ inside cells are tightly regulated and any perturbation in its functions leads to inhibition of bacterial division. Recent reports indicate that small molecules targeting the functions of FtsZ may be used as leads to develop new antibacterial agents. To identify small molecules targeting FtsZ and inhibiting bacterial division, we screened a U.S. FDA (Food and Drug Administration)-approved drug library of 800 molecules using an independent computational, biochemical and microbial approach. From this screen, we identified doxorubicin, an anthracycline molecule that inhibits Escherichia coli division and forms filamentous cells. A fluorescence-binding assay shows that doxorubicin interacts strongly with FtsZ. A detailed biochemical analysis demonstrated that doxorubicin inhibits FtsZ assembly and its GTPase activity through binding to a site other than the GTP-binding site. Furthermore, using molecular docking, we identified a probable doxorubicin-binding site in FtsZ. A number of single amino acid mutations at the identified binding site in FtsZ resulted in a severalfold decrease in the affinity of FtsZ for doxorubicin, indicating the importance of this site for doxorubicin interaction. The present study suggests the presence of a novel binding site in FtsZ that interacts with the small molecules and can be targeted for the screening and development of new antibacterial agents.

  4. Serum thymic factor, FTS, attenuates cisplatin nephrotoxicity by suppressing cisplatin-induced ERK activation.

    PubMed

    Kohda, Yuka; Kawai, Yoshiko; Iwamoto, Noriaki; Matsunaga, Yoshiko; Aiga, Hiromi; Awaya, Akira; Gemba, Munekazu

    2005-11-01

    Serum thymic factor (FTS), a thymic peptide hormone, has been reported to attenuate the bleomycin-induced pulmonary injury and also experimental pancreatitis and diabetes. In the present study, we investigated the effect of FTS on cis-diamminedichloroplatinum II (cisplatin)-induced nephrotoxicity. We have already demonstrated that cephaloridine, a nephrotoxic antibiotic, leads to extracellular signal-regulated protein kinase (ERK) activation in the rat kidney, which probably contributes to cephaloridine-induced renal dysfunction. The aim of this study was to examine the effect of cisplatin on ERK activation in the rat kidney and also the effect of FTS on cisplatin-induced nephrotoxicity in rats. In vitro treatment of LLC-PK1 cells with FTS significantly ameliorated cisplatin-induced cell injury. Treatment of rats with intravenous cisplatin for 3 days markedly induced renal dysfunction and increased platinum contents in the kidney cortex. An increase in pERK was detected in the nuclear fraction prepared from the rat kidney cortex from days 1 to 3 after injection of cisplatin. FTS suppressed cisplatin-induced renal dysfunction and ERK activation in the kidney. FTS did not influence any Pt contents in the kidney after cisplatin administration. FTS has been shown to enhance the in vivo expression of heat shock protein (HSP) 70 in the kidney cortex. The beneficial role of FTS against cisplatin nephrotoxicity may be mediated in part by HSP70, as suggested by its up-regulation in the kidney cortex treated with FTS alone. Our results suggest that FTS participates in protection from cisplatin-induced nephrotoxicity by suppressing ERK activation caused by cisplatin.

  5. FHIP and FTS proteins are critical for dynein-mediated transport of early endosomes in Aspergillus

    PubMed Central

    Yao, Xuanli; Wang, Xiangfeng; Xiang, Xin

    2014-01-01

    The minus end–directed microtubule motor cytoplasmic dynein transports various cellular cargoes, including early endosomes, but how dynein binds to its cargo remains unclear. Recently fungal Hook homologues were found to link dynein to early endosomes for their transport. Here we identified FhipA in Aspergillus nidulans as a key player for HookA (A. nidulans Hook) function via a genome-wide screen for mutants defective in early-endosome distribution. The human homologue of FhipA, FHIP, is a protein in the previously discovered FTS/Hook/FHIP (FHF) complex, which contains, besides FHIP and Hook proteins, Fused Toes (FTS). Although this complex was not previously shown to be involved in dynein-mediated transport, we show here that loss of either FhipA or FtsA (A. nidulans FTS homologue) disrupts HookA–early endosome association and inhibits early endosome movement. Both FhipA and FtsA associate with early endosomes, and interestingly, while FtsA–early endosome association requires FhipA and HookA, FhipA–early endosome association is independent of HookA and FtsA. Thus FhipA is more directly linked to early endosomes than HookA and FtsA. However, in the absence of HookA or FtsA, FhipA protein level is significantly reduced. Our results indicate that all three proteins in the FtsA/HookA/FhipA complex are important for dynein-mediated early endosome movement. PMID:24870033

  6. A Carbocyclic Curcumin Inhibits Proliferation of Gram-Positive Bacteria by Targeting FtsZ.

    PubMed

    Groundwater, Paul W; Narlawar, Rajeshwar; Liao, Vivian Wan Yu; Bhattacharya, Anusri; Srivastava, Shalini; Kunal, Kishore; Doddareddy, Munikumar; Oza, Pratik M; Mamidi, Ramesh; Marrs, Emma C L; Perry, John D; Hibbs, David E; Panda, Dulal

    2017-01-24

    Inhibition of FtsZ assembly has been found to stall bacterial cell division. Here, we report the identification of a potent carbocyclic curcumin analogue (2d) that inhibits Bacillus subtilis 168 cell proliferation by targeting the assembly of FtsZ. 2d also showed potent inhibitory activity (minimum inhibitory concentrations of 2-4 mg/L) against several clinically important species of Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus. In addition, 2d displayed a significantly reduced inhibitory effect on human cervical cancer cells in comparison to its effect on bacterial cells. Using live cell imaging of GFP-FtsZ by confocal microscopy, 2d was found to rapidly perturb the cytokinetic FtsZ rings in Bacillus subtilis cells. The immunofluorescence imaging of FtsZ also showed that 2d destroyed the Z-ring in bacteria within 5 min. Prolonged treatment with 2d produced filamentous bacteria, but 2d had no detectable effect either on the nucleoids or on the membrane potential of bacteria. 2d inhibited FtsZ assembly in vitro, whereas it had minimal effects on tubulin assembly. Interestingly, 2d strongly enhanced the GTPase activity of FtsZ and reduced the GTPase activity of tubulin. Furthermore, 2d bound to purified FtsZ with a dissociation constant of 4.0 ± 1.1 μM, and the binding of 2d altered the secondary structures of FtsZ. The results together suggested that the non-natural curcumin analogue 2d possesses powerful antibacterial activity against important pathogenic bacteria, and the evidence indicates that 2d inhibits bacterial proliferation by targeting FtsZ.

  7. Synthetic inhibitors of bacterial cell division targeting the GTP-binding site of FtsZ.

    PubMed

    Ruiz-Avila, Laura B; Huecas, Sonia; Artola, Marta; Vergoñós, Albert; Ramírez-Aportela, Erney; Cercenado, Emilia; Barasoain, Isabel; Vázquez-Villa, Henar; Martín-Fontecha, Mar; Chacón, Pablo; López-Rodríguez, María L; Andreu, José M

    2013-09-20

    Cell division protein FtsZ is the organizer of the cytokinetic Z-ring in most bacteria and a target for new antibiotics. FtsZ assembles with GTP into filaments that hydrolyze the nucleotide at the association interface between monomers and then disassemble. We have replaced FtsZ's GTP with non-nucleotide synthetic inhibitors of bacterial division. We searched for these small molecules among compounds from the literature, from virtual screening (VS), and from our in-house synthetic library (UCM), employing a fluorescence anisotropy primary assay. From these screens we have identified the polyhydroxy aromatic compound UCM05 and its simplified analogue UCM44 that specifically bind to Bacillus subtilis FtsZ monomers with micromolar affinities and perturb normal assembly, as examined with light scattering, polymer sedimentation, and negative stain electron microscopy. On the other hand, these ligands induce the cooperative assembly of nucleotide-devoid archaeal FtsZ into distinct well-ordered polymers, different from GTP-induced filaments. These FtsZ inhibitors impair localization of FtsZ into the Z-ring and inhibit bacterial cell division. The chlorinated analogue UCM53 inhibits the growth of clinical isolates of antibiotic-resistant Staphylococcus aureus and Enterococcus faecalis. We suggest that these interfacial inhibitors recapitulate binding and some assembly-inducing effects of GTP but impair the correct structural dynamics of FtsZ filaments and thus inhibit bacterial division, possibly by binding to a small fraction of the FtsZ molecules in a bacterial cell, which opens a new approach to FtsZ-based antibacterial drug discovery.

  8. Effects of rhodomyrtone on Gram-positive bacterial tubulin homologue FtsZ

    PubMed Central

    Saeloh, Dennapa; Wenzel, Michaela; Rungrotmongkol, Thanyada; Hamoen, Leendert Willem

    2017-01-01

    Rhodomyrtone, a natural antimicrobial compound, displays potent activity against many Gram-positive pathogenic bacteria, comparable to last-defence antibiotics including vancomycin and daptomycin. Our previous studies pointed towards effects of rhodomyrtone on the bacterial membrane and cell wall. In addition, a recent molecular docking study suggested that the compound could competitively bind to the main bacterial cell division protein FtsZ. In this study, we applied a computational approach (in silico), in vitro, and in vivo experiments to investigate molecular interactions of rhodomyrtone with FtsZ. Using molecular simulation, FtsZ conformational changes were observed in both (S)- and (R)-rhodomyrtone binding states, compared with the three natural states of FtsZ (ligand-free, GDP-, and GTP-binding states). Calculations of free binding energy showed a higher affinity of FtsZ to (S)-rhodomyrtone (−35.92 ± 0.36 kcal mol−1) than the GDP substrate (−23.47 ± 0.25 kcal mol−1) while less affinity was observed in the case of (R)-rhodomyrtone (−18.11 ± 0.11 kcal mol−1). In vitro experiments further revealed that rhodomyrtone reduced FtsZ polymerization by 36% and inhibited GTPase activity by up to 45%. However, the compound had no effect on FtsZ localization in Bacillus subtilis at inhibitory concentrations and cells also did not elongate after treatment. Higher concentrations of rhodomyrtone did affect localization of FtsZ and also affected localization of its membrane anchor proteins FtsA and SepF, showing that the compound did not specifically inhibit FtsZ but rather impaired multiple divisome proteins. Furthermore, a number of cells adopted a bean-like shape suggesting that rhodomyrtone possibly possesses further targets involved in cell envelope synthesis and/or maintenance. PMID:28168121

  9. FtsZ-less prokaryotic cell division as well as FtsZ- and dynamin-less chloroplast and non-photosynthetic plastid division

    PubMed Central

    Miyagishima, Shin-ya; Nakamura, Mami; Uzuka, Akihiro; Era, Atsuko

    2014-01-01

    The chloroplast division machinery is a mixture of a stromal FtsZ-based complex descended from a cyanobacterial ancestor of chloroplasts and a cytosolic dynamin-related protein (DRP) 5B-based complex derived from the eukaryotic host. Molecular genetic studies have shown that each component of the division machinery is normally essential for normal chloroplast division. However, several exceptions have been found. In the absence of the FtsZ ring, non-photosynthetic plastids are able to proliferate, likely by elongation and budding. Depletion of DRP5B impairs, but does not stop chloroplast division. Chloroplasts in glaucophytes, which possesses a peptidoglycan (PG) layer, divide without DRP5B. Certain parasitic eukaryotes possess non-photosynthetic plastids of secondary endosymbiotic origin, but neither FtsZ nor DRP5B is encoded in their genomes. Elucidation of the FtsZ- and/or DRP5B-less chloroplast division mechanism will lead to a better understanding of the function and evolution of the chloroplast division machinery and the finding of the as-yet-unknown mechanism that is likely involved in chloroplast division. Recent studies have shown that FtsZ was lost from a variety of prokaryotes, many of which lost PG by regressive evolution. In addition, even some of the FtsZ-bearing bacteria are able to divide when FtsZ and PG are depleted experimentally. In some cases, alternative mechanisms for cell division, such as budding by an increase of the cell surface-to-volume ratio, are proposed. Although PG is believed to have been lost from chloroplasts other than in glaucophytes, there is some indirect evidence for the existence of PG in chloroplasts. Such information is also useful for understanding how non-photosynthetic plastids are able to divide in FtsZ-depleted cells and the reason for the retention of FtsZ in chloroplast division. Here we summarize information to facilitate analyses of FtsZ- and/or DRP5B-less chloroplast and non-photosynthetic plastid division. PMID

  10. An in vitro and in vivo Evaluation of the Efficacy of Recombinant Human Liver Prolidase as a Catalytic Bioscavenger of Chemical Warfare Nerve Agents

    DTIC Science & Technology

    2015-01-01

    3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE An in vitro and in vivo evaluation of the efficacy of recombinant human liver prolidase 5a...butyrylcholinesterase, catalytic bioscavenger, chemical warfare nerve agents, human liver prolidase, in vivo delivery 16. SECURITY CLASSIFICATION OF: 17...Healthcare USA, Inc. DOI: 10.3109/01480545.2014.900071 RESEARCH ARTICLE An in vitro and in vivo evaluation of the efficacy of recombinant human liver

  11. Mycobacterium tuberculosis FtsX extracellular domain activates the peptidoglycan hydrolase, RipC

    PubMed Central

    Mavrici, Daniela; Marakalala, Mohlopheni J.; Holton, James M.; Prigozhin, Daniil M.; Gee, Christine L.; Zhang, Yanjia J.; Rubin, Eric J.; Alber, Tom

    2014-01-01

    Bacterial growth and cell division are coordinated with hydrolysis of the peptidoglycan (PG) layer of the cell wall, but the mechanisms of regulation of extracellular PG hydrolases are not well understood. Here we report the biochemical, structural, and genetic analysis of the Mycobacterium tuberculosis homolog of the transmembrane PG-hydrolase regulator, FtsX. The purified FtsX extracellular domain binds the PG peptidase Rv2190c/RipC N-terminal segment, causing a conformational change that activates the enzyme. Deletion of ftsEX and ripC caused similar phenotypes in Mycobacterium smegmatis, as expected for genes in a single pathway. The crystal structure of the FtsX extracellular domain reveals an unprecedented fold containing two lobes connected by a flexible hinge. Mutations in the hydrophobic cleft between the lobes reduce RipC binding in vitro and inhibit FtsX function in M. smegmatis. These studies suggest how FtsX recognizes RipC and support a model in which a conformational change in FtsX links the cell division apparatus with PG hydrolysis. PMID:24843173

  12. Transposon insertions in the Flavobacterium johnsoniae ftsX gene disrupt gliding motility and cell division.

    PubMed

    Kempf, M J; McBride, M J

    2000-03-01

    Flavobacterium johnsoniae is a gram-negative bacterium that exhibits gliding motility. To determine the mechanism of flavobacterial gliding motility, we isolated 33 nongliding mutants by Tn4351 mutagenesis. Seventeen of these mutants exhibited filamentous cell morphology. The region of DNA surrounding the transposon insertion in the filamentous mutant CJ101-207 was cloned and sequenced. The transposon was inserted in a gene that was similar to Escherichia coli ftsX. Two of the remaining 16 filamentous mutants also carried insertions in ftsX. Introduction of the wild-type F. johnsoniae ftsX gene restored motility and normal cell morphology to each of the three ftsX mutants. CJ101-207 appears to be blocked at a late stage of cell division, since the filaments produced cross walls but cells failed to separate. In E. coli, FtsX is thought to function with FtsE in translocating proteins involved in potassium transport, and perhaps proteins involved in cell division, into the cytoplasmic membrane. Mutations in F. johnsoniae ftsX may prevent translocation of proteins involved in cell division and proteins involved in gliding motility into the cytoplasmic membrane, thus resulting in defects in both processes. Alternatively, the loss of gliding motility may be an indirect result of the defect in cell division. The inability to complete cell division may alter the cell architecture and disrupt gliding motility by preventing the synthesis, assembly, or functioning of the motility apparatus.

  13. Condensation of FtsZ filaments can drive bacterial cell division.

    PubMed

    Lan, Ganhui; Daniels, Brian R; Dobrowsky, Terrence M; Wirtz, Denis; Sun, Sean X

    2009-01-06

    Forces are important in biological systems for accomplishing key cell functions, such as motility, organelle transport, and cell division. Currently, known force generation mechanisms typically involve motor proteins. In bacterial cells, no known motor proteins are involved in cell division. Instead, a division ring (Z-ring) consists of mostly FtsZ, FtsA, and ZipA is used to exerting a contractile force. The mechanism of force generation in bacterial cell division is unknown. Using computational modeling, we show that Z-ring formation results from the colocalization of FtsZ and FtsA mediated by the favorable alignment of FtsZ polymers. The model predicts that the Z-ring undergoes a condensation transition from a low-density state to a high-density state and generates a sufficient contractile force to achieve division. FtsZ GTP hydrolysis facilitates monomer turnover during the condensation transition, but does not directly generate forces. In vivo fluorescence measurements show that FtsZ density increases during division, in accord with model results. The mechanism is akin to van der Waals picture of gas-liquid condensation, and shows that organisms can exploit microphase transitions to generate mechanical forces.

  14. Transcription of ftsZ oscillates during the cell cycle of Escherichia coli.

    PubMed

    Garrido, T; Sánchez, M; Palacios, P; Aldea, M; Vicente, M

    1993-10-01

    The FtsZ protein is a key element controlling cell division in Escherichia coli. A powerful transcription titration assay was used to quantify the ftsZ mRNA present in synchronously dividing cells. The ftsZ mRNA levels oscillate during the cell cycle reaching a maximum at about the time DNA replication initiates. This cell cycle dependency is specifically due to the two proximal ftsZ promoters. A strain was constructed in which expression of ftsZ could be modulated by an exogenous inducer. In this strain cell size and cell division frequency were sensitive to the cellular FtsZ contents, demonstrating the rate-limiting role of this protein in cell division. Transcriptional activity of the ftsZ promoters was found to be independent of DnaA, indicating that DNA replication and cell division may be independently controlled at the time when new rounds of DNA replication are initiated. This suggests a parallelism between the prokaryotic cell cycle signals and the START point of eukaryotic cell cycles.

  15. Transcription of ftsZ oscillates during the cell cycle of Escherichia coli.

    PubMed Central

    Garrido, T; Sánchez, M; Palacios, P; Aldea, M; Vicente, M

    1993-01-01

    The FtsZ protein is a key element controlling cell division in Escherichia coli. A powerful transcription titration assay was used to quantify the ftsZ mRNA present in synchronously dividing cells. The ftsZ mRNA levels oscillate during the cell cycle reaching a maximum at about the time DNA replication initiates. This cell cycle dependency is specifically due to the two proximal ftsZ promoters. A strain was constructed in which expression of ftsZ could be modulated by an exogenous inducer. In this strain cell size and cell division frequency were sensitive to the cellular FtsZ contents, demonstrating the rate-limiting role of this protein in cell division. Transcriptional activity of the ftsZ promoters was found to be independent of DnaA, indicating that DNA replication and cell division may be independently controlled at the time when new rounds of DNA replication are initiated. This suggests a parallelism between the prokaryotic cell cycle signals and the START point of eukaryotic cell cycles. Images PMID:8404863

  16. Organization of FtsZ Filaments in the Bacterial Division Ring Measured from Polarized Fluorescence Microscopy

    PubMed Central

    Si, Fangwei; Busiek, Kimberly; Margolin, William; Sun, Sean X.

    2013-01-01

    Cytokinesis in bacteria is accomplished by a ring-shaped cell-division complex (the Z-ring). The primary component of the Z-ring is FtsZ, a filamentous tubulin homolog that serves as a scaffold for the recruitment of other cell-division-related proteins. FtsZ forms filaments and bundles. In the cell, it has been suggested that FtsZ filaments form the arcs of the ring and are aligned in the cell-circumferential direction. Using polarized fluorescence microscopy in live Escherichia coli cells, we measure the structural organization of FtsZ filaments in the Z-ring. The data suggest a disordered organization: a substantial portion of FtsZ filaments are aligned in the cell-axis direction. FtsZ organization in the Z-ring also appears to depend on the bacterial species. Taken together, the unique arrangement of FtsZ suggests novel unexplored mechanisms in bacterial cell division. PMID:24209842

  17. Specificity of the transport of lipid II by FtsW in Escherichia coli.

    PubMed

    Mohammadi, Tamimount; Sijbrandi, Robert; Lutters, Mandy; Verheul, Jolanda; Martin, Nathaniel I; den Blaauwen, Tanneke; de Kruijff, Ben; Breukink, Eefjan

    2014-05-23

    Synthesis of biogenic membranes requires transbilayer movement of lipid-linked sugar molecules. This biological process, which is fundamental in prokaryotic cells, remains as yet not clearly understood. In order to obtain insights into the molecular basis of its mode of action, we analyzed the structure-function relationship between Lipid II, the important building block of the bacterial cell wall, and its inner membrane-localized transporter FtsW. Here, we show that the predicted transmembrane helix 4 of Escherichia coli FtsW (this protein consists of 10 predicted transmembrane segments) is required for the transport activity of the protein. We have identified two charged residues (Arg(145) and Lys(153)) within this segment that are specifically involved in the flipping of Lipid II. Mutating these two amino acids to uncharged ones affected the transport activity of FtsW. This was consistent with loss of in vivo activity of the mutants, as manifested by their inability to complement a temperature-sensitive strain of FtsW. The transport activity of FtsW could be inhibited with a Lipid II variant having an additional size of 420 Da. Reducing the size of this analog by about 274 Da resulted in the resumption of the transport activity of FtsW. This suggests that the integral membrane protein FtsW forms a size-restricted porelike structure, which accommodates Lipid II during transport across the bacterial cytoplasmic membrane.

  18. Structural reorganization of the bacterial cell-division protein FtsZ from Staphylococcus aureus.

    PubMed

    Matsui, Takashi; Yamane, Junji; Mogi, Nobuyuki; Yamaguchi, Hiroto; Takemoto, Hiroshi; Yao, Min; Tanaka, Isao

    2012-09-01

    FtsZ is a key molecule in bacterial cell division. In the presence of GTP, it polymerizes into tubulin-like protofilaments by head-to-tail association. Protofilaments of FtsZ seem to adopt a straight or a curved conformation in relation to the bound nucleotide. However, although several bacterial and archaeal FtsZ structures have been determined, all of the structures reported previously are considered to have a curved conformation. In this study, structures of FtsZ from Staphylococcus aureus (SaFtsZ) were determined in apo, GDP-bound and inhibitor-complex forms and it was found that SaFtsZ undergoes marked conformational changes. The accumulated evidence suggests that the GDP-bound structure has the features of the straight form. The structural change between the curved and straight forms shows intriguing similarity to the eukaryotic cytoskeletal protein tubulin. Furthermore, the structure of the apo form showed an unexpectedly large conformational change in the core region. FtsZ has also been recognized as a novel target for antibacterial drugs. The structure of the complex with the inhibitor PC190723, which has potent and selective antistaphylococcal activity, indicated that the inhibitor binds at the cleft between the two subdomains.

  19. Multispectrum Fitting of FTS and Crds Spectra Simultaneously

    NASA Astrophysics Data System (ADS)

    Benner, D. Chris; Devi, V. Malathy; Sung, Keeyoon; Hodges, Joseph T.

    2012-06-01

    Various types of spectra contain different sorts of spectral line information. An FTS spectrum provides broad coverage of an identical sample at all parts of the spectrum, but a cavity ring down spectrometer provides higher resolution, more information about line shapes and greater dynamic range in spectral line intensity. In order to use all of the information available, one should put all the spectra available into a single solution. The multispectrum nonlinear least squares fitting technique has proven successful in doing this with transmission spectra from various spectrometers. However, fitting data from cavity ring down spectrometers that produce cross sections is a problem when combined with transmission spectrometers. The solution is to choose a path length for the CRDS data to produce transmissions and use the uncertainty of each cross section as a means of weighting the transmission in the multispectrum solution. This has been incorporated into our fitting technique. Sample oxygen A band fits of CRDS data from NIST combined with FTS data from a high resolution Fourier transform spectrometer in the Infrared, Bruker IFS125-HR, at JPL, equipped with two multipass White cells (absorption path length extendible to 32.5 m and 148 m, respectively) will be shown. D. Chris Benner, C. P. Rinsland, V. M. Devi, M. A. H. Smith, and D. A. Atkins, JQSRT 1995;53:705-21. Support for the work at William and Mary was provided by JPL and the NIST Greenhouse Gas Measurements and Climate Research Program. Part of the research described in this paper was performed at the Jet Propulsion Laboratory, California Institute of Technology under contracts with National Aeronautics and Space Administration. Support for the work at NIST was provided by at the NIST Greenhouse Gas Measurements and Climate Research Program.

  20. Robotic technologies of the Flight Telerobotic Servicer (FTS) including fault tolerance

    NASA Technical Reports Server (NTRS)

    Chladek, John T.; Craver, William M.

    1994-01-01

    The original FTS concept for Space Station Freedom (SSF) was to provide telerobotic assistance to enhance crew activity and safety and to reduce crew EVA (Extra Vehicular Activity) activity. The first flight of the FTS manipulator systems would demonstrate several candidate tasks and would verify manipulator performance parameters. These first flight tasks included unlocking a SSF Truss Joint, mating/demating a fluid coupling, contact following of a contour board, demonstrating peg-in-hole assembly, and grasping and moving a mass. Future tasks foreseen for the FTS system included ORU (Orbit Replaceable Unit) change-out, Hubble Space Telescope Servicing, Gamma Ray Observatory refueling, and several in-situ SSF servicing and maintenance tasks. Operation of the FTS was planned to evolve from teleoperation to fully autonomous execution of many tasks. This wide range of mission tasks combined with the desire to evolve toward fully autonomy forced several requirements which may seen extremely demanding to the telerobotics community. The FTS requirements appear to have been created to accommodate the open-ended evolution plan such that operational evolution would not be impeded by function limitations. A recommendation arising from the FTS program to remedy the possible impacts from such ambitious requirements is to analyze candidate robotic tasks. Based on these task analyses, operational impacts against development impacts were weighed prior to requirements definition. Many of the FTS requirements discussed in the following sections greatly influenced the development cost and schedule of the FTS manipulator. The FTS manipulator has been assembled at Martin Marietta and is currently in testing. Successful component tests indicate a manipulator which achieves unprecedented performance specifications.

  1. FtsZ rings and helices: physical mechanisms for the dynamic alignment of biopolymers in rod-shaped bacteria

    NASA Astrophysics Data System (ADS)

    Fischer-Friedrich, Elisabeth; Friedrich, Benjamin M.; Gov, Nir S.

    2012-02-01

    In many bacterial species, the protein FtsZ forms a cytoskeletal ring that marks the future division site and scaffolds the division machinery. In rod-shaped bacteria, most frequently membrane-attached FtsZ rings or ring fragments are reported and occasionally helices. By contrast, axial FtsZ clusters have never been reported. In this paper, we investigate theoretically how dynamic FtsZ aggregates align in rod-shaped bacteria. We study systematically different physical mechanisms that affect the alignment of FtsZ polymers using a computational model that relies on autocatalytic aggregation of FtsZ filaments at the membrane. Our study identifies a general tool kit of physical and geometrical mechanisms by which rod-shaped cells align biopolymer aggregates. Our analysis compares the relative impact of each mechanism on the circumferential alignment of FtsZ as observed in rod-shaped bacteria. We determine spontaneous curvature of FtsZ polymers and axial confinement of FtsZ on the membrane as the strongest factors. Including Min oscillations in our model, we find that these stabilize axial and helical clusters on short time scales, but promote the formation of an FtsZ ring at the cell middle at longer times. This effect could provide an explanation to the long standing puzzle of transiently observed oscillating FtsZ helices in Escherichia coli cells prior to cell division.

  2. SB-RA-2001 inhibits bacterial proliferation by targeting FtsZ assembly.

    PubMed

    Singh, Dipty; Bhattacharya, Anusri; Rai, Ankit; Dhaked, Hemendra Pal Singh; Awasthi, Divya; Ojima, Iwao; Panda, Dulal

    2014-05-13

    FtsZ has been recognized as a promising antimicrobial drug target because of its vital role in bacterial cell division. In this work, we found that a taxane SB-RA-2001 inhibited the proliferation of Bacillus subtilis 168 and Mycobacterium smegmatis cells with minimal inhibitory concentrations of 38 and 60 μM, respectively. Cell lengths of these microorganisms increased remarkably in the presence of SB-RA-2001, indicating that it inhibits bacterial cytokinesis. SB-RA-2001 perturbed the formation of the FtsZ ring in B. subtilis 168 cells and also affected the localization of the late cell division protein, DivIVA, at the midcell position. Flow cytometric analysis of the SB-RA-2001-treated cells indicated that the compound did not affect the duplication of DNA in B. subtilis 168 cells. Further, SB-RA-2001 treatment did not affect the localization of the chromosomal partitioning protein, Spo0J, along the two ends of the nucleoids and also had no discernible effect on the nucleoid segregation in B. subtilis 168 cells. The agent also did not appear to perturb the membrane potential of B. subtilis 168 cells. In vitro, SB-RA-2001 bound to FtsZ with modest affinity, promoted the assembly and bundling of FtsZ protofilaments, and reduced the GTPase activity of FtsZ. GTP did not inhibit the binding of SB-RA-2001 to FtsZ, suggesting that it does not bind to the GTP binding site on FtsZ. A computational analysis indicated that SB-RA-2001 binds to FtsZ in the cleft region between the C-terminal domain and helix H7, and the binding site of SB-RA-2001 on FtsZ resembled that of PC190723, a well-characterized inhibitor of FtsZ. The findings collectively suggested that SB-RA-2001 inhibits bacterial proliferation by targeting the assembly dynamics of FtsZ, and this can be exploited further to develop potent FtsZ-targeted antimicrobials.

  3. Report on SARS backfit evaluation, Catalytic, Inc. Solvent Refined Coal Pilot Plant, Wilsonville, Alabama

    SciTech Connect

    Meyer, A.F. Jr.

    1980-07-02

    A site visit was made in company with the DOE-OPTA-EA Safety and Health Official for the purpose of providing that official with technical assistance in evaluating the validity of an earlier DOE-OPTA recommendation exempting this facility from the Safety and Analysis and Review backfit requirements of DOE Order 5481.1. A further purpose of the visit was to assess and evaluate the occupational safety and health program at this facility, as compared with the criteria and guidelines contained in ASFE Order 5481.1. Adequate documentation regarding compliance with codes, standards, and regulations were observed at this facility. There is in existence an ongoing continuous safety analysis effort for both modifications or additions to this facility. Adequate environmental safeguards and plans and procedures were observed. The SARS backfit exemption is appropriate. The occupational safety and health program is in many ways a model for the scope of work and nature of hazards involved, and is consistent with ASFE guidelines and statutory requirements.

  4. Evaluation of anode (electro)catalytic materials for the direct borohydride fuel cell: Methods and benchmarks

    NASA Astrophysics Data System (ADS)

    Olu, Pierre-Yves; Job, Nathalie; Chatenet, Marian

    2016-09-01

    In this paper, different methods are discussed for the evaluation of the potential of a given catalyst, in view of an application as a direct borohydride fuel cell DBFC anode material. Characterizations results in DBFC configuration are notably analyzed at the light of important experimental variables which influence the performances of the DBFC. However, in many practical DBFC-oriented studies, these various experimental variables prevent one to isolate the influence of the anode catalyst on the cell performances. Thus, the electrochemical three-electrode cell is a widely-employed and useful tool to isolate the DBFC anode catalyst and to investigate its electrocatalytic activity towards the borohydride oxidation reaction (BOR) in the absence of other limitations. This article reviews selected results for different types of catalysts in electrochemical cell containing a sodium borohydride alkaline electrolyte. In particular, propositions of common experimental conditions and benchmarks are given for practical evaluation of the electrocatalytic activity towards the BOR in three-electrode cell configuration. The major issue of gaseous hydrogen generation and escape upon DBFC operation is also addressed through a comprehensive review of various results depending on the anode composition. At last, preliminary concerns are raised about the stability of potential anode catalysts upon DBFC operation.

  5. Surface characterization and catalytic evaluation of copper-promoted Al-MCM-41 toward hydroxylation of phenol.

    PubMed

    Parida, K M; Rath, Dharitri

    2009-12-15

    The Mobil Composition of Matter No. 41 (MCM-41) containing Cu and Al with Si/Al ratios varying from 100 to 10 and 1 to 6wt.% of Cu was synthesized under hydrothermal and impregnation conditions, respectively. The samples were characterized by nitrogen adsorption-desorption measurements, X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS), temperature-programmed reduction (TPR), temperature-programmed desorption (TPD), and (29)Si and (27)Al magic-angle spinning-nuclear magnetic resonance (MAS-NMR) spectra. X-ray diffraction patterns indicate that the modified materials retain the standard MCM-41 structure. TPR patterns show the two-step reduction of Cu species. TPD study shows that Cu-impregnated Al-MCM-41 samples are more acidic than Al-MCM-41. From the MAS-NMR it was confirmed that most of the Al atoms are present tetrahedrally within the framework and some are present octahedrally in extraframework position. Impregnation of Cu shifted Al to the extraframework position. The catalytic activity of the samples toward hydroxylation of phenol in aqueous medium was evaluated using H(2)O(2) as the oxidant at 80 degrees C. The effects of reaction parameters such as temperature, catalyst amount, amount of H(2)O(2), and solvent were also investigated. Sample containing 4wt.% copper-loaded Al-MCM-41-100 showed high phenol conversion (78%) with 68% catechol and 32% hydroquinone selectivity.

  6. [Construction of three-dimensional models of Arabidopsis thaliana FtsZ-proteins on basis of crystal structure of archaebacterial FtsZ-GDP complex].

    PubMed

    Demchuk, O N; Nyporko, A Iu; Blium, Ia B

    2006-01-01

    Three-dimensional models of FtsZ-protein complexes with GDP from Arabidopsis thaliana L. localized in cytosol (Entrez database code NP190843) and in chloroplasts (Entrez database code AAA82068) were developed. Crystal structure of the FtsZ-GDP complex from archaea Methanococcus jannaschii (PDB-code 1FSZ) was used as a matrix. Secondary structures of computed models contain ten beta-strands. A chloroplast form of FtsZ-protein has ten alpha-helices and four 3(10)-helices, whereas cytosolic form of protein has nine and three structures correspondently and neither a0-helix before nucleotide-binding domain nor C-terminal 3(10)-helix in secondary domain. The T2-loop of nucleotide-binding pocket of chloroplast form of FtsZ-ptotein in position 111 contains non-charged alanin residue instead of the charged one which is typical for cytosolic and bacterial forms of proteins. At low sequence homology of FtsZ-proteins (approximately 47%) the developed models demonstrate high coincidence with matrix both in the structures of nucleotide-binding pocket and in the whole molecule. The models are completely suitable for further studies of possible sites of binding with dinitroaniline herbicides.

  7. Hydrogen-oxygen catalytic ignition and thruster investigation. Volume 2: High pressure thruster evaluations

    NASA Technical Reports Server (NTRS)

    Johnson, R. J.; Heckert, B.; Burge, H. L.

    1972-01-01

    A high pressure thruster effort was conducted with the major objective of demonstrating a duct cooling concept with gaseous propellant in a thruster operating at nominally 300 psia and 1500 lbf. The analytical design methods for the duct cooling were proven in a series of tests with both ambient and reduced temperature propellants. Long duration tests as well as pulse mode tests demonstrated the feasibility of the concept. All tests were conducted with a scaling of the raised post triplet injector design previously demonstrated at 900 lbf in demonstration firings. A series of environmental conditioned firings were also conducted to determine the effects of thermal soaks, atmospheric air and high humidity. This volume presents the results of the high pressure thruster evaluations.

  8. An advanced retrieval algorithm for greenhouse gases using polarization information measured by GOSAT TANSO-FTS SWIR I: Simulation study

    NASA Astrophysics Data System (ADS)

    Kikuchi, N.; Yoshida, Y.; Uchino, O.; Morino, I.; Yokota, T.

    2016-11-01

    We present an algorithm for retrieving column-averaged dry air mole fraction of carbon dioxide (XCO2) and methane (XCH4) from reflected spectra in the shortwave infrared (SWIR) measured by the TANSO-FTS (Thermal And Near infrared Sensor for carbon Observation Fourier Transform Spectrometer) sensor on board the Greenhouse gases Observing SATellite (GOSAT). The algorithm uses the two linear polarizations observed by TANSO-FTS to improve corrections to the interference effects of atmospheric aerosols, which degrade the accuracy in the retrieved greenhouse gas concentrations. To account for polarization by the land surface reflection in the forward model, we introduced a bidirectional reflection matrix model that has two parameters to be retrieved simultaneously with other state parameters. The accuracy in XCO2 and XCH4 values retrieved with the algorithm was evaluated by using simulated retrievals over both land and ocean, focusing on the capability of the algorithm to correct imperfect prior knowledge of aerosols. To do this, we first generated simulated TANSO-FTS spectra using a global distribution of aerosols computed by the aerosol transport model SPRINTARS. Then the simulated spectra were submitted to the algorithms as measurements both with and without polarization information, adopting a priori profiles of aerosols that differ from the true profiles. We found that the accuracy of XCO2 and XCH4, as well as profiles of aerosols, retrieved with polarization information was considerably improved over values retrieved without polarization information, for simulated observations over land with aerosol optical thickness greater than 0.1 at 1.6 μm.

  9. Evaluating the effectiveness of various biochars as porous media for biodiesel synthesis via pseudo-catalytic transesterification.

    PubMed

    Lee, Jechan; Jung, Jong-Min; Oh, Jeong-Ik; Ok, Yong Sik; Lee, Sang-Ryong; Kwon, Eilhann E

    2017-05-01

    This study focuses on investigating the optimized chemical composition of biochar used as porous material for biodiesel synthesis via pseudo-catalytic transesterification. To this end, six biochars from different sources were prepared and biodiesel yield obtained from pseudo-catalytic transesterification of waste cooking oil using six biochars were measured. Biodiesel yield and optimal reaction temperature for pseudo-catalytic transesterification were strongly dependent on the raw material of biochar. For example, biochar generated from maize residue exhibited the best performance, which yield was reached ∼90% at 300°C; however, the maximum biodiesel yield with pine cone biochar was 43% at 380°C. The maximum achievable yield of biodiesel was sensitive to the lignin content of biomass source of biochar but not sensitive to the cellulose and hemicellulose content. This study provides an insight for screening the most effective biochar as pseudo-catalytic porous material, thereby helping develop more sustainable and economically viable biodiesel synthesis process.

  10. Clean catalytic combustor program

    NASA Technical Reports Server (NTRS)

    Ekstedt, E. E.; Lyon, T. F.; Sabla, P. E.; Dodds, W. J.

    1983-01-01

    A combustor program was conducted to evolve and to identify the technology needed for, and to establish the credibility of, using combustors with catalytic reactors in modern high-pressure-ratio aircraft turbine engines. Two selected catalytic combustor concepts were designed, fabricated, and evaluated. The combustors were sized for use in the NASA/General Electric Energy Efficient Engine (E3). One of the combustor designs was a basic parallel-staged double-annular combustor. The second design was also a parallel-staged combustor but employed reverse flow cannular catalytic reactors. Subcomponent tests of fuel injection systems and of catalytic reactors for use in the combustion system were also conducted. Very low-level pollutant emissions and excellent combustor performance were achieved. However, it was obvious from these tests that extensive development of fuel/air preparation systems and considerable advancement in the steady-state operating temperature capability of catalytic reactor materials will be required prior to the consideration of catalytic combustion systems for use in high-pressure-ratio aircraft turbine engines.

  11. Cooperative Recruitment of FtsW to the Division Site of Bacillus subtilis

    PubMed Central

    Gamba, Pamela; Hamoen, Leendert W.; Daniel, Richard A.

    2016-01-01

    Five essential proteins are known to assemble at the division site of Bacillus subtilis. However, the recruitment of the FtsW homolog is still unclear. Here, we take advantage of spore germination to facilitate the depletion of essential proteins and to study the divisome assembly in the absence of previous division events. We show that, unlike what has been shown for the Escherichia coli divisome, the assembly of FtsW is interdependent with the localization of PBP 2B and FtsL, which are key components of the membrane bound division complex. Interestingly, the Z-ring appeared to disassemble upon prolonged depletion of late division proteins. Nevertheless, we could restore Z-ring formation and constriction by re-inducing FtsW, which suggests that the stability of the Z-ring is stimulated by the assembly of a functional division complex. PMID:27895631

  12. FtsZ and the division of prokaryotic cells and organelles.

    PubMed

    Margolin, William

    2005-11-01

    Binary fission of many prokaryotes as well as some eukaryotic organelles depends on the FtsZ protein, which self-assembles into a membrane-associated ring structure early in the division process. FtsZ is homologous to tubulin, the building block of the microtubule cytoskeleton in eukaryotes. Recent advances in genomics and cell-imaging techniques have paved the way for the remarkable progress in our understanding of fission in bacteria and organelles.

  13. BT-benzo-29 inhibits bacterial cell proliferation by perturbing FtsZ assembly.

    PubMed

    Ray, Shashikant; Jindal, Bhavya; Kunal, Kishore; Surolia, Avadhesha; Panda, Dulal

    2015-10-01

    We have identified a potent antibacterial agent N-(4-sec-butylphenyl)-2-(thiophen-2-yl)-1H-benzo[d]imidazole-4-carboxamide (BT-benzo-29) from a library of benzimidazole derivatives that stalled bacterial division by inhibiting FtsZ assembly. A short (5 min) exposure of BT-benzo-29 disassembled the cytokinetic Z-ring in Bacillus subtilis cells without affecting the cell length and nucleoids. BT-benzo-29 also perturbed the localization of early and late division proteins such as FtsA, ZapA and SepF at the mid-cell. Further, BT-benzo-29 bound to FtsZ with a dissociation constant of 24 ± 3 μm and inhibited the assembly and GTPase activity of purified FtsZ. A docking analysis suggested that BT-benzo-29 may bind to FtsZ at the C-terminal domain near the T7 loop. BT-benzo-29 displayed significantly weaker inhibitory effects on the assembly and GTPase activity of two mutants (L272A and V275A) of FtsZ supporting the prediction of the docking analysis. Further, BT-benzo-29 did not appear to inhibit DNA duplication and nucleoid segregation and it did not perturb the membrane potential of B. subtilis cells. The results suggested that BT-benzo-29 exerts its potent antibacterial activity by inhibiting FtsZ assembly. Interestingly, BT-benzo-29 did not affect the membrane integrity of mammalian red blood cells. BT-benzo-29 bound to tubulin with a much weaker affinity than FtsZ and exerted significantly weaker effects on mammalian cells than on the bacterial cells indicating that the compound may have a strong antibacterial potential.

  14. Modeling FtsZ ring formation in the bacterial cell—anisotropic aggregation via mutual interactions of polymer rods

    NASA Astrophysics Data System (ADS)

    Fischer-Friedrich, Elisabeth; Gov, Nir

    2011-04-01

    The cytoskeletal protein FtsZ polymerizes to a ring structure (Z ring) at the inner cytoplasmic membrane that marks the future division site and scaffolds the division machinery in many bacterial species. FtsZ is known to polymerize in the presence of GTP into single-stranded protofilaments. In vivo, FtsZ polymers become associated with the cytoplasmic membrane via interaction with the membrane-binding proteins FtsA and ZipA. The FtsZ ring structure is highly dynamic and undergoes constantly polymerization and depolymerization processes and exchange with the cytoplasmic pool. In this theoretical study, we consider a scenario of Z ring self-organization via self-enhanced attachment of FtsZ polymers due to end-to-end interactions and lateral interactions of FtsZ polymers on the membrane. With the assumption of exclusively circumferential polymer orientations, we derive coarse-grained equations for the dynamics of the pool of cytoplasmic and membrane-bound FtsZ. To capture stochastic effects expected in the system due to low particle numbers, we simulate our computational model using a Gillespie-type algorithm. We obtain ring- and arc-shaped aggregations of FtsZ polymers on the membrane as a function of monomer numbers in the cell. In particular, our model predicts the number of FtsZ rings forming in the cell as a function of cell geometry and FtsZ concentration. We also calculate the time of FtsZ ring localization to the midplane in the presence of Min oscillations. Finally, we demonstrate that the assumptions and results of our model are confirmed by 3D reconstructions of fluorescently-labeled FtsZ structures in E. coli that we obtained.

  15. Architecture of the ring formed by the tubulin homologue FtsZ in bacterial cell division.

    PubMed

    Szwedziak, Piotr; Wang, Qing; Bharat, Tanmay A M; Tsim, Matthew; Löwe, Jan

    2014-12-09

    Membrane constriction is a prerequisite for cell division. The most common membrane constriction system in prokaryotes is based on the tubulin homologue FtsZ, whose filaments in E. coli are anchored to the membrane by FtsA and enable the formation of the Z-ring and divisome. The precise architecture of the FtsZ ring has remained enigmatic. In this study, we report three-dimensional arrangements of FtsZ and FtsA filaments in C. crescentus and E. coli cells and inside constricting liposomes by means of electron cryomicroscopy and cryotomography. In vivo and in vitro, the Z-ring is composed of a small, single-layered band of filaments parallel to the membrane, creating a continuous ring through lateral filament contacts. Visualisation of the in vitro reconstituted constrictions as well as a complete tracing of the helical paths of the filaments with a molecular model favour a mechanism of FtsZ-based membrane constriction that is likely to be accompanied by filament sliding.

  16. FtsH-dependent degradation of phage shock protein C in Yersinia enterocolitica and Escherichia coli.

    PubMed

    Singh, Sindhoora; Darwin, Andrew J

    2011-12-01

    The widely conserved phage shock protein (Psp) extracytoplasmic stress response has been studied extensively in Escherichia coli and Yersinia enterocolitica. Both species have the PspF, -A, -B, and -C proteins, which have been linked to robust phenotypes, including Y. enterocolitica virulence. PspB and PspC are cytoplasmic membrane proteins required for stress-dependent induction of psp gene expression and for bacterial survival during the mislocalization of outer membrane secretin proteins. Previously, we reported that Y. enterocolitica PspB functions to positively control the amount of PspC by an uncharacterized posttranscriptional mechanism. In this study, we have discovered that the cytoplasmic membrane protease FtsH is involved in this phenomenon. FtsH destabilizes PspC in Y. enterocolitica, but coproduction of PspC with its binding partner PspB was sufficient to prevent this destabilization. In contrast, FtsH did not affect any other core component of the Psp system. These data suggested that uncomplexed PspC might be particularly deleterious to the bacterial cell and that FtsH acts as an important quality control mechanism to remove it. This was supported by the observation that toxicity caused by PspC production was reduced either by coproduction of PspB or by increased synthesis of FtsH. We also found that the phenomenon of FtsH-dependent PspC destabilization is conserved between Y. enterocolitica and E. coli.

  17. Charged Molecules Modulate the Volume Exclusion Effects Exerted by Crowders on FtsZ Polymerization

    PubMed Central

    Monterroso, Begoña; Reija, Belén; Jiménez, Mercedes; Zorrilla, Silvia; Rivas, Germán

    2016-01-01

    We have studied the influence of protein crowders, either combined or individually, on the GTP-induced FtsZ cooperative assembly, crucial for the formation of the dynamic septal ring and, hence, for bacterial division. It was earlier demonstrated that high concentrations of inert polymers like Ficoll 70, used to mimic the crowded cellular interior, favor the assembly of FtsZ into bundles with slow depolymerization. We have found, by fluorescence anisotropy together with light scattering measurements, that the presence of protein crowders increases the tendency of FtsZ to polymerize at micromolar magnesium concentration, being the effect larger with ovomucoid, a negatively charged protein. Neutral polymers and a positively charged protein also diminished the critical concentration of assembly, the extent of the effect being compatible with that expected according to pure volume exclusion models. FtsZ polymerization was also observed to be strongly promoted by a negatively charged polymer, DNA, and by some unrelated polymers like PEGs at concentrations below the crowding regime. The influence of mixed crowders mimicking the heterogeneity of the intracellular environment on the tendency of FtsZ to assemble was also studied and nonadditive effects were found to prevail. Far from exactly reproducing the bacterial cytoplasm environment, this approach serves as a simplified model illustrating how its intrinsically crowded and heterogeneous nature may modulate FtsZ assembly into a functional Z-ring. PMID:26870947

  18. Chemical and toxicological evaluation of an emerging pollutant (enrofloxacin) by catalytic wet air oxidation and ozonation in aqueous solution.

    PubMed

    Li, Yan; Zhang, Feifang; Liang, Xinmiao; Yediler, Ayfer

    2013-01-01

    This study evaluates the degradation efficiency of enrofloxacin (ENR) by catalytic wet air oxidation (CWAO) and ozonation. Results obtained by CWAO experiments show that 99.5% degradation, 37.0% chemical oxidation demand (COD) removal and 51.0% total organic carbon (TOC) conversion were obtained when 100 mol% FeCl(3) and 25 mol% NaNO(2) at 150 °C under 0.5 MPa oxygen pressure after 120 min are used. The degradation products are identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS), gas chromatography-mass spectrometry (GC-MS) and ion chromatography (IC). The oxidation end products, F(-), NO(3)(-) and NH(4)(+) were determined by IC. The BOD(5)/COD ratio as a measure of the biodegradability of the parent compound increased from 0.01 to 0.12 after 120 min of reaction time, indicating an improved biodegradability of the parent compound. The inhibition of bioluminescence of the marine bacteria V. fischeri decreased from 43% to 12% demonstrating a loss in toxicity of ENR during CWAO. Ozonation of 0.2 mM ENR was carried out with an ozone concentration of 7.3 g m(-3) at pH 7. ENR decomposition with a degradation rate of 87% was obtained corresponding to the reaction time. Moderate changes in COD (18%) and TOC (17%) removal has been observed. The bioluminescence inhibition increased from 8% to 50%, due to the generation of toxic degradation products during ozonation. In comparison to the widely use of well developed method of ozonation CWAO exhibits better performance in terms of COD, TOC removals and generates less toxic products.

  19. Sensitivity Analysis for CO2 Retrieval using GOSAT-2 FTS-2 Simulator

    NASA Astrophysics Data System (ADS)

    Kamei, Akihide; Yoshida, Yukio; Dupuy, Eric; Yokota, Yasuhiro; Hiraki, Kaduo; Matsunaga, Tsuneo

    2015-04-01

    The Greenhouse Gases Observing Satellite (GOSAT), launched in 2009, is the world's first satellite dedicated to global greenhouse gases observation. GOSAT-2, the successor mission to GOSAT, is scheduled for launch in early 2018. The Fourier Transform Spectrometer-2 (FTS-2) is the primary sensor onboard GOSAT-2. It observes infrared light reflected and emitted from the Earth's surface and atmosphere. The FTS-2 obtains high resolution spectra using three bands in the near to short-wavelength infrared (SWIR) region and two bands in the thermal infrared (TIR) region. Column amounts and vertical profiles of carbon dioxide (CO2) and methane (CH4) are retrieved from the radiance spectra obtained with the SWIR and TIR bands, respectively. Further, compared to the FTS onboard the GOSAT, the FTS-2 has several improvements: 1) added spectral coverage in the SWIR region for carbon monoxide (CO) retrieval, 2) increased signal-to-noise ratio (SNR) for all bands, 3) extended range of along-track pointing angles for sunglint observations, 4) intelligent pointing to avoid cloud contamination. Since 2012, we have been developing a simulator software to simulate the spectral radiance data that will be acquired by the GOSAT-2 FTS-2. The purpose of the GOSAT-2 FTS-2 simulator is to analyze/optimize data with respect to the sensor specification, the parameters for Level 1 processing, and the improvement of the Level 2 algorithms. The GOSAT-2 FTS-2 simulator includes the six components: 1) overall control, 2) sensor carrying platform, 3) spectral radiance calculation, 4) Fourier Transform module, 5) Level 1B (L1B) processing, and 6) L1B data output. It has been installed on the GOSAT Research Computation Facility (GOSAT RCF), which is a high-performance and energy-efficient supercomputer. More realistic and faster simulations have been made possible by the improvement of the details of sensor characteristics, the sophistication of the data processing and algorithms, the addition of the

  20. Characterization of the ftsZ cell division gene of Neisseria gonorrhoeae: expression in Escherichia coli and N. gonorrhoeae.

    PubMed

    Salimnia, H; Radia, A; Bernatchez, S; Beveridge, T J; Dillon, J R

    2000-01-01

    We cloned the cell division gene ftsZ of the gram-negative coccus Neisseria gonorrhoeae (Ng) strain CH811, characterized it genetically and phenotypically, and studied its localization in N. gonorrhoeae and Escherichia coli (Ec). The 1,179-bp ORF of ftsZ(Ng) encodes a protein with a predicted molecular mass of 41.5 kDa. Protein sequence alignments indicate that FtsZ(Ng) is similar to other FtsZ proteins and contains the conserved GTP binding motif. FtsZ homologues were identified in several N. gonorrhoeae strains and in Neisseria lactamica, Neisseria sicca, Neisseria polysaccharae and Neisseria cinerea either by Western blot or by PCR-Southern blot analysis. Attempts to inactivate the ftsZ(Ng) on the chromosome failed, indicating that it is essential for gonococcal growth. FtsZ(Ng) was synthesized in an in vitro transcription/translation system and was shown to be 43 kDa, the same size as in Western blots. Expression of the ftsZ(Ng) gene from nongonococcal promoters resulted in a filamentous phenotype in E. coli. Under controlled expression, the FtsZ(Ng)-GFP fusion protein localized at the mid-cell division site in E. coli. E. coli expressing high levels of the FtsZ(Ng)-GFP fusion protein formed filaments and exhibited different fluorescent structures including helices, spiral tubules extending from pole to pole, and regularly spaced dots or bands that did not localize at the middle of the cell. Expression of the FtsZ(Ng)-GFP fusion protein in N. gonorrhoeae resulted in abnormal cell division as shown by electron microscopy. FtsZ(Ng)-GFP fusions were also expressed in a gonococcal background using a unique shuttle vector.

  1. Catalytic pyrolysis-gc/ms of spirulina: evaluation of a highly proteinaceous biomass source for production of fuels and chemicals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pyrolysis of microalgae offers a pathway towards the production of compounds derived from the thermal decomposition of triglycerides, proteins as well as lignocelluloses and their combinations thereof. When catalytically induced, this could lead to the production of fuels and chemicals including aro...

  2. Protective effect of serum thymic factor, FTS, on cephaloridine-induced nephrotoxicity in rats.

    PubMed

    Kohda, Yuka; Matsunaga, Yoshiko; Yonogi, Katsuya; Kawai, Yoshiko; Awaya, Akira; Gemba, Munekazu

    2005-11-01

    Serum thymic factor (FTS), a thymic peptide hormone, has been reported to increase superoxide disumutase (SOD) levels in senescence-accelerated mice. In the present study, we examined the effect of FTS on cephaloridine (CER)-induced nephrotoxicity in vivo and in vitro. We previously reported that CER led to extracellular signal-regulated protein kinase (ERK) activation in the rat kidney. So, we also investigated whether FTS has an effect on ERK activation induced by CER. Treatment of male Sprague-Dawley rats with intravenous CER (1.2 g/kg) for 24 h markedly increased BUN and plasma creatinine levels and urinary excretion of glucose and protein, decreased creatinine clearance and also led to marked pathological changes in the proximal tubules, as revealed by electron micrographs. An increase in phosphorylated ERK (pERK) was detected in the nuclear fraction prepared from the rat kidney cortex 24 h after CER injection. Pretreatment of rats with FTS (50 microg/kg, i.v.) attenuated the CER-induced renal dysfunction and pathological damage. FTS also suppressed CER-induced ERK activation in the kidney. In vitro treatment of the established cell line, LLC-PK1 cells, with FTS significantly ameliorated CER-induced cell injury, as measured by lactate dehydrogenase (LDH) leakage. Our results, taken together with our previous report that MEK inhibitors ameliorated CER-induced renal cell injury and ERK activation induced by CER, suggest that FTS participates in protection from CER-induced nephrotoxicity by suppressing ERK activation induced by CER.

  3. Correlation between the structure and biochemical activities of FtsA, an essential cell division protein of the actin family.

    PubMed Central

    Sánchez, M; Valencia, A; Ferrándiz, M J; Sander, C; Vicente, M

    1994-01-01

    Cell division protein FtsA, predicted to belong to the actin family, is present in different cell compartments depending on its phosphorylation state. The FtsA fraction isolated from the cytoplasm is phosphorylated and capable of binding ATP, while the membrane-bound form is unphosphorylated and does not bind ATP. A variant of the protein FtsA102, in which the nucleotide binding site was destroyed by mutagenesis of a highly conserved residue predicted to be needed for the binding, does not bind ATP. Another variant, FtsA104, cannot be phosphorylated because the predicted phosphorylatable residue has been replaced by a non-phosphorylatable one. This protein although unable to bind ATP in vitro, is able to rescue the reversible ftsA2, the irreversible ftsA3 and, almost with the same efficiency, the ftsA16 amber alleles. Consequently, phosphorylation and ATP binding may not be essential for the function of FtsA. Alternatively they may have a regulatory role on the action of FtsA in the septator. Images PMID:7957059

  4. Correlation between the structure and biochemical activities of FtsA, an essential cell division protein of the actin family.

    PubMed

    Sánchez, M; Valencia, A; Ferrándiz, M J; Sander, C; Vicente, M

    1994-10-17

    Cell division protein FtsA, predicted to belong to the actin family, is present in different cell compartments depending on its phosphorylation state. The FtsA fraction isolated from the cytoplasm is phosphorylated and capable of binding ATP, while the membrane-bound form is unphosphorylated and does not bind ATP. A variant of the protein FtsA102, in which the nucleotide binding site was destroyed by mutagenesis of a highly conserved residue predicted to be needed for the binding, does not bind ATP. Another variant, FtsA104, cannot be phosphorylated because the predicted phosphorylatable residue has been replaced by a non-phosphorylatable one. This protein although unable to bind ATP in vitro, is able to rescue the reversible ftsA2, the irreversible ftsA3 and, almost with the same efficiency, the ftsA16 amber alleles. Consequently, phosphorylation and ATP binding may not be essential for the function of FtsA. Alternatively they may have a regulatory role on the action of FtsA in the septator.

  5. Antibacterial activity of alkyl gallates is a combination of direct targeting of FtsZ and permeabilization of bacterial membranes

    PubMed Central

    Król, Ewa; de Sousa Borges, Anabela; da Silva, Isabel; Polaquini, Carlos R.; Regasini, Luis O.; Ferreira, Henrique; Scheffers, Dirk-Jan

    2015-01-01

    Alkyl gallates are compounds with reported antibacterial activity. One of the modes of action is binding of the alkyl gallates to the bacterial membrane and interference with membrane integrity. However, alkyl gallates also cause cell elongation and disruption of cell division in the important plant pathogen Xanthomonas citri subsp. citri, suggesting that cell division proteins may be targeted by alkyl gallates. Here, we use Bacillus subtilis and purified B. subtilis FtsZ to demonstrate that FtsZ is a direct target of alkyl gallates. Alkyl gallates disrupt the FtsZ-ring in vivo, and cause cell elongation. In vitro, alkyl gallates bind with high affinity to FtsZ, causing it to cluster and lose its capacity to polymerize. The activities of a homologous series of alkyl gallates with alkyl side chain lengths ranging from five to eight carbons (C5–C8) were compared and heptyl gallate was found to be the most potent FtsZ inhibitor. Next to the direct effect on FtsZ, alkyl gallates also target B. subtilis membrane integrity—however the observed anti-FtsZ activity is not a secondary effect of the disruption of membrane integrity. We propose that both modes of action, membrane disruption and anti-FtsZ activity, contribute to the antibacterial activity of the alkyl gallates. We propose that heptyl gallate is a promising hit for the further development of antibacterials that specifically target FtsZ. PMID:25972861

  6. Dynamic FtsA and FtsZ localization and outer membrane alterations during polar growth and cell division in Agrobacterium tumefaciens.

