Science.gov

Sample records for fuel additives

  1. Smog control fuel additives

    SciTech Connect

    Lundby, W.

    1993-06-29

    A method is described of controlling, reducing or eliminating, ozone and related smog resulting from photochemical reactions between ozone and automotive or industrial gases comprising the addition of iodine or compounds of iodine to hydrocarbon-base fuels prior to or during combustion in an amount of about 1 part iodine per 240 to 10,000,000 parts fuel, by weight, to be accomplished by: (a) the addition of these inhibitors during or after the refining or manufacturing process of liquid fuels; (b) the production of these inhibitors for addition into fuel tanks, such as automotive or industrial tanks; or (c) the addition of these inhibitors into combustion chambers of equipment utilizing solid fuels for the purpose of reducing ozone.

  2. Multifunctional fuel additives

    SciTech Connect

    Baillargeon, D.J.; Cardis, A.B.; Heck, D.B.

    1991-03-26

    This paper discusses a composition comprising a major amount of a liquid hydrocarbyl fuel and a minor low-temperature flow properties improving amount of an additive product of the reaction of a suitable diol and product of a benzophenone tetracarboxylic dianhydride and a long-chain hydrocarbyl aminoalcohol.

  3. Additive concentrates for distillate fuels

    SciTech Connect

    Rossi, A.; Lewtas, K.

    1985-08-27

    An additive concentrate for incorporation into wax containing petroleum fuel oil compositions to improve low temperature flow properties comprising an oil solution containing: 3% to 90 wt. % of a C30-C300 oil-soluble nitrogen compound wax crystal growth inhibitor having at least one straight C8-C40 alkyl chain and partial esters, and at least one mole per mole of an organic acid capable of hydrogen bonding to improve the solubility in the oil.

  4. Fuel Additives: Canada bans MMT

    SciTech Connect

    Sissell, K.

    1997-04-16

    The Canadian Senate voted late last week to ban use of the manganese-based fuel additive MMT, produced only in the US by Ethyl. MMT, which has been sold in Canada for the past 20 years and accounts for about half of Ethyl`s Canadian sales, has been criticized by environmentalists, who have raised public health concerns, and automakers, who say it harms emission control systems. {open_quotes}Canada`s vote is a great victory for public health and the environment,{close_quotes} says Environmental Defense Fund executive director Fred Krupp. {open_quotes}The US should move swiftly to follow suit and suspend sales of MMT until adequate toxicity testing on the additive is completed.{close_quotes} EPA had refused to approve MMT for sale because of health concerns but was compelled to do so by a December 1995 court ruling. Ethyl asserts the ban violates Canada`s obligations under Nafta and says it will file a damage claim with the Nafta arbitration panel.

  5. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT: ENVIROFUELS DIESEL FUEL CATALYZER FUEL ADDITIVE

    EPA Science Inventory

    EPA's Environmental Technology Verification Program has tested EnviroFuels diesel fuel additive, called the Diesel Fuel Catalyzer. EnviroFuels has stated that heavy-duty on and off road diesel engines are the intended market for the catalyzer. Preliminary tests conducted indicate...

  6. Benzophenone derivatives as fuel additives

    SciTech Connect

    Andress, H.J.

    1988-05-17

    This patent describes a composition comprising a major amount of a liquid hydrocarbon fuel having an initial boiling point of at least about 75/sup 0/F and an end boiling point of about 750/sup 0/F, and a minor amount sufficient to improve the fuel detergency thereof the reaction product of an ester of a benzophenone tetracarboxylic dianhydride or mixtures of such esters and an amine wherein the benzophenone tetracarboxylic dianhydride ester or mixtures of such esters are reacted with the amine in a mole ratio of from about 3:1 to about 1:3 at a temperature of from about 100/sup 0/ - 300/sup 0/C at atmospheric pressure from about three to about 10 hours.

  7. Additive effects on lubricant fuel economy

    SciTech Connect

    Kennedy, S.; Moore, L.D.

    1987-01-01

    Bench and engine tests were used to determine the effects of typical lubricating oil components on the fuel economy performance of energy conserving oils. The bench studies identified negative fuel economy effects of zinc dialkyldithiophosphates and positive effects of overbased sulfonates. The Sequence VI dynamometer test quantified viscometric influences on fuel economy; results indicated that SAE 5W-30 oils are not always more fuel efficient than 10W-30 analogs, and that viscosity index improver type has a large impact on fuel economy. These effects were integrated with additive effects on other formulation criteria to design an overall system.

  8. Fuel additive containing inner quaternary ammonium salt

    SciTech Connect

    Biasotti, J.B.; Vartanian, P.F.

    1980-05-06

    As a fuel additive is disclosed. It is the reaction product of a polymer having an amine group and an alpha-beta-unsaturated C3-C6 aliphatic carboxylic acid. Also disclosed herein is a fuel component, especially gasoline, containing such a reaction product as a detergent.

  9. Fuel and Additive Characterization for HCCI Combustion

    SciTech Connect

    Aceves, S M; Flowers, D; Martinez-Frias, J; Espinosa-Loza, F; Pitz, W J; Dibble, R

    2003-02-12

    This paper shows a numerical evaluation of fuels and additives for HCCl combustion. First, a long list of candidate HCCl fuels is selected. For all the fuels in the list, operating conditions (compression ratio, equivalence ratio and intake temperature) are determined that result in optimum performance under typical operation for a heavy-duty engine. Fuels are also characterized by presenting Log(p)-Log(T) maps for multiple fuels under HCCl conditions. Log(p)-Log(T) maps illustrate important processes during HCCl engine operation, including compression, low temperature heat release and ignition. Log(p)-Log(T) diagrams can be used for visualizing these processes and can be used as a tool for detailed analysis of HCCl combustion. The paper also includes a ranking of many potential additives. Experiments and analyses have indicated that small amounts (a few parts per million) of secondary fuels (additives) may considerably affect HCCl combustion and may play a significant role in controlling HCCl combustion. Additives are ranked according to their capability to advance HCCl ignition. The best additives are listed and an explanation of their effect on HCCl combustion is included.

  10. 77 FR 61313 - Regulation of Fuels and Fuel Additives: Modifications to Renewable Fuel Standard and Diesel...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-09

    ... Additives: Changes to Renewable Fuel Standard Program, 75 FR 14670, 14681 (March 26, 2010). \\3\\ See CAA... EISA to reduce or replace the use of fossil fuels.\\4\\ \\4\\ 75 FR 14670, 14687 (March 26, 2010). The... Fuel and Fuel Additives; Changes to Renewable Fuel Standard Program,'' 75 FR 14670, available at...

  11. Diesel fuel detergent additive performance and assessment

    SciTech Connect

    Vincent, M.W.; Papachristos, M.J.; Williams, D.; Burton, J.

    1994-10-01

    Diesel fuel detergent additives are increasingly linked with high quality automotive diesel fuels. Both in Europe and in the USA, field problems associated with fuel injector coking or fouling have been experienced. In Europe indirect injection (IDI) light duty engines used in passenger cars were affected, while in the USA, a direct injection (DI) engine in heavy duty truck applications experienced field problems. In both cases, a fuel additive detergent performance test has evolved using an engine linked with the original field problem, although engine design modifications employed by the manufacturers have ensured improved operation in service. Increasing awareness of the potential for injector nozzle coking to cause deterioration in engine performance is coupled with a need to meet ever more stringent exhaust emissions legislation. These two requirements indicate that the use of detergency additives will continue to be associated with high quality diesel fuels. The paper examines detergency performance evaluated in a range of IDI and DI engines and correlates performance in the two most widely recognised test engines, namely the Peugeot 1.9 litre IDI, and Cummins L10 DI engines. 17 refs., 18 figs., 5 tabs.

  12. Emission control devices, fuel additive, and fuel composition changes.

    PubMed Central

    Piver, W T

    1977-01-01

    Emission control devices are installed to meet the exhaust standards of the Clean Air Act for carbon monoxide and hydrocarbons, and it is necessary to know, from a public health point of view, how exhaust emissions may be affected by changes in fuel additives and fuel composition. Since these topics are concerned with developing technologies, the available literature on exhaust emission characteristics and the limited information on health effects, is reviewed. PMID:71235

  13. 78 FR 77119 - Proposed Information Collection Request; Comment Request; Regulation of Fuels and Fuel Additives...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-20

    ... AGENCY Proposed Information Collection Request; Comment Request; Regulation of Fuels and Fuel Additives: 2011 Renewable Fuel Standards-- Petition for International Aggregate Compliance Approach AGENCY... to submit an information collection request (ICR), ``Regulation of Fuels and Fuel Additives:...

  14. Alcohol fuel anti-wear additive

    SciTech Connect

    Sung, R. L.

    1985-11-05

    A novel fuel composition contains methanol or methanol/gasoline blends plus, as a wear-inhibiting additive, a reaction product of an aldehyde, e.g., paraformaldehyde, and N-alkyl-alkylene diamine, e.g., N-alkyl-1,3-propane diamine with a salicylic acid ester of a polyol, e.g., alpha-hydroxy-omega hydroxy-poly (oxyethylene) poly (oxypropylene) poly (oxyethylene) block copolymer.

  15. 76 FR 18066 - Regulation of Fuels and Fuel Additives: Changes to Renewable Fuel Standard Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-01

    ... From the Federal Register Online via the Government Publishing Office ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 80 Regulation of Fuels and Fuel Additives: Changes to Renewable Fuel Standard Program... producers and importers of renewable fuels for which RINs have been generated by the foreign...

  16. Nitrogen oxide abatement by distributed fuel addition

    SciTech Connect

    Wendt, J.O.L.; Meraab, J.

    1988-03-25

    The purpose of this project is to develop techniques for nitrogen oxides abatement by distributed fuel addition. The major nitrogen oxide of interest is Nitric Oxide (NO), a precursor to premature forest damage and to acid rain. Recently interest has also been evoked with respect to an additional oxide of nitrogen, namely Nitrous Oxide (N{sub 2}O). Therefore, abatement measures for NO{sub x} are being investigated to determine their influence on N{sub 2}O as well. This report briefly describes the significance of N{sub 2}O emissions to the environment and the urgent need to develop techniques that can reduce emissions of both NO and N{sub 2}O. Reburning through distributed fuel addition may be an effective technique for NO{sub x} (mainly NO) emission control as described in the previous quarterly report. Reburning may also be effective in reducing N{sub 2}O levels. A technique for N{sub 2}O measurement by gas chromatography/electron capture detection was developed during this quarter, and is described in this report. This analysis technique will be used in the proposed experimental study to investigate the effectiveness of reburning on N{sub 2}O control.

  17. Addition agents effects on hydrocarbon fuels burning

    NASA Astrophysics Data System (ADS)

    Larionov, V. M.; Mitrofanov, G. A.; Sakhovskii, A. V.

    2016-01-01

    Literature review on addition agents effects on hydrocarbon fuels burning has been conducted. The impact results in flame pattern and burning velocity change, energy efficiency increase, environmentally harmful NOx and CO emission reduction and damping of self-oscillations in flow. An assumption about water molecules dissociation phenomenon existing in a number of practical applications and being neglected in most explanations for physical- chemical processes taking place in case of injection of water/steam into combustion zone has been noted. The hypothesis about necessity of water dissociation account has been proposed. It can be useful for low temperature combustion process control and NOx emission reduction.

  18. Situ process for making multifunctional fuel additives

    SciTech Connect

    Carrier, R.C.; Allen, B.R.

    1984-02-28

    Disclosed is an in situ or ''one pot'' process for making a fuel additive comprising reacting an excess of at least one N-primary alkylalkylene diamine with maleic anhydride in the presence of from 20 to 36 weight percent of a mineral oil reaction diluent at a temperature ranging from ambient to about 225/sup 0/ F. and recovering a product containing a primary aliphatic hydrocarbon amino alkylene substituted asparagine, an N-primary alkylalkylene diamine in the reaction oil with the product having a by-product succinimide content not in excess of 1.0 weight percent, based on the weight of asparagine present.

  19. 78 FR 14190 - Regulation of Fuels and Fuel Additives: Identification of Additional Qualifying Renewable Fuel...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-05

    ...'') for the qualifying renewable fuels they produce through approved fuel pathways. See 75 FR 14670 (March 26, 2010); 75 FR 26026 (May 10, 2010); 75 FR 37733 (June 30, 2010); 75 FR 59622 (September 28, 2010); 75 FR 76790 (December 9, 2010); 75 FR 79964 (December 21, 2010); 77 FR 1320 (January 9, 2012); and...

  20. 78 FR 41703 - Regulation of Fuels and Fuel Additives: Additional Qualifying Renewable Fuel Pathways Under the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-11

    ... renewable fuels they produce through approved fuel pathways. See 75 FR 14670 (March 26, 2010); 75 FR 26026 (May 10, 2010); 75 FR 37733 (June 30, 2010); 75 FR 59622 (September 28, 2010); 75 FR 76790 (December 9, 2010); 75 FR 79964 (December 21, 2010); 77 FR 1320 (January 9, 2012); 77 FR 74592 (December 17,...

  1. Dimethyl carbonate production for fuel additives

    SciTech Connect

    Okada, Y.; Kondo, T.; Asaoka, S.

    1996-12-31

    We have taken note of the transesterification reaction as a highly safe process of dimethyl carbonate (DMC) production for fuel additives. The reaction proceeds under the low corrosiveness and in the relatively mild condition. We have aimed to use an inorganic solid catalyst for this process. The inorganic solid catalyst is thermally stable and can be used in the large-scale fixed bed reactors without a catalyst separation unit. Through the transesterification of ethylene carbonate (EG) with methanol, DMC and ethylene glycol (EG) are co-generated as the products. EG is one of the bulk chemicals produced in the large scale plant comparable to one for the fuel additives. The market balance is important in the coproduction process. On the assumption that the amount of the co-production meets the market balance, the coproduction of DMC and EG is commercially viable. If we can control the amount of the EG coproduction in this process, it makes the process more flexible in the commercial production. Accordingly we have proposed a conceptual process scheme to control the amount of the EG coproduction. In this symposium, the inorganic solid catalyst system applying to the transesterification process and the conceptual process scheme how to control the amount of co-product will be discussed.

  2. 77 FR 61281 - Regulation of Fuels and Fuel Additives: Modifications to Renewable Fuel Standard and Diesel...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-09

    ... Additives: Changes to Renewable Fuel Standard Program, 75 FR 14670, 14681 (March 26, 2010). \\4\\ See CAA... EISA to reduce or replace the use of fossil fuels.\\5\\ \\5\\ 75 FR 14670, 14687 (March 26, 2010). The... Renewable Fuel Standard Program,'' 75 FR 14670, available at...

  3. 40 CFR 80.8 - Sampling methods for gasoline, diesel fuel, fuel additives, and renewable fuels.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... of the Federal Register under 5 U.S.C. 552(a) and 1 CFR part 51. To enforce any edition other than... 40 Protection of Environment 17 2014-07-01 2014-07-01 false Sampling methods for gasoline, diesel... Provisions § 80.8 Sampling methods for gasoline, diesel fuel, fuel additives, and renewable fuels....

  4. 7 CFR 2902.13 - Diesel fuel additives.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... vehicle's fuel system) and that is not intentionally removed prior to sale or use. (2) Neat biodiesel, also referred to as B100, when used as an additive. Diesel fuel additive does not mean neat biodiesel when used as a fuel or blended biodiesel fuel (e.g., B20). (b) Minimum biobased content. The...

  5. 77 FR 462 - Regulation of Fuels and Fuel Additives: Identification of Additional Qualifying Renewable Fuel...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-05

    ... distribution section or the RFS2 rulemaking (75 FR 14793-14795). Based on these results, today's proposed rule... that were proposed on July 1, 2011 (76 FR 38844). The first change adds ID letters to pathways to... Renewable Fuels Produced Under the Final RFS2 Program from Canola Oil'' (FR Vol. 75, No. 187, pg...

  6. 77 FR 13009 - Regulation of Fuels and Fuel Additives: Identification of Additional Qualifying Renewable Fuel...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-05

    ... on January 5, 2012 (77 FR 700) to amend the Renewable Fuel Standard program regulations. The... direct final rule published at 77 FR 700, on January 5, 2012. FOR FURTHER INFORMATION CONTACT: Vincent... rule also published on January 5, 2012 (77 FR 462). As stated in the direct final rule and the...

  7. Influence of bio-additives on combustion of liquid fuels

    NASA Astrophysics Data System (ADS)

    Patsch, Marek; Durčanský, Peter

    2016-06-01

    In this contribution there are analyses of the course of the pressure curves, which were measured in the diesel engine MD UR IV, which is often used in cogeneration units. The results of the analyses confront the properties and quality of fuels. The measuring was realized with a constant rotation speed of the engine and by using different fuels. The fuels were pure diesel fuels and diesel fuel with bio-additives of hydrogenate RO (rape oil), FAME, and bioethanol.

  8. EAST ELEVATION OF HIGH BAY ADDITION OF FUEL STORAGE BUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EAST ELEVATION OF HIGH BAY ADDITION OF FUEL STORAGE BUILDING (CPP-603). INL DRAWING NUMBER 200-0603-00-706-051286. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  9. Nitrogen oxide abatement by distributed fuel addition

    SciTech Connect

    Wendt, J.O.L.; Mereb, J.B.

    1991-09-20

    Reburning is examined as a means of NO{sub x} destruction in a 17 kW down-fired pulverized coal combustor. In reburning, a secondary fuel is introduced downstream of the primary flame to produce a reducing zone, favorable to NO destruction, and air is introduced further downstream to complete the combustion. Emphasis is on natural gas reburning and a bituminous coal primary flame. A parametric examination of reburning employing a statistical experimental design, is conducted, complemented by detailed experiments. Mechanisms governing the inter-conversion of nitrogenous species in the fuel rich reburn zone is explored. The effect of reburning on N{sub 2}O emissions, the effect of primary flame mode (premixed and diffusion) and the effect of distributing the reburning fuel, are also investigated.

  10. Fuel additives: Excluding aviation fuels. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect

    1995-12-01

    The bibliography contains citations concerning compositions, applications and performance of additives in fuels. Evaluations and environmental testing of additives in automotive, diesel, and boiler fuels are discussed. Additive effects on air pollution control, combustion stability, fuel economy and fuel storage are presented. Aviation fuel additives are covered in a separate bibliography. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  11. Nitrogen oxide abatement by distributed fuel addition

    SciTech Connect

    Wendt, J.O.L.; Mereb, J.B.

    1989-06-20

    A combustor has been designed in order to retard the formation of nitrogen oxides by injection of reburning fuel. The design and the rebuilding of the new combustor was completed. Several new features were incorporated in the new design so that it would last longer. The design and construction of the furnace are discussed in this report. (VC)

  12. Additive for otto cycle engines and fuel mixture so obtained

    SciTech Connect

    Scifoni, M.

    1985-02-12

    The additive for Otto cycle engines according to the present invention consists of a mixture of water, ethanol, methanol and butanol to which is added a determined quantity of a liquid obtained by pressing prickly pear leaves. Added in a small percentage to the fuel, gasoline, LP or methane, this additive prevents the oxidation associated with the use of water and/or alcohols in Otto cycle engines, lowers fuel consumption and allows the use of low octane fuel.

  13. 7 CFR 3201.103 - Gasoline fuel additives.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Gasoline fuel additives. 3201.103 Section 3201.103... Designated Items § 3201.103 Gasoline fuel additives. (a) Definition. Chemical agents added to gasoline to increase octane levels, improve lubricity, and provide engine cleaning properties to gasoline-fired...

  14. 77 FR 2979 - Regulation of Fuel and Fuel Additives: Modification to Octamix Waiver

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-20

    ... AGENCY Regulation of Fuel and Fuel Additives: Modification to Octamix Waiver AGENCY: Environmental... gasoline-alcohol fuel, pursuant to section 211(f) of the Clean Air Act.\\1\\ A minor correction was made on... corrosion inhibitor, TOLAD\\TM\\ MFA-10A, to be used within Texas Methanol's gasoline-alcohol fuel, also...

  15. 7 CFR 2902.13 - Diesel fuel additives.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 15 2011-01-01 2011-01-01 false Diesel fuel additives. 2902.13 Section 2902.13 Agriculture Regulations of the Department of Agriculture (Continued) OFFICE OF ENERGY POLICY AND NEW USES... of carbon and/or hydrogen, that is intentionally added to diesel fuel (including any added to a...

  16. Fuel additives derived from amido-amines

    SciTech Connect

    Gutierrez, A.; Lundberg, R.D.

    1993-08-24

    A process is described for producing a dispersant useful as an oil additive which comprises: (a) providing a long chain hydrocarbyl substituted mono- or dicarboxylic acid producing material formed by reacting an olefin polymer of C[sub 2] to C[sub 10] monoolefin having a number average molecular weight of about 300 to 10,000 and at least one of a C[sub 4] to C[sub 10] monounsaturated dicarboxylic acid material and a C[sub 3] to C[sub 10] monounsaturated monocarboxylic acid material, said acid producing material having an average of at least about 0.3 dicarboxylic acid producing moieties, per molecule of said olefin polymer present in the reaction mixture used to form said acid producing material; (b) providing an amido-amine compound having at least one primary amino group prepared by reacting at least one polyamine with at least one alpha, beta-unsaturated compound of the formula: R[sup 1]-(C-R[sup 2])[double bond](C-R[sup 3])-(C[double bond]X)-Y wherein X is sulfur or oxygen, Y is -OR[sup 4],-SR[sup 4], or -NR[sup 4](R[sup 5]), and R[sup 1], R[sup 2], R[sup 3], R[sup 4] and R[sup 5] are the same or different and are hydrogen or substituted or unsubstituted hydrocarbyl; and (c) contacting the said acid producing material with said amido-amine compound under conditions sufficient to effect reaction of at least a portion of the primary amino groups on said amido-amine compound with at least a portion of the acid-producing groups in said acid producing material, to form said dispersant.

  17. 77 FR 33733 - Regulation of Fuel and Fuel Additives: Modification to Octamix Waiver (TXCeed)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-07

    ... state implementation plan approved by EPA that includes low RVP fuel. \\18\\ See American Society for... October 28, 1988, in a Federal Register publication titled ``Fuel and Fuel Additives; Modification of a... (EPA or the Agency) last issued an interpretive rule on the phrase ``substantially similar'' at 73...

  18. Molecular Aluminum Additive for Burn Enhancement of Hydrocarbon Fuels.

    PubMed

    Guerieri, Philip M; DeCarlo, Samantha; Eichhorn, Bryan; Connell, Terrence; Yetter, Richard A; Tang, Xin; Hicks, Zachary; Bowen, Kit H; Zachariah, Michael R

    2015-11-12

    Additives to hydrocarbon fuels are commonly explored to change the combustion dynamics, chemical distribution, and/or product integrity. Here we employ a novel aluminum-based molecular additive, Al(I) tetrameric cluster [AlBrNEt3]4 (Et = C2H5), to a hydrocarbon fuel and evaluate the resultant single-droplet combustion properties. This Al4 cluster offers a soluble alternative to nanoscale particulate additives that have recently been explored and may mitigate the observed problems of particle aggregation. Results show the [AlBrNEt3]4 additive to increase the burn rate constant of a toluene-diethyl ether fuel mixture by ∼20% in a room temperature oxygen environment with only 39 mM of active aluminum additive (0.16 wt % limited by additive solubility). In comparison, a roughly similar addition of nano-aluminum particulate shows no discernible difference in burn properties of the hydrocarbon fuel. High speed video shows the [AlBrNEt3]4 to induce microexplosive gas release events during the last ∼30% of the droplet combustion time. We attribute this to HBr gas release based on results of temperature-programmed reaction (TPR) experiments of the [AlBrNEt3]4 dosed with O2 and D2O. A possible mechanism of burn rate enhancement is presented that is consistent with microexplosion observations and TPR results. PMID:26488461

  19. 78 FR 49411 - Denial of Petitions for Reconsideration of Regulation of Fuels and Fuel Additives: 2013 Biomass...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-14

    ....\\2\\ \\1\\ 76 FR 38844. \\2\\ 77 FR 59458. Petitioners, the American Fuel & Petrochemical Manufacturers... Fuel Additives: 2013 Biomass-Based Diesel Renewable Fuel Volume Final Rule AGENCY: Environmental... entitled Regulation of Fuels and Fuel Additives: 2013 Biomass-Based Diesel Renewable Fuel Volume....

  20. Feasibility of a simplified fuel additive evaluation protocol

    SciTech Connect

    Lister, S.J.; Hunzinger, R.D.; Taghizadeh, A.

    1998-12-31

    This report describes the work carried out during the four stages of the first phase of a project that involved the determination of the feasibility of replacing the Association of American Railroads Recommended Practice (ARRP) 503 protocol for testing diesel fuel oil additives with a new procedure using the single cylinder research engine SCRE-251 as the laboratory test engine, which tests for both engine performance as well as emissions compliance. The report begins with a review of the literature on fuel additive testing, then reviews the new US Environmental Protection Agency regulations regarding locomotive diesel emissions. This is followed by a review of the ARRP 503 protocol and the proposed new procedure, a comparison of the ARRP 503 test engines and the SCRE-251, and a study of the SCRE-251`s ability to represent a multi-cylinder medium-speed diesel engine. Appendices include fuel additive manufacturers` information sheets.

  1. Effect of Fuel Additives on Spray Performance of Alternative Jet Fuels

    NASA Astrophysics Data System (ADS)

    Kannaiyan, Kumaran; Sadr, Reza

    2015-11-01

    Role of alternative fuels on reducing the combustion pollutants is gaining momentum in both land and air transport. Recent studies have shown that addition of nanoscale metal particles as fuel additives to liquid fuels have a positive effect not only on their combustion performance but also in reducing the pollutant formation. However, most of those studies are still in the early stages of investigation with the addition of nanoparticles at low weight percentages. Such an addition can affect the hydrodynamic and thermo-physical properties of the fuel. In this study, the near nozzle spray performance of gas-to-liquid jet fuel with and without the addition of alumina nanoparticles are investigated at macro- and microscopic levels using optical diagnostic techniques. At macroscopic level, the addition of nanoparticles is seen to enhance the sheet breakup process when compared to that of the base fuel. Furthermore, the microscopic spray characteristics such as droplet size and velocity are also found to be affected. Although the addition of nanoscale metal particles at low weight percentages does not affect the bulk fluid properties, the atomization process is found to be affected in the near nozzle region. Funded by Qatar National Research Fund.

  2. 40 CFR 80.521 - What are the standards and identification requirements for diesel fuel additives?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... consumer in diesel motor vehicles or nonroad diesel engines. ... identification requirements for diesel fuel additives? 80.521 Section 80.521 Protection of Environment... Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel...

  3. 40 CFR 80.521 - What are the standards and identification requirements for diesel fuel additives?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... consumer in diesel motor vehicles or nonroad diesel engines. ... identification requirements for diesel fuel additives? 80.521 Section 80.521 Protection of Environment... Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel...

  4. 40 CFR 80.521 - What are the standards and identification requirements for diesel fuel additives?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... consumer in diesel motor vehicles or nonroad diesel engines. ... identification requirements for diesel fuel additives? 80.521 Section 80.521 Protection of Environment... Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel...

  5. 40 CFR 80.521 - What are the standards and identification requirements for diesel fuel additives?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... consumer in diesel motor vehicles or nonroad diesel engines. ... identification requirements for diesel fuel additives? 80.521 Section 80.521 Protection of Environment... Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel...

  6. 40 CFR 80.521 - What are the standards and identification requirements for diesel fuel additives?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Motor... consumer in diesel motor vehicles or nonroad diesel engines. ... identification requirements for diesel fuel additives? 80.521 Section 80.521 Protection of...

  7. Development of detergent additives for automotive fuels in other countries

    SciTech Connect

    Zakharova, E.L.; Emel`yanov, V.E.; Deineko, P.S.

    1994-09-01

    With increasing demands on environmental protection and with the production of reformulated unleaded motor fuels, new and effective detergent additives are urgently needed. A number of monographs and scientific works have been devoted to problems involved in the development and application of such additives. Since the mid-1980s in the United States and certain other countries, a crisis has been noted in the application of detergent additives. It has been found that certain types of detergents not only fail to give the required cleaning effect, but even promote the formation of deposits. This situation can be attributed primarily to the development of automotive gasoline engines with direct fuel injection. In the United States in 1989, about 90% of all automotive vehicles were equipped with such engines, which have very definite advantages in fuel economy, less smoking, and a number of other areas. However, after a few thousand kilometers of travel, the characteristics of these engines deteriorate, and undesirable changes are observed, including excessive fuel consumption, a reduction of the vehicle speed, and increased contents of carbon monoxide in the exhaust. These changes occur because of deposit formation in the fuel intake system, particularly on the intake valves. As the deposits continue to accumulate, the engines gradually experience an increase in octane number demand for engine operation without knocking. This phenomenon, which is known in American publications as {open_quotes}octane requirement increase{close_quotes} or ORI (Russian initialism RTOCh, literal translation, {open_quotes}increase of requirements for octane number{close_quotes}), continues until a certain equilibrium octane number is reached. This equilibrium value may change, depending on the engine design and other factors. In all cases, however, the ORI of modern engines is significant, amount to 2-14 octane numbers.

  8. 75 FR 26025 - Regulation of Fuels and Fuel Additives: Modifications to Renewable Fuel Standard Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-10

    ... certain of the Renewable Fuel Standard regulations published on March 26, 2010, at 75 FR 14670 (the ``RFS2... Executive Order 12866, (58 FR 51735 (October 4, 1993)) the Agency must determine whether the regulatory... definition of renewable fuel in order to qualify for RINs. Revised definition of ``biogas'' to clarify...

  9. 78 FR 62462 - Regulation of Fuels and Fuel Additives: Modifications to Renewable Fuel Standard Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-22

    ...-effective production and use of renewable fuels. \\2\\ 75 FR 14670, 14686 (March 26, 2010). \\3\\ See CAA... final rule published on March 26, 2010 (74 FR 14670), specifically addressing the category of ``home... replace the use of fossil fuels.\\4\\ \\4\\ 75 FR 14670, 14687 (March 26, 2010). The existing definition...

  10. The EPA National Fuels Surveillance Network. I. Trace constituents in gasoline and commercial gasoline fuel additives.

    PubMed

    Jungers, R H; Lee, R E; von Lehmden, D J

    1975-04-01

    A National Fuels Surveillance Network has been established to collect gasoline and other fuels through the 10 regional offices of the Environmental Protection Agency. Physical, chemical, and trace element analytical determinations are made on the collected fuel samples to detect components which may present an air pollution hazard or poison exhaust catalytic control devices. A summary of trace elemental constituents in over 50 gasoline samples and 18 commercially marketed consumer purchased gasoline additives is presented. Quantities of Mn, Ni, Cr, Zn, Cu, Fe, Sb, B, Mg, Pb, and S were found in most regular and premium gasoline. Environmental implications of trace constituents in gasoline are discussed. PMID:1157783

  11. 40 CFR 80.592 - What records must be kept by entities in the motor vehicle diesel fuel and diesel fuel additive...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... in the motor vehicle diesel fuel and diesel fuel additive distribution systems? 80.592 Section 80.592... FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA... the motor vehicle diesel fuel and diesel fuel additive distribution systems? (a) Records that must...

  12. 78 FR 12005 - Regulation of Fuels and Fuel Additives: 2013 Renewable Fuel Standards; Public Hearing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-21

    ... separately in the Federal Register on February 7, 2013. (78 FR 9282.) The hearing will be held in Ann Arbor... at 78 FR 9282, February 7, 2013. Public Hearing: The public hearing will provide interested parties... percentage standards for cellulosic biofuel, biomass-based diesel, advanced biofuel, and renewable fuels...

  13. 78 FR 9281 - Regulation of Fuels and Fuel Additives: 2013 Renewable Fuel Standards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-07

    ... regulatory requirements on March 26, 2010.\\1\\ \\1\\ 75 FR 14670. The volumes of renewable fuel to be used under... establishing that applicable volume on September 27, 2012.\\5\\ \\5\\ 77 FR 59458. Under 211(o)(2)(B)(ii) EPA, in..., heating oil, biogas used as CNG, and ethanol. We are projecting that about 150 mill gal of...

  14. 75 FR 79964 - Regulation of Fuels and Fuel Additives: Modifications to Renewable Fuel Standard Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-21

    ... implementing changes to the Renewable Fuel Standard program required by EISA on March 26, 2010, at 75 FR 14670... direct final rules published on May 10, 2010 (75 FR 26049, 75 FR 26026), included amendments to the... comment (75 FR 37733). The withdrawn provisions consist of the following: --Certain of the amendments...

  15. 75 FR 26049 - Regulation of Fuels and Fuel Additives: Modifications to Renewable Fuel Standard Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-10

    ... Standard program regulations that were published on March 26, 2010, at 75 FR 14670 (the ``RFS2 regulations... the Renewable Fuel Standard regulations published on March 26, 2010, at 75 FR 14670 (the ``RFS2..., (58 FR 51735 (October 4, 1993)) the Agency must determine whether the regulatory action...

  16. 77 FR 75868 - Regulation of Fuels and Fuel Additives: Modifications to the Transmix Provisions Under the Diesel...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-26

    ..., 77 FR 61281, October 9, 2012. Regulation of Fuels and Fuel Additives: Modifications to Renewable Fuel... Pollution from Nonroad Diesel Engines and Fuel, Final Rule, 69 FR 38958, June 24, 2004. Control of Emissions... increase transport-related emissions, costs, and safety risks of alternative transportation of jet...

  17. Multifunctional fuel additives derived from aminodiols to improve the low-temperature properties of distillate fuels

    SciTech Connect

    Baillargeon, D.J.; Cardis, A.B.; Heck, D.B.

    1991-03-19

    This patent describes a liquid hydrocarbyl fuel composition comprising a major amount of a combustible liquid hydrocarbon fuel and a minor low-temperature properties improving amount of from about 0.001% to about 10 wt % based on the total weight of the composition of an additive comprising a product of reaction made by reacting comonomers. It comprises: an aminodiol or combination or mixture of aminodiols with a reactive acid/anhydride product alone or in combination with other monomers derived from the reaction of benzophenone tetracarboxylic dianhydride or its acid equivalent.

  18. Economic incentives for additional critical experimentation applicable to fuel dissolution

    SciTech Connect

    Mincey, J.F.; Primm, R.T. III; Waltz, W.R.

    1981-01-01

    Fuel dissolution operations involving soluble absorbers for criticality control are among the most difficult to establish economical subcritical limits. The paucity of applicable experimental data can significantly hinder a precise determination of a bias in the method chosen for calculation of the required soluble absorber concentration. Resorting to overly conservative bias estimates can result in excessive concentrations of soluble absorbers. Such conservatism can be costly, especially if soluble absorbers are used in a throw-away fashion. An economic scoping study is presented which demonstrates that additional critical experimentation will likely lead to reductions in the soluble absorber (i.e., gadolinium) purchase costs for dissolution operations. The results indicate that anticipated savings maybe more than enough to pay for the experimental costs.

  19. Coking suppression in solid oxide fuel cells operating on ethanol by applying pyridine as fuel additive

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Wang, Feng; Ran, Ran; Park, Hee Jung; Jung, Doh Won; Kwak, Chan; Shao, Zongping

    2014-11-01

    In this study, pyridine was used to suppress the coke formation in solid oxide fuel cells (SOFCs) operating on liquid fuels. Pyridine can selectively occupy acidic sites of the Ni/Al2O3 catalyst layer and solves the problem of dehydration of ethanol in principle, resulting in a significant reduction in the coke formation rate for operating on ethanol fuel. At 600 °C, by adding 12.5 vol.% pyridine into the ethanol fuel, the coke formation rate over the Ni/Al2O3 catalyst is reduced by 64% while a cell power output comparable to that operating on hydrogen is still achieved based on total potential hydrogen available from ethanol. The effective reduction of carbon deposition on the catalyst layer thus protects the anode layer from carbon deposition by strongly suppressing coke formation, especially near the anode-electrolyte interface. Pyridine is adsorbed onto the acidic sites of the Ni/Al2O3 catalyst and the adsorbed pyridine may reduce the amount of carbonium ions formed, thereby reducing coke formation. This study suggested that the addition of pyridine could suppress the coke formation in SOFCs with Ni/Al2O3 catalyst layer operated on ethanol or some other similar liquid fuels.

  20. Reaction products of amido-amine and epoxide useful as fuel additives

    SciTech Connect

    Efner, H.F.

    1988-04-12

    A method for reducing engine deposits in an internal combustion engine is described comprising the addition of a detergent fuel additive package to a hydrocarbon fuel for the engine. The fuel detergent is added in an amount effective to reduce deposits and the hydrocarbon fuel is used with detergent additive as fuel in an internal combustion engine. The detergent fuel additive package comprises: (1) a fuel detergent additive that is the reaction product prepared by reacting (a) vegetable oil or (b) higher carboxylic acid chosen from (i) aliphatic fatty acids having 10-25 carbon atoms and (ii) aralkyl acids having 12-42 carbon atoms with (c) multiamine to obtain a fist product mixture with the first product mixture reacted with alklylene oxide to produce a second product mixture and (2) a fuel detergent additive solvent compatible with the fuels.

  1. Low hydrostatic head electrolyte addition to fuel cell stacks

    DOEpatents

    Kothmann, Richard E.

    1983-01-01

    A fuel cell and system for supply electrolyte, as well as fuel and an oxidant to a fuel cell stack having at least two fuel cells, each of the cells having a pair of spaced electrodes and a matrix sandwiched therebetween, fuel and oxidant paths associated with a bipolar plate separating each pair of adjacent fuel cells and an electrolyte fill path for adding electrolyte to the cells and wetting said matrices. Electrolyte is flowed through the fuel cell stack in a back and forth fashion in a path in each cell substantially parallel to one face of opposite faces of the bipolar plate exposed to one of the electrodes and the matrices to produce an overall head uniformly between cells due to frictional pressure drop in the path for each cell free of a large hydrostatic head to thereby avoid flooding of the electrodes. The bipolar plate is provided with channels forming paths for the flow of the fuel and oxidant on opposite faces thereof, and the fuel and the oxidant are flowed along a first side of the bipolar plate and a second side of the bipolar plate through channels formed into the opposite faces of the bipolar plate, the fuel flowing through channels formed into one of the opposite faces and the oxidant flowing through channels formed into the other of the opposite faces.

  2. Environmental Technology Verification Report: Taconic Energy, Inc. TEA Fuel Additive

    EPA Science Inventory

    The Greenhouse Gas Technology Center (GHG Center) is one of six verification organizations operating under EPA’s ETV program. One sector of significant interest to GHG Center stakeholders is transportation - particularly technologies that result in fuel economy improvements. Taco...

  3. Nitrogen oxide abatement by distributed fuel addition. Final report

    SciTech Connect

    Wendt, J.O.L.; Mereb, J.B.

    1991-09-20

    Reburning is examined as a means of NO{sub x} destruction in a 17 kW down-fired pulverized coal combustor. In reburning, a secondary fuel is introduced downstream of the primary flame to produce a reducing zone, favorable to NO destruction, and air is introduced further downstream to complete the combustion. Emphasis is on natural gas reburning and a bituminous coal primary flame. A parametric examination of reburning employing a statistical experimental design, is conducted, complemented by detailed experiments. Mechanisms governing the inter-conversion of nitrogenous species in the fuel rich reburn zone is explored. The effect of reburning on N{sub 2}O emissions, the effect of primary flame mode (premixed and diffusion) and the effect of distributing the reburning fuel, are also investigated.

  4. Fuel characteristics pertinent to the design of aircraft fuel systems, Supplement I : additional information on MIL-F-7914(AER) grade JP-5 fuel and several fuel oils

    NASA Technical Reports Server (NTRS)

    Barnett, Henry C; Hibbard, Robert R

    1953-01-01

    Since the release of the first NACA publication on fuel characteristics pertinent to the design of aircraft fuel systems (NACA-RM-E53A21), additional information has become available on MIL-F7914(AER) grade JP-5 fuel and several of the current grades of fuel oils. In order to make this information available to fuel-system designers as quickly as possible, the present report has been prepared as a supplement to NACA-RM-E53A21. Although JP-5 fuel is of greater interest in current fuel-system problems than the fuel oils, the available data are not as extensive. It is believed, however, that the limited data on JP-5 are sufficient to indicate the variations in stocks that the designer must consider under a given fuel specification. The methods used in the preparation and extrapolation of data presented in the tables and figures of this supplement are the same as those used in NACA-RM-E53A21.

  5. 7 CFR 3201.13 - Diesel fuel additives.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... minimum biobased content is 90 percent and shall be based on the amount of qualifying biobased carbon in the product as a percent of the weight (mass) of the total organic carbon in the finished product. (c... solely of carbon and/or hydrogen, that is intentionally added to diesel fuel (including any added to...

  6. 7 CFR 3201.13 - Diesel fuel additives.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... minimum biobased content is 90 percent and shall be based on the amount of qualifying biobased carbon in the product as a percent of the weight (mass) of the total organic carbon in the finished product. (c... solely of carbon and/or hydrogen, that is intentionally added to diesel fuel (including any added to...

  7. 7 CFR 3201.13 - Diesel fuel additives.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... minimum biobased content is 90 percent and shall be based on the amount of qualifying biobased carbon in the product as a percent of the weight (mass) of the total organic carbon in the finished product. (c... solely of carbon and/or hydrogen, that is intentionally added to diesel fuel (including any added to...

  8. Aviation fuel additives. (Latest citations from the NTIS Bibliographic database). Published Search

    SciTech Connect

    Not Available

    1993-12-01

    The bibliography contains citations concerning research and development of aviation fuel additives and their effectiveness. Articles include studies on antioxidant, antimist, antistatic, lubricity, corrosion inhibition, and icing inhibition additives. Other applications are covered in investigations of additives for vulnerability reduction, thermal stability, and storage stability of aviation fuels. (Contains a minimum of 168 citations and includes a subject term index and title list.)

  9. Support vector machine to predict diesel engine performance and emission parameters fueled with nano-particles additive to diesel fuel

    NASA Astrophysics Data System (ADS)

    Ghanbari, M.; Najafi, G.; Ghobadian, B.; Mamat, R.; Noor, M. M.; Moosavian, A.

    2015-12-01

    This paper studies the use of adaptive Support Vector Machine (SVM) to predict the performance parameters and exhaust emissions of a diesel engine operating on nanodiesel blended fuels. In order to predict the engine parameters, the whole experimental data were randomly divided into training and testing data. For SVM modelling, different values for radial basis function (RBF) kernel width and penalty parameters (C) were considered and the optimum values were then found. The results demonstrate that SVM is capable of predicting the diesel engine performance and emissions. In the experimental step, Carbon nano tubes (CNT) (40, 80 and 120 ppm) and nano silver particles (40, 80 and 120 ppm) with nanostructure were prepared and added as additive to the diesel fuel. Six cylinders, four-stroke diesel engine was fuelled with these new blended fuels and operated at different engine speeds. Experimental test results indicated the fact that adding nano particles to diesel fuel, increased diesel engine power and torque output. For nano-diesel it was found that the brake specific fuel consumption (bsfc) was decreased compared to the net diesel fuel. The results proved that with increase of nano particles concentrations (from 40 ppm to 120 ppm) in diesel fuel, CO2 emission increased. CO emission in diesel fuel with nano-particles was lower significantly compared to pure diesel fuel. UHC emission with silver nano-diesel blended fuel decreased while with fuels that contains CNT nano particles increased. The trend of NOx emission was inverse compared to the UHC emission. With adding nano particles to the blended fuels, NOx increased compared to the net diesel fuel. The tests revealed that silver & CNT nano particles can be used as additive in diesel fuel to improve complete combustion of the fuel and reduce the exhaust emissions significantly.

  10. Developing a High Thermal Conductivity Fuel with Silicon Carbide Additives

    SciTech Connect

    baney, Ronald; Tulenko, James

    2012-11-20

    The objective of this research is to increase the thermal conductivity of uranium oxide (UO{sub 2}) without significantly impacting its neutronic properties. The concept is to incorporate another high thermal conductivity material, silicon carbide (SiC), in the form of whiskers or from nanoparticles of SiC and a SiC polymeric precursor into UO{sub 2}. This is expected to form a percolation pathway lattice for conductive heat transfer out of the fuel pellet. The thermal conductivity of SiC would control the overall fuel pellet thermal conductivity. The challenge is to show the effectiveness of a low temperature sintering process, because of a UO{sub 2}-SiC reaction at 1,377°C, a temperature far below the normal sintering temperature. Researchers will study three strategies to overcome the processing difficulties associated with pore clogging and the chemical reaction of SiC and UO{sub 2} at temperatures above 1,300°C:

  11. Effects of potential additives to promote seal swelling on the thermal stability of synthetic jet fuels

    SciTech Connect

    Lind, D.D.; Gormley, R.G.; Zandhuis, P.H.; Baltrus, J.P.

    2007-10-01

    Synthetic fuels derived from the Fischer-Tropsch (F-T) process using natural gas or coal-derived synthesis gas as feedstocks can be used for powering of ground vehicles, aircraft and ships. Because of their chemical and physical properties, F-T fuels will probably require additives in order to meet specifications with respect to lubricity and seal swell capability for use in ground and air vehicles. These additives can include oxygenates and compounds containing other heteroatoms that may adversely affect thermal stability. In order to understand what additives will be the most beneficial, a comprehensive experimental and computational study of conventional and additized fuels has been undertaken. The experimental approach includes analysis of the trace oxygenate and nitrogen-containing compounds present in conventional petroleum-derived fuels and trying to relate their presence (or absence) to changes in the desired properties of the fuels. This paper describes the results of efforts to test the thermal stability of synthetic fuels and surrogate fuels containing single-component additives that have been identified in earlier research as the best potential additives for promoting seal swelling in synthetic fuels, as well as mixtures of synthetic and petroleum-derived fuels.

  12. Formulation and Testing of Paraffin-Based Solid Fuels Containing Energetic Additives for Hybrid Rockets

    NASA Technical Reports Server (NTRS)

    Larson, Daniel B.; Boyer, Eric; Wachs,Trevor; Kuo, Kenneth K.; Story, George

    2012-01-01

    Many approaches have been considered in an effort to improve the regression rate of solid fuels for hybrid rocket applications. One promising method is to use a fuel with a fast burning rate such as paraffin wax; however, additional performance increases to the fuel regression rate are necessary to make the fuel a viable candidate to replace current launch propulsion systems. The addition of energetic and/or nano-sized particles is one way to increase mass-burning rates of the solid fuels and increase the overall performance of the hybrid rocket motor.1,2 Several paraffin-based fuel grains with various energetic additives (e.g., lithium aluminum hydride (LiAlH4) have been cast in an attempt to improve regression rates. There are two major advantages to introducing LiAlH4 additive into the solid fuel matrix: 1) the increased characteristic velocity, 2) decreased dependency of Isp on oxidizer-to-fuel ratio. The testing and characterization of these solid-fuel grains have shown that continued work is necessary to eliminate unburned/unreacted fuel in downstream sections of the test apparatus.3 Changes to the fuel matrix include higher melting point wax and smaller energetic additive particles. The reduction in particle size through various methods can result in more homogeneous grain structure. The higher melting point wax can serve to reduce the melt-layer thickness, allowing the LiAlH4 particles to react closer to the burning surface, thus increasing the heat feedback rate and fuel regression rate. In addition to the formulation of LiAlH4 and paraffin wax solid-fuel grains, liquid additives of triethylaluminum and diisobutylaluminum hydride will be included in this study. Another promising fuel formulation consideration is to incorporate a small percentage of RDX as an additive to paraffin. A novel casting technique will be used by dissolving RDX in a solvent to crystallize the energetic additive. After dissolving the RDX in a solvent chosen for its compatibility

  13. Facilitated solubilization of polynuclear aromatic hydrocarbons by the cosolvent effect of oxygenated fuel additives and alternative fuels

    SciTech Connect

    Chen, C.S.; Delfino, J.J.

    1996-12-31

    Oxygenated and alternative fuels become popular because three different alternative fuel programs have been mandated in the 1990 Clean Air Act Amendments to minimize combustion-related pollution. The alternative fuels have brought increased interest in the transport and fate of miscible organic liquids in the subsurface and the effect that these liquids have on the transport and fate of other contaminants. The addition of polar organic solvents that are completely miscible or highly soluble in water to a mixture of hydrocarbons and water has the potential of showing the cosolvent effect. Therefore, the use of oxygenated and alternative fuels leads to cosolvency becoming an important issue. The objective of this research is to investigate the redistribution and facilitated transport of hydrophobic organic compounds (HOCs) from contaminated sediment caused by cosolvent effects due to potential oxygenated/alternative fuel spills. Specifically, the phase redistribution of HOCs in aqueous and sediment systems upon the addition of oxygenated and alternative fuels is investigated. This study is expected to provide the basis to predict fate parameters (i.e., dissolution, sorption) for the facilitated transport of HOCs due to cosolvent effects of oxygenated additives and alternative fuels. These fate parameters will allow further assessment of the environmental and health effects of spills and leaks of oxygenated and alternative fuels.

  14. Studies of jet fuel additives using the quartz crystal microbalance and pressure monitoring at 140 C

    SciTech Connect

    Zabarnick, S.; Grinstead, R.R. . Aerospace Mechanics Div./KL-463)

    1994-11-01

    Recent advances in jet aircraft and engine technology have placed an ever increasing heat load on the aircraft. The bulk of this excess heat is absorbed by the aircraft fuel, as jet fuel is used as the primary coolant for the numerous heat sources. The quartz crystal microbalance (QCM) and pressure monitoring are used for the evaluation of jet fuel additives for the improvement of jet fuel thermal stability. The mechanisms of additive behavior are determined by measuring the time-dependent deposition with the QCM and oxidation by pressure measurements. Studies at various additive concentrations permits the determination of optimum additive concentrations. Additive packages made of mixtures of antioxidants, detergent/dispersants, and metal deactivators are shown to yield good improvements in thermal stability over a wide range of jet fuel types.

  15. Additional experiments on flowability improvements of aviation fuels at low temperatures, volume 2

    NASA Technical Reports Server (NTRS)

    Stockemer, F. J.; Deane, R. L.

    1982-01-01

    An investigation was performed to study flow improver additives and scale-model fuel heating systems for use with aviation hydrocarbon fuel at low temperatures. Test were performed in a facility that simulated the heat transfer and temperature profiles anticipated in wing fuel tanks during flight of long-range commercial aircraft. The results are presented of experiments conducted in a test tank simulating a section of an outer wing integral fuel tank approximately full-scale in height, chilled through heat exchange panels bonded to the upper and lower horizontal surfaces. A separate system heated lubricating oil externally by a controllable electric heater, to transfer heat to fuel pumped from the test tank through an oil-to-fuel heat exchanger, and to recirculate the heated fuel back to the test tank.

