Zhang, Ji-Li; Liu, Bo-Fei; Di, Xue-Ying; Chu, Teng-Fei; Jin, Sen
2012-11-01
Taking fuel moisture content, fuel loading, and fuel bed depth as controlling factors, the fuel beds of Mongolian oak leaves in Maoershan region of Northeast China in field were simulated, and a total of one hundred experimental burnings under no-wind and zero-slope conditions were conducted in laboratory, with the effects of the fuel moisture content, fuel loading, and fuel bed depth on the flame length and its residence time analyzed and the multivariate linear prediction models constructed. The results indicated that fuel moisture content had a significant negative liner correlation with flame length, but less correlation with flame residence time. Both the fuel loading and the fuel bed depth were significantly positively correlated with flame length and its residence time. The interactions of fuel bed depth with fuel moisture content and fuel loading had significant effects on the flame length, while the interactions of fuel moisture content with fuel loading and fuel bed depth affected the flame residence time significantly. The prediction model of flame length had better prediction effect, which could explain 83.3% of variance, with a mean absolute error of 7.8 cm and a mean relative error of 16.2%, while the prediction model of flame residence time was not good enough, which could only explain 54% of variance, with a mean absolute error of 9.2 s and a mean relative error of 18.6%.
Estimating Fuel Bed Loadings in Masticated Areas
Sharon Hood; Ros Wu
2006-01-01
Masticated fuel treatments that chop small trees, shrubs, and dead woody material into smaller pieces to reduce fuel bed depth are used increasingly as a mechanical means to treat fuels. Fuel loading information is important to monitor changes in fuels. The commonly used planar intercept method however, may not correctly estimate fuel loadings because masticated fuels...
Dimensional Analysis on Forest Fuel Bed Fire Spread.
Yang, Jiann C
2018-01-01
A dimensional analysis was performed to correlate the fuel bed fire rate of spread data previously reported in the literature. Under wind condition, six pertinent dimensionless groups were identified, namely dimensionless fire spread rate, dimensionless fuel particle size, fuel moisture content, dimensionless fuel bed depth or dimensionless fuel loading density, dimensionless wind speed, and angle of inclination of fuel bed. Under no-wind condition, five similar dimensionless groups resulted. Given the uncertainties associated with some of the parameters used to estimate the dimensionless groups, the dimensionless correlations using the resulting dimensionless groups correlate the fire rates of spread reasonably well under wind and no-wind conditions.
The Influence of Fuel Properties on Combustion Efficiency and the Partitioning of Pyrogenic Carbon
NASA Astrophysics Data System (ADS)
Urbanski, S. P.; Baker, S. P.; Lincoln, E.; Richardson, M.
2016-12-01
The partitioning of volatized pyrogenic carbon into CO2, CO, CH4, non-methane organic carbon, and particulate organic carbon (POC) and elemental carbon (PEC) depends on the combustion characteristics of biomass fires which are influenced by the moisture content, structure and arrangement of the fuels. Flaming combustion is characterized by efficient conversion of volatized carbon into CO2. In contrast, smoldering is less efficient and produces incomplete combustion products like CH4 and carbonaceous particles. This paper presents a laboratory study that has examined the relationship between the partitioning of volatized pyrogenic carbon and specific fuel properties. The study focused on fuel beds composed of simple fuel particles — ponderosa pine needles. Ponderosa pine was selected because it contains a common wildland fuel component, conifer needles, which can be easily arranged into fuel beds of variable structure (bulk density and depth) and moisture contents that are both representative of natural conditions and are easily replicated. Modified combustion efficiency (MCE, ΔCO2/[ΔCO2+ ΔCO]) and emission factors (EF) for CO2, CO, CH4, POC, and PEC were measured over a range of needle moisture content and fuel bed bulk density and depth representative of naturally occurring fuel beds. We found that, as expected, MCE decreases as the fuel bed bulk density increases and emissions of CO, CH4, PM2.5, and POC increased. However, fuel bed depth did not appear to have an effect on how effect on MCE or emission factors. Surprisingly, a consistent relationship between the needle moisture content and emissions was not identified. At the high bulk densities, moisture content had a strong influence on MCE which explained variability in EFCH4. However, moisture content appeared to have an influence EFPOC and EFPEC that was independent of MCE. These findings may have significant implications since many models of biomass burning assume that litter fuels, such as ponderosa pine needles, burn almost exclusively via flaming combustion with a high efficiency. Our results indicate that for fuel bed properties typical of many conifer forests, pollutants generated from fires will be higher than that predicted using standard biomass burning models.
Tuttle, Kenneth L.
1980-01-01
A method of metering underfire air for increasing efficiency and reducing particulate emissions from wood-fire, spreader-stoker boilers is disclosed. A portion of the combustion air, approximately one pound of air per pound of wood, is fed through the grate into the fuel bed, while the remainder of the combustion air is distributed above the fuel in the furnace, and the fuel bed is maintained at a depth sufficient to consume all oxygen admitted under fire and to insure a continuous layer of fresh fuel thereover to entrap charred particles inside the fuel bed.
Lewis Pressurized, Fluidized-Bed Combustion Program. Data and Calculated Results
NASA Technical Reports Server (NTRS)
Rollbuhler, R. J.
1982-01-01
A 200 kilowatt (thermal), pressurized, fluidized bed (PFB) reactor and research test facility were designed, constructed, and operated. The facility was established to assess and evaluate the effect of PFB hot gas effluent on aircraft turbine engine materials that may have applications in stationary powerplant turbogenerators. The facility was intended for research and development work and was designed to operate over a wide range of conditions. These conditions included the type and rate of consumption of fuel (e.g., coal) and sulfur reacting sorbent material: the ratio of feed fuel to sorbent material; the ratio of feed fuel to combustion airflow; the depth of the fluidized reaction bed; the temperature and pressure in the reaction bed; and the type of test unit that was exposed to the combustion exhaust gases.
Lewis pressurized, fluidized-bed combustion program. Data and calculated results
NASA Astrophysics Data System (ADS)
Rollbuhler, R. J.
1982-03-01
A 200 kilowatt (thermal), pressurized, fluidized bed (PFB) reactor and research test facility were designed, constructed, and operated. The facility was established to assess and evaluate the effect of PFB hot gas effluent on aircraft turbine engine materials that may have applications in stationary powerplant turbogenerators. The facility was intended for research and development work and was designed to operate over a wide range of conditions. These conditions included the type and rate of consumption of fuel (e.g., coal) and sulfur reacting sorbent material: the ratio of feed fuel to sorbent material; the ratio of feed fuel to combustion airflow; the depth of the fluidized reaction bed; the temperature and pressure in the reaction bed; and the type of test unit that was exposed to the combustion exhaust gases.
Structure of diffusion flames from a vertical burner
Mark A. Finney; Dan Jimenez; Jack D. Cohen; Isaac C. Grenfell; Cyle Wold
2010-01-01
Non-steady and turbulent flames are commonly observed to produce flame contacts with adjacent fuels during fire spread in a wide range of fuel bed depths. A stationary gas-fired burner (flame wall) was developed to begin study of flame edge variability along an analagous vertical fuel source. This flame wall is surrogate for a combustion interface at the edge of a deep...
Cai, Longyan; He, Hong S.; Wu, Zhiwei; Lewis, Benard L.; Liang, Yu
2014-01-01
Understanding the fire prediction capabilities of fuel models is vital to forest fire management. Various fuel models have been developed in the Great Xing'an Mountains in Northeast China. However, the performances of these fuel models have not been tested for historical occurrences of wildfires. Consequently, the applicability of these models requires further investigation. Thus, this paper aims to develop standard fuel models. Seven vegetation types were combined into three fuel models according to potential fire behaviors which were clustered using Euclidean distance algorithms. Fuel model parameter sensitivity was analyzed by the Morris screening method. Results showed that the fuel model parameters 1-hour time-lag loading, dead heat content, live heat content, 1-hour time-lag SAV(Surface Area-to-Volume), live shrub SAV, and fuel bed depth have high sensitivity. Two main sensitive fuel parameters: 1-hour time-lag loading and fuel bed depth, were determined as adjustment parameters because of their high spatio-temporal variability. The FARSITE model was then used to test the fire prediction capabilities of the combined fuel models (uncalibrated fuel models). FARSITE was shown to yield an unrealistic prediction of the historical fire. However, the calibrated fuel models significantly improved the capabilities of the fuel models to predict the actual fire with an accuracy of 89%. Validation results also showed that the model can estimate the actual fires with an accuracy exceeding 56% by using the calibrated fuel models. Therefore, these fuel models can be efficiently used to calculate fire behaviors, which can be helpful in forest fire management. PMID:24714164
Starting procedure for internal combustion vessels
Harris, Harry A.
1978-09-26
A vertical vessel, having a low bed of broken material, having included combustible material, is initially ignited by a plurality of ignitors spaced over the surface of the bed, by adding fresh, broken material onto the bed to buildup the bed to its operating depth and then passing a combustible mixture of gas upwardly through the material, at a rate to prevent back-firing of the gas, while air and recycled gas is passed through the bed to thereby heat the material and commence the desired laterally uniform combustion in the bed. The procedure permits precise control of the air and gaseous fuel mixtures and material rates, and permits the use of the process equipment designed for continuous operation of the vessel.
Sudeep Kumara, K; Sahoo, B K; Gaware, J J; Sapra, B K; Mayya, Y S; Karunakara, N
2017-06-01
Exposure due to thoron ( 220 Rn) gas and its decay products in a thorium fuel cycle facility handling thorium or 232 U/ 233 U mixture compounds is an important issue of radiological concern requiring control and mitigation. Adsorption in a flow-through charcoal bed offers an excellent method of alleviating the release of 220 Rn into occupational and public domain. In this paper, we present the design, development, and characterization of a Thoron Mitigation System (TMS) for industrial application. Systematic experiments were conducted in the TMS for examining the 220 Rn mitigation characteristics with respect to a host of parameters such as flow rate, pressure drop, charcoal grain size, charcoal mass and bed depth, water content, and heat of the carrier gas. An analysis of the experimental data shows that 220 Rn attenuation in a flow through charcoal bed is not exponential with respect to the residence time, L/U a (L: bed depth; U a : superficial velocity), but follows a power law behaviour, which can be attributed to the occurrence of large voids due to wall channeling in a flow through bed. The study demonstrates the regeneration of charcoal adsorption capacity degraded due to moisture adsorption, by hot air blowing technique. It is found that the mitigation factor (MF), which is the ratio of the inlet 220 Rn concentration (C in ) to the outlet 220 Rn concentration (C out ), of more than 10 4 for the TMS is easily achievable during continuous operation (>1000 h) at a flow rate of 40 L min -1 with negligible (<1 cm of water column) pressure drop. The Thoron Mitigation System based on adsorption on charcoal bed offers a compact and effective device to remove 220 Rn from affluent air streams in a space constrained domain. The prototype system has been installed in a thorium fuel cycle facility where it is being evaluated for its long-term performance and overall effectiveness in mitigating 220 Rn levels in the workplace. Copyright © 2017 Elsevier Ltd. All rights reserved.
Pneumatic transportation of dispersed medium through a vertical tube immersed into a fluidized bed
NASA Astrophysics Data System (ADS)
Krasnykh, V. Yu.; Korolev, V. N.; Ostrovskaya, A. V.; Nagornov, S. A.
2013-11-01
We discuss the technical problem of how to transport granular material in a vertical direction from the underlying section of a multistage apparatus containing a fluidized bed to an upper section through tubes immersed into the fluidized bed without additional expenditures of energy. The intensity with which the dispersed medium (a mixture of gas and fuel particles) moves through the tube and the mass flowrate of particles are determined by the ratio between the hydraulic resistances of dispersed medium inside the tube and of the fluidized bed outside of it. In turn, this ratio depends on the fluidization number W (W = w s/ w 0, where w s is the seepage velocity and w 0 is the fluidization commencement velocity) and on the tube immersing depth into the bed.
Clark, Arthur C.; Roberts, Stephen B.; Warwick, Peter D.
2010-01-01
Energy costs in rural Alaskan communities are substantial. Diesel fuel, which must be delivered by barge or plane, is used for local power generation in most off-grid communities. In addition to high costs incurred for the purchase and transport of the fuel, the transport, transfer, and storage of fuel products pose significant difficulties in logistically challenging and environmentally sensitive areas. The Alaska Rural Energy Project (AREP) is a collaborative effort between the United States Geological Survey (USGS) and the Bureau of Land Management Alaska State Office along with State, local, and private partners. The project is designed to identify and evaluate shallow (<3,000 ft) subsurface resources such as coalbed methane (CBM) and geothermal in the vicinity of rural Alaskan communities where these resources have the potential to serve as local-use power alternatives. The AREP, in cooperation with the North Slope Borough, the Arctic Slope Regional Corporation, and the Olgoonik Corporation, drilled and tested a 1,613 ft continuous core hole in Wainwright, Alaska, during the summer of 2007 to determine whether CBM represents a viable source of energy for the community. Although numerous gas-bearing coal beds were encountered, most are contained within the zone of permafrost that underlies the area to a depth of approximately 1,000 ft. Because the effective permeability of permafrost is near zero, the chances of producing gas from these beds are highly unlikely. A 7.5-ft-thick gas-bearing coal bed, informally named the Wainwright coal bed, was encountered in the sub-permafrost at a depth of 1,242 ft. Additional drilling and testing conducted during the summers of 2008 and 2009 indicated that the coal bed extended throughout the area outlined by the drill holes, which presently is limited to the access provided by the existing road system. These tests also confirmed the gas content of the coal reservoir within this area. If producible, the Wainwright coal bed contains sufficient gas to serve as a long-term source of energy for the community.
Jin, Sen; Liu, Bo-Fei; Di, Xue-Ying; Chu, Teng-Fei; Zhang, Ji-Li
2012-01-01
Aimed to understand the fire behavior of Mongolian oak leaves fuel-bed under field condition, the leaves of a secondary Mongolian oak forest in Northeast Forestry University experimental forest farm were collected and brought into laboratory to construct fuel-beds with varied loading, height, and moisture content, and a total of 100 experimental fires were burned under no-wind and zero-slope conditions. It was observed that the fire spread rate of the fuel-beds was less than 0.5 m x min(-1). Fuel-bed loading, height, and moisture contents all had significant effects on the fire spread rate. The effect of fuel-bed moisture content on the fire spread had no significant correlations with fuel-bed loading and height, but the effect of fuel-bed height was related to the fuel-bed loading. The packing ratio of fuel-beds had less effect on the fire spread rate. Taking the fuel-bed loading, height, and moisture content as predictive variables, a prediction model for the fire spread rate of Mongolian oak leaves fuel-bed was established, which could explain 83% of the variance of the fire spread rate, with a mean absolute error 0.04 m x min(-1) and a mean relative error less than 17%.
NASA Astrophysics Data System (ADS)
Javernick, Luke; Redolfi, Marco; Bertoldi, Walter
2018-05-01
New data collection techniques offer numerical modelers the ability to gather and utilize high quality data sets with high spatial and temporal resolution. Such data sets are currently needed for calibration, verification, and to fuel future model development, particularly morphological simulations. This study explores the use of high quality spatial and temporal data sets of observed bed load transport in braided river flume experiments to evaluate the ability of a two-dimensional model, Delft3D, to predict bed load transport. This study uses a fixed bed model configuration and examines the model's shear stress calculations, which are the foundation to predict the sediment fluxes necessary for morphological simulations. The evaluation is conducted for three flow rates, and model setup used highly accurate Structure-from-Motion (SfM) topography and discharge boundary conditions. The model was hydraulically calibrated using bed roughness, and performance was evaluated based on depth and inundation agreement. Model bed load performance was evaluated in terms of critical shear stress exceedance area compared to maps of observed bed mobility in a flume. Following the standard hydraulic calibration, bed load performance was tested for sensitivity to horizontal eddy viscosity parameterization and bed morphology updating. Simulations produced depth errors equal to the SfM inherent errors, inundation agreement of 77-85%, and critical shear stress exceedance in agreement with 49-68% of the observed active area. This study provides insight into the ability of physically based, two-dimensional simulations to accurately predict bed load as well as the effects of horizontal eddy viscosity and bed updating. Further, this study highlights how using high spatial and temporal data to capture the physical processes at work during flume experiments can help to improve morphological modeling.
FY-2015 Methyl Iodide Deep-Bed Adsorption Test Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soelberg, Nicholas Ray; Watson, Tony Leroy
2015-09-30
Nuclear fission produces fission and activation products, including iodine-129, which could evolve into used fuel reprocessing facility off-gas systems, and could require off-gas control to limit air emissions to levels within acceptable emission limits. Deep-bed methyl iodide adsorption testing has continued in Fiscal Year 2015 according to a multi-laboratory methyl iodide adsorption test plan. Updates to the deep-bed test system have also been performed to enable the inclusion of evaporated HNO 3 and increased NO 2 concentrations in future tests. This report summarizes the result of those activities. Test results showed that iodine adsorption from gaseous methyl iodide using reducedmore » silver zeolite (AgZ) resulted in initial iodine decontamination factors (DFs, ratios of uncontrolled and controlled total iodine levels) under 1,000 for the conditions of the long-duration test performed this year (45 ppm CH3I, 1,000 ppm each NO and NO 2, very low H 2O levels [3 ppm] in balance air). The mass transfer zone depth exceeded the cumulative 5-inch depth of 4 bed segments, which is deeper than the 2-4 inch depth estimated for the mass transfer zone for adsorbing I 2 using AgZ in prior deep-bed tests. The maximum iodine adsorption capacity for the AgZ under the conditions of this test was 6.2% (6.2 g adsorbed I per 100 g sorbent). The maximum Ag utilization was 51%. Additional deep-bed testing and analyses are recommended to (a) expand the data base for methyl iodide adsorption and (b) provide more data for evaluating organic iodide reactions and reaction byproducts for different potential adsorption conditions.« less
Solids feed nozzle for fluidized bed
Zielinski, Edward A.
1982-01-01
The vertical fuel pipe of a fluidized bed extends up through the perforated support structure of the bed to discharge granulated solid fuel into the expanded bed. A cap, as a deflecting structure, is supported above the discharge of the fuel pipe and is shaped and arranged to divert the carrier fluid and granulated fuel into the combusting bed. The diverter structure is spaced above the end of the fuel pipe and provided with a configuration on its underside to form a venturi section which generates a low pressure in the stream into which the granules of solid fuel are drawn to lengthen their residence time in the combustion zone of the bed adjacent the fuel pipe.
Kobayashi, Makoto; Akiho, Hiroyuki
2017-12-01
Electricity production from coal fuel with minimizing efficiency penalty for the carbon dioxide abatement will bring us sustainable and compatible energy utilization. One of the promising options is oxy-fuel type Integrated Gasification Combined Cycle (oxy-fuel IGCC) power generation that is estimated to achieve thermal efficiency of 44% at lower heating value (LHV) base and provide compressed carbon dioxide (CO 2 ) with concentration of 93 vol%. The proper operation of the plant is established by introducing dry syngas cleaning processes to control halide and sulfur compounds satisfying tolerate contaminants level of gas turbine. To realize the dry process, the bench scale test facility was planned to demonstrate the first-ever halide and sulfur removal with fixed bed reactor using actual syngas from O 2 -CO 2 blown gasifier for the oxy-fuel IGCC power generation. Design parameter for the test facility was required for the candidate sorbents for halide removal and sulfur removal. Breakthrough test was performed on two kinds of halide sorbents at accelerated condition and on honeycomb desulfurization sorbent at varied space velocity condition. The results for the both sorbents for halide and sulfur exhibited sufficient removal within the satisfactory short depth of sorbent bed, as well as superior bed conversion of the impurity removal reaction. These performance evaluation of the candidate sorbents of halide and sulfur removal provided rational and affordable design parameters for the bench scale test facility to demonstrate the dry syngas cleaning process for oxy-fuel IGCC system as the scaled up step of process development. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hybrid fluidized bed combuster
Kantesaria, Prabhudas P.; Matthews, Francis T.
1982-01-01
A first atmospheric bubbling fluidized bed furnace is combined with a second turbulent, circulating fluidized bed furnace to produce heat efficiently from crushed solid fuel. The bed of the second furnace receives the smaller sizes of crushed solid fuel, unreacted limestone from the first bed, and elutriated solids extracted from the flu gases of the first bed. The two-stage combustion of crushed solid fuel provides a system with an efficiency greater than available with use of a single furnace of a fluidized bed.
Xiangyang Zhou; Shankar Mahalingam; David Weise
2007-01-01
This paper presents a combined study of laboratory scale fire spread experiments and a three-dimensional large eddy simulation (LES) to analyze the effect of terrain slope on marginal burning behavior in live chaparral shrub fuel beds. Line fire was initiated in single species fuel beds of four common chaparral plants under various fuel bed configurations and ambient...
A numerical study of slope and fuel structure effects on coupled wildfire behaviour
Rodman R. Linn; Judith L. Winterkamp; David R. Weise; Carleton Edminster
2010-01-01
Slope and fuel structure are commonly accepted as major factors affecting theway wildfires behave. However, it is possible that slope affects fire differently depending on the fuel bed. Six FIRETEC simulations using three different fuel beds on flat and upslope topography were used to examine this possibility. Fuel beds resembling grass, chaparral, and ponderosa pine...
An examination of flame shape related to convection heat transfer in deep-fuel beds
Kara M. Yedinak; Jack D. Cohen; Jason M. Forthofer; Mark A. Finney
2010-01-01
Fire spread through a fuel bed produces an observable curved combustion interface. This shape has been schematically represented largely without consideration for fire spread processes. The shape and dynamics of the flame profile within the fuel bed likely reflect the mechanisms of heat transfer necessary for the pre-heating and ignition of the fuel during fire spread....
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chirone, R.; Marzocchella, A.; Salatino, P.
1999-07-01
A simple lumped-parameter model of a bubbling fluidized bed combustor fueled with high-volatile solid fuels is presented. The combustor is divided into three sections: the dense bed, the splashing region and the freeboard. Material balances on fixed carbon, volatile matter and oxygen are set up, taking into account fuel particle fragmentation and attrition, volatile matter segregation as well as postcombustion of both carbon fines and volatiles escaping the bed. A basic assumption of the model is that the combustion pathway that foes from the raw fuel to the combustion products proceeds via the formation of three phases: volatile matter, relativelymore » large non-elutriable char particles and fine char particles of elutriable size. The study is complemented by a simplified thermal balance on the splashing zone taking into account volatiles and elutriated fines postcombustion and radiative and convective heat fluxes to the bed and the freeboard. Results from calculations with either low- or high-volatile solid fuels indicate that low-volatile bituminous coal combustion takes place essentially in the bed mostly via coarse char particles combustion, while high-volatile biomass fuel combustion occurs to comparable extents both in the bed and in the splashing region of the combustor. Depending on the extent of volatile matter segregation with respect to the bed, a significant fraction of the heat is released into the splashing region of the combustor and this results into an increase of temperature in this region. Extensive bed solids recirculation associated to bubble bursting/solids ejection at the bed surface together with effective gas-solids heat transfer promotes thermal feedback from this region to the bed of as much as 90% of the heat release by volatile matter and elutriated fines afterburning.« less
Radial flow nuclear thermal rocket (RFNTR)
Leyse, Carl F.
1995-11-07
A radial flow nuclear thermal rocket fuel assembly includes a substantially conical fuel element having an inlet side and an outlet side. An annular channel is disposed in the element for receiving a nuclear propellant, and a second, conical, channel is disposed in the element for discharging the propellant. The first channel is located radially outward from the second channel, and separated from the second channel by an annular fuel bed volume. This fuel bed volume can include a packed bed of loose fuel beads confined by a cold porous inlet frit and a hot porous exit frit. The loose fuel beads include ZrC coated ZrC-UC beads. In this manner, nuclear propellant enters the fuel assembly axially into the first channel at the inlet side of the element, flows axially across the fuel bed volume, and is discharged from the assembly by flowing radially outward from the second channel at the outlet side of the element.
Radial flow nuclear thermal rocket (RFNTR)
Leyse, Carl F.
1995-01-01
A radial flow nuclear thermal rocket fuel assembly includes a substantially conical fuel element having an inlet side and an outlet side. An annular channel is disposed in the element for receiving a nuclear propellant, and a second, conical, channel is disposed in the element for discharging the propellant. The first channel is located radially outward from the second channel, and separated from the second channel by an annular fuel bed volume. This fuel bed volume can include a packed bed of loose fuel beads confined by a cold porous inlet frit and a hot porous exit frit. The loose fuel beads include ZrC coated ZrC-UC beads. In this manner, nuclear propellant enters the fuel assembly axially into the first channel at the inlet side of the element, flows axially across the fuel bed volume, and is discharged from the assembly by flowing radially outward from the second channel at the outlet side of the element.
Thermal Hydraulic Analysis of a Packed Bed Reactor Fuel Element
1989-05-25
Engineer and Master of Science in Nuclear Engineering. ABSTRACT A model of the behavior of a packed bed nuclear reactor fuel element is developed . It...RECOMMENDATIONS FOR FURTHER INVESTIGATION .................... 150 APPENDIX A FUEL ELEMENT MODEL PROGRAM DESIGN AND OPERA- T IO N...follow describe the details of the packed bed reactor and then discuss the development of the mathematical representations of the fuel element. These are
Yang, Yao Bin; Sharifi, Vida; Swithenbank, Jim
2008-11-01
Fluidised bed combustor (FBC) is one of the key technologies for sewage sludge incineration. In this paper, a mathematical model is developed for the simulation of a large-scale sewage sludge incineration plant. The model assumes the bed consisting of a fast-gas phase, an emulsion phase and a fuel particle phase with specific consideration for thermally-thick fuel particles. The model further improves over previous works by taking into account throughflow inside the bubbles as well as the floating and random movement of the fuel particles inside the bed. Validation against both previous lab-scale experiments and operational data of a large-scale industrial plant was made. Calculation results indicate that combustion split between the bed and the freeboard can range from 60/40 to 90/10 depending on the fuel particle distribution across the bed height under the specific conditions. The bed performance is heavily affected by the variation in sludge moisture level. The response time to variation in feeding rate is different for different parameters, from 6 min for outlet H2O, 10 min for O2, to 34 min for bed temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soelberg, Nicholas Ray; Watson, Tony Leroy
Deep-bed methyl iodide adsorption testing has continued in Fiscal Year 2016 under the Department of Energy (DOE) Fuel Cycle Technology (FCT) Program Offgas Sigma Team to further research and advance the technical maturity of solid sorbents for capturing iodine-129 in off-gas streams during used nuclear fuel reprocessing. Adsorption testing with higher levels of NO (approximately 3,300 ppm) and NO2 (up to about 10,000 ppm) indicate that high efficiency iodine capture by silver aerogel remains possible. Maximum iodine decontamination factors (DFs, or the ratio of iodine flowrate in the sorbent bed inlet gas compared to the iodine flowrate in the outletmore » gas) exceeded 3,000 until bed breakthrough rapidly decreased the DF levels to as low as about 2, when the adsorption capability was near depletion. After breakthrough, nearly all of the uncaptured iodine that remains in the bed outlet gas stream is no longer in the form of the original methyl iodide. The methyl iodide molecules are cleaved in the sorbent bed, even after iodine adsorption is no longer efficient, so that uncaptured iodine is in the form of iodine species soluble in caustic scrubber solutions, and detected and reported here as diatomic I2. The mass transfer zone depths were estimated at 8 inches, somewhat deeper than the 2-5 inch range estimated for both silver aerogels and silver zeolites in prior deep-bed tests, which had lower NOx levels. The maximum iodine adsorption capacity and silver utilization for these higher NOx tests, at about 5-15% of the original sorbent mass, and about 12-35% of the total silver, respectively, were lower than for trends from prior silver aerogel and silver zeolite tests with lower NOx levels. Additional deep-bed testing and analyses are recommended to expand the database for organic iodide adsorption and increase the technical maturity if iodine adsorption processes.« less
Characterization of solid fuels at pressurized fluidized bed gasification conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zevenhoven, R.; Hupa, M.
1998-07-01
The gasification of co-gasification of solid fuel (coal, peat, wood) in air-blown fluidized bed gasifiers is receiving continued attention as an alternative to entrained flow gasifiers which in general are oxygen-blown. Fluidized bed gasification of wood and wood-waste at elevated pressures, and the so-called air-blown gasification cycle are examples of processes which are under development in Europe. based on complete or partial gasification of a solid fuel in a pressurized fluidized bed. At the same time, fuel characterization data for the combination of temperature, pressure and fuel particle heating rate that is encountered in fluidized bed gasification are very scarce.more » In this paper, quantitative data on the characterization of fuels for advanced combustion and gasification technologies based on fluidized beds are given, as a result from the authors participation in the JOULE 2 extension project on clean coal technology of the European community. Eleven solid fuels, ranging from coal via peat to wood, have been studied under typical fluidized bed gasification conditions: 800--1,000 C, 1--25 bar, fuel heating rate in the order of 100--1,000 C/s. Carbon dioxide was used as gasifying agent. A pressurized thermogravimetric reactor was used for the experiments. The results show that the solid residue yield after pyrolysis/devolatilization increases with pressure and decreases with temperature. For coal, the gasification reactivity of the char increases by a factor of 3 to 4 when pressurizing from 1 to 25 bar, for the younger fuels such as peat and wood, this effect is negligible. Several empirical engineering equations are given which relate the fuel performance to the process parameters and the proximate and chemical analyses of the fuel. A pressure maximum was found at which a maximum gasification reactivity occurs, for practically all fuels, and depending on temperature. It is shown that this can be explained and modeled using a Langmuir-Hinshelwood model.« less
Characterisation of solid fuels at pressurised fluidised bed gasification conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zebenhoven, R.; Hupa, M.
1998-04-01
The gasification or co-gasification of solid fuels (coal, peat, wood) in air-blown fluidised bed gasifiers is receiving continued attention as an alternative to entrained flow gasifiers which in general are oxygen-blown. Fluidised bed gasification of wood and wood-waste at elevated pressures, and the so-called air-blown gasification cycle are examples of processes which are under development in Europe, based on complete or partial gasification of a solid fuel in a pressurised fluidised bed. At the same time, fuel characterisation data for the combination of temperature, pressure and fuel particle heating rate that is encountered in fluidised bed gasification are very scarce.more » Quantitative data on the characterisation of fuels for advanced combustion and gasification technologies based on fluidised beds are given, as a result from our participation to the JOULE 2 extension project on clean coal technology of the European Community. Eleven solid fuels, ranging from coal via peat to wood, have been studied under typical fluidised bed gasification conditions: 800-1000{degrees}C, 1-25 bar, fuel heating rate in the order of 100-1000{degrees}C/s. Carbon dioxide was used as gasifying agent. A pressurised thermogravimetric reactor was used for the experiments. The results show that the solid residue yield after pyrolysis/devolatilisation. increases with pressure and decreases with temperature. For coal, the gasification reactivity of the char increases by a factor of 3 to 4 when pressurising from 1 to 25 bar, for the `younger` fuels such as peat and wood, this effect is negligible. Several empirical, `engineering` equations are given which relate the fuel performance to the process parameters and the proximate and chemical analyses of the fuel. A pressure maximum was found at which a maximum gasification reactivity occurs, for practically all fuels, and depending on temperature. It is shown that this can be explained and modelled using a Langmuir-Hinshelwood model.« less
NASA Astrophysics Data System (ADS)
Horn, F. L.; Powell, J. R.; Savino, J. M.
Gas-cooled reactors using packed beds of small-diameter, coated fuel particles have been proposed for compact, high-power systems. To test the thermal-hydraulic performance of the particulate reactor fuel under simulated reactor conditions, a bed of 800-micrometer diameter particles was heated by its electrical resistance current and cooled by flowing helium gas. The specific resistance of the bed composed of pyrocarbon-coated particles was measured at several temperatures, and found to be 0.09 ohm-cm at 1273 K and 0.06 ohm-cm at 1600 K. The maximum bed power density reached was 1500 W/cu cm at 1500 K. The pressure drop followed the packed-bed correlation, typically 100,000 Pa/cm. The various frit materials used to contain the bed were also tested to 2000 K in helium and hydrogen to determine their properties and reactions with the fuel. Rhenium metal, zirconium carbide, and zirconium oxide appeared to be the best candidate materials, while tungsten and tungsten-rhenium lost mass and strength.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lask, Kathleen; Gadgil, Ashok
A lighting cone is a simple metal cone placed on the fuel bed of a stove during ignition to act as a chimney, increasing the draft through the fuel bed. Many stoves tend to be difficult to light due to poor draft through the fuel bed, so lighting cones are used in various parts of the world as an inexpensive accessory to help with ignition.
Meat and bone meal as secondary fuel in fluidized bed combustion
DOE Office of Scientific and Technical Information (OSTI.GOV)
L. Fryda; K. Panopoulos; P. Vourliotis
2007-07-01
Meat and Bone Meal (MBM) was co-fired in a laboratory scale fluidized bed combustion (FBC) apparatus with two coals. Several fuel blends were combusted under different conditions to study how primary fuel substitution by MBM affects flue gas emissions as well as fluidized bed (FB) agglomeration tendency. MBM, being a highly volatile fuel, caused significant increase of CO emissions and secondary air should be used in industrial scale applications to conform to regulations. The high N-content of MBM is moderately reflected on the increase of nitrogen oxides emissions which are reduced by MBM derived volatiles. The MBM ash, mainly containingmore » bone material rich in Ca, did not create any noteworthy desulphurization effect. The observed slight decrease in SO{sub 2} emissions is predominantly attributed to the lower sulphur content in the coal/MBM fuel mixtures. The SEM/EDS analysis of bed material samples from the coal/MBM tests revealed the formation of agglomerates of bed material debris and ash with sizes that do not greatly exceed the original bed inventory and thus not problematic. 37 refs., 9 figs., 3 tabs.« less
D.R. Weise; E. Koo; X. Zhou; S. Mahalingam
2011-01-01
Observed fire spread rates from 240 laboratory fires in horizontally-oriented single-species live fuel beds were compared to predictions from various implementations and modifications of the Rothermel rate of spread model and a physical fire spread model developed by Pagni and Koo. Packing ratio of the laboratory fuel beds was generally greater than that observed in...
40 CFR 63.7499 - What are the subcategories of boilers and process heaters?
Code of Federal Regulations, 2013 CFR
2013-07-01
... process heaters, as defined in § 63.7575 are: (a) Pulverized coal/solid fossil fuel units. (b) Stokers designed to burn coal/solid fossil fuel. (c) Fluidized bed units designed to burn coal/solid fossil fuel... liquid fuel. (r) Units designed to burn coal/solid fossil fuel. (s) Fluidized bed units with an...
40 CFR 63.7499 - What are the subcategories of boilers and process heaters?
Code of Federal Regulations, 2014 CFR
2014-07-01
... process heaters, as defined in § 63.7575 are: (a) Pulverized coal/solid fossil fuel units. (b) Stokers designed to burn coal/solid fossil fuel. (c) Fluidized bed units designed to burn coal/solid fossil fuel... liquid fuel. (r) Units designed to burn coal/solid fossil fuel. (s) Fluidized bed units with an...
An examination of fire spread thresholds in discontinuous fuel beds
Mark A. Finney; Jack D. Cohen; Isaac C. Grenfell; Kara M. Yedinak
2010-01-01
Many fuel beds, especially live vegetation canopies (conifer forests, shrub fields, bunch-grasses) contain gaps between vegetation clumps. Fires burning in these fuel types often display thresholds for spread that are observed to depend on environmental factors like wind, slope, and fuel moisture content. To investigate threshold spread behaviours, we conducted a set...
Method of burning sulfur-containing fuels in a fluidized bed boiler
Jones, Brian C.
1982-01-01
A method of burning a sulfur-containing fuel in a fluidized bed of sulfur oxide sorbent wherein the overall utilization of sulfur oxide sorbent is increased by comminuting the bed drain solids to a smaller average particle size, preferably on the order of 50 microns, and reinjecting the comminuted bed drain solids into the bed. In comminuting the bed drain solids, particles of spent sulfur sorbent contained therein are fractured thereby exposing unreacted sorbent surface. Upon reinjecting the comminuted bed drain solids into the bed, the newly-exposed unreacted sorbent surface is available for sulfur oxide sorption, thereby increasing overall sorbent utilization.
Experimental measurements and numerical modeling of marginal burning in live chaparral fuel beds
X. Zhou; D.R. Weise; S Mahalingam
2005-01-01
An extensive experimental and numerical study was completed to analyze the marginal burning behavior of live chaparral shrub fuels that grow in the mountains of southern California. Laboratory fire spread experiments were carried out to determine the effects of wind, slope, moisture content, and fuel characteristics on marginal burning in fuel beds of common...
DECONTAMINATION OF NEUTRON-IRRADIATED REACTOR FUEL
Buyers, A.G.; Rosen, F.D.; Motta, E.E.
1959-12-22
A pyrometallurgical method of decontaminating neutronirradiated reactor fuel is presented. In accordance with the invention, neutron-irradiated reactor fuel may be decontaminated by countercurrently contacting the fuel with a bed of alkali and alkaine fluorides under an inert gas atmosphere and inductively melting the fuel and tracking the resulting descending molten fuel with induction heating as it passes through the bed. By this method, a large, continually fresh surface of salt is exposed to the descending molten fuel which enhances the efficiency of the scrubbing operation.
Effect of delivery condition on desorption rate of ZrCo metal hydride bed for fusion fuel cycle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, H.G.; Yun, S.H.; Chung, D.
2015-03-15
For the safety of fusion fuel cycle, hydrogen isotope gases including tritium are stored as metal hydride form. To satisfy fueling requirement of fusion machine, rapid delivery from metal hydride bed is one of major factors for the development of tritium storage and delivery system. Desorption from metal hydride depends on the operation scenario by pressure and temperature control of the bed. The effect of operation scenario and pump performance on desorption rate of metal hydride bed was experimentally investigated using ZrCo bed. The results showed that the condition of pre-heating scenario before actual delivery of gas affected the deliverymore » performance. Different pumps were connected to desorption line from bed and the effect of pump capacity on desorption rate were also found to be significant. (authors)« less
Packed fluidized bed blanket for fusion reactor
Chi, John W. H.
1984-01-01
A packed fluidized bed blanket for a fusion reactor providing for efficient radiation absorption for energy recovery, efficient neutron absorption for nuclear transformations, ease of blanket removal, processing and replacement, and on-line fueling/refueling. The blanket of the reactor contains a bed of stationary particles during reactor operation, cooled by a radial flow of coolant. During fueling/refueling, an axial flow is introduced into the bed in stages at various axial locations to fluidize the bed. When desired, the fluidization flow can be used to remove particles from the blanket.
NASA Astrophysics Data System (ADS)
Dilbone, Elizabeth K.
Methods for spectrally-based bathymetric mapping of rivers mainly have been developed and tested on clear-flowing, gravel bedded channels, with limited application to turbid, sand-bedded rivers. Using hyperspectral images of the Niobrara River, Nebraska, and field-surveyed depth data, this study evaluated three methods of retrieving depth from remotely sensed data in a dynamic, sand-bedded channel. The first regression-based approach paired in situ depth measurements and image pixel values to predict depth via Optimal Band Ratio Analysis (OBRA). The second approach used ground-based reflectance measurements to calibrate an OBRA relationship. For this approach, CASI images were atmospherically corrected to units of apparent surface reflectance using an empirical line calibration. For the final technique, we used Image-to-Depth Quantile Transformation (IDQT) to predict depth by linking the cumulative distribution function (CDF) of depth to the CDF of an image derived variable. OBRA yielded the lowest overall depth retrieval error (0.0047 m) and highest observed versus predicted R2 (0.81). Although misalignment between field and image data were not problematic to OBRA's performance in this study, such issues present potential limitations to standard regression-based approaches like OBRA in dynamic, sand-bedded rivers. Field spectroscopy-based maps exhibited a slight shallow bias (0.0652 m) but provided reliable depth estimates for most of the study reach. IDQT had a strong deep bias, but still provided informative relative depth maps that portrayed general patterns of shallow and deep areas of the channel. The over-prediction of depth by IDQT highlights the need for an unbiased sampling strategy to define the CDF of depth. While each of the techniques tested in this study demonstrated the potential to provide accurate depth estimates in sand-bedded rivers, each method also was subject to certain constraints and limitations.
Moisture Content Influences Ignitability of Slash Pine Litter
Winfred H. Blackmarr
1972-01-01
The influence of moisture content on the ignitability of slash pine litter was measured by dropping lighted matches onto fuel beds conditioned to different levels of moisture content.The percentage of matches igniting the fuel bed was used to indicate ignition probability at each moisture content. The "critical range" of fuel moisture contents within which...
NASA Astrophysics Data System (ADS)
Sujan, Achintya; Yang, Hongyun; Dimick, Paul; Tatarchuk, Bruce J.
2016-05-01
An in-situ fiber optic based technique for direct measurement of capacity utilization of ZnO adsorbent beds by monitoring bed color changes during desulfurization for fuel cell systems is presented. Adsorbents composed of bulk metal oxides (ZnO) and supported metal oxides (ZnO/SiO2 and Cusbnd ZnO/SiO2) for H2S removal at 22 °C are examined. Adsorbent bed utilization at breakthrough is determined by the optical sensor as the maximum derivative of area under UV-vis spectrum from 250 to 800 nm observed as a function of service time. Since the response time of the sensor due to bed color change is close to bed breakthrough time, a series of probes along the bed predicts utilization of the portion of bed prior to H2S breakthrough. The efficacy of the optical sensor is evaluated as a function of inlet H2S concentration, H2S flow rate and desulfurization in presence of CO, CO2 and moisture in feed. A 6 mm optical probe is employed to measure utilization of a 3/16 inch ZnO extrudate bed for H2S removal. It is envisioned that with the application of the optical sensor, desulfurization can be carried out at high adsorbent utilization and low operational costs during on-board miniaturized fuel processing for logistic fuel cell power systems.
Dilbone, Elizabeth; Legleiter, Carl; Alexander, Jason S.; McElroy, Brandon
2018-01-01
Methods for spectrally based mapping of river bathymetry have been developed and tested in clear‐flowing, gravel‐bed channels, with limited application to turbid, sand‐bed rivers. This study used hyperspectral images and field surveys from the dynamic, sandy Niobrara River to evaluate three depth retrieval methods. The first regression‐based approach, optimal band ratio analysis (OBRA), paired in situ depth measurements with image pixel values to estimate depth. The second approach used ground‐based field spectra to calibrate an OBRA relationship. The third technique, image‐to‐depth quantile transformation (IDQT), estimated depth by linking the cumulative distribution function (CDF) of depth to the CDF of an image‐derived variable. OBRA yielded the lowest depth retrieval mean error (0.005 m) and highest observed versus predicted R2 (0.817). Although misalignment between field and image data did not compromise the performance of OBRA in this study, poor georeferencing could limit regression‐based approaches such as OBRA in dynamic, sand‐bedded rivers. Field spectroscopy‐based depth maps exhibited a mean error with a slight shallow bias (0.068 m) but provided reliable estimates for most of the study reach. IDQT had a strong deep bias but provided informative relative depth maps. Overprediction of depth by IDQT highlights the need for an unbiased sampling strategy to define the depth CDF. Although each of the techniques we tested demonstrated potential to provide accurate depth estimates in sand‐bed rivers, each method also was subject to certain constraints and limitations.
Phase 2 Methyl Iodide Deep-Bed Adsorption Tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soelberg, Nick; Watson, Tony
2014-09-01
Nuclear fission produces fission products (FPs) and activation products, including iodine-129, which could evolve into used fuel reprocessing facility off-gas systems, and could require off-gas control to limit air emissions to levels within acceptable emission limits. Research, demonstrations, and some reprocessing plant experience have indicated that diatomic iodine can be captured with efficiencies high enough to meet regulatory requirements. Research on the capture of organic iodides has also been performed, but to a lesser extent. Several questions remain open regarding the capture of iodine bound in organic compounds. Deep-bed methyl iodide adsorption testing has progressed according to a multi-laboratory methylmore » iodide adsorption test plan. This report summarizes the second phase of methyl iodide adsorption work performed according to this test plan using the deep-bed iodine adsorption test system at the Idaho National Laboratory (INL), performed during the second half of Fiscal Year (FY) 2014. Test results continue to show that methyl iodide adsorption using AgZ can achieve total iodine decontamination factors (DFs, ratios of uncontrolled and controlled total iodine levels) above 1,000, until breakthrough occurred. However, mass transfer zone depths are deeper for methyl iodide adsorption compared to diatomic iodine (I2) adsorption. Methyl iodide DFs for the Ag Aerogel test adsorption efficiencies were less than 1,000, and the methyl iodide mass transfer zone depth exceeded 8 inches. Additional deep-bed testing and analyses are recommended to (a) expand the data base for methyl iodide adsorption under various conditions specified in the methyl iodide test plan, and (b) provide more data for evaluating organic iodide reactions and reaction byproducts for different potential adsorption conditions.« less
[Effects of wind speed on drying processes of fuelbeds composed of Mongolian oak broad-leaves.
Zhang, Li Bin; Sun, Ping; Jin, Sen
2016-11-18
Water desorption processes of fuel beds with Mongolian oak broad-leaves were observed under conditions with various wind speeds but nearly constant air temperature and humidity. The effects of wind speed on drying coefficients of fuel beds with various moisture contents were analyzed. Three phases of drying process, namely high initial moisture content (>75%) of phase 1, transition state of phase 2, and equilibrium phase III could be identified. During phase 1, water loss rate under higher wind speed was higher than that under lower wind speed. Water loss rate under higher wind speed was lower than that under lower wind speed during phase 2. During phase 3, water loss rates under different wind speeds were similar. The wind effects decreased with the decrease of fuel moisture. The drying coefficient of the Mongolian oak broad-leaves fuel beds was affected by wind speed and fuel bed compactness, and the interaction between these two factors. The coefficient increased with wind speed roughly in a monotonic cubic polynomial form.
Solid fuel combustion system for gas turbine engine
Wilkes, Colin; Mongia, Hukam C.
1993-01-01
A solid fuel, pressurized fluidized bed combustion system for a gas turbine engine includes a carbonizer outside of the engine for gasifying coal to a low Btu fuel gas in a first fraction of compressor discharge, a pressurized fluidized bed outside of the engine for combusting the char residue from the carbonizer in a second fraction of compressor discharge to produce low temperature vitiated air, and a fuel-rich, fuel-lean staged topping combustor inside the engine in a compressed air plenum thereof. Diversion of less than 100% of compressor discharge outside the engine minimizes the expense of fabricating and maintaining conduits for transferring high pressure and high temperature gas and incorporation of the topping combustor in the compressed air plenum of the engine minimizes the expense of modifying otherwise conventional gas turbine engines for solid fuel, pressurized fluidized bed combustion.
Hutchinson, Todd F.; Dietenberger, Mark; Matt, Frederick; Peters, Matthew P.