    PubMed

    Zupan, John R; Cameron, Todd A; Anderson-Furgeson, James; Zambryski, Patricia C

    2013-05-28

    Growth and cell division in rod-shaped bacteria have been primarily studied in species that grow predominantly by peptidoglycan (PG) synthesis along the length of the cell. Rhizobiales species, however, predominantly grow by PG synthesis at a single pole. Here we characterize the dynamic localization of several Agrobacterium tumefaciens components during the cell cycle. First, the lipophilic dye FM 4-64 predominantly stains the outer membranes of old poles versus growing poles. In cells about to divide, however, both poles are equally labeled with FM 4-64, but the constriction site is not. Second, the cell-division protein FtsA alternates from unipolar foci in the shortest cells to unipolar and midcell localization in cells of intermediate length, to strictly midcell localization in the longest cells undergoing septation. Third, the cell division protein FtsZ localizes in a cell-cycle pattern similar to, but more complex than, FtsA. Finally, because PG synthesis is spatially and temporally regulated during the cell cycle, we treated cells with sublethal concentrations of carbenicillin (Cb) to assess the role of penicillin-binding proteins in growth and cell division. Cb-treated cells formed midcell circumferential bulges, suggesting that interrupted PG synthesis destabilizes the septum. Midcell bulges contained bands or foci of FtsA-GFP and FtsZ-GFP and no FM 4-64 label, as in untreated cells. There were no abnormal morphologies at the growth poles in Cb-treated cells, suggesting unipolar growth uses Cb-insensitive PG synthesis enzymes.

  7. A comparison between data processing techniques for FTS based on high frequency interferogram sampling

    NASA Astrophysics Data System (ADS)

    Panzeri, R.; Saggin, S.; Scaccabarozzi, D.; Tarabini, M.

    2016-10-01

    This paper compares different data processing techniques for FTS with the aim of assessing the feasibility of a spectrometer leveraging on standard DAC boards, without dedicated hardware for sampling and speed control of the moving mirrors. Fourier transform spectrometers rely on the sampling of the interferogram at constant steps of the optical path difference (OPD) to evaluate the spectra through standard discrete Fourier transform. Constant OPD sampling is traditionally achieved with dedicated hardware but, recently, sampling methods based on the use of common analog to digital converters with large dynamic range and high sampling frequency have become viable when associated with specific data processing techniques. These methods offer advantages from the point of view of insensitivity to disturbances, in particular mechanical vibrations, and should be less sensitive to OPD speed errors. In this work the performances of three algorithms, two taken from literature based on phase demodulation of a reference interferogram have been compared with a method based on direct phase computation of the reference interferogram in terms of robustness against mechanical vibrations and OPD speed errors. All methods provided almost correct spectra with vibrations amplitudes up to 10% of the average OPD speed and speed drifts within the scan up to 20% of the average, as long as the disturbance frequency was lower than the reference signal nominal one. The developed method based on the arccosine function keeps working also with frequencies of the disturbances larger than the reference channel one, the common limit for the other two.

  8. [The technology of fast spectral reconstruction in the longer optical path difference PEM-FTS].

    PubMed

    Zhang, Min-Juan; Wang, Zhao-Ba; Wang, Zhi-Bin; Li, Xiao; Li, Shi-Wei; Li, Jin-Hua

    2014-07-01

    The optical path difference of the photoelastic modulator Fourier transform spectrometers (PEM-FTS) changes rapidly and nonlinearly, while the instrument preserves the speed as high as about 10(5) interferograms per second, so that the interferograms of PEM-FTS are sampled by equal interval. In order to fleetly and accurately reconstruct these spectrums, the principle of PEM-FTS and accelerated NUFFT algorithm were studied in the present article. The accelerating NUFFT algorithm integrates interpolation based on convolution kernel and fast Fourier transform (FFT). And the velocity and precision of the algorithm are affected by the type and parameter tau of kernel function, the single-side spreading distance q and the oversampling ratio micro, and so on. In the paper these parameters were analysed, under the condition N = 1 024, q = 10, micro = 2 and tau = 1 x 10(-6) in the Gaussian scaling factor, and the accelerated NUFFT algorithm was applied to the longer optical path difference PEM-FTS to rebuild the spectrums of 632. 8 nm laser and Xenon lamp, The frequency error of the rebuilt spectrums of 632.8 nm laser is less than 0.013 52, the spent time of interpolation is less than 0.267 s. the velocity is fast and the error is less. The accelerated nonuniform fast Fourier transform is fit for the longer optical path difference PEM-FTS.

  9. Thylakoid-Bound FtsH Proteins Facilitate Proper Biosynthesis of Photosystem I1[OPEN

    PubMed Central

    2016-01-01

    Thylakoid membrane-bound FtsH proteases have a well-characterized role in degradation of the photosystem II (PSII) reaction center protein D1 upon repair of photodamaged PSII. Here, we show that the Arabidopsis (Arabidopsis thaliana) var1 and var2 mutants, devoid of the FtsH5 and FtsH2 proteins, respectively, are capable of normal D1 protein turnover under moderate growth light intensity. Instead, they both demonstrate a significant scarcity of PSI complexes. It is further shown that the reduced level of PSI does not result from accelerated photodamage of the PSI centers in var1 or var2 under moderate growth light intensity. On the contrary, radiolabeling experiments revealed impaired synthesis of the PsaA/B reaction center proteins of PSI, which was accompanied by the accumulation of PSI-specific assembly factors. psaA/B transcript accumulation and translation initiation, however, occurred in var1 and var2 mutants as in wild-type Arabidopsis, suggesting problems in later stages of PsaA/B protein expression in the two var mutants. Presumably, the thylakoid membrane-bound FtsH5 and FtsH2 have dual functions in the maintenance of photosynthetic complexes. In addition to their function as a protease in the degradation of the photodamaged D1 protein, they also are required, either directly or indirectly, for early assembly of the PSI complexes. PMID:27208291

  10. Cell division in a minimal bacterium in the absence of ftsZ.

    PubMed

    Lluch-Senar, Maria; Querol, Enrique; Piñol, Jaume

    2010-10-01

    Mycoplasma genomes exhibit an impressively low amount of genes involved in cell division and some species even lack the ftsZ gene, which is found widespread in the microbial world and is considered essential for cell division by binary fission. We constructed a Mycoplasma genitalium ftsZ null mutant by gene replacement to investigate the role of this gene and the presence of alternative cell division mechanisms in this minimal bacterium. Our results demonstrate that ftsZ is non-essential for cell growth and reveal that, in the absence of the FtsZ protein, M. genitalium can manage feasible cell divisions and cytokinesis using the force generated by its motile machinery. This is an alternative mechanism, completely independent of the FtsZ protein, to perform cell division by binary fission in a microorganism. We also propose that the mycoplasma cytoskeleton, a complex network of proteins involved in many aspects of the biology of these microorganisms, may have taken over the function of many genes involved in cell division, allowing their loss in the regressive evolution of the streamlined mycoplasma genomes.

  11. On-board Processing to Advance the PanFTS Imaging System for GEO-CAPE

    NASA Astrophysics Data System (ADS)

    Sander, S. P.; Pingree, P.; Bekker, D. L.; Blavier, J. L.; Bryk, M.; Franklin, B.; Hayden, J.; Ryan, M.; Werne, T. A.

    2013-12-01

    The Panchromatic Fourier Transform Spectrometer (PanFTS) is an imaging instrument designed to record atmospheric spectra of the Earth from the vantage point of a geosynchronous orbit. Each observation covers a scene of 128x128 pixels. In order to retrieve multiple chemical families and perform passive vertical profiling, the recorded spectra will cover a wide wavelength range, from the thermal infrared to the near ultraviolet. The small size of the nadir ground-sampling distance and the desire to re-visit each scene hourly result in a PanFTS design that challenges the downlink capabilities of current radio communication. The PanFTS on-board processing will reduce downlink rates by converting time-domain interferograms to band-limited spectra, hence achieving a factor 20 in data reduction. In this paper, we report on the first year progress of this NASA AIST-11 task and on the adaptation of existing Virtex-5 FPGA designs to support the PanFTS Focal Plane Array control and data interfaces. We have produced a software demonstration of the current PanFTS data reduction algorithms. The real-time processing of the interferometer metrology laser signal is the first step required for the conversion of time-domain interferograms to path difference. This laser processing is now performed entirely as digital signal processing inside the Virtex-5 FPGA and also allows for tip/tilt correction of the interferometer mirrors, a task that was previously performed only with complicated and inflexible analog electronics.

  12. Two essential FtsH proteases control the level of the Fur repressor during iron deficiency in the cyanobacterium Synechocystis sp. PCC 6803.

    PubMed

    Krynická, Vendula; Tichý, Martin; Krafl, Jaroslav; Yu, Jianfeng; Kaňa, Radek; Boehm, Marko; Nixon, Peter J; Komenda, Josef

    2014-11-01

    The cyanobacterium Synechocystis sp. PCC 6803 expresses four different FtsH protease subunits (FtsH1-4) that assemble into specific homo- and heterocomplexes. The FtsH2/FtsH3 complex is involved in photoprotection but the physiological roles of the other complexes, notably the essential FtsH1/FtsH3 complex, remain unclear. Here we show that the FtsH1 and FtsH3 proteases are involved in the acclimation of cells to iron deficiency. A mutant conditionally depleted in FtsH3 was unable to induce normal expression of the IsiA chlorophyll-protein and FutA1 iron transporter upon iron deficiency due to a block in transcription, which is regulated by the Fur transcriptional repressor. Levels of Fur declined in the WT and the FtsH2 null mutant upon iron depletion but not in the FtsH3 downregulated strain. A similar stabilizing effect on Fur was also observed in a mutant conditionally depleted in the FtsH1 subunit. Moreover, a mutant overexpressing FtsH1 showed reduced levels of Fur and enhanced accumulation of both IsiA and FutA1 even under iron sufficiency. Analysis of GFP-tagged derivatives and biochemical fractionation supported a common location for FtsH1 and FtsH3 in the cytoplasmic membrane. Overall we propose that degradation of the Fur repressor mediated by the FtsH1/FtsH3 heterocomplex is critical for acclimation to iron depletion.

  13. WhmD promotes the assembly of Mycobacterium smegmatis FtsZ: A possible role of WhmD in bacterial cell division.

    PubMed

    Bhattacharya, Dipanwita; Kumar, Ashutosh; Panda, Dulal

    2017-02-01

    WhmD is considered to have a role in the septation and division of Mycobacterium smegmatis cells. Since FtsZ is the central protein of the septum, we determined the effect of WhmD on the assembly of Mycobacterium smegmatis FtsZ (MsFtsZ) in vitro. WhmD increased both the rate and extent of the assembly of MsFtsZ in vitro. WhmD also increased the amount of polymerized MsFtsZ as evident from a sedimentation assay. Further, the assembly promoting activity of WhmD occurred in the presence of GTP. MsFtsZ polymerized to form thin filaments in the absence of WhmD while MsFtsZ formed thick filaments in the presence of WhmD suggesting that WhmD enhanced the bundling of MsFtsZ filaments. Interestingly, WhmD neither suppressed the dilution-induced disassembly of FtsZ filaments nor significantly altered the GTPase activity of FtsZ. Using size exclusion chromatography, circular dichroism and fluorescence spectroscopy, WhmD was found to bind to MsFtsZ in vitro. The results showed that WhmD can promote the assembly of FtsZ and indicated that WhmD may play a role in the division of M. smegmatis cells by assisting the polymerization of FtsZ.

  14. Evaluation of the non-catalytic binding function of Ts26GST a glutathione transferase isoform of Taenia solium.

    PubMed

    Plancarte, A; Romero, J R; Nava, G; Reyes, H; Hernández, M

    2014-03-01

    Taenia solium glutathione transferase isoform of 26.5 kDa (Ts26GST) was observed to bind non-catalytically to porphyrins, trans-trans-dienals, bile acids and fatty acids, as assessed by inhibition kinetics, fluorescence spectroscopy and competitive fluorescence assays with 8-anilino-1-naphthalene sulfonate (ANS). The quenching of Ts26GST intrinsic fluorescence allowed for the determination of the dissociation constants (KD) for all ligands. Obtained data indicate that Ts26GST binds to all ligands but with different affinity. Porphyrins and lipid peroxide products inhibited Ts26GST catalytic activity up to 100% in contrast with only 20-30% inhibition observed for bile acids and two saturated fatty acids. Non-competitive type inhibition was observed for all enzyme inhibitor ligands except for trans-trans-2,4-decadienal, which exhibited uncompetitive type inhibition. The dissociation constant value KD = 0.7 μM for the hematin ligand, determined by competitive fluorescence assays with ANS, was in good agreement with its inhibition kinetic value Ki = 0.3 μM and its intrinsic fluorescence quenching KD = 0.7 μM. The remaining ligands did not displace ANS from the enzyme suggesting the existence of different binding sites. In addition to the catalytic activity of Ts26GST the results obtained suggest that the enzyme exhibits a ligandin function with broad specificity towards nonsubstrate ligands.

  15. Catalytic hydrogenation of the sweet principles of Stevia rebaudiana, Rebaudioside B, Rebaudioside C, and Rebaudioside D and sensory evaluation of their reduced derivatives.

    PubMed

    Prakash, Indra; Campbell, Mary; Chaturvedula, Venkata Sai Prakash

    2012-11-16

    Catalytic hydrogenation of rebaudioside B, rebaudioside C, and rebaudioside D; the three ent-kaurane diterpene glycosides isolated from Stevia rebaudiana was carried out using Pd(OH)(2). Reduction of steviol glycosides was performed using straightforward synthetic chemistry with the catalyst Pd(OH)(2) and structures of the corresponding dihydro derivatives were characterized on the basis of 1D and 2D nuclear magnetic resonance (NMR) spectral data indicating that all are novel compounds being reported for the first time. Also, the taste properties of all reduced compounds were evaluated against their corresponding original steviol glycosides and sucrose.

  16. Catalytic Hydrogenation of the Sweet Principles of Stevia rebaudiana, Rebaudioside B, Rebaudioside C, and Rebaudioside D and Sensory Evaluation of Their Reduced Derivatives

    PubMed Central

    Prakash, Indra; Campbell, Mary; Chaturvedula, Venkata Sai Prakash

    2012-01-01

    Catalytic hydrogenation of rebaudioside B, rebaudioside C, and rebaudioside D; the three ent-kaurane diterpene glycosides isolated from Stevia rebaudiana was carried out using Pd(OH)2. Reduction of steviol glycosides was performed using straightforward synthetic chemistry with the catalyst Pd(OH)2 and structures of the corresponding dihydro derivatives were characterized on the basis of 1D and 2D nuclear magnetic resonance (NMR) spectral data indicating that all are novel compounds being reported for the first time. Also, the taste properties of all reduced compounds were evaluated against their corresponding original steviol glycosides and sucrose. PMID:23203115

  17. Efficient Catalytic Oxidation of 3-Arylthio- and 3-Cyclohexylthio-lapachone Derivatives to New Sulfonyl Derivatives and Evaluation of Their Antibacterial Activities.

    PubMed

    Cardoso, Mariana F do C; Gomes, Ana T P C; Moreira, Caroline Dos S; Simões, Mário M Q; Neves, Maria G P M S; da Rocha, David R; da Silva, Fernando de C; Moreirinha, Catarina; Almeida, Adelaide; Ferreira, Vitor F; Cavaleiro, José A S

    2017-02-16

    New sulfonyl-lapachones were efficiently obtained through the catalytic oxidation of arylthio- and cyclohexylthio-lapachone derivatives with hydrogen peroxide in the presence of a Mn(III) porphyrin complex. The antibacterial activities of the non-oxidized and oxidized lapachone derivatives against the Gram-negative bacteria Escherichia coli and the Gram-positive bacteria Staphylococcus aureus were evaluated after their incorporation into polyvinylpyrrolidone (PVP) micelles. The obtained results show that the PVP-formulations of the lapachones 4b-g and of the sulfonyl-lapachones 7e and 7g reduced the growth of S. aureus.

  18. Discovery of chlamydial peptidoglycan reveals bacteria with murein sacculi but without FtsZ

    PubMed Central

    Biboy, Jacob; Gray, Joe; Kuru, Erkin; Hall, Edward; Brun, Yves V.; VanNieuwenhze, Michael S.; Vollmer, Waldemar; Horn, Matthias; Jensen, Grant J.

    2013-01-01

    Chlamydiae are important pathogens and symbionts, with unique cell biology features. They lack the cell-division protein FtsZ, which functions in maintaining cell shape and orchestrating cell division in almost all other bacteria. In addition, the existence of peptidoglycan (PG) in chlamydial cell envelopes has been highly controversial. Using electron cryotomography, mass spectrometry and fluorescent labeling dyes, here we show that some environmental chlamydiae have cell-wall sacculi consisting of an unusual PG type. Treatment with fosfomycin (a PG synthesis inhibitor) leads to lower infection rates and aberrant cell shapes, suggesting that PG synthesis is crucial for the chlamydial life cycle. Our findings demonstrate for the first time the presence of PG in a member of the Chlamydiae. They also present a unique example of a bacterium with a PG sacculus but without FtsZ, challenging the current hypothesis that it is the absence of a cell wall that renders FtsZ non-essential. PMID:24292151

  19. Identification of two substrates of FTS_1067 protein - An essential virulence factor of Francisella tularensis.

    PubMed

    Spidlova, Petra; Senitkova, Iva; Link, Marek; Stulik, Jiri

    2016-11-15

    Francisella tularensis is a highly virulent intracellular pathogen with the capacity to infect a variety of hosts including humans. One of the most important proteins involved in F. tularensis virulence and pathogenesis is the protein DsbA. This protein is annotated as a lipoprotein with disulfide oxidoreductase/isomerase activity. Therefore, its interactions with different substrates, including probable virulence factors, to assist in their proper folding are anticipated. We aimed to use the immunopurification approach to find DsbA (gene locus FTS_1067) interacting partners in F. tularensis subsp. holarctica strain FSC200 and compare the identified substrates with proteins which were found in our previous comparative proteome analysis. As a result of our work two FTS_1067 substrates, D-alanyl-D-alanine carboxypeptidase family protein and HlyD family secretion protein, were identified. Bacterial two-hybrid systems were further used to test their relevance in confirming FTS_1067 protein interactions.

  20. Validation of ACE-FTS version 3.5 NOy species profiles using correlative satellite measurements

    NASA Astrophysics Data System (ADS)

    Sheese, Patrick E.; Walker, Kaley A.; Boone, Chris D.; McLinden, Chris A.; Bernath, Peter F.; Bourassa, Adam E.; Burrows, John P.; Degenstein, Doug A.; Funke, Bernd; Fussen, Didier; Manney, Gloria L.; McElroy, C. Thomas; Murtagh, Donal; Randall, Cora E.; Raspollini, Piera; Rozanov, Alexei; Russell, James M., III; Suzuki, Makoto; Shiotani, Masato; Urban, Joachim; von Clarmann, Thomas; Zawodny, Joseph M.

    2016-12-01

    The ACE-FTS (Atmospheric Chemistry Experiment - Fourier Transform Spectrometer) instrument on the Canadian SCISAT satellite, which has been in operation for over 12 years, has the capability of deriving stratospheric profiles of many of the NOy (N + NO + NO2+ NO3+ 2 × N2O5+ HNO3+ HNO4+ ClONO2+ BrONO2) species. Version 2.2 of ACE-FTS NO, NO2, HNO3, N2O5, and ClONO2 has previously been validated, and this study compares the most recent version (v3.5) of these five ACE-FTS products to spatially and temporally coincident measurements from other satellite instruments - GOMOS, HALOE, MAESTRO, MIPAS, MLS, OSIRIS, POAM III, SAGE III, SCIAMACHY, SMILES, and SMR. For each ACE-FTS measurement, a photochemical box model was used to simulate the diurnal variations of the NOy species and the ACE-FTS measurements were scaled to the local times of the coincident measurements. The comparisons for all five species show good agreement with correlative satellite measurements. For NO in the altitude range of 25-50 km, ACE-FTS typically agrees with correlative data to within -10 %. Instrument-averaged mean relative differences are approximately -10 % at 30-40 km for NO2, within ±7 % at 8-30 km for HNO3, better than -7 % at 21-34 km for local morning N2O5, and better than -8 % at 21-34 km for ClONO2. Where possible, the variations in the mean differences due to changes in the comparison local time and latitude are also discussed.

  1. A proteomic study of Corynebacterium glutamicum AAA+ protease FtsH

    PubMed Central

    Lüdke, Alja; Krämer, Reinhard; Burkovski, Andreas; Schluesener, Daniela; Poetsch, Ansgar

    2007-01-01

    Background The influence of the membrane-bound AAA+ protease FtsH on membrane and cytoplasmic proteins of Corynebacterium glutamicum was investigated in this study. For the analysis of the membrane fraction, anion exchange chromatography was combined with SDS-PAGE, while the cytoplasmic protein fraction was studied by conventional two-dimensional gel electrophoresis. Results In contrast to the situation in other bacteria, deletion of C. glutamicum ftsH has no significant effect on growth in standard minimal medium or response to heat or osmotic stress. On the proteome level, deletion of the ftsH gene resulted in a strong increase of ten cytoplasmic and membrane proteins, namely biotin carboxylase/biotin carboxyl carrier protein (accBC), glyceraldehyde-3-phosphate dehydrogenase (gap), homocysteine methyltransferase (metE), malate synthase (aceB), isocitrate lyase (aceA), a conserved hypothetical protein (NCgl1985), succinate dehydrogenase A (sdhA), succinate dehydrogenase B (sdhB), succinate dehydrogenase CD (sdhCD), and glutamate binding protein (gluB), while 38 cytoplasmic and membrane-associated proteins showed a decreased abundance. The decreasing amount of succinate dehydrogenase A (sdhA) in the cytoplasmic fraction of the ftsH mutant compared to the wild type and its increasing abundance in the membrane fraction indicates that FtsH might be involved in the cleavage of a membrane anchor of this membrane-associated protein and by this changes its localization. Conclusion The data obtained hint to an involvement of C. glutamicum FtsH protease mainly in regulation of energy and carbon metabolism, while the protease is not involved in stress response, as found in other bacteria. PMID:17254330

  2. Design, synthesis and antibacterial activity of cinnamaldehyde derivatives as inhibitors of the bacterial cell division protein FtsZ.

    PubMed

    Li, Xin; Sheng, Juzheng; Huang, Guihua; Ma, Ruixin; Yin, Fengxin; Song, Di; Zhao, Can; Ma, Shutao

    2015-06-05

    In an attempt to discover potential antibacterial agents against the increasing bacterial resistance, novel cinnamaldehyde derivatives as FtsZ inhibitors were designed, synthesized and evaluated for their antibacterial activity against nine significant pathogens using broth microdilution method, and their cell division inhibitory activity against four representative strains. In the in vitro antibacterial activity, the newly synthesized compounds generally displayed better efficacy against Staphylococcus aureus ATCC25923 than the others. In particular, compounds 3, 8 and 10 exerted superior or comparable activity to all the reference drugs. In the cell division inhibitory activity, all the compounds showed the same trend as their in vitro antibacterial activity, exhibiting better activity against S. aureus ATCC25923 than the other strains. Additionally, compounds 3, 6, 7 and 8 displayed potent cell division inhibitory activity with an MIC value of below 1 μg/mL, over 256-fold better than all the reference drugs.

  3. Chloroplast targeting of FtsHprotease is essential for chloroplast development and thylakoid stability at elevated temperatures in plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    AtFtsH11 is a chloroplast and mitochondria dual targeted metalloprotease, identified as essential for Arabidopsis plant to survive at moderate high temperatures at all developmental stages. Our study showed that FtsH11 plays critical roles in both the early stages of chloroplast biogenesis and main...

  4. Asynchronous division by non-ring FtsZ in the gammaproteobacterial symbiont of Robbea hypermnestra.

    PubMed

    Leisch, Nikolaus; Pende, Nika; Weber, Philipp M; Gruber-Vodicka, Harald R; Verheul, Jolanda; Vischer, Norbert O E; Abby, Sophie S; Geier, Benedikt; den Blaauwen, Tanneke; Bulgheresi, Silvia

    2016-10-10

    The reproduction mode of uncultivable microorganisms deserves investigation as it can largely diverge from conventional transverse binary fission. Here, we show that the rod-shaped gammaproteobacterium thriving on the surface of the Robbea hypermnestra nematode divides by FtsZ-based, non-synchronous invagination of its poles-that is, the host-attached and fimbriae-rich pole invaginates earlier than the distal one. We conclude that, in a naturally occurring animal symbiont, binary fission is host-oriented and does not require native FtsZ to polymerize into a ring at any septation stage.

  5. Catalytic reforming

    SciTech Connect

    Aldag, A.W. Jr.

    1986-01-28

    This patent describes a process for the catalytic reforming of a feedstock which contains at least one reformable organic compound. The process consists of contacting the feedstock under suitable reforming conditions with a catalyst composition selected from the group consisting of a catalyst. The catalyst essentially consists of zinc oxide and a spinel structure alumina. Another catalyst consists essentially of a physical mixture of zinc titanate and a spinel structure alumina in the presence of sufficient added hydrogen to substantially prevent the formation of coke. Insufficient zinc is present in the catalyst composition for the formation of a bulk zinc aluminate.

  6. Synthesis and Evaluation of Cu-SAPO-34 Catalysts for Ammonia Selective Catalytic Reduction. 1. Aqueous Solution Ion Exchange

    SciTech Connect

    Gao, Feng; Walter, Eric D.; Washton, Nancy M.; Szanyi, Janos; Peden, Charles HF

    2013-09-06

    SAPO-34 molecular sieves are synthesized using various structure directing agents (SDAs). Cu-SAPO-34 catalysts are prepared via aqueous solution ion exchange. Catalysts are characterized with surface area/pore volume measurements, temperature programmed reduction (TPR), electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) spectroscopies. Catalytic properties are examined using standard ammonia selective catalytic reduction (NH3-SCR) and ammonia oxidation reactions. During solution ion exchange, different SAPO-34 samples undergo different extent of structural damage via irreversible hydrolysis. Si content within the samples (i.e., Al-O-Si bond density) and framework stress are key factors that affect irreversible hydrolysis. Even using very dilute Cu acetate solutions, it is not possible to generate Cu-SAPO-34 samples with only isolated Cu2+ ions. Small amounts of CuOx species always coexist with isolated Cu2+ ions. Highly active and selective Cu-SAPO-34 catalysts for NH3-SCR are readily generated using this synthesis protocol, even for SAPO-34 samples that degrade substantially during solution ion exchange. High-temperature aging is found to improve the catalytic performance. This is likely due to reduction of intracrystalline mass-transfer limitations via formation of additional porosity in the highly defective SAPO-34 particles formed after ion exchange. The authors gratefully acknowledge the US Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy, Office of Vehicle Technologies for the support of this work. The research described in this paper was performed at the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE’s Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the US DOE by Battelle Memorial Institute under contract number DE-AC05-76RL01830.

  7. Bacterial division proteins FtsZ and ZipA induce vesicle shrinkage and cell membrane invagination.

    PubMed

    Cabré, Elisa J; Sánchez-Gorostiaga, Alicia; Carrara, Paolo; Ropero, Noelia; Casanova, Mercedes; Palacios, Pilar; Stano, Pasquale; Jiménez, Mercedes; Rivas, Germán; Vicente, Miguel

    2013-09-13

    Permeable vesicles containing the proto-ring anchoring ZipA protein shrink when FtsZ, the main cell division protein, polymerizes in the presence of GTP. Shrinkage, resembling the constriction of the cytoplasmic membrane, occurs at ZipA densities higher than those found in the cell and is modulated by the dynamics of the FtsZ polymer. In vivo, an excess of ZipA generates multilayered membrane inclusions within the cytoplasm and causes the loss of the membrane function as a permeability barrier. Overproduction of ZipA at levels that block septation is accompanied by the displacement of FtsZ and two additional division proteins, FtsA and FtsN, from potential septation sites to clusters that colocalize with ZipA near the membrane. The results show that elementary constriction events mediated by defined elements involved in cell division can be evidenced both in bacteria and in vesicles.

  8. Bacterial Division Proteins FtsZ and ZipA Induce Vesicle Shrinkage and Cell Membrane Invagination*

    PubMed Central

    Cabré, Elisa J.; Sánchez-Gorostiaga, Alicia; Carrara, Paolo; Ropero, Noelia; Casanova, Mercedes; Palacios, Pilar; Stano, Pasquale; Jiménez, Mercedes; Rivas, Germán; Vicente, Miguel

    2013-01-01

    Permeable vesicles containing the proto-ring anchoring ZipA protein shrink when FtsZ, the main cell division protein, polymerizes in the presence of GTP. Shrinkage, resembling the constriction of the cytoplasmic membrane, occurs at ZipA densities higher than those found in the cell and is modulated by the dynamics of the FtsZ polymer. In vivo, an excess of ZipA generates multilayered membrane inclusions within the cytoplasm and causes the loss of the membrane function as a permeability barrier. Overproduction of ZipA at levels that block septation is accompanied by the displacement of FtsZ and two additional division proteins, FtsA and FtsN, from potential septation sites to clusters that colocalize with ZipA near the membrane. The results show that elementary constriction events mediated by defined elements involved in cell division can be evidenced both in bacteria and in vesicles. PMID:23921390

  9. Reduced Binding of the Endolysin LysTP712 to Lactococcus lactis ΔftsH Contributes to Phage Resistance

    PubMed Central

    Roces, Clara; Campelo, Ana B.; Escobedo, Susana; Wegmann, Udo; García, Pilar; Rodríguez, Ana; Martínez, Beatriz

    2016-01-01

    Absence of the membrane protease FtsH in Lactococcus lactis hinders release of the bacteriophage TP712. In this work we have analyzed the mechanism responsible for the non-lytic phenotype of L. lactis ΔftsH after phage infection. The lytic cassette of TP712 contains a putative antiholin–pinholin system and a modular endolysin (LysTP712). Inducible expression of the holin gene demonstrated the presence of a dual start motif which is functional in both wildtype and L. lactis ΔftsH cells. Moreover, simulating holin activity with ionophores accelerated lysis of wildtype cells but not L. lactis ΔftsH cells, suggesting inhibition of the endolysin rather than a role of FtsH in holin activation. However, zymograms revealed the synthesis of an active endolysin in both wildtype and L. lactis ΔftsH TP712 lysogens. A reporter protein was generated by fusing the cell wall binding domain of LysTP712 to the fluorescent mCherry protein. Binding of this reporter protein took place at the septa of both wildtype and L. lactis ΔftsH cells as shown by fluorescence microscopy. Nonetheless, fluorescence spectroscopy demonstrated that mutant cells bound 40% less protein. In conclusion, the non-lytic phenotype of L. lactis ΔftsH is not due to direct action of the FtsH protease on the phage lytic proteins but rather to a putative function of FtsH in modulating the architecture of the L. lactis cell envelope that results in a lower affinity of the phage endolysin to its substrate. PMID:26904011

  10. Evidence That Bacteriophage λ Kil Peptide Inhibits Bacterial Cell Division by Disrupting FtsZ Protofilaments and Sequestering Protein Subunits.

    PubMed

    Hernández-Rocamora, Víctor M; Alfonso, Carlos; Margolin, William; Zorrilla, Silvia; Rivas, Germán

    2015-08-14

    The effects of Kil peptide from bacteriophage λ on the assembly of Escherichia coli FtsZ into one subunit thick protofilaments were studied using combined biophysical and biochemical methods. Kil peptide has recently been identified as the factor from bacteriophage λ responsible for the inhibition of bacterial cell division during lytic cycle, targeting FtsZ polymerization. Here, we show that this antagonist blocks FtsZ assembly into GTP-dependent protofilaments, producing a wide distribution of smaller oligomers compared with the average size of the intact protofilaments. The shortening of FtsZ protofilaments by Kil is detectable at concentrations of the peptide in the low micromolar range, the mid-point of the inhibition being close to its apparent affinity for GDP-bound FtsZ. This antagonist not only interferes with FtsZ assembly but also reverses the polymerization reaction. The negative regulation by Kil significantly reduces the GTPase activity of FtsZ protofilaments, and FtsZ polymers assembled in guanosine-5'-[(α,β)-methyleno]triphosphate are considerably less sensitive to Kil. Our results suggest that, at high concentrations, Kil may use an inhibition mechanism involving the sequestration of FtsZ subunits, similar to that described for other inhibitors like the SOS response protein SulA or the moonlighting enzyme OpgH. This mechanism is different from those employed by the division site selection antagonists MinC and SlmA. This work provides new insight into the inhibition of FtsZ assembly by phages, considered potential tools against bacterial infection.

  11. ACE-FTS ozone, water vapour, nitrous oxide, nitric acid, and carbon monoxide profile comparisons with MIPAS and MLS

    NASA Astrophysics Data System (ADS)

    Sheese, Patrick E.; Walker, Kaley A.; Boone, Chris D.; Bernath, Peter F.; Froidevaux, Lucien; Funke, Bernd; Raspollini, Piera; von Clarmann, Thomas

    2017-01-01

    The atmospheric limb sounders, ACE-FTS on the SCISAT satellite, MIPAS on ESA's Envisat satellite, and MLS on NASA's Aura satellite, take measurements used to retrieve atmospheric profiles of O3, N2O, H2O, HNO3, and CO. Each was taking measurements between February 2004 and April 2012 (ACE-FTS and MLS are currently operational), providing hundreds of profile coincidences in the Northern and Southern hemispheres, and during local morning and evening. Focusing on determining diurnal and hemispheric biases in the ACE-FTS data, this study compares ACE-FTS version 3.5 profiles that are collocated with MIPAS and MLS, and analyzes the differences between instrument retrievals for Northern and Southern hemispheres and for local morning and evening data. For O3, ACE-FTS is typically within ±5% of mid-stratospheric MIPAS and MLS data and exhibits a positive bias of 10 to 20% in the upper stratosphere - lower mesosphere. For H2O, ACE-FTS exhibits an average bias of -5% between 20 and 60 km. For N2O, ACE-FTS agrees with MIPAS and MLS within -20 to +10% up to 45 km and 35 km, respectively. For HNO3, ACE-FTS typically agrees within ±10% below 30 km, and exhibits a positive bias of 10 to 20% above 30 km. With respect to MIPAS CO, ACE-FTS exhibits an average -11% bias between 28 and 50 km, and at higher altitudes a positive bias on the order of 10% (>100%) in the winter (summer). With respect to winter MLS CO, ACE-FTS is typically within ±10% between 25 and 40 km, and has an average bias of -11% above 40 km.

  12. Cell division genes ftsQAZ in Escherichia coli require distant cis-acting signals upstream of ddlB for full expression.

    PubMed

    Flärdh, K; Palacios, P; Vicente, M

    1998-10-01

    A transcriptional reporter fusion has been introduced into the chromosomal ftsZ locus in such a way that all transcription that normally reaches ftsZ can be monitored. The new Phi(ftsZ-lacZ ) fusion yields four times more beta-galactosidase activity than a ddlB-ftsQAZ-lacZ fusion on a lambda prophage vector. A strongly polar ddlB ::Omega insertion prevents contributions from signals upstream of the ftsQAZ promoters and decreases transcription of the chromosomal Phi(ftsZ-lacZ ) fusion by 66%, demonstrating that around two-thirds of total ftsZ transcription require cis-acting elements upstream of ddlB. We suggest that those elements are distant promoters, and thus that the cell division and cell wall synthesis genes in the dcw gene cluster are to a large extent co-transcribed. The ddlB ::Omega insertion is lethal unless additional copies of ftsQA are provided or a compensatory decrease in FtsZ synthesis is made. This shows that ddlB is a dispensable gene, and reinforces the critical role of the FtsA/FtsZ ratio in septation. Using the new reporter fusion, it is demonstrated that ftsZ expression is not autoregulated.

  13. An amino-proximal domain required for the localization of FtsQ in the cytoplasmic membrane, and for its biological function in Escherichia coli.

    PubMed

    Dopazo, A; Palacios, P; Sánchez, M; Pla, J; Vicente, M

    1992-03-01

    The location of FtsQ, an Escherichia coli protein essential for cell division, is, under physiological conditions, in the cytoplasmic membrane facing towards the periplasmic space. An amino-proximal hydrophobic domain is required for FtsQ to reach its location and for its activity in the cell. Overexpression of modified forms of FtsQ is deleterious for the cell.

  14. Structure and Mutational Analyses of Escherichia coli ZapD Reveal Charged Residues Involved in FtsZ Filament Bundling

    PubMed Central

    Roach, Elyse J.; Wroblewski, Charles; Seidel, Laura; Berezuk, Alison M.; Brewer, Dyanne; Kimber, Matthew S.

    2016-01-01

    ABSTRACT Bacterial cell division is an essential and highly coordinated process. It requires the polymerization of the tubulin homologue FtsZ to form a dynamic ring (Z-ring) at midcell. Z-ring formation relies on a group of FtsZ-associated proteins (Zap) for stability throughout the process of division. In Escherichia coli, there are currently five Zap proteins (ZapA through ZapE), of which four (ZapA, ZapB, ZapC, and ZapD) are small soluble proteins that act to bind and bundle FtsZ filaments. In particular, ZapD forms a functional dimer and interacts with the C-terminal tail of FtsZ, but little is known about its structure and mechanism of action. Here, we present the crystal structure of Escherichia coli ZapD and show it forms a symmetrical dimer with centrally located α-helices flanked by β-sheet domains. Based on the structure of ZapD and its chemical cross-linking to FtsZ, we targeted nine charged ZapD residues for modification by site-directed mutagenesis. Using in vitro FtsZ sedimentation assays, we show that residues R56, R221, and R225 are important for bundling FtsZ filaments, while transmission electron microscopy revealed that altering these residues results in different FtsZ bundle morphology compared to those of filaments bundled with wild-type ZapD. ZapD residue R116 also showed altered FtsZ bundle morphology but levels of FtsZ bundling similar to that of wild-type ZapD. Together, these results reveal that ZapD residues R116, R221, and R225 likely participate in forming a positively charged binding pocket that is critical for bundling FtsZ filaments. IMPORTANCE Z-ring assembly underpins the formation of the essential cell division complex known as the divisome and is required for recruitment of downstream cell division proteins. ZapD is one of several proteins in E. coli that associates with the Z-ring to promote FtsZ bundling and aids in the overall fitness of the division process. In the present study, we describe the dimeric structure of E. coli

  15. Space flight manipulator technologies and requirements for the NASA Flight Telerobotic Servicer (FTS)

    NASA Technical Reports Server (NTRS)

    Chladek, John T.; Craver, William M.

    1994-01-01

    NASA Headquarters' Office of Advanced Concepts and Technology (OACT) joined efforts with Johnson Space Center's (JSC) Automation and Robotics Division and Langley Research Center's (LaRC) Information Systems Division to capture the technologies developed during the cancelled NASA Flight Telerobotic Servicer (FTS) program planned for use on Space Station Freedom. The recent FTS technology capture effort completed the build and testing of one flight qualifiable FTS manipulator, deliverable to JSC's Automation & Robotics Division for environmental testing. The many robotic technologies developed to meet the 30 year space environment design requirements are discussed in this paper. The manipulator properties were to allow positioning control to one thousandths of an inch, with zero actuator backlash over a temperature range of -50 to +95 C, and were to include impedance control and inertial decoupling. Safety and reliability requirements are discussed that were developed to allow a thirty year life in space with minimum maintenance. The system had to meet the safety requirements for hazardous payloads for operation in the shuttle payload bay during demonstration test flights prior to station use. A brief description is contained on an orbiter based robotic experiment and operational application using the dexterous FTS manipulator operating on the end of the shuttle remote manipulator systems (SRMS) from ground control.

  16. Electrostatics and Intrinsic Disorder Drive Translocon Binding of the SRP Receptor FtsY

    PubMed Central

    Draycheva, Albena; Bornemann, Thomas

    2016-01-01

    Abstract Integral membrane proteins in bacteria are co‐translationally targeted to the SecYEG translocon for membrane insertion via the signal recognition particle (SRP) pathway. The SRP receptor FtsY and its N‐terminal A domain, which is lacking in any structural model of FtsY, were studied using NMR and fluorescence spectroscopy. The A domain is mainly disordered and highly flexible; it binds to lipids via its N terminus and the C‐terminal membrane targeting sequence. The central A domain binds to the translocon non‐specifically and maintains disorder. Translocon targeting and binding of the A domain is driven by electrostatic interactions. The intrinsically disordered A domain tethers FtsY to the translocon, and because of its flexibility, allows the FtsY NG domain to scan a large area for binding to the NG domain of ribosome‐bound SRP, thereby promoting the formation of the quaternary transfer complex at the membrane. PMID:27346853

  17. Screening and Development of New Inhibitors of FtsZ from M. Tuberculosis

    PubMed Central

    Mathew, Bini; Ross, Larry; Connelly, Michele C.; Lofton, Hava; Rajagopalan, Malini; Guy, R. Kiplin; Reynolds, Robert C.

    2016-01-01

    A variety of commercial analogs and a newer series of Sulindac derivatives were screened for inhibition of M. tuberculosis (Mtb) in vitro and specifically as inhibitors of the essential mycobacterial tubulin homolog, FtsZ. Due to the ease of preparing diverse analogs and a favorable in vivo pharmacokinetic and toxicity profile of a representative analog, the Sulindac scaffold may be useful for further development against Mtb with respect to in vitro bacterial growth inhibition and selective activity for Mtb FtsZ versus mammalian tubulin. Further discovery efforts will require separating reported mammalian cell activity from both antibacterial activity and inhibition of Mtb FtsZ. Modeling studies suggest that these analogs bind in a specific region of the Mtb FtsZ polymer that differs from human tubulin and, in combination with a pharmacophore model presented herein, future hybrid analogs of the reported active molecules that more efficiently bind in this pocket may improve antibacterial activity while improving other drug characteristics. PMID:27768711

  18. Discovery of chlamydial peptidoglycan reveals bacteria with murein sacculi but without FtsZ

    NASA Astrophysics Data System (ADS)

    Pilhofer, Martin; Aistleitner, Karin; Biboy, Jacob; Gray, Joe; Kuru, Erkin; Hall, Edward; Brun, Yves V.; Vannieuwenhze, Michael S.; Vollmer, Waldemar; Horn, Matthias; Jensen, Grant J.

    2013-12-01

    Chlamydiae are important pathogens and symbionts with unique cell biological features. They lack the cell-division protein FtsZ, and the existence of peptidoglycan (PG) in their cell wall has been highly controversial. FtsZ and PG together function in orchestrating cell division and maintaining cell shape in almost all other bacteria. Using electron cryotomography, mass spectrometry and fluorescent labelling dyes, here we show that some environmental chlamydiae have cell wall sacculi consisting of a novel PG type. Treatment with fosfomycin (a PG synthesis inhibitor) leads to lower infection rates and aberrant cell shapes, suggesting that PG synthesis is crucial for the chlamydial life cycle. Our findings demonstrate for the first time the presence of PG in a member of the Chlamydiae. They also present a unique example of a bacterium with a PG sacculus but without FtsZ, challenging the current hypothesis that it is the absence of a cell wall that renders FtsZ non-essential.

  19. Catalytic reactor

    SciTech Connect

    Aaron, Timothy Mark; Shah, Minish Mahendra; Jibb, Richard John

    2009-03-10

    A catalytic reactor is provided with one or more reaction zones each formed of set(s) of reaction tubes containing a catalyst to promote chemical reaction within a feed stream. The reaction tubes are of helical configuration and are arranged in a substantially coaxial relationship to form a coil-like structure. Heat exchangers and steam generators can be formed by similar tube arrangements. In such manner, the reaction zone(s) and hence, the reactor is compact and the pressure drop through components is minimized. The resultant compact form has improved heat transfer characteristics and is far easier to thermally insulate than prior art compact reactor designs. Various chemical reactions are contemplated within such coil-like structures such that as steam methane reforming followed by water-gas shift. The coil-like structures can be housed within annular chambers of a cylindrical housing that also provide flow paths for various heat exchange fluids to heat and cool components.

  20. Performance Verification of GOSAT-2 FTS-2 Simulator and Sensitivity Analysis for Greenhouse Gases Retrieval

    NASA Astrophysics Data System (ADS)

    Kamei, A.; Yoshida, Y.; Dupuy, E.; Hiraki, K.; Matsunaga, T.

    2015-12-01

    The GOSAT-2, which is scheduled for launch in early 2018, is the successor mission to the Greenhouse gases Observing Satellite (GOSAT). The FTS-2 onboard the GOSAT-2 is a Fourier transform spectrometer, which has three bands in the near to short-wavelength infrared (SWIR) region and two bands in the thermal infrared (TIR) region to observe infrared light reflected and emitted from the Earth's surface and atmosphere with high-resolution spectra. Column amounts and vertical profiles of major greenhouse gases such as carbon dioxide (CO2) and methane (CH4) are retrieved from acquired radiance spectra. In addition, the FTS-2 has several improvements from the FTS onboard the GOSAT: 1) added spectral coverage in the SWIR region for carbon monoxide (CO) retrieval, 2) increased signal-to-noise ratio (SNR) for all bands, 3) extended range of along-track pointing angles for sunglint observations, 4) intelligent pointing to avoid cloud contamination. Since 2012, we have been developing a software tool, which is called the GOSAT-2 FTS-2 simulator, to simulate spectral radiance data that will be acquired by the GOSAT-2 FTS-2. The objective of it is to analyze/optimize data with respect to the sensor specification, the parameters for Level 1 processing, and the improvement of Level 2 retrieval algorithms. It consists of six components: 1) overall control, 2) sensor carrying platform, 3) spectral radiance calculation, 4) Fourier transform module, 5) Level 1B (L1B) processing, and 6) L1B data output. More realistic and faster simulations have been made possible by the improvement of details about sensor characteristics, the sophistication of data processing and algorithms, the addition of various observation modes, the use of surface and atmospheric ancillary data, and the speed-up and parallelization of radiative transfer code. This simulator is confirmed to be working properly from the reproduction of GOSAT FTS L1B data depends on the ancillary data. We will summarize the

  1. Evaluation of a catalytic reduction technique for the measurement of total reactive odd-nitrogen NOy in the atmosphere

    NASA Technical Reports Server (NTRS)

    Fahey, D. W.; Eubank, C. S.; Hubler, C. S.; Fehsenfeld, F. C.

    1985-01-01

    The suitability of a technique for the measurement of total reactive odd-nitrogen NOy-containing species in the atmosphere has been examined. In the technique, an NOy component species, which may include NO, NO2, NO3, HNO3, peroxyacetyl nitrate, and particulate nitrate, are catalytically reduced by CO to form NO molecules on the surface of a metal converter tube, and the NO product is detected by chemiluminescence produced in reaction with O3. Among the catalysts tested in the temperature range of 25-500 C, Au was the preferred catalyst. The results of laboratory tests investigating the effects of pressure, O3, and H2O on NOy conversion, and the possible sources of interference, have shown that the technique is suitable for atmospheric analyses. The results of a test in ambient air at a remote ground-based field site are included.

  2. Computational evaluation of sub-nanometer cluster activity of singly exposed copper atom with various coordinative environment in catalytic CO2 transformation

    NASA Astrophysics Data System (ADS)

    Shanmugam, Ramasamy; Thamaraichelvan, Arunachalam; Ganesan, Tharumeya Kuppusamy; Viswanathan, Balasubramanian

    2017-02-01

    Metal cluster, at sub-nanometer level has a unique property in the activation of small molecules, in contrast to that of bulk surface. In the present work, singly exposed active site of copper metal cluster at sub-nanometer level was designed to arrive at the energy minimised configurations, binding energy, electrostatic potential map, frontier molecular orbitals and partial density of states. The ab initio molecular dynamics was carried out to probe the catalytic nature of the cluster. Further, the stability of the metal cluster and its catalytic activity in the electrochemical reduction of CO2 to CO were evaluated by means of computational hydrogen electrode via calculation of the free energy profile using DFT/B3LYP level of theory in vacuum. The activity of the cluster is ascertained from the fact that the copper atom, present in a two coordinative environment, performs a more selective conversion of CO2 to CO at an applied potential of -0.35 V which is comparatively lower than that of higher coordinative sites. The present study helps to design any sub-nano level metal catalyst for electrochemical reduction of CO2 to various value added chemicals.

  3. MapZ beacons the division sites and positions FtsZ-rings in Streptococcus pneumoniae

    PubMed Central

    Zhao, Chao; Cluzel, Caroline; Lavergne, Jean-Pierre; Franz-Wachtel, Mirita; Macek, Boris; Combet, Christophe; Kuru, Erkin; VanNieuwenhze, Michael S.; Brun, Yves V.; Sherratt, David; Grangeasse, Christophe

    2014-01-01

    In every living organism, cell division requires accurate identification of the division site and placement of the division machinery. In bacteria, this process is traditionally considered to begin with the polymerization of the highly conserved tubulin-like protein FtsZ into a ring that locates precisely at midcell1. Over the last decades, several systems have been reported to regulate the spatiotemporal assembly and placement of the FtsZ-ring2-5. However, the human pathogen Streptococcus pneumoniae, as many other organisms, is devoid of these canonical systems and the mechanisms of positioning of the division machinery remain unknown4,6. Here we characterize a novel factor that locates at the division site before FtsZ and guides septum positioning in the pneumococcus. MapZ (Midcell Anchored Protein Z) forms ring structures at the cell equator and moves apart as the cell elongates, therefore behaving as a permanent beacon of division sites. MapZ then positions the FtsZ-ring through direct protein-protein interactions. MapZ-mediated control differs from previously described systems mostly based on negative regulation of FtsZ assembly. Further, MapZ is an endogenous target of the ser/thr-kinase StkP, which was recently shown to play a central role in cytokinesis and morphogenesis of the pneumococcus7-9. We show that both phosphorylated and non-phosphorylated forms of MapZ are required for proper Z-ring formation and dynamics. Altogether, this work uncovers a new mechanism for bacterial cell division that is regulated by phosphorylation and illustrates that nature has evolved a diversity of cell division mechanisms adapted to the different bacterial clades. PMID:25470041

  4. Characterisation of mutant alleles of the cell division protein FtsA, a regulator and structural component of the Escherichia coli septator.

    PubMed

    Sánchez, M; Dopazo, A; Pla, J; Robinson, A C; Vicente, M

    1994-01-01

    Two alleles of ftsA, a gene that encodes an essential cell division protein in Escherichia coli, have-been mapped at the nucleotide level. The mutations are located inside domains that are conserved in an ATP-binding protein family. The ftsA2 mutation lies in the adenine-binding domain, and the ftsA3 in the ribose-binding domain. The defect in ampicillin binding to PBP3 described for allele ftsA3 is allele-specific. This supports the hypothesis of the existence of different domains in FtsA having different functions.

  5. Identification of a novel function for the FtsL cell division protein from Escherichia coli K12.

    PubMed

    Blencowe, Dayle K; Al Jubori, Sawsan; Morby, Andrew P

    2011-07-22

    Analysis of the essential cell division protein FtsL demonstrates the partial conservation of a cysteine-pair within the trans-membrane region which itself is flanked by histidine-pairs in the cytosol and periplasm. Similar arrangements of such amino acids are seen in proteins known to transport/bind metal ions in biological systems. Heterologous expression of ftsL in Escherichia coli K12 confers a Zn(II)-sensitive phenotype and alteration of the candidate metal-ion binding residues cysteine or histidine substantially alters this phenotype. Whilst the cysteine/histidine replacement derivatives of ftsL were able to complement an otherwise ftsL-null strain, the derivative carrying ftsL lacking the cysteine pair was sensitive to raised metal-ion concentrations in the media. We show that ftsL can confer a metal-ion sensitive phenotype and that trans-membrane cysteine residues play a role in FtsL function in elevated metal-ion concentrations.

  6. Cell growth and lambda phage development controlled by the same essential Escherichia coli gene, ftsH/hflB.

    PubMed Central

    Herman, C; Ogura, T; Tomoyasu, T; Hiraga, S; Akiyama, Y; Ito, K; Thomas, R; D'Ari, R; Bouloc, P

    1993-01-01

    The lambda phage choice between lysis and lysogeny is influenced by certain host functions in Escherichia coli. We found that the frequency of lambda lysogenization is markedly increased in the ftsH1 temperature-sensitive mutant. The ftsH gene, previously shown to code for an essential inner membrane protein with putative ATPase activity, is identical to hflB, a gene involved in the stability of the phage cII activator protein. The lysogenic decision controlled by FtsH/HflB is independent of that controlled by the protease HflA. Overproduction of FtsH/HflB suppresses the high frequency of lysogenization in an hflA null mutant. The FtsH/HflB protein, which stimulates cII degradation, may be a component of an HflA-independent proteolytic pathway, or it may act as a chaperone, maintaining cII in a conformation subject to proteolysis via such a pathway. Suppressor mutations of ftsH1 temperature-sensitive lethality, located in the fur gene (coding for the ferric uptake regulator), did not restore FtsH/HflB activity with respect to lambda lysogenization. PMID:8248182

  7. CO emission and export from Asia: an analysis combining complementary satellite measurements (MOPITT, SCIAMACHY and ACE-FTS) with global modeling

    NASA Astrophysics Data System (ADS)

    Turquety, S.; Clerbaux, C.; Law, K.; Coheur, P.-F.; Cozic, A.; Szopa, S.; Hauglustaine, D. A.; Hadji-Lazaro, J.; Gloudemans, A. M. S.; Schrijver, H.; Boone, C. D.; Bernath, P. F.; Edwards, D. P.

    2008-09-01

    This study presents the complementary picture of the pollution outflow provided by several satellite observations of carbon monoxide (CO), based on different observation techniques. This is illustrated by an analysis of the Asian outflow during the spring of 2005, through comparisons with simulations by the LMDz-INCA global chemistry transport model. The CO observations from the MOPITT and SCIAMACHY nadir sounders, which provide vertically integrated information with excellent horizontal sampling, and from the ACE-FTS solar occultation instrument, which has limited spatial coverage but allows the retrieval of vertical profiles, are used. Combining observations from MOPITT (mainly sensitive to the free troposphere) and SCIAMACHY (sensitive to the full column) allows a qualitative evaluation of the boundary layer CO. The model tends to underestimate this residual compared to the observations, suggesting underestimated emissions, especially in eastern Asia. However, a better understanding of the consistency and possible biases between the MOPITT and SCIAMACHY CO is necessary for a quantitative evaluation. Underestimated emissions, and possibly too low lofting and underestimated chemical production in the model, lead to an underestimate of the export to the free troposphere, as highlighted by comparisons with MOPITT and ACE-FTS. Both instruments observe large trans-Pacific transport extending from ~20° N to ~60° N, with high upper tropospheric CO observed by ACE-FTS above the eastern Pacific (with values of up to 300 ppbv around 50° N at 500 hPa and up to ~200 ppbv around 30° N at 300 hPa). The low vertical and horizontal resolutions of the global model do not allow the simulation of the strong enhancements in the observed plumes. However, the transport patterns are well captured, and are mainly attributed to export from eastern Asia, with increasing contributions from South Asia and Indonesia towards the tropics. Additional measurements of C2H2, C2H6 and HCN by

  8. Structures of the nucleoid occlusion protein SlmA bound to DNA and the C-terminal domain of the cytoskeletal protein FtsZ

    PubMed Central

    Schumacher, Maria A.; Zeng, Wenjie

    2016-01-01

    Cell division in most prokaryotes is mediated by FtsZ, which polymerizes to create the cytokinetic Z ring. Multiple FtsZ-binding proteins regulate FtsZ polymerization to ensure the proper spatiotemporal formation of the Z ring at the division site. The DNA-binding protein SlmA binds to FtsZ and prevents Z-ring formation through the nucleoid in a process called “nucleoid occlusion” (NO). As do most FtsZ-accessory proteins, SlmA interacts with the conserved C-terminal domain (CTD) that is connected to the FtsZ core by a long, flexible linker. However, SlmA is distinct from other regulatory factors in that it must be DNA-bound to interact with the FtsZ CTD. Few structures of FtsZ regulator–CTD complexes are available, but all reveal the CTD bound as a helix. To deduce the molecular basis for the unique SlmA–DNA–FtsZ CTD regulatory interaction and provide insight into FtsZ–regulator protein complex formation, we determined structures of Escherichia coli, Vibrio cholera, and Klebsiella pneumonia SlmA–DNA–FtsZ CTD ternary complexes. Strikingly, the FtsZ CTD does not interact with SlmA as a helix but binds as an extended conformation in a narrow, surface-exposed pocket formed only in the DNA-bound state of SlmA and located at the junction between the DNA-binding and C-terminal dimer domains. Binding studies are consistent with the structure and underscore key interactions in complex formation. Combined, these data reveal the molecular basis for the SlmA–DNA–FtsZ interaction with implications for SlmA’s NO function and underscore the ability of the FtsZ CTD to adopt a wide range of conformations, explaining its ability to bind diverse regulatory proteins. PMID:27091999

  9. Biosynthesis of silver nanoparticles using Momordica charantia leaf broth: Evaluation of their innate antimicrobial and catalytic activities.

    PubMed

    Ajitha, B; Reddy, Y Ashok Kumar; Reddy, P Sreedhara

    2015-05-01

    Silver nanoparticles (AgNPs) were prepared through green route with the aid of Momordica charantia leaf extract as both reductant and stabilizer. X-ray diffraction pattern (XRD) and selected area electron diffraction (SAED) fringes revealed the structure of AgNPs as face centered cubic (fcc). Morphological studies elucidate the nearly spherical AgNPs formation with particle size in nanoscale. Biosynthesized AgNPs were found to be photoluminescent and UV-Vis absorption spectra showed one surface plasmon resonance peak (SPR) at 424nm attesting the spherical nanoparticles formation. XPS study provides the surface chemical nature and oxidation state of the synthesized nanoparticles. FTIR spectra ascertain the reduction and capping nature of phytoconstituents of leaf extract in AgNPs synthesis. Further, these AgNPs showed effective antimicrobial activity against tested pathogens and thus applicable as potent antimicrobial agent. In addition, the synthesized AgNPs were observed to have an excellent catalytic activity on the reduction of methylene blue by M. charantia which was confirmed by the decrement in maximum absorbance values of methylene blue with respect to time and is ascribed to electron relay effect.

  10. Catalytic efficiency of designed catalytic proteins

    PubMed Central

    Korendovych, Ivan V; DeGrado, William F

    2014-01-01

    The de novo design of catalysts that mimic the affinity and specificity of natural enzymes remains one of the Holy Grails of chemistry. Despite decades of concerted effort we are still unable to design catalysts as efficient as enzymes. Here we critically evaluate approaches to (re)design of novel catalytic function in proteins using two test cases: Kemp elimination and ester hydrolysis. We show that the degree of success thus far has been modest when the rate enhancements seen for the designed proteins are compared with the rate enhancements by small molecule catalysts in solvents with properties similar to the active site. Nevertheless, there are reasons for optimism: the design methods are ever improving and the resulting catalyst can be efficiently improved using directed evolution. PMID:25048695

  11. Raney nickel catalytic device

    DOEpatents

    O'Hare, Stephen A.

    1978-01-01

    A catalytic device for use in a conventional coal gasification process which includes a tubular substrate having secured to its inside surface by expansion a catalytic material. The catalytic device is made by inserting a tubular catalytic element, such as a tubular element of a nickel-aluminum alloy, into a tubular substrate and heat-treating the resulting composite to cause the tubular catalytic element to irreversibly expand against the inside surface of the substrate.

  12. STS-47 MS Jemison works with FTS equipment in SLJ module aboard OV-105

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-47 Mission Specialist Mae C. Jemison injects a fluid into a mannequin's hand during research in the Spacelab Japan (SLJ) science module aboard the Earth-orbiting Endeavour, Orbiter Vehicle (OV) 105. Working at Rack 9, Jemison conducts this Fluid Therapy System (FTS) experiment procedure. FTS will examine the effect of low gravity on the administration of intravenous (IV) fluids in space. Since gravity assists in the delivery and flow of IV fluids on Earth, researchers want to determine what problems the absence of gravity would cause if an IV had to be administrated to an astronaut in space. A new device that converts contaminated water into a sterile solution that can be used in IVs is part of the experiment. MS and Payload Commander Mark C. Lee is partially visible at lower right.

  13. Central domain of DivIB caps the C-terminal regions of the FtsL/DivIC coiled-coil rod.

    PubMed

    Masson, Soizic; Kern, Thomas; Le Gouëllec, Audrey; Giustini, Cécile; Simorre, Jean-Pierre; Callow, Philip; Vernet, Thierry; Gabel, Frank; Zapun, André

    2009-10-02

    DivIB(FtsQ), FtsL, and DivIC(FtsB) are enigmatic membrane proteins that are central to the process of bacterial cell division. DivIB(FtsQ) is dispensable in specific conditions in some species, and appears to be absent in other bacterial species. The presence of FtsL and DivIC(FtsB) appears to be conserved despite very low sequence conservation. The three proteins form a complex at the division site, FtsL and DivIC(FtsB) being associated through their extracellular coiled-coil region. We report here structural investigations by NMR, small-angle neutron and x-ray scattering, and interaction studies by surface plasmon resonance, of the complex of DivIB, FtsL, and DivIC from Streptococcus pneumoniae, using soluble truncated forms of the proteins. We found that one side of the "bean"-shaped central beta-domain of DivIB interacts with the C-terminal regions of the dimer of FtsL and DivIC. This finding is corroborated by sequence comparisons across bacterial genomes. Indeed, DivIB is absent from species with shorter FtsL and DivIC proteins that have an extracellular domain consisting only of the coiled-coil segment without C-terminal conserved regions (Campylobacterales). We propose that the main role of the interaction of DivIB with FtsL and DivIC is to help the formation, or to stabilize, the coiled-coil of the latter proteins. The coiled-coil of FtsL and DivIC, itself or with transmembrane regions, could be free to interact with other partners.