  16. The effect of the molecular weight of additive on the properties of antimisting fuels

    SciTech Connect

    Hadermann, A.F.; Trippe, J.C.; Waters, P.F.

    1983-09-01

    Antimisting aircraft fuels, when ignited, do not produce the roaring fireball which often accompanies aircraft crashes. This result is attributable to the suppression of the aerosolization of the fuel by added macromolecules which alter the structure of the droplets of fuel emanating from rent fuel tanks after the crash. The first studies of the antimisting effect of macromolecules on aviation fuel were carried out in Great Britain in 1968. In that early work it was established that there was a qualitative relationship between the suppression of the atomization of the fuel and the molecular weight of the additive above a certain critical concentration; the latter being inverse to the molecular weight of the additive. Subsequent investigations have demonstrated a dependence of the antimisting effectiveness of polyisobutylene in diesel fuel on the viscosity average molecular weight to a power exceeding 2, and in jet-A fuel to the 2..cap alpha.. + 1 power, where ..cap alpha.. is the exponent in the Mark-Houwink equation. In their study Chao et al, were able to demonstrate a strong correlation between the extent of antimisting effectiveness and flammability reduction with the maximum ductless siphon height supported by the solution. They introduced the ductless siphon to the study of antimisting fuels as a measure of the elongational viscosity impaired by the macromolecules to the fuel.

  17. Assessment of PNGV fuels infrastructure. Phase 1 report: Additional capital needs and fuel-cycle energy and emissions impacts

    SciTech Connect

    Wang, M.; Stork, K.; Vyas, A.; Mintz, M.; Singh, M.; Johnson, L.

    1997-01-01

    This report presents the methodologies and results of Argonne`s assessment of additional capital needs and the fuel-cycle energy and emissions impacts of using six different fuels in the vehicles with tripled fuel economy (3X vehicles) that the Partnership for a New Generation of Vehicles is currently investigating. The six fuels included in this study are reformulated gasoline, low-sulfur diesel, methanol, ethanol, dimethyl ether, and hydrogen. Reformulated gasoline, methanol, and ethanol are assumed to be burned in spark-ignition, direct-injection engines. Diesel and dimethyl ether are assumed to be burned in compression-ignition, direct-injection engines. Hydrogen and methanol are assumed to be used in fuel-cell vehicles. The authors have analyzed fuels infrastructure impacts under a 3X vehicle low market share scenario and a high market share scenario. The assessment shows that if 3X vehicles are mass-introduced, a considerable amount of capital investment will be needed to build new fuel production plants and to establish distribution infrastructure for methanol, ethanol, dimethyl ether, and hydrogen. Capital needs for production facilities will far exceed those for distribution infrastructure. Among the four fuels, hydrogen will bear the largest capital needs. The fuel efficiency gain by 3X vehicles translates directly into reductions in total energy demand, fossil energy demand, and CO{sub 2} emissions. The combination of fuel substitution and fuel efficiency results in substantial petroleum displacement and large reductions in emissions of nitrogen oxide, carbon monoxide, volatile organic compounds, sulfur oxide, and particulate matter of size smaller than 10 microns.

  18. Chemical compounds to be used as solid carriers for fuel additives

    SciTech Connect

    Santambrogio, A.; Mattei, L.

    1987-09-08

    This patent describes compositions of dosing additives to fuel for internal combustion engines, comprising (1) solid carrier chemical compounds, which have a melting point between 70/sup 0/C and 130/sup 0/C, are soluble in hydrocarbons and are selected from the group consisting of alkyl-substituted phenols, aromatic carbonates, alkyl-substituted pyrocatechols, and polymers of alkyl-substituted 1,2-dihydroquinoline; and (2) additives for fuel for internal combustion engines which are liquid at room temperature.

  19. Improvement of fuel properties of cottonseed oil methyl esters with commercial additives

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The low temperature operability and oxidative stability of cottonseed (Gossypium hirsutum L.) oil methyl esters (CSME) were improved with addition of commercial additives. Four commercial anti-gel additives: Technol® B100 Biodiesel Cold Flow Improver, Gunk® Premium Diesel Fuel Anti-Gel, Heet® Dies...

  20. 77 FR 35677 - Regulation of Fuel and Fuel Additives; Modification to Octamix Waiver (TOLAD)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-14

    ... specified in ASTM D-2 Proposal P-176 and Texas Methanol alcohol purity specifications. \\4\\ 53 FR at 3637. On... inhibitor, TOLAD MFA-10A, in Texas Methanol's gasoline-alcohol fuel, OCTAMIX. ADDRESSES: EPA has established...) last issued an interpretive rule on the phrase ``substantially similar'' at 73 FR 22281 (April 25,...

  1. Biological and health effects of exposure to kerosene-based jet fuels and performance additives.

    PubMed

    Ritchie, Glenn; Still, Kenneth; Rossi, John; Bekkedal, Marni; Bobb, Andrew; Arfsten, Darryl

    2003-01-01

    Over 2 million military and civilian personnel per year (over 1 million in the United States) are occupationally exposed, respectively, to jet propulsion fuel-8 (JP-8), JP-8 +100 or JP-5, or to the civil aviation equivalents Jet A or Jet A-1. Approximately 60 billion gallon of these kerosene-based jet fuels are annually consumed worldwide (26 billion gallon in the United States), including over 5 billion gallon of JP-8 by the militaries of the United States and other NATO countries. JP-8, for example, represents the largest single chemical exposure in the U.S. military (2.53 billion gallon in 2000), while Jet A and A-1 are among the most common sources of nonmilitary occupational chemical exposure. Although more recent figures were not available, approximately 4.06 billion gallon of kerosene per se were consumed in the United States in 1990 (IARC, 1992). These exposures may occur repeatedly to raw fuel, vapor phase, aerosol phase, or fuel combustion exhaust by dermal absorption, pulmonary inhalation, or oral ingestion routes. Additionally, the public may be repeatedly exposed to lower levels of jet fuel vapor/aerosol or to fuel combustion products through atmospheric contamination, or to raw fuel constituents by contact with contaminated groundwater or soil. Kerosene-based hydrocarbon fuels are complex mixtures of up to 260+ aliphatic and aromatic hydrocarbon compounds (C(6) -C(17+); possibly 2000+ isomeric forms), including varying concentrations of potential toxicants such as benzene, n-hexane, toluene, xylenes, trimethylpentane, methoxyethanol, naphthalenes (including polycyclic aromatic hydrocarbons [PAHs], and certain other C(9)-C(12) fractions (i.e., n-propylbenzene, trimethylbenzene isomers). While hydrocarbon fuel exposures occur typically at concentrations below current permissible exposure limits (PELs) for the parent fuel or its constituent chemicals, it is unknown whether additive or synergistic interactions among hydrocarbon constituents, up to six

  2. Potential Additives to Promote Seal Swell in Synthetic Fuels and Their Effect on Thermal Stability

    SciTech Connect

    Link, Dirk D.; Gormley, Robert J.; Baltrus, John P.; Anderson, Richard R.; Zandhuis, Paul H.

    2008-03-01

    Synthetic, fuels derived from the Fischer-Tropsch (F-T) process using natural gas or coal-derived synthesis gas as feedstocks can be used for powering ground vehicles, aircraft, and ships. Because of their chemical and physical properties, F-T fuels will probably require additives in order to meet specifications with respect to lubricity and seal swell capability for use in ground and air vehicles. Using both experimental and computational studies, the propensity of certain species to enhance the seal swell characteristics of synthetic fuels and surrogates has been determined, and promising additives have been identified. Important structural characteristics for potential additives, namely an aromatic ring along with a polar constituent, are described. The thermal stability of synthetic and surrogate fuels containing the single-component additive benzyl alcohol, which is representative of this structural class, has been determined by batch stressing of the mixtures at 350º C for up to 12 h. Synthetic fuels spiked with benzyl alcohol at concentrations (vol%) of 1.0, 0.75, and 0.5 have demonstrated the ability to swell nitrile rubber o-rings to a comparable degree as petroleum jet fuel. Further, batch reactor studies have shown that addition of benzyl alcohol does not degrade the thermal oxidative stability of the fuel based on gravimetric analysis of the solid deposits after stressing. GC-MS was used to characterize the products from thermal stressing of neat and additized surrogate jet fuel, and their compositions were compared with respect to the creation of certain species and their potential effect on deposition.

  3. Potential Additives to Promote Seal Swell in Synthetic Fuels and Their Effect on Thermal Stability

    SciTech Connect

    Link, D.D.; Gormley, R.J.; Baltrus, J.P.; Anderson, R.R.; Zandhuis, P.H.

    2008-03-01

    Synthetic fuels derived from the Fischer–Tropsch (F-T) process using natural gas or coal-derived synthesis gas as feedstocks can be used for powering ground vehicles, aircraft, and ships. Because of their chemical and physical properties, F-T fuels will probably require additives in order to meet specifications with respect to lubricity and seal swell capability for use in ground and air vehicles. Using both experimental and computational studies, the propensity of certain species to enhance the seal swell characteristics of synthetic fuels and surrogates has been determined, and promising additives have been identified. Important structural characteristics for potential additives, namely an aromatic ring along with a polar constituent, are described. The thermal stability of synthetic and surrogate fuels containing the single-component additive benzyl alcohol, which is representative of this structural class, has been determined by batch stressing of the mixtures at 350 °C for up to 12 h. Synthetic fuels spiked with benzyl alcohol at concentrations (vol %) of 1.0, 0.75, and 0.5 have demonstrated the ability to swell nitrile rubber o-rings to a comparable degree as petroleum jet fuel. Further, batch reactor studies have shown that addition of benzyl alcohol does not degrade the thermal oxidative stability of the fuel based on gravimetric analysis of the solid deposits after stressing. GC-MS was used to characterize the products from thermal stressing of neat and additized surrogate jet fuel, and their compositions were compared with respect to the creation of certain species and their potential effect on deposition.

  4. Metal hydride and pyrophoric fuel additives for dicyclopentadiene based hybrid propellants

    NASA Astrophysics Data System (ADS)

    Shark, Steven C.

    The purpose of this study is to investigate the use of reactive energetic fuel additives that have the potential to increase the combustion performance of hybrid rocket propellants in terms of solid fuel regression rate and combustion efficiency. Additives that can augment the combustion flame zone in a hybrid rocket motor by means of increased energy feedback to the fuel grain surface are of great interest. Metal hydrides have large volumetric hydrogen densities, which gives these materials high performance potential as fuel additives in terms of specifc impulse. The excess hydrogen and corresponding base metal may also cause an increase in the hybrid rocket solid fuel regression rate. Pyrophoric additives also have potential to increase the solid fuel regression rate by reacting more readily near the burning fuel surface providing rapid energy feedback. An experimental performance evaluation of metal hydride fuel additives for hybrid rocket motor propulsion systems is examined in this study. Hypergolic ignition droplet tests and an accelerated aging study revealed the protection capabilities of Dicyclopentadiene (DCPD) as a fuel binder, and the ability for unaided ignition. Static hybrid rocket motor experiments were conducted using DCPD as the fuel. Sodium borohydride (NabH4) and aluminum hydride (AlH3) were examined as fuel additives. Ninety percent rocket grade hydrogen peroxide (RGHP) was used as the oxidizer. In this study, the sensitivity of solid fuel regression rate and characteristic velocity (C*) efficiency to total fuel grain port mass flux and particle loading is examined. These results were compared to HTPB combustion performance as a baseline. Chamber pressure histories revealed steady motor operation in most tests, with reduced ignition delays when using NabH4 as a fuel additive. The addition of NabH4 and AlH3 produced up to a 47% and 85% increase in regression rate over neat DCPD, respectively. For all test conditions examined C* efficiency ranges

  5. Health Effects Associated with Inhalation Exposure to Diesel Emission Generated with and without CeO2 Nano Fuel Additive

    EPA Science Inventory

    Diesel exhaust (DE) exposure induces adverse cardiopulmonary effects. Addition of nano cerium (Ce) oxide additive to diesel fuel (DECe) increases fuel burning efficiency resulting in altered emission characteristics and potentially altered health effects. We hypothesized that inh...

  6. High Energy Density Additives for Hybrid Fuel Rockets to Improve Performance and Enhance Safety

    NASA Technical Reports Server (NTRS)

    Jaffe, Richard L.

    2014-01-01

    We propose a conceptual study of prototype strained hydrocarbon molecules as high energy density additives for hybrid rocket fuels to boost the performance of these rockets without compromising safety and reliability. Use of these additives could extend the range of applications for which hybrid rockets become an attractive alternative to conventional solid or liquid fuel rockets. The objectives of the study were to confirm and quantify the high enthalpy of these strained molecules and to assess improvement in rocket performance that would be expected if these additives were blended with conventional fuels. We confirmed the chemical properties (including enthalpy) of these additives. However, the predicted improvement in rocket performance was too small to make this a useful strategy for boosting hybrid rocket performance.

  7. Effect of alcohol addition on the movement of petroleum hydrocarbon fuels in soil.

    PubMed

    Adam, Gillian; Gamoh, Keiji; Morris, David G; Duncan, Harry

    2002-03-01

    Groundwater contamination by fuel spills from aboveground and underground storage tanks has been of growing concern in recent years. This problem has been magnified by the addition of oxygenates, such as ethanol and methyl-tertiary-butyl ether (MTBE) to fuels to reduce vehicular emissions to the atmosphere. These additives, although beneficial in reducing atmospheric pollution, may, however, increase groundwater contamination due to the co-solvency of petroleum hydrocarbons and by the provision of a preferential substrate for microbial utilisation. With the introduction of ethanol to diesel fuel imminent and the move away from MTBE use in many states of the USA, the environmental implications associated with ethanol additive fuels must be thoroughly investigated. Diesel fuel movement was followed in a 1-m soil column and the effect of ethanol addition to diesel fuel on this movement determined. The addition of 5% ethanol to diesel fuel was found to enhance the downward migration of the diesel fuel components, thus increasing the risk of groundwater contamination. A novel method using soil packed HPLC columns allowed the influence of ethanol on individual aromatic hydrocarbon movement to be studied. The levels of ethanol addition investigated were at the current additive level (approx. 25%) for ethanol additive fuels in Brazil and values above (50%) and below (10%) this level. An aqueous ethanol concentration above 10% was required for any movement to occur. At 25% aqueous ethanol, the majority of hydrocarbons were mobilised and the retention behaviour of the soil column lessened. At 50% aqueous ethanol, all the hydrocarbons were found to move unimpeded through the columns. The retention behaviour of the soil was found to change significantly when both organic matter content and silt/clay content was reduced. Unexpectedly, sandy soil with low organic matter and low silt/clay was found to have a retentive behaviour similar to sandy subsoil with moderate silt

  8. Evaluation of fuel additives for reduction of material imcompatibilities in methanol-gasoline blends

    NASA Technical Reports Server (NTRS)

    Rodriguez, C. F.; Barbee, J. G.; Knutson, W. K.; Cuellar, J. P., Jr.

    1983-01-01

    Screening tests determined the efficacy of six commercially available additives as modifiers of methanol's corrosivity toward metals and its weakening of tensile properties of nonmetals in automotive fuel systems. From the screening phase, three additives which seemed to protect some of the metals were tested in higher concentrations and binary combinations in search of optimal application conditions. Results indicate that two of the additives have protective properties and combining them increases the protection of the metals corroded by methanol-gasoline blends. Half of the metals in the tests were not corroded. Testing at recommended concentrations and then at higher concentrations and in combinations shows that the additives would have no protective or harmful effects on the nonmetals. Two additives emerged as candidates for application to the protection of metals in automotive methanol-gasoline fuel systems. The additives tested were assigned letter codes to protect their proprietary nature.

  9. Effectiveness of iron-based fuel additives for diesel soot control

    SciTech Connect

    Zeller, H.W.; Westphal, T.E.

    1992-01-01

    The U.S. Bureau of Mines evaluated the effects of two iron-based fuel additives on diesel particulate matter (DPM) emissions. The 5.6-L, six-cylinder test engine is typical of engines used in underground mines. One additive, ferrous picrate, did not measurably affect exhaust emissions. This report is mainly about a ferrocene-based additive that reduced DPM between 4 and 45 pct, depending on engine operating conditions. The report concludes that the DPM reductions were caused by the catalytic oxidation properties of a ferric oxide coating that developed inside the engine's combustion chamber. The ferric oxide coating also decreased gas-phase hydrocarbons and O[sub 2], but it increased CO[sub 2] and NO[sub x]. The increase in NO[sub x], of about 12 pct, is considered the only adverse effect of the ferrocene-based fuel additive. The results suggest that the effectiveness of ferrocene was partially offset by increased sulfates because of the high-sulfur fuel used. Recommendations for continuing fuel additive research are presented.

  10. Predicting the Effects of Nano-Scale Cerium Additives in Diesel Fuel on Regional-Scale Air Quality

    EPA Science Inventory

    Diesel vehicles are a major source of air pollutant emissions. Fuel additives containing nanoparticulate cerium (nCe) are currently being used in some diesel vehicles to improve fuel efficiency. These fuel additives also reduce fine particulate matter (PM2.5) emissio...

  11. Investigation of fuel-additive effects on sooting flames. Annual report

    SciTech Connect

    Bonczyk, P.A.

    1987-06-30

    The objective of this research is to clarify the mechanisms responsible for the suppression of soot in flames by fuel additives. Measurements are limited to well-defined hydrocarbon/air prevaporized liquid- and gaseous-fueled flames. Emphasis is given to ferrocene in a diffusion flame fueled by prevaporized iso-octane. Nonperturbing laser/optical diagnostic techniques are used to relate changes in soot particulate size, number density, and volume fraction to additive concentration. Ferrocene is observed to suppress a visible soot plume completely and, in general, to intervene at a late combustion stage. Suppression is due to both size and number density reduction, which suggests that ferrocene enhances the oxidative burn-out of soot. In contrast, at an early combustion stage nearer the burner lip, a slight enhancement of soot observed with ferrocene seeding.

  12. Synthesis of biodiesel fuel additives from glycerol using green chemistry and supercritical fluids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    For every 3 moles of fatty acid esters produced, 1 mole of glycerol remains, ~11% of the biodiesel volume. One new method of glycerol use could be as a biodiesel fuel additive/extender using eco-friendly heterogeneous catalysts and supercritical fluids (SFs). SFs have advantages such as greater diff...

  13. Screening of Potential O-Ring Swelling Additives for Ultraclean Transportation Fuels

    SciTech Connect

    Baltrus, J.P.; Link, D.D.; Zandhuis, P.H.; Gormley, R.J.; Anderson, R.R.

    2007-03-01

    Several classes of organic compounds and mixtures of organic compounds were evaluated as potential additives to Fischer-Tropsch fuels to promote swelling of nitrile rubber o-rings that come in contact with the fuels. Computational modeling studies were also carried out to predict which compounds might be best at promoting o-ring swelling. The combined experimental-theoretical approach showed that steric factors strongly influence the interactions between additives and the nitrile sites in the rubber that result in swelling. Select compounds incorporating both oxygenate and aromatic functionalities appear to be the best candidates for additives because of a "dual" interaction between complementary functionalities on these compounds and the nitrile rubber.

  14. Effects of NaOH addition on performance of the direct hydrazine fuel cell

    NASA Astrophysics Data System (ADS)

    Yin, Wen Xia; Li, Zhou Peng; Zhu, Jing Ke; Qin, Hai Ying

    In this work, we suggested a figuration of the direct hydrazine fuel cell (DHFC) using non-precious metals as the anode catalyst, ion exchange membranes as the electrolyte and alkaline hydrazine solutions as the fuel. NaOH addition in the anolyte effectively improved the open circuit voltage and the performance of the DHFC. A power density of 84 mW cm -2 has been achieved when operating the cell at room temperature. It was found that the cell performance was mainly influenced by anode polarization when using alkaline N 2H 4 solutions with low NaOH concentrations. However, when using alkaline N 2H 4 solutions with high NaOH concentrations as the fuel, the cell performance was mainly influenced by cathode polarization.

  15. Effect of a chromium-containing fuel additive on hot corrosion

    NASA Technical Reports Server (NTRS)

    Lowell, C. E.; Deadmore, D. L.

    1976-01-01

    Four superalloys were tested at 900 C in high velocity combustion gases containing synthetic sea salt and, in some cases, a chromium containing fuel additive. While the additive reduced hot corrosion of the alloys over the 100 hour test period, the attack was not eliminated nor was the mode of attack changed. Reduction of the number of thermal cycles had as large a beneficial effect as the Cr additive. Intermittent washing during testing had either small beneficial or adverse effects depending on the alloy.

  16. 40 CFR 80.591 - What are the product transfer document requirements for additives to be used in diesel fuel?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel... content requirements for use in diesel motor vehicles and nonroad engines.”; or (2) For those additives... requirements for use in model year 2007 and newer diesel motor vehicles or model year 2011 and newer...

  17. 40 CFR 80.591 - What are the product transfer document requirements for additives to be used in diesel fuel?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel... content requirements for use in diesel motor vehicles and nonroad engines.”; or (2) For those additives... requirements for use in model year 2007 and newer diesel motor vehicles or model year 2011 and newer...

  18. Additives

    NASA Technical Reports Server (NTRS)

    Smalheer, C. V.

    1973-01-01

    The chemistry of lubricant additives is discussed to show what the additives are chemically and what functions they perform in the lubrication of various kinds of equipment. Current theories regarding the mode of action of lubricant additives are presented. The additive groups discussed include the following: (1) detergents and dispersants, (2) corrosion inhibitors, (3) antioxidants, (4) viscosity index improvers, (5) pour point depressants, and (6) antifouling agents.

  19. [Electricity generation of surplus sludge microbial fuel cells enhanced by additional enzyme].

    PubMed

    Yang, Hui; Liu, Zhi-Hu; Li, Xiao-Ming; Yang, Qi; Fang, Li; Huang, Hua-Jun; Zeng, Guang-Ming; Li, Shuo

    2012-01-01

    In this paper the feasibility of enhanced electricity generation of microbial fuel cell fed surplus sludge by additional enzymes (neutral protease and alpha-amylase) was discussed. The effect of dosage of additional enzyme on characteristics of electricity generation of the surplus sludge microbial fuel cell (SSMFC) and the reduction of surplus sludge were investigated. The results indicated that the maximum output power destiny of the group of experiment was higher than that of control under the same condition. Moreover, the maximum output power density, coulomb efficiency, efficiency of reducing TCOD, efficiency of reducing TSS and efficiency of reducing VSS reached up to 507 W x m(-2) (700 mW x m(-2)), 3.98% (5.11%), 88.31% (94.09%), 83.18% (98.02%) and 89.03% (98.80%) respectively for protease (alpha-amylase) at the dosage of 10 mg x g(-1). This study demonstrated that additional enzyme greatly enhanced the electricity generation of MFC with simultaneous accomplishments of sludge treatment, providing a novel approach for the practical application of microbial fuel cell.

  20. Attempts to prevent injector coking with sunflower oil by engine modifications and fuel additives

    SciTech Connect

    van der Walt, A.N.; Hugo, F.J.C.

    1982-01-01

    The effect of injector tip temperature on coking propencity when sunflower oil is used as a fuel for direct injection engines, was tested. Partial retraction of the injector, the addition of a heat shield to the injector and cooling the injector with water was tried. Also, injector temperature was increased by reducing heat transferred to the cylinder head and preheating the sunflower oil. None of these measures could prevent coking of the injector tip. Coating the injector tip with Teflon and increasing the back leakage rate was also tried without success. Only a few of many additives tested, showed some promise of being able to prevent coking. 5 figures, 1 table.

  1. Effect of primary-zone equivalence ratio and hydrogen addition on exhaust emission in a hydrocarbon-fueled combustor

    NASA Technical Reports Server (NTRS)

    Norgren, C. T.; Ingebo, R. D.

    1974-01-01

    The effects of reducing the primary-zone equivalence ratio on the exhaust emission levels of oxides of nitrogen, carbon monoxide, and unburned hydrocarbons in experimental hydrocarbon-fueled combustor segments at simulated supersonic cruise and idle conditions were investigated. In addition, the effects of the injection of hydrogen fuel (up to 4 percent of the total weight of fuel) on the stability of the hydrocarbon flame and exhaust emissions were studied and compared with results obtained without hydrogen addition.

  2. 46 CFR 111.105-39 - Additional requirements for vessels carrying vehicles with fuel in their tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Additional requirements for vessels carrying vehicles....105-39 Additional requirements for vessels carrying vehicles with fuel in their tanks. Each vessel that carries a vehicle with fuel in its tank must meet the requirements of ABS Steel Vessel...

  3. 46 CFR 111.105-39 - Additional requirements for vessels carrying vehicles with fuel in their tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Additional requirements for vessels carrying vehicles....105-39 Additional requirements for vessels carrying vehicles with fuel in their tanks. Each vessel that carries a vehicle with fuel in its tank must meet the requirements of ABS Steel Vessel...

  4. 46 CFR 111.105-39 - Additional requirements for vessels carrying vehicles with fuel in their tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Additional requirements for vessels carrying vehicles....105-39 Additional requirements for vessels carrying vehicles with fuel in their tanks. Each vessel that carries a vehicle with fuel in its tank must meet the requirements of ABS Steel Vessel...

  5. Adaptive neuro-fuzzy inference system (ANFIS) to predict CI engine parameters fueled with nano-particles additive to diesel fuel

    NASA Astrophysics Data System (ADS)

    Ghanbari, M.; Najafi, G.; Ghobadian, B.; Mamat, R.; Noor, M. M.; Moosavian, A.

    2015-12-01

    This paper studies the use of adaptive neuro-fuzzy inference system (ANFIS) to predict the performance parameters and exhaust emissions of a diesel engine operating on nanodiesel blended fuels. In order to predict the engine parameters, the whole experimental data were randomly divided into training and testing data. For ANFIS modelling, Gaussian curve membership function (gaussmf) and 200 training epochs (iteration) were found to be optimum choices for training process. The results demonstrate that ANFIS is capable of predicting the diesel engine performance and emissions. In the experimental step, Carbon nano tubes (CNT) (40, 80 and 120 ppm) and nano silver particles (40, 80 and 120 ppm) with nanostructure were prepared and added as additive to the diesel fuel. Six cylinders, four-stroke diesel engine was fuelled with these new blended fuels and operated at different engine speeds. Experimental test results indicated the fact that adding nano particles to diesel fuel, increased diesel engine power and torque output. For nano-diesel it was found that the brake specific fuel consumption (bsfc) was decreased compared to the net diesel fuel. The results proved that with increase of nano particles concentrations (from 40 ppm to 120 ppm) in diesel fuel, CO2 emission increased. CO emission in diesel fuel with nano-particles was lower significantly compared to pure diesel fuel. UHC emission with silver nano-diesel blended fuel decreased while with fuels that contains CNT nano particles increased. The trend of NOx emission was inverse compared to the UHC emission. With adding nano particles to the blended fuels, NOx increased compared to the net diesel fuel. The tests revealed that silver & CNT nano particles can be used as additive in diesel fuel to improve combustion of the fuel and reduce the exhaust emissions significantly.

  6. Additive Manufacturing of a Microbial Fuel Cell--A detailed study.

    PubMed

    Calignano, Flaviana; Tommasi, Tonia; Manfredi, Diego; Chiolerio, Alessandro

    2015-01-01

    In contemporary society we observe an everlasting permeation of electron devices, smartphones, portable computing tools. The tiniest living organisms on Earth could become the key to address this challenge: energy generation by bacterial processes from renewable stocks/waste through devices such as microbial fuel cells (MFCs). However, the application of this solution was limited by a moderately low efficiency. We explored the limits, if any, of additive manufacturing (AM) technology to fabricate a fully AM-based powering device, exploiting low density, open porosities able to host the microbes, systems easy to fuel continuously and to run safely. We obtained an optimal energy recovery close to 3 kWh m(-3) per day that can power sensors and low-power appliances, allowing data processing and transmission from remote/harsh environments.

  7. Additive Manufacturing of a Microbial Fuel Cell—A detailed study

    PubMed Central

    Calignano, Flaviana; Tommasi, Tonia; Manfredi, Diego; Chiolerio, Alessandro

    2015-01-01

    In contemporary society we observe an everlasting permeation of electron devices, smartphones, portable computing tools. The tiniest living organisms on Earth could become the key to address this challenge: energy generation by bacterial processes from renewable stocks/waste through devices such as microbial fuel cells (MFCs). However, the application of this solution was limited by a moderately low efficiency. We explored the limits, if any, of additive manufacturing (AM) technology to fabricate a fully AM-based powering device, exploiting low density, open porosities able to host the microbes, systems easy to fuel continuously and to run safely. We obtained an optimal energy recovery close to 3 kWh m−3 per day that can power sensors and low-power appliances, allowing data processing and transmission from remote/harsh environments. PMID:26611142

  8. Additive Manufacturing of a Microbial Fuel Cell—A detailed study

    NASA Astrophysics Data System (ADS)

    Calignano, Flaviana; Tommasi, Tonia; Manfredi, Diego; Chiolerio, Alessandro

    2015-11-01

    In contemporary society we observe an everlasting permeation of electron devices, smartphones, portable computing tools. The tiniest living organisms on Earth could become the key to address this challenge: energy generation by bacterial processes from renewable stocks/waste through devices such as microbial fuel cells (MFCs). However, the application of this solution was limited by a moderately low efficiency. We explored the limits, if any, of additive manufacturing (AM) technology to fabricate a fully AM-based powering device, exploiting low density, open porosities able to host the microbes, systems easy to fuel continuously and to run safely. We obtained an optimal energy recovery close to 3 kWh m-3 per day that can power sensors and low-power appliances, allowing data processing and transmission from remote/harsh environments.

  9. An additive solution to the problem of wax settling in diesel fuels

    SciTech Connect

    Brown, G.I.; Tack, R.D.; Chandler, J.E

    1988-01-01

    Wax formed in cold diesel fuels can settle, causing fuel storage and distribution problems and unexpected vehicle failures. The extent of these wax settling problems depends upon fuel, storage conditions, and the design of vehicle fuel systems. New Wax Anti-settling Flow Improvers, WAFI, reduce crystal sizes and keep wax dispersed in the fuel. Improved performance of cold fuels treated with WAFI has been demonstrated in storage tests, a diesel fuel rig, and in diesel trucks on a cold climate chassis dynamometer.

  10. Diesel engine experiments with oxygen enrichment, water addition and lower-grade fuel

    SciTech Connect

    Sekar, R.R.; Marr, W.W.; Cole, R.L.; Marciniak, T.J. ); Schaus, J.E. )

    1990-01-01

    The concept of oxygen enriched air applied to reciprocating engines is getting renewed attention in the context of the progress made in the enrichment methods and the tougher emissions regulations imposed on diesel and gasoline engines. An experimental project was completed in which a direct injection diesel engine was tested with intake oxygen levels of 21% -- 35%. Since an earlier study indicated that it is necessary to use a cheaper fuel to make the concept economically attractive, a less refined fuel was included in the test series. Since a major objection to the use of oxygen enriched combustion air had been the increase in NO{sub x} emissions, a method must be found to reduce NO{sub x}. Introduction of water into the engine combustion process was included in the tests for this purpose. Fuel emulsification with water was the means used here even though other methods could also be used. The teat data indicated a large increase in engine power density, slight improvement in thermal efficiency, significant reductions in smoke and particulate emissions and NO{sub x} emissions controllable with the addition of water. 15 refs., 10 figs., 2 tabs.

  11. NOx formation from the combustion of monodisperse n-heptane sprays doped with fuel-nitrogen additives

    NASA Technical Reports Server (NTRS)

    Sarv, Hamid; Cernansky, Nicholas P.

    1989-01-01

    A series of experiments with simulated synthetic fuels were conducted in order to investigate the effect of droplet size on the conversion of fuel-nitrogen to NOx. Pyridine and pyrrole were added to n-heptane as nitrogen-containing additives and burned as monodisperse fuel droplets under various operating conditions in a spray combustion facility. The experimental results indicate that under stoichiometric and fuel-rich conditions, reducing the droplet size increases the efficiency of fuel-N conversion to NOx. This observation is associated with improved oxidation of the pyrolysis fragments of the additive by better oxygen penetration through the droplet flame zone. The dominant reactions by which fuel-N is transformed to NOx were also considered analytically by a premixed laminar flame code. The calculations are compared to the small droplet size results.

  12. Effects of experimental fuel additions on fire intensity and severity: unexpected carbon resilience of a neotropical forest.

    PubMed

    Brando, Paulo M; Oliveria-Santos, Claudinei; Rocha, Wanderley; Cury, Roberta; Coe, Michael T

    2016-07-01

    Global changes and associated droughts, heat waves, logging activities, and forest fragmentation may intensify fires in Amazonia by altering forest microclimate and fuel dynamics. To isolate the effects of fuel loads on fire behavior and fire-induced changes in forest carbon cycling, we manipulated fine fuel loads in a fire experiment located in southeast Amazonia. We predicted that a 50% increase in fine fuel loads would disproportionally increase fire intensity and severity (i.e., tree mortality and losses in carbon stocks) due to multiplicative effects of fine fuel loads on the rate of fire spread, fuel consumption, and burned area. The experiment followed a fully replicated randomized block design (N = 6) comprised of unburned control plots and burned plots that were treated with and without fine fuel additions. The fuel addition treatment significantly increased burned area (+22%) and consequently canopy openness (+10%), fine fuel combustion (+5%), and mortality of individuals ≥5 cm in diameter at breast height (dbh; +37%). Surprisingly, we observed nonsignificant effects of the fuel addition treatment on fireline intensity, and no significant differences among the three treatments for (i) mortality of large trees (≥30 cm dbh), (ii) aboveground forest carbon stocks, and (iii) soil respiration. It was also surprising that postfire tree growth and wood increment were higher in the burned plots treated with fuels than in the unburned control. These results suggest that (i) fine fuel load accumulation increases the likelihood of larger understory fires and (ii) single, low-intensity fires weakly influence carbon cycling of this primary neotropical forest, although delayed postfire mortality of large trees may lower carbon stocks over the long term. Overall, our findings indicate that increased fine fuel loads alone are unlikely to create threshold conditions for high-intensity, catastrophic fires during nondrought years. PMID:26750627

  13. Effects of experimental fuel additions on fire intensity and severity: unexpected carbon resilience of a neotropical forest.

    PubMed

    Brando, Paulo M; Oliveria-Santos, Claudinei; Rocha, Wanderley; Cury, Roberta; Coe, Michael T

    2016-07-01

    Global changes and associated droughts, heat waves, logging activities, and forest fragmentation may intensify fires in Amazonia by altering forest microclimate and fuel dynamics. To isolate the effects of fuel loads on fire behavior and fire-induced changes in forest carbon cycling, we manipulated fine fuel loads in a fire experiment located in southeast Amazonia. We predicted that a 50% increase in fine fuel loads would disproportionally increase fire intensity and severity (i.e., tree mortality and losses in carbon stocks) due to multiplicative effects of fine fuel loads on the rate of fire spread, fuel consumption, and burned area. The experiment followed a fully replicated randomized block design (N = 6) comprised of unburned control plots and burned plots that were treated with and without fine fuel additions. The fuel addition treatment significantly increased burned area (+22%) and consequently canopy openness (+10%), fine fuel combustion (+5%), and mortality of individuals ≥5 cm in diameter at breast height (dbh; +37%). Surprisingly, we observed nonsignificant effects of the fuel addition treatment on fireline intensity, and no significant differences among the three treatments for (i) mortality of large trees (≥30 cm dbh), (ii) aboveground forest carbon stocks, and (iii) soil respiration. It was also surprising that postfire tree growth and wood increment were higher in the burned plots treated with fuels than in the unburned control. These results suggest that (i) fine fuel load accumulation increases the likelihood of larger understory fires and (ii) single, low-intensity fires weakly influence carbon cycling of this primary neotropical forest, although delayed postfire mortality of large trees may lower carbon stocks over the long term. Overall, our findings indicate that increased fine fuel loads alone are unlikely to create threshold conditions for high-intensity, catastrophic fires during nondrought years.

  14. Proton transport in functionalised additives for PEM fuel cells: contributions from atomistic simulations.

    PubMed

    Tölle, Pia; Köhler, Christof; Marschall, Roland; Sharifi, Monir; Wark, Michael; Frauenheim, Thomas

    2012-08-01

    The conventional polymer electrolyte membrane (PEM) materials for fuel cell applications strongly rely on temperature and pressure conditions for optimal performance. In order to expand the range of operating conditions of these conventional PEM materials, mesoporous functionalised SiO(2) additives are developed. It has been demonstrated that these additives themselves achieve proton conductivities approaching those of conventional materials. However, the proton conduction mechanisms and especially factors influencing charge carrier mobility under different hydration conditions are not well known and difficult to separate from concentration effects in experiments. This tutorial review highlights contributions of atomistic computer simulations to the basic understanding and eventual design of these materials. Some basic introduction to the theoretical and computational framework is provided to introduce the reader to the field, the techniques are in principle applicable to a wide range of other situations as well. Simulation results are directly compared to experimental data as far as possible.

  15. Effect of organometallic fuel additives on nanoparticle emissions from a gasoline passenger car.

    PubMed

    Gidney, Jeremy T; Twigg, Martyn V; Kittelson, David B

    2010-04-01

    Particle size measurements were performed on the exhaust of a car operating on a chassis dynamometer fueled with standard gasoline and gasoline containing low levels of Pb, Fe, and Mn organometallic additives. When additives were present there was a distinct nucleation mode consisting primarily of sub-10 nm nanoparticles. At equal molar dosing Mn and Fe gave similar nanoparticle concentrations at the tailpipe, whereas Pb gave a considerably lower concentration. A catalytic stripper was used to remove the organic component of these particles and revealed that they were mainly solid and, because of their association with inorganic additives, presumably inorganic. Solid nucleation mode nanoparticles of similar size and concentration to those observed here from a gasoline engine with Mn and Fe additives have also been observed from modern heavy-duty diesel engines without aftertreatment at idle, but these solid particles are a small fraction of the primarily volatile nucleation mode particles emitted. The solid nucleation mode particles emitted by the diesel engines are likely derived from metal compounds in the lubrication oil, although carbonaceous particles cannot be ruled out. Significantly, most of these solid nanoparticles emitted by both engine types fall below the 23 nm cutoff of the PMP number regulation.

  16. 76 FR 15855 - Denial of Petitions for Reconsideration of Regulation of Fuels and Fuel Additives: Changes to...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-22

    ... lifecycle greenhouse gas (GHG) emission impacts of renewable fuel production and use. On February 17, 2011...'' in the final analysis of the lifecycle greenhouse gas (GHG) emission impacts of renewable fuel... Administrator to reconsider an EPA rule, published on March 26, 2010 (75 FR 14670), which amended the...

  17. Inhaled Diesel Emissions Generated with Cerium Oxide Nanoparticle Fuel Additive Induce Adverse Pulmonary and Systemic Effects

    PubMed Central

    Snow, Samantha J.; McGee, John; Miller, Desinia B.; Bass, Virginia; Schladweiler, Mette C.; Thomas, Ronald F.; Krantz, Todd; King, Charly; Ledbetter, Allen D.; Richards, Judy; Weinstein, Jason P.; Conner, Teri; Willis, Robert; Linak, William P.; Nash, David; Wood, Charles E.; Elmore, Susan A.; Morrison, James P.; Johnson, Crystal L.; Gilmour, Matthew Ian; Kodavanti, Urmila P.

    2014-01-01

    Diesel exhaust (DE) exposure induces adverse cardiopulmonary effects. Cerium oxide nanoparticles added to diesel fuel (DECe) increases fuel burning efficiency but leads to altered emission characteristics and potentially altered health effects. Here, we evaluated whether DECe results in greater adverse pulmonary effects compared with DE. Male Sprague Dawley rats were exposed to filtered air, DE, or DECe for 5 h/day for 2 days. N-acetyl glucosaminidase activity was increased in bronchial alveolar lavage fluid (BALF) of rats exposed to DECe but not DE. There were also marginal but insignificant increases in several other lung injury biomarkers in both exposure groups (DECe > DE for all). To further characterize DECe toxicity, rats in a second study were exposed to filtered air or DECe for 5 h/day for 2 days or 4 weeks. Tissue analysis indicated a concentration- and time-dependent accumulation of lung and liver cerium followed by a delayed clearance. The gas-phase and high concentration of DECe increased lung inflammation at the 2-day time point, indicating that gas-phase components, in addition to particles, contribute to pulmonary toxicity. This effect was reduced at 4 weeks except for a sustained increase in BALF γ-glutamyl transferase activity. Histopathology and transmission electron microscopy revealed increased alveolar septa thickness due to edema and increased numbers of pigmented macrophages after DECe exposure. Collectively, these findings indicate that DECe induces more adverse pulmonary effects on a mass basis than DE. In addition, lung accumulation of cerium, systemic translocation to the liver, and delayed clearance are added concerns to existing health effects of DECe. PMID:25239632

  18. Inhaled diesel emissions generated with cerium oxide nanoparticle fuel additive induce adverse pulmonary and systemic effects.

    PubMed

    Snow, Samantha J; McGee, John; Miller, Desinia B; Bass, Virginia; Schladweiler, Mette C; Thomas, Ronald F; Krantz, Todd; King, Charly; Ledbetter, Allen D; Richards, Judy; Weinstein, Jason P; Conner, Teri; Willis, Robert; Linak, William P; Nash, David; Wood, Charles E; Elmore, Susan A; Morrison, James P; Johnson, Crystal L; Gilmour, Matthew Ian; Kodavanti, Urmila P

    2014-12-01

    Diesel exhaust (DE) exposure induces adverse cardiopulmonary effects. Cerium oxide nanoparticles added to diesel fuel (DECe) increases fuel burning efficiency but leads to altered emission characteristics and potentially altered health effects. Here, we evaluated whether DECe results in greater adverse pulmonary effects compared with DE. Male Sprague Dawley rats were exposed to filtered air, DE, or DECe for 5 h/day for 2 days. N-acetyl glucosaminidase activity was increased in bronchial alveolar lavage fluid (BALF) of rats exposed to DECe but not DE. There were also marginal but insignificant increases in several other lung injury biomarkers in both exposure groups (DECe > DE for all). To further characterize DECe toxicity, rats in a second study were exposed to filtered air or DECe for 5 h/day for 2 days or 4 weeks. Tissue analysis indicated a concentration- and time-dependent accumulation of lung and liver cerium followed by a delayed clearance. The gas-phase and high concentration of DECe increased lung inflammation at the 2-day time point, indicating that gas-phase components, in addition to particles, contribute to pulmonary toxicity. This effect was reduced at 4 weeks except for a sustained increase in BALF γ-glutamyl transferase activity. Histopathology and transmission electron microscopy revealed increased alveolar septa thickness due to edema and increased numbers of pigmented macrophages after DECe exposure. Collectively, these findings indicate that DECe induces more adverse pulmonary effects on a mass basis than DE. In addition, lung accumulation of cerium, systemic translocation to the liver, and delayed clearance are added concerns to existing health effects of DECe.

  19. Inhaled Diesel Emissions Generated with Cerium Oxide Nanoparticle Fuel Additive Induce Adverse Pulmonary and Systemic Effects

    EPA Science Inventory

    Diesel exhaust (DE) exposure induces adverse cardiopulmonary effects. Cerium oxide nanoparticles added to diesel fuel (DECe) increases fuel burning efficiency but leads to altered emission characteristics and potentially altered health effects. Here, we evaluated whether DECe res...

  20. Influence of tall oil biodiesel with Mg and Mo based fuel additives on diesel engine performance and emission.

    PubMed

    Keskin, Ali; Gürü, Metin; Altiparmak, Duran

    2008-09-01

    The purpose of this study is to investigate influences of tall oil biodiesel with Mg and Mo based fuel additives on diesel engine performance and emission. Tall oil resinic acids were reacted with MgO and MoO(2) stoichiometrically for the production of metal-based fuel additives (combustion catalysts). The metal-based additives were added into tall oil biodiesel (B60) at the rate of 4 micromol/l, 8 micromol/l and 12 micromol/l for preparing test fuels. In general, both of the metal-based additives improved flash point, pour point and viscosity of the biodiesel fuel, depending on the rate of additives. A single cylinder DI diesel engine was used in the tests. Engine performance values did not change significantly with biodiesel fuels, but exhaust emission profile was improved. CO emissions and smoke opacity decreased by 56.42% and by 30.43%, respectively. In general, low NO(x) and CO(2) emissions were measured with the biodiesel fuels.

  1. Acute toxicity evaluation of JP-8 jet fuel and JP-8 jet fuel containing additives. Final report, November 1995-February 1996

    SciTech Connect

    Wolfe, R.E.; Kinead, E.R.; Feldmann, M.L.; Leahy, H.F.; Jederberg, W.W.

    1996-11-01

    To reduce fuel fouling in current U.S Navy and Air Force aircraft systems and to provide additional heat sink and thermal stability for future systems, the Air Force is developing an improved JP-8 jet fuel (JP-8 + 100). Two companies (Betz and Mobil) have developed additive packages that are currently being tested in aircraft systems. To determine if the additive packages will produce health effects for flightline personnel, acute testing was performed on JP-8 and the two JP-8 + 100 jet fuels. A single oral dose at 5 mg jet fuel/kg body weight to five male and five female F-344 rats, and a single dermal application of 2 g jet fuel/kg body weight applied to five male and five female NZW rabbits resulted in no deaths. No signs of toxic stress were observed, and all animals gained weight over the 14-day observation periods. Single treatment of 0.5 mL neat jet fuel to rabbit skin produced negative results for skin irritation. Guinea pigs tailed to elicit a sensitization response following repeated applications of the jet fuels. Inhalation vapor exposure to JP-8, JP-8 + 100 (Betz), and JP-8 (Mobil) were determined to be >3.43, >3.52, and >3.57 mg/L, respectively. LD% values for aerosol exposure to JP-8, JP-8 + 100 (Betz), and JP-8 + 100 (Mobil) were >4.44, >4.39, and >4.54 mg/L, respectively. Under the conditions of these tests, the additive packages did not potentiate the acute effects normally associated with JP-8 jet fuel exposures.

  2. Plant for producing an oxygen-containing additive as an ecologically beneficial component for liquid motor fuels

    DOEpatents

    Siryk, Yury Paul; Balytski, Ivan Peter; Korolyov, Volodymyr George; Klishyn, Olexiy Nick; Lnianiy, Vitaly Nick; Lyakh, Yury Alex; Rogulin, Victor Valery

    2013-04-30

    A plant for producing an oxygen-containing additive for liquid motor fuels comprises an anaerobic fermentation vessel, a gasholder, a system for removal of sulphuretted hydrogen, and a hotwell. The plant further comprises an aerobic fermentation vessel, a device for liquid substance pumping, a device for liquid aeration with an oxygen-containing gas, a removal system of solid mass residue after fermentation, a gas distribution device; a device for heavy gases utilization; a device for ammonia adsorption by water; a liquid-gas mixer; a cavity mixer, a system that serves superficial active and dispersant matters and a cooler; all of these being connected to each other by pipelines. The technical result being the implementation of a process for producing an oxygen containing additive, which after being added to liquid motor fuels, provides an ecologically beneficial component for motor fuels by ensuring the stability of composition fuel properties during long-term storage.

  3. Process for producing biodiesel, lubricants, and fuel and lubricant additives in a critical fluid medium

    SciTech Connect

    Ginosar, Daniel M.; Fox, Robert V.

    2005-05-03

    A process for producing alkyl esters useful in biofuels and lubricants by transesterifying glyceride- or esterifying free fatty acid-containing substances in a single critical phase medium is disclosed. The critical phase medium provides increased reaction rates, decreases the loss of catalyst or catalyst activity and improves the overall yield of desired product. The process involves the steps of dissolving an input glyceride- or free fatty acid-containing substance with an alcohol or water into a critical fluid medium; reacting the glyceride- or free fatty acid-containing substance with the alcohol or water input over either a solid or liquid acidic or basic catalyst and sequentially separating the products from each other and from the critical fluid medium, which critical fluid medium can then be recycled back in the process. The process significantly reduces the cost of producing additives or alternatives to automotive fuels and lubricants utilizing inexpensive glyceride- or free fatty acid-containing substances, such as animal fats, vegetable oils, rendered fats, and restaurant grease.

  4. 77 FR 66074 - Regulation of Fuel and Fuel Additives: Modification to Octamix Waiver (TOLAD MFA-10A)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-01

    ... gasoline- alcohol fuel, OCTAMIX.\\2\\ \\1\\ EPA-HQ-OAR-2011-0894-0001. \\2\\ 77 FR 35677. In that June 14, 2012... January 20, 2012, EPA published a notice in the Federal Register (77 FR 2979) announcing receipt of Baker... final decision, see the Unit IV, in the Federal Register of June 14, 2012.\\6\\ \\6\\ 77 FR 35679....

  5. A fundamental study of the oxidation behavior of SI primary reference fuels with propionaldehyde and DTBP as an additive

    NASA Astrophysics Data System (ADS)

    Johnson, Rodney

    In an effort to combine the benefits of SI and CI engines, Homogeneous Charge Compression Ignition (HCCI) engines are being developed. HCCI combustion is achieved by controlling the temperature, pressure, and composition of the fuel and air mixture so that autoignition occurs in proper phasing with the piston motion. This control system is fundamentally more challenging than using a spark plug or fuel injector to determine ignition timing as in SI and CI engines, respectively. As a result, this is a technical barrier that must be overcome to make HCCI engines applicable to a wide range of vehicles and viable for high volume production. One way to tailor the autoignition timing is to use small amounts of ignition enhancing additives. In this study, the effect of the addition of DTBP and propionaldehyde on the autoignition behavior of SI primary reference fuels was investigated. The present work was conducted in a new research facility built around a single cylinder Cooperative Fuels Research (CFR) octane rating engine but modified to run in HCCI mode. It focused on the effect of select oxygenated hydrocarbons on hydrocarbon fuel oxidation, specifically, the primary reference fuels n-heptane and iso-octane. This work was conducted under HCCI operating conditions. Previously, the operating parameters for this engine were validated for stable combustion under a wide range of operating parameters such as engine speeds, equivalence ratios, compression ratios and inlet manifold temperature. The stable operating range under these conditions was recorded and used for the present study. The major focus of this study was to examine the effect of the addition of DTBP or propionaldehyde on the oxidation behavior of SI primary reference fuels. Under every test condition the addition of the additives DTBP and propionaldehyde caused a change in fuel oxidation. DTBP always promoted fuel oxidation while propionaldehyde promoted oxidation for lower octane number fuels and delayed

  6. Additional Studies of the Criticality Safety of Failed Used Nuclear Fuel

    SciTech Connect

    Marshall, William BJ J; Wagner, John C

    2013-01-01

    Commercial used nuclear fuel (UNF) in the United States is expected to remain in storage for periods potentially greater than 40 years. Extended storage (ES) time and irradiation to high-burnup values (>45 GWd/t) may increase the potential for fuel failure during normal and accident conditions involving storage and transportation. Fuel failure, depending on the severity, could result in changes to the geometric configuration of the fuel, which has safety and regulatory implications. The likelihood and extent of fuel reconfiguration and its impact on the safety of the UNF is not well understood. The objective of this work is to assess and quantify the impact of fuel reconfiguration due to fuel failure on criticality safety of UNF in storage and transportation casks. Criticality analyses are conducted considering representative UNF designs covering a range of enrichments and burnups in multiple cask systems. Prior work developed a set of failed fuel configuration categories and specific configurations were evaluated to understand trends and quantify the consequences of worst-case potential reconfiguration progressions. These results will be summarized here and indicate that the potential impacts on subcriticality can be rather significant for certain configurations (e.g., >20% keff). It can be concluded that the consequences of credible fuel failure configurations from ES or transportation following ES are manageable (e.g., <5% keff). The current work expands on these efforts and examines some modified scenarios and modified approaches to investigate the effectiveness of some techniques for reducing the calculated increase in keff. The areas included here are more realistic modeling of some assembly types and the effect of reconfiguration of some assemblies in the storage and transportation canister.