2016-01-01
Mesophytic species (esp. Acer rubrum) are increasingly replacing oaks (Quercus spp.) in fire-suppressed, deciduous oak-hickory forests of the eastern US. A pivotal hypothesis is that fuel beds derived from mesophytic litter are less likely than beds derived from oak litter to carry a fire and, if they do, are more likely to burn at lower intensities. Species effects, however, are confounded by topographic gradients that affect overstory composition and fuel bed decomposition. To examine the separate and combined effects of litter species composition and topography on surface fuel beds, we conducted a common garden experiment in oak-hickory forests of the Ohio Hills. Each common garden included beds composed of mostly oak and mostly maple litter, representative of oak- and maple-dominated stands, respectively, and a mixture of the two. Beds were replenished each fall for four years. Common gardens (N = 16) were established at four topographic positions (ridges, benches on south- and northeast-facing slopes, and stream terraces) at each of four sites. Litter source and topographic position had largely independent effects on fuel beds and modeled fire dynamics after four years of development. Loading (kg m-2) of the upper litter layer (L), the layer that primarily supports flaming spread, was least in more mesic landscape positions and for maple beds, implying greater decomposition rates for those situations. Bulk density in the L layer (kg m-3) was least for oak beds which, along with higher loading, would promote fire spread and fireline intensity. Loading and bulk density of the combined fermentation and humic (FH) layers were least on stream terrace positions but were not related to species. Litter- and FH-layer moistures during a 5-day dry-down period after a rain event were affected by time and topographic effects while litter source effects were not evident. Characteristics of flaming combustion determined with a cone calorimeter pointed to greater fireline intensity for oak fuel beds and unexpected interactions between litter source and topography. A spread index, which synthesizes a suite of fuel bed, particle, and combustion characteristics to indicate spread (vs extinction) potential, was primarily affected by litter source and, secondarily, by the low spread potentials on mesic landscape positions early in the 5-day dry-down period. A similar result was obtained for modeled fireline intensity. Our results suggest that the continuing transition from oaks to mesophytic species in the Ohio Hills will reduce fire spread potentials and fire intensities. PMID:27536964
Dickinson, Matthew B; Hutchinson, Todd F; Dietenberger, Mark; Matt, Frederick; Peters, Matthew P
2016-01-01
Mesophytic species (esp. Acer rubrum) are increasingly replacing oaks (Quercus spp.) in fire-suppressed, deciduous oak-hickory forests of the eastern US. A pivotal hypothesis is that fuel beds derived from mesophytic litter are less likely than beds derived from oak litter to carry a fire and, if they do, are more likely to burn at lower intensities. Species effects, however, are confounded by topographic gradients that affect overstory composition and fuel bed decomposition. To examine the separate and combined effects of litter species composition and topography on surface fuel beds, we conducted a common garden experiment in oak-hickory forests of the Ohio Hills. Each common garden included beds composed of mostly oak and mostly maple litter, representative of oak- and maple-dominated stands, respectively, and a mixture of the two. Beds were replenished each fall for four years. Common gardens (N = 16) were established at four topographic positions (ridges, benches on south- and northeast-facing slopes, and stream terraces) at each of four sites. Litter source and topographic position had largely independent effects on fuel beds and modeled fire dynamics after four years of development. Loading (kg m-2) of the upper litter layer (L), the layer that primarily supports flaming spread, was least in more mesic landscape positions and for maple beds, implying greater decomposition rates for those situations. Bulk density in the L layer (kg m-3) was least for oak beds which, along with higher loading, would promote fire spread and fireline intensity. Loading and bulk density of the combined fermentation and humic (FH) layers were least on stream terrace positions but were not related to species. Litter- and FH-layer moistures during a 5-day dry-down period after a rain event were affected by time and topographic effects while litter source effects were not evident. Characteristics of flaming combustion determined with a cone calorimeter pointed to greater fireline intensity for oak fuel beds and unexpected interactions between litter source and topography. A spread index, which synthesizes a suite of fuel bed, particle, and combustion characteristics to indicate spread (vs extinction) potential, was primarily affected by litter source and, secondarily, by the low spread potentials on mesic landscape positions early in the 5-day dry-down period. A similar result was obtained for modeled fireline intensity. Our results suggest that the continuing transition from oaks to mesophytic species in the Ohio Hills will reduce fire spread potentials and fire intensities.
Replication of Pine Needle Fuel Beds
John E. Deeming; Ernest R. Elliott
1971-01-01
A technique for building pine needle fuel beds has been developed and tested which assures uniform rates of spread and independence of the builder. Five beds were constructed by each of two technicians. They were burned under identical conditions and a comparison made of the time the fires took to spread 24 inches. A t-test showed that there was no difference between...
Grooved Fuel Rings for Nuclear Thermal Rocket Engines
NASA Technical Reports Server (NTRS)
Emrich, William
2009-01-01
An alternative design concept for nuclear thermal rocket engines for interplanetary spacecraft calls for the use of grooved-ring fuel elements. Beyond spacecraft rocket engines, this concept also has potential for the design of terrestrial and spacecraft nuclear electric-power plants. The grooved ring fuel design attempts to retain the best features of the particle bed fuel element while eliminating most of its design deficiencies. In the grooved ring design, the hydrogen propellant enters the fuel element in a manner similar to that of the Particle Bed Reactor (PBR) fuel element.
Annular core liquid-salt cooled reactor with multiple fuel and blanket zones
Peterson, Per F.
2013-05-14
A liquid fluoride salt cooled, high temperature reactor having a reactor vessel with a pebble-bed reactor core. The reactor core comprises a pebble injection inlet located at a bottom end of the reactor core and a pebble defueling outlet located at a top end of the reactor core, an inner reflector, outer reflector, and an annular pebble-bed region disposed in between the inner reflector and outer reflector. The annular pebble-bed region comprises an annular channel configured for receiving pebble fuel at the pebble injection inlet, the pebble fuel comprising a combination of seed and blanket pebbles having a density lower than the coolant such that the pebbles have positive buoyancy and migrate upward in said annular pebble-bed region toward the defueling outlet. The annular pebble-bed region comprises alternating radial layers of seed pebbles and blanket pebbles.
Experimental Modeling of the Effect of Terrain Slope on Marginal Burning
X. Zhou; S. Mahalingam; D. Weise
2005-01-01
A series of laboratory fire spread experiments were completed to analyze the effect of terrain slope on marginal burning behavior of live chaparral shrub fuels that grow in the mountains of southern California. We attempted to burn single species fuel beds of four common chaparral plants under various fuel bed configurations and ambient conditions. Seventy-three (or 42...
Jeffrey M. Kane; Eric E. Knapp; J. Morgan Varner
2006-01-01
The use of mechanical mastication to treat non-merchantable fuels is becoming increasingly popular, but loadings and other characteristics of masticated fuel beds are unknown. Surveys of eight recently masticated sites in northern California and southwestern Oregon indicate that significant site level differences were detected for 1 hr and 10 hr time-lag classes and...
Abatement of N{sub 2}O emissions from circulating fluidized bed combustion through afterburning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gustavsson, L.; Leckner, B.
1995-04-01
A method for the abatement of N{sub 2}O emission from fluidized bed combustion has been investigated. The method consists of burning a secondary fuel after the normal circulating fluidized bed combustor. Liquefied petroleum gas (LPG), fuel oil, pulverized coal, and wood, as well as sawdust, were used as the secondary fuel. Experiments showed that the N{sub 2}O emission can be reduced by 90% or more by this technique. The resulting N{sub 2}O emission was principally a function of the gas temperature achieved in the afterburner and independent of afterburning fuel, but the amount of air in the combustion gases frommore » the primary combustion also influences the results. No negative effects on sulfur capture or on NO or CO emissions were recorded. In the experiments, the primary cyclone of the fluidized bed boiler was used for afterburning. If afterburning is implemented in a plant optimized for this purpose, an amount of secondary fuel corresponding to 10% of the total energy input should remove practically all N{sub 2}O. During the present experiments the secondary fuel consumption was greater than 10% of the total energy input due to various losses.« less
Gandhimathi, R; Ramesh, S T; Yadu, Anubhav; Bharathi, K S
2013-07-01
This paper reports the results of the study on the performance of low-cost biosorbent water hyacinth (WH) in removing Cu (II) from aqueous solution. The adsorbent material adopted was found to be an efficient media for the removal of Cu (II) in continuous mode using fixed bed column. The column studies were conducted with 10 mg/L metal solution with a flow rate of 10 mL/min with different bed depths such as 10, 20 and 30 cm. The column design parameters like adsorption rate constant, adsorption capacity and minimum bed depth were calculated. It was found that, the adsorption capacity of copper ions by water hyacinth increased by increasing the bed depth and the contact time.
Fuel processor for fuel cell power system
Vanderborgh, Nicholas E.; Springer, Thomas E.; Huff, James R.
1987-01-01
A catalytic organic fuel processing apparatus, which can be used in a fuel cell power system, contains within a housing a catalyst chamber, a variable speed fan, and a combustion chamber. Vaporized organic fuel is circulated by the fan past the combustion chamber with which it is in indirect heat exchange relationship. The heated vaporized organic fuel enters a catalyst bed where it is converted into a desired product such as hydrogen needed to power the fuel cell. During periods of high demand, air is injected upstream of the combustion chamber and organic fuel injection means to burn with some of the organic fuel on the outside of the combustion chamber, and thus be in direct heat exchange relation with the organic fuel going into the catalyst bed.
NASA Astrophysics Data System (ADS)
Sylvia, N.; Hakim, L.; Fardian, N.; Yunardi
2018-03-01
When the manganese is under the acceptable limit, then the removal of Fe (II) ion, the common metallic compound contained in groundwater, is one of the most important stages in the processing of groundwater to become potable water. This study was aimed at investigating the performance of a fixed-bed adsorption column filled, with activated carbon prepared from palm kernel shells, in the removal of Fe (II) ion from groundwater. The influence of important parameters such as bed depth and the flow rate was investigated. The bed depth adsorbent was varied at 7.5, 10 and 12 cm. At a different flow rate of 6, 10 and 14 L/minute. The Atomic Absorb Spectrophotometer was used to measure the Fe (II) ion concentration, thereafter the results were confirmed using a breakthrough curve showing that flow rate and bed depth affected the curve. The mathematical model that used to predict the result was the Thomas and Adams-Bohart model. This model is used to process design, in which predicting time and bed depth needed to meet the breakthrough. This study reveals that the Thomas model was the most appropriate one, including the use of Palm Kernel Shell for processing groundwater. According to the Thomas Model, the highest capacity of adsorption (66.189 mg/g) of 0.169-mg/L of groundwater was achieved with a flow rate of 6 L/minute, with the bed depth at 14 cm.
Skoglund, Nils; Grimm, Alejandro; Ohman, Marcus; Boström, Dan
2014-02-20
This is the first in a series of three papers describing combustion of biosolids in a 5-kW bubbling fluidized bed, the ash chemistry, and possible application of the ash produced as a fertilizing agent. This part of the study aims to clarify whether the distribution of main ash forming elements from biosolids can be changed by modifying the fuel matrix, the crystalline compounds of which can be identified in the raw materials and what role the total composition may play for which compounds are formed during combustion. The biosolids were subjected to low-temperature ashing to investigate which crystalline compounds that were present in the raw materials. Combustion experiments of two different types of biosolids were conducted in a 5-kW benchscale bubbling fluidized bed at two different bed temperatures and with two different additives. The additives were chosen to investigate whether the addition of alkali (K 2 CO 3 ) and alkaline-earth metal (CaCO 3 ) would affect the speciation of phosphorus, so the molar ratios targeted in modified fuels were P:K = 1:1 and P:K:Ca = 1:1:1, respectively. After combustion the ash fractions were collected, the ash distribution was determined and the ash fractions were analyzed with regards to elemental composition (ICP-AES and SEM-EDS) and part of the bed ash was also analyzed qualitatively using XRD. There was no evidence of zeolites in the unmodified fuels, based on low-temperature ashing. During combustion, the biosolid pellets formed large bed ash particles, ash pellets, which contained most of the total ash content (54%-95% (w/w)). This ash fraction contained most of the phosphorus found in the ash and the only phosphate that was identified was a whitlockite, Ca 9 (K,Mg,Fe)(PO 4 ) 7 , for all fuels and fuel mixtures. With the addition of potassium, cristobalite (SiO 2 ) could no longer be identified via X-ray diffraction (XRD) in the bed ash particles and leucite (KAlSi 2 O 6 ) was formed. Most of the alkaline-earth metals calcium and magnesium were also found in the bed ash. Both the formation of aluminum-containing alkali silicates and inclusion of calcium and magnesium in bed ash could assist in preventing bed agglomeration during co-combustion of biosolids with other renewable fuels in a full-scale bubbling fluidized bed.
2014-01-01
This is the first in a series of three papers describing combustion of biosolids in a 5-kW bubbling fluidized bed, the ash chemistry, and possible application of the ash produced as a fertilizing agent. This part of the study aims to clarify whether the distribution of main ash forming elements from biosolids can be changed by modifying the fuel matrix, the crystalline compounds of which can be identified in the raw materials and what role the total composition may play for which compounds are formed during combustion. The biosolids were subjected to low-temperature ashing to investigate which crystalline compounds that were present in the raw materials. Combustion experiments of two different types of biosolids were conducted in a 5-kW benchscale bubbling fluidized bed at two different bed temperatures and with two different additives. The additives were chosen to investigate whether the addition of alkali (K2CO3) and alkaline-earth metal (CaCO3) would affect the speciation of phosphorus, so the molar ratios targeted in modified fuels were P:K = 1:1 and P:K:Ca = 1:1:1, respectively. After combustion the ash fractions were collected, the ash distribution was determined and the ash fractions were analyzed with regards to elemental composition (ICP-AES and SEM-EDS) and part of the bed ash was also analyzed qualitatively using XRD. There was no evidence of zeolites in the unmodified fuels, based on low-temperature ashing. During combustion, the biosolid pellets formed large bed ash particles, ash pellets, which contained most of the total ash content (54%–95% (w/w)). This ash fraction contained most of the phosphorus found in the ash and the only phosphate that was identified was a whitlockite, Ca9(K,Mg,Fe)(PO4)7, for all fuels and fuel mixtures. With the addition of potassium, cristobalite (SiO2) could no longer be identified via X-ray diffraction (XRD) in the bed ash particles and leucite (KAlSi2O6) was formed. Most of the alkaline-earth metals calcium and magnesium were also found in the bed ash. Both the formation of aluminum-containing alkali silicates and inclusion of calcium and magnesium in bed ash could assist in preventing bed agglomeration during co-combustion of biosolids with other renewable fuels in a full-scale bubbling fluidized bed. PMID:24678140
Fuel processor for fuel cell power system. [Conversion of methanol into hydrogen
Vanderborgh, N.E.; Springer, T.E.; Huff, J.R.
1986-01-28
A catalytic organic fuel processing apparatus, which can be used in a fuel cell power system, contains within a housing a catalyst chamber, a variable speed fan, and a combustion chamber. Vaporized organic fuel is circulated by the fan past the combustion chamber with which it is in indirect heat exchange relationship. The heated vaporized organic fuel enters a catalyst bed where it is converted into a desired product such as hydrogen needed to power the fuel cell. During periods of high demand, air is injected upstream of the combustion chamber and organic fuel injection means to burn with some of the organic fuel on the outside of the combustion chamber, and thus be in direct heat exchange relation with the organic fuel going into the catalyst bed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Senor, David J.; Painter, Chad L.; Geelhood, Ken J.
2007-12-01
Spherical cermet fuel elements are proposed for use in the Atoms For Peace Reactor (AFPR-100) concept. AFPR-100 is a small-scale, inherently safe, proliferation-resistant reactor that would be ideal for deployment to nations with emerging economies that decide to select nuclear power for the generation of carbon-free electricity. The basic concept of the AFPR core is a water-cooled fixed particle bed, randomly packed with spherical fuel elements. The flow of coolant within the particle bed is at such a low rate that the bed does not fluidize. This report summarizes an approach to fuel fabrication, results associated with fuel performance modeling,more » core neutronics and thermal hydraulics analyses demonstrating a ~20 year core life, and a conclusion that the proliferation resistance of the AFPR reactor concept is high.« less
Seagrass distribution and abundance in Eastern Gulf of Mexico coastal waters
NASA Astrophysics Data System (ADS)
Iverson, Richard L.; Bittaker, Henry F.
1986-05-01
The marine angiosperms Thalassia testudinum, Syringodium filiforme, and Halodule wrightii form two of the largest reported seagrass beds along the northwest and southern coasts of Florida where they cover about 3000 square km in the Big Bend area and about 5500 square km in Florida Bay, respectively. Most of the leaf biomass in the Big Bend area and outer Florida Bay was composed of Thalassia testudinum and Syringodium filiforme which were distributed throughout the beds but which were more abundant in shallow depths. A short-leaved form of Halodule wrightii grew in monotypic stands in shallow water near the inner edges of the beds, while Halophila decipiens and a longer-leaved variety of H. wrightii grew scattered throughout the beds, in monotypic stands near the outer edges of the beds, and in deeper water outside the beds. Halophila engelmanni was observed scattered at various depths throughout the seagrass beds and in monospecific patches in deep water outside the northern bed. Ruppia maritima grew primarily in brackish water around river mouths. The cross-shelf limits of the two major seagrass beds are controlled nearshore by increased water turbidity and lower salinity around river mouths and off-shore by light penetration to depths which receive 10% or more of sea surface photosynthetically active radiation. Seagrasses form large beds only along low energy reaches of the coast. The Florida Bay seagrass bed contained about twice the short-shoot density of both Thalassia testudinum and Syringodium filiforme, for data averaged over all depths, and about four times the average short-shoot density of both species in shallow water compared with the Big Bend seagrass bed. The differences in average seagrass abundance between Florida Bay and the Big Bend area may be a consequence of the effects of greater seasonal solar radiation and water temperature fluctuations experienced by plants in the northern bed, which lies at the northern distribution limit for American Tropical seagrasses.
Ou, Li-Tse; Thomas, John E; Allen, L Hartwell; Vu, Joseph C; Dickson, Donald W
2006-08-01
This study was conducted to examine the effects of three application methods of metam sodium (broadcast, single irrigation drip tape delivery, and double irrigation drip tape delivery) and two plastic covers (polyethylene film and virtually impermeable film) on volatilization and on horizontal and vertical distributions of the biologically active product of metam sodium, methyl isothiocyanate (MITC), in field plots in a Florida sandy soil. Volatilization of MITC from field beds lasted for about 20 hours after completion of metam sodium application regardless of application methods. Virtually impermeable film (VIF) was a better barrier to reduce volatilization loss than polyethylene film (PE). Since water was not applied during broadcast application, MITC was mainly retained in the shallow soil layer (0- to 20-cm depth) and downward movement of MITC was limited to about 30 cm. Large values of standard deviation indicated that initial spatial distribution of MITC in the root zone (10- and 20-cm depths) of the two broadcast applied beds covered with PE or VIF was variable. Twice more water was delivered through the single drip tape than through individual tapes of double drip tape treatments during drip application of metam sodium. More water from the single drip tape likely facilitated downward movement of MITC to at least 60-cm depth, but MITC did not penetrate to this depth in the double drip tape beds. On the other hand, horizontal distribution of MITC in the root zone (10- and 20-cm depths) in the double drip tape beds was more uniform than in the single drip tape beds. More MITC was retained in the subsurface of the VIF-covered beds regardless of application methods than in the PE-covered beds.
Removal of oxides of nitrogen from gases in multi-stage coal combustion
Mollot, D.J.; Bonk, D.L.; Dowdy, T.E.
1998-01-13
Polluting NO{sub x} gas values are removed from off-gas of a multi-stage coal combustion process which includes an initial carbonizing reaction, firing of char from this reaction in a fluidized bed reactor, and burning of gases from the carbonizing and fluidized bed reactions in a topping combustor having a first, fuel-rich zone and a second, fuel-lean zone. The improvement by means of which NO{sub x} gases are removed is directed to introducing NO{sub x}-free oxidizing gas such as compressor air into the second, fuel-lean zone and completing combustion with this source of oxidizing gas. Excess air fed to the fluidized bed reactor is also controlled to obtain desired stoichiometry in the first, fuel-rich zone of the topping combustor. 2 figs.
Removal of oxides of nitrogen from gases in multi-stage coal combustion
Mollot, Darren J.; Bonk, Donald L.; Dowdy, Thomas E.
1998-01-01
Polluting NO.sub.x gas values are removed from off-gas of a multi-stage coal combustion process which includes an initial carbonizing reaction, firing of char from this reaction in a fluidized bed reactor, and burning of gases from the carbonizing and fluidized bed reactions in a topping combustor having a first, fuel-rich zone and a second, fuel-lean zone. The improvement by means of which NO.sub.x gases are removed is directed to introducing NO.sub.x -free oxidizing gas such as compressor air into the second, fuel-lean zone and completing combustion with this source of oxidizing gas. Excess air fed to the fluidized bed reactor is also controlled to obtain desired stoichiometry in the first, fuel-rich zone of the topping combustor.
Fluidized-bed combustion reduces atmospheric pollutants
NASA Technical Reports Server (NTRS)
Jonke, A. A.
1972-01-01
Method of reducing sulfur and nitrogen oxides released during combustion of fossil fuels is described. Fuel is burned in fluidized bed of solids with simultaneous feeding of crushed or pulverized limestone to control emission. Process also offers high heat transfer rates and efficient contacting for gas-solid reactions.
Fuel Processing System for a 5kW Methanol Fuel Cell Power Unit.
1985-11-27
report documents the development and design of a 5kW neat methanol reformer for phosphoric acid fuel cell power plants . The reformer design was based...VAPORIZATION OF METHANOL ........... 4.3 REFORMING/SHIFT CATALYST BED ......... 2 5.0 COMPONENT TESTING............... 5.1 COMBUSTION TUBE...69 36 Catalyst Bed Temperature Profile Before and After Transient ................. 70 37 Assembly -5kw Neat Methanol Reformer. ......... 72 Page No
David R. Weise; Eunmo Koo; Xiangyang Zhou; Shankar Mahalingam; Frédéric Morandini; Jacques-Henri Balbi
2016-01-01
Fire behaviour data from 240 laboratory fires in high-density live chaparral fuel beds were compared with model predictions. Logistic regression was used to develop a model to predict fire spread success in the fuel beds and linear regression was used to predict rate of spread. Predictions from the Rothermel equation and three proposed changes as well as two physically...
Freestall maintenance: effects on lying behavior of dairy cattle.
Drissler, M; Gaworski, M; Tucker, C B; Weary, D M
2005-07-01
In a series of 3 experiments, we documented how sand-bedding depth and distribution changed within freestalls after new bedding was added and the effect of these changes on lying behavior. In experiment 1, we measured changes in bedding depth over a 10-d period at 43 points in 24 freestalls. Change in depth of sand was the greatest the day after new sand was added and decreased over time. Over time, the stall surface became concave, and the deepest part of the stall was at the center. Based on the results of experiment 1, we measured changes in lying behavior when groups of cows had access to freestalls with sand bedding that was 0, 3.5, 5.2, or 6.2 cm at the deepest point, below the curb, while other dimensions remained fixed. We found that daily lying time was 1.15 h shorter in stalls with the lowest levels of bedding compared with stalls filled with bedding. Indeed, for every 1-cm decrease in bedding, cows spent 11 min less time lying down during each 24-h period. In a third experiment, we imposed 4 treatments that reflected the variation in sand depth within stalls: 0, 6.2, 9.9, and 13.7 cm below the curb. Again, lying times reduced with decreasing bedding, such that cows using the stalls with the least amount of bedding (13.7 cm below curb) spent 2.33 h less time per day lying down than when housed with access to freestalls filled with sand (0 cm below curb).
Desulfurizing Coal With an Alkali Treatment
NASA Technical Reports Server (NTRS)
Ravindram, M.; Kalvinskas, J. J.
1987-01-01
Experimental coal-desulfurization process uses alkalies and steam in fluidized-bed reactor. With highly volatile, high-sulfur bituminous coal, process removed 98 percent of pyritic sulfur and 47 percent of organic sulfur. Used in coal liquefaction and in production of clean solid fuels and synthetic liquid fuels. Nitrogen or steam flows through bed of coal in reactor. Alkalies react with sulfur, removing it from coal. Nitrogen flow fluidizes bed while heating or cooling; steam is fluidizing medium during reaction.
SPOUTED BED DESIGN CONSIDERATIONS FOR COATED NUCLEAR FUEL PARTICLES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marshall, Douglas W.
High Temperature Gas Cooled Reactors (HTGRs) are fueled with tristructural isotropic (TRISO) coated nuclear fuel particles embedded in a carbon-graphite fuel body. TRISO coatings consist of four layers of pyrolytic carbon and silicon carbide that are deposited on uranium ceramic fuel kernels (350µm – 500µm diameters) in a concatenated series of batch depositions. Each layer has dedicated functions such that the finished fuel particle has its own integral containment to minimize and control the release of fission products into the fuel body and reactor core. The TRISO coatings are the primary containment structure in the HTGR reactor and must havemore » very high uniformity and integrity. To ensure high quality TRISO coatings, the four layers are deposited by chemical vapor deposition (CVD) using high purity precursors and are applied in a concatenated succession of batch operations before the finished product is unloaded from the coating furnace. These depositions take place at temperatures ranging from 1230°C to 1550°C and use three different gas compositions, while the fuel particle diameters double, their density drops from 11.1 g/cm3 to 3.0 g/cm3, and the bed volume increases more than 8-fold. All this is accomplished without the aid of sight ports or internal instrumentation that could cause chemical contamination within the layers or mechanical damage to thin layers in the early stages of each layer deposition. The converging section of the furnace retort was specifically designed to prevent bed stagnation that would lead to unacceptably high defect fractions and facilitate bed circulation to avoid large variability in coating layer dimensions and properties. The gas injection nozzle was designed to protect precursor gases from becoming overheated prior to injection, to induce bed spouting and preclude bed stagnation in the bottom of the retort. Furthermore, the retort and injection nozzle designs minimize buildup of pyrocarbon and silicon carbide on the retort wall and manage nozzle orifice accretions. The equipment and operating methods have yielded very good reproducibility in the TRISO coated particles batches.« less
Pettit, William Henry
2001-01-01
A fuel cell system including a fuel reformer heated by a catalytic combustor fired by anode and cathode effluents. The combustor includes a turbulator section at its input end for intimately mixing the anode and cathode effluents before they contact the combustors primary catalyst bed. The turbulator comprises at least one porous bed of mixing media that provides a tortuous path therethrough for creating turbulent flow and intimate mixing of the anode and cathode effluents therein.
Carbon bed mercury emissions control for mixed waste treatment.
Soelberg, Nick; Enneking, Joe
2010-11-01
Mercury has various uses in nuclear fuel reprocessing and other nuclear processes, and so it is often present in radioactive and mixed (radioactive and hazardous) wastes. Compliance with air emission regulations such as the Hazardous Waste Combustor (HWC) Maximum Achievable Control Technology (MACT) standards can require off-gas mercury removal efficiencies up to 99.999% for thermally treating some mixed waste streams. Test programs have demonstrated this level of off-gas mercury control using fixed beds of granular sulfur-impregnated activated carbon. Other results of these tests include (1) the depth of the mercury control mass transfer zone was less than 15-30 cm for the operating conditions of these tests; (2) MERSORB carbon can sorb mercury up to 19 wt % of the carbon mass; and (3) the spent carbon retained almost all (98.3-99.99%) of the mercury during Toxicity Characteristic Leachability Procedure (TCLP) tests, but when even a small fraction of the total mercury dissolves, the spent carbon can fail the TCLP test when the spent carbon contains high mercury concentrations.
Apparatus for hot-gas desulfurization of fuel gases
Bissett, Larry A.
1992-01-01
An apparatus for removing sulfur values from a hot fuel gas stream in a fdized bed contactor containing particulate sorbent material by employing a riser tube regeneration arrangement. Sulfur-laden sorbent is continuously removed from the fluidized bed through a stand pipe to the riser tube and is rapidly regenerated in the riser tube during transport of the sorbent therethrough by employing an oxygen-containing sorbent regenerating gas stream. The riser tube extends from a location below the fluidized bed to an elevation above the fluidized bed where a gas-solid separating mechanism is utilized to separate the regenerated particulate sorbent from the regeneration gases and reaction gases so that the regenerated sorbent can be returned to the fluidized bed for reuse.
Staged cascade fluidized bed combustor
Cannon, Joseph N.; De Lucia, David E.; Jackson, William M.; Porter, James H.
1984-01-01
A fluid bed combustor comprising a plurality of fluidized bed stages interconnected by downcomers providing controlled solids transfer from stage to stage. Each stage is formed from a number of heat transfer tubes carried by a multiapertured web which passes fluidizing air to upper stages. The combustor cross section is tapered inwardly from the middle towards the top and bottom ends. Sorbent materials, as well as non-volatile solid fuels, are added to the top stages of the combustor, and volatile solid fuels are added at an intermediate stage.
Coal-feeding mechanism for a fluidized bed combustion chamber
Gall, Robert L.
1981-01-01
The present invention is directed to a fuel-feeding mechanism for a fluidized bed combustor. In accordance with the present invention a perforated conveyor belt is utilized in place of the fixed grid normally disposed at the lower end of the fluidized bed combustion zone. The conveyor belt is fed with fuel, e.g. coal, at one end thereof so that the air passing through the perforations dislodges the coal from the belt and feeds the coal into the fluidized zone in a substantially uniform manner.
Soft-Ground Aircraft Arresting Systems.
1987-08-01
19 Rut Depth in Foam Arrestor Bed for Aircraft A. .. .... 30 20 Aircraft B Deceleration in Gravel Arrestor. ... .... 32 21Arrf u ephPoiei rvl retr...Bed Arrestment ....... ... ... ... ... .... 43 30 Aircraft D Deceleration in Gravel Bed .... ......... 44 31 Aircraft D Rut Depth Obtained in Gravel...The deceleration of Aircraft D is shown in Figure 30 . The peak deceleration was about 0.43 g’s. The initial part of the deceleration curve shows a
Aziz, Abdul Shukor Abdul; Manaf, Latifah Abd; Man, Hasfalina Che; Kumar, Nadavala Siva
2014-01-01
This paper investigates the adsorption characteristics of palm oil boiler mill fly ash (POFA) derived from an agricultural waste material in removing Cd(II) and Cu(II) from aqueous solution via column studies. The performance of the study is described through the breakthrough curves concept under relevant operating conditions such as column bed depths (1, 1.5, and 2 cm) and influent metal concentrations (5, 10, and 20 mg/L). The Cd(II) and Cu(II) uptake mechanism is particularly bed depth- and concentration-dependant, favoring higher bed depth and lower influent metal concentration. The highest bed capacity of 34.91 mg Cd(II)/g and 21.93 mg Cu(II)/g of POFA was achieved at 20 mg/L of influent metal concentrations, column bed depth of 2 cm, and flow rate of 5 mL/min. The whole breakthrough curve simulation for both metal ions were best described using the Thomas and Yoon–Nelson models, but it is apparent that the initial region of the breakthrough for Cd(II) was better described using the BDST model. The results illustrate that POFA could be utilized effectively for the removal of Cd(II) and Cu(II) ions from aqueous solution in a fixed-bed column system.
Hackley, P.C.; SanFilipo, J.R.; Azizi, G.P.; Davis, P.A.; Starratt, S.W.
2010-01-01
Neogene (?) subbituminous carbonaceous shale deposits from Chalaw, Afghanistan, were investigated through organic petrology techniques and standard coal analyses to determine paleoenvironment and potential for resource utilization. The Chalaw deposit, approximately 30. km southeast of Kabul, currently is exploited for brick making and domestic heating and cooking. Three multiple-bench channel samples of the mined bed at Chalaw were collected and evaluated. The presence of significant huminite (ranging from 0.2 to 59.0. vol.%, mineral-inclusive basis) is suggestive of a terrestrial lignin-rich precursor plant material. Measured reflectance values of 0.38-0.55% indicate subbituminous rank. This rank suggests burial depths of approximately 1500. m and maximum temperatures of approximately 50. ??C. Structured liptinite macerals generally are absent except for some fluorescing morphologies interpreted to be poorly-preserved root cork suberinite. Sponge spicule bioliths including gemmoscleres and megascleres are common. These petrographic observations, in addition to high mineral matter content (33 to >95 vol%), medium to high sulfur content (2.1-11.5. wt.%, dry basis; db), and the presence of common gastropod? shell fragments and an aragonite-needle chalk bed are consistent with, but not directly indicative of, a marginal marine or estuarine mangrove depositional environment. However, additional data are necessary to confirm this hypothesis and deposition in a freshwater environment cannot be ruled out at this time.Commercial-scale development and utilization of the Chalaw deposit as a thermal fuel resource may be possible using a fluidized bed combustion system which could accept the low-quality mine product currently produced. Samples examined herein contain high-ash yield (45-90. wt.%, db), high total moisture content (17-39. wt.%), low calorific value (980-6860. Btu/lb, m,mmf), and have poor agglomerating properties (FSI=0), consistent with fuels utilized in fluidized bed combustors. However, delineation of the extent of the deposit through field investigation will be necessary to make a quantified resource estimate for mine planning. ?? 2009.
You, Changfu; Xu, Xuchang
2008-04-01
Ventilation air methane (VAM) accounts for 60-80% of the total emissions from coal mining activities in China, which is of serious greenhouse gas concerns as well as a waste of valuable fuel sources. This contribution evaluates the use of the VAM utilization methods as a supplementary fuel at a circulating fluidized bed combustion boiler. The paper describes the system design and discusses some potential technical challenges such as methane oxidation rate, corrosion, and efficiency. Laboratory experimentation has shown that the VAM can be burnt completely in circulated fluidized bed furnaces, and the VAM oxidation does not obviously affect the boiler operation when the methane concentration is less than 0.6%. The VAM decreased the incomplete combustion loss for the circulating fluidized bed combustion furnace. The economic benefit from the coal saving insures that the proposed system is more economically feasible.
Feasibility of rotating fluidized bed reactor for rocket propulsion
NASA Technical Reports Server (NTRS)
Ludewig, H.; Manning, A. J.; Raseman, C. J.
1974-01-01
The rotating fluidized bed reactor concept is outlined, and its application to rocket propulsion is discussed. Experimental results obtained indicate that minimum fluidization correlations commonly in use for 1-g beds can also be applied to multiple-g beds. It was found that for a low thrust system (20,000 lbf) the fuel particle size and/or particle stress play a limiting role on performance. The superiority of U-233 as a fuel for this type of rocket engine is clearly demonstrated in the analysis. The maximum thrust/weight ratio for a 90,000N thrust engine was found to be approximately 65N/kg.
Catalytic Destruction Of Toxic Organic Compounds
NASA Technical Reports Server (NTRS)
Voecks, Gerald E.
1990-01-01
Proposed process disposes of toxic organic compounds in contaminated soil or carbon beds safely and efficiently. Oxidizes toxic materials without producing such other contaminants as nitrogen oxides. Using air, fuel, catalysts, and steam, system consumes less fuel and energy than decontamination processes currently in use. Similar process regenerates carbon beds used in water-treatment plants.
Fuel utilization during exercise after 7 days of bed rest
NASA Technical Reports Server (NTRS)
Barrows, Linda H.; Harris, Bernard A.; Moore, Alan D.; Siconolfi, Steven F.
1992-01-01
Energy yield from carbohydrate, fat, and protein during physical activity is partially dependent on an individual's fitness level. Prolonged exposure to microgravity causes musculoskeletal and cardiovascular deconditioning; these adaptations may alter fuel utilization during space flight. Carbohydrate and fat metabolism during exercise were analyzed before and after 7 days of horizontal bed rest.
Marker, Terry L; Felix, Larry G; Linck, Martin B; Roberts, Michael J
2014-09-23
This invention relates to a process for thermochemically transforming biomass or other oxygenated feedstocks into high quality liquid hydrocarbon fuels. In particular, a catalytic hydropyrolysis reactor, containing a deep bed of fluidized catalyst particles is utilized to accept particles of biomass or other oxygenated feedstocks that are significantly smaller than the particles of catalyst in the fluidized bed. The reactor features an insert or other structure disposed within the reactor vessel that inhibits slugging of the bed and thereby minimizes attrition of the catalyst. Within the bed, the biomass feedstock is converted into a vapor-phase product, containing hydrocarbon molecules and other process vapors, and an entrained solid char product, which is separated from the vapor stream after the vapor stream has been exhausted from the top of the reactor. When the product vapor stream is cooled to ambient temperatures, a significant proportion of the hydrocarbons in the product vapor stream can be recovered as a liquid stream of hydrophobic hydrocarbons, with properties consistent with those of gasoline, kerosene, and diesel fuel. Separate streams of gasoline, kerosene, and diesel fuel may also be obtained, either via selective condensation of each type of fuel, or via later distillation of the combined hydrocarbon liquid.
Marker, Terry L.; Felix, Larry G.; Linck, Martin B.; Roberts, Michael J.
2016-12-06
This invention relates to a process for thermochemically transforming biomass or other oxygenated feedstocks into high quality liquid hydrocarbon fuels. In particular, a catalytic hydropyrolysis reactor, containing a deep bed of fluidized catalyst particles is utilized to accept particles of biomass or other oxygenated feedstocks that are significantly smaller than the particles of catalyst in the fluidized bed. The reactor features an insert or other structure disposed within the reactor vessel that inhibits slugging of the bed and thereby minimizes attrition of the catalyst. Within the bed, the biomass feedstock is converted into a vapor-phase product, containing hydrocarbon molecules and other process vapors, and an entrained solid char product, which is separated from the vapor stream after the vapor stream has been exhausted from the top of the reactor. When the product vapor stream is cooled to ambient temperatures, a significant proportion of the hydrocarbons in the product vapor stream can be recovered as a liquid stream of hydrophobic hydrocarbons, with properties consistent with those of gasoline, kerosene, and diesel fuel. Separate streams of gasoline, kerosene, and diesel fuel may also be obtained, either via selective condensation of each type of fuel, or via later distillation of the combined hydrocarbon liquid.
Contraction rate, flow modification and bed layering impact on scour at the elliptical guide banks
NASA Astrophysics Data System (ADS)
Gjunsburgs, B.; Jaudzems, G.; Bizane, M.; Bulankina, V.
2017-10-01
Flow contraction by the bridge crossing structures, intakes, embankments, piers, abutments and guide banks leads to general scour and the local scour in the vicinity of the structures. Local scour is depending on flow, river bed and structures parameters and correct understanding of the impact of each parameter can reduce failure possibility of the structures. The paper explores hydraulic contraction, the discharge redistribution between channel and floodplain during the flood, local flow modification and river bed layering on depth, width and volume of scour hole near the elliptical guide banks on low-land rivers. Experiments in a flume, our method for scour calculation and computer modelling results confirm a considerable impact of the contraction rate of the flow, the discharge redistribution between channel and floodplain, the local velocity, backwater and river bed layering on the depth, width, and volume of scour hole in steady and unsteady flow, under clear water condition. With increase of the contraction rate of the flow, the discharge redistribution between channel and floodplain, the local velocity, backwater values, the scour depth increases. At the same contraction rate, but at a different Fr number, the scour depth is different: with increase in the Fr number, the local velocity, backwater, scour depth, width, and volume is increasing. Acceptance of the geometrical contraction of the flow, approach velocity and top sand layer of the river bed for scour depth calculation as accepted now, may be the reason of the structures failure and human life losses.
Achieving Tier 4 Emissions in Biomass Cookstoves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marchese, Anthony; DeFoort, Morgan; Gao, Xinfeng
Previous literature on top-lit updraft (TLUD) gasifier cookstoves suggested that these stoves have the potential to be the lowest emitting biomass cookstove. However, the previous literature also demonstrated a high degree of variability in TLUD emissions and performance, and a lack of general understanding of the TLUD combustion process. The objective of this study was to improve understanding of the combustion process in TLUD cookstoves. In a TLUD, biomass is gasified and the resulting producer gas is burned in a secondary flame located just above the fuel bed. The goal of this project is to enable the design of amore » more robust TLUD that consistently meets Tier 4 performance targets through a better understanding of the underlying combustion physics. The project featured a combined modeling, experimental and product design/development effort comprised of four different activities: Development of a model of the gasification process in the biomass fuel bed; Development of a CFD model of the secondary combustion zone; Experiments with a modular TLUD test bed to provide information on how stove design, fuel properties, and operating mode influence performance and provide data needed to validate the fuel bed model; Planar laser-induced fluorescence (PLIF) experiments with a two-dimensional optical test bed to provide insight into the flame dynamics in the secondary combustion zone and data to validate the CFD model; Design, development and field testing of a market ready TLUD prototype. Over 180 tests of 40 different configurations of the modular TLUD test bed were performed to demonstrate how stove design, fuel properties and operating mode influences performance, and the conditions under which Tier 4 emissions are obtainable. Images of OH and acetone PLIF were collected at 10 kHz with the optical test bed. The modeling and experimental results informed the design of a TLUD prototype that met Tier 3 to Tier 4 specifications in emissions and Tier 2 in efficiency. The final prototype was field tested in India.« less
The effect of hydraulic bed movement on the quality of chest compressions.
Park, Maeng Real; Lee, Dae Sup; In Kim, Yong; Ryu, Ji Ho; Cho, Young Mo; Kim, Hyung Bin; Yeom, Seok Ran; Min, Mun Ki
2017-08-01
The hydraulic height control systems of hospital beds provide convenience and shock absorption. However, movements in a hydraulic bed may reduce the effectiveness of chest compressions. This study investigated the effects of hydraulic bed movement on chest compressions. Twenty-eight participants were recruited for this study. All participants performed chest compressions for 2min on a manikin and three surfaces: the floor (Day 1), a firm plywood bed (Day 2), and a hydraulic bed (Day 3). We considered 28 participants of Day 1 as control and each 28 participants of Day 2 and Day 3 as study subjects. The compression rates, depths, and good compression ratios (>5-cm compressions/all compressions) were compared between the three surfaces. When we compared the three surfaces, we did not detect a significant difference in the speed of chest compressions (p=0.582). However, significantly lower values were observed on the hydraulic bed in terms of compression depth (p=0.001) and the good compression ratio (p=0.003) compared to floor compressions. When we compared the plywood and hydraulic beds, we did not detect significant differences in compression depth (p=0.351) and the good compression ratio (p=0.391). These results indicate that the movements in our hydraulic bed were associated with a non-statistically significant trend towards lower-quality chest compressions. Copyright © 2017 Elsevier Inc. All rights reserved.
Hindered erosion: The biological mediation of noncohesive sediment behavior
NASA Astrophysics Data System (ADS)
Chen, X. D.; Zhang, C. K.; Paterson, D. M.; Thompson, C. E. L.; Townend, I. H.; Gong, Z.; Zhou, Z.; Feng, Q.
2017-06-01
Extracellular polymeric substances (EPS) are ubiquitous on tidal flats but their impact on sediment erosion has not been fully understood. Laboratory-controlled sediment beds were incubated with Bacillus subtilis for 5, 10, 16, and 22 days before the erosion experiments, to study the temporal and spatial variations in sediment stability caused by the bacterial secreted EPS. We found the biosedimentary systems showed different erosional behavior related to biofilm maturity and EPS distribution. In the first stage (5 days), the biosedimentary bed was more easily eroded than the clean sediment. With increasing growth period, bound EPS became more widely distributed over the vertical profile resulting in bed stabilization. After 22 days, the bound EPS was highly concentrated within a surface biofilm, but a relatively high content also extended to a depth of 5 mm and then decayed sharply with depth. The biofilm increased the critical shear stress of the bed and furthermore, it enabled the bed to withstand threshold conditions for an increased period of time as the biofilm degraded before eroding. After the loss of biofilm protection, the high EPS content in the sublayers continued to stabilize the sediment (hindered erosion) by binding individual grains, as visualized by electron microscopy. Consequently, the bed strength did not immediately revert to the abiotic condition but progressively adjusted, reflecting the depth profile of the EPS. Our experiments highlight the need to treat the EPS-sediment conditioning as a bed-age associated and depth-dependent variable that should be included in the next generation of sediment transport models.
Legleiter, Carl J.; Kinzel, Paul J.; Overstreet, Brandon T.
2011-01-01
Remote sensing offers an efficient means of mapping bathymetry in river systems, but this approach has been applied primarily to clear-flowing, gravel bed streams. This study used field spectroscopy and radiative transfer modeling to assess the feasibility of spectrally based depth retrieval in a sand-bed river with a higher suspended sediment concentration (SSC) and greater water turbidity. Attenuation of light within the water column was characterized by measuring the amount of downwelling radiant energy at different depths and calculating a diffuse attenuation coefficient, Kd. Attenuation was strongest in blue and near-infrared bands due to scattering by suspended sediment and absorption by water, respectively. Even for red wavelengths with the lowest values of Kd, only a small fraction of the incident light propagated to the bed, restricting the range of depths amenable to remote sensing. Spectra recorded above the water surface were used to establish a strong, linear relationship (R2 = 0.949) between flow depth and a simple band ratio; even under moderately turbid conditions, depth remained the primary control on reflectance. Constraints on depth retrieval were examined via numerical modeling of radiative transfer within the atmosphere and water column. SSC and sensor radiometric resolution limited both the maximum detectable depth and the precision of image-derived depth estimates. Thus, although field spectra indicated that the bathymetry of turbid channels could be remotely mapped, model results implied that depth retrieval in sediment-laden rivers would be limited to shallow depths (on the order of 0.5 m) and subject to a significant degree of uncertainty.
NASA Astrophysics Data System (ADS)
Sapozhnikov, B. G.; Gorbunova, A. M.; Zelenkova, Yu O.; Shiriaeva, N. P.
2017-10-01
The oxidative recrystallization of spent nuclear fuel running in the vibrofluidized bed mode requires a continuous supply or removal of heat, which can be performed using various techniques. The most advantageous of these is supplying a coolant gas over the surface of the vibrofluidized bed. However, the available information about such heat exchange processes is limited. External heat exchange between the surface of the vibrofluidized bed and the blown coolant gas was investigated using fuel simulators, which construction was based on narrow-fraction electrocorundum exhibiting the particle size of dP = 0,07 ÷ 1,25 mm in a device with the diameter of 100 mm and the height of 160 mm according to a stationary technique. The data on the influence of the coolant flow, the amplitude and frequency of vibration, as well as the particle size of the dispersed material were obtained. In order to explain the results obtained, we used data on the pulsations of the gas flow velocities occurring in the vibrofluidized bed and depending on the parameters listed above.
Fluidized combustion of coal. [to limit SO2 and NOx emissions
NASA Technical Reports Server (NTRS)
Pope, M.
1978-01-01
A combustion technology that permits the burning of low quality coal, and other fuels, while maintaining stack emissions within State and Federal EPA limits is discussed. Low quality fuels can be burned directly in fluidized beds while taking advantage of low furnace temperatures and chemical activity within the bed to limit SO2 and NOx emissions. The excellent heat transfer characteristics of the fluidized beds also result in a reduction of total heat transfer surface requirements. Tests on beds operating at pressures of one to ten atmospheres, at temperatures as high as 1600 F, and with gas velocities in the vicinity of four to twelve feet per second, have proven the concept. The progress that has been made in the development of fluidized bed combustion technology and work currently underway are discussed.
The report describes the second phase of studies on the CAFB process for desulfurizing gasification of heavy fuel oil in a bed of hot lime. The first continuous pilot plant test with U.S. limestone BCR 1691 experienced local stone sintering and severe production of sticky dust du...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zacher, Alan H.; Elliott, Douglas C.; Olarte, Mariefel V.