  14. The bacterial tubulin FtsZ requires its intrinsically disordered linker to direct robust cell wall construction

    PubMed Central

    Sundararajan, Kousik; Miguel, Amanda; Desmarais, Samantha M.; Meier, Elizabeth L.; Huang, Kerwyn Casey; Goley, Erin D.

    2015-01-01

    The bacterial GTPase FtsZ forms a cytokinetic ring at midcell, recruits the division machinery, and orchestrates membrane and peptidoglycan cell wall invagination. However, the mechanism for FtsZ regulation of peptidoglycan metabolism is unknown. The FtsZ GTPase domain is separated from its membrane-anchoring C-terminal conserved (CTC) peptide by a disordered C-terminal linker (CTL). Here, we investigate CTL function in Caulobacter crescentus. Strikingly, production of FtsZ lacking the CTL (ΔCTL) is lethal: cells become filamentous, form envelope bulges, and lyse, resembling treatment with β-lactam antibiotics. This phenotype is produced by FtsZ polymers bearing the CTC and a CTL shorter than 14 residues. Peptidoglycan synthesis still occurs downstream of ΔCTL, however cells expressing ΔCTL exhibit reduced peptidoglycan crosslinking and longer glycan strands than wildtype. Importantly, midcell proteins are still recruited to sites of ΔCTL assembly. We propose that FtsZ regulates peptidoglycan metabolism through a CTL-dependent mechanism that extends beyond simple protein recruitment. PMID:26099469

  15. Fully efficient chromosome dimer resolution in Escherichia coli cells lacking the integral membrane domain of FtsK

    PubMed Central

    Dubarry, Nelly; Barre, François-Xavier

    2010-01-01

    In bacteria, septum formation frequently initiates before the last steps of chromosome segregation. This is notably the case when chromosome dimers are formed by homologous recombination. Chromosome segregation then requires the activity of a double-stranded DNA transporter anchored at the septum by an integral membrane domain, FtsK. It was proposed that the transmembrane segments of proteins of the FtsK family form pores across lipid bilayers for the transport of DNA. Here, we show that truncated Escherichia coli FtsK proteins lacking all of the FtsK transmembrane segments allow for the efficient resolution of chromosome dimers if they are connected to a septal targeting peptide through a sufficiently long linker. These results indicate that FtsK does not need to transport DNA through a pore formed by its integral membrane domain. We propose therefore that FtsK transports DNA before membrane fusion, at a time when there is still an opening in the constricted septum. PMID:20033058

  16. An analysis of FtsZ assembly using small angle X-ray scattering and electron microscopy.

    PubMed

    Kuchibhatla, Anuradha; Abdul Rasheed, A S; Narayanan, Janaky; Bellare, Jayesh; Panda, Dulal

    2009-04-09

    Small angle X-ray scattering (SAXS) was used for the first time to study the self-assembly of the bacterial cell division protein, FtsZ, with three different additives: calcium chloride, monosodium glutamate and DEAE-dextran hydrochloride in solution. The SAXS data were analyzed assuming a model form factor and also by a model-independent analysis using the pair distance distribution function. Transmission electron microscopy (TEM) was used for direct observation of the FtsZ filaments. By sectioning and negative staining with glow discharged grids, very high bundling as well as low bundling polymers were observed under different assembly conditions. FtsZ polymers formed different structures in the presence of different additives and these additives were found to increase the bundling of FtsZ protofilaments by different mechanisms. The combined use of SAXS and TEM provided us a significant insight of the assembly of FtsZ and microstructures of the assembled FtsZ polymers.

  17. New and Improved Infrared Spectroscopy of Halogen-Containing Species for ACE-FTS Retrievals

    NASA Astrophysics Data System (ADS)

    Harrison, Jeremy J.

    2014-06-01

    The Atmospheric Chemistry Experiment Fourier transform spectrometer (ACE-FTS), onboard the SCISAT-1 satellite, is a high-resolution (0.02 cm-1) instrument covering the 750-4400 cm-1 spectral region in solar occultation mode. Launched in August 2003, the ACE-FTS has been taking atmospheric measurements for over ten years. With long atmospheric pathlengths (˜300 km) and the sun as a radiation source, the ACE-FTS provides a low detection threshold for trace species in the atmosphere. In fact, it measures the vertical profiles of more molecules in the atmosphere than any other satellite instrument.

    Fluorine- and chlorine-containing molecules in the atmosphere are very strong greenhouse gases, meaning that even small amounts of these gases contribute significantly to the radiative forcing of climate. Chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs) are regulated by the 1987 Montreal Protocol because they deplete the ozone layer. Hydrofluorocarbons (HFCs), which do not deplete the ozone layer and are not regulated by the Montreal Protocol, have been introduced as replacements for CFCs and HCFCs. HFCs have global-warming potentials many times greater than carbon dioxide, and are increasing in the atmosphere at a very fast rate. The quantification of the atmospheric abundances of such molecules from measurements taken by the ACE-FTS and other satellite instruments crucially requires accurate quantitative infrared spectroscopy. HITRAN contains absorption cross section datasets for a number of these species, but many of them have minor deficiencies that introduce systematic errors into satellite retrievals. This talk will focus on new and improved laboratory measurements for a number of important halogenated species.

  18. Demonstration of Imaging Fourier Transform Spectrometer (FTS) Performance for Planetary and Geostationary Earth Observing

    NASA Technical Reports Server (NTRS)

    Revercomb, Henry E.; Sromovsky, Lawrence A.; Fry, Patrick M.; Best, Fred A.; LaPorte, Daniel D.

    2001-01-01

    The combination of massively parallel spatial sampling and accurate spectral radiometry offered by imaging FTS makes it extremely attractive for earth and planetary remote sensing. We constructed a breadboard instrument to help assess the potential for planetary applications of small imaging FTS instruments in the 1 - 5 micrometer range. The results also support definition of the NASA Geostationary Imaging FTS (GIFTS) instrument that will make key meteorological and climate observations from geostationary earth orbit. The Planetary Imaging FTS (PIFTS) breadboard is based on a custom miniaturized Bomen interferometer that uses corner cube reflectors, a wishbone pivoting voice-coil delay scan mechanism, and a laser diode metrology system. The interferometer optical output is measured by a commercial infrared camera procured from Santa Barbara Focalplane. It uses an InSb 128x128 detector array that covers the entire FOV of the instrument when coupled with a 25 mm focal length commercial camera lens. With appropriate lenses and cold filters the instrument can be used from the visible to 5 micrometers. The delay scan is continuous, but slow, covering the maximum range of +/- 0.4 cm in 37.56 sec at a rate of 500 image frames per second. Image exposures are timed to be centered around predicted zero crossings. The design allows for prediction algorithms that account for the most recent fringe rate so that timing jitter produced by scan speed variations can be minimized. Response to a fixed source is linear with exposure time nearly to the point of saturation. Linearity with respect to input variations was demonstrated to within 0.16% using a 3-point blackbody calibration. Imaging of external complex scenes was carried out at low and high spectral resolution. These require full complex calibration to remove background contributions that vary dramatically over the instrument FOV. Testing is continuing to demonstrate the precise radiometric accuracy and noise characteristics.

  19. VizieR Online Data Catalog: FTS high resolution of CoIII (Smillie+, 2016)

    NASA Astrophysics Data System (ADS)

    Smillie, D. G.; Pickering, J. C.; Nave, G.; Smith, P. L.

    2016-04-01

    The spectrum of Co III was measured in the wavenumber region 33000-66000cm-1 (3030-1515Å) using the NIST vacuum ultraviolet region (VUV) FTS (Spectrum number 6, taken on 1999 August 30). The Co III spectrum was also observed in the region 234-2550Å with the 10.7m NIST normal incidence vacuum spectrograph (NIVS; two spectra named x872 and x875, recorded on 2005 May 26, and June 8, respectively). (5 data files).

  20. Estimating the bending modulus of a FtsZ bacterial-division protein filament

    NASA Astrophysics Data System (ADS)

    Cytrynbaum, Eric N.; Li, Yongnan Devin; Allard, Jun F.; Mehrabian, Hadi

    2012-01-01

    FtsZ, a cytoskeletal protein homologous to tubulin, is the principle constituent of the division ring in bacterial cells. It is known to have force-generating capacity in vitro and has been conjectured to be the source of the constriction force in vivo. Several models have been proposed to explain the generation of force by the Z ring. Here we re-examine data from in vitro experiments in which Z rings formed and constricted inside tubular liposomes, and we carry out image analysis on previously published data with which to better estimate important model parameters that have proven difficult to measure by direct means. We introduce a membrane-energy-based model for the dynamics of multiple Z rings moving and colliding inside a tubular liposome and a fluid model for the drag of a Z ring as it moves through the tube. Using this model, we estimate an effective membrane bending modulus of 500-700 pNnm. If we assume that FtsZ force generation is driven by hydrolysis into a highly curved conformation, we estimate the FtsZ filament bending modulus to be 310-390 pNnm2. If we assume instead that force is generated by the non-hydrolysis-dependent intermediate curvature conformation, we find that Bf>1400pNnm2. The former value sits at the lower end of the range of previously estimated values and, if correct, may raise challenges for models that rely on filament bending to generate force.

  1. Is ftsH the key to plastid longevity in sacoglossan slugs?

    PubMed

    de Vries, Jan; Habicht, Jörn; Woehle, Christian; Huang, Changjie; Christa, Gregor; Wägele, Heike; Nickelsen, Jörg; Martin, William F; Gould, Sven B

    2013-01-01

    Plastids sequestered by sacoglossan sea slugs have long been a puzzle. Some sacoglossans feed on siphonaceous algae and can retain the plastids in the cytosol of their digestive gland cells. There, the stolen plastids (kleptoplasts) can remain photosynthetically active in some cases for months. Kleptoplast longevity itself challenges current paradigms concerning photosystem turnover, because kleptoplast photosystems remain active in the absence of nuclear algal genes. In higher plants, nuclear genes are essential for plastid maintenance, in particular, for the constant repair of the D1 protein of photosystem II. Lateral gene transfer was long suspected to underpin slug kleptoplast longevity, but recent transcriptomic and genomic analyses show that no algal nuclear genes are expressed from the slug nucleus. Kleptoplast genomes themselves, however, appear expressed in the sequestered state. Here we present sequence data for the chloroplast genome of Acetabularia acetabulum, the food source of the sacoglossan Elysia timida, which can maintain Acetabularia kleptoplasts in an active state for months. The data reveal what might be the key to sacoglossan kleptoplast longevity: plastids that remain photosynthetically active within slugs for periods of months share the property of encoding ftsH, a D1 quality control protease that is essential for photosystem II repair. In land plants, ftsH is always nuclear encoded, it was transferred to the nucleus from the plastid genome when Charophyta and Embryophyta split. A replenishable supply of ftsH could, in principle, rescue kleptoplasts from D1 photodamage, thereby influencing plastid longevity in sacoglossan slugs.

  2. Evaluation of an EMITEC resistively heated metal monolith catalytic converter on two M100 neat methanol-fueled vehicles

    NASA Astrophysics Data System (ADS)

    Piotrowski, Gregory K.; Schaefer, Ronald M.

    1992-12-01

    The report describes the evaluation of a resistively heated catalyst system on two different methanol fueled vehicles. The EMITEC catalyst consisted of a compact resistively heated metal monolith in front of a larger conventional main converter. The EMITEC catalyst was evaluated on two neat methanol-fueled vehicles, a 1981 Volkswagen Rabbit and a 1988 Toyota Corolla. Emission testing was conducted over the Federal Test Procedure (FTP) CVS-75 test cycle. The emissions of primary interest were cold start methanol (unburned fuel), carbon monoxide, and formaldehyde.

  3. Improved ground-based FTS measurement for column abundance CO2 retrievals(Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Goo, Tae-Young

    2016-10-01

    The National Institute of Meteorological Sciences has operated a ground-based Fourier Transform Spectrometer (FTS) at Anmyeondo, Korea since December 2012. Anmyeondo FTS site is a designated operational station of Total Carbon Column Observing Network (TCCON) and belongs to regional Global Atmosphere Watch observatory. A Bruker IFS-125HR model, which has a significantly high spectral resolution by 0.02 cm-1, is employed and instrument specification is almost same as the TCCON configuration. such as a spectrum range of 3,800 16,000 cm-1, a resolution of 1 cm-1, InGaAs and Si-Diode detectors and CaF2 beam splitter. It is found that measured spectra have a good agreement with simulated spectra. In order to improve the spectral accuracy and stability, The Operational Automatic System for Intensity of Sunray (OASIS) has been developed. The OASIS can provide consistent photon energy optimized to detector range by controlling the diameter of solar beam reflected from the mirror of suntracker. As a result, monthly modulation efficiency (ME), which indicates the spectral accuracy of FTS measurement, has been recorded the vicinity of 99.9% since Feb 2015. The ME of 98% is regarded as the error of 0.1% in the ground-based in-situ CO2 measurement. Total column abundances of CO2 and CH4 during 2015 are estimated by using GGG v14 and compared with ground-based in-situ CO2 and CH4 measurements at the height of 86 m above sea level. The seasonality of CO2 is well captured by both FTS and in-situ measurements while there is considerable difference on the amplitude of CO2 seasonal variation due to the insensitivity of column CO2 to the surface carbon cycle dynamics in nature as well as anthropogenic sources. Total column CO2 and CH4 approximately vary from 395 ppm to 405 ppm and from 1.82 ppm to 1.88 ppm, respectively. It should be noted that few measurements obtained in July to August because of a lot of cloud and fog. It is found that enhancement of CH4 from the FTS at Anmyeondo

  4. Proteolysis-Dependent Remodeling of the Tubulin Homolog FtsZ at the Division Septum in Escherichia coli

    PubMed Central

    Viola, Marissa G.; LaBreck, Christopher J.; Conti, Joseph; Camberg, Jodi L.

    2017-01-01

    During bacterial cell division a dynamic protein structure called the Z-ring assembles at the septum. The major protein in the Z-ring in Escherichia coli is FtsZ, a tubulin homolog that polymerizes with GTP. FtsZ is degraded by the two-component ATP-dependent protease ClpXP. Two regions of FtsZ, located outside of the polymerization domain in the unstructured linker and at the C-terminus, are important for specific recognition and degradation by ClpXP. We engineered a synthetic substrate containing green fluorescent protein (Gfp) fused to an extended FtsZ C-terminal tail (residues 317–383), including the unstructured linker and the C-terminal conserved region, but not the polymerization domain, and showed that it is sufficient to target a non-native substrate for degradation in vitro. To determine if FtsZ degradation regulates Z-ring assembly during division, we expressed a full length Gfp-FtsZ fusion protein in wild type and clp deficient strains and monitored fluorescent Z-rings. In cells deleted for clpX or clpP, or cells expressing protease-defective mutant protein ClpP(S97A), Z-rings appear normal; however, after photobleaching a region of the Z-ring, fluorescence recovers ~70% more slowly in cells without functional ClpXP than in wild type cells. Gfp-FtsZ(R379E), which is defective for degradation by ClpXP, also assembles into Z-rings that recover fluorescence ~2-fold more slowly than Z-rings containing Gfp-FtsZ. In vitro, ClpXP cooperatively degrades and disassembles FtsZ polymers. These results demonstrate that ClpXP is a regulator of Z-ring dynamics and that the regulation is proteolysis-dependent. Our results further show that FtsZ-interacting proteins in E. coli fine-tune Z-ring dynamics. PMID:28114338

  5. Vapor Phase Catalytic Ammonia Reduction

    NASA Technical Reports Server (NTRS)

    Flynn, Michael T.; Harper, Lynn D. (Technical Monitor)

    1994-01-01

    This paper discusses the development of a Vapor Phase Catalytic Ammonia Reduction (VPCAR) teststand and the results of an experimental program designed to evaluate the potential of the technology as a water purification process. In the experimental program the technology is evaluated based upon product water purity, water recovery rate, and power consumption. The experimental work demonstrates that the technology produces high purity product water and attains high water recovery rates at a relatively high specific power consumption. The experimental program was conducted in 3 phases. In phase I an Igepon(TM) soap and water mixture was used to evaluate the performance of an innovative Wiped-Film Rotating-Disk evaporator and associated demister. In phase II a phenol-water solution was used to evaluate the performance of the high temperature catalytic oxidation reactor. In phase III a urine analog was used to evaluate the performance of the combined distillation/oxidation functions of the processor.

  6. Combinatorial synthesis of substituted 3-(2-indolyl)piperidines and 2-phenyl indoles as inhibitors of ZipA-FtsZ interaction.

    PubMed

    Jennings, Lee D; Foreman, Kenneth W; Rush, Thomas S; Tsao, Desiree H H; Mosyak, Lidia; Kincaid, Scott L; Sukhdeo, Mohani N; Sutherland, Alan G; Ding, Weidong; Kenny, Cynthia Hess; Sabus, Chantel L; Liu, Hanlan; Dushin, Elizabeth G; Moghazeh, Soraya L; Labthavikul, Pornpen; Petersen, Peter J; Tuckman, Margareta; Haney, Steven A; Ruzin, Alexey V

    2004-10-01

    The ZipA-FtsZ protein-protein interaction is a potential target for antibacterial therapy. The design and parallel synthesis of a combinatorial library of small molecules, which target the FtsZ binding area on ZipA are described. Compounds were demonstrated to bind to the FtsZ binding domain of ZipA by HSQC NMR and to inhibit cell division in a cell elongation assay.

  7. Site-directed fluorescence labeling reveals a revised N-terminal membrane topology and functional periplasmic residues in the Escherichia coli cell division protein FtsK.

    PubMed

    Berezuk, Alison M; Goodyear, Mara; Khursigara, Cezar M

    2014-08-22

    In Escherichia coli, FtsK is a large integral membrane protein that coordinates chromosome segregation and cell division. The N-terminal domain of FtsK (FtsKN) is essential for division, and the C terminus (FtsKC) is a well characterized DNA translocase. Although the function of FtsKN is unknown, it is suggested that FtsK acts as a checkpoint to ensure DNA is properly segregated before septation. This may occur through modulation of protein interactions between FtsKN and other division proteins in both the periplasm and cytoplasm; thus, a clear understanding of how FtsKN is positioned in the membrane is required to characterize these interactions. The membrane topology of FtsKN was initially determined using site-directed reporter fusions; however, questions regarding this topology persist. Here, we report a revised membrane topology generated by site-directed fluorescence labeling. The revised topology confirms the presence of four transmembrane segments and reveals a newly identified periplasmic loop between the third and fourth transmembrane domains. Within this loop, four residues were identified that, when mutated, resulted in the appearance of cellular voids. High resolution transmission electron microscopy of these voids showed asymmetric division of the cytoplasm in the absence of outer membrane invagination or visible cell wall ingrowth. This uncoupling reveals a novel role for FtsK in linking cell envelope septation events and yields further evidence for FtsK as a critical checkpoint of cell division. The revised topology of FtsKN also provides an important platform for future studies on essential interactions required for this process.

  8. Site-directed Fluorescence Labeling Reveals a Revised N-terminal Membrane Topology and Functional Periplasmic Residues in the Escherichia coli Cell Division Protein FtsK*

    PubMed Central

    Berezuk, Alison M.; Goodyear, Mara; Khursigara, Cezar M.

    2014-01-01

    In Escherichia coli, FtsK is a large integral membrane protein that coordinates chromosome segregation and cell division. The N-terminal domain of FtsK (FtsKN) is essential for division, and the C terminus (FtsKC) is a well characterized DNA translocase. Although the function of FtsKN is unknown, it is suggested that FtsK acts as a checkpoint to ensure DNA is properly segregated before septation. This may occur through modulation of protein interactions between FtsKN and other division proteins in both the periplasm and cytoplasm; thus, a clear understanding of how FtsKN is positioned in the membrane is required to characterize these interactions. The membrane topology of FtsKN was initially determined using site-directed reporter fusions; however, questions regarding this topology persist. Here, we report a revised membrane topology generated by site-directed fluorescence labeling. The revised topology confirms the presence of four transmembrane segments and reveals a newly identified periplasmic loop between the third and fourth transmembrane domains. Within this loop, four residues were identified that, when mutated, resulted in the appearance of cellular voids. High resolution transmission electron microscopy of these voids showed asymmetric division of the cytoplasm in the absence of outer membrane invagination or visible cell wall ingrowth. This uncoupling reveals a novel role for FtsK in linking cell envelope septation events and yields further evidence for FtsK as a critical checkpoint of cell division. The revised topology of FtsKN also provides an important platform for future studies on essential interactions required for this process. PMID:25002583

  9. Quantification of strong emissions of methane in the Arctic using spectral measurements from TANSO-FTS and IASI

    NASA Astrophysics Data System (ADS)

    Bourakkadi, Zakia; Payan, Sébastien; Bureau, Jérôme

    2015-04-01

    Methane is the second most important greenhouse gas after the carbon dioxide but it is 25 times more effective in contributing to the radiative forcing than the carbon dioxide(1). Since the pre-industrial times global methane concentration have more than doubled in the atmosphere. This increase is generally caused by anthropogenic activities like the massif use and extraction of fossil fuel, rice paddy agriculture, emissions from landfills... In recent years, several studies show that climate warming and thawing of permafrost act on the mobilization of old stored carbon in Arctic causing a sustained release of methane to the atmosphere(2),(3),(4). The methane emissions from thawing permafrost and methane hydrates in the northern circumpolar region will become potentially important in the end of the 21st centry because they could increase dramatically due to the rapid climate warming of the Artic and the large carbon pools stored there. The objective of this study is to evaluate and quantify methane strong emissions in this region of the globe using spectral measurements from the Thermal And Near Infrared Sensor for carbon Observations-Fourier Transform Spectrometer (TANSO-FTS) and the Infrared Atmospheric Sounding Interferometer (IASI). We use also the LMDZ-PYVAR model to simulate methane fluxes and to estimate how they could be observed by Infrared Sounders from space. To select spectra with high values of methane we developed a statistical approach based on the singular value decomposition. Using this approach we can identify spectra over the important emission sources of methane and we can by this way reduce the number of spectra to retrieve by an line-by-line radiative transfer model in order to focus on those which contain high amount of methane. In order to estimate the capacity of TANSO-FTS and IASI to detect peaks of methane emission with short duration at quasi-real time, we used data from MACC (Monitoring Atmospheric Composition and Climate) simulations

  10. Spectral Characterizations of the Clouds and the Earth's Radiant Energy System (CERES) Thermistor Bolometers using Fourier Transform Spectrometer (FTS) Techniques

    NASA Technical Reports Server (NTRS)

    Thornhill, K. Lee; Bitting, Herbert; Lee, Robert B., III; Paden, Jack; Pandey, Dhirendra K.; Priestley, Kory J.; Thomas, Susan; Wilson, Robert S.

    1998-01-01

    Fourier Transform Spectrometer (FTS) techniques are being used to characterize the relative spectral response, or sensitivity, of scanning thermistor bolometers in the infrared (IR) region (2 - >= 100-micrometers). The bolometers are being used in the Clouds and the Earth's Radiant Energy System (CERES) program. The CERES measurements are designed to provide precise, long term monitoring of the Earth's atmospheric radiation energy budget. The CERES instrument houses three bolometric radiometers, a total wavelength (0.3- >= 150-micrometers) sensor, a shortwave (0.3-5-micrometers) sensor, and an atmospheric window (8-12-micrometers) sensor. Accurate spectral characterization is necessary for determining filtered radiances for longwave radiometric calibrations. The CERES bolometers spectral response's are measured in the TRW FTS Vacuum Chamber Facility (FTS - VCF), which uses a FTS as the source and a cavity pyroelectric trap detector as the reference. The CERES bolometers and the cavity detector are contained in a vacuum chamber, while the FTS source is housed in a GN2 purged chamber. Due to the thermal time constant of the CERES bolometers, the FTS must be operated in a step mode. Data are acquired in 6 IR spectral bands covering the entire longwave IR region. In this paper, the TRW spectral calibration facility design and data measurement techniques are described. Two approaches are presented which convert the total channel FTS data into the final CERES spectral characterizations, producing the same calibration coefficients (within 0.1 percent). The resulting spectral response curves are shown, along with error sources in the two procedures. Finally, the impact of each spectral response curve on CERES data validation will be examined through analysis of filtered radiance values from various typical scene types.

  11. The bacterial cell-division protein ZipA and its interaction with an FtsZ fragment revealed by X-ray crystallography

    PubMed Central

    Mosyak, Lidia; Zhang, Yan; Glasfeld, Elizabeth; Haney, Steve; Stahl, Mark; Seehra, Jasbir; Somers, William S.

    2000-01-01

    In Escherichia coli, FtsZ, a homologue of eukaryotic tubulins, and ZipA, a membrane-anchored protein that binds to FtsZ, are two essential components of the septal ring structure that mediates cell division. Recent data indicate that ZipA is involved in the assembly of the ring by linking FtsZ to the cytoplasmic membrane and that the ZipA–FtsZ interaction is mediated by their C-terminal domains. We present the X-ray crystal structures of the C-terminal FtsZ-binding domain of ZipA and a complex between this domain and a C-terminal fragment of FtsZ. The ZipA domain is a six-stranded β-sheet packed against three α-helices and contains the split β–α–β motif found in many RNA-binding proteins. The uncovered side of the sheet incorporates a shallow hydrophobic cavity exposed to solvent. In the complex, the 17-residue FtsZ fragment occupies this entire cavity of ZipA and binds as an extended β-strand followed by α-helix. An alanine-scanning mutagenesis analysis of the FtsZ fragment was also performed, which shows that only a small cluster of the buried FtsZ side chains is critical in binding to ZipA. PMID:10880432

  12. Dependency of Escherichia coli cell-division size, and independency of nucleoid segregation on the mode and level of ftsZ expression.

    PubMed

    Palacios, P; Vicente, M; Sánchez, M

    1996-06-01

    Expression of ftsZ in strain VIP205 is dissociated from its natural promoters, and is under the control of an inducible tac promoter. This abolishes the oscillation in ftsZ transcription observed in the wild type, allowing different levels of ftsZ expression. We demonstrate that this construction does not affect the expression of other genes, and has no effects on replication or nucleoid segregation. A shift in IPTG from 30 microM, that supports division at wild-type sizes, to lower (6 microM) or higher (100 microM) concentrations, indicates that VIP205 cells can divide within a broad range of FtsZ concentrations. Analysis of the morphological parameters during the transition from one IPTG concentration to another suggests that the correct timing of ftsZ expression, and the correct FtsZ concentration, are required for division to occur at normal cell sizes. After a transient division delay during the transition to lower IPTG concentrations, cells in which ftsZ is expressed continuously (yielding 80% of the wild-type FtsZ levels) divide with the same division time as the wild type, but at the expense of becoming 1.5 times larger. A precise control of ftsZ expression is required for normal division, but the existence of additional regulators to maintain the correct timing during the cell cycle cannot be ruled out.

  13. In vivo organization of the FtsZ-ring by ZapA and ZapB revealed by quantitative super-resolution microscopy

    PubMed Central

    Buss, Jackson; Coltharp, Carla; Huang, Tao; Pohlmeyer, Chris; Wang, Shih-Chin; Hatem, Christine; Xiao, Jie

    2013-01-01

    Summary In most bacterial cells, cell division is dependent on the polymerization of the FtsZ protein to form a ring-like structure (Z-ring) at the midcell. Despite its essential role, the molecular architecture of the Z-ring remains elusive. In this work we examine the roles of two FtsZ-associated proteins, ZapA and ZapB, in the assembly dynamics and structure of the Z-ring in E. coli cells. In cells deleted of zapA or zapB, we observed abnormal septa and highly dynamic FtsZ structures. While details of these FtsZ structures are difficult to discern under conventional fluorescence microscopy, single-molecule based superresolution imaging method Photoactivated Localization Microscopy (PALM) reveals that these FtsZ structures arise from disordered arrangements of FtsZ clusters. Quantitative analysis finds these clusters are larger and comprise more molecules than a single FtsZ protofilament, and likely represent a distinct polymeric species that is inherent to the assembly pathway of the Z-ring. Furthermore, we find these clusters are not due to the loss of ZapB-MatP interaction in ΔzapA and ΔzapB cells. Our results suggest that the main function of ZapA and ZapB in vivo may not be to promote the association of individual protofilaments but to align FtsZ clusters that consist of multiple FtsZ protofilaments. PMID:23859153

  14. Incorporation of catalytic dehydrogenation into Fischer-Tropsch synthesis to lower carbon dioxide emissions

    DOEpatents

    Huffman, Gerald P

    2012-09-18

    A method for producing liquid fuels includes the steps of gasifying a starting material selected from a group consisting of coal, biomass, carbon nanotubes and mixtures thereof to produce a syngas, subjecting that syngas to Fischer-Tropsch synthesis (FTS) to produce a hyrdrocarbon product stream, separating that hydrocarbon product stream into C1-C4 hydrocarbons and C5+ hydrocarbons to be used as liquid fuels and subjecting the C1-C4 hydrocarbons to catalytic dehydrogenation (CDH) to produce hydrogen and carbon nanotubes. The hydrogen produced by CDH is recycled to be mixed with the syngas incident to the FTS reactor in order to raise the hydrogen to carbon monoxide ratio of the syngas to values of 2 or higher, which is required to produce liquid hydrocarbon fuels. This is accomplished with little or no production of carbon dioxide, a greenhouse gas. The carbon is captured in the form of a potentially valuable by-product, multi-walled carbon nanotubes (MWNT), while huge emissions of carbon dioxide are avoided and very large quantities of water employed for the water-gas shift in traditional FTS systems are saved.

  15. Production of versatile peroxidase from Pleurotus eryngii by solid-state fermentation using agricultural residues and evaluation of its catalytic properties.

    PubMed

    Palma, C; Lloret, L; Sepúlveda, L; Contreras, E

    2016-01-01

    Interest in production of ligninolytic enzymes has been growing over recent years for their use in various applications such as recalcitrant pollutants bioremediation; specifically, versatile peroxidase (VP) presents a great potential due to its catalytic versatility. The proper selection of the fermentation mode and the culture medium should be an imperative to ensure a successful production by an economic and available medium that favors the process viability. VP was produced by solid-state fermentation (SSF) of Pleurotus eryngii, using the agricultural residue banana peel as growth medium; an enzymatic activity of 10,800 U L(-1) (36 U g(-1) of substrate) was detected after 18 days, whereas only 1800 U L(-1) was reached by conventional submerged fermentation (SF) with glucose-based medium. The kinetic parameters were determined by evaluating the H2O2 and Mn(2+) concentration effects on the Mn(3+)-tartrate complex formation. The results indicated that although the H2O2 inhibitory effect was observed for the enzyme produced by both media, the reaction rates for VP obtained by SSF were less impacted. This outcome suggests the presence of substances released from banana peel during the fermentation, which might exhibit a protective effect resulting in an improved kinetic behavior of the enzyme.

  16. New palladium-oxazoline complexes: Synthesis and evaluation of the optical properties and the catalytic power during the oxidation of textile dyes.

    PubMed

    Hassani, Rym; Jabli, Mahjoub; Kacem, Yakdhane; Marrot, Jérôme; Prim, Damien; Ben Hassine, Béchir

    2015-01-01

    The present paper describes the synthesis of new palladium-oxazoline complexes in one step with good to high yields (68-95%). The oxazolines were prepared from enantiomerically pure α-aminoalcohols. The structures of the synthesized palladium complexes were confirmed by NMR, FTIR, TOFMS, UV-visible spectroscopic analysis and X-ray diffraction. The optical properties of the complexes were evaluated by the determination of the gap energy values (E g) ranging between 2.34 and 3.21 eV. Their catalytic activities were tested for the degradation of Eriochrome Blue Black B (a model of azo dyes) in the presence of an ecological oxidant (H2O2). The efficiency of the decolorization has been confirmed via UV-visible spectroscopic analysis and the factors affecting the degradation phenomenon have been studied. The removal of the Eriochrome reached high yields. We have found that the complex 9 promoted 84% of color elimination within 5 min (C 0 = 30 mg/L, T = 22 °C, pH 7, H2O2 = 0.5 mL) and the energetic parameters have been also determined.

  17. New palladium–oxazoline complexes: Synthesis and evaluation of the optical properties and the catalytic power during the oxidation of textile dyes

    PubMed Central

    Hassani, Rym; Jabli, Mahjoub; Kacem, Yakdhane; Marrot, Jérôme; Prim, Damien

    2015-01-01

    Summary The present paper describes the synthesis of new palladium–oxazoline complexes in one step with good to high yields (68–95%). The oxazolines were prepared from enantiomerically pure α-aminoalcohols. The structures of the synthesized palladium complexes were confirmed by NMR, FTIR, TOFMS, UV–visible spectroscopic analysis and X–ray diffraction. The optical properties of the complexes were evaluated by the determination of the gap energy values (E g) ranging between 2.34 and 3.21 eV. Their catalytic activities were tested for the degradation of Eriochrome Blue Black B (a model of azo dyes) in the presence of an ecological oxidant (H2O2). The efficiency of the decolorization has been confirmed via UV–visible spectroscopic analysis and the factors affecting the degradation phenomenon have been studied. The removal of the Eriochrome reached high yields. We have found that the complex 9 promoted 84% of color elimination within 5 min (C 0 = 30 mg/L, T = 22 °C, pH 7, H2O2 = 0.5 mL) and the energetic parameters have been also determined. PMID:26425176

  18. Mutagenicity and cytotoxicity evaluation of photo-catalytically treated petroleum refinery wastewater using an array of bioassays.

    PubMed

    Iqbal, Munawar; Nisar, Jan; Adil, Muhammad; Abbas, Mazhar; Riaz, Muhammad; Tahir, M Asif; Younus, Muhammad; Shahid, Muhammad

    2017-02-01

    Degradation and detoxification of petroleum refinery wastewater (PRW) was carried out by advanced oxidation processes (UV/TiO2/H2O2 and gamma radiation/H2O2). Response surface methodology (RSM) was used to optimize the independent variables. The cytotoxicity was evaluated using Allium cepa, brime shrimp and haemolytic assays; whereas mutagenicity was tested by Ames tests (TA98 and TA100 strains). Maximum reductions in COD and BOD were recorded as 78% and 87% for UV/TiO2/H2O2 and 77% and 86% for gamma ray/H2O2, respectively. Treatments with both methods at optimized conditions reduced the cytotoxicity and mutagenicity of PRW, however, UV/TiO2/H2O2 system was found slightly efficient as compared to gamma ray/H2O2. From the results, it can be concluded that AOP's can successfully be utilized for the degradation of toxic pollutants in petroleum refinery wastewater. Moreover, the bioassays used in this study offered a good reliability for checking the detoxification of treated and un-treated PRW wastewater.

  19. Switchable catalytic DNA catenanes.

    PubMed

    Hu, Lianzhe; Lu, Chun-Hua; Willner, Itamar

    2015-03-11

    Two-ring interlocked DNA catenanes are synthesized and characterized. The supramolecular catenanes show switchable cyclic catalytic properties. In one system, the catenane structure is switched between a hemin/G-quadruplex catalytic structure and a catalytically inactive state. In the second catenane structure the catenane is switched between a catalytically active Mg(2+)-dependent DNAzyme-containing catenane and an inactive catenane state. In the third system, the interlocked catenane structure is switched between two distinct catalytic structures that include the Mg(2+)- and the Zn(2+)-dependent DNAzymes.

  20. Studies on the Dissociation and Urea-Induced Unfolding of FtsZ Support the Dimer Nucleus Polymerization Mechanism

    PubMed Central

    Montecinos-Franjola, Felipe; Ross, Justin A.; Sánchez, Susana A.; Brunet, Juan E.; Lagos, Rosalba; Jameson, David M.; Monasterio, Octavio

    2012-01-01

    FtsZ is a major protein in bacterial cytokinesis that polymerizes into single filaments. A dimer has been proposed to be the nucleating species in FtsZ polymerization. To investigate the influence of the self-assembly of FtsZ on its unfolding pathway, we characterized its oligomerization and unfolding thermodynamics. We studied the assembly using size-exclusion chromatography and fluorescence spectroscopy, and the unfolding using circular dichroism and two-photon fluorescence correlation spectroscopy. The chromatographic analysis demonstrated the presence of monomers, dimers, and tetramers with populations dependent on protein concentration. Dilution experiments using fluorescent conjugates revealed dimer-to-monomer and tetramer-to-dimer dissociation constants in the micromolar range. Measurements of fluorescence lifetimes and rotational correlation times of the conjugates supported the presence of tetramers at high protein concentrations and monomers at low protein concentrations. The unfolding study demonstrated that the three-state unfolding of FtsZ was due to the mainly dimeric state of the protein, and that the monomer unfolds through a two-state mechanism. The monomer-to-dimer equilibrium characterized here (Kd = 9 μM) indicates a significant fraction (∼10%) of stable dimers at the critical concentration for polymerization, supporting a role of the dimeric species in the first steps of FtsZ polymerization. PMID:22824282

  1. SAR Studies on Trisubstituted Benzimidazoles as Inhibitors of Mtb FtsZ for the Development of Novel Antitubercular Agents

    PubMed Central

    Awasthi, Divya; Kumar, Kunal; Knudson, Susan E.; Slayden, Richard A.; Ojima, Iwao

    2014-01-01

    FtsZ, an essential protein for bacterial cell division, is a highly promising therapeutic target, especially for the discovery and development of new-generation anti-TB agents. Following up the identification of two lead 2,5,6-trisubstituted benzimidazoles, 1 and 2, targeting Mtb-FtsZ in our previous study, an extensive SAR study for optimization of these lead compounds was performed through systematic modification of the 5 and 6 positions. This study has successfully led to the discovery of a highly potent advanced lead 5f (MIC 0.06 µg/mL) and several other compounds with comparable potencies. These advanced lead compounds possess a dimethylamino group at the 6 position. The functional groups at the 5 position exhibit substantial effects on the antibacterial activity as well. In vitro experiments such as the FtsZ polymerization inhibitory assay and TEM analysis of Mtb-FtsZ treated with 5f and others indicate that Mtb-FtsZ is the molecular target for their antibacterial activity. PMID:24266862

  2. Simple modeling of FtsZ polymers on flat and curved surfaces: correlation with experimental in vitro observations

    PubMed Central

    Paez, Alfonso; Mateos-Gil, Pablo; Hörger, Ines; Mingorance, Jesús; Rivas, Germán; Vicente, Miguel; Vélez, Marisela; Tarazona, Pedro

    2009-01-01

    FtsZ is a GTPase that assembles at midcell into a dynamic ring that constricts the membrane to induce cell division in the majority of bacteria, in many archea and several organelles. In vitro, FtsZ polymerizes in a GTP-dependent manner forming a variety of filamentous flexible structures. Based on data derived from the measurement of the in vitro polymerization of Escherichia coli FtsZ cell division protein we have formulated a model in which the fine balance between curvature, flexibility and lateral interactions accounts for structural and dynamic properties of the FtsZ polymers observed with AFM. The experimental results have been used by the model to calibrate the interaction energies and the values obtained indicate that the filaments are very plastic. The extension of the model to explore filament behavior on a cylindrical surface has shown that the FtsZ condensates promoted by lateral interactions can easily form ring structures through minor modulations of either filament curvature or longitudinal bond energies. The condensation of short, monomer exchanging filaments into rings is shown to produce enough force to induce membrane deformations. PACS codes: 87.15.ak, 87.16.ka, 87.17.Ee PMID:19849848

  3. A Multi-layered Protein Network Stabilizes the Escherichia coli FtsZ-ring and Modulates Constriction Dynamics

    PubMed Central

    Buss, Jackson; Coltharp, Carla; Shtengel, Gleb; Yang, Xinxing; Hess, Harald; Xiao, Jie

    2015-01-01

    The prokaryotic tubulin homolog, FtsZ, forms a ring-like structure (FtsZ-ring) at midcell. The FtsZ-ring establishes the division plane and enables the assembly of the macromolecular division machinery (divisome). Although many molecular components of the divisome have been identified and their interactions extensively characterized, the spatial organization of these proteins within the divisome is unclear. Consequently, the physical mechanisms that drive divisome assembly, maintenance, and constriction remain elusive. Here we applied single-molecule based superresolution imaging, combined with genetic and biophysical investigations, to reveal the spatial organization of cellular structures formed by four important divisome proteins in E. coli: FtsZ, ZapA, ZapB and MatP. We show that these interacting proteins are arranged into a multi-layered protein network extending from the cell membrane to the chromosome, each with unique structural and dynamic properties. Further, we find that this protein network stabilizes the FtsZ-ring, and unexpectedly, slows down cell constriction, suggesting a new, unrecognized role for this network in bacterial cell division. Our results provide new insight into the structure and function of the divisome, and highlight the importance of coordinated cell constriction and chromosome segregation. PMID:25848771

  4. Microenvironments created by liquid-liquid phase transition control the dynamic distribution of bacterial division FtsZ protein

    PubMed Central

    Monterroso, Begoña; Zorrilla, Silvia; Sobrinos-Sanguino, Marta; Keating, Christine D.; Rivas, Germán

    2016-01-01

    The influence of membrane-free microcompartments resulting from crowding-induced liquid/liquid phase separation (LLPS) on the dynamic spatial organization of FtsZ, the main component of the bacterial division machinery, has been studied using several LLPS systems. The GTP-dependent assembly cycle of FtsZ is thought to be crucial for the formation of the septal ring, which is highly regulated in time and space. We found that FtsZ accumulates in one of the phases and/or at the interface, depending on the system composition and on the oligomerization state of the protein. These results were observed both in bulk LLPS and in lipid-stabilized, phase-separated aqueous microdroplets. The visualization of the droplets revealed that both the location and structural arrangement of FtsZ filaments is determined by the nature of the LLPS. Relocation upon depolymerization of the dynamic filaments suggests the protein may shift among microenvironments in response to changes in its association state. The existence of these dynamic compartments driven by phase transitions can alter the local composition and reactivity of FtsZ during its life cycle acting as a nonspecific modulating factor of cell function. PMID:27725777

  5. FtsZ Filament Dynamics at Steady State: Subunit Exchange with and without Nucleotide Hydrolysis†

    PubMed Central

    Chen, Yaodong; Erickson, Harold P.

    2009-01-01

    We have measured three aspects of FtsZ filament dynamics at steady state: rates of GTP hydrolysis, subunit exchange between protofilaments, and disassembly induced by dilution or excess GDP. All three reactions were slowed with an increase in the potassium concentration from 100 to 500 mM, via replacement of potassium with rubidium, or with an increase in the magnesium concentration from 5 to 20 mM. Electron microscopy showed that the polymers assembled under the conditions of fastest assembly were predominantly short, one-stranded protofilaments, whereas under conditions of slower dynamics, the protofilaments tended to associate into long, thin bundles. We suggest that exchange of subunits between protofilaments at steady state involves two separate mechanisms: (1) fragmentation or dissociation of subunits from protofilament ends following GTP hydrolysis and (2) reversible association and dissociation of subunits from protofilament ends independent of hydrolysis. Exchange of nucleotides on these recycling subunits could give the appearance of exchange directly into the polymer. Several of our observations suggest that exchange of nucleotide can take place on these recycling subunits, but not directly into the FtsZ polymer. Annealing of protofilaments was demonstrated for the L68W mutant in EDTA buffer but not in Mg buffer, where rapid cycling of subunits may obscure the effect of annealing. We also reinvestigated the nucleotide composition of FtsZ polymers at steady state. We found that the GDP:GTP ratio was 50:50 for concentrations of GTP > 100 μM, significantly higher than the 20:80 ratio previously reported at 20 μM GTP. PMID:19527070

  6. The flight telerobotic servicer (FTS): A focus for automation and robotics on the space station

    NASA Astrophysics Data System (ADS)

    Hinkal, S. W.; Andary, J. F.; Watzin, J. G.; Provost, D. E.

    NASA has committed to the design and implementation of a robotic device to assist the astronauts in assembly, maintenance, servicing and inspection tasks in the unpressurized environment of the Space Station, substantially reducing the time required for crew extra vehicular activity (EVA). This system introduces into the Space Station program a "telerobot" adaptable to a variety of tasks and worksites. The term "telerobot" is used to indicate the combined attributes of an autonomous robot and a teleoperated manipulator. Design requirements for the telerobot are driven by a detailed analysis of the tasks which are required on the Space Station and its associated free-flying platforms. The Space Station will have several kilometers of truss structure to which are attached numerous scientific payloads, as well as functional elements and utilities of the Space Station itself. Scientific payloads require servicing of different levels of complexity. Free-flying spacecraft will be brought into the hangar-like servicing facility for repair. There will be maintenance and inspection tasks of the Space Station elements, as well as initial Space Station assembly tasks. A step-by-step analysis of candidate tasks has led to a design envelope for the telerobot. Since the telerobot is an extension or telepresence of the astronaut at the remote worksite, design of the workstation in the pressurized module has to give careful consideration to the man/machine interface, as well as the constrained volume in the pressurized modules. The flight telerobotic servicer (FTS) is designed for future growth toward more autonomy. By a careful selection of the functional architecture, and a modular approach to the hardware and software design, the FTS can accept developments in artificial intelligence and newer, more advanced sensors, such as machine vision and collision avoidance. The FTS is a focus for automation and robotics on the Space Station, as well as a baseline from which visionary

  7. Multispectral analysis of Cygnus Loop and IC 443 with iFTS

    NASA Astrophysics Data System (ADS)

    Alarie, Alexandre

    2016-06-01

    Cygnus Loop and IC 443 are supernova remnants (SNRs) recognized as excellent laboratories to study the interaction between the SNR and the surrounding interstellar medium. The overall complex morphologies and large dimensions of those SNRs have always represented an observational challenge. This is especially true for optical observations for which the data available are very scarce. In order to palliate this scarcity in the optical regime, we are using two wide field-imaging Fourier transform spectrometers (iFTS): SpIOMM, attached to the Mont Megantic 1.6-m telescope and SITELLE recently installed at the Canada-France-Hawaii Telescope. Both instruments are capable of obtaining the spatially resolved visible spectrum of every source of light in an 11 arc minute field of view, in selected bandpasses. Using those iFTS on extended object such as Cygnus Loop and IC 443, we have obtained millions of spectra covering all major emission lines. Due to the large projected surface of Cygnus Loop and IC 443, we started a survey and the latest dataset will be presented. The extended 2D mappings of several emission lines ([O II] 3727, [O III] 4363, Hb, [O III] 4959, 5007, Ha, [N II] 6548, 6583 and [S II] 6716, 6731) allowed the creation of numerous ratios maps useful for shock diagnostics: shock velocity, electronic and temperature densities, location of incomplete shocks and extinction maps. These maps are then used to determine key parameters needed to compare the observations with theoretical shock models. Using the shock modeling code MAPPINGS, we can create abundances maps of nitrogen, oxygen and sulfur for an appreciable fraction of the observed regions. Furthermore, using the radial velocity as well as the spectro-imagery capability of the iFTS, we can have a glimpse of the three-dimensional structure of the remnants. All those data allow us to forge a coherent analysis of the complex interaction between the SNRs and their surrounding environment.

  8. Multiscale Evaluation of Catalytic Upgrading of Biomass Pyrolysis Vapors on Ni- and Ga-Modified ZSM-5

    SciTech Connect

    Yung, Matthew M.; Stanton, Alexander R.; Iisa, Kristiina; French, Richard J.; Orton, Kellene A.; Magrini, Kimberly A.

    2016-10-07

    Metal-impregnated (Ni or Ga) ZSM-5 catalysts were studied for biomass pyrolysis vapor upgrading to produce hydrocarbons using three reactors constituting a 100 000x change in the amount of catalyst used in experiments. Catalysts were screened for pyrolysis vapor phase upgrading activity in two small-scale reactors: (i) a Pyroprobe with a 10 mg catalyst in a fixed bed and (ii) a fixed-bed reactor with 500 mg of catalyst. The best performing catalysts were then validated with a larger scale fluidized-bed reactor (using ~1 kg of catalyst) that produced measurable quantities of bio-oil for analysis and evaluation of mass balances. Despite some inherent differences across the reactor systems (such as residence time, reactor type, analytical techniques, mode of catalyst and biomass feed) there was good agreement of reaction results for production of aromatic hydrocarbons, light gases, and coke deposition. Relative to ZSM-5, Ni or Ga addition to ZSM-5 increased production of fully deoxygenated aromatic hydrocarbons and light gases. In the fluidized bed reactor, Ga/ZSM-5 slightly enhanced carbon efficiency to condensed oil, which includes oxygenates in addition to aromatic hydrocarbons, and reduced oil oxygen content compared to ZSM-5. Ni/ZSM-5, while giving the highest yield of fully deoxygenated aromatic hydrocarbons, gave lower overall carbon efficiency to oil but with the lowest oxygen content. Reaction product analysis coupled with fresh and spent catalyst characterization indicated that the improved performance of Ni/ZSM-5 is related to decreasing deactivation by coking, which keeps the active acid sites accessible for the deoxygenation and aromatization reactions that produce fully deoxygenated aromatic hydrocarbons. The addition of Ga enhances the dehydrogenation activity of the catalyst, which leads to enhanced olefin formation and higher fully deoxygenated aromatic hydrocarbon yields compared to unmodified ZSM-5. Catalyst characterization by ammonia temperature

  9. Multiscale Evaluation of Catalytic Upgrading of Biomass Pyrolysis Vapors on Ni- and Ga-Modified ZSM-5

    DOE PAGES

    Yung, Matthew M.; Stanton, Alexander R.; Iisa, Kristiina; ...

    2016-10-07

    Metal-impregnated (Ni or Ga) ZSM-5 catalysts were studied for biomass pyrolysis vapor upgrading to produce hydrocarbons using three reactors constituting a 100 000x change in the amount of catalyst used in experiments. Catalysts were screened for pyrolysis vapor phase upgrading activity in two small-scale reactors: (i) a Pyroprobe with a 10 mg catalyst in a fixed bed and (ii) a fixed-bed reactor with 500 mg of catalyst. The best performing catalysts were then validated with a larger scale fluidized-bed reactor (using ~1 kg of catalyst) that produced measurable quantities of bio-oil for analysis and evaluation of mass balances. Despite somemore » inherent differences across the reactor systems (such as residence time, reactor type, analytical techniques, mode of catalyst and biomass feed) there was good agreement of reaction results for production of aromatic hydrocarbons, light gases, and coke deposition. Relative to ZSM-5, Ni or Ga addition to ZSM-5 increased production of fully deoxygenated aromatic hydrocarbons and light gases. In the fluidized bed reactor, Ga/ZSM-5 slightly enhanced carbon efficiency to condensed oil, which includes oxygenates in addition to aromatic hydrocarbons, and reduced oil oxygen content compared to ZSM-5. Ni/ZSM-5, while giving the highest yield of fully deoxygenated aromatic hydrocarbons, gave lower overall carbon efficiency to oil but with the lowest oxygen content. Reaction product analysis coupled with fresh and spent catalyst characterization indicated that the improved performance of Ni/ZSM-5 is related to decreasing deactivation by coking, which keeps the active acid sites accessible for the deoxygenation and aromatization reactions that produce fully deoxygenated aromatic hydrocarbons. The addition of Ga enhances the dehydrogenation activity of the catalyst, which leads to enhanced olefin formation and higher fully deoxygenated aromatic hydrocarbon yields compared to unmodified ZSM-5. Catalyst characterization by ammonia

  10. Transcription of the Escherichia coli dcw cluster: evidence for distal upstream transcripts being involved in the expression of the downstream ftsZ gene.

    PubMed

    de la Fuente, A; Palacios, P; Vicente, M

    2001-01-01

    Escherichia coli strains VIP596 and VIP597 have been constructed to compare the amount of transcription of the ftsZ gene derived from proximal promoters in the ddlB-ftsZ region with that originating in the upstream regions of the dcw cluster. Both strains have in common a beta-galactosidase reporter fusion located at the ddlB locus, but differ in that VIP597 has a transcription terminator Omega interposon located downstream from lacZ. In addition, these strains have the ddlB, ftsQ, ftsA and ftsZ genes under the control of the IPTG-inducible promoter P(tac), allowing to control artificially ftsZ expression for normal cell division to take place. When beta-galactosidase activity was measured in VIP596 and VIP597 and compared to the levels measured in strain VIP407, in which the lacZ reporter fusion is located in the ftsZ gene, they were found to account for nearly 66% of the total transcription entering into ftsZ. This result indicates that the reduction in ftsZ transcription observed when the promoters in the ddlB-ftsA region are disconnected from the upstream sequences of the dcw cluster (as observed by Flärdh et al., Mol. Microbiol. 30 (1998) 305-316) in strain VIP490) is the direct consequence of the interruption in the transcription originated upstream and not due to the effect of such sequences on the promoters proximal to ftsZ.

  11. Visualization of plastids in pollen grains: involvement of FtsZ1 in pollen plastid division.

    PubMed

    Tang, Lay Yin; Nagata, Noriko; Matsushima, Ryo; Chen, Yuling; Yoshioka, Yasushi; Sakamoto, Wataru

    2009-04-01

    Visualizing organelles in living cells is a powerful method to analyze their intrinsic mechanisms. Easy observation of chlorophyll facilitates the study of the underlying mechanisms in chloroplasts, but not in other plastid types. Here, we constructed a transgenic plant enabling visualization of plastids in pollen grains. Combination of a plastid-targeted fluorescent protein with a pollen-specific promoter allowed us to observe the precise number, size and morphology of plastids in pollen grains of the wild type and the ftsZ1 mutant, whose responsible gene plays a central role in chloroplast division. The transgenic material presented in this work is useful for studying the division mechanism of pollen plastids.

  12. Catalytic ignition of hydrogen and oxygen propellants

    NASA Technical Reports Server (NTRS)

    Zurawski, Robert L.; Green, James M.

    1988-01-01

    An experimental program was conducted to evaluate the catalytic ignition of gaseous hydrogen and oxygen propellants. Shell 405 granular catalyst and a monolithic sponge catalyst were tested. Mixture ratio, mass flow rate, propellant temperature, and back pressure were varied parametrically in testing to determine the operational limits of the catalytic igniter. The test results show that the gaseous hydrogen and oxygen propellant combination can be ignited catalytically using Shell 405 catalyst over a wide range of mixture ratios, mass flow rates, and propellant injection temperatures. These operating conditions must be optimized to ensure reliable ignition for an extended period of time. A cyclic life of nearly 2000, 2 sec pulses at nominal operating conditions was demonstrated with the catalytic igniter. The results of the experimental program and the established operational limits for a catalytic igniter using the Shell 405 catalyst are presented.

  13. Catalytic ignition of hydrogen/oxygen

    NASA Technical Reports Server (NTRS)

    Green, James M.; Zurawski, Robert L.

    1988-01-01

    An experimental program was conducted to evaluate the catalytic ignition of gaseous hydrogen and oxygen. Shell 405 granular catalyst and a unique monolithic sponge catalyst were tested. Mixture ratio, mass flow rate, propellant inlet temperature, and back pressure were varied parametrically in testing to determine the operational limits of a catalytic igniter. The test results showed that the gaseous hydrogen/oxygen propellant combination can be ignited catalytically using Shell 405 catalyst over a wide range of mixture ratios, mass flow rates, and propellant injection temperatures. These operating conditions must be optimized to ensure reliable ignition for an extended period of time. The results of the experimental program and the established operational limits for a catalytic igniter using both the granular and monolithic catalysts are presented. The capabilities of a facility constructed to conduct the igniter testing and the advantages of a catalytic igniter over other ignition systems for gaseous hydrogen and oxygen are also discussed.

  14. Catalytic ignition of hydrogen and oxygen propellants

    NASA Technical Reports Server (NTRS)

    Zurawski, Robert L.; Green, James M.

    1988-01-01

    An experimental program was conducted to evaluate the catalytic ignition of gaseous hydrogen and oxygen propellants. Shell 405 granular catalyst and a monolithic sponge catalyst were tested. Mixture ratio, mass flow rate, propellant temperature, and back pressure were varied parametrically in testing to determine the operational limits of the catalytic igniter. The test results show that the gaseous hydrogen and oxygen propellant combination can be ignited catalytically using Shell 405 catalyst over a wide range of mixture ratios, mass flow rates, and propellant injection temperatures. These operating conditions must be optimized to ensure reliable ignition for an extended period of time. A cyclic life of nearly 2000, 2 sec pulses at nominal operating conditions was demonstrated with the catalytic igniter. The results of the experimental program and the established operational limits for a catalytic igniter using the Shell 405 catalysts are presented.

  15. The plastid metalloprotease FtsH6 and small heat shock protein HSP21 jointly regulate thermomemory in Arabidopsis

    PubMed Central

    Sedaghatmehr, Mastoureh; Mueller-Roeber, Bernd; Balazadeh, Salma

    2016-01-01

    Acquired tolerance to heat stress is an increased resistance to elevated temperature following a prior exposure to heat. The maintenance of acquired thermotolerance in the absence of intervening stress is called ‘thermomemory' but the mechanistic basis for this memory is not well defined. Here we show that Arabidopsis HSP21, a plastidial small heat shock protein that rapidly accumulates after heat stress and remains abundant during the thermomemory phase, is a crucial component of thermomemory. Sustained memory requires that HSP21 levels remain high. Through pharmacological interrogation and transcriptome profiling, we show that the plastid-localized metalloprotease FtsH6 regulates HSP21 abundance. Lack of a functional FtsH6 protein promotes HSP21 accumulation during the later stages of thermomemory and increases thermomemory capacity. Our results thus reveal the presence of a plastidial FtsH6–HSP21 control module for thermomemory in plants. PMID:27561243

  16. Hosting a Fourier Transform Spectrometer (FTS) on CubeSat Spacecraft Platforms for Global Measurements of Three-Dimensional Winds

    NASA Astrophysics Data System (ADS)

    Scott, D. K.; Neilsen, T. L.; Weston, C.; Frazier, C.; Smith, T.; Shumway, A.

    2015-12-01

    Global measurements of vertically-resolved atmospheric wind profiles offer the potential for improved weather forecasts and superior predictions of atmospheric wind patterns. A small-satellite constellation that uses a Fourier Transform Spectrometer (FTS) instrument onboard 12U CubeSats can provide measurements of global tropospheric wind profiles from space at a very low cost. These small satellites are called FTS CubeSats. This presentation will describe a spacecraft concept that provides a stable, robust platform to host the FTS payload. Of importance to the payload are power, data, station keeping, thermal, and accommodations that enable high spectral measurements to be made from a LEO orbit. The spacecraft concept draws on Space Dynamics Laboratory (SDL) heritage and the recent success of the Dynamic Ionosphere Cubesat Experiment (DICE) and HyperAngular Rainbow Polarimeter (HARP) missions. Working with team members, SDL built a prototype observatory (spacecraft and payload) for testing and proof of concept.

  17. Design, synthesis and structure-activity relationships of substituted oxazole-benzamide antibacterial inhibitors of FtsZ.

    PubMed

    Stokes, Neil R; Baker, Nicola; Bennett, James M; Chauhan, Pramod K; Collins, Ian; Davies, David T; Gavade, Maruti; Kumar, Dushyant; Lancett, Paul; Macdonald, Rebecca; Macleod, Leanne; Mahajan, Anu; Mitchell, Jeffrey P; Nayal, Narendra; Nayal, Yashodanand Nandan; Pitt, Gary R W; Singh, Mahipal; Yadav, Anju; Srivastava, Anil; Czaplewski, Lloyd G; Haydon, David J

    2014-01-01

    The design, synthesis and structure-activity relationships of a series of oxazole-benzamide inhibitors of the essential bacterial cell division protein FtsZ are described. Compounds had potent anti-staphylococcal activity and inhibited the cytokinesis of the clinically-significant bacterial pathogen Staphylococcus aureus. Selected analogues possessing a 5-halo oxazole also inhibited a strain of S. aureus harbouring the glycine-to-alanine amino acid substitution at residue 196 of FtsZ which conferred resistance to previously reported inhibitors in the series. Substitutions to the pseudo-benzylic carbon of the scaffold improved the pharmacokinetic properties by increasing metabolic stability and provided a mechanism for creating pro-drugs. Combining multiple substitutions based on the findings reported in this study has provided small-molecule inhibitors of FtsZ with enhanced in vitro and in vivo antibacterial efficacy.