  7. Investigation of fuel-additive effects on sooting flames. Annual technical report, 1 June 1987-31 May 1988

    SciTech Connect

    Bonczyk, P.A.

    1988-06-30

    The objective of this research is to clarify the mechanisms responsible for the suppression of soot in flames by fuel additives. Measurements are limited to well-defined hydrocarbon air prevaporized liquid- and gaseous-fueled flames. Gas-phase hydrocarbon species measurements were made in an axisymmetric prevaporized iso-octane/air diffusion flame with and without ferrocene present as a fuel additive. The concentrations have been determined using quartz probe sampling and chromatographic analysis. Of the roughly twenty species detected, most were unaffected by the ferrocene. Expections were C2H2 and H2 which showed a decrease and increase, respectively, with ferrocene seeding. Solid effluent was collected and analyzed by ESCA (Electron Scattering for Chemical Analysis) for the seeded flame. For seeding levels sufficient to suppress a soot plume, the effluent was hematite.

  8. 76 FR 33121 - List of Approved Spent Fuel Storage Casks: HI-STORM Flood/Wind Addition

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-08

    ... was published in the Federal Register on March 28, 2011 (76 FR 17019). This direct final rule amended....gov . SUPPLEMENTARY INFORMATION: On March 28, 2011 (76 FR 17019), the NRC published a direct final... 3150-AI90 List of Approved Spent Fuel Storage Casks: HI-STORM Flood/Wind Addition AGENCY:...

  9. 40 CFR 80.620 - What are the additional requirements for diesel fuel or distillates produced by foreign...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., diesel fuel additives or blendstock, dyes and chemical markers and interviewing employees. (vii) Any.... 7413). (k) Bond posting. Any foreign refiner shall meet the requirements of this paragraph (k) as a... shall post a bond of the amount calculated using the following equation: Bond = G × $ 0.01 Where:...

  10. 40 CFR 80.620 - What are the additional requirements for diesel fuel or distillates produced by foreign...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., diesel fuel additives or blendstock, dyes and chemical markers and interviewing employees. (vii) Any.... 7413). (k) Bond posting. Any foreign refiner shall meet the requirements of this paragraph (k) as a... shall post a bond of the amount calculated using the following equation: Bond = G × $ 0.01 Where:...

  11. 40 CFR 80.620 - What are the additional requirements for diesel fuel or distillates produced by foreign...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., diesel fuel additives or blendstock, dyes and chemical markers and interviewing employees. (vii) Any.... 7413). (k) Bond posting. Any foreign refiner shall meet the requirements of this paragraph (k) as a... shall post a bond of the amount calculated using the following equation: Bond = G × $ 0.01 Where:...

  12. 40 CFR 80.620 - What are the additional requirements for diesel fuel or distillates produced by foreign...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., diesel fuel additives or blendstock, dyes and chemical markers and interviewing employees. (vii) Any.... 7413). (k) Bond posting. Any foreign refiner shall meet the requirements of this paragraph (k) as a... shall post a bond of the amount calculated using the following equation: Bond = G × $ 0.01 Where:...

  13. A Thrust and Impulse Study of Guanidinium Azo-Tetrazolate as an Additive for Hybrid Rocket Fuel

    NASA Astrophysics Data System (ADS)

    Patton, J.; Wright, A. M.; Dunn, L.; Alford, B.

    2000-03-01

    A thrust and impulse study of the hybrid rocket fuel additive Guanidinium Azo-Tetrazolate (GAT) was conducted at the University of Arkansas at Little Rock (UALR) Hybrid Rocket Facility. GAT is an organic salt with a high percentage of nitrogen. GAT was mixed with the standard hybrid rocket fuel, Hydroxyl-Terminated Polybutadiene (HTPB), in the concentration of 15%, by mass. The fuel grains with the GAT additive were fired for 4 second runs with the oxygen flows of 0.05, 0.07, 0.09, and 0.12 lbm/sec. For each run average thrust, total impulse, and specific impulse were measured. Average thrust, specific impulse, and total impulse vs. oxygen flow were plotted. Similar data was collected for plain HTPB/PAPI fuels for comparison. GAT was found to increase the thrust output when it was added to the standard hybrid rocket fuel, HTPB. GAT also increased the total impulse during the run. The thrust and total impulse were increased at all flows, but especially at the lower oxygen flow rates. Specific impulse only increased during the lower oxygen flow runs, and decreased slightly for the higher oxygen flow runs.

  14. NOx reduction in diesel fuel flames by additions of water and CO{sub 2}

    SciTech Connect

    Li, S.C.

    1997-12-31

    Natural gas has the highest heating value per unit mass (50.1 MJ/kg, LHV) of any of the hydrocarbon fuels (e.g., butane, liquid diesel fuel, gasoline, etc.). Since it has the lowest carbon content per unit mass, combustion of natural gas produces much less carbon dioxide, soot particles, and oxide of nitrogen than combustion of liquid diesel fuel. In view of anticipated strengthening of regulations on pollutant emissions from diesel engines, alternative fuels, such as compressed natural gas (CNG) and liquefied natural gas (LNG) have been experimentally introduced to replace the traditional diesel fuels in heavy-duty trucks, transit buses, off-road vehicles, locomotives, and stationary engines. To help in applying natural gas in Diesel engines and increasing combustion efficiency, the emphasis of the present paper is placed on the detailed flame chemistry of methane-air combustion. The present work is the continued effort in finding better methods to reduce NO{sub x}. The goal is to identify a reliable chemical reaction mechanism for natural gas in both premixed and diffusion flames and to establish a systematic reduced mechanism which may be useful for large-scale numerical modeling of combustion behavior in natural gas engines.

  15. Emissions from a Diesel Engine using Fe-based Fuel Additives and a Sintered Metal Filtration System.

    PubMed

    Bugarski, Aleksandar D; Hummer, Jon A; Stachulak, Jozef S; Miller, Arthur; Patts, Larry D; Cauda, Emanuele G

    2016-03-01

    A series of laboratory tests were conducted to assess the effects of Fe-containing fuel additives on aerosols emitted by a diesel engine retrofitted with a sintered metal filter (SMF) system. Emission measurements performed upstream and downstream of the SMF system were compared, for cases when the engine was fueled with neat ultralow sulfur diesel (ULSD) and with ULSD treated with two formulations of additives containing Fe-based catalysts. The effects were assessed for four steady-state engine operating conditions and one transient cycle. The results showed that the SMF system reduced the average total number and surface area concentrations of aerosols by more than 100-fold. The total mass and elemental carbon results confirmed that the SMF system was indeed very effective in the removal of diesel aerosols. When added at the recommended concentrations (30 p.p.m. of iron), the tested additives had minor adverse impacts on the number, surface area, and mass concentrations of filter-out (FOut) aerosols. For one of the test cases, the additives may have contributed to measurable concentrations of engine-out (EOut) nucleation mode aerosols. The additives had only a minor impact on the concentration and size distribution of volatile and semi-volatile FOut aerosols. Metal analysis showed that the introduction of Fe with the additives substantially increased Fe concentration in the EOut, but the SMF system was effective in removal of Fe-containing aerosols. The FOut Fe concentrations for all three tested fuels were found to be much lower than the corresponding EOut Fe concentrations for the case of untreated ULSD fuel. The results support recommendations that these additives should not be used in diesel engines unless they are equipped with exhaust filtration systems. Since the tested SMF system was found to be very efficient in removing Fe introduced by the additives, the use of these additives should not result in a measurable increase in emissions of de novo generated

  16. Emissions from a Diesel Engine using Fe-based Fuel Additives and a Sintered Metal Filtration System.

    PubMed

    Bugarski, Aleksandar D; Hummer, Jon A; Stachulak, Jozef S; Miller, Arthur; Patts, Larry D; Cauda, Emanuele G

    2016-03-01

    A series of laboratory tests were conducted to assess the effects of Fe-containing fuel additives on aerosols emitted by a diesel engine retrofitted with a sintered metal filter (SMF) system. Emission measurements performed upstream and downstream of the SMF system were compared, for cases when the engine was fueled with neat ultralow sulfur diesel (ULSD) and with ULSD treated with two formulations of additives containing Fe-based catalysts. The effects were assessed for four steady-state engine operating conditions and one transient cycle. The results showed that the SMF system reduced the average total number and surface area concentrations of aerosols by more than 100-fold. The total mass and elemental carbon results confirmed that the SMF system was indeed very effective in the removal of diesel aerosols. When added at the recommended concentrations (30 p.p.m. of iron), the tested additives had minor adverse impacts on the number, surface area, and mass concentrations of filter-out (FOut) aerosols. For one of the test cases, the additives may have contributed to measurable concentrations of engine-out (EOut) nucleation mode aerosols. The additives had only a minor impact on the concentration and size distribution of volatile and semi-volatile FOut aerosols. Metal analysis showed that the introduction of Fe with the additives substantially increased Fe concentration in the EOut, but the SMF system was effective in removal of Fe-containing aerosols. The FOut Fe concentrations for all three tested fuels were found to be much lower than the corresponding EOut Fe concentrations for the case of untreated ULSD fuel. The results support recommendations that these additives should not be used in diesel engines unless they are equipped with exhaust filtration systems. Since the tested SMF system was found to be very efficient in removing Fe introduced by the additives, the use of these additives should not result in a measurable increase in emissions of de novo generated

  17. Emissions from a Diesel Engine using Fe-based Fuel Additives and a Sintered Metal Filtration System

    PubMed Central

    Bugarski, Aleksandar D.; Hummer, Jon A.; Stachulak, Jozef S.; Miller, Arthur; Patts, Larry D.; Cauda, Emanuele G.

    2015-01-01

    A series of laboratory tests were conducted to assess the effects of Fe-containing fuel additives on aerosols emitted by a diesel engine retrofitted with a sintered metal filter (SMF) system. Emission measurements performed upstream and downstream of the SMF system were compared, for cases when the engine was fueled with neat ultralow sulfur diesel (ULSD) and with ULSD treated with two formulations of additives containing Fe-based catalysts. The effects were assessed for four steady-state engine operating conditions and one transient cycle. The results showed that the SMF system reduced the average total number and surface area concentrations of aerosols by more than 100-fold. The total mass and elemental carbon results confirmed that the SMF system was indeed very effective in the removal of diesel aerosols. When added at the recommended concentrations (30 p.p.m. of iron), the tested additives had minor adverse impacts on the number, surface area, and mass concentrations of filter-out (FOut) aerosols. For one of the test cases, the additives may have contributed to measurable concentrations of engine-out (EOut) nucleation mode aerosols. The additives had only a minor impact on the concentration and size distribution of volatile and semi-volatile FOut aerosols. Metal analysis showed that the introduction of Fe with the additives substantially increased Fe concentration in the EOut, but the SMF system was effective in removal of Fe-containing aerosols. The FOut Fe concentrations for all three tested fuels were found to be much lower than the corresponding EOut Fe concentrations for the case of untreated ULSD fuel. The results support recommendations that these additives should not be used in diesel engines unless they are equipped with exhaust filtration systems. Since the tested SMF system was found to be very efficient in removing Fe introduced by the additives, the use of these additives should not result in a measurable increase in emissions of de novo generated

  18. EFFECT OF NITRATE ADDITION ON BIORESTORATION OF FUEL-CONTAMINATED AQUIFER: FIELD DEMONSTRATION

    EPA Science Inventory

    A spill of JP-4 jet fuel at the U.S. Coast Guard Air Station in Traverse City, Michigan, contaminated a water-table aquifer. An infiltration gallery (30 ft × 30 ft) was installed above a section of the aquifer containing 700 gal JP-4. Purge wells recirculated three million gallon...

  19. Sodium borohydride as an additive to enhance the performance of direct ethanol fuel cells

    NASA Astrophysics Data System (ADS)

    Wang, Lianqin; Bambagioni, Valentina; Bevilacqua, Manuela; Bianchini, Claudio; Filippi, Jonathan; Lavacchi, Alessandro; Marchionni, Andrea; Vizza, Francesco; Fang, Xiang; Shen, Pei Kang

    The effect of adding small quantities (0.1-1 wt.%) of sodium borohydride (NaBH 4) to the anolyte solution of direct ethanol fuel cells (DEFCs) with membrane-electrode assemblies constituted by nanosized Pd/C anode, Fe-Co cathode and anion-exchange membrane (Tokuyama A006) was investigated by means of various techniques. These include cyclic voltammetry, in situ FTIR spectroelectrochemistry, a study of the performance of monoplanar fuel cells and an analysis of the ethanol oxidation products. A comparison with fuel cells fed with aqueous solutions of ethanol proved unambiguously the existence of a promoting effect of NaBH 4 on the ethanol oxidation. Indeed, the potentiodynamic curves of the ethanol-NaBH 4 mixtures showed higher power and current densities, accompanied by a remarkable increase in the fuel consumption at comparable working time of the cell. A 13C and 11B { 1H}NMR analysis of the cell exhausts and an in situ FTIR spectroelectrochemical study showed that ethanol is converted selectively to acetate while the oxidation product of NaBH 4 is sodium metaborate (NaBO 2). The enhancement of the overall cell performance has been explained in terms of the ability of NaBH 4 to reduce the PdO layer on the catalyst surface.

  20. 76 FR 39477 - Revisions and Additions to Motor Vehicle Fuel Economy Label

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-06

    ...-forming emissions, and projected fuel costs and savings, and also includes a smartphone interactive code...., confidential business information (CBI) or other information whose disclosure is restricted by statute. Certain... Economy ARB California Air Resources Board CBI Confidential Business Information CD Charge Depleting...

  1. Fuel and lubricant additives from acid treated mixtures of vegetable oil derived amides and esters

    SciTech Connect

    Bonazza, B.R.; Devault, A.N.

    1981-05-26

    Vegetable oils such as corn oil, peanut oil, and soy oil are reacted with polyamines to form a mixture containing amides, imides, half esters, and glycerol with subsequent treatment with a strong acid such as sulfonic acid to produce a product mix that has good detergent properties in fuels and lubricants.

  2. Near-Road Modeling and Measurement of Particles Generated by Nanoparticle Diesel Fuel Additive Use

    EPA Science Inventory

    Cerium oxide (ceria) nanoparticles (n-Ce) are used as a fuel-borne catalyst in diesel engines to reduce particulate emissions, yet the environmental and human health impacts of the ceria-doped diesel exhaust aerosols are not well understood. To bridge the gap between emission mea...

  3. Fire in the Amazon: impact of experimental fuel addition on responses of ants and their interactions with myrmecochorous seeds.

    PubMed

    Paolucci, Lucas N; Maia, Maria L B; Solar, Ricardo R C; Campos, Ricardo I; Schoereder, José H; Andersen, Alan N

    2016-10-01

    The widespread clearing of tropical forests causes lower tree cover, drier microclimate, and higher and drier fuel loads of forest edges, increasing the risk of fire occurrence and its intensity. We used a manipulative field experiment to investigate the influence of fire and fuel loads on ant communities and their interactions with myrmecochorous seeds in the southern Amazon, a region currently undergoing extreme land-use intensification. Experimental fires and fuel addition were applied to 40 × 40-m plots in six replicated blocks, and ants were sampled between 15 and 30 days after fires in four strata: subterranean, litter, epigaeic, and arboreal. Fire had extensive negative effects on ant communities. Highly specialized cryptobiotic and predator species of the litter layer and epigaeic specialist predators were among the most sensitive, but we did not find evidence of overall biotic homogenization following fire. Fire reduced rates of location and transport of myrmecochorous seeds, and therefore the effectiveness of a key ecosystem service provided by ants, which we attribute to lower ant abundance and increased thermal stress. Experimental fuel addition had only minor effects on attributes of fire severity, and limited effects on ant responses to fire. Our findings indicate that enhanced fuel loads will not decrease ant diversity and ecosystem services through increased fire severity, at least in wetter years. However, higher fuel loads can still have a significant effect on ants from Amazonian rainforests because they increase the risk of fire occurrence, which has a detrimental impact on ant communities and a key ecosystem service they provide.

  4. Fire in the Amazon: impact of experimental fuel addition on responses of ants and their interactions with myrmecochorous seeds.

    PubMed

    Paolucci, Lucas N; Maia, Maria L B; Solar, Ricardo R C; Campos, Ricardo I; Schoereder, José H; Andersen, Alan N

    2016-10-01

    The widespread clearing of tropical forests causes lower tree cover, drier microclimate, and higher and drier fuel loads of forest edges, increasing the risk of fire occurrence and its intensity. We used a manipulative field experiment to investigate the influence of fire and fuel loads on ant communities and their interactions with myrmecochorous seeds in the southern Amazon, a region currently undergoing extreme land-use intensification. Experimental fires and fuel addition were applied to 40 × 40-m plots in six replicated blocks, and ants were sampled between 15 and 30 days after fires in four strata: subterranean, litter, epigaeic, and arboreal. Fire had extensive negative effects on ant communities. Highly specialized cryptobiotic and predator species of the litter layer and epigaeic specialist predators were among the most sensitive, but we did not find evidence of overall biotic homogenization following fire. Fire reduced rates of location and transport of myrmecochorous seeds, and therefore the effectiveness of a key ecosystem service provided by ants, which we attribute to lower ant abundance and increased thermal stress. Experimental fuel addition had only minor effects on attributes of fire severity, and limited effects on ant responses to fire. Our findings indicate that enhanced fuel loads will not decrease ant diversity and ecosystem services through increased fire severity, at least in wetter years. However, higher fuel loads can still have a significant effect on ants from Amazonian rainforests because they increase the risk of fire occurrence, which has a detrimental impact on ant communities and a key ecosystem service they provide. PMID:27206792

  5. Investigation of fuel-additive effects on sooting flames. Final report, 1 June 1986-31 May 1989

    SciTech Connect

    Bonczyk, P.A.

    1989-07-28

    Research was conducted to clarify the mechanisms responsible for the suppression of soot in flames by selected fuel additives. Measurements were limited to well-defined prevaporized liquid- and gaseous-fueled hydrocarbon/air flames. Emphasis was given to ferrocene in a diffusion flame fueled by prevaporized iso-octane, as well as to alkali and alkaline-earth additives in premixed ethylene/air flames. Nonperturbing laser optical diagnostic techniques were used to measure flame temperature, as well as to relate changes in soot particulate size, number density, and volume fraction to additive type and concentration. Quartz probe sampling and gas chromatography were used to determine the additive's effect on soot precursor hydrocarbon and other species. For the diffusion flame, the time of the first appearance of soot is shortened when ferrocene is present. Following its appearance, the particulate's size and number density are perturbed by ferrocene. Ferrocene accelerates acetylene oxidation. Ferrocene is very effective at late stages, appearing to enhance soot burnout. Attempts were not successful to find iron occluded by soot as a possible mechanism of enhanced soot oxidation. Alkali metals were effective.

  6. Formulation, Casting, and Evaluation of Paraffin-Based Solid Fuels Containing Energetic and Novel Additives for Hybrid Rockets

    NASA Technical Reports Server (NTRS)

    Larson, Daniel B.; Desain, John D.; Boyer, Eric; Wachs, Trevor; Kuo, Kenneth K.; Borduin, Russell; Koo, Joseph H.; Brady, Brian B.; Curtiss, Thomas J.; Story, George

    2012-01-01

    This investigation studied the inclusion of various additives to paraffin wax for use in a hybrid rocket motor. Some of the paraffin-based fuels were doped with various percentages of LiAlH4 (up to 10%). Addition of LiAlH4 at 10% was found to increase regression rates between 7 - 10% over baseline paraffin through tests in a gaseous oxygen hybrid rocket motor. Mass burn rates for paraffin grains with 10% LiAlH4 were also higher than those of the baseline paraffin. RDX was also cast into a paraffin sample via a novel casting process which involved dissolving RDX into dimethylformamide (DMF) solvent and then drawing a vacuum on the mixture of paraffin and RDX/DMF in order to evaporate out the DMF. It was found that although all DMF was removed, the process was not conducive to generating small RDX particles. The slow boiling generated an inhomogeneous mixture of paraffin and RDX. It is likely that superheating the DMF to cause rapid boiling would likely reduce RDX particle sizes. In addition to paraffin/LiAlH4 grains, multi-walled carbon nanotubes (MWNT) were cast in paraffin for testing in a hybrid rocket motor, and assorted samples containing a range of MWNT percentages in paraffin were imaged using SEM. The fuel samples showed good distribution of MWNT in the paraffin matrix, but the MWNT were often agglomerated, indicating that a change to the sonication and mixing processes were required to achieve better uniformity and debundled MWNT. Fuel grains with MWNT fuel grains had slightly lower regression rate, likely due to the increased thermal conductivity to the fuel subsurface, reducing the burning surface temperature.

  7. Dry additives-reduction catalysts for flue waste gases originating from the combustion of solid fuels

    SciTech Connect

    1995-12-31

    Hard coal is the basic energy generating raw material in Poland. In 1990, 60% of electricity and thermal energy was totally obtained from it. It means that 100 million tons of coal were burned. The second position is held by lignite - generating 38% of electricity and heat (67.3 million tons). It is to be underlined that coal combustion is particularly noxious to the environment. The coal composition appreciably influences the volume of pollution emitted in the air. The contents of incombustible mineral parts - ashes - oscillates from 2 to 30%; only 0.02 comes from plants that had once originated coal and cannot be separated in any way. All the rest, viz. the so-called external mineral substance enters the fuel while being won. The most indesirable hard coal ingredient is sulfur whose level depends on coal sorts and its origin. The worse the fuel quality, the more sulfur it contains. In the utilization process of this fuel, its combustible part is burnt: therefore, sulfur dioxide is produced. At the present coal consumption, the SO{sub 2} emission reaches the level of 3.2 million per year. The intensifies the pressure on working out new coal utilization technologies, improving old and developing of pollution limiting methods. Research is also directed towards such an adaptation of technologies in order that individual users may also make use thereof (household furnaces) as their share in the pollution emission is considerable.

  8. Combustion characteristics of fuel droplets with addition of nano and micron-sized aluminum particles

    SciTech Connect

    Gan, Yanan; Qiao, Li

    2011-02-15

    The burning characteristics of fuel droplets containing nano and micron-sized aluminum particles were investigated. Particle size, surfactant concentration, and the type of base fluid were varied. In general, nanosuspensions can last much longer than micron suspensions, and ethanol-based fuels were found to achieve much better suspension than n-decane-based fuels. Five distinctive stages (preheating and ignition, classical combustion, microexplosion, surfactant flame, and aluminum droplet flame) were identified for an n-decane/nano-Al droplet, while only the first three stages occurred for an n-decane/micron-Al droplet. For the same solid loading rate and surfactant concentration, the disruption and microexplosion behavior of the micron suspension occurred later with much stronger intensity. The intense droplet fragmentation was accompanied by shell rupture, which caused a massive explosion of particles, and most of them were burned during this event. On the contrary, for the nanosuspension, combustion of the large agglomerate at the later stage requires a longer time and is less complete because of formation of an oxide shell on the surface. This difference is mainly due to the different structure and characteristics of particle agglomerates formed during the early stage, which is a spherical, porous, and more-uniformly distributed aggregate for the nanosuspension, but it is a densely packed and impermeable shell for the micron suspension. A theoretical analysis was then conducted to understand the effect of particle size on particle collision mechanism and aggregation rate. The results show that for nanosuspensions, particle collision and aggregation are dominated by the random Brownian motion. For micron suspensions, however, they are dominated by fluid motion such as droplet surface regression, droplet expansion resulting from bubble formation, and internal circulation. And the Brownian motion is the least important. This theoretical analysis explains the

  9. A SnO2-samarium doped ceria additional anode layer in a direct carbon fuel cell

    NASA Astrophysics Data System (ADS)

    Yu, Baolong; Zhao, Yicheng; Li, Yongdan

    2016-02-01

    The role of a SnO2-samarium doped ceria (SDC) additional anode layer in a direct carbon fuel cell (DCFC) with SDC-(Li0.67Na0.33)2CO3 composite electrolyte and lithiated NiO-SDC-(Li0.67Na0.33)2CO3 composite cathode is investigated and compared with a NiO-SDC extra anode layer. Catalytic grown carbon fiber mixed with (Li0.67Na0.33)2CO3 is used as a fuel. At 750 °C, the maximum power outputs of 192 and 143 mW cm-2 are obtained by the cells with SnO2-SDC and NiO-SDC layers, respectively. In the SnO2-SDC layer, the reduction of SnO2 and the oxidation of Sn happen simultaneously during the cell operation, and the Sn/SnO2 redox cycle provides an additional route for fuel conversion. The formation of an insulating dense interlayer between the anode and electrolyte layers, which usually happens in DCFCs with metal anodes, is avoided in the cell with the SnO2-SDC layer, and the stability of the cell is improved consequently.

  10. Effect of biodiesel addition on microbial community structure in a simulated fuel storage system.

    PubMed

    Restrepo-Flórez, Juan-Manuel; Bassi, Amarjeet; Rehmann, Lars; Thompson, Michael R

    2013-11-01

    Understanding changes in microbial structure due to biodiesel storage is important both for protecting integrity of storage systems and fuel quality management. In this work a simulated storage system was used to study the effect of biodiesel (0%, 25%, 50%, 75% and 100%) on a microbial population, which was followed by community level physiological profiling (CLPP), 16s rDNA analysis and plating in selective media. Results proved that structure and functionality were affected by biodiesel. CLPP showed at least three populations: one corresponding to diesel, one to biodiesel and one to blends of diesel and biodiesel. Analysis of 16s rDNA revealed that microbial composition was different for populations growing in diesel and biodiesel. Genera identified are known for degradation of hydrocarbons and emulsifier production. Maximum growth was obtained in biodiesel; however, microbial counts in standard media were lower for this samples. Acidification of culture media was observed at high biodiesel concentration.

  11. Improved performance of U-Mo dispersion fuel by Si addition in Al matrix.

    SciTech Connect

    Kim, Y S; Hofman, G L

    2011-06-01

    The purpose of this report is to collect in one publication and fit together work fragments presented in many conferences in the multi-year time span starting 2002 to the present dealing with the problem of large pore formation in U-Mo/Al dispersion fuel plates first observed in 2002. Hence, this report summarizes the excerpts from papers and reports on how we interpreted the relevant results from out-of-pile and in-pile tests and how this problem was dealt with. This report also provides a refined view to explain in detail and in a quantitative manner the underlying mechanism of the role of silicon in improving the irradiation performance of U-Mo/Al.

  12. Understanding the role of multifunctional nanoengineered particulate additives on supercritical pyrolysis and combustion of hydrocarbon fuels/propellants

    NASA Astrophysics Data System (ADS)

    Sim, Hyung Sub

    This dissertation aims to understand the fundamental effects of colloidal nanostructured materials on the supercritical pyrolysis, injection, ignition, and combustion of hydrocarbon fuels/propellants. As a fuel additive, functionalized graphene sheets (FGS) without or with the decoration of metal catalysts, such as platinum (Pt) or polyoxometalates (POM) nanoparticles, were examined against conventional materials including nanometer sized fumed silica and aluminum particles. Supercritical pyrolysis experiments were performed as a function of temperature, residence time, and particle type, using a high pressure and temperature flow reactor designed to provide isothermal and isobaric flow conditions. Supercritical pyrolysis results showed that the addition of FGS-based particles at a loading concentration of 50 ppmw increased the conversion rates and reduced apparent activation energies for methylcyclohexane (MCH) and n-dodecane (n-C12H26) fuels. For example, conversion rates, and formations of C1-C5 n-alkanes and C2-C6 1-alkenes were significantly increased by 43.5 %, 59.1 %, and 50.0 % for MCH decomposition using FGS 19 (50 ppmw) at a temperature of 820 K and reduced pressure of 1.36. In addition, FGS decorated with 20 wt % Pt (20wt%Pt FGS) at a loading concentration of 50 ppmw exhibited additional enhancement in the conversion rate of n-C12H26 by up to 24.0 % compared to FGS. Especially, FGS-based particles seem to alter initiation mechanisms, which could result in higher hydrogen formation. Hydrogen selectivities for both MCH and n-C12H26 decompositions were observed to increase by nearly a factor of 2 and 10, respectively. Supercritical injection and combustion experiments were conducted using a high pressure and temperature windowed combustion chamber coupled to the flow reactor through a feed system. Supercritical injection/combustion experiments indicated that the presence of a small amount of particles (100 ppmw) in the fuel affected the injection, ignition

  13. Nitrogen oxide abatement by distributed fuel addition. Quarterly report No. 2, November 1, 1987--January 31, 1988

    SciTech Connect

    Wendt, J.O.L.; Meraab, J.

    1988-03-25

    The purpose of this project is to develop techniques for nitrogen oxides abatement by distributed fuel addition. The major nitrogen oxide of interest is Nitric Oxide (NO), a precursor to premature forest damage and to acid rain. Recently interest has also been evoked with respect to an additional oxide of nitrogen, namely Nitrous Oxide (N{sub 2}O). Therefore, abatement measures for NO{sub x} are being investigated to determine their influence on N{sub 2}O as well. This report briefly describes the significance of N{sub 2}O emissions to the environment and the urgent need to develop techniques that can reduce emissions of both NO and N{sub 2}O. Reburning through distributed fuel addition may be an effective technique for NO{sub x} (mainly NO) emission control as described in the previous quarterly report. Reburning may also be effective in reducing N{sub 2}O levels. A technique for N{sub 2}O measurement by gas chromatography/electron capture detection was developed during this quarter, and is described in this report. This analysis technique will be used in the proposed experimental study to investigate the effectiveness of reburning on N{sub 2}O control.

  14. 75 FR 58077 - Revisions and Additions to Motor Vehicle Fuel Economy Label

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-23

    ... for model years 2012- 2016.\\8\\ \\8\\ 75 FR 25324, May 7, 2010. The agencies believe these new labeling... FR 25324 (May 7, 2010). Finally, given the goals described above and the need to provide additional...\\ 75 FR 25324, May 7, 2010. D. What are the estimated costs and benefits of the proposed label...

  15. Fuel flexible fuel injector

    DOEpatents

    Tuthill, Richard S; Davis, Dustin W; Dai, Zhongtao

    2015-02-03

    A disclosed fuel injector provides mixing of fuel with airflow by surrounding a swirled fuel flow with first and second swirled airflows that ensures mixing prior to or upon entering the combustion chamber. Fuel tubes produce a central fuel flow along with a central airflow through a plurality of openings to generate the high velocity fuel/air mixture along the axis of the fuel injector in addition to the swirled fuel/air mixture.

  16. Physical characteristics of LWRs and SCLWRs loaded by ({sup 233}U-Th-{sup 238}U) oxide fuel with small additions of {sup 231}Pa

    SciTech Connect

    Kulikov, E.G.; Shmelev, A.N.; Apse, V.A.; Kulikov, G.G.

    2007-07-01

    The paper investigates the possibility and attractiveness of using (U-Th) fuel in light-water reactors (LWRs) and in light-water reactors with super-critical coolant parameters (SCLWRs). It is proposed to dilute {sup 233}U with {sup 238}U to enhance the proliferation resistance of this fissionable isotope. If is noteworthy that she idea was put forward for the first time by she well known American physicist and participant of the Manhattan Project Dr. T. Taylor. Various fuel compositions are analyzed and compared on fuel breeding, achievable values of fuel burn-up and cross-sections of parasitic neutron absorption. It is also demonstrated that small {sup 231}Pa additions (several percent) into the fuel allows: to increase fuel burn-up, to achieve more negative temperature reactivity coefficient of coolant and to enhance nonproliferation of the fuel. (authors)

  17. Multifunctional additives to improve the low-temperature properties of distillate fuels and compositions containing same

    SciTech Connect

    Baillargeon, D.J.; Cardis, A.B.; Heck, D.B.

    1992-10-20

    This patent describes a product of the reaction of benzophenone tetracarboxylic dianhydride or its acid equivalent and an aminoalcohol or mixture of aminoalcohols or a combination of an aminoalcohol or mixture of aminoalcohols and a secondary amine the reactants being reacted in substantially molar, less than molar or more than molar amounts at temperatures varying from about 85[degrees] to about 250[degrees] C under pressures varying from about ambient or autogeneous to slightly higher for a time sufficient to obtain the desired ester or ester/amide additive product of reaction and wherein the aminoalcohol is derived from an olefin epoxide and a secondary amine.

  18. Hazard and risk assessment of a nanoparticulate cerium oxide-based diesel fuel additive - a case study.

    PubMed

    Park, Barry; Donaldson, Kenneth; Duffin, Rodger; Tran, Lang; Kelly, Frank; Mudway, Ian; Morin, Jean-Paul; Guest, Robert; Jenkinson, Peter; Samaras, Zissis; Giannouli, Myrsini; Kouridis, Haris; Martin, Patricia

    2008-04-01

    Envirox is a scientifically and commercially proven diesel fuel combustion catalyst based on nanoparticulate cerium oxide and has been demonstrated to reduce fuel consumption, greenhouse gas emissions (CO(2)), and particulate emissions when added to diesel at levels of 5 mg/L. Studies have confirmed the adverse effects of particulates on respiratory and cardiac health, and while the use of Envirox contributes to a reduction in the particulate content in the air, it is necessary to demonstrate that the addition of Envirox does not alter the intrinsic toxicity of particles emitted in the exhaust. The purpose of this study was to evaluate the safety in use of Envirox by addressing the classical risk paradigm. Hazard assessment has been addressed by examining a range of in vitro cell and cell-free endpoints to assess the toxicity of cerium oxide nanoparticles as well as particulates emitted from engines using Envirox. Exposure assessment has taken data from modeling studies and from airborne monitoring sites in London and Newcastle adjacent to routes where vehicles using Envirox passed. Data have demonstrated that for the exposure levels measured, the estimated internal dose for a referential human in a chronic exposure situation is much lower than the no-observed-effect level (NOEL) in the in vitro toxicity studies. Exposure to nano-size cerium oxide as a result of the addition of Envirox to diesel fuel at the current levels of exposure in ambient air is therefore unlikely to lead to pulmonary oxidative stress and inflammation, which are the precursors for respiratory and cardiac health problems. PMID:18444008

  19. EPA evaluation of the SYNERGY-1 fuel additive under Section 511 of the Motor Vehicle Information and Cost Savings Act. Technical report

    SciTech Connect

    Syria, S.L.

    1981-06-01

    This document announces the conclusions of the EPA evaluation of the 'SYNERGY-1' device under provisions of Section 511 of the Motor Vehicle Information and Cost Savings Act. This additive is intended to improve fuel economy and exhaust emission levels of two and four cycle gasoline fueled engines.

  20. The polychlorinated dibenzofuran fingerprint of iron ore sinter plant: Its persistence with suppressant and alternative fuel addition.

    PubMed

    Thompson, Dennis; Ooi, Tze C; Anderson, David R; Fisher, Ray; Ewan, Bruce C R

    2016-07-01

    An earlier demonstration that the relative concentrations of isomers of polychlorinated dibenzofuran do not vary as the flamefront of an iron ore sinter plant progresses through the bed, and profiles are similar for two sinter strands has been widened to include studies of the similarity or otherwise between full scale strand and sinter pot profiles, effect of addition of suppressants and of coke fuel substitution with other combustible materials. For dioxin suppressant addition, a study of the whole of the tetra- penta- and hexaCDF isomer range as separated by the DB5MS chromatography column, indicates no significant change in profile: examination of the ratios of the targeted penta- and hexaCDF isomers suggests the profile is similarly unaffected by coke fuel replacement. Addition of KCl at varied levels has also been shown to have no effect on the 'fingerprint' and there is no indication of any effect by the composition of the sinter mix. The recently published full elution sequence for the DB5MS column is applied to the results obtained using this column. It is confirmed that isomers with 1,9-substitution of chlorine atoms are invariably formed in low concentrations. This is consistent with strong interaction between the 1 and 9 substituted chlorine atoms predicted by DFT thermodynamic calculations. Non-1,9-substituted PCDF equilibrium isomer distributions based on DFT-derived thermodynamic data differ considerably from stack gas distributions obtained using SP2331 column separation. A brief preliminary study indicates the same conclusions (apart from the 1,9-interaction effect) hold for the much smaller content of PCDD. PMID:27043380

  1. The polychlorinated dibenzofuran fingerprint of iron ore sinter plant: Its persistence with suppressant and alternative fuel addition.

    PubMed

    Thompson, Dennis; Ooi, Tze C; Anderson, David R; Fisher, Ray; Ewan, Bruce C R

    2016-07-01

    An earlier demonstration that the relative concentrations of isomers of polychlorinated dibenzofuran do not vary as the flamefront of an iron ore sinter plant progresses through the bed, and profiles are similar for two sinter strands has been widened to include studies of the similarity or otherwise between full scale strand and sinter pot profiles, effect of addition of suppressants and of coke fuel substitution with other combustible materials. For dioxin suppressant addition, a study of the whole of the tetra- penta- and hexaCDF isomer range as separated by the DB5MS chromatography column, indicates no significant change in profile: examination of the ratios of the targeted penta- and hexaCDF isomers suggests the profile is similarly unaffected by coke fuel replacement. Addition of KCl at varied levels has also been shown to have no effect on the 'fingerprint' and there is no indication of any effect by the composition of the sinter mix. The recently published full elution sequence for the DB5MS column is applied to the results obtained using this column. It is confirmed that isomers with 1,9-substitution of chlorine atoms are invariably formed in low concentrations. This is consistent with strong interaction between the 1 and 9 substituted chlorine atoms predicted by DFT thermodynamic calculations. Non-1,9-substituted PCDF equilibrium isomer distributions based on DFT-derived thermodynamic data differ considerably from stack gas distributions obtained using SP2331 column separation. A brief preliminary study indicates the same conclusions (apart from the 1,9-interaction effect) hold for the much smaller content of PCDD.

  2. Thermal Stability Testing of Fischer-Tropsch Fuel and Various Blends with Jet A, as Well as Aromatic Blend Additives

    NASA Technical Reports Server (NTRS)

    Klettlinger, J.; Rich, R.; Yen, C.; Surgenor, A.

    2011-01-01

    Fischer-Tropsch (F-T) jet fuel composition differs from petroleum-based, conventional commercial jet fuel because of differences in feedstock and production methodology. Fischer-Tropsch fuel typically has a lower aromatic and sulfur content and consists primarily of iso and normal parafins. The ASTM D3241 specification for Jet Fuel Thermal Oxidation Test (JFTOT) break point testing method was used to test the breakpoint of a baseline conventional Jet A, a commercial grade F-T jet fuel, and various blends of this F-T fuel in Jet A. The testing completed in this report was supported by the NASA Fundamental Aeronautics Subsonics Fixed Wing Project.

  3. Evaluation of a zirconium additive for the mitigation of molten ash formation during combustion of residual fuel oil

    SciTech Connect

    1996-12-01

    Florida Power & Light Company (FP&L) currently fires a residual fuel oil (RFO) containing catalyst fines, which results in a troublesome black aluminosilicate liquid phase that forms on heat-transfer surfaces, remains molten, and flows to the bottom of the boiler. When the unit is shut down for a scheduled outage, this liquid phase freezes to a hard black glass that damages the contracting waterwalls of the boiler. Cleaning the boiler bottom and repairing damaged surfaces increase the boiler downtime, at a significant cost to FP&L. The Energy & Environmental Research Center (EERC) proposed to perform a series of tests for FP&L to evaluate the effectiveness of a zirconium additive to modify the mechanism that forms this liquid phase, resulting in the formation of a dry refractory phase that may be easily handled during cleanup of the boiler.

  4. 76 FR 17019 - List of Approved Spent Fuel Storage Casks: HI-STORM Flood/Wind Addition

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-28

    ... part 72, entitled ``General License for Storage of Spent Fuel at Power Reactor Sites'' (55 FR 29181... Reactor (BWR) fuel with high initial enrichment (up to 4.8 weight percent uranium-235 planer average... Pressurized Water Reactor (PWR) basket allowing transportation of 5 weight percent uranium-235 fuel...

  5. Effects of diesel fuel combustion-modifier additives on In-cylinder soot formation in a heavy-duty Dl diesel engine.

    SciTech Connect

    Musculus, Mark P. (Sandia National Laboratories, Livermore, CA); Dietz, Jeff

    2005-07-01

    Based on a phenomenological model of diesel combustion and pollutant-formation processes, a number of fuel additives that could potentially reduce in-cylinder soot formation by altering combustion chemistry have been identified. These fuel additives, or ''combustion modifiers'', included ethanol and ethylene glycol dimethyl ether, polyethylene glycol dinitrate (a cetane improver), succinimide (a dispersant), as well as nitromethane and another nitro-compound mixture. To better understand the chemical and physical mechanisms by which these combustion modifiers may affect soot formation in diesel engines, in-cylinder soot and diffusion flame lift-off were measured, using an optically-accessible, heavy-duty, direct-injection diesel engine. A line-of-sight laser extinction diagnostic was employed to measure the relative soot concentration within the diesel jets (''jetsoot'') as well as the rates of deposition of soot on the piston bowl-rim (''wall-soot''). An OH chemiluminescence imaging technique was utilized to measure the lift-off lengths of the diesel diffusion flames so that fresh oxygen entrainment rates could be compared among the fuels. Measurements were obtained at two operating conditions, using blends of a base commercial diesel fuel with various combinations of the fuel additives. The ethanol additive, at 10% by mass, reduced jet-soot by up to 15%, and reduced wall-soot by 30-40%. The other fuel additives also affected in-cylinder soot, but unlike the ethanol blends, changes in in-cylinder soot could be attributed solely to differences in the ignition delay. No statistically-significant differences in the diesel flame lift-off lengths were observed among any of the fuel additive formulations at the operating conditions examined in this study. Accordingly, the observed differences in in-cylinder soot among the fuel formulations cannot be attributed to differences in fresh oxygen entrainment upstream of the soot-formation zones after ignition.

  6. Soil carbon sequestration in semi-arid soil through the addition of fuel gas desulfurization gypsum (FGDG)

    NASA Astrophysics Data System (ADS)

    Han, Young-Soo; Tokunaga, Tetsu; Oh, Chamteut

    2014-05-01

    This study investigated a new strategy for increasing carbon retention in slightly alkaline soils through addition of fuel gas desulfurization gypsum (FGDG, CaSO4•2H2O). FGDG is moderately soluble and thus the FGDG amendment may be effective to reduce microbial respiration, to accelerate calcite (CaCO3) precipitation, and to promote soil organic carbon (SOC) complexation on mineral surfaces, but rates of these processes need to be understood. The effects of FGDG addition were tested in laboratory soil columns with and without FGDG-amended layers, and in greenhouse soil columns planted with switchgrass, a biofuel crop. The results of laboratory column experiments demonstrated that additions of FGDG promote soil carbon sequestration through suppressing microbial respiration to the extent of ~200 g per m2 soil per m of supplied water, and promoting calcite precipitation at similar rates. The greenhouse experiments showed that the FGDG treatments did not adversely affect biomass yield (~600 g dry biomass/m2/harvest) at the higher irrigation rate (50 cm/year), but substantially reduced recoverable biomass under the more water-limited conditions (irrigation rate = 20 cm/year). The main achievements of this study are (1) the identification of conditions in which inorganic and organic carbon sequestration is practical in semi-arid and arid soils, (2) development of a method for measuring the total carbon balance in unsaturated soil columns, and (3) the quantification of different pathways for soil carbon sequestration in response to FGDG amendments. These findings provide information for evaluating land use practices for increased soil carbon sequestration under semi-arid region biofuel crop production.

  7. Predicting contamination by the fuel additive cerium oxide engineered nanoparticles within the United Kingdom and the associated risks.

    PubMed

    Johnson, Andrew C; Park, Barry

    2012-11-01

    As a fuel additive, cerium oxide nanoparticles may become widely dispersed throughout the environment. Commercial information from the United Kingdom (UK) on the use of cerium oxide nanoparticles was used to perform a modeling and risk assessment exercise. Discharge from exhausts took into account the likely removal by filters fitted to these vehicles. For predicting current soil exposure, scenarios were examined, ranging from dispersion occurring across the entire UK landmass to only within the urban area to only 20 m on either side of road networks. For soils, the highest predicted contamination level was 0.016 mg/kg within 20 m of a road following seven years of continuous deposition. This value would represent 0.027% of reported natural background cerium. If usage were to double for five more years, levels would not be expected to exceed 0.04 mg/kg. River water contamination considered direct aerial deposition and indirect contamination via runoff in the water and entrained soil sediment, with the highest level of 0.02 ng/L predicted. The highest predicted water concentration of 300 ng/L was associated with water draining from a road surface, assuming a restricted deposition spread. These predictions are well below most toxicological levels of concern.

  8. 76 FR 17037 - List of Approved Spent Fuel Storage Casks: HI-STORM Flood/Wind Addition

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-28

    ...; ] NUCLEAR REGULATORY COMMISSION 10 CFR Part 72 RIN 3150-AI90 List of Approved Spent Fuel Storage Casks: HI... regulations to add the HI-STORM Flood/Wind cask system to the ``List of Approved Spent Fuel Storage Casks... 13, 2011. SAR Submitted by: Holtec International, Inc. SAR Title: Safety Analysis Report on the...

  9. Mechanical and Combustion Performance of Multi-Walled Carbon Nanotubes as an Additive to Paraffin-Based Solid Fuels for Hybrid Rockets

    NASA Technical Reports Server (NTRS)

    Larson, Daniel B.; Boyer, Eric; Wachs, Trevor; Kuo, Kenneth, K.; Koo, Joseph H.; Story, George

    2012-01-01

    Paraffin-based solid fuels for hybrid rocket motor applications are recognized as a fastburning alternative to other fuel binders such as HTPB, but efforts to further improve the burning rate and mechanical properties of paraffin are still necessary. One approach that is considered in this study is to use multi-walled carbon nanotubes (MWNT) as an additive to paraffin wax. Carbon nanotubes provide increased electrical and thermal conductivity to the solid-fuel grains to which they are added, which can improve the mass burning rate. Furthermore, the addition of ultra-fine aluminum particles to the paraffin/MWNT fuel grains can enhance regression rate of the solid fuel and the density impulse of the hybrid rocket. The multi-walled carbon nanotubes also present the possibility of greatly improving the mechanical properties (e.g., tensile strength) of the paraffin-based solid-fuel grains. For casting these solid-fuel grains, various percentages of MWNT and aluminum particles will be added to the paraffin wax. Previous work has been published about the dispersion and mixing of carbon nanotubes.1 Another manufacturing method has been used for mixing the MWNT with a phenolic resin for ablative applications, and the manufacturing and mixing processes are well-documented in the literature.2 The cost of MWNT is a small fraction of single-walled nanotubes. This is a scale-up advantage as future applications and projects will require low cost additives to maintain cost effectiveness. Testing of the solid-fuel grains will be conducted in several steps. Dog bone samples will be cast and prepared for tensile testing. The fuel samples will also be analyzed using thermogravimetric analysis and a high-resolution scanning electron microscope (SEM). The SEM will allow for examination of the solid fuel grain for uniformity and consistency. The paraffin-based fuel grains will also be tested using two hybrid rocket test motors located at the Pennsylvania State University s High Pressure

  10. An investigation of the effects of smoke suppressant fuel additives on engine and test cell exhaust gas opacities. Final report for 1981

    SciTech Connect

    Thornburg, D.W.; Darnell, T.R.; Netzer, D.W.

    1982-05-01

    Tests were conducted in a one-eighth scale turbojet test cell with a ramjet type combustor to investigate the effects of fuel additives on smoke reduction. Particle size and mass concentrations were determined at the engine and stack exhausts using three wavelength optical detector systems. Particulate samples were also collected at the engine exhaust and analyzed with a scanning electron microscope. Combustor temperature and fuel additives were found to significantly affect particulate mass concentrations emitted from the engine while particle size appeared to be unaffected. No significant changes in the particulate size or mass occurred from the engine exhaust to the stack exhaust. The optical determination of exhaust mean particulate size/mass concentration with three wavelength optical detector systems appears to be reasonably accurate technique for evaluating the effects of engine and test cell operating conditions and fuel composition changes on the emitted particulates.

  11. 40 CFR 80.620 - What are the additional requirements for diesel fuel or distillates produced by foreign...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... documents that reflect movement and storage of the certified DFR-Diesel from the refinery to the load port... as specified in paragraph (n)(1) of this section, and a description of the diesel fuel's movement and... the United States related to the requirements of this subpart. (3) The forum for any civil or...

  12. 46 CFR 111.105-39 - Additional requirements for vessels carrying vehicles with fuel in their tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... that carries a vehicle with fuel in its tank must meet the requirements of ABS Steel Vessel Rules (incorporated by reference; see 46 CFR 110.10-1), section 5-10-4/3, except as follows: (a) If the ventilation... SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Hazardous Locations §...

  13. 46 CFR 111.105-39 - Additional requirements for vessels carrying vehicles with fuel in their tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... that carries a vehicle with fuel in its tank must meet the requirements of ABS Steel Vessel Rules (incorporated by reference; see 46 CFR 110.10-1), section 5-10-4/3, except as follows: (a) If the ventilation... SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Hazardous Locations §...

  14. Nitrogen oxide abatement by distributed fuel addition. Quarterly report No. 7, February 1, 1989--April 30, 1989

    SciTech Connect

    Wendt, J.O.L.; Mereb, J.B.