Liquid transportation fuel blend-stocks were produced by pyrolysis and catalytic upgrading of woody residue biomass. Mountain pine beetle killed wood and hog fuel from a saw mill were pyrolyzed in a 1 kg/h fluidized bed reactor and subsequently upgraded to hydrocarbons in a continuous fixed bed hydrotreater. Upgrading was performed by catalytic hydrotreatment in a two-stage bed at 170°C and 405°C with a per bed LHSV between 0.17 and 0.19. The overall yields from biomass to upgraded fuel were similar for both feeds: 24-25% despite the differences in bio-oil (intermediate) mass yield. Pyrolysis bio-oil mass yield was 61% from MPBKmore » wood, and subsequent upgrading of the bio-oil gave an average mass yield of 41% to liquid fuel blend stocks. Hydrogen was consumed at an average of 0.042g/g of bio-oil fed, with final oxygen content in the product fuel ranging from 0.31% to 1.58% over the course of the test. Comparatively for hog fuel, pyrolysis bio-oil mass yield was lower at 54% due to inorganics in the biomass, but subsequent upgrading of that bio-oil had an average mass yield of 45% to liquid fuel, resulting in a similar final mass yield to fuel compared to the cleaner MPBK wood. Hydrogen consumption for the hog fuel upgrading averaged 0.041 g/g of bio-oil fed, and the final oxygen content of the product fuel ranged from 0.09% to 2.4% over the run. While it was confirmed that inorganic laded biomass yields less bio-oil, this work demonstrated that the resultant bio-oil can be upgraded to hydrocarbons at a higher yield than bio-oil from clean wood. Thus the final hydrocarbon yield from clean or residue biomass pyrolysis/upgrading was similar.« less
NASA Astrophysics Data System (ADS)
Gwiazda, R.; Paull, C. K.; Kieft, B.; Bird, L.; Klimov, D.; Herlien, R.; Sherman, A.; McCann, M. P.; Sumner, E.; Talling, P.; Xu, J.; Parsons, D. R.; Maier, K. L.; Barry, J.
2017-12-01
Over a period of 18 months the Coordinated Canyon Experiment documented the passage of at least 15 sediment density flows in Monterey Canyon, offshore California, with an array of moorings and sensors placed from 200 m to 1,850 m water depths. Free-standing `smart' boulders (Benthic Event Detectors, BED) and a 1,000 Kg tripod with an Acoustic Monitoring Transponder (AMT) and a BED attached to it were deployed in the upper canyon to detect seabed motions during sediment density flows. BEDs consist of spheres made of a combination of metal, plastic and syntactic foam ballasted to 2.1 g/cm3 density, containing accelerometers along three orthogonal axes, a time recorder, and a pressure sensor inside a pressure case rated to 500 m water depth. Acceleration of ≥ 0.008 G triggers data collection at a recording rate of 50 Hz until motion stops. Built-in acoustic beacons and modems allow for BEDs to be relocated, and data to be downloaded, even when BEDs are buried in sediment to depths of >1 m. Over the course of the study, depth changes and velocities of 24 BED movements during 9 events were recorded. BEDs moved at the velocity of the propagation of the flows down canyon, as documented by the time of arrival of the flow at successive sensors, but sometimes travelled at lower speeds. Seven movements of the AMT tripod were also recorded. In the largest of these, the heavy AMT tripod was transported over a distance of 4.1 Km. For at least four of these seven motions the AMT temperature record indicates that the movements were initiated while the tripod was buried. In one particular event simultaneous movements of five BEDs over a 100 m depth range indicate that the entire seabed was in motion at the same time over a canyon distance of 3.5 Km. Reconstructions of instrument motions in this event from their internally recorded acceleration data show that the AMT displacement was at the front of the event and had no rotational component. In contrast, free standing BEDs at the same depth advanced through a combination of translational and rotational motion. These data are consistent with sediment density flows involving fluidization and motion of a segment of the seafloor over long distances.
Separation of particulate from flue gas of fossil fuel combustion and gasification
Yang, W.C.; Newby, R.A.; Lippert, T.E.
1997-08-05
The gas from combustion or gasification of fossil fuel contains fly ash and other particulates. The fly ash is separated from the gas in a plurality of standleg moving granular-bed filter modules. Each module includes a dipleg through which the bed media flows into the standleg. The bed media forms a first filter bed having an upper mass having a first frusto-conical surface in a frusto-conical member at the entrance to the standleg and a lower mass having a second frusto-conical surface of substantially greater area than the first surface after it passes through the standleg. A second filter media bed may be formed above the first filter media bed. The gas is fed tangentially into the module above the first surface. The fly ash is captured on the first frusto-conical surface and within the bed mass. The processed gas flows out through the second frusto-conical surface and then through the second filter bed, if present. The bed media is cleaned of the captured fly ash and recirculated to the moving granular bed filter. Alternatively, the bed media may be composed of the ash from the combustion which is pelletized to form agglomerates. The ash flows through the bed only once; it is not recycled. 11 figs.
Separation of particulate from flue gas of fossil fuel combustion and gasification
Yang, Wen-Ching; Newby, Richard A.; Lippert, Thomas E.
1997-01-01
The gas from combustion or gasification of fossil fuel contains flyash and other particulate. The flyash is separated from the gas in a plurality of standleg moving granular-bed filter modules. Each module includes a dipleg through which the bed media flows into the standleg. The bed media forms a first filter bed having an upper mass having a first frusto-conical surface in a frusto-conical member at the entrance to the standleg and a lower mass having a second frusto-conical surface of substantially greater area than the first surface after it passes through the standleg. A second filter media bed may be formed above the first filter media bed. The gas is fed tangentially into the module above the first surface. The flyash is captured on the first frusto-conical surface and within the bed mass. The processed gas flows out through the second frusto-conical surface and then through the second filter bed, if present. The bed media is cleaned of the captured flyash and recirculated to the moving granular bed filter. Alternatively, the bed media may be composed of the ash from the combustion which is pelletized to form agglomerates. The ash flows through the bed only once; it is not recycled.
NASA Astrophysics Data System (ADS)
Mondal, Naba Kumar; Roy, Arunabha
2018-06-01
Contamination of underground water with fluoride (F) is a tremendous health hazard. Excessive F (> 1.5 mg/L) in drinking water can cause both dental and skeletal fluorosis. A fixed-bed column experiments were carried out with the operating variables such as different initial F concentrations, bed depths, pH and flow rates. Results revealed that the breakthrough time and exhaustion time decrease with increasing flow rate, decreasing bed depth and increasing influent fluoride concentration. The optimized conditions are: 10 mg/L initial fluoride concentration; flow rate 3.4 mL/min, bed depth 3.5 and pH 5. The bed depth service time model and the Thomas model were applied to the experimental results. Both the models were in good agreement with the experimental data for all the process parameters studied except flow rate, indicating that the models were appropriate for removal of F by natural banana peel dust in fix-bed design. Moreover, column adsorption was reversible and the regeneration was accomplished by pumping of 0.1 M NaOH through the loaded banana peel dust column. On the other hand, field water sample analysis data revealed that 86.5% fluoride can be removed under such optimized conditions. From the experimental results, it may be inferred that natural banana peel dust is an effective adsorbent for defluoridation of water.
NASA Astrophysics Data System (ADS)
Chen, Y. Q.; Chen, H. P.; Yang, H. P.; Wang, X. H.; Zhang, S. H.
With the depleting of fossil fuel and environmental polluting increasing, the utilization of biomass resources caught increasing concern. Biomass gasification in fluidized bed, as one promising technology, developed quickly. However, serious agglomeration was displayed as biomass ash reacted with bed material (silica sand) at higher temperature. It hindered the wide utilization of CFB gasifier. The objective ofthis work is to investigate the agglomeration behavior between biomass ash and silica sand, and catch the inherent mechanism. Firstly, the influence of ash compounds on the agglomeration behavior was analyzed with biomass ash and synthesis ash compounds addition in fixed bed as ash sample mixed with bed material evenly before every trial. The reaction temperature was set 850°C that is the operated temperature for many fluidized bed gasificated biomass fuels. Then the influence of reaction time was analyzed. The characteristics of the agglomerated silica sand particles were analyzed by the XRD. Finally, it was simulated with HSC computer mode based on thermodynamic equilibrium. It was observed that when the ratio of the biomass ash to the silica sand was above 0.2, the agglomeration was observed. With the increase of the reaction time, more silica sand particles agglomerated with the biomass ash. There are two kinds of silicate eutecticum investigated by the XRD. It is of great significance for the running ofCFB biomass gasifier and the development ofbiomass utilization technology.
Predictive model for local scour downstream of hydrokinetic turbines in erodible channels
NASA Astrophysics Data System (ADS)
Musa, Mirko; Heisel, Michael; Guala, Michele
2018-02-01
A modeling framework is derived to predict the scour induced by marine hydrokinetic turbines installed on fluvial or tidal erodible bed surfaces. Following recent advances in bridge scour formulation, the phenomenological theory of turbulence is applied to describe the flow structures that dictate the equilibrium scour depth condition at the turbine base. Using scaling arguments, we link the turbine operating conditions to the flow structures and scour depth through the drag force exerted by the device on the flow. The resulting theoretical model predicts scour depth using dimensionless parameters and considers two potential scenarios depending on the proximity of the turbine rotor to the erodible bed. The model is validated at the laboratory scale with experimental data comprising the two sediment mobility regimes (clear water and live bed), different turbine configurations, hydraulic settings, bed material compositions, and migrating bedform types. The present work provides future developers of flow energy conversion technologies with a physics-based predictive formula for local scour depth beneficial to feasibility studies and anchoring system design. A potential prototype-scale deployment in a large sandy river is also considered with our model to quantify how the expected scour depth varies as a function of the flow discharge and rotor diameter.
Dąbrowski, Wojciech; Karolinczak, Beata; Gajewska, Magdalena; Wojciechowska, Ewa
2017-01-01
The paper presents the effects of applying subsurface vertical flow constructed wetlands (SS VF) for the treatment of reject water generated in the process of aerobic sewage sludge stabilization in the biggest dairy wastewater treatment plant (WWTP) in Poland. Two SS VF beds were built: bed (A) with 0.65 m depth and bed (B) with 1.0 m depth, planted with reeds. Beds were fed with reject water with hydraulic load of 0.1 m d -1 in order to establish the differences in treatment efficiency. During an eight-months research period, a high removal efficiency of predominant pollutants was shown: BOD 5 88.1% (A) and 90.5% (B); COD 84.5% (A) and 87.5% (B); TSS 87.6% (A) and 91.9% (B); TKN 82.4% (A) and 76.5% (B); N-NH 4 + 89.2% (A) and 85.7% (B); TP 30.2% (A) and 40.6% (B). There were not statistically significant differences in the removal efficiencies between bed (B) with 1.0 m depth and bed (A) with 0.65 m depth. The research indicated that SS VF beds could be successfully applied to reject water treatment in dairy WWTPs. The study proved that the use of SS VF beds in full scale in dairy WWTPs would result in a significant decrease in pollutants' load in reject water. In the analyzed case, decreasing the load of ammonia nitrogen was of greatest importance, as it constituted 58% of the total load treated in dairy WWTP and posed a hazard to the stability of the treatment process.
Fluidized bed combustion of pelletized biomass and waste-derived fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chirone, R.; Scala, F.; Solimene, R.
2008-10-15
The fluidized bed combustion of three pelletized biogenic fuels (sewage sludge, wood, and straw) has been investigated with a combination of experimental techniques. The fuels have been characterized from the standpoints of patterns and rates of fuel devolatilization and char burnout, extent of attrition and fragmentation, and their relevance to the fuel particle size distribution and the amount and size distribution of primary ash particles. Results highlight differences and similarities among the three fuels tested. The fuels were all characterized by limited primary fragmentation and relatively long devolatilization times, as compared with the time scale of particle dispersion away frommore » the fuel feeding ports in practical FBC. Both features are favorable to effective lateral distribution of volatile matter across the combustor cross section. The three fuels exhibited distinctively different char conversion patterns. The high-ash pelletized sludge burned according to the shrinking core conversion pattern with negligible occurrence of secondary fragmentation. The low-ash pelletized wood burned according to the shrinking particle conversion pattern with extensive occurrence of secondary fragmentation. The medium-ash pelletized straw yielded char particles with a hollow structure, resembling big cenospheres, characterized by a coherent inorganic outer layer strong enough to prevent particle fragmentation. Inert bed particles were permanently attached to the hollow pellets as they were incorporated into ash melts. Carbon elutriation rates were very small for all the fuels tested. For pelletized sludge and straw, this was mostly due to the shielding effect of the coherent ash skeleton. For the wood pellet, carbon attrition was extensive, but was largely counterbalanced by effective afterburning due to the large intrinsic reactivity of attrited char fines. The impact of carbon attrition on combustion efficiency was negligible for all the fuels tested. The size distribution of primary ash particles liberated upon complete carbon burnoff largely reflected the combustion pattern of each fuel. Primary ash particles of size nearly equal to that of the parent fuel were generated upon complete burnoff of the pelletized sludge. Nonetheless, secondary attrition of primary ash from pelletized sludge is large, to the point where generation of fine ash would be extensive over the typical residence time of bed ash in fluidized bed combustors. Very few and relatively fine primary ash particles were released after complete burnoff of wood pellets. Primary ash particles remaining after complete burnoff of pelletized straw had sizes and shapes that were largely controlled by the occurrence of ash agglomeration phenomena. (author)« less
Temporal and spatial variability in thalweg profiles of a gravel-bed river
Madej, Mary Ann
1999-01-01
This study used successive longitudinal thalweg profiles in gravel-bed rivers to monitor changes in bed topography following floods and associated large sediment inputs. Variations in channel bed elevations, distributions of residual water depths, percentage of channel length occupied by riffles, and a spatial autocorrelation coefficient (Moran's I) were used to quantify changes in morphological diversity and spatial structure in Redwood Creek basin, northwestern California. Bed topography in Redwood Creek and its major tributaries consists primarily of a series of pools and riffles. The size, frequency and spatial distribution of the pools and riffles have changed significantly during the past 20 years. Following large floods and high sediment input in Redwood Creek and its tributaries in 1975, variation in channel bed elevations was low and the percentage of the channel length occupied by riffles was high. Over the next 20 years, variation in bed elevations increased while the length of channel occupied by riffles decreased. An index [(standard deviation of residual water depth/bankfull depth) × 100] was developed to compare variations in bed elevation over a range of stream sizes, with a higher index being indicative of greater morphological diversity. Spatial autocorrelation in the bed elevation data was apparent at both fine and coarse scales in many of the thalweg profiles and the observed spatial pattern of bed elevations was found to be related to the dominant channel material and the time since disturbance. River reaches in which forced pools dominated, and in which large woody debris and bed particles could not be easily mobilized, exhibited a random distribution of bed elevations. In contrast, in reaches where alternate bars dominated, and both wood and gravel were readily transported, regularly spaced bed topography developed at a spacing that increased with time since disturbance. This pattern of regularly spaced bed features was reversed following a 12-year flood when bed elevations became more randomly arranged.
Investigation of pier scour in coarse-bed streams in Montana, 2001 through 2007
Holnbeck, Stephen R.
2011-01-01
A primary goal of ongoing field research of bridge scour is improvement of scour-prediction equations so that pier-scour depth is predicted accurately-an important element of hydraulic analysis and design of highway bridges that cross streams, rivers, and other waterways. Scour depth for piers in streambeds with a mixture of sand, gravel, cobbles, and boulders (coarse-bed streams, which are common in Montana) generally is less than the scour depth in finer-grained (sandy) streambeds under similar conditions. That difference is attributed to an armor layer of coarser material. Pier-scour data from the U.S. Geological Survey were used in this study to develop a bed-material correction factor, which was incorporated into the Federal Highway Administration's recommended equation for computing pier scour. This report describes results of a study of pier scour in coarse-bed streams at 59 bridge sites during 2001-2007 in the mountain and foothill regions of western Montana. Respective drainage areas ranged from about 3 square miles (mi2) to almost 20,000 mi2. Data collected and analyzed for this study included 103 pier-scour measurements; the report further describes data collection, shows expansion of the national coarse pier-scour database, discusses use of the new data in evaluation of relative accuracy of various predictive equations, and demonstrates how differences in size and gradation between surface bed material and shallow-subsurface bed material might relate to pier scour. Nearly all measurements were made under clear-water conditions with no incoming sediment supply to the bridge opening. Half of the measurements showed approach velocities that equaled or surpassed the critical velocity for incipient motion of bed material, possibly indicating that measurements were made very near the threshold between clear-water and live-bed scour, where maximum scour was shown in laboratory studies. Data collected in this study were compared to selected pier-scour data from the nationwide Bridge Scour Data Management System (BSDMS), to show the effect of bed-material size and gradation on scour depth. Unsteady field flow conditions and armoring by coarser material reduced scour relative to the clear-water/sandy-bed laboratory results at steady flow. The new correction factor and the standard scour equation produced the most accurate estimates of scour depth in armored, coarse-bed conditions. Maximum relative scour occurred at similar velocity across variations in bed material and gradation. Pier scour decreased with increased variation in particle size and gradation.
Reducing mode circulating fluid bed combustion
Lin, Yung-Yi; Sadhukhan, Pasupati; Fraley, Lowell D.; Hsiao, Keh-Hsien
1986-01-01
A method for combustion of sulfur-containing fuel in a circulating fluid bed combustion system wherein the fuel is burned in a primary combustion zone under reducing conditions and sulfur captured as alkaline sulfide. The reducing gas formed is oxidized to combustion gas which is then separated from solids containing alkaline sulfide. The separated solids are then oxidized and recycled to the primary combustion zone.
Legleiter, C.J.; Kinzel, P.J.; Overstreet, B.T.
2011-01-01
Remote sensing offers an efficient means of mapping bathymetry in river systems, but this approach has been applied primarily to clear-flowing, gravel bed streams. This study used field spectroscopy and radiative transfer modeling to assess the feasibility of spectrally based depth retrieval in a sand-bed river with a higher suspended sediment concentration (SSC) and greater water turbidity. Attenuation of light within the water column was characterized by measuring the amount of downwelling radiant energy at different depths and calculating a diffuse attenuation coefficient, Kd. Attenuation was strongest in blue and near-infrared bands due to scattering by suspended sediment and absorption by water, respectively. Even for red wavelengths with the lowest values of Kd, only a small fraction of the incident light propagated to the bed, restricting the range of depths amenable to remote sensing. Spectra recorded above the water surface were used to establish a strong, linear relationship (R2 = 0.949) between flow depth and a simple band ratio; even under moderately turbid conditions, depth remained the primary control on reflectance. Constraints on depth retrieval were examined via numerical modeling of radiative transfer within the atmosphere and water column. SSC and sensor radiometric resolution limited both the maximum detectable depth and the precision of image-derived depth estimates. Thus, although field spectra indicated that the bathymetry of turbid channels could be remotely mapped, model results implied that depth retrieval in sediment-laden rivers would be limited to shallow depths (on the order of 0.5 m) and subject to a significant degree of uncertainty. ?? 2011 by the American Geophysical Union.
Solid fuel feed system for a fluidized bed
Jones, Brian C.
1982-01-01
A fluidized bed for the combustion of coal, with limestone, is replenished with crushed coal from a system discharging the coal laterally from a station below the surface level of the bed. A compartment, or feed box, is mounted at one side of the bed and its interior separated from the bed by a weir plate beneath which the coal flows laterally into the bed while bed material is received into the compartment above the plate to maintain a predetermined minimum level of material in the compartment.
Zeng, Xi; Shao, Ruyi; Wang, Fang; Dong, Pengwei; Yu, Jian; Xu, Guangwen
2016-04-01
A fluidized bed two-stage gasification process, consisting of a fluidized-bed (FB) pyrolyzer and a transport fluidized bed (TFB) gasifier, has been proposed to gasify biomass for fuel gas production with low tar content. On the basis of our previous fundamental study, an autothermal two-stage gasifier has been designed and built for gasify a kind of Chinese herb residue with a treating capacity of 600 kg/h. The testing data in the operational stable stage of the industrial demonstration plant showed that when keeping the reaction temperatures of pyrolyzer and gasifier respectively at about 700 °C and 850 °C, the heating value of fuel gas can reach 1200 kcal/Nm(3), and the tar content in the produced fuel gas was about 0.4 g/Nm(3). The results from this pilot industrial demonstration plant fully verified the feasibility and technical features of the proposed FB two-stage gasification process. Copyright © 2016. Published by Elsevier Ltd.
Combustion of peanut and tamarind shells in a conical fluidized-bed combustor: a comparative study.
Kuprianov, Vladimir I; Arromdee, Porametr
2013-07-01
Combustion of peanut and tamarind shells was studied in the conical fluidized-bed combustor using alumina sand as the bed material to prevent bed agglomeration. Morphological, thermogravimetric and kinetic characteristics were investigated to compare thermal and combustion reactivity between the biomass fuels. The thermogravimetric kinetics of the biomasses was fitted using the Coats-Redfern method. Experimental tests on the combustor were performed at 60 and 45 kg/h fuel feed rates, with excess air within 20-80%. Temperature and gas concentrations were measured along radial and axial directions in the reactor and at stack. The axial temperature and gas concentration profiles inside the combustor exhibited sensible effects of fuel properties and operating conditions on combustion and emission performance. High (≈ 99%) combustion efficiency and acceptable levels of CO, CxHy, and NO emissions are achievable when firing peanut shells at excess air of about 40%, whereas 60% is more preferable for burning tamarind shells. Copyright © 2013 Elsevier Ltd. All rights reserved.
Estimating maximum depth distribution of seagrass using underwater videography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Norris, J.G.; Wyllie-Echeverria, S.
1997-06-01
The maximum depth distribution of eelgrass (Zostera marina) beds in Willapa Bay, Washington appears to be limited by light penetration which is likely related to water turbidity. Using underwater videographic techniques we estimated that the maximum depth penetration in the less turbid outer bay was -5.85 ft (MILW) and in the more turbid inner bay was only -1.59 ft (MLLW). Eelgrass beds had well defined deepwater edges and no eelgrass was observed in the deep channels of the bay. The results from this study suggest that aerial photographs taken during low tide periods are capable of recording the majority ofmore » eelgrass beds in Willapa Bay.« less
An Experimental Investigation of Sewage Sludge Gasification in a Fluidized Bed Reactor
Calvo, L. F.; García, A. I.; Otero, M.
2013-01-01
The gasification of sewage sludge was carried out in a simple atmospheric fluidized bed gasifier. Flow and fuel feed rate were adjusted for experimentally obtaining an air mass : fuel mass ratio (A/F) of 0.2 < A/F < 0.4. Fuel characterization, mass and power balances, produced gas composition, gas phase alkali and ammonia, tar concentration, agglomeration tendencies, and gas efficiencies were assessed. Although accumulation of material inside the reactor was a main problem, this was avoided by removing and adding bed media along gasification. This allowed improving the process heat transfer and, therefore, gasification efficiency. The heating value of the produced gas was 8.4 MJ/Nm, attaining a hot gas efficiency of 70% and a cold gas efficiency of 57%. PMID:24453863
Madej, Mary Ann
2001-01-01
Large, episodic inputs of coarse sediment (sediment pulses) in forested, mountain streams may result in changes in the size and arrangement of bed forms and in channel roughness. A conceptual model of channel organization delineates trajectories of response to sediment pulses for many types of gravel bed channels. Channels exhibited self‐organizing behavior to various degrees based on channel gradient, presence of large in‐channel wood or other forcing elements, the size of the sediment pulse, and the number of bed‐mobilizing flows since disturbance. Typical channel changes following a sediment pulse were initial decreases in water depth, in variability of bed elevations, and in the regularity of bed form spacing. Trajectories of change subsequently showed increased average water depth, more variable and complex bed topography, and increased uniformity of bed form spacing. Bed form spacing in streams with abundant forcing elements developed at a shorter spatial scale (two to five channel widths) than in streams without such forcing mechanisms (five to 10 channel widths). Channel roughness increased as bed forms developed.
Coal fired fluid bed module for a single elevation style fluid bed power plant
Waryasz, Richard E.
1979-01-01
A fluidized bed for the burning of pulverized fuel having a specific waterwall arrangement that comprises a structurally reinforced framework of wall tubes. The wall tubes are reversely bent from opposite sides and then bonded together to form tie rods that extend across the bed to support the lateral walls thereof.
Evaluation of pier-scour equations for coarse-bed streams
Chase, Katherine J.; Holnbeck, Stephen R.
2004-01-01
Streambed scour at bridge piers is among the leading causes of bridge failure in the United States. Several pier-scour equations have been developed to calculate potential scour depths at existing and proposed bridges. Because many pier-scour equations are based on data from laboratory flumes and from cohesionless silt- and sand-bottomed streams, they tend to overestimate scour for piers in coarse-bed materials. Several equations have been developed to incorporate the mitigating effects of large particle sizes on pier scour, but further investigations are needed to evaluate how accurately pier-scour depths calculated by these equations match measured field data. This report, prepared in cooperation with the Montana Department of Transportation, describes the evaluation of five pier-scour equations for coarse-bed streams. Pier-scour and associated bridge-geometry, bed-material, and streamflow-measurement data at bridges over coarse-bed streams in Montana, Alaska, Maryland, Ohio, and Virginia were selected from the Bridge Scour Data Management System. Pier scour calculated using the Simplified Chinese equation, the Froehlich equation, the Froehlich design equation, the HEC-18/Jones equation and the HEC-18/Mueller equation for flood events with approximate recurrence intervals of less than 2 to 100 years were compared to 42 pier-scour measurements. Comparison of results showed that pier-scour depths calculated with the HEC-18/Mueller equation were seldom smaller than measured pier-scour depths. In addition, pier-scour depths calculated using the HEC-18/Mueller equation were closer to measured scour than for the other equations that did not underestimate pier scour. However, more data are needed from coarse-bed streams and from less frequent flood events to further evaluate pier-scour equations.
Steam reformer with catalytic combustor
Voecks, Gerald E.
1990-03-20
A steam reformer is disclosed having an annular steam reforming catalyst bed formed by concentric cylinders and having a catalytic combustor located at the center of the innermost cylinder. Fuel is fed into the interior of the catalytic combustor and air is directed at the top of the combustor, creating a catalytic reaction which provides sufficient heat so as to maintain the catalytic reaction in the steam reforming catalyst bed. Alternatively, air is fed into the interior of the catalytic combustor and a fuel mixture is directed at the top. The catalytic combustor provides enhanced radiant and convective heat transfer to the reformer catalyst bed.
Steam reformer with catalytic combustor
NASA Technical Reports Server (NTRS)
Voecks, Gerald E. (Inventor)
1990-01-01
A steam reformer is disclosed having an annular steam reforming catalyst bed formed by concentric cylinders and having a catalytic combustor located at the center of the innermost cylinder. Fuel is fed into the interior of the catalytic combustor and air is directed at the top of the combustor, creating a catalytic reaction which provides sufficient heat so as to maintain the catalytic reaction in the steam reforming catalyst bed. Alternatively, air is fed into the interior of the catalytic combustor and a fuel mixture is directed at the top. The catalytic combustor provides enhanced radiant and convective heat transfer to the reformer catalyst bed.
Application of CaO-Based Bed Material for Dual Fluidized Bed Steam Biomass Gasification
NASA Astrophysics Data System (ADS)
Koppatz, S.; Pfeifer, C.; Kreuzeder, A.; Soukup, G.; Hofbauer, H.
Gasification of biomass is a suitable option for decentralized energy supply based on renewable sources in the range of up to 50 MW fuel input. The paper presents the dual fluidized bed (DFB) steam gasification process, which is applied to generate high quality and nitrogen-free product gas. Essential part of the DFB process is the bed material used in the fluidized reactors, which has significant impact on the product gas quality. By the use of catalytically active bed materials the performance of the overall process is increased, since the bed material favors reactions of the steam gasification. In particular, tar reforming reactions are favored. Within the paper, the pilot plant based on the DFB process with 100kW fuel input at Vienna University of Technology, Austria is presented. Actual investigations with focus on CaO-based bed materials (limestone) as well as with natural olivine as bed material were carried out at the pilot plant. The application of CaO-based bed material shows mainly decreased tar content in the product gas in contrast to experiments with olivine as bed material. The paper presents the results of steam gasification experiments with limestone and olivine, whereby the product gas composition as well as the tar content and the tar composition are outlined.
David Frankman; Brent W. Webb; Bret W. Butler
2007-01-01
Thermal radiation emission from a simulated black flame surface to a fuel bed is analyzed by a ray-tracing technique, tracking emission from points along the flame to locations along the fuel bed while accounting for absorption by environmental water vapor in the intervening medium. The Spectral Line Weighted-sum-of-gray-gases approach was adopted for treating the...
Matthew B. Dickinson; Todd F. Hutchinson; Mark Dietenberger; Frederick Matt; Matthew P. Peters; Jian Yang
2016-01-01
Mesophytic species (esp. Acer rubrum) are increasingly replacing oaks (Quercus spp.) in fire-suppressed, deciduous oak-hickory forests of the eastern US. A pivotal hypothesis is that fuel beds derived from mesophytic litter are less likely than beds derived from oak litter to carry a fire and, if they do, are more likely to...
Anaerobic biodegradation of diesel fuel-contaminated wastewater in a fluidized bed reactor.
Cuenca, M Alvarez; Vezuli, J; Lohi, A; Upreti, S R
2006-06-01
Diesel fuel spills have a major impact on the quality of groundwater. In this work, the performance of an Anaerobic Fluidized Bed Reactor (AFBR) treating synthetic wastewater is experimentally evaluated. The wastewater comprises tap water containing 100, 200 and 300 mg/L of diesel fuel and nutrients. Granular, inert, activated carbon particles are employed to provide support for biomass inside the reactor where diesel fuel is the sole source of carbon for anaerobic microorganisms. For different rates of organic loading, the AFBR performance is evaluated in terms of the removal of diesel fuel as well as chemical oxygen demand (COD) from wastewater. For the aforementioned diesel fuel concentrations and a wastewater flow rate of 1,200 L/day, the COD removal ranges between 61.9 and 84.1%. The concentration of diesel fuel in the effluent is less than 50 mg/L, and meets the Level II groundwater standards of the MUST guidelines of Alberta.
Corbella, Clara; Garfí, Marianna; Puigagut, Jaume
2014-02-01
Sediment microbial fuel cell (sMFC) represents a variation of the typical configuration of a MFC in which energy can be harvested via naturally occurring electropotential differences. Moreover, constructed wetlands show marked redox gradients along the depth which could be exploited for energy production via sMFC. In spite of the potential application of sMFC to constructed wetlands, there is almost no published work on the topic. The main objective of the present work was to define the best operational and design conditions of sub-surface flow constructed wetlands (SSF CWs) under which energy production with microbial fuel cells (MFCs) would be maximized. To this aim, a pilot plant based on SSF CW treating domestic sewage was operated during six months. Redox gradients along the depth of SSF CWs were determined as function of hydraulic regime (continuous vs discontinuous) and the presence of macrophytes in two sampling campaigns (after three and six months of plant operation). Redox potential (EH) within the wetlands was analysed at 5, 15 and 25 cm. Results obtained indicated that the maximum redox gradient was between the surface and the bottom of the bed for continuous planted wetlands (407.7 ± 73.8 mV) and, to a lesser extent, between the surface and the middle part of the wetland (356.5 ± 76.7 mV). Finally, the maximum redox gradients obtained for planted wetlands operated under continuous flow regime would lead to a power production of about 16 mW/m(2). © 2013.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 4 2011-01-01 2011-01-01 false Use of fluidized bed combustion not feasible-general... FUELS NEW FACILITIES General Requirements for Exemptions § 503.10 Use of fluidized bed combustion not... finds on a site-specific or generic basis that use of a method of fluidized bed combustion of an...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 4 2013-01-01 2013-01-01 false Use of fluidized bed combustion not feasible-general... FUELS NEW FACILITIES General Requirements for Exemptions § 503.10 Use of fluidized bed combustion not... finds on a site-specific or generic basis that use of a method of fluidized bed combustion of an...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Use of fluidized bed combustion not feasible-general... FUELS NEW FACILITIES General Requirements for Exemptions § 503.10 Use of fluidized bed combustion not... finds on a site-specific or generic basis that use of a method of fluidized bed combustion of an...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 4 2012-01-01 2012-01-01 false Use of fluidized bed combustion not feasible-general... FUELS NEW FACILITIES General Requirements for Exemptions § 503.10 Use of fluidized bed combustion not... finds on a site-specific or generic basis that use of a method of fluidized bed combustion of an...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 4 2014-01-01 2014-01-01 false Use of fluidized bed combustion not feasible-general... FUELS NEW FACILITIES General Requirements for Exemptions § 503.10 Use of fluidized bed combustion not... finds on a site-specific or generic basis that use of a method of fluidized bed combustion of an...
NASA Technical Reports Server (NTRS)
Moran, Robert P.
2013-01-01
A review of literature associated with Pebble Bed and Particle Bed reactor core research has revealed a systemic problem inherent to reactor core concepts which utilize randomized rather than structured coolant channel flow paths. For both the Pebble Bed and Particle Bed Reactor designs; case studies reveal that for indeterminate reasons, regions within the core would suffer from excessive heating leading to thermal runaway and localized fuel melting. A thermal Computational Fluid Dynamics model was utilized to verify that In both the Pebble Bed and Particle Bed Reactor concepts randomized coolant channel pathways combined with localized high temperature regions would work together to resist the flow of coolant diverting it away from where it is needed the most to cooler less resistive pathways where it is needed the least. In other words given the choice via randomized coolant pathways the reactor coolant will take the path of least resistance, and hot zones offer the highest resistance. Having identified the relationship between randomized coolant channel pathways and localized fuel melting it is now safe to assume that other reactor concepts that utilize randomized coolant pathways such as the foam core reactor are also susceptible to this phenomenon.
Fluidized bed gasification of industrial solid recovered fuels.
Arena, Umberto; Di Gregorio, Fabrizio
2016-04-01
The study evaluates the technical feasibility of the fluidized bed gasification of three solid recovered fuels (SRFs), obtained as co-products of a recycling process. The SRFs were pelletized and fed to a pilot scale bubbling fluidized bed reactor, operated in gasification and co-gasification mode. The tests were carried out under conditions of thermal and chemical steady state, with a bed of olivine particles and at different values of equivalence ratio. The results provide a complete syngas characterization, in terms of its heating value and composition (including tars, particulates, and acid/basic pollutants) and of the chemical and physical characterization of bed material and entrained fines collected at the cyclone outlet. The feasibility of the fluidized bed gasification process of the different SRFs was evaluated with the support of a material and substance flow analysis, and a feedstock energy analysis. The results confirm the flexibility of fluidized bed reactor, which makes it one of the preferable technologies for the gasification of different kind of wastes, even in co-gasification mode. The fluidized bed gasification process of the tested SRFs appears technically feasible, yielding a syngas of valuable quality for energy applications in an appropriate plant configuration. Copyright © 2016 Elsevier Ltd. All rights reserved.
Bed topography and sand transport responses to a step change in discharge and water depth
USDA-ARS?s Scientific Manuscript database
Ephemeral streams with sand and gravel beds may inherit bed topography caused by previous flow events, resulting in bed topography that is not in equilibrium with flow conditions, complicating the modeling of flow and sediment transport. Major flow events, resulting from rainfall with high intensity...
Application of a Line Laser Scanner for Bed Form Tracking in a Laboratory Flume
NASA Astrophysics Data System (ADS)
de Ruijsscher, T. V.; Hoitink, A. J. F.; Dinnissen, S.; Vermeulen, B.; Hazenberg, P.
2018-03-01
A new measurement method for continuous detection of bed forms in movable bed laboratory experiments is presented and tested. The device consists of a line laser coupled to a 3-D camera, which makes use of triangulation. This allows to measure bed forms during morphodynamic experiments, without removing the water from the flume. A correction is applied for the effect of laser refraction at the air-water interface. We conclude that the absolute measurement error increases with increasing flow velocity, its standard deviation increases with water depth and flow velocity, and the percentage of missing values increases with water depth. Although 71% of the data is lost in a pilot moving bed experiment with sand, still high agreement between flowing water and dry bed measurements is found when a robust LOcally weighted regrESSion (LOESS) procedure is applied. This is promising for bed form tracking applications in laboratory experiments, especially when lightweight sediments like polystyrene are used, which require smaller flow velocities to achieve dynamic similarity to the prototype. This is confirmed in a moving bed experiment with polystyrene.
NASA Technical Reports Server (NTRS)
1971-01-01
The rotating fluidized bed reactor concept is being investigated for possible application in nuclear propulsion systems. Physics calculations show U-233 to be superior to U-235 as a fuel for a cavity reactor of this type. Preliminary estimates of the effect of hydrogen in the reactor, reflector material, and power peaking are given. A preliminary engineering analysis was made for U-235 and U-233 fueled systems. An evaluation of the parameters affecting the design of the system is given, along with the thrust-to-weight ratios. The experimental equipment is described, as are the special photographic techniques and procedures. Characteristics of the fluidized bed and experimental results are given, including photographic evidence of bed fluidization at high rotational velocities.
FUEL3-D: A Spatially Explicit Fractal Fuel Distribution Model
Russell A. Parsons
2006-01-01
Efforts to quantitatively evaluate the effectiveness of fuels treatments are hampered by inconsistencies between the spatial scale at which fuel treatments are implemented and the spatial scale, and detail, with which we model fire and fuel interactions. Central to this scale inconsistency is the resolution at which variability within the fuel bed is considered. Crown...
Comparison of burning characteristics of live and dead chaparral fuels
L. Sun; X. Zhou; S. Mahalingam; D.R. Weise
2006-01-01
Wildfire spread in living vegetation, such as chaparral in southern California, often causes significant damage to infrastructure and ecosystems. The effects of physical characteristics of fuels and fuel beds on live fuel burning and whether live fuels differ fundamentally from dead woody fuels in their burning characteristics are not well understood. Toward this end,...
A comparison of measures of riverbed form for evaluating distributions of benthic fishes
Wildhaber, Mark L.; Lamberson, Peter J.; Galat, David L.
2003-01-01
A method to quantitatively characterize the bed forms of a large river and a preliminary test of the relationship between bed-form characteristics and catch per unit area of benthic fishes is presented. We used analog paper recordings of bathymetric data from the Missouri River and fish data collected from 1996 to 1998 at both the segment (???101-102-km) and macrohabitat (???10-1-100-km) spatial scales. Bed-form traces were transformed to digital data with image analysis software. The slope, mean residual, and SD of the residuals of the regression of depth versus distance along the bottom, as well as mean depth, were estimated for each trace. These four metrics were compared with sinuosity, fractal dimension, critical scale, and maximum mean angle for the same traces. Mean depth and sinuosity differed among segments and macrohabitats. Fractal-based measures of the relative depth of bottom troughs (critical scale) and smoothness (maximum mean angle) differed among segments. Statistics-based measures of the relative depth of bottom troughs (mean residual) and smoothness (SD of the residuals) differed among macrohabitats. Sites with shovelnose sturgeon Scaphirhynchus platorynchus were shallower and smoother than sites without shovelnose sturgeon. When compared with sites without sicklefin chub Macrhybopsis meeki, sites with sicklefin chub were shallower, had shallower troughs, and sloped more out of the flow of the river. Sites with sturgeon chub M. gelida were shallower, had shallower troughs, and were smoother than sites without sturgeon chub. Sites with and without channel catfish Ictalurus punctatus did not differ for any bed-form variables measured. Nonzero shovelnose sturgeon density increased with depth, whereas nonzero sturgeon chub density decreased with depth. Indices of bed-form structure demonstrated potential for describing the distribution and abundance of Missouri River benthic fishes. The observed fish patterns, though limited, provide valuable direction for future research into the habitat preferences of these fishes.
Dune migration in a steep, coarse-bedded stream
Dinehart, Randy L.
1989-01-01
During 1986 and 1987, migrating bed forms composed of coarse sand and fine gravel (d50=1.8 to 9.1 mm) were documented in the North Fork Toutle River at Kid Valley, Washington, at flow velocities ranging from 1.6 to 3.4 m s−1 and depths of 0.8 to 2.2 m. The bed forms (predominantly lower regime dunes) were studied with a sonic depth sounder transducer suspended in the river at a stationary point. Twelve temporal depth-sounding records were collected during storm runoff and nearly steady, average streamflow, with record durations ranging from 37 to 261 min. Waveform height was defined by dune front heights, which ranged from 12 to 70 cm. A weak correlation between flow depth and the standard deviation of bed elevation was noted. Dune front counts and spectral analyses of the temporal records showed that dune crests passed the observation point every 2 to 5 min. Dunes were often superposed on larger bed forms with wave periods between 10 and 30 min. Gradual changes in waveform height and periodicity occurred over several hours during storm runoff. The processes of dune growth and decay were both time-dependent and affected by changes in streamflow. Rates of migration for typical dunes were estimated to be 3 cm s−1, and dune wavelengths were estimated to be 6 to 7 m.
Process for converting cellulosic materials into fuels and chemicals
Scott, Charles D.; Faison, Brendlyn D.; Davison, Brian H.; Woodward, Jonathan
1994-01-01
A process for converting cellulosic materials, such as waste paper, into fuels and chemicals utilizing enzymatic hydrolysis of the major constituent of paper, cellulose. A waste paper slurry is contacted by cellulase in an agitated hydrolyzer. The cellulase is produced from a continuous, columnar, fluidized-bed bioreactor utilizing immobilized microorganisms. An attritor and a cellobiase reactor are coupled to the agitated hydrolyzer to improve reaction efficiency. The cellulase is recycled by an adsorption process. The resulting crude sugars are converted to dilute product in a fluidized-bed bioreactor utilizing microorganisms. The dilute product is concentrated and purified by utilizing distillation and/or a biparticle fluidized-bed bioreactor system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chukbar, B. K., E-mail: bchukbar@mail.ru
Two methods of modeling a double-heterogeneity fuel are studied: the deterministic positioning and the statistical method CORN of the MCU software package. The effect of distribution of microfuel in a pebble bed on the calculation results is studied. The results of verification of the statistical method CORN for the cases of the microfuel concentration up to 170 cm{sup –3} in a pebble bed are presented. The admissibility of homogenization of the microfuel coating with the graphite matrix is studied. The dependence of the reactivity on the relative location of fuel and graphite spheres in a pebble bed is found.
Roy, Bithi; Chen, Luguang; Bhattacharya, Sankar
2014-12-16
This study investigates, for the first time, the NOx, N2O, SO3, and Hg emissions from combustion of a Victorian brown coal in a 10 kWth fluidized bed unit under oxy-fuel combustion conditions. Compared to air combustion, lower NOx emissions and higher N2O formation were observed in the oxy-fuel atmosphere. These NOx reduction and N2O formations were further enhanced with steam in the combustion environment. The NOx concentration level in the flue gas was within the permissible limit in coal-fired power plants in Victoria. Therefore, an additional NOx removal system will not be required using this coal. In contrast, both SO3 and gaseous mercury concentrations were considerably higher under oxy-fuel combustion compared to that in the air combustion. Around 83% of total gaseous mercury released was Hg(0), with the rest emitted as Hg(2+). Therefore, to control harmful Hg(0), a mercury removal system may need to be considered to avoid corrosion in the boiler and CO2 separation units during the oxy-fuel fluidized-bed combustion using this coal.
Improved gas tagging and cover gas combination for nuclear reactor
Gross, K.C.; Laug, M.T.
1983-09-26
The invention discloses the use of stable isotopes of neon and argon, sealed as tags in different cladding nuclear fuel elements to be used in a liquid metal fast breeder reactor. Cladding failure allows fission gases and these tag isotopes to escape and to combine with the cover gas. The isotopes are Ne/sup 20/, Ne/sup 21/ and Ne/sup 22/ and Ar/sup 36/, Ar/sup 38/ and Ar/sup 40/, and the cover gas is He. Serially connected cryogenically operated charcoal beds are used to clean the cover gas and to separate out the tags. The first or cover gas cleanup bed is held between 0 and -25/sup 0/C to remove the fission gases from the cover gas and tags, and the second or tag recovery system bed between -170 and -185/sup 0/C to isolate the tags from the cover gas. Spectrometric analysis is used to identify the specific tags that are recovered, and thus the specific leaking fuel element. By cataloging the fuel element tags to the location of the fuel elements in the reactor, the location of the leaking fuel element can then be determined.
Physical characteristics of chamise as a wildland fuel
Clive M. Countryman; Charles W. Philpot
1970-01-01
Chamise shrubs in southern California were analyzed for the physical characteristics known to affect fire behavior, such as density, fuel loading, and fuel bed porosity. Considerable variation was found, but results are helpful in developing estimates of chamise fuel characteristics for fire control under field conditions.
JPRS Report, Science & Technology, China: Energy
1988-06-29
capacity. There are currently two types of HTGR reactor designs: the particle-bed core , which uses spherical fuel elements, and the rod type core , in...and trial operating experience with the HTGR reactor. Its main design features are as follows. 1. A particle-bed core , continuous fueling and...Favorable for Development of Small-Scale HTGR (Xu Jiming; HE DONGLI GONGCHENG, Feb 88) 47 ERRATUM: In JPRS-CEN-88-003 of 25 April 1988 in article
Numerical simulations of fire spread in a Pinus pinaster needles fuel bed
NASA Astrophysics Data System (ADS)
Menage, D.; Chetehouna, K.; Mell, W.
2012-11-01
The main aim of this paper is to extend the cases of WFDS model validation by comparing its predictions to literature data on a ground fire spreading in a Pinus pinaster needles fuel bed. This comparison is based on the experimental results of Mendes-Lopes and co-workers. This study is performed using the same domain as in the experiments (3.0m×1.2m×0.9m) with a mesh of 49,280 cells. We investigate the influence of wind (varied between 0 and 2 m/s) and moisture content (10 and 18%) on the rate of spread. The WFDS rate of spread is determined using a cross-correlation function of ground temperature profiles. The simulated rate of spread, as well as temperature, compared favourably to experimental values and show the WFDS model capacity to predict ground fires in Pinus Pinaster fuel beds.
Study and Control of Scour below Pipelines under unidirectional flow
NASA Astrophysics Data System (ADS)
Kabiri, Shima; Hoseinzadeh Dalir, Ali
2016-04-01
Water and other fluids pipelines laid on sandy rivers and sea bed change flow pattern around pipelines. These changes increase the bed shear stress and the degree of confusion around the pipes and cause to create scour hole below the pipes. In this situation, the occurrence of scour below the pipelines may lead to instability, fracture and bending and even breakage where cause very severe economic and environmental harms eventually. In this research as well as studying of scour under the pipelines, the bed sill had been used as a new mechanism in order to reduce and control of scour. For this purpose, 3 pipes (smooth) with different diameters (D) were modelled in flow condition of PIC U/Uc=0.8-0.9 in the channel with 11m length, 25cm width and depth of 50 cm. Experiment has been performed in below 2 modes: 1) Scour below a smooth pipe without bed sill 2) Scour below a smooth pipe with bed sill. In the 2nd modes bed sill was located at 4 different distances (L=0,D/4,D/2,D) of downstream Of the pipe central axis. In the experiments bed sill was a barrier for spreading wake vortices and it controlled erosions of downstream. Results of this research indicated that whatever the distance of bed sill from central axis of pipe is less, there is the most influence in reducing the scour depth below pipe. In the case that bed sill had been located exactly under central axis of pipe, scour depth under pipe decreased about 100% Also in this situation with passing a long time from the beginning of examination, the pipe self-burial process occurred due to vortex creation in pipe downstream and relocation of particles toward pipe.