  18. Advances in the discovery of novel antimicrobials targeting the assembly of bacterial cell division protein FtsZ.

    PubMed

    Li, Xin; Ma, Shutao

    2015-05-05

    Currently, wide-spread antimicrobials resistance among bacterial pathogens continues being a dramatically increasing and serious threat to public health, and thus there is a pressing need to develop new antimicrobials to keep pace with the bacterial resistance. Filamentous temperature-sensitive protein Z (FtsZ), a prokaryotic cytoskeleton protein, plays an important role in bacterial cell division. It as a very new and promising target, garners special attention in the antibacterial research in the recent years. This review describes not only the function and dynamic behaviors of FtsZ, but also the known natural and synthetic inhibitors of FtsZ. In particular, the small molecules recently developed and the future directions of ideal candidates are highlighted.

  19. 4',6-Diamidino-2-phenylindole (DAPI) induces bundling of Escherichia coli FtsZ polymers inhibiting the GTPase activity.

    PubMed

    Nova, Esteban; Montecinos, Felipe; Brunet, Juan E; Lagos, Rosalba; Monasterio, Octavio

    2007-09-15

    FtsZ (Filamentous temperature sensitivity Z) cell division protein from Escherichia coli binds the fluorescence probe DAPI. Bundling of FtsZ was facilitated in the presence of DAPI, and the polymers in solution remained polymerized longer time than the protofilaments formed in the absence of DAPI. DAPI decreased both the maximal velocity of the GTPase activity and the Michaelis-Menten constant for GTP, indicating that behaves like an uncompetitive inhibitor of the GTPase activity favoring the GTP form of FtsZ in the polymers. The results presented in this work support a cooperative polymerization mechanism in which the binding of DAPI favors protofilament lateral interactions and the stability of the resulting polymers.

  20. [Effect of cinnamon and lavender oils on FtsZ gene expression in the Staphylococus aureus ATCC 29213].

    PubMed

    2013-01-01

    This study was designed to determine the effect of lavender and cinnamon oils on FtsZ gene expression in Staphylococcus aureus ATCC 29213. The cinnamon and lavender oils at least partially results from the inhibition of FtsZ transcription and disruption of cell division process at the level of the septum synthesis, what is similar to mechanisms of drug action used in anti-staphylococcal therapies. The presented results could be an important background for the further detailed research, which is needed to clarify the effect of essential oils on FtsZ synthesis at the posttranscriptional level and other stages of cell division process of S. aureus and other pathogenic bacteria.

  1. Kinetic modeling of the assembly, dynamic steady state, and contraction of the FtsZ ring in prokaryotic cytokinesis.

    PubMed

    Surovtsev, Ivan V; Morgan, Jeffrey J; Lindahl, Paul A

    2008-07-04

    Cytokinesis in prokaryotes involves the assembly of a polymeric ring composed of FtsZ protein monomeric units. The Z ring forms at the division plane and is attached to the membrane. After assembly, it maintains a stable yet dynamic steady state. Once induced, the ring contracts and the membrane constricts. In this work, we present a computational deterministic biochemical model exhibiting this behavior. The model is based on biochemical features of FtsZ known from in vitro studies, and it quantitatively reproduces relevant in vitro data. An essential part of the model is a consideration of interfacial reactions involving the cytosol volume, where monomeric FtsZ is dispersed, and the membrane surface in the cell's mid-zone where the ring is assembled. This approach allows the same chemical model to simulate either in vitro or in vivo conditions by adjusting only two geometrical parameters. The model includes minimal reactions, components, and assumptions, yet is able to reproduce sought-after in vivo behavior, including the rapid assembly of the ring via FtsZ-polymerization, the formation of a dynamic steady state in which GTP hydrolysis leads to the exchange of monomeric subunits between cytoplasm and the ring, and finally the induced contraction of the ring. The model gives a quantitative estimate for coupling between the rate of GTP hydrolysis and of FtsZ subunit turnover between the assembled ring and the cytoplasmic pool as observed. Membrane constriction is chemically driven by the strong tendency of GTP-bound FtsZ to self-assembly. The model suggests a possible mechanism of membrane contraction without a motor protein. The portion of the free energy of GTP hydrolysis released in cyclization is indirectly used in this energetically unfavorable process. The model provides a limit to the mechanistic complexity required to mimic ring behavior, and it highlights the importance of parallel in vitro and in vivo modeling.

  2. Role of an FtsK-Like Protein in Genetic Stability in Streptomyces coelicolor A3(2)▿

    PubMed Central

    Wang, Lei; Yu, Yanfei; He, Xinyi; Zhou, Xiufen; Deng, Zixin; Chater, Keith F.; Tao, Meifeng

    2007-01-01

    Streptomyces coelicolor A3(2) does not have a canonical cell division cycle during most of its complex life cycle, yet it contains a gene (ftsKSC) encoding a protein similar to FtsK, which couples the completion of cell division and chromosome segregation in unicellular bacteria such as Escherichia coli. Here, we show that various constructed ftsKSC mutants all grew apparently normally and sporulated but upon restreaking gave rise to many aberrant colonies and to high frequencies of chloramphenicol-sensitive mutants, a phenotype previously associated with large terminal deletions from the linear chromosome. Indeed, most of the aberrant colonies had lost large fragments near one or both chromosomal termini, as if chromosome ends had failed to reach their prespore destination before the closure of sporulation septa. A constructed FtsKSC-enhanced green fluorescent protein fusion protein was particularly abundant in aerial hyphae, forming distinctive complexes before localizing to each sporulation septum, suggesting a role for FtsKSC in chromosome segregation during sporulation. Use of a fluorescent reporter showed that when ftsKSC was deleted, several spore compartments in most spore chains failed to express the late-sporulation-specific sigma factor gene sigF, even though they contained chromosomal DNA. This suggested that sigF expression is autonomously activated in each spore compartment in response to completion of chromosome transfer, which would be a previously unknown checkpoint for late-sporulation-specific gene expression. These results provide new insight into the genetic instability prevalent among streptomycetes, including those used in the industrial production of antibiotics. PMID:17209017

  3. The Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) FTS: Results From the 2012/13 Alaska Campaigns

    NASA Astrophysics Data System (ADS)

    Kurosu, Thomas P.; Miller, Charles E.; Dinardo, Stephen J.

    2014-05-01

    The Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) is an aircraft-based Earth Venture 1 mission to study the carbon balance of the Alaskan Arctic ecosystem, with a particular focus on carbon release from melting permafrost. Operating from its base in Fairbanks, AK, the CARVE aircraft covers a range of principle flight paths in the Alaskan interior, the Yukon River valley, and the northern Alaska coast around Barrow and Dead Horse. Flight paths are chosen to maximize ecosystem variability and cover burn-recovery/regrowth sequences. CARVE observations cover the Arctic Spring/Summer/Fall seasons, with multiple flights per season and principle flight path. Science operations started in May 2012 and are currently envisaged to continue until 2015. The CARVE suite of instruments includes flask measurements, in situ gas analyzers for CO2, CH4 and CO observations, and a three-band polarizing Fourier Transform Spectrometer (FTS) for column measurements of CO2, CH4, CO, their interfering species (e.g., H2O), and O2. The FTS covers the spectral regions of 4,200-4,900 cm-1, 5,800-6,400 cm-1, and 12,900-13,200 cm-1, with a spectral resolution of 0.2 cm-1. Aircraft-based FTS science observations in Alaska have been performed since 23-05-2012. First-version data products from all CARVE instruments derived from observations during the 2012 campaign were publicly released earlier in 2013. The FTS has performed well during flight conditions, particularly with respect to vibration damping. Outstanding challenges include the need for improved spectral and radiometric calibration, as well as compensating for low signal-to-noise spectra acquired under Alaskan flight conditions. We present results from FTS column observations of CO2, CH4, and CO, observed during the 2012 and 2013 campaigns, including preliminary comparisons of CARVE FTS measurements with satellite observations of CO2 from TANSO/GOSAT and CO from MOPITT.

  4. Assessment of Malawi’s success in child mortality reduction through the lens of the Catalytic Initiative Integrated Health Systems Strengthening programme: Retrospective evaluation

    PubMed Central

    Doherty, Tanya; Zembe, Wanga; Ngandu, Nobubelo; Kinney, Mary; Manda, Samuel; Besada, Donela; Jackson, Debra; Daniels, Karen; Rohde, Sarah; van Damme, Wim; Kerber, Kate; Daviaud, Emmanuelle; Rudan, Igor; Muniz, Maria; Oliphant, Nicholas P; Zamasiya, Texas; Rohde, Jon; Sanders, David

    2015-01-01

    Background Malawi is estimated to have achieved its Millennium Development Goal (MDG) 4 target. This paper explores factors influencing progress in child survival in Malawi including coverage of interventions and the role of key national policies. Methods We performed a retrospective evaluation of the Catalytic Initiative (CI) programme of support (2007–2013). We developed estimates of child mortality using four population household surveys undertaken between 2000 and 2010. We recalculated coverage indicators for high impact child health interventions and documented child health programmes and policies. The Lives Saved Tool (LiST) was used to estimate child lives saved in 2013. Results The mortality rate in children under 5 years decreased rapidly in the 10 CI districts from 219 deaths per 1000 live births (95% confidence interval (CI) 189 to 249) in the period 1991–1995 to 119 deaths (95% CI 105 to 132) in the period 2006–2010. Coverage for all indicators except vitamin A supplementation increased in the 10 CI districts across the time period 2000 to 2013. The LiST analysis estimates that there were 10 800 child deaths averted in the 10 CI districts in 2013, primarily attributable to the introduction of the pneumococcal vaccine (24%) and increased household coverage of insecticide–treated bednets (19%). These improvements have taken place within a context of investment in child health policies and scale up of integrated community case management of childhood illnesses. Conclusions Malawi provides a strong example for countries in sub–Saharan Africa of how high impact child health interventions implemented within a decentralised health system with an established community–based delivery platform, can lead to significant reductions in child mortality. PMID:26649176

  5. An Essential Component in Chloroplast Development and Maintenance at Moderate High Temperature in Higher Plants: Chloroplast-targeted FtsH11 Proteases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Among the 12 predicted FtsH proteases in Arabidopsis, AtFtsH11 is the only metalloprotease targeting to both chloroplast and mitochondria and the only one essential for Arabidopsis plant to survive at moderate heat stress at all developmental stages. Under optimal conditions, atftsh11 mutants were...

  6. Testing of FTS fingers and interface using a passive compliant robot manipulator. [flight telerobot servicer

    NASA Technical Reports Server (NTRS)

    Nguyen, Charles C.; Antrazi, Sami S.

    1992-01-01

    This report deals with testing of a pair of robot fingers designed for the Flight Telerobotic Servicer (FTS) to grasp a cylinder type of Orbital Replaceable Unit (ORU) interface. The report first describes the objectives of the study and then the testbed consisting of a Stewart Platform-based manipulator equipped with a passive compliant platform which also serves as a force/torque sensor. Kinematic analysis is then performed to provide a closed-form solution for the force inverse kinematics and iterative solution for the force forward kinematics using the Newton's Raphson Method. Mathematical expressions are then derived to compute force/torques applied to the FTS fingers during the mating/demating with the interface. The report then presents the three parts of the experimental study on the feasibility and characteristics of the fingers. The first part obtains data of forces applied by the fingers to the interface under various misalignments, the second part determines the maximum allowable capture angles for mating, and the third part processes and interprets the obtained force/torque data.

  7. Differential Regulation of ftsZ Transcription during Septation of Streptomyces griseus

    PubMed Central

    Kwak, Jangyul; Dharmatilake, Amitha J.; Jiang, Hao; Kendrick, Kathleen E.

    2001-01-01

    Streptomyces has been known to form two types of septa. The data in this research demonstrated that Streptomyces griseus forms another type of septum near the base of sporogenic hyphae (basal septum). To understand the regulation of the septation machinery in S. griseus, we investigated the expression of the ftsZ gene. S1 nuclease protection assays revealed that four ftsZ transcripts were differentially expressed during morphological differentiation. The vegetative transcript (emanating from Pveg) is present at a moderate level during vegetative growth, but is switched off within the first 2 h of sporulation. Two sporulation-specific transcripts predominantly accumulated, and the levels increased by approximately fivefold together shortly before sporulation septa begin to form. Consistently, the sporulation-specific transcripts were expressed much earlier and more abundantly in a group of nonsporulating mutants that form their sporulation septa prematurely. Promoter-probe studies with two different reporter systems confirmed the activities of the putative promoters identified from the 5′ end point of the transcripts. The levels and expression timing of promoter activities were consistent with the results of nuclease protection assays. The aseptate phenotype of the Pspo mutant indicated that the increased transcription from Pspo is required for sporulation septation, but not for vegetative or basal septum formation. PMID:11489862

  8. Functional Analysis of the Cell Division Protein FtsW of Escherichia coli†

    PubMed Central

    Pastoret, Soumya; Fraipont, Claudine; den Blaauwen, Tanneke; Wolf, Benoît; Aarsman, Mirjam E. G.; Piette, André; Thomas, Annick; Brasseur, Robert; Nguyen-Distèche, Martine

    2004-01-01

    Site-directed mutagenesis experiments combined with fluorescence microscopy shed light on the role of Escherichia coli FtsW, a membrane protein belonging to the SEDS family that is involved in peptidoglycan assembly during cell elongation, division, and sporulation. This essential cell division protein has 10 transmembrane segments (TMSs). It is a late recruit to the division site and is required for subsequent recruitment of penicillin-binding protein 3 (PBP3) catalyzing peptide cross-linking. The results allow identification of several domains of the protein with distinct functions. The localization of PBP3 to the septum was found to be dependent on the periplasmic loop located between TMSs 9 and 10. The E240-A249 amphiphilic peptide in the periplasmic loop between TMSs 7 and 8 appears to be a key element in the functioning of FtsW in the septal peptidoglycan assembly machineries. The intracellular loop (containing the R166-F178 amphiphilic peptide) between TMSs 4 and 5 and Gly 311 in TMS 8 are important components of the amino acid sequence-folding information. PMID:15576787

  9. Characterization of the FtsZ C-Terminal Variable (CTV) Region in Z-Ring Assembly and Interaction with the Z-Ring Stabilizer ZapD in E. coli Cytokinesis.

    PubMed

    Huang, Kuo-Hsiang; Mychack, Aaron; Tchorzewski, Lukasz; Janakiraman, Anuradha

    2016-01-01

    Polymerization of a ring-like cytoskeletal structure, the Z-ring, at midcell is a highly conserved feature in virtually all bacteria. The Z-ring is composed of short protofilaments of the tubulin homolog FtsZ, randomly arranged and held together through lateral interactions. In vitro, lateral associations between FtsZ protofilaments are stabilized by crowding agents, high concentrations of divalent cations, or in some cases, low pH. In vivo, the last 4-10 amino acid residues at the C-terminus of FtsZ (the C-terminal variable region, CTV) have been implicated in mediating lateral associations between FtsZ protofilaments through charge shielding. Multiple Z-ring associated proteins (Zaps), also promote lateral interactions between FtsZ protofilaments to stabilize the FtsZ ring in vivo. Here we characterize the complementary role/s of the CTV of E. coli FtsZ and the FtsZ-ring stabilizing protein ZapD, in FtsZ assembly. We show that the net charge of the FtsZ CTV not only affects FtsZ protofilament bundling, confirming earlier observations, but likely also the length of the FtsZ protofilaments in vitro. The CTV residues also have important consequences for Z-ring assembly and interaction with ZapD in the cell. ZapD requires the FtsZ CTV region for interaction with FtsZ in vitro and for localization to midcell in vivo. Our data suggest a mechanism in which the CTV residues, particularly K380, facilitate a conformation for the conserved carboxy-terminal residues in FtsZ, that lie immediately N-terminal to the CTV, to enable optimal contact with ZapD. Further, phylogenetic analyses suggest a correlation between the nature of FtsZ CTV residues and the presence of ZapD in the β- γ-proteobacterial species.

  10. Characterization of the FtsZ C-Terminal Variable (CTV) Region in Z-Ring Assembly and Interaction with the Z-Ring Stabilizer ZapD in E. coli Cytokinesis

    PubMed Central

    Huang, Kuo-Hsiang; Mychack, Aaron; Tchorzewski, Lukasz; Janakiraman, Anuradha

    2016-01-01

    Polymerization of a ring-like cytoskeletal structure, the Z-ring, at midcell is a highly conserved feature in virtually all bacteria. The Z-ring is composed of short protofilaments of the tubulin homolog FtsZ, randomly arranged and held together through lateral interactions. In vitro, lateral associations between FtsZ protofilaments are stabilized by crowding agents, high concentrations of divalent cations, or in some cases, low pH. In vivo, the last 4–10 amino acid residues at the C-terminus of FtsZ (the C-terminal variable region, CTV) have been implicated in mediating lateral associations between FtsZ protofilaments through charge shielding. Multiple Z-ring associated proteins (Zaps), also promote lateral interactions between FtsZ protofilaments to stabilize the FtsZ ring in vivo. Here we characterize the complementary role/s of the CTV of E. coli FtsZ and the FtsZ-ring stabilizing protein ZapD, in FtsZ assembly. We show that the net charge of the FtsZ CTV not only affects FtsZ protofilament bundling, confirming earlier observations, but likely also the length of the FtsZ protofilaments in vitro. The CTV residues also have important consequences for Z-ring assembly and interaction with ZapD in the cell. ZapD requires the FtsZ CTV region for interaction with FtsZ in vitro and for localization to midcell in vivo. Our data suggest a mechanism in which the CTV residues, particularly K380, facilitate a conformation for the conserved carboxy-terminal residues in FtsZ, that lie immediately N-terminal to the CTV, to enable optimal contact with ZapD. Further, phylogenetic analyses suggest a correlation between the nature of FtsZ CTV residues and the presence of ZapD in the β- γ-proteobacterial species. PMID:27088231

  11. Rich catalytic injection

    DOEpatents

    Veninger, Albert

    2008-12-30

    A gas turbine engine includes a compressor, a rich catalytic injector, a combustor, and a turbine. The rich catalytic injector includes a rich catalytic device, a mixing zone, and an injection assembly. The injection assembly provides an interface between the mixing zone and the combustor. The injection assembly can inject diffusion fuel into the combustor, provides flame aerodynamic stabilization in the combustor, and may include an ignition device.

  12. Two stage catalytic combustor

    NASA Technical Reports Server (NTRS)

    Alvin, Mary Anne (Inventor); Bachovchin, Dennis (Inventor); Smeltzer, Eugene E. (Inventor); Lippert, Thomas E. (Inventor); Bruck, Gerald J. (Inventor)

    2010-01-01

    A catalytic combustor (14) includes a first catalytic stage (30), a second catalytic stage (40), and an oxidation completion stage (49). The first catalytic stage receives an oxidizer (e.g., 20) and a fuel (26) and discharges a partially oxidized fuel/oxidizer mixture (36). The second catalytic stage receives the partially oxidized fuel/oxidizer mixture and further oxidizes the mixture. The second catalytic stage may include a passageway (47) for conducting a bypass portion (46) of the mixture past a catalyst (e.g., 41) disposed therein. The second catalytic stage may have an outlet temperature elevated sufficiently to complete oxidation of the mixture without using a separate ignition source. The oxidation completion stage is disposed downstream of the second catalytic stage and may recombine the bypass portion with a catalyst exposed portion (48) of the mixture and complete oxidation of the mixture. The second catalytic stage may also include a reticulated foam support (50), a honeycomb support, a tube support or a plate support.

  13. Promoting assembly and bundling of FtsZ as a strategy to inhibit bacterial cell division: a new approach for developing novel antibacterial drugs.

    PubMed

    Beuria, Tushar K; Singh, Parminder; Surolia, Avadhesha; Panda, Dulal

    2009-09-14

    FtsZ plays an essential role in bacterial cell division. We have used the assembly of FtsZ as a screen to find antibacterial agents with a novel mechanism of action. The effects of 81 compounds of 29 different structural scaffolds on FtsZ assembly in vitro were examined using a sedimentation assay. Out of these 81 compounds, OTBA (3-{5-[4-oxo-2-thioxo-3-(3-trifluoromethyl-phenyl)-thiazolidin-5-ylidenemethyl]-furan-2-yl}-benzoic acid) was found to promote FtsZ assembly in vitro. OTBA increased the assembly of FtsZ, caused bundling of FtsZ protofilaments, prevented dilution-induced disassembly of FtsZ protofilaments and decreased the GTPase activity in vitro. It bound to FtsZ with an apparent dissociation constant of 15+/-1.5 microM. Furthermore, OTBA inhibited the proliferation of Bacillus subtilis 168 cells with an MIC (minimum inhibitory concentration) of 2 microM, whereas it exerted minimal effects on mammalian cell proliferation, indicating that it might have a potential use as an antibacterial drug. In the effective proliferation inhibitory concentration range, OTBA induced filamentation in bacteria and also perturbed the formation of the cytokinetic Z-rings in bacteria. However, the agent neither perturbed the membrane structures nor affected the nucleoid segregation in B. subtilis cells. The results suggested that the OTBA inhibited bacterial cytokinesis by perturbing the formation and functioning of the Z-ring via altering FtsZ assembly dynamics. The antibacterial mechanism of action of OTBA is similar to that of the widely used anticancer drug paclitaxel, which inhibits cancer cell proliferation by promoting the assembly of tubulin, a eukaryotic homologue of FtsZ.

  14. Catalytic evaluation of promoted CeO2-ZrO2 by transition, alkali, and alkaline-earth metal oxides for diesel soot oxidation.

    PubMed

    Alinezhadchamazketi, Ali; Khodadadi, Abas Ali; Mortazavi, Yadollah; Nemati, Ahmad

    2013-12-01

    Series of mixed metal oxides were synthesized by gel-combustion method and their catalytic activities for soot oxidation were investigated. The catalysts were M-Ce-Zr (M = Mn, Cu, Fe, K, Ba, Sr), and xK-20Mn-Ce-Zr (x = 0, 5, 10, 20), they were characterized by XRD, SEM, TPR and BET surface area techniques. The results of soot temperature programmed oxidation (TPO) in an O2 oxidizing atmosphere indicate that K-Ce-Zr has the highest catalytic activity for soot oxidation under loose contact condition, due to enhancement of the soot and catalyst contacts. On the other hand, under a tight contact condition, Mn-Ce-Zr and Cu-Ce-Zr nano-composites have high activities for soot oxidation and lower the soot TPO peak temperatures by about 280 and 270 degrees C, respectively, as compared to non-catalytic soot oxidation. Furthermore, the addition of up to 10 wt.% potassium oxides into Mn-Ce-Zr increases its catalytic activity and further reduces the soot TPO peak temperature by about 40 degrees C under loose contact condition.

  15. Constitutive expression of ftsZ overrides the whi developmental genes to initiate sporulation of Streptomyces coelicolor.

    PubMed

    Willemse, Joost; Mommaas, A Mieke; van Wezel, Gilles P

    2012-03-01

    The filamentous soil bacteria Streptomyces undergo a highly complex developmental programme. Before streptomycetes commit themselves to sporulation, distinct morphological checkpoints are passed in the aerial hyphae that are subject to multi-level control by the whi sporulation genes. Here we show that whi-independent expression of FtsZ restores sporulation to the early sporulation mutants whiA, whiB, whiG, whiH, whiI and whiJ. Viability, stress resistance and high-resolution electron microscopy underlined that viable spores were formed. However, spores from sporulation-restored whiA and whiG mutants showed defects in DNA segregation/condensation, while spores from the complemented whiB mutant had increased stress sensitivity, perhaps as a result of changes in the spore sheath. In contrast to the whi mutants, normal sporulation of ssgB null mutants-which fail to properly localise FtsZ-could not be restored by enhancing FtsZ protein levels, forming spore-like bodies that lack spore walls. Our data strongly suggest that the whi genes control a decisive event towards sporulation of streptomycetes, namely the correct timing of developmental ftsZ transcription. The biological significance may be to ensure that sporulation-specific cell division will only start once sufficient aerial mycelium biomass has been generated. Our data shed new light on the longstanding question as to how whi genes control sporulation, which has intrigued scientists for four decades.

  16. Activation of Xer-recombination at dif: structural basis of the FtsKγ–XerD interaction

    PubMed Central

    Keller, Andrew N.; Xin, Yue; Boer, Stephanie; Reinhardt, Jonathan; Baker, Rachel; Arciszewska, Lidia K.; Lewis, Peter J.; Sherratt, David J.; Löwe, Jan; Grainge, Ian

    2016-01-01

    Bacterial chromosomes are most often circular DNA molecules. This can produce a topological problem; a genetic crossover from homologous recombination results in dimerization of the chromosome. A chromosome dimer is lethal unless resolved. A site-specific recombination system catalyses this dimer-resolution reaction at the chromosomal site dif. In Escherichia coli, two tyrosine-family recombinases, XerC and XerD, bind to dif and carry out two pairs of sequential strand exchange reactions. However, what makes the reaction unique among site-specific recombination reactions is that the first step, XerD-mediated strand exchange, relies on interaction with the very C-terminus of the FtsK DNA translocase. FtsK is a powerful molecular motor that functions in cell division, co-ordinating division with clearing chromosomal DNA from the site of septation and also acts to position the dif sites for recombination. This is a model system for unlinking, separating and segregating large DNA molecules. Here we describe the molecular detail of the interaction between XerD and FtsK that leads to activation of recombination as deduced from a co-crystal structure, biochemical and in vivo experiments. FtsKγ interacts with the C-terminal domain of XerD, above a cleft where XerC is thought to bind. We present a model for activation of recombination based on structural data. PMID:27708355

  17. Catalytic distillation structure

    DOEpatents

    Smith, Jr., Lawrence A.

    1984-01-01

    Catalytic distillation structure for use in reaction distillation columns, a providing reaction sites and distillation structure and consisting of a catalyst component and a resilient component intimately associated therewith. The resilient component has at least about 70 volume % open space and being present with the catalyst component in an amount such that the catalytic distillation structure consist of at least 10 volume % open space.

  18. Interspecies transfer of the penicillin-binding protein 3-encoding gene ftsI between Haemophilus influenzae and Haemophilus haemolyticus can confer reduced susceptibility to β-lactam antimicrobial agents.

    PubMed

    Søndergaard, Annette; Witherden, Elizabeth A; Nørskov-Lauritsen, Niels; Tristram, Stephen G

    2015-07-01

    Mutations in ftsI, encoding penicillin-binding protein 3, can cause decreased β-lactam susceptibility in Haemophilus influenzae. Sequencing of ftsI from clinical strains has indicated interspecies recombination of ftsI between H. influenzae and Haemophilus haemolyticus. This study documented apparently unrestricted homologous recombination of ftsI between H. influenzae and H. haemolyticus in vitro. Transfer of ftsI from resistant isolates conferred similar but not identical increases in the MICs of susceptible strains of H. influenzae and H. haemolyticus.

  19. 1H, 13C, 15N resonance assignments of the extracellular loop 1 domain (ECL1) of Streptococcus pneumoniae D39 FtsX, an essential cell division protein

    PubMed Central

    Fu, Yue; Bruce, Kevin E.; Rued, Britta; Winkler, Malcolm E.; Giedroc, David P.

    2015-01-01

    FtsX is an integral membrane protein from Streptococcus pneumoniae (pneumococcus) that harbors an extracellular loop 1 domain (FtsXECL1Spn) that interacts with PcsB, an peptidoglycan hydrolase that is essential for cell growth and division. Here, we report nearly complete backbone and side chain resonance assignments and a secondary structural analysis of FtsXECL1Spn (residues 47–168 of FtsX) as first steps toward structure determination of FtsXECL1Spn. PMID:26370567

  20. A gLite FTS based solution for managing user output in CMS

    NASA Astrophysics Data System (ADS)

    Cinquilli, M.; Riahi, H.; Spiga, D.; Grandi, C.; Mancinelli, V.; Mascheroni, M.; Pepe, F.; Vaandering, E.

    2012-12-01

    The CMS distributed data analysis workflow assumes that jobs run in a different location from where their results are finally stored. Typically the user output must be transferred across the network from one site to another, possibly on a different continent or over links not necessarily validated for high bandwidth/high reliability transfer. This step is named stage-out and in CMS was originally implemented as a synchronous step of the analysis job execution. However, our experience showed the weakness of this approach both in terms of low total job execution efficiency and failure rates, wasting precious CPU resources. The nature of analysis data makes it inappropriate to use PhEDEx, the core data placement system for CMS. As part of the new generation of CMS Workload Management tools, the Asynchronous Stage-Out system (AsyncStageOut) has been developed to enable third party copy of the user output. The AsyncStageOut component manages glite FTS transfers of data from the temporary store at the site where the job ran to the final location of the data on behalf of that data owner. The tool uses python daemons, built using the WMCore framework, and CouchDB, to manage the queue of work and FTS transfers. CouchDB also provides the platform for a dedicated operations monitoring system. In this paper, we present the motivations of the asynchronous stage-out system. We give an insight into the design and the implementation of key features, describing how it is coupled with the CMS workload management system. Finally, we show the results and the commissioning experience.

  1. Determination of Jupiter's N/H ratio from FTS observations at 5 micron.

    NASA Astrophysics Data System (ADS)

    Fouchet, T.; Lellouch, E.; Maillard, J.-P.; Bezard, B.; Cottaz, C.; Kleiner, I.

    2000-10-01

    In december 1995, the Galileo Probe fell into Jupiter's atmosphere. From the analysis of its radio signal, Folkner et al (1998) determined a Jovian N/H ratio equal to 4 times solar. This measurement has shaken the commonly accepted value of a solar N/H ratio. Since the N/H ratio plays an important role in the formation scenarios of Jupiter, we wanted to confirm or infirm the Galileo findings. To do so, we observed Jupiter in the 5-μ m hot spots, that gave an opportunity to probe deep in the jovian atmosphere (7 bar). We used the Fourier Transform Spectrometer (FTS) mounted on the Canada-France-Hawaii Telescope (CFHT), providing high spectral resolution Δ ν =0.1 cm-1. Between 25-28 September 1999, we observed 3 different hot spots between 1800 and 2200 cm-1. The terrestrial gaseous absorptions were removed by fitting a synthetic spectrum to the observed spectrum, and then dividing the observations by the synthetic spectrum. To analyse the jovian spectrum we used the NH3 line positions and intensities newly predicted by Cottaz et al (2000). The wavenumber range covered by the FTS allowed us to determine three points on the ammonia vertical distribution at approximately 2, 4 and 7 bar. We found that the NH3 mixing ratio strongly increases between 2 and 4 bar, and moderatly increases between 4 and 7 bar, as was found by the Galileo Probe. At 7 bar, our prefered N/H value lies between 3 and 5 times solar.

  2. Design and synthesis of indolo[2,3-a]quinolizin-7-one inhibitors of the ZipA-FtsZ interaction.

    PubMed

    Jennings, Lee D; Foreman, Ken W; Rush, Thomas S; Tsao, Desiree H H; Mosyak, Lidia; Li, Yuanhong; Sukhdeo, Mohani N; Ding, Weidong; Dushin, Elizabeth G; Kenny, Cynthia Hess; Moghazeh, Soraya L; Petersen, Peter J; Ruzin, Alexey V; Tuckman, Margareta; Sutherland, Alan G

    2004-03-22

    The binding of FtsZ to ZipA is a potential target for antibacterial therapy. Based on a small molecule inhibitor of the ZipA-FtsZ interaction, a parallel synthesis of small molecules was initiated which targeted a key region of ZipA involved in FtsZ binding. The X-ray crystal structure of one of these molecules complexed with ZipA was solved. The structure revealed an unexpected binding mode, facilitated by desolvation of a loosely bound surface water.

  3. In-vitro evaluation of copper nanoparticles cytotoxicity on prostate cancer cell lines and their antioxidant, sensing and catalytic activity: One-pot green approach.

    PubMed

    Prasad, P Reddy; Kanchi, S; Naidoo, E B

    2016-08-01

    In this study, Broccoli green extract was reported as a green and environmental friendly precursor for the one-pot biosynthesis of copper nanoparticles. The synthesized nanoparticles were characterized by UV-vis, FTIR, TEM, DLS, XRD and cyclic voltammetry. The TEM and DLS results showed that the NPs are in spherical and monodispersed with an average particle size of ~4.8nm. The FTIR results confirmed the occurrence of bioactive functional groups that are responsible for reducing cupric sulphate to copper ions. The UV-vis spectrophotometry was used for catalytic reduction of 4-nitrophenol and its dynamic reaction in Britton-Robinson buffer solution. This catalytic activity was further supported with methylene blue and methyl red dyes degradation. The nanocatalyst can be recovered from the reaction mixture and reused many times with none vital loss of catalytic activity. The Broccoli green extract modified copper nanoparticles coated on screen printing electrode laid a new sensing platform and has an excellent electrocatalytic activity. Furthermore, surface modified CuNPs with Broccoli green extract exhibited no cytotoxicity at the concentration ranging from 0.5 to 1.5μM on the prostate cancer (PC-3) cell lines. The maximum scavenging % of Broccoli green extract modified CuNPs was found to be >70.50% at the concentration of 0.25mM against 1,1-diphenyl-2-picrylhydrazyl.

  4. Spectrophotometric evaluation of surface morphology dependent catalytic activity of biosynthesized silver and gold nanoparticles using UV-vis spectra: A comparative kinetic study

    NASA Astrophysics Data System (ADS)

    Ankamwar, Balaprasad; Kamble, Vaishali; Sur, Ujjal Kumar; Santra, Chittaranjan

    2016-03-01

    The development of eco-friendly and cost-effective synthetic protocol for the preparation of nanomaterials, especially metal nanoparticles is an emerging area of research in nanotechnology. These metal nanoparticles, especially silver can play a crucial role in various catalytic reactions. The biosynthesized silver nanoparticles described here was very stable up to 6 months and can be further exploited as an effective catalyst in the chemical reduction of 4-nitrophenol to 4-aminophenol. The silver nanoparticles were utilized as an efficient surface-enhanced Raman scattering (SERS) active substrate using Rhodamine 6G as Raman probe molecule. We have also carried out systematic comparative studies on the catalytic efficiency of both silver and gold nanoparticles using UV-vis spectra to monitor the above reaction spectrophotometrically. We find that the reaction follows pseudo-first order kinetics and the catalytic activity can be explained by a simple model based on Langmuir-Hinshelwood mechanism for heterogeneous catalysis. We also find that silver nanoparticles are more efficient as a catalyst compare to gold nanoparticles in the reduction of 4-nitrophenol to 4-aminophenol, which can be explained by the morphology of the nanoparticles as determined by transmission electron microscopy.

  5. Catalytic distillation process

    DOEpatents

    Smith, L.A. Jr.

    1982-06-22

    A method is described for conducting chemical reactions and fractionation of the reaction mixture comprising feeding reactants to a distillation column reactor into a feed zone and concurrently contacting the reactants with a fixed bed catalytic packing to concurrently carry out the reaction and fractionate the reaction mixture. For example, a method for preparing methyl tertiary butyl ether in high purity from a mixed feed stream of isobutene and normal butene comprising feeding the mixed feed stream to a distillation column reactor into a feed zone at the lower end of a distillation reaction zone, and methanol into the upper end of said distillation reaction zone, which is packed with a properly supported cationic ion exchange resin, contacting the C[sub 4] feed and methanol with the catalytic distillation packing to react methanol and isobutene, and concurrently fractionating the ether from the column below the catalytic zone and removing normal butene overhead above the catalytic zone.

  6. Catalytic distillation process

    DOEpatents

    Smith, Jr., Lawrence A.

    1982-01-01

    A method for conducting chemical reactions and fractionation of the reaction mixture comprising feeding reactants to a distillation column reactor into a feed zone and concurrently contacting the reactants with a fixed bed catalytic packing to concurrently carry out the reaction and fractionate the reaction mixture. For example, a method for preparing methyl tertiary butyl ether in high purity from a mixed feed stream of isobutene and normal butene comprising feeding the mixed feed stream to a distillation column reactor into a feed zone at the lower end of a distillation reaction zone, and methanol into the upper end of said distillation reaction zone, which is packed with a properly supported cationic ion exchange resin, contacting the C.sub.4 feed and methanol with the catalytic distillation packing to react methanol and isobutene, and concurrently fractionating the ether from the column below the catalytic zone and removing normal butene overhead above the catalytic zone.

  7. Evolution of catalytic function

    NASA Technical Reports Server (NTRS)

    Joyce, G. F.

    1993-01-01

    An RNA-based evolution system was constructed in the laboratory and used to develop RNA enzymes with novel catalytic function. By controlling the nature of the catalytic task that the molecules must perform in order to survive, it is possible to direct the evolving population toward the expression of some desired catalytic behavior. More recently, this system has been coupled to an in vitro translation procedure, raising the possibility of evolving protein enzymes in the laboratory to produce novel proteins with desired catalytic properties. The aim of this line of research is to reduce darwinian evolution, the fundamental process of biology, to a laboratory procedure that can be made to operate in the service of organic synthesis.

  8. Catalytic distillation structure

    DOEpatents

    Smith, L.A. Jr.

    1984-04-17

    Catalytic distillation structure is described for use in reaction distillation columns, and provides reaction sites and distillation structure consisting of a catalyst component and a resilient component intimately associated therewith. The resilient component has at least about 70 volume % open space and is present with the catalyst component in an amount such that the catalytic distillation structure consists of at least 10 volume % open space. 10 figs.

  9. The Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) FTS: Results From the 2012/13 Alaska Campaigns

    NASA Astrophysics Data System (ADS)

    kurosu, T. P.; Miller, C. E.; Dinardo, S.

    2013-12-01

    The Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) is an aircraft-based Earth Venture 1 mission to study the carbon balance of the Alaskan Arctic ecosystem, with a particular focus on carbon release from melting permafrost. Operating from its base in Fairbanks, AK, the CARVE aircraft covers a range of principle flight paths in the Alaskan interior, the Yukon River valley, and northern Alaska coast around Barrow and Dead Horse. Flight paths are chosen to maximize ecosystem variability and and cover burn-recovery/regrowth sequences. CARVE observations cover the Arctic Spring/Summer/Fall seasons, with multiple flights per season and principle flight paths. Science operations started in 05/2012 and are currently envisaged to continue until 2015. The CARVE suite of instruments includes flask measurements and in situ gas analyzers for CO2, CH4 and CO observations, an active/passive L-band radar for surface conditions (freeze/thaw state), and a three-band polarizing Fourier Transform Spectrometer (FTS) for column measurements of CO2, CH4, CO, and interfering species (e.g., H2O). The FTS covers the spectral regions of 4,200-4,900 cm-1 (CH4, CO), 5,800-6,400 cm-1 (CO2), and 12,900-13,200 cm-1 (O2), with a spectral resolution of 0.2 cm-1. Aircraft-based FTS science observations in Alaska have been performed since 23-05-2012. First-version data products from all CARVE instruments derived from observations during the 2012 campaign were publicly released earlier in 2013. The FTS has performed well during flight conditions, particularly with respect to vibration damping. Outstanding challenges include the need for improved spectral and radiometric calibration, as well as compensating for low signal-to-noise spectra acquired under Alaskan flight conditions. We present results from FTS column observations of CO2, CH4, and CO, observed during the 2012 and 2013 campaigns, including preliminary comparisons of CARVE FTS measurements with satellite observations of CO2

  10. Structural and Biochemical Studies Reveal a Putative FtsZ Recognition Site on the Z-ring Stabilizer ZapD

    PubMed Central

    Choi, Hwajung; Min, Kyungjin; Mikami, Bunzo; Yoon, Hye-Jin; Lee, Hyung Ho

    2016-01-01

    FtsZ, a tubulin homologue, is an essential protein of the Z-ring assembly in bacterial cell division. It consists of two domains, the N-terminal and C-terminal core domains, and has a conserved C-terminal tail region. Lateral interactions between FtsZ protofilaments and several Z-ring associated proteins (Zaps) are necessary for modulating Z-ring formation. ZapD, one of the positive regulators of Z-ring assembly, directly binds to the C-terminal tail of FtsZ and promotes stable Z-ring formation during cytokinesis. To gain structural and functional insights into how ZapD interacts with the C-terminal tail of FtsZ, we solved two crystal structures of ZapD proteins from Salmonella typhimurium (StZapD) and Escherichia coli (EcZapD) at a 2.6 and 3.1 Å resolution, respectively. Several conserved residues are clustered on the concave sides of the StZapD and EcZapD dimers, the suggested FtsZ binding site. Modeled structures of EcZapD-EcFtsZ and subsequent binding studies using bio-layer interferometry also identified the EcFtsZ binding site on EcZapD. The structural insights and the results of bio-layer interferometry assays suggest that the two FtsZ binding sites of ZapD dimer might be responsible for the binding of ZapD dimer to two protofilaments to hold them together. PMID:27871169

  11. Roles of Arabidopsis PARC6 in Coordination of the Chloroplast Division Complex and Negative Regulation of FtsZ Assembly1[OPEN

    PubMed Central

    Chen, Cheng; Froehlich, John E.; TerBush, Allan D.

    2016-01-01

    Chloroplast division is driven by the simultaneous constriction of the inner FtsZ ring (Z ring) and the outer DRP5B ring. The assembly and constriction of these rings in Arabidopsis (Arabidopsis thaliana) are coordinated partly through the inner envelope membrane protein ACCUMULATION AND REPLICATION OF CHLOROPLASTS6 (ARC6). Previously, we showed that PARC6 (PARALOG OF ARC6), also in the inner envelope membrane, negatively regulates FtsZ assembly and acts downstream of ARC6 to position the outer envelope membrane protein PLASTID DIVISION1 (PDV1), which functions together with its paralog PDV2 to recruit DYNAMIN-RELATED PROTEIN 5B (DRP5B) from a cytosolic pool to the outer envelope membrane. However, whether PARC6, like ARC6, also functions in coordination of the chloroplast division contractile complexes was unknown. Here, we report a detailed topological analysis of Arabidopsis PARC6, which shows that PARC6 has a single transmembrane domain and a topology resembling that of ARC6. The newly identified stromal region of PARC6 interacts not only with ARC3, a direct inhibitor of Z-ring assembly, but also with the Z-ring protein FtsZ2. Overexpression of PARC6 inhibits FtsZ assembly in Arabidopsis but not in a heterologous yeast system (Schizosaccharomyces pombe), suggesting that the negative regulation of FtsZ assembly by PARC6 is a consequence of its interaction with ARC3. A conserved carboxyl-terminal peptide in FtsZ2 mediates FtsZ2 interaction with both PARC6 and ARC6. Consistent with its role in the positioning of PDV1, the intermembrane space regions of PARC6 and PDV1 interact. These findings provide new insights into the functions of PARC6 and suggest that PARC6 coordinates the inner Z ring and outer DRP5B ring through interaction with FtsZ2 and PDV1 during chloroplast division. PMID:26527658

  12. FtsZ inhibition and redox modulation with one chemical scaffold: Potential use of dihydroquinolines against mycobacteria.

    PubMed

    Duggirala, Sridevi; Napoleon, John Victor; Nankar, Rakesh P; Senu Adeeba, V; Manheri, Muraleedharan K; Doble, Mukesh

    2016-11-10

    The dual effect of FtsZ inhibition and oxidative stress by a group of 1,2-dihydroquinolines that culminate in bactericidal effect on mycobacterium strains is demonstrated. They inhibited the non-pathogenic Mycobacterium smegmatis mc(2) 155 with MIC as low as 0.9 μg/mL and induced filamentation. Detailed studies revealed their ability to inhibit polymerization and GTPase activity of MtbFtsZ (Mycobacterial filamentous temperature sensitive Z) with an IC50 value of ∼40 μM. In addition to such target specific effects, these compounds exerted a global cellular effect by causing redox-imbalance that was evident from overproduction of ROS in treated cells. Such multi-targeting effect with one chemical scaffold has considerable significance in this era of emerging drug resistance and could offer promise in the development of new therapeutic agents against tuberculosis.

  13. FTS atlas of the Sun's spectrally resolved center-to-limb variation

    NASA Astrophysics Data System (ADS)

    Stenflo, J. O.

    2015-01-01

    The Sun's spectrum varies with center-to-limb distance, which is usually parameterized by μ = cosθ, where θ is the heliocentric angle. This variation is governed by the underlying temperature-density structure of the solar atmosphere. While the center-to-limb variation (CLV) of the continuous spectrum is well known and has been widely used for atmospheric modeling, there has been no systematic exploration of the spectrally resolved CLV. Here we make use of two spectral atlases recorded with the Fourier transform spectrometer (FTS) at the McMath-Pierce facility at Kitt Peak. One spectral atlas obtained 10 arcsec inside the solar limb was recorded in 1978-79 as part of the first survey of the Second Solar Spectrum, while the other atlas is the well used reference NSO/Kitt Peak FTS atlas for the disk center. Both atlases represent fully resolved spectra without any spectral stray light. We then construct an atlas of the limb/disk-center ratio between the two spectra over the wavelength range 4084-9950 Å. This ratio spectrum, which expresses the CLV amplitude relative to the continuum, is as richly structured as the intensity spectrum itself, but the line profiles differ greatly in both shape and amplitude. It is as if we are dealing with a new, unfamiliar spectrum of the Sun, distinctly different from both the intensity spectrum (which we here refer to with the acronym SS1) and the linear polarization of the Second Solar Spectrum (for which we use acronym SS2). In analogy we refer to the new ratio spectrum as SS3. While there is hardly any resemblance between SS3 and SS2, we are able to identify a non-linear mapping that can translate SS1 to SS3 in the case of weak to medium-strong spectral lines that are mainly formed in LTE (being directly coupled to the local temperature-density structure). This non-linear mapping is successfully modeled in terms of two free parameters that are found to vary approximately linearly over the entire wavelength range covered. These

  14. The FTS atomic spectrum tool (FAST) for rapid analysis of line spectra

    NASA Astrophysics Data System (ADS)

    Ruffoni, M. P.

    2013-07-01

    The FTS Atomic Spectrum Tool (FAST) is an interactive graphical program designed to simplify the analysis of atomic emission line spectra obtained from Fourier transform spectrometers. Calculated, predicted and/or known experimental line parameters are loaded alongside experimentally observed spectral line profiles for easy comparison between new experimental data and existing results. Many such line profiles, which could span numerous spectra, may be viewed simultaneously to help the user detect problems from line blending or self-absorption. Once the user has determined that their experimental line profile fits are good, a key feature of FAST is the ability to calculate atomic branching fractions, transition probabilities, and oscillator strengths-and their uncertainties-which is not provided by existing analysis packages. Program SummaryProgram title: FAST: The FTS Atomic Spectrum Tool Catalogue identifier: AEOW_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEOW_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License version 3 No. of lines in distributed program, including test data, etc.: 293058 No. of bytes in distributed program, including test data, etc.: 13809509 Distribution format: tar.gz Programming language: C++. Computer: Intel x86-based systems. Operating system: Linux/Unix/Windows. RAM: 8 MB minimum. About 50-200 MB for a typical analysis. Classification: 2.2, 2.3, 21.2. Nature of problem: Visualisation of atomic line spectra including the comparison of theoretical line parameters with experimental atomic line profiles. Accurate intensity calibration of experimental spectra, and the determination of observed relative line intensities that are needed for calculating atomic branching fractions and oscillator strengths. Solution method: FAST is centred around a graphical interface, where a user may view sets of experimental line profiles and compare

  15. Function of the Borrelia burgdorferi FtsH Homolog Is Essential for Viability both In Vitro and In Vivo and Independent of HflK/C

    PubMed Central

    Chu, Chen-Yi; Bestor, Aaron; Hansen, Bryan; Lin, Tao; Gao, Lihui; Rosa, Patricia A.

    2016-01-01

    ABSTRACT In many bacteria, the FtsH protease and its modulators, HflK and HflC, form a large protein complex that contributes to both membrane protein quality control and regulation of the cellular response to environmental stress. Both activities are crucial to the Lyme disease pathogen Borrelia burgdorferi, which depends on membrane functions, such as motility, protein transport, and cell signaling, to respond to rapid changes in its environment. Using an inducible system, we demonstrate that FtsH production is essential for both mouse and tick infectivity and for in vitro growth of B. burgdorferi. FtsH depletion in B. burgdorferi cells resulted in membrane deformation and cell death. Overproduction of the protease did not have any detectable adverse effects on B. burgdorferi growth in vitro, suggesting that excess FtsH does not proteolytically overwhelm its substrates. In contrast, we did not observe any phenotype for cells lacking the protease modulators HflK and HflC (ΔHflK/C), although we examined morphology, growth rate, growth under stress conditions, and the complete mouse-tick infectious cycle. Our results demonstrate that FtsH provides an essential function in the life cycle of the obligate pathogen B. burgdorferi but that HflK and HflC do not detectably affect FtsH function. PMID:27094329

  16. Comparison of small molecule inhibitors of the bacterial cell division protein FtsZ and identification of a reliable cross-species inhibitor.

    PubMed

    Anderson, David E; Kim, Michelle B; Moore, Jared T; O'Brien, Terrence E; Sorto, Nohemy A; Grove, Charles I; Lackner, Laura L; Ames, James B; Shaw, Jared T

    2012-11-16

    FtsZ is a guanosine triphosphatase (GTPase) that mediates cytokinesis in bacteria. FtsZ is homologous in structure to eukaryotic tubulin and polymerizes in a similar head-to-tail fashion. The study of tubulin's function in eukaryotic cells has benefited greatly from specific and potent small molecule inhibitors, including colchicine and taxol. Although many small molecule inhibitors of FtsZ have been reported, none has emerged as a generally useful probe for modulating bacterial cell division. With the goal of establishing a useful and reliable small molecule inhibitor of FtsZ, a broad biochemical cross-comparison of reported FtsZ inhibitors was undertaken. Several of these molecules, including phenolic natural products, are unselective inhibitors that seem to derive their activity from the formation of microscopic colloids or aggregates. Other compounds, including the natural product viriditoxin and the drug development candidate PC190723, exhibit no inhibition of GTPase activity using protocols in this work or under published conditions. Of the compounds studied, only zantrin Z3 exhibits good levels of inhibition, maintains activity under conditions that disrupt small molecule aggregates, and provides a platform for exploration of structure-activity relationships (SAR). Preliminary SAR studies have identified slight modifications to the two side chains of this structure that modulate the inhibitory activity of zantrin Z3. Collectively, these studies will help focus future investigations toward the establishment of probes for FtsZ that fill the roles of colchicine and taxol in studies of tubulin.

  17. Domain folding and flexibility of Escherichia coli FtsZ determined by tryptophan site-directed mutagenesis

    PubMed Central

    Díaz-Espinoza, Rodrigo; Garcés, Andrea P.; Arbildua, José J.; Montecinos, Felipe; Brunet, Juan E.; Lagos, Rosalba; Monasterio, Octavio

    2007-01-01

    FtsZ has two domains, the amino GTPase domain with a Rossmann fold, and the carboxyl domain that resembles the chorismate mutase fold. Bioinformatics analyses suggest that the interdomain interaction is stronger than the interaction of the protofilament longitudinal interfaces. Crystal B factor analysis of FtsZ and detected conformational changes suggest a connection between these domains. The unfolding/folding characteristics of each domain of FtsZ were tested by introducing tryptophans into the flexible region of the amino (F135W) and the carboxyl (F275W and I294W) domains. As a control, the mutation F40W was introduced in a more rigid part of the amino domain. These mutants showed a native-like structure with denaturation and renaturation curves similar to wild type. However, the I294W mutant showed a strong loss of functionality, both in vivo and in vitro when compared to the other mutants. The functionality was recovered with the double mutant I294W/F275A, which showed full in vivo complementation with a slight increment of in vitro GTPase activity with respect to the single mutant. The formation of a stabilizing aromatic interaction involving a stacking between the tryptophan introduced at position 294 and phenylalanine 275 could account for these results. Folding/unfolding of these mutants induced by guanidinium chloride was compatible with a mechanism in which both domains within the protein show the same stability during FtsZ denaturation and renaturation, probably because of strong interface interactions. PMID:17656575

  18. Quantification and evaluation of kinetic bio-catalytic pathway of horseradish peroxidase in an electron mediated reaction system and its applications in plant extracts

    NASA Astrophysics Data System (ADS)

    Krishna, Honnur; Nagaraja, Padmarajaiah; Shivakumar, Anantharaman; Chamaraja, Nelligere A.; Aradhana, Narayan

    2013-02-01

    The intermolecular coupling of 2,5-dimethoxyaniline (DMA) as mediated electron transfer reaction in presence of H2O2 and peroxidase in acetate buffer of pH 4.2 resulting green colored product having maximum absorption at λmax = 740 nm was investigated by spectrophotometer. Under optimum conditions, linearity range for the quantification of H2O2 was 2.0-288.0 μM and for peroxidase were 0.59-9.46 and 0.443-9.46 nM by kinetic and fixed-time method, respectively. The catalytic efficiency and catalytic power were KeffD = 2.354 × 105 M-1 min-1 and KpowD = 4.59 × 10-4 min-1, respectively. From the plot of d(1/Do) vs d(1/Vo) and d(1/Ho) vs d(1/Vo), Michaelis-Menten constants for DMA and H2O2were found that KmD = 1458 μM and KmHO = 301 μM. Applicability of the method was tested for peroxidase activity in some plant extracts and compared with guaiacol/peroxidase system. Regarding superiority of the method, it is suggested that DMA/peroxidase system can be a better hydrogen donor for HRP assay than guaiacol system as evident from kinetic data.

  19. Catalytic evaluation on liquid phase oxidation of vanillyl alcohol using air and H2O2 over mesoporous Cu-Ti composite oxide

    NASA Astrophysics Data System (ADS)

    Saha, Subrata; Hamid, Sharifah Bee Abd; Ali, Tammar Hussein

    2017-02-01

    A mesoporous, highly crystalline Cu-Ti composite oxide catalyst was prepared via facile, simple and modified solution method varying Cu and Ti ratio for selective liquid phase oxidation of vanillyl alcohol. Various spectroscopic procedures were employed to systematically characterize the catalyst structural and physicochemical properties. The defect chemistry of the catalyst was confirmed from the presence of surface defects revealed through HRTEM imagery between the TiO2 (101) and Cu3TiO4 (012) planes, complemented by the XRD profiling. Further, presence of oxygen vacancy evidenced by O 1s XPS spectra were observed on the catalyst surface. Moreover, the stoichiometry of Cu and Ti in the catalyst synthesis protocol was notably found to be the vital determinant to alter the redox properties of Cu-Ti composite oxide catalyst supported by H2-TPR. O2-TPD analysis. Moreover, a rational investigation was done using different oxidants such as air and H2O2 with variables reaction conditions. The catalyst was active for liquid phase oxidation of vanillyl alcohol to vanillin with performance of 66% conversion and 71% selectivity using H2O2 in base free condition. And also, catalytic activity was significantly improved by 94% conversion with 86% selectivity to vanillin in liquid phase aerobic oxidation at the optimum reaction conditions. To expand the superiority of the catalyst, three times reusability study was also examined with appreciable catalytic activity.

  20. Metal-dependent SpoIIE oligomerization stabilizes FtsZ during asymmetric division in Bacillus subtilis

    PubMed Central

    Król, Ewa; de Sousa Borges, Anabela; Kopacz, Malgorzata

    2017-01-01

    SpoIIE is a bifunctional protein involved in asymmetric septum formation and in activation of the forespore compartment-specific transcription factor σF through dephosphorylation of SpoIIAA-P. The phosphatase activity of SpoIIE requires Mn2+ as a metal cofactor. Here, we show that the presence of a metal cofactor also influences SpoIIE oligomerization and asymmetric septum formation. Absence of Mn2+ from sporulation medium results in a delay of the formation of polar FtsZ-rings, similar to a spoIIE null mutant. We purified the entire cytoplasmic part of the SpoIIE protein, and show that the protein copurifies with bound metals. Metal binding both stimulates SpoIIE oligomerization, and results in the formation of larger oligomeric structures. The presence of SpoIIE oligomers reduces FtsZ GTP hydrolysis activity and stabilizes FtsZ polymers in a light scattering assay. Combined, these results indicate that metal binding is not just required for SpoIIE phosphatase activity but also is important for SpoIIE's role in asymmetric septum formation. PMID:28358838

  1. Validation of first chemistry mode retrieval results from new limb-imaging FTS GLORIA with correlative MIPAS-STR observations

    NASA Astrophysics Data System (ADS)

    Woiwode, W.; Suminska-Ebersoldt, O.; Oelhaf, H.; Höpfner, M.; Belyaev, G. V.; Ebersoldt, A.; Friedl-Vallon, F.; Grooß, J.-U.; Gulde, T.; Kaufmann, M.; Kleinert, A.; Krämer, M.; Kretschmer, E.; Kulessa, T.; Maucher, G.; Neubert, T.; Piesch, C.; Preusse, P.; Riese, M.; Rongen, H.; Sartorius, C.; Schardt, G.; Schönfeld, A.; Schuettemeyer, D.; Sha, M. K.; Stroh, F.; Ungermann, J.; Volk, C. M.; Orphal, J.

    2014-12-01

    We report first chemistry mode retrieval results from the new airborne limb-imaging infrared FTS (Fourier transform spectrometer) GLORIA and comparisons with observations by the conventional airborne limb-scanning infrared FTS MIPAS-STR. For GLORIA, the flights aboard the high-altitude research aircraft M55 Geophysica during the ESSenCe campaign (ESa Sounder Campaign 2011) were the very first in field deployment after several years of development. The simultaneous observations of GLORIA and MIPAS-STR during the flight on 16 December 2011 inside the polar vortex and under the conditions of optically partially transparent polar stratospheric clouds (PSCs) provided us the unique opportunity to compare the observations by two different infrared FTS generations directly. The retrieval results of temperature, HNO3, O3, H2O, CFC-11 and CFC-12 show reasonable agreement of GLORIA with MIPAS-STR and collocated in-situ observations. For the horizontally binned hyperspectral limb-images, the GLORIA sampling outnumbered the horizontal cross-track sampling of MIPAS-STR by up to one order of magnitude. Depending on the target parameter, typical vertical resolutions of 0.5 to 2.0 km were obtained for GLORIA and are typically by factors of 2 to 4 better compared to MIPAS-STR. While the improvement of the performance, characterisation and data processing of GLORIA are subject of ongoing work, the presented first results already demonstrate the considerable gain in sampling and vertical resolution achieved with GLORIA.

  2. Identification of FtsW as a transporter of lipid-linked cell wall precursors across the membrane.

    PubMed

    Mohammadi, Tamimount; van Dam, Vincent; Sijbrandi, Robert; Vernet, Thierry; Zapun, André; Bouhss, Ahmed; Diepeveen-de Bruin, Marlies; Nguyen-Distèche, Martine; de Kruijff, Ben; Breukink, Eefjan

    2011-04-20

    Bacterial cell growth necessitates synthesis of peptidoglycan. Assembly of this major constituent of the bacterial cell wall is a multistep process starting in the cytoplasm and ending in the exterior cell surface. The intracellular part of the pathway results in the production of the membrane-anchored cell wall precursor, Lipid II. After synthesis this lipid intermediate is translocated across the cell membrane. The translocation (flipping) step of Lipid II was demonstrated to require a specific protein (flippase). Here, we show that the integral membrane protein FtsW, an essential protein of the bacterial division machinery, is a transporter of the lipid-linked peptidoglycan precursors across the cytoplasmic membrane. Using Escherichia coli membrane vesicles we found that transport of Lipid II requires the presence of FtsW, and purified FtsW induced the transbilayer movement of Lipid II in model membranes. This study provides the first biochemical evidence for the involvement of an essential protein in the transport of lipid-linked cell wall precursors across biogenic membranes.

  3. Catalytic nanoporous membranes

    DOEpatents

    Pellin, Michael J; Hryn, John N; Elam, Jeffrey W

    2013-08-27

    A nanoporous catalytic membrane which displays several unique features Including pores which can go through the entire thickness of the membrane. The membrane has a higher catalytic and product selectivity than conventional catalysts. Anodic aluminum oxide (AAO) membranes serve as the catalyst substrate. This substrate is then subjected to Atomic Layer Deposition (ALD), which allows the controlled narrowing of the pores from 40 nm to 10 nm in the substrate by deposition of a preparatory material. Subsequent deposition of a catalytic layer on the inner surfaces of the pores reduces pore sizes to less than 10 nm and allows for a higher degree of reaction selectivity. The small pore sizes allow control over which molecules enter the pores, and the flow-through feature can allow for partial oxidation of reactant species as opposed to complete oxidation. A nanoporous separation membrane, produced by ALD is also provided for use in gaseous and liquid separations. The membrane has a high flow rate of material with 100% selectivity. Also provided is a method for producing a catalytic membrane having flow-through pores and discreet catalytic clusters adhering to the inside surfaces of the pores.