    1989-06-20

    A combustor has been designed in order to retard the formation of nitrogen oxides by injection of reburning fuel. The design and the rebuilding of the new combustor was completed. Several new features were incorporated in the new design so that it would last longer. The design and construction of the furnace are discussed in this report. (VC)

  15. Near-road modeling and measurement of cerium-containing particles generated by nanoparticle diesel fuel additive use

    EPA Science Inventory

    Cerium oxide nanoparticles (nCe) are used as a fuel-borne catalyst in diesel engines to reduce particulate emissions, yet the environmental and human health impacts of the exhaust particles are not well understood. To bridge the gap between emission measurements and ambient impac...

  16. Influence of aluminum salt addition on in situ sintering of electrolyte matrices for molten carbonate fuel cells

    NASA Astrophysics Data System (ADS)

    Lee, Insung; Kim, Wonsun; Moon, Youngjoon; Lim, Heechun; Lee, Dokyol

    Three aluminum salts are investigated as a sintering aid for the in situ sintering of electrolyte matrices for molten carbonate fuel cells (MCFCs). Only aluminum acetylacetonate shows a potential. At or above 420°C, aluminum acetylacetonate changes to Al 2O 3 and reacts with Li 2CO 3 in the electrolyte to produce γ-LiAlO 2. This reaction product forms necks between matrix particles. Necks grow with increasing sintering time and correspondingly, the mechanical strength of the electrolyte matrix shows an abrupt increase, starting at a sintering time of about 100 h until it levels off at about 250 h. The porosity of the matrices fabricated with aluminum acetylacetonate is in the range acceptable for use in MCFCs.

  17. Decreased PCDD/F formation when co-firing a waste fuel and biomass in a CFB boiler by addition of sulphates or municipal sewage sludge.

    PubMed

    Åmand, Lars-Erik; Kassman, Håkan

    2013-08-01

    Polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) are formed during waste incineration and in waste-to-energy boilers. Incomplete combustion, too short residence times at low combustion temperatures (<700 °C), incineration of electronic waste and plastic waste containing chlorine are all factors influencing the formation of PCDD/Fs in boilers. The impact of chlorine and catalysing metals (such as copper and iron) in the fuel on PCDD/F formation was studied in a 12 MW(th) circulating fluidised bed (CFB) boiler. The PCDD/F concentrations in the raw gas after the convection pass of the boiler and in the fly ashes were compared. The fuel types were a so-called clean biomass with low content of chlorine, biomass with enhanced content of chlorine from supply of PVC, and solid recovered fuel (SRF) which is a waste fuel containing higher concentrations of both chlorine, and catalysing metals. The PCDD/F formation increased for the biomass with enhanced chlorine content and it was significantly reduced in the raw gas as well as in the fly ashes by injection of ammonium sulphate. A link, the alkali chloride track, is demonstrated between the level of alkali chlorides in the gas phase, the chlorine content in the deposits in the convection pass and finally the PCDD/F formation. The formation of PCDD/Fs was also significantly reduced during co-combustion of SRF with municipal sewage sludge (MSS) compared to when SRF was fired without MSS as additional fuel.

  18. Decreased PCDD/F formation when co-firing a waste fuel and biomass in a CFB boiler by addition of sulphates or municipal sewage sludge

    SciTech Connect

    Åmand, Lars-Erik; Kassman, Håkan

    2013-08-15

    Highlights: • Two strategies to reduce PCDD/F formation when co-firing solid recovered fuel (SRF) and biomass. • They were co-combustion with municipal sewage sludge (MSS) and addition of ammonium sulphate. • PCDD/Fs were significantly reduced for a biomass rich in chlorine when adding ammonium sulphate. • MSS had a suppressing effect on PCDD/F formation during co-combustion with SRF. • A link is presented between gaseous alkali chlorides, chlorine in deposits and PCDD/F formation. - Abstract: Polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) are formed during waste incineration and in waste-to-energy boilers. Incomplete combustion, too short residence times at low combustion temperatures (<700 °C), incineration of electronic waste and plastic waste containing chlorine are all factors influencing the formation of PCDD/Fs in boilers. The impact of chlorine and catalysing metals (such as copper and iron) in the fuel on PCDD/F formation was studied in a 12 MW{sub th} circulating fluidised bed (CFB) boiler. The PCDD/F concentrations in the raw gas after the convection pass of the boiler and in the fly ashes were compared. The fuel types were a so-called clean biomass with low content of chlorine, biomass with enhanced content of chlorine from supply of PVC, and solid recovered fuel (SRF) which is a waste fuel containing higher concentrations of both chlorine, and catalysing metals. The PCDD/F formation increased for the biomass with enhanced chlorine content and it was significantly reduced in the raw gas as well as in the fly ashes by injection of ammonium sulphate. A link, the alkali chloride track, is demonstrated between the level of alkali chlorides in the gas phase, the chlorine content in the deposits in the convection pass and finally the PCDD/F formation. The formation of PCDD/Fs was also significantly reduced during co-combustion of SRF with municipal sewage sludge (MSS) compared to when SRF was fired without MSS

  19. Study of stability and thermodynamic properties of water-in-diesel nanoemulsion fuels with nano-Al additive

    NASA Astrophysics Data System (ADS)

    Mehta, Rakhi N.; More, Utkarsh; Malek, Naved; Chakraborty, Mousumi; Parikh, Parimal A.

    2015-11-01

    The present work addresses the formation of water-in-diesel (W/D) nanoemulsion by blending different percentages of water along with nano-Al additive in various propositions to enhance the combustion characteristics. The roles of various surfactants such as Sorbitan monooleate (Span 80), Triton X-100, Tetradecyltrimethylammonium bromide, and newly synthesized and characterized dicationic surfactants were discussed based upon their ability to stabilize the nanoemulsions. Surface active properties of the surfactants were determined by measuring their interfacial tension and subsequently by measuring the critical micelle concentration of the surfactants. Triton X-100 was found to be the most efficient surfactant for the current water-in-diesel nanoemulsion as it stabilized the suspensions for more than 8 h. Particle size analysis proved emulsion size to be in the order of nanometer, and zeta potential values were found to have neutral behavior at water-diesel interface. Experimental studies confirmed that that blends W/D [1 % (vol.) water] and W/DA [1 % (vol.) water, 0.1 % (wt.) nano-Al] were thermodynamically stable.

  20. Transcriptome Changes in Douglas-fir (Pseudotsuga menziesii) Induced by Exposure to Diesel Emissions Generated with CeO2 Nanoparticle Fuel Additive

    EPA Science Inventory

    When cerium oxide nanoparticles are added to diesel fuel, fuel burning efficiency increases, producing emissions (DECe) with characteristics that differ from conventional diesel exhaust (DE). It has previously been shown that DECe induces more adverse pulmonary effects in rats on...

  1. Inhibition of ammonia poisoning by addition of platinum to Ru/α-Al2 O3 for preferential CO oxidation in fuel cells.

    PubMed

    Sato, Katsutoshi; Yagi, Sho; Zaitsu, Shuhei; Kitayama, Godai; Kayada, Yuto; Teramura, Kentaro; Takita, Yusaku; Nagaoka, Katsutoshi

    2014-12-01

    In polymer electrolyte fuel cell (PEFC) systems, small amounts of ammonia (NH3 ) present in the reformate gas deactivate the supported ruthenium catalysts used for preferential oxidation (PROX) of carbon monoxide (CO). In this study, we investigated how the addition of a small amount of platinum to a Ru/α-Al2 O3 catalyst (Pt/Ru=1:9 w/w) affected the catalyst's PROX activity in both the absence and the presence of NH3 (130 ppm) under conditions mimicking the reformate conditions during steam reforming of natural gas. The activity of undoped Ru/α-Al2 O3 decreased sharply upon addition of NH3 , whereas Pt/Ru/α-Al2 O3 exhibited excellent PROX activity even in the presence of NH3 . Ruthenium K-edge X-ray absorption near-edge structure (XANES) spectra indicated that in the presence of NH3 , some of the ruthenium in the undoped catalyst was oxidized in the presence of NH3 , whereas ruthenium oxidation was not observed with Pt/Ru/α-Al2 O3 . These results suggest that ruthenium oxidation is retarded by the platinum, so that the catalyst shows high activity even in the presence of NH3 .

  2. The effect of the potential fuel additive isobutanol on benzene, toluene, ethylbenzene, and p-xylene degradation in aerobic soil microcosms.

    PubMed

    Ding, Liang; Cupples, Alison M

    2015-01-01

    Isobutanol is being considered as a fuel additive; however, the effect of this chemical on gasoline degradation (following a spill) has yet to be fully explored. To address this, the current study investigated the effect of isobutanol on benzene, toluene, ethylbenzene and p-xylene (BTEX) degradation in 14 sets of experiments in saturated soils. This involved four hydrocarbons for three soils (12 experiments) and two extra experiments with a lower level of isobutanol (for toluene only). Each soil and hydrocarbon combination involved four abiotic control microcosms and 12 sample microcosms (six with and six without isobutanol). The time for complete degradation of each hydrocarbon varied between treatments. Both toluene and ethylbenzene were rapidly degraded (5-13 days for toluene and 3-13 days for ethylbenzene). In contrast, the time for complete degradation for benzene ranged from 5 to 47 days. The hydrocarbon p-xylene was the most recalcitrant chemical (time for removal ranged from 14 to 86 days) and, in several microcosms, no p-xylene degradation was observed. The effect of isobutanol on hydrocarbon degradation was determined by comparing degradation lag times with and without isobutanol addition. From the 14 treatments, isobutanol only affected degradation lag times in three cases. In two cases (benzene and p-xylene), an enhancement of degradation (reduced lag times) was observed in the presence of isobutanol. In contrast, toluene degradation in one soil was inhibited (increased lag time). These results indicate that co-contamination with isobutanol should not inhibit aerobic BTEX degradation rates.

  3. The effects of fuel composition and ammonium sulfate addition on PCDD, PCDF, PCN and PCB concentrations during the combustion of biomass and paper production residuals.

    PubMed

    Lundin, Lisa; Jansson, Stina

    2014-01-01

    The use of waste wood as an energy carrier has increased during the last decade. However, the higher levels of alkali metals and chlorine in waste wood compared to virgin biomass can promote the formation of deposits and organic pollutants. Here, the effect of fuel composition and the inhibitory effects of ammonium sulfate, (NH4)2SO4, on the concentrations of persistent organic pollutants (POPs) in the flue gas of a lab-scale combustor was investigated. Ammonium sulfate is often used as a corrosion-preventing additive and may also inhibit formation of polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs). In addition to PCDDs and PCDFs, polychlorinated naphthalenes (PCN) and biphenyls (PCB) were also analyzed. It was found that the flue gas composition changed dramatically when (NH4)2SO4 was added: CO, SO2, and NH3 levels increased, while those of HCl decreased to almost zero. However, the additive's effects on POP formation were less pronounced. When (NH4)2SO4 was added to give an S:Cl ratio of 3, only the PCDF concentration was reduced, indicating that this ratio was not sufficient to achieve a general reduction in POP emissions. Conversely, at an S:Cl ratio of 6, significant reductions in the WHO-TEQ value and the PCDD and PCDF contents of the flue gas were observed. The effect on the PCDF concentration was especially pronounced. PCN formation seemed to be promoted by the elevated CO concentrations caused by adding (NH4)2SO4.

  4. Nitrate addition to groundwater impacted by ethanol-blended fuel accelerates ethanol removal and mitigates the associated metabolic flux dilution and inhibition of BTEX biodegradation.

    PubMed

    Corseuil, Henry Xavier; Gomez, Diego E; Schambeck, Cássio Moraes; Ramos, Débora Toledo; Alvarez, Pedro J J

    2015-03-01

    A comparison of two controlled ethanol-blended fuel releases under monitored natural attenuation (MNA) versus nitrate biostimulation (NB) illustrates the potential benefits of augmenting the electron acceptor pool with nitrate to accelerate ethanol removal and thus mitigate its inhibitory effects on BTEX biodegradation. Groundwater concentrations of ethanol and BTEX were measured 2 m downgradient of the source zones. In both field experiments, initial source-zone BTEX concentrations represented less than 5% of the dissolved total organic carbon (TOC) associated with the release, and measurable BTEX degradation occurred only after the ethanol fraction in the multicomponent substrate mixture decreased sharply. However, ethanol removal was faster in the nitrate amended plot (1.4 years) than under natural attenuation conditions (3.0 years), which led to faster BTEX degradation. This reflects, in part, that an abundant substrate (ethanol) can dilute the metabolic flux of target pollutants (BTEX) whose biodegradation rate eventually increases with its relative abundance after ethanol is preferentially consumed. The fate and transport of ethanol and benzene were accurately simulated in both releases using RT3D with our general substrate interaction module (GSIM) that considers metabolic flux dilution. Since source zone benzene concentrations are relatively low compared to those of ethanol (or its degradation byproduct, acetate), our simulations imply that the initial focus of cleanup efforts (after free-product recovery) should be to stimulate the degradation of ethanol (e.g., by nitrate addition) to decrease its fraction in the mixture and speed up BTEX biodegradation.

  5. Effects of cobalt addition on the catalytic activity of the Ni-YSZ anode functional layer and the electrochemical performance of solid oxide fuel cells.

    PubMed

    Guo, Ting; Dong, Xiaolei; Shirolkar, Mandar M; Song, Xiao; Wang, Meng; Zhang, Lei; Li, Ming; Wang, Haiqian

    2014-09-24

    The effects of cobalt (Co) addition in the Ni-YSZ anode functional layer (AFL) on the structure and electrochemical performance of solid oxide fuel cells (SOFCs) are investigated. X-ray diffraction (XRD) analyses confirmed that the active metallic phase is a Ni(1-x)Co(x) alloy under the operation conditions of the SOFC. Scanning electron microscopy (SEM) observations indicate that the grain size of Ni(1-x)Co(x) increases with increasing Co content. Thermogravimetric analyses on the reduction of the Ni(1-x)Co(x)O-YSZ powders show that there are two processes: the chemical-reaction-controlled process and the diffusion-controlled process. It is found that the reduction peak corresponding to the chemical-reaction-controlled process in the DTG curves moves toward lower temperatures with increasing Co content, suggesting that the catalytic activity of Ni(1-x)Co(x) is enhanced by the doping of Co. It is observed that the SOFC shows the best performance at x = 0.03, and the corresponding maximum power densities are 445, 651, and 815 mW cm(-2) at 700, 750, and 800 °C, respectively. The dependence of the SOFC performance on the Co content can be attributed to the competing results between the decreased three-phase-boundary length in the AFL and the enhanced catalytic activity of the Ni(1-x)Co(x) phase with increasing Co content.

  6. Nitrate addition to groundwater impacted by ethanol-blended fuel accelerates ethanol removal and mitigates the associated metabolic flux dilution and inhibition of BTEX biodegradation

    NASA Astrophysics Data System (ADS)

    Corseuil, Henry Xavier; Gomez, Diego E.; Schambeck, Cássio Moraes; Ramos, Débora Toledo; Alvarez, Pedro J. J.

    2015-03-01

    A comparison of two controlled ethanol-blended fuel releases under monitored natural attenuation (MNA) versus nitrate biostimulation (NB) illustrates the potential benefits of augmenting the electron acceptor pool with nitrate to accelerate ethanol removal and thus mitigate its inhibitory effects on BTEX biodegradation. Groundwater concentrations of ethanol and BTEX were measured 2 m downgradient of the source zones. In both field experiments, initial source-zone BTEX concentrations represented less than 5% of the dissolved total organic carbon (TOC) associated with the release, and measurable BTEX degradation occurred only after the ethanol fraction in the multicomponent substrate mixture decreased sharply. However, ethanol removal was faster in the nitrate amended plot (1.4 years) than under natural attenuation conditions (3.0 years), which led to faster BTEX degradation. This reflects, in part, that an abundant substrate (ethanol) can dilute the metabolic flux of target pollutants (BTEX) whose biodegradation rate eventually increases with its relative abundance after ethanol is preferentially consumed. The fate and transport of ethanol and benzene were accurately simulated in both releases using RT3D with our general substrate interaction module (GSIM) that considers metabolic flux dilution. Since source zone benzene concentrations are relatively low compared to those of ethanol (or its degradation byproduct, acetate), our simulations imply that the initial focus of cleanup efforts (after free-product recovery) should be to stimulate the degradation of ethanol (e.g., by nitrate addition) to decrease its fraction in the mixture and speed up BTEX biodegradation.

  7. Carbon dioxide addition to microbial fuel cell cathodes maintains sustainable catholyte pH and improves anolyte pH, alkalinity, and conductivity.

    PubMed

    Fornero, Jeffrey J; Rosenbaum, Miriam; Cotta, Michael A; Angenent, Largus T

    2010-04-01

    Bioelectrochemical system (BES) pH imbalances develop due to anodic proton-generating oxidation reactions and cathodic hydroxide-ion-generating reduction reactions. Until now, workers added unsustainable buffers to reduce the pH difference between the anode and cathode because the pH imbalance contributes to BES potential losses and, therefore, power losses. Here, we report that adding carbon dioxide (CO(2)) gas to the cathode, which creates a CO(2)/bicarbonate buffered catholyte system, can diminish microbial fuel cell (MFC) pH imbalances in contrast to the CO(2)/carbonate buffered catholyte system by Torres, Lee, and Rittmann [Environ. Sci. Technol. 2008, 42, 8773]. We operated an air-cathode and liquid-cathode MFC side-by-side. For the air-cathode MFC, CO(2) addition resulted in a stable catholyte film pH of 6.61 +/- 0.12 and a 152% increase in steady-state power density. By adding CO(2) to the liquid-cathode system, we sustained a steady catholyte pH (pH = 5.94 +/- 0.02) and a low pH imbalance (DeltapH = 0.65 +/- 0.18) over a 2-week period without external salt buffer addition. By migrating bicarbonate ions from the cathode to the anode (with an anion-exchange membrane), we increased the anolyte pH (DeltapH = 0.39 +/- 0.31), total alkalinity (494 +/- 6 to 582 +/- 6 as mg CaCO(3)/L), and conductivity (1.53 +/- 0.49 to 2.16 +/- 0.03 mS/cm) relative to the feed properties. We also verified with a phosphate-buffered MFC that our reaction rates were limited mainly by the reactor configuration rather than limitations due to the bicarbonate buffer.

  8. Technical Project Plan for The Enhanced Thermal Conductivity of Oxide Fuels Through the Addition of High Thermal Conductivity Fibers and Microstructural Engineering

    SciTech Connect

    Hollenbach, Daniel F; Ott, Larry J; Besmann, Theodore M; Armstrong, Beth L; Wereszczak, Andrew A; Lin, Hua-Tay; Ellis, Ronald James; Becher, Paul F; Jubin, Robert Thomas; Voit, Stewart L

    2010-09-01

    The commercial nuclear power industry is investing heavily in advanced fuels that can produce higher power levels with a higher safety margin and be produced at low cost. Although chemically stable and inexpensive to manufacture, the in-core performance of UO{sub 2} fuel is limited by its low thermal conductivity. There will be enormous financial benefits to any utility that can exploit a new type of fuel that is chemically stable, has a high thermal conductivity, and is inexpensive to manufacture. At reactor operating temperatures, UO{sub 2} has a very low thermal conductivity (<5 W/m {center_dot}K), which decreases with temperature and fuel burnup. This low thermal conductivity limits the rate at which energy can be removed from the fuel, thus limiting the total integrated reactor power. If the fuel thermal conductivity could be increased, nuclear reactors would be able to operate at higher powers and larger safety margins thus decreasing the overall cost of electricity by increasing the power output from existing reactors and decreasing the number of new electrical generating plants needed to meet base load demand. The objective of the work defined herein is to produce an advanced nuclear fuel based on the current UO{sub 2} fuel with superior thermal conductivity and structural integrity that is suitable for current and future nuclear reactors, using the existing fuel fabrication infrastructure with minimal modifications. There are two separate components to the research: (1) Enhanced Thermal Conductivity (ETC) - adding high conductivity fibers to the UO{sub 2} prior to sintering, which act as conduits for moving the heat energy generated within the pellet to the outer surface, (2) Microstructural Engineering (ME) - adding second phase particulates to UO{sub 2} bodies to retard grain growth and to increase thermal conductivity, as well as improve fracture and creep resistance. Different groups will perform the laboratory work for each of these research

  9. Addition of sulfonated silicon dioxide on an anode catalyst layer to improve the performance of a self-humidifying proton exchange membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Lin, Chien-Liang; Hsu, Shih-Chieh; Ho, Wei-Yu

    2016-03-01

    Sulfonated SiO2 was added on an anode catalyst layer to manufacture a hygroscopic electrode for self-humidifying proton exchange membrane fuel cells (PEMFCs). The inherent humidity of a proton exchange membrane (PEM) determines the electrical performance of PEMFCs. To maintain the high moisture content of the PEM, self-humidifying PEMFCs can use the water produced by the fuel cell reaction and, thus, do not require external humidification. Scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, and water contact angle measurement tests were performed to characterize the structures and properties of sulfonated SiO2 and the related electrodes, and the electric current and voltage (I-V) performance curve tests for the fuel cells were conducted under differing gas humidification conditions. When 0.01mg/cm2 of sulfonated SiO2 was added, the electrical performance of the fuel cells (50∘C) increased 29% and 59% when the fuel cell reaction gases were humidified at 70∘C and 50∘C, respectively.

  10. Fuel additives from SO/sub 2/ treated mixtures of amides and esters derived from vegetable oil, tall oil acid, or aralkyl acid

    SciTech Connect

    Efner, H. F.; Schiff, S.

    1985-03-12

    Vegetable oils, particularly soybean oil, tall oil acid, or aralkyl acids, particularly phenylstearic acid, are reacted with multiamines, particularly tetraethylenepentamine, to form a product mixture for subsequent reaction with SO/sub 2/ to produce a product mix that has good detergent properties in fuels.

  11. Solid fuel oil mixtures

    SciTech Connect

    Rutter, P.R.; Veal, C.J.

    1984-11-27

    Fuel composition comprises 15 to 60% be weight, preferably 40 to 55%, of a friable solid fuel, e.g. coal, a stabilizing additive composition and a fuel oil. The additive comprises the combination of a polymer containing functional groups, e.g., maleinized polybutadiene, and a surfactant. The composition is suitable for use as a liquid fuel for industrial burners.

  12. Comparison of Theoretically and Experimentally Determined Effects of Oxide Coatings Supplied by Fuel Additives on Uncooled Turbine-blade Temperature During Transient Turbojet-engine Operation

    NASA Technical Reports Server (NTRS)

    Schafer, Louis J; Stepka, Francis S; Brown, W Byron

    1953-01-01

    An analysis was made to permit the calculation of the effectiveness of oxide coatings in retarding the transient heat flow into turbine blades when the combustion gas temperature of a turbojet engine is suddenly changed. The analysis is checked with experimental data obtained from a turbojet engine whose blades were coated with two different coating materials (silicon dioxide and boric oxide) by adding silicone oil and tributyl borate to the engine fuel. The very thin coatings (approximately 0.001 in.) that formed on the blades produced a negligible effect on the turbine-blade transient temperature response. With the analysis discussed here, it was possible to predict the turbine rotor-blade temperature response with a maximum error of 40 F.

  13. Improved activity and stability of Ni-Ce0.8Sm0.2O1.9 anode for solid oxide fuel cells fed with methanol through addition of molybdenum

    NASA Astrophysics Data System (ADS)

    Li, Ping; Yu, Baolong; Li, Jiang; Yao, Xueli; Zhao, Yicheng; Li, Yongdan

    2016-07-01

    Ni-Mo-Ce0.8Sm0.2O1.9 (SDC) composites are prepared and investigated as anodes of solid oxide fuel cells with methanol as fuel. The addition of Mo improves the catalytic activity for methanol pyrolysis and the resistance to carbon deposition of Ni-SDC anode. The anode with a mole ratio of Mo to Ni of 0.03:1 exhibits the lowest polarization resistance. The cell with that anode and SDC-carbonate composite electrolyte shows a maximum power density of 680 mW cm-2 at 700 °C. The stability of the cell is enhanced with the increase of the content of Mo in the anode, which is mainly attributed to the decreased amount of carbon deposits with a high graphitization degree.

  14. The addition of ortho-hexagon nano spinel Co3O4 to improve the performance of activated carbon air cathode microbial fuel cell.

    PubMed

    Ge, Baochao; Li, Kexun; Fu, Zhou; Pu, Liangtao; Zhang, Xi

    2015-11-01

    Commercial Co3O4 and ortho-hexagon spinel nano-Co3O4 (OHSNC) were doped in the AC at a different percentage (5%, 10% and 15%) to enhance the performance of microbial fuel cell (MFC). The maximum power density of MFC with 10% OHSNC doped cathode was 1500±14 mW m(-2), which was 97.36% and 41.24% higher than that with the bare AC air cathode and commercial Co3O4 respectively. The electrocatalytic behavior for their better performance was discussed in detail with the help of various structural and electrochemical techniques. The OHSNC was characterized via X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM). The results showed that the improved performance owed to the enhancement of both kinetics activity and the number of electron transfer in the ORR, and the internal resistance was largely reduced. Therefore, OHSNC was proved to be an excellent cathodic catalyst in AC air cathode MFC.

  15. 77 FR 699 - Regulation of Fuels and Fuel Additives: Identification of Additional Qualifying Renewable Fuel...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-05

    ... regulation that were proposed on July 1, 2011(76 FR 38844). The first change adds ID letters to pathways to... gas, biogas, and/or biomass as the only process energy sources -- qualifying as cellulosic biofuel... with catalytic upgrading Any other process that uses biogas and/or biomass as the only process...

  16. Fuel characteristics pertinent to the design of aircraft fuel systems

    NASA Technical Reports Server (NTRS)

    Barnett, Henry C; Hibbard, R R

    1953-01-01

    Because of the importance of fuel properties in design of aircraft fuel systems the present report has been prepared to provide information on the characteristics of current jet fuels. In addition to information on fuel properties, discussions are presented on fuel specifications, the variations among fuels supplied under a given specification, fuel composition, and the pertinence of fuel composition and physical properties to fuel system design. In some instances the influence of variables such as pressure and temperature on physical properties is indicated. References are cited to provide fuel system designers with sources of information containing more detail than is practicable in the present report.

  17. Isoprenoid based alternative diesel fuel

    DOEpatents

    Lee, Taek Soon; Peralta-Yahya, Pamela; Keasling, Jay D.

    2015-08-18

    Fuel compositions are provided comprising a hydrogenation product of a monocyclic sesquiterpene (e.g., hydrogenated bisabolene) and a fuel additive. Methods of making and using the fuel compositions are also disclosed. ##STR00001##

  18. Concentric layer ramjet fuel

    SciTech Connect

    Burdette, G.W.; Francis, J.P.

    1988-03-08

    This patent describes a solid fuel ramjet grain comprising concentric layers of solid ramjet fuel having a perforation therethrough along the center axis of the grain. The performation is connected to a combustion after-chamber. The solid ramjet fuel layers comprises a pure hydroxyl-terminated polybutadiene hydrocarbon fuel or a mixture of a hydroxyl-terminated polybutadiene hydrocarbon fuel and from about 5 to about 60 percent by weight of an additive to increase the fuel regression rate selected from the group consisting of magnesium, boron carbide, aluminum, and zirconium such that, when buried in the operation of the ramjet, each fuel layer produces a different level of thrust.

  19. Addition of genes for cellobiase and pectinolytic activity in Escherichia coli for fuel ethanol production from pectin-rich lignocellulosic biomass.

    PubMed

    Edwards, Meredith C; Henriksen, Emily Decrescenzo; Yomano, Lorraine P; Gardner, Brian C; Sharma, Lekh N; Ingram, Lonnie O; Doran Peterson, Joy

    2011-08-01

    Ethanologenic Escherichia coli strain KO11 was sequentially engineered to contain the Klebsiella oxytoca cellobiose phosphotransferase genes (casAB) as well as a pectate lyase (pelE) from Erwinia chrysanthemi, yielding strains LY40A (casAB) and JP07 (casAB pelE), respectively. To obtain an effective secretion of PelE, the Sec-dependent pathway out genes from E. chrysanthemi were provided on a cosmid to strain JP07 to construct strain JP07C. Finally, oligogalacturonide lyase (ogl) from E. chrysanthemi was added to produce strain JP08C. E. coli strains LY40A, JP07, JP07C, and JP08C possessed significant cellobiase activity in cell lysates, while only strains JP07C and JP08C demonstrated extracellular pectate lyase activity. Fermentations conducted by using a mixture of pure sugars representative of the composition of sugar beet pulp (SBP) showed that strains LY40A, JP07, JP07C, and JP08C were able to ferment cellobiose, resulting in increased ethanol production from 15 to 45% in comparison to that of KO11. Fermentations with SBP at very low fungal enzyme loads during saccharification revealed significantly higher levels of ethanol production for LY40A, JP07C, and JP08C than for KO11. JP07C ethanol yields were not considerably higher than those of LY40A; however, oligogalacturonide polymerization studies showed an increased breakdown of biomass to small-chain (degree of polymerization, ≤6) oligogalacturonides. JP08C achieved a further breakdown of polygalacturonate to monomeric sugars, resulting in a 164% increase in ethanol yields compared to those of KO11. The addition of commercial pectin methylesterase (PME) further increased JP08C ethanol production compared to that of LY40A by demethylating the pectin for enzymatic attack by pectin-degrading enzymes.

  20. Addition of Genes for Cellobiase and Pectinolytic Activity in Escherichia coli for Fuel Ethanol Production from Pectin-Rich Lignocellulosic Biomass▿

    PubMed Central

    Edwards, Meredith C.; Henriksen, Emily DeCrescenzo; Yomano, Lorraine P.; Gardner, Brian C.; Sharma, Lekh N.; Ingram, Lonnie O.; Doran Peterson, Joy

    2011-01-01

    Ethanologenic Escherichia coli strain KO11 was sequentially engineered to contain the Klebsiella oxytoca cellobiose phosphotransferase genes (casAB) as well as a pectate lyase (pelE) from Erwinia chrysanthemi, yielding strains LY40A (casAB) and JP07 (casAB pelE), respectively. To obtain an effective secretion of PelE, the Sec-dependent pathway out genes from E. chrysanthemi were provided on a cosmid to strain JP07 to construct strain JP07C. Finally, oligogalacturonide lyase (ogl) from E. chrysanthemi was added to produce strain JP08C. E. coli strains LY40A, JP07, JP07C, and JP08C possessed significant cellobiase activity in cell lysates, while only strains JP07C and JP08C demonstrated extracellular pectate lyase activity. Fermentations conducted by using a mixture of pure sugars representative of the composition of sugar beet pulp (SBP) showed that strains LY40A, JP07, JP07C, and JP08C were able to ferment cellobiose, resulting in increased ethanol production from 15 to 45% in comparison to that of KO11. Fermentations with SBP at very low fungal enzyme loads during saccharification revealed significantly higher levels of ethanol production for LY40A, JP07C, and JP08C than for KO11. JP07C ethanol yields were not considerably higher than those of LY40A; however, oligogalacturonide polymerization studies showed an increased breakdown of biomass to small-chain (degree of polymerization, ≤6) oligogalacturonides. JP08C achieved a further breakdown of polygalacturonate to monomeric sugars, resulting in a 164% increase in ethanol yields compared to those of KO11. The addition of commercial pectin methylesterase (PME) further increased JP08C ethanol production compared to that of LY40A by demethylating the pectin for enzymatic attack by pectin-degrading enzymes. PMID:21666025

  1. Food additives

    PubMed Central

    Spencer, Michael

    1974-01-01

    Food additives are discussed from the food technology point of view. The reasons for their use are summarized: (1) to protect food from chemical and microbiological attack; (2) to even out seasonal supplies; (3) to improve their eating quality; (4) to improve their nutritional value. The various types of food additives are considered, e.g. colours, flavours, emulsifiers, bread and flour additives, preservatives, and nutritional additives. The paper concludes with consideration of those circumstances in which the use of additives is (a) justified and (b) unjustified. PMID:4467857

  2. Fuel compositions

    SciTech Connect

    Zaweski, E.F.; Niebylski, L.M.

    1986-09-23

    This patent describes a distillate fuel for indirect injection compression ignition engines containing at least the combination of (i) organic nitrate ignition accelerator, and (ii) an additive selected from the group consisting of alkenyl substituted succinimide, alkenyl substituted succinamide and mixtures thereof. The alkenyl substituent contains about 12-36 carbon atoms, the additive being made by the process comprising (a) isomerizing the double bond of an ..cap alpha..-olefin containing about 12-36 carbon atoms to obtain a mixture of internal olefins, (b) reacting the mixture of internal olefins with maleic acid, anhydride or ester to obtain an intermediate alkenyl substituted succinic acid, anhydride or ester, and (c) reacting the intermediate with ammonia to form a succinimide, succinamide or mixture thereof. The combination is present in an amount sufficient to minimize the coking characteristics of such fuel, especially throttling nozzle coking in the prechambers or swirl chambers of indirect injection compression ignition engines operated on such fuel.

  3. Fuel processors for fuel cell APU applications

    NASA Astrophysics Data System (ADS)

    Aicher, T.; Lenz, B.; Gschnell, F.; Groos, U.; Federici, F.; Caprile, L.; Parodi, L.

    The conversion of liquid hydrocarbons to a hydrogen rich product gas is a central process step in fuel processors for auxiliary power units (APUs) for vehicles of all kinds. The selection of the reforming process depends on the fuel and the type of the fuel cell. For vehicle power trains, liquid hydrocarbons like gasoline, kerosene, and diesel are utilized and, therefore, they will also be the fuel for the respective APU systems. The fuel cells commonly envisioned for mobile APU applications are molten carbonate fuel cells (MCFC), solid oxide fuel cells (SOFC), and proton exchange membrane fuel cells (PEMFC). Since high-temperature fuel cells, e.g. MCFCs or SOFCs, can be supplied with a feed gas that contains carbon monoxide (CO) their fuel processor does not require reactors for CO reduction and removal. For PEMFCs on the other hand, CO concentrations in the feed gas must not exceed 50 ppm, better 20 ppm, which requires additional reactors downstream of the reforming reactor. This paper gives an overview of the current state of the fuel processor development for APU applications and APU system developments. Furthermore, it will present the latest developments at Fraunhofer ISE regarding fuel processors for high-temperature fuel cell APU systems on board of ships and aircrafts.

  4. Additively Manufactured Main Fuel Valve Housing

    NASA Technical Reports Server (NTRS)

    Eddleman, David; Richard, Jim

    2015-01-01

    Selective Laser Melting (SLM) was utilized to fabricate a liquid hydrogen valve housing typical of those found in rocket engines and main propulsion systems. The SLM process allowed for a valve geometry that would be difficult, if not impossible to fabricate by traditional means. Several valve bodies were built by different SLM suppliers and assembled with valve internals. The assemblies were then tested with liquid nitrogen and operated as desired. One unit was also burst tested and sectioned for materials analysis. The design, test results, and planned testing are presented herein.

  5. Precursor solution additives improve desiccated La0.6Sr0.4Co0.8Fe0.2O3-x infiltrated solid oxide fuel cell cathode performance

    NASA Astrophysics Data System (ADS)

    Burye, Theodore E.; Nicholas, Jason D.

    2016-01-01

    Here, the addition of the surfactant Triton X-100 or the chelating agent citric acid to Solid Oxide Fuel Cell (SOFC) La0.6Sr0.4Co0.8Fe0.2O3-x (LSCF) precursor nitrate solutions is shown via scanning electron microscopy (SEM) and X-ray diffraction (XRD) to reduce average infiltrate nano-particle size and improve infiltrate phase purity. In addition, the desiccation of LSCF precursor solutions containing the aforementioned organic solution additives further reduces the average LSCF infiltrate nano-particle size and improves the low-temperature infiltrate phase purity. In particular, CaCl2-desiccation reduces the average size of Triton X-100 derived (TXD) LSCF particles fired at 700 °C from 48 to 22 nm, and reduces the average size of citric acid derived LSCF particles fired at 700 °C from 50 to 41 nm. Modeling and electrochemical impedance spectroscopy (EIS) tests indicate that particle size reductions alone are responsible for desiccation-induced cathode performance improvements such as CaCl2-desiccated TXD La0.6Sr0.4Co0.8Fe0.2O3-x - Ce0.9Gd0.1O1.95 (LSCF-GDC) cathodes reaching a polarization resistance of 0.17 Ωcm2 at 540 °C, compared to 600 °C for undesiccated TXD LSCF-GDC cathodes. This excellent low-temperature performance, combined with a low open-circuit 540 °C degradation rate, suggests that the desiccation of organic-additive-containing infiltrate precursor solutions may be useful for the development of durable, high-power, low-temperature SOFCs.

  6. Jet fuel instability mechanisms

    NASA Technical Reports Server (NTRS)

    Daniel, S. R.

    1985-01-01

    The mechanisms of the formation of fuel-insoluble deposits were studied in several real fuels and in a model fuel consisting of tetralin in dodecane solution. The influence of addition to the fuels of small concentrations of various compounds on the quantities of deposits formed and on the formation and disappearance of oxygenated species in solution was assessed. The effect of temperature on deposit formation was also investigated over the range of 308-453 K.

  7. Motor fuel additive and ori-inhibited motor fuel composition

    SciTech Connect

    Sung, R.L.

    1989-09-26

    This patent describes a composition. It is obtained by reacting, at a temperature of 30{sup 0}C-200C 0.5-2.5 moles of one or more aliphatic carboxylic acids selected from the group consisting of formic, acetic, propionic, butyric, isobutyric, valeric, pivalic, acrylic, propiolie, methacylic, crotonic, isocrfotonic, maleic and fumaric acid; and 0.5-1.5 moles of a polyoxyalkylene diamine.

  8. DIESEL FUEL LUBRICATION

    SciTech Connect

    Qu, Jun

    2012-01-01

    The diesel fuel injector and pump systems contain many sliding interfaces that rely for lubrication upon the fuels. The combination of the poor fuel lubricity and extremely tight geometric clearance between the plunger and bore makes the diesel fuel injector vulnerable to scuffing damage that severely limits the engine life. In order to meet the upcoming stricter diesel emission regulations and higher engine efficiency requirements, further fuel refinements that will result in even lower fuel lubricity due to the removal of essential lubricating compounds, more stringent operation conditions, and tighter geometric clearances are needed. These are expected to increase the scuffing and wear vulnerability of the diesel fuel injection and pump systems. In this chapter, two approaches are discussed to address this issue: (1) increasing fuel lubricity by introducing effective lubricity additives or alternative fuels, such as biodiesel, and (2) improving the fuel injector scuffing-resistance by using advanced materials and/or surface engineering processes. The developing status of the fuel modification approach is reviewed to cover topics including fuel lubricity origins, lubricity improvers, alternative fuels, and standard fuel lubricity tests. The discussion of the materials approach is focused on the methodology development for detection of the onset of scuffing and evaluation of the material scuffing characteristics.

  9. Phosphazene additives

    DOEpatents

    Harrup, Mason K; Rollins, Harry W

    2013-11-26

    An additive comprising a phosphazene compound that has at least two reactive functional groups and at least one capping functional group bonded to phosphorus atoms of the phosphazene compound. One of the at least two reactive functional groups is configured to react with cellulose and the other of the at least two reactive functional groups is configured to react with a resin, such as an amine resin of a polycarboxylic acid resin. The at least one capping functional group is selected from the group consisting of a short chain ether group, an alkoxy group, or an aryloxy group. Also disclosed are an additive-resin admixture, a method of treating a wood product, and a wood product.

  10. Potlining Additives

    SciTech Connect

    Rudolf Keller

    2004-08-10

    In this project, a concept to improve the performance of aluminum production cells by introducing potlining additives was examined and tested. Boron oxide was added to cathode blocks, and titanium was dissolved in the metal pool; this resulted in the formation of titanium diboride and caused the molten aluminum to wet the carbonaceous cathode surface. Such wetting reportedly leads to operational improvements and extended cell life. In addition, boron oxide suppresses cyanide formation. This final report presents and discusses the results of this project. Substantial economic benefits for the practical implementation of the technology are projected, especially for modern cells with graphitized blocks. For example, with an energy savings of about 5% and an increase in pot life from 1500 to 2500 days, a cost savings of $ 0.023 per pound of aluminum produced is projected for a 200 kA pot.

  11. Fuel Cell Handbook update

    SciTech Connect

    Owens, W.R.; Hirschenhofer, J.H.; Engleman, R.R. Jr.; Stauffer, D.B.

    1993-11-01

    The objective of this work was to update the 1988 version of DOE`s Fuel Cell Handbook. Significant developments in the various fuel cell technologies required revisions to reflect state-of-the-art configurations and performance. The theoretical presentation was refined in order to make the handbook more useful to both the casual reader and fuel cell or systems analyst. In order to further emphasize the practical application of fuel cell technologies, the system integration information was expanded. In addition, practical elements, such as suggestions and guidelines to approximate fuel cell performance, were provided.

  12. Fossil fuels -- future fuels

    SciTech Connect

    1998-03-01

    Fossil fuels -- coal, oil, and natural gas -- built America`s historic economic strength. Today, coal supplies more than 55% of the electricity, oil more than 97% of the transportation needs, and natural gas 24% of the primary energy used in the US. Even taking into account increased use of renewable fuels and vastly improved powerplant efficiencies, 90% of national energy needs will still be met by fossil fuels in 2020. If advanced technologies that boost efficiency and environmental performance can be successfully developed and deployed, the US can continue to depend upon its rich resources of fossil fuels.

  13. Alternate-Fueled Flight: Halophytes, Algae, Bio-, and Synthetic Fuels

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.

    2007-01-01

    Synthetic and biomass fueling are now considered to be near-term aviation alternate fueling. The major impediment is a secure sustainable supply of these fuels at reasonable cost. However, biomass fueling raises major concerns related to uses of common food crops and grasses (some also called "weeds") for processing into aviation fuels. These issues are addressed, and then halophytes and algae are shown to be better suited as sources of aerospace fuels and transportation fueling in general. Some of the history related to alternate fuels use is provided as a guideline for current and planned alternate fuels testing (ground and flight) with emphasis on biofuel blends. It is also noted that lessons learned from terrestrial fueling are applicable to space missions. These materials represent an update and additions to the Workshop on Alternate Fueling Sustainable Supply and Halophyte Summit at Twinsburg, OH, Oct. 17 to 18, 2007 (ref. 1).

  14. Alternate-Fueled Flight: Halophytes, Algae, Bio-, and Synthetic Fuels

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.

    2012-01-01

    Synthetic and biomass fueling are now considered to be near-term aviation alternate fueling. The major impediment is a secure sustainable supply of these fuels at reasonable cost. However, biomass fueling raises major concerns related to uses of common food crops and grasses (some also called "weeds") for processing into aviation fuels. These issues are addressed, and then halophytes and algae are shown to be better suited as sources of aerospace fuels and transportation fueling in general. Some of the history related to alternate fuels use is provided as a guideline for current and planned alternate fuels testing (ground and flight) with emphasis on biofuel blends. It is also noted that lessons learned from terrestrial fueling are applicable to space missions. These materials represent an update (to 2009) and additions to the Workshop on Alternate Fueling Sustainable Supply and Halophyte Summit at Twinsburg, Ohio, October 17 to 18, 2007.

  15. Organic fuel cells and fuel cell conducting sheets

    DOEpatents

    Masel, Richard I.; Ha, Su; Adams, Brian

    2007-10-16

    A passive direct organic fuel cell includes an organic fuel solution and is operative to produce at least 15 mW/cm.sup.2 when operating at room temperature. In additional aspects of the invention, fuel cells can include a gas remover configured to promote circulation of an organic fuel solution when gas passes through the solution, a modified carbon cloth, one or more sealants, and a replaceable fuel cartridge.

  16. Flexible Fuel Vehicles: Providing a Renewable Fuel Choice

    SciTech Connect

    Not Available

    2007-05-01

    This Clean Cities Program fact sheet describes aspects of flexible fuel vehicles such as use of E85, special features, benefits of use, costs, and fueling locations. It discusses performance and lists additional resources.

  17. Opportunity fuels

    SciTech Connect

    Lutwen, R.C.

    1994-12-31

    Opportunity fuels - fuels that can be converted to other forms of energy at lower cost than standard fossil fuels - are discussed in outline form. The type and source of fuels, types of fuels, combustability, methods of combustion, refinery wastes, petroleum coke, garbage fuels, wood wastes, tires, and economics are discussed.

  18. 40 CFR 79.55 - Base fuel specifications.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 17 2012-07-01 2012-07-01 false Base fuel specifications. 79.55... (CONTINUED) REGISTRATION OF FUELS AND FUEL ADDITIVES Testing Requirements for Registration § 79.55 Base fuel specifications. (a) General Characteristics. (1) The base fuel(s) in each fuel family shall serve as the...

  19. 40 CFR 79.55 - Base fuel specifications.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 17 2013-07-01 2013-07-01 false Base fuel specifications. 79.55... (CONTINUED) REGISTRATION OF FUELS AND FUEL ADDITIVES Testing Requirements for Registration § 79.55 Base fuel specifications. (a) General characteristics. (1) The base fuel(s) in each fuel family shall serve as the...

  20. 40 CFR 79.55 - Base fuel specifications.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 17 2014-07-01 2014-07-01 false Base fuel specifications. 79.55... (CONTINUED) REGISTRATION OF FUELS AND FUEL ADDITIVES Testing Requirements for Registration § 79.55 Base fuel specifications. (a) General Characteristics. (1) The base fuel(s) in each fuel family shall serve as the...

  1. 40 CFR 79.33 - Motor vehicle diesel fuel.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Motor vehicle diesel fuel. 79.33... (CONTINUED) REGISTRATION OF FUELS AND FUEL ADDITIVES Designation of Fuels and Additives § 79.33 Motor vehicle diesel fuel. (a) The following fuels commonly or commercially known or sold as motor vehicle diesel...

  2. 40 CFR 80.162 - Additive compositional data.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Detergent Gasoline § 80.162 Additive compositional data. For a detergent additive product to be eligible for use by detergent blenders in complying with the... additive manufacturer for the purpose of registering a detergent additive package under § 79.21(a) of...

  3. 40 CFR 80.607 - What are the requirements for obtaining an exemption for diesel fuel or ECA marine fuel used for...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive... fuel will be segregated from motor vehicle diesel fuel, NRLM diesel fuel, or ECA marine fuel, as... documents associated with research and development motor vehicle diesel fuel must comply with...

  4. Gasoline additives, emissions, and performance

    SciTech Connect

    1995-12-31

    The papers included in this publication deal with the influence of fuel, additive, and hardware changes on a variety of vehicle performance characteristics. Advanced techniques for measuring these performance parameters are also described. Contents include: Fleet test evaluation of gasoline additives for intake valve and combustion chamber deposit clean up; A technique for evaluating octane requirement additives in modern engines on dynamometer test stands; A fleet test of two additive technologies comparing their effects on tailpipe emissions; Investigation into the vehicle exhaust emissions of high percentage ethanol blends; Variability in hydrocarbon speciation measurements at low emission (ULEV) levels; and more.

  5. Fuel pin

    DOEpatents

    Christiansen, D.W.; Karnesky, R.A.; Leggett, R.D.; Baker, R.B.

    1987-11-24

    A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

  6. Alcohol Transportation Fuels Demonstration Program

    SciTech Connect

    Kinoshita, C.M.

    1990-01-01

    Hawaii has abundant natural energy resources, especially biomass, that could be used to produce alternative fuels for ground transportation and electricity. This report summarizes activities performed during 1988 to June 1991 in the first phase of the Alcohol Transportation Fuels Demonstration Program. The Alcohol Transportation Fuels Demonstration Program was funded initially by the Energy Division of the State of Hawaii's Department of Business, Economic Development and Tourism, and then by the US Department of Energy. This program was intended to support the transition to an altemative transportation fuel, methanol, by demonstrating the use of methanol fuel and methanol-fueled vehicles, and solving the problems associated with that fuel. Specific objectives include surveying renewable energy resources and ground transportation in Hawaii; installing a model methanol fueling station; demonstrating a methanol-fueled fleet of (spark-ignition engine) vehicles; evaluating modification strategies for methanol-fueled diesel engines and fuel additives; and investigating the transition to methanol fueling. All major objectives of Phase I were met (survey of local renewable resources and ground transportation, installation of methanol refueling station, fleet demonstration, diesel engine modification and additive evaluation, and dissemination of information on alternative fueling), and some specific problems (e.g., relating to methanol fuel contamination during handling and refueling) were identified and solved. Several key issues emerging from Phase I (e.g., methanol corrosion, flame luminosity, and methanol-transition technoeconomics) were recommended as topics for follow-on research in subsequent phases of this program.

  7. Low conversion ratio fuel studies.

    SciTech Connect

    Smith, M. A.

    2006-02-28

    Recent studies on TRU disposition in fast reactors indicated viable reactor performance for a sodium cooled low conversion ratio reactor design. Additional studies have been initiated to refine the earlier work and consider the feasibility of alternate fuel forms such as nitride and oxide fuel (rather than metal fuel). These alternate fuel forms may have significant impacts upon the burner design and the safety behavior. The work performed thus far has focused on compiling the necessary fuel form property information and refinement of the physics models. For this limited project, the burner design and performance using nitride fuel will be assessed.

  8. Fuel performance annual report for 1985

    SciTech Connect

    Bailey, W.J.; Wu, S.

    1987-02-01

    This annual report, the eighth in a series, provides a brief description of fuel performance during 1985 in commercial nuclear power plants and an indication of trends. Brief summaries of fuel design changes, fuel surveillance programs, fuel operating experience, fuel problems, high-burnup fuel experience, and items of general significance are provided. References to additional, more detailed information and related NRC evaluations are included.

  9. Fuel performance annual report for 1981. [PWR; BWR

    SciTech Connect

    Bailey, W.J.; Tokar, M.

    1982-12-01

    This annual report, the fourth in a series, provides a brief description of fuel performance during 1981 in commercial nuclear power plants. Brief summaries of fuel operating experience, fuel problems, fuel design changes and fuel surveillance programs, and high-burnup fuel experience are provided. References to additional, more detailed information and related NRC evaluations are included.

  10. Fuel performance annual report for 1990. Volume 8

    SciTech Connect

    Preble, E.A.; Painter, C.L.; Alvis, J.A.; Berting, F.M.; Beyer, C.E.; Payne, G.A.; Wu, S.L.

    1993-11-01

    This annual report, the thirteenth in a series, provides a brief description of fuel performance during 1990 in commercial nuclear power plants. Brief summaries of fuel design changes, fuel surveillance programs, fuel operating experience and trends, fuel problems high-burnup fuel experience, and items of general significance are provided . References to additional, more detailed information, and related NRC evaluations are included where appropriate.