Supply-Limited Bedforms in a Gravel-Sand Transition
NASA Astrophysics Data System (ADS)
Venditti, J. G.; Nittrouer, J. A.; Humphries, R. P.; Allison, M. A.
2009-12-01
Rivers often exhibit an abrupt transition from gravel to sand-bedded conditions as river channel slopes decrease. A distinct suite of bedforms has been observed through these reaches where sand supply to the bed is limited. The suite of bedforms includes a sequence of sand ribbons, barchans, and channel spanning dunes as sediment supply increases in the downstream direction. While these bedforms have been extensively documented in laboratory channels, there are relatively few observations of this sequence of supply-limited bedforms from large natural channels. Here we examine the sequence through the gravel-sand transition of the Fraser River in Southwestern British Columbia. We mapped the bed using multi-beam swath-bathymetry (Reson 8101 Seabat) at high flow (~9,000 m3s-1) immediately following a high peak flow of 11,800 m3s-1 in June 2007 The bed material grades from >70% gravel to entirely sand through the reach. The bedforms follow the expected sequence where sand ribbons and barchanoid forms cover the bed where it is primarily gravel. Channel spanning dunes form as the sand bed coverage increases. Bedform dimensions (height and length) increase moving downstream as the sand moving on the bed increases. Supply-unlimited bedforms typically scale with the flow depth where the height is 1/5 the flow depth. The bedforms developed over the gravel are undersized by this criterion. Downstream, where the bed is dominantly sand, bedforms do scale with flow depth. These data highlight the dominant role sediment supply can play in bedform morphology and scaling, confirming patterns observed in laboratory data.
NASA Astrophysics Data System (ADS)
Aoi, Masataka; Kamijo, Masayoshi; Yoshida, Hiroaki
The purpose of this study is to create a method of evaluating the quality of sleep based on the elastic properties of bed mattresses through measurement of physiological and psychological responses while sleeping. We gathered Profile of Mood States (POMS) results before and after sleep, and investigated changes in subjects' moods according to sleep. A total of 4 bed mattresses with different degrees of elasticity were prepared. They were all pocket coil mattresses. We conducted polysomnography (PSG) testing on subjects with a bioamplifier while they slept in each bed mattress, so that sleeping depth indicating the quality of sleep could be estimated. PSG is a comprehensive recording of the biophysiological changes that occur during sleep. As a result, the sleep depth of bed mattress with a high degree of elasticity increased in the PSG evaluation. Because the hip sinks in deeply from the waist, it is not easy to turn over on mattresses with a low degree of elasticity. We have therefore considered that the sleep depth of the subjects became shallow as a result. We have concluded that it is possible to estimate the quality of sleep through analysis of PSG and POMS results.
40 CFR 63.7480 - What is the purpose of this subpart?
Code of Federal Regulations, 2011 CFR
2011-07-01
..., as defined in § 63.7575 are: (a) Pulverized coal/solid fossil fuel units. (b) Stokers designed to burn coal/solid fossil fuel. (c) Fluidized bed units designed to burn coal/solid fossil fuel. (d...
40 CFR 63.7480 - What is the purpose of this subpart?
Code of Federal Regulations, 2012 CFR
2012-07-01
..., as defined in § 63.7575 are: (a) Pulverized coal/solid fossil fuel units. (b) Stokers designed to burn coal/solid fossil fuel. (c) Fluidized bed units designed to burn coal/solid fossil fuel. (d...
Fixed bed gasification for production of industrial fuel gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1977-10-01
This report summarizes the results of technical and economic evaluations of six commercially available, fixed-bed coal gasification processes for the production of industrial fuel gas. The study was performed for DOE and is intended to assist industrial companies in exploring the feasibility of producing gaseous fuels for both retrofit and new industrial plant situations. The report includes a technical analysis of the physical configuration, performance capabilities, and commercial experiments to-date for both air-blown and oxygen-blown fixed bed gasifiers. The product gas from these gasifiers is analyzed economically for three different degrees of cleanliness: (1) hot raw gas, (2) dust-, tar-,more » and oil-free gas, and (3) dust-, tar-, oil-free and desulfurized gas. The evaluations indicate that low-Btu gases produced from fixed bed gasifiers constitute one of the most logical short-term solutions for helping ease the shortage of natural gas for industrial fuel applications because the technology is well-proven and has been utilized on a commercial scale for several decades both in this country and overseas; time from initiation of design to commercial operation is about two years; the technology is not complicated to construct, operate, or maintain; and a reliable supply of product gas can be generated on-site. The advantages and disadvantages of fixed bed gasification technology are listed. The cost of the low Btu gas is estimated at $2 to $4 per MM Btu depending on gas purity, cost of coal ($20 to $50 per ton) and a number of specified assumptions with respect to financing, reliability, etc. (LTN)« less
High quality fuel gas from biomass pyrolysis with calcium oxide.
Zhao, Baofeng; Zhang, Xiaodong; Chen, Lei; Sun, Laizhi; Si, Hongyu; Chen, Guanyi
2014-03-01
The removal of CO2 and tar in fuel gas produced by biomass thermal conversion has aroused more attention due to their adverse effects on the subsequent fuel gas application. High quality fuel gas production from sawdust pyrolysis with CaO was studied in this paper. The results of pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) experiments indicate that the mass ratio of CaO to sawdust (Ca/S) remarkably affects the behavior of sawdust pyrolysis. On the basis of Py-GC/MS results, one system of a moving bed pyrolyzer coupled with a fluid bed combustor has been developed to produce high quality fuel gas. The lower heating value (LHV) of the fuel gas was above 16MJ/Nm(3) and the content of tar was under 50mg/Nm(3), which is suitable for gas turbine application to generate electricity and heat. Therefore, this technology may be a promising route to achieve high quality fuel gas for biomass utilization. Copyright © 2014 Elsevier Ltd. All rights reserved.
Fuel Cell Balance-of-Plant Reliability Testbed Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sproat, Vern; LaHurd, Debbie
Reliability of the fuel cell system balance-of-plant (BoP) components is a critical factor that needs to be addressed prior to fuel cells becoming fully commercialized. Failure or performance degradation of BoP components has been identified as a life-limiting factor in fuel cell systems.1 The goal of this project is to develop a series of test beds that will test system components such as pumps, valves, sensors, fittings, etc., under operating conditions anticipated in real Polymer Electrolyte Membrane (PEM) fuel cell systems. Results will be made generally available to begin removing reliability as a roadblock to the growth of the PEMmore » fuel cell industry. Stark State College students participating in the project, in conjunction with their coursework, have been exposed to technical knowledge and training in the handling and maintenance of hydrogen, fuel cells and system components as well as component failure modes and mechanisms. Three test beds were constructed. Testing was completed on gas flow pumps, tubing, and pressure and temperature sensors and valves.« less
Combustion characteristics of paper and sewage sludge in a pilot-scale fluidized bed.
Yu, Yong-Ho; Chung, Jinwook
2015-01-01
This study characterizes the combustion of paper and sewage sludge in a pilot-scale fluidized bed. The highest temperature during combustion within the system was found at the surface of the fluidized bed. Paper sludge containing roughly 59.8% water was burned without auxiliary fuel, but auxiliary fuel was required to incinerate the sewage sludge, which contained about 79.3% water. The stability of operation was monitored based on the average pressure and the standard deviation of pressure fluctuations. The average pressure at the surface of the fluidized bed decreased as the sludge feed rate increased. However, the standard deviation of pressure fluctuations increased as the sludge feed rate increased. Finally, carbon monoxide (CO) emissions decreased as oxygen content increased in the flue gas, and nitrogen oxide (NOx) emissions were also tied with oxygen content.
Coal derived fuel gases for molten carbonate fuel cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1979-11-01
Product streams from state-of-the-art and future coal gasification systems are characterized to guide fuel cell program planners and researchers in establishing performance goals and developing materials for molten carbonate fuel cells that will be compatible with gasifier product gases. Results are presented on: (1) the range of gasifier raw-gas compositions available from the major classes of coal gasifiers; (2) the degree of gas clean-up achievable with state-of-the-art and future gas clean-up systems; and (3) the energy penalties associated with gas clean-up. The study encompasses fixed-bed, fluid-bed, entrained-bed, and molten salt gasifiers operating with Eastern bituminous and Western subbituminous coals. Gasifiersmore » operating with air and oxygen blowing are evaluated, and the coal gasification product streams are characterized with respect to: (1) major gas stream constituents, e.g., CO, H/sub 2/, CO/sub 2/, CH/sub 4/, N/sub 2/, H/sub 2/O; (2) major gas stream contaminants, e.g., H/sub 2/S, COS, particulates, tars, etc.; and (3) trace element contaminants, e.g., Na, K, V, Cl, Hg, etc.« less
Literature survey of properties of synfuels derived from coal
NASA Technical Reports Server (NTRS)
Flores, F.
1982-01-01
A literature survey of the properties of synfuels for ground-based turbine applications is presented. The four major concepts for converting coal into liquid fuels (solvent extraction, catalytic liquefaction, pyrolysis, and indirect liquefaction), and the most important concepts for coal gasification (fixed bed, fluidized bed, entrained flow, and underground gasification) are described. Upgrading processes for coal derived liquid fuels are also described. Data presented for liquid fuels derived from various processes, including H-coal, synthoil, solvent refined coal, COED, donor solvent, zinc chloride hydrocracking, co-steam, and flash pyrolysis. Typical composition, and property data is also presented for low and medium-BTU gases derived from the various coal gasification processes.
Process for converting cellulosic materials into fuels and chemicals
Scott, C.D.; Faison, B.D.; Davison, B.H.; Woodward, J.
1994-09-20
A process is described for converting cellulosic materials, such as waste paper, into fuels and chemicals utilizing enzymatic hydrolysis of the major constituent of paper, cellulose. A waste paper slurry is contacted by cellulase in an agitated hydrolyzer. The cellulase is produced from a continuous, columnar, fluidized-bed bioreactor utilizing immobilized microorganisms. An attrition mill and a cellobiase reactor are coupled to the agitated hydrolyzer to improve reaction efficiency. The cellulase is recycled by an adsorption process. The resulting crude sugars are converted to dilute product in a fluidized-bed bioreactor utilizing microorganisms. The dilute product is concentrated and purified by utilizing distillation and/or a biparticle fluidized-bed bioreactor system. 1 fig.
van Wagtendonk, J.W.; Moore, P.E.
2010-01-01
Fire managers and researchers need information on fuel deposition rates to estimate future changes in fuel bed characteristics, determine when forests transition to another fire behavior fuel model, estimate future changes in fuel bed characteristics, and parameterize and validate ecosystem process models. This information is lacking for many ecosystems including the Sierra Nevada in California, USA. We investigated fuel deposition rates and stand characteristics of seven montane and four subalpine conifers in the Sierra Nevada. We collected foliage, miscellaneous bark and crown fragments, cones, and woody fuel classes from four replicate plots each in four stem diameter size classes for each species, for a total of 176 sampling sites. We used these data to develop predictive equations for each fuel class and diameter size class of each species based on stem and crown characteristics. There were consistent species and diameter class differences in the annual amount of foliage and fragments deposited. Foliage deposition rates ranged from just over 50 g m-2 year-1 in small diameter mountain hemlock stands to ???300 g m-2 year-1 for the three largest diameter classes of giant sequoia. The deposition rate for most woody fuel classes increased from the smallest diameter class stands to the largest diameter class stands. Woody fuel deposition rates varied among species as well. The rates for the smallest woody fuels ranged from 0.8 g m-2 year-1 for small diameter stands of Jeffrey pine to 126.9 g m-2 year-1 for very large diameter stands of mountain hemlock. Crown height and live crown ratio were the best predictors of fuel deposition rates for most fuel classes and species. Both characteristics reflect the amount of crown biomass including foliage and woody fuels. Relationships established in this study allow predictions of fuel loads to be made on a stand basis for each of these species under current and possible future conditions. These predictions can be used to estimate fuel treatment longevity, assist in determining fuel model transitions, and predict future changes in fuel bed characteristics.
Sonic depth sounder for laboratory and field use
Richardson, E.V.; Simons, Daryl B.; Posakony, G.J.
1961-01-01
The laboratory investigation of roughness in alluvial channels has led to the development of a special electronic device capable of mapping the streambed configuration under dynamic conditions. This electronic device employs an ultrasonic pulse-echo principle, similar to that of a fathometer, that utilizes microsecond techniques to give high accuracy in shallow depths. This instrument is known as the sonic depth sounder and was designed to cover a depth range of 0 to 4 feet with an accuracy of ? 0.5 percent. The sonic depth sounder is capable of operation at frequencies of 500, 1,000 and 2,000 kilocycles. The ultrasonic beam generated at the transducer is designed to give a minimum-diameter interrogating signal over the extended depth range. The information obtained from a sonic depth sounder is recorded on a strip-chart recorder. This permanent record allows an analysis to be made of the streambed configuration under different dynamic conditions. The model 1024 sonic depth sounder was designed principally as a research instrument to meet laboratory needs. As such, it is somewhat limited in its application as a field instrument on large streams and rivers. The principles employed in this instrument, however, have many potentials for field applications such as the indirect measurement of bed load when the bed roughness is ripples and (or) dunes, depth measurement, determination of bed configuration, and determination of depth of scour around bridge piers and abutments. For field application a modification of the present system into a battery-operated lightweight instrument designed to operate at a depth range of 0 to 30 feet is possible and desirable.
Lateral solids dispersion coefficient in large-scale fluidized beds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Daoyin; Chen, Xiaoping
2010-11-15
The design of fuel feed ports in a large-scale fluidized bed combustor depends on the fuel characteristics and lateral solids mixing. However, the reported values of the effective lateral solids dispersion coefficient (D{sub sr}) are scattered in the broad range of 0.0001-0.1 m{sup 2}/s. With the aim of predicting D{sub sr} in wider fluidized beds which is difficult to measure directly or deduce from experimental results in lab-scale facilities, a computational method is proposed. It combines the Eulerian-Granular simulation and fictitious particle tracing technique. The value of D{sub sr} is calculated based on the movement of the tracers. The effectmore » on D{sub sr} of bed width (W) ranging from 0.4 m up to 12.8 m at different levels of superficial gas velocity (U{sub 0}) is investigated. It is found that increasing W whilst maintaining U{sub 0}, D{sub sr} initially increases markedly, then its increase rate declines, and finally it stays around a constant value. The computed values of D{sub sr} are examined quantitatively and compared with a thorough list of the measured D{sub sr} in the literature since 1980s. Agreed with the measurements performed in the pilot-scale fluidized beds, the value of D{sub sr} in wider facilities at higher fluidizing velocities is predicted to be around the order of magnitude of 0.1 m{sup 2}/s, much higher than that in lab-scale beds. Finally, the effect of D{sub sr} on the distribution of fuel particles over the cross section in fluidized beds with the specified layout of feed ports is discussed. (author)« less
40 CFR 60.53b - Standards for municipal waste combustor operating practices.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Circulating fluidized bed combustor 100 4 Pulverized coal/refuse-derived fuel mixed fuel-fired combustor 150 4 Spreader stoker coal/refuse-derived fuel mixed fuel-fired combustor 150 24 a Measured at the combustor... activated carbon injection rate during dioxin/furan or mercury testing. [60 FR 65419, Dec. 19, 1995, as...
Fluidized-bed calciner with combustion nozzle and shroud
Wielang, Joseph A.; Palmer, William B.; Kerr, William B.
1977-01-01
A nozzle employed as a burner within a fluidized bed is coaxially enclosed within a tubular shroud that extends beyond the nozzle length into the fluidized bed. The open-ended shroud portion beyond the nozzle end provides an antechamber for mixture and combustion of atomized fuel with an oxygen-containing gas. The arrangement provides improved combustion efficiency and excludes bed particles from the high-velocity, high-temperature portions of the flame to reduce particle attrition.
Sampling interval analysis and CDF generation for grain-scale gravel bed topography
USDA-ARS?s Scientific Manuscript database
In river hydraulics, there is a continuing need for characterizing bed elevations to arrive at quantitative roughness measures that can be used in predicting flow depth and for improved prediction of fine-sediment transport over and through coarse beds. Recently published prediction methods require...
21. Overflow pipe in filtration bed. Located at each corner ...
21. Overflow pipe in filtration bed. Located at each corner of the bed, the pipes drain off any excess water and maintain a limit on water depth. - Lake Whitney Water Filtration Plant, Filtration Plant, South side of Armory Street between Edgehill Road & Whitney Avenue, Hamden, New Haven County, CT
Fluidized bed heat exchanger utilizing angularly extending heat exchange tubes
Talmud, Fred M.; Garcia-Mallol, Juan-Antonio
1980-01-01
A fluidized bed heat exchanger in which air is passed through a bed of particulate material containing fuel disposed in a housing. A steam/water natural circulation system is provided and includes a steam drum disposed adjacent the fluidized bed and a series of tubes connected at one end to the steam drum. A portion of the tubes are connected to a water drum and in the path of the air and the gaseous products of combustion exiting from the bed. Another portion of the tubes pass through the bed and extend at an angle to the upper surface of the bed.
Internal dust recirculation system for a fluidized bed heat exchanger
Gamble, Robert L.; Garcia-Mallol, Juan A.
1981-01-01
A fluidized bed heat exchanger in which air is passed through a bed of particulate material containing fuel disposed in a housing. A steam/water natural circulation system is provided in a heat exchange relation to the bed and includes a steam drum disposed adjacent the bed and a tube bank extending between the steam drum and a water drum. The tube bank is located in the path of the effluent gases exiting from the bed and a baffle system is provided to separate the solid particulate matter from the effluent gases. The particulate matter is collected and injected back into the fluidized bed.
Using airborne laser altimetry to determine fuel models for estimating fire behavior
Carl A. Seielstad; Lloyd P. Queen
2003-01-01
Airborne laser altimetry provides an unprecedented view of the forest floor in timber fuel types and is a promising new tool for fuels assessments. It can be used to resolve two fuel models under closed canopies and may be effective for estimating coarse woody debris loads. A simple metric - obstacle density - provides the necessary quantification of fuel bed roughness...
Two-stage coal gasification and desulfurization apparatus
Bissett, Larry A.; Strickland, Larry D.
1991-01-01
The present invention is directed to a system which effectively integrates a two-stage, fixed-bed coal gasification arrangement with hot fuel gas desulfurization of a first stream of fuel gas from a lower stage of the two-stage gasifier and the removal of sulfur from the sulfur sorbent regeneration gas utilized in the fuel-gas desulfurization process by burning a second stream of fuel gas from the upper stage of the gasifier in a combustion device in the presence of calcium-containing material. The second stream of fuel gas is taken from above the fixed bed in the coal gasifier and is laden with ammonia, tar and sulfur values. This second stream of fuel gas is burned in the presence of excess air to provide heat energy sufficient to effect a calcium-sulfur compound forming reaction between the calcium-containing material and sulfur values carried by the regeneration gas and the second stream of fuel gas. Any ammonia values present in the fuel gas are decomposed during the combustion of the fuel gas in the combustion chamber. The substantially sulfur-free products of combustion may then be combined with the desulfurized fuel gas for providing a combustible fluid utilized for driving a prime mover.
Separation of harmful impurities from refuse derived fuels (RDF) by a fluidized bed.
Krüger, B; Mrotzek, A; Wirtz, S
2014-02-01
In firing systems of cement production plants and coal-fired power plants, regular fossil fuels are increasingly substituted by alternative fuels. Rising energy prices and ambitious CO2-reduction goals promote the use of alternative fuels as a significant contribution to efficient energy recovery. One possibility to protect energy resources are refuse-derived fuels (RDF), which are produced during the treatment of municipal solid, commercial and industrial waste. The waste fractions suitable for RDF have a high calorific value and are often not suitable for material recycling. With current treatment processes, RDF still contains components which impede the utilization in firing systems or limit the degree of substitution. The content of these undesired components may amount to 4 wt%. These, in most cases incombustible particles which consist of mineral, ceramic and metallic materials can cause damages in the conveying systems (e. g. rotary feeder) or result in contaminations of the products (e. g. cement, chalk). Up-to-date separation processes (sieve machine, magnet separator or air classifier) have individual weaknesses that could hamper a secure separation of these particles. This article describes a new technology for the separation of impurities from refuse derived fuels based on a rotating fluidized bed. In this concept a rotating motion of the particle bed is obtained by the tangential injection of the fluidization gas in a static geometry. The RDF-particles experience a centrifugal force which fluidized the bed radially. The technical principle allows tearing up of particle clusters to single particles. Radially inwards the vertical velocity is much lower thus particles of every description can fall down there. For the subsequent separation of the particles by form and density an additionally cone shaped plate was installed in the centre. Impurities have a higher density and a compact form compared to combustible particles and can be separated with a high efficiency. The new technology was experimentally investigated and proven using model-RDF, actual-RDF and impurities of different densities. In addition, numerical simulations were also done. The fluidization chamber was operated in batch mode. The article describes experiences and difficulties in using rotating fluidized bed systems. Copyright © 2013 Elsevier Ltd. All rights reserved.
Upper Stage Flight Experiment 10K Engine Design and Test Results
NASA Technical Reports Server (NTRS)
Ross, R.; Morgan, D.; Crockett, D.; Martinez, L.; Anderson, W.; McNeal, C.
2000-01-01
A 10,000 lbf thrust chamber was developed for the Upper Stage Flight Experiment (USFE). This thrust chamber uses hydrogen peroxide/JP-8 oxidizer/fuel combination. The thrust chamber comprises an oxidizer dome and manifold, catalyst bed assembly, fuel injector, and chamber/nozzle assembly. Testing of the engine was done at NASA's Stennis Space Center (SSC) to verify its performance and life for future upper stage or Reusable Launch Vehicle applications. Various combinations of silver screen catalyst beds, fuel injectors, and combustion chambers were tested. Results of the tests showed high C* efficiencies (97% - 100%) and vacuum specific impulses of 275 - 298 seconds. With fuel film cooling, heating rates were low enough that the silica/quartz phenolic throat experienced minimal erosion. Mission derived requirements were met, along with a perfect safety record.
Kouvo, Petri
2003-04-01
This work focused on trace metal behavior and removal in a fabric filter or in a humidification reactor during the cofiring of sawdust and refuse-derived fuels (RDFs) in a pilot-scale bubbling fluidized bed (BFB) boiler. Trace metal emissions measurements before and after the fabric filter revealed that removal efficiency in the fabric filter was in the range of 80-100%, and that the European Union (EU) Directive on Incineration of Waste restrictions for trace metal emissions are easily achieved even if addition of RDFs substantially increases the concentration of trace metals in fuel blends. Limestone injection enhanced the removal of As and Se but had no noticeable effect on the removal of other trace metals. Extensive formation of HgCl2 and condensation on fly ash particles during sawdust plus 40% RDF cofiring resulted in a 92% Hg removal efficiency in the fabric filter. Limestone injection had no effect on the Hg removal in the fabric filter but decreased the Hg removal in a humidification reactor from 40 to 28%. Results of the bed material and fly ash analysis suggested capture of Cu, Pb, Mn, Ni, and Zn in the bed material but also suggested that these metals may be released from the bed if the fuel characteristics or process conditions are changed.
Design and evaluation of fluidized bed heat recovery for diesel engine systems
NASA Technical Reports Server (NTRS)
Hamm, J. R.; Newby, R. A.; Vidt, E. J.; Lippert, T. E.
1985-01-01
The potential of utilizing fluidized bed heat exchangers in place of conventional counter-flow heat exchangers for heat recovery from adiabatic diesel engine exhaust gas streams was studied. Fluidized bed heat recovery systems were evaluated in three different heavy duty transport applications: (1) heavy duty diesel truck; (2) diesel locomotives; and (3) diesel marine pushboat. The three applications are characterized by differences in overall power output and annual utilization. For each application, the exhaust gas source is a turbocharged-adiabatic diesel core. Representative subposed exhaust gas heat utilization power cycles were selected for conceptual design efforts including design layouts and performance estimates for the fluidized bed heat recovery heat exchangers. The selected power cycles were: organic rankine with RC-1 working fluid, turbocompound power turbine with steam injection, and stirling engine. Fuel economy improvement predictions are used in conjunction with capital cost estimates and fuel price data to determine payback times for the various cases.
Roger D. Ottmar; John I. Blake; William T. Crolly
2012-01-01
The inherent spatial and temporal heterogeneity of fuel beds in forests of the southeastern United States may require fine scale fuel measurements for providing reliable fire hazard and fuel treatment effectiveness estimates. In a series of five papers, an intensive, fine scale fuel inventory from the Savanna River Site in the southeastern United States is used for...
Thomas, John E; Allen, L Hartwell; McCormack, Leslie A; Vu, Joseph C; Dickson, Donald W; Ou, Li-Tse
2004-01-01
The fumigant 1,3-dichloropropene (1,3-D) is considered to be a potential replacement for methyl bromide when methyl bromide is phased out in 2005. This study on surface emissions and subsurface diffusion of 1,3-D in a Florida sandy soil was conducted in field beds with or without plastic covers. After injection of the commercial fumigant Telone II by conventional chisels to field beds at 30cm depth which were covered with polyethylene film (PE), virtually impermeable film, or no cover (bare), (Z)- and (E)-1,3-D rapidly diffused upward. Twenty hours after injection, majority of (Z)- and (E)-1,3-D had moved upward from 30 cm depth to the layer of 5-20 cm depth. Downward movement of the two isomers in the beds with or without a plastic cover was not significant. (Z)-1,3-D diffused more rapidly than (E)-1,3-D. Virtually impermeable films (VIF) had a good capacity to retain (Z)- and (E)-1,3-D in soil pore air space. Vapor concentrations of the two isomers in the shallow subsurface of the field bed covered with VIF were greater than that in the two beds covered with polyethylene film (PE) or no cover (bare). In addition, VIF cover provided more uniform distribution of (Z)- and (E)-1,3-D in shallow subsurface than PE cover or no cover. Virtually impermeable film also had a better capability to retard surface emissions of the two isomers from soil in field beds than PE cover or no cover.
SPH modelling of depth-limited turbulent open channel flows over rough boundaries.
Kazemi, Ehsan; Nichols, Andrew; Tait, Simon; Shao, Songdong
2017-01-10
A numerical model based on the smoothed particle hydrodynamics method is developed to simulate depth-limited turbulent open channel flows over hydraulically rough beds. The 2D Lagrangian form of the Navier-Stokes equations is solved, in which a drag-based formulation is used based on an effective roughness zone near the bed to account for the roughness effect of bed spheres and an improved sub-particle-scale model is applied to account for the effect of turbulence. The sub-particle-scale model is constructed based on the mixing-length assumption rather than the standard Smagorinsky approach to compute the eddy-viscosity. A robust in/out-flow boundary technique is also proposed to achieve stable uniform flow conditions at the inlet and outlet boundaries where the flow characteristics are unknown. The model is applied to simulate uniform open channel flows over a rough bed composed of regular spheres and validated by experimental velocity data. To investigate the influence of the bed roughness on different flow conditions, data from 12 experimental tests with different bed slopes and uniform water depths are simulated, and a good agreement has been observed between the model and experimental results of the streamwise velocity and turbulent shear stress. This shows that both the roughness effect and flow turbulence should be addressed in order to simulate the correct mechanisms of turbulent flow over a rough bed boundary and that the presented smoothed particle hydrodynamics model accomplishes this successfully. © 2016 The Authors International Journal for Numerical Methods in Fluids Published by John Wiley & Sons Ltd.
Pebble Fuel Handling and Reactivity Control for Salt-Cooled High Temperature Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peterson, Per; Greenspan, Ehud
2015-02-09
This report documents the work completed on the X-PREX facility under NEUP Project 11- 3172. This project seeks to demonstrate the viability of pebble fuel handling and reactivity control for fluoride salt-cooled high-temperature reactors (FHRs). The research results also improve the understanding of pebble motion in helium-cooled reactors, as well as the general, fundamental understanding of low-velocity granular flows. Successful use of pebble fuels in with salt coolants would bring major benefits for high-temperature reactor technology. Pebble fuels enable on-line refueling and operation with low excess reactivity, and thus simpler reactivity control and improved fuel utilization. If fixed fuel designsmore » are used, the power density of salt- cooled reactors is limited to 10 MW/m 3 to obtain adequate duration between refueling, but pebble fuels allow power densities in the range of 20 to 30 MW/m 3. This can be compared to the typical modular helium reactor power density of 5 MW/m3. Pebble fuels also permit radial zoning in annular cores and use of thorium or graphite pebble blankets to reduce neutron fluences to outer radial reflectors and increase total power production. Combined with high power conversion efficiency, compact low-pressure primary and containment systems, and unique safety characteristics including very large thermal margins (>500°C) to fuel damage during transients and accidents, salt-cooled pebble fuel cores offer the potential to meet the major goals of the Advanced Reactor Concepts Development program to provide electricity at lower cost than light water reactors with improved safety and system performance.This report presents the facility description, experimental results, and supporting simulation methods of the new X-Ray Pebble Recirculation Experiment (X-PREX), which is now operational and being used to collect data on the behavior of slow dense granular flows relevant to pebble bed reactor core designs. The X-PREX facility uses novel digital x-ray tomography methods to track both the translational and rotational motion of spherical pebbles, which provides unique experimental results that can be used to validate discrete element method (DEM) simulations of pebble motion. The validation effort supported by the X-PREX facility provides a means to build confidence in analysis of pebble bed configuration and residence time distributions that impact the neutronics, thermal hydraulics, and safety analysis of pebble bed reactor cores. Experimental and DEM simulation results are reported for silo drainage, a classical problem in the granular flow literature, at several hopper angles. These studies include conventional converging and novel diverging geometries that provide additional flexibility in the design of pebble bed reactor cores. Excellent agreement is found between the X-PREX experimental and DEM simulation results. This report also includes results for additional studies relevant to the design and analysis of pebble bed reactor cores including the study of forces on shut down blades inserted directly into a packed bed and pebble flow in a cylindrical hopper that is representative of a small test reactor.« less
NASA Astrophysics Data System (ADS)
Akintunde, Olusoga M.; Knapp, Camelia C.; Knapp, James H.
2014-09-01
A simple, new porosity/permeability-depth profile was developed from available laboratory measurements on Triassic sedimentary red beds (sandstone) from parts of the South Georgia Rift (SGR) basin in order to investigate the feasibility for long-term CO2 storage. The study locations were: Sumter, Berkeley, Dunbarton, Clubhouse Crossroad-3 (CC-3) and Norris Lightsey wells. As expected, both porosity and permeability show changes with depth at the regional scale that was much greater than at local scale. The significant changes in porosity and permeability with depth suggest a highly compacted, deformed basin, and potentially, a history of uplift and erosion. The permeability is generally low both at shallow (less than 1826 ft/556.56 m) and deeper depths (greater than 1826 ft/556.56 m). Both porosity and permeability follow the normal trend, decreasing linearly with depth for most parts of the study locations with the exception of the Norris Lightsey well. A petrophysical study on a suite of well logs penetrating the Norris Lightsey red beds at depths sampled by the core-derived laboratory measurements shows an abnormal shift (by 50%) in the acoustic travel time and/or in the sonic-derived P-wave velocity that indicates possible faulting or fracturing at depth. The departure of the Norris Lightsey's porosities and permeabilities from the normal compaction trend may be a consequence of the existence of a fault/fracture controlled abnormal pressure condition at depth. The linear and non-linear behaviors of the porosity/permeability distribution throughout the basin imply the composition of the SGR red beds, and by extension analog/similar Triassic-Jurassic formations within the Eastern North American Margin have been altered by compaction, uplift, erosion and possible faulting that have shaped the evolution of these Triassic formations following the major phase of rifting.
Twelfth annual fluidized bed conference
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-12-31
The Proceedings of the Twelfth Annual Fluidized Bed Conference held November 11-13, 1996 in Pittsburgh, PA are presented. Information is given on: owner`s discussions; new aspects and field upgrades in fluidized bed boilers; manufacturer`s perspectives; fuel considerations; FBC ash reclassification; and beneficial uses of FBC ash. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.
Modeling of marginal burning state of fire spread in live chaparral shrub fuel bed
X. Zhou; S. Mahalingam; D. Weise
2005-01-01
Prescribed burning in chaparral, currently used to manage wildland fuels and reduce wildfire hazard, is often conducted under marginal burning conditions. The relative importance of the fuel and environmental variables that determine fire spread success in chaparral fuels is not quantitatively understood. Based on extensive experimental study, a two-dimensional...
Fire spread probabilities for experimental beds composed of mixedwood boreal forest fuels
M.B. Dickinson; E.A. Johnson; R. Artiaga
2013-01-01
Although fuel characteristics are assumed to have an important impact on fire regimes through their effects on extinction dynamics, limited capabilities exist for predicting whether a fire will spread in mixedwood boreal forest surface fuels. To improve predictive capabilities, we conducted 347 no-wind, laboratory test burns in surface fuels collected from the mixed-...
Corrêa, E K; Corezzolla, J L; Corrêa, M N; Bianchi, I; Gil-Turnes, C; Lucia, T
2012-11-01
The effect of depths and of addition of inoculums on the chemical content of swine beddings was evaluated. For beddings 0.25m (25D) and 0.50m (50D) deep, three treatments were tested in two repeats with the same beddings: control (no inoculums); T1 (250g of Bacillus cereus var. toyoii at 8.4×10(7)CFU/g); and T2 (250g of a pool of Bacillus sp. at 8.4×10(7)CFU/g) (250g for 25D and 500g for 50D). For 25D, the C:N ratio was lower, but N, K and C contents were greater than for 50D (P<0.05). The inoculums did not benefit any chemical parameter (P>0.05). In the second repeat, beddings presented lower C:N ratio and greater N, P and K contents than in the first repeat (P<0.05). Thus, the compost produced after using 25D twice had greater fertilizer value than that of 50D. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Salatino, P.; Solimene, R.; Chirone, R.
The de-NOx potential of coal and of dried and pelletized sewage sludge, a waste-derived fuel candidate for cofiring with coal, is assessed. The experimental procedure is based on operation of a bench scale fluidized bed reactor where NO-doped nitrogen is contacted with batches of the fuel. A second type of experiment has been purposely designed to assess the loss of reactivity of chars toward gasification by NOx as char is heat-treated for pre-set times at temperatures typical of fluidized bed combustion. A simple phenomenological model is developed to shed light on the basic features of the interaction between heterogeneous char-NOx reaction and thermal annealing of the char.
NASA Technical Reports Server (NTRS)
1981-01-01
Monolithic catalysts with higher available active surface areas and better thermal conductivity than conventional pellets beds, making possible the steam reforming of fuels heavier than naphtha, were examined. Performance comparisons were made between conventional pellet beds and honeycomb monolith catalysts using n-hexane as the fuel. Metal-supported monoliths were examined. These offer higher structural stability and higher thermal conductivity than ceramic supports. Data from two metal monoliths of different nickel catalyst loadings were compared to pellets under the same operating conditions. Improved heat transfer and better conversion efficiencies were obtained with the monolith having higher catalyst loading. Surface-gas interaction was observed throughout the length of the monoliths.
Shen, Liming; Chen, Yu-xia; Guo, Yong; Zhong, ShiLu; Fang, Fei; Zhao, Jing; Hu, Tian-Yi
2012-01-01
Mattress, as a sleep platform, its types and physical properties has an important effect on sleep quality and rest efficiency. In this paper, by subjective evaluations, analysis of sleeping behaviors and tests of depth of sleep, the relationship between characteristics of the bedding materials, the structure of mattress, sleep quality and sleep behaviors were studied. The results showed that: (1) Characteristics of the bedding materials and structure of spring mattress had a remarkable effect on sleep behaviors and sleep quality. An optimum combination of the bedding materials, the structure of mattress and its core could improve the overall comfort of mattress, thereby improving the depth of sleep and sleep quality. (2) Sleep behaviors had a close relationship with sleeping postures and sleep habits. The characteristics of sleep behaviors vary from person to person.
NASA Astrophysics Data System (ADS)
Kijo-Kleczkowska, Agnieszka
2012-10-01
In the paper the problem of heavily-watered fuel combustion has been undertaken as the requirements of qualitative coals combusted in power stations have been growing. Coal mines that want to fulfill expectations of power engineers have been forced to extend and modernize the coal enrichment plants. This causes growing quantity of waste materials that arise during the process of wet coal enrichment containing smaller and smaller under-grains. In this situation the idea of combustion of transported waste materials, for example in a hydraulic way to the nearby power stations appears attractive because of a possible elimination of the necessary deep dehydration and drying as well as because of elimination of the finest coal fraction loss arising during discharging of silted water from coal wet cleaning plants. The paper presents experimental research results, analyzing the process of combustion of coal-water suspension depending on the process conditions. Combustion of coal-water suspensions in fluidized beds meets very well the difficult conditions, which should be obtained to use the examined fuel efficiently and ecologically. The suitable construction of the research stand enables recognition of the mechanism of coal-water suspension contact with the inert material, that affects the fluidized bed. The form of this contact determines conditions of heat and mass exchange, which influence the course of a combustion process. The specificity of coal-water fuel combustion in a fluidized bed changes mechanism and kinetics of the process.
Elwell, Anthony C; Elsayed, Nada H; Kuhn, John N; Joseph, Babu
2018-03-01
Separation of volatile methyl siloxanes from landfill gas using fixed adsorption beds was modeled with the objective of identifying appropriate technology and the economics associated with this purification step. A general adsorption model assuming plug flow and radial symmetry was developed and used to conduct a parametric sweep of 162 unique cases. The varied parameters were adsorbent type (activated carbon and silica gel), bed height (3.05-9.15 m/10-30 ft), inlet siloxane concentration (5-15 mg/m 3 ), moisture content (0-100% relative humidity at STP or RH), and siloxane tolerance limit (0.094-9.4 mg/m 3 ) that correlated to three distinct energy conversion technologies (electricity production using engines or fuels cells or catalytic conversion to liquid hydrocarbon fuels). Due to the detrimental effect of RH on siloxane absorption, the maximum allowable moisture content of LFG before purification is 50% RH and moisture removal processes are also required. The design calculations using a selected case study show that the adsorption bed height required needed for 6 months minimum breakthrough time for catalytic fuel production is twice that for engine applications. Fuel cell applications require 3 times the bed height compared to engine applications. However, the purification costs amounted to 94%, 16% and 52% of recovered product value for engine, liquefaction, and fuel cell applications, respectively indicating the need for a high value product to justify purification costs. The approaches and conclusions can be extended to specific process conditions for landfill gas purification and to other processes that use biogas produced from waste as a feedstock. Copyright © 2017 Elsevier Ltd. All rights reserved.
Andrew D. Pierce; Sierra McDaniel; Mark Wasser; Alison Ainsworth; Creighton M. Litton; Christian P. Giardina; Susan Cordell; Ralf Ohlemuller
2014-01-01
Questions: Do fuel models developed for North American fuel types accurately represent fuel beds found in grass-invaded tropical shrublands? Do standard or custom fuel models for firebehavior models with in situ or RAWS measured fuel moistures affect the accuracy of predicted fire behavior in grass-invaded tropical shrublands? Location: Hawaiâi Volcanoes National...
Application of Multivariable Model Predictive Advanced Control for a 2×310T/H CFB Boiler Unit
NASA Astrophysics Data System (ADS)
Weijie, Zhao; Zongllao, Dai; Rong, Gou; Wengan, Gong
When a CFB boiler is in automatic control, there are strong interactions between various process variables and inverse response characteristics of bed temperature control target. Conventional Pill control strategy cannot deliver satisfactory control demand. Kalman wave filter technology is used to establish a non-linear combustion model, based on the CFB combustion characteristics of bed fuel inventory, heating values, bed lime inventory and consumption. CFB advanced combustion control utilizes multivariable model predictive control technology to optimize primary and secondary air flow, bed temperature, air flow, fuel flow and heat flux. In addition to providing advanced combustion control to 2×310t/h CFB+1×100MW extraction condensing turbine generator unit, the control also provides load allocation optimization and advanced control for main steam pressure, combustion and temperature. After the successful implementation, under 10% load change, main steam pressure varied less than ±0.07MPa, temperature less than ±1°C, bed temperature less than ±4°C, and air flow (O2) less than ±0.4%.
Transport and Chemical Effects on Concurrent and Opposed-flow Flame Spread at Microgravity
NASA Technical Reports Server (NTRS)
Son, Y.; Honda, L. K.; Ronney, P. D.
2001-01-01
Flame spread over flat solid fuel beds is a useful means of understanding more complex two-phase non-premixed spreading flames, such as those that may occur due to accidents in inhabited buildings and orbiting spacecraft. The role of buoyant convection on flame spread is substantial, especially for thermally-thick fuels. The conventional view, as supported by computations and space experiments, is that for quiescent mu-g conditions, the spread rate must be unsteady and decreasing until extinction occurs due to radiative losses. However, this view does not consider that radiative transfer to the fuel surface can enhance flame spread. In this work we suggest that radiative transfer from the flame itself, not just from an external source, can lead to steady flame spread at mu-g over thick fuel beds.
NASA Astrophysics Data System (ADS)
Ben-Mansour, R.; Li, H.; Habib, M. A.; Hossain, M. M.
2018-02-01
Global warming has become a worldwide concern due to its severe impacts and consequences on the climate system and ecosystem. As a promising technology proving good carbon capture ability with low-efficiency penalty, Chemical Looping Combustion technology has risen much interest. However, the radiative heat transfer was hardly studied, nor its effects were clearly declared. The present work provides a mathematical model for radiative heat transfer within fuel reactor of chemical looping combustion systems and conducts a numerical research on the effects of boundary conditions, solid particles reflectivity, particles size, and the operating temperature. The results indicate that radiative heat transfer has very limited impacts on the flow pattern. Meanwhile, the temperature variations in the static bed region (where solid particles are dense) brought by radiation are also insignificant. However, the effects of radiation on temperature profiles within free bed region (where solid particles are very sparse) are obvious, especially when convective-radiative (mixed) boundary condition is applied on fuel reactor walls. Smaller oxygen carrier particle size results in larger absorption & scattering coefficients. The consideration of radiative heat transfer within fuel reactor increases the temperature gradient within free bed region. On the other hand, the conversion performance of fuel is nearly not affected by radiation heat transfer within fuel reactor. However, the consideration of radiative heat transfer enhances the heat transfer between the gas phase and solid phase, especially when the operating temperature is low.
CTR Fuel recovery system using regeneration of a molecular sieve drying bed
Folkers, Charles L.
1981-01-01
A primary molecular sieve drying bed is regenerated by circulating a hot inert gas through the heated primary bed to desorb water held on the bed. The inert gas plus water vapor is then cooled and passed through an auxiliary molecular sieve bed which adsorbs the water originally desorbed from the primary bed. The main advantage of the regeneration technique is that the partial pressure of water can be reduced to the 10.sup.-9 atm. range. This is significant in certain CTR applications where tritiated water (T.sub.2 O, HTO) must be collected and kept at very low partial pressure.
Bed erosion control at 60 degree river confluence using vanes
NASA Astrophysics Data System (ADS)
Wuppukondur, Ananth; Chandra, Venu
2017-04-01
Confluences are common occurrences along natural rivers. Hydrodynamics at the confluence is complex due to merging of main and lateral flows with different characteristics. Bed erosion occurs at the confluence due to turbulence and also secondary circulation induced by centrifugal action of the lateral flow. The eroded sediment poses various problems in the river ecosystem including river bank failure. Reservoirs are majorly affected due to sediment deposition which reduces storage capacity. The bed erosion also endangers stability of pipeline crossings and bridge piers. The aim of this experimental study is to check the performance of vanes in controlling bed erosion at the confluence. Experiments are performed in a 600 confluence mobile bed model with a non-uniform sediment of mean particle size d50 = 0.28mm. Discharge ratio (q=ratio of lateral flow discharge to main flow discharge) is maintained as 0.5 and 0.75 with a constant average main flow depth (h) of 5cm. Vanes of width 0.3h (1.5cm) and thickness of 1 mm are placed along the mixing layer at an angle of 150, 300 and 600(with respect to main flow) to perform the experiments. Also, two different spacing of 2h and 3h (10cm and 15cm) between the vanes are used for conducting the experiments. A digital point gauge with an accuracy of ±0.1mm is used to measure bed levels and flow depths at the confluence. An Acoustic Doppler Velocitimeter (ADV) with a frequency of 25Hz and accuracy of ±1mm/s is used to measure flow velocities. Maximum scour depth ratio Rmax, which is ratio between maximum scour depth (Ds) and flow depth (h), is used to present the experimental results.From the experiments without vanes, it is observed that the velocities are increasing along the mixing layer and Rmax=0.82 and 1.06, for q=0.5 and 0.75, respectively. The velocities reduce with vanes since roughness increases along the mixing layer. For q=0.5 and 0.75, Rmax reduces to 0.62 and 0.7 with vanes at 2h spacing, respectively. Similarly, for the same discharge ratios (q), Rmax reduces to 0.64 and 0.72 with 3h spacing between the vanes, respectively. Obstruction to the flow increases with an increase of vane angle which leads to decrease of bed erosion. Also, the bed erosion increases with an increase of spacing between the vanes. Hence, vanes placed at 600 vane angle and 2h spacing exhibit better performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biswas, Pratim; Al-Dahhan, Muthanna
2012-11-01
Tri-isotropic (TRISO) fuel particle coating is critical for the future use of nuclear energy produced byadvanced gas reactors (AGRs). The fuel kernels are coated using chemical vapor deposition in a spouted fluidized bed. The challenges encountered in operating TRISO fuel coaters are due to the fact that in modern AGRs, such as High Temperature Gas Reactors (HTGRs), the acceptable level of defective/failed coated particles is essentially zero. This specification requires processes that produce coated spherical particles with even coatings having extremely low defect fractions. Unfortunately, the scale-up and design of the current processes and coaters have been based on empiricalmore » approaches and are operated as black boxes. Hence, a voluminous amount of experimental development and trial and error work has been conducted. It has been clearly demonstrated that the quality of the coating applied to the fuel kernels is impacted by the hydrodynamics, solids flow field, and flow regime characteristics of the spouted bed coaters, which themselves are influenced by design parameters and operating variables. Further complicating the outlook for future fuel-coating technology and nuclear energy production is the fact that a variety of new concepts will involve fuel kernels of different sizes and with compositions of different densities. Therefore, without a fundamental understanding the underlying phenomena of the spouted bed TRISO coater, a significant amount of effort is required for production of each type of particle with a significant risk of not meeting the specifications. This difficulty will significantly and negatively impact the applications of AGRs for power generation and cause further challenges to them as an alternative source of commercial energy production. Accordingly, the proposed work seeks to overcome such hurdles and advance the scale-up, design, and performance of TRISO fuel particle spouted bed coaters. The overall objectives of the proposed work are to advance the fundamental understanding of the hydrodynamics by systematically investigating the effect of design and operating variables, to evaluate the reported dimensionless groups as scaling factors, and to establish a reliable scale-up methodology for the TRISO fuel particle spouted bed coaters based on hydrodynamic similarity via advanced measurement and computational techniques. An additional objective is to develop an on-line non-invasive measurement technique based on gamma ray densitometry (i.e. Nuclear Gauge Densitometry) that can be installed and used for coater process monitoring to ensure proper performance and operation and to facilitate the developed scale-up methodology. To achieve the objectives set for the project, the work will use optical probes and gamma ray computed tomography (CT) (for the measurements of solids/voidage holdup cross-sectional distribution and radial profiles along the bed height, spouted diameter, and fountain height) and radioactive particle tracking (RPT) (for the measurements of the 3D solids flow field, velocity, turbulent parameters, circulation time, solids lagrangian trajectories, and many other of spouted bed related hydrodynamic parameters). In addition, gas dynamic measurement techniques and pressure transducers will be utilized to complement the obtained information. The measurements obtained by these techniques will be used as benchmark data to evaluate and validate the computational fluid dynamic (CFD) models (two fluid model or discrete particle model) and their closures. The validated CFD models and closures will be used to facilitate the developed methodology for scale-up, design and hydrodynamic similarity. Successful execution of this work and the proposed tasks will advance the fundamental understanding of the coater flow field and quantify it for proper and safe design, scale-up, and performance. Such achievements will overcome the barriers to AGR applications and will help assure that the US maintains nuclear energy as a feasible option to meet the nation's needs for energy and environmental safety. In addition, the outcome of the proposed study will have a broader impact on other processes that utilize spouted beds, such as coal gasification, granulation, drying, catalytic reactions, etc.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagland, S.T.; Kilgallon, P.; Coveney, R.