  4. Transient catalytic combustor model

    NASA Technical Reports Server (NTRS)

    Tien, J. S.

    1981-01-01

    A quasi-steady gas phase and thermally thin substrate model is used to analyze the transient behavior of catalytic monolith combustors in fuel lean operation. The combustor response delay is due to the substrate thermal inertia. Fast response is favored by thin substrate, short catalytic bed length, high combustor inlet and final temperatures, and small gas channel diameters. The calculated gas and substrate temperature time history at different axial positions provides an understanding of how the catalytic combustor responds to an upstream condition change. The computed results also suggest that the gas residence times in the catalytic bed in the after bed space are correlatable with the nondimensional combustor response time. The model also performs steady state combustion calculations; and the computed steady state emission characteristics show agreement with available experimental data in the range of parameters covered. A catalytic combustor design for automotive gas turbine engine which has reasonably fast response ( 1 second) and can satisfy the emission goals in an acceptable total combustor length is possible.

  5. Transient catalytic combustor model

    NASA Astrophysics Data System (ADS)

    Tien, J. S.

    1981-05-01

    A quasi-steady gas phase and thermally thin substrate model is used to analyze the transient behavior of catalytic monolith combustors in fuel lean operation. The combustor response delay is due to the substrate thermal inertia. Fast response is favored by thin substrate, short catalytic bed length, high combustor inlet and final temperatures, and small gas channel diameters. The calculated gas and substrate temperature time history at different axial positions provides an understanding of how the catalytic combustor responds to an upstream condition change. The computed results also suggest that the gas residence times in the catalytic bed in the after bed space are correlatable with the nondimensional combustor response time. The model also performs steady state combustion calculations; and the computed steady state emission characteristics show agreement with available experimental data in the range of parameters covered. A catalytic combustor design for automotive gas turbine engine which has reasonably fast response ( 1 second) and can satisfy the emission goals in an acceptable total combustor length is possible.

  6. Calibration of a TCCON FTS at Armstrong Flight Research Center (AFRC) Using Multiple Airborne Profiles

    NASA Astrophysics Data System (ADS)

    Hillyard, P. W.; Iraci, L. T.; Podolske, J. R.; Tanaka, T.; Yates, E. L.; Roehl, C. M.; Wunch, D.; Wennberg, P. O.; Albertson, R. T.; Blake, D. R.; Meinardi, S.; Marrero, J. E.; Yang, M. M.; Beyersdorf, A. J.; Wofsy, S. C.; Pittman, J. V.; Daube, B. C.

    2014-12-01

    Satellite missions including GOSAT, OCO-2 and ASCENDS measure column abundances of greenhouse gases. It is crucial to have calibrated ground-based measurements to which these satellite measurements can compare and refine their retrieval algorithms. To this end, a Fourier Transform Spectrometer has been deployed to the Armstrong Flight Research Center (AFRC) in Edwards, CA as a member of the Total Carbon Column Observing Network (TCCON). This location was selected due to its proximity to a highly reflective lakebed. Such surfaces have proven to be difficult for accurate satellite retrievals. This facility has been in operation since July 2013. The data collected to date at this site will be presented. In order to ensure the validity of the measurements made at this site, multiple vertical profiles have been performed using the Alpha jet, DC-8, and ER-2 as part of the AJAX (ongoing), SEAC4RS (August 2013), and SARP (July 2014) field campaigns. The integrated in-situ vertical profiles for CO2 and CH4 have been analyzed and compared with the TCCON FTS measurements, where good agreement between TCCON data and vertically-integrated aircraft in-situ data has been found.

  7. Depolymerization dynamics of individual filaments of bacterial cytoskeletal protein FtsZ.

    PubMed

    Mateos-Gil, Pablo; Paez, Alfonso; Hörger, Ines; Rivas, Germán; Vicente, Miguel; Tarazona, Pedro; Vélez, Marisela

    2012-05-22

    We report observation and analysis of the depolymerization filaments of the bacterial cytoskeletal protein FtsZ (filament temperature-sensitive Z) formed on a mica surface. At low concentration, proteins adsorbed on the surface polymerize forming curved filaments that close into rings that remain stable for some time before opening irreversibly and fully depolymerizing. The distribution of ring lifetimes (T) as a function of length (N), shows that the rate of ring aperture correlates with filament length. If this ring lifetime is expressed as a bond survival time, (T(b) ≡ NT), this correlation is abolished, indicating that these rupture events occur randomly and independently at each monomer interface. After rings open irreversibly, depolymerization of the remaining filaments is fast, but can be slowed down and followed using a nonhydrolyzing GTP analogue. The histogram of depolymerization velocities of individual filaments has an asymmetric distribution that can be fit with a computer model that assumes two rupture rates, a slow one similar to the one observed for ring aperture, affecting monomers in the central part of the filaments, and a faster one affecting monomers closer to the open ends. From the quantitative analysis, we conclude that the depolymerization rate is affected both by nucleotide hydrolysis rate and by its exchange along the filament, that all monomer interfaces are equally competent for hydrolysis, although depolymerization is faster at the open ends than in central filament regions, and that all monomer-monomer interactions, regardless of the nucleotide present, can adopt a curved configuration.

  8. Depolymerization dynamics of individual filaments of bacterial cytoskeletal protein FtsZ

    PubMed Central

    Mateos-Gil, Pablo; Paez, Alfonso; Hörger, Ines; Rivas, Germán; Vicente, Miguel; Tarazona, Pedro; Vélez, Marisela

    2012-01-01

    We report observation and analysis of the depolymerization filaments of the bacterial cytoskeletal protein FtsZ (filament temperature-sensitive Z) formed on a mica surface. At low concentration, proteins adsorbed on the surface polymerize forming curved filaments that close into rings that remain stable for some time before opening irreversibly and fully depolymerizing. The distribution of ring lifetimes (T) as a function of length (N), shows that the rate of ring aperture correlates with filament length. If this ring lifetime is expressed as a bond survival time, (Tb ≡ NT), this correlation is abolished, indicating that these rupture events occur randomly and independently at each monomer interface. After rings open irreversibly, depolymerization of the remaining filaments is fast, but can be slowed down and followed using a nonhydrolyzing GTP analogue. The histogram of depolymerization velocities of individual filaments has an asymmetric distribution that can be fit with a computer model that assumes two rupture rates, a slow one similar to the one observed for ring aperture, affecting monomers in the central part of the filaments, and a faster one affecting monomers closer to the open ends. From the quantitative analysis, we conclude that the depolymerization rate is affected both by nucleotide hydrolysis rate and by its exchange along the filament, that all monomer interfaces are equally competent for hydrolysis, although depolymerization is faster at the open ends than in central filament regions, and that all monomer–monomer interactions, regardless of the nucleotide present, can adopt a curved configuration. PMID:22566654

  9. FTS Spectra from the Mayall 4-m Telescope, 1975-1995

    NASA Astrophysics Data System (ADS)

    Pilachowski, Catherine A.; Hinkle, Kenneth H.; Young, Michael; Dennis, Harold; Gopu, Arvind; Henschel, Robert; Hayashi, Soichi

    2017-01-01

    The complete archive of spectra obtained with the Fourier Transform Spectrometers in use at the Mayall 4m telescope at the Kitt Peak National Observatory from 1975 through 1995 is now available to the community. The archive is hosted at Indiana University Bloomington, and includes nearly 10,000 individual spectra of more than 800 different astronomical sources. The FTS produced spectra in the wavelength regime from roughly 0.9 to 5 microns (11,000 to 2000 cm-1), mostly at relatively high spectral resolution. The archive can be searched to identify specific spectra of interest, and the spectra can be viewed online and downloaded in FITS format for analysis. Once a spectrum of interest has been identified, all spectra taken on the same date are provided to allow users to identify appropriate hot star spectra for telluric line division.The archive can be accessed on the web at https://sparc.sca.iu.edu.

  10. Phytochemicals as inhibitors of bacterial cell division protein FtsZ: coumarins are promising candidates.

    PubMed

    Duggirala, Sridevi; Nankar, Rakesh P; Rajendran, Selvakumar; Doble, Mukesh

    2014-09-01

    Naturally occurring phytochemicals with reported antibacterial activity were screened for their ability to inhibit the bacterial cell division protein Escherichia coli FtsZ. Among the representative compounds, coumarins inhibit the GTPase and polymerization activities of this protein effectively. Further screening with ten coumarin analogs we identified two promising candidates, scopoletin and daphnetin. The former is found to inhibit the GTPase activity of the protein in a noncompetitive manner. Docking of these coumarins with the modeled protein indicate that they bind to T7 loop, which is different from the GTP-binding site (active site), thereby supporting the experimental data. Lowest binding energy is obtained with scopoletin. 3D QSAR indicates the need for groups such as hydroxyl, diethyl, or dimethyl amino in the 7th carbon for enhanced activity. None of the coumarins exhibited cytotoxicity against NIH/3T3 and human embryonic kidney cell lines. The length of Bacillus subtilis increases in the presence of these compounds probably due to the lack of septum formation. Results of this study indicate the role of coumarins in halting the first step of bacterial cell division process.

  11. Drug discovery targeting cell division proteins, microtubules and FtsZ.

    PubMed

    Ojima, Iwao; Kumar, Kunal; Awasthi, Divya; Vineberg, Jacob G

    2014-09-15

    Eukaryotic cell division or cytokinesis has been a major target for anticancer drug discovery. After the huge success of paclitaxel and docetaxel, microtubule-stabilizing agents (MSAs) appear to have gained a premier status in the discovery of next-generation anticancer agents. However, the drug resistance caused by MDR, point mutations, and overexpression of tubulin subtypes, etc., is a serious issue associated with these agents. Accordingly, the discovery and development of new-generation MSAs that can obviate various drug resistances has a significant meaning. In sharp contrast, prokaryotic cell division has been largely unexploited for the discovery and development of antibacterial drugs. However, recent studies on the mechanism of bacterial cytokinesis revealed that the most abundant and highly conserved cell division protein, FtsZ, would be an excellent new target for the drug discovery of next-generation antibacterial agents that can circumvent drug-resistances to the commonly used drugs for tuberculosis, MRSA and other infections. This review describes an account of our research on these two fronts in drug discovery, targeting eukaryotic as well as prokaryotic cell division.

  12. Atmospheric composition and thermodynamic retrievals from the ARIES airborne FTS system - Part 1: Technical aspects and simulated capability

    NASA Astrophysics Data System (ADS)

    Illingworth, S. M.; Allen, G.; Newman, S.; Vance, A.; Marenco, F.; Harlow, R. C.; Taylor, J.; Moore, D. P.; Remedios, J. J.

    2013-12-01

    In this study we present an assessment of the retrieval capability of the Airborne Research Interferometer Evaluation System (ARIES); an airborne remote sensing Fourier Transform Spectrometer (FTS) operated on the UK Facility for Airborne Atmospheric Measurement (FAAM) aircraft. Simulated optimally-estimated-retrievals of partial column trace gas concentrations, and thermodynamic vertical profiles throughout the troposphere and planetary boundary layer have been performed here for simulated infrared spectra representative of the ARIES system. We also describe the operational and technical aspects of the pre-processing necessary for routine retrieval from the FAAM platform and the selection and construction of a priori information. As exemplars of the capability of the ARIES retrieval system, simulated retrievals of temperature, water vapour (H2O), carbon monoxide (CO), ozone (O3), and methane (CH4), and their corresponding sources of error and potential vertical sensitivity, are discussed for ARIES scenes across typical global environments. The maximum Degrees of Freedom for Signal (DOFS) for the retrievals, assuming a flight altitude of 7 km, were: 3.99, 2.97, 0.85, 0.96, and 1.45 for temperature, H2O, CO, O3, and CH4, respectively for the a priori constraints specified. Retrievals of temperature display significant vertical sensitivity (DOFS in the range 2.6 to 4.0 across the altitude range) as well as excellent simulated accuracy, with the vertical sensitivity for H2O also extending to lower altitudes (DOFS ranging from 1.6 to 3.0). It was found that the maximum sensitivity for CO, O3, and CH4 was approximately 1-2 km below the simulated altitudes in all scenarios. Comparisons of retrieved and simulated-truth partial atmospheric columns are used to assess the capability of the ARIES measurement system. Maximum mean biases (and bias standard deviations) in partial columns (i.e. below aircraft total columns) were found to be: +0.06 (±0.02 at 1σ) %, +3.95 (±3

  13. Atmospheric composition and thermodynamic retrievals from the ARIES airborne FTS system - Part 1: Technical aspects and simulated capability

    NASA Astrophysics Data System (ADS)

    Illingworth, S. M.; Allen, G.; Newman, S.; Vance, A.; Marenco, F.; Harlow, R. C.; Taylor, J.; Moore, D. P.; Remedios, J. J.

    2014-04-01

    In this study we present an assessment of the retrieval capability of the Airborne Research Interferometer Evaluation System (ARIES): an airborne remote-sensing Fourier transform spectrometer (FTS) operated on the UK Facility for Airborne Atmospheric Measurement (FAAM) aircraft. Simulated maximum a posteriori retrievals of partial column trace gas concentrations, and thermodynamic vertical profiles throughout the troposphere and planetary boundary layer have been performed here for simulated infrared spectra representative of the ARIES system operating in the nadir-viewing geometry. We also describe the operational and technical aspects of the pre-processing necessary for routine retrieval from the FAAM platform and the selection and construction of a priori information. As exemplars of the capability of the ARIES retrieval system, simulated retrievals of temperature, water vapour (H2O), carbon monoxide (CO), ozone (O3), and methane (CH4), and their corresponding sources of error and potential vertical sensitivity, are discussed for ARIES scenes across typical global environments. The maximum Degrees of Freedom for Signal (DOFS) for the retrievals, assuming a flight altitude of 7 km, were 3.99, 2.97, 0.85, 0.96, and 1.45 for temperature, H2O, CO, O3, and CH4, respectively, for the a priori constraints specified. Retrievals of temperature display significant vertical sensitivity (DOFS in the range 2.6 to 4.0 across the altitude range) as well as excellent simulated accuracy, with the vertical sensitivity for H2O also extending to lower altitudes (DOFS ranging from 1.6 to 3.0). It was found that the maximum sensitivity for CO, O3, and CH4 was approximately 1-2 km below the simulated altitudes in all scenarios. Comparisons of retrieved and simulated-truth partial atmospheric columns are used to assess the capability of the ARIES measurement system. Maximum mean biases (and bias standard deviations) in partial columns (i.e. below aircraft total columns) were found to

  14. PSC and cirrus cloud detection over the high latitudes using thermal infrared spectra observed by TANSO-FTS/GOSAT

    NASA Astrophysics Data System (ADS)

    Someya, Yu; Imasu, Ryoichi; Shiomi, Kei; Saito, Naoko; Ota, Yoshifumi

    2013-04-01

    Greenhouse gases observation SATellite (GOSAT) was launched in 2009 and has been operating normally. However, the areas where the greenhouse gases can be retrieved are still limited in low and mid-latitudes. That is mainly because Cloud and Aerosol Imager (CAI) onboard GOSAT, which is used for cloud screening, covers only reflected sun light ranged from ultraviolet to near infrared, and has relatively low sensitivity to optically thin clouds such as cirrus clouds. On the other hand, Thermal And Near infrared Sensor for carbon Observation - Fourier Transform Spectrometer (TANSO-FTS) which is the main sensor of GOSAT has a thermal infrared band and expected to have ability to detect optically thin clouds. However, the cloud detection in high latitudes is not easy even thermal infrared band data are combined to CAI images because of lower surface and atmospheric temperature in this region. Furthermore, the situation is more complicated if the stratospheric clouds (PSCs), whose optical thickness is thinner than cirrus clouds, exist in lower stratosphere. In this study, we modified CO2 slicing method to detect optically thin clouds more stably by optimizing the pseudo-spectral channels which are defined as sets of actual spectral channels which have weighting function peaks in a same height range. This optimization is based on simulation studies using a multi-scattering radiative transfer code, Polarized radiance System for Transfer of Atmospheric Radiation (Pstar), for six types of atmospheric model profiles, i.e. tropical, mid-latitude summer, mid-latitude winter, high latitude summer, high latitude winter and Antarctic winter. The spectral range used are from 710cm-1 through 750cm-1, and cloud height, geometric thickness, optical thickness assumed in the simulations are 6-24km, 1km, 0.01-5.0, respectively. As a consequence, we found the best combination of pseudo-channels for each atmospheric condition, and the score on the cloud detection exceeds 90 % for all

  15. Catalytic membranes beckon

    SciTech Connect

    Caruana, C.M.

    1994-11-01

    Chemical engineers here and abroad are finding that the marriage of catalysts and membranes holds promise for faster and more specific reactions, although commercialization of this technology is several years away. Catalytic membrane reactors (CMRs) combine a heterogeneous catalyst and a permselective membrane. Reactions performed by CMRs provide higher yields--sometimes as much as 50% higher--because of better reaction selectivity--as opposed to separation selectivity. CMRs also can work at very high temperatures, using ceramic materials that would not be possible with organic membranes. Although the use of CMRs is not widespread presently, the development of new membranes--particularly porous ceramic and zeolite membranes--will increase the potential to improve yields of many catalytic processes. The paper discusses ongoing studies, metal and advanced materials for membranes, the need for continued research, hydrogen recovery from coal-derived gases, catalytic oxidation of sulfides, CMRs for water purification, and oxidative coupling of methane.

  16. Catalytic hydrotreating process

    DOEpatents

    Karr, Jr., Clarence; McCaskill, Kenneth B.

    1978-01-01

    Carbonaceous liquids boiling above about 300.degree. C such as tars, petroleum residuals, shale oils and coal-derived liquids are catalytically hydrotreated by introducing the carbonaceous liquid into a reaction zone at a temperature in the range of 300.degree. to 450.degree. C and a pressure in the range of 300 to 4000 psig for effecting contact between the carbonaceous liquid and a catalytic transition metal sulfide in the reaction zone as a layer on a hydrogen permeable transition metal substrate and then introducing hydrogen into the reaction zone by diffusing the hydrogen through the substrate to effect the hydrogenation of the carbonaceous liquid in the presence of the catalytic sulfide layer.

  17. Steam reformer with catalytic combustor

    NASA Technical Reports Server (NTRS)

    Voecks, Gerald E. (Inventor)

    1990-01-01

    A steam reformer is disclosed having an annular steam reforming catalyst bed formed by concentric cylinders and having a catalytic combustor located at the center of the innermost cylinder. Fuel is fed into the interior of the catalytic combustor and air is directed at the top of the combustor, creating a catalytic reaction which provides sufficient heat so as to maintain the catalytic reaction in the steam reforming catalyst bed. Alternatively, air is fed into the interior of the catalytic combustor and a fuel mixture is directed at the top. The catalytic combustor provides enhanced radiant and convective heat transfer to the reformer catalyst bed.

  18. Steam reformer with catalytic combustor

    DOEpatents

    Voecks, Gerald E.

    1990-03-20

    A steam reformer is disclosed having an annular steam reforming catalyst bed formed by concentric cylinders and having a catalytic combustor located at the center of the innermost cylinder. Fuel is fed into the interior of the catalytic combustor and air is directed at the top of the combustor, creating a catalytic reaction which provides sufficient heat so as to maintain the catalytic reaction in the steam reforming catalyst bed. Alternatively, air is fed into the interior of the catalytic combustor and a fuel mixture is directed at the top. The catalytic combustor provides enhanced radiant and convective heat transfer to the reformer catalyst bed.

  19. Evaluation of the catalytic properties of Burkholderia cepacia lipase immobilized on non-commercial matrices to be used in biodiesel synthesis from different feedstocks.

    PubMed

    Da Rós, Patricia C M; Silva, Guilherme A M; Mendes, Adriano A; Santos, Julio C; de Castro, Heizir F

    2010-07-01

    The objective of this work was to produce an immobilized form of lipase from Burkholderia cepacia (lipase PS) with advantageous catalytic properties and stability to be used in the ethanolysis of different feedstocks, mainly babassu oil and tallow beef. For this purpose lipase PS was immobilized on two different non-commercial matrices, such as inorganic matrix (niobium oxide, Nb(2)O(5)) and a hybrid matrix (polysiloxane-polyvinyl alcohol, SiO(2)-PVA) by covalent binding. The properties of free and immobilized enzymes were searched and compared. The best performance regarding all the analyzed parameters (biochemical properties, kinetic constants and thermal stability) were obtained when the lipase was immobilized on SiO(2)-PVA. The superiority of this immobilized system was also confirmed in the transesterification of both feedstocks, attained higher yields and productivities.

  20. SOFC system with integrated catalytic fuel processing

    NASA Astrophysics Data System (ADS)

    Finnerty, Caine; Tompsett, Geoff. A.; Kendall, Kevin; Ormerod, R. Mark

    In recent years, there has been much interest in the development of solid oxide fuel cell technology operating directly on hydrocarbon fuels. The development of a catalytic fuel processing system, which is integrated with the solid oxide fuel cell (SOFC) power source is outlined here. The catalytic device utilises a novel three-way catalytic system consisting of an in situ pre-reformer catalyst, the fuel cell anode catalyst and a platinum-based combustion catalyst. The three individual catalytic stages have been tested in a model catalytic microreactor. Both temperature-programmed and isothermal reaction techniques have been applied. Results from these experiments were used to design the demonstration SOFC unit. The apparatus used for catalytic characterisation can also perform in situ electrochemical measurements as described in previous papers [C.M. Finnerty, R.H. Cunningham, K. Kendall, R.M. Ormerod, Chem. Commun. (1998) 915-916; C.M. Finnerty, N.J. Coe, R.H. Cunningham, R.M. Ormerod, Catal. Today 46 (1998) 137-145]. This enabled the performance of the SOFC to be determined at a range of temperatures and reaction conditions, with current output of 290 mA cm -2 at 0.5 V, being recorded. Methane and butane have been evaluated as fuels. Thus, optimisation of the in situ partial oxidation pre-reforming catalyst was essential, with catalysts producing high H 2/CO ratios at reaction temperatures between 873 K and 1173 K being chosen. These included Ru and Ni/Mo-based catalysts. Hydrocarbon fuels were directly injected into the catalytic SOFC system. Microreactor measurements revealed the reaction mechanisms as the fuel was transported through the three-catalyst device. The demonstration system showed that the fuel processing could be successfully integrated with the SOFC stack.

  1. Catalytic coal liquefaction process

    DOEpatents

    Garg, D.; Sunder, S.

    1986-12-02

    An improved process for catalytic solvent refining or hydroliquefaction of non-anthracitic coal at elevated temperatures under hydrogen pressure in a solvent comprises using as catalyst a mixture of a 1,2- or 1,4-quinone and an alkaline compound, selected from ammonium, alkali metal, and alkaline earth metal oxides, hydroxides or salts of weak acids. 1 fig.

  2. Catalytic coal liquefaction process

    DOEpatents

    Garg, Diwakar; Sunder, Swaminathan

    1986-01-01

    An improved process for catalytic solvent refining or hydroliquefaction of non-anthracitic coal at elevated temperatures under hydrogen pressure in a solvent comprises using as catalyst a mixture of a 1,2- or 1,4-quinone and an alkaline compound, selected from ammonium, alkali metal, and alkaline earth metal oxides, hydroxides or salts of weak acids.

  3. Catalytic Combustor for Fuel-Flexible Turbine

    SciTech Connect

    W. R. Laster; E. Anoshkina

    2008-01-31

    Under the sponsorship of the U. S. Department of Energy's National Energy Technology Laboratory, Siemens Westinghouse has conducted a three-year program to develop an ultra low NOx, fuel flexible catalytic combustor for gas turbine application in IGCC. The program is defined in three phases: Phase 1 - Implementation Plan, Phase 2 - Validation Testing and Phase 3 - Field Testing. Both Phase 1 and Phase 2 of the program have been completed. In IGCC power plants, the gas turbine must be capable of operating on syngas as a primary fuel and an available back-up fuel such as natural gas. In this program the Rich Catalytic Lean (RCLTM) technology is being developed as an ultra low NOx combustor. In this concept, ultra low NOx is achieved by stabilizing a lean premix combustion process by using a catalytic reactor to oxidize a portion of the fuel, increasing the temperature of fuel/air mixture prior to the main combustion zone. In Phase 1, the feasibility of the catalytic concept for syngas application has been evaluated and the key technology issues identified. In Phase II the technology necessary for the application of the catalytic concept to IGCC fuels was developed through detailed design and subscale testing. Phase III (currently not funded) will consist of full-scale combustor basket testing on natural gas and syngas.

  4. Catalytic Combustor for Fuel-Flexible Turbine

    SciTech Connect

    Laster, W. R.; Anoshkina, E.

    2008-01-31

    Under the sponsorship of the U. S. Department of Energy’s National Energy Technology Laboratory, Siemens Westinghouse has conducted a three-year program to develop an ultra low NOx, fuel flexible catalytic combustor for gas turbine application in IGCC. The program is defined in three phases: Phase 1- Implementation Plan, Phase 2- Validation Testing and Phase 3 – Field Testing. Both Phase 1 and Phase 2 of the program have been completed. In IGCC power plants, the gas turbine must be capable of operating on syngas as a primary fuel and an available back-up fuel such as natural gas. In this program the Rich Catalytic Lean (RCLTM) technology is being developed as an ultra low NOx combustor. In this concept, ultra low NOx is achieved by stabilizing a lean premix combustion process by using a catalytic reactor to oxidize a portion of the fuel, increasing the temperature of fuel/air mixture prior to the main combustion zone. In Phase 1, the feasibility of the catalytic concept for syngas application has been evaluated and the key technology issues identified. In Phase II the technology necessary for the application of the catalytic concept to IGCC fuels was developed through detailed design and subscale testing. Phase III (currently not funded) will consist of full-scale combustor basket testing on natural gas and syngas.

  5. Catalytic Combustor for Fuel-Flexible Turbine

    SciTech Connect

    W. R. Laster; E. Anoshkina; P. Szedlacsek

    2006-03-31

    Under the sponsorship of the U.S. Department of Energy's National Energy Technology Laboratory, Siemens Westinghouse is conducting a three-year program to develop an ultra low NOx, fuel flexible catalytic combustor for gas turbine application in IGCC. The program is defined in three phases: Phase 1-Implementation Plan, Phase 2-Validation Testing and Phase 3-Field Testing. The Phase 1 program has been completed. Phase II was initiated in October 2004. In IGCC power plants, the gas turbine must be capable of operating on syngas as a primary fuel and an available back-up fuel such as natural gas. In this program the Rich Catalytic Lean (RCL{trademark}) technology is being developed as an ultra low NOx combustor. In this concept, ultra low NOx is achieved by stabilizing a lean premix combustion process by using a catalytic reactor to react part of the fuel, increasing the fuel/air mixture temperature. In Phase 1, the feasibility of the catalytic concept for syngas application has been evaluated and the key technology issues identified. In Phase II the catalytic concept will be demonstrated through subscale testing. Phase III will consist of full-scale combustor basket testing on natural gas and syngas.

  6. Development of a micro-satellite compatible FTS sounder for sun-occultation measurements

    NASA Astrophysics Data System (ADS)

    Giaccari, Philippe; Moreau, Louis M.; Giroux, Jacques G.; Soucy, Marc-André

    2009-09-01

    The SciSat/ACE mission provided, and still provides, high quality and high spectral resolution measurements of the atmosphere with a FTS sounder in sun-occultation configuration. Based on the comprehensive results and models of SciSat/ACE it is foreseen that most of the desired information can also be retrieved from lower spectral resolution measurements with higher signal-to-noise ratio (SNR) and appropriate data treatment. With the Canadian Space Agency under the Space Technologies Development Program, ABB Analytical developed a small size sun-occultation sounder compatible with a micro-satellite platform that has identical throughput, spectral bandwidth and vertical resolution as ACE. The spectral resolution is decreased by a factor 25 (0.6 cm-1 instead of 0.024 cm-1 for ACE) whereas the SNR performance is highly increased with an equal factor (target of 2500 instead of 100 for ACE over most of the spectral bandwidth between 750 and 4000 cm-1).A prototype of the sun-occultation sounder was built, tested under various thermal conditions and subjected to vibrations similar to those expected at launch. An outdoor experiment was also conducted to test the instrument in sun-occultation conditions. The good behavior of the instrument indicates interesting opportunities for such small footprint sounder on a low-cost micro-satellite mission and potentially good earth coverage if several of such instruments are used in coordination. Depending on the scientific needs, it is possible to adapt the proposed instrument to increase the vertical resolution and/or to extend the measurements on lower altitudes due to the higher SNR performances.

  7. Catalytic processes towards the production of biofuels in a palm oil and oil palm biomass-based biorefinery.

    PubMed

    Chew, Thiam Leng; Bhatia, Subhash

    2008-11-01

    In Malaysia, there has been interest in the utilization of palm oil and oil palm biomass for the production of environmental friendly biofuels. A biorefinery based on palm oil and oil palm biomass for the production of biofuels has been proposed. The catalytic technology plays major role in the different processing stages in a biorefinery for the production of liquid as well as gaseous biofuels. There are number of challenges to find suitable catalytic technology to be used in a typical biorefinery. These challenges include (1) economic barriers, (2) catalysts that facilitate highly selective conversion of substrate to desired products and (3) the issues related to design, operation and control of catalytic reactor. Therefore, the catalytic technology is one of the critical factors that control the successful operation of biorefinery. There are number of catalytic processes in a biorefinery which convert the renewable feedstocks into the desired biofuels. These include biodiesel production from palm oil, catalytic cracking of palm oil for the production of biofuels, the production of hydrogen as well as syngas from biomass gasification, Fischer-Tropsch synthesis (FTS) for the conversion of syngas into liquid fuels and upgrading of liquid/gas fuels obtained from liquefaction/pyrolysis of biomass. The selection of catalysts for these processes is essential in determining the product distribution (olefins, paraffins and oxygenated products). The integration of catalytic technology with compatible separation processes is a key challenge for biorefinery operation from the economic point of view. This paper focuses on different types of catalysts and their role in the catalytic processes for the production of biofuels in a typical palm oil and oil palm biomass-based biorefinery.

  8. Direct interaction of FtsZ and MreB is required for septum synthesis and cell division in Escherichia coli.

    PubMed

    Fenton, Andrew K; Gerdes, Kenn

    2013-07-03

    How bacteria coordinate cell growth with division is not well understood. Bacterial cell elongation is controlled by actin-MreB while cell division is governed by tubulin-FtsZ. A ring-like structure containing FtsZ (the Z ring) at mid-cell attracts other cell division proteins to form the divisome, an essential protein assembly required for septum synthesis and cell separation. The Z ring exists at mid-cell during a major part of the cell cycle without contracting. Here, we show that MreB and FtsZ of Escherichia coli interact directly and that this interaction is required for Z ring contraction. We further show that the MreB-FtsZ interaction is required for transfer of cell-wall biosynthetic enzymes from the lateral to the mature divisome, allowing cells to synthesise the septum. Our observations show that bacterial cell division is coupled to cell elongation via a direct and essential interaction between FtsZ and MreB.

  9. Deletion of FtsH11 protease has impact on chloroplast structure and function in Arabidopsis thaliana when grown under continuous light.

    PubMed

    Wagner, Raik; von Sydow, Lotta; Aigner, Harald; Netotea, Sergiu; Brugière, Sabine; Sjögren, Lars; Ferro, Myriam; Clarke, Adrian; Funk, Christiane

    2016-11-01

    The membrane-integrated metalloprotease FtsH11 of Arabidopsis thaliana is proposed to be dual-targeted to mitochondria and chloroplasts. A bleached phenotype was observed in ftsh11 grown at long days or continuous light, pointing to disturbances in the chloroplast. Within the chloroplast, FtsH11 was found to be located exclusively in the envelope. Two chloroplast-located proteins of unknown function (Tic22-like protein and YGGT-A) showed significantly higher abundance in envelope membranes and intact chloroplasts of ftsh11 and therefore qualify as potential substrates for the FtsH11 protease. No proteomic changes were observed in the mitochondria of 6-week-old ftsh11 compared with wild type, and FtsH11 was not immunodetected in these organelles. The abundance of plastidic proteins, especially of photosynthetic proteins, was altered even during standard growth conditions in total leaves of ftsh11. At continuous light, the amount of photosystem I decreased relative to photosystem II, accompanied by a drastic change of the chloroplast morphology and a drop of non-photochemical quenching. FtsH11 is crucial for chloroplast structure and function during growth in prolonged photoperiod.

  10. Catalytic, hollow, refractory spheres

    NASA Technical Reports Server (NTRS)

    Wang, Taylor G. (Inventor); Elleman, Daniel D. (Inventor); Lee, Mark C. (Inventor); Kendall, Jr., James M. (Inventor)

    1987-01-01

    Improved, heterogeneous, refractory catalysts are in the form of gas-impervious, hollow, thin-walled spheres (10) suitable formed of a shell (12) of refractory such as alumina having a cavity (14) containing a gas at a pressure greater than atmospheric pressure. The wall material may be itself catalytic or a catalytically active material coated onto the sphere as a layer (16), suitably platinum or iron, which may be further coated with a layer (18) of activator or promoter. The density of the spheres (30) can be uniformly controlled to a preselected value within .+-.10 percent of the density of the fluid reactant such that the spheres either remain suspended or slowly fall or rise through the liquid reactant.

  11. Catalytic thermal barrier coatings

    DOEpatents

    Kulkarni, Anand A.; Campbell, Christian X.; Subramanian, Ramesh

    2009-06-02

    A catalyst element (30) for high temperature applications such as a gas turbine engine. The catalyst element includes a metal substrate such as a tube (32) having a layer of ceramic thermal barrier coating material (34) disposed on the substrate for thermally insulating the metal substrate from a high temperature fuel/air mixture. The ceramic thermal barrier coating material is formed of a crystal structure populated with base elements but with selected sites of the crystal structure being populated by substitute ions selected to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a higher rate than would the base compound without the ionic substitutions. Precious metal crystallites may be disposed within the crystal structure to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a lower light-off temperature than would the ceramic thermal barrier coating material without the precious metal crystallites.

  12. Upper troposphere and stratosphere distribution of hydrocarbon species in ACE-FTS measurements and GEOS-Chem simulations

    NASA Astrophysics Data System (ADS)

    Koo, Ja-Ho; Walker, Kaley A.; Jones, Dylan B. A.; Jones, Ashley; Sheese, Patrick E.; Boone, Chris D.; Bernath, Peter F.; Manney, Gloria L.

    2016-04-01

    Measurements of carbon-containing species, referred to herein as "hydrocarbons", are important components needed for describing and understanding the influence of natural and anthropogenic emissions on atmospheric chemistry. Analysis of the global pattern of hydrocarbons contributes to our understanding of the influence of regional and seasonal variation in air pollution and natural fire events. The Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) has monitored trace gases in the upper troposphere and stratosphere based on solar occultation measurements for more than ten years. In this study, we investigate the global pattern of seven "hydrocarbon" species (CO, C2H6, C2H2, HCN, H2CO, CH3OH, and HCOOH) and OCS using the ACE-FTS version 3.5 dataset from 2004 to 2013. All hydrocarbons show strong seasonal variation and regional differences, but the detailed pattern differs according to the speciation of the hydrocarbons. For example, in the Northern Hemisphere, CO, C2H6, and C2H2 show the highest mixing ratios in winter, but high CH3OH and HCOOH appear in summer. In the Southern hemisphere, H2CO, HCN, and HCOOH show high mixing ratios in springtime. These patterns indicate the impact of different emission sources including fuel combustion, wildfire emission, and chemical production. By calculating correlations with CO, these results can provide useful information to characterize each hydrocarbon emission. The ACE-FTS measurements have also been compared with GEOS-Chem output to examine the model performance and spatiotemporal patterns in the simulations.

  13. Comparison of nitric oxide measurements in the mesosphere and lower thermosphere from ACE-FTS, MIPAS, SCIAMACHY, and SMR

    NASA Astrophysics Data System (ADS)

    Bender, S.; Sinnhuber, M.; von Clarmann, T.; Stiller, G.; Funke, B.; López-Puertas, M.; Urban, J.; Pérot, K.; Walker, K. A.; Burrows, J. P.

    2014-12-01

    We compare the nitric oxide measurements in the mesosphere and lower thermosphere (60 to 150 km) from four instruments: ACE-FTS, MIPAS, SCIAMACHY, and SMR. We use the daily zonal mean data in that altitude range for the years 2004-2010 (ACE-FTS), 2005-2012 (MIPAS), 2008-2012 (SCIAMACHY), and 2003-2012 (SMR). We first compare the data qualitatively with respect to the morphology, focussing on the major features, and then compare the time series directly and quantitatively. In three geographical regions, we compare the vertical density profiles on coincident measurement days. Since none of the instruments delivers continuous daily measurements in this altitude region, we carried out a multi-linear regression analysis. This regression analysis considers annual and semi-annual variability in form of harmonic terms and inter-annual variability by responding linearly to the solar Lyman-α radiation index and the geomagnetic Kp index. This analysis helps to find similarities and differences in the individual data sets with respect to the inter-annual variations caused by geomagnetic and solar variability. We find that the data sets are consistent and that they only disagree on minor aspects. SMR and ACE-FTS deliver the longest time series in the mesosphere and they both agree remarkably well. The shorter time series from MIPAS and SCIAMACHY also agree with them where they overlap. The data agree within ten to twenty percent when the number densities are large, but they can differ by 50 to 100% in some cases.

  14. Validation of ACE-FTS measurements of CFC-11, CFC-12, and HCFC-22 using ground-based FTIR spectrometers

    NASA Astrophysics Data System (ADS)

    Kolonjari, F.; Walker, K. A.; Mahieu, E.; Batchelor, R. L.; Bernath, P. F.; Boone, C.; Conway, S. A.; Dan, L.; Griffin, D.; Harrett, A.; Kasai, Y.; Kagawa, A.; Lindenmaier, R.; Strong, K.; Whaley, C.

    2013-12-01

    Satellite datasets can be an effective global monitoring tool for long-lived compounds in the atmosphere. The Atmospheric Chemistry Experiment (ACE) is a mission on-board the Canadian satellite SCISAT-1. The primary instrument on SCISAT-1 is a high-resolution infrared Fourier transform spectrometer (ACE-FTS) which is capable of measuring a range of gases including key chlorofluorocarbon (CFC) and hydrochlorofluorocarbon (HCFC) species. These families of species are of interest because of their significant contribution to anthropogenic ozone depletion and to global warming. To assess the quality of data derived from satellite measurements, validation using other data sources is essential. Ground-based Fourier transform infrared (FTIR) spectrometers are particularly useful for this purpose. In this study, five FTIR spectrometers located at four sites around the world are used to validate the CFC-11 (CCl3F), CFC-12 (CCl2F2), and HCFC-22 (CHClF2) retrieved profiles from ACE-FTS measurements. These species are related because HCFC-22 was the primary replacement for CFC-11 and CFC-12 in refrigerant and propellant applications. The FTIR spectrometers used in this study record solar absorption spectra at Eureka (Canada), Jungfraujoch (Switzerland), Poker Flat (USA), and Toronto (Canada). The retrieval of CFC-11, CFC-12, and HCFC-22 are not standard products for many of these instruments, and as such, a harmonization of retrieval parameters between the sites has been conducted. The retrievals of these species from the FTIR spectra are sensitive from the surface to approximately 20 km, while the ACE-FTS profiles extend from approximately 6 to 30 km. For each site, partial column comparisons between coincident measurements of the three species and a validation of the observed trends will be discussed.

  15. In Vivo Structure of the E. coli FtsZ-ring Revealed by Photoactivated Localization Microscopy (PALM)

    PubMed Central

    Fu, Guo; Huang, Tao; Buss, Jackson; Coltharp, Carla; Hensel, Zach; Xiao, Jie

    2010-01-01

    The FtsZ protein, a tubulin-like GTPase, plays a pivotal role in prokaryotic cell division. In vivo it localizes to the midcell and assembles into a ring-like structure-the Z-ring. The Z-ring serves as an essential scaffold to recruit all other division proteins and generates contractile force for cytokinesis, but its supramolecular structure remains unknown. Electron microscopy (EM) has been unsuccessful in detecting the Z-ring due to the dense cytoplasm of bacterial cells, and conventional fluorescence light microscopy (FLM) has only provided images with limited spatial resolution (200–300 nm) due to the diffraction of light. Hence, given the small sizes of bacteria cells, identifying the in vivo structure of the Z-ring presents a substantial challenge. Here, we used photoactivated localization microscopy (PALM), a single molecule-based super-resolution imaging technique, to characterize the in vivo structure of the Z-ring in E. coli. We achieved a spatial resolution of ∼35 nm and discovered that in addition to the expected ring-like conformation, the Z-ring of E. coli adopts a novel compressed helical conformation with variable helical length and pitch. We measured the thickness of the Z-ring to be ∼110 nm and the packing density of FtsZ molecules inside the Z-ring to be greater than what is expected for a single-layered flat ribbon configuration. Our results strongly suggest that the Z-ring is composed of a loose bundle of FtsZ protofilaments that randomly overlap with each other in both longitudinal and radial directions of the cell. Our results provide significant insight into the spatial organization of the Z-ring and open the door for further investigations of structure-function relationships and cell cycle-dependent regulation of the Z-ring. PMID:20856929

  16. Update on GOSAT TANSO-FTS performance, operations, and data products after more than 6 years in space

    NASA Astrophysics Data System (ADS)

    Kuze, Akihiko; Suto, Hiroshi; Shiomi, Kei; Kawakami, Shuji; Tanaka, Makoto; Ueda, Yoko; Deguchi, Akira; Yoshida, Jun; Yamamoto, Yoshifumi; Kataoka, Fumie; Taylor, Thomas E.; Buijs, Henry L.

    2016-06-01

    A data set containing more than 6 years (February 2009 to present) of radiance spectra for carbon dioxide (CO2) and methane (CH4) observations has been acquired by the Greenhouse gases Observing SATellite (GOSAT, available at http://data.gosat.nies.go.jp/GosatUserInterfaceGateway/guig/GuigPage/open.do), nicknamed "Ibuki", Thermal And Near infrared Sensor for carbon Observation Fourier Transform Spectrometer (TANSO-FTS). This paper provides updates on the performance of the satellite and TANSO-FTS sensor and describes important changes to the data product, which has recently been made available to users. With these changes the typical accuracy of retrieved column-averaged dry air mole fractions of CO2 and CH4 (XCO2 and XCH4, respectively) are 2 ppm or 0.5 % and 13 ppb or 0.7 %, respectively. Three major anomalies of the satellite system affecting TANSO-FTS are reported: a failure of one of the two solar paddles in May 2014, a switch to the secondary pointing system in January 2015, and most recently a cryocooler shutdown and restart in August 2015. The Level 1A (L1A) (raw interferogram) and the Level 1B (L1B) (radiance spectra) of version V201 described here have long-term uniform quality and provide consistent retrieval accuracy even after the satellite system anomalies. In addition, we discuss the unique observation abilities of GOSAT made possible by an agile pointing mechanism, which allows for optimization of global sampling patterns.

  17. Comparison of nitric oxide measurements in the mesosphere and lower thermosphere from ACE-FTS, MIPAS, SCIAMACHY, and SMR

    NASA Astrophysics Data System (ADS)

    Bender, S.; Sinnhuber, M.; von Clarmann, T.; Stiller, G.; Funke, B.; López-Puertas, M.; Urban, J.; Pérot, K.; Walker, K. A.; Burrows, J. P.

    2015-10-01

    We compare the nitric oxide measurements in the mesosphere and lower thermosphere (60 to 150 km) from four instruments: the Atmospheric Chemistry Experiment-Fourier Transform Spectrometer (ACE-FTS), the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS), the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY), and the Sub-Millimetre Radiometer (SMR). We use the daily zonal mean data in that altitude range for the years 2004-2010 (ACE-FTS), 2005-2012 (MIPAS), 2008-2012 (SCIAMACHY), and 2003-2012 (SMR). We first compare the data qualitatively with respect to the morphology, focussing on the major features, and then compare the time series directly and quantitatively. In three geographical regions, we compare the vertical density profiles on coincident measurement days. Since none of the instruments delivers continuous daily measurements in this altitude region, we carried out a multi-linear regression analysis. This regression analysis considers annual and semi-annual variability in the form of harmonic terms and inter-annual variability by responding linearly to the solar Lyman-α radiation index and the geomagnetic Kp index. This analysis helps to find similarities and differences in the individual data sets with respect to the inter-annual variations caused by geomagnetic and solar variability. We find that the data sets are consistent and that they only disagree on minor aspects. SMR and ACE-FTS deliver the longest time series in the mesosphere, and they agree with each other remarkably well. The shorter time series from MIPAS and SCIAMACHY also agree with them where they overlap. The data agree within 30 % when the number densities are large, but they can differ by 50 to 100 % in some cases.

  18. Catalytic reforming catalyst

    SciTech Connect

    Buss, W.C.; Kluksdahl, H.E.

    1980-12-09

    An improved catalyst, having a reduced fouling rate when used in a catalytic reforming process, said catalyst comprising platinum disposed on an alumina support wherein the alumina support is obtained by removing water from aluminum hydroxide produced as a by-product from a ziegler higher alcohol synthesis reaction, and wherein the alumina is calcined at a temperature of 1100-1400/sup 0/F so as to have a surface area of 165 to 215 square meters per gram.

  19. Evaluation of Silica-Supported Metal and Metal Phosphide Nanoparticle Catalysts for the Hydrodeoxygenation of Guaiacol Under Ex Situ Catalytic Fast Pyrolysis Conditions

    SciTech Connect

    Griffin, Michael B.; Baddour, Frederick G.; Habas, Susan E.; Ruddy, Daniel A.; Schaidle, Joshua A.

    2015-09-30

    A series of metal and metal phosphide catalysts were investigated for the hydrodeoxygenation of guaiacol under ex situ catalytic fast pyrolysis (CFP) conditions (350 °C, 0.5 MPa, 12 H2:1 guaiacol, weight hourly space velocity 5 h$-$1). Ligand-capped Ni, Pt, Rh, Ni2P, and Rh2P nanoparticles (NPs) were prepared using solution-phase synthesis techniques and dispersed on a silica support. For the metal phosphide NP-catalysts, a synthetic route that relies on the decomposition of a single molecular precursor was employed. The reactivity of the NP-catalysts was compared to a series of reference materials including Ni/SiO2 and Pt/SiO2 prepared using incipient wetness (IW) impregnation and a commercial (com) Pt/SiO2 catalyst. The NP-Ni/SiO2 catalyst exhibited the largest reduction in the oxygen mol% of the organic phase and outperformed the IW-Ni/SiO2 material. Although it was less active for guaiacol conversion than NP-Ni/SiO2, NP-Rh2P/SiO2 demonstrated the largest production of completely deoxygenated products and the highest selectivity to anisole, benzene, and cyclohexane, suggesting that it is a promising catalyst for deoxygenation of aryl-OH bonds. Finally, the com-Pt/SiO2 and IW-Pt/SiO2 catalyst exhibited the highest normalized rate of guaiacol conversion per m2 and per gram of active phase, respectively, but did not produce any completely deoxygenated products.

  20. Evaluation of Silica-Supported Metal and Metal Phosphide Nanoparticle Catalysts for the Hydrodeoxygenation of Guaiacol Under Ex Situ Catalytic Fast Pyrolysis Conditions

    DOE PAGES

    Griffin, Michael B.; Baddour, Frederick G.; Habas, Susan E.; ...

    2015-09-30

    A series of metal and metal phosphide catalysts were investigated for the hydrodeoxygenation of guaiacol under ex situ catalytic fast pyrolysis (CFP) conditions (350 °C, 0.5 MPa, 12 H2:1 guaiacol, weight hourly space velocity 5 h$-$1). Ligand-capped Ni, Pt, Rh, Ni2P, and Rh2P nanoparticles (NPs) were prepared using solution-phase synthesis techniques and dispersed on a silica support. For the metal phosphide NP-catalysts, a synthetic route that relies on the decomposition of a single molecular precursor was employed. The reactivity of the NP-catalysts was compared to a series of reference materials including Ni/SiO2 and Pt/SiO2 prepared using incipient wetness (IW) impregnationmore » and a commercial (com) Pt/SiO2 catalyst. The NP-Ni/SiO2 catalyst exhibited the largest reduction in the oxygen mol% of the organic phase and outperformed the IW-Ni/SiO2 material. Although it was less active for guaiacol conversion than NP-Ni/SiO2, NP-Rh2P/SiO2 demonstrated the largest production of completely deoxygenated products and the highest selectivity to anisole, benzene, and cyclohexane, suggesting that it is a promising catalyst for deoxygenation of aryl-OH bonds. Finally, the com-Pt/SiO2 and IW-Pt/SiO2 catalyst exhibited the highest normalized rate of guaiacol conversion per m2 and per gram of active phase, respectively, but did not produce any completely deoxygenated products.« less

  1. Catalytic nanoporous membranes

    DOEpatents

    Pellin, Michael J.; Hryn, John N.; Elam, Jeffrey W.

    2009-12-01

    A nanoporous catalytic membrane which displays several unique features including pores which can go through the entire thickness of the membrane. The membrane has a higher catalytic and product selectivity than conventional catalysts. Anodic aluminum oxide (AAO) membranes serve as the catalyst substrate. This substrate is then subjected to Atomic Layer Deposition (ALD), which allows the controlled narrowing of the pores from 40 nm to 10 nm in the substrate by deposition of a preparatory material. Subsequent deposition of a catalytic layer on the inner surfaces of the pores reduces pore sizes to less than 10 nm and allows for a higher degree of reaction selectivity. The small pore sizes allow control over which molecules enter the pores, and the flow-through feature can allow for partial oxidation of reactant species as opposed to complete oxidation. A nanoporous separation membrane, produced by ALD is also provided for use in gaseous and liquid separations. The membrane has a high flow rate of material with 100% selectivity.

  2. Quenched catalytic cracking process

    SciTech Connect

    Krambeck, F.J.; Penick, J.E.; Schipper, P.H.

    1990-12-18

    This paper describes improvement in a fluidized catalytic cracking process wherein a fluidizable catalyst cracking catalyst and a hydrocarbon feed are charged to a reactor riser at catalytic riser cracking conditions to form catalytically cracked vapor product and spent catalyst which are discharged into a reactor vessel having a volume via a riser reactor outlet equipped with a separation means to produce a catalyst lean phase. It comprises: a majority of the cracked product, and a catalyst rich phase comprising a majority of the spend catalyst. The the catalyst rich phase is discharged into a dense bed of catalyst maintained below the riser outlet and the catalyst lean phase is discharged into the vessel for a time, and at a temperature, which cause unselective thermal cracking of the cracked product in the reactor volume before product is withdrawn from the vessel via a vessel outlet. The improvement comprises: addition, after riser cracking is completed, and after separation of cracked products from catalyst, of a quenching stream into the vessel above the dense bed of catalyst, via a quench stream addition point which allows the quench stream to contact at least a majority of the volume of the vessel above the dense bed.

  3. Characterization and correction of non-linearity effect on oxygen spectra of TANSO-FTS onboard GOSAT

    NASA Astrophysics Data System (ADS)

    Suto, H.; Frankenberg, C.; Crisp, D.; kuze, A.

    2011-12-01

    The Thermal and Near Infrared Sensor for carbon Observations Fourier Transform Spectrometer (TANSO-FTS) onboard the Greenhouse gases Observing SATellite (GOSAT) collects high spectral resolution spectra of reflected sunlight in the molecular oxygen (O2) A-band near 760 nm, the carbon dioxide (CO2) bands near 1600 and 2060 nm, and the methane (CH4) band near 1660 nm. The O2 measurements are used to estimate the surface pressure and the dry air column, which are used to define the column-averaged CO2 and CH4 dry air mole fractions, XCO2 and XCH4. O2 measurements are ideal for this application because the O2 dry air mole fraction is almost constant and well known. However, systematic errors in the O2 measurements can introduce biases in the XCO2 and XCH4 retrievals from TANSO-FTS. For example, 1% overestimate of the O2 column retrievals introduced a 10 hPa high bias in surface pressure and a 4 hPa low bias in XCO2 in early retrievals. This near-global bias has been traced to uncertainties in the O2 A-band absorption cross sections. Other spatially-varying O2 errors have been traced to uncertainties in the calibration of the TANSO-FTS A-band channel. For example, non-linearity in the A-band channel response introduces errors in the depths of both O2 lines and solar Fraunhofer lines. There are three possible sources of non-linearity: detector, analogue circuit (amplifier and electric filters), and analogue to digital converter (ADC). Observations acquired with the flight instrument and laboratory experiments with TANSO-FTS engineering model (EM) is being used to discriminate and correct these errors. The EM tests have largely vindicated the silicon photo-diode detector, but show that the non-linearity of the analogue circuit and ADC is almost identical to that seen in data acquired by the on-orbit flight model. We have developed and applied a correction to the measured interferograms from the flight instrument and confirmed it validity by showing that the Fraunhofer

  4. GOSAT/TANSO-FTS Measurement of Volcanic and Geothermal CO2 Emissions

    NASA Astrophysics Data System (ADS)

    Schwandner, Florian M.; Carn, Simon A.; Newhall, Christopher G.

    2010-05-01

    volcanic CO2 anomalies using GOSAT and correlation with Aura/OMI, AIRS, and ASTER determined SO2 fluxes and ground based monitoring of CO2 and other geophysical and geochemical parameters. This will provide the ground work for future higher spatial resolution satellite missions. This is a joint effort from two GOSAT-IBUKI data application projects: "Satellite-Borne Quantification of Carbon Dioxide Emissions from Volcanoes and Geothermal Areas" (PI Schwandner), and "Application of GOSAT/TANSO-FTS to the Measurement of Volcanic CO2 Emissions" (PI Carn).

  5. Control of ftsZ Expression, Cell Division, and Glutamine Metabolism in Luria-Bertani Medium by the Alarmone ppGpp in Escherichia coli

    PubMed Central

    Powell, Bradford S.; Court, Donald L.

    1998-01-01

    Inactivation of transcription factor ς54, encoded by rpoN (glnF), restores high-temperature growth in Luria-Bertani (LB) medium to strains containing the heat-sensitive cell division mutation ftsZ84. Mutational defects in three other genes involved in general nitrogen control (glnD, glnG, and glnL) also suppress lethal filamentation. Since addition of glutamine to LB medium fully blocks suppression by each mutation, the underlying cause of suppression likely derives from a stringent response to the limitation of glutamine. This model is supported by several observations. The glnL mutation requires RelA-directed synthesis of the nutrient alarmone ppGpp to suppress filamentation. Artificially elevated levels of ppGpp suppress ftsZ84, as do RNA polymerase mutations that reproduce global effects of the ppGpp-induced state. Both the glnF null mutation and an elevated copy number of the relA gene similarly affect transcription from the upstream (pQ) promoters of the ftsQAZ operon, and both of these genetic conditions increase the steady-state level of the FtsZ84 protein. Physiological suppression of ftsZ84 by a high salt concentration was also shown to involve RelA. Additionally, we found that the growth of a glnF or glnD strain on LB medium depends on RelA or supplemental glutamine in the absence of RelA function. These data expand the roles for ppGpp in the regulation of glutamine metabolism and the expression of FtsZ during cell division. PMID:9495742

  6. Three Years of CARVE-FTS Observations of CO2, CH4, and CO in the Alaskan Arctic: Status Quo and Comparison with Satellite Measurements

    NASA Astrophysics Data System (ADS)

    Kurosu, T. P.; Miller, C. E.; Dinardo, S. J.

    2014-12-01

    The Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) is an aircraft-based Earth Venture 1 mission to study the carbon balance of the Alaskan Arctic ecosystem, with a particular focus on carbon release from melting permafrost. Operating from its base in Fairbanks, AK, the CARVE aircraft covers a range of principle flight paths in the Alaskan interior, the Yukon River valley, and the northern Alaska coast around Barrow and Dead Horse. Flight paths are chosen to maximize ecosystem variability and cover burn-recovery/regrowth sequences. CARVE observations cover the Arctic Spring/Summer/Fall seasons, with multiple flights per season and principle flight path. Science operations started in 05/2012 and are currently envisaged to continue until 2015. The CARVE suite of instruments includes flask measurements, in situ gas analyzers for CO2, CH4 and CO observations, and a three-band polarizing Fourier Transform Spectrometer (FTS) for column measurements of CO2, CH4, CO, their interfering species (e.g., H2O), and O2. The FTS covers the spectral regions of 4,200-4,900 cm-1 (CH4, CO), 5,800-6,400 cm-1 (CO2), and 12,900-13,200 cm-1 (O2), with a spectral resolution of 0.2 cm-1. Aircraft-based FTS science observations in Alaska have been performed since 23-05-2012. First-version data products from all CARVE instruments derived from observations during the 2012 campaign were publicly released earlier in 2013. The FTS has performed well during flight conditions, particularly with respect to vibration damping. We present results from FTS column observations of CO2, CH4, and CO, observed during the 2012, 2013, and 2014 campaigns, including comparisons of CARVE FTS measurements with satellite observations of CO2 from TANSO/GOSAT retrieved by JPL/ACOS, and MOPITT CO.

  7. A DNA damage checkpoint in Caulobacter crescentus inhibits cell division through a direct interaction with FtsW.

    PubMed

    Modell, Joshua W; Hopkins, Alexander C; Laub, Michael T

    2011-06-15

    Following DNA damage, cells typically delay cell cycle progression and inhibit cell division until their chromosomes have been repaired. The bacterial checkpoint systems responsible for these DNA damage responses are incompletely understood. Here, we show that Caulobacter crescentus responds to DNA damage by coordinately inducing an SOS regulon and inhibiting the master regulator CtrA. Included in the SOS regulon is sidA (SOS-induced inhibitor of cell division A), a membrane protein of only 29 amino acids that helps to delay cell division following DNA damage, but is dispensable in undamaged cells. SidA is sufficient, when overproduced, to block cell division. However, unlike many other regulators of bacterial cell division, SidA does not directly disrupt the assembly or stability of the cytokinetic ring protein FtsZ, nor does it affect the recruitment of other components of the cell division machinery. Instead, we provide evidence that SidA inhibits division by binding directly to FtsW to prevent the final constriction of the cytokinetic ring.

  8. The Arabidopsis minE mutation causes new plastid and FtsZ1 localization phenotypes in the leaf epidermis.

    PubMed

    Fujiwara, Makoto T; Kojo, Kei H; Kazama, Yusuke; Sasaki, Shun; Abe, Tomoko; Itoh, Ryuuichi D

    2015-01-01

    Plastids in the leaf epidermal cells of plants are regarded as immature chloroplasts that, like mesophyll chloroplasts, undergo binary fission. While mesophyll chloroplasts have generally been used to study plastid division, recent studies have suggested the presence of tissue- or plastid type-dependent regulation of plastid division. Here, we report the detailed morphology of plastids and their stromules, and the intraplastidic localization of the chloroplast division-related protein AtFtsZ1-1, in the leaf epidermis of an Arabidopsis mutant that harbors a mutation in the chloroplast division site determinant gene AtMinE1. In atminE1, the size and shape of epidermal plastids varied widely, which contrasts with the plastid phenotype observed in atminE1 mesophyll cells. In particular, atminE1 epidermal plastids occasionally displayed grape-like morphology, a novel phenotype induced by a plastid division mutation. Observation of an atminE1 transgenic line harboring an AtMinE1 promoter::AtMinE1-yellow fluorescent protein fusion gene confirmed the expression and plastidic localization of AtMinE1 in the leaf epidermis. Further examination revealed that constriction of plastids and stromules mediated by the FtsZ1 ring contributed to the plastid pleomorphism in the atminE1 epidermis. These results illustrate that a single plastid division mutation can have dramatic consequences for epidermal plastid morphology, thereby implying that plastid division and morphogenesis are differentially regulated in epidermal and mesophyll plastids.

  9. Structure of the GMPPNP-stabilized NG domain complex of the SRP GTPases Ffh and FtsY

    PubMed Central

    Gawronski-Salerno, Joseph; Freymann, Douglas M.