  11. Fuel performance annual report for 1983. Volume 1

    SciTech Connect

    Bailey, W.J.; Dunenfeld, M.S.

    1985-03-01

    This annual report, the sixth in a series, provides a brief description of fuel performance during 1983 in commercial nuclear power plants. Brief summaries of fuel design changes, fuel surveillance programs, fuel operating experience, fuel problems, high-burnup fuel experience, and items of general significance are provided. References to additional, more detailed information and related NRC evaluations are included.

  12. Additional danger of arsenic exposure through inhalation from burning of cow dung cakes laced with arsenic as a fuel in arsenic affected villages in Ganga-Meghna-Brahmaputra plain.

    PubMed

    Pal, Arup; Nayak, Bishwajit; Das, Bhaskar; Hossain, M Amir; Ahamed, Sad; Chakraborti, Dipankar

    2007-10-01

    In arsenic contaminated areas of the Ganga-Meghna-Brahmaputra (GMB) plain (area 569,749 sq. km; population over 500 million) where traditionally cow dung cake is used as a fuel in unventilated ovens for cooking purposes, people are simply exposed to 1859.2 ng arsenic per day through direct inhalation, of which 464.8 ng could be absorbed in respiratory tract.

  13. 40 CFR 79.31 - Additives.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... produced or sold for use in motor vehicle gasoline and/or motor vehicle diesel fuel are hereby designated... additive on all emissions; (5) Toxicity and any other public health or welfare effects of the...

  14. 40 CFR 79.31 - Additives.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... produced or sold for use in motor vehicle gasoline and/or motor vehicle diesel fuel are hereby designated... additive on all emissions; (5) Toxicity and any other public health or welfare effects of the...

  15. 40 CFR 79.31 - Additives.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... produced or sold for use in motor vehicle gasoline and/or motor vehicle diesel fuel are hereby designated... additive on all emissions; (5) Toxicity and any other public health or welfare effects of the...

  16. 40 CFR 79.31 - Additives.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... produced or sold for use in motor vehicle gasoline and/or motor vehicle diesel fuel are hereby designated... additive on all emissions; (5) Toxicity and any other public health or welfare effects of the...

  17. 40 CFR 79.31 - Additives.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... produced or sold for use in motor vehicle gasoline and/or motor vehicle diesel fuel are hereby designated... additive on all emissions; (5) Toxicity and any other public health or welfare effects of the...

  18. Automotive Fuel Processor Development and Demonstration with Fuel Cell Systems

    SciTech Connect

    Nuvera Fuel Cells

    2005-04-15

    The potential for fuel cell systems to improve energy efficiency and reduce emissions over conventional power systems has generated significant interest in fuel cell technologies. While fuel cells are being investigated for use in many applications such as stationary power generation and small portable devices, transportation applications present some unique challenges for fuel cell technology. Due to their lower operating temperature and non-brittle materials, most transportation work is focusing on fuel cells using proton exchange membrane (PEM) technology. Since PEM fuel cells are fueled by hydrogen, major obstacles to their widespread use are the lack of an available hydrogen fueling infrastructure and hydrogen's relatively low energy storage density, which leads to a much lower driving range than conventional vehicles. One potential solution to the hydrogen infrastructure and storage density issues is to convert a conventional fuel such as gasoline into hydrogen onboard the vehicle using a fuel processor. Figure 2 shows that gasoline stores roughly 7 times more energy per volume than pressurized hydrogen gas at 700 bar and 4 times more than liquid hydrogen. If integrated properly, the fuel processor/fuel cell system would also be more efficient than traditional engines and would give a fuel economy benefit while hydrogen storage and distribution issues are being investigated. Widespread implementation of fuel processor/fuel cell systems requires improvements in several aspects of the technology, including size, startup time, transient response time, and cost. In addition, the ability to operate on a number of hydrocarbon fuels that are available through the existing infrastructure is a key enabler for commercializing these systems. In this program, Nuvera Fuel Cells collaborated with the Department of Energy (DOE) to develop efficient, low-emission, multi-fuel processors for transportation applications. Nuvera's focus was on (1) developing fuel processor

  19. 14 CFR 25.995 - Fuel valves.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel valves. 25.995 Section 25.995... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System Components § 25.995 Fuel valves. In addition to the requirements of § 25.1189 for shutoff means, each fuel valve must— (a) (b) Be supported...

  20. 14 CFR 25.995 - Fuel valves.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel valves. 25.995 Section 25.995... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System Components § 25.995 Fuel valves. In addition to the requirements of § 25.1189 for shutoff means, each fuel valve must— (a) (b) Be supported...

  1. 14 CFR 29.995 - Fuel valves.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel valves. 29.995 Section 29.995... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System Components § 29.995 Fuel valves. In addition to meeting the requirements of § 29.1189, each fuel valve must— (a) (b) Be supported so that no...

  2. 14 CFR 29.995 - Fuel valves.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel valves. 29.995 Section 29.995... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System Components § 29.995 Fuel valves. In addition to meeting the requirements of § 29.1189, each fuel valve must— (a) (b) Be supported so that no...

  3. Fuel Performance Annual Report for 1979

    SciTech Connect

    Tokar, M.; Mailey, W. J.; Cunningham, M. E.

    1981-01-01

    This annual report, the second in a series, provides a brief description of fuel performance in commercial nuclear power plants. Brief summaries are given of fuel surveillance programs, fuel performance problems, and fuel design changes. References to additional, more detailed, information and related NRC evaluation are provided.

  4. 14 CFR 29.995 - Fuel valves.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel valves. 29.995 Section 29.995... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System Components § 29.995 Fuel valves. In addition to meeting the requirements of § 29.1189, each fuel valve must— (a) (b) Be supported so that no...

  5. 14 CFR 25.995 - Fuel valves.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel valves. 25.995 Section 25.995... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System Components § 25.995 Fuel valves. In addition to the requirements of § 25.1189 for shutoff means, each fuel valve must— (a) (b) Be supported...

  6. 14 CFR 29.995 - Fuel valves.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel valves. 29.995 Section 29.995... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System Components § 29.995 Fuel valves. In addition to meeting the requirements of § 29.1189, each fuel valve must— (a) (b) Be supported so that no...

  7. 14 CFR 29.995 - Fuel valves.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel valves. 29.995 Section 29.995... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System Components § 29.995 Fuel valves. In addition to meeting the requirements of § 29.1189, each fuel valve must— (a) (b) Be supported so that no...

  8. 14 CFR 25.995 - Fuel valves.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel valves. 25.995 Section 25.995... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System Components § 25.995 Fuel valves. In addition to the requirements of § 25.1189 for shutoff means, each fuel valve must— (a) (b) Be supported...

  9. 14 CFR 25.995 - Fuel valves.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel valves. 25.995 Section 25.995... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System Components § 25.995 Fuel valves. In addition to the requirements of § 25.1189 for shutoff means, each fuel valve must— (a) (b) Be supported...

  10. Jet Fuel Thermal Stability

    NASA Technical Reports Server (NTRS)

    Taylor, W. F. (Editor)

    1979-01-01

    Various aspects of the thermal stability problem associated with the use of broadened-specification and nonpetroleum-derived turbine fuels are addressed. The state of the art is reviewed and the status of the research being conducted at various laboratories is presented. Discussions among representatives from universities, refineries, engine and airframe manufacturers, airlines, the Government, and others are presented along with conclusions and both broad and specific recommendations for future stability research and development. It is concluded that significant additional effort is required to cope with the fuel stability problems which will be associated with the potentially poorer quality fuels of the future such as broadened specification petroleum fuels or fuels produced from synthetic sources.

  11. Opportunity fuels

    SciTech Connect

    Lutwen, R.C.

    1996-12-31

    The paper consists of viewgraphs from a conference presentation. A comparison is made of opportunity fuels, defined as fuels that can be converted to other forms of energy at lower cost than standard fossil fuels. Types of fuels for which some limited technical data is provided include petroleum coke, garbage, wood waste, and tires. Power plant economics and pollution concerns are listed for each fuel, and compared to coal and natural gas power plant costs. A detailed cost breakdown for different plant types is provided for use in base fuel pricing.

  12. Catalysts for improved fuel processing

    SciTech Connect

    Borup, R.L.; Inbody, M.A.

    2000-09-01

    This report covers our technical progress on fuel processing catalyst characterization for the specific purpose of hydrogen production for proton-exchange-membrane (PEM) fuel cells. These development efforts support DOE activities in the development of compact, transient capable reformers for on-board hydrogen generation starting from candidate fuels. The long-term objective includes increased durability and lifetime, in addition to smaller volume, improved performance, and other specifications required meeting fuel processor goals. The technical barriers of compact fuel processor size, transient capability, and compact, efficient thermal management all are functions of catalyst performance. Significantly, work at LANL now tests large-scale fuel processors for performance and durability, as influenced by fuels and fuel constituents, and complements that testing with micro-scale catalyst evaluation which is accomplished under well controlled conditions.

  13. Combination of ethylene polymer, normal paraffinic wax and nitrogen containing compound (stabilized, if desired, with one or more compatibility additives) to improve cold flow properties of distillate fuel oils

    SciTech Connect

    Dooley, M.; Feldman, N.; Ryer, J.

    1980-07-01

    A description is given of a wax-containing petroleum fuel oil comprising a major proportion of a distillate oil boiling in the range of 120/sup 0/ to 42 5/sup 0/ C, which fuel oil has been improved in its low temperature flow properties, containing in the range of about 0.001 to 2.5 wt. %, based on the weight of the total composition, of a flow improving combination of: (A) one part by weight of an oil-soluble ethylene backbone distillate flow improving polymer having a number average molecular weight in the range of about 500 to 50,000; (B) 0.1 to 30 parts by weight of wax comprising principally n-paraffins having from 20 to 60 carbons; and (C) 0.01 to 10 parts weight of an oil-soluble nitrogen compound containing a total of about 30 to 300 carbon atoms and having at least one straight chain alkyl segment of 8 to 40 carbons, and selected from the class consisting of amine salts and/or amides of hydrocarbyl carboxylic acids or anhydrides having 1 to 4 carbonyl groups.

  14. Synthetic Fuel

    ScienceCinema

    Idaho National Laboratory - Steve Herring, Jim O'Brien, Carl Stoots

    2016-07-12

    Two global energy priorities today are finding environmentally friendly alternatives to fossil fuels, and reducing greenhouse gass Two global energy priorities today are finding environmentally friendly alternatives to fossil fuels, and reducing greenhous

  15. Fuel cells

    NASA Astrophysics Data System (ADS)

    1984-12-01

    The US Department of Energy (DOE), Office of Fossil Energy, has supported and managed a fuel cell research and development (R and D) program since 1976. Responsibility for implementing DOE's fuel cell program, which includes activities related to both fuel cells and fuel cell systems, has been assigned to the Morgantown Energy Technology Center (METC) in Morgantown, West Virginia. The total United States effort of the private and public sectors in developing fuel cell technology is referred to as the National Fuel Cell Program (NFCP). The goal of the NFCP is to develop fuel cell power plants for base-load and dispersed electric utility systems, industrial cogeneration, and on-site applications. To achieve this goal, the fuel cell developers, electric and gas utilities, research institutes, and Government agencies are working together. Four organized groups are coordinating the diversified activities of the NFCP. The status of the overall program is reviewed in detail.

  16. Synthetic Fuel

    SciTech Connect

    Idaho National Laboratory - Steve Herring, Jim O'Brien, Carl Stoots

    2008-03-26

    Two global energy priorities today are finding environmentally friendly alternatives to fossil fuels, and reducing greenhouse gass Two global energy priorities today are finding environmentally friendly alternatives to fossil fuels, and reducing greenhous

  17. Vibrating fuel grapple. [LMFBR

    DOEpatents

    Chertock, A.J.; Fox, J.N.; Weissinger, R.B.

    A reactor refueling method is described which utilizes a vibrating fuel grapple for removing spent fuel assemblies from a reactor core. It incorporates a pneumatic vibrator in the grapple head which allows additional withdrawal capability without exceeding the allowable axial force limit. The only moving part in the vibrator is a steel ball, pneumatically driven by a gas, such as argon, around a track, with centrifugal force created by the ball being transmitted through the grapple to the assembly handling socket.

  18. JACKETED FUEL ELEMENT

    DOEpatents

    Wigner, E.P.; Szilard, L.; Creutz, E.C.

    1959-02-01

    These fuel elements are comprised of a homogeneous metallic uranium body completely enclosed and sealed in an aluminum cover. The uranium body and aluminum cover are bonded together by a layer of zinc located between them. The bonding layer serves to improve transfer of heat, provides an additional protection against corrosion of the uranium by the coolant, and also localizes any possible corrosion by preventing travel of corrosive material along the surface of the fuel element.

  19. Vibrating fuel grapple

    DOEpatents

    Chertock, deceased, Alan J.; Fox, Jack N.; Weissinger, Robert B.

    1982-01-01

    A reactor refueling method utilizing a vibrating fuel grapple for removing spent fuel assemblies from a reactor core which incorporates a pneumatic vibrator in the grapple head, enabling additional withdrawal capability without exceeding the allowable axial force limit. The only moving part in the vibrator is a steel ball, pneumatically driven by a gas, such as argon, around a track, with centrifugal force created by the ball being transmitted through the grapple to the assembly handling socket.

  20. Fossil Fuels.

    ERIC Educational Resources Information Center

    Crank, Ron

    This instructional unit is one of 10 developed by students on various energy-related areas that deals specifically with fossil fuels. Some topics covered are historic facts, development of fuels, history of oil production, current and future trends of the oil industry, refining fossil fuels, and environmental problems. Material in each unit may…

  1. Fuels for fuel cells: Fuel and catalyst effects on carbon formation

    SciTech Connect

    Borup, R. L.; Inbody, M. A.; Perry, W. L.; Parkinson, W. J. ,

    2002-01-01

    The goal of this research is to explore the effects of fuels, fuel constituents, additives and impurities on the performance of on-board hydrogen generation devices and consequently on the overall performance of fuel cell systems using reformed hydrocarbon fuels. Different fuels and components have been tested in automotive scale, adiabatic autothermal reactors to observe their relative reforming characteristics with various operating conditions. Carbon formation has been modeled and was experimentally monitored in situ during operation by laser measurements of the effluent reformate. Ammonia formation was monitored, and conditions varied to observe under what conditions N H 3 is made.

  2. Alternative fuels

    NASA Technical Reports Server (NTRS)

    Grobman, J. S.; Butze, H. F.; Friedman, R.; Antoine, A. C.; Reynolds, T. W.

    1977-01-01

    Potential problems related to the use of alternative aviation turbine fuels are discussed and both ongoing and required research into these fuels is described. This discussion is limited to aviation turbine fuels composed of liquid hydrocarbons. The advantages and disadvantages of the various solutions to the problems are summarized. The first solution is to continue to develop the necessary technology at the refinery to produce specification jet fuels regardless of the crude source. The second solution is to minimize energy consumption at the refinery and keep fuel costs down by relaxing specifications.

  3. FUEL ELEMENT FOR A NEUTRONIC REACTOR

    DOEpatents

    McGeary, R.K.; Winslow, F.R.

    1963-08-13

    A method of making fuel elements wherein several individual fuel pellets are positioned into a cladding tube and the tape stretched longitudinally until the cladding tube grips each pellet and, in addition, necks down between each pellet is described. (AEC)

  4. 40 CFR 80.606 - What national security exemption applies to fuels covered under this subpart?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... (b) The exempt fuel must meet any of the following: (1) The motor vehicle diesel fuel standards of... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Exemptions § 80.606...

  5. 40 CFR 80.1465 - What are the additional requirements under this subpart for foreign small refiners, foreign small...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Renewable Fuel Standard § 80.1465 What are the additional... transportation fuel produced at a foreign refinery that has received a small refinery exemption under § 80.1441... transportation fuel produced at a foreign refinery that has not received a small refinery exemption under §...

  6. 75 FR 37733 - Regulation of Fuels and Fuel Additives: Modifications to Renewable Fuel Standard Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-30

    ...), and (c)(7), that were published at 75 FR 26026 on May 10, 2010. FOR FURTHER INFORMATION CONTACT: Megan... subsequent final action based on the parallel proposed rule also published on May 10, 2010 (75 FR 26049). The... 10, 2010 (75 FR 26026) are withdrawn as of June 30, 2010. BILLING CODE 6560-50-P...

  7. 75 FR 42237 - Regulation of Fuels and Fuel Additives: 2011 Renewable Fuel Standards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-20

    ... July 1, 2010. \\1\\ 75 FR 14670. EPA is required to determine and publish the applicable annual... convert the cellulose and hemicellulose into simple sugars for later fermentation into ethanol....

  8. 75 FR 76789 - Regulation of Fuels and Fuel Additives: 2011 Renewable Fuel Standards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-09

    ... requirements of EISA occurred on July 1, 2010. \\1\\ 75 FR 14670. EPA is required to determine and publish the... Proposed Rulemaking (NPRM) on July 20, 2010 (75 FR 42238). Today's action provides our final projection of...\\ 75 FR 59622. Finally, in today's rulemaking we are announcing the price for cellulosic biofuel...

  9. 78 FR 49793 - Regulation of Fuels and Fuel Additives: 2013 Renewable Fuel Standards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-15

    ... publication of major revisions to the regulatory requirements on March 26, 2010.\\1\\ \\1\\ 75 FR 14670 The...-equivalent gallons of cellulosic biofuel will be available in 2013. \\3\\ 78 FR 9282, February 7, 2013. We have... capacity, potentially up to 500 mill gal ethanol-equivalent. \\7\\ 77 FR 59458, September 27, 2012. \\8\\...

  10. 75 FR 14669 - Regulation of Fuels and Fuel Additives: Changes to Renewable Fuel Standard Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-26

    ... 2007 Reference Case 3. Reference Cases and RFS2 Control Case 4. Case Study 5. Sensitivity Analysis C...-Related Flexibilities iv. Program Review ] v. Extensions of the Temporary Exemption Based on a Study of... business information (CBI) or other information whose disclosure is restricted by statute. Certain...

  11. 76 FR 38843 - Regulation of Fuels and Fuel Additives: 2012 Renewable Fuel Standards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-01

    ... requirements of EISA generally occurred on July 1, 2010. \\1\\ 75 FR 14670. Under RFS2, EPA is required to... facilities see the 2011 standards rule.\\5\\ \\5\\ 75 FR 76790, December 9, 2010. DuPont Danisco...

  12. 76 FR 37703 - Regulation of Fuels and Fuel Additives: 2012 Renewable Fuel Standards; Public Hearing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-28

    ... regulations to establish annual standards for cellulosic biofuel, biomass-based diesel, advanced biofuel, and... and an applicable volume of biomass- based diesel that would apply in 2013. DATES: The public...

  13. 77 FR 72746 - Regulation of Fuels and Fuel Additives: Modifications to Renewable Fuel Standard and Diesel...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-06

    ....1451, 80.1453, 80.1454, and 80.1460 published at 77 FR 61281 (October 9, 2012). Because EPA did not...: EPA published a direct final rule on October 9, 2012 (77 FR 61281) to amend provisions in the... the parallel proposed rule also published on October 9, 2012 (77 FR 61313). As stated in the...

  14. 77 FR 1319 - Regulation of Fuels and Fuel Additives: 2012 Renewable Fuel Standards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-09

    ... occurred on July 1, 2010. \\1\\ 75 FR 14670. Under RFS2, EPA is required to determine and publish the... 31, and other information that became available. \\2\\ 76 FR 38844. Today's final rule does not include... rule.\\7\\ \\7\\ 75 FR 76790, December 9, 2010. DuPont Danisco Cellulosic Ethanol (DDCE)...

  15. Marketing wood waste for fuel

    SciTech Connect

    Badger, P.C. )

    1995-01-01

    The value of waste wood to the buyer is the price at the plant gate with value reduced by any transportation costs and value increased by applicable tax credits. To assure the buyer of competitiveness fuels can be priced as a percentage of the competing fuel price. For example, wood can be priced at 80% of coal prices on a Btu basis. In addition to fuel price, there are several other benefits associated with the use of wood fuels. The fuel is renewable, locally supplied, and usually available from more than one source. It also may be stockpiled for several months. These advantages give the buyer better security than than purchasing fuel from a distant, impersonal source that is more likely to increase prices or withhold fuel for various reasons. 3 tabs.

  16. 40 CFR 80.40 - Fuel certification procedures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Fuel certification procedures. 80.40... (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Reformulated Gasoline § 80.40 Fuel certification... be deemed certified. (b) Any refiner or importer may, with regard to a specific fuel...

  17. Cermet fuel reactors

    SciTech Connect

    Cowan, C.L.; Palmer, R.S.; Van Hoomissen, J.E.; Bhattacharyya, S.K.; Barner, J.O.

    1987-09-01

    Cermet fueled nuclear reactors are attractive candidates for high performance space power systems. The cermet fuel consists of tungsten-urania hexagonal fuel blocks characterized by high strength at elevated temperatures, a high thermal conductivity and resultant high thermal shock resistance. Key features of the cermet fueled reactor design are (1) the ability to achieve very high coolant exit temperatures, and (2) thermal shock resistance during rapid power changes, and (3) two barriers to fission product release - the cermet matrix and the fuel element cladding. Additionally, thre is a potential for achieving a long operating life because of (1) the neutronic insensitivity of the fast-spectrum core to the buildup of fission products and (2) the utilization of a high strength refractory metal matrix and structural materials. These materials also provide resistance against compression forces that potentially might compact and/or reconfigure the core. In addition, the neutronic properties of the refractory materials assure that the reactor remains substantially subcritical under conditions of water immersion. It is concluded that cermet fueled reactors can be utilized to meet the power requirements for a broad range of advanced space applications. 4 refs., 4 figs., 3 tabs.

  18. Improved electrolytes for fuel cells

    SciTech Connect

    Gard, G.L.; Roe, D.K.

    1991-06-01

    Present day fuel cells based upon hydrogen and oxygen have limited performance due to the use of phosphoric acid as an electrolyte. Improved performance is desirable in electrolyte conductivity, electrolyte management, oxygen solubility, and the kinetics of the reduction of oxygen. Attention has turned to fluorosulfonic acids as additives or substitute electrolytes to improve fuel cell performance. The purpose of this project is to synthesize and electrochemically evaluate new fluorosulfonic acids as superior alternatives to phosphoric acid in fuel cells. (VC)

  19. Swelling-resistant nuclear fuel

    DOEpatents

    Arsenlis, Athanasios; Satcher, Jr., Joe; Kucheyev, Sergei O.

    2011-12-27

    A nuclear fuel according to one embodiment includes an assembly of nuclear fuel particles; and continuous open channels defined between at least some of the nuclear fuel particles, wherein the channels are characterized as allowing fission gasses produced in an interior of the assembly to escape from the interior of the assembly to an exterior thereof without causing significant swelling of the assembly. Additional embodiments, including methods, are also presented.

  20. Flexible Fuel Vehicles: Providing a Renewable Fuel Choice (Revised)

    SciTech Connect

    Not Available

    2008-06-01

    Clean Cities fact sheet describing aspects of flexible fuel vehicles such as use of E85, special features, benefits of use, costs, and fueling locations. It includes discussion on performance and how to identify these vehicles as well as listing additional resources.

  1. Oxidation stability of biodiesel fuels and blends using the Rancimat and PetroOXY methods. Effect of 4-allyl-2,6-dimethoxyphenol and catechol as biodiesel additives on oxidation stability.

    PubMed

    Botella, Lucía; Bimbela, Fernando; Martín, Lorena; Arauzo, Jesús; Sánchez, José L

    2014-01-01

    IN THE PRESENT WORK, SEVERAL FATTY ACID METHYL ESTERS (FAME) HAVE BEEN SYNTHESIZED FROM VARIOUS FATTY ACID FEEDSTOCKS: used frying olive oil, pork fat, soybean, rapeseed, sunflower, and coconut. The oxidation stabilities of the biodiesel samples and of several blends have been measured simultaneously by both the Rancimat method, accepted by EN14112 standard, and the PetroOXY method, prEN16091 standard, with the aim of finding a correlation between both methodologies. Other biodiesel properties such as composition, cold filter plugging point (CFPP), flash point (FP), and kinematic viscosity have also been analyzed using standard methods in order to further characterize the biodiesel produced. In addition, the effect on the biodiesel properties of using 4-allyl-2,6-dimethoxyphenol and catechol as additives in biodiesel blends with rapeseed and with soybean has also been analyzed. The use of both antioxidants results in a considerable improvement in the oxidation stability of both types of biodiesel, especially using catechol. Adding catechol loads as low as 0.05% (m/m) in blends with soybean biodiesel and as low as 0.10% (m/m) in blends with rapeseed biodiesel is sufficient for the oxidation stabilities to comply with the restrictions established by the European EN14214 standard. An empirical linear equation is proposed to correlate the oxidation stability by the two methods, PetroOXY and Rancimat. It has been found that the presence of either catechol or 4-allyl-2,6-dimethoxyphenol as additives affects the correlation observed.

  2. Oxidation stability of biodiesel fuels and blends using the Rancimat and PetroOXY methods. Effect of 4-allyl-2,6-dimetoxiphenol and cathecol as biodiesel additives on oxidation stability

    NASA Astrophysics Data System (ADS)

    Botella, Lucía; Bimbela, Fernando; Martín, Lorena; Arauzo, Jesús; Sanchez, Jose Luis

    2014-07-01

    In the present work, several fatty acid methyl esters (FAME) have been synthesized from various fatty acid feedstocks: used frying olive oil, pork fat, soybean, rapeseed, sunflower and coconut. The oxidation stabilities of the biodiesel samples and of several blends have been measured simultaneously by both the Rancimat method, accepted by EN14112 standard, and the PetroOXY method, prEN16091 standard, with the aim of finding a correlation between both methodologies. Other biodiesel properties such as composition, cold filter plugging point (CFPP), flash point (FP) and kinematic viscosity have also been analyzed using standard methods in order to further characterize the biodiesel produced. In addition, the effect on the biodiesel properties of using 4-allyl-2,6-dimetoxiphenol and cathecol as additives in biodiesel blends with rapeseed and with soybean has also been analyzed. The use of both antioxidants results in a considerable improvement in the oxidation stability of both types of biodiesel, especially using cathecol. Adding cathecol loads as low as 0.05 % (m/m) in blends with soybean biodiesel and as low as 0.10 % (m/m) in blends with rapeseed biodiesel is sufficient for the oxidation stabilities to comply with the restrictions established by the European EN14214 standard.An empirical linear equation is proposed to correlate the oxidation stability by the two methods, PetroOXY and Rancimat. It has been found that the presence of either cathecol or 4-allyl-2,6-dimetoxiphenol as additives affects the correlation observed.

  3. Oxidation stability of biodiesel fuels and blends using the Rancimat and PetroOXY methods. Effect of 4-allyl-2,6-dimethoxyphenol and catechol as biodiesel additives on oxidation stability

    PubMed Central

    Botella, Lucía; Bimbela, Fernando; Martín, Lorena; Arauzo, Jesús; Sánchez, José L.

    2014-01-01

    In the present work, several fatty acid methyl esters (FAME) have been synthesized from various fatty acid feedstocks: used frying olive oil, pork fat, soybean, rapeseed, sunflower, and coconut. The oxidation stabilities of the biodiesel samples and of several blends have been measured simultaneously by both the Rancimat method, accepted by EN14112 standard, and the PetroOXY method, prEN16091 standard, with the aim of finding a correlation between both methodologies. Other biodiesel properties such as composition, cold filter plugging point (CFPP), flash point (FP), and kinematic viscosity have also been analyzed using standard methods in order to further characterize the biodiesel produced. In addition, the effect on the biodiesel properties of using 4-allyl-2,6-dimethoxyphenol and catechol as additives in biodiesel blends with rapeseed and with soybean has also been analyzed. The use of both antioxidants results in a considerable improvement in the oxidation stability of both types of biodiesel, especially using catechol. Adding catechol loads as low as 0.05% (m/m) in blends with soybean biodiesel and as low as 0.10% (m/m) in blends with rapeseed biodiesel is sufficient for the oxidation stabilities to comply with the restrictions established by the European EN14214 standard. An empirical linear equation is proposed to correlate the oxidation stability by the two methods, PetroOXY and Rancimat. It has been found that the presence of either catechol or 4-allyl-2,6-dimethoxyphenol as additives affects the correlation observed. PMID:25101258

  4. Oxidation stability of biodiesel fuels and blends using the Rancimat and PetroOXY methods. Effect of 4-allyl-2,6-dimethoxyphenol and catechol as biodiesel additives on oxidation stability.

    PubMed

    Botella, Lucía; Bimbela, Fernando; Martín, Lorena; Arauzo, Jesús; Sánchez, José L

    2014-01-01

    IN THE PRESENT WORK, SEVERAL FATTY ACID METHYL ESTERS (FAME) HAVE BEEN SYNTHESIZED FROM VARIOUS FATTY ACID FEEDSTOCKS: used frying olive oil, pork fat, soybean, rapeseed, sunflower, and coconut. The oxidation stabilities of the biodiesel samples and of several blends have been measured simultaneously by both the Rancimat method, accepted by EN14112 standard, and the PetroOXY method, prEN16091 standard, with the aim of finding a correlation between both methodologies. Other biodiesel properties such as composition, cold filter plugging point (CFPP), flash point (FP), and kinematic viscosity have also been analyzed using standard methods in order to further characterize the biodiesel produced. In addition, the effect on the biodiesel properties of using 4-allyl-2,6-dimethoxyphenol and catechol as additives in biodiesel blends with rapeseed and with soybean has also been analyzed. The use of both antioxidants results in a considerable improvement in the oxidation stability of both types of biodiesel, especially using catechol. Adding catechol loads as low as 0.05% (m/m) in blends with soybean biodiesel and as low as 0.10% (m/m) in blends with rapeseed biodiesel is sufficient for the oxidation stabilities to comply with the restrictions established by the European EN14214 standard. An empirical linear equation is proposed to correlate the oxidation stability by the two methods, PetroOXY and Rancimat. It has been found that the presence of either catechol or 4-allyl-2,6-dimethoxyphenol as additives affects the correlation observed. PMID:25101258

  5. Modeling fuel succession

    USGS Publications Warehouse

    Davis, Brett; Van Wagtendonk, Jan W.; Beck, Jen; van Wagtendonk, Kent A.

    2009-01-01

    Surface fuels data are of critical importance for supporting fire incident management, risk assessment, and fuel management planning, but the development of surface fuels data can be expensive and time consuming. The data development process is extensive, generally beginning with acquisition of remotely sensed spatial data such as aerial photography or satellite imagery (Keane and others 2001). The spatial vegetation data are then crosswalked to a set of fire behavior fuel models that describe the available fuels (the burnable portions of the vegetation) (Anderson 1982, Scott and Burgan 2005). Finally, spatial fuels data are used as input to tools such as FARSITE and FlamMap to model current and potential fire spread and behavior (Finney 1998, Finney 2006). The capture date of the remotely sensed data defines the period for which the vegetation, and, therefore, fuels, data are most accurate. The more time that passes after the capture date, the less accurate the data become due to vegetation growth and processes such as fire. Subsequently, the results of any fire simulation based on these data become less accurate as the data age. Because of the amount of labor and expense required to develop these data, keeping them updated may prove to be a challenge. In this article, we describe the Sierra Nevada Fuel Succession Model, a modeling tool that can quickly and easily update surface fuel models with a minimum of additional input data. Although it was developed for use by Yosemite, Sequoia, and Kings Canyon National Parks, it is applicable to much of the central and southern Sierra Nevada. Furthermore, the methods used to develop the model have national applicability.

  6. Predicting Individual Fuel Economy

    SciTech Connect

    Lin, Zhenhong; Greene, David L

    2011-01-01

    To make informed decisions about travel and vehicle purchase, consumers need unbiased and accurate information of the fuel economy they will actually obtain. In the past, the EPA fuel economy estimates based on its 1984 rules have been widely criticized for overestimating on-road fuel economy. In 2008, EPA adopted a new estimation rule. This study compares the usefulness of the EPA's 1984 and 2008 estimates based on their prediction bias and accuracy and attempts to improve the prediction of on-road fuel economies based on consumer and vehicle attributes. We examine the usefulness of the EPA fuel economy estimates using a large sample of self-reported on-road fuel economy data and develop an Individualized Model for more accurately predicting an individual driver's on-road fuel economy based on easily determined vehicle and driver attributes. Accuracy rather than bias appears to have limited the usefulness of the EPA 1984 estimates in predicting on-road MPG. The EPA 2008 estimates appear to be equally inaccurate and substantially more biased relative to the self-reported data. Furthermore, the 2008 estimates exhibit an underestimation bias that increases with increasing fuel economy, suggesting that the new numbers will tend to underestimate the real-world benefits of fuel economy and emissions standards. By including several simple driver and vehicle attributes, the Individualized Model reduces the unexplained variance by over 55% and the standard error by 33% based on an independent test sample. The additional explanatory variables can be easily provided by the individuals.

  7. Interactions of Jet Fuels with Nitrile O-Rings: Petroleum-Derived versus Synthetic Fuels

    SciTech Connect

    Gormley, Robert J.; Link, Dirk D.; Baltrus, John P.; Zandhuis, Paul H.

    2009-02-19

    A transition from petroleum-derived jet fuels to blends with Fischer-Tropsch (F-T) fuels, and ultimately fully synthetic hydro-isomerized F-T fuels has raised concern about the fate of plasticizers in nitrile-butadiene rubber o-rings that are contacted by the fuels as this transition occurs. The partitioning of plasticizers and fuel molecules between nitrile o-rings and petroleum-derived, synthetic, and additized-synthetic jet fuels has been measured. Thermal desorption of o-rings soaked in the various jet fuels followed by gas chromatographic analysis with a mass spectrometric detector showed many of the plasticizer and stabilizer compounds were removed from the o-rings regardless of the contact fuel. Fuel molecules were observed to migrate into the o-rings for the petroleum-derived fuel as did both the fuel and additive for a synthetic F-T jet fuel additized with benzyl alcohol, but less for the unadditized synthetic fuel. The specific compounds or classes of compounds involved in the partitioning were identified and a semiquantitative comparison of relative partitioning of the compounds of interest was made, The results provide another step forward in improving the confidence level of using additized, fully synthetic jet fuel in the place of petroleum-derived fuel.

  8. Interactions of Jet Fuels with Nitrile O-Rings: Petroleum-Derived versus Synthetic Fuels

    SciTech Connect

    Gormely, R J; Link, D D; Baltrus, J P; Zandhuis, P H

    2009-01-01

    A transition from petroleum~derived jet fuels to blends with Fischer-Tropsch (F~T) fuels, and ultimately fully synthetic hydro-isomerized F-T fuels has raised concern about the fate of plasticizers in nitrile-butadiene rubber a-rings that are contacted by the fuels as this transition occurs. The partitioning of plasticizers and fuel molecules between nitrile a-rings and petroleum-derived, synthetic, and additized-synthetic jet fuels has been measured. Thermal desorption of o-rings soaked in the various jet fuels followed by gas chromatographic analysis with a mass spectrometric detector showed many of the plasticizer and stabilizer compounds were removed from the o-rings regardless of the contact fuel. Fuel molecules were observed to migrate into the o-rings for the petroleum-derived fuel as did both the fuel and additive for a synthetic F-T jet fuel additized with benzyl alcohol, but less for the unadditized synthetic fuel. The specific compounds or classes of compounds involved in the partitioning were identified and a semiquantitative comparison of relative partitioning of the compounds of interest was made. The results provide another step forward in improving the confidence level of using additized, fully synthetic jet fuel in the place of petroleum-derived fuel.

  9. Interactions of Jet Fuels with Nitrile O-Rings: Petroleum-Derived versus Synthetic Fuels

    SciTech Connect

    Gormley, R.J.; Link, D.D.; Baltrus, J.P.; Zandhuis, P.H.

    2008-01-01

    A transition from petroleum-derived jet fuels to blends with Fischer-Tropsch (F-T) fuels, and ultimately fully synthetic hydro-isomerized F-T fuels has raised concern about the fate of plasticizers in nitrile-butadiene rubber o-rings that are contacted by the fuels as this transition occurs. The partitioning of plasticizers and fuel molecules between nitrile o-rings and petroleum-derived, synthetic, and additized-synthetic jet fuels has been measured. Thermal desorption of o-rings soaked in the various jet fuels followed by gas chromatographic analysis with a mass spectrometric detector showed many of the plasticizer and stabilizer compounds were removed from the o-rings regardless of the contact fuel. Fuel molecules were observed to migrate into the o-rings for the petroleum-derived fuel as did both the fuel and additive for a synthetic F-T jet fuel additized with benzyl alcohol, but less for the unadditized synthetic fuel. The specific compounds or classes of compounds involved in the partitioning were identified and a semiquantitative comparison of relative partitioning of the compounds of interest was made. The results provide another step forward in improving the confidence level of using additized, fuIly synthetic jet fuel in the place of petroleum-derived fueL

  10. Interactions of Jet Fuels with Nitrile O-Rings: Petroleum-Derived versus Synthetic Fuels

    SciTech Connect

    Gormley, Robert J.; Link, Dirk D.; Baltrus, John P.; Zandhuis, Paul H.

    2009-01-01

    A transition from petroleum-derived jet fuels to blends with Fischer-Tropsch (F-T) fuels, and ultimately fully synthetic hydro-isomerized F-T fuels has raised concern about the fate of plasticizers in nitrile-butadiene rubber a-rings that are contacted by the fuels as this transition occurs. The partitioning of plasticizers and fuel molecules between nitrile a-rings and petroleum-derived, synthetic, and additized-synthetic jet fuels has been measured. Thermal desorption of o-rings soaked in the various jet fuels followed by gas chromatographic analysis with a mass spectrometric detector showed many of the plasticizer and stabilizer compounds were removed from the o-rings regardless of the contact fuel. Fuel molecules were observed to migrate into the o-rings for the petroleum-derived fuel as did both the fuel and additive for a synthetic F-T jet fuel additized with benzyl alcohol, but less for the unadditized synthetic fuel. The specific compounds or classes of compounds involved in the partitioning were identified and a semiquantitative comparison of relative partitioning of the compounds of interest was made. The results provide another step forward in improving the confidence level of using additized, fully synthetic jet fuel in the place of petroleum-derived fuel.

  11. Fuel cells 101

    SciTech Connect

    Hirschenhofer, J.H.

    1999-07-01

    This paper discusses the various types of fuel cells, the importance of cell voltage, fuel processing for natural gas, cell stacking, fuel cell plant description, advantages and disadvantages of the types of fuel cells, and applications. The types covered include: polymer electrolyte fuel cell, alkaline fuel cell, phosphoric acid fuel cell; molten carbonate fuel cell, and solid oxide fuel cell.

  12. Fuel injector

    DOEpatents

    Lambeth, Malcolm David Dick

    2001-02-27

    A fuel injector comprises first and second housing parts, the first housing part being located within a bore or recess formed in the second housing part, the housing parts defining therebetween an inlet chamber, a delivery chamber axially spaced from the inlet chamber, and a filtration flow path interconnecting the inlet and delivery chambers to remove particulate contaminants from the flow of fuel therebetween.

  13. 40 CFR 79.21 - Information and assurances to be provided by the additive manufacturer.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... fuel additive will be sold, offered for sale, or introduced into commerce, and the fuel additive manufacturer's recommended range of concentration and purpose-in-use for each such type of fuel. (e) Such other... (e) of this section as provided in § 79.5(b). (g) Assurances that the additive manufacturer will...

  14. Nalco Fuel Tech

    SciTech Connect

    Michalak, S.

    1995-12-31

    The Nalco Fuel Tech with its seat at Naperville (near Chicago), Illinois, is an engineering company working in the field of technology and equipment for environmental protection. A major portion of NALCO products constitute chemical materials and additives used in environmental protection technologies (waste-water treatment plants, water treatment, fuel modifiers, etc.). Basing in part on the experience, laboratories and RD potential of the mother company, the Nalco Fuel Tech Company developed and implemented in the power industry a series of technologies aimed at the reduction of environment-polluting products of fuel combustion. The engineering solution of Nalco Fuel Tech belong to a new generation of environmental protection techniques developed in the USA. They consist in actions focused on the sources of pollutants, i.e., in upgrading the combustion chambers of power engineering plants, e.g., boilers or communal and/or industrial waste combustion units. The Nalco Fuel Tech development and research group cooperates with leading US investigation and research institutes.

  15. Alcohol Transportation Fuels Demonstration Program. Phase 1

    SciTech Connect

    Kinoshita, C.M.

    1990-12-31

    Hawaii has abundant natural energy resources, especially biomass, that could be used to produce alternative fuels for ground transportation and electricity. This report summarizes activities performed during 1988 to June 1991 in the first phase of the Alcohol Transportation Fuels Demonstration Program. The Alcohol Transportation Fuels Demonstration Program was funded initially by the Energy Division of the State of Hawaii`s Department of Business, Economic Development and Tourism, and then by the US Department of Energy. This program was intended to support the transition to an altemative transportation fuel, methanol, by demonstrating the use of methanol fuel and methanol-fueled vehicles, and solving the problems associated with that fuel. Specific objectives include surveying renewable energy resources and ground transportation in Hawaii; installing a model methanol fueling station; demonstrating a methanol-fueled fleet of (spark-ignition engine) vehicles; evaluating modification strategies for methanol-fueled diesel engines and fuel additives; and investigating the transition to methanol fueling. All major objectives of Phase I were met (survey of local renewable resources and ground transportation, installation of methanol refueling station, fleet demonstration, diesel engine modification and additive evaluation, and dissemination of information on alternative fueling), and some specific problems (e.g., relating to methanol fuel contamination during handling and refueling) were identified and solved. Several key issues emerging from Phase I (e.g., methanol corrosion, flame luminosity, and methanol-transition technoeconomics) were recommended as topics for follow-on research in subsequent phases of this program.

  16. Refining and blending of aviation turbine fuels.

    PubMed

    White, R D

    1999-02-01

    Aviation turbine fuels (jet fuels) are similar to other petroleum products that have a boiling range of approximately 300F to 550F. Kerosene and No.1 grades of fuel oil, diesel fuel, and gas turbine oil share many similar physical and chemical properties with jet fuel. The similarity among these products should allow toxicology data on one material to be extrapolated to the others. Refineries in the USA manufacture jet fuel to meet industry standard specifications. Civilian aircraft primarily use Jet A or Jet A-1 fuel as defined by ASTM D 1655. Military aircraft use JP-5 or JP-8 fuel as defined by MIL-T-5624R or MIL-T-83133D respectively. The freezing point and flash point are the principle differences between the finished fuels. Common refinery processes that produce jet fuel include distillation, caustic treatment, hydrotreating, and hydrocracking. Each of these refining processes may be the final step to produce jet fuel. Sometimes blending of two or more of these refinery process streams are needed to produce jet fuel that meets the desired specifications. Chemical additives allowed for use in jet fuel are also defined in the product specifications. In many cases, the customer rather than the refinery will put additives into the fuel to meet their specific storage or flight condition requirements.

  17. Fuel cell-fuel cell hybrid system

    DOEpatents

    Geisbrecht, Rodney A.; Williams, Mark C.

    2003-09-23

    A device for converting chemical energy to electricity is provided, the device comprising a high temperature fuel cell with the ability for partially oxidizing and completely reforming fuel, and a low temperature fuel cell juxtaposed to said high temperature fuel cell so as to utilize remaining reformed fuel from the high temperature fuel cell. Also provided is a method for producing electricity comprising directing fuel to a first fuel cell, completely oxidizing a first portion of the fuel and partially oxidizing a second portion of the fuel, directing the second fuel portion to a second fuel cell, allowing the first fuel cell to utilize the first portion of the fuel to produce electricity; and allowing the second fuel cell to utilize the second portion of the fuel to produce electricity.

  18. Fuel Cell Seminar, 1992: Program and abstracts

    SciTech Connect

    Not Available

    1992-12-31

    This year`s theme, ``Fuel Cells: Realizing the Potential,`` focuses on progress being made toward commercial manufacture and use of fuel cell products. Fuel cell power plants are competing for market share in some applications and demonstrations of market entry power plants are proceeding for additional applications. Development activity on fuel cells for transportation is also increasing; fuel cell products have potential in energy and transportation industries, with very favorable environmental impacts. This Seminar has the purpose of fostering communication by providing a forum for the international community interested in development, application, and business opportunities related fuel cells. Over 190 technical papers are included, the majority being processed for the data base.

  19. Fuel Cell Seminar, 1992: Program and abstracts

    NASA Astrophysics Data System (ADS)

    1992-03-01

    This year's theme, 'Fuel Cells: Realizing the Potential,' focuses on progress being made toward commercial manufacture and use of fuel cell products. Fuel cell power plants are competing for market share in some applications and demonstrations of market entry power plants are proceeding for additional applications. Development activity on fuel cells for transportation is also increasing; fuel cell products have potential in energy and transportation industries, with very favorable environmental impacts. This Seminar has the purpose of fostering communication by providing a forum for the international community interested in development, application, and business opportunities related fuel cells. Over 190 technical papers are included, the majority being processed for the data base.

  20. FUEL ELEMENT

    DOEpatents

    Bean, R.W.

    1963-11-19

    A ceramic fuel element for a nuclear reactor that has improved structural stability as well as improved cooling and fission product retention characteristics is presented. The fuel element includes a plurality of stacked hollow ceramic moderator blocks arranged along a tubular raetallic shroud that encloses a series of axially apertured moderator cylinders spaced inwardly of the shroud. A plurality of ceramic nuclear fuel rods are arranged in the annular space between the shroud and cylinders of moderator and appropriate support means and means for directing gas coolant through the annular space are also provided. (AEC)

  1. Fuel ethanol

    SciTech Connect

    Not Available

    1989-02-01

    This report discusses the Omnibus Trade and Competitiveness Act of 1988 which requires GAO to examine fuel ethanol imports from Central America and the Caribbean and their impact on the U.S. fuel ethanol industry. Ethanol is the alcohol in beverages, such as beer, wine, and whiskey. It can also be used as a fuel by blending with gasoline. It can be made from renewable resources, such as corn, wheat, grapes, and sugarcane, through a process of fermentation. This report finds that, given current sugar and gasoline prices, it is not economically feasible for Caribbean ethanol producers to meet the current local feedstock requirement.

  2. Research fuels local economies

    SciTech Connect

    Bosisio, M. )

    1990-04-01

    Research from US DOA-Agricultural Research Service (ARS) has resulted in a number of new products, alternative crops, and an increase in planted acreage of crops due to pest control by pheromones. Superslurper, produced from cornstarch, was found to absorb 1400 times its weight in moisture. This material is being used in fuel filters to remove water in fuel tanks and pumps. There is a growing market for these filters; superslurpers also are used in body powders, diapers, absorbent soft goods, batteries, soil additives, and in medical and recreational coldpacks. Local economies have benefited as a direct result of ARS efforts.

  3. Fuel performance annual report for 1984. Volume 2

    SciTech Connect

    Bailey, W.J.; Dunenfeld, M.S.

    1986-03-01

    This annual report, the seventh in a series, provides a brief description of fuel performance during 1984 in commercial nuclear power plants. Brief summaries of fuel design changes, fuel surveillance programs, fuel operating experience, fuel problems, high-burnup fuel experience, and items of general significance are provided. References to additional, more detailed information and related NRC evaluations are included. 279 refs., 11 figs., 29 tabs.

  4. Laboratory tests of sludge-control additives

    SciTech Connect

    Tatnall, R.E.

    1996-07-01

    Laboratory {open_quotes}jar{close_quotes} tests compared eleven different fuel oil and diesel fuel sludge-control additives. Factors studied included (1) ability to disperse and prevent buildup of sludge deposits on surfaces, (2) ability to protect steel from corrosion, (3) ability to inhibit growth and proliferation of bacteria, and (4) ability to disperse water. Results varied greatly, and it was found that many commercial products do not do what they claim. It is concluded that fuel retailers should not believe manufacturers` claims for their additive products, but rather should test such products themselves to be sure that the benefits of treatment are real. A simplified form of the procedure used here is proposed as one way for dealers to do such testing.

  5. Residential fuel quality

    SciTech Connect

    Santa, T.

    1997-09-01

    This report details progress made in improving the performance of No. 2 heating oil in residential applications. Previous research in this area is documented in papers published in the Brookhaven Oil Heat Technology Conference Proceedings in 1993, 1994 and 1996. By way of review we have investigated a number of variables in the search for improved fuel system performance. These include the effect of various additives designed to address stability, dispersion, biotics, corrosion and reaction with metals. We have also investigated delivery methods, filtration, piping arrangements and the influence of storage tank size and location. As a result of this work Santa Fuel Inc. in conjunction with Mobile Oil Corporation have identified an additive package which shows strong evidence of dramatically reducing the occurrence of fuel system failures in residential oil burners. In a broad market roll-out of the additized product we have experienced a 29% reduction in fuel related service calls when comparing the 5 months ending January 1997 to the same period ending January 1996.

  6. 40 CFR 80.524 - What sulfur content standard applies to motor vehicle diesel fuel downstream of the refinery or...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... to motor vehicle diesel fuel downstream of the refinery or importer? 80.524 Section 80.524 Protection... FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Motor Vehicle Diesel Fuel Standards and Requirements § 80.524 What sulfur content...

  7. General Motors automotive fuel cell program

    SciTech Connect

    Fronk, M.H.

    1995-08-01

    The objectives of the second phase of the GM/DOE fuel cell program is to develop and test a 30 kW fuel cell powerplant. This powerplant will be based on a methanol fuel processor and a proton exchange membrane PM fuel cell stack. In addition, the 10 kW system developed during phase I will be used as a {open_quotes}mule{close_quotes} to test automotive components and other ancillaries, needed for transient operation.

  8. Improved nuclear fuel assembly grid spacer

    DOEpatents

    Marshall, John; Kaplan, Samuel

    1977-01-01

    An improved fuel assembly grid spacer and method of retaining the basic fuel rod support elements in position within the fuel assembly containment channel. The improvement involves attachment of the grids to the hexagonal channel and of forming the basic fuel rod support element into a grid structure, which provides a design which is insensitive to potential channel distortion (ballooning) at high fluence levels. In addition the improved method eliminates problems associated with component fabrication and assembly.

  9. 40 CFR 80.1415 - How are equivalence values assigned to renewable fuel?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... renewable fuel? 80.1415 Section 80.1415 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Renewable Fuel Standard § 80.1415 How are equivalence values assigned to renewable fuel? (a)(1) Each gallon of a renewable fuel, or...

  10. 40 CFR 80.536 - How are NRLM diesel fuel credits used and transferred?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Temporary Compliance Option § 80.536 How... 40 Protection of Environment 16 2011-07-01 2011-07-01 false How are NRLM diesel fuel credits...