2011-06-15
An experimental study was undertaken to compare the differences between municipal solid waste (MSW) derived solid recovered fuel (SRF) (complying with CEN standards) and refuse derived fuel (RDF). Both fuels were co-combusted with coal in a 50 kW fluidised bed combustor and the metal emissions were compared. Synthetic SRF was prepared in the laboratory by grinding major constituents of MSW such as paper, plastic, textile and wood. RDF was obtained from a local mechanical treatment plant. Heavy metal emissions in flue gas and ash samples from the (coal + 10% SRF) fuel mixture were found to be within the acceptablemore » range and were generally lower than that obtained for coal + 10% RDF fuel mixture. The relative distribution of heavy metals in ash components and the flue gas stream shows the presence of a large fraction (up to 98%) of most of the metals in the ash (except Hg and As). Thermo-gravimetric (TG) analysis of SRF constituents was performed to understand the behaviour of fuel mixtures in the absence and presence of air. The results obtained from the experimental study will enhance the confidence of fuel users towards using MSW-derived SRF as an alternative fuel.« less
Resonant generation of internal waves on the soft sea bed by a surface water wave
NASA Astrophysics Data System (ADS)
Wen, Feng
1995-08-01
The nonlinear response of an initially flat sea bed to a monochromatic surface progressive wave was studied using the multiple scale perturbation method. Two opposite-traveling subliminal internal ``mud'' waves are selectively excited and form a resonant triad with the surface wave. The amplitudes of the internal waves grow on a time scale much longer than the period of the surface wave. It was found that the sea bed response is critically dependent on the density ratio of water and soil, depth of water, and depth and viscosity of the saturated soil. The result of instability analysis is in qualitative agreement with the result of a wave flume experiment.
Emissions During Co-Firing of RDF-5 with Coal in a 22 t/h Steam Bubbling Fluidized Bed Boiler
NASA Astrophysics Data System (ADS)
Wan, Hou-Peng; Chen, Jia-Yuan; Juch, Ching-I.; Chang, Ying-Hsi; Lee, Hom-Ti
The co-firing of biomass and fossil fuel in the same power plant is one of the most important issues when promoting the utilization of renewable energy in the world. Recently, the co-firing of coal together with biomass fuel, such as "densified refuse derived fuel" (d-RDF or RDF-5) or RPF (refuse paper & plastic fuel) from waste, has been considered as an environmentally sound and economical approach to both waste remediation and energy production in the world. Because of itscomplex characteristics when compared to fossil fuel, potential problems, such as combustion system stability, the corrosion of heat transfer tubes, the qualities of the ash, and the emissionof pollutants, are major concerns when co-firing the biomass fuel with fossil fuel in a traditional boiler. In this study, co-firing of coal with RDF-5 was conducted in a 22t/h bubbling fluidized bed (BFB) steam boiler to investigate the feasibility of utilizing RDF-5 as a sustainable fuels in a commercial coal-fired steam BFB boiler. The properties of the fly ash, bottom ash, and the emission of pollutants are analyzed and discussed in this study.
Formulating the shear stress distribution in circular open channels based on the Renyi entropy
NASA Astrophysics Data System (ADS)
Khozani, Zohreh Sheikh; Bonakdari, Hossein
2018-01-01
The principle of maximum entropy is employed to derive the shear stress distribution by maximizing the Renyi entropy subject to some constraints and by assuming that dimensionless shear stress is a random variable. A Renyi entropy-based equation can be used to model the shear stress distribution along the entire wetted perimeter of circular channels and circular channels with flat beds and deposited sediments. A wide range of experimental results for 12 hydraulic conditions with different Froude numbers (0.375 to 1.71) and flow depths (20.3 to 201.5 mm) were used to validate the derived shear stress distribution. For circular channels, model performance enhanced with increasing flow depth (mean relative error (RE) of 0.0414) and only deteriorated slightly at the greatest flow depth (RE of 0.0573). For circular channels with flat beds, the Renyi entropy model predicted the shear stress distribution well at lower sediment depth. The Renyi entropy model results were also compared with Shannon entropy model results. Both models performed well for circular channels, but for circular channels with flat beds the Renyi entropy model displayed superior performance in estimating the shear stress distribution. The Renyi entropy model was highly precise and predicted the shear stress distribution in a circular channel with RE of 0.0480 and in a circular channel with a flat bed with RE of 0.0488.
Methods and apparatuses for the development of microstructured nuclear fuels
Jarvinen, Gordon D [Los Alamos, NM; Carroll, David W [Los Alamos, NM; Devlin, David J [Santa Fe, NM
2009-04-21
Microstructured nuclear fuel adapted for nuclear power system use includes fissile material structures of micrometer-scale dimension dispersed in a matrix material. In one method of production, fissile material particles are processed in a chemical vapor deposition (CVD) fluidized-bed reactor including a gas inlet for providing controlled gas flow into a particle coating chamber, a lower bed hot zone region to contain powder, and an upper bed region to enable powder expansion. At least one pneumatic or electric vibrator is operationally coupled to the particle coating chamber for causing vibration of the particle coater to promote uniform powder coating within the particle coater during fuel processing. An exhaust associated with the particle coating chamber and can provide a port for placement and removal of particles and powder. During use of the fuel in a nuclear power reactor, fission products escape from the fissile material structures and come to rest in the matrix material. After a period of use in a nuclear power reactor and subsequent cooling, separation of the fissile material from the matrix containing the embedded fission products will provide an efficient partitioning of the bulk of the fissile material from the fission products. The fissile material can be reused by incorporating it into new microstructured fuel. The fission products and matrix material can be incorporated into a waste form for disposal or processed to separate valuable components from the fission products mixture.
FEASIBILITY OF BURNING COAL IN CATALYTIC COMBUSTORS
The report gives results of a study, showing that pulverized coal can be burned in a catalytic combustor. Pulverized coal combustion in catalytic beds is markedly different from gaseous fuel combustion. Gas combustion gives uniform bed temperatures and reaction rates over the ent...
Wheeler, T A; Porter, D O; Archer, D; Mullinix, B G
2008-09-01
Plots naturally infested with Rotylenchulus reniformis were sampled in the spring of 2006 and 2007 at depths of 15 and 30 cm in the bed, furrow over the drip tape, and "dry" furrow, and at approximately 40 to 45 cm depth in the bed and dry furrow. Then, 1,3-dichloropropene (Telone EC) was injected into the subsurface drip irrigation at 46 kg a.i./ha, and 3 to 4 weeks later the plots were resampled and assayed for nematodes. The transformed values for nematode population density (IvLRr) before fumigation were higher at 30 and 40 cm depths than at a 15 cm depth. IvLRr before fumigation was higher in the soil over the drip lines than in the bed or dry furrow and was higher in the bed than the dry furrow. IvLRr was higher in the plots to be fumigated than the plots that were not to be fumigated for all depths and locations except at a 15 cm depth over the drip lines, where the values were similar. However, after fumigation, IvLRr was lower over the drip lines at a 30 cm depth in plots that were fumigated compared to samples in a similar location and depth that were not fumigated. There were no other location/depth combinations where the fumigation reduced IvLRr below that in the nonfumigated plots. Yield in 2006, which was a very hot and dry year, was predicted adequately (R(2) = 0.67) by a linear model based on the preplant population density of R. reniformis, with a very steep slope (-2.8 kg lint/ha per R. reniformis/100 cm(3) soil). However, no relationship between nematode density and yield was seen in 2007, which had cooler weather for most of the season. Yield was not significantly improved by fumigation through the drip irrigation system in either year compared to plots treated only with aldicarb (0.84 kg a.i./ha), indicating that the level of control with fumigation did not kill enough R. reniformis to be successful.
Iverson, Richard M.; Chaojun Ouyang,
2015-01-01
Earth-surface mass flows such as debris flows, rock avalanches, and dam-break floods can grow greatly in size and destructive potential by entraining bed material they encounter. Increasing use of depth-integrated mass- and momentum-conservation equations to model these erosive flows motivates a review of the underlying theory. Our review indicates that many existing models apply depth-integrated conservation principles incorrectly, leading to spurious inferences about the role of mass and momentum exchanges at flow-bed boundaries. Model discrepancies can be rectified by analyzing conservation of mass and momentum in a two-layer system consisting of a moving upper layer and static lower layer. Our analysis shows that erosion or deposition rates at the interface between layers must in general satisfy three jump conditions. These conditions impose constraints on valid erosion formulas, and they help determine the correct forms of depth-integrated conservation equations. Two of the three jump conditions are closely analogous to Rankine-Hugoniot conditions that describe the behavior of shocks in compressible gasses, and the third jump condition describes shear traction discontinuities that necessarily exist across eroding boundaries. Grain-fluid mixtures commonly behave as compressible materials as they undergo entrainment, because changes in bulk density occur as the mixtures mobilize and merge with an overriding flow. If no bulk density change occurs, then only the shear-traction jump condition applies. Even for this special case, however, accurate formulation of depth-integrated momentum equations requires a clear distinction between boundary shear tractions that exist in the presence or absence of bed erosion.
Sediment entrainment by debris flows: In situ measurements from the headwaters of a steep catchment
McCoy, S.W.; Kean, Jason W.; Coe, Jeffrey A.; Tucker, G.E.; Staley, Dennis M.; Wasklewicz, T.A.
2012-01-01
Debris flows can dramatically increase their volume, and hence their destructive potential, by entraining sediment. Yet quantitative constraints on rates and mechanics of sediment entrainment by debris flows are limited. Using an in situ sensor network in the headwaters of a natural catchment we measured flow and bed properties during six erosive debris-flow events. Despite similar flow properties and thicknesses of bed sediment entrained across all events, time-averaged entrainment rates were significantly faster for bed sediment that was saturated prior to flow arrival compared with rates for sediment that was dry. Bed sediment was entrained from the sediment-surface downward in a progressive fashion and occurred during passage of dense granular fronts as well as water-rich, inter-surge flow.En massefailure of bed sediment along the sediment-bedrock interface was never observed. Large-magnitude, high-frequency fluctuations in total normal basal stress were dissipated within the upper 5 cm of bed sediment. Within this near surface layer, concomitant fluctuations in Coulomb frictional resistance are expected, irrespective of the influence of pore fluid pressure or fluctuations in shear stress. If the near-surface sediment was wet as it was overridden by a flow, additional large-magnitude, high-frequency pore pressure fluctuations were measured in the near-surface bed sediment. These pore pressure fluctuations propagated to depth at subsonic rates and in a diffusive manner. The depth to which large excess pore pressures propagated was typically less than 10 cm, but scaled as (D/fi)0.5, in which D is the hydraulic diffusivity and fi is the frequency of a particular pore pressure fluctuation. Shallow penetration depths of granular-normal-stress fluctuations and excess pore pressures demonstrate that only near-surface bed sediment experiences the full dynamic range of effective-stress fluctuations, and as a result, can be more easily entrained than deeper sediment. These data provide robust tests for mechanical models of entrainment and demonstrate that a debris flow over wet bed sediment will be larger than the same flow over dry bed sediment.
Beristain Guevara, C I; Vázquez Luna, A; Cortés García, R
1990-03-01
A whole flour potato obtention process was developed which could be used in semirural areas. The potato without peeling was previously washed and ground adding 100 p.p.m. of sodium bisulphite, then it was dehydrated in a cabinet tray dryer with an air flow circulation set at 70 degrees C using three different deep beds (10, 20 and 25 mm). Finally it was milled, sieved and packed in polyethylene Kraft bags and stored for 10 months at room temperature. Results showed that drying time increased less rapidly when the bed depth was increased, so that the overall dryer productivity increased when increasing bed depth. Nevertheless, a better-quality product was obtained, as well as a greater process efficiency when a 10 mm bed depth was used. The whole flour had a particle size of 80 mesh and a moisture and protein content of 7 and 6.7%, respectively. No brown color formation or mold growth occurred during storage. "Tamales de dulce" and chocolate cookies were made with the flour obtained. These were subjected to an acceptability test at community level, and the test revealed that for both products, such acceptability was higher than 90%.
Scale up of fuel ethanol production from sugar beet juice using loofa sponge immobilized bioreactor.
Ogbonna, J C; Mashima, H; Tanaka, H
2001-01-01
Production of fuel ethanol from sugar beet juice, using cells immobilized on loofa sponge was investigated. Based on ethanol productivity and ease of cell immobilization, a flocculating yeast strain, Saccharomyces cerevisiae IR2 was selected for ethanol production from sugar beet juice. It was found that raw sugar beet juice was an optimal substrate for ethanol production, requiring neither pH adjustment nor nitrogen source supplement. When compared with a 2 l bubble column bioreactor, mixing was not sufficient in an 8 l bioreactor containing a bed of sliced loofa sponges and consequently, the immobilized cells were not uniformly distributed within the bed. Most of the cells were immobilized in the lower part of the bed and this resulted in decreased ethanol productivity. By using an external loop bioreactor, constructing the fixed bed with cylindrical loofa sponges, dividing the bed into upper, middle and lower sections with approximately 1 cm spaces between them and circulating the broth through the loop during the immobilization, uniform cell distribution within the bed was achieved. Using this method, the system was scaled up to 50 l and when compared with the 2 l bubble column bioreactor, there were no significant differences (P > 0.05) in ethanol productivity and yield. By using external loop bioreactor to immobilize the cells uniformly on the loofa sponge beds, efficient large scale ethanol production systems can be constructed.
NASA Technical Reports Server (NTRS)
Moran, Robert P.
2013-01-01
Reactor fuel rod surface area that is perpendicular to coolant flow direction (+S) i.e. perpendicular to the P creates areas of coolant stagnation leading to increased coolant temperatures resulting in localized changes in fluid properties. Changes in coolant fluid properties caused by minor increases in temperature lead to localized reductions in coolant mass flow rates leading to localized thermal instabilities. Reductions in coolant mass flow rates result in further increases in local temperatures exacerbating changes to coolant fluid properties leading to localized thermal runaway. Unchecked localized thermal runaway leads to localized fuel melting. Reactor designs with randomized flow paths are vulnerable to localized thermal instabilities, localized thermal runaway, and localized fuel melting.
Prediction and observation of munitions burial in energetic storms
NASA Astrophysics Data System (ADS)
Klammler, Harald; Sheremet, Alexandru; Calantoni, Joseph
2017-04-01
The fate of munitions or unexploded ordnance (UXO) resting on a submarine sediment bed is a critical safety concern. Munitions may be transported in uncontrolled ways to create potentially dangerous situations at places like beaches or ports. Alternatively, they may remain in place or completely disappear for significant but unknown periods, after becoming buried in the sediment bed. Clearly, burial of munitions drastically complicates the detection and removal of potential threats. Here, we present field data of wave height and (surrogate) munitions burial depths near the 8-m isobath at the U.S. Army Corps of Engineers, Field Research Facility, Duck, North Carolina, observed between January and March 2015. The experiment captured a remarkable sequence of storms that included at least 10 events, of which 6 were characterized by wave fields of significant heights exceeding 2 m and with peak periods of approximately 10 s. During the strongest storm, waves of 14 s period and heights exceeding 2 m were recorded for more than 3 days; significant wave height reached 5 m at the peak of activity. At the end of the experiment, divers measured munition burial depths of up to 60 cm below the seabed level. However, the local bathymetry showed less than 5 cm variation between the before and after-storm states, suggesting the local net sediment accumulation / loss was negligible. The lack of bathymetric variability excludes the possibility of burial by a migrating bed form or by sediment deposition, and strongly indicates that the munitions sank into the bed. The depth of burial also suggest an extreme state of sand agitation during the storm. For predicting munitions burial depths, we explore existing analytical solutions for the dynamic interaction between waves and sediment. Measured time series of wave pressure near the sediment bed were converted into wave-induced changes in pore pressures and the effective stress states of the sediment. Different sediment failure criteria based on minimum normal and maximum shear stresses are then applied to evaluate the appropriateness of individual failure criteria to predict observed burial depths. Results are subjected to a sensitivity analysis with respect to uncertain sediment parameters and summarized by representing cumulative failure times as a function of depth.
Column study of chromium(VI) adsorption from electroplating industry by coconut coir pith.
Suksabye, Parinda; Thiravetyan, Paitip; Nakbanpote, Woranan
2008-12-15
The removal of Cr(VI) from electroplating wastewater by coir pith was investigated in a fixed-bed column. The experiments were conducted to study the effect of important parameters such as bed depth (40-60cm) and flow rate (10-30ml min(-1)). At 0.05 C(t)/C(0), the breakthrough volume increased as flow rate decreased or a bed depth increased due to an increase in empty bed contact time (EBCT). The bed depth service time model (BDST) fit well with the experimental data in the initial region of the breakthrough curve, while the simulation of the whole curve using non-linear regression analysis was effective using the Thomas model. The adsorption capacity estimated from the BDST model was reduced with increasing flow rate, which was 16.40mg cm(-3) or 137.91mg Cr(VI)g(-1) coir pith for the flow rates of 10ml min(-1) and 14.05mg cm(-3) or 118.20mg Cr(VI)g(-1) coir pith for the flow rates of 30ml min(-1). At the highest bed depth (60cm) and the lowest flow rate (10mlmin(-1)), the maximum adsorption reached 201.47mg Cr(VI)g(-1) adsorbent according to the Thomas model. The column was regenerated by eluting chromium using 2M HNO(3) after adsorption studies. The desorption of Cr(III) in each of three cycles was about 67-70%. The desorption of Cr(III) in each cycle did not reach 100% due to the fact that Cr(V) was present through the reduction of Cr(VI), and was still in coir pith, possibly bound to glucose in the cellulose part of coir pith. Therefore, the Cr(V) complex cannot be desorbed in solution. The evidence of Cr(V) signal was observed in coir pith, alpha-cellulose and holocellulose extracted from coir pith using electron spin resonance (ESR).
Coupling Solute and Fine Particle Transport with Sand Bed Morphodynamics within a Field Experiment
NASA Astrophysics Data System (ADS)
Phillips, C. B.; Ortiz, C. P.; Schumer, R.; Jerolmack, D. J.; Packman, A. I.
2017-12-01
Fine suspended particles are typically considered to pass through streams and rivers as wash load without interacting with the bed, however experiments have demonstrated that hyporheic flow causes advective exchange of fine particles with the stream bed, yielding accumulation of fine particle deposits within the bed. Ultimately, understanding river morphodynamics and ecosystem dynamics requires coupling both fine particle and solute transport with bed morphodynamics. To better understand the coupling between these processes we analyze a novel dataset from a controlled field experiment conducted on Clear Run, a 2nd order sand bed stream located within the North Carolina coastal plain. Data include concentrations of continuously injected conservative solutes and fine particulate tracers measured at various depths within the stream bed, overhead time lapse images of bed forms, stream discharge, and geomorphological surveys of the stream. We use image analysis of bed morphodynamics to assess exchange, retention, and remobilization of solutes and fine particles during constant discharge and a short duration experimental flood. From the images, we extract a time series of bedform elevations and scour depths for the duration of the experiment. The high-resolution timeseries of bed elevation enables us to assess coupling of bed morphodynamics with both the solute and fine particle flux during steady state mobile bedforms prior to the flood and to changing bedforms during the flood. These data allow the application of a stochastic modeling framework relating bed elevation fluctuations to fine particle residence times. This combined experimental and modeling approach ultimately informs our ability to predict not only the fate of fine particulate matter but also associated nutrient and carbon dynamics within streams and rivers.
Powers, Jarrod; Brewer, Shannon K.; Long, James M.; Campbell, Thomas
2015-01-01
Side-scan sonar is a valuable tool for mapping habitat features in many aquatic systems suggesting it may also be useful for locating sedentary biota. The objective of this study was to determine if side-scan sonar could be used to identify freshwater mussel (unionid) beds and the required environmental conditions. We used side-scan sonar to develop a series of mussel-bed reference images by placing mussel shells within homogenous areas of fine and coarse substrates. We then used side-scan sonar to map a 32-km river reach during spring and summer. Using our mussel-bed reference images, several river locations were identified where mussel beds appeared to exist in the scanned images and we chose a subset of sites (n = 17) for field validation. The validation confirmed that ~60% of the sites had mussel beds and ~80% had some mussels or shells present. Water depth was significantly related to our ability to predict mussel-bed locations: predictive ability was greatest at depths of 1–2 m, but decreased in water >2-m deep. We determined side-scan sonar is an effective tool for preliminary assessments of mussel presence during times when they are located at or above the substrate surface and in relatively fine substrates excluding fine silt.
Reduction of particulate carryover from a pressurized fluidized bed
NASA Technical Reports Server (NTRS)
Patch, R. W.
1979-01-01
A bench scale fluidized bed combustor was constructed with a conical shape so that the enlarged upper part of the combustor would also serve as a granular bed filter. The combustor was fed coal and limestone. Ninety-nine tests of about four hours each were conducted over a range of conditions. Coal-to-air ratio varied from 0.033 to 0.098 (all lean). Limestone-to-coal ratio varied from 0.06 to 0.36. Bed depth varied from 3.66 to 8.07 feet. Temperature varied from 1447 to 1905 F. Pressure varied from 40 to 82 psia. Heat transfer area had the range zero to 2.72 ft squared. Two cone angles were used. The average particulate carry over of 2.5 grains/SCF was appreciably less than cylindrical fluidized bed combustors. The carry over was correlated by multiple regression analysis to yield the dependence on bed depth and hence the collection efficiency, which was 20%. A comparison with a model indicated that the exhaust port may be below the transport disengaging height for most of the tests, indicating that further reduction in carry over and increase in collection efficiency could be affected by increasing the freeboard and height of the exhaust port above the bed.
Constantz, J.; Thomas, C.L.
1997-01-01
Stream bed temperature profiles were monitored continuously during water year 1990 and 1991 (WY90 and 91) in two New Mexico arroyos, similar in their meteorological features and dissimilar in their hydrological features. Stream bed temperature profiles between depths of 30 and 300 cm were examined to determine whether temporal changes in temperature profiles represent accurate indicators of the timing, depth and duration of percolation in each stream bed. These results were compared with stream flow, air temperature, and precipitation records for WY90 and 91, to evaluate the effect of changing surface conditions on temperature profiles. Temperature profiles indicate a persistently high thermal gradient with depth beneath Grantline Arroyo, except during a semi-annual thermal reversal in spring and autumn. This typifies the thermal response of dry sediments with low thermal conductivities. High thermal gradients were disrupted only during infrequent stream flows, followed by rapid re-establishment of high gradients. The stream bed temperature at 300 cm was unresponsive to individual precipitation or stream flow during WY90 and 91. This thermal pattern provides strong evidence that most seepage into Grantline Arroyo failed to percolate at a sufficient rate to reach 300 cm before being returned to the atmosphere. A distinctly different thermal pattern was recorded beneath Tijeras Arroyo. Low thermal gradients between 30 and 300 cm and large diurnal variations in temperature, suggest that stream flow created continuous, advection-dominated heat transport for over 300 days, annually. Beneath Tijeras Arroyo, low thermal gradients were interrupted only briefly during periodic, dry summer conditions. Comparisons of stream flow records for WY90 and 91 with stream bed temperature profiles indicate that independent analysis of thermal patterns provides accurate estimates of the timing, depth and duration of percolation beneath both arroyos. Stream flow loss estimates indicate that seepage rates were 15 times greater for Tijeras Arroyo than for Grantline Arroyo, which supports qualitative conclusions derived from analysis of stream bed temperature responses to surface conditions. ?? 1997 John Wiley & Sons, Ltd.
Flow instability in particle-bed nuclear reactors
NASA Astrophysics Data System (ADS)
Kerrebrock, Jack L.
The particle-bed core offers mitigation of some of the problems of solid-core nuclear rocket reactors. Dividing the fuel elements into small spherical particles contained in a cylindrical bed through which the propellant flows radially, may reduce the thermal stress in the fuel elements, allowing higher propellant temperatures to be reached. The high temperature regions of the reactor are confined to the interior of cylindrical fuel assemblies, so most of the reactor can be relatively cool. This enables the use of structural and moderating materials which reduce the minimum critical size and mass of the reactor. One of the unresolved questions about this concept is whether the flow through the particle-bed will be well behaved, or will be subject to destructive flow instabilities. Most of the recent analyses of the stability of the particle-bed reactor have been extensions of the approach of Bussard and Delauer, where the bed is essentially treated as an array of parallel passages, so that the mass flow is continuous from inlet to outlet through any one passage. A more general three dimensional model of the bed is adopted, in which the fluid has mobility in three dimensions. Comparison of results of the earlier approach to the present one shows that the former does not accurately represent the stability at low Re. The more complete model presented should be capable of meeting this deficiency while accurately representing the effects of the cold and hot frits, and of heat conduction and radiation in the particle-bed. It can be extended to apply to the cylindrical geometry of particle-bed reactors without difficulty. From the exemplary calculations which were carried out, it can be concluded that a particle-bed without a cold frit would be subject to instability if operated at the high temperatures desired for nuclear rockets, and at power densities below about 4 megawatts per liter. Since the desired power density is about 40 megawatts per liter, it can be concluded that operation at design exit temperature but at reduced power could be hazardous for such a reactor. But the calculations also show that an appropriate cold frit could very likely cure the instability. More definite conclusions must await calculations for specific designs.
Flow instability in particle-bed nuclear reactors
NASA Technical Reports Server (NTRS)
Kerrebrock, Jack L.
1993-01-01
The particle-bed core offers mitigation of some of the problems of solid-core nuclear rocket reactors. Dividing the fuel elements into small spherical particles contained in a cylindrical bed through which the propellant flows radially, may reduce the thermal stress in the fuel elements, allowing higher propellant temperatures to be reached. The high temperature regions of the reactor are confined to the interior of cylindrical fuel assemblies, so most of the reactor can be relatively cool. This enables the use of structural and moderating materials which reduce the minimum critical size and mass of the reactor. One of the unresolved questions about this concept is whether the flow through the particle-bed will be well behaved, or will be subject to destructive flow instabilities. Most of the recent analyses of the stability of the particle-bed reactor have been extensions of the approach of Bussard and Delauer, where the bed is essentially treated as an array of parallel passages, so that the mass flow is continuous from inlet to outlet through any one passage. A more general three dimensional model of the bed is adopted, in which the fluid has mobility in three dimensions. Comparison of results of the earlier approach to the present one shows that the former does not accurately represent the stability at low Re. The more complete model presented should be capable of meeting this deficiency while accurately representing the effects of the cold and hot frits, and of heat conduction and radiation in the particle-bed. It can be extended to apply to the cylindrical geometry of particle-bed reactors without difficulty. From the exemplary calculations which were carried out, it can be concluded that a particle-bed without a cold frit would be subject to instability if operated at the high temperatures desired for nuclear rockets, and at power densities below about 4 megawatts per liter. Since the desired power density is about 40 megawatts per liter, it can be concluded that operation at design exit temperature but at reduced power could be hazardous for such a reactor. But the calculations also show that an appropriate cold frit could very likely cure the instability. More definite conclusions must await calculations for specific designs.
Microbial nitrogen cycling response to forest-based bioenergy production.
Minick, Kevan J; Strahm, Brian D; Fox, Thomas R; Sucre, Eric B; Leggett, Zakiya H
2015-12-01
Concern over rising atmospheric CO2 and other greenhouse gases due to fossil fuel combustion has intensified research into carbon-neutral energy production. Approximately 15.8 million ha of pine plantations exist across the southeastern United States, representing a vast land area advantageous for bioenergy production without significant landuse change or diversion of agricultural resources from food production. Furthermore, intercropping of pine with bioenergy grasses could provide annually harvestable, lignocellulosic biomass feedstocks along with production of traditional wood products. Viability of such a system hinges in part on soil nitrogen (N) availability and effects of N competition between pines and grasses on ecosystem productivity. We investigated effects of intercropping loblolly pine (Pinus taeda) with switchgrass (Panicum virgatum) on microbial N cycling processes in the Lower Coastal Plain of North Carolina, USA. Soil samples were collected from bedded rows of pine and interbed space of two treatments, composed of either volunteer native woody and herbaceous vegetation (pine-native) or pure switchgrass (pine-switchgrass) in interbeds. An in vitro 15N pool-dilution technique was employed to quantify gross N transformations at two soil depths (0-5 and 5-15 cm) on four dates in 2012-2013. At the 0-5 cm depth in beds of the pine-switchgrass treatment, gross N mineralization was two to three times higher in November and February compared to the pine-native treatment, resulting in increased NH4(+) availability. Gross and net nitrification were also significantly higher in February in the same pine beds. In interbeds of the pine-switchgrass treatment, gross N mineralization was lower from April to November, but higher in February, potentially reflecting positive effects of switchgrass root-derived C inputs during dormancy on microbial activity. These findings indicate soil N cycling and availability has increased in pine beds of the pine-switchgrass treatment compared to those of the pine-native treatment, potentially alleviating any negative effects of N competition between pine and switchgrass. We expect that reduced soil C in the pine-switchgrass treatment, effects of pine and switchgrass rooting on soil C availability, and plant N demand are major factors influencing soil N transformations. Future research should examine rooting architecture in-intercropped systems and the effects on soil microbial communities and function.
Hydrogen storage in the form of metal hydrides
NASA Technical Reports Server (NTRS)
Zwanziger, M. G.; Santana, C. C.; Santos, S. C.
1984-01-01
Reversible reactions between hydrogen and such materials as iron/titanium and magnesium/ nickel alloy may provide a means for storing hydrogen fuel. A demonstration model of an iron/titanium hydride storage bed is described. Hydrogen from the hydride storage bed powers a converted gasoline electric generator.
Scour at bridge sites in Delaware, Maryland, and Virginia
Hayes, Donald C.
1996-01-01
Scour data were obtained from discharge measure- ments to develop and evaluate the reliability of constriction-scour and local-scour equations for rivers in Delaware, Maryland, and Virginia. No independent constriction-scour or local-scour equations were developed from the data because no significant relation was deter-mined between measured scour and streamflow, streambed, and bridge characteristics. Two existing equations were evaluated for prediction of constriction scour and 14 existing equations were evaluated for prediction of local scour. Constriction-scour data were obtained from historical stream discharge measurements, field surveys, and bridge plans at nine bridge sites in the three-State area. Constriction scour was computed by subtracting the average-streambed elevation in the constricted reach from an uncontracted-channel reference elevation. Hydraulic conditions were estimated for the measurements with the greatest discharges by use of the Water-Surface Profile computation model. Measured and calculated constriction-scour data were used to evaluate the reliability of Laursen's clear-water constriction-scour equation and Laursen's live-bed constriction-scour equation. Laursen's clear-water constriction-scour equation underestimated 21 of 23 scour measure- ments made at three sites. A sensitivity analysis showed that the equation is extremely sensitive to estimates of the channel-bottom width. Reduction in estimates of bottom width by one-third resulted in predictions of constriction scour slightly greater than measured values for all scour measurements. Laursen's live-bed constriction- scour equation underestimated 10 of 14 scour measurements made at one site. The error between measured and predicted constriction scour was less than 1.0 ft (feet) for 12 measure-ments and less than 0.5 ft for 8 measurements. Local-scour data were obtained from stream discharge measurements, field surveys, and bridge plans at 15 bridge sites in the three-State area. The reliability of 14 local-scour equations were evaluated. From visual inspection of the plotted data, the Colorado State University, Froehlich design, Laursen, and Mississippi pier-scour equations appeared to be the best predictors of local scour. The Colorado State University equation underestimated 11 scour depths in clear-water scour conditions by a maximum of 2.4 ft, and underestimated 3 scour depth in live-bed scour conditions by a maximum of 1.3 ft. The Froehlich design equation under- estimated two scour depth in clear-water scour conditions by a maximum of 1.2 ft, and under- estimated one scour depth in live-bed scour conditions by a maximum of 0.4 ft. Laursen's equation overestimated the maximum scour depth in clear-water scour conditions by approximately one-half pier width or approximately 1.5 ft, and overestimated the maximum scour depth in live-bed scour conditions by approximately one-pier width or approximately 3 ft. The Mississippi equation underestimated six scour depths in clear-water scour conditions by a maximum of 1.2 ft, and underestimated one scour depth in live-bed scour conditions by 1.6 ft. In both clear-water and live-bed scour conditions, the upper limit for the depth of scour to pier-width ratio for all local scour measurements was 2.1. An accurate pier- approach velocity is necessary to use many local pier-scour equations for bridge design. Velocity data from all the discharge measurements reviewed for this investigation were used to develop a design curve to estimate pier-approach velocity from mean cross-sectional velocity. A least- squares regression and offset were used to envelop the velocity data.
Opposed-Flow Flame Spread Across Propanol Pools: Effect of Liquid Fuel Depth
NASA Technical Reports Server (NTRS)
Kim, Inchul; Sirignano, William A.
1999-01-01
This computational study examines the effect of liquid fuel depth on flame spread across propanol pools with and without forced, opposed air flow. The initial pool temperature is below its closed- cup flash point temperature T(sub cc); so the liquid fuel must be heated sufficiently to create a combustible mixture of fuel vapor before ignition and flame spread can occur. Furthermore, in order for the flame to spread, an approximate rule is that the liquid fuel surface temperature ahead of the flame must be heated above T(sub cc) so that a flammable mixture just above the lean limit exists ahead of the flame. The depth of a liquid fuel pool would affect the heating of the liquid fuel pool and thus the liquid fuel surface temperature ahead of the flame. It has been observed experimentally and numerically that, at normal gravity without forced gas-phase flow and with the initial pool temperature T(sub 0) in a range well below T(sub cc), the flame periodically accelerates and decelerates (pulsates) as it propagates. The depth of a liquid fuel pool would change this range of T(sub 0) since it would affect the heating of the pool.
NASA Astrophysics Data System (ADS)
An, L.; Rignot, E.; Elieff, S.; Morlighem, M.; Millan, R.; Mouginot, J.; Holland, D. M.; Holland, D.; Paden, J.
2017-04-01
Jakobshavn Isbræ, West Greenland, which holds a 0.6 m sea level volume equivalent, has been speeding up and retreating since the late 1990s. Interpretation of its retreat has been hindered by difficulties in measuring its ice thickness with airborne radar depth sounders. Here we employ high-resolution, helicopter-borne gravity data from 2012 to reconstruct its bed elevation within 50 km of the ocean margin using a three-dimensional inversion constrained by fjord bathymetry data offshore and a mass conservation algorithm inland. We find the glacier trough to be asymmetric and several 100 m deeper than estimated previously in the lower part. From 1996 to 2016, the grounding line migrated at 0.6 km/yr from 700 m to 1100 m depth. Upstream, the bed drops to 1600 m over 10 km then slowly climbs to 1200 m depth in 40 km. Jakobshavn Isbræ will continue to retreat along a retrograde slope for decades to come.
A CFD model for biomass combustion in a packed bed furnace
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karim, Md. Rezwanul; Department of Mechanical & Chemical Engineering, Islamic University of Technology, Gazipur 1704; Ovi, Ifat Rabbil Qudrat
Climate change has now become an important issue which is affecting environment and people around the world. Global warming is the main reason of climate change which is increasing day by day due to the growing demand of energy in developed countries. Use of renewable energy is now an established technique to decrease the adverse effect of global warming. Biomass is a widely accessible renewable energy source which reduces CO{sub 2} emissions for producing thermal energy or electricity. But the combustion of biomass is complex due its large variations and physical structures. Packed bed or fixed bed combustion is themore » most common method for the energy conversion of biomass. Experimental investigation of packed bed biomass combustion is difficult as the data collection inside the bed is challenging. CFD simulation of these combustion systems can be helpful to investigate different operational conditions and to evaluate the local values inside the investigation area. Available CFD codes can model the gas phase combustion but it can’t model the solid phase of biomass conversion. In this work, a complete three-dimensional CFD model is presented for numerical investigation of packed bed biomass combustion. The model describes the solid phase along with the interface between solid and gas phase. It also includes the bed shrinkage due to the continuous movement of the bed during solid fuel combustion. Several variables are employed to represent different parameters of solid mass. Packed bed is considered as a porous bed and User Defined Functions (UDFs) platform is used to introduce solid phase user defined variables in the CFD. Modified standard discrete transfer radiation method (DTRM) is applied to model the radiation heat transfer. Preliminary results of gas phase velocity and pressure drop over packed bed have been shown. The model can be useful for investigation of movement of the packed bed during solid fuel combustion.« less
NASA Astrophysics Data System (ADS)
Voepel, Hal; Ahmed, Sharif; Hodge, Rebecca; Leyland, Julian; Sear, David
2016-04-01
Uncertainty in bedload estimates for gravel bed rivers is largely driven by our inability to characterize arrangement, orientation and resultant forces of fluvial sediment in river beds. Water working of grains leads to structural differences between areas of the bed through particle sorting, packing, imbrication, mortaring and degree of bed armoring. In this study, non-destructive, micro-focus X-ray computed tomography (CT) imaging in 3D is used to visualize, quantify and assess the internal geometry of sections of a flume bed that have been extracted keeping their fabric intact. Flume experiments were conducted at 1:1 scaling of our prototype river. From the volume, center of mass, points of contact, and protrusion of individual grains derived from 3D scan data we estimate 3D static force properties at the grain-scale such as pivoting angles, buoyancy and gravity forces, and local grain exposure. Here metrics are derived for images from two flume experiments: one with a bed of coarse grains (>4mm) and the other where sand and clay were incorporated into the coarse flume bed. In addition to deriving force networks, comparison of metrics such as critical shear stress, pivot angles, grain distributions, principle axis orientation, and pore space over depth are made. This is the first time bed stability has been studied in 3D using CT scanned images of sediment from the bed surface to depths well into the subsurface. The derived metrics, inter-granular relationships and characterization of bed structures will lead to improved bedload estimates with reduced uncertainty, as well as improved understanding of relationships between sediment structure, grain size distribution and channel topography.
Sheng, Xueru; Li, Ning; Li, Guangyi; Wang, Wentao; Wang, Aiqin; Cong, Yu; Wang, Xiaodong; Zhang, Tao
2017-03-09
For the first time, we demonstrated two integrated processes for the direct synthesis of dodecanol or 2,4,8-trimethylnonane (a jet fuel range C 12 -branched alkane) using methyl isobutyl ketone (MIBK) that can be derived from lignocellulose. The reactions were carried out in dual-bed continuous flow reactors. In the first bed, MIBK was selectively converted to a mixture of C 12 alcohol and ketone. Over the Pd-modified magnesium- aluminium hydrotalcite (Pd-MgAl-HT) catalyst, a high total carbon yield (73.0 %) of C 12 oxygenates can be achieved under mild conditions. In the second bed, the C 12 oxygenates generated in the first bed were hydrogenated to dodecanol over a Ru/C catalyst or hydrodeoxygenated to 2,4,8-trimethylnonane over a Cu/SiO 2 catalyst. The as-obtained dodecanol can be used as feedstock in the production of sodium dodecylsulfate (SDS) and sodium dodecyl benzene sulfonate (SDBS), which are widely used as surfactants or detergents. The asobtained 2,4,8-trimethylnonane can be blended into conventional jet fuel without hydroisomerization. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dutta, Abhijit; Schaidle, Joshua A.; Humbird, David
Ex situ catalytic fast pyrolysis of biomass is a promising route for the production of fungible liquid biofuels. There is significant ongoing research on the design and development of catalysts for this process. However, there are a limited number of studies investigating process configurations and their effects on biorefinery economics. Herein we present a conceptual process design with techno-economic assessment; it includes the production of upgraded bio-oil via fixed bed ex situ catalytic fast pyrolysis followed by final hydroprocessing to hydrocarbon fuel blendstocks. This study builds upon previous work using fluidized bed systems, as detailed in a recent design reportmore » led by the National Renewable Energy Laboratory (NREL/TP-5100-62455); overall yields are assumed to be similar, and are based on enabling future feasibility. Assuming similar yields provides a basis for easy comparison and for studying the impacts of areas of focus in this study, namely, fixed bed reactor configurations and their catalyst development requirements, and the impacts of an inline hot gas filter. A comparison with the fluidized bed system shows that there is potential for higher capital costs and lower catalyst costs in the fixed bed system, leading to comparable overall costs. The key catalyst requirement is to enable the effective transformation of highly oxygenated biomass into hydrocarbons products with properties suitable for blending into current fuels. Potential catalyst materials are discussed, along with their suitability for deoxygenation, hydrogenation and C–C coupling chemistry. This chemistry is necessary during pyrolysis vapor upgrading for improved bio-oil quality, which enables efficient downstream hydroprocessing; C–C coupling helps increase the proportion of diesel/jet fuel range product. One potential benefit of fixed bed upgrading over fluidized bed upgrading is catalyst flexibility, providing greater control over chemistry and product composition. Since this study is based on future projections, the impacts of uncertainties in the underlying assumptions are quantified via sensitivity analysis. As a result, this analysis indicates that catalyst researchers should prioritize by: carbon efficiency > catalyst cost > catalyst lifetime, after initially testing for basic operational feasibility.« less
Dutta, Abhijit; Schaidle, Joshua A.; Humbird, David; ...
2015-10-06
Ex situ catalytic fast pyrolysis of biomass is a promising route for the production of fungible liquid biofuels. There is significant ongoing research on the design and development of catalysts for this process. However, there are a limited number of studies investigating process configurations and their effects on biorefinery economics. Herein we present a conceptual process design with techno-economic assessment; it includes the production of upgraded bio-oil via fixed bed ex situ catalytic fast pyrolysis followed by final hydroprocessing to hydrocarbon fuel blendstocks. This study builds upon previous work using fluidized bed systems, as detailed in a recent design reportmore » led by the National Renewable Energy Laboratory (NREL/TP-5100-62455); overall yields are assumed to be similar, and are based on enabling future feasibility. Assuming similar yields provides a basis for easy comparison and for studying the impacts of areas of focus in this study, namely, fixed bed reactor configurations and their catalyst development requirements, and the impacts of an inline hot gas filter. A comparison with the fluidized bed system shows that there is potential for higher capital costs and lower catalyst costs in the fixed bed system, leading to comparable overall costs. The key catalyst requirement is to enable the effective transformation of highly oxygenated biomass into hydrocarbons products with properties suitable for blending into current fuels. Potential catalyst materials are discussed, along with their suitability for deoxygenation, hydrogenation and C–C coupling chemistry. This chemistry is necessary during pyrolysis vapor upgrading for improved bio-oil quality, which enables efficient downstream hydroprocessing; C–C coupling helps increase the proportion of diesel/jet fuel range product. One potential benefit of fixed bed upgrading over fluidized bed upgrading is catalyst flexibility, providing greater control over chemistry and product composition. Since this study is based on future projections, the impacts of uncertainties in the underlying assumptions are quantified via sensitivity analysis. As a result, this analysis indicates that catalyst researchers should prioritize by: carbon efficiency > catalyst cost > catalyst lifetime, after initially testing for basic operational feasibility.« less
Thermal-Hydraulic Transient Analysis of a Packed Particle Bed Reactor Fuel Element
1990-06-01
long fuel elements, arranged to form a core , were analyzed for an up-power transient from 0 MWt to approximately 18 MWt. The simple model significantly...VARIATIONS IN FUEL ELEMENT GEOMETRY ............. 60 4.4 VARIATIONS IN THE MANNER OF TRANSIENT CONTROL ..... 62 4.5 CORE REPRESENTATION BY MULTIPLE FUEL ...the HTGR , however, the PBR packs small fuel particles between inner and outer retention elements, designated as frits. The PBR is appropriate for a
Fast fluidized bed steam generator
Bryers, Richard W.; Taylor, Thomas E.
1980-01-01
A steam generator in which a high-velocity, combustion-supporting gas is passed through a bed of particulate material to provide a fluidized bed having a dense-phase portion and an entrained-phase portion for the combustion of fuel material. A first set of heat transfer elements connected to a steam drum is vertically disposed above the dense-phase fluidized bed to form a first flow circuit for heat transfer fluid which is heated primarily by the entrained-phase fluidized bed. A second set of heat transfer elements connected to the steam drum and forming the wall structure of the furnace provides a second flow circuit for the heat transfer fluid, the lower portion of which is heated by the dense-phase fluidized bed and the upper portion by the entrained-phase fluidized bed.
Cumulative effects of fuel management on the soils of eastern U.S
Mac A. Callaham; D. Andrew Scott; Joseph J. O’Brien; John A. Stanturf
2012-01-01
Fuel management treatments in the Eastern United States encompass diverse activities that have a range of potential impacts on the soils within watersheds of managed forests and grasslands. In industrial or production forests, the predominant fuel management strategies are intensive site preparation (bedding, roller chopping, and burning slash), use of herbicides, and...
Fire spread characteristics determined in the laboratory
Richard C. Rothermel; Hal E. Anderson
1966-01-01
Fuel beds of ponderosa pine needles and white pine needles were burned under controlled environmental conditions to determine the effects of fuel moisture and windspeed upon the rate of fire spread. Empirical formulas are presented to show the effect of these parameters. A discussion of rate of spread and some simple experiments show how fuel may be preheated before...