    2007-01-01

    Ffh and FtsY are GTPase components of the signal recognition particle co-translational targeting complex that assemble during the SRP cycle to form a GTP-dependent and pseudo two-fold symmetric heterodimer. Previously the SRP GTPase heterodimer has been stabilized and purified for crystallographic studies using both the non-hydrolysable GTP analog GMPPCP and the pseudo-transition state analog GDP:AlF4, revealing in both cases a buried nucleotide pair that bridges and forms a key element of the heterodimer interface. A complex of Ffh and FtsY from T. aquaticus formed in the presence of the analog GMPPNP could not be obtained, however. The origin of this failure was previously unclear, and it was thought to have arisen from either instability of the analog, or, alternatively, from differences in its interactions within the tightly conscribed composite active site chamber of the complex. Using insights gained from the previous structure determinations, we have now determined the structure of the SRP GTPase targeting heterodimer stabilized by the non-hydrolysable GTP analog GMPPNP. The structure demonstrates how the different GTP analogs are accommodated within the active site chamber despite slight differences in the geometry of the phosphate chain. It also reveals a K+ coordination site at the highly conserved DARGG loop at the N/G interdomain interface. PMID:17184999

  10. Catalytic reforming process

    SciTech Connect

    Absil, R.P.; Huss, A. Jr.; McHale, W.D.; Partridge, R.D.

    1989-06-13

    This patent describes a catalytic reforming process which comprises contacting a naphtha range feed with a low acidity extrudate comprising an intermediate and/or a large pore acidic zeolite bound with a low acidity refractory oxide under reforming conditions to provide a reaction product of increased aromatic content, the extrudate having been prepared with at least an extrusion-facilitating amount of a low acidity refractory oxide in colloidal form and containing at least one metal species selected from the platinum group metals.

  11. Catalytic processes for space station waste conversion

    NASA Technical Reports Server (NTRS)

    Schoonover, M. W.; Madsen, R. A.

    1986-01-01

    Catalytic techniques for processing waste products onboard space vehicles were evaluated. The goal of the study was the conversion of waste to carbon, wash water, oxygen and nitrogen. However, the ultimate goal is conversion to plant nutrients and other materials useful in closure of an ecological life support system for extended planetary missions. The resulting process studied involves hydrolysis at 250 C and 600 psia to break down and compact cellulose material, distillation at 100 C to remove water, coking at 450 C and atmospheric pressure, and catalytic oxidation at 450 to 600 C and atmospheric pressure. Tests were conducted with a model waste to characterize the hydrolysis and coking processes. An oxidizer reactor was sized based on automotive catalytic conversion experience. Products obtained from the hydrolysis and coking steps included a solid residue, gases, water condensate streams, and a volatile coker oil. Based on the data obtained, sufficient component sizing was performed to make a preliminary comparison of the catalytic technique with oxidation for processing waste for a six-man spacecraft. Wet oxidation seems to be the preferred technique from the standpoint of both component simplicity and power consumption.

  12. Novel Catalytic Membrane Reactors

    SciTech Connect

    Stuart Nemser, PhD

    2010-10-01

    There are many industrial catalytic organic reversible reactions with amines or alcohols that have water as one of the products. Many of these reactions are homogeneously catalyzed. In all cases removal of water facilitates the reaction and produces more of the desired chemical product. By shifting the reaction to right we produce more chemical product with little or no additional capital investment. Many of these reactions can also relate to bioprocesses. Given the large number of water-organic compound separations achievable and the ability of the Compact Membrane Systems, Inc. (CMS) perfluoro membranes to withstand these harsh operating conditions, this is an ideal demonstration system for the water-of-reaction removal using a membrane reactor. Enhanced reaction synthesis is consistent with the DOE objective to lower the energy intensity of U.S. industry 25% by 2017 in accord with the Energy Policy Act of 2005 and to improve the United States manufacturing competitiveness. The objective of this program is to develop the platform technology for enhancing homogeneous catalytic chemical syntheses.

  13. Design, Synthesis, and Mechanistic Evaluation of Iron-Based Catalysis for Synthesis Gas Conversion to Fuels and Chemicals

    SciTech Connect

    Enrique Iglesia; Akio Ishikawa; Manual Ojeda; Nan Yao

    2007-09-30

    A detailed study of the catalyst composition, preparation and activation protocol of Fe-based catalysts for the Fischer-Tropsch Synthesis (FTS) have been carried out in this project. We have studied the effects of different promoters on the catalytic performance of Fe-based catalysts. Specifically, we have focused on how their sequence of addition dramatically influences the performance of these materials in the Fischer-Tropsch synthesis. The resulting procedures have been optimized to improve further upon the already unprecedented rates and C{sub 5+} selectivities of the Fe-based catalysts that we have developed as part of this project. Selectivity to C{sub 5+} hydrocarbon was close to 90 % (CO{sub 2}-free basis) and CO conversion rate was about 6.7 mol h{sup -1} g-at Fe{sup -1} at 2.14 MPa, 508 K and with substoichiometric synthesis gas; these rates were larger than any reported previously for Fe-based FTS catalysts at these conditions. We also tested the stability of Fe-based catalysts during FTS reaction (10 days); as a result, the high hydrocarbon formation rates were maintained during 10 days, though the gradual deactivation was observed. Our investigation has also focused on the evaluation of Fe-based catalysts with hydrogen-poor synthesis gas streams (H{sub 2}/CO=1). We have observed that the Fe-based catalysts prepared in this project display also a high hydrocarbon synthesis rate with substoichiometric synthesis gas (H{sub 2}/CO=1) stream, which is a less desirable reactant mixture than stoichiometric synthesis gas (H{sub 2}/CO=2). We have improved the catalyst preparation protocols and achieved the highest FTS reaction rates and selectivities so far reported at the low temperatures required for selectivity and stability. Also, we have characterized the catalyst structural change and active phases formed, and their catalytic behavior during the activation process to evaluate their influences on FTS reaction. The efforts of this project led to (i

  14. Northwestern University Facility for Clean Catalytic Process Research

    SciTech Connect

    Marks, Tobin Jay

    2013-05-08

    Northwestern University with DOE support created a Facility for Clean Catalytic Process Research. This facility is designed to further strengthen our already strong catalysis research capabilities and thus to address these National challenges. Thus, state-of-the art instrumentation and experimentation facility was commissioned to add far greater breadth, depth, and throughput to our ability to invent, test, and understand catalysts and catalytic processes, hence to improve them via knowledge-based design and evaluation approaches.

  15. X-ray structure of the T. aquaticus FtsY:GDP complex suggests functional roles for the C-terminal helix of the SRP GTPases.

    PubMed

    Gawronski-Salerno, Joseph; Coon, John S; Focia, Pamela J; Freymann, Douglas M

    2007-03-01

    FtsY and Ffh are structurally similar prokaryotic Signal Recognition Particle GTPases that play an essential role in the Signal Recognition Particle (SRP)-mediated cotranslational targeting of proteins to the membrane. The two GTPases assemble in a GTP-dependent manner to form a heterodimeric SRP targeting complex. We report here the 2.1 A X-ray structure of FtsY from T. aquaticus bound to GDP. The structure of the monomeric protein reveals, unexpectedly, canonical binding interactions for GDP. A comparison of the structures of the monomeric and complexed FtsY NG GTPase domain suggests that it undergoes a conformational change similar to that of Ffh NG during the assembly of the symmetric heterodimeric complex. However, in contrast to Ffh, in which the C-terminal helix shifts independently of the other subdomains, the C-terminal helix and N domain of T. aquaticus FtsY together behave as a rigid body during assembly, suggesting distinct mechanisms by which the interactions of the NG domain "module" are regulated in the context of the two SRP GTPases.

  16. Creating an antibacterial with in vivo efficacy: synthesis and characterization of potent inhibitors of the bacterial cell division protein FtsZ with improved pharmaceutical properties.

    PubMed

    Haydon, David J; Bennett, James M; Brown, David; Collins, Ian; Galbraith, Greta; Lancett, Paul; Macdonald, Rebecca; Stokes, Neil R; Chauhan, Pramod K; Sutariya, Jignesh K; Nayal, Narendra; Srivastava, Anil; Beanland, Joy; Hall, Robin; Henstock, Vincent; Noula, Caterina; Rockley, Chris; Czaplewski, Lloyd

    2010-05-27

    3-Methoxybenzamide (1) is a weak inhibitor of the essential bacterial cell division protein FtsZ. Alkyl derivatives of 1 are potent antistaphylococcal compounds with suboptimal drug-like properties. Exploration of the structure-activity relationships of analogues of these inhibitors led to the identification of potent antistaphylococcal compounds with improved pharmaceutical properties.

  17. Essential protein SepF of mycobacteria interacts with FtsZ and MurG to regulate cell growth and division.

    PubMed

    Gupta, Shamba; Banerjee, Srijon Kaushik; Chatterjee, Ayan; Sharma, Arun Kumar; Kundu, Manikuntala; Basu, Joyoti

    2015-08-01

    Coordinated bacterial cell septation and cell wall biosynthesis require formation of protein complexes at the sites of division and elongation, in a temporally controlled manner. The protein players in these complexes remain incompletely understood in mycobacteria. Using in vitro and in vivo assays, we showed that Rv2147c (or SepF) of Mycobacterium tuberculosis interacts with the principal driver of cytokinesis, FtsZ. SepF also interacts with itself both in vitro and in vivo. Amino acid residues 189A, 190K and 215F are required for FtsZ-SepF interaction, and are conserved across Gram-positive bacteria. Using Mycobacterium smegmatis as a surrogate system, we confirmed that sepFMSMEG is essential. Knockdown of SepF led to cell elongation, defective growth and failure of FtsZ to localize to the site of division, suggesting that SepF assists FtsZ localization at the site of division. Furthermore, SepF interacted with MurG, a peptidoglycan-synthesizing enzyme, both in vitro and in vivo, suggesting that SepF could serve as a link between cell division and peptidoglycan synthesis. SepF emerges as a newly identified essential component of the cell division complex in mycobacteria.

  18. 78 FR 25132 - Enercorp, Inc., FTS Group, Inc., Games, Inc. (n/k/a InQBate Corporation), Hartmarx Corporation (n...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-29

    ... From the Federal Register Online via the Government Publishing Office SECURITIES AND EXCHANGE COMMISSION Enercorp, Inc., FTS Group, Inc., Games, Inc. (n/k/a InQBate Corporation), Hartmarx Corporation (n... Games, Inc. (n/k/a InQBate Corporation) because it has not filed any periodic reports since the...

  19. GOSAT CO2 and CH4 validation activity with a portable FTS at Pasadena, Chino, and Railroad Valley

    NASA Astrophysics Data System (ADS)

    Shiomi, K.; Kuze, A.; Suto, H.; Kawakami, S.; Kataoka, F.; Hedelius, J.; Viatte, C.; Wennberg, P. O.; Wunch, D.; Roehl, C. M.; Leifer, I.; Tanaka, T.; Iraci, L. T.; Bruegge, C. J.; Schwandner, F. M.; Crisp, D.

    2015-12-01

    The column-average dry air mole fractions of carbon dioxide (XCO2) and methane (XCH4) were measured with a portable Fourier transform spectrometer (FTS), EM27/SUN, using direct sunlight at 1) Caltech, in Pasadena, a northern Los Angeles suburb, 2) Chino, a dairy region east of Los Angeles, and 3) Railroad Valley (RRV), a desert playa in Nevada. They were conducted during the GOSAT/OCO-2 joint campaign for vicarious calibration and validation (cal/val) and its preparatory experiments in June-July 2015. JAXA's GOSAT has been operating since 2009 to monitor the greenhouse gases XCO2 and XCH4 using surface-reflected sunlight from space. GOSAT carries a Fourier Transform Spectrometer (TANSO-FTS) and a Cloud and Aerosol Imager (TANSO-CAI). NASA's OCO-2 has been operating since 2014, carries a grating spectrometer to make precise XCO2 observations with a-few-kilometer resolution. Their polar orbits have 12:46 pm (GOSAT) and 1:30 pm (OCO-2) observing times. For cal/val, these sites were targeted with coincident , near simultaneous ground-based and vertical profiling measurements. These sites are different types of suburban, dairy, and desert areas. Before the campaign, measurements from the JAXA EM27/SUN were compared with those from the Total Carbon Column Observing Network (TCCON) and from the Caltech EM27/SUN at Pasadena. We compared the retrieved values and simultaneously observed diurnal enhancements by advection from the Los Angeles basin. Then, we observed a diurnal cycle at Chino dairy area, an area of concentrated husbandry, producing a CH4 point source. Finally, we conducted the cal/val campaign at RRV coincident with GOSAT and OCO-2 overpass observations. Over RRV, vertical profiles of CO2 and CH4 were measured using the Alpha Jet research aircraft as a part of the NASA Ames Alpha Jet Atmospheric eXperiment (AJAX) . We will compare experimental results from the cal/val campaign for XCO2 and XCH4 with a portable FTS.

  20. Nanocrystalline Ferrihydrite-Based Catalysts for Fischer-Tropsch Synthesis: Part II. Effects of Activation Gases on the Catalytic Performance.

    PubMed

    Rhim, Geun Bae; Hong, Seok Yong; Park, Ji Chan; Jung, Heon; Rhee, Young Woo; Chun, Dong Hyun

    2016-02-01

    Fischer-Tropsch synthesis (FTS) was carried out over nanocrystalline ferrihydrite-based (Fe9O2(OH)23) catalysts activated by different reducing agents: syngas (H2+CO), CO, and H2. The syngas activation successfully changed the ferrihydrite-based catalysts into an active and stable catalytic structure with chi-carbide (Fe2.5 C) and epsilon'-carbide (Fe2.2 C). The crystal structure of the catalysts obtained by syngas activation was similar to the structure obtained by CO activation; this similarity was probably due to the peculiar reduction behavior of the ferrihydrite-based catalysts, which exhibit much greater reducibility in CO atmosphere than in H2 atmosphere. The performance of the catalysts activated by syngas was much higher than the performance of the catalysts activated by H2 and was comparable to the performance of the catalysts activated by CO. This strongly demonstrates that the ferrihydrite-based catalysts are advantageous for industrial FTS processes because syngas can be commonly used for both activation pre-treatment and subsequent reaction.

  1. Four Years of CARVE-FTS Observations of CO2, CH4, and CO in the Alaskan Arctic: Status Quo and Comparison with Satellite Measurements

    NASA Astrophysics Data System (ADS)

    Kurosu, T. P.; Miller, C. E.; Dinardo, S. J.

    2015-12-01

    The end of 2015 marks the conclusion of the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE), a four-year aircraft-based Earth Venture 1 mission to study the carbon balance of the Alaskan Arctic ecosystem, with a particular focus on carbon release from melting permafrost. Operating from its base in Fairbanks, AK, the CARVE aircraft covers a range of principle flight paths in the Alaskan interior, the Yukon River valley, and the northern Alaska coast around Barrow and Dead Horse. Flight paths are chosen to maximize ecosystem variability and cover burn-recovery/regrowth sequences. CARVE observations cover the Arctic Spring/Summer/Fall seasons, with multiple flights per season and principle flight path. Science operations started in 05/2012 and will conclude in 11/2015. The CARVE suite of instruments includes flask measurements, in situ gas analyzers for CO2, CH4 and CO observations, and a three-band polarizing Fourier Transform Spectrometer (FTS) for column measurements of CO2, CH4, CO, their interfering species (e.g., H2O), and O2. The FTS covers the spectral regions of 4,200-4,900 cm-1 (CH4, CO), 5,800-6,400 cm-1 (CO2), and 12,900-13,200 cm-1 (O2), with a spectral resolution of 0.2 cm-1. Aircraft-based FTS science observations in Alaska have been performed since 23-05-2012. First-version data products from all CARVE instruments derived from observations during the 2012 campaign were publicly released earlier in 2013. The FTS has performed well during flight conditions. A recent overhaul of the retrieval algorithm has led to improvements in FTS data quality. We present results from FTS column observations of CO2, CH4, and CO, obtained over the entire CARVE observation record from 2012 to 2015, including comparisons of CARVE FTS measurements with satellite observations of GOSAT CO2 and CH4 retrieved by NIES, GOSAT CO2 from JPL/ACOS, MOPITT CO, and CO2 from OCO-2. The comparisons emphasize coincident CARVE/OCO-2 observations over Alaska during the 2015

  2. Catalytic cracking of hydrocarbons

    SciTech Connect

    Absil, R.P.L.; Bowes, E.; Green, G.J.; Marler, D.O.; Shihabi, D.S.; Socha, R.F.

    1992-02-04

    This patent describes an improvement in a catalytic cracking process in which a hydrocarbon feed is cracked in a cracking zone in the absence of added hydrogen and in the presence of a circulating inventory of solid acidic cracking a catalyst which acquires a deposit of coke that contains chemically bound nitrogen while the cracking catalyst is in the cracking zone, the coke catalyst being circulated to t regeneration zone to convert the coke catalyst to a regenerated catalyst with the formation of a flue gas comprising nitrogen oxides: the improvement comprises incorporating into the circulating catalyst inventory an amount of additive particles comprising a synthetic porous crystalline material containing copper metal or cations, to reduce the content of nitrogen oxides in the flue gas.

  3. Catalytic hollow spheres

    NASA Technical Reports Server (NTRS)

    Wang, Taylor G. (Inventor); Elleman, Daniel D. (Inventor); Lee, Mark C. (Inventor); Kendall, Jr., James M. (Inventor)

    1986-01-01

    The improved, heterogeneous catalysts are in the form of gas-impervious, hollow, thin-walled spheres (10) suitably formed of a shell (12) of metal such as aluminum having a cavity (14) containing a gas at a pressure greater than atmospheric pressure. The wall material may be, itself, catalytic or the catalyst can be coated onto the sphere as a layer (16), suitably platinum or iron, which may be further coated with a layer (18) of activator or promoter. The density of the spheres (30) can be uniformly controlled to a preselected value within .+-.10 percent of the density of the fluid reactant such that the spheres either remain suspended or slowly fall or rise through the liquid reactant.

  4. Catalytic hollow spheres

    NASA Technical Reports Server (NTRS)

    Wang, Taylor G. (Inventor); Elleman, Daniel D. (Inventor); Lee, Mark C. (Inventor); Kendall, Jr., James M. (Inventor)

    1989-01-01

    The improved, heterogeneous catalysts are in the form of gas-impervious, hollow, thin-walled spheres (10) suitably formed of a shell (12) of metal such as aluminum having a cavity (14) containing a gas at a pressure greater than atmospheric pressure. The wall material may be, itself, catalytic or the catalyst can be coated onto the sphere as a layer (16), suitably platinum or iron, which may be further coated with a layer (18) of activator or promoter. The density of the spheres (30) can be uniformly controlled to a preselected value within .+-.10 percent of the density of the fluid reactant such that the spheres either remain suspended or slowly fall or rise through the liquid reactant.

  5. Bifunctional catalytic electrode

    NASA Technical Reports Server (NTRS)

    Cisar, Alan (Inventor); Murphy, Oliver J. (Inventor); Clarke, Eric (Inventor)

    2005-01-01

    The present invention relates to an oxygen electrode for a unitized regenerative hydrogen-oxygen fuel cell and the unitized regenerative fuel cell having the oxygen electrode. The oxygen electrode contains components electrocatalytically active for the evolution of oxygen from water and the reduction of oxygen to water, and has a structure that supports the flow of both water and gases between the catalytically active surface and a flow field or electrode chamber for bulk flow of the fluids. The electrode has an electrocatalyst layer and a diffusion backing layer interspersed with hydrophilic and hydrophobic regions. The diffusion backing layer consists of a metal core having gas diffusion structures bonded to the metal core.

  6. Expression, purification, crystallization and preliminary crystallographic study of FtsA from methicillin-resistant Staphylococcus aureus

    PubMed Central

    Fujita, Junso; Miyazaki, Yuma; Hirose, Mika; Nagao, Chioko; Mizohata, Eiichi; Matsumoto, Yoshimi; Mizuguchi, Kenji; Inoue, Tsuyoshi; Matsumura, Hiroyoshi

    2013-01-01

    FtsA from methicillin-resistant Staphylococcus aureus (MRSA) was cloned, overexpressed and purified. The protein was crystallized using the sitting-drop vapour-diffusion technique. A cocrystal with β-γ-imidoadenosine 5′-phosphate (AMPPNP; a nonhydrolysable ATP analogue) was grown using PEG 3350 as a precipitant at 293 K. X-ray diffraction data were collected to a resolution of 2.3 Å at 100 K. The crystal belonged to the monoclinic space group P21, with unit-cell parameters a = 75.31, b = 102.78, c = 105.90 Å, β = 96.54°. The calculated Matthews coefficient suggested that the asymmetric unit contained three or four monomers. PMID:23908037

  7. A Method for DNA Extraction from the Desert Cyanobacterium Chroococcidiopsis and Its Application to Identification of ftsZ

    PubMed Central

    Billi, Daniela; Grilli Caiola, Maria; Paolozzi, Luciano; Ghelardini, Patrizia

    1998-01-01

    A method was developed for extraction of DNA from Chroococcidiopsis that overcomes obstacles posed by bacterial contamination and the presence of a thick envelope surrounding the cyanobacterial cells. The method is based on the resistance of Chroococcidiopsis to lysozyme and consists of a lysozyme treatment followed by osmotic shock that reduces the bacterial contamination by 3 orders of magnitude. Then DNase treatment is performed to eliminate DNA from the bacterial lysate. Lysis of Chroococcidiopsis cells is achieved by grinding with glass beads in the presence of hot phenol. Extracted DNA is further purified by cesium-chloride density gradient ultracentrifugation. This method permitted the first molecular approach to the study of Chroococcidiopsis, and a 570-bp fragment of the gene ftsZ was cloned and sequenced. PMID:9758840

  8. The Arabidopsis minE mutation causes new plastid and FtsZ1 localization phenotypes in the leaf epidermis

    PubMed Central

    Fujiwara, Makoto T.; Kojo, Kei H.; Kazama, Yusuke; Sasaki, Shun; Abe, Tomoko; Itoh, Ryuuichi D.

    2015-01-01

    Plastids in the leaf epidermal cells of plants are regarded as immature chloroplasts that, like mesophyll chloroplasts, undergo binary fission. While mesophyll chloroplasts have generally been used to study plastid division, recent studies have suggested the presence of tissue- or plastid type-dependent regulation of plastid division. Here, we report the detailed morphology of plastids and their stromules, and the intraplastidic localization of the chloroplast division-related protein AtFtsZ1-1, in the leaf epidermis of an Arabidopsis mutant that harbors a mutation in the chloroplast division site determinant gene AtMinE1. In atminE1, the size and shape of epidermal plastids varied widely, which contrasts with the plastid phenotype observed in atminE1 mesophyll cells. In particular, atminE1 epidermal plastids occasionally displayed grape-like morphology, a novel phenotype induced by a plastid division mutation. Observation of an atminE1 transgenic line harboring an AtMinE1 promoter::AtMinE1-yellow fluorescent protein fusion gene confirmed the expression and plastidic localization of AtMinE1 in the leaf epidermis. Further examination revealed that constriction of plastids and stromules mediated by the FtsZ1 ring contributed to the plastid pleomorphism in the atminE1 epidermis. These results illustrate that a single plastid division mutation can have dramatic consequences for epidermal plastid morphology, thereby implying that plastid division and morphogenesis are differentially regulated in epidermal and mesophyll plastids. PMID:26500667

  9. Catalytic activities of zeolite compounds for decomposing aqueous ozone.

    PubMed

    Kusuda, Ai; Kitayama, Mikito; Ohta, Yoshio

    2013-12-01

    The advanced oxidation process (AOP), chemical oxidation using aqueous ozone in the presence of appropriate catalysts to generate highly reactive oxygen species, offers an attractive option for removing poorly biodegradable pollutants. Using the commercial zeolite powders with various Si/Al ratios and crystal structures, their catalytic activities for decomposing aqueous ozone were evaluated by continuously flowing ozone to water containing the zeolite powders. The hydrophilic zeolites (low Si/Al ratio) with alkali cations in the crystal structures were found to possess high catalytic activity for decomposing aqueous ozone. The hydrophobic zeolite compounds (high Si/Al ratio) were found to absorb ozone very well, but to have no catalytic activity for decomposing aqueous ozone. Their catalytic activities were also evaluated by using the fixed bed column method. When alkali cations were removed by acid rinsing or substituted by alkali-earth cations, the catalytic activities was significantly deteriorated. These results suggest that the metal cations on the crystal surface of the hydrophilic zeolite would play a key role for catalytic activity for decomposing aqueous ozone.

  10. Catalytic Microtube Rocket Igniter

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J.; Deans, Matthew C.

    2011-01-01

    Devices that generate both high energy and high temperature are required to ignite reliably the propellant mixtures in combustion chambers like those present in rockets and other combustion systems. This catalytic microtube rocket igniter generates these conditions with a small, catalysis-based torch. While traditional spark plug systems can require anywhere from 50 W to multiple kW of power in different applications, this system has demonstrated ignition at less than 25 W. Reactants are fed to the igniter from the same tanks that feed the reactants to the rest of the rocket or combustion system. While this specific igniter was originally designed for liquid methane and liquid oxygen rockets, it can be easily operated with gaseous propellants or modified for hydrogen use in commercial combustion devices. For the present cryogenic propellant rocket case, the main propellant tanks liquid oxygen and liquid methane, respectively are regulated and split into different systems for the individual stages of the rocket and igniter. As the catalyst requires a gas phase for reaction, either the stored boil-off of the tanks can be used directly or one stream each of fuel and oxidizer can go through a heat exchanger/vaporizer that turns the liquid propellants into a gaseous form. For commercial applications, where the reactants are stored as gases, the system is simplified. The resulting gas-phase streams of fuel and oxidizer are then further divided for the individual components of the igniter. One stream each of the fuel and oxidizer is introduced to a mixing bottle/apparatus where they are mixed to a fuel-rich composition with an O/F mass-based mixture ratio of under 1.0. This premixed flow then feeds into the catalytic microtube device. The total flow is on the order of 0.01 g/s. The microtube device is composed of a pair of sub-millimeter diameter platinum tubes connected only at the outlet so that the two outlet flows are parallel to each other. The tubes are each

  11. Catalytic Membrane Sensors

    SciTech Connect

    Boyle, T.J.; Brinker, C.J.; Gardner, T.J.; Hughes, R.C.; Sault, A.G.

    1998-12-01

    The proposed "catalytic membrane sensor" (CMS) was developed to generate a device which would selectively identify a specific reagent in a complex mixture of gases. This was to be accomplished by modifying an existing Hz sensor with a series of thin films. Through selectively sieving the desired component from a complex mixture and identifying it by decomposing it into Hz (and other by-products), a Hz sensor could then be used to detect the presence of the select component. The proposed "sandwich-type" modifications involved the deposition of a catalyst layered between two size selective sol-gel layers on a Pd/Ni resistive Hz sensor. The role of the catalyst was to convert organic materials to Hz and organic by-products. The role of the membraneo was to impart both chemical specificity by molecukir sieving of the analyte and converted product streams, as well as controlling access to the underlying Pd/Ni sensor. Ultimately, an array of these CMS elements encompassing different catalysts and membranes were to be developed which would enable improved selectivity and specificity from a compiex mixture of organic gases via pattern recognition methodologies. We have successfully generated a CMS device by a series of spin-coat deposited methods; however, it was determined that the high temperature required to activate the catalyst, destroys the sensor.

  12. Catalytic gasification of biomass

    NASA Astrophysics Data System (ADS)

    Robertus, R. J.; Mudge, L. K.; Sealock, L. J., Jr.; Mitchell, D. H.; Weber, S. L.

    1981-12-01

    Methane and methanol synthesis gas can be produced by steam gasification of biomass in the presence of appropriate catalysts. This concept is to use catalysts in a fluidized bed reactor which is heated indirectly. The objective is to determine the technical and economic feasibility of the concept. Technically the concept has been demonstrated on a 50 lb per hr scale. Potential advantages over conventional processes include: no oxygen plant is needed, little tar is produced so gas and water treatment are simplified, and yields and efficiencies are greater than obtained by conventional gasification. Economic studies for a plant processing 2000 T/per day dry wood show that the cost of methanol from wood by catalytic gasification is competitive with the current price of methanol. Similar studies show the cost of methane from wood is competitive with projected future costs of synthetic natural gas. When the plant capacity is decreased to 200 T per day dry wood, neither product is very attractive in today's market.

  13. Catalytic pyrolysis of olive mill wastewater sludge

    NASA Astrophysics Data System (ADS)

    Abdellaoui, Hamza

    From 2008 to 2013, an average of 2,821.4 kilotons/year of olive oil were produced around the world. The waste product of the olive mill industry consists of solid residue (pomace) and wastewater (OMW). Annually, around 30 million m3 of OMW are produced in the Mediterranean area, 700,000 m3 year?1 in Tunisia alone. OMW is an aqueous effluent characterized by an offensive smell and high organic matter content, including high molecular weight phenolic compounds and long-chain fatty acids. These compounds are highly toxic to micro-organisms and plants, which makes the OMW a serious threat to the environment if not managed properly. The OMW is disposed of in open air evaporation ponds. After evaporation of most of the water, OMWS is left in the bottom of the ponds. In this thesis, the effort has been made to evaluate the catalytic pyrolysis process as a technology to valorize the OMWS. The first section of this research showed that 41.12 wt. % of the OMWS is mostly lipids, which are a good source of energy. The second section proved that catalytic pyrolysis of the OMWS over red mud and HZSM-5 can produce green diesel, and 450 °C is the optimal reaction temperature to maximize the organic yields. The last section revealed that the HSF was behind the good fuel-like properties of the OMWS catalytic oils, whereas the SR hindered the bio-oil yields and quality.

  14. Multilocus sequence typing and ftsI sequencing: a powerful tool for surveillance of penicillin-binding protein 3-mediated beta-lactam resistance in nontypeable Haemophilus influenzae

    PubMed Central

    2014-01-01

    Background Beta-lactam resistance in Haemophilus influenzae due to ftsI mutations causing altered penicillin-binding protein 3 (PBP3) is increasing worldwide. Low-level resistant isolates with the N526K substitution (group II low-rPBP3) predominate in most geographical regions, while high-level resistant isolates with the additional S385T substitution (group III high-rPBP3) are common in Japan and South Korea. Knowledge about the molecular epidemiology of rPBP3 strains is limited. We combined multilocus sequence typing (MLST) and ftsI/PBP3 typing to study the emergence and spread of rPBP3 in nontypeable H. influenzae (NTHi) in Norway. Results The prevalence of rPBP3 in a population of 795 eye, ear and respiratory isolates (99% NTHi) from 2007 was 15%. The prevalence of clinical PBP3-mediated resistance to ampicillin was 9%, compared to 2.5% three years earlier. Group II low-rPBP3 predominated (96%), with significant proportions of isolates non-susceptible to cefotaxime (6%) and meropenem (20%). Group III high-rPBP3 was identified for the first time in Northern Europe. Four MLST sequence types (ST) with characteristic, highly diverging ftsI alleles accounted for 61% of the rPBP3 isolates. The most prevalent substitution pattern (PBP3 type A) was present in 41% of rPBP3 isolates, mainly carried by ST367 and ST14. Several unrelated STs possessed identical copies of the ftsI allele encoding PBP3 type A. Infection sites, age groups, hospitalization rates and rPBP3 frequencies differed between STs and phylogenetic groups. Conclusions This study is the first to link ftsI alleles to STs in H. influenzae. The results indicate that horizontal gene transfer contributes to the emergence of rPBP3 by phylogeny restricted transformation. Clonally related virulent rPBP3 strains are widely disseminated and high-level resistant isolates emerge in new geographical regions, threatening current empiric antibiotic treatment. The need of continuous monitoring of beta

  15. Catalytic reforming of naphtha fractions

    SciTech Connect

    Bishop, K.C.; Vorhis, F.H.

    1980-09-16

    Production of motor gasoline and a btx-enriched reformate by fractionating a naphtha feedstock into a mid-boiling btxprecursor fraction, a relatively high-boiling fraction and a relatively low-boiling fraction; catalytically reforming the btxprecursor fraction in a first reforming zone; combining the relatively high-boiling and low-boiling fractions and catalytically reforming the combined fractions in a second reforming zone.

  16. Evaluation of Catalytic Needs of the DOD.

    DTIC Science & Technology

    including theory, heterogeneous catalysis , DOD dependence on catalysts for fuel, and experimental research. The air pollution produced by and possible control strategies for several Los Angeles Basin military bases is also assessed.

  17. Catalytic pyrolysis of waste rice husk over mesoporous materials

    PubMed Central

    2012-01-01

    Catalytic fast pyrolysis of waste rice husk was carried out using pyrolysis-gas chromatography/mass spectrometry [Py-GC/MS]. Meso-MFI zeolite [Meso-MFI] was used as the catalyst. In addition, a 0.5-wt.% platinum [Pt] was ion-exchanged into Meso-MFI to examine the effect of Pt addition. Using a catalytic upgrading method, the activities of the catalysts were evaluated in terms of product composition and deoxygenation. The structure and acid site characteristics of the catalysts were analyzed by Brunauer-Emmett-Teller surface area measurement and NH3 temperature-programmed desorption analysis. Catalytic upgrading reduced the amount of oxygenates in the product vapor due to the cracking reaction of the catalysts. Levoglucosan, a polymeric oxygenate species, was completely decomposed without being detected. While the amount of heavy phenols was reduced by catalytic upgrading, the amount of light phenols was increased because of the catalytic cracking of heavy phenols into light phenols and aromatics. The amount of aromatics increased remarkably as a result of catalytic upgrading, which is attributed to the strong Brönsted acid sites and the shape selectivity of the Meso-MFI catalyst. The addition of Pt made the Meso-MFI catalyst even more active in deoxygenation and in the production of aromatics. PMID:22221540

  18. Control of industrial VOC (volatile organic compound) emissions by catalytic incineration. volume 5. catalytic incinerator performance at industrial site c-3. Final report, May 1982-August 1983

    SciTech Connect

    Blacksmith, J.R.; Randall, J.L.

    1984-07-01

    The report is part of a two-phase EPA effort to assess the performance, suitability, and costs of various technologies to control emissions of volatile organic compounds (VOCs). In Phase 1, information was assembled from the literature on the use and cost of using catalytic incineration for VOC control. Results included: (1) a review of current and developing catalytic incineration technology, (2) an assessment of the overall performance of catalytic incinerators, (3) a review of applications where catalytic incinerators are used, (4) a comparative analysis of catalytic incineration with other competing VOC controls, (5) an examination of available methods for emission testing catalytic incinerators, and (6) an assessment of the need for additional performance test data. Phase 2 was a test program designed to increase the catalytic incinerator performance data base. It resulted in reports documenting the performance of eight catalytic incinerators at six industrial sites. The incinerators were used to control VOC emissions from solvent evaporation processes at can coating, coil coating, magnet wire, and graphic arts printing plants. Performance was measured at several process conditions at each site. Incinerator performance was characterized in terms of destruction efficiency, outlet solvent concentration, and energy usage. Design and operating data were collected. This report preseents test resultls and data evaluation for the testing conducted at the third test site, which involved the testing of two catalytic incinerators at Plant C-3, a graphic arts printing establishment.

  19. Control of cell division in Escherichia coli: regulation of transcription of ftsQA involves both rpoS and SdiA-mediated autoinduction.

    PubMed

    Sitnikov, D M; Schineller, J B; Baldwin, T O

    1996-01-09

    The conditioning of culture medium by the production of growth-regulatory substances is a well-established phenomenon with eukaryotic cells. It has recently been shown that many prokaryotes are also capable of modulating growth, and in some cases sensing cell density, by production of extracellular signaling molecules, thereby allowing single celled prokaryotes to function in some respects as multicellular organisms. As Escherichia coli shifts from exponential growth to stationary growth, many changes occur, including cell division leading to formation of short minicells and expression of numerous genes not expressed in exponential phase. An understanding of the coordination between the morphological changes associated with cell division and the physiological and metabolic changes is of fundamental importance to understanding regulation of the prokaryotic cell cycle. The ftsQA genes, which encode functions required for cell division in E. coli, are regulated by promoters P1 and P2, located upstream of the ftsQ gene. The P1 promoter is rpoS-stimulated and the second, P2, is regulated by a member of the LuxR subfamily of transcriptional activators, SdiA, exhibiting features characteristic of an autoinduction (quorum sensing) mechanism. The activity of SdiA is potentiated by N-acyl-homoserine lactones, which are the autoinducers of luciferase synthesis in luminous marine bacteria as well as of pathogenesis functions in several pathogenic bacteria. A compound(s) produced by E. coli itself during growth in Luria Broth stimulates transcription from P2 in an SdiA-dependent process. Another substance(s) enhances transcription of rpoS and (perhaps indirectly) of ftsQA via promoter P1. It appears that this bimodal control mechanism may comprise a fail-safe system, such that transcription of the ftsQA genes may be properly regulated under a variety of different environmental and physiological conditions.

  20. Global climatology based on the ACE-FTS version 3.5 dataset: Addition of mesospheric levels and carbon-containing species in the UTLS

    NASA Astrophysics Data System (ADS)

    Koo, Ja-Ho; Walker, Kaley A.; Jones, Ashley; Sheese, Patrick E.; Boone, Chris D.; Bernath, Peter F.; Manney, Gloria L.

    2017-01-01

    In this paper, we present a new climatology based on the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) version 3.5 data set from February 2004 to February 2013. This extends the ACE-FTS climatology to include profile information in the mesosphere and carbon-containing species in the upper troposphere and lower stratosphere. Climatologies of 21 species, based on nine years of observations, are calculated, providing the most comprehensive and self-consistent climatology available from limb-viewing satellite measurements. Pressure levels from the upper troposphere to the mesosphere and lower thermosphere are included with 3 to 4 km vertical resolution up to 10-4 hPa ( 105 km). Volume mixing ratio values are filtered prior to the climatology estimation using the ACE-FTS data quality recommendations. The multi-year mean climatology contains zonal mean profiles for monthly and three-monthly (DJF, MAM, JJA, and SON) periods. These are provided with 5-degree spacing in either latitude or equivalent latitude. Also, the local daytime and nighttime distributions are provided separately for nitrogen-containing species, enabling diurnal differences to be investigated. Based on this climatology, examples of typical spatiotemporal patterns for trace gases in the mesosphere and for carbon-containing gases in the upper troposphere and lower stratosphere are discussed.

  1. Catalytic combustion with steam injection

    NASA Technical Reports Server (NTRS)

    Anderson, D. N.; Tacina, R. R.

    1982-01-01

    The effects of steam injection on (1) catalytic combustion performance, and (2) the tendency of residual fuel to burn in the premixing duct upstream of the catalytic reactor were determined. A petroleum residual, no. 2 diesel, and a blend of middle and heavy distillate coal derived fuels were tested. Fuel and steam were injected together into the preheated airflow entering a 12 cm diameter catalytic combustion test section. The inlet air velocity and pressure were constant at 10 m/s and 600 kPa, respectively. Steam flow rates were varied from 24 percent to 52 percent of the air flow rate. The resulting steam air mixture temperatures varied from 630 to 740 K. Combustion temperatures were in the range of 1200 to 1400 K. The steam had little effect on combustion efficiency or emissions. It was concluded that the steam acts as a diluent which has no adverse effect on catalytic combustion performance for no. 2 diesel and coal derived liquid fuels. Tests with the residual fuel showed that upstream burning could be eliminated with steam injection rates greater than 30 percent of the air flow rate, but inlet mixture temperatures were too low to permit stable catalytic combustion of this fuel.

  2. Advanced catalytic combustors for low pollutant emissions, phase 1

    NASA Technical Reports Server (NTRS)

    Dodds, W. J.

    1979-01-01

    The feasibility of employing the known attractive and distinguishing features of catalytic combustion technology to reduce nitric oxide emissions from gas turbine engines during subsonic, stratospheric cruise operation was investigated. Six conceptual combustor designs employing catalytic combustion were defined and evaluated for their potential to meet specific emissions and performance goals. Based on these evaluations, two parallel-staged, fixed-geometry designs were identified as the most promising concepts. Additional design studies were conducted to produce detailed preliminary designs of these two combustors. Results indicate that cruise nitric oxide emissions can be reduced by an order of magnitude relative to current technology levels by the use of catalytic combustion. Also, these combustors have the potential for operating over the EPA landing-takeoff cycle and at cruise with a low pressure drop, high combustion efficiency and with a very low overall level of emission pollutants. The use of catalytic combustion, however, requires advanced technology generation in order to obtain the time-temperature catalytic reactor performance and durability required for practical aircraft engine combustors.

  3. New and improved infra-red absorption cross sections and ACE-FTS retrievals of carbon tetrachloride (CCl4)

    NASA Astrophysics Data System (ADS)

    Harrison, Jeremy J.; Boone, Christopher D.; Bernath, Peter F.

    2017-01-01

    Carbon tetrachloride (CCl4) is one of the species regulated by the Montreal Protocol on account of its ability to deplete stratospheric ozone. As such, the inconsistency between observations of its abundance and estimated sources and sinks is an important problem requiring urgent attention (Carpenter et al., 2014) [5]. Satellite remote-sensing has a role to play, particularly limb sounders which can provide vertical profiles into the stratosphere and therefore validate stratospheric loss rates in atmospheric models. This work is in two parts. The first describes new and improved high-resolution infra-red absorption cross sections of carbon tetrachloride/dry synthetic air over the spectral range 700-860 cm-1 for a range of temperatures and pressures (7.5-760 Torr and 208-296 K) appropriate for atmospheric conditions. This new cross-section dataset improves upon the one currently available in the HITRAN and GEISA databases. The second describes a new, preliminary ACE-FTS carbon tetrachloride retrieval that improves upon the v3.0/v3.5 data products, which are biased high by up to 20-30% relative to ground measurements. Making use of the new spectroscopic data, this retrieval also improves the microwindow selection, contains additional interfering species, and utilises a new instrumental lineshape; it will form the basis for the upcoming v4.0 CCl4 data product.

  4. Two Types of FtsH Protease Subunits Are Required for Chloroplast Biogenesis and Photosystem II Repair in Arabidopsis

    PubMed Central

    Zaltsman, Adi; Ori, Naomi; Adam, Zach

    2005-01-01

    FtsH protease is important in chloroplast biogenesis and thylakoid maintenance. Although bacteria contain only one essential FTSH gene, multiple genes exist in cyanobacteria and higher plants. However, the functional significance of FTSH multiplication in plants is unclear. We hypothesized that some FTSH genes may be redundant. To test this hypothesis, we generated double mutant combinations among the different FTSH genes in Arabidopsis thaliana. A double mutant of ftsh1 and ftsh8 showed no obvious phenotypic alterations, and disruption of either FTSH1 or FTSH5 enhanced the phenotype of the ftsh2 mutant. Unexpectedly, new phenotypes were recovered from crosses between ftsh2 and ftsh8 and between ftsh5 and ftsh1, including albinism, heterotrophy, disruption of flowering, and severely reduced male fertility. These results suggest that the duplicated genes, FTSH1 and FTSH5 (subunit type A) and FTSH2 and FTSH8 (subunit type B), are redundant. Furthermore, they reveal that the presence of two types of subunits is essential for complex formation, photosystem II repair, and chloroplast biogenesis. PMID:16126834

  5. Recommended fine positioning test for the Development Test Flight (DTF-1) of the NASA Flight Telerobotic Servicer (FTS)

    NASA Technical Reports Server (NTRS)

    Dagalakis, N.; Wavering, A. J.; Spidaliere, P.

    1991-01-01

    Test procedures are proposed for the NASA DTF (Development Test Flight)-1 positioning tests of the FTS (Flight Telerobotic Servicer). The unique problems associated with the DTF-1 mission are discussed, standard robot performance tests and terminology are reviewed and a very detailed description of flight-like testing and analysis is presented. The major technical problem associated with DTF-1 is that only one position sensor can be used, which will be fixed at one location, with a working volume which is probably smaller than some of the robot errors to be measured. Radiation heating of the arm and the sensor could also cause distortions that would interfere with the test. Two robot performance testing committees have established standard testing procedures relevant to the DTF-1. Due to the technical problems associated with DTF-1, these procedures cannot be applied directly. These standard tests call for the use of several test positions at specific locations. Only one position, that of the position sensor, can be used by DTF-1. Off-line programming accuracy might be impossible to measure and in that case it will have to be replaced by forward kinetics accuracy.

  6. Synthesis and antibacterial activity of novel 4-bromo-1H-indazole derivatives as FtsZ inhibitors.

    PubMed

    Wang, Yi; Yan, Mi; Ma, Ruixin; Ma, Shutao

    2015-04-01

    A series of novel 4-bromo-1H-indazole derivatives as filamentous temperature-sensitive protein Z (FtsZ) inhibitors were designed, synthesized, and assayed for their in vitro antibacterial activity against various phenotypes of Gram-positive and Gram-negative bacteria and their cell division inhibitory activity. The results indicated that this series showed better antibacterial activity against Staphylococcus epidermidis and penicillin-susceptible Streptococcus pyogenes than the other tested strains. Among them, compounds 12 and 18 exhibited 256-fold and 256-fold more potent activity than 3-methoxybenzamide (3-MBA) against penicillin-resistant Staphylococcus aureus, and compound 18 showed 64-fold better activity than 3-MBA but 4-fold weaker activity than ciprofloxacin in the inhibition of S. aureus ATCC29213. Particularly, compound 9 presented the best activity (4 µg/mL) against S. pyogenes PS, being 32-fold, 32-fold, and 2-fold more active than 3-MBA, curcumin, and ciprofloxacin, respectively, but it was four times less active than oxacillin sodium. In addition, some synthesized compounds displayed moderate inhibition of cell division against S. aureus ATCC25923, Escherichia coli ATCC25922, and Pseudomonas aeruginosa ATCC27853, sharing a minimum cell division concentration of 128 µg/mL.

  7. Expression studies of catalytic antibodies

    SciTech Connect

    Ulrich, H.D.; Patten, P.A.; Yang, P.L.

    1995-12-05

    We have examined the positive influence of human constant regions on the folding and bacterial expression of active soluble mouse immunoglobulin variable domains derived form a number of catalytic antibodies. Expression yields of eight hybridoma-and myeloma-derived chimeric Fab fragments are compared in both shake flasks and high-density fermentation. In addition the usefulness of this system for the generation of in vivo expression libraries is examined by constructing and expressing combinations of heavy and light chain variable regions that were not selected as a pair during an immune response. A mutagenesis study of one of the recombinant catalytic Fab fragments reveals that single amino acid substitutions can have dramatic effects on the expression yield. This system should be generally applicable to the production of Fab fragments of catalytic and other hybridoma-derived antibodies for crystallographic and structure-function studies. 41 refs., 4 figs., 1 tab.

  8. Catalytic distillation water recovery subsystem

    NASA Technical Reports Server (NTRS)

    Budininkas, P.; Rasouli, F.

    1985-01-01

    An integrated engineering breadboard subsystem for the recovery of potable water from untreated urine based on the vapor phase catalytic ammonia removal was designed, fabricated and tested. Unlike other evaporative methods, this process catalytically oxidizes ammonia and volatile hydrocarbons vaporizing with water to innocuous products; therefore, no pretreatment of urine is required. Since the subsystem is fabricated from commercially available components, its volume, weight and power requirements are not optimized; however, it is suitable for zero-g operation. The testing program consists of parametric tests, one month of daily tests and a continuous test of 168 hours duration. The recovered water is clear, odorless, low in ammonia and organic carbon, and requires only an adjustment of its pH to meet potable water standards. The obtained data indicate that the vapor phase catalytic ammonia removal process, if further developed, would also be competitive with other water recovery systems in weight, volume and power requirements.

  9. Perfluoropolyalkylether decomposition on catalytic aluminas

    NASA Technical Reports Server (NTRS)

    Morales, Wilfredo

    1994-01-01

    The decomposition of Fomblin Z25, a commercial perfluoropolyalkylether liquid lubricant, was studied using the Penn State Micro-oxidation Test, and a thermal gravimetric/differential scanning calorimetry unit. The micro-oxidation test was conducted using 440C stainless steel and pure iron metal catalyst specimens, whereas the thermal gravimetric/differential scanning calorimetry tests were conducted using catalytic alumina pellets. Analysis of the thermal data, high pressure liquid chromatography data, and x-ray photoelectron spectroscopy data support evidence that there are two different decomposition mechanisms for Fomblin Z25, and that reductive sites on the catalytic surfaces are responsible for the decomposition of Fomblin Z25.

  10. Combined Operando X‐ray Diffraction/Raman Spectroscopy of Catalytic Solids in the Laboratory: The Co/TiO2 Fischer–Tropsch Synthesis Catalyst Showcase

    PubMed Central

    Cats, Korneel H.

    2016-01-01

    Abstract A novel laboratory setup for combined operando X‐ray diffraction and Raman spectroscopy of catalytic solids with online product analysis by gas chromatography is presented. The setup can be used with a laboratory‐based X‐ray source, which results in important advantages in terms of time‐on‐stream that can be measured, compared to synchrotron‐based experiments. The data quality was much improved by the use of a relatively high‐energy MoKα radiation instead of the more conventional CuKα radiation. We have applied the instrument to study the long‐term deactivation of Co/TiO2 Fischer–Tropsch synthesis (FTS) catalysts. No sign of Co sintering or bulk oxidation was found during the experiments. However, part of the metallic Co was converted into cobalt carbide (Co2C), at elevated pressure (10 bar). Furthermore, graphitic‐like coke species are clearly formed during FTS at atmospheric pressure, whereas at elevated pressure fluorescence hampered the interpretation of the measured Raman spectra. PMID:27812371

  11. Carbon Cloth Supports Catalytic Electrodes

    NASA Technical Reports Server (NTRS)

    Lu, W. T. P.; Ammon, R. L.

    1983-01-01

    Carbon cloth is starting material for promising new catalytic electrodes. Carbon-cloth electrodes are more efficient than sintered-carbon configuration previously used. Are also chemically stable and require less catalyst--an important economic advantage when catalyst is metal such as platinum.

  12. High temperature catalytic membrane reactors

    SciTech Connect

    Not Available

    1990-03-01

    Current state-of-the-art inorganic oxide membranes offer the potential of being modified to yield catalytic properties. The resulting modules may be configured to simultaneously induce catalytic reactions with product concentration and separation in a single processing step. Processes utilizing such catalytically active membrane reactors have the potential for dramatically increasing yield reactions which are currently limited by either thermodynamic equilibria, product inhibition, or kinetic selectivity. Examples of commercial interest include hydrogenation, dehydrogenation, partial and selective oxidation, hydrations, hydrocarbon cracking, olefin metathesis, hydroformylation, and olefin polymerization. A large portion of the most significant reactions fall into the category of high temperature, gas phase chemical and petrochemical processes. Microporous oxide membranes are well suited for these applications. A program is proposed to investigate selected model reactions of commercial interest (i.e. dehydrogenation of ethylbenzene to styrene and dehydrogenation of butane to butadiene) using a high temperature catalytic membrane reactor. Membranes will be developed, reaction dynamics characterized, and production processes developed, culminating in laboratory-scale demonstration of technical and economic feasibility. As a result, the anticipated increased yield per reactor pass economic incentives are envisioned. First, a large decrease in the temperature required to obtain high yield should be possible because of the reduced driving force requirement. Significantly higher conversion per pass implies a reduced recycle ratio, as well as reduced reactor size. Both factors result in reduced capital costs, as well as savings in cost of reactants and energy.

  13. Catalytic oxidation of waste materials

    NASA Technical Reports Server (NTRS)

    Jagow, R. B.

    1977-01-01

    Aqueous stream of human waste is mixed with soluble ruthenium salts and is introduced into reactor at temperature where ruthenium black catalyst forms on internal surfaces of reactor. This provides catalytically active surface to convert oxidizable wastes into breakdown products such as water and carbon dioxide.

  14. Simple, Chemoselective, Catalytic Olefin Isomerization

    PubMed Central

    2015-01-01

    Catalytic amounts of Co(SaltBu,tBu)Cl and organosilane irreversibly isomerize terminal alkenes by one position. The same catalysts effect cycloisomerization of dienes and retrocycloisomerization of strained rings. Strong Lewis bases like amines and imidazoles, and labile functionalities like epoxides, are tolerated. PMID:25398144

  15. Catalytic Asymmetric Bromocyclization of Polyenes.

    PubMed

    Samanta, Ramesh C; Yamamoto, Hisashi

    2017-02-01

    The first catalytic asymmetric bromonium ion-induced polyene cyclization has been achieved by using a chiral BINOL-derived thiophosphoramide catalyst and 1,3-dibromo-5,5-dimethylhydantoin as an electrophilic bromine source. Bromocyclization products are obtained in high yields, with good enantiomeric ratios and high diastereoselectivity, and are abundantly found as scaffolds in natural products.

  16. Catalytically enhanced packed tower scrubbing

    SciTech Connect

    Stitt, E.H.; Taylor, F.J.; Kelly, K.

    1996-12-31

    An enhanced wet scrubbing process for the treatment of gas streams containing odours and low level VOC`s is presented. It comprises essentially a single scrubbing column and a fixed bed catalytic reactor through which the dilute alkaline bleach scrubbing liquor is recirculated. The process has significant cost advantages over conventional chemical scrubbing technology, and copes well with peaks in odour levels. Traditional bleach scrubbing, and the improvements in process chemistry and the flowsheet afforded by inclusion of the catalyst, are discussed. The catalyst enables many of the well known problems associated with bleach scrubbing to be overcome, and facilitates odour removal efficiencies of greater than 99% in a single column. Pilot plant data from trials on sewage treatment works are presented. These show clearly the ability of the catalytically enhanced process to achieve sulphide and odour removals in excess of 99% in the single column. Case studies of some of the existing commercial installations are given, indicating the wide range of applications, industries and scale of the installed units. Comparative data are presented, measured on a commercial unit for the conventional operation of a bleach scrubber, and with the retrofitted catalyst in use. These data show clearly the benefits of the catalytic process in terms of removal efficiencies; and hence by inference also in equipment size and costs. The catalytic process is also shown to achieve very high removal efficiencies of organo-sulphides in a single column. 8 refs., 3 figs., 10 tabs.

  17. Process for Coating Substrates with Catalytic Materials

    NASA Technical Reports Server (NTRS)

    Klelin, Ric J. (Inventor); Upchurch, Billy T. (Inventor); Schryer, David R. (Inventor)

    2004-01-01

    A process for forming catalysts by coating substrates with two or more catalytic components, which comprises the following sequence of steps. First, the substrate is infused with an adequate amount of solution having a starting material comprising a catalytic component precursor, wherein the thermal decomposition product of the catalytic component precursor is a catalytic component. Second, the excess of the solution is removed from the substrate. thereby leaving a coating of the catalytic component precursor on the surface of the substrate. Third, the coating of the catalytic component precursor is converted to the catalytic component by thermal decomposition. Finally, the coated substance is etched to increase the surface area. The list three steps are then repeated for at least a second catalytic component. This process is ideally suited for application in producing efficient low temperature oxidation catalysts.

  18. Development of a high-temperature durable catalyst for use in catalytic combustors for advanced automotive gas turbine engines

    NASA Technical Reports Server (NTRS)

    Tong, H.; Snow, G. C.; Chu, E. K.; Chang, R. L. S.; Angwin, M. J.; Pessagno, S. L.

    1981-01-01

    Durable catalytic reactors for advanced gas turbine engines were developed. Objectives were: to evaluate furnace aging as a cost effective catalytic reactor screening test, measure reactor degradation as a function of furnace aging, demonstrate 1,000 hours of combustion durability, and define a catalytic reactor system with a high probability of successful integration into an automotive gas turbine engine. Fourteen different catalytic reactor concepts were evaluated, leading to the selection of one for a durability combustion test with diesel fuel for combustion conditions. Eight additional catalytic reactors were evaluated and one of these was successfully combustion tested on propane fuel. This durability reactor used graded cell honeycombs and a combination of noble metal and metal oxide catalysts. The reactor was catalytically active and structurally sound at the end of the durability test.

  19. Green synthesis of CuO nanoparticles by aqueous extract of Gundelia tournefortii and evaluation of their catalytic activity for the synthesis of N-monosubstituted ureas and reduction of 4-nitrophenol.

    PubMed

    Nasrollahzadeh, Mahmoud; Maham, Mehdi; Sajadi, S Mohammad

    2015-10-01

    A facile, efficient and environmentally-friendly protocol has been developed for the green synthesis of CuO nanoparticles (NPs) by aqueous extract of Gundelia tournefortii as a mild, renewable and non-toxic reducing agent. CuO NPs were characterized by SEM, TEM, XRD, EDS, FT-IR and UV-vis spectroscopy. More importantly, the green synthesized CuO NPs presented excellent catalytic activity for reduction of 4-nitrophenol and synthesis of N-monosubstituted ureas via hydration of cyanamides with the aid of acetaldoxime as an effective water surrogate in ethanol as a green solvent. The catalyst was easily separated and the recovered catalyst was reused many times without any significant loss of the catalytic activity.

  20. A novel rho promoter::Tn10 mutation suppresses and ftsQ1(Ts) missense mutation in an essential Escherichia coli cell division gene by a mechanism not involving polarity suppression.

    PubMed Central

    Storts, D R; Markovitz, A

    1991-01-01

    An extragenic suppressor of the Escherichia coli cell division gene ftsQ1(Ts) was isolated. The suppressor is a Tn10 insertion into the -35 promoter consensus sequence of the rho gene, designated rho promoter::Tn10. The ftsQ1(Ts) mutation was also suppressed by the rho-4 mutant allele. The rho promoter::Tn10 strain does not exhibit rho mutant polarity suppressor phenotypes. In addition, overexpression of the ftsQ1(Ts) mutation does not reverse temperature sensitivity. Furthermore, DNA sequence analysis of the ftsQ1(Ts) allele revealed that the salt-remediable, temperature-sensitive phenotype arose from a single missense mutation. The most striking phenotype of the rho promoter::Tn10 mutant strain is an increase in the level of negative supercoiling. On the basis of these observations, we conclude that the ftsQ1(Ts) mutation may be suppressed by a change in supercoiling. Images PMID:1846147

  1. Validation of first chemistry mode retrieval results from the new limb-imaging FTS GLORIA with correlative MIPAS-STR observations

    NASA Astrophysics Data System (ADS)

    Woiwode, W.; Sumińska-Ebersoldt, O.; Oelhaf, H.; Höpfner, M.; Belyaev, G. V.; Ebersoldt, A.; Friedl-Vallon, F.; Grooß, J.-U.; Gulde, T.; Kaufmann, M.; Kleinert, A.; Krämer, M.; Kretschmer, E.; Kulessa, T.; Maucher, G.; Neubert, T.; Piesch, C.; Preusse, P.; Riese, M.; Rongen, H.; Sartorius, C.; Schardt, G.; Schönfeld, A.; Schuettemeyer, D.; Sha, M. K.; Stroh, F.; Ungermann, J.; Volk, C. M.; Orphal, J.

    2015-06-01

    We report first chemistry mode retrieval results from the new airborne limb-imaging infrared FTS (Fourier transform spectrometer) GLORIA (Gimballed Limb Observer for Radiance Imaging of the Atmosphere) and comparisons with observations by the conventional airborne limb-scanning infrared FTS MIPAS-STR (Michelson Interferometer for Passive Atmospheric Sounding - STRatospheric aircraft). For GLORIA, the flights aboard the high-altitude research aircraft M55 Geophysica during the ESSenCe campaign (ESa Sounder Campaign 2011) were the very first in field deployment after several years of development. The simultaneous observations of GLORIA and MIPAS-STR during the flight on 16 December 2011 inside the polar vortex and under conditions of optically partially transparent polar stratospheric clouds (PSCs) provided us the first opportunity to compare the observations by two different infrared FTS generations directly. We validate the GLORIA results with MIPAS-STR based on the lower vertical resolution of MIPAS-STR and compare the vertical resolutions of the instruments derived from their averaging kernels. The retrieval results of temperature, HNO3, O3, H2O, CFC-11 and CFC-12 show reasonable agreement of GLORIA with MIPAS-STR and collocated in situ observations. For the horizontally binned hyperspectral limb images, the GLORIA sampling outnumbered the horizontal cross-track sampling of MIPAS-STR by up to 1 order of magnitude. Depending on the target parameter, typical vertical resolutions of 0.5 to 2.0 km were obtained for GLORIA and are typically a factor of 2 to 4 better compared to MIPAS-STR. While the improvement of the performance, characterization and data processing of GLORIA are the subject of ongoing work, the presented first results already demonstrate the considerable gain in sampling and vertical resolution achieved with GLORIA.