  11. 40 CFR 80.536 - How are NRLM diesel fuel credits used and transferred?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Temporary Compliance Option § 80.536 How... 40 Protection of Environment 16 2010-07-01 2010-07-01 false How are NRLM diesel fuel credits...

  12. 40 CFR 80.1105 - What is the Renewable Fuel Standard?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 17 2013-07-01 2013-07-01 false What is the Renewable Fuel Standard... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Renewable Fuel Standard § 80.1105 What is the Renewable Fuel Standard? (a) The annual value of the renewable fuel standard for 2007 shall be 4.02...

  13. 40 CFR 80.1105 - What is the Renewable Fuel Standard?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false What is the Renewable Fuel Standard... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Renewable Fuel Standard § 80.1105 What is the Renewable Fuel Standard? (a) The annual value of the renewable fuel standard for 2007 shall be 4.02...

  14. 40 CFR 80.1105 - What is the Renewable Fuel Standard?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 17 2014-07-01 2014-07-01 false What is the Renewable Fuel Standard... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Renewable Fuel Standard § 80.1105 What is the Renewable Fuel Standard? (a) The annual value of the renewable fuel standard for 2007 shall be 4.02...

  15. 40 CFR 80.1105 - What is the Renewable Fuel Standard?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false What is the Renewable Fuel Standard... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Renewable Fuel Standard § 80.1105 What is the Renewable Fuel Standard? (a) The annual value of the renewable fuel standard for 2007 shall be 4.02...

  16. 40 CFR 86.079-32 - Addition of a vehicle or engine after certification.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... and Heavy-Duty Engines, and for 1985 and Later Model Year New Gasoline Fueled, Natural Gas-Fueled, Liquefied Petroleum Gas-Fueled and Methanol-Fueled Heavy-Duty Vehicles § 86.079-32 Addition of a vehicle...

  17. 40 CFR 86.079-32 - Addition of a vehicle or engine after certification.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... and Heavy-Duty Engines, and for 1985 and Later Model Year New Gasoline Fueled, Natural Gas-Fueled, Liquefied Petroleum Gas-Fueled and Methanol-Fueled Heavy-Duty Vehicles § 86.079-32 Addition of a vehicle...

  18. Fuel composition

    SciTech Connect

    Badger, S.L.

    1983-09-20

    A composition useful, inter alia, as a fuel, is based on ethyl alcohol denatured with methylisobutyl alcohol and kerosene, which is mixed with xylenes and isopropyl alcohol. The xylenes and isopropyl alcohol act with the denaturizing agents to raise the flash point above that of ethyl alcohol alone and also to mask the odor and color the flame, thus making the composition safer for use as a charcoal lighter or as a fuel for e.g. patio lamps.

  19. Microfluidic fuel cells

    NASA Astrophysics Data System (ADS)

    Kjeang, Erik

    Microfluidic fuel cell architectures are presented in this thesis. This work represents the mechanical and microfluidic portion of a microfluidic biofuel cell project. While the microfluidic fuel cells developed here are targeted to eventual integration with biocatalysts, the contributions of this thesis have more general applicability. The cell architectures are developed and evaluated based on conventional non-biological electrocatalysts. The fuel cells employ co-laminar flow of fuel and oxidant streams that do not require a membrane for physical separation, and comprise carbon or gold electrodes compatible with most enzyme immobilization schemes developed to date. The demonstrated microfluidic fuel cell architectures include the following: a single cell with planar gold electrodes and a grooved channel architecture that accommodates gaseous product evolution while preventing crossover effects; a single cell with planar carbon electrodes based on graphite rods; a three-dimensional hexagonal array cell based on multiple graphite rod electrodes with unique scale-up opportunities; a single cell with porous carbon electrodes that provides enhanced power output mainly attributed to the increased active area; a single cell with flow-through porous carbon electrodes that provides improved performance and overall energy conversion efficiency; and a single cell with flow-through porous gold electrodes with similar capabilities and reduced ohmic resistance. As compared to previous results, the microfluidic fuel cells developed in this work show improved fuel cell performance (both in terms of power density and efficiency). In addition, this dissertation includes the development of an integrated electrochemical velocimetry approach for microfluidic devices, and a computational modeling study of strategic enzyme patterning for microfluidic biofuel cells with consecutive reactions.

  20. Hydrogen-enriched fuels

    SciTech Connect

    Roser, R.

    1998-08-01

    NRG Technologies, Inc. is attempting to develop hardware and infrastructure that will allow mixtures of hydrogen and conventional fuels to become viable alternatives to conventional fuels alone. This commercialization can be successful if the authors are able to achieve exhaust emission levels of less than 0.03 g/kw-hr NOx and CO; and 0.15 g/kw-hr NMHC at full engine power without the use of exhaust catalysts. The major barriers to achieving these goals are that the lean burn regimes required to meet exhaust emissions goals reduce engine output substantially and tend to exhibit higher-than-normal total hydrocarbon emissions. Also, hydrogen addition to conventional fuels increases fuel cost, and reduces both vehicle range and engine output power. Maintaining low emissions during transient driving cycles has not been demonstrated. A three year test plan has been developed to perform the investigations into the issues described above. During this initial year of funding research has progressed in the following areas: (a) a cost effective single-cylinder research platform was constructed; (b) exhaust gas speciation was performed to characterize the nature of hydrocarbon emissions from hydrogen-enriched natural gas fuels; (c) three H{sub 2}/CH{sub 4} fuel compositions were analyzed using spark timing and equivalence ratio sweeping procedures and finally; (d) a full size pick-up truck platform was converted to run on HCNG fuels. The testing performed in year one of the three year plan represents a baseline from which to assess options for overcoming the stated barriers to success.

  1. Updated NGNP Fuel Acquisition Strategy

    SciTech Connect

    David Petti; Tim Abram; Richard Hobbins; Jim Kendall

    2010-12-01

    . • Additional funding will be made available beginning in fiscal year (FY) 2012 to support pebble bed fuel fabrication process development and fuel testing while maintaining the prismatic fuel schedule. Options for fuel fabrication for prismatic and pebble bed were evaluated based on the credibility of each option, along with a cost and schedule to implement each strategy. The sole prismatic option is Babcock and Wilcox (B&W) producing uranium oxycarbide (UCO) tristructural-isotropic (TRISO) fuel particles in compacts. This option finishes in the middle of 2022 . Options for the pebble bed are Nuclear Fuel Industries (NFI) in Japan producing uranium dioxide (UO2) TRISO fuel particles, and/or B&W producing UCO or UO2 TRISO fuel particles. All pebble options finish in mid to late 2022.

  2. Fire-Retardant Polymeric Additives

    NASA Technical Reports Server (NTRS)

    Williams, Martha K.; Smith, Trent M.

    2011-01-01

    Polyhydroxyamide (PHA) and polymethoxyamide (PMeOA) are fire-retardant (FR) thermoplastic polymers and have been found to be useful as an additive for imparting fire retardant properties to other compatible, thermoplastic polymers (including some elastomers). Examples of compatible flammable polymers include nylons, polyesters, and acrylics. Unlike most prior additives, PHA and PMeOA do not appreciably degrade the mechanical properties of the matrix polymer; indeed, in some cases, mechanical properties are enhanced. Also, unlike some prior additives, PHA and PMeOA do not decompose into large amounts of corrosive or toxic compounds during combustion and can be processed at elevated temperatures. PMeOA derivative formulations were synthesized and used as an FR additive in the fabrication of polyamide (PA) and polystyrene (PS) composites with notable reduction (>30 percent for PS) in peak heat release rates compared to the neat polymer as measured by a Cone Calorimeter (ASTM E1354). Synergistic effects were noted with nanosilica composites. These nanosilica composites had more than 50-percent reduction in peak heat release rates. In a typical application, a flammable thermoplastic, thermoplastic blend, or elastomer that one seeks to render flame-retardant is first dry-mixed with PHA or PMeOA or derivative thereof. The proportion of PHA or PMeOA or derivative in the mixture is typically chosen to lie between 1 and 20 weight percent. The dry blend can then be melt-extruded. The extruded polymer blend can further be extruded and/or molded into fibers, pipes, or any other of a variety of objects that may be required to be fire-retardant. The physical and chemical mechanisms which impart flame retardancy of the additive include inhibiting free-radical oxidation in the vapor phase, preventing vaporization of fuel (the polymer), and cooling through the formation of chemical bonds in either the vapor or the condensed phase. Under thermal stress, the cyclic hydroxyl/ methoxy

  3. Fuel and oxygen addition for metal smelting or refining process

    DOEpatents

    Schlichting, Mark R.

    1994-01-01

    A furnace 10 for smelting iron ore and/or refining molten iron 20 is equipped with an overhead pneumatic lance 40, through which a center stream of particulate coal 53 is ejected at high velocity into a slag layer 30. An annular stream of nitrogen or argon 51 enshrouds the coal stream. Oxygen 52 is simultaneously ejected in an annular stream encircling the inert gas stream 51. The interposition of the inert gas stream between the coal and oxygen streams prevents the volatile matter in the coal from combusting before it reaches the slag layer. Heat of combustion is thus more efficiently delivered to the slag, where it is needed to sustain the desired reactions occurring there. A second stream of lower velocity oxygen can be delivered through an outermost annulus 84 to react with carbon monoxide gas rising from slag layer 30, thereby adding still more heat to the furnace.

  4. Battery and fuel cell electrodes containing stainless steel charging additive

    DOEpatents

    Zuckerbrod, David; Gibney, Ann

    1984-01-01

    An electrode for use in electrochemical energy cells is made, comprising a hydrophilic layer and a hydrophobic layer, where the hydrophilic layer comprises a hydrophilic composite which includes: (i) carbon particles; (ii) stainless steel particles; (iii) a nonwetting agent; and (iv) a catalyst, where at least one current collector contacts said composite.

  5. Fuel and oxygen addition for metal smelting or refining process

    DOEpatents

    Schlichting, M.R.

    1994-11-22

    A furnace for smelting iron ore and/or refining molten iron is equipped with an overhead pneumatic lance, through which a center stream of particulate coal is ejected at high velocity into a slag layer. An annular stream of nitrogen or argon enshrouds the coal stream. Oxygen is simultaneously ejected in an annular stream encircling the inert gas stream. The interposition of the inert gas stream between the coal and oxygen streams prevents the volatile matter in the coal from combusting before it reaches the slag layer. Heat of combustion is thus more efficiently delivered to the slag, where it is needed to sustain the desired reactions occurring there. A second stream of lower velocity oxygen can be delivered through an outermost annulus to react with carbon monoxide gas rising from slag layer, thereby adding still more heat to the furnace. 7 figs.

  6. Haze-free polymer additives for fuels and lubricants

    SciTech Connect

    Brewster, P.W.; Smith, C.R.

    1987-11-17

    A process for preparing a substantially haze-free mineral hydrocarbon oil solution concentrate composition is described which comprises a mineral oil of lubricating viscosity and from about 0.1 to 50 wt.% based upon the total weight of the composition of a dispersant-viscosity index improver material having haze forming tendencies. The dispersant-viscosity index improver has been formed by grafting a copolymer consisting of ethylene and propylene in the presence of a free radical initiator with (a) a vinyl containing nitrogen monomer selected from the group consisting of vinyl pyridine, lower alkyl (C/sub 1/C/sub 18/) substituted C-vinyl pyridine and N-vinyl pyrrolidine or, (b) a monomer system comprising maleic anhydride and monomers copolymerizable therewith being alpha-beta mono-ethylenically unsaturated monomers containing up to 10 carbon atoms and post reacting the graft with a polyamine or, (c) maleic anhydride, which graft is subsequently reacted with a polyamine, polyol, or hydroxy amine. The process consists essentially of treating the concentrate composition with about 0.5 to 25% by wt., based upon the weight of the composition of an oil soluble alkyl hydroxy benzene compound, the compound containing 1-3 alkyl groups, each containing about 8-12 carbon atoms and the compound having 1-3 hydroxy groups, at a temperature of about 50/sup 0/C to 150/sup 0/C.

  7. 40 CFR 79.33 - Motor vehicle diesel fuel.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... used in motor vehicle diesel fuel; (4) Effects of such additives on all emissions; (5) Toxicity and any... 40 Protection of Environment 17 2012-07-01 2012-07-01 false Motor vehicle diesel fuel. 79.33... diesel fuel. (a) The following fuels commonly or commercially known or sold as motor vehicle diesel...

  8. 40 CFR 79.33 - Motor vehicle diesel fuel.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... used in motor vehicle diesel fuel; (4) Effects of such additives on all emissions; (5) Toxicity and any... 40 Protection of Environment 17 2014-07-01 2014-07-01 false Motor vehicle diesel fuel. 79.33... diesel fuel. (a) The following fuels commonly or commercially known or sold as motor vehicle diesel...

  9. 40 CFR 79.33 - Motor vehicle diesel fuel.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... used in motor vehicle diesel fuel; (4) Effects of such additives on all emissions; (5) Toxicity and any... 40 Protection of Environment 17 2013-07-01 2013-07-01 false Motor vehicle diesel fuel. 79.33... diesel fuel. (a) The following fuels commonly or commercially known or sold as motor vehicle diesel...

  10. Fuel quality issues in stationary fuel cell systems.

    SciTech Connect

    Papadias, D.; Ahmed, S.; Kumar, R.

    2012-02-07

    Fuel cell systems are being deployed in stationary applications for the generation of electricity, heat, and hydrogen. These systems use a variety of fuel cell types, ranging from the low temperature polymer electrolyte fuel cell (PEFC) to the high temperature solid oxide fuel cell (SOFC). Depending on the application and location, these systems are being designed to operate on reformate or syngas produced from various fuels that include natural gas, biogas, coal gas, etc. All of these fuels contain species that can potentially damage the fuel cell anode or other unit operations and processes that precede the fuel cell stack. These detrimental effects include loss in performance or durability, and attenuating these effects requires additional components to reduce the impurity concentrations to tolerable levels, if not eliminate the impurity entirely. These impurity management components increase the complexity of the fuel cell system, and they add to the system's capital and operating costs (such as regeneration, replacement and disposal of spent material and maintenance). This project reviewed the public domain information available on the impurities encountered in stationary fuel cell systems, and the effects of the impurities on the fuel cells. A database has been set up that classifies the impurities, especially in renewable fuels, such as landfill gas and anaerobic digester gas. It documents the known deleterious effects on fuel cells, and the maximum allowable concentrations of select impurities suggested by manufacturers and researchers. The literature review helped to identify the impurity removal strategies that are available, and their effectiveness, capacity, and cost. A generic model of a stationary fuel-cell based power plant operating on digester and landfill gas has been developed; it includes a gas processing unit, followed by a fuel cell system. The model includes the key impurity removal steps to enable predictions of impurity breakthrough

  11. Alternative jet aircraft fuels

    NASA Technical Reports Server (NTRS)

    Grobman, J.

    1979-01-01

    Potential changes in jet aircraft fuel specifications due to shifts in supply and quality of refinery feedstocks are discussed with emphasis on the effects these changes would have on the performance and durability of aircraft engines and fuel systems. Combustion characteristics, fuel thermal stability, and fuel pumpability at low temperature are among the factors considered. Combustor and fuel system technology needs for broad specification fuels are reviewed including prevention of fuel system fouling and fuel system technology for fuels with higher freezing points.

  12. 40 CFR 600.509-08 - Voluntary submission of additional data.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Procedures for Determining Manufacturer's Average Fuel Economy and Manufacturer's Average Carbon-Related Exhaust Emissions... data in addition to the data required by the Administrator. (b) Additional fuel economy data may...

  13. 40 CFR 600.509-12 - Voluntary submission of additional data.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Procedures for Determining Manufacturer's Average Fuel Economy and Manufacturer's Average Carbon-Related Exhaust Emissions... addition to the data required by the Administrator. (b) Additional fuel economy and carbon-related...

  14. 40 CFR 600.509-12 - Voluntary submission of additional data.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Procedures for Determining Manufacturer's Average Fuel Economy and Manufacturer's Average Carbon-Related Exhaust Emissions... addition to the data required by the Administrator. (b) Additional fuel economy and carbon-related...

  15. Air tight fuel burning stove

    SciTech Connect

    Nietupski, V.J.

    1980-03-11

    A fuel burning stove is claimed for holding and burning fuel to heat the surrounding atmosphere in a room where the stove is employed. The stove includes a fire box which supports the fuel and where the combustion is sustained. An air inlet is provided to the fire box allowing the inflow of air for combustion with the fuel. The air is preheated upon entry into the fire box for mixture with volatiles formed by the burning fuel directed toward the entering air by a baffle means to effect a secondary combustion. In addition, a movable damper cooperates with the baffle to direct volatiles toward the incoming heated air when the damper is in the closed position and to provide a more direct path to the chimney when in the open position.

  16. Balanced pressure gerotor fuel pump

    DOEpatents

    Raney, Michael Raymond; Maier, Eugen

    2004-08-03

    A gerotor pump for pressurizing gasoline fuel is capable of developing pressures up to 2.0 MPa with good mechanical and volumetric efficiency and satisfying the durability requirements for an automotive fuel pump. The pump has been designed with optimized clearances and by including features that promote the formation of lubricating films of pressurized fuel. Features of the improved pump include the use of a shadow port in the side plate opposite the outlet port to promote balancing of high fuel pressures on the opposite sides of the rotors. Inner and outer rotors have predetermined side clearances with the clearances of the outer rotor being greater than those of the inner rotor in order to promote fuel pressure balance on the sides of the outer rotor. Support of the inner rotor and a drive shaft on a single bushing with bearing sleeves maintains concentricity. Additional features are disclosed.

  17. FUEL ELEMENT

    DOEpatents

    Fortescue, P.; Zumwalt, L.R.

    1961-11-28

    A fuel element was developed for a gas cooled nuclear reactor. The element is constructed in the form of a compacted fuel slug including carbides of fissionable material in some cases with a breeder material carbide and a moderator which slug is disposed in a canning jacket of relatively impermeable moderator material. Such canned fuel slugs are disposed in an elongated shell of moderator having greater gas permeability than the canning material wherefore application of reduced pressure to the space therebetween causes gas diffusing through the exterior shell to sweep fission products from the system. Integral fission product traps and/or exterior traps as well as a fission product monitoring system may be employed therewith. (AEC)

  18. 76 FR 31513 - Labeling Requirements for Alternative Fuels and Alternative Fueled Vehicles

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-01

    ... Authorization Act for Fiscal Year 2008 extended coverage of the EPAct 92 to hydrogen fuel cell motor vehicles... Alternative Fuels Rule already covers hydrogen fuel cell vehicles, additional labeling requirements for them..., such as electricity, compressed natural gas, and hydrogen.\\5\\ The labels for electricity provide...

  19. Reforming of fuel inside fuel cell generator

    DOEpatents

    Grimble, Ralph E.

    1988-01-01

    Disclosed is an improved method of reforming a gaseous reformable fuel within a solid oxide fuel cell generator, wherein the solid oxide fuel cell generator has a plurality of individual fuel cells in a refractory container, the fuel cells generating a partially spent fuel stream and a partially spent oxidant stream. The partially spent fuel stream is divided into two streams, spent fuel stream I and spent fuel stream II. Spent fuel stream I is burned with the partially spent oxidant stream inside the refractory container to produce an exhaust stream. The exhaust stream is divided into two streams, exhaust stream I and exhaust stream II, and exhaust stream I is vented. Exhaust stream II is mixed with spent fuel stream II to form a recycle stream. The recycle stream is mixed with the gaseous reformable fuel within the refractory container to form a fuel stream which is supplied to the fuel cells. Also disclosed is an improved apparatus which permits the reforming of a reformable gaseous fuel within such a solid oxide fuel cell generator. The apparatus comprises a mixing chamber within the refractory container, means for diverting a portion of the partially spent fuel stream to the mixing chamber, means for diverting a portion of exhaust gas to the mixing chamber where it is mixed with the portion of the partially spent fuel stream to form a recycle stream, means for injecting the reformable gaseous fuel into the recycle stream, and means for circulating the recycle stream back to the fuel cells.

  20. Reforming of fuel inside fuel cell generator

    DOEpatents

    Grimble, R.E.

    1988-03-08

    Disclosed is an improved method of reforming a gaseous reformable fuel within a solid oxide fuel cell generator, wherein the solid oxide fuel cell generator has a plurality of individual fuel cells in a refractory container, the fuel cells generating a partially spent fuel stream and a partially spent oxidant stream. The partially spent fuel stream is divided into two streams, spent fuel stream 1 and spent fuel stream 2. Spent fuel stream 1 is burned with the partially spent oxidant stream inside the refractory container to produce an exhaust stream. The exhaust stream is divided into two streams, exhaust stream 1 and exhaust stream 2, and exhaust stream 1 is vented. Exhaust stream 2 is mixed with spent fuel stream 2 to form a recycle stream. The recycle stream is mixed with the gaseous reformable fuel within the refractory container to form a fuel stream which is supplied to the fuel cells. Also disclosed is an improved apparatus which permits the reforming of a reformable gaseous fuel within such a solid oxide fuel cell generator. The apparatus comprises a mixing chamber within the refractory container, means for diverting a portion of the partially spent fuel stream to the mixing chamber, means for diverting a portion of exhaust gas to the mixing chamber where it is mixed with the portion of the partially spent fuel stream to form a recycle stream, means for injecting the reformable gaseous fuel into the recycle stream, and means for circulating the recycle stream back to the fuel cells. 1 fig.

  1. Fuel Flexible, Low Emission Catalytic Combustor for Opportunity Fuel Applications

    SciTech Connect

    Eteman, Shahrokh

    2013-06-30

    Limited fuel resources, increasing energy demand and stringent emission regulations are drivers to evaluate process off-gases or process waste streams as fuels for power generation. Often these process waste streams have low energy content and/or highly reactive components. Operability of low energy content fuels in gas turbines leads to issues such as unstable and incomplete combustion. On the other hand, fuels containing higher-order hydrocarbons lead to flashback and auto-ignition issues. Due to above reasons, these fuels cannot be used directly without modifications or efficiency penalties in gas turbine engines. To enable the use of these wide variety of fuels in gas turbine engines a rich catalytic lean burn (RCL®) combustion system was developed and tested in a subscale high pressure (10 atm.) rig. The RCL® injector provided stability and extended turndown to low Btu fuels due to catalytic pre-reaction. Previous work has shown promise with fuels such as blast furnace gas (BFG) with LHV of 85 Btu/ft3 successfully combusted. This program extends on this work by further modifying the combustor to achieve greater catalytic stability enhancement. Fuels containing low energy content such as weak natural gas with a Lower Heating Value (LHV) of 6.5 MJ/m3 (180 Btu/ft3 to natural gas fuels containing higher hydrocarbon (e.g ethane) with LHV of 37.6 MJ/m3 (1010 Btu/ft3) were demonstrated with improved combustion stability; an extended turndown (defined as the difference between catalytic and non-catalytic lean blow out) of greater than 250oF was achieved with CO and NOx emissions lower than 5 ppm corrected to 15% O2. In addition, for highly reactive fuels the catalytic region preferentially pre-reacted the higher order hydrocarbons with no events of flashback or auto-ignition allowing a stable and safe operation with low NOx and CO emissions.

  2. Reformer Fuel Injector

    NASA Technical Reports Server (NTRS)

    Suder, Jennifer L.

    2004-01-01

    Today's form of jet engine power comes from what is called a gas turbine engine. This engine is on average 14% efficient and emits great quantities of green house gas carbon dioxide and air pollutants, Le. nitrogen oxides and sulfur oxides. The alternate method being researched involves a reformer and a solid oxide fuel cell (SOFC). Reformers are becoming a popular area of research within the industry scale. NASA Glenn Research Center's approach is based on modifying the large aspects of industry reforming processes into a smaller jet fuel reformer. This process must not only be scaled down in size, but also decrease in weight and increase in efficiency. In comparison to today's method, the Jet A fuel reformer will be more efficient as well as reduce the amount of air pollutants discharged. The intent is to develop a 10kW process that can be used to satisfy the needs of commercial jet engines. Presently, commercial jets use Jet-A fuel, which is a kerosene based hydrocarbon fuel. Hydrocarbon fuels cannot be directly fed into a SOFC for the reason that the high temperature causes it to decompose into solid carbon and Hz. A reforming process converts fuel into hydrogen and supplies it to a fuel cell for power, as well as eliminating sulfur compounds. The SOFC produces electricity by converting H2 and CO2. The reformer contains a catalyst which is used to speed up the reaction rate and overall conversion. An outside company will perform a catalyst screening with our baseline Jet-A fuel to determine the most durable catalyst for this application. Our project team is focusing on the overall research of the reforming process. Eventually we will do a component evaluation on the different reformer designs and catalysts. The current status of the project is the completion of buildup in the test rig and check outs on all equipment and electronic signals to our data system. The objective is to test various reformer designs and catalysts in our test rig to determine the most

  3. FUEL ELEMENT

    DOEpatents

    Howard, R.C.; Bokros, J.C.

    1962-03-01

    A fueled matrlx eontnwinlng uncomblned carbon is deslgned for use in graphlte-moderated gas-cooled reactors designed for operatlon at temperatures (about 1500 deg F) at which conventional metallic cladding would ordlnarily undergo undesired carburization or physical degeneratlon. - The invention comprlses, broadly a fuel body containlng uncombined earbon, clad with a nickel alloy contalning over about 28 percent by' weight copper in the preferred embodlment. Thls element ls supporirted in the passageways in close tolerance with the walls of unclad graphite moderator materlal. (AEC)

  4. [Food additives and healthiness].

    PubMed

    Heinonen, Marina

    2014-01-01

    Additives are used for improving food structure or preventing its spoilage, for example. Many substances used as additives are also naturally present in food. The safety of additives is evaluated according to commonly agreed principles. If high concentrations of an additive cause adverse health effects for humans, a limit of acceptable daily intake (ADI) is set for it. An additive is a risk only when ADI is exceeded. The healthiness of food is measured on the basis of nutrient density and scientifically proven effects.

  5. Advanced thermally stable jet fuels

    SciTech Connect

    Schobert, H.H.

    1999-01-31

    The Pennsylvania State University program in advanced thermally stable coal-based jet fuels has five broad objectives: (1) Development of mechanisms of degradation and solids formation; (2) Quantitative measurement of growth of sub-micrometer and micrometer-sized particles suspended in fuels during thermal stressing; (3) Characterization of carbonaceous deposits by various instrumental and microscopic methods; (4) Elucidation of the role of additives in retarding the formation of carbonaceous solids; (5) Assessment of the potential of production of high yields of cycloalkanes by direct liquefaction of coal. Future high-Mach aircraft will place severe thermal demands on jet fuels, requiring the development of novel, hybrid fuel mixtures capable of withstanding temperatures in the range of 400--500 C. In the new aircraft, jet fuel will serve as both an energy source and a heat sink for cooling the airframe, engine, and system components. The ultimate development of such advanced fuels requires a thorough understanding of the thermal decomposition behavior of jet fuels under supercritical conditions. Considering that jet fuels consist of hundreds of compounds, this task must begin with a study of the thermal degradation behavior of select model compounds under supercritical conditions. The research performed by The Pennsylvania State University was focused on five major tasks that reflect the objectives stated above: Task 1: Investigation of the Quantitative Degradation of Fuels; Task 2: Investigation of Incipient Deposition; Task 3: Characterization of Solid Gums, Sediments, and Carbonaceous Deposits; Task 4: Coal-Based Fuel Stabilization Studies; and Task 5: Exploratory Studies on the Direct Conversion of Coal to High Quality Jet Fuels. The major findings of each of these tasks are presented in this executive summary. A description of the sub-tasks performed under each of these tasks and the findings of those studies are provided in the remainder of this volume

  6. Chemical Kinetic Modeling of Advanced Transportation Fuels

    SciTech Connect

    PItz, W J; Westbrook, C K; Herbinet, O

    2009-01-20

    Development of detailed chemical kinetic models for advanced petroleum-based and nonpetroleum based fuels is a difficult challenge because of the hundreds to thousands of different components in these fuels and because some of these fuels contain components that have not been considered in the past. It is important to develop detailed chemical kinetic models for these fuels since the models can be put into engine simulation codes used for optimizing engine design for maximum efficiency and minimal pollutant emissions. For example, these chemistry-enabled engine codes can be used to optimize combustion chamber shape and fuel injection timing. They also allow insight into how the composition of advanced petroleum-based and non-petroleum based fuels affect engine performance characteristics. Additionally, chemical kinetic models can be used separately to interpret important in-cylinder experimental data and gain insight into advanced engine combustion processes such as HCCI and lean burn engines. The objectives are: (1) Develop detailed chemical kinetic reaction models for components of advanced petroleum-based and non-petroleum based fuels. These fuels models include components from vegetable-oil-derived biodiesel, oil-sand derived fuel, alcohol fuels and other advanced bio-based and alternative fuels. (2) Develop detailed chemical kinetic reaction models for mixtures of non-petroleum and petroleum-based components to represent real fuels and lead to efficient reduced combustion models needed for engine modeling codes. (3) Characterize the role of fuel composition on efficiency and pollutant emissions from practical automotive engines.

  7. Fuel ethanol after 25 years.

    PubMed

    Wheals, A E; Basso, L C; Alves, D M; Amorim, H V

    1999-12-01

    After 25 years, Brazil and North America are still the only two regions that produce large quantities of fuel ethanol, from sugar cane and maize, respectively. The efficiency of ethanol production has steadily increased and valuable co-products are produced, but only tax credits make fuel ethanol commercially viable because oil prices are at an all-time low. The original motivation for fuel-ethanol production was to become more independent of oil imports; now, the emphasis is on its use as an oxygenated gasoline additive. There will only be sufficient, low-cost ethanol if lignocellulose feedstock is also used. PMID:10557161

  8. Fuel cell chemistry and operation

    NASA Astrophysics Data System (ADS)

    Hamrock, Steven J.; Herring, Andrew M.; Zawodzinski, Thomas A.

    The annual fall symposium on Fuel Cell Chemistry and Operation was held at the 232nd National Meeting of the American Chemical Society in San Francisco, CA on September 11-14, 2006. Similar symposia sponsored by the Fuel Division have been held every fall since 1999. Significantly, this symposium was part of an ACS Presidential Event on Hydrogen, and was sponsored by a number of other ACS divisions including, Polymer, Polymeric Materials: Science and Engineering, Petroleum, Industrial and Engineering Chemistry, and the Inorganic divisions. Additional support was provided by the Petroleum Research Fund and the 3M Fuel Cell Components Group.

  9. Fuels characterization studies. [jet fuels

    NASA Technical Reports Server (NTRS)

    Seng, G. T.; Antoine, A. C.; Flores, F. J.

    1980-01-01

    Current analytical techniques used in the characterization of broadened properties fuels are briefly described. Included are liquid chromatography, gas chromatography, and nuclear magnetic resonance spectroscopy. High performance liquid chromatographic ground-type methods development is being approached from several directions, including aromatic fraction standards development and the elimination of standards through removal or partial removal of the alkene and aromatic fractions or through the use of whole fuel refractive index values. More sensitive methods for alkene determinations using an ultraviolet-visible detector are also being pursued. Some of the more successful gas chromatographic physical property determinations for petroleum derived fuels are the distillation curve (simulated distillation), heat of combustion, hydrogen content, API gravity, viscosity, flash point, and (to a lesser extent) freezing point.

  10. Future Fuel.

    ERIC Educational Resources Information Center

    Stover, Del

    1991-01-01

    Tough new environmental laws, coupled with fluctuating oil prices, are likely to prompt hundreds of school systems to examine alternative fuels. Literature reviews and interviews with 45 government, education, and industry officials provided data for a comparative analysis of gasoline, diesel, natural gas, methanol, and propane. (MLF)

  11. Fuel Cells

    ERIC Educational Resources Information Center

    Hawkins, M. D.

    1973-01-01

    Discusses the theories, construction, operation, types, and advantages of fuel cells developed by the American space programs. Indicates that the cell is an ideal small-scale power source characterized by its compactness, high efficiency, reliability, and freedom from polluting fumes. (CC)

  12. Nuclear Fuels.

    ERIC Educational Resources Information Center

    Nash, J. Thomas

    1983-01-01

    Trends in and factors related to the nuclear industry and nuclear fuel production are discussed. Topics addressed include nuclear reactors, survival of the U.S. uranium industry, production costs, budget cuts by the Department of Energy and U.S. Geological survey for resource studies, mining, and research/development activities. (JN)

  13. 40 CFR 79.55 - Base fuel specifications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the methanol, ethanol, methane, and propane base fuels in addition to any such additives included... chlorides), wt%, max 0.0001 Water, wt%, max 0.5 Sulfur, wt%, max 0.004 (e) Ethanol Base Fuel. (1) The ethanol base fuel, E85, shall contain no elements other than carbon, hydrogen, oxygen, nitrogen,...

  14. Renewable biofuel additives from the ozonolysis of lignin.

    PubMed

    Chuck, Christopher J; Parker, Heather J; Jenkins, Rhodri W; Donnelly, Joseph

    2013-09-01

    In this investigation ozonolysis in the presence of ethanol was used to depolymerise lignin, resulting in a low conversion of oxygenated aromatics over short reaction times, or a range of saturated esters over 24 h. Short chain oxygenates can be used as fuel additives, displacing a percentage of a hydrocarbon fuel while leading to improvement in some of the fuel properties. The utility of the resulting bio-oils was therefore assessed by blending with a range of fuels. Guaiacol, a potential antioxidant, was formed over short reaction times and was found to be completely miscible with low-sulphur petrol (ULSP), diesel, aviation kerosene and rapeseed methyl ester. The mainly aliphatic proportion of the bio-oil produced over 24 h could be blended with the fuels replacing a maximum of 12-17 wt.% of the hydrocarbon fuel.

  15. Supplemental fuel vapor system

    SciTech Connect

    Foster, P.M.

    1991-01-08

    This patent describes a supplemental fuel system utilizing fuel vapor. It comprises: an internal combustion engine including a carburetor and an intake manifold; a fuel tank provided with air vents; a fuel conduit having a first end connected to the fuel tank and in communication with liquid fuel in the tank and a second end connected to the carburetor; the fuel conduit delivering the liquid fuel to the carburetor from the fuel tank; a fuel vapor conduit having a first end connected to the fuel tank at a location displaced from contact with the liquid fuel and a second end connected to a carbon canister; a PCV conduit having a first end connected to a pollution control valve and a second end connected to the intake manifold; and, an intermediate fuel vapor conduit having a first end connected to the fuel vapor conduit and a second end connected to the PCV conduit; wherein the air vents continuously provide air to the tank to mix with the liquid fuel and form fuel vapor. The fuel vapor drawn from the fuel tank by vacuum developed in the intake manifold and flows through the fuel vapor conduit. The intermediate fuel vapor conduit and the intake manifold to combustion chambers of the internal combustion engine so as to supplement fuel delivered to the engine by the fuel conduit. The liquid fuel and the fuel vapor constantly delivered to the engine during normal operation.

  16. Multi-stage fuel cell system method and apparatus

    DOEpatents

    George, Thomas J.; Smith, William C.

    2000-01-01

    A high efficiency, multi-stage fuel cell system method and apparatus is provided. The fuel cell system is comprised of multiple fuel cell stages, whereby the temperatures of the fuel and oxidant gas streams and the percentage of fuel consumed in each stage are controlled to optimize fuel cell system efficiency. The stages are connected in a serial, flow-through arrangement such that the oxidant gas and fuel gas flowing through an upstream stage is conducted directly into the next adjacent downstream stage. The fuel cell stages are further arranged such that unspent fuel and oxidant laden gases too hot to continue within an upstream stage because of material constraints are conducted into a subsequent downstream stage which comprises a similar cell configuration, however, which is constructed from materials having a higher heat tolerance and designed to meet higher thermal demands. In addition, fuel is underutilized in each stage, resulting in a higher overall fuel cell system efficiency.

  17. Fuel cell

    SciTech Connect

    Struthers, R.C.

    1983-06-28

    An improved fuel cell comprising an anode section including an anode terminal, an anode fuel, and an anolyte electrolyte, a cathode section including a cathode terminal, an electron distributor and a catholyte electrolyte, an ion exchange section between the anode and cathode sections and including an ionolyte electrolyte, ion transfer membranes separating the ionolyte from the anolyte and the catholyte and an electric circuit connected with and between the terminals conducting free electrons from the anode section and delivering free electrons to the cathode section, said ionolyte receives ions of one polarity moving from the anolyte through the membrane related thereto preventing chemical equilibrium in the anode section and sustaining chemical reaction and the generating of free electrons therein, said ions received by the ionolyte from the anolyte release different ions from the ionolyte which move through the membrane between the ionolyte and catholyte and which add to the catholyte.

  18. Alternate Fuels for Use in Commercial Aircraft

    NASA Technical Reports Server (NTRS)

    Daggett, David L.; Hendricks, Robert C.; Walther, Rainer; Corporan, Edwin

    2008-01-01

    The engine and aircraft Research and Development (R&D) communities have been investigating alternative fueling in near-term, midterm, and far-term aircraft. A drop in jet fuel replacement, consisting of a kerosene (Jet-A) and synthetic fuel blend, will be possible for use in existing and near-term aircraft. Future midterm aircraft may use a biojet and synthetic fuel blend in ultra-efficient airplane designs. Future far-term engines and aircraft in 50-plus years may be specifically designed to use a low- or zero-carbon fuel. Synthetic jet fuels from coal, natural gas, or other hydrocarbon feedstocks are very similar in performance to conventional jet fuel, yet the additional CO2 produced during the manufacturing needs to be permanently sequestered. Biojet fuels need to be developed specifically for jet aircraft without displacing food production. Envisioned as midterm aircraft fuel, if the performance and cost liabilities can be overcome, biofuel blends with synthetic jet or Jet-A fuels have near-term potential in terms of global climatic concerns. Long-term solutions address dramatic emissions reductions through use of alternate aircraft fuels such as liquid hydrogen or liquid methane. Either of these new aircraft fuels will require an enormous change in infrastructure and thus engine and airplane design. Life-cycle environmental questions need to be addressed.

  19. Fuel conditioner

    SciTech Connect

    Nelson, M.L.; Nelson, O.L. Jr.

    1988-06-28

    A fuel conditioner is described comprising 10 to 80% of a polar oxygenated hydrocarbon having an average molecular weight from about 250 to about 500, an acid acid number from about 25 to about 125, and a saponification number from about 30 to about 250; and 5 to 50% of an oxygenated compatibilizing agent having a solubility parameter of from about 8.8 to about 11.5 and moderate to strong hydrogen-bonding capacity.

  20. Polyimide processing additives

    NASA Technical Reports Server (NTRS)

    Fletcher, James C. (Inventor); Pratt, J. Richard (Inventor); St.clair, Terry L. (Inventor); Stoakley, Diane M. (Inventor); Burks, Harold D. (Inventor)

    1992-01-01

    A process for preparing polyimides having enhanced melt flow properties is described. The process consists of heating a mixture of a high molecular weight poly-(amic acid) or polyimide with a low molecular weight amic acid or imide additive in the range of 0.05 to 15 percent by weight of additive. The polyimide powders so obtained show improved processability, as evidenced by lower melt viscosity by capillary rheometry. Likewise, films prepared from mixtures of polymers with additives show improved processability with earlier onset of stretching by TMA.

  1. Polyimide processing additives

    NASA Technical Reports Server (NTRS)

    Pratt, J. Richard (Inventor); St.clair, Terry L. (Inventor); Stoakley, Diane M. (Inventor); Burks, Harold D. (Inventor)

    1993-01-01

    A process for preparing polyimides having enhanced melt flow properties is described. The process consists of heating a mixture of a high molecular weight poly-(amic acid) or polyimide with a low molecular weight amic acid or imide additive in the range of 0.05 to 15 percent by weight of the additive. The polyimide powders so obtained show improved processability, as evidenced by lower melt viscosity by capillary rheometry. Likewise, films prepared from mixtures of polymers with additives show improved processability with earlier onset of stretching by TMA.

  2. 40 CFR 80.520 - What are the standards and dye requirements for motor vehicle diesel fuel?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... requirements for motor vehicle diesel fuel? 80.520 Section 80.520 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Motor Vehicle Diesel...

  3. 40 CFR 80.520 - What are the standards and dye requirements for motor vehicle diesel fuel?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... requirements for motor vehicle diesel fuel? 80.520 Section 80.520 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Motor Vehicle Diesel...

  4. 40 CFR 80.520 - What are the standards and dye requirements for motor vehicle diesel fuel?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... requirements for motor vehicle diesel fuel? 80.520 Section 80.520 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Motor Vehicle Diesel...

  5. Alcohol fuels

    SciTech Connect

    Not Available

    1990-07-01

    Ethanol is an alcohol made from grain that can be blended with gasoline to extend petroleum supplies and to increase gasoline octane levels. Congressional proposals to encourage greater use of alternative fuels could increase the demand for ethanol. This report evaluates the growth potential of the ethanol industry to meet future demand increases and the impacts increased production would have on American agriculture and the federal budget. It is found that ethanol production could double or triple in the next eight years, and that American farmers could provide the corn for this production increase. While corn growers would benefit, other agricultural segments would not; soybean producers, for example could suffer for increased corn oil production (an ethanol byproduct) and cattle ranchers would be faced with higher feed costs because of higher corn prices. Poultry farmers might benefit from lower priced feed. Overall, net farm cash income should increase, and consumers would see slightly higher food prices. Federal budget impacts would include a reduction in federal farm program outlays by an annual average of between $930 million (for double current production of ethanol) to $1.421 billion (for triple production) during the eight-year growth period. However, due to an partial tax exemption for ethanol blended fuels, federal fuel tax revenues could decrease by between $442 million and $813 million.

  6. Materials as additives for advanced lubrication

    DOEpatents

    Pol, Vilas G.; Thackeray, Michael M.; Mistry, Kuldeep; Erdemir, Ali

    2016-09-13

    This invention relates to carbon-based materials as anti-friction and anti-wear additives for advanced lubrication purposes. The materials comprise carbon nanotubes suspended in a liquid hydrocarbon carrier. Optionally, the compositions further comprise a surfactant (e.g., to aid in dispersion of the carbon particles). Specifically, the novel lubricants have the ability to significantly lower friction and wear, which translates into improved fuel economies and longer durability of mechanical devices and engines.

  7. Lightweight cryogenic-compatible pressure vessels for vehicular fuel storage

    DOEpatents

    Aceves, Salvador; Berry, Gene; Weisberg, Andrew H.

    2004-03-23

    A lightweight, cryogenic-compatible pressure vessel for flexibly storing cryogenic liquid fuels or compressed gas fuels at cryogenic or ambient temperatures. The pressure vessel has an inner pressure container enclosing a fuel storage volume, an outer container surrounding the inner pressure container to form an evacuated space therebetween, and a thermal insulator surrounding the inner pressure container in the evacuated space to inhibit heat transfer. Additionally, vacuum loss from fuel permeation is substantially inhibited in the evacuated space by, for example, lining the container liner with a layer of fuel-impermeable material, capturing the permeated fuel in the evacuated space, or purging the permeated fuel from the evacuated space.

  8. Additional Types of Neuropathy

    MedlinePlus

    ... A A Listen En Español Additional Types of Neuropathy Charcot's Joint Charcot's Joint, also called neuropathic arthropathy, ... can stop bone destruction and aid healing. Cranial Neuropathy Cranial neuropathy affects the 12 pairs of nerves ...

  9. Food Additives and Hyperkinesis

    ERIC Educational Resources Information Center

    Wender, Ester H.

    1977-01-01

    The hypothesis that food additives are causally associated with hyperkinesis and learning disabilities in children is reviewed, and available data are summarized. Available from: American Medical Association 535 North Dearborn Street Chicago, Illinois 60610. (JG)

  10. Fuel densifier converts biomass into fuel cubes

    SciTech Connect

    Not Available

    1982-02-01

    A new cost-effective means to produce clean-burning and low cost commercial and industrial fuel is being introduced by Columbia Fuel Densification Corp., Phoenix. The Columbia Commercial Hydraulic Fuel Densifier converts raw biomass materials such as wood chips, paper, peat moss and rice hulls into densified fuel cubes. The densifier is mobile and its operation is briefly outlined.

  11. Winters fuels report

    SciTech Connect

    1995-10-27

    The outlook for distillate fuel oil this winter is for increased demand and a return to normal inventory patterns, assuming a resumption of normal, cooler weather than last winter. With industrial production expected to grow slightly from last winter`s pace, overall consumption is projected to increase 3 percent from last winter, to 3.4 million barrels per day during the heating season (October 1, 1995-March 31, 1996). Much of the supply win come from stock drawdowns and refinery production. Estimates for the winter are from the Energy Information Administration`s (EIA) 4th Quarter 1995 Short-Tenn Energy Outlook (STEO) Mid-World Oil Price Case forecast. Inventories in place on September 30, 1995, of 132 million barrels were 9 percent below the unusually high year-earlier level. Inventories of high-sulfur distillate fuel oil, the principal type used for heating, were 13 percent lower than a year earlier. Supply problems are not anticipated because refinery production and the ready availability of imports should be adequate to meet demand. Residential heating off prices are expected to be somewhat higher than last winter`s, as the effects of lower crude oil prices are offset by lower distillate inventories. Heating oil is forecast to average $0.92 per gallon, the highest price since the winter of 1992-93. Diesel fuel (including tax) is predicted to be slightly higher than last year at $1.13 per gallon. This article focuses on the winter assessment for distillate fuel oil, how well last year`s STEO winter outlook compared to actual events, and expectations for the coming winter. Additional analyses include regional low-sulfur and high-sulfur distillate supply, demand, and prices, and recent trends in distillate fuel oil inventories.

  12. SOFC cells and stacks for complex fuels

    SciTech Connect

    Edward M. Sabolsky; Matthew Seabaugh; Katarzyna Sabolsky; Sergio A. Ibanez; Zhimin Zhong

    2007-07-01

    Reformed hydrocarbon and coal (syngas) fuels present an opportunity to integrate solid oxide fuel cells into the existing fuel infrastructure. However, these fuels often contain impurities or additives that may lead to cell degradation through sulfur poisoning or coking. Achieving high performance and sulfur tolerance in SOFCs operating on these fuels would simplify system balance of plant and sequestration of anode tail gas. NexTech Materials, Ltd., has developed a suite of materials and components (cells, seals, interconnects) designed for operation in sulfur-containing syngas fuels. These materials and component technologies have been integrated into an SOFC stack for testing on simulated propane, logistic fuel reformates and coal syngas. Details of the technical approach, cell and stack performance is reported.

  13. 40 CFR 80.535 - How are NRLM diesel fuel credits generated?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive... the standards of § 80.510(a) or (b). V520 = The total volume of motor vehicle diesel fuel produced or... generated by both a foreign refiner and by an importer for the same motor vehicle diesel fuel. (iii)...

  14. 40 CFR 80.531 - How are motor vehicle diesel fuel credits generated?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false How are motor vehicle diesel fuel... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel... are motor vehicle diesel fuel credits generated? (a) Generation of credits from June 1, 2006...

  15. 40 CFR 80.501 - What fuel is subject to the provisions of this subpart?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... for use as fuel in diesel motor vehicles or nonroad diesel engines or is blended with diesel fuel for... 40 Protection of Environment 16 2010-07-01 2010-07-01 false What fuel is subject to the provisions... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel...

  16. Evaluation of MHTGR fuel reliability

    SciTech Connect

    Wichner, R.P.; Barthold, W.P.

    1992-07-01

    Modular High-Temperature Gas-Cooled Reactor (MHTGR) concepts that house the reactor vessel in a tight but unsealed reactor building place heightened importance on the reliability of the fuel particle coatings as fission product barriers. Though accident consequence analyses continue to show favorable results, the increased dependence on one type of barrier, in addition to a number of other factors, has caused the Nuclear Regulatory Commission (NRC) to consider conservative assumptions regarding fuel behavior. For this purpose, the concept termed ``weak fuel`` has been proposed on an interim basis. ``Weak fuel`` is a penalty imposed on consequence analyses whereby the fuel is assumed to respond less favorably to environmental conditions than predicted by behavioral models. The rationale for adopting this penalty, as well as conditions that would permit its reduction or elimination, are examined in this report. The evaluation includes an examination of possible fuel-manufacturing defects, quality-control procedures for defect detection, and the mechanisms by which fuel defects may lead to failure.

  17. Comparative analysis of plant oil based fuels

    SciTech Connect

    Ziejewski, M.; Goettler, H.J.; Haines, H.; Huong, C.

    1995-12-31

    This paper presents the evaluation results from the analysis of different blends of fuels using the 13-mode standard SAE testing method. Six high oleic safflower oil blends, six ester blends, six high oleic sunflower oil blends, and six sunflower oil blends were used in this portion of the investigation. Additionally, the results from the repeated 13-mode tests for all the 25/75% mixtures with a complete diesel fuel test before and after each alternative fuel are presented.

  18. CLIMATE CHANGE FUEL CELL PROGRAM

    SciTech Connect

    Mike Walneuski

    2004-09-16

    ChevronTexaco has successfully operated a 200 kW PC25C phosphoric acid fuel cell power plant at the corporate data center in San Ramon, California for the past two years and seven months following installation in December 2001. This site was chosen based on the ability to utilize the combined heat (hot water) and power generation capability of this modular fuel cell power plant in an office park setting . In addition, this project also represents one of the first commercial applications of a stationary fuel cell for a mission critical data center to assess power reliability benefits. This fuel cell power plant system has demonstrated outstanding reliability and performance relative to other comparably sized cogeneration systems.

  19. Additive Manufacturing Infrared Inspection

    NASA Technical Reports Server (NTRS)

    Gaddy, Darrell

    2014-01-01

    Additive manufacturing is a rapid prototyping technology that allows parts to be built in a series of thin layers from plastic, ceramics, and metallics. Metallic additive manufacturing is an emerging form of rapid prototyping that allows complex structures to be built using various metallic powders. Significant time and cost savings have also been observed using the metallic additive manufacturing compared with traditional techniques. Development of the metallic additive manufacturing technology has advanced significantly over the last decade, although many of the techniques to inspect parts made from these processes have not advanced significantly or have limitations. Several external geometry inspection techniques exist such as Coordinate Measurement Machines (CMM), Laser Scanners, Structured Light Scanning Systems, or even traditional calipers and gages. All of the aforementioned techniques are limited to external geometry and contours or must use a contact probe to inspect limited internal dimensions. This presentation will document the development of a process for real-time dimensional inspection technique and digital quality record of the additive manufacturing process using Infrared camera imaging and processing techniques.