Defense Logistics Agency: Fulcrum for Greening DoD
2011-05-11
3. Water Tank Coatings 4. Diesel Fuel Additives 5. Penetrating Lubricants 6. Bedding, Bed Linens, and Towels Round 2 Final Rule 05/14/2008 1...Turbine Drip Oils 9. Topical Pain Relief Products Round 7 Proposed Rule 11/23/2010 1. Animal Repellents 2. Bath Products 3. Bioremediation Materials 4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lukens, J. Nicholas; Lin, Alexander, E-mail: alexander.lin@uphs.upenn.edu; Gamerman, Victoria
Purpose: A subset of patients with oropharyngeal squamous cell carcinoma (OP-SCC) managed with transoral robotic surgery (TORS) and postoperative radiation therapy (PORT) developed soft tissue necrosis (STN) in the surgical bed months after completion of PORT. We investigated the frequency and risk factors. Materials and Methods: This retrospective analysis included 170 consecutive OP-SCC patients treated with TORS and PORT between 2006 and 2012, with >6 months' of follow-up. STN was defined as ulceration of the surgical bed >6 weeks after completion of PORT, requiring opioids, biopsy, or hyperbaric oxygen therapy. Results: A total of 47 of 170 patients (28%) hadmore » a diagnosis of STN. Tonsillar patients were more susceptible than base-of-tongue (BOT) patients, 39% (41 of 104) versus 9% (6 of 66), respectively. For patients with STN, median tumor size was 3.0 cm (range 1.0-5.6 cm), and depth of resection was 2.2 cm (range 1.0-5.1 cm). Median radiation dose and dose of fraction to the surgical bed were 6600 cGy and 220 cGy, respectively. Thirty-one patients (66%) received concurrent chemotherapy. Median time to STN was 2.5 months after PORT. All patients had resolution of STN after a median of 3.7 months. Multivariate analysis identified tonsillar primary (odds ratio [OR] 4.73, P=.01), depth of resection (OR 3.12, P=.001), total radiation dose to the resection bed (OR 1.51 per Gy, P<.01), and grade 3 acute mucositis (OR 3.47, P=.02) as risk factors for STN. Beginning May 2011, after implementing aggressive avoidance of delivering >2 Gy/day to the resection bed mucosa, only 8% (2 of 26 patients) experienced STN (all grade 2). Conclusions: A subset of OP-SCC patients treated with TORS and PORT are at risk for developing late consequential surgical bed STN. Risk factors include tonsillar location, depth of resection, radiation dose to the surgical bed, and severe mucositis. STN risk is significantly decreased with carefully avoiding a radiation dosage of >2 Gy/day to the surgical bed.« less
NASA Astrophysics Data System (ADS)
Cooper, J.; Tait, S.; Marion, A.
2005-12-01
Bed-load is governed by interdependent mechanisms, the most significant being the interaction between bed roughness, surface layer composition and near-bed flow. Despite this, practically all transport rate equations are described as a function of average bed shear stress. Some workers have examined the role of turbulence in sediment transport (Nelson et al. 1995) but have not explored the potential significance of spatial variations in the near-bed flow field. This is unfortunate considering evidence showing that transport is spatially heterogeneous and could be linked to the spatial nature of the near-bed flow (Drake et al., 1988). An understanding is needed of both the temporal and spatial variability in the near-bed flow field. This paper presents detailed spatial velocity measurements of the near-bed flow field over a gravel-bed, obtained using Particle Image Velocimetry. These data have been collected in a laboratory flume under two regimes: (i) tests with one bed slope and different flow depths; and (ii) tests with a combination of flow depths and slopes at the same average bed shear stress. Results indicate spatial variation in the streamwise velocities of up to 45 per cent from the double-averaged velocity (averaged in both time and space). Under both regimes, as the depth increased, spatial variability in the flow field increased. The probability distributions of near-bed streamwise velocities became progressively more skewed towards the higher velocities. This change was more noticeable under regime (i). This has been combined with data from earlier tests in which the near-bed velocity close to an entraining grain was measured using a PIV/image analysis system (Chegini et al, 2002). This along with data on the shape of the probability density function of velocities capable of entraining individual grains derived from a discrete-particle model (Heald et al., 2004) has been used to estimate the distribution of local velocities required for grain motion in the above tests. The overlap between this distribution and the measured velocities are used to estimate entrainment rates. Predicted entrainment rates increase with relative submergence, even for similar bed shear stress. Assuming bed-load rate is the product of entrainment rate and hop length, and that hop lengths are sensibly stable, suggests that transport rate has a dependence on relative submergence. This demonstrates that transport rate is not a direct function of average bed shear stress. The results describe a mechanism that will cause river channels with contrasting morphologies (and different relative submergence) but similar levels of average bed stress to experience different levels of sediment mobility. Chegini A. Tait S. Heald J. McEwan I. 2002 The development of an automated system for the measurement of near bed turbulence and grain motion. Proc. ASCE Conf. on Hydraulic Measurements and Experimental Methods, ISBN 0-7844-0655-3. Drake T.G. Shreve R.L. Dietrich W.E. Whiting P.J. Leopold L.B. 1988 Bedload transport of fine gravel observed by motion-picture photography, J. Fluid Mech., 192, 193-217. Heald J. McEwan I. Tait, S. 2004 Sediment transport over a flat bed in a unidirectional flow: simulations and validation, Phil. Trans. Roy. Soc. of London A, 362, 1973-1986. Nelson J.M. Shreve R.L. McLean S.R. Drake T.G. 1995 Role of near-bed turbulence structure in bed-load transport and bed form mechanics, Water. Res. Res., 31, 8, 2071-2086.
Indirect heating pyrolysis of oil shale
Jones, Jr., John B.; Reeves, Adam A.
1978-09-26
Hot, non-oxygenous gas at carefully controlled quantities and at predetermined depths in a bed of lump oil shale provides pyrolysis of the contained kerogen of the oil shale, and cool non-oxygenous gas is passed up through the bed to conserve the heat
NASA Astrophysics Data System (ADS)
I.; | J., Möller; | T., Mantilla-Contreras; | A., Spencer; Hayes
2011-05-01
This paper investigates the hydro-morphological controls on incident wind-generated waves at, and the transformation of such waves within, two Phragmites australis reed beds in the southern Baltic Sea. Meteorological conditions in combination with geomorphological controls result, over short (<2 km) distances, in significant differences in water level and wave climate to which fringing reed beds are exposed. Significant wave height attenuation reached a maximum of 2.6% m -1 and 11.8% m -1 at the transition from open water into the reed vegetation at the sheltered and exposed sites respectively. Wave attenuation through the emergent reed vegetation was significantly lower in greater water depths, suggesting (1) a reduced influence of bed friction by small shoots/roots and/or (2) drag reduction due to flexing of plants when the wave motion is impacting stems at a greater height above the bed. For a given water depth, wave dissipation increased with increasing incident wave height, however, suggesting that, despite their ability to flex, reed stems may be rigid enough to cause increased drag under greater wave forcing. The higher frequency part of the wave spectrum (>0.5 Hz) was preferentially reduced at the reed margin, confirming the theoretical wave frequency dependence of bottom friction. The possibility of physiological adaptation (differences in reed stem diameter) to water depth and wave exposure differences is discussed. The results have implications for the possible impact of environmental changes, both acute (e.g. storm surges) or chronic (e.g. sea level rise) in character, and for the appropriate management of reed bed sites and delivery of ecological goods and services.
Kansas coal distribution, resources, and potential for coalbed methane
Brady, L.L.
2000-01-01
100 ft (>30 m)] determined from 32 different coal beds. Strippable coal resources at a depth Kansas has large amounts of bituminous coal both at the surface and in the subsurface of eastern Kansas. Preliminary studies indicate at least 53 billion tons (48 billion MT) of deep coal [>100 ft (>30 m)] determined from 32 different coal beds. Strippable coal resources at a depth < 100 ft (<30 m) total 2.8 billion tons (2.6 billion MT), and this total is determined from 17 coals. Coal beds present in the Cherokee Group (Middle Pennsylvanian) represent most of these coal resource totals. Deep coal beds with the largest resource totals include the Bevier, Mineral, "Aw" (unnamed coal bed), Riverton, and Weir-Pittsburg coals, all within the Cherokee Group. Based on chemical analyses, coals in the southeastern part of the state are generally high volatile A bituminous, whereas coals in the east-central and northeastern part of the state are high-volatile B bituminous coals. The primary concern of coal beds in Kansas for deep mining or development of coalbed methane is the thin nature [<2 ft (0.6 m)] of most coal beds. Present production of coalbed methane is centered mainly in the southern Wilson/northern Montgomery County area of southeastern Kansas where methane is produced from the Mulky, Weir-Pittsburg, and Riverton coals.
Growth of Azotobacter vinelandii in a solid-state fermentation of technical lignin.
Zhang, Xiaoyong; Zhao, Hua; Zhang, Jianan; Li, Zuohu
2004-10-01
Azotobacter vinelandii was cultured on technical lignin, derived from Kraft pulping processes, for biofertilizer production in solid-state fermentation. The effects of the ratio of technical lignin to corn straw, initial water content, and material bed depth on the microorganisms were studied in detail. At 30 degrees C, technical lignin to corn straw at the ratio of 1:0.75, the bed depth of 5 cm, and 67% moisture content, A. vinelandii was grown and reached 4.2 x 10(10) cfu g(-1) dry rot after 36 h.
NASA Astrophysics Data System (ADS)
Simeonov, J.; Czapiga, M. J.; Holland, K. T.
2017-12-01
We developed an inversion model for river bathymetry estimation using measurements of surface currents, water surface elevation slope and shoreline position. The inversion scheme is based on explicit velocity-depth and velocity-slope relationships derived from the along-channel momentum balance and mass conservation. The velocity-depth relationship requires the discharge value to quantitatively relate the depth to the measured velocity field. The ratio of the discharge and the bottom friction enter as a coefficient in the velocity-slope relationship and is determined by minimizing the difference between the predicted and the measured streamwise variation of the total head. Completing the inversion requires an estimate of the bulk friction, which in the case of sand bed rivers is a strong function of the size of dune bedforms. We explored the accuracy of existing and new empirical closures that relate the bulk roughness to parameters such as the median grain size diameter, ratio of shear velocity to sediment fall velocity or the Froude number. For given roughness parameterization, the inversion solution is determined iteratively since the hydraulic roughness depends on the unknown depth. We first test the new hydraulic roughness parameterization using estimates of the Manning roughness in sand bed rivers based on field measurements. The coupled inversion and roughness model is then tested using in situ and remote sensing measurements of the Kootenai River east of Bonners Ferry, ID.
JP8 Reformation for Combat Vehicles
2007-08-07
phase (fuel), and a gas phase (hydrogen) at elevated pressures. • Trickle - bed configuration is difficult to model and scale down—not practical for...gases output from HDS reactor are used to fuel the reformer. Current Technology Status: •Integrated desulfurization/reforming system successfully
Reduction of FeO contents in sinter under high bed operation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fujii, K.; Hazama, K.; Hoshikuma, Y.
1996-12-31
High-bed operation (bed height more than 700 mm) is currently being carried out at the Kure No. 1 sintering plant. Before initiating this high-bed operation, the authors conducted sinter pot tests at various bed heights to investigate the effect of bed height on sintering. The following results were obtained from these pot tests: Heightening of the sinter bed increased yield at the upper layer, but at the lower layer, the yield reached a maximum value at a certain bed height. From observation of the sinter cakes, the reduction in yield is attributed to uneven burn caused by surplus heat atmore » the lower layers. Therefore, when high-bed operation is carried out, reduction of the burning energy (reduction of the FeO content in the sinter) is required. This high-bed operation with lower FeO content has enabled the company to reduce fuel consumption and SiO{sub 2} content, while maintaining high yield and high sinter quality.« less
Aerosol spectral optical depths - Jet fuel and forest fire smokes
NASA Technical Reports Server (NTRS)
Pueschel, R. F.; Livingston, J. M.
1990-01-01
The Ames autotracking airborne sun photometer was used to investigate the spectral depth between 380 and 1020 nm of smokes from a jet fuel pool fire and a forest fire in May and August 1988, respectively. Results show that the forest fire smoke exhibited a stronger wavelength dependence of optical depths than did the jet fuel fire smoke at optical depths less than unity. At optical depths greater than or equal to 1, both smokes showed neutral wavelength dependence, similar to that of an optically thin stratus deck. These results verify findings of earlier investigations and have implications both on the climatic impact of large-scale smokes and on the wavelength-dependent transmission of electromagnetic signals.
Entrainment of bed sediment by debris flows: results from large-scale experiments
Reid, Mark E.; Iverson, Richard M.; Logan, Matthew; LaHusen, Richard G.; Godt, Jonathan W.; Griswold, Julie P.
2011-01-01
When debris flows grow by entraining sediment, they can become especially hazardous owing to increased volume, speed, and runout. To investigate the entrainment process, we conducted eight largescale experiments in the USGS debris-flow flume. In each experiment, we released a 6 m3 water-saturated debris flow across a 47-m long, ~12-cm thick bed of partially saturated sediment lining the 31º flume. Prior to release, we used low-intensity overhead sprinkling and real-time monitoring to control the bed-sediment wetness. As each debris flow descended the flume, we measured the evolution of flow thickness, basal total normal stress, basal pore-fluid pressure, and sediment scour depth. When debris flows traveled over relatively dry sediment, net scour was minimal, but when debris flows traveled over wetter sediment (volumetric water content > 0.22), debris-flow volume grew rapidly and flow speed and runout were enhanced. Data from scour sensors showed that entrainment occurred by rapid (5-10 cm/s), progressive scour rather than by mass failure at depth. Overriding debris flows rapidly generated high basal pore-fluid pressures when they loaded and deformed bed sediment, and in wetter beds these pressures approached lithostatic levels. Reduction of intergranular friction within the bed sediment thereby enhanced scour efficiency, entrainment, and runout.
Sundberg, C; Tonderski, K; Lindgren, P E
2007-01-01
Constructed wetlands can be used to decrease the high ammonium concentrations in landfill leachates. We investigated nitrification/denitrification activity and the corresponding bacterial communities in landfill leachate that was treated in a compact constructed wetland, Tveta Recycling Facility, Sweden. Samples were collected at three depths in a filter bed and the sediment from a connected open pond in July, September and November 2004. Potential ammonia oxidation was measured by short-term incubation method and potential denitrification by the acetylene inhibition technique. The ammonia-oxidising and the denitrifying bacterial communities were investigated using group-specific PCR primers targeting 16S rRNA genes and the functional gene nosZ, respectively. PCR products were analysed by denaturing gradient gel electrophoresis and nucleotide sequencing. The same degree of nitrification activity was observed in the pond sediment and at all levels in the filter bed, whereas the denitrification activity decreased with filter bed depth. Denitrification rates were higher in the open pond, even though the denitrifying bacterial community was more diverse in the filter bed. The ammonia-oxidising community was also more varied in the filter bed. In the filter bed and the open pond, there was no obvious relationship between the nitrification/denitrification activities and the composition of the corresponding bacterial communities.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-31
... information related to coal, coal bed gas, shale gas and other energy resources and related information..., coal bed gas, and other solid fuel occurrences. Requesting external cooperation is the best way for... organic-rich shale, and obtain other information (including geophysical or seismic data, sample collection...
Dynamic controls on shallow clinoform geometry: Mekong Delta, Vietnam
NASA Astrophysics Data System (ADS)
Eidam, E. F.; Nittrouer, C. A.; Ogston, A. S.; DeMaster, D. J.; Liu, J. P.; Nguyen, T. T.; Nguyen, T. N.
2017-09-01
Compound deltas, composed of a subaerial delta plain and subaqueous clinoform, are common termini of large rivers. The transition between clinoform topset and foreset, or subaqueous rollover point, is located at 25-40-m water depth for many large tide-dominated deltas; this depth is controlled by removal of sediment from the topset by waves, currents, and gravity flows. However, the Mekong Delta, which has been classified as a mixed-energy system, has a relatively shallow subaqueous rollover at 4-6-m depth. This study evaluates dynamical measurements and seabed cores collected in Sep 2014 and Mar 2015 to understand processes of sediment transfer across the subaqueous delta, and evaluate possible linkages to geometry. During the southwest rainy monsoon (Sep 2014), high river discharge, landward return flow under the river plume, and regional circulation patterns facilitated limited sediment flux to the topset and foreset, and promoted alongshore flux to the northeast. Net observed sediment fluxes in Sep 2014 were landward, however, consistent with hypotheses about seasonal storage on the topset. During the northeast rainy monsoon, low river discharge and wind-driven currents facilitated intense landward and southwestward fluxes of sediment. In both seasons, bed shear velocities frequently exceeded the 0.01-0.02 m/s threshold of motion for sand, even in the absence of strong wave energy. Most sediment transport occurred at water depths <14 m, as expected from observed cross-shelf gradients of sedimentation. Sediment accumulation rates were highest on the upper and lower foreset beds (>4 cm/yr at <10 m depth, and 3-8 cm/yr at 10-20 m depth) and lowest on the bottomset beds. Physically laminated sediments transitioned into mottled sediments between the upper foreset and bottomset regions. Application of a simple wave-stress model to the Mekong and several other clinoforms illustrates that shallow systems are not necessarily energy-limited, and thus rollover depths cannot be predicted solely by bed-stress distributions. In systems like the subaqueous Mekong Delta, direction of transport may have a key impact on morphology.
Fine dust filtration using a metal fiber bed.
Lee, Kyung Mi; Lee, Young Sup; Jo, Young Min
2006-08-01
A bed-type filter composed of thin metal alloy fiber was closely examined with dust capturing in cold and hot runs. The investigation of an individual mechanism across the filter bed indicated that the aerated dust could be initially collected by depth filtration, and after a while, surface filtration dominated the overall dust collection. The present metal fiber bed was comparable to the conventional ceramic filters because of its good collection efficiency with low pressure drop. It also showed potential to be used as a prefilter in a diesel exhaust trapping system.
NASA Astrophysics Data System (ADS)
McDowell, P. F.
2017-12-01
In many active restoration projects, instream structures or modifications are designed to produce specific change in channel form, such as reduced W:D or increased pool depth, yet there is little monitoring to evaluate effectiveness. Active restoration often takes place within a context of other land management changes that can have an effect on channel form. Thus, the effects of active restoration are difficult to separate from the effects of other management actions. We measured morphologic response to restoration designs on sections of the Middle Fork John Day River, a gravel-cobble bed river under a cattle grazing regime in the Blue Mountain of Oregon. Since 2000, restoration actions have included elimination of cattle grazing in the riparian zone (passive restoration), riparian planting of woody vegetation, instream log structures for fish habitat and pool maintenance, and elimination of a major flow diversion. We listed the hypothetical effects of each of these management changes, showing overlap among effects of active and passive restoration. Repeat cross-section and longitudinal profile surveys over eight years, and repeat aerial imagery, documented changes in channel width, depth and bed morphology, and processes of change (bank erosion or aggradation, point bar erosion or aggradation, bed incision or aggradation), in two restored reaches and two adjacent control (unrestored) reaches. Morphologic changes were modest. Bankfull cross-section area, width, and W:D all decreased slightly in both restored reaches. Control reaches were unchanged or increased slightly. Processes of change were markedly different among the four reaches, with different reaches dominated by different processes. One restored reach was dominated by slight bed aggradation, increased pool depth and deep pools/km, while the other restored reach was dominated by bank erosion, bar aggradation and slight bed incision, along with increased deep pools/km. The longitudinal profile showed significant re-arrangement of bed morphology. The spatial context of processes and controls allows some separation of the effectiveness of different management actions. Active restoration directly increased pool depth, but passive restoration apparently had more impact on aggradation/degradation and width.
Systems Based Approaches for Thermochemical Conversion of Biomass to Bioenergy and Bioproducts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, Steven
2016-07-11
Auburn’s Center for Bioenergy and Bioproducts conducts research on production of synthesis gas for use in power generation and the production of liquid fuels. The overall goal of our gasification research is to identify optimal processes for producing clean syngas to use in production of fuels and chemicals from underutilized agricultural and forest biomass feedstocks. This project focused on construction and commissioning of a bubbling-bed fluidized-bed gasifier and subsequent shakedown of the gasification and gas cleanup system. The result of this project is a fully commissioned gasification laboratory that is conducting testing on agricultural and forest biomass. Initial tests onmore » forest biomass have served as the foundation for follow-up studies on gasification under a more extensive range of temperatures, pressures, and oxidant conditions. The laboratory gasification system consists of a biomass storage tank capable of holding up to 6 tons of biomass; a biomass feeding system, with loss-in-weight metering system, capable of feeding biomass at pressures up to 650 psig; a bubbling-bed fluidized-bed gasification reactor capable of operating at pressures up to 650 psig and temperatures of 1500oF with biomass flowrates of 80 lb/hr and syngas production rates of 37 scfm; a warm-gas filtration system; fixed bed reactors for gas conditioning; and a final quench cooling system and activated carbon filtration system for gas conditioning prior to routing to Fischer-Tropsch reactors, or storage, or venting. This completed laboratory enables research to help develop economically feasible technologies for production of biomass-derived synthesis gases that will be used for clean, renewable power generation and for production of liquid transportation fuels. Moreover, this research program provides the infrastructure to educate the next generation of engineers and scientists needed to implement these technologies.« less
Contribution to the identification of pyrolysis byproducts in fluidized bed soot and in pyrocarbon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolfrum, E.; Rottmann, J.; Bueker, I.
1973-01-15
In order to develop improved fuel particles, pyrohysis byproducts of both the pyrocarbon separated in fluidized beds and the resulting soot were studied. The aim was to study the separation mechanism of pyrocarbon on fuel kernels during the thermal decomposition of low hydrocarbons. This study referred to pyrolysis products of acetylene and propylene. The extraction was performed with various methods. The extracts were separated gas- chromatographically and mass-spectrometrically; the single components were partially identified. 21 polycyclic and aromatic hydrocarbons were clearly identified in soot. Beyond that, pyrocarbon contains still higher molecular pohycyclic compounds. (18 figures, 12 tables, 34 references) (auth)
Energy Conversion Alternatives Study (ECAS)
NASA Technical Reports Server (NTRS)
1977-01-01
ECAS compared various advanced energy conversion systems that can use coal or coal-derived fuels for baseload electric power generation. It was conducted in two phases. Phase 1 consisted of parametric studies. From these results, 11 concepts were selected for further study in Phase 2. For each of the Phase 2 systems and a common set of ground rules, performance, cost, environmental intrusion, and natural resource requirements were estimated. In addition, the contractors defined the state of the associated technology, identified the advances required, prepared preliminary research and development plans, and assessed other factors that would affect the implementation of each type of powerplant. The systems studied in Phase 2 include steam systems with atmospheric- and pressurized-fluidized-bed boilers; combined cycle gas turbine/steam systems with integrated gasifiers or fired by a semiclean, coal derived fuel; a potassium/steam system with a pressurized-fluidized-bed boiler; a closed-cycle gas turbine/organic system with a high-temperature, atmospheric-fluidized-bed furnace; a direct-coal-fired, open- cycle magnetohydrodynamic/steam system; and a molten-carbonate fuel cell/steam system with an integrated gasifier. The sensitivity of the results to changes in the ground rules and the impact of uncertainties in capital cost estimates were also examined.
Observations of Morphodynamics During a Winter Storm at the Mouth of the Misa River
NASA Astrophysics Data System (ADS)
Calantoni, J.; Sheremet, A.; Brocchini, M.; Postacchini, M.
2016-02-01
The shallow mouth of the Misa River, Senigallia, Italy is exposed to wind and waves from the Adriatic Sea and is vulnerable to morphodynamic activity during even moderate storm events. Sediment loads and transport patterns may be strongly influenced by the confluence of fine cohesive suspended sediment contained in the discharge from the river mixing with coarser sandy material stirred up by waves impinging on the river mouth. Observations of rapid changes in bed elevation along a transect extending offshore of the river mouth were made using a combination of instruments deployed from 23-27 January 2014 at two locations in roughly 5 m water depth and 6 m water depth. Additionally, an up looking ADCP was located farther offshore in approximately 7 m water depth. The deposited sediment quickly consolidated into a hardened mixture of sand, mud, and venerids over the base of our instrument frames. At the 5 m water depth location over 0.4 m of deposition was observed roughly during a 6-hour period. Similarly, at the 6 m water depth location nearly 0.2 m of deposition was observed roughly over a 6-hour period with approximately a two-hour time lag. The onset of deposition was concurrent with a change in direction of the mean currents at both locations and a change in direction of wave skewness observed at the 5 m water depth location. We hypothesize that sandbar migration was responsible for the observed changes in bed elevation at both locations. Our analysis will focus on sediment transport modeling to explain rates of deposition and time lag of the observed changes in bed elevation at the 5 m and 6 m water depth locations.
Aerobic mineralization of MTBE and tert-butyl alcohol by stream-bed sediment microorganisms
Bradley, P.M.; Landmeyer, J.E.; Chapelle, F.H.
1999-01-01
Microorganisms indigenous to the stream-bed sediments at two gasoline- contaminated groundwater sites demonstrated significant mineralization of the fuel oxygenates, methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA). Up to 73% of [U-14C]-MTBE and 84% of [U-14C]-TBA were degraded to 14CO2 under mixed aerobic/anaerobic conditions. No significant mineralization was observed under strictly anaerobic conditions. The results indicate that, under the mixed aerobic/anaerobic conditions characteristic of stream-bed sediments, microbial processes may provide a significant environmental sink for MTBE and TBA delivered to surface water bodies by contaminated groundwater or by other sources.Microorganisms indigenous to the stream-bed sediments at two gasoline-contaminated groundwater sites demonstrated significant mineralization of the fuel oxygenates, methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA). Up to 73% of [U-14C]-MTBE and 84% of [U-14C]-TBA were degraded to 14CO2 under mixed aerobic/anaerobic conditions. No significant mineralization was observed under strictly anaerobic conditions. The results indicate that, under the mixed aerobic/anaerobic conditions characteristic of stream-bed sediments, microbial processes may provide a significant environmental sink for MTBE and TBA delivered to surface water bodies by contaminated groundwater or by other sources.
NASA Astrophysics Data System (ADS)
Husnayani, I.; Udiyani, P. M.; Bakhri, S.; Sunaryo, G. R.
2018-02-01
Pebble Bed Reactor (PBR) is a high temperature gas-cooled reactor which employs graphite as a moderator and helium as a coolant. In a multi-pass PBR, burnup of the fuel pebble must be measured in each cycle by online measurement in order to determine whether the fuel pebble should be reloaded into the core for another cycle or moved out of the core into spent fuel storage. One of the well-known methods for measuring burnup is based on the activity of radionuclide decay inside the fuel pebble. In this work, the activity and gamma emission of Kr-85m were studied in order to investigate the feasibility of Kr-85m as burnup measurement indicator in a PBR. The activity and gamma emission of Kr-85 were estimated using ORIGEN2.1 computer code. The parameters of HTR-10 were taken as a case study in performing ORIGEN2.1 simulation. The results show that the activity revolution of Kr-85m has a good relationship with the burnup of the pebble fuel in each cycle. The Kr-85m activity reduction in each burnup step,in the range of 12% to 4%, is considered sufficient to show the burnup level in each cycle. The gamma emission of Kr-85m is also sufficiently high which is in the order of 1010 photon/second. From these results, it can be concluded that Kr-85m is suitable to be used as burnup measurement indicator in a pebble bed reactor.
Vertical variation of mixing within porous sediment beds below turbulent flows
Chandler, I. D.; Pearson, J. M.; van Egmond, R.
2016-01-01
Abstract River ecosystems are influenced by contaminants in the water column, in the pore water and adsorbed to sediment particles. When exchange across the sediment‐water interface (hyporheic exchange) is included in modeling, the mixing coefficient is often assumed to be constant with depth below the interface. Novel fiber‐optic fluorometers have been developed and combined with a modified EROSIMESS system to quantify the vertical variation in mixing coefficient with depth below the sediment‐water interface. The study considered a range of particle diameters and bed shear velocities, with the permeability Péclet number, PeK between 1000 and 77,000 and the shear Reynolds number, Re*, between 5 and 600. Different parameterization of both an interface exchange coefficient and a spatially variable in‐sediment mixing coefficient are explored. The variation of in‐sediment mixing is described by an exponential function applicable over the full range of parameter combinations tested. The empirical relationship enables estimates of the depth to which concentrations of pollutants will penetrate into the bed sediment, allowing the region where exchange will occur faster than molecular diffusion to be determined. PMID:27635104
Hybrid Molten Bed Gasifier for High Hydrogen Syngas Production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rue, David
The techno-economic analyses of the hybrid molten bed gasification technology and laboratory testing of the HMB process were carried out in this project by the Gas Technology Institute and partner Nexant, Inc. under contract with the US Department of Energy’s National Energy Technology Laboratory. This report includes the results of two complete IGCC and Fischer-Tropsch TEA analyses comparing HMB gasification with the Shell slagging gasification process as a base case. Also included are the results of the laboratory simulation tests of the HMB process using Illinois #6 coal fed along with natural gas, two different syngases, and steam. Work inmore » this 18-month project was carried out in three main Tasks. Task 2 was completed first and involved modeling, mass and energy balances, and gasification process design. The results of this work were provided to Nexant as input to the TEA IGCC and FT configurations studied in detail in Task 3. The results of Task 2 were also used to guide the design of the laboratory-scale testing of the HMB concept in the submerged combustion melting test facility in GTI’s industrial combustion laboratory. All project work was completed on time and budget. A project close-out meeting reviewing project results was conducted on April 1, 2015 at GTI in Des Plaines, IL. The hybrid molten bed gasification process techno-economic analyses found that the HMB process is both technically and economically attractive compared with the Shell entrained flow gasification process. In IGCC configuration, HMB gasification provides both efficiency and cost benefits. In Fischer-Tropsch configuration, HMB shows small benefits, primarily because even at current low natural gas prices, natural gas is more expensive than coal on an energy cost basis. HMB gasification was found in the TEA to improve the overall IGCC economics as compared to the coal only Shell gasification process. Operationally, the HMB process proved to be robust and easy to operate. The burner was stable over the full oxygen to fuel firing range (0.8 to 1.05 of fuel gas stoichiometry) and with all fuel gases (natural gas and two syngas compositions), with steam, and without steam. The lower Btu content of the syngases presented no combustion difficulties. The molten bed was stable throughout testing. The molten bed was easily established as a bed of molten glass. As the composition changed from glass cullet to cullet with slag, no instabilities were encountered. The bed temperature and product syngas temperature remained stable throughout testing, demonstrating that the bed serves as a good heat sink for the gasification process. Product syngas temperature measured above the bed was stable at ~1600ºF. Testing found that syngas quality measured as H 2/CO ratio increased with decreasing oxygen to fuel gas stoichiometric ratio, higher steam to inlet carbon ratio, higher temperature, and syngas compared with natural gas. The highest H 2/CO ratios achieved were in the range of 0.70 to 0.78. These values are well below the targets of 1.5 to 2.0 that were expected and were predicted by modeling. The team, however, is encouraged that the HMB process can and will achieve H 2/CO ratios up to 2.0. Changes needed include direct injection of coal into the molten bed of slag to prevent coal particle bypass into the product gas stream, elevation of the molten bed temperature to approximately 2500ºF, and further decrease of the oxygen to fuel gas ratio to well below the 0.85 minimum ratio used in the testing in this project.« less
Evaluation of Sensor Technology to Detect Fall Risk and Prevent Falls in Acute Care.
Potter, Patricia; Allen, Kelly; Costantinou, Eileen; Klinkenberg, William Dean; Malen, Jill; Norris, Traci; O'Connor, Elizabeth; Roney, Wilhemina; Tymkew, Heidi Hahn; Wolf, Laurie
2017-08-01
Sensor technology that dynamically identifies hospitalized patients' fall risk and detects and alerts nurses of high-risk patients' early exits out of bed has potential for reducing fall rates and preventing patient harm. During Phase 1 (August 2014-January 2015) of a previously reported performance improvement project, an innovative depth sensor was evaluated on two inpatient medical units to study fall characteristics. In Phase 2 (April 2015-January 2016), a combined depth and bed sensor system designed to assign patient fall probability, detect patient bed exits, and subsequently prevent falls was evaluated. Fall detection depth sensors remained in place on two medicine units; bed sensors used to detect patient bed exits were added on only one of the medicine units. Fall rates and fall with injury rates were evaluated on both units. During Phase 2, the designated evaluation unit had 14 falls, for a fall rate of 2.22 per 1,000 patient-days-a 54.1% reduction compared with the Phase 1 fall rate. The difference in rates from Phase 1 to Phase 2 was statistically significant (z = 2.20; p = 0.0297). The comparison medicine unit had 30 falls-a fall rate of 4.69 per 1,000 patient-days, representing a 57.9% increase as compared with Phase 1. A fall detection sensor system affords a level of surveillance that standard fall alert systems do not have. Fall prevention remains a complex issue, but sensor technology is a viable fall prevention option. Copyright © 2017 The Joint Commission. Published by Elsevier Inc. All rights reserved.
Elementary theory of bed-sediment entrainment by debris flows and avalanches
Iverson, Richard M.
2012-01-01
Analyses of mass and momentum exchange between a debris flow or avalanche and an underlying sediment layer aid interpretations and predictions of bed-sediment entrainment rates. A preliminary analysis assesses the behavior of a Coulomb slide block that entrains bed material as it descends a uniform slope. The analysis demonstrates that the block's momentum can grow unstably, even in the presence of limited entrainment efficiency. A more-detailed, depth-integrated continuum analysis of interacting, deformable bodies identifies mechanical controls on entrainment efficiency, and shows that entrainment rates satisfy a jump condition that involves shear-traction and velocity discontinuities at the flow-bed boundary. Explicit predictions of the entrainment rateEresult from making reasonable assumptions about flow velocity profiles and boundary shear tractions. For Coulomb-friction tractions, predicted entrainment rates are sensitive to pore fluid pressures that develop in bed sediment as it is overridden. In the simplest scenario the bed sediment liquefies completely, and the entrainment-rate equation reduces toE = 2μ1gh1 cos θ(1 − λ1)/ , where θ is the slope angle, μ1 is the flow's Coulomb friction coefficient, h1 is its thickness, λ1 is its degree of liquefaction, and is its depth-averaged velocity. For values ofλ1ranging from 0.5 to 0.8, this equation predicts entrainment rates consistent with rates of 0.05 to 0.1 m/s measured in large-scale debris-flow experiments in which wet sediment beds liquefied almost completely. The propensity for bed liquefaction depends on several factors, including sediment porosity, permeability, and thickness, and rates of compression and shear deformation that occur when beds are overridden.
Characterization of coals for circulating fluidized bed combustion by pilot scale tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lopez, L.A.; Cabanillas, A.C.; Becerra, J.O. de
1995-12-31
The major part of the Spanish coal supply is low range coal with both high ash (20--40%) and sulfur (1--8%) content. The use of this coal, by conventional combustion processes in power and industrial plants, implies a very high environmental impact. The Circulating Fluidized Bed Combustion process enables an efficient use of this coal. The Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas is carrying out a program with the intention of assisting companies in evaluating fuel quality impact, using atmospheric fluidized bed combustion. This paper reviews the major results of the fuel program in order to determine the fluidized bedmore » combustion performance of four fuels. Two lignites, a bituminous coal and an anthracite. The two lignites have very high sulfur content (7% and 8%) but the sulfur is organic in one case and pyritic in the other. The bituminous coal and the anthracite have 1% and 2% sulfur content respectively and the sulfur is pyritic in these cases. In order to reduce the sulfur in the flue gases, a high calcium content limestone has been used as sorbent. The combustion trials have been done in a circulating fluidized bed pilot plant with a 200 mm inside diameter and a height of 6.5 m. The influence of temperature, fluidization velocity, oxygen excess, Ca/S ratio and coal properties have been studied in relation to the combustion efficiency, sulfur retention, CO and NO{sub x} emissions.« less
Smoke optical depths - Magnitude, variability, and wavelength dependence
NASA Technical Reports Server (NTRS)
Pueschel, R. F.; Russell, P. B.; Colburn, D. A.; Ackerman, T. P.; Allen, D. A.
1988-01-01
An airborne autotracking sun-photometer has been used to measure magnitudes, temporal/spatial variabilities, and the wavelength dependence of optical depths in the near-ultraviolet to near-infrared spectrum of smoke from two forest fires and one jet fuel fire and of background air. Jet fuel smoke optical depths were found to be generally less wavelength dependent than background aerosol optical depths. Forest fire smoke optical depths, however, showed a wide range of wavelength depedences, such as incidents of wavelength-independent extinction.
CIBO special project study: Fluidized bed combustion by-products
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soyka, P.A.
1996-12-31
Information is outlined on a Council of Industrial Boiler Owners (CIBO) Special Project Study on fluidized bed combustion by-products. Data are presented on a fossil fuel combustion by-products (FFCB) Survey; study population and response pattern; survey respondent characteristics; FFCB characterization; productive use and impacts; on-site FFCB disposal; and environmental characteristics of FFCB disposal units.
Char binder for fluidized beds
Borio, Richard W.; Accortt, Joseph I.
1981-01-01
An arrangement that utilizes agglomerating coal as a binder to bond coal fines and recycled char into an agglomerate mass that will have suitable retention time when introduced into a fluidized bed 14 for combustion. The simultaneous use of coal for a primary fuel and as a binder effects significant savings in the elimination of non-essential materials and processing steps.
Combustion of anaerobically digested humus as a fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kayhanian, M.; Jenkins, B.M.; Baxter, L.L.
Two pilot scale combustion experiments were conducted to explore the application of an anaerobically digested humus as fuel for commercial boilers. The experiments were performed in a fluidized bed combustor (FBC) and a multifuel suspension combustor (MFC). The results obtained indicate that the humus, blended with another conventional fuel (e.g., wood), can be used as a fuel in commercial boilers. Preliminary results of ash deposit analyses from the MFC indicate that the rate of deposition was low compared to high fouling biomass fuels such as straws, and similar to deposits obtained from wood.
Phase 1 Methyl Iodide Deep-Bed Adsorption Tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soelberg, Nick; Watson, Tony
2014-08-22
Nuclear fission results in the production of fission products (FPs) and activation products including iodine-129, which could evolve into used fuel reprocessing facility off-gas systems, and could require off-gas control to limit air emissions to levels within acceptable emission limits. Research, demonstrations, and some reprocessing plant experience have indicated that diatomic iodine can be captured with efficiencies high enough to meet regulatory requirements. Research on the capture of organic iodides has also been performed, but to a lesser extent [Jubin 2012b]. Several questions remain open regarding the capture of iodine bound in organic compounds. Deep-bed methyl iodide adsorption testing hasmore » progressed according to a multi-laboratory methyl iodide adsorption test plan. This report summarizes the first phase of methyl iodide adsorption work performed according to this test plan using the deep-bed iodine adsorption test system at the Idaho National Laboratory (INL), performed during Fiscal Year (FY) 2013 and early FY-2014. Testing has been performed to address questions posed in the test plan, and followed the testing outline in the test plan. Tests established detection limits, developed procedures for sample analysis with minimal analytical interferences, and confirmed earlier results that show that the methyl iodide reacts when in contact with the AgZ sorbent, and not significantly in the gas flow upstream of the sorbent. The reaction(s) enable separation of the iodine from the organic moiety, so that the iodine can chemisorb onto the sorbent. The organic moiety can form other compounds, some of which are organic compounds that are detected and can be tentatively identified using GC-FID and GCMS. Test results also show that other gas constituents (NOx and/or H2O) can affect the methyl iodide reactions. With NOx and H2O present in the gas stream, the majority of uncaptured iodine exiting iodine-laden sorbent beds is in the form of I2 or HI, species that are soluble in NaOH scrubbing solution for iodine analysis. But when NOx and H2O are not present, then the majority of the uncaptured iodine exiting iodine-laden sorbent is in the form of methyl iodide. Methyl iodide adsorption efficiencies have been high enough so that initial DFs exceed 1,000 to 10,000. The methyl iodide mass transfer zone depths are estimated at 4-8 inches, possibly deeper than mass transfer zone depths estimated for I2 adsorption on AgZ. Additional deep-bed testing and analyses are recommended to (a) expand the data base for methyl iodide adsorption under various conditions specified in the methyl iodide test plan, and (b) provide more data for evaluating organic iodide reactions and reaction byproducts for different potential adsorption conditions.« less
Year One Summary of X-energy Pebble Fuel Development at ORNL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Helmreich, Grant W.; Hunn, John D.; McMurray, Jake W.
2017-06-01
The Advanced Reactor Concepts X-energy (ARC-Xe) Pebble Fuel Development project at Oak Ridge National Laboratory (ORNL) has successfully completed its first year, having made excellent progress in accomplishing programmatic objectives. The primary focus of research at ORNL in support of X-energy has been the training of X-energy fuel fabrication engineers and the establishment of US pebble fuel production capabilities able to supply the Xe-100 pebble-bed reactor. These efforts have been strongly supported by particle fuel fabrication and characterization expertise present at ORNL from the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program.
Large-wave simulation of spilling breaking and undertow current over constant slope beach
NASA Astrophysics Data System (ADS)
Dimas, Athanassios; Kolokythas, Gerasimos; Dimakopoulos, Aggelos
2011-11-01
The three-dimensional, free-surface flow, developing by the propagation of nonlinear breaking waves over a constant slope bed, is numerically simulated. The main objective is to investigate the effect of spilling breaking on the characteristics of the induced undertow current by performing large-wave simulations (LWS) based on the numerical solution of the Navier-Stokes equations subject to the fully nonlinear free-surface boundary conditions and the appropriate bottom, inflow and outflow boundary conditions. The equations are properly transformed so that the computational domain becomes time-independent. In the present study, the case of incoming waves with wavelength to inflow depth ratio λ/ d ~ 6.6 and wave steepness H/ λ ~0.025, over bed of slope tan β = 1/35, is investigated. The LWS predicts satisfactorily breaking parameters - height and depth - and wave dissipation in the surf zone, in comparison to experimental data. In the corresponding LES, breaking height and depth are smaller and wave dissipation in the surf zone is weaker. For the undertow current, it is found that it is induced by the breaking process at the free surface, while its strength is controlled by the bed shear stress. Finally, the amplitude of the bed shear stress increases substantially in the breaking zone, becoming up to six times larger than the respective amplitude at the outer region.
Fluidized bed heat exchanger with water cooled air distributor and dust hopper
Jukkola, Walfred W.; Leon, Albert M.; Van Dyk, Jr., Garritt C.; McCoy, Daniel E.; Fisher, Barry L.; Saiers, Timothy L.; Karstetter, Marlin E.
1981-11-24
A fluidized bed heat exchanger is provided in which air is passed through a bed of particulate material containing fuel. A steam-water natural circulation system is provided for heat exchange and the housing of the heat exchanger has a water-wall type construction. Vertical in-bed heat exchange tubes are provided and the air distributor is water-cooled. A water-cooled dust hopper is provided in the housing to collect particulates from the combustion gases and separate the combustion zone from a volume within said housing in which convection heat exchange tubes are provided to extract heat from the exiting combustion gases.
Model-free adaptive control of supercritical circulating fluidized-bed boilers
Cheng, George Shu-Xing; Mulkey, Steven L
2014-12-16
A novel 3-Input-3-Output (3.times.3) Fuel-Air Ratio Model-Free Adaptive (MFA) controller is introduced, which can effectively control key process variables including Bed Temperature, Excess O2, and Furnace Negative Pressure of combustion processes of advanced boilers. A novel 7-input-7-output (7.times.7) MFA control system is also described for controlling a combined 3-Input-3-Output (3.times.3) process of Boiler-Turbine-Generator (BTG) units and a 5.times.5 CFB combustion process of advanced boilers. Those boilers include Circulating Fluidized-Bed (CFB) Boilers and Once-Through Supercritical Circulating Fluidized-Bed (OTSC CFB) Boilers.
NASA Astrophysics Data System (ADS)
Cisneros, Anselmo Tomas, Jr.
The Fluoride salt cooled High temperature Reactor (FHR) is a class of advanced nuclear reactors that combine the robust coated particle fuel form from high temperature gas cooled reactors, direct reactor auxillary cooling system (DRACS) passive decay removal of liquid metal fast reactors, and the transparent, high volumetric heat capacitance liquid fluoride salt working fluids---flibe (33%7Li2F-67%BeF)---from molten salt reactors. This combination of fuel and coolant enables FHRs to operate in a high-temperature low-pressure design space that has beneficial safety and economic implications. In 2012, UC Berkeley was charged with developing a pre-conceptual design of a commercial prototype FHR---the Pebble Bed- Fluoride Salt Cooled High Temperature Reactor (PB-FHR)---as part of the Nuclear Energy University Programs' (NEUP) integrated research project. The Mark 1 design of the PB-FHR (Mk1 PB-FHR) is 236 MWt flibe cooled pebble bed nuclear heat source that drives an open-air Brayton combine-cycle power conversion system. The PB-FHR's pebble bed consists of a 19.8% enriched uranium fuel core surrounded by an inert graphite pebble reflector that shields the outer solid graphite reflector, core barrel and reactor vessel. The fuel reaches an average burnup of 178000 MWt-d/MT. The Mk1 PB-FHR exhibits strong negative temperature reactivity feedback from the fuel, graphite moderator and the flibe coolant but a small positive temperature reactivity feedback of the inner reflector and from the outer graphite pebble reflector. A novel neutronics and depletion methodology---the multiple burnup state methodology was developed for an accurate and efficient search for the equilibrium composition of an arbitrary continuously refueled pebble bed reactor core. The Burnup Equilibrium Analysis Utility (BEAU) computer program was developed to implement this methodology. BEAU was successfully benchmarked against published results generated with existing equilibrium depletion codes VSOP and PEBBED for a high temperature gas cooled pebble bed reactor. Three parametric studies were performed for exploring the design space of the PB-FHR---to select a fuel design for the PB-FHR] to select a core configuration; and to optimize the PB-FHR design. These parametric studies investigated trends in the dependence of important reactor performance parameters such as burnup, temperature reactivity feedback, radiation damage, etc on the reactor design variables and attempted to understand the underlying reactor physics responsible for these trends. A pebble fuel parametric study determined that pebble fuel should be designed with a carbon to heavy metal ratio (C/HM) less than 400 to maintain negative coolant temperature reactivity coefficients. Seed and thorium blanket-, seed and inert pebble reflector- and seed only core configurations were investigated for annular FHR PBRs---the C/HM of the blanket pebbles and discharge burnup of the thorium blanket pebbles were additional design variable for core configurations with thorium blankets. Either a thorium blanket or graphite pebble reflector is required to shield the outer graphite reflector enough to extend its service lifetime to 60 EFPY. The fuel fabrication costs and long cycle lengths of the thorium blanket fuel limit the potential economic advantages of using a thorium blanket. Therefore, the seed and pebble reflector core configuration was adopted as the baseline core configuration. Multi-objective optimization with respect to economics was performed for the PB-FHR accounting for safety and other physical design constraints derived from the high-level safety regulatory criteria. These physical constraints were applied along in a design tool, Nuclear Application Value Estimator, that evaluated a simplified cash flow economics model based on estimates of reactor performance parameters calculated using correlations based on the results of parametric design studies for a specific PB-FHR design and a set of economic assumptions about the electricity market to evaluate the economic implications of design decisions. The optimal PB-FHR design---Mark 1 PB-FHR---is described along with a detailed summary of its performance characteristics including: the burnup, the burnup evolution, temperature reactivity coefficients, the power distribution, radiation damage distributions, control element worths, decay heat curves and tritium production rates. The Mk1 PB-FHR satisfies the PB-FHR safety criteria. The fuel, moderator (pebble core, pebble shell, graphite matrix, TRISO layers) and coolant have global negative temperature reactivity coefficients and the fuel temperatures are well within their limits.
Process of producing liquid hydrocarbon fuels from biomass
Kuester, James L.
1987-07-07
A continuous thermochemical indirect liquefaction process to convert various biomass materials into diesel-type transportation fuels which fuels are compatible with current engine designs and distribution systems comprising feeding said biomass into a circulating solid fluidized bed gasification system to produce a synthesis gas containing olefins, hydrogen and carbon monoxide and thereafter introducing the synthesis gas into a catalytic liquefaction system to convert the synthesis gas into liquid hydrocarbon fuel consisting essentially of C.sub.7 -C.sub.17 paraffinic hydrocarbons having cetane indices of 50+.