  2. ZapE is a novel cell division protein interacting with FtsZ and modulating the Z-ring dynamics.

    PubMed

    Marteyn, Benoit S; Karimova, Gouzel; Fenton, Andrew K; Gazi, Anastasia D; West, Nicholas; Touqui, Lhousseine; Prevost, Marie-Christine; Betton, Jean-Michel; Poyraz, Oemer; Ladant, Daniel; Gerdes, Kenn; Sansonetti, Philippe J; Tang, Christoph M

    2014-03-04

    Bacterial cell division requires the formation of a mature divisome complex positioned at the midcell. The localization of the divisome complex is determined by the correct positioning, assembly, and constriction of the FtsZ ring (Z-ring). Z-ring constriction control remains poorly understood and (to some extent) controversial, probably due to the fact that this phenomenon is transient and controlled by numerous factors. Here, we characterize ZapE, a novel ATPase found in Gram-negative bacteria, which is required for growth under conditions of low oxygen, while loss of zapE results in temperature-dependent elongation of cell shape. We found that ZapE is recruited to the Z-ring during late stages of the cell division process and correlates with constriction of the Z-ring. Overexpression or inactivation of zapE leads to elongation of Escherichia coli and affects the dynamics of the Z-ring during division. In vitro, ZapE destabilizes FtsZ polymers in an ATP-dependent manner. IMPORTANCE Bacterial cell division has mainly been characterized in vitro. In this report, we could identify ZapE as a novel cell division protein which is not essential in vitro but is required during an infectious process. The bacterial cell division process relies on the assembly, positioning, and constriction of FtsZ ring (the so-called Z-ring). Among nonessential cell division proteins recently identified, ZapE is the first in which detection at the Z-ring correlates with its constriction. We demonstrate that ZapE abundance has to be tightly regulated to allow cell division to occur; absence or overexpression of ZapE leads to bacterial filamentation. As zapE is not essential, we speculate that additional Z-ring destabilizing proteins transiently recruited during late cell division process might be identified in the future.

  3. Catalytic σ-Bond Metathesis

    NASA Astrophysics Data System (ADS)

    Reznichenko, Alexander L.; Hultzsch, Kai C.

    This account summarizes information on recently reported applications of organo-rare-earth metal complexes in various catalytic transformations of small molecules. The σ-bond metathesis at d0rare-earth metal centers plays a pivotal role in carbon-carbon and carbon-heteroatom bond forming processes. Relevant mechanistic details are discussed and the focus of the review lies in practical applications of organo-rare-earth metal complexes.

  4. High-resolution study of 13C16O A-X(v' = 0-9) bands using the VUV-FTS at SOLEIL: revised term values.

    PubMed

    Gavilan, Lisseth; Lemaire, Jean Louis; Eidelsberg, Michèle; Federman, S R; Stark, Glenn; Heays, Alan N; Fillion, Jean-Hugues; Lyons, James R; de Oliveira, Nelson

    2013-10-03

    We present high-resolution absorption spectral measurements of the A(1)Π-X(1)Σ(+) band system of (13)C(16)O. These were recorded with the VUV Fourier transform spectrometer (VUV-FTS) installed on the DESIRS beamline at the SOLEIL synchrotron. This work includes revised term values that extend to higher J' values than previous measurements for most v' levels and lower J' values for v' = 0. We confirm previously observed perturbations of the rotational levels in greater detail and present evidence for new perturbations. The accuracy in the wavelength determination and term values is on average within 0.01 cm(-1), improving upon previous measurements.

  5. Thermodynamics of catalytic nanoparticle morphology

    NASA Astrophysics Data System (ADS)

    Zwolak, Michael; Sharma, Renu; Lin, Pin Ann

    Metallic nanoparticles are an important class of industrial catalysts. The variability of their properties and the environment in which they act, from their chemical nature & surface modification to their dispersion and support, allows their performance to be optimized for many chemical processes useful in, e.g., energy applications and other areas. Their large surface area to volume ratio, as well as varying sizes and faceting, in particular, makes them an efficient source for catalytically active sites. These characteristics of nanoparticles - i.e., their morphology - can often display intriguing behavior as a catalytic process progresses. We develop a thermodynamic model of nanoparticle morphology, one that captures the competition of surface energy with other interactions, to predict structural changes during catalytic processes. Comparing the model to environmental transmission electron microscope images of nickel nanoparticles during carbon nanotube (and other product) growth demonstrates that nickel deformation in response to the nanotube growth is due to a favorable interaction with carbon. Moreover, this deformation is halted due to insufficient volume of the particles. We will discuss the factors that influence morphology and also how the model can be used to extract interaction strengths from experimental observations.

  6. Fuel Flexible, Low Emission Catalytic Combustor for Opportunity Fuel Applications

    SciTech Connect

    Eteman, Shahrokh

    2013-06-30

    Limited fuel resources, increasing energy demand and stringent emission regulations are drivers to evaluate process off-gases or process waste streams as fuels for power generation. Often these process waste streams have low energy content and/or highly reactive components. Operability of low energy content fuels in gas turbines leads to issues such as unstable and incomplete combustion. On the other hand, fuels containing higher-order hydrocarbons lead to flashback and auto-ignition issues. Due to above reasons, these fuels cannot be used directly without modifications or efficiency penalties in gas turbine engines. To enable the use of these wide variety of fuels in gas turbine engines a rich catalytic lean burn (RCL®) combustion system was developed and tested in a subscale high pressure (10 atm.) rig. The RCL® injector provided stability and extended turndown to low Btu fuels due to catalytic pre-reaction. Previous work has shown promise with fuels such as blast furnace gas (BFG) with LHV of 85 Btu/ft3 successfully combusted. This program extends on this work by further modifying the combustor to achieve greater catalytic stability enhancement. Fuels containing low energy content such as weak natural gas with a Lower Heating Value (LHV) of 6.5 MJ/m3 (180 Btu/ft3 to natural gas fuels containing higher hydrocarbon (e.g ethane) with LHV of 37.6 MJ/m3 (1010 Btu/ft3) were demonstrated with improved combustion stability; an extended turndown (defined as the difference between catalytic and non-catalytic lean blow out) of greater than 250oF was achieved with CO and NOx emissions lower than 5 ppm corrected to 15% O2. In addition, for highly reactive fuels the catalytic region preferentially pre-reacted the higher order hydrocarbons with no events of flashback or auto-ignition allowing a stable and safe operation with low NOx and CO emissions.

  7. Catalytic reforming of heart cut fcc naphthas

    SciTech Connect

    Gerritsen, L.A.

    1985-03-01

    The anticipated lead phasedown in the USA and the growing demand for unleaded gasoline will require a higher gasoline pool octane number. One of the possibilities to achieve this increase of pool octane will be catalytic reforming of FCC naphtha. In this paper we evaluate the effects of FCC naphtha reforming on the reformer operation and gasoline pool volume for various lead phasedown scenarios. High-stability reforming catalysts, like TPR-8/CK-522 TRILOBE catalyst, will be required to maintain acceptable cycle lengths at the more severe reformer operating conditions. The properties and octane distribution of FCC naphtha are discussed, as well as its hydrotreating with high-active NiMo catalysts.

  8. Catalytic creativity. The case of Linus Pauling.

    PubMed

    Nakamura, J; Csikszentmihalyi, M

    2001-04-01

    This article illustrates how creativity is constituted by forces beyond the innovating individual, drawing examples from the career of the eminent chemist Linus Pauling. From a systems perspective, a scientific theory or other product is creative only if the innovation gains the acceptance of a field of experts and so transforms the culture. In addition to this crucial selective function vis-à-vis the completed work, the social field can play a catalytic role, fostering productive interactions between person and domain throughout a career. Pauling's case yields examples of how variously the social field contributes to creativity, shaping the individual's standards of judgment and providing opportunities, incentives, and critical evaluation. A formidable set of strengths suited Pauling for his scientific achievements, but examination of his career qualifies the notion of a lone genius whose brilliance carries the day.

  9. Techno-economic assessment of catalytic gasification of biomass powders for methanol production.

    PubMed

    Carvalho, Lara; Furusjö, Erik; Kirtania, Kawnish; Wetterlund, Elisabeth; Lundgren, Joakim; Anheden, Marie; Wolf, Jens

    2017-02-08

    This study evaluated the techno-economic performance and potential benefits of methanol production through catalytic gasification of forest residues and lignin. The results showed that while catalytic gasification enables increased cold gas efficiencies and methanol yields compared to non-catalytic gasification, the additional pre-treatment energy and loss of electricity production result in small or no system efficiency improvements. The resulting required methanol selling prices (90-130€/MWh) are comparable with production costs for other biofuels. It is concluded that catalytic gasification of forest residues can be an attractive option as it provides operational advantages at production costs comparable to non-catalytic gasification. The addition of lignin would require lignin costs below 25€/MWh to be economically beneficial.

  10. Global stratospheric chlorine inventories for 2004-2009 from Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) measurements

    NASA Astrophysics Data System (ADS)

    Brown, A. T.; Chipperfield, M. P.; Dhomse, S.; Boone, C.; Bernath, P. F.

    2013-09-01

    We present chlorine budgets calculated between 2004 and 2009 for four latitude bands (70° N-30° N, 30° N-0° N, 0° N-30° S, and 30° S-70° S). The budgets were calculated using ACE-FTS version 3.0 retrievals of the volume mixing ratios (VMRs) of 9 chlorine-containing species: CCl4, CFC-12 (CCl2F2), CFC-11 (CCl3F), COCl2, COClF, HCFC-22 (CHF2Cl), CH3Cl, HCl and ClONO2. These data were supplemented with calculated VMRs from the SLIMCAT 3-D chemical transport model (CFC-113, CFC-114, CFC-115, H-1211, H-1301, HCFC-141b, HCFC-142b, ClO and HOCl). The total chlorine profiles are dominated by chlorofluorocarbons (CFCs) and halons up to 24 km in the tropics and 19 km in the extra-tropics. In this altitude range CFCs and halons account for 58% of the total chlorine VMR. Above this altitude HCl increasingly dominates the total chlorine profile, reaching a maximum of 95% of total chlorine at 54 km. All total chlorine profiles exhibit a positive slope with altitude, suggesting that the total chlorine VMR is now decreasing with time. This conclusion is supported by the time series of the mean stratospheric total chlorine budgets which show mean decreases in total stratospheric chlorine of 0.38 ± 0.03% per year in the Northern Hemisphere extra-tropics, 0.35 ± 0.07% per year in the Northern Hemisphere tropical stratosphere, 0.54 ± 0.16% per year in the Southern Hemisphere tropics and 0.53 ± 0.12% per year in the Southern Hemisphere extra-tropical stratosphere for 2004-2009. Globally stratospheric chlorine is decreasing by 0.46 ± 0.02% per year. Both global warming potential-weighted chlorine and ozone depletion potential-weighted chlorine are decreasing at all latitudes. These results show that the Montreal Protocol has had a significant effect in reducing emissions of both ozone-depleting substances and greenhouse gases.

  11. Retrievals of carbonyl fluoride (COF2) from ACE-FTS and MIPAS spectra and their comparison with SLIMCAT CTM calculations

    NASA Astrophysics Data System (ADS)

    Harrison, Jeremy; Cai, Shaomin; Dudhia, Anu; Chipperfield, Martyn; Boone, Chris; Bernath, Peter

    2014-05-01

    Chemistry Experiment Fourier transform spectrometer (ACE-FTS), onboard the SCISAT-1 satellite, which has been recording atmospheric spectra since 2004, and the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) instrument onboard the ENVIronmental SATellite (Envisat), which has recorded thermal emission atmospheric spectra between 2002 and 2012. The observations are compared with the output of SLIMCAT, a state-of-the-art three-dimensional chemical transport model (CTM). The model aids in the interpretation of the COF2 satellite observations, and the comparison provides a validation of emission inventories and the atmospheric degradation reaction schemes used in the model.

  12. Hydrogen Cyanide in the Upper Troposphere: GEM-AQ Simulation and Comparison with ACE-FTS Observations

    NASA Technical Reports Server (NTRS)

    Lupu, A.; Kaminski, J. W.; Neary, L.; McConnell, J. C.; Toyota, K.; Rinsland, C. P.; Bernath, P. F.; Walker, K. A.; Boone, C. D.; Nagahama, Y.; Suzuki, K.

    2009-01-01

    We investigate the spatial and temporal distribution of hydrogen cyanide (HCN) in the upper troposphere through numerical simulations and comparison with observations from a space-based instrument. To perform the simulations, we used the Global Environmental Multiscale Air Quality model (GEM-AQ), which is based on the threedimensional Gobal multiscale model developed by the Meteorological Service of Canada for operational weather forecasting. The model was run for the period 2004-2006 on a 1.5deg x 1.5deg global grid with 28 hybrid vertical levels from the surface up to 10 hPa. Objective analysis data from the Canadian Meteorological Centre were used to update the meteorological fields every 24 h. Fire emission fluxes of gas species were generated by using year-specific inventories of carbon emissions with 8-day temporal resolution from the Global Fire Emission Database (GFED) version 2. The model output is compared with HCN profiles measured by the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) instrument onboard the Canadian SCISAT-1 satellite. High values of up to a few ppbv are observed in the tropics in the Southern Hemisphere; the enhancement in HCN volume mixing ratios in the upper troposphere is most prominent in October. Low upper-tropospheric mixing ratios of less than 100 pptv are mostly recorded at middle and high latitudes in the Southern Hemisphere in May-July. Mixing ratios in Northern Hemisphere peak in the boreal summer. The amplitude of the seasonal variation is less pronounced than in the Southern Hemisphere. The comparison with the satellite data shows that in the upper troposphere GEM-AQ perform7s well globally for all seasons, except at northern hi gh and middle latitudes in surnmer, where the model has a large negative bias, and in the tropics in winter and spring, where it exhibits large positive bias. This may reflect inaccurate emissions or possible inaccuracies in the emission profile. The model is able to

  13. Catalytic reduction of 4-nitrophenol with gold nanoparticles synthesized by caffeic acid.

    PubMed

    Seo, Yu Seon; Ahn, Eun-Young; Park, Jisu; Kim, Tae Yoon; Hong, Jee Eun; Kim, Kyeongsoon; Park, Yohan; Park, Youmie

    2017-12-01

    In this study, various concentrations of caffeic acid (CA) were used to synthesize gold nanoparticles (CA-AuNPs) in order to evaluate their catalytic activity in the 4-nitrophenol reduction reaction. To facilitate catalytic activity, caffeic acid was removed by centrifugation after synthesizing CA-AuNPs. The catalytic activity of CA-AuNPs was compared with that of centrifuged CA-AuNPs (cf-CA-AuNPs). Notably, cf-CA-AuNPs exhibited up to 6.41-fold higher catalytic activity compared with CA-AuNPs. The catalytic activity was dependent on the caffeic acid concentration, and the lowest concentration (0.08 mM) produced CA-AuNPs with the highest catalytic activity. The catalytic activities of both CA-AuNPs and cf-CA-AuNPs decreased with increasing caffeic acid concentration. Furthermore, a conversion yield of 4-nitrophenol to 4-aminophenol in the reaction mixture was determined to be 99.8% using reverse-phase high-performance liquid chromatography. The product, 4-aminophenol, was purified from the reaction mixture, and its structure was confirmed by (1)H-NMR. It can be concluded that the removal of the reducing agent, caffeic acid in the present study, significantly enhanced the catalytic activity of CA-AuNPs in the 4-nitrophenol reduction reaction.

  14. Catalytic reduction of 4-nitrophenol with gold nanoparticles synthesized by caffeic acid

    NASA Astrophysics Data System (ADS)

    Seo, Yu Seon; Ahn, Eun-Young; Park, Jisu; Kim, Tae Yoon; Hong, Jee Eun; Kim, Kyeongsoon; Park, Yohan; Park, Youmie

    2017-01-01

    In this study, various concentrations of caffeic acid (CA) were used to synthesize gold nanoparticles (CA-AuNPs) in order to evaluate their catalytic activity in the 4-nitrophenol reduction reaction. To facilitate catalytic activity, caffeic acid was removed by centrifugation after synthesizing CA-AuNPs. The catalytic activity of CA-AuNPs was compared with that of centrifuged CA-AuNPs ( cf-CA-AuNPs). Notably, cf-CA-AuNPs exhibited up to 6.41-fold higher catalytic activity compared with CA-AuNPs. The catalytic activity was dependent on the caffeic acid concentration, and the lowest concentration (0.08 mM) produced CA-AuNPs with the highest catalytic activity. The catalytic activities of both CA-AuNPs and cf-CA-AuNPs decreased with increasing caffeic acid concentration. Furthermore, a conversion yield of 4-nitrophenol to 4-aminophenol in the reaction mixture was determined to be 99.8% using reverse-phase high-performance liquid chromatography. The product, 4-aminophenol, was purified from the reaction mixture, and its structure was confirmed by 1H-NMR. It can be concluded that the removal of the reducing agent, caffeic acid in the present study, significantly enhanced the catalytic activity of CA-AuNPs in the 4-nitrophenol reduction reaction.

  15. Using SCIAMACHY and Ground-based FTS Measurements to Test the OCO X(sub CO2) Retrieval and Validation Approach

    NASA Technical Reports Server (NTRS)

    Boesch, Hartmut; Toon, G.; Sen, B; Li, Q. B.; Salawitch, R.; Miller, C.; Crisp, D.; Washenfelder, R.; Wennberg, P.; Natraj, V.; Yung, Y.; Buchwitz, M.; Burrows, J.; DeBeek, R.; Connor, B.; Christi, M; Spurr, R.

    2006-01-01

    Global, space-based observations of atmospheric CO2 with precision, resolution, and coverage needed to monitor sources and sinks: a) Spectra of reflected/scattered sunlight in NIR CO2 and O2 bands used to estimate X(sub CO2) with large sensitivity to surface; b) A-train orbit (1:15 PM polar sun sync); c) 16 day repeat cycle samples seasonal cycle on semi-monthly intervals; and d) NASA ESSP (Earth Space System Pathfinder) scheduled for Sept 2008 launch; 2 yrs lifetime. Initial comparison of SCIAMACHY and FTS retrievals for Park Falls: a) Positive bias in X(sub CO2) of approx. 10 ppm; and b) Negative bias in surface pressure After correction of spectral artifacts in O2A band: a) Largely improved agreement between SCIAMACHY and FTS X(sub CO2) (without clear bias) and in surface pressure; and b) Standard deviation of SCIAMACHY X(sub CO2 approx. 6 ppm. Good qualitative agreement with GEOS-CHEM, with GEOS-CHEM underestimating seasonal cycle. OCO is a dedicated CO2 instrument and will achieve much higher accuracy and precision: a) much higher spectral resolution (by factor of 20); and b) smaller ground pixels (by factor of 600).

  16. TXA709, an FtsZ-Targeting Benzamide Prodrug with Improved Pharmacokinetics and Enhanced In Vivo Efficacy against Methicillin-Resistant Staphylococcus aureus

    PubMed Central

    Kaul, Malvika; Mark, Lilly; Zhang, Yongzheng; Parhi, Ajit K.; Lyu, Yi Lisa; Pawlak, Joan; Saravolatz, Stephanie; Saravolatz, Louis D.; Weinstein, Melvin P.; LaVoie, Edmond J.

    2015-01-01

    The clinical development of FtsZ-targeting benzamide compounds like PC190723 has been limited by poor drug-like and pharmacokinetic properties. Development of prodrugs of PC190723 (e.g., TXY541) resulted in enhanced pharmaceutical properties, which, in turn, led to improved intravenous efficacy as well as the first demonstration of oral efficacy in vivo against both methicillin-sensitive Staphylococcus aureus (MSSA) and methicillin-resistant S. aureus (MRSA). Despite being efficacious in vivo, TXY541 still suffered from suboptimal pharmacokinetics and the requirement of high efficacious doses. We describe here the design of a new prodrug (TXA709) in which the Cl group on the pyridyl ring has been replaced with a CF3 functionality that is resistant to metabolic attack. As a result of this enhanced metabolic stability, the product of the TXA709 prodrug (TXA707) is associated with improved pharmacokinetic properties (a 6.5-fold-longer half-life and a 3-fold-greater oral bioavailability) and superior in vivo antistaphylococcal efficacy relative to PC190723. We validate FtsZ as the antibacterial target of TXA707 and demonstrate that the compound retains potent bactericidal activity against S. aureus strains resistant to the current standard-of-care drugs vancomycin, daptomycin, and linezolid. These collective properties, coupled with minimal observed toxicity to mammalian cells, establish the prodrug TXA709 as an antistaphylococcal agent worthy of clinical development. PMID:26033735

  17. Singlet oxygen- and EXECUTER1-mediated signaling is initiated in grana margins and depends on the protease FtsH2

    PubMed Central

    Wang, Liangsheng; Kim, Chanhong; Xu, Xia; Piskurewicz, Urszula; Singh, Somesh; Mahler, Hanno; Apel, Klaus

    2016-01-01

    Formation of singlet oxygen (1O2) has been implicated with damaging photosystem II (PSII) that needs to undergo continuous repair to maintain photosynthetic electron transport. In addition to its damaging effect, 1O2 has also been shown to act as a signal that triggers stress acclimation and an enhanced stress resistance. A signaling role of 1O2 was first documented in the fluorescent (flu) mutant of Arabidopsis. It strictly depends on the chloroplast protein EXECUTER1 (EX1) and happens under nonphotoinhibitory light conditions. Under severe light stress, signaling is initiated independently of EX1 by 1O2 that is thought to be generated at the acceptor side of active PSII within the core of grana stacks. The results of the present study suggest a second source of 1O2 formation in grana margins close to the site of chlorophyll synthesis where EX1 is localized and the disassembly of damaged and reassembly of active PSII take place. The initiation of 1O2 signaling in grana margins depends on EX1 and the ATP-dependent zinc metalloprotease FtsH. As FtsH cleaves also the D1 protein during the disassembly of damaged PSII, EX1- and 1O2-mediated signaling seems to be not only spatially but also functionally associated with the repair of PSII. PMID:27303039

  18. An update on catalytic reforming

    SciTech Connect

    Wei, D.H.; Moser, M.D.; Haizmann, R.S.

    1996-10-01

    The UOP Platforming process is a catalytic reforming process in widespread use throughout the petroleum and petrochemical industries. Since the first unit went onstream in 1949, the process has become a standard feature in refineries worldwide. Over the years, significant improvements have been made in process catalysts and process design. The most recent improvement is the combination of a catalyst called R-72 with a new patented flow scheme, R-72 staged loading, which gives significantly higher yields and provides increased catalyst stability. In this article, the authors describe two types of Platforming processes and the new R-72 staged loading scheme.

  19. A sustainable catalytic pyrrole synthesis

    NASA Astrophysics Data System (ADS)

    Michlik, Stefan; Kempe, Rhett

    2013-02-01

    The pyrrole heterocycle is a prominent chemical motif and is found widely in natural products, drugs, catalysts and advanced materials. Here we introduce a sustainable iridium-catalysed pyrrole synthesis in which secondary alcohols and amino alcohols are deoxygenated and linked selectively via the formation of C-N and C-C bonds. Two equivalents of hydrogen gas are eliminated in the course of the reaction, and alcohols based entirely on renewable resources can be used as starting materials. The catalytic synthesis protocol tolerates a large variety of functional groups, which includes olefins, chlorides, bromides, organometallic moieties, amines and hydroxyl groups. We have developed a catalyst that operates efficiently under mild conditions.

  20. Catalytic cracking of heavy oils

    SciTech Connect

    Otterstedt, J.E.; Gevert, B.; Sterte, J. )

    1987-08-01

    Of the many factors which influence product yields in a fluid catalytic cracker, the feed stock quality and the catalyst composition are of particular interest as they can be controlled only to a limited extent by the refiner. In the past decade there has been a trend towards using heavier feedstocks in the FCC-unit, which is expected to continue in the foreseeable future. It is therefore important to study how molecular types, characteristic not only of heavy petroleum oil but also of e.g. coal liquid, shale oil and biomass oil, respond to cracking over catalysts of different compositions.

  1. Molecular catalytic coal liquid conversion

    SciTech Connect

    Stock, L.M.; Yang, Shiyong

    1995-12-31

    This research, which is relevant to the development of new catalytic systems for the improvement of the quality of coal liquids by the addition of dihydrogen, is divided into two tasks. Task 1 centers on the activation of dihydrogen by molecular basic reagents such as hydroxide ion to convert it into a reactive adduct (OH{center_dot}H{sub 2}){sup {minus}} that can reduce organic molecules. Such species should be robust withstanding severe conditions and chemical poisons. Task 2 is focused on an entirely different approach that exploits molecular catalysts, derived from organometallic compounds that are capable of reducing monocyclic aromatic compounds under very mild conditions. Accomplishments and conclusions are discussed.

  2. Catalytic membranes for fuel cells

    SciTech Connect

    Liu, Di-Jia; Yang, Junbing; Wang, Xiaoping

    2011-04-19

    A fuel cell of the present invention comprises a cathode and an anode, one or both of the anode and the cathode including a catalyst comprising a bundle of longitudinally aligned graphitic carbon nanotubes including a catalytically active transition metal incorporated longitudinally and atomically distributed throughout the graphitic carbon walls of said nanotubes. The nanotubes also include nitrogen atoms and/or ions chemically bonded to the graphitic carbon and to the transition metal. Preferably, the transition metal comprises at least one metal selected from the group consisting of Fe, Co, Ni, Mn, and Cr.

  3. Mechanisms and Kinetics of Catalytic Reactions

    DTIC Science & Technology

    1990-08-01

    CHEMICAL RESEARCH, r- DEVELOPMENT 5 N ENGINEERING CRDE-R-084 "" CENTER CENER(GC-TR-1728-008) ’ 04 N MECHANISMS AND KINETICS OF CATALYTIC REACTIONS Q...and Kinetics of Catalytic Reactions &AUTHOR(S) Garlick, Stephanie M. 7. PERFORMING ORGANIZATION NAME(S) AND ADORESS(ES) . PERFORMING ORGANIZATION...Tables........................87 vi MECHANISMS AND KINETICS OF CATALYTIC REACTIONS 1. INTRODUCTION The hydrolysis of phosphate esters in microemulsion

  4. Catalytic microrotor driven by geometrical asymmetry.

    PubMed

    Yang, Mingcheng; Ripoll, Marisol; Chen, Ke

    2015-02-07

    An asymmetric gear with homogeneous surface properties is, here, presented as a prototype to fabricate catalytic microrotors. The driving torque arises from the diffusiophoretic effect induced by the concentration gradients generated by catalytic chemical reactions at the gear surface. This torque produces a spontaneous and unidirectional rotation of the asymmetric gear. By means of mesoscopic simulations, we prove and characterize this scenario. The gear rotational velocity is determined by the gear-solvent interactions, the gear geometry, the solvent viscosity, and the catalytic reaction ratio. Our work presents a simple way to design self-propelled microrotors, alternative to existing catalytic bi-component, or thermophoretic ones.

  5. Catalytic microrotor driven by geometrical asymmetry

    NASA Astrophysics Data System (ADS)

    Yang, Mingcheng; Ripoll, Marisol; Chen, Ke

    2015-02-01

    An asymmetric gear with homogeneous surface properties is, here, presented as a prototype to fabricate catalytic microrotors. The driving torque arises from the diffusiophoretic effect induced by the concentration gradients generated by catalytic chemical reactions at the gear surface. This torque produces a spontaneous and unidirectional rotation of the asymmetric gear. By means of mesoscopic simulations, we prove and characterize this scenario. The gear rotational velocity is determined by the gear-solvent interactions, the gear geometry, the solvent viscosity, and the catalytic reaction ratio. Our work presents a simple way to design self-propelled microrotors, alternative to existing catalytic bi-component, or thermophoretic ones.

  6. Cryogenic methane separation/catalytic hydrogasification process analysis. Quarterly report

    SciTech Connect

    Klosek, J.

    1981-05-01

    The objective of this coordinated research program is optimization of the Rockwell/Cities Service Short Residence Time Hydrogasification (SRTH) and the Exxon Catalytic Coal Gasification (CCG) processes in the acid gas removal and cryogenic areas. Progress reports of eight subtasks are presented along with process flowsheets, heat and material balances and economic evaluation, summarized in tables. Each subtask studied the effect of variation of a key design parameter on the treatment cost of the SNG produced.

  7. Catalytic conversion of light alkanes

    SciTech Connect

    Lyons, J.E.

    1992-06-30

    The second Quarterly Report of 1992 on the Catalytic Conversion of Light Alkanes reviews the work done between April 1, 1992 and June 31, 1992 on the Cooperative Agreement. The mission of this work is to devise a new catalyst which can be used in a simple economic process to convert the light alkanes in natural gas to oxygenate products that can either be used as clean-burning, high octane liquid fuels, as fuel components or as precursors to liquid hydrocarbon uwspomdon fuel. During the past quarter we have continued to design, prepare, characterize and test novel catalysts for the mild selective reaction of light hydrocarbons with air or oxygen to produce alcohols directly. These catalysts are designed to form active metal oxo (MO) species and to be uniquely active for the homolytic cleavage of the carbon-hydrogen bonds in light alkanes producing intermediates which can form alcohols. We continue to investigate three molecular environments for the active catalytic species that we are trying to generate: electron-deficient macrocycles (PHASE I), polyoxometallates (PHASE II), and regular oxidic lattices including zeolites and related structures as well as other molecular surface structures having metal oxo groups (PHASE I).

  8. Evolution of a Catalytic Mechanism

    PubMed Central

    Rauwerdink, Alissa; Lunzer, Mark; Devamani, Titu; Jones, Bryan; Mooney, Joanna; Zhang, Zhi-Jun; Xu, Jian-He; Kazlauskas, Romas J.; Dean, Antony M.

    2016-01-01

    The means by which superfamilies of specialized enzymes arise by gene duplication and functional divergence are poorly understood. The escape from adaptive conflict hypothesis, which posits multiple copies of a gene encoding a primitive inefficient and highly promiscuous generalist ancestor, receives support from experiments showing that resurrected ancestral enzymes are indeed more substrate-promiscuous than their modern descendants. Here, we provide evidence in support of an alternative model, the innovation–amplification–divergence hypothesis, which posits a single-copied ancestor as efficient and specific as any modern enzyme. We argue that the catalytic mechanisms of plant esterases and descendent acetone cyanohydrin lyases are incompatible with each other (e.g., the reactive substrate carbonyl must bind in opposite orientations in the active site). We then show that resurrected ancestral plant esterases are as catalytically specific as modern esterases, that the ancestor of modern acetone cyanohydrin lyases was itself only very weakly promiscuous, and that improvements in lyase activity came at the expense of esterase activity. These observations support the innovation–amplification–divergence hypothesis, in which an ancestor gains a weak promiscuous activity that is improved by selection at the expense of the ancestral activity, and not the escape from adaptive conflict in which an inefficient generalist ancestral enzyme steadily loses promiscuity throughout the transition to a highly active specialized modern enzyme. PMID:26681154

  9. Seasonal variations of acetone in the upper troposphere-lower stratosphere of the northern midlatitudes as observed by ACE-FTS

    NASA Astrophysics Data System (ADS)

    Dufour, G.; Szopa, S.; Harrison, J. J.; Boone, C. D.; Bernath, P. F.

    2016-05-01

    This study reports on the climatological acetone distribution and seasonal variations in the upper troposphere and lower stratosphere of the northern midlatitudes, derived from observations by the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) onboard SCISAT. The acetone profiles retrieved from 5 to ∼20 km cover the period from January 2004 to September 2010. The 1σ statistical fitting errors are typically ∼5-20% within the upper troposphere (UT), increasing in the lower stratosphere (LS) with decreasing acetone. The systematic errors range between 15% and 20%. The largest UT acetone mixing ratios (∼1200 ppt on average in July over Siberia) are observed in summer in the northern mid- and high latitudes. Mixing ratios are larger over continental regions than over the ocean. Comparisons with airborne measurements available in the literature point toward a possible underestimation in acetone retrieved from ACE-FTS. The largest differences occur primarily in winter and for the background values. This underestimation is attributed to the complexity of the spectral region used for the retrieval. The annual cycle of acetone for the 30-70°N midlatitude band shows a maximum during summer, reflecting the annual cycle of the primary terrestrial biogenic source of acetone. By comparison with ACE-FTS, the LMDz-INCA global climate-chemistry model systematically overestimates acetone mixing ratios lower than 400 ppt. This overestimation is thus generalized for the lower stratosphere, the Tropics and beyond 70°N for the upper troposphere. In contrast, in the upper troposphere of the 30-70°N region, where the acetone levels are the highest (>450 ppt on average), the model-observation differences are in the range of the observation uncertainty. However, in this region, the model fails to capture the annual cycle of acetone, culminating in July. A seasonal cycle can only be obtained by considering high biogenic emissions but this cycle is shifted

  10. Estimating Top-down Emissions (2011-2014) of CH4 and CO2 From Los Angeles by an FTS Atop Mount Wilson

    NASA Astrophysics Data System (ADS)

    Wong, C.; Fu, D.; Pongetti, T. J.; Newman, S.; Kort, E. A.; Duren, R. M.; Hsu, Y.; Miller, C. E.; Yung, Y. L.; Sander, S. P.

    2014-12-01

    Megacities, such as Los Angeles, emit significant amount of anthropogenic greenhouse gases (GHGs). As the world's population in urban regions is expected to increase from over 50% now to 70% by 2050, monitoring the temporal trends of urban GHG emissions are necessary to verify regulation policy. Since megacities tend to have large spatially and temporally varying GHG emission characteristics, it is important to perform measurements which provide continuous spatio-temporal coverage of the domain. In this study, we demonstrate the ability to track major greenhouse gases, methane (CH4) and carbon dioxide (CO2) using ground-based remote sensing technique from Mount Wilson. Since 2010, in Los Angeles, a Fourier Transform Spectrometer (FTS) has been deployed on Mount Wilson to measure CO2, CH4, carbon monoxide (CO), the combustion tracer, and other tracer gases using reflected sunlight in the near-infrared spectral regions. Combining the unique vista from Mount Wilson and high-precision measurements from the FTS, the slant column abundances of these trace gases above and within the urban dome of Los Angeles are acquired. Within the urban dome, continuous daytime temporal and spatial measurements are recorded for 28 reflection points which are strategically located across the basin. Here we analyze the path-averaged dry air mixing ratios XCH4, XCO2 and XCO acquired by the FTS during a three-year period from 2011 to 2014. Using tracer-to-tracer correlation analysis, we investigate the ratios of XCH4:XCO2, XCH4:XCO and XCO:XCO2 in excess of the background values. Significant spatio-temporal variability in all three ratios is observed across the Los Angeles megacity during this measurement period. We then derive the top-down estimates of basin total CH4 and CO2 emissions between 2011 and 2014 using the existing bottom-up emission database of CO2and CO, and compare our estimates to the emissions reported by the state government and previous studies. Copyright 2014. California

  11. Comparison of CO2 total column retrieved from IASI/MetOp-A using KLIMA algorithm and TANSO-FTS/GOSAT level 2 products

    NASA Astrophysics Data System (ADS)

    Laurenza, Lucia Maria; Cortesi, Ugo; DelBianco, Samuele; Gai, Marco

    2013-04-01

    Carbon dioxide is a key constituent of the terrestrial atmosphere with both natural and anthropogenic sources. It is one of the primary forcing agents of the greenhouse effect, as well as from being the most mobile component of the global carbon cycle that is critically coupled to the Earth's climate system. In this study, one year of observations from the Infrared Atmospheric Sounding Interferometer (IASI), onboard of MetOp-A satellite, are used to retrieve the columnar abundance of atmospheric carbon dioxide, for a global geographical coverage and in clear-sky conditions. The dedicated software is based on the KLIMA inversion algorithm (originally proposed by IFAC-CNR for cycle 6 of ESA Earth Explorer Core Missions) and has been adapted into a non-operational inversion code to process Level-1 data acquired by the IASI instrument and to retrieve the CO2 total column with a target accuracy of 1%. In order to obtain the a reasonable capacity to bulk processing IASI data, it was chosen to integrate the KLIMA code into the ESA grid based operational environment G-POD system (Grid Processing On-Demand). A series of approximations has been implemented in the radiative transfer code with the aim to achieve adequate features in term of program size and computing time necessary for the integration into G-POD system and to meet the requirements of comparison with TANSO-FTS/GOSAT SWIR Level-2 products. The KLIMA-IASI retrieval code integration on G-POD has been completed and considering the capacity of G-POD computing resources, it was decided to process, for global geographical coverage, one week per month of a complete year of IASI measurements, from March 1, 2010 to February 28, 2011. In this selected temporal range, TANSO-FTS SWIR Level-2 data were obtained from the GOSAT User Interface Gateway (GUIG), and data from selected stations covers a different latitudes of the Total Carbon Column Observing Network (TCCON) were collected from TCCON Data Archive. We performed an

  12. Catalytic Leadership: Strategies for an Interconnected World.

    ERIC Educational Resources Information Center

    Luke, Jeffrey S.

    A catalytic leader brings together diverse individuals from multiple agencies to address intractable public problems. Strategies for promoting catalytic leadership are explored. The book opens with a review of the problems facing public leaders, emphasizing the complexity and interconnectedness of problems in the public sphere. The book highlights…

  13. Electrochemical promotion of catalytic reactions

    NASA Astrophysics Data System (ADS)

    Imbihl, R.

    2010-05-01

    The electrochemical promotion of heterogeneously catalyzed reactions (EPOC) became feasible through the use of porous metal electrodes interfaced to a solid electrolyte. With the O 2- conducting yttrium stabilized zirconia (YSZ), the Na + conducting β″-Al 2O 3 (β-alumina), and several other types of solid electrolytes the EPOC effect has been demonstrated for about 100 reaction systems in studies conducted mainly in the mbar range. Surface science investigations showed that the physical basis for the EPOC effect lies in the electrochemically induced spillover of oxygen and alkali metal, respectively, onto the surface of the metal electrodes. For the catalytic promotion effect general concepts and mechanistic schemes were proposed but these concepts and schemes are largely speculative. Applying surface analytical tools to EPOC systems the proposed mechanistic schemes can be verified or invalidated. This report summarizes the progress which has been achieved in the mechanistic understanding of the EPOC effect.

  14. Non-catalytic recuperative reformer

    SciTech Connect

    Khinkis, Mark J.; Kozlov, Aleksandr P.; Kurek, Harry

    2015-12-22

    A non-catalytic recuperative reformer has a flue gas flow path for conducting hot flue gas from a thermal process and a reforming mixture flow path for conducting a reforming mixture. At least a portion of the reforming mixture flow path is embedded in the flue gas flow path to permit heat transfer from the hot flue gas to the reforming mixture. The reforming mixture flow path contains substantially no material commonly used as a catalyst for reforming hydrocarbon fuel (e.g., nickel oxide, platinum group elements or rhenium), but instead the reforming mixture is reformed into a higher calorific fuel via reactions due to the heat transfer and residence time. In a preferred embodiment, extended surfaces of metal material such as stainless steel or metal alloy that are high in nickel content are included within at least a portion of the reforming mixture flow path.

  15. APPARATUS FOR CATALYTICALLY COMBINING GASES

    DOEpatents

    Busey, H.M.

    1958-08-12

    A convection type recombiner is described for catalytically recombining hydrogen and oxygen which have been radiolytically decomposed in an aqueous homogeneous nuclear reactor. The device is so designed that the energy of recombination is used to circulate the gas mixture over the catalyst. The device consists of a vertical cylinder having baffles at its lower enda above these coarse screens having platinum and alumina pellets cemented thereon, and an annular passage for the return of recombined, condensed water to the reactor moderator system. This devicea having no moving parts, provides a simple and efficient means of removing the danger of accumulated hot radioactive, explosive gases, and restoring them to the moderator system for reuse.

  16. Catalytic cartridge SO3 decomposer

    SciTech Connect

    Galloway, T.R.

    1982-05-25

    A catalytic cartridge surrounding a heat pipe driven by a heat source is utilized as a SO3 decomposer for thermochemical hydrogen production. The cartridge has two embodiments, a crossflow cartridge and an axial flow cartridge. In the cross-flow cartridge, SO3 gas is flowed through a chamber and incident normally to a catalyst coated tube extending through the chamber, the catalyst coated tube surrounding the heat pipe. In the axialflow cartridge, so3 gas is flowed through the annular space between concentric inner and outer cylindrical walls, the inner cylindrical wall being coated by a catalyst and surrounding the heat pipe. The modular cartridge decomposer provides high thermal efficiency, high conversion efficiency, and increased safety.

  17. Catalytic reactor with improved burner

    DOEpatents

    Faitani, Joseph J.; Austin, George W.; Chase, Terry J.; Suljak, George T.; Misage, Robert J.

    1981-01-01

    To more uniformly distribute heat to the plurality of catalyst tubes in a catalytic reaction furnace, the burner disposed in the furnace above the tops of the tubes includes concentric primary and secondary annular fuel and air outlets. The fuel-air mixture from the primary outlet is directed towards the tubes adjacent the furnace wall, and the burning secondary fuel-air mixture is directed horizontally from the secondary outlet and a portion thereof is deflected downwardly by a slotted baffle toward the tubes in the center of the furnace while the remaining portion passes through the slotted baffle to another baffle disposed radially outwardly therefrom which deflects it downwardly in the vicinity of the tubes between those in the center and those near the wall of the furnace.

  18. Method of fabricating a catalytic structure

    DOEpatents

    Rollins, Harry W.; Petkovic, Lucia M.; Ginosar, Daniel M.

    2009-09-22

    A precursor to a catalytic structure comprising zinc oxide and copper oxide. The zinc oxide has a sheet-like morphology or a spherical morphology and the copper oxide comprises particles of copper oxide. The copper oxide is reduced to copper, producing the catalytic structure. The catalytic structure is fabricated by a hydrothermal process. A reaction mixture comprising a zinc salt, a copper salt, a hydroxyl ion source, and a structure-directing agent is formed. The reaction mixture is heated under confined volume conditions to produce the precursor. The copper oxide in the precursor is reduced to copper. A method of hydrogenating a carbon oxide using the catalytic structure is also disclosed, as is a system that includes the catalytic structure.

  19. Diesel engine catalytic combustor system. [aircraft engines

    NASA Technical Reports Server (NTRS)

    Ream, L. W. (Inventor)

    1984-01-01

    A low compression turbocharged diesel engine is provided in which the turbocharger can be operated independently of the engine to power auxiliary equipment. Fuel and air are burned in a catalytic combustor to drive the turbine wheel of turbine section which is initially caused to rotate by starter motor. By opening a flapper value, compressed air from the blower section is directed to catalytic combustor when it is heated and expanded, serving to drive the turbine wheel and also to heat the catalytic element. To start, engine valve is closed, combustion is terminated in catalytic combustor, and the valve is then opened to utilize air from the blower for the air driven motor. When the engine starts, the constituents in its exhaust gas react in the catalytic element and the heat generated provides additional energy for the turbine section.

  20. Silver nanocluster catalytic microreactors for water purification

    NASA Astrophysics Data System (ADS)

    Da Silva, B.; Habibi, M.; Ognier, S.; Schelcher, G.; Mostafavi-Amjad, J.; Khalesifard, H. R. M.; Tatoulian, M.; Bonn, D.

    2016-07-01

    A new method for the elaboration of a novel type of catalytic microsystem with a high specific area catalyst is developed. A silver nanocluster catalytic microreactor was elaborated by doping a soda-lime glass with a silver salt. By applying a high power laser beam to the glass, silver nanoclusters are obtained at one of the surfaces which were characterized by BET measurements and AFM. A microfluidic chip was obtained by sealing the silver coated glass with a NOA 81 microchannel. The catalytic activity of the silver nanoclusters was then tested for the efficiency of water purification by using catalytic ozonation to oxidize an organic pollutant. The silver nanoclusters were found to be very stable in the microreactor and efficiently oxidized the pollutant, in spite of the very short residence times in the microchannel. This opens the way to study catalytic reactions in microchannels without the need of introducing the catalyst as a powder or manufacturing complex packed bed microreactors.

  1. Catalytic converter with thermoelectric generator

    SciTech Connect

    Parise, R.J.

    1998-07-01

    The unique design of an electrically heated catalyst (EHC) and the inclusion of an ECO valve in the exhaust of an internal combustion engine will meet the strict new emission requirements, especially at vehicle cold start, adopted by several states in this country as well as in Europe and Japan. The catalytic converter (CC) has been a most useful tool in pollution abatement for the automobile. But the emission requirements are becoming more stringent and, along with other improvements, the CC must be improved to meet these new standards. Coupled with the ECO valve, the EHC can meet these new emission limits. In an internal combustion engine vehicle (ICEV), approximately 80% of the energy consumed leaves the vehicle as waste heat: out the tail pipe, through the radiator, or convected/radiated off the engine. Included with the waste heat out the tail pipe are the products of combustion which must meet strict emission requirements. The design of a new CC is presented here. This is an automobile CC that has the capability of producing electrical power and reducing the quantity of emissions at vehicle cold start, the Thermoelectric Catalytic Power Generator. The CC utilizes the energy of the exothermic reactions that take place in the catalysis substrate to produce electrical energy with a thermoelectric generator. On vehicle cold start, the thermoelectric generator is used as a heat pump to heat the catalyst substrate to reduce the time to catalyst light-off. Thus an electrically heated catalyst (EHC) will be used to augment the abatement of tail pipe emissions. Included with the EHC in the exhaust stream of the automobile is the ECO valve. This valve restricts the flow of pollutants out the tail pipe of the vehicle for a specified amount of time until the EHC comes up to operating temperature. Then the ECO valve opens and allows the full exhaust, now treated by the EHC, to leave the vehicle.

  2. Coal conversion wastewater treatment by catalytic oxidation in supercritical water

    SciTech Connect

    Phillip E. Savage

    1999-10-20

    Wastewaters from coal-conversion processes contain phenolic compounds in appreciable concentrations. These compounds need to be removed so that the water can be discharged or re-used. Catalytic oxidation in supercritical water is one potential means of treating coal-conversion wastewaters, and this project examined the reactions of phenol over different heterogeneous oxidation catalysts in supercritical water. More specifically, the authors examined the oxidation of phenol over a commercial catalyst and over bulk MnO{sub 2}, bulk TiO{sub 2}, and CuO supported on Al{sub 2}O{sub 3}. They used phenol as the model pollutant because it is ubiquitous in coal-conversion wastewaters and there is a large database for non-catalytic supercritical water oxidation (SCWO) with which they can contrast results from catalytic SCWO. The overall objective of this research project is to obtain the reaction engineering information required to evaluate the utility of catalytic supercritical water oxidation for treating wastes arising from coal conversion processes. All four materials were active for catalytic supercritical water oxidation. Indeed, all four materials produced phenol conversions and CO{sub 2} yields in excess of those obtained from purely homogeneous, uncatalyzed oxidation reactions. The commercial catalyst was so active that the authors could not reliably measure reaction rates that were not limited by pore diffusion. Therefore, they performed experiments with bulk transition metal oxides. The bulk MnO{sub 2} and TiO{sub 2} catalysts enhance both the phenol disappearance and CO{sub 2} formation rates during SCWO. MnO{sub 2} does not affect the selectivity to CO{sub 2}, or to the phenol dimers at a given phenol conversion. However, the selectivities to CO{sub 2} are increased and the selectivities to phenol dimers are decreased in the presence of TiO{sub 2}, which are desirable trends for a catalytic SCWO process. The role of the catalyst appears to be accelerating the

  3. COAL CONVERSION WASTEWATER TREATMENT BY CATALYTIC OXIDATION IN SUPERCRITICAL WATER

    SciTech Connect

    Phillip E. Savage

    1999-10-18

    Wastewaters from coal-conversion processes contain phenolic compounds in appreciable concentrations. These compounds need to be removed so that the water can be discharged or re-used. Catalytic oxidation in supercritical water is one potential means of treating coal-conversion wastewaters, and this project examined the reactions of phenol over different heterogeneous oxidation catalysts in supercritical water. More specifically, we examined the oxidation of phenol over a commercial catalyst and over bulk MnO{sub 2}, bulk TiO{sub 2}, and CuO supported on Al{sub 2} O{sub 3}. We used phenol as the model pollutant because it is ubiquitous in coal-conversion wastewaters and there is a large database for non-catalytic supercritical water oxidation (SCWO) with which we can contrast results from catalytic SCWO. The overall objective of this research project is to obtain the reaction engineering information required to evaluate the utility of catalytic supercritical water oxidation for treating wastes arising from coal conversion processes. All four materials were active for catalytic supercritical water oxidation. Indeed, all four materials produced phenol conversions and CO{sub 2} yields in excess of those obtained from purely homogeneous, uncatalyzed oxidation reactions. The commercial catalyst was so active that we could not reliably measure reaction rates that were not limited by pore diffusion. Therefore, we performed experiments with bulk transition metal oxides. The bulk MnO{sub 2} and TiO{sub 2} catalysts enhance both the phenol disappearance and CO{sub 2} formation rates during SCWO. MnO{sub 2} does not affect the selectivity to CO{sub 2}, or to the phenol dimers at a given phenol conversion. However, the selectivities to CO{sub 2} are increased and the selectivities to phenol dimers are decreased in the presence of TiO{sub 2} , which are desirable trends for a catalytic SCWO process. The role of the catalyst appears to be accelerating the rate of formation of

  4. The AAA+ FtsH Protease Degrades an ssrA-Tagged Model Protein in the Inner Membrane of Escherichia coli.

    PubMed

    Hari, Sanjay B; Sauer, Robert T

    2016-10-11

    In eubacteria, the tmRNA system frees ribosomes that stall during protein synthesis and adds an ssrA tag to the incompletely translated polypeptide to target it for degradation. The AAA+ ClpXP protease degrades most ssrA-tagged proteins in the Escherichia coli cytoplasm and was recently shown to degrade an ssrA-tagged protein in the inner membrane. However, we find that tmRNA-mediated tagging of E. coli ProW1-182, a different inner-membrane protein, results in degradation by the membrane-tethered AAA+ FtsH protease. ClpXP played no role in the degradation of ProW1-182 in vivo. These studies suggest that a complex distribution of proteolytic labor maintains protein quality control in the inner membrane.

  5. Catalytic combustion of actual low and medium heating value gases

    NASA Technical Reports Server (NTRS)

    Bulzan, D. L.

    1982-01-01

    Catalytic combustion of both low and medium heating value gases using actual coal derived gases obtained from operating gasifiers was demonstrated. A fixed bed gasifier with a complete product gas cleanup system was operated in an air blown mode to produce low heating value gas. A fluidized bed gasifier with a water quench product gas cleanup system was operated in both an air enriched and an oxygen blown mode to produce low and medium, heating value gas. Noble metal catalytic reactors were evaluated in 12 cm flow diameter test rigs on both low and medium heating value gases. Combustion efficiencies greater than 99.5% were obtained with all coal derived gaseous fuels. The NOx emissions ranged from 0.2 to 4 g NO2 kg fuel.

  6. Revolutionary systems for catalytic combustion and diesel catalytic particulate traps.

    SciTech Connect

    Stuecker, John Nicholas; Witze, Peter O.; Ferrizz, Robert Matthew; Cesarano, Joseph, III; Miller, James Edward

    2004-12-01

    This report is a summary of an LDRD project completed for the development of materials and structures conducive to advancing the state of the art for catalyst supports and diesel particulate traps. An ancillary development for bio-medical bone scaffolding was also realized. Traditionally, a low-pressure drop catalyst support, such as a ceramic honeycomb monolith, is used for catalytic reactions that require high flow rates of gases at high-temperatures. A drawback to the traditional honeycomb monoliths under these operating conditions is poor mass transfer to the catalyst surface in the straight-through channels. ''Robocasting'' is a unique process developed at Sandia National Laboratories that can be used to manufacture ceramic monoliths with alternative 3-dimensional geometries, providing tortuous pathways to increase mass transfer while maintaining low-pressure drops. These alternative 3-dimensional geometries may also provide a foundation for the development of self-regenerating supports capable of trapping and combusting soot particles from a diesel engine exhaust stream. This report describes the structures developed and characterizes the improved catalytic performance that can result. The results show that, relative to honeycomb monolith supports, considerable improvement in mass transfer efficiency is observed for robocast samples synthesized using an FCC-like geometry of alternating rods. Also, there is clearly a trade-off between enhanced mass transfer and increased pressure drop, which can be optimized depending on the particular demands of a given application. Practical applications include the combustion of natural gas for power generation, production of syngas, and hydrogen reforming reactions. The robocast lattice structures also show practicality for diesel particulate trapping. Preliminary results for trapping efficiency are reported as well as the development of electrically resistive lattices that can regenerate the structure by combusting the

  7. Identification of the bacterial protein FtsX as a unique target of chemokine-mediated antimicrobial activity against Bacillus anthracis

    PubMed Central

    Crawford, Matthew A.; Lowe, David E.; Fisher, Debra J.; Stibitz, Scott; Plaut, Roger D.; Beaber, John W.; Zemansky, Jason; Mehrad, Borna; Glomski, Ian J.; Strieter, Robert M.; Hughes, Molly A.

    2011-01-01

    Chemokines are a family of chemotactic cytokines that function in host defense by orchestrating cellular movement during infection. In addition to this function, many chemokines have also been found to mediate the direct killing of a range of pathogenic microorganisms through an as-yet-undefined mechanism. As an understanding of the molecular mechanism and microbial targets of chemokine-mediated antimicrobial activity is likely to lead to the identification of unique, broad-spectrum therapeutic targets for effectively treating infection, we sought to investigate the mechanism by which the chemokine CXCL10 mediates bactericidal activity against the Gram-positive bacterium Bacillus anthracis, the causative agent of anthrax. Here, we report that disruption of the gene ftsX, which encodes the transmembrane domain of a putative ATP-binding cassette transporter, affords resistance to CXCL10-mediated antimicrobial effects against vegetative B. anthracis bacilli. Furthermore, we demonstrate that in the absence of FtsX, CXCL10 is unable to localize to its presumed site of action at the bacterial cell membrane, suggesting that chemokines interact with specific, identifiable bacterial components to mediate direct microbial killing. These findings provide unique insight into the mechanism of CXCL10-mediated bactericidal activity and establish, to our knowledge, the first description of a bacterial component critically involved in the ability of host chemokines to target and kill a bacterial pathogen. These observations also support the notion of chemokine-mediated antimicrobial activity as an important foundation for the development of innovative therapeutic strategies for treating infections caused by pathogenic, potentially multidrug-resistant microorganisms. PMID:21949405

  8. Identification of the bacterial protein FtsX as a unique target of chemokine-mediated antimicrobial activity against Bacillus anthracis.

    PubMed

    Crawford, Matthew A; Lowe, David E; Fisher, Debra J; Stibitz, Scott; Plaut, Roger D; Beaber, John W; Zemansky, Jason; Mehrad, Borna; Glomski, Ian J; Strieter, Robert M; Hughes, Molly A

    2011-10-11

    Chemokines are a family of chemotactic cytokines that function in host defense by orchestrating cellular movement during infection. In addition to this function, many chemokines have also been found to mediate the direct killing of a range of pathogenic microorganisms through an as-yet-undefined mechanism. As an understanding of the molecular mechanism and microbial targets of chemokine-mediated antimicrobial activity is likely to lead to the identification of unique, broad-spectrum therapeutic targets for effectively treating infection, we sought to investigate the mechanism by which the chemokine CXCL10 mediates bactericidal activity against the Gram-positive bacterium Bacillus anthracis, the causative agent of anthrax. Here, we report that disruption of the gene ftsX, which encodes the transmembrane domain of a putative ATP-binding cassette transporter, affords resistance to CXCL10-mediated antimicrobial effects against vegetative B. anthracis bacilli. Furthermore, we demonstrate that in the absence of FtsX, CXCL10 is unable to localize to its presumed site of action at the bacterial cell membrane, suggesting that chemokines interact with specific, identifiable bacterial components to mediate direct microbial killing. These findings provide unique insight into the mechanism of CXCL10-mediated bactericidal activity and establish, to our knowledge, the first description of a bacterial component critically involved in the ability of host chemokines to target and kill a bacterial pathogen. These observations also support the notion of chemokine-mediated antimicrobial activity as an important foundation for the development of innovative therapeutic strategies for treating infections caused by pathogenic, potentially multidrug-resistant microorganisms.

  9. CO Seasonal Variability and Trend over Paris Megacity Using Ground-Based QualAir FTS and Satellite IASI-MetOp Measurements

    NASA Astrophysics Data System (ADS)

    Te, Yao; Jeseck, Pascal; Hadji-Lazaro, Juliette

    2012-11-01

    In a growing world with more than 7 billion inhabitants and big emerging countries such as China, Brazil and India, emissions of anthropogenic pollutants are increasing continuously. Monitoring and control of atmospheric pollutants in megacities have become a major challenge for scientists and public health authorities in environmental research area. The QualAir platform at University Pierre et Marie Curie (UPMC), is an innovating experimental research platform dedicated to survey urban atmospheric pollution and air quality. A Bruker Optics IFS 125HR Fourier transform spectrometer belonged to the Laboratoire de Physique Moléculaire pour l'Atmosphère et l'Astrophysique (LPMAA), was adapted for ground-based atmospheric measurements. As one of the major instruments of the QualAir platform, this ground-based Fourier transform spectrometer (QualAir FTS) analyses the composition of the urban atmosphere of Paris, which is the third largest European megacity. The continuous monitoring of atmospheric pollutants is essential to improve the understanding of urban air pollution processes. Associated with a sun-tracker, the QualAir remote sensing FTS operates in solar infrared absorption and enables to monitor many trace gases, and to follow up their variability in the Ile-de-France region. Concentrations of atmospheric pollutants are retrieved by the radiative transfer model PROFFIT. These ground-based remote sensing measurements are compared to ground in-situ measurements and to satellite data from IASI-MetOp (Infrared Atmospheric Sounding Interferometer). The remote sensing total column of the carbon monoxide (CO) obtained from January 2009 to June 2012, has a seasonal variability with a maximum in April and a minimum in October. While, after 2008, the mean CO level is quite stable (no significant decrease as before 2008).

  10. Validation of TANSO-FTS/GOSAT XCO2 and XCH4 glint mode retrievals using TCCON data from near-ocean sites

    NASA Astrophysics Data System (ADS)

    Zhou, Minqiang; Dils, Bart; Wang, Pucai; Detmers, Rob; Yoshida, Yukio; O'Dell, Christopher W.; Feist, Dietrich G.; Almario Velazco, Voltaire; Schneider, Matthias; De Mazière, Martine

    2016-04-01

    The thermal And near infrared sensor for carbon observations Fourier transform spectrometer (TANSO-FTS) on board the Greenhouse Gases Observing Satellite (GOSAT) applies the normal nadir mode above the land ("land data") and sun glint mode over the ocean ("ocean data") to provide global distributions of column-averaged dry-air mole fractions of CO2 and CH4, or XCO2 and XCH4. Several algorithms have been developed to obtain highly accurate greenhouse gas concentrations from TANSO-FTS/GOSAT spectra. So far, all the retrieval algorithms have been validated with the measurements from ground-based Fourier transform spectrometers from the Total Carbon Column Observing Network (TCCON), but limited to the land data. In this paper, the ocean data of the SRPR, SRFP (the proxy and full-physics versions 2.3.5 of SRON/KIT's RemoTeC algorithm), NIES (National Institute for Environmental Studies operational algorithm version 02.21) and ACOS (NASA's Atmospheric CO2 Observations from Space version 3.5) are compared with FTIR measurements from five TCCON sites and nearby GOSAT land data.For XCO2, both land and ocean data of NIES, SRFP and ACOS show good agreement with TCCON measurements. Averaged over all TCCON sites, the relative biases of ocean data and land data are -0.33 and -0.13 % for NIES, 0.03 and 0.04 % for SRFP, 0.06 and -0.03 % for ACOS, respectively. The relative scatter ranges between 0.31 and 0.49 %. For XCH4, the relative bias of ocean data is even less than that of the land data for the NIES (0.02 vs. -0.35 %), SRFP (0.04 vs. 0.20 %) and SRPR (-0.02 vs. 0.06 %) algorithms. Compared to the results for XCO2, the XCH4 retrievals show larger relative scatter (0.65-0.81 %).

  11. Topological entropy of catalytic sets: Hypercycles revisited

    NASA Astrophysics Data System (ADS)

    Sardanyés, Josep; Duarte, Jorge; Januário, Cristina; Martins, Nuno

    2012-02-01

    The dynamics of catalytic networks have been widely studied over the last decades because of their implications in several fields like prebiotic evolution, virology, neural networks, immunology or ecology. One of the most studied mathematical bodies for catalytic networks was initially formulated in the context of prebiotic evolution, by means of the hypercycle theory. The hypercycle is a set of self-replicating species able to catalyze other replicator species within a cyclic architecture. Hypercyclic organization might arise from a quasispecies as a way to increase the informational containt surpassing the so-called error threshold. The catalytic coupling between replicators makes all the species to behave like a single and coherent evolutionary multimolecular unit. The inherent nonlinearities of catalytic interactions are responsible for the emergence of several types of dynamics, among them, chaos. In this article we begin with a brief review of the hypercycle theory focusing on its evolutionary implications as well as on different dynamics associated to different types of small catalytic networks. Then we study the properties of chaotic hypercycles with error-prone replication with symbolic dynamics theory, characterizing, by means of the theory of topological Markov chains, the topological entropy and the periods of the orbits of unimodal-like iterated maps obtained from the strange attractor. We will focus our study on some key parameters responsible for the structure of the catalytic network: mutation rates, autocatalytic and cross-catalytic interactions.