  20. Phenylethynyl Containing Reactive Additives

    NASA Technical Reports Server (NTRS)

    Connell, John W. (Inventor); Smith, Joseph G., Jr. (Inventor); Hergenrother, Paul M. (Inventor)

    2002-01-01

    Phenylethynyl containing reactive additives were prepared from aromatic diamine, containing phenylethvnvl groups and various ratios of phthalic anhydride and 4-phenylethynviphthalic anhydride in glacial acetic acid to form the imide in one step or in N-methyl-2-pvrrolidinone to form the amide acid intermediate. The reactive additives were mixed in various amounts (10% to 90%) with oligomers containing either terminal or pendent phenylethynyl groups (or both) to reduce the melt viscosity and thereby enhance processability. Upon thermal cure, the additives react and become chemically incorporated into the matrix and effect an increase in crosslink density relative to that of the host resin. This resultant increase in crosslink density has advantageous consequences on the cured resin properties such as higher glass transition temperature and higher modulus as compared to that of the host resin.

  1. Fuel utilization and fuel sensitivity of solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Huang, Kevin

    2011-03-01

    Fuel utilization and fuel sensitivity are two important process variables widely used in operation of SOFC cells, stacks, and generators. To illustrate the technical values, the definitions of these two variables as well as practical examples are particularly given in this paper. It is explicitly shown that the oxygen-leakage has a substantial effect on the actual fuel utilization, fuel sensitivity and V-I characteristics. An underestimation of the leakage flux could potentially results in overly consuming fuel and oxidizing Ni-based anode. A fuel sensitivity model is also proposed to help extract the leakage flux information from a fuel sensitivity curve. Finally, the "bending-over" phenomenon observed in the low-current range of a V-I curve measured at constant fuel-utilization is quantitatively coupled with leakage flux.

  2. Fuel-Cell Water Separator

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth Alan; Fisher, Caleb; Newman, Paul

    2010-01-01

    The main product of a typical fuel cell is water, and many fuel-cell configurations use the flow of excess gases (i.e., gases not consumed by the reaction) to drive the resultant water out of the cell. This two-phase mixture then exits through an exhaust port where the two fluids must again be separated to prevent the fuel cell from flooding and to facilitate the reutilization of both fluids. The Glenn Research Center (GRC) has designed, built, and tested an innovative fuel-cell water separator that not only removes liquid water from a fuel cell s exhaust ports, but does so with no moving parts or other power-consuming components. Instead it employs the potential and kinetic energies already present in the moving exhaust flow. In addition, the geometry of the separator is explicitly intended to be integrated into a fuel-cell stack, providing a direct mate with the fuel cell s existing flow ports. The separator is also fully scalable, allowing it to accommodate a wide range of water removal requirements. Multiple separators can simply be "stacked" in series or parallel to adapt to the water production/removal rate. GRC s separator accomplishes the task of water removal by coupling a high aspect- ratio flow chamber with a highly hydrophilic, polyethersulfone membrane. The hydrophilic membrane readily absorbs and transports the liquid water away from the mixture while simultaneously resisting gas penetration. The expansive flow path maximizes the interaction of the water particles with the membrane while minimizing the overall gas flow restriction. In essence, each fluid takes its corresponding path of least resistance, and the two fluids are effectively separated. The GRC fuel-cell water separator has a broad range of applications, including commercial hydrogen-air fuel cells currently being considered for power generation in automobiles.

  3. Biobased lubricant additives

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fully biobased lubricants are those formulated using all biobased ingredients, i.e. biobased base oils and biobased additives. Such formulations provide the maximum environmental, safety, and economic benefits expected from a biobased product. Currently, there are a number of biobased base oils that...

  4. Aviation fuels outlook

    NASA Technical Reports Server (NTRS)

    Momenthy, A. M.

    1980-01-01

    Options for satisfying the future demand for commercial jet fuels are analyzed. It is concluded that the most effective means to this end are to attract more refiners to the jet fuel market and encourage development of processes to convert oil shale and coal to transportation fuels. Furthermore, changing the U.S. refineries fuel specification would not significantly alter jet fuel availability.

  5. Fuel Burn Estimation Model

    NASA Technical Reports Server (NTRS)

    Chatterji, Gano

    2011-01-01

    Conclusions: Validated the fuel estimation procedure using flight test data. A good fuel model can be created if weight and fuel data are available. Error in assumed takeoff weight results in similar amount of error in the fuel estimate. Fuel estimation error bounds can be determined.

  6. 146. FUEL LINE TO SKID 2 (FUEL LOADER) IN FUEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    146. FUEL LINE TO SKID 2 (FUEL LOADER) IN FUEL CONTROL ROOM (215), LSB (BLDG. 751). LIQUID NITROGEN/HELIUM HEAT EXCHANGER ON RIGHT. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  7. Vinyl capped addition polyimides

    NASA Technical Reports Server (NTRS)

    Vannucci, Raymond D. (Inventor); Malarik, Diane C. (Inventor); Delvigs, Peter (Inventor)

    1991-01-01

    Polyimide resins (PMR) are generally useful where high strength and temperature capabilities are required (at temperatures up to about 700 F). Polyimide resins are particularly useful in applications such as jet engine compressor components, for example, blades, vanes, air seals, air splitters, and engine casing parts. Aromatic vinyl capped addition polyimides are obtained by reacting a diamine, an ester of tetracarboxylic acid, and an aromatic vinyl compound. Low void materials with improved oxidative stability when exposed to 700 F air may be fabricated as fiber reinforced high molecular weight capped polyimide composites. The aromatic vinyl capped polyimides are provided with a more aromatic nature and are more thermally stable than highly aliphatic, norbornenyl-type end-capped polyimides employed in PMR resins. The substitution of aromatic vinyl end-caps for norbornenyl end-caps in addition polyimides results in polymers with improved oxidative stability.

  8. Tackifier for addition polyimides

    NASA Technical Reports Server (NTRS)

    Butler, J. M.; St.clair, T. L.

    1980-01-01

    A modification to the addition polyimide, LaRC-160, was prepared to improve tack and drape and increase prepeg out-time. The essentially solventless, high viscosity laminating resin is synthesized from low cost liquid monomers. The modified version takes advantage of a reactive, liquid plasticizer which is used in place of solvent and helps solve a major problem of maintaining good prepeg tack and drape, or the ability of the prepeg to adhere to adjacent plies and conform to a desired shape during the lay up process. This alternate solventless approach allows both longer life of the polymer prepeg and the processing of low void laminates. This approach appears to be applicable to all addition polyimide systems.

  9. Electrophilic addition of astatine

    SciTech Connect

    Norseev, Yu.V.; Vasaros, L.; Nhan, D.D.; Huan, N.K.

    1988-03-01

    It has been shown for the first time that astatine is capable of undergoing addition reactions to unsaturated hydrocarbons. A new compound of astatine, viz., ethylene astatohydrin, has been obtained, and its retention numbers of squalane, Apiezon, and tricresyl phosphate have been found. The influence of various factors on the formation of ethylene astatohydrin has been studied. It has been concluded on the basis of the results obtained that the univalent cations of astatine in an acidic medium is protonated hypoastatous acid.

  10. Functional Generalized Additive Models.

    PubMed

    McLean, Mathew W; Hooker, Giles; Staicu, Ana-Maria; Scheipl, Fabian; Ruppert, David

    2014-01-01

    We introduce the functional generalized additive model (FGAM), a novel regression model for association studies between a scalar response and a functional predictor. We model the link-transformed mean response as the integral with respect to t of F{X(t), t} where F(·,·) is an unknown regression function and X(t) is a functional covariate. Rather than having an additive model in a finite number of principal components as in Müller and Yao (2008), our model incorporates the functional predictor directly and thus our model can be viewed as the natural functional extension of generalized additive models. We estimate F(·,·) using tensor-product B-splines with roughness penalties. A pointwise quantile transformation of the functional predictor is also considered to ensure each tensor-product B-spline has observed data on its support. The methods are evaluated using simulated data and their predictive performance is compared with other competing scalar-on-function regression alternatives. We illustrate the usefulness of our approach through an application to brain tractography, where X(t) is a signal from diffusion tensor imaging at position, t, along a tract in the brain. In one example, the response is disease-status (case or control) and in a second example, it is the score on a cognitive test. R code for performing the simulations and fitting the FGAM can be found in supplemental materials available online.

  11. Carburetor fuel discharge assembly

    SciTech Connect

    Yost, R.M.

    1993-06-29

    An improved carburetor for use on an internal combustion engine is described, the carburetor having an airflow passage and fuel discharge means for admitting fuel into the airflow passage for mixing the fuel with air flowing in the airflow passage to form a fuel/air mixture to be supplied to the combustion chamber(s) of the engine, the fuel discharge means including a fuel discharge assembly which comprises a hollow discharge tube and fuel supplying means connected to the discharge tube for admitting fuel into the interior of the discharge tube, wherein the discharge tube has a longitudinal internal bore in fluid communication with the fuel supplying means, wherein the internal bore extends between an inlet that is closest to the fuel supplying means and an outlet that is furthest from the fuel supplying means with the outlet of the bore being located within the airflow passage of the carburetor to supply fuel into this passage after the fuel passes from the fuel supplying means through the internal bore of the discharge tube, wherein the improvement relates to the fuel discharge assembly and comprises: a hollow fuel flow guide tube telescopically received inside the internal bore of the discharge tube, wherein the fuel flow guide tube extends from approximately the location of the inlet of the bore up at least a portion of the length of the bore towards the outlet of the bore to conduct fuel from the fuel supplying means into the bore of the discharge tube.

  12. Acute toxicity of gasoline and some additives.

    PubMed Central

    Reese, E; Kimbrough, R D

    1993-01-01

    The acute toxicity of gasoline; its components benzene, toluene, and xylene; and the additives ethanol, methanol, and methyl tertiary butyl ether are reviewed. All of these chemicals are only moderately to mildly toxic at acute doses. Because of their volatility, these compounds are not extensively absorbed dermally unless the exposed skin is occluded. Absorption through the lungs and the gastrointestinal tract is quite efficient. After ingestion, the principal danger for a number of these chemicals, particularly gasoline, is aspiration pneumonia, which occurs mainly in children. It is currently not clear whether aspiration pneumonia would still be a problem if gasoline were diluted with ethanol or methanol. During the normal use of gasoline or mixtures of gasoline and the other solvents as a fuel, exposures would be much lower than the doses that have resulted in poisoning. No acute toxic health effects would occur during the normal course of using automotive fuels. PMID:8020435

  13. Acute toxicity of gasoline and some additives

    SciTech Connect

    Reese, E.; Kimbrough, R.D.

    1993-12-01

    The acute toxicity of gasoline; its components benzene, toluene, and xylene; and the additives ethanol, methanol, and methyl tertiary butyl ether are reviewed. All of these chemicals are only moderately to mildly toxic at acute doses. Because of their volatility, these compounds are not extensively absorbed dermally unless the exposed skin is occluded. Absorption through the lungs and the gastrointestinal tract is quite efficient. After ingestion, the principal danger for a number of these chemicals, particularly gasoline, is aspiration pneumonia, which occurs mainly in children. It is currently not clear whether aspiration pneumonia would still be a problem if gasoline were diluted with ethanol or methanol. During the normal use of gasoline or mixtures of gasoline and the other solvents as a fuel, exposures would be much lower than the doses that have resulted in poisoning. No acute toxic health effects would occur during the normal course of using automotive fuels. 128 refs., 7 tabs.

  14. Reformulated diesel fuel and method

    DOEpatents

    McAdams, Hiramie T [Carrollton, IL; Crawford, Robert W [Tucson, AZ; Hadder, Gerald R [Oak Ridge, TN; McNutt, Barry D [Arlington, VA

    2006-08-22

    A method for mathematically identifying at least one diesel fuel suitable for combustion in an automotive diesel engine with significantly reduced emissions and producible from known petroleum blendstocks using known refining processes, including the use of cetane additives (ignition improvers) and oxygenated compounds.

  15. Fuel cells: A survey

    NASA Technical Reports Server (NTRS)

    Crowe, B. J.

    1973-01-01

    A survey of fuel cell technology and applications is presented. The operating principles, performance capabilities, and limitations of fuel cells are discussed. Diagrams of fuel cell construction and operating characteristics are provided. Photographs of typical installations are included.

  16. 76 FR 5319 - Regulation of Fuel and Fuel Additives: Alternative Test Method for Olefins in Gasoline

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-31

    ... rulemaking (Docket ID Number EPA-HQ-OAR-2008-0558). \\2\\ See Air Docket EPA-HQ-OAR-2008-0558-0002. \\3\\ 73 FR 74350, December 8, 2008. \\4\\ 73 FR 74403, December 8, 2008. \\5\\ See Air Docket EPA-HQ-OAR-2008-0558-0005. \\6\\ 74 FR 6233, February 6, 2009. EPA is proposing to allow ASTM D6550-05 (SFC) as an alternative...

  17. 40 CFR 79.56 - Fuel and fuel additive grouping system.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... that party. The information and fees to be included in the request for hearing are specified in 40 CFR... specified in 40 CFR 791.22 through 791.50, 791.60, 791.85, and 791.105, excluding 40 CFR 791.39(a)(3) and... standards. (i) American Society for Testing and Materials (ASTM) standard D 4814-93a,...

  18. 40 CFR 79.56 - Fuel and fuel additive grouping system.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... that party. The information and fees to be included in the request for hearing are specified in 40 CFR... specified in 40 CFR 791.22 through 791.50, 791.60, 791.85, and 791.105, excluding 40 CFR 791.39(a)(3) and... standards. (i) American Society for Testing and Materials (ASTM) standard D 4814-93a,...

  19. 40 CFR 79.56 - Fuel and fuel additive grouping system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... that party. The information and fees to be included in the request for hearing are specified in 40 CFR... specified in 40 CFR 791.22 through 791.50, 791.60, 791.85, and 791.105, excluding 40 CFR 791.39(a)(3) and... Standards. (i) American Society for Testing and Materials (ASTM) standard D 4814-93a,...

  20. 40 CFR 79.56 - Fuel and fuel additive grouping system.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... that party. The information and fees to be included in the request for hearing are specified in 40 CFR... specified in 40 CFR 791.22 through 791.50, 791.60, 791.85, and 791.105, excluding 40 CFR 791.39(a)(3) and... standards. (i) American Society for Testing and Materials (ASTM) standard D 4814-93a,...

  1. 40 CFR 79.56 - Fuel and fuel additive grouping system.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... that party. The information and fees to be included in the request for hearing are specified in 40 CFR... specified in 40 CFR 791.22 through 791.50, 791.60, 791.85, and 791.105, excluding 40 CFR 791.39(a)(3) and... standards. (i) American Society for Testing and Materials (ASTM) standard D 4814-93a,...

  2. 75 FR 26165 - Regulation of Fuels and Fuel Additives: Alternative Affirmative Defense Requirements for Ultra...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-11

    ... Defense Requirements for Ultra-Low Sulfur Diesel and Gasoline Benzene Technical Amendment AGENCY... gasoline benzene regulations to allow disqualified small refiners the same opportunity to generate gasoline benzene credits as that afforded to non-small refiners. DATES: Comments: Comments must be received on...

  3. 75 FR 26121 - Regulation of Fuels and Fuel Additives: Alternative Affirmative Defense Requirements for Ultra...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-11

    ... A. Executive Order 12866: Regulatory Planning and Review Under Executive Order (EO) 12866 (58 FR... implications, as specified in Executive Order 13175 (65 FR 67249, November 9, 2000). This rule applies to... Children From Environmental Health Risks and Safety Risks EPA interprets EO 13045 (62 FR 19885, April...

  4. 76 FR 65382 - Regulation of Fuel and Fuel Additives: Alternative Test Method for Olefins in Gasoline

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-21

    ... correlation would be consistent with that specific facility's olefin content range. \\1\\ 76 FR 5319, January 31... rule is not a ``significant regulatory action'' under the terms of Executive Order (EO) 12866 (58 FR... 13132: Federalism Executive Order 13132, entitled ``Federalism'' (64 FR 43255, August 10,...

  5. 76 FR 77828 - Regulation of Fuel and Fuel Additives: Modification to Octamix Waiver

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-14

    ... Clean Air Act (Act). \\1\\ 53 FR 3636, February 8, 1988. \\2\\ 53 FR 17977, May 19, 1988. \\3\\ 53 FR 43768... ``substantially similar'' at 73 FR 22281 (April 25, 2008). Generally speaking, this interpretive rule describes... composition as well as its physical properties, including the amount of alcohols and ethers (oxygenates)...

  6. Future aviation fuels overview

    NASA Technical Reports Server (NTRS)

    Reck, G. M.

    1980-01-01

    The outlook for aviation fuels through the turn of the century is briefly discussed and the general objectives of the NASA Lewis Alternative Aviation Fuels Research Project are outlined. The NASA program involves the evaluation of potential characteristics of future jet aircraft fuels, the determination of the effects of those fuels on engine and fuel system components, and the development of a component technology to use those fuels.

  7. Effect of hydrocarbon fuel type on fuel

    NASA Technical Reports Server (NTRS)

    Wong, E. L.; Bittker, D. A.

    1982-01-01

    A modified jet fuel thermal oxidation tester (JFTOT) procedure was used to evaluate deposit and sediment formation for four pure hydrocarbon fuels over the temperature range 150 to 450 C in 316-stainless-steel heater tubes. Fuel types were a normal alkane, an alkene, a naphthene, and an aromatic. Each fuel exhibited certain distinctive deposit and sediment formation characteristics. The effect of aluminum and 316-stainless-steel heater tube surfaces on deposit formation for the fuel n-decane over the same temperature range was investigated. Results showed that an aluminum surface had lower deposit formation rates at all temperatures investigated. By using a modified JFTOT procedure the thermal stability of four pure hydrocarbon fuels and two practical fuels (Jet A and home heating oil no. 2) was rated on the basis of their breakpoint temperatures. Results indicate that this method could be used to rate thermal stability for a series of fuels.

  8. Fuel economy of hydrogen fuel cell vehicles

    NASA Astrophysics Data System (ADS)

    Ahluwalia, Rajesh K.; Wang, X.; Rousseau, A.; Kumar, R.

    On the basis of on-road energy consumption, fuel economy (FE) of hydrogen fuel cell light-duty vehicles is projected to be 2.5-2.7 times the fuel economy of the conventional gasoline internal combustion engine vehicles (ICEV) on the same platforms. Even with a less efficient but higher power density 0.6 V per cell than the base case 0.7 V per cell at the rated power point, the hydrogen fuel cell vehicles are projected to offer essentially the same fuel economy multiplier. The key to obtaining high fuel economy as measured on standardized urban and highway drive schedules lies in maintaining high efficiency of the fuel cell (FC) system at low loads. To achieve this, besides a high performance fuel cell stack, low parasitic losses in the air management system (i.e., turndown and part load efficiencies of the compressor-expander module) are critical.

  9. Fuel processor for fuel cell power system

    DOEpatents

    Vanderborgh, Nicholas E.; Springer, Thomas E.; Huff, James R.

    1987-01-01

    A catalytic organic fuel processing apparatus, which can be used in a fuel cell power system, contains within a housing a catalyst chamber, a variable speed fan, and a combustion chamber. Vaporized organic fuel is circulated by the fan past the combustion chamber with which it is in indirect heat exchange relationship. The heated vaporized organic fuel enters a catalyst bed where it is converted into a desired product such as hydrogen needed to power the fuel cell. During periods of high demand, air is injected upstream of the combustion chamber and organic fuel injection means to burn with some of the organic fuel on the outside of the combustion chamber, and thus be in direct heat exchange relation with the organic fuel going into the catalyst bed.

  10. Alternative Fuel News, Vol. 7, No. 3

    SciTech Connect

    Not Available

    2003-11-01

    Quarterly magazine with articles on recent additions to the Clean Cities Alternative Fuel Station Locator database, biodiesel buying co-ops, and developing the CNG infrastructure in Bangladesh. Also a memo from CIVITAS 2003.

  11. 40 CFR 80.1465 - What are the additional requirements under this subpart for foreign small refiners, foreign small...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Renewable Fuel Standard § 80.1465 What are the additional... operation of the administrative and judicial enforcement powers and provisions of the United States without..., under the requirements of 40 CFR part 80, subpart M, and that the information is material...

  12. Certification of alternative aviation fuels and blend components

    SciTech Connect

    Wilson III, George R. ); Edwards, Tim; Corporan, Edwin ); Freerks, Robert L. )

    2013-01-15

    Aviation turbine engine fuel specifications are governed by ASTM International, formerly known as the American Society for Testing and Materials (ASTM) International, and the British Ministry of Defence (MOD). ASTM D1655 Standard Specification for Aviation Turbine Fuels and MOD Defence Standard 91-91 are the guiding specifications for this fuel throughout most of the world. Both of these documents rely heavily on the vast amount of experience in production and use of turbine engine fuels from conventional sources, such as crude oil, natural gas condensates, heavy oil, shale oil, and oil sands. Turbine engine fuel derived from these resources and meeting the above specifications has properties that are generally considered acceptable for fuels to be used in turbine engines. Alternative and synthetic fuel components are approved for use to blend with conventional turbine engine fuels after considerable testing. ASTM has established a specification for fuels containing synthesized hydrocarbons under D7566, and the MOD has included additional requirements for fuels containing synthetic components under Annex D of DS91-91. New turbine engine fuel additives and blend components need to be evaluated using ASTM D4054, Standard Practice for Qualification and Approval of New Aviation Turbine Fuels and Fuel Additives. This paper discusses these specifications and testing requirements in light of recent literature claiming that some biomass-derived blend components, which have been used to blend in conventional aviation fuel, meet the requirements for aviation turbine fuels as specified by ASTM and the MOD. The 'Table 1' requirements listed in both D1655 and DS91-91 are predicated on the assumption that the feedstocks used to make fuels meeting these requirements are from approved sources. Recent papers have implied that commercial jet fuel can be blended with renewable components that are not hydrocarbons (such as fatty acid methyl esters). These are not allowed blend

  13. A GUIDE TO FUEL PERFORMANCE

    SciTech Connect

    LITZKE,W.

    2004-08-01

    Heating oil, as its name implies, is intended for end use heating consumption as its primary application. But its identity in reference name and actual chemical properties may vary based on a number of factors. By name, heating oil is sometimes referred to as gas oil, diesel, No. 2 distillate (middle distillate), or light heating oil. Kerosene, also used as a burner fuel, is a No. 1 distillate. Due to the higher heat content and competitive price in most markets, No. 2 heating oil is primarily used in modern, pressure-atomized burners. Using No. 1 oil for heating has the advantages of better cold-flow properties, lower emissions, and better storage properties. Because it is not nearly as abundant in supply, it is often markedly more expensive than No. 2 heating oil. Given the advanced, low-firing rate burners in use today, the objective is for the fuel to be compatible and achieve combustion performance at the highest achievable efficiency of the heating systems--with minimal service requirements. Among the Oil heat industry's top priorities are improving reliability and reducing service costs associated with fuel performance. Poor fuel quality, fuel degradation, and contamination can cause burner shut-downs resulting in ''no-heat'' calls. Many of these unscheduled service calls are preventable with routine inspection of the fuel and the tank. This manual focuses on No. 2 heating oil--its performance, properties, sampling and testing. Its purpose is to provide the marketer, service manager and technician with the proper guidelines for inspecting the product, maintaining good fuel quality, and the best practices for proper storage. Up-to-date information is also provided on commercially available fuel additives, their appropriate use and limitations.

  14. Alternatives to traditional transportation fuels 1995

    SciTech Connect

    1996-12-01

    This report provides information on transportation fuels other than gasoline and diesel, and the vehicles that use these fuels. The Energy Information Administration (EIA) provides this information to support the U.S. Department of Energy`s reporting obligations under Section 503 of the Energy Policy Act of 1992 (EPACT). The principal information contained in this report includes historical and year-ahead estimates of the following: (1) the number and type of alterative-fueled vehicles (AFV`s) in use; (2) the consumption of alternative transportation fuels and {open_quotes}replacement fuels{close_quotes}; and (3) the number and type of alterative-fueled vehicles made available in the current and following years. In addition, the report contains some material on special topics. The appendices include a discussion of the methodology used to develop the estimates (Appendix A), a map defining geographic regions used, and a list of AFV suppliers.

  15. Connections for solid oxide fuel cells

    DOEpatents

    Collie, Jeffrey C.

    1999-01-01

    A connection for fuel cell assemblies is disclosed. The connection includes compliant members connected to individual fuel cells and a rigid member connected to the compliant members. Adjacent bundles or modules of fuel cells are connected together by mechanically joining their rigid members. The compliant/rigid connection permits construction of generator fuel cell stacks from basic modular groups of cells of any desired size. The connections can be made prior to installation of the fuel cells in a generator, thereby eliminating the need for in-situ completion of the connections. In addition to allowing pre-fabrication, the compliant/rigid connections also simplify removal and replacement of sections of a generator fuel cell stack.

  16. Dummy Cell Would Improve Performance Of Fuel-Cell Stack

    NASA Technical Reports Server (NTRS)

    Suljak, G. T.

    1993-01-01

    Interposition of dummy cell between stack of alkaline fuel cells and accessory section of fuel-cell powerplant proposed to overcome operational deficiencies plaguing end-most active cell. Cell in combination with additional hydrogen/coolant separator plate keeps end cell warmer and drier. End cell 96th in stack of fuel cells.

  17. Fuel Processors for PEM Fuel Cells

    SciTech Connect

    Levi T. Thompson

    2008-08-08

    Fuel cells are being developed to power cleaner, more fuel efficient automobiles. The fuel cell technology favored by many automobile manufacturers is PEM fuel cells operating with H2 from liquid fuels like gasoline and diesel. A key challenge to the commercialization of PEM fuel cell based powertrains is the lack of sufficiently small and inexpensive fuel processors. Improving the performance and cost of the fuel processor will require the development of better performing catalysts, new reactor designs and better integration of the various fuel processing components. These components and systems could also find use in natural gas fuel processing for stationary, distributed generation applications. Prototype fuel processors were produced, and evaluated against the Department of Energy technical targets. Significant advances were made by integrating low-cost microreactor systems, high activity catalysts, π-complexation adsorbents, and high efficiency microcombustor/microvaporizers developed at the University of Michigan. The microreactor system allowed (1) more efficient thermal coupling of the fuel processor operations thereby minimizing heat exchanger requirements, (2) improved catalyst performance due to optimal reactor temperature profiles and increased heat and mass transport rates, and (3) better cold-start and transient responses.

  18. NUCLEAR REACTOR FUEL-BREEDER FUEL ELEMENT

    DOEpatents

    Currier, E.L. Jr.; Nicklas, J.H.

    1962-08-14

    A fuel-breeder fuel element was developed for a nuclear reactor wherein discrete particles of fissionable material are dispersed in a matrix of fertile breeder material. The fuel element combines the advantages of a dispersion type and a breeder-type. (AEC)

  19. Fuel cells make their CPI moves

    SciTech Connect

    Gilbert, B.R.; Nawaz, M.; Chen, T.P.

    1995-08-01

    Fuel cells convert fuel gas and air electrochemically into power. The natural propensity of fuel gas at the anode side to react with air at the cathode side forces either the fuel gas or oxygen to ionize. The migration of the formed ions through the electrolyte induces an electric current, producing power. A bipolar plate segregates the reactant gases and provides an electrical connection between adjacent cells. The overall electrical efficiency of a fuel cell is 45--70% (LHV, or low heating value). The cogeneration efficiency, which also credits the additional steam and hot water produced, is 70--90% (LHV). These efficiencies are the highest of all available power-generation technologies. Most importantly, fuel cells can achieve these high efficiencies even at plant capacities as small as a few hundred kilowatts. Fuel cells are essentially pollution-free because they do not involve combustion. There are no waste-water discharges from fuel cell plants. These attributes make fuel cells ideal candidates for a new trend in power generation called distributed power generation. With distributed generation, many small scale factories, hospitals, shopping malls, hotels, airports, gas and water-pumping stations, office buildings, and other power consumers can produce their own electricity. The paper describes the three major types of fuel cells, their benefits, and their estimated cost to the chemical processing industry.

  20. Internal reforming fuel cell assembly with simplified fuel feed

    DOEpatents

    Farooque, Mohammad; Novacco, Lawrence J.; Allen, Jeffrey P.

    2001-01-01

    A fuel cell assembly in which fuel cells adapted to internally reform fuel and fuel reformers for reforming fuel are arranged in a fuel cell stack. The fuel inlet ports of the fuel cells and the fuel inlet ports and reformed fuel outlet ports of the fuel reformers are arranged on one face of the fuel cell stack. A manifold sealing encloses this face of the stack and a reformer fuel delivery system is arranged entirely within the region between the manifold and the one face of the stack. The fuel reformer has a foil wrapping and a cover member forming with the foil wrapping an enclosed structure.

  1. Performance Boosting Additive

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Mainstream Engineering Corporation was awarded Phase I and Phase II contracts from Goddard Space Flight Center's Small Business Innovation Research (SBIR) program in early 1990. With support from the SBIR program, Mainstream Engineering Corporation has developed a unique low cost additive, QwikBoost (TM), that increases the performance of air conditioners, heat pumps, refrigerators, and freezers. Because of the energy and environmental benefits of QwikBoost, Mainstream received the Tibbetts Award at a White House Ceremony on October 16, 1997. QwikBoost was introduced at the 1998 International Air Conditioning, Heating, and Refrigeration Exposition. QwikBoost is packaged in a handy 3-ounce can (pressurized with R-134a) and will be available for automotive air conditioning systems in summer 1998.

  2. Sewage sludge additive

    NASA Technical Reports Server (NTRS)

    Kalvinskas, J. J.; Mueller, W. A.; Ingham, J. D. (Inventor)

    1980-01-01

    The additive is for a raw sewage treatment process of the type where settling tanks are used for the purpose of permitting the suspended matter in the raw sewage to be settled as well as to permit adsorption of the dissolved contaminants in the water of the sewage. The sludge, which settles down to the bottom of the settling tank is extracted, pyrolyzed and activated to form activated carbon and ash which is mixed with the sewage prior to its introduction into the settling tank. The sludge does not provide all of the activated carbon and ash required for adequate treatment of the raw sewage. It is necessary to add carbon to the process and instead of expensive commercial carbon, coal is used to provide the carbon supplement.

  3. Perspectives on Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Bourell, David L.

    2016-07-01

    Additive manufacturing (AM) has skyrocketed in visibility commercially and in the public sector. This article describes the development of this field from early layered manufacturing approaches of photosculpture, topography, and material deposition. Certain precursors to modern AM processes are also briefly described. The growth of the field over the last 30 years is presented. Included is the standard delineation of AM technologies into seven broad categories. The economics of AM part generation is considered, and the impacts of the economics on application sectors are described. On the basis of current trends, the future outlook will include a convergence of AM fabricators, mass-produced AM fabricators, enabling of topology optimization designs, and specialization in the AM legal arena. Long-term developments with huge impact are organ printing and volume-based printing.

  4. Sarks as additional fermions

    NASA Astrophysics Data System (ADS)

    Agrawal, Jyoti; Frampton, Paul H.; Jack Ng, Y.; Nishino, Hitoshi; Yasuda, Osamu

    1991-03-01

    An extension of the standard model is proposed. The gauge group is SU(2) X ⊗ SU(3) C ⊗ SU(2) S ⊗ U(1) Q, where all gauge symmetries are unbroken. The colour and electric charge are combined with SU(2) S which becomes strongly coupled at approximately 500 GeV and binds preons to form fermionic and vector bound states. The usual quarks and leptons are singlets under SU(2) X but additional fermions, called sarks. transform under it and the electroweak group. The present model explains why no more than three light quark-lepton families can exist. Neutral sark baryons, called narks, are candidates for the cosmological dark matter having the characteristics designed for WIMPS. Further phenomenological implications of sarks are analyzed i including electron-positron annihilation. Z 0 decay, flavor-changing neutral currents. baryon-number non-conservation, sarkonium and the neutron electric dipole moment.

  5. BioFacts: Fueling a stronger economy, Biodiesel. Revision 2

    SciTech Connect

    1995-01-01

    Biodiesel is a substitute for or an additive to diesel fuel that is derived from the oils and fats of plants. It is an alternative fuel that can be used in diesel engines and provides power similar to conventional diesel fuel. It is a biodegradable transportation fuel that contributes little, if any, net carbon dioxide or sulfur to the atmosphere, and is low in particulate emission. It is a renewable, domestically produced liquid fuel that can help reduce US dependence on foreign oil imports. This overview presents the resource potential, history, processing techniques, US DOE programs cost and utilization potential of biodiesel fuels.

  6. Physics of hydride fueled PWR

    NASA Astrophysics Data System (ADS)

    Ganda, Francesco

    The first part of the work presents the neutronic results of a detailed and comprehensive study of the feasibility of using hydride fuel in pressurized water reactors (PWR). The primary hydride fuel examined is U-ZrH1.6 having 45w/o uranium: two acceptable design approaches were identified: (1) use of erbium as a burnable poison; (2) replacement of a fraction of the ZrH1.6 by thorium hydride along with addition of some IFBA. The replacement of 25 v/o of ZrH 1.6 by ThH2 along with use of IFBA was identified as the preferred design approach as it gives a slight cycle length gain whereas use of erbium burnable poison results in a cycle length penalty. The feasibility of a single recycling plutonium in PWR in the form of U-PuH2-ZrH1.6 has also been assessed. This fuel was found superior to MOX in terms of the TRU fractional transmutation---53% for U-PuH2-ZrH1.6 versus 29% for MOX---and proliferation resistance. A thorough investigation of physics characteristics of hydride fuels has been performed to understand the reasons of the trends in the reactivity coefficients. The second part of this work assessed the feasibility of multi-recycling plutonium in PWR using hydride fuel. It was found that the fertile-free hydride fuel PuH2-ZrH1.6, enables multi-recycling of Pu in PWR an unlimited number of times. This unique feature of hydride fuels is due to the incorporation of a significant fraction of the hydrogen moderator in the fuel, thereby mitigating the effect of spectrum hardening due to coolant voiding accidents. An equivalent oxide fuel PuO2-ZrO2 was investigated as well and found to enable up to 10 recycles. The feasibility of recycling Pu and all the TRU using hydride fuels were investigated as well. It was found that hydride fuels allow recycling of Pu+Np at least 6 times. If it was desired to recycle all the TRU in PWR using hydrides, the number of possible recycles is limited to 3; the limit is imposed by positive large void reactivity feedback.

  7. RERTR Fuel Developmemt and Qualification Plan

    SciTech Connect

    Dan Wachs

    2007-01-01

    detailing very-high density fuel behavior will be submitted to the U.S. Nuclear Regulatory Commission (NRC). Assuming acceptable fuel behavior, it is anticipated that NRC will issue a Safety Evaluation Report granting generic approval of the developed fuels based on the qualification report. It is anticipated that Phase I of fuel qualification will be completed prior to the end of FY10. Phase II of the fuel qualification requires development of fuels with density greater than 8.5 g-U/cm3. This fuel is required to convert the remaining few reactors that have been identified for conversion. The second phase of the fuel qualification effort includes both dispersion fuels with fuel particle volume loading on the order of 65 percent, and monolithic fuels. Phase II presents a larger set of technical unknowns and schedule uncertainties than phase I. The final step in the fuel qualification process involves insertion of lead test elements into the converting reactors. Each reactor that plans to convert using the developed high-density fuels will develop a reactor specific conversion plan based upon the reactor safety basis and operating requirements. For some reactors (FRM-II, High-Flux Isotope Reactor [HFIR], and RHF) conversion will be a one-step process. In addition to the U.S. fuel development effort, a Russian fuel development strategy has been developed. Contracts with Russian Federation institutes in support of fuel development for Russian are in place.

  8. Optimally Controlled Flexible Fuel Powertrain System

    SciTech Connect

    Duncan Sheppard; Bruce Woodrow; Paul Kilmurray; Simon Thwaite

    2011-06-30

    ) developed the Renewable Fuels Standard (RFS) under the Energy Policy Act of 2005. The RFS specifies targets for the amount of renewable fuel to be blended into petroleum based transportation fuels. The goal is to blend 36 billion gallons of renewable fuels into transportation fuels by 2022 (9 billion gallons were blended in 2008). The RFS also requires that the renewable fuels emit fewer greenhouse gasses than the petroleum fuels replaced. Thus the goal of the EPA is to have a more fuel efficient national fleet, less dependent on petroleum based fuels. The limit to the implementation of certain technologies employed was the requirement to run the developed powertrain on gasoline with minimal performance degradation. The addition of ethanol to gasoline fuels improves the fuels octane rating and increases the fuels evaporative cooling. Both of these fuel property enhancements make gasoline / ethanol blends more suitable than straight gasoline for use in downsized engines or engines with increased compression ratio. The use of engine downsizing and high compression ratios as well as direct injection (DI), dual independent cam phasing, external EGR, and downspeeding were fundamental to the fuel economy improvements targeted in this project. The developed powertrain specification utilized the MAHLE DI3 gasoline downsizing research engine. It was a turbocharged, intercooled, DI engine with dual independent cam phasing utilizing a compression ratio of 11.25 : 1 and a 15% reduction in final drive ratio. When compared to a gasoline fuelled 2.2L Ecotec engine in a Chevrolet HHR, vehicle drive cycle predictions indicate that the optimized powertrain operating on E85 would result in a reduced volume based drive cycle fuel economy penalty of 6% compared to an approximately 30% penalty for current technology engines.

  9. Operando fuel cell spectroscopy

    NASA Astrophysics Data System (ADS)

    Kendrick, Ian Michael

    unobserved peaks corresponding to adsorbed ethanol. A modification to the operando fuel cell design allowed for acquisition of Raman spectra. A confocal Raman microscope enabled characterization of the MEA through depth profiling. The potential dependent peaks of an Fe-N x/C catalyst were identified and compared to the theoretical spectra of the proposed active sites. It was determined that oxygen adsorbed onto iron/iron oxide carbon nanostructures were responsible for the experimentally obtained peaks. This finding was supported by additional Raman studies carried out on a catalyst with these active sites removed through peroxide treatments. 1 Topsoe, H., Developments in operando studies and in situ characterization of heterogeneous catalysts. Journal of Catalysis, 2003. 216(1-2): p. 155-164. 2 Stamenkovic, V., et al., Vibrational properties of CO at the Pt(111)-solution interface: the anomalous stark-tuning slope. Journal of Physical Chemistry B, 2005. 109(2): p. 678-680. 3 Kendrick, I., et al., Elucidating the Ionomer-Electrified Metal Interface. J. Am. Chem. Soc., 2010. 132(49): p. 17611-17616. 4 Lamy, C. and Leger, J.M., FUEL-CELLS - APPLICATION TO ELECTRIC VEHICLES. Journal De Physique Iv, 1994. 4(C1): p. 253-281.

  10. DIGESTER GAS - FUEL CELL - PROJECT

    SciTech Connect

    Dr.-Eng. Dirk Adolph; Dipl.-Eng. Thomas Saure

    2002-03-01

    GEW has been operating the first fuel cell in Europe producing heat and electricity from digester gas in an environmentally friendly way. The first 9,000 hours in operation were successfully concluded in August 2001. The fuel cell powered by digester gas was one of the 25 registered ''Worldwide projects'' which NRW presented at the EXPO 2000. In addition to this, it is a key project of the NRW State Initiative on Future Energies. All of the activities planned for the first year of operation were successfully completed: installing and putting the plant into operation, the transition to permanent operation as well as extended monitoring till May 2001.

  11. Conceptual design of fuel transfer cask for Reactor TRIGA PUSPATI (RTP)

    NASA Astrophysics Data System (ADS)

    Muhamad, Shalina Sheik; Hamzah, Mohd Arif Arif B.

    2014-02-01

    Spent fuel transfer cask is used to transfer a spent fuel from the reactor tank to the spent fuel storage or for spent fuel inspection. Typically, the cask made from steel cylinders that are either welded or bolted closed. The cylinder is enclosed with additional steel, concrete, or other material to provide radiation shielding and containment of the spent fuel. This paper will discuss the Conceptual Design of fuel transfer cask for Reactor TRIGA Puspati (RTP).

  12. Fuel dissipater for pressurized fuel cell generators

    DOEpatents

    Basel, Richard A.; King, John E.

    2003-11-04

    An apparatus and method are disclosed for eliminating the chemical energy of fuel remaining in a pressurized fuel cell generator (10) when the electrical power output of the fuel cell generator is terminated during transient operation, such as a shutdown; where, two electrically resistive elements (two of 28, 53, 54, 55) at least one of which is connected in parallel, in association with contactors (26, 57, 58, 59), a multi-point settable sensor relay (23) and a circuit breaker (24), are automatically connected across the fuel cell generator terminals (21, 22) at two or more contact points, in order to draw current, thereby depleting the fuel inventory in the generator.

  13. Proceedings of the Fourth Annual Fuel Cells Contractors Review Meeting

    NASA Astrophysics Data System (ADS)

    Huber, W. J.

    1992-07-01

    The objective of the program was to develop the essential technology for private sector commercialization of various fuel cell electrical generation systems, which promise high fuel efficiencies (40-60 percent), possibilities for cogeneration, modularity, possible urban siting, and low emissions. The purpose of this meeting was to provide the R and D participants in the DOE/Fossil Energy-sponsored Fuel Cells Program with a forum. With the near commercialization of phosphoric acid fuel cells, major emphasis was on molten carbonate and solid oxide fuel cells. Twenty-two papers were given in 3 formal sessions: molten carbonate fuel cells; solid oxide fuel cells; and systems and phosphoric acid. In addition, the proceedings also include a welcome to METC address and comments on the Fuel Cells Program from the viewpoint of EPRI and DOE's Vehicular Fuel Cell Program. Separate abstracts have been prepared.

  14. Research reactor de-fueling and fuel shipment

    SciTech Connect

    Ice, R.D.; Jawdeh, E.; Strydom, J.

    1998-08-01

    Planning for the Georgia Institute of Technology Research Reactor operations during the 1996 Summer Olympic Games began in early 1995. Before any details could be outlined, several preliminary administrative decisions had to be agreed upon by state, city, and university officials. The two major administrative decisions involving the reactor were (1) the security level and requirements and (2) the fuel status of the reactor. The Georgia Tech Research Reactor (GTRR) was a heavy-water moderated and cooled reactor, fueled with high-enriched uranium. The reactor was first licensed in 1964 with an engineered lifetime of thirty years. The reactor was intended for use in research applications and as a teaching facility for nuclear engineering students and reactor operators. Approximately one year prior to the olympics, the Georgia Tech administration decided that the GTRR fuel would be removed. In addition, a heightened, beyond regulatory requirements, security system was to be implemented. This report describes the scheduling, operations, and procedures.

  15. Physics Features of TRU-Fueled VHTRs

    DOE PAGES

    Lewis, Tom G.; Tsvetkov, Pavel V.

    2009-01-01

    The current waste management strategy for spent nuclear fuel (SNF) mandated by the US Congress is the disposal of high-level waste (HLW) in a geological repository at Yucca Mountain. Ongoing efforts on closed-fuel cycle options and difficulties in opening and safeguarding such a repository have led to investigations of alternative waste management strategies. One potential strategy for the US fuel cycle would be to make use of fuel loadings containing high concentrations of transuranic (TRU) nuclides in the next-generation reactors. The use of such fuels would not only increase fuel supply but could also potentially facilitate prolonged operation modes (viamore » fertile additives) on a single fuel loading. The idea is to approach autonomous operation on a single fuel loading that would allow marketing power units as nuclear batteries for worldwide deployment. Studies have already shown that high-temperature gas-cooled reactors (HTGRs) and their Generation IV (GEN IV) extensions, very-high-temperature reactors (VHTRs), have encouraging performance characteristics. This paper is focused on possible physics features of TRU-fueled VHTRs. One of the objectives of a 3-year U.S. DOE NERI project was to show that TRU-fueled VHTRs have the possibility of prolonged operation on a single fuel loading. A 3D temperature distribution was developed based on conceivable operation conditions of the 600 MWth VHTR design. Results of extensive criticality and depletion calculations with varying fuel loadings showed that VHTRs are capable for autonomous operation and HLW waste reduction when loaded with TRU fuel.« less

  16. Fuel quality processing study, volume 1

    NASA Technical Reports Server (NTRS)

    Ohara, J. B.; Bela, A.; Jentz, N. E.; Syverson, H. T.; Klumpe, H. W.; Kessler, R. E.; Kotzot, H. T.; Loran, B. L.

    1981-01-01

    A fuel quality processing study to provide a data base for an intelligent tradeoff between advanced turbine technology and liquid fuel quality, and also, to guide the development of specifications of future synthetic fuels anticipated for use in the time period 1985 to 2000 is given. Four technical performance tests are discussed: on-site pretreating, existing refineries to upgrade fuels, new refineries to upgrade fuels, and data evaluation. The base case refinery is a modern Midwest refinery processing 200,000 BPD of a 60/40 domestic/import petroleum crude mix. The synthetic crudes used for upgrading to marketable products and turbine fuel are shale oil and coal liquids. Of these syncrudes, 50,000 BPD are processed in the existing petroleum refinery, requiring additional process units and reducing petroleum feed, and in a new refinery designed for processing each syncrude to produce gasoline, distillate fuels, resid fuels, and turbine fuel, JPGs and coke. An extensive collection of synfuel properties and upgrading data was prepared for the application of a linear program model to investigate the most economical production slate meeting petroleum product specifications and turbine fuels of various quality grades. Technical and economic projections were developed for 36 scenarios, based on 4 different crude feeds to either modified existing or new refineries operated in 2 different modes to produce 7 differing grades of turbine fuels. A required product selling price of turbine fuel for each processing route was calculated. Procedures and projected economics were developed for on-site treatment of turbine fuel to meet limitations of impurities and emission of pollutants.

  17. Fuel quality processing study, volume 1

    NASA Astrophysics Data System (ADS)

    Ohara, J. B.; Bela, A.; Jentz, N. E.; Syverson, H. T.; Klumpe, H. W.; Kessler, R. E.; Kotzot, H. T.; Loran, B. L.

    1981-04-01

    A fuel quality processing study to provide a data base for an intelligent tradeoff between advanced turbine technology and liquid fuel quality, and also, to guide the development of specifications of future synthetic fuels anticipated for use in the time period 1985 to 2000 is given. Four technical performance tests are discussed: on-site pretreating, existing refineries to upgrade fuels, new refineries to upgrade fuels, and data evaluation. The base case refinery is a modern Midwest refinery processing 200,000 BPD of a 60/40 domestic/import petroleum crude mix. The synthetic crudes used for upgrading to marketable products and turbine fuel are shale oil and coal liquids. Of these syncrudes, 50,000 BPD are processed in the existing petroleum refinery, requiring additional process units and reducing petroleum feed, and in a new refinery designed for processing each syncrude to produce gasoline, distillate fuels, resid fuels, and turbine fuel, JPGs and coke. An extensive collection of synfuel properties and upgrading data was prepared for the application of a linear program model to investigate the most economical production slate meeting petroleum product specifications and turbine fuels of various quality grades. Technical and economic projections were developed for 36 scenarios, based on 4 different crude feeds to either modified existing or new refineries operated in 2 different modes to produce 7 differing grades of turbine fuels. A required product selling price of turbine fuel for each processing route was calculated. Procedures and projected economics were developed for on-site treatment of turbine fuel to meet limitations of impurities and emission of pollutants.

  18. Additive lattice kirigami

    PubMed Central

    Castle, Toen; Sussman, Daniel M.; Tanis, Michael; Kamien, Randall D.

    2016-01-01

    Kirigami uses bending, folding, cutting, and pasting to create complex three-dimensional (3D) structures from a flat sheet. In the case of lattice kirigami, this cutting and rejoining introduces defects into an underlying 2D lattice in the form of points of nonzero Gaussian curvature. A set of simple rules was previously used to generate a wide variety of stepped structures; we now pare back these rules to their minimum. This allows us to describe a set of techniques that unify a wide variety of cut-and-paste actions under the rubric of lattice kirigami, including adding new material and rejoining material across arbitrary cuts in the sheet. We also explore the use of more complex lattices and the different structures that consequently arise. Regardless of the choice of lattice, creating complex structures may require multiple overlapping kirigami cuts, where subsequent cuts are not performed on a locally flat lattice. Our additive kirigami method describes such cuts, providing a simple methodology and a set of techniques to build a huge variety of complex 3D shapes. PMID:27679822

  19. Additive lattice kirigami

    PubMed Central

    Castle, Toen; Sussman, Daniel M.; Tanis, Michael; Kamien, Randall D.

    2016-01-01

    Kirigami uses bending, folding, cutting, and pasting to create complex three-dimensional (3D) structures from a flat sheet. In the case of lattice kirigami, this cutting and rejoining introduces defects into an underlying 2D lattice in the form of points of nonzero Gaussian curvature. A set of simple rules was previously used to generate a wide variety of stepped structures; we now pare back these rules to their minimum. This allows us to describe a set of techniques that unify a wide variety of cut-and-paste actions under the rubric of lattice kirigami, including adding new material and rejoining material across arbitrary cuts in the sheet. We also explore the use of more complex lattices and the different structures that consequently arise. Regardless of the choice of lattice, creating complex structures may require multiple overlapping kirigami cuts, where subsequent cuts are not performed on a locally flat lattice. Our additive kirigami method describes such cuts, providing a simple methodology and a set of techniques to build a huge variety of complex 3D shapes.

  20. International nuclear fuel cycle fact book. Revision 6

    SciTech Connect

    Harmon, K.M.; Lakey, L.T.; Leigh, I.W.; Jeffs, A.G.

    1986-01-01

    The International Fuel Cycle Fact Book has been compiled in an effort to provide (1) an overview of worldwide nuclear power and fuel cycle programs and (2) current data concerning fuel cycle and waste management facilities, R and D programs and key personnel. Additional information on each country's program is available in the International Source Book: Nuclear Fuel Cycle Research and Development, PNL-2478, Rev. 2.

  1. Report on interim storage of spent nuclear fuel

    SciTech Connect

    Not Available

    1993-04-01

    The report on interim storage of spent nuclear fuel discusses the technical, regulatory, and economic aspects of spent-fuel storage at nuclear reactors. The report is intended to provide legislators state officials and citizens in the Midwest with information on spent-fuel inventories, current and projected additional storage requirements, licensing, storage technologies, and actions taken by various utilities in the Midwest to augment their capacity to store spent nuclear fuel on site.

  2. Potential of hydrogen fuel for future air transportation systems.

    NASA Technical Reports Server (NTRS)

    Small, W. J.; Fetterman, D. E.; Bonner, T. F., Jr.

    1973-01-01

    Recent studies have shown that hydrogen fuel can yield spectacular improvements in aircraft performance in addition to its more widely discussed environmental advantages. The characteristics of subsonic, supersonic, and hypersonic transport aircraft using hydrogen fuel are discussed, and their performance and environmental impact are compared to that of similar aircraft using conventional fuel. The possibilities of developing hydrogen-fueled supersonic and hypersonic vehicles with sonic boom levels acceptable for overland flight are also explored.