Depth resolved granular transport driven by shearing fluid flow
NASA Astrophysics Data System (ADS)
Allen, Benjamin; Kudrolli, Arshad
2017-02-01
We investigate granular transport by a fluid flow under steady-state driving conditions, from the bed-load regime to the suspension regime, with an experimental system based on a conical rheometer. The mean granular volume fraction ϕg, the mean granular velocity ug, and the fluid velocity uf are obtained as a function of depth inside the bed using refractive index matching and particle-tracking techniques. A torque sensor is utilized to measure the applied shear stress to complement estimates obtained from measured strain rates high above the bed where ϕg≈0 . The flow is found to be transitional at the onset of transport and the shear stress required to transport grains rises sharply as grains are increasingly entrained by the fluid flow. A significant slip velocity between the fluid and the granular phases is observed at the bed surface before the onset of transport as well as in the bed-load transport regime. We show that ug decays exponentially deep into the bed for ϕg>0.45 with a decay constant which is described by a nonlocal rheology model of granular flow that neglects fluid stress. Further, we show that uf and ug can be described using the applied shear stress and the Krieger-Dougherty model for the effective viscosity in the suspension regime, where 0 <ϕg<0.45 and where ug≈uf .
Iverson, N.R.; Hooyer, T.S.; Fischer, U.H.; Cohen, D.; Moore, P.L.; Jackson, M.; Lappegard, G.; Kohler, J.
2007-01-01
To avoid some of the limitations of studying soft-bed processes through boreholes, a prism of simulated till (1.8 m ?? 1.6 m ?? 0.45 m) with extensive instrumentation was constructed in a trough blasted in the rock bed of Engabreen, a temperate glacier in Norway. Tunnels there provide access to the bed beneath 213 m of ice. Pore-water pressure was regulated in the prism by pumping water to it. During experiments lasting 7-12 days, the glacier regelated downward into the prism to depths of 50-80 mm, accreting ice-infiltrated till at rates predicted by theory. During periods of sustained high pore-water pressure (70-100% of overburden), ice commonly slipped over the prism, due to a water layer at the prism surface. Deformation of the prism was activated when this layer thinned to a sub-millimeter thickness. Shear strain in the till was pervasive and decreased with depth. A model of slip by ploughing of ice-infiltrated till across the prism surface accounts for the slip that occurred when effective pressure was sufficiently low or high. Slip at low effective pressures resulted from water-layer thickening that increased non-linearly with decreasing effective pressure. If sufficiently widespread, such slip over soft glacier beds, which involves no viscous deformation resistance, may instigate abrupt increases in glacier velocity.
Low Cost Nuclear Thermal Rocket Cermet Fuel Element Environment Testing
NASA Technical Reports Server (NTRS)
Bradley, David E.; Mireles, Omar R.; Hickman, Robert R.
2011-01-01
Deep space missions with large payloads require high specific impulse (Isp) and relatively high thrust in order to achieve mission goals in reasonable time frames. Conventional, storable propellants produce average Isp. Nuclear thermal rockets (NTR) capable of high Isp thrust have been proposed. NTR employs heat produced by fission reaction to heat and therefore accelerate hydrogen which is then forced through a rocket nozzle providing thrust. Fuel element temperatures are very high (up to 3000K) and hydrogen is highly reactive with most materials at high temperatures. Data covering the effects of high temperature hydrogen exposure on fuel elements is limited. The primary concern is the mechanical failure of fuel elements which employ high-melting-point metals, ceramics or a combination (cermet) as a structural matrix into which the nuclear fuel is distributed. It is not necessary to include fissile material in test samples intended to explore high temperature hydrogen exposure of the structural support matrices. A small-scale test bed designed to heat fuel element samples via non-contact RF heating and expose samples to hydrogen is being developed to assist in optimal material and manufacturing process selection without employing fissile material. This paper details the test bed design and results of testing conducted to date.
Compact Fuel Element Environment Test
NASA Technical Reports Server (NTRS)
Bradley, D. E.; Mireles, O. R.; Hickman, R. R.; Broadway, J. W.
2012-01-01
Deep space missions with large payloads require high specific impulse (I(sub sp)) and relatively high thrust to achieve mission goals in reasonable time frames. Conventional, storable propellants produce average I(sub sp). Nuclear thermal rockets (NTRs) capable of high I(sub sp) thrust have been proposed. NTR employs heat produced by fission reaction to heat and therefore accelerate hydrogen, which is then forced through a rocket nozzle providing thrust. Fuel element temperatures are very high (up to 3,000 K) and hydrogen is highly reactive with most materials at high temperatures. Data covering the effects of high-temperature hydrogen exposure on fuel elements are limited. The primary concern is the mechanical failure of fuel elements that employ high melting point metals, ceramics, or a combination (cermet) as a structural matrix into which the nuclear fuel is distributed. It is not necessary to include fissile material in test samples intended to explore high-temperature hydrogen exposure of the structural support matrices. A small-scale test bed designed to heat fuel element samples via noncontact radio frequency heating and expose samples to hydrogen for typical mission durations has been developed to assist in optimal material and manufacturing process selection without employing fissile material. This Technical Memorandum details the test bed design and results of testing conducted to date.
Fuel development for gas-cooled fast reactors
NASA Astrophysics Data System (ADS)
Meyer, M. K.; Fielding, R.; Gan, J.
2007-09-01
The Generation IV Gas-cooled Fast Reactor (GFR) concept is proposed to combine the advantages of high-temperature gas-cooled reactors (such as efficient direct conversion with a gas turbine and the potential for application of high-temperature process heat), with the sustainability advantages that are possible with a fast-spectrum reactor. The latter include the ability to fission all transuranics and the potential for breeding. The GFR is part of a consistent set of gas-cooled reactors that includes a medium-term Pebble Bed Modular Reactor (PBMR)-like concept, or concepts based on the Gas Turbine Modular Helium Reactor (GT-MHR), and specialized concepts such as the Very High-Temperature Reactor (VHTR), as well as actinide burning concepts [A Technology Roadmap for Generation IV Nuclear Energy Systems, US DOE Nuclear Energy Research Advisory Committee and the Generation IV International Forum, December 2002]. To achieve the necessary high power density and the ability to retain fission gas at high temperature, the primary fuel concept proposed for testing in the United States is dispersion coated fuel particles in a ceramic matrix. Alternative fuel concepts considered in the US and internationally include coated particle beds, ceramic clad fuel pins, and novel ceramic 'honeycomb' structures. Both mixed carbide and mixed nitride-based solid solutions are considered as fuel phases.
Predictions and Observations of Munitions Burial Under Intense Storm Waves at Duck, NC
NASA Astrophysics Data System (ADS)
Calantoni, J.; Klammer, H.; Sheremet, A.
2017-12-01
The fate of munitions or unexploded ordnance (UXO) resting on a submarine sediment bed is a critical safety concern. Munitions may remain in place or completely disappear for significant but unknown periods, after becoming buried in the sediment bed. Clearly, burial of munitions drastically complicates the detection and removal of potential threats. Here, we present field data of wave height and surrogate munitions burial depths near the 8-m isobath at the U.S. Army Corps of Engineers, Field Research Facility, Duck, North Carolina, observed between January and March 2015. The experiment captured a remarkable sequence of storms that included at least 10 events, of which 6 were characterized by wave fields of significant heights exceeding 2 m and with peak periods of approximately 10 s. During the strongest storm, waves of 14 s period and heights exceeding 2 m were recorded for more than 3 days; significant wave height reached 5 m at the peak of activity. At the end of the experiment, divers measured munition burial depths of up to 60 cm below the seabed level. However, the local bathymetry showed less than 5 cm variation between the before and after-storm states, suggesting the local net sediment accumulation / loss was negligible. The lack of bathymetric variability strongly suggests that the munitions sank into the bed, which would suggest an extreme state of sand agitation during the storm. We explore existing analytical solutions for the dynamic interaction between waves and sediment to predict munitions burial depths. Measured time series of wave pressure near the sediment bed were converted into wave-induced changes in pore pressures and the effective stress states of the sediment. Different sediment failure criteria based on minimum normal and maximum shear stresses were then applied to evaluate the appropriateness of individual failure criteria to predict observed burial depths. Results are subjected to a sensitivity analysis with respect to uncertain sediment parameters and summarized by representing cumulative failure times as a function of depth.
Power Peaking Effect of OTTO Fuel Scheme Pebble Bed Reactor
NASA Astrophysics Data System (ADS)
Setiadipura, T.; Suwoto; Zuhair; Bakhri, S.; Sunaryo, G. R.
2018-02-01
Pebble Bed Reactor (PBR) type of Hight Temperature Gas-cooled Reactor (HTGR) is a very interesting nuclear reactor design to fulfill the growing electricity and heat demand with a superior passive safety features. Effort to introduce the PBR design to the market can be strengthen by simplifying its system with the Once-through-then-out (OTTO) cycle PBR in which the pebble fuel only pass the core once. Important challenge in the OTTO fuel scheme is the power peaking effect which limit the maximum nominal power or burnup of the design. Parametric survey is perform in this study to investigate the contribution of different design parameters to power peaking effect of OTTO cycle PBR. PEBBED code is utilized in this study to perform the equilibrium PBR core analysis for different design parameter and fuel scheme. The parameters include its core diameter, height-per-diameter (H/D), power density, and core nominal power. Results of this study show that diameter and H/D effectsare stronger compare to the power density and nominal core power. Results of this study might become an importance guidance for design optimization of OTTO fuel scheme PBR.
Bacterial communities associated with seagrass bed sediments are not well studied. The work presented here investigated several factors, including the presence or absence of vegetation, depth into sediment, and season, and their impact on bacterial community diversity. Double gra...
Balanay, Jo Anne G; Floyd, Evan L; Lungu, Claudiu T
2015-05-01
Activated carbon fibers (ACF) are considered viable alternative adsorbent materials in respirators because of their larger surface area, lighter weight, and fabric form. The purpose of this study was to characterize the breakthrough curves of toluene for different types of commercially available ACFs to understand their potential service lives in respirators. Two forms of ACF, cloth (AC) and felt (AF), with three surface areas each were tested. ACFs were challenged with six toluene concentrations (50-500 p.p.m.) at constant air temperature (23°C), relative humidity (50%), and air flow (16 l min-1) at different bed depths. Breakthrough data were obtained using continuous monitoring by gas chromatography using a gas sampling valve. The ACF specific surface areas were measured by an automatic physisorption analyzer. Results showed unique shapes of breakthrough curves for each ACF form: AC demonstrated a gradual increase in breakthrough concentration, whereas AF showed abrupt increase in concentration from the breakpoint, which was attributed to the difference in fiber density between the forms. AF has steeper breakthrough curves compared with AC with similar specific surface area. AC exhibits higher 10% breakthrough times for a given bed depth due to higher mass per bed depth compared with AF, indicating more adsorption per bed depth with AC. ACF in respirators may be appropriate for use as protection in environments with toluene concentration at the Occupational Safety and Health Administration Permissible Exposure Limit, or during emergency escape for higher toluene concentrations. ACF has shown great potential for application in respiratory protection against toluene and in the development of thinner, lighter, and more efficient respirators. © The Author 2014. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsi, W; Jiang, G; Sheng, Y
Purpose: To study the correlations of the radiation biological equivalent doses (BED) along depth and lateral distance between LEM-1 and MKM approaches. Methods: In NIRS-MKM (Microdosimetric Kinetic Model) approach, the prescribed BED, referred as C-Eq, doses aims to present the relative biological effectiveness (RBE) for different energies of carbon-ions on a fixed 10% survival value of HCG cell with respect to convention X-ray. Instead of a fixed 10% survival, the BED doses of LEM-1 (Local Effect Model) approach, referred as X-Eq, aims to present the RBE over the whole survival curve of chordoma-like cell with alpha/beta ratio of 2.0. Themore » relationship of physical doses as a function of C-Eq and X-Eq doses were investigated along depth and lateral distance for various sizes of cubic targets in water irradiated by carbon-ions. Results: At the center of each cubic target, the trends between physical and C-Eq or X-Eq doses can be described by a linear and 2nd order polynomial functions, respectively. Using fit functions can then calculate a scaling factor between C-Eq and X-Eq doses to have similar physical doses. With equalized C-Eq and X-Eq doses at the depth of target center, over- and under-estimated X-Eq to C-Eq are seen for depths before and after the target center, respectively. Near the distal edge along depth, sharp rising of RBE value is observed for X-Eq, but sharp dropping of RBE value is observed for C-Eq. For lateral locations near and just outside 50% dose level, sharp raising of RBE value is also seen for X-Eq, while only minor increasing with fast dropping for C-Eq. Conclusion: An analytical function to model the differences between the CEq and X-Eq doses along depth and lateral distance need to further investigated to explain varied clinic outcome of specific cancers using two different approaches to calculated BED doses.« less
NASA Technical Reports Server (NTRS)
Mcconnaughey, H. V.
1992-01-01
The topics are presented in viewgraph form and include the following: (1) Space Shuttle Main Engine (SSME) technology test bed (TTB) history; (2) TTB objectives; (3) TTB major accomplishments; (4) TTB contributions to SSME; (5) major impacts of 3001 testing; (6) some challenges to computational fluid dynamics (CFD); (7) the high pressure fuel turbopump (HPFTP); and (8) 3001 lessons learned in design and operations.
Novel designs of fluidized bed combustors for low pollutant emissions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, W.; Bleek, C.M. van den; Dam-Johansen, K.
1995-12-31
It is known that NH{sub 3}, released during the devolatilization of fuel, is an important precursor for NO formation in fluidized bed combustors. On the other hand, NH{sub 3} may be used as a reducing agent in the thermal DeNO{sub x} process to reduce NO{sub x} emission levels. In this paper, a new concept of fluidized bed combustors is proposed based on the idea of in situ reduction of NO{sub x} by self-produced NH{sub 3} from fuel without lowering the sulfur capture level. This design is intended to separate the NH{sub 3} release process under reducing conditions from the charmore » combustion process under oxidizing conditions; this self-released NH{sub 3}, together with some combustibles, is mixed with gaseous combustion products in the upper part of the combustor for a further reduction of the NO{sub x} formed during combustion. Furthermore, the combustion of the combustibles may cause the temperature to rise in this upper zone and thereby reduce the emission of N{sub 2}O. The applications of this design to bubbling and circulating fluidized bed combustors are described and the mechanisms of the main reactions involved discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The report presents the results of a study prepared by Burns and Roe for the Electricity Generating Authority of Thailand to examine the technical feasibility and economic attractiveness for building a 50 MW Atmospheric Fluidized Bed Combustion lignite fired power plant at Krabi, southern Thailand. The study is divided into seven main sections, plus an executive summary and appendices: (1) Introduction; (2) Atmospheric Fluidized Bed Combustion Technology Overview; (3) Fuel and Limestone Tests; (4) Site Evaluation; (5) Station Design and Arrangements; (6) Environmental Considerations; (7) Economic Analysis.
NASA Astrophysics Data System (ADS)
Fratoni, Massimiliano
This study investigated the neutronic characteristics of the Pebble Bed Advanced High Temperature Reactor (PB-AHTR), a novel nuclear reactor concept that combines liquid salt (7LiF-BeF2---flibe) cooling and TRISO coated-particle fuel technology. The use of flibe enables operation at high power density and atmospheric pressure and improves passive decay-heat removal capabilities, but flibe, unlike conventional helium coolant, is not transparent to neutrons. The flibe occupies 40% of the PB-AHTR core volume and absorbs ˜8% of the neutrons, but also acts as an effective neutron moderator. Two novel methodologies were developed for calculating the time dependent and equilibrium core composition: (1) a simplified single pebble model that is relatively fast; (2) a full 3D core model that is accurate and flexible but computationally intensive. A parametric analysis was performed spanning a wide range of fuel kernel diameters and graphite-to-heavy metal atom ratios to determine the attainable burnup and reactivity coefficients. Using 10% enriched uranium ˜130 GWd/tHM burnup was found to be attainable, when the graphite-to-heavy metal atom ratio (C/HM) is in the range of 300 to 400. At this or smaller C/HM ratio all reactivity coefficients examined---coolant temperature, coolant small and full void, fuel temperature, and moderator temperature, were found to be negative. The PB-AHTR performance was compared to that of alternative options for HTRs, including the helium-cooled pebble-bed reactor and prismatic fuel reactors, both gas-cooled and flibe-cooled. The attainable burnup of all designs was found to be similar. The PB-AHTR generates at least 30% more energy per pebble than the He-cooled pebble-bed reactor. Compared to LWRs the PB-AHTR requires 30% less natural uranium and 20% less separative work per unit of electricity generated. For deep burn TRU fuel made from recycled LWR spent fuel, it was found that in a single pass through the core ˜66% of the TRU can be transmuted; this burnup is slightly superior to that attainable in helium-cooled reactors. A preliminary analysis of the modular variant for the PB-AHTR investigated the triple heterogeneity of this design and determined its performance characteristics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saqib, Naeem, E-mail: naeem.saqib@oru.se; Bäckström, Mattias, E-mail: mattias.backstrom@oru.se
Highlights: • Different solids waste incineration is discussed in grate fired and fluidized bed boilers. • We explained waste composition, temperature and chlorine effects on metal partitioning. • Excessive chlorine content can change oxide to chloride equilibrium partitioning the trace elements in fly ash. • Volatility increases with temperature due to increase in vapor pressure of metals and compounds. • In Fluidized bed boiler, most metals find themselves in fly ash, especially for wood incineration. - Abstract: Trace element partitioning in solid waste (household waste, industrial waste, waste wood chips and waste mixtures) incineration residues was investigated. Samples of flymore » ash and bottom ash were collected from six incineration facilities across Sweden including two grate fired and four fluidized bed incinerators, to have a variation in the input fuel composition (from pure biofuel to mixture of waste) and different temperature boiler conditions. As trace element concentrations in the input waste at the same facilities have already been analyzed, the present study focuses on the concentration of trace elements in the waste fuel, their distribution in the incineration residues with respect to chlorine content of waste and combustion temperature. Results indicate that Zn, Cu and Pb are dominating trace elements in the waste fuel. Highly volatile elements mercury and cadmium are mainly found in fly ash in all cases; 2/3 of lead also end up in fly ash while Zn, As and Sb show a large variation in distribution with most of them residing in the fly ash. Lithophilic elements such as copper and chromium are mainly found in bottom ash from grate fired facilities while partition mostly into fly ash from fluidized bed incinerators, especially for plants fuelled by waste wood or ordinary wood chips. There is no specific correlation between input concentration of an element in the waste fuel and fraction partitioned to fly ash. Temperature and chlorine content have significant effects on partitioning characteristics by increasing the formation and vaporization of highly volatile metal chlorides. Zinc and cadmium concentrations in fly ash increase with the incineration temperature.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beyer, Brian David; Beddingfield, David H; Durst, Philip
2010-01-01
The design of the Pebble Bed Modular Reactor (PBMR) does not fit or seem appropriate to the IAEA safeguards approach under the categories of light water reactor (LWR), on-load refueled reactor (OLR, i.e. CANDU), or Other (prismatic HTGR) because the fuel is in a bulk form, rather than discrete items. Because the nuclear fuel is a collection of nuclear material inserted in tennis-ball sized spheres containing structural and moderating material and a PBMR core will contain a bulk load on the order of 500,000 spheres, it could be classified as a 'Bulk-Fuel Reactor.' Hence, the IAEA should develop unique safeguardsmore » criteria. In a multi-lab DOE study, it was found that an optimized blend of: (i) developing techniques to verify the plutonium content in spent fuel pebbles, (ii) improving burn-up computer codes for PBMR spent fuel to provide better understanding of the core and spent fuel makeup, and (iii) utilizing bulk verification techniques for PBMR spent fuel storage bins should be combined with the historic IAEA and South African approaches of containment and surveillance to verify and maintain continuity of knowledge of PBMR fuel. For all of these techniques to work the design of the reactor will need to accommodate safeguards and material accountancy measures to a far greater extent than has thus far been the case. The implementation of Safeguards-by-Design as the PBMR design progresses provides an approach to meets these safeguards and accountancy needs.« less
Factors controlling the size and shape of stream channels in coarse noncohesive sands
Wolman, M. Gordon; Brush, Lucien M.
1961-01-01
The size and shape of equilibrium channels in uniform, noncohesive sands, 0.67 mm and 2.0 mm in diameter, were studied experimentally in a laboratory flume 52 feet long in which discharge, slope, sediment load, and bed and bank material could be varied independently. For each run a straight trapezoidal channel was molded in the sand and the flume set at a predetermined slope. Introduction of the discharge was accompanied by widening and aggradation until a stable channel was established. By definition a stable equilibrium existed when channel width, water surface slope, and rate of transport became constant. The duration of individual runs ranged from 2 to 52 hours depending upon the time required for establishing equilibrium. Stability of the banks determined channel shape. In the 2.0 mm sand at a given slope and discharge, only one depth was stable. At this depth the flow was just competent to move particles along the bed of the channel. An increase in discharge produced a wider channel of the same depth and thus transport per unit width remained at a minimum. Channels in the 0.67 mm sand were somewhat more stable and permitted a 1.5 fold increase in depth above that required to start movement of the bed material. An increased transport was associated with the increase in depth. The rate of transport is adequately described in terms of the total shear or in terms of the difference between the total shear and the critical shear required to begin movement. In these experiments the finer, or 0.67 mm, sand, began to move along the bed of the channel at a constant shear stress. Incipient movement of the coarser, or 2.0 mm, sand, varied with the shear stress as well as the mean velocity. At the initiation of movement a lower shear was associated with a higher velocity and vice versa. Anabranches of braided rivers and some natural river channels formed in relatively noncohesive materials resemble the essential characteristics of the flume channels. For a given slope and size of bed material the discharge per unit width in the laboratory channels was similar to that computed for anabranches and river channels measured in the field. Unlike most natural channels, despite impressive bank erosion, the channels in the laboratory only meandered at supercritical flows associated with very steep slopes. These conditions involving shallow depths, high velocity, and steep slopes are uncommon in most natural rivers.
Wang, Xiaojun; Li, Xiaona; Chen, Weiyi; He, Rui; Gao, Zhipeng; Feng, Pengfei
2017-01-17
The biomechanical properties of the cornea should be taken into account in the refractive procedure in order to perform refractive surgery more accurately. The effects of the ablation depth and repair time on the elastic modulus of the rabbit cornea after laser in situ keratomileusis (LASIK) are still unclear. In this study, LASIK was performed on New Zealand rabbits with different ablation depth (only typical LASIK flaps were created; residual stroma bed was 50 or 30% of the whole cornea thickness respectively). The animals without any treatment were served as normal controls. The corneal thickness was measured by ultrasonic pachymetry before animals were humanly killed after 7 or 28 days post-operatively. The corneal elastic modulus was measured by uniaxial tensile testing. A mathematical procedure considering the actual geometrics of the cornea was created to analyze the corneal elastic modulus. There were no obvious differences among all groups in the elastic modulus on after 7 days post-operatively. However, after 28th days post-operatively, there was a significant increase in the elastic modulus with 50 and 30% residual stroma bed; only the elastic modulus of the cornea with 30% residual stroma bed was significantly higher than that of 7 days. Changes in elastic modulus after LASIK suggest that this biomechanical effect may correlate with the ablation depth and repair time.
40 CFR 60.2265 - What definitions must I know?
Code of Federal Regulations, 2010 CFR
2010-07-01
... technology such as mass burn, modular, and fluidized bed combustors.) Auxiliary fuel means natural gas... waste is not high-level radioactive waste, spent nuclear fuel, or byproduct material as defined by the... for application of a coating. The unit burns the coating overspray off the rack so the rack can be...
40 CFR 60.2265 - What definitions must I know?
Code of Federal Regulations, 2011 CFR
2011-07-01
... technology such as mass burn, modular, and fluidized bed combustors.) Auxiliary fuel means natural gas... waste is not high-level radioactive waste, spent nuclear fuel, or byproduct material as defined by the... for application of a coating. The unit burns the coating overspray off the rack so the rack can be...
Motor fuels and chemicals from coal via the Sasol Synthol route
NASA Astrophysics Data System (ADS)
Hoogendoorn, J. C.
1981-03-01
The production of synthetic motor fuels and chemicals from coal by the Sasol procedures is discussed. This process is based on the Fischer-Tropsch reaction by passing hydrogen and carbon monoxide in a specific ratio over iron catalysts at elevated temperatures and pressures. Two parallel reactor systems are discussed. The smaller system employs fixed-bed reactors, using a precipitated iron catalyst and produces predominantly heavy hydrocarbons of an aliphatic nature with carbon chains up to 100. These straight-chain hydrocarbons yield excellent waxes and high quality diesel oil. The larger system uses a powdered iron catalyst in a circulating fluid-bed reactor, a concept developed from American catalytic cracker technology. This system has the advantage of high production capacity and scale-up potential, and produces light olefins which can be used either as petrochemical feedstock or refined and added to the motor fuel pool, and ethylene which is augmented by ethane cracking. Analysis of product selectivities and values shows that co-production of chemicals and motor fuels from coal is profitable and efficient.
Characterizing flow pathways in a sandstone aquifer at multiple depths
NASA Astrophysics Data System (ADS)
Medici, Giacomo; West, Jared; Mountney, Nigel
2017-04-01
Sandstone aquifers are commonly assumed to represent porous media characterized by a permeable matrix. However, such aquifers may be heavily fractured where rock properties and timing of deformation favour brittle failure and crack opening. In many aquifer types, fractures associated with faults, bedding planes and stratabound joints represent preferential pathways for fluids and contaminants. This presentation reports well-test results and outcrop-scale studies that reveal how strongly lithified siliciclastic rocks may be entirely dominated by fracture flow at shallow depths (≤ 150 m), similar to limestone and crystalline aquifers. The Triassic St Bees Sandstone Formation of the UK East Irish Sea Basin represents an optimum succession for study of the influence of both sedimentary and tectonic aquifer heterogeneities in a strongly lithified sandstone aquifer-type. This sedimentary succession of fluvial origin accumulated in rapidly subsiding basins, which typically favour preservation of complete depositional cycles, including fine-grained mudstone and silty sandstone layers of floodplain origin interbedded with sandstone-dominated fluvial channel deposits. Vertical joints in the St Bees Sandstone Formation form a pervasive stratabound system whereby joints terminate at bedding-parallel discontinuities. Additionally, normal faults are present through the succession and record development of open-fractures in their damage zones. Here, the shallow aquifer (depth ≤150 m BGL) was characterized in outcrop and well tests. Fluid temperature, conductivity and flow-velocity logs record inflows and outflows from normal faults, as well as from pervasive bed-parallel fractures. Quantitative flow logging analyses in boreholes that cut fault planes indicate that zones of fault-related open fractures typically represent ˜ 50% of well transmissivity. The remaining flow component is dominated by bed-parallel fractures. However, such sub-horizontal fractures become the principal flow conduits in wells that penetrate the exterior parts of fault damage zones, as well as in non-faulted areas. Optical televiewer logs show development of karst-like conduits in correspondence of bedding fractures and faults up to 150 m below the ground surface, where recharge water containing dissolved carbonic acid enlarges fractures; these features may be responsible for the relatively high field-scale permeability (K˜0.1-1 m/day) of the phreatic zone at these depths. Below this 'karstifed' zone, field-scale permeability progressively decreases from K˜10-2 to 10-4 m/day from 150 m to 1100 m depth. Notably, differences between plug and field-scale permeability, and frequency of well in-flows seen in temperature and conductivity logs, also decrease between intermediate (150 to 450 m) and elevated (450 to 1100 m) depths. This confirms how fracture closure leads to a progressively more important matrix contribution to flow with increasing lithostatic stress, leading to intergranular flow dominance at ˜ 1 km depth.
Second stage gasifier in staged gasification and integrated process
Liu, Guohai; Vimalchand, Pannalal; Peng, Wan Wang
2015-10-06
A second stage gasification unit in a staged gasification integrated process flow scheme and operating methods are disclosed to gasify a wide range of low reactivity fuels. The inclusion of second stage gasification unit operating at high temperatures closer to ash fusion temperatures in the bed provides sufficient flexibility in unit configurations, operating conditions and methods to achieve an overall carbon conversion of over 95% for low reactivity materials such as bituminous and anthracite coals, petroleum residues and coke. The second stage gasification unit includes a stationary fluidized bed gasifier operating with a sufficiently turbulent bed of predefined inert bed material with lean char carbon content. The second stage gasifier fluidized bed is operated at relatively high temperatures up to 1400.degree. C. Steam and oxidant mixture can be injected to further increase the freeboard region operating temperature in the range of approximately from 50 to 100.degree. C. above the bed temperature.
Multi-Megawatt Space Nuclear Power Generation
1993-06-28
electric generation, both for open- and closed-cycle opera- tion. These reactors use the particulate fuel of the type developed for HTGR reactors. What...commercial HTGR power reactors, the particles are held in place and directly cooled. Figure 2.7 shows the two types of fuel particles developed for...of MW(e), for pulsed energy devices. The FBR would use HTGR -type particle fuel , contained in a annular bed be- tween two porous frits. Helium would
Code of Federal Regulations, 2014 CFR
2014-07-01
... coal boilers designed to burn coal/solid fossil fuel a. Carbon monoxide (CO) (or CEMS) 130 ppm by... dscm per run. 3. Stokers designed to burn coal/solid fossil fuel a. CO (or CEMS) 130 ppm by volume on a... per run. 4. Fluidized bed units designed to burn coal/solid fossil fuel a. CO (or CEMS) 130 ppm by...
U. S. (United States) Air Force Fuel Cell Application Analysis.
1982-01-01
Desulfurizer and shift cata- lyst temperatures are maintained by controlling the amount of gas entering or by-passing the external water vaporizer. If...rich gas . The sul- fur content of the desulfurized fuel gas must be less than 1 ppm. Reforming takes place in a nickel catalyst bed, operating at... Control Supplemental Firing Fuel Cell Temperature Recirculation Air Temperature Control via Cooler Fan Speed Exhaust Gas Water Load Following damper
Low NO[sub x], cogeneration process and system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bell, R.D.
1993-07-06
A process is described for low NO[sub x] cogeneration to produce electricity and useful heat, which comprises: providing fuel and oxygen to an internal combustion engine connected to drive an electric generator, to thereby generate electricity; recovering from said engine an exhaust stream including elevated NO[sub x] levels and combined oxygen; adding to said exhaust stream sufficient fuel to create a fuel-rich mixture, the quantity of fuel being sufficient to react with the available oxygen and reduce the NO[sub x], in said exhaust stream; providing said fuel-enriched exhaust stream to a thermal reactor and reacting therein said fuel, NO[sub x]more » and available oxygen, to provide a heated oxygen-depleted stream; cooling said oxygen-depleted stream by passing same through a first heat exchanger; adding conversion oxygen to said cooled stream from said heat exchanger, and passing the cooled oxygen-augmented stream over a first catalyst bed operated at a temperature of about 750 to 1,250 F under overall reducing conditions, the quantity of conversion oxygen added being in stoichiometric excess of the amount of NO[sub x], but less than the amount of combustibles; whereby the NO[sub x] is first oxidized to NO[sub 2], and then the NO[sub 2] is reduced by the excess combustibles; cooling said stream from said first catalyst bed to a temperature of about 450 to 650 F by passing said stream through a second heat exchanger; adding air to the resulting cooled stream to produce a further cooled stream at a temperature of about 400 to 600 F, and having a stoichiometric excess of oxygen; and passing said stream having said stoichiometric excess of oxygen over an oxidizing catalyst bed at said temperature of 400 to 600 F to oxidize remaining excess combustibles, to thereby provide an effluent stream having environmentally safe characteristics.« less
Flow resistance and suspended load in sand-bed rivers: Simplified stratification model
Wright, S.; Parker, G.
2004-01-01
New methods are presented for the prediction of the flow depth, grain-size specific near-bed concentration, and bed-material suspended sediment transport rate in sand-bed rivers. The salient improvements delineated here all relate to the need to modify existing formulations in order to encompass the full range of sand-bed rivers, and in particular large, low-slope sand-bed rivers. They can be summarized as follows: (1) the inclusion of density stratification effects in a simplified manner, which have been shown in the companion paper to be particularly relevant for large, low-slope, sand-bed rivers; (2) a new predictor for near-bed entrainment rate into suspension which extends a previous relation to the range of large, low-slope sand-bed rivers; and (3) a new predictor for form drag which again extends a previous relation to include large, low-slope sand-bed rivers. Finally, every attempt has been made to cast the relations in the simplest form possible, including the development of software, so that practicing engineers may easily use the methods. ?? ASCE.
NASA Astrophysics Data System (ADS)
O'Reilly, T. C.; Kieft, B.; Chaffey, M. R.; Wolfson-Schwehr, M.; Herlien, R.; Bird, L.; Klimov, D.; Paull, C. K.; Gwiazda, R.; Lundsten, E. M.; Anderson, K.; Caress, D. W.; Sumner, E. J.; Simmons, S.; Parsons, D. R.; Talling, P.; Rosenberger, K. J.; Xu, J.; Maier, K. L.; Gales, J. A.
2017-12-01
The Monterey Coordinated Canyon Experiment (CCE) deployed an array of instruments along the Monterey Canyon floor to characterize the structure, velocity and frequency of sediment flows. CCE utilized novel technologies developed at MBARI to capture sediment flow data in unprecedented detail. 1. The Seafloor Instrument Node (SIN) at 1850 meters depth housed 3 ADCPs at 3 different frequencies, CTD, current meter, oxygen optode, fluorometer/backscatter sensor, and logged data at 10 second intervals or faster. The SIN included an acoustic modem for communication with shore through a Wave Glider relay, and provided high-resolution measurements of three flow events during three successive deployments over 1.5 years. 2. Beachball-sized Benthic Event Detectors (BEDs) were deployed on or under the seafloor to measure the characteristics of sediment density flows. Each BED recorded data from a pressure sensor and a 3-axis accelerometer and gyro to characterize motions during transport events (e.g. tumble vs rotation). An acoustic modem capable of operating through more than a meter of sediment enabled communications with a ship or autonomous surface vehicle. Multiple BEDs were deployed at various depths in the canyon during CCE, detecting and measuring many transport events; one BED moved 9 km down canyon in 50 minutes during one event. 3. Wave Glider Hot Spot (HS), equipped with acoustic and RF modems, acted as data relay between SIN, BEDs and shore, and acoustically located BEDs after sediment density flows.. In some cases HS relayed BED motion data to shore within a few hours of the event. HS provided an acoustic console to the SIN, allowing shore-based users to check SIN health and status, perform maintenance, etc. 4. Mapping operations were conducted 4 times at the SIN site to quantify depositional and erosional patterns, utilizing a prototype ultra-high-resolution mapping system on the ROV Doc Ricketts. The system consists of a 400-kHz Reson 7125 multibeam sonar, a 3DatDepth SL1 subsea LiIDAR, two stereo color cameras, and a Kearfott SeaDevil INS. At a survey altitude of 3 m above the bed, the mapping system provides 5-cm resolution multibeam bathymetry, 1-cm resolution lidar bathymetry, and 2-mm resolution photomosaics. We will describe the design and full capabilities of these novel systems.
Kinetics of bed fracturing around mine workings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veksler, Yu.A.
1988-03-01
A failure of the bed near the walls of the workings of a mine away from the face occurs gradually over time and in this paper the authors take a kinetic approach to evaluating its development. The influence of certain mine engineering factors on the pattern of bed fracturing is discussed. The effect of the depth of mining is shown. Cracking occurs in the portion of the seam at the face near the ground at some distance from it on the interface between soft and hard coal. The density of the fractured rocks and their response affect the bed fracturingmore » near the stope face.« less
What controls channel form in steep mountain streams?
NASA Astrophysics Data System (ADS)
Palucis, M. C.; Lamb, M. P.
2017-07-01
Steep mountain streams have channel morphologies that transition from alternate bar to step-pool to cascade with increasing bed slope, which affect stream habitat, flow resistance, and sediment transport. Experimental and theoretical studies suggest that alternate bars form under large channel width-to-depth ratios, step-pools form in near supercritical flow or when channel width is narrow compared to bed grain size, and cascade morphology is related to debris flows. However, the connection between these process variables and bed slope—the apparent dominant variable for natural stream types—is unclear. Combining field data and theory, we find that certain bed slopes have unique channel morphologies because the process variables covary systematically with bed slope. Multiple stable states are predicted for other ranges in bed slope, suggesting that a competition of underlying processes leads to the emergence of the most stable channel form.
Process of producing liquid hydrocarbon fuels from biomass
Kuester, J.L.
1987-07-07
A continuous thermochemical indirect liquefaction process is described to convert various biomass materials into diesel-type transportation fuels which fuels are compatible with current engine designs and distribution systems comprising feeding said biomass into a circulating solid fluidized bed gasification system to produce a synthesis gas containing olefins, hydrogen and carbon monoxide and thereafter introducing the synthesis gas into a catalytic liquefaction system to convert the synthesis gas into liquid hydrocarbon fuel consisting essentially of C[sub 7]-C[sub 17] paraffinic hydrocarbons having cetane indices of 50+. 1 fig.
Passeri, Davina L.; Long, Joseph W.; Plant, Nathaniel G.; Bilskie, Matthew V.; Hagen, Scott C.
2018-01-01
Variations in bed friction due to land cover type have the potential to influence morphologic change during storm events; the importance of these variations can be studied through numerical simulation and experimentation at locations with sufficient observational data to initialize realistic scenarios, evaluate model accuracy and guide interpretations. Two-dimensional in the horizontal plane (2DH) morphodynamic (XBeach) simulations were conducted to assess morphodynamic sensitivity to spatially varying bed friction at Dauphin Island, AL using hurricanes Ivan (2004) and Katrina (2005) as experimental test cases. For each storm, three bed friction scenarios were simulated: (1) a constant Chezy coefficient across land and water, (2) a constant Chezy coefficient across land and depth-dependent Chezy coefficients across water, and (3) spatially varying Chezy coefficients across land based on land use/land cover (LULC) data and depth-dependent Chezy coefficients across water. Modeled post-storm bed elevations were compared qualitatively and quantitatively with post-storm lidar data. Results showed that implementing spatially varying bed friction influenced the ability of XBeach to accurately simulate morphologic change during both storms. Accounting for frictional effects due to large-scale variations in vegetation and development reduced cross-barrier sediment transport and captured overwash and breaching more accurately. Model output from the spatially varying friction scenarios was used to examine the need for an existing sediment transport limiter, the influence of pre-storm topography and the effects of water level gradients on storm-driven morphodynamics.
Flow over gravel beds with clusters
NASA Astrophysics Data System (ADS)
Little, M.; Venditti, J. G.
2014-12-01
The structure of a gravel bed has been shown to alter the entrainment threshold. Structures such as clusters, reticulate stone cells and other discrete structures lock grains together, making it more difficult for them to be mobilized. These structures also generate form drag, reducing the shear stress available for mobilization. Form drag over gravel beds is often assumed to be negligible, but this assumption is not well supported. Here, we explore how cluster density and arrangement affect flow resistance and the flow structure over a fixed gravel bed in a flume experiment. Cluster density was varied from 6 to 68.3 clusters per square meter which corresponds to areal bed coverages of 2 to 17%. We used regular, irregular and random arrangements of the clusters. Our results show that flow resistance over a planar gravel bed initially declines, then increases with flow depth. The addition of clusters increases flow resistance, but the effect is dependent on cluster density, flow depth and arrangement. At the highest density, clusters can increase flow resistance as by as much as 8 times when compared to flat planar bed with no grain-related form drag. Spatially resolved observations of flow over the clusters indicate that a well-defined wake forms in the lee of each cluster. At low cluster density, the wakes are isolated and weak. As cluster density increases, the wakes become stronger. At the highest density, the wakes interact and the within cluster flow field detaches from the overlying flow. This generates a distinct shear layer at the height of the clusters. In spite of this change in the flow field at high density, our results suggest that flow resistance simply increases with cluster density. Our results suggest that the form drag associated with a gravel bed can be substantial and that it depends on the arrangement of the grains on the bed.
Lateral Erosion Encourages Vertical Incision in a Bimodal Alluvial River
NASA Astrophysics Data System (ADS)
Gran, K. B.
2015-12-01
Sand can have a strong impact on gravel transport, increasing gravel transport rates by orders of magnitude as sand content increases. Recent experimental work by others indicates that adding sand to an armored bed can even cause armor to break-up and mobilize. These two elements together help explain observations from a bimodal sand and gravel-bedded river, where lateral migration into sand-rich alluvium breaks up the armor layer, encouraging further incision into the bed. Detailed bedload measurements were coupled with surface and subsurface grain size analyses and cross-sectional surveys in a seasonally-incised channel carved into the upper alluvial fan of the Pasig-Potrero River at Mount Pinatubo, Philippines. Pinatubo erupted in 1991, filling valleys draining the flanks of the volcano with primarily sand-sized pyroclastic flow debris. Twenty years after the eruption, sand-rich sediment inputs are strongly seasonal, with most sediment input to the channel during the rainy season. During the dry season, flow condenses from a wide braided planform to a single-thread channel in most of the upper basin, extending several km onto the alluvial fan. This change in planform creates similar unit discharge ranges in summer and winter. Lower sediment loads in the dry season drive vertical incision until the bed is sufficiently armored. Incision proceeds downstream in a wave, with increasing sediment transport rates and decreasing grain size with distance downstream, eventually reaching a gravel-sand transition and return to a braided planform. Incision depths in the gravel-bedded section exceeded 3 meters in parts of a 4 km-long study reach, a depth too great to be explained by predictions from simple winnowing during incision. Instead, lateral migration into sand-rich alluvium provides sufficient fine sediment to break up the armor surface, allowing incision to start anew and increasing the total depth of the seasonally-incised valley. Lateral migration is recorded in a series of inset terraces within the valley. The importance of sand on channel behavior thus extends beyond transport rates, affecting the depth of incision and volume of material excavated during a rainy to dry season transition.
40 CFR Appendix G to Part 75 - Determination of CO2 Emissions
Code of Federal Regulations, 2010 CFR
2010-07-01
..., CO2 emissions from sorbent used in a wet flue gas desulfurization control system, fluidized bed boiler... procedure in section 2.3 of this appendix may also be used for an affected gas-fired unit. For an affected...) Wc = Carbon burned, lb/day, determined using fuel sampling and analysis and fuel feed rates. 2.1...
The paper reports the latest efforts to complete development of Phase 2 of a three-phase effort to develop a family of small-scale (1 to 20 MWe) biomass-fueled power plants. The concept envisioned is an air-blown pressurized fluidized-bed gasifier followed by a dry hot gas clean...
Thermal impacts of a fossil-fueled electric power plant discharge on seagrass bed communities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nemeth, J.C.; Garrett, R.A.; Imbur, W.E.
1979-01-01
This paper deals with a 316a demonstration for an older fossil-fueled electric power plant which is often overlooked but nevertheless a regultory compliance. In this report, the Lansing Smith coal-fired steam electric power plant went under a 316a demonstration and the results are recorded and tabulated.
Patrick H. Freeborn; Martin J. Wooster; Wei Min Hao; Cecily A. Nordgren Ryan; Stephen P. Baker; Charles Ichoku
2008-01-01
Forty-four small-scale experimental fires were conducted in a combustion chamber to examine the relationship between biomass consumption, smoke production, convective energy release, and middle infrared (MIR) measurements of fire radiative energy (FRE). Fuel bed weights, trace gas and aerosol particle concentrations, stack flow rate and temperature, and concurrent...
Effect of litter type upon fuel-moisture indicator stick values
W. L. Fons; C. M. Countryman
1950-01-01
Instructions for establishing fire-weather stations in Region 5 have usually specified that the fuel-moisture indicator sticks be placed over a bed of ponderosa pine needles. This specification was made to insure uniform ground-cover effect for all stations. Because ponderosa pine needles are not readily available in all areas of California fire control...
Modeling flame structure in wildland fires using the one-dimensional turbulence model
David O. Lignell; Elizabeth I. Monson; Mark A. Finney
2010-01-01
The mechanism of flame propagation in wildland fire fuel beds is of critical importance for understanding and quantifying fire spread rates. Recent observations and experiments have indicated the dominance of flame propagation by direct contact between flames and unburnt fuel, as opposed to propagation via radiative heating alone. It is postulated that effects of...
Ignition behavior of live California chaparral leaves
J.D. Engstrom; J.K Butler; S.G. Smith; L.L. Baxter; T.H. Fletcher; D.R. Weise
2004-01-01
Current forest fire models are largely empirical correlations based on data from beds of dead vegetation Improvement in model capabilities is sought by developing models of the combustion of live fuels. A facility was developed to determine the combustion behavior of small samples of live fuels, consisting of a flat-flame burner on a moveable platform Qualitative and...
TMI-2 (Three Mile Island Unit 2) core region defueling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodabaugh, J.M.; Cowser, D.K.
1988-01-01
In July of 1982, a video camera was inserted into the Three Mile Island Unit 2 reactor vessel providing the first visual evidence of core damage. This inspection, and numerous subsequent data acquisition tasks, revealed a central void /approx/1.5 m (5 ft) deep. This void region was surrounded by partial length fuel assemblies and ringed on the periphery by /approx/40 full-length, but partial cross-section, fuel assemblies. All of the original 177 fuel assemblies exhibited signs of damage. The bottom of the void cavity was covered with a bed of granular rubble, fuel assembly upper end fittings, control rod spiders, fuelmore » rod fragments, and fuel pellets. It was obvious that the normal plant refueling system not suitable for removing the damaged core. A new system of defueling tools and equipment was necessary to perform this task. Design of the new system was started immediately, followed by >1 yr of fabrication. Delivery and checkout of the defueling system occurred in mid-1985. Actual defueling was initiated in late 1985 with removal of the debris bed at the bottom of the core void. Obstructions to the debris, such as end fittings and fuel rod fragments ere removed first; then /approx/23,000 kg (50,000lb) of granular debris was quickly loaded into canisters. Core region defueling was completed in late 1987, /approx/2 yr after it was initiated.« less
NASA Astrophysics Data System (ADS)
Zuhair; Suwoto; Setiadipura, T.; Bakhri, S.; Sunaryo, G. R.
2018-02-01
As a part of the solution searching for possibility to control the plutonium, a current effort is focused on mechanisms to maximize consumption of plutonium. Plutonium core solution is a unique case in the high temperature reactor which is intended to reduce the accumulation of plutonium. However, the safety performance of the plutonium core which tends to produce a positive temperature coefficient of reactivity should be examined. The pebble bed inherent safety features which are characterized by a negative temperature coefficient of reactivity must be maintained under any circumstances. The purpose of this study is to investigate the characteristic of temperature coefficient of reactivity for plutonium core of pebble bed reactor. A series of calculations with plutonium loading varied from 0.5 g to 1.5 g per fuel pebble were performed by the MCNPX code and ENDF/B-VII library. The calculation results show that the k eff curve of 0.5 g Pu/pebble declines sharply with the increase in fuel burnup while the greater Pu loading per pebble yields k eff curve declines slighter. The fuel with high Pu content per pebble may reach long burnup cycle. From the temperature coefficient point of view, it is concluded that the reactor containing 0.5 g-1.25 g Pu/pebble at high burnup has less favorable safety features if it is operated at high temperature. The use of fuel with Pu content of 1.5 g/pebble at high burnup should be considered carefully from core safety aspect because it could affect transient behavior into a fatal accident situation.