  12. Fabrication of bimetallic nanostructures via aerosol-assisted electroless silver deposition for catalytic CO conversion.

    PubMed

    Byeon, Jeong Hoon; Kim, Jang-Woo

    2014-03-12

    Bimetallic nanostructures were fabricated via aerosol-assisted electroless silver deposition for catalytic CO conversion. An ambient spark discharge was employed to produce nanocatalysts, and the particles were directly deposited on a polytetrafluoroethylene substrate for initiating silver deposition to form Pd-Ag, Pt-Ag, Au-Ag bimetallic nanostructures as well as a pure Ag nanostructure. Kinetics and morphological evolutions in the silver deposition with different nanocatalysts were comparatively studied. The Pt catalyst displayed the highest catalytic activity for electroless silver deposition, followed by the order Pd > Au > Ag. Another catalytic activity of the fabricated bimetallic structures in the carbon monoxide conversion was further evaluated at low-temperature conditions. The bimetallic systems showed significantly higher catalytic activity than that from a pure Ag system.

  13. Catalytic Wittig and aza-Wittig reactions

    PubMed Central

    Lao, Zhiqi

    2016-01-01

    This review surveys the literature regarding the development of catalytic versions of the Wittig and aza-Wittig reactions. The first section summarizes how arsenic and tellurium-based catalytic Wittig-type reaction systems were developed first due to the relatively easy reduction of the oxides involved. This is followed by a presentation of the current state of the art regarding phosphine-catalyzed Wittig reactions. The second section covers the field of related catalytic aza-Wittig reactions that are catalyzed by both phosphine oxides and phosphines. PMID:28144327

  14. Catalytic reaction in confined flow channel

    DOEpatents

    Van Hassel, Bart A.

    2016-03-29

    A chemical reactor comprises a flow channel, a source, and a destination. The flow channel is configured to house at least one catalytic reaction converting at least a portion of a first nanofluid entering the channel into a second nanofluid exiting the channel. The flow channel includes at least one turbulating flow channel element disposed axially along at least a portion of the flow channel. A plurality of catalytic nanoparticles is dispersed in the first nanofluid and configured to catalytically react the at least one first chemical reactant into the at least one second chemical reaction product in the flow channel.

  15. Catalytic extraction processing of contaminated scrap metal

    SciTech Connect

    Griffin, T.P.; Johnston, J.E.; Payea, B.M.

    1995-10-01

    The U.S. Department of Energy issued a Planned Research and Development Announcement (PRDA) in 1993, with the objective of identifying unique technologies which could be applied to the most hazardous waste streams at DOE sites. The combination of radioactive contamination with additional contamination by hazardous constituents such as those identified by the Resource Conservation and Recovery Act (RCRA) pose an especially challenging problem. Traditional remediation technologies are increasingly becoming less acceptable to stakeholders and regulators because of the risks they pose to public health and safety. Desirable recycling technologies were described by the DOE as: (1) easily installed, operated, and maintained; (2) exhibiting superior environmental performance; (3) protective of worker and public health and safety; (4) readily acceptable to a wide spectrum of evaluators; and (5) economically feasible. Molten Metal Technology, Inc. (MMT) was awarded a contract as a result of the PRDA initiative to demonstrate the applicability of Catalytic Extraction Processing (CEP), MMT`s proprietary elemental recycling technology, to DOE`s inventory of low level mixed waste. This includes DOE`s inventory of radioactively- and RCRA-contaminated scrap metal and other waste forms expected to be generated by the decontamination and decommissioning (D&D) of DOE sites.

  16. Microchannel Reactor System for Catalytic Hydrogenation

    SciTech Connect

    Adeniyi Lawal; Woo Lee; Ron Besser; Donald Kientzler; Luke Achenie

    2010-12-22

    We successfully demonstrated a novel process intensification concept enabled by the development of microchannel reactors, for energy efficient catalytic hydrogenation reactions at moderate temperature, and pressure, and low solvent levels. We designed, fabricated, evaluated, and optimized a laboratory-scale microchannel reactor system for hydrogenation of onitroanisole and a proprietary BMS molecule. In the second phase of the program, as a prelude to full-scale commercialization, we designed and developed a fully-automated skid-mounted multichannel microreactor pilot plant system for multiphase reactions. The system is capable of processing 1 – 10 kg/h of liquid substrate, and an industrially relevant immiscible liquid-liquid was successfully demonstrated on the system. Our microreactor-based pilot plant is one-of-akind. We anticipate that this process intensification concept, if successfully demonstrated, will provide a paradigm-changing basis for replacing existing energy inefficient, cost ineffective, environmentally detrimental slurry semi-batch reactor-based manufacturing practiced in the pharmaceutical and fine chemicals industries.

  17. Evaluation.

    ERIC Educational Resources Information Center

    McAnany, Emile G.; And Others

    1980-01-01

    Two lead articles set the theme for this issue devoted to evaluation as Emile G. McAnany examines the usefulness of evaluation and Robert C. Hornik addresses four widely accepted myths about evaluation. Additional articles include a report of a field evaluation done by the Accion Cultural Popular (ACPO); a study of the impact of that evaluation by…

  18. Innovative clean coal technology (ICCT): demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emission from high-sulfur, coal-fired boilers - economic evaluation of commercial-scale SCR applications for utility boilers

    SciTech Connect

    Healy, E.C.; Maxwell, J.D.; Hinton, W.S.

    1996-09-01

    This report presents the results of an economic evaluation produced as part of the Innovative Clean Coal Technology project, which demonstrated selective catalytic reduction (SCR) technology for reduction of NO{sub x} emissions from utility boilers burning U.S. high-sulfur coal. The document includes a commercial-scale capital and O&M cost evaluation of SCR technology applied to a new facility, coal-fired boiler utilizing high-sulfur U.S. coal. The base case presented herein determines the total capital requirement, fixed and variable operating costs, and levelized costs for a new 250-MW pulverized coal utility boiler operating with a 60-percent NO{sub x} removal. Sensitivity evaluations are included to demonstrate the variation in cost due to changes in process variables and assumptions. This report also presents the results of a study completed by SCS to determine the cost and technical feasibility of retrofitting SCR technology to selected coal-fired generating units within the Southern electric system.

  19. Halogen Chemistry on Catalytic Surfaces.

    PubMed

    Moser, Maximilian; Pérez-Ramírez, Javier

    2016-01-01

    Halogens are key building blocks for the manufacture of high-value products such as chemicals, plastics, and pharmaceuticals. The catalytic oxidation of HCl and HBr is an attractive route to recover chlorine and bromine in order to ensure the sustainability of the production processes. Very few materials withstand the high corrosiveness and the strong exothermicity of the reactions and among them RuO2 and CeO2-based catalysts have been successfully applied in HCl oxidation. The search for efficient systems for HBr oxidation was initiated by extrapolating the results of HCl oxidation based on the chemical similarity of these reactions. Interestingly, despite its inactivity in HCl oxidation, TiO2 was found to be an outstanding HBr oxidation catalyst, which highlighted that the latter reaction is more complex than previously assumed. Herein, we discuss the results of recent comparative studies of HCl and HBr oxidation on both rutile-type (RuO2, IrO2, and TiO2) and ceria-based catalysts using a combination of advanced experimental and theoretical methods to provide deeper molecular-level understanding of the reactions. This knowledge aids the design of the next-generation catalysts for halogen recycling.

  20. Vacuum-insulated catalytic converter

    DOEpatents

    Benson, David K.

    2001-01-01

    A catalytic converter has an inner canister that contains catalyst-coated substrates and an outer canister that encloses an annular, variable vacuum insulation chamber surrounding the inner canister. An annular tank containing phase-change material for heat storage and release is positioned in the variable vacuum insulation chamber a distance spaced part from the inner canister. A reversible hydrogen getter in the variable vacuum insulation chamber, preferably on a surface of the heat storage tank, releases hydrogen into the variable vacuum insulation chamber to conduct heat when the phase-change material is hot and absorbs the hydrogen to limit heat transfer to radiation when the phase-change material is cool. A porous zeolite trap in the inner canister absorbs and retains hydrocarbons from the exhaust gases when the catalyst-coated substrates and zeolite trap are cold and releases the hydrocarbons for reaction on the catalyst-coated substrate when the zeolite trap and catalyst-coated substrate get hot.

  1. Catalytic Chemistry on Oxide Nanostructures

    SciTech Connect

    Asthagiri, Aravind; Dixon, David A.; Dohnalek, Zdenek; Kay, Bruce D.; Rodriquez, Jose A.; Rousseau, Roger J.; Stacchiola, Dario; Weaver, Jason F.

    2016-05-29

    Metal oxides represent one of the most important and widely employed materials in catalysis. Extreme variability of their chemistry provides a unique opportunity to tune their properties and to utilize them for the design of highly active and selective catalysts. For bulk oxides, this can be achieved by varying their stoichiometry, phase, exposed surface facets, defect, dopant densities and numerous other ways. Further, distinct properties from those of bulk oxides can be attained by restricting the oxide dimensionality and preparing them in the form of ultrathin films and nanoclusters as discussed throughout this book. In this chapter we focus on demonstrating such unique catalytic properties brought by the oxide nanoscaling. In the highlighted studies planar models are carefully designed to achieve minimal dispersion of structural motifs and to attain detailed mechanistic understanding of targeted chemical transformations. Detailed level of morphological and structural characterization necessary to achieve this goal is accomplished by employing both high-resolution imaging via scanning probe methods and ensemble-averaged surface sensitive spectroscopic methods. Three prototypical examples illustrating different properties of nanoscaled oxides in different classes of reactions are selected.

  2. Dimension meditated optic and catalytic performance over vanadium pentoxides

    NASA Astrophysics Data System (ADS)

    Su, Dezhi; Zhao, Yongjie; Zhang, Ruibo; Ning, Mingqiang; Zhao, Yuzhen; Zhou, Heping; Li, Jingbo; Jin, Haibo

    2016-12-01

    Morphologies and sizes of V2O5 had crucial effect on their optic and catalytic performance. Diverse dimensional V2O5 were successfully synthesized by the combination of a hydrothermal and post heat treatment method. The as-obtained samples were characterized by X-ray power diffraction, scanning electron microscopy, transmission electron microscopy and Raman spectra. Moreover, the optic properties of diverse dimensional V2O5 were examined by Fourier transform imaging spectrometer and UV-vis-spectrophotometer. It showed that the IR transmittance of nanowire (at 1019 cm-1 is 85%) and UV absorbance of microflowers (at 480 nm) were high. Furthermore, the catalytic properties of diverse dimensional V2O5 on the thermal decomposition of ammonium perchlorate were evaluated and compared by Thermo-Gravimetric Analysis and Differential Scanning Calorimetry. Moreover, the best catalytic performance was obtained with the morphology of nanowire. It showed the thermal decomposition temperatures of AP with nanowire, microflowers and microsphere were reduced to 373 °C, 382 °C and 376 °C (decreased by 52 °C, 43 °C and 49 °C).

  3. A review of tin oxide-based catalytic systems: Preparation, characterization and catalytic behavior

    NASA Technical Reports Server (NTRS)

    Hoflund, Gar B.

    1987-01-01

    This paper reviews the important aspects of the preparation, characterization and catalytic behavior of tin oxide-based catalytic systems including doped tin oxide, mixed oxides which contain tin oxide, Pt supported on tin oxide and Pt/Sn supported on alumina. These systems have a broad range of applications and are continually increasing in importance. However, due to their complex nature, much remains to be understood concerning how they function catalytically.

  4. Catalytic Science Center Opens at Delaware

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1978

    1978-01-01

    Described is a catalytic science center designed to incorporate academic and industrial concerns. The center combines educational and research opportunities for undergraduate and graduate students, as well as for the chemical professional. (MA)

  5. Monitoring by Control Technique - Catalytic Oxidizer

    EPA Pesticide Factsheets

    Stationary source emissions monitoring is required to demonstrate that a source is meeting the requirements in Federal or state rules. This page is about catalytic oxidizer control techniques used to reduce pollutant emissions.

  6. CATALYTIC OXIDATION OF GROUNDWATER STRIPPING EMISSIONS

    EPA Science Inventory

    The paper reviews the applicability of catalytic oxidation to control ground-water air stripping gaseous effluents, with special attention to system designs and case histories. The variety of contaminants and catalyst poisons encountered in stripping operations are also reviewed....

  7. Advanced Catalytic Combustors for Low Pollutant Emissions

    DTIC Science & Technology

    1979-11-01

    concepts were selected for further design efforts. Results of the Phase I design effort indicate that catalytic combustion is a promising means for...L VAMD. Recent efforta to develop fuel-air carburetion concepts fol use in gas turbine catalytic combustion systems, which are summarized in...Radial/Axial Parallel-Staged combustor shown in F’gure 10 (Con- cept 6) is essentially two separate combustion systems in parallel. In this design concept

  8. An Iron Reservoir to the Catalytic Metal

    PubMed Central

    Liu, Fange; Geng, Jiafeng; Gumpper, Ryan H.; Barman, Arghya; Davis, Ian; Ozarowski, Andrew; Hamelberg, Donald; Liu, Aimin

    2015-01-01

    The rubredoxin motif is present in over 74,000 protein sequences and 2,000 structures, but few have known functions. A secondary, non-catalytic, rubredoxin-like iron site is conserved in 3-hydroxyanthranilate 3,4-dioxygenase (HAO), from single cellular sources but not multicellular sources. Through the population of the two metal binding sites with various metals in bacterial HAO, the structural and functional relationship of the rubredoxin-like site was investigated using kinetic, spectroscopic, crystallographic, and computational approaches. It is shown that the first metal presented preferentially binds to the catalytic site rather than the rubredoxin-like site, which selectively binds iron when the catalytic site is occupied. Furthermore, an iron ion bound to the rubredoxin-like site is readily delivered to an empty catalytic site of metal-free HAO via an intermolecular transfer mechanism. Through the use of metal analysis and catalytic activity measurements, we show that a downstream metabolic intermediate can selectively remove the catalytic iron. As the prokaryotic HAO is often crucial for cell survival, there is a need for ensuring its activity. These results suggest that the rubredoxin-like site is a possible auxiliary iron source to the catalytic center when it is lost during catalysis in a pathway with metabolic intermediates of metal-chelating properties. A spare tire concept is proposed based on this biochemical study, and this concept opens up a potentially new functional paradigm for iron-sulfur centers in iron-dependent enzymes as transient iron binding and shuttling sites to ensure full metal loading of the catalytic site. PMID:25918158

  9. Correlation of Catalytic Rates With Solubility Parameters

    NASA Technical Reports Server (NTRS)

    Lawson, Daniel D.; England, Christopher

    1987-01-01

    Catalyst maximizes activity when its solubility parameter equals that of reactive species. Catalytic activities of some binary metal alloys at maximum when alloy compositions correspond to Hildebrand solubility parameters equal to those of reactive atomic species on catalyst. If this suggestive correlation proves to be general, applied to formulation of other mixed-metal catalysts. Also used to identify reactive species in certain catalytic reactions.

  10. Advanced Low-Emissions Catalytic-Combustor Program, phase 1. [aircraft gas turbine engines

    NASA Technical Reports Server (NTRS)

    Sturgess, G. J.

    1981-01-01

    Six catalytic combustor concepts were defined, analyzed, and evaluated. Major design considerations included low emissions, performance, safety, durability, installations, operations and development. On the basis of these considerations the two most promising concepts were selected. Refined analysis and preliminary design work was conducted on these two concepts. The selected concepts were required to fit within the combustor chamber dimensions of the reference engine. This is achieved by using a dump diffuser discharging into a plenum chamber between the compressor discharge and the turbine inlet, with the combustors overlaying the prediffuser and the rear of the compressor. To enhance maintainability, the outer combustor case for each concept is designed to translate forward for accessibility to the catalytic reactor, liners and high pressure turbine area. The catalytic reactor is self-contained with air-cooled canning on a resilient mounting. Both selected concepts employed integrated engine-starting approaches to raise the catalytic reactor up to operating conditions. Advanced liner schemes are used to minimize required cooling air. The two selected concepts respectively employ fuel-rich initial thermal reaction followed by rapid quench and subsequent fuel-lean catalytic reaction of carbon monoxide, and, fuel-lean thermal reaction of some fuel in a continuously operating pilot combustor with fuel-lean catalytic reaction of remaining fuel in a radially-staged main combustor.

  11. The effect of catalyst length and downstream reactor distance on catalytic combustor performance

    NASA Technical Reports Server (NTRS)

    Anderson, D.

    1980-01-01

    A study was made to determine the effects on catalytic combustor performance which resulted from independently varying the length of a catalytic reactor and the length available for gas-phase reactions downstream of the catalyst. Monolithic combustion catalysts from three manufacturers were tested in a combustion test rig with no. 2 diesel fuel. Catalytic reactor lengths of 2.5 and 5.4 cm, and downstream gas-phase reaction distances of 7.3, 12.4, 17.5, and 22.5 cm were evaluated. Measurements of carbon monoxide, unburned hydrocarbons, nitrogen oxides, and pressure drop were made. The catalytic-reactor pressure drop was less than 1 percent of the upstream total pressure for all test configurations and test conditions. Nitrogen oxides and unburned hydrocarbons emissions were less than 0.25 g NO2/kg fuel and 0.6 g HC/kg fuel, respectively. The minimum operating temperature (defined as the adiabatic combustion temperature required to obtain carbon monoxide emissions below a reference level of 13.6 g CO/kg fuel) ranged from 1230 K to 1500 K for the various conditions and configurations tested. The minimum operating temperature decreased with increasing total (catalytic-reactor-plus-downstream-gas-phase-reactor-zone) residence time but was independent of the relative times spent in each region when the catalytic-reactor residence time was greater than or equal to 1.4 ms.

  12. Adsorbent catalytic nanoparticles and methods of using the same

    DOEpatents

    Slowing, Igor Ivan; Kandel, Kapil

    2017-01-31

    The present invention provides an adsorbent catalytic nanoparticle including a mesoporous silica nanoparticle having at least one adsorbent functional group bound thereto. The adsorbent catalytic nanoparticle also includes at least one catalytic material. In various embodiments, the present invention provides methods of using and making the adsorbent catalytic nanoparticles. In some examples, the adsorbent catalytic nanoparticles can be used to selectively remove fatty acids from feedstocks for biodiesel, and to hydrotreat the separated fatty acids.

  13. Catalytic steam gasification of bagasse for the production of methanol

    SciTech Connect

    Baker, E.G.; Brown, M.D.

    1983-12-01

    Pacific Northwest Laboratory (PNL) tested the catalytic gasification of bagasse for the production of methanol synthesis gas. The process uses steam, indirect heat, and a catalyst to produce synthesis gas in one step in fluidized bed gasifier. Both laboratory and process development scale (nominal 1 ton/day) gasifiers were used to test two different catalyst systems: (1) supported nickel catalysts and (2) alkali carbonates doped on the bagasse. This paper presents the results of laboratory and process development unit gasification tests and includes an economic evaluation of the process. 20 references, 6 figures, 9 tables.

  14. Absolute Rovibrational Intensities for the Chi(sup 1)Sigma(sup +) v=3 <-- 0 Band of (12)C(16)O Obtained with Kitt Peak and BOMEM FTS Instruments

    NASA Technical Reports Server (NTRS)

    Chackerian, Charles, Jr.; Kshirsagar, R. J.; Giver, L. P.; Brown, L. R.; Condon, Estelle P. (Technical Monitor)

    1999-01-01

    This work was initiated to compare absolute line intensities retrieved with the Kitt Peak FTS (Fourier Transform Spectrometer) and Ames BOMEM FTS. Since thermal contaminations can be a problem using the BOMEM instrument if proper precautions are not taken it was thought that measurements done at 6300 per cm would more easily result in satisfactory intercomparisons. Very recent measurements of the CO 3 <-- 0 band fine intensities confirms results reported here that the intensities listed in HITRAN (High Resolution Molecular Absorption Database) for this band are on the order of six to seven percent too low. All of the infrared intensities in the current HITRAN tabulation are based on the electric dipole moment function reported fifteen years ago. The latter in turn was partly based on intensities for the 3 <-- 0 band reported thirty years ago. We have, therefore, redetermined the electric dipole moment function of ground electronic state CO.

  15. VOC Destruction by Catalytic Combustion Microturbine

    SciTech Connect

    Tom Barton

    2009-03-10

    This project concerned the application of a catalytic combustion system that has been married to a micro-turbine device. The catalytic combustion system decomposes the VOC's and transmits these gases to the gas turbine. The turbine has been altered to operate on very low-level BTU fuels equivalent to 1.5% methane in air. The performance of the micro-turbine for VOC elimination has some flexibility with respect to operating conditions, and the system is adaptable to multiple industrial applications. The VOC source that was been chosen for examination was the emissions from coal upgrading operations. The overall goal of the project was to examine the effectiveness of a catalytic combustion based system for elimination of VOCs while simultaneously producing electrical power for local consumption. Project specific objectives included assessment of the feasibility for using a Flex-Microturbine that generates power from natural gas while it consumes VOCs generated from site operations; development of an engineering plan for installation of the Flex-Microturbine system; operation of the micro-turbine through various changes in site and operation conditions; measurement of the VOC destruction quantitatively; and determination of the required improvements for further studies. The micro-turbine with the catalytic bed worked effectively to produce power on levels of fuel much lower than the original turbine design. The ability of the device to add or subtract supplemental fuel to augment the amount of VOC's in the inlet air flow made the device an effective replacement for a traditional flare. Concerns about particulates in the inlet flow and the presence of high sulfur concentrations with the VOC mixtures was identified as a drawback with the current catalytic design. A new microturbine design was developed based on this research that incorporates a thermal oxidizer in place of the catalytic bed for applications where particulates or contamination would limit the lifetime of

  16. Methane Cross-Validation Between Spaceborne Solar Occultation Observations from ACE-FTS, Spaceborne Nadir Sounding from Gosat, and Ground-Based Solar Absorption Measurements, at a High Arctic Site.

    NASA Astrophysics Data System (ADS)

    Holl, G.; Walker, K. A.; Conway, S. A.; Saitoh, N.; Boone, C. D.; Strong, K.; Drummond, J. R.

    2014-12-01

    We present cross-validation of remote sensing observations of methane profiles in the Canadian High Arctic. Methane is the third most important greenhouse gas on Earth, and second only to carbon dioxide in its contribution to anthropogenic global warming. Accurate and precise observations of methane are essential to understand quantitatively its role in the climate system and in global change. The Arctic is a particular region of concern, as melting permafrost and disappearing sea ice might lead to accelerated release of methane into the atmosphere. Global observations require spaceborne instruments, in particular in the Arctic, where surface measurements are sparse and expensive to perform. Satellite-based remote sensing is an underconstrained problem, and specific validation under Arctic circumstances is required. Here, we show a cross-validation between two spaceborne instruments and ground-based measurements, all Fourier Transform Spectrometers (FTS). We consider the Canadian SCISAT ACE-FTS, a solar occultation spectrometer operating since 2004, and the Japanese GOSAT TANSO-FTS, a nadir-pointing FTS operating at solar and terrestrial infrared wavelengths, since 2009. The ground-based instrument is a Bruker Fourier Transform Infrared (FTIR) spectrometer, measuring mid-infrared solar absorption spectra at the Polar Environmental and Atmospheric Research Laboratory (PEARL) at Eureka, Nunavut (80°N, 86°W) since 2006. Measurements are collocated considering temporal, spatial, and geophysical criteria and regridded to a common vertical grid. We perform smoothing on the higher-resolution instrument results to account for different vertical resolutions. Then, profiles of differences for each pair of instruments are examined. Any bias between instruments, or any accuracy that is worse than expected, needs to be understood prior to using the data. The results of the study will serve as a guideline on how to use the vertically resolved methane products from ACE and

  17. Atomically Precise Metal Nanoclusters for Catalytic Application

    SciTech Connect

    Jin, Rongchao

    2016-11-18

    The central goal of this project is to explore the catalytic application of atomically precise gold nanoclusters. By solving the total structures of ligand-protected nanoclusters, we aim to correlate the catalytic properties of metal nanoclusters with their atomic/electronic structures. Such correlation unravel some fundamental aspects of nanocatalysis, such as the nature of particle size effect, origin of catalytic selectivity, particle-support interactions, the identification of catalytically active centers, etc. The well-defined nanocluster catalysts mediate the knowledge gap between single crystal model catalysts and real-world conventional nanocatalysts. These nanoclusters also hold great promise in catalyzing certain types of reactions with extraordinarily high selectivity. These aims are in line with the overall goals of the catalytic science and technology of DOE and advance the BES mission “to support fundamental research to understand, predict, and ultimately control matter and energy at the level of electrons, atoms, and molecules”. Our group has successfully prepared different sized, robust gold nanoclusters protected by thiolates, such as Au25(SR)18, Au28(SR)20, Au38(SR)24, Au99(SR)42, Au144(SR)60, etc. Some of these nanoclusters have been crystallographically characterized through X-ray crystallography. These ultrasmall nanoclusters (< 2 nm diameter) exhibit discrete electronic structures due to quantum size effect, as opposed to quasicontinuous band structure of conventional metal nanoparticles or bulk metals. The available atomic structures (metal core plus surface ligands) of nanoclusters serve as the basis for structure-property correlations. We have investigated the unique catalytic properties of nanoclusters (i.e. not observed in conventional nanogold catalysts) and revealed the structure-selectivity relationships. Highlights of our

  18. The kinetics of the ClOOCl catalytic cycle

    NASA Astrophysics Data System (ADS)

    Canty, Timothy P.; Salawitch, Ross J.; Wilmouth, David M.

    2016-11-01

    We use simultaneous in situ observations of [ClO] and [ClOOCl] obtained in the Arctic polar vortex to evaluate the kinetics of the ClOOCl catalytic cycle. Available laboratory measurements of the ClOOCl absorption cross sections, the ClO + ClO + M reaction rate constant, and the ClO/ClOOCl equilibrium constant are considered, along with compendium evaluations of these kinetic parameters. We show that the most recent (year 2015) recommendations for the kinetics that govern the partitioning of ClO and ClOOCl put forth by the Jet Propulsion Laboratory (JPL) panel are in extremely good agreement with the atmospheric observations of [ClO] and [ClOOCl]. Hence, we suggest that studies of polar ozone loss adopt these most recent recommendations. The most important difference with respect to calculations that rely on older recommendations is the temperature at which loss of O3 by the ClOOCl catalytic cycle terminates. The latest JPL recommendation for the equilibrium constant suggests that ClOOCl is less stable than previously assumed, resulting in an approximate 2°C downward shift in the termination temperature of polar ozone loss due to the ClOOCl catalytic cycle. Remaining uncertainties in our knowledge of the kinetics that govern the partitioning of ClO and ClOOCl within the activated vortex, and hence the efficiency of O3 loss by the ClOOCl cycle, will be best addressed by future laboratory determinations of the absolute cross section of ClOOCl at the peak (i.e., close to a wavelength of 245 nm) as well as reduced uncertainty in the rate constant of the ClO + ClO + M reaction.

  19. Catalytic Destruction of a Surrogate Organic Hazardous Air Pollutant as a Potential Co-benefit for Coal-fired Selective Catalyst Reduction Systems

    EPA Science Inventory

    Catalytic destruction of benzene (C6H6), a surrogate for organic hazardous air pollutants (HAPs) produced from coal combustion, was investigated using a commercial selective catalytic reduction (SCR) catalyst for evaluating the potential co-benefit of the SCR technology for reduc...

  20. Preliminary assignments of 2 ν 3 - ν 4 hot band of 12 CH 4 in the 2 μm transparency window from long-path FTS spectra

    NASA Astrophysics Data System (ADS)

    Nikitin, A. V.; Daumont, L.; Thomas, X.; Régalia, L.; Rey, M.; Tyuterev, Vl. G.; Brown, L. R.

    2011-07-01

    New measurements and assignments for the rovibrational transitions of the hot band 2 v3- v4 of 12CH 4 are reported from 4600 to 4880 cm -1 and refer to lower part of the 2 μm methane transparency window. Three long-path spectra were recorded with a Fourier transform spectrometer (FTS) in Reims using an L = 1603 m absorption path length at 1, 7, 34 h Pa for the natural samples of CH 4; a spectrum of enriched 13CH 4 was also used. Assignments were made for 196 lines of 2 v3(F 2,E)- v4. These transitions had an integrated intensity of 5 × 10 -24 cm/molecule at 296 K and improved the overall description of absorption in the 2.1 μm region. The empirical upper state levels of these assignments belong to Tetradecad (4800-6200 cm -1). The new analysis provided much better accuracies of badly blended positions of 2 v3(F 2)-ground state manifolds at 1.66 μm.

  1. Electro Catalytic Oxidation (ECO) Operation

    SciTech Connect

    Morgan Jones

    2011-03-31

    The power industry in the United States is faced with meeting many new regulations to reduce a number of air pollutants including sulfur dioxide, nitrogen oxides, fine particulate matter, and mercury. With over 1,000 power plants in the US, this is a daunting task. In some cases, traditional pollution control technologies such as wet scrubbers and SCRs are not feasible. Powerspan's Electro-Catalytic Oxidation, or ECO{reg_sign} process combines four pollution control devices into a single integrated system that can be installed after a power plant's particulate control device. Besides achieving major reductions in emissions of sulfur dioxide (SO{sub 2}), nitrogen oxides (NOx), fine particulate matter (PM2.5) and mercury (Hg), ECO produces a highly marketable fertilizer, which can help offset the operating costs of the process system. Powerspan has been operating a 50-MW ECO commercial demonstration unit (CDU) at FirstEnergy Corp.'s R.E. Burger Plant near Shadyside, Ohio, since February 2004. In addition to the CDU, a test loop has been constructed beside the CDU to demonstrate higher NOx removal rates and test various scrubber packing types and wet ESP configurations. Furthermore, Powerspan has developed the ECO{reg_sign}{sub 2} technology, a regenerative process that uses a proprietary solvent to capture CO{sub 2} from flue gas. The CO{sub 2} capture takes place after the capture of NOx, SO{sub 2}, mercury, and fine particulate matter. Once the CO{sub 2} is captured, the proprietary solution is regenerated to release CO{sub 2} in a form that is ready for geological storage or beneficial use. Pilot scale testing of ECO{sub 2} began in early 2009 at FirstEnergy's Burger Plant. The ECO{sub 2} pilot unit is designed to process a 1-MW flue gas stream and produce 20 tons of CO{sub 2} per day, achieving a 90% CO{sub 2} capture rate. The ECO{sub 2} pilot program provided the opportunity to confirm process design and cost estimates, and prepare for large scale capture and

  2. Gene targeting of CK2 catalytic subunits

    PubMed Central

    Lou, David Y.; Toselli, Paul; Landesman-Bollag, Esther; Dominguez, Isabel

    2013-01-01

    Protein kinase CK2 is a highly conserved and ubiquitous serine–threonine kinase. It is a tetrameric enzyme that is made up of two regulatory CK2β subunits and two catalytic subunits, either CK2α/CK2α, CK2α/ CK2α′, or CK2α′/CK2α′. Although the two catalytic subunits diverge in their C termini, their enzymatic activities are similar. To identify the specific function of the two catalytic subunits in development, we have deleted them individually from the mouse genome by homologous recombination. We have previously reported that CK2α′is essential for male germ cell development, and we now demonstrate that CK2α has an essential role in embryogenesis, as mice lacking CK2α die in mid-embryogenesis, with cardiac and neural tube defects. PMID:18594950

  3. Porous media for catalytic renewable energy conversion

    NASA Astrophysics Data System (ADS)

    Hotz, Nico

    2012-05-01

    A novel flow-based method is presented to place catalytic nanoparticles into a reactor by sol-gelation of a porous ceramic consisting of copper-based nanoparticles, silica sand, ceramic binder, and a gelation agent. This method allows for the placement of a liquid precursor containing the catalyst into the final reactor geometry without the need of impregnating or coating of a substrate with the catalytic material. The so generated foam-like porous ceramic shows properties highly appropriate for use as catalytic reactor material, e.g., reasonable pressure drop due to its porosity, high thermal and catalytic stability, and excellent catalytic behavior. The catalytic activity of micro-reactors containing this foam-like ceramic is tested in terms of their ability to convert alcoholic biofuel (e.g. methanol) to a hydrogen-rich gas mixture with low concentrations of carbon monoxide (up to 75% hydrogen content and less than 0.2% CO, for the case of methanol). This gas mixture is subsequently used in a low-temperature fuel cell, converting the hydrogen directly to electricity. A low concentration of CO is crucial to avoid poisoning of the fuel cell catalyst. Since conventional Polymer Electrolyte Membrane (PEM) fuel cells require CO concentrations far below 100 ppm and since most methods to reduce the mole fraction of CO (such as Preferential Oxidation or PROX) have CO conversions of up to 99%, the alcohol fuel reformer has to achieve initial CO mole fractions significantly below 1%. The catalyst and the porous ceramic reactor of the present study can successfully fulfill this requirement.

  4. 40 CFR 63.1566 - What are my requirements for organic HAP emissions from catalytic reforming units?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Petroleum Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Catalytic Cracking Units, Catalytic Reforming Units, Sulfur Recovery Units, and Bypass Lines § 63.1566...

  5. 40 CFR 63.1566 - What are my requirements for organic HAP emissions from catalytic reforming units?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Petroleum Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Catalytic Cracking Units, Catalytic Reforming Units, Sulfur Recovery Units, and Bypass Lines § 63.1566...

  6. 40 CFR 63.1567 - What are my requirements for inorganic HAP emissions from catalytic reforming units?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Petroleum Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Catalytic Cracking Units, Catalytic Reforming Units, Sulfur Recovery Units, and Bypass Lines § 63.1567...

  7. How to conceptualize catalytic cycles? The energetic span model.

    PubMed

    Kozuch, Sebastian; Shaik, Sason

    2011-02-15

    A computational study of a catalytic cycle generates state energies (the E-representation), whereas experiments lead to rate constants (the k-representation). Based on transition state theory (TST), these are equivalent representations. Nevertheless, until recently, there has been no simple way to calculate the efficiency of a catalytic cycle, that is, its turnover frequency (TOF), from a theoretically obtained energy profile. In this Account, we introduce the energetic span model that enables one to evaluate TOFs in a straightforward manner and in affinity with the Curtin-Hammett principle. As shown herein, the model implies a change in our kinetic concepts. Analogous to Ohm's law, the catalytic chemical current (the TOF) can be defined by a chemical potential (independent of the mechanism) divided by a chemical resistance (dependent on the mechanism and the nature of the catalyst). This formulation is based on Eyring's TST and corresponds to a steady-state regime. In many catalytic cycles, only one transition state and one intermediate determine the TOF. We call them the TOF-determining transition state (TDTS) and the TOF-determining intermediate (TDI). These key states can be located, from among the many states available to a catalytic cycle, by assessing the degree of TOF control (X(TOF)); this last term resembles the structure-reactivity coefficient in classical physical organic chemistry. The TDTS-TDI energy difference and the reaction driving force define the energetic span (δE) of the cycle. Whenever the TDTS appears after the TDI, δE is the energy difference between these two states; when the opposite is true, we must also add the driving force to this difference. Having δE, the TOF is expressed simply in the Arrhenius-Eyring fashion, wherein δE serves as the apparent activation energy of the cycle. An important lesson from this model is that neither one transition state nor one reaction step possess all the kinetic information that determines the

  8. Continuous in vitro evolution of catalytic function

    NASA Technical Reports Server (NTRS)

    Wright, M. C.; Joyce, G. F.

    1997-01-01

    A population of RNA molecules that catalyze the template-directed ligation of RNA substrates was made to evolve in a continuous manner in the test tube. A simple serial transfer procedure was used to achieve approximately 300 successive rounds of catalysis and selective amplification in 52 hours. During this time, the population size was maintained against an overall dilution of 3 x 10(298). Both the catalytic rate and amplification rate of the RNAs improved substantially as a consequence of mutations that accumulated during the evolution process. Continuous in vitro evolution makes it possible to maintain laboratory "cultures" of catalytic molecules that can be perpetuated indefinitely.

  9. Janus droplet as a catalytic micromotor

    NASA Astrophysics Data System (ADS)

    Shklyaev, Sergey

    2015-06-01

    Self-propulsion of a Janus droplet in a solution of surfactant, which reacts on a half of a drop surface, is studied theoretically. The droplet acts as a catalytic motor creating a concentration gradient, which generates its surface-tension-driven motion; the self-propulsion speed is rather high, 60 μ \\text{m/s} and more. This catalytic motor has several advantages over other micromotors: simple manufacturing, easily attained neutral buoyancy. In contrast to a single-fluid droplet, which demonstrates a self-propulsion as a result of symmetry breaking instability, for the Janus one no stability threshold exists; hence, the droplet radius can be scaled down to micrometers.

  10. A premixed hydrogen/oxygen catalytic igniter

    NASA Technical Reports Server (NTRS)

    Green, James M.

    1989-01-01

    The catalytic ignition of hydrogen and oxygen propellants was studied using a premixing hydrogen/oxygen injector. The premixed injector was designed to eliminate problems associated with catalytic ignition caused by poor propellant mixing in the catalyst bed. Mixture ratio, mass flow rate, and propellant inlet temperature were varied parametrically in testing, and a pulse mode life test of the igniter was conducted. The results of the tests showed that the premixed injector eliminated flame flashback in the reactor and increased the life of the igniter significantly. The results of the experimental program and a comparison with data collected in a previous program are given.

  11. Retrofit catalytic converter for wood-burning stoves

    SciTech Connect

    1983-01-01

    The major purpose of this project was to design, fabricate, test, and evaluate a retrofit catalytic converter for woodburning stoves. In the interim between our date of application March 5, 1981 and the beginning of the grant period December 1, 1981, several such devices became commercially available. Therefore, we decided to modify the purpose and direction of our project. In summary, we designed and constructed a calorimeter room in a building located on the campus of Northern Kentucky University. We equipped this room with a woodburning stove and a metal chimney extending through the roof. We designed and constructed the appropriate instrumentation for monitoring the heat output of the stove. We observed and recorded the operating characteristics of this stove over a period of several days. We then equipped the stove with a barometric damper and repeated the experiment. We are now in the process of equipping the stove with a catalytic converter. Thus the major emphasis of the project currently is to test and evaluate several commercial retrofit devices which are purported to reduce creosote and/or increase the efficiency of a woodburning stove.

  12. Synthesis and Catalytic Evaluation of Dendrimer-Encapsulated Cu Nanoparticles: An Undergraduate Experiment Exploring Catalytic Nanomaterials

    ERIC Educational Resources Information Center

    Feng, Z. Vivian; Lyon, Jennifer L.; Croley, J. Sawyer; Crooks, Richard M.; Vanden Bout, David A.; Stevenson, Keith J.

    2009-01-01

    Copper nanoparticles were synthesized using generation 4 hydroxyl-terminated (G4-OH) poly(amidoamine) (PAMAM) dendrimers as templates. The synthesis is conducted by coordinating copper ions with the interior amines of the dendrimer, followed by chemical reduction to form dendrimer-encapsulated copper nanoparticles (Cu-DEN). The catalytic…

  13. Pulse method of structural and parametric identification of models of heterogeneous catalytic processes

    SciTech Connect

    Kafarov, V.V.; Pisarenko, V.N.; Usacheva, I.I.

    1986-04-01

    A description is given of a pulse method for the investigation of heterogeneous catalytic processes, through which the parameters of a model can be evaluated with high accuracy. An example is given of the application of the procedure to an alloy catalyst.

  14. Susceptibility of Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae) life stages to flameless catalytic infrared radiation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The susceptibility of various life stages of the red flour beetle, Tribolium castaneum (Herbst), a pest of stored wheat, to flameless catalytic infrared radiation in the 3 to 7 µm range was evaluated in the laboratory. Immature stages were collected from flour infested with T. castaneum adults only ...

  15. Effects of flameless catalytic infrared radiation on Sitophilus oryzae (L.) life stages

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A laboratory bench top flameless catalytic infrared emitter was evaluated against all life stages of the rice weevil, Sitophilus oryzae (L.), an insect species associated with stored wheat. The infrared radiation emitted was in the 3 to 7 µm range. A non-contact infrared thermometer measured grain t...

  16. EFFECT OF SELECTIVE CATALYTIC REDUCTION ON MERCURY, 2002 FIELD STUDIES UPDATE

    EPA Science Inventory

    The report documents the 2002 "Selective Catalytic Reduction Mercury Field Sampling Project." An overall evaluation of the results from both 2001 and 2002 testing is also provided. The project was sponsored by the Electric Power Research Institute (EPRI), the U.S. Department of...

  17. Catalytic immunoglobulin gene delivery in a mouse model of Alzheimer's disease: prophylactic and therapeutic applications.

    PubMed

    Kou, Jinghong; Yang, Junling; Lim, Jeong-Eun; Pattanayak, Abhinandan; Song, Min; Planque, Stephanie; Paul, Sudhir; Fukuchi, Ken-Ichiro

    2015-02-01

    Accumulation of amyloid beta-peptide (Aβ) in the brain is hypothesized to be a causal event leading to dementia in Alzheimer's disease (AD). Aβ vaccination removes Aβ deposits from the brain. Aβ immunotherapy, however, may cause T cell- and/or Fc-receptor-mediated brain inflammation and relocate parenchymal Aβ deposits to blood vessels leading to cerebral hemorrhages. Because catalytic antibodies do not form stable immune complexes and Aβ fragments produced by catalytic antibodies are less likely to form aggregates, Aβ-specific catalytic antibodies may have safer therapeutic profiles than reversibly-binding anti-Aβ antibodies. Additionally, catalytic antibodies may remove Aβ more efficiently than binding antibodies because a single catalytic antibody can hydrolyze thousands of Aβ molecules. We previously isolated Aβ-specific catalytic antibody, IgVL5D3, with strong Aβ-hydrolyzing activity. Here, we evaluated the prophylactic and therapeutic efficacy of brain-targeted IgVL5D3 gene delivery via recombinant adeno-associated virus serotype 9 (rAAV9) in an AD mouse model. One single injection of rAAV9-IgVL5D3 into the right ventricle of AD model mice yielded widespread, high expression of IgVL5D3 in the unilateral hemisphere. IgVL5D3 expression was readily detectable in the contralateral hemisphere but to a much lesser extent. IgVL5D3 expression was also confirmed in the cerebrospinal fluid. Prophylactic and therapeutic injection of rAAV9-IgVL5D3 reduced Aβ load in the ipsilateral hippocampus of AD model mice. No evidence of hemorrhages, increased vascular amyloid deposits, increased proinflammatory cytokines, or infiltrating T-cells in the brains was found in the experimental animals. AAV9-mediated anti-Aβ catalytic antibody brain delivery can be prophylactic and therapeutic options for AD.

  18. Auto-catalytic Ceria Nanoparticles Offer Neuroprotection to Adult Rat Spinal Cord Neurons

    PubMed Central

    Das, Mainak; Patil, Swanand; Bhargava, Neelima; Kang, Jung-Fong; Riedel, Lisa M.; Seal, Sudipta; Hickman, James J.

    2007-01-01

    This paper describes the evaluation of the auto-catalytic anti-oxidant behavior and biocompatibility of Cerium oxide nanoparticles for applications in spinal cord repair and other diseases of the CNS. The application of a single dose of nano-Ceria at a nano-molar concentration is biocompatible, regenerative and provides a significant neuroprotective effect on adult rat spinal cord neurons. Retention of neuronal function is demonstrated from electrophysiological recordings and the possibility of its application to prevent ischemic insult is suggested from an oxidative injury assay. A mechanism is proposed to explain the auto-catalytic properties of these nanoparticles. PMID:17222903

  19. Development of novel catalytically active polymer-metal-nanocomposites based on activated foams and textile fibers

    PubMed Central

    2013-01-01

    In this paper, we report the intermatrix synthesis of Ag nanoparticles in different polymeric matrices such as polyurethane foams and polyacrylonitrile or polyamide fibers. To apply this technique, the polymer must bear functional groups able to bind and retain the nanoparticle ion precursors while ions should diffuse through the matrix. Taking into account the nature of some of the chosen matrices, it was essential to try to activate the support material to obtain an acceptable value of ion exchange capacity. To evaluate the catalytic activity of the developed nanocomposites, a model catalytic reaction was carried out in batch experiments: the reduction of p-nitrophenol by sodium borohydride. PMID:23680063

  20. Possible role of inter-domain salt bridges in oligopeptidase B from Trypanosoma brucei: critical role of Glu172 of non-catalytic β-propeller domain in catalytic activity and Glu490 of catalytic domain in stability of OPB.

    PubMed

    Fukumoto, Junki; Ismail, Nor Ismaliza Mohd; Kubo, Masaki; Kinoshita, Keita; Inoue, Masahiro; Yuasa, Keizo; Nishimoto, Makoto; Matsuki, Hitoshi; Tsuji, Akihiko

    2013-11-01

    Oligopeptidase B (OPB) is a member of the prolyl oligopeptidase (POP) family of serine proteases. OPB in trypanosomes is an important virulence factor and potential pharmaceutical target. Characteristic structural features of POP family members include lack of a propeptide and presence of a β-propeller domain (PD), although the role of the β-PD has yet to be fully understood. In this work, residues Glu(172), Glu(490), Glu(524) and Arg(689) in Trypanosoma brucei OPB (Tb OPB), which are predicted to form inter-domain salt bridges, were substituted for Gln and Ala, respectively. These mutants were evaluated in terms of catalytic properties and stability. A negative effect on kcat/Km was obtained following mutation of Glu(172) or Arg(689). In contrast, the E490Q mutant exhibited markedly decreased thermal stability, although this mutation had less effect on catalytic properties compared to the E172Q and R689A mutants. Trypsin digestion showed that the boundary regions between the β-PD and catalytic domains (CDs) of the E490Q mutant are unfolded with heat treatment. These results indicated that Glu(490) in the CD plays a role in stabilization of Tb OPB, whereas Glu(172) in the β-PD is critical for the catalytic activity of Tb OPB.

  1. Catalytic Converters Maintain Air Quality in Mines

    NASA Technical Reports Server (NTRS)

    2014-01-01

    At Langley Research Center, engineers developed a tin-oxide based washcoat to prevent oxygen buildup in carbon dioxide lasers used to detect wind shears. Airflow Catalyst Systems Inc. of Rochester, New York, licensed the technology and then adapted the washcoat for use as a catalytic converter to treat the exhaust from diesel mining equipment.

  2. Purification of reformer streams by catalytic hydrogenation

    SciTech Connect

    Polanek, P.J.; Hooper, H.M.; Mueller, J.; Walter, M.; Emmrich, G.

    1996-12-01

    Catalytic Reforming is one of the most important processes to produce high grade motor gasolines. Feedstocks are mainly gasoline and naphtha streams from the crude oil distillation boiling in the range of 212 F to 350 F. By catalytic reforming the octane number of these gasoline components is increased from 40--60 RON to 95--100 RON. Besides isomerization and dehydrocyclization reactions mainly formation of aromatics by dehydrogenation of naphthenes occur. Thus, catalytic reformers within refineries are an important source of BTX--aromatics (benzene, toluene, xylenes). Frequently, high purity aromatics are recovered from these streams using modern extractive distillation or liquid extraction processes, e.g. the Krupp-Koppers MORPHYLANE{reg_sign} process. Aromatics product specifications, notably bromine index and acid wash color, have obligated producers to utilize clay treatment to remove trace impurities of diolefins and/or olefins. The conventional clay treatment is a multiple vessel batch process which periodically requires disposal of the spent clay in a suitable environmental manner. BASF, in close cooperation with Krupp-Koppers, has developed a continuous Selective Catalytic Hydrogenation Process (SCHP) as an alternative to clay treatment which is very efficient, cost effective and environmentally compatible. In the following the main process aspects including the process scheme catalyst and operating conditions is described.

  3. Process for catalytically oxidizing cycloolefins, particularly cyclohexene

    DOEpatents

    Mizuno, Noritaka; Lyon, David K.; Finke, Richard G.

    1993-01-01

    This invention is a process for catalytically oxidizing cycloolefins, particularly cyclohexenes, to form a variety of oxygenates. The catalyst used in the process is a covalently bonded iridium-heteropolyanion species. The process uses the catalyst in conjunction with a gaseous oxygen containing gas to form 2-cyclohexen-1-ol and also 2-cyclohexen-1-one.

  4. Selectivity of catalytic methods of determination.

    PubMed

    Otto, M; Mueller, H; Werner, G

    1978-03-01

    By means of catalytic analytical methods, extremely low levels can be determined at low cost and with a high sensitivity that is equal to that of physical methods of trace analysis. The selectivity of the catalytic determinations, is, however, usually rather lower than that of other methods of trace analysis. The selectivity can sometimes be improved by modification of the indicator reaction through variation of the reagents and their concentrations, or by use of masking reagents or activators, or by combination with a separation method. Modification of the indicator reaction can be exemplified by the selective determination of osmium and ruthenium by their catalysis of the nitrate oxidation of 1-naphthylamine. By variation of the nitrate concentration and the use of 1,10-phenanthroline and 8-hydroxyquinoline as complexing agents it is possible to determine these two elements simultaneously. An especially significant increase in the selectivity is made possible by use of a preliminary separation step. If the ion to be determined is separated by solvent extraction and then catalytically determined directly in the extract, a very specific determination is possible; this technique has been called "extractive catalytic determination". This method has been used for determination of molybdenum (0.5 ng/ml) in sea-water, iron (5 ng/ml) in heavy metal salts, and copper (3 ng/ml) in the presence of numerous elements.

  5. Performance characterization of a hydrogen catalytic heater.

    SciTech Connect

    Johnson, Terry Alan; Kanouff, Michael P.

    2010-04-01

    This report describes the performance of a high efficiency, compact heater that uses the catalytic oxidation of hydrogen to provide heat to the GM Hydrogen Storage Demonstration System. The heater was designed to transfer up to 30 kW of heat from the catalytic reaction to a circulating heat transfer fluid. The fluid then transfers the heat to one or more of the four hydrogen storage modules that make up the Demonstration System to drive off the chemically bound hydrogen. The heater consists of three main parts: (1) the reactor, (2) the gas heat recuperator, and (3) oil and gas flow distribution manifolds. The reactor and recuperator are integrated, compact, finned-plate heat exchangers to maximize heat transfer efficiency and minimize mass and volume. Detailed, three-dimensional, multi-physics computational models were used to design and optimize the system. At full power the heater was able to catalytically combust a 10% hydrogen/air mixture flowing at over 80 cubic feet per minute and transfer 30 kW of heat to a 30 gallon per minute flow of oil over a temperature range from 100 C to 220 C. The total efficiency of the catalytic heater, defined as the heat transferred to the oil divided by the inlet hydrogen chemical energy, was characterized and methods for improvement were investigated.

  6. SELECTIVE CATALYTIC REDUCTION MERCURY FIELD SAMPLING PROJECT

    EPA Science Inventory

    A lack of data still exists as to the effect of selective catalytic reduction (SCR), selective noncatalytic reduction (SNCR), and flue gas conditioning on the speciation and removal of mercury (Hg) at power plants. This project investigates the impact that SCR, SNCR, and flue gas...

  7. Toward Facilitative Mentoring and Catalytic Interventions

    ERIC Educational Resources Information Center

    Smith, Melissa K.; Lewis, Marilyn

    2015-01-01

    In TESOL teacher mentoring, giving advice can be conceptualized as a continuum, ranging from directive to facilitative feedback. The goal, over time, is to lead toward the facilitative end of the continuum and specifically to catalytic interventions that encourage self-reflection and autonomous learning. This study begins by examining research on…

  8. Catalytic Amination of Alcohols, Aldehydes, and Ketones

    NASA Astrophysics Data System (ADS)

    Klyuev, M. V.; Khidekel', M. L.

    1980-01-01

    Data on the catalytic amination of alcohols and carbonyl compounds are examined, the catalysts for these processes are described, and the problems of their effectiveness, selectivity, and stability are discussed. The possible mechanisms of the reactions indicated are presented. The bibliography includes 266 references.

  9. SELECTIVE CATALYTIC REDUCTION MERCURY FIELD SAMPLING PROJECT

    EPA Science Inventory

    The report details an investigation on the effect of selective catalytic reduction (SCR), selective noncatalytic reduction (SNCR), and flue gas conditioning on the speciation and removal of mercury at power plants. If SCR and/or SNCR systems enhance mercury conversion/capture, t...

  10. Preparation of improved catalytic materials for water purification

    NASA Astrophysics Data System (ADS)

    Cherkezova-Zheleva, Z.; Paneva, D.; Tsvetkov, M.; Kunev, B.; Milanova, M.; Petrov, N.; Mitov, I.

    2014-04-01

    The aim of presented paper was to study preparation of catalytic materials for water purification. Iron oxide (Fe3O4) samples supported on activated carbon were prepared by wet impregnation method and low temperature heating in an inert atmosphere. The as-prepared, activated and samples after catalytic test were characterized by Mössbauer spectroscopy and X-ray diffraction. The obtained X-ray diffraction patterns of prepared samples show broad and low-intensity peaks of magnetite phase and the characteristic peaks of the activated carbon. The average crystallite size of magnetite particles was calculated below 20 nm. The registered Mössbauer spectra of prepared materials show a superposition of doublet lines or doublet and sextet components. The calculated hyperfine parameters after spectra evaluation reveal the presence of magnetite phase with nanosize particles. Relaxation phenomena were registered in both cases, i.e. superparamagnetism or collective magnetic excitation behavior, respectively. Low temperature Mössbauer spectra confirm this observation. Application of materials as photo-Fenton catalysts for organic pollutions degradation was studied. It was obtained high adsorption degree of dye, extremely high reaction rate and fast dye degradation. Photocatalytic behaviour of a more active sample was enhanced using mechanochemical activation (MCA). The nanometric size and high dispersion of photocatalyst particles influence both the adsorption and degradation mechanism of reaction. The results showed that all studied photocatalysts effectively decompose the organic pollutants under UV light irradiation. Partial oxidation of samples after catalytic tests was registered. Combination of magnetic particles with high photocatalytic activity meets both the requirements of photocatalytic degradation of water contaminants and that of recovery for cyclic utilization of material.

  11. Heterogeneous catalytic degradation of phenolic substrates: catalysts activity.

    PubMed

    Liotta, L F; Gruttadauria, M; Di Carlo, G; Perrini, G; Librando, V

    2009-03-15

    This review article explored the catalytic degradation of phenol and some phenols derivates by means of advanced oxidation processes (AOPs). Among them, only the heterogeneous catalyzed processes based on catalytic wet peroxide oxidation, catalytic ozonation and catalytic wet oxidation were reviewed. Also selected recent examples about heterogeneous photocatalytic AOPs will be presented. In details, the present review contains: (i) data concerning catalytic wet peroxide oxidation of phenolic compounds over metal-exchanged zeolites, hydrotalcites, metal-exchanged clays and resins. (ii) Use of cobalt-based catalysts, hydrotalcite-like compounds, active carbons in the catalytic ozonation process. (iii) Activity of transition metal oxides, active carbons and supported noble metals catalysts in the catalytic wet oxidation of phenol and acetic acid. The most relevant results in terms of catalytic activity for each class of catalysts were reported.

  12. Catalytic wet-oxidation of a mixed liquid waste: COD and AOX abatement.

    PubMed

    Goi, D; de Leitenburg, C; Trovarelli, A; Dolcetti, G

    2004-12-01

    A series of catalytic wet oxidation (CWO) reactions, at temperatures of 430-500 K and in a batch bench-top pressure vessel were carried out utilizing a strong wastewater composed of landfill leachate and heavily organic halogen polluted industrial wastewater. A CeO2-SiO2 mixed oxide catalyst with large surface area to assure optimal oxidation performance was prepared. The catalytic process was examined during batch reactions controlling Chemical Oxygen Demand (COD) and Adsorbable Organic Halogen (AOX) parameters, resulting AOX abatement to achieve better effect. Color and pH were also controlled during batch tests. A simple first order-two stage reaction behavior was supposed and verified with the considered parameters. Finally an OUR test was carried out to evaluate biodegradability changes of wastewater as a result of the catalytic reaction.

  13. Pt/Al₂O₃-catalytic deoxygenation for upgrading of Leucaena leucocephala-pyrolysis oil.

    PubMed

    Payormhorm, Jiraporn; Kangvansaichol, Kunn; Reubroycharoen, Presert; Kuchonthara, Prapan; Hinchiranan, Napida

    2013-07-01

    The aim of this study was to improve the quality of bio-oil produced from the pyrolysis of Leucaena leucocephala trunks via catalytic deoxygenation using Pt/Al2O3 (Pt content=1.32% (w/w)). The minimum molar ratio of oxygen/carbon (O/C) at 0.14 was achieved when the amount of catalyst was 10% (w/w, bio-oil) and was applied under 4 bar of initial nitrogen pressure at 340°C for 1h. The reaction mechanism of the catalytic deoxygenation, in terms of reforming, water-gas shift and dehydration reactions, was proposed. To consider the effect of different biomass types on the efficiency of catalytic deoxygenation, the bio-oils obtained from the pyrolysis of sawdust, rice straw and green microalgae were likewise evaluated for direct comparison.

  14. Preparing two-dimensional nano-catalytic combustion patterns using direct inkjet printing

    NASA Astrophysics Data System (ADS)

    Luo, Xi; Zeng, Zhigang; Wang, Xiaohong; Xiao, Jinhua; Gan, Zhongxue; Wu, Hao; Hu, Zhiyu

    2014-12-01

    Two-dimensional catalytic combustion patterns, which can be used as heat source in micro-nano scale MEMS devices such as gas sensor and micro-generator, are fabricated by inkjet printing (IJP). The performances of the catalytic patterns are evaluated by both traditional catalytic activity measurement and infrared thermography (IR) camera. Results show that ultra-low (0.014 mg cm-2) loading and high utilizing (34,710 mW mg-1) of Pt catalysts can be achieved by inkjet printing method. Spontaneous combustion is also observed for the printed Pt/Al2O3 powder membrane at rather low initiation temperature and small scale. The IR camera analysis indicates the uniform temperature distribution and rapid temperature response of the micro-patterned catalyst surface. With the advantages of the inkjet printing, this new direct-write method would, in principle, open up possibilities of these special catalyst patterns serving as micro energy sources for MEMS applications.

  15. Effect of hierarchical porosity and phosphorus modification on the catalytic properties of zeolite Y

    NASA Astrophysics Data System (ADS)

    Li, Wenlin; Zheng, Jinyu; Luo, Yibin; Da, Zhijian

    2016-09-01

    The zeolite Y is considered as a leading catalyst for FCC industry. The acidity and porosity modification play important roles in determining the final catalytic properties of zeolite Y. The alkaline treatment of zeolite Y by dealumination and alkaline treatment with NaOH and NaOH&TBPH was investigated. The zeolites were characterized by X-ray diffraction, low-temperature adsorption of nitrogen, transmission electron microscope, NMR, NH3-TPD and IR study of acidity. Accordingly, the hierarchical porosity and acidity property were discussed systematically. Finally, the catalytic performance of the zeolites Y was evaluated in the cracking of 1,3,5-TIPB. It was found that desilication with NaOH&TBPH ensured the more uniform intracrystalline mesoporosity with higher microporosity, while preserving higher B/L ratio and moderate Brønsted acidities resulting in catalysts with the most appropriated acidity and then with better catalytic performance.

  16. Synthesis, characterization and catalytic behavior of functionalized mesoporous SBA-15 with various organo-silanes.

    PubMed

    Cıtak, Alime; Erdem, Beyhan; Erdem, Sezer; Oksüzoğlu, Ramis Mustafa

    2012-03-01

    Mesoporous silica SBA-15 has been synthesized and functionalized by one-step synthesis method to widen their various application possibilities. In this study, phenyltrimethoxysilane (PTMS), 3-mercaptopropyltrimethoxysilane (MPTMS) and trimethoxypropylsilane (TMPS) were used as silane precursors for the functionalization, and after treated with HCl solution, their catalytic activities were evaluated in the lactic acid-methanol esterification. The presence of anchoring of functional groups on SBA-15 was proved by XRD, FT-IR, BET surface area and pore size distributions. Good catalytic activity was observed especially for SBA-15-SO(3)H-MPTMS, and the catalytic activity order was determined as follows: SBA-15-SO(3)H-MPTMS>SBA-15-TMPS>S