  3. Planar solid oxide fuel cell with staged indirect-internal air and fuel preheating and reformation

    DOEpatents

    Geisbrecht, Rodney A; Williams, Mark C

    2003-10-21

    A solid oxide fuel cell arrangement and method of use that provides internal preheating of both fuel and air in order to maintain the optimum operating temperature for the production of energy. The internal preheat passes are created by the addition of two plates, one on either side of the bipolar plate, such that these plates create additional passes through the fuel cell. This internal preheat fuel cell configuration and method reduce the requirements for external heat exchanger units and air compressors. Air or fuel may be added to the fuel cell as required to maintain the optimum operating temperature through a cathode control valve or an anode control valve, respectively. A control loop comprises a temperature sensing means within the preheat air and fuel passes, a means to compare the measured temperature to a set point temperature and a determination based on the comparison as to whether the control valves should allow additional air or fuel into the preheat or bypass manifolds of the fuel cell.

  4. 40 CFR 80.530 - Under what conditions can 500 ppm motor vehicle diesel fuel be produced or imported after May 31...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... motor vehicle diesel fuel be produced or imported after May 31, 2006? 80.530 Section 80.530 Protection... FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Temporary Compliance Option § 80.530 Under what conditions can 500 ppm motor vehicle...

  5. 40 CFR 80.530 - Under what conditions can 500 ppm motor vehicle diesel fuel be produced or imported after May 31...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... motor vehicle diesel fuel be produced or imported after May 31, 2006? 80.530 Section 80.530 Protection... FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Temporary Compliance Option § 80.530 Under what conditions can 500 ppm motor vehicle...

  6. Bulk Fuel Man.

    ERIC Educational Resources Information Center

    Marine Corps Inst., Washington, DC.

    This student guide, one of a series of correspondence training courses designed to improve the job performance of members of the Marine Corps, deals with the skills needed by bulk fuel workers. Addressed in the four individual units of the course are the following topics: bulk fuel equipment, bulk fuel systems, procedures for handling fuels, and…

  7. FUEL ROD CLUSTERS

    DOEpatents

    Schultz, A.B.

    1959-08-01

    A cluster of nuclear fuel rods and a tubular casing therefor through which a coolant flows in heat-exchange contact with the fuel rods is described. The fuel rcds are held in the casing by virtue of the compressive force exerted between longitudinal ribs of the fuel rcds and internal ribs of the casing or the internal surfaces thereof.

  8. Intercode Advanced Fuels and Cladding Comparison Using BISON, FRAPCON, and FEMAXI Fuel Performance Codes

    NASA Astrophysics Data System (ADS)

    Rice, Aaren

    As part of the Department of Energy's Accident Tolerant Fuels (ATF) campaign, new cladding designs and fuel types are being studied in order to help make nuclear energy a safer and more affordable source for power. This study focuses on the implementation and analysis of the SiC cladding and UN, UC, and U3Si2 fuels into three specific nuclear fuel performance codes: BISON, FRAPCON, and FEMAXI. These fuels boast a higher thermal conductivity and uranium density than traditional UO2 fuel which could help lead to longer times in a reactor environment. The SiC cladding has been studied for its reduced production of hydrogen gas during an accident scenario, however the SiC cladding is a known brittle and unyielding material that may fracture during PCMI (Pellet Cladding Mechanical Interaction). This work focuses on steady-state operation with advanced fuel and cladding combinations. By implementing and performing analysis work with these materials, it is possible to better understand some of the mechanical interactions that could be seen as limiting factors. In addition to the analysis of the materials themselves, a further analysis is done on the effects of using a fuel creep model in combination with the SiC cladding. While fuel creep is commonly ignored in the traditional UO2 fuel and Zircaloy cladding systems, fuel creep can be a significant factor in PCMI with SiC.

  9. VISION - Verifiable Fuel Cycle Simulation of Nuclear Fuel Cycle Dynamics

    SciTech Connect

    Steven J. Piet; A. M. Yacout; J. J. Jacobson; C. Laws; G. E. Matthern; D. E. Shropshire

    2006-02-01

    The U.S. DOE Advanced Fuel Cycle Initiative’s (AFCI) fundamental objective is to provide technology options that - if implemented - would enable long-term growth of nuclear power while improving sustainability and energy security. The AFCI organization structure consists of four areas; Systems Analysis, Fuels, Separations and Transmutations. The Systems Analysis Working Group is tasked with bridging the program technical areas and providing the models, tools, and analyses required to assess the feasibility of design and deployment options and inform key decision makers. An integral part of the Systems Analysis tool set is the development of a system level model that can be used to examine the implications of the different mixes of reactors, implications of fuel reprocessing, impact of deployment technologies, as well as potential "exit" or "off ramp" approaches to phase out technologies, waste management issues and long-term repository needs. The Verifiable Fuel Cycle Simulation Model (VISION) is a computer-based simulation model that allows performing dynamic simulations of fuel cycles to quantify infrastructure requirements and identify key trade-offs between alternatives. It is based on the current AFCI system analysis tool "DYMOND-US" functionalities in addition to economics, isotopic decay, and other new functionalities. VISION is intended to serve as a broad systems analysis and study tool applicable to work conducted as part of the AFCI and Generation IV reactor development studies.

  10. Characteristics and combustion of future hydrocarbon fuels. [aircraft fuels

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.; Grobman, J. S.

    1978-01-01

    As the world supply of petroleum crude oil is being depleted, the supply of high-quality crude oil is also dwindling. This dwindling supply is beginning to manifest itself in the form of crude oils containing higher percentages of aromatic compounds, sulphur, nitrogen, and trace constituents. The result of this trend is described and the change in important crude oil characteristics, as related to aircraft fuels, is discussed. As available petroleum is further depleted, the use of synthetic crude oils (those derived from coal and oil shale) may be required. The principal properties of these syncrudes and the fuels that can be derived from them are described. In addition to the changes in the supply of crude oil, increasing competition for middle-distillate fuels may require that specifications be broadened in future fuels. The impact that the resultant potential changes in fuel properties may have on combustion and thermal stability characteristics is illustrated and discussed in terms of ignition, soot formation, carbon deposition flame radiation, and emissions.

  11. Tomorrow's engines and fuels

    SciTech Connect

    Douaud, A. )

    1995-02-01

    The paper discusses global views and trends in vehicles and fuels. This includes important progress in Europe in vehicle fuel consumption; lower consumption being stimulated by CO[sub 2] emission limits; reduced vehicle emission; and new air quality strategy on ozone and toxic gas controls. The paper then discusses new engine and fuel technologies for low consumption and emissions. These include three-way catalyst engines; advanced after-treatments; clean and efficient fuels; reformulated gasoline in the US and Europe; diesel fuel reformulation; new fuels and dedicated engines for specialized markets; and gaseous fuels (LPG, CNG, biofuels, and hydrogen).

  12. Methods of producing transportation fuel

    DOEpatents

    Nair, Vijay; Roes, Augustinus Wilhelmus Maria; Cherrillo, Ralph Anthony; Bauldreay, Joanna M.

    2011-12-27

    Systems, methods, and heaters for treating a subsurface formation are described herein. At least one method for producing transportation fuel is described herein. The method for producing transportation fuel may include providing formation fluid having a boiling range distribution between -5.degree. C. and 350.degree. C. from a subsurface in situ heat treatment process to a subsurface treatment facility. A liquid stream may be separated from the formation fluid. The separated liquid stream may be hydrotreated and then distilled to produce a distilled stream having a boiling range distribution between 150.degree. C. and 350.degree. C. The distilled liquid stream may be combined with one or more additives to produce transportation fuel.

  13. Fuel transfer system

    DOEpatents

    Townsend, Harold E.; Barbanti, Giancarlo

    1994-01-01

    A nuclear fuel bundle fuel transfer system includes a transfer pool containing water at a level above a reactor core. A fuel transfer machine therein includes a carriage disposed in the transfer pool and under the water for transporting fuel bundles. The carriage is selectively movable through the water in the transfer pool and individual fuel bundles are carried vertically in the carriage. In a preferred embodiment, a first movable bridge is disposed over an upper pool containing the reactor core, and a second movable bridge is disposed over a fuel storage pool, with the transfer pool being disposed therebetween. A fuel bundle may be moved by the first bridge from the reactor core and loaded into the carriage which transports the fuel bundle to the second bridge which picks up the fuel bundle and carries it to the fuel storage pool.

  14. Fuel transfer system

    DOEpatents

    Townsend, H.E.; Barbanti, G.

    1994-03-01

    A nuclear fuel bundle fuel transfer system includes a transfer pool containing water at a level above a reactor core. A fuel transfer machine therein includes a carriage disposed in the transfer pool and under the water for transporting fuel bundles. The carriage is selectively movable through the water in the transfer pool and individual fuel bundles are carried vertically in the carriage. In a preferred embodiment, a first movable bridge is disposed over an upper pool containing the reactor core, and a second movable bridge is disposed over a fuel storage pool, with the transfer pool being disposed therebetween. A fuel bundle may be moved by the first bridge from the reactor core and loaded into the carriage which transports the fuel bundle to the second bridge which picks up the fuel bundle and carries it to the fuel storage pool. 6 figures.

  15. Fuel cells seminar

    SciTech Connect

    1996-12-01

    This year`s meeting highlights the fact that fuel cells for both stationary and transportation applications have reached the dawn of commercialization. Sales of stationary fuel cells have grown steadily over the past 2 years. Phosphoric acid fuel cell buses have been demonstrated in urban areas. Proton-exchange membrane fuel cells are on the verge of revolutionizing the transportation industry. These activities and many more are discussed during this seminar, which provides a forum for people from the international fuel cell community engaged in a wide spectrum of fuel cell activities. Discussions addressing R&D of fuel cell technologies, manufacturing and marketing of fuel cells, and experiences of fuel cell users took place through oral and poster presentations. For the first time, the seminar included commercial exhibits, further evidence that commercial fuel cell technology has arrived. A total of 205 papers is included in this volume.

  16. 77 FR 59457 - Regulation of Fuels and Fuel Additives: 2013 Biomass-Based Diesel Renewable Fuel Volume

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-27

    ...\\ 75 FR 14670. A. Purpose of This Action While CAA section 211(o)(2)(B) specifies the volumes of... biomass-based diesel for 2013 would be 1.28 billion gal.\\2\\ \\2\\ 76 FR 38844. In a final rulemaking... be met with biodiesel and imported sugarcane ethanol. \\5\\ 77 FR 1320. Recent market...

  17. Flexible Fuel Vehicles: Powered by a Renewable U.S. Fuel

    SciTech Connect

    Not Available

    2007-03-01

    Clean Cities fact sheet describing aspects of flexible fuel vehicles such as use of E85, special features, benefits of use, costs, and fueling locations. It includes discussion on performance and how to identify these vehicles as well as listing additional resources.

  18. 40 CFR 80.593 - What are the reporting requirements for refiners and importers of motor vehicle diesel fuel...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... for refiners and importers of motor vehicle diesel fuel subject to temporary refiner relief standards... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive... the reporting requirements for refiners and importers of motor vehicle diesel fuel subject...

  19. 40 CFR 80.593 - What are the reporting requirements for refiners and importers of motor vehicle diesel fuel...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... for refiners and importers of motor vehicle diesel fuel subject to temporary refiner relief standards... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive... the reporting requirements for refiners and importers of motor vehicle diesel fuel subject...

  20. Organic fuel cell methods and apparatus

    NASA Technical Reports Server (NTRS)

    Surampudi, Subbarao (Inventor); Narayanan, Sekharipuram R. (Inventor); Vamos, Eugene (Inventor); Frank, Harvey A. (Inventor); Halpert, Gerald (Inventor); Olah, George A. (Inventor); Prakash, G. K. Surya (Inventor)

    2001-01-01

    A liquid organic fuel cell is provided which employs a solid electrolyte membrane. An organic fuel, such as a methanol/water mixture, is circulated past an anode of a cell while oxygen or air is circulated past a cathode of the cell. The cell solid electrolyte membrane is preferably fabricated from Nafion.TM.. Additionally, a method for improving the performance of carbon electrode structures for use in organic fuel cells is provided wherein a high surface-area carbon particle/Teflon.TM.-binder structure is immersed within a Nafion.TM./methanol bath to impregnate the electrode with Nafion.TM.. A method for fabricating an anode for use in a organic fuel cell is described wherein metal alloys are deposited onto the electrode in an electro-deposition solution containing perfluorooctanesulfonic acid. A fuel additive containing perfluorooctanesulfonic acid for use with fuel cells employing a sulfuric acid electrolyte is also disclosed. New organic fuels, namely, trimethoxymethane, dimethoxymethane, and trioxane are also described for use with either conventional or improved fuel cells.

  1. Organic fuel cell methods and apparatus

    NASA Technical Reports Server (NTRS)

    Vamos, Eugene (Inventor); Surampudi, Subbarao (Inventor); Narayanan, Sekharipuram R. (Inventor); Frank, Harvey A. (Inventor); Halpert, Gerald (Inventor); Olah, George A. (Inventor); Prakash, G. K. Surya (Inventor)

    2008-01-01

    A liquid organic, fuel cell is provided which employs a solid electrolyte membrane. An organic fuel, such as a methanol/water mixture, is circulated past an anode of a cell while oxygen or air is circulated past a cathode of the cell. The cell solid electrolyte membrane is preferably fabricated from Nafion.TM.. Additionally, a method for improving the performance of carbon electrode structures for use in organic fuel cells is provided wherein a high surface-area carbon particle/Teflon.TM.-binder structure is immersed within a Nafion.TM./methanol bath to impregnate the electrode with Nafion.TM.. A method for fabricating an anode for use in a organic fuel cell is described wherein metal alloys are deposited onto the electrode in an electro-deposition solution containing perfluorooctanesulfonic acid. A fuel additive containing perfluorooctanesulfonic acid for use with fuel cells employing a sulfuric acid electrolyte is also disclosed. New organic fuels, namely, trimethoxymethane, dimethoxymethane, and trioxane are also described for use with either conventional or improved fuel cells.

  2. Organic fuel cell methods and apparatus

    NASA Technical Reports Server (NTRS)

    Surampudi, Subbarao (Inventor); Narayanan, Sekharipuram R. (Inventor); Vamos, Eugene (Inventor); Frank, Harvey A. (Inventor); Halpert, Gerald (Inventor); Olah, George A. (Inventor); Prakash, G. K. Surya (Inventor)

    2004-01-01

    A liquid organic, fuel cell is provided which employs a solid electrolyte membrane. An organic fuel, such as a methanol/water mixture, is circulated past an anode of a cell while oxygen or air is circulated past a cathode of the cell. The cell solid electrolyte membrane is preferably fabricated from Nafion.TM.. Additionally, a method for improving the performance of carbon electrode structures for use in organic fuel cells is provided wherein a high surface-area carbon particle/Teflon.TM.-binder structure is immersed within a Nafion.TM./methanol bath to impregnate the electrode with Nafion.TM.. A method for fabricating an anode for use in a organic fuel cell is described wherein metal alloys are deposited onto the electrode in an electro-deposition solution containing perfluorooctanesulfonic acid. A fuel additive containing perfluorooctanesulfonic acid for use with fuel cells employing a sulfuric acid electrolyte is also disclosed. New organic fuels, namely, trimethoxymethane, dimethoxymethane, and trioxane are also described for use with either conventional or improved fuel cells.

  3. Sustainability of Fossil Fuels

    NASA Astrophysics Data System (ADS)

    Lackner, K. S.

    2002-05-01

    For a sustainable world economy, energy is a bottleneck. Energy is at the basis of a modern, technological society, but unlike materials it cannot be recycled. Energy or more precisely "negentropy" (the opposite of entropy) is always consumed. Thus, one either accepts the use of large but finite resources or must stay within the limits imposed by dilute but self-renewing resources like sunlight. The challenge of sustainable energy is exacerbated by likely growth in world energy demand due to increased population and increased wealth. Most of the world still has to undergo the transition to a wealthy, stable society with the near zero population growth that characterizes a modern industrial society. This represents a huge unmet demand. If ten billion people were to consume energy like North Americans do today, world energy demand would be ten times higher. In addition, technological advances while often improving energy efficiency tend to raise energy demand by offering more opportunity for consumption. Energy consumption still increases at close to the 2.3% per year that would lead to a tenfold increase over the course of the next century. Meeting future energy demands while phasing out fossil fuels appears extremely difficult. Instead, the world needs sustainable or nearly sustainable fossil fuels. I propose the following definition of sustainable under which fossil fuels would well qualify: The use of a technology or resource is sustainable if the intended and unintended consequences will not force its abandonment within a reasonable planning horizon. Of course sustainable technologies must not be limited by resource depletion but this is only one of many concerns. Environmental impacts, excessive land use, and other constraints can equally limit the use of a technology and thus render it unsustainable. In the foreseeable future, fossil fuels are not limited by resource depletion. However, environmental concerns based on climate change and other environmental

  4. Health effects of oxygenated fuels.

    PubMed Central

    Costantini, M G

    1993-01-01

    The use of oxygenated fuels is anticipated to increase over the next decades. This paper reviews the toxicological and exposure information for methyl tertiary-butyl ether (MTBE), a fuel additive, and methanol, a replacement fuel, and discusses the possible health consequences of exposure of the general public to these compounds. For MTBE, the health effects information available is derived almost exclusively from rodent studies, and the exposure data are limited to a few measurements at some service stations. Based on these data, it appears unlikely that the normal population is at high risk of exposure to MTBE vapor. However, in the absence of health and pharmacokinetic data in humans or in nonhuman primates, this conclusion is not strongly supported. Similarly, there are a number of uncertainties to take into consideration in estimating human risk from the use of methanol as a fuel. Although methanol may be toxic to humans at concentrations that overwhelm certain enzymes involved in methanol metabolism, the data available provide little evidence to indicate that exposure to methanol vapors from the use of methanol as a motor vehicle fuel will result in adverse health effects. The uncertainties in this conclusion are based on the lack of information on dose-response relationship at reasonable, projected exposure levels and of studies examining end points of concern in sensitive species. In developing a quantitative risk assessment, more needs to be known about health effects in primates or humans and the range of exposure expected for the general public for both compounds. PMID:8020439

  5. Detailed chemical kinetic modeling of diesel combustion with oxygenated fuels

    SciTech Connect

    Pitz, W J; Curran, H J; Fisher, E; Glaude, P A; Marinov, N M; Westbrook, C K

    1999-10-28

    The influence of oxygenated hydrocarbons as additives to diesel fuels on ignition, NOx emissions and soot production has been examined using a detailed chemical kinetic reaction mechanism. N-heptane was used as a representative diesel fuel, and methanol, ethanol, dimethyl ether and dimethoxymethane were used as oxygenated fuel additives. It was found that addition of oxygenated hydrocarbons reduced NOx levels and reduced the production of soot precursors. When the overall oxygen content in the fuel reached approximately 25% by mass, production of soot precursors fell effectively to zero, in agreement with experimental studies. The kinetic factors responsible for these observations are discussed.

  6. IRRADIATION PERFORMANCE OF U-Mo MONOLITHIC FUEL

    SciTech Connect

    M.K. Meyer; J. Gan; J.-F. Jue; D.D. Keiser; E. Perez; A. Robinson; D.M. Wachs; N. Woolstenhulme; G.L. Hofman; Y.-S. Kim

    2014-04-01

    High-performance research reactors require fuel that operates at high specific power to high fission density, but at relatively low temperatures. Research reactor fuels are designed for efficient heat rejection, and are composed of assemblies of thin-plates clad in aluminum alloy. The development of low-enriched fuels to replace high-enriched fuels for these reactors requires a substantially increased uranium density in the fuel to offset the decrease in enrichment. Very few fuel phases have been identified that have the required combination of very-high uranium density and stable fuel behavior at high burnup. UMo alloys represent the best known tradeoff in these properties. Testing of aluminum matrix U-Mo aluminum matrix dispersion fuel revealed a pattern of breakaway swelling behavior at intermediate burnup, related to the formation of a molybdenum stabilized high aluminum intermetallic phase that forms during irradiation. In the case of monolithic fuel, this issue was addressed by eliminating, as much as possible, the interfacial area between U-Mo and aluminum. Based on scoping irradiation test data, a fuel plate system composed of solid U-10Mo fuel meat, a zirconium diffusion barrier, and Al6061 cladding was selected for development. Developmental testing of this fuel system indicates that it meets core criteria for fuel qualification, including stable and predictable swelling behavior, mechanical integrity to high burnup, and geometric stability. In addition, the fuel exhibits robust behavior during power-cooling mismatch events under irradiation at high power.

  7. Gasifiers optimized for fuel cell applications

    NASA Astrophysics Data System (ADS)

    Steinfeld, G.; Fruchtman, J.; Hauserman, W. B.; Lee, A.; Meyers, S. J.

    Conventional coal gasification carbonate fuel cell systems are typically configured so that the fuel gas is primarily hydrogen, carbon monoxide, and carbon dioxide, with waste heat recovery for process requirements and to produce additional power in a steam bottoming cycle. These systems make use of present day gasification processes to produce the low to medium Btu fuel gas which in turn is cleaned up and consumed by the fuel cell. These conventional gasification/fuel cell systems have been studied in recent years projecting system efficiencies of 45-53 percent (HHV). Conventional gasification systems currently available evolved as stand-alone systems producing low to medium Btu gas fuel gas. The requirements of the gasification process dictates high temperatures to carry out the steam/carbon reaction and to gasify the tars present in coal. The high gasification temperatures required are achieved by an oxidant which consumes a portion of the feed coal to provide the endothermic heat required for the gasification process. The thermal needs of this process result in fuel gas temperatures that are higher than necessary for most end use applications, as well as for gas cleanup purposes. This results in some efficiency and cost penalties. This effort is designed to study advanced means of power generation by integrating the gasification process with the unique operating characteristics of carbonate fuel cells to achieve a more efficient and cost effective coal based power generating system. This is to be done by altering the gasification process to produce fuel gas compositions which result in more efficient fuel cell operation and by integrating the gasification process with the fuel cell as shown in Figure 2. Low temperature catalytic gasification was chosen as the basis for this effort due to the inherent efficiency advantages and compatibility with fuel cell operating temperatures.

  8. FCRD Transmutation Fuels Handbook 2015

    SciTech Connect

    Janney, Dawn Elizabeth; Papesch, Cynthia Ann

    2015-09-01

    Transmutation of minor actinides such as Np, Am, and Cm in spent nuclear fuel is of international interest because of its potential for reducing the long-term health and safety hazards caused by the radioactivity of the spent fuel. One important approach to transmutation (currently being pursued by the DOE Fuel Cycle Research & Development Advanced Fuels Campaign) involves incorporating the minor actinides into U-Pu-Zr alloys, which can be used as fuel in fast reactors. It is, therefore, important to understand the properties of U-Pu-Zr alloys, both with and without minor actinide additions. In addition to requiring extensive safety precautions, alloys containing U and Pu are difficult to study for numerous reasons, including their complex phase transformations, characteristically sluggish phase-transformation kinetics, tendency to produce experimental results that vary depending on the histories of individual samples, and sensitivity to contaminants such as oxygen in concentrations below a hundred parts per million. Many of the experimental measurements were made before 1980, and the level of documentation for experimental methods and results varies widely. It is, therefore, not surprising that little is known with certainty about U-Pu-Zr alloys, and that general acceptance of results sometimes indicates that there is only a single measurement for a particular property. This handbook summarizes currently available information about U, Pu, Zr, and alloys of two or three of these elements. It contains information about phase diagrams and related information (including phases and phase transformations); heat capacity, entropy, and enthalpy; thermal expansion; and thermal conductivity and diffusivity. In addition to presenting information about materials properties, it attempts to provide information about how well the property is known and how much variation exists between measurements. Although the handbook includes some references to publications about modeling

  9. Corrosion Evaluation of RERTR Uranium Molybdenum Fuel

    SciTech Connect

    A K Wertsching

    2012-09-01

    As part of the National Nuclear Security Agency (NNSA) mandate to replace the use of highly enriched uranium (HEU) fuel for low enriched uranium (LEU) fuel, research into the development of LEU fuel for research reactors has been active since the late 1970’s. Originally referred to as the Reduced Enrichment for Research and Test Reactor (RERTR) program the new effort named Global Threat Reduction Initiative (GTRI) is nearing the goal of replacing the standard aluminum clad dispersion highly enriched uranium aluminide fuel with a new LEU fuel. The five domestic high performance research reactors undergoing this conversion are High Flux Isotope reactor (HFIR), Advanced Test Reactor (ATR), National Institute of Standards and Technology (NIST) Reactor, Missouri University Research Reactor (MURR) and the Massachusetts Institute of Technology Reactor II (MITR-II). The design of these reactors requires a higher neutron flux than other international research reactors, which to this point has posed unique challenges in the design and development of the new mandated LEU fuel. The new design utilizes a monolithic fuel configuration in order to obtain sufficient 235U within the LEU stoichoimetry to maintain the fission reaction within the domestic test reactors. The change from uranium aluminide dispersion fuel type to uranium molybdenum (UMo) monolithic configuration requires examination of possible corrosion issues associated with the new fuel meat. A focused analysis of the UMo fuel under potential corrosion conditions, within the ATR and under aqueous storage indicates a slow and predictable corrosion rate. Additional corrosion testing is recommended for the highest burn-up fuels to confirm observed corrosion rate trends. This corrosion analysis will focus only on the UMo fuel and will address corrosion of ancillary components such as cladding only in terms of how it affects the fuel. The calculations and corrosion scenarios are weighted with a conservative bias to

  10. Hydrogen Fueling via Guanidine

    NASA Astrophysics Data System (ADS)

    van Vechten, J. A.

    2007-03-01

    Three related materials, ammonia (NH3), urea (OCN2H4), and guanidine (CN3H5) are practicable hydrogen-based fuels^1 that could be produced in the giga-tonne quantities required from air, water and renewable energy. NH3 has long been established as a fuel for internal combustion engines and can be cracked to H2 for use in fuelcells, but is a gas at STP and extremely toxic, so general use is problematic. Urea and guanidine can easily be converted to NH3 and CO2 by addition of hot water from oxidation of NH3. Both are solids at STP, non-toxic, non-explosive and commonly shipped in plastic bags. The energy density in kWhr/L of guanidine is 4.7 compared with 3.0 for urea, 3.5 for liquid NH3, and 0.8 for H gas in 10,000 psi tanks. The specific energies in kWhr/kg for these materials are respectively 3.58, 2.35, 5.2, and (including the tank) 1.8. Guanidine melts at 50 C and is infinitely soluble in both ethanol and water. 1) http://www.energy.iastate.edu/renewable/biomass/AmmoniaMtg06.html

  11. Fuel cell technology program

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A fuel cell technology program was established to advance the state-of-the-art of hydrogen-oxygen fuel cells using low temperature, potassium hydroxide electrolyte technology as the base. Program tasks are described consisting of baseline cell design and stack testing, hydrogen pump design and testing, and DM-2 powerplant testing and technology extension efforts. A baseline cell configuration capable of a minimum of 2000 hours of life was defined. A 6-cell prototype stack, incorporating most of the scheme cell features, was tested for a total of 10,497 hours. A 6-cell stack incorporating all of the design features was tested. The DM-2 powerplant with a 34 cell stack, an accessory section packaged in the basic configuration anticipated for the space shuttle powerplant and a powerplant control unit, was defined, assembled, and tested. Cells were used in the stack and a drag-type hydrogen pump was installed in the accessory section. A test program was established, in conjunction with NASA/JSC, based on space shuttle orbiter mission. A 2000-hour minimum endurance test and a 5000-hour goal were set and the test started on August 8, 1972. The 2000-hour milestone was completed on November 3, 1972. On 13 March 1973, at the end of the thirty-first simulated seven-day mission and 5072 load hours, the test was concluded, all goals having been met. At this time, the DM-2 was in excellent condition and capable of additional endurance.

  12. 40 CFR 80.501 - What fuel is subject to the provisions of this subpart?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... for use as fuel in diesel motor vehicles or nonroad diesel engines or is blended with diesel fuel for use in diesel motor vehicles or nonroad diesel engines, including locomotive and marine diesel engines... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel...

  13. 40 CFR 80.501 - What fuel is subject to the provisions of this subpart?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... for use as fuel in diesel motor vehicles or nonroad diesel engines or is blended with diesel fuel for use in diesel motor vehicles or nonroad diesel engines, including locomotive and marine diesel engines... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel...

  14. 40 CFR 80.501 - What fuel is subject to the provisions of this subpart?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... for use as fuel in diesel motor vehicles or nonroad diesel engines or is blended with diesel fuel for use in diesel motor vehicles or nonroad diesel engines, including locomotive and marine diesel engines... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel...

  15. 40 CFR 80.501 - What fuel is subject to the provisions of this subpart?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... for use as fuel in diesel motor vehicles or nonroad diesel engines or is blended with diesel fuel for use in diesel motor vehicles or nonroad diesel engines, including locomotive and marine diesel engines... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel...

  16. 40 CFR 80.554 - What compliance options are available to NRLM diesel fuel small refiners?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... an approved motor vehicle diesel fuel small refiner under § 80.550(a) but does not qualify as a NRLM... to NRLM diesel fuel small refiners? 80.554 Section 80.554 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor...

  17. 40 CFR 80.532 - How are motor vehicle diesel fuel credits used and transferred?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false How are motor vehicle diesel fuel... AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel....532 How are motor vehicle diesel fuel credits used and transferred? (a) Credit use stipulations....

  18. 40 CFR 80.532 - How are motor vehicle diesel fuel credits used and transferred?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false How are motor vehicle diesel fuel... AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel....532 How are motor vehicle diesel fuel credits used and transferred? (a) Credit use stipulations....

  19. 40 CFR 80.554 - What compliance options are available to NRLM diesel fuel small refiners?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... an approved motor vehicle diesel fuel small refiner under § 80.550(a) but does not qualify as a NRLM... to NRLM diesel fuel small refiners? 80.554 Section 80.554 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor...

  20. Alternative aircraft fuels

    NASA Technical Reports Server (NTRS)

    Longwell, J. P.; Grobman, J.

    1978-01-01

    In connection with the anticipated impossibility to provide on a long-term basis liquid fuels derived from petroleum, an investigation has been conducted with the objective to assess the suitability of jet fuels made from oil shale and coal and to develop a data base which will allow optimization of future fuel characteristics, taking energy efficiency of manufacture and the tradeoffs in aircraft and engine design into account. The properties of future aviation fuels are examined and proposed solutions to problems of alternative fuels are discussed. Attention is given to the refining of jet fuel to current specifications, the control of fuel thermal stability, and combustor technology for use of broad specification fuels. The first solution is to continue to develop the necessary technology at the refinery to produce specification jet fuels regardless of the crude source.

  1. Fuel injector system

    DOEpatents

    Hsu, Bertrand D.; Leonard, Gary L.

    1988-01-01

    A fuel injection system particularly adapted for injecting coal slurry fuels at high pressures includes an accumulator-type fuel injector which utilizes high-pressure pilot fuel as a purging fluid to prevent hard particles in the fuel from impeding the opening and closing movement of a needle valve, and as a hydraulic medium to hold the needle valve in its closed position. A fluid passage in the injector delivers an appropriately small amount of the ignition-aiding pilot fuel to an appropriate region of a chamber in the injector's nozzle so that at the beginning of each injection interval the first stratum of fuel to be discharged consists essentially of pilot fuel and thereafter mostly slurry fuel is injected.

  2. HTGR Fuel performance basis

    SciTech Connect

    Shamasundar, B.I.; Stansfield, O.M.; Jensen, D.D.

    1982-05-01

    The safety characteristics of the high-temperature gas-cooled reactor (HTGR) during normal and accident conditions are determined in part by HTGR fuel performance. During normal operation, less than 0.1% fuel failure occurs, primarily from defective particles. This low fuel failure fraction limits circulating activity to acceptable levels. During severe accidents, the radiological consequence is influenced by high-temperature fuel particle behavior. An empirical fuel failure model, supported by recent experimental data, is presented. The onset of significant fuel particle failure occurs at temperatures in excess of 1600/sup 0/C, and complete fuel failure occurs at 2660/sup 0/C. This indicates that the fuel is more retentive at higher temperatures than previously assumed. The more retentive nature of the fuel coupled with the high thermal capacitance of the core results in slow release of fission products from the core during severe accidents.

  3. Dual Tank Fuel System

    DOEpatents

    Wagner, Richard William; Burkhard, James Frank; Dauer, Kenneth John

    1999-11-16

    A dual tank fuel system has primary and secondary fuel tanks, with the primary tank including a filler pipe to receive fuel and a discharge line to deliver fuel to an engine, and with a balance pipe interconnecting the primary tank and the secondary tank. The balance pipe opens close to the bottom of each tank to direct fuel from the primary tank to the secondary tank as the primary tank is filled, and to direct fuel from the secondary tank to the primary tank as fuel is discharged from the primary tank through the discharge line. A vent line has branches connected to each tank to direct fuel vapor from the tanks as the tanks are filled, and to admit air to the tanks as fuel is delivered to the engine.

  4. IMPACT OF DME-DIESEL FUEL BLEND PROPERTIES ON DIESEL FUEL INJECTION SYSTEMS

    SciTech Connect

    Elana M. Chapman; Andre Boehman; Kimberly Wain; Wallis Lloyd; Joseph M. Perez; Donald Stiver; Joseph Conway

    2004-04-01

    The objectives of this research program are to develop information on lubricity and viscosity improvers and their impact on the wear mechanisms in fuel injectors operating on blends of dimethyl ether (DME) and diesel fuel. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethyl ether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In the shuttle bus project, we have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. Our strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. In this project, we have sought to develop methods for extending the permissible DME content in the DME-diesel blends without experiencing rapid injector failure due to wear. Our activities have covered three areas: examination of the impact of lubricity additives on the viscosity of DME, development of a high-pressure lubricity test apparatus for studies of lubricity and viscosity improvers and development of an injector durability stand for evaluation of wear rates in fuel injectors. The first two of these areas have resulted in valuable information about the limitations of lubricity and viscosity additives that are presently available in terms of their impact on the viscosity of DME and on wear rates on injector hardware. The third area, that of development of an injector durability test stand, has not resulted in a functioning experiment. Some information is provided in this report to identify the remaining tasks that need to be performed to make the injector stand operational. The key observations from the work are that when blended at 25 wt.% in either diesel fuel or Biodiesel fuel, DME requires more than 5 wt

  5. 40 CFR 600.113-93 - Fuel economy calculations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... CFR 86.1837-01 as applicable. The CO2 values (obtained per paragraph (a) or (b) of this section, as... hydrocarbons (HC), carbon monoxide (CO), and carbon dioxide (CO2); and, additionally for methanol-fueled... values for the city fuel economy test for HC, CO and CO2; and, additionally for...

  6. Alcohol fuels in Illinois: prospects and implications

    SciTech Connect

    Rao, V.; Walzer, N.

    1981-10-01

    Because of the importance of corn to the Illinois economy, the use of corn in the production of fuel alcohol offered major economic benefits for the state. One of the advantages to Illinois resulting from the use of corn to produce ethanol was increased employment. Expansion of the alcohol fuels industry meant greater employment in the alcohol industry directly as well as increased employment in the industries indirectly involved in alcohol production. Finally, the increased income generated by the greater employment would create additional jobs throughout the economy. The increased employment which could result from an expansion of the alcohol fuels industry was estimated. The employment is estimated by first estimating the demand for gasoline and gasoline-alcohols fuels based on population and income trends. After the demand for gasoline-alcohol fuels has been estimated, the direct, indirect, and induced employment resulting from various market shares are determined.

  7. Automotive fuels at low temperatures. Technical digest

    SciTech Connect

    Diemand, D.

    1991-03-01

    Problems with fuels at extremely low temperatures are largely due to wax formation, increased viscosity, decreased volatility and contamination by water. This is especially true of diesel fuels, but even gasoline suffers from these problems to some extent. Some difficulties may begin to appear at temperatures above 0 deg. C. The majority of fuels are derived from petroleum crude oil. In addition, secondary processing of the crude procedures further fuel stocks from other fractions that could not otherwise be used as fuel. Cracking reduces large molecules from light gases or from the lighter products of the cracking process; polymerization is similar to alkylation but results in products with a lower octane rating; reforming catalytically alters certain low-octane substances, resulting in a high-octane product. The four basic molecular structures in petroleum oil products are aromatics, naphthenes, olefins and paraffins.

  8. Endoreversible modeling of a PEM fuel cell

    NASA Astrophysics Data System (ADS)

    Wagner, Katharina; Hoffmann, Karl Heinz

    2015-12-01

    Fuel cells are known for high efficiencies in converting chemical energy into electrical energy. Nonetheless, the processes taking place in a fuel cell still possess a number of irreversibilities that limit the power output to values below the reversible limit. To analyze these, we developed a model that captures the main irreversibilities occurring inside a proton exchange membrane or polymer electrolyte membrane fuel cell. We used the methods of endoreversible thermodynamics, which enable us to study the entropy production of the different sources of irreversibility in detail. Additionally, performance measures like efficiency and power output can be calculated with such a model, and the influence of different parameters, such as temperature and pressure, can be easily investigated. The comparison of the model predictions with realistic fuel cell data shows that the functional dependencies of the fuel cell characteristics can be captured quite well.

  9. Proceedings of the fuel cells 1994 contractors review meeting

    NASA Astrophysics Data System (ADS)

    Carpenter, C. P., II; Mayfield, M. J.

    1994-08-01

    METC annually sponsors this conference to provide a forum for energy executives, engineers, etc. to discuss advances in fuel cell research and development projects, to exchange ideas with private sector attendees, and to review relevant results in fuel cell technology programs. Two hundred and three people from industry, academia, and Government attended. The conference attempts to showcase the partnerships with the Government and with industry, by seeking activity participation and involvement from the Office of Energy Efficiency and Renewable Energy, EPRI, GRI, and APRA. In addition to sessions on fuel cells (solid oxide, molten carbonate, etc.) for stationary electric power generation, sessions on US DOE's Fuel Cell Transportation Program and on DOD/APRA's fuel cell logistic fuel program were presented. In addition to the 29 technical papers, an abstract of an overview of international fuel cell development and commercialization plans in Europe and Japan is included. Selected papers were indexed separately for inclusion in the Energy Science and Technology Database.

  10. Self-humidified proton exchange membrane fuel cells: Operation of larger cells and fuel cell stacks

    SciTech Connect

    Dhar, H.P.; Lee, J.H.; Lewinski, K.A.

    1996-12-31

    The PEM fuel cell is promising as the power source for use in mobile and stationary applications primarily because of its high power density, all solid components, and simplicity of operation. For wide acceptability of this power source, its cost has to be competitive with the presently available energy sources. The fuel cell requires continuous humidification during operation as a power source. The humidification unit however, increases fuel cell volume, weight, and therefore decreases its overall power density. Great advantages in terms of further fuel cell simplification can be achieved if the humidification process can be eliminated or minimized. In addition, cost reductions are associated with the case of manufacturing and operation. At BCS Technology we have developed a technology of self-humidified operation of PEM fuel cells based on the mass balance of the reactants and products and the ability of membrane electrode assembly (MEA) to retain water necessary for humidification under the cell operating conditions. The reactants enter the fuel cell chambers without carrying any form of water, whether in liquid or vapor form. Basic principles of self-humidified operation of fuel cells as practiced by BCS Technology, Inc. have been presented previously in literature. Here, we report the operation of larger self-humidified single cells and fuel cell stacks. Fuel cells of areas Up to 100 cm{sup 2} have been operated. We also show the self-humidified operation of fuel cell stacks of 50 and 100 cm{sup 2} electrode areas.

  11. Micro fuel cell

    SciTech Connect

    Zook, L.A.; Vanderborgh, N.E.; Hockaday, R.

    1998-12-31

    An ambient temperature, liquid feed, direct methanol fuel cell device is under development. A metal barrier layer was used to block methanol crossover from the anode to the cathode side while still allowing for the transport of protons from the anode to the cathode. A direct methanol fuel cell (DMFC) is an electrochemical engine that converts chemical energy into clean electrical power by the direct oxidation of methanol at the fuel cell anode. This direct use of a liquid fuel eliminates the need for a reformer to convert the fuel to hydrogen before it is fed into the fuel cell.

  12. SPENT FUEL MANAGEMENT AT THE SAVANNAH RIVER SITE

    SciTech Connect

    Vormelker, P; Robert Sindelar, R; Richard Deible, R

    2007-11-03

    Spent nuclear fuels are received from reactor sites around the world and are being stored in the L-Basin at the Savannah River Site (SRS) in Aiken, South Carolina. The predominant fuel types are research reactor fuel with aluminum-alloy cladding and aluminum-based fuel. Other fuel materials include stainless steel and Zircaloy cladding with uranium oxide fuel. Chemistry control and corrosion surveillance programs have been established and upgraded since the early 1990's to minimize corrosion degradation of the aluminum cladding materials, so as to maintain fuel integrity and minimize personnel exposure from radioactivity in the basin water. Recent activities have been initiated to support additional decades of wet storage which include fuel inspection and corrosion testing to evaluate the effects of specific water impurity species on corrosion attack.

  13. Hawaii alternative fuels utilization program. Phase 3, final report

    SciTech Connect

    Kinoshita, C.M.; Staackmann, M.

    1996-08-01

    The Hawaii Alternative Fuels Utilization Program originated as a five-year grant awarded by the US Department of Energy (USDOE) to the Hawaii Natural Energy Institute (HNEI) of the University of Hawaii at Manoa. The overall program included research and demonstration efforts aimed at encouraging and sustaining the use of alternative (i.e., substitutes for gasoline and diesel) ground transportation fuels in Hawaii. Originally, research aimed at overcoming technical impediments to the widespread adoption of alternative fuels was an important facet of this program. Demonstration activities centered on the use of methanol-based fuels in alternative fuel vehicles (AFVs). In the present phase, operations were expanded to include flexible fuel vehicles (FFVs) which can operate on M85 or regular unleaded gasoline or any combination of these two fuels. Additional demonstration work was accomplished in attempting to involve other elements of Hawaii in the promotion and use of alcohol fuels for ground transportation in Hawaii.

  14. The Northeast heating fuel market: Assessment and options

    SciTech Connect

    2000-07-01

    In response to a Presidential request, this study examines how the distillate fuel oil market (and related energy markets) in the Northeast behaved in the winter of 1999-2000, explains the role played by residential, commercial, industrial, and electricity generation sector consumers in distillate fuel oil markets and describes how that role is influenced by the structure of tie energy markets in the Northeast. In addition, this report explores the potential for nonresidential users to move away from distillate fuel oil and how this might impact future prices, and discusses conversion of distillate fuel oil users to other fuels over the next 5 years. Because the President's and Secretary's request focused on converting factories and other large-volume users of mostly high-sulfur distillate fuel oil to other fuels, transportation sector use of low-sulfur distillate fuel oil is not examined here.

  15. Impacts of a Nanosized Ceria Additive on Diesel Engine Emissions of Particulate and Gaseous Pollutants

    PubMed Central

    Zhang, Junfeng; Nazarenko, Yevgen; Zhang, Lin; Calderon, Leonardo; Lee, Ki-Bum; Garfunkel, Eric; Schwander, Stephan; Tetley, Teresa D.; Chung, Kian Fan; Porter, Alexandra E.; Ryan, Mary; Kipen, Howard; Lioy, Paul J.; Mainelis, Gediminas

    2014-01-01

    Fuel additives incorporating nanosized ceria have been increasingly used in diesel engines as combustion promoters. However, few studies have assessed the impact of these nanotechnology-based additives on pollutant emissions. Here, we systematically compare emission rates of particulate and gaseous pollutants from a single-cylinder, four-cycle diesel engine using fuel mixes containing nanoceria of varying concentrations. The test fuels were made by adding different amounts of a commercial fuel additive Envirox into an ultralow-sulfur diesel fuel at 0 (base fuel), 0.1-, 1-, and 10-fold the manufacturer-recommended concentration of 0.5 mL Envirox per liter of fuel. The addition of Envirox resulted in ceria-concentration-dependent emission reductions of CO2, CO, total particulate mass, formaldehyde, acetaldehyde, acrolein, and several polycyclic aromatic hydrocarbons. These reductions at the manufacturer-recommended doping concentration, however, were accompanied by a substantial increase of certain other air pollutants, specifically the number of ultrafine particles (+32%), NOx (+9.3%), and the particle-phase benzo[a]pyrene toxic equivalence quotient (+35%). Increasing fuel ceria concentrations also led to decreases in the size of emitted particles. Given health concerns related to ultrafine particles and NOx, our findings call for additional studies to further evaluate health risks associated with the use of nanoceria additives in various engines under various operating conditions. PMID:24144266

  16. Impacts of a nanosized ceria additive on diesel engine emissions of particulate and gaseous pollutants.

    PubMed

    Zhang, Junfeng; Nazarenko, Yevgen; Zhang, Lin; Calderon, Leonardo; Lee, Ki-Bum; Garfunkel, Eric; Schwander, Stephan; Tetley, Teresa D; Chung, Kian Fan; Porter, Alexandra E; Ryan, Mary; Kipen, Howard; Lioy, Paul J; Mainelis, Gediminas

    2013-11-19

    Fuel additives incorporating nanosized ceria have been increasingly used in diesel engines as combustion promoters. However, few studies have assessed the impact of these nanotechnology-based additives on pollutant emissions. Here, we systematically compare emission rates of particulate and gaseous pollutants from a single-cylinder, four-cycle diesel engine using fuel mixes containing nanoceria of varying concentrations. The test fuels were made by adding different amounts of a commercial fuel additive Envirox into an ultralow-sulfur diesel fuel at 0 (base fuel), 0.1-, 1-, and 10-fold the manufacturer-recommended concentration of 0.5 mL Envirox per liter of fuel. The addition of Envirox resulted in ceria-concentration-dependent emission reductions of CO2, CO, total particulate mass, formaldehyde, acetaldehyde, acrolein, and several polycyclic aromatic hydrocarbons. These reductions at the manufacturer-recommended doping concentration, however, were accompanied by a substantial increase of certain other air pollutants, specifically the number of ultrafine particles (+32%), NO(x) (+9.3%), and the particle-phase benzo[a]pyrene toxic equivalence quotient (+35%). Increasing fuel ceria concentrations also led to decreases in the size of emitted particles. Given health concerns related to ultrafine particles and NO(x), our findings call for additional studies to further evaluate health risks associated with the use of nanoceria additives in various engines under various operating conditions.

  17. Fuel injection nozzle

    SciTech Connect

    Kato, M.; Tojo, S.; Arai, K.

    1986-07-22

    A fuel injection nozzle is described connected to a fuel injection pump to inject fuel into a combustion chamber of an internal combustion engine consisting of: a nozzle housing defining therein a fuel sump chamber, an injection hole communicating with the sump chamber and opened at the outer surface of the nozzle housing, a stepped cylinder bore having a smaller diameter bore section and a larger diameter bore section and a fuel passage communicating at one end with the sump chamber and at the other end with the smaller diameter bore section of the stepped cylinder bore; a stepped plunger fitted in the stepped cylinder bore and having a smaller diameter plunger section fitted into the smaller diameter bore section and a larger diameter plunger section fitted into the larger diameter bore section in which the smaller diameter bore section together with the end face of the smaller diameter plunger section defines a pump chamber communicating with the fuel passage and the larger diameter bore section together with the end face of the larger diameter plunger section defines a main fuel chamber into which a main fuel is supplied from the fuel injection pump; auxiliary fuel supply means for supplying an auxiliary fuel into the sump chamber and pump chamber through the fuel passage; valve means for opening and closing an injection hole; communication means for permitting the main fuel chamber to communicate with the fuel passage when the main fuel is supplied from the injection pump into the main fuel chamber to cause the stepped plunger to be moved a predetermined distance in a direction in which the auxiliary fuel in the pump chamber is pressurized.

  18. Molten carbonate fuel cell matrices

    DOEpatents

    Vogel, Wolfgang M.; Smith, Stanley W.

    1985-04-16

    A molten carbonate fuel cell including a cathode electrode of electrically conducting or semiconducting lanthanum containing material and an electrolyte containing matrix of an electrically insulating lanthanum perovskite. In addition, in an embodiment where the cathode electrode is LaMnO.sub.3, the matrix may include LaAlO.sub.3 or a lithium containing material such as LiAlO.sub.2 or Li.sub.2 TiO.sub.3.

  19. Advanced Thermally Stable Jet Fuels

    SciTech Connect

    A. Boehman; C. Song; H. H. Schobert; M. M. Coleman; P. G. Hatcher; S. Eser

    1998-01-01

    The Penn State program in advanced thermally stable jet fuels has five components: 1) development of mechanisms of degradation and solids formation; 2) quantitative measurement of growth of sub-micrometer and micrometer-sized particles during thermal stressing; 3) characterization of carbonaceous deposits by various instrumental and microscopic methods; 4) elucidation of the role of additives in retarding the formation of carbonaceous solids; and 5) assessment of the potential of producing high yields of cycloalkanes and hydroaromatics from coal.

  20. Fuel Dependence of Benzene Pathways

    SciTech Connect

    Zhang, H; Eddings, E; Sarofim, A; Westbrook, C

    2008-07-14

    The relative importance of formation pathways for benzene, an important precursor to soot formation, was determined from the simulation of 22 premixed flames for a wide range of equivalence ratios (1.0 to 3.06), fuels (C{sub 1}-C{sub 12}), and pressures (20 to 760 torr). The maximum benzene concentrations in 15 out of these flames were well reproduced within 30% of the experimental data. Fuel structural properties were found to be critical for benzene production. Cyclohexanes and C{sub 3} and C{sub 4} fuels were found to be among the most productive in benzene formation; and long-chain normal paraffins produce the least amount of benzene. Other properties, such as equivalence ratio and combustion temperatures, were also found to be important in determining the amount of benzene produced in flames. Reaction pathways for benzene formation were examined critically in four premixed flames of structurally different fuels of acetylene, n-decane, butadiene, and cyclohexane. Reactions involving precursors, such as C{sub 3} and C{sub 4} species, were examined. Combination reactions of C{sub 3} species were identified to be the major benzene formation routes with the exception of the cyclohexane flame, in which benzene is formed exclusively from cascading fuel dehydrogenation via cyclohexene and cyclohexadiene intermediates. Acetylene addition makes a minor contribution to benzene formation, except in the butadiene flame where C{sub 4}H{sub 5} radicals are produced directly from the fuel, and in the n-decane flame where C{sub 4}H{sub 5} radicals are produced from large alkyl radical decomposition and H atom abstraction from the resulting large olefins.