Measurement of thermal diffusivity of depleted uranium metal microspheres
NASA Astrophysics Data System (ADS)
Humrickhouse-Helmreich, Carissa J.; Corbin, Rob; McDeavitt, Sean M.
2014-03-01
The high void space of nuclear fuels composed of homogeneous uranium metal microspheres may allow them to achieve ultra-high burnup by accommodating fuel swelling and reducing fuel/cladding interactions; however, the relatively low thermal conductivity of microsphere nuclear fuels may limit their application. To support the development of microsphere nuclear fuels, an apparatus was designed in a glovebox and used to measure the apparent thermal diffusivity of a packed bed of depleted uranium (DU) microspheres with argon fill in the void spaces. The developed Crucible Heater Test Assembly (CHTA) recorded radial temperature changes due to an initial heat pulse from a central thin-diameter cartridge heater. Using thermocouple positions and time-temperature data, the apparent thermal diffusivity was calculated. The thermal conductivity of the DU microspheres was calculated based on the thermal diffusivity from the CHTA, known material densities and specific heat capacities, and an assumed 70% packing density based on prior measurements. Results indicate that DU metal microspheres have very low thermal conductivity, relative to solid uranium metal, and rapidly form an oxidation layer even in a low oxygen environment. At 500 °C, the thermal conductivity of the DU metal microsphere bed was 0.431 ± 0.0560 W/m-K compared to the literature value of approximately 32 W/m-K for solid uranium metal.
Cho, Chang-Sang; Sa, Jae-Hwan; Lim, Ki-Kyo; Youk, Tae-Mi; Kim, Seung-Jin; Lee, Seul-Ki; Jeon, Eui-Chan
2012-01-01
This study makes use of this distinction to analyze the exhaust gas concentration and fuel of the circulating fluidized bed (CFB) boiler that mainly uses wood biomass, and to develop the emission factors of Methane (CH(4)), Nitrous oxide (N(2)O). The fuels used as energy sources in the subject working sites are Wood Chip Fuel (WCF), RDF and Refused Plastic Fuel (RPF) of which heating values are 11.9 TJ/Gg, 17.1 TJ/Gg, and 31.2 TJ/Gg, respectively. The average concentrations of CH(4) and N(2)O were measured to be 2.78 ppm and 7.68 ppm, respectively. The analyzed values and data collected from the field survey were used to calculate the emission factor of CH(4) and N(2)O exhausted from the CFB boiler. As a result, the emission factors of CH(4) and N(2)O are 1.4 kg/TJ (0.9-1.9 kg/TJ) and 4.0 kg/TJ (2.9-5.3 kg/TJ) within a 95% confidence interval. Biomass combined with the combustion technology for the CFB boiler proved to be more effective in reducing the N(2)O emission, compared to the emission factor of the CFB boiler using fossil fuel.
Radiation-Driven Flame Spread Over Thermally-Thick Fuels in Quiescent Microgravity Environments
NASA Technical Reports Server (NTRS)
Honda, Linton K.; Son, Youngjin; Ronney, Paul D.; Olson, Sandra (Technical Monitor); Gokoglu, Suleyman (Technical Monitor)
2001-01-01
Microgravity experiments on flame spread over thermally thick fuels were conducted using foam fuels to obtain low density and thermal conductivity, and thus large spread rate (Sf) compared to dense fuels such as PMMA. This scheme enabled meaningful results to lie obtained even in 2.2 second drop tower experiments. It was found that, in contrast conventional understanding; steady spread can occur over thick fuels in quiescent microgravity environments, especially when a radiatively active diluent gas such as CO2 is employed. This is proposed to be due to radiative transfer from the flame to the fuel surface. Additionally, the transition from thermally thick to thermally thin behavior with decreasing bed thickness is demonstrated.
Coastal Remote Sensing Investigations. Volume 1. Marine Environment.
1980-04-01
and heavy growths of vegetation (mainly Thalassia ) in protected areas. The water is very clear, and extensive shallow areas exist with depths rangin...16.0 boundary of vegetated area A-2 3 5.0 Thalassia bed A-3 3 32.0 white carbonate sand B-I 5 16.5 hard, non-vegetated bottom B-2 4 30.0 white...carbonate sand B-3 3 12.5 boundary of vegetated area B-4 4 5.0 Thalassia bed C-I 3 35.0 white carbonate sand C-2 4 3.0 Thalassia bed 30 Figure
Species removal from aqueous radioactive waste by deep-bed filtration.
Dobre, Tănase; Zicman, Laura Ruxandra; Pârvulescu, Oana Cristina; Neacşu, Elena; Ciobanu, Cătălin; Drăgolici, Felicia Nicoleta
2018-05-26
Performances of aqueous suspension treatment by deep-bed sand filtration were experimentally studied and simulated. A semiempirical deterministic model and a stochastic model were used to predict the removal of clay particles (20 μm) from diluted suspensions. Model parameters, which were fitted based on experimental data, were linked by multiple linear correlations to the process factors, i.e., sand grain size (0.5 and 0.8 mm), bed depth (0.2 and 0.4 m), clay concentration in the feed suspension (1 and 2 kg p /m 3 ), suspension superficial velocity (0.015 and 0.020 m/s), and operating temperature (25 and 45 °C). These relationships were used to predict the bed radioactivity determined by the deposition of radioactive suspended particles (>50 nm) from low and medium level aqueous radioactive waste. A deterministic model based on mass balance, kinetic, and interface equilibrium equations was developed to predict the multicomponent sorption of 60 Co, 137 Cs, 241 Am, and 3 H radionuclides (0.1-0.3 nm). A removal of 98.7% of radioactive particles was attained by filtering a radioactive wastewater volume of 10 m 3 (0.5 mm sand grain size, 0.3 m bed depth, 0.223 kg p /m 3 suspended solid concentration in the feed suspension, 0.003 m/s suspension superficial velocity, and 25 °C operating temperature). Predicted results revealed that the bed radioactivity determined by the sorption of radionuclides (0.01 kBq/kg b ) was significantly lower than the bed radioactivities caused by the deposition of radioactive particles (0.5-1.8 kBq/kg b ). Copyright © 2018 Elsevier Ltd. All rights reserved.
Vapor deposition of hardened niobium
Blocher, Jr., John M.; Veigel, Neil D.; Landrigan, Richard B.
1983-04-19
A method of coating ceramic nuclear fuel particles containing a major amount of an actinide ceramic in which the particles are placed in a fluidized bed maintained at ca. 800.degree. to ca. 900.degree. C., and niobium pentachloride vapor and carbon tetrachloride vapor are led into the bed, whereby niobium metal is deposited on the particles and carbon is deposited interstitially within the niobium. Coating apparatus used in the method is also disclosed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, M.L.
This paper very briefly summarizes progress in the demonstration of a small (up to 6 MWe), environmentally acceptable electric generating system fueled by indigenous fuels and waste materials to serve power distribution systems typical of Alaskan Native communities. Two detailed appendices supplement the report. The project is focused on two primary technologies: (1) atmospheric fluidized bed combustion (AFBC), and (2) coalbed methane and coal-fired diesel technologies. Two sites have been selected as possible locations for an AFBC demonstration, and bid proposals are under review. The transfer of a coal-fired diesel clean coal demonstration project from Maryland to Fairbanks, Alaska wasmore » approved, and the environmental assessment has been initiated. Federal support for a fuel cell using coalbed methane is also being pursued. The appendices included in the report provide: (1) the status of the conceptual design study for a 600-kWe coal-fired cogeneration plant in McGrath, Alaska; and (2) a global market assessment of coalbed methane, fluidized-bed combustion, and coal-fired diesel technologies in remote applications.« less
Suspended-Bed Reactor preliminary design, /sup 233/U--/sup 232/Th cycle. Final report (revised)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karam, R.A.; Alapour, A.; Lee, C.C.
1977-11-01
The preliminary design Suspended-Bed Reactor is described. Coated particles about 2 mm in diameter are used as the fuel. The coatings consist of three layers: (1) low density pyrolytic graphite, 70 ..mu.. thick, (2) silicon carbide pressure vessel, 30 ..mu.. thick, and (3) ZrC layer, 50 ..mu.. thick, to protect the pressure vessel from moisture and oxygen. The fuel kernel can be either uranium-thorium dicarbide or metal. The coated particles are suspended by helium gas (coolant) in a cluster of pressurized tubes. The upward flow of helium fluidizes the coated particles. As the flow rate increases, the bed of particlesmore » is lifted upward to the core section. The particles are restrained at the upper end of the core by a suitable screen. The overall particle density in the core is just enough for criticality condition. Should the helium flow cease, the bed in the core section will collapse, and the particles will flow downward into the section where the increased physical spacings among the tubes brings about a safe shutdown. By immersing this section of the tubes in a large graphite block to serve as a heat sink, dissipation of decay heat becomes manageable. This eliminates the need for emergency core cooling systems.« less
Factors influencing specific fuel use in Nebraska
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shelton, D.P.; Von Bargen, K.
1981-01-01
Fuel use data relating to agricultural field operations were collected and analyzed during the Nebraska fuel use survey. The farms surveyed had a mean size of 598 ha and a mean total tractor power rating of 221 kW. Mean operating depth, field speed, and tractor power rating were determined for the major field operations. Mean field speeds were generally in agreement with commonly accepted values. Total annual fuel energy use increased with increasing farm size. Over 87 percent of this energy was used from April through October. Even though total fuel energy was increased, specific fuel energy use decreased withmore » increasing farm size. Specific fuel use for field operations was influenced by the size of area worked, operation depth, field speed, and tractor power rating.« less
Larsen, Laurel G.; Harvey, Judson; Crimaldi, John P.
2009-01-01
Entrainment of sediment by flowing water affects topography, habitat suitability, and nutrient cycling in vegetated floodplains and wetlands, impacting ecosystem evolution and the success of restoration projects. Nonetheless, restoration managers lack simple decision-support tools for predicting shear stresses and sediment redistribution potential in different vegetation communities. Using a field-validated numerical model, we developed state-space diagrams that provide these predictions over a range of water-surface slopes, depths, and associated velocities in Everglades ridge and slough vegetation communities. Diminished bed shear stresses and a consequent decrease in bed sediment redistribution are hypothesized causes of a recent reduction in the topographic and vegetation heterogeneity of this ecosystem. Results confirmed the inability of present-day flows to entrain bed sediment. Further, our diagrams showed bed shear stresses to be highly sensitive to emergent vegetation density and water-surface slope but less sensitive to water depth and periphyton or floating vegetation abundance. These findings suggested that instituting a pulsing flow regime could be the most effective means to restore sediment redistribution to the Everglades. However, pulsing flows will not be sufficient to erode sediment from sloughs with abundant spikerush, unless spikerush density first decreases by natural or managed processes. Our methods provide a novel tool for identifying restoration parameters and performance measures in many types of vegetated aquatic environments where sediment erosion and deposition are involved.
A new approach to define surface/sub-surface transition in gravel beds
NASA Astrophysics Data System (ADS)
Haynes, Heather; Ockelford, Anne-Marie; Vignaga, Elisa; Holmes, William
2012-12-01
The vertical structure of river beds varies temporally and spatially in response to hydraulic regime, sediment mobility, grain size distribution and faunal interaction. Implicit are changes to the active layer depth and bed porosity, both critical in describing processes such as armour layer development, surface-subsurface exchange processes and siltation/ sealing. Whilst measurements of the bed surface are increasingly informed by quantitative and spatial measurement techniques (e.g., laser displacement scanning), material opacity has precluded the full 3D bed structure analysis required to accurately define the surface-subsurface transition. To overcome this problem, this paper provides magnetic resonance imaging (MRI) data of vertical bed porosity profiles. Uniform and bimodal (σ g = 2.1) sand-gravel beds are considered following restructuring under sub-threshold flow durations of 60 and 960 minutes. MRI data are compared to traditional 2.5D laser displacement scans and six robust definitions of the surface-subsurface transition are provided; these form the focus of discussion.
Scour around vertical wall abutment in cohesionless sediment bed
NASA Astrophysics Data System (ADS)
Pandey, M.; Sharma, P. K.; Ahmad, Z.
2017-12-01
At the time of floods, failure of bridges is the biggest disaster and mainly sub-structure (bridge abutments and piers) are responsible for this failure of bridges. It is very risky if these sub structures are not constructed after proper designing and analysis. Scour is a natural phenomenon in rivers or streams caused by the erosive action of the flowing water on the bed and banks. The abutment undermines due to river-bed erosion and scouring, which generally recognized as the main cause of abutment failure. Most of the previous studies conducted on scour around abutment have concerned with the prediction of the maximum scour depth (Lim, 1994; Melvill, 1992, 1997 and Dey and Barbhuiya, 2005). Dey and Barbhuiya (2005) proposed a relationship for computing maximum scour depth near an abutment, based on laboratory experiments, for computing maximum scour depth around vertical wall abutment, which was confined to their experimental data only. However, this relationship needs to be also verified by the other researchers data in order to support the reliability to the relationship and its wider applicability. In this study, controlled experimentations have been carried out on the scour near a vertical wall abutment. The collected data in this study along with data of the previous investigators have been carried out on the scour near vertical wall abutment. The collected data in this study along with data of the previous have been used to check the validity of the existing equation (Lim, 1994; Melvill, 1992, 1997 and Dey and Barbhuiya, 2005) of maximum scour depth around the vertical wall abutment. A new relationship is proposed to estimate the maximum scour depth around vertical wall abutment, it gives better results all relationships.
Flow resistance under conditions of intense gravel transport
Pitlick, John
1992-01-01
A study of flow resistance was undertaken in a channelized reach of the North Fork Toutle River, downstream of Mount St. Helens, Washington. Hydraulic and sediment transport data were collected in flows with velocities up to 3 m/s and shear stresses up to 7 times the critical value needed for bed load transport. Details of the flow structure as revealed in vertical velocity profiles indicate that weak bed load transport over a plane gravel bed has little effect on flow resistance. The plane gravel bed persists up to stresses ∼3 times critical, at which point, irregular bed forms appear. Bed forms greatly increase flow resistance and cause velocity profiles to become distorted. The latter arises as an effect of flows becoming depth-limited as bed form amplitude increases. At very high rates of bed load transport, an upper stage plane bed appeared. Velocity profiles measured in these flows match the law of the wall closely, with the equivalent roughness being well represented by ks = 3D84 of the bed load. The effects noted here will be important in very large floods or in rivers that are not free to widen, such as those cut into bedrock.
NASA Astrophysics Data System (ADS)
Cea, Luis; Bladé, Ernest; Corestein, Georgina; Fraga, Ignacio; Espinal, Marc; Puertas, Jerónimo
2014-05-01
Transitory flows generated by dam failures have a great sediment transport capacity, which induces important morphological changes on the river topography. Several studies have been published regarding the coupling between the sediment transport and hydrodynamic equations in dam-break applications, in order to correctly model their mutual interaction. Most of these models solve the depth-averaged shallow water equations to compute the water depth and velocity. On the other hand, a wide variety of sediment transport formulations have been arbitrarily used to compute the topography evolution. These are based on semi-empirical equations which have been calibrated under stationary and uniform conditions very different from those achieved in dam-break flows. Soares-Frazao et al. (2012) proposed a Benchmark test consisting of a dam-break over a mobile bed, in which several teams of modellers participated using different numerical models, and concluded that the key issue which still needs to be investigated in morphological modelling of dam-break flows is the link between the solid transport and the hydrodynamic variables. This paper presents a comparative analysis of different sediment transport formulations applied to dam-break flows over mobile beds. All the formulations analysed are commonly used in morphological studies in rivers, and include the formulas of Meyer-Peter & Müller (1948), Wong-Parker (2003), Einstein-Brown (1950), van Rijn (1984), Engelund-Hansen (1967), Ackers-White (1973), Yang (1973), and a Meyer-Peter & Müller type formula but with ad-hoc coefficients. The relevance of corrections on the sediment flux direction and magnitude due to the bed slope and the non-equilibrium hypothesis is also analysed. All the formulations have been implemented in the numerical model Iber (Bladé et al. (2014)), which solves the depth-averaged shallow water equations coupled to the Exner equation to evaluate the bed evolution. Two different test cases have been studied. The first one is the benchmark case presented in Soares-Frazao et al. (2012), and consists in an instanteneous dam-break flow over a sand bed. The second one corresponds to the experimental studies performed at the Engineering Faculty of the UNAM (Fuentes-Mariles et al. (2010)) and consists in the erosion of a volcanic sand dike by an overtopping flow. In both cases experimental measurements of water depth and bed evolution are available to evaluate the performance of different sediment transport formulations. A sensitivity analysis to the physical properties of the bed material (grain density and size) is also presented for each formulation, in order to analyse to which degree the properties of the bed material need to be defined in the numerical model. References Bladé, E., Cea, L., Corestein, G., Escolano, E., Puertas, J., Vázquez-Cendón, M.E., Dolz, J., Coll, A. (2014). Iber: herramienta de simulación numérica del flujo en ríos. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, Vol.30(1), pp.1-10 Fuentes-Mariles, Ó. A., Cruz-Gerón, J. A., Rivera-Díaz, C., Luna-Cruz, F., and González-Prado, J. (2010). "Caracterización Experimental de Ruptura de Diques." XXIV Congreso Latinoamericano de Hidráulica Soares-Frazão et al. (2012). Dambreak flows over mobile beds: experiments and benchmark tests for numerical models. Journal of Hydraulic Research, Vol.50(4), pp.364-375
Influence of absorption by environmental water vapor on radiation transfer in wildland fires
D. Frankman; B. W. Webb; B. W. Butler
2008-01-01
The attenuation of radiation transfer from wildland flames to fuel by environmental water vapor is investigated. Emission is tracked from points on an idealized flame to locations along the fuel bed while accounting for absorption by environmental water vapor in the intervening medium. The Spectral Line Weighted-sum-of-gray-gases approach was employed for treating the...
NASA Astrophysics Data System (ADS)
Morin, Roger; Godin, RéJean; Nastev, Miroslav; Rouleau, Alain
2007-04-01
The Châteauguay River Basin delineates a transborder watershed with roughly half of its surface area located in northern New York State and half in southern Québec Province, Canada. As part of a multidisciplinary study designed to characterize the hydrogeologic properties of this basin, geophysical logs were obtained in 12 wells strategically located to penetrate the four major sedimentary rock formations that constitute the regional aquifers. The layered rocks were classified according to their elastic properties into three primary units: soft sandstone, hard sandstone, and dolostone. Downhole measurements were analyzed to identify fracture patterns associated with each unit and to evaluate their role in controlling groundwater flow. Fracture networks are composed of orthogonal sets of laterally extensive, subhorizontal bedding plane partings and bed-delimited, subvertical joints with spacings that are consistent with rock mechanics principles and stress models. The vertical distribution of transmissive zones is confined to a few select bedding plane fractures, with soft sandstone having the fewest (one per 70-m depth) and hard sandstone the most (five per 70-m depth). Bed-normal permeability is examined using a probabilistic model that considers the lengths of flow paths winding along joints and bedding plane fractures. Soft sandstone has the smallest bed-normal permeability primarily because of its wide, geomechanically undersaturated joint spacing. Results indicate that the three formations have similar values of bulk transmissivity, within roughly an order of magnitude, but that each rock unit has its own unique system of groundwater flow paths that constitute that transmissivity.
NASA Astrophysics Data System (ADS)
Lamb, Michael P.; Brun, Fanny; Fuller, Brian M.
2017-09-01
Steep mountain streams have higher resistance to flow and lower sediment transport rates than expected by comparison with low gradient rivers, and often these differences are attributed to reduced near-bed flow velocities and stresses associated with form drag on channel forms and immobile boulders. However, few studies have directly measured drag and lift forces acting on bed sediment for shallow flows over coarse sediment, which ultimately control sediment transport rates and grain-scale flow resistance. Here we report on particle lift and drag force measurements in flume experiments using a planar, fixed cobble bed over a wide range of channel slopes (0.004 < S < 0.3) and water discharges. Drag coefficients are similar to previous findings for submerged particles (CD ˜ 0.7) but increase significantly for partially submerged particles. In contrast, lift coefficients decrease from near unity to zero as the flow shallows and are strongly negative for partially submerged particles, indicating a downward force that pulls particles toward the bed. Fluctuating forces in lift and drag decrease with increasing relative roughness, and they scale with the depth-averaged velocity squared rather than the bed shear stress. We find that, even in the absence of complex bed topography, shallow flows over coarse sediment are characterized by high flow resistance because of grain drag within a roughness layer that occupies a significant fraction of the total flow depth, and by heightened critical Shields numbers and reduced sediment fluxes because of reduced lift forces and reduced turbulent fluctuations.
Morin, Roger H.; Godin, Rejean; Nastev, Miroslav; Rouleau, Alain
2007-01-01
[1] The Châteauguay River Basin delineates a transborder watershed with roughly half of its surface area located in northern New York State and half in southern Québec Province, Canada. As part of a multidisciplinary study designed to characterize the hydrogeologic properties of this basin, geophysical logs were obtained in 12 wells strategically located to penetrate the four major sedimentary rock formations that constitute the regional aquifers. The layered rocks were classified according to their elastic properties into three primary units: soft sandstone, hard sandstone, and dolostone. Downhole measurements were analyzed to identify fracture patterns associated with each unit and to evaluate their role in controlling groundwater flow. Fracture networks are composed of orthogonal sets of laterally extensive, subhorizontal bedding plane partings and bed-delimited, subvertical joints with spacings that are consistent with rock mechanics principles and stress models. The vertical distribution of transmissive zones is confined to a few select bedding plane fractures, with soft sandstone having the fewest (one per 70-m depth) and hard sandstone the most (five per 70-m depth). Bed-normal permeability is examined using a probabilistic model that considers the lengths of flow paths winding along joints and bedding plane fractures. Soft sandstone has the smallest bed-normal permeability primarily because of its wide, geomechanically undersaturated joint spacing. Results indicate that the three formations have similar values of bulk transmissivity, within roughly an order of magnitude, but that each rock unit has its own unique system of groundwater flow paths that constitute that transmissivity.
NASA Astrophysics Data System (ADS)
Zhou, Zheyu; Sangermano, Jacob; Hsu, Tian-Jian; Ting, Francis C. K.
2014-10-01
To better understand the effect of wave-breaking-induced turbulence on the bed, we report a 3-D large-eddy simulation (LES) study of a breaking solitary wave in spilling condition. Using a turbulence-resolving approach, we study the generation and the fate of wave-breaking-induced turbulent coherent structures, commonly known as obliquely descending eddies (ODEs). Specifically, we focus on how these eddies may impinge onto bed. The numerical model is implemented using an open-source CFD library of solvers, called OpenFOAM, where the incompressible 3-D filtered Navier-Stokes equations for the water and the air phases are solved with a finite volume scheme. The evolution of the water-air interfaces is approximated with a volume of fluid method. Using the dynamic Smagorinsky closure, the numerical model has been validated with wave flume experiments of solitary wave breaking over a 1/50 sloping beach. Simulation results show that during the initial overturning of the breaking wave, 2-D horizontal rollers are generated, accelerated, and further evolve into a couple of 3-D hairpin vortices. Some of these vortices are sufficiently intense to impinge onto the bed. These hairpin vortices possess counter-rotating and downburst features, which are key characteristics of ODEs observed by earlier laboratory studies using Particle Image Velocimetry. Model results also suggest that those ODEs that impinge onto bed can induce strong near-bed turbulence and bottom stress. The intensity and locations of these near-bed turbulent events could not be parameterized by near-surface (or depth integrated) turbulence unless in very shallow depth.
Makwana, J P; Joshi, Asim Kumar; Athawale, Gaurav; Singh, Dharminder; Mohanty, Pravakar
2015-02-01
An experimental study of air gasification of rice husk was conducted in a bench-scale fluidized bed gasifier (FBG) having 210 mm diameter and 1600 mm height. Heating of sand bed material was performed using conventional charcoal fuel. Different operating conditions like bed temperature, feeding rate and equivalence ratio (ER) varied in the range of 750-850 °C, 25-31.3 kg/h, and 0.3-0.38, respectively. Flow rate of air was kept constant (37 m(3)/h) during FBG experiments. The carbon conversion efficiencies (CCE), cold gas efficiency, and thermal efficiency were evaluated, where maximum CCE was found as 91%. By increasing ER, the carbon conversion efficiency was decreased. Drastic reduction in electric consumption for initial heating of gasifier bed with charcoal compared to ceramic heater was ∼45%. Hence rice husk is found as a potential candidate to use directly (without any processing) in FBG as an alternative renewable energy source from agricultural field. Copyright © 2014 Elsevier Ltd. All rights reserved.
Finney, Karen N; Ryu, Changkook; Sharifi, Vida N; Swithenbank, Jim
2009-01-01
Thermal treatment technologies were compared to determine an appropriate method of recovering energy from two wastes - spent mushroom compost and coal tailings. The raw compost and pellets of these wastes were combusted in a fluidised-bed and a packed-bed, and contrasted to pyrolysis and gasification. Quantitative combustion parameters were compared to assess the differences in efficiency between the technologies. Fluidised-bed combustion was more efficient than the packed-bed in both instances and pellet combustion was superior to that of the compost alone. Acid gas emissions (NO(x), SO(x) and HCl) were minimal for the fluidised-bed, thus little gas cleaning would be required. The fuels' high ash content (34%) also suggests fluidised-bed combustion would be preferred. The Alkali Index of the ash indicates the possibility of fouling/slagging within the system, caused by the presence of alkali metal oxides. Pyrolysis produced a range of low-calorific value-products, while gasification was not successful.
Estimated and measured bridge scour at selected sites in North Dakota, 1990-97
Williams-Sether, Tara
1999-01-01
A Level 2 bridge scour method was used to estimate scour depths at 36 selected bridge sites located on the primary road system throughout North Dakota. Of the 36 bridge sites analyzed, the North Dakota Department of Transportation rated 15 as scour critical. Flood and scour data were collected at 19 of the 36 selected bridge sites during 1990-97. Data collected were sufficient to estimate pier scour but not contraction or abutment scour. Estimated pier scour depths ranged from -10.6 to -1.2 feet, and measured bed-elevation changes at piers ranged from -2.31 to +2.37 feet. Comparisons between the estimated pier scour depths and the measured bed-elevation changes indicate that the pier scour equations overestimate scour at bridges in North Dakota.A Level 1.5 bridge scour method also was used to estimate scour depths at 495 bridge sites located on the secondary road system throughout North Dakota. The North Dakota Department of Transportation determined that 26 of the 495 bridge sites analyzed were potentially scour critical.
Balanay, Jo Anne G; Bartolucci, Alfred A; Lungu, Claudiu T
2014-01-01
Granular activated carbon (GAC) is currently the standard adsorbent in respirators against several gases and vapors because of its efficiency, low cost, and available technology. However, a drawback of GAC due to its granular form is its need for containment, adding weight and bulkiness to respirators. This makes respirators uncomfortable to wear, resulting in poor compliance in their use. Activated carbon fibers (ACF) are considered viable alternative adsorbent materials for developing thinner, light-weight, and efficient respirators because of their larger surface area, lighter weight, and fabric form. This study aims to determine the critical bed depth and adsorption capacity of different types of commercially available ACFs for toluene to understand how thin a respirator can be and the service life of the adsorbents, respectively. ACF in cloth (ACFC) and felt (ACFF) forms with three different surface areas per form were tested. Each ACF type was challenged with six concentrations of toluene (50, 100, 200, 300, 400, 500 ppm) at constant air temperature (23°C), relative humidity (50%), and airflow (16 LPM) at different adsorbent weights and bed depths. Breakthrough data were obtained for each adsorbent using gas chromatography with flame ionization detector. The ACFs' surface areas were measured by an automatic physisorption analyzer. The results showed that ACFC has a lower critical bed depth and higher adsorption capacity compared to ACFF with similar surface area for each toluene concentration. Among the ACF types, ACFC2000 (cloth with the highest measured surface area of 1614 ± 5 m(2)/g) has one of the lowest critical bed depths (ranging from 0.11-0.22 cm) and has the highest adsorption capacity (ranging from 595-878 mg/g). Based on these studied adsorption characteristics, it is concluded that ACF has great potential for application in respiratory protection against toluene, particularly the ACFC2000, which is the best candidate for developing thinner and efficient respirators.
Balanay, Jo Anne G; Crawford, Shaun A; Lungu, Claudiu T
2011-10-01
Activated carbon fiber (ACF) has been demonstrated to be a good adsorbent for the removal of organic vapors in air. Some ACF has a comparable or larger surface area and higher adsorption capacity when compared with granular activated carbon (GAC) commonly used in respiratory protection devices. ACF is an attractive alternative adsorbent to GAC because of its ease of handling, light weight, and decreasing cost. ACF may offer the potential for short-term respiratory protection for first responders and emergency personnel. This study compares the critical bed depths and adsorption capacities for toluene among GAC and ACF of different forms and surface areas. GAC and ACF in cloth (ACFC) and felt (ACFF) forms were challenged in stainless steel chambers with a constant concentration of 500 ppm toluene via conditioned air at 25°C, 50% RH, and constant airflow (7 L/min). Breakthrough data were obtained for each adsorbent using gas chromatography with flame ionization detector. Surface areas of each adsorbent were determined using a physisorption analyzer. Results showed that the critical bed depth of GAC is 275% higher than the average of ACFC but is 55% lower than the average of ACFF. Adsorption capacity of GAC (with a nominal surface area of 1800 m(2)/g) at 50% breakthrough is 25% higher than the average of ACF with surface area of 1000 m(2)/g, while the rest of ACF with surface area of 1500 m(2)/g and higher have 40% higher adsorption capacities than GAC. ACFC with higher surface area has the smallest critical bed depth and highest adsorption capacity, which makes it a good adsorbent for thinner and lighter respirators. We concluded that ACF has great potential for application in respiratory protection considering its higher adsorption capacity and lower critical bed depth in addition to its advantages over GAC, particularly for ACF with higher surface area.
NASA Astrophysics Data System (ADS)
Schoellhamer, D. H.; Manning, A. J.; Work, P. A.
2015-12-01
Cohesive sediment in the Sacramento-San Joaquin River Delta affects pelagic fish habitat, contaminant transport, and marsh accretion. Observations of suspended-sediment concentration in the delta indicate that about 0.05 to 0.20 kg/m2 are eroded from the bed during a tidal cycle. If erosion is horizontally uniform, the erosion depth is about 30 to 150 microns, the typical range in diameter of suspended flocs. Application of an erosion microcosm produces similarly small erosion depths. In addition, core erodibility in the microcosm calculated with a horizontally homogeneous model increases with depth, contrary to expectations for a consolidating bed, possibly because the eroding surface area increases as applied shear stress increases. Thus, field observations and microcosm experiments, combined with visual observation of horizontally varying biota and texture at the surface of sediment cores, indicate that a conceptual model of erosion that includes horizontally varying properties may be more appropriate than assuming horizontally homogeneous erosive properties. To test this hypothesis, we collected five cores and measured the horizontal variability of shear strength within each core in the top 5.08 cm with a shear vane. Small tubes built by a freshwater worm and macroalgae were observed on the surface of all cores. The shear vane was inserted into the sediment until the top of the vane was at the top of the sediment, torque was applied to the vane until the sediment failed and the vane rotated, and the corresponding dial reading in Nm was recorded. The dial reading was assumed to be proportional to the surface strength. The horizontal standard deviation of the critical shear stress was about 30% of the mean. Results of the shear vane test provide empirical evidence that surface strength of the bed varies horizontally. A numerical simulation of erosion with an areally heterogeneous bed reproduced erosion characteristics observed in the microcosm.
Calvo, L F; Gil, M V; Otero, M; Morán, A; García, A I
2012-04-01
The feasibility and operation performance of the gasification of rice straw in an atmospheric fluidized-bed gasifier was studied. The gasification was carried out between 700 and 850 °C. The stoichiometric air-fuel ratio (A/F) for rice straw was 4.28 and air supplied was 7-25% of that necessary for stoichiometric combustion. Mass and power balances, tar concentration, produced gas composition, gas phase ammonia, chloride and potassium concentrations, agglomeration tendencies and gas efficiencies were assessed. Agglomeration was avoided by replacing the normal alumina-silicate bed by a mixture of alumina-silicate sand and MgO. It was shown that it is possible to produce high quality syngas from the gasification of rice straw. Under the experimental conditions used, the higher heating value (HHV) of the produced gas reached 5.1 MJ Nm(-3), the hot gas efficiency 61% and the cold gas efficiency 52%. The obtained results prove that rice straw may be used as fuel for close-coupled boiler-gasifier systems. Copyright © 2012 Elsevier Ltd. All rights reserved.
Advanced microbial check valve development
NASA Technical Reports Server (NTRS)
Colombo, G. V.; Greenley, D. R.
1980-01-01
A flight certified assembly identified as a Microbial Check Valve (MCV) was developed and tested. The MCV is a canister packed with an iodinated anionic exchange resin. The device is used to destroy organisms in a water stream as the water passes through the device. The device is equally effective for fluid flow in either direction and its primary method of organism removal is killing rather than filtering. The MCV was successfully developed for the space shuttle to: disinfect fuel cell water; and prevent back contamination of the stored potable water supply. One version of the device consists of a high residual iodinated resin bed that imparts approximately 2 ppm of iodine to the fuel cell water as it flows to the potable water tanks. A second version of the device consists of a low residual iodinated resin bed. One of these low residual beds is located at each use port in the potable water system for the dual purpose of removing some iodine from the potable water as it is dispensed and also to prevent back contamination of the potable supply.
Geomorphology of the north flank of the Uinta Mountains
Bradley, W.H.
1936-01-01
beds now form hogbacks ranked along the sides of the fold. In places large faults, approximating the regional strike, cut these steeply inclined beds. Gently warped Tertiary sediments, mostly of Eocene age, fill the large Green River Basin, which lies north of the range, to a depth of several thousand feet and lap up on the flanks of the mountains, from which they were chiefly derived.
NASA Astrophysics Data System (ADS)
Yong, Yumei; Lu, Qinggang
2003-05-01
The combustion performance of the boiler largely depends on the coal type. Lots of experimental research shows that different fuels have different combustion characteristics. It is obvious that fuel will change the whole operating performance of Circulating Fluidized Bed Combustion (CFBC). We know even in a pilot-scale running boiler, the measurement of some parameters is difficult and costly. Therefore, we developed the way of simulation to evaluate the combustion performance of Chinese coals in CFB. The simulation results show that, different coals will result in different coal particle diameter and comminution depending on their mineral component and the change will affect the distribution of ash in CFBC system. In a word, the computational results are in accordance with experimental results qualitatively but there are some differences quantitatively.
Improvement of tritium accountancy technology for ITER fuel cycle safety enhancement
NASA Astrophysics Data System (ADS)
O'hira, S.; Hayashi, T.; Nakamura, H.; Kobayashi, K.; Tadokoro, T.; Nakamura, H.; Itoh, T.; Yamanishi, T.; Kawamura, Y.; Iwai, Y.; Arita, T.; Maruyama, T.; Kakuta, T.; Konishi, S.; Enoeda, M.; Yamada, M.; Suzuki, T.; Nishi, M.; Nagashima, T.; Ohta, M.
2000-03-01
In order to improve the safe handling and control of tritium for the ITER fuel cycle, effective in situ tritium accounting methods have been developed at the Tritium Process Laboratory in the Japan Atomic Energy Research Institute under one of the ITER-EDA R&D tasks. The remote and multilocation analysis of process gases by an application of laser Raman spectroscopy developed and tested could provide a measurement of hydrogen isotope gases with a detection limit of 0.3 kPa analytical periods of 120 s. An in situ tritium inventory measurement by application of a `self-assaying' storage bed with 25 g tritium capacity could provide a measurement with the required detection limit of less than 1% and a design proof of a bed with 100 g tritium capacity.
A steady-state technique for studying the properties of free-burning wood fires
Wallace L. Fons; H.D. Bruce; W.Y. Pong
1961-01-01
A laboratory study was set up by the U.S. Forest Service with the ultimate objective of determining model laws for properties of wood fires, including rate of spread. This is a report of the first phase of the work, the development of a suitable bed of solid fuel and the technique of study. The bed chosen for initial study is in the form of long cribs of wood sticks...
Using Remote-sensing to Survey Topography and Morphologic Change on Large Braided River Beds
NASA Astrophysics Data System (ADS)
Maurice, D.; Hicks, M.; Shankar, U.
2007-12-01
Since 1999 we have made extensive use of a variety of remote-sensing technologies to survey bed topography over reaches of large braided gravel-bed rivers on the east coast of New Zealand's South Island. The motivations have been (i) to collect input and validation data for 2-d hydrodynamic models for quantifying in-stream physical habitat and for predicting flood levels and (ii) to survey spatially-distributed riverbed erosion and deposition in order to estimate bedload fluxes by the 'morphological' method. Typical applications have been to river reaches 3-4 km long and 1 km wide, with grid cells from 1-5 m. We use different techniques to survey dry and wet areas of braided riverbed. For dry areas, we have used digital photogrammetry and infra-red airborne LiDAR. For wetted channels, we have generally used ortho-rectified colour imagery or multi-spectral scanning to map water depth, then we map bed topography by subtracting the water depth from a DEM of the water surface obtained from photogrammetry or LiDAR. The imagery is calibrated to water depth using field measurements on the day of imagery acquisition. Surveys are undertaken during low flows to maximise bed exposure. We use ground-based RTK-GPS and echo-sounding to collect calibration and validation data, and sometimes simply use these methods to survey the wetted areas. Orthoimagery at multiple river flows is used to validate 2-d model results. We have been able to achieve elevation accuracies at interpolated points of the order of 10-15 cm for dry areas. This accuracy typically degrades to 20-30 cm for wetted areas. Our experience has exposed a number of issues relating to survey accuracy and practicality at large river scales. These include: changing geoidal models between surveys; local systematic error with photogrammetric model mosaics; geospatial synchronisation of multi-platform data; time-synchronisation of LiDAR and imagery- collecting aeroplanes and suitable weather and river conditions; confusions in water depth mapping; and the critical importance of good data at key hydraulic controls for eco-hydrologic applications. We suggest that high resolution bathymetric LiDAR offers the best potential for future surveys in large river reaches. While the current bathymetry LiDAR systems do not appear to deliver a significantly better accuracy of submerged bed elevations than we have achieved with mixed-technology approaches for dry and wet areas, and their cost remains high, a one-stop package is hard to beat in terms of practicality and data synchronisation.
NASA Astrophysics Data System (ADS)
Lee, H.; Chang, C.; Ong, S.; Song, I.
2013-12-01
Stress-induced borehole breakouts have long been used as a reliable indicator of both the orientation and magnitude of in-situ stresses on the basis of the systematic alignment with the minimum horizontal principal far-field stress (σh), and the well-defined correlation between the breakout dimensions and in-situ stress magnitudes. Although breakouts can serve as a reliable stress indicator, cautions must be exercised when using them to constrain the orientation and magnitude of in-situ stresses because the breakout geometry can be altered by some geological characteristics in addition to the usual geomechanical parameters. Two factors are discussed here. We observed alterations in breakout geometry from some of the boreholes drilled along a transection of the Nankai subduction zone. In the C0002A hole, breakouts formed along the depth interval where the beddings are horizontal or sub-horizontal were consistently oriented along the regional σh direction. In contrast, a gradual rotation in breakout orientation with depth and a significant breakout widening at the borehole wall were observed along the deeper section where the beddings are steep (>40o). A geomechanical modeling taking into account the bedding effect shows that such breakout rotation and widening result from strength anisotropy inherent within the thinly bedded formations, and the misalignment between in-situ stresses and bedding dip directions. The model also revealed that there is a considerable difference in the stress magnitudes estimated with and without considering the bedding effect particularly in the steeply bedding intervals. This observation suggests that bedding effects on breakout geometry must be taken into account when using breakouts developed in such formations to estimate the orientation and magnitude of in-situ stresses, failure which would likely to lead to erroneous results. The second factor to discuss is the time-dependent growth of breakouts. While it was straightforward to estimate the stress direction based on the breakout azimuth, an ambiguity occurred when the breakout width widened significantly with time. Two independent borehole wall images of the same depth interval, captured at the bottom and the top of a 30m long logging-while-drilling (LWD) bottom-hole-assembly, indicate that breakout widths grew from 42o immediately after bit run to 135o about an hour later. Triaxial compression tests in cores revealed that all the specimens failed in a brittle mode immediately when the stresses reach the condition required for failure, suggesting that for the purpose of stress estimation, the use of breakout width immediately after the drill-bit passes is appropriate.
Removal of hexavalent chromium by biosorption process in rotating packed bed.
Panda, M; Bhowal, A; Datta, S
2011-10-01
Removal of hexavalent chromium ions from an aqueous solution by crude tamarind (Tamarindus indica) fruit shell was examined in a rotating packed bed contactor by continuously recirculating a given volume of solution through the bed. Reduction of Cr(VI) to Cr(III) within the biosorbent appeared to be the removal mechanism. Depletion rate of Cr(VI) from, and release of reduced Cr(III) ions into the aqueous phase, was influenced by mass transfer resistance besides pH and packing depth. A mathematical model considering the reduction reaction to be irreversible and incorporating intraparticle and external phase mass transfer resistances represented the experimental data adequately. The study indicated that the limitations of fixed bed contactor operating under terrestrial gravity in intensifying mass transfer rates for this system can be overcome with rotating packed bed due to liquid flow under centrifugal acceleration.
Preliminary report on the lignite resources of the Niobe area, Burke and Ward counties, North Dakota
Owen, Hal E.
1977-01-01
Two lignite beds, the Niobe and the Bonus, occur at strippable depths within the Niobe area. The Niobe bed averages 5 feet (1.5 meters) in thickness and the Bonus bed averages 8 feet (2.4 meters) in thickness. These beds lie in the lower part of the Sentinel Butte Member of the Fort Union Formation (Paleocene). The demonstrated resources of both beds combined is 122 million tons (110 million tonnes), all of which are under less than 120 feet (37 meters) of overburden. The overburden consists of glacial till and shale. The lateral continuity of the coal has been locally interrupted by faulting, glacial outwash channels, and erosion. Folding and/or faulting occurs parallel to the Missouri Coteau escarpment and faulting occurs roughly perpendicular to the escarpment.
Simulating the Use of Alternative Fuels in a Turbofan Engine
NASA Technical Reports Server (NTRS)
Litt, Jonathan S.; Chin, Jeffrey Chevoor; Liu, Yuan
2013-01-01
The interest in alternative fuels for aviation has created a need to evaluate their effect on engine performance. The use of dynamic turbofan engine simulations enables the comparative modeling of the performance of these fuels on a realistic test bed in terms of dynamic response and control compared to traditional fuels. The analysis of overall engine performance and response characteristics can lead to a determination of the practicality of using specific alternative fuels in commercial aircraft. This paper describes a procedure to model the use of alternative fuels in a large commercial turbofan engine, and quantifies their effects on engine and vehicle performance. In addition, the modeling effort notionally demonstrates that engine performance may be maintained by modifying engine control system software parameters to account for the alternative fuel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sulc, Jindrich; Stojdl, Jiri; Richter, Miroslav
2012-04-15
Highlights: Black-Right-Pointing-Pointer Comparison of one stage (co-current) and two stage gasification of wood pellets. Black-Right-Pointing-Pointer Original arrangement with grate-less reactor and upward moving bed of the pellets. Black-Right-Pointing-Pointer Two stage gasification leads to drastic reduction of tar content in gas. Black-Right-Pointing-Pointer One stage gasification produces gas with higher LHV at lower overall ER. Black-Right-Pointing-Pointer Content of ammonia in gas is lower in two stage moving bed gasification. - Abstract: A pilot scale gasification unit with novel co-current, updraft arrangement in the first stage and counter-current downdraft in the second stage was developed and exploited for studying effects of two stagemore » gasification in comparison with one stage gasification of biomass (wood pellets) on fuel gas composition and attainable gas purity. Significant producer gas parameters (gas composition, heating value, content of tar compounds, content of inorganic gas impurities) were compared for the two stage and the one stage method of the gasification arrangement with only the upward moving bed (co-current updraft). The main novel features of the gasifier conception include grate-less reactor, upward moving bed of biomass particles (e.g. pellets) by means of a screw elevator with changeable rotational speed and gradual expanding diameter of the cylindrical reactor in the part above the upper end of the screw. The gasifier concept and arrangement are considered convenient for thermal power range 100-350 kW{sub th}. The second stage of the gasifier served mainly for tar compounds destruction/reforming by increased temperature (around 950 Degree-Sign C) and for gasification reaction of the fuel gas with char. The second stage used additional combustion of the fuel gas by preheated secondary air for attaining higher temperature and faster gasification of the remaining char from the first stage. The measurements of gas composition and tar compound contents confirmed superiority of the two stage gasification system, drastic decrease of aromatic compounds with two and higher number of benzene rings by 1-2 orders. On the other hand the two stage gasification (with overall ER = 0.71) led to substantial reduction of gas heating value (LHV = 3.15 MJ/Nm{sup 3}), elevation of gas volume and increase of nitrogen content in fuel gas. The increased temperature (>950 Degree-Sign C) at the entrance to the char bed caused also substantial decrease of ammonia content in fuel gas. The char with higher content of ash leaving the second stage presented only few mass% of the inlet biomass stream.« less
Gaseous emissions during concurrent combustion of biomass and non-recyclable municipal solid waste
2011-01-01
Background Biomass and municipal solid waste offer sustainable sources of energy; for example to meet heat and electricity demand in the form of combined cooling, heat and power. Combustion of biomass has a lesser impact than solid fossil fuels (e.g. coal) upon gas pollutant emissions, whilst energy recovery from municipal solid waste is a beneficial component of an integrated, sustainable waste management programme. Concurrent combustion of these fuels using a fluidised bed combustor may be a successful method of overcoming some of the disadvantages of biomass (high fuel supply and distribution costs, combustion characteristics) and characteristics of municipal solid waste (heterogeneous content, conflict with materials recycling). It should be considered that combustion of municipal solid waste may be a financially attractive disposal route if a 'gate fee' value exists for accepting waste for combustion, which will reduce the net cost of utilising relatively more expensive biomass fuels. Results Emissions of nitrogen monoxide and sulphur dioxide for combustion of biomass are suppressed after substitution of biomass for municipal solid waste materials as the input fuel mixture. Interactions between these and other pollutants such as hydrogen chloride, nitrous oxide and carbon monoxide indicate complex, competing reactions occur between intermediates of these compounds to determine final resultant emissions. Conclusions Fluidised bed concurrent combustion is an appropriate technique to exploit biomass and municipal solid waste resources, without the use of fossil fuels. The addition of municipal solid waste to biomass combustion has the effect of reducing emissions of some gaseous pollutants. PMID:21284885
Validating the MFiX-DEM Model for Flow Regime Prediction in a 3D Spouted Bed
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banerjee, Subhodeep; Guenther, Chris; Rogers, William A.
The spout-fluidized bed reactor with relatively large oxygen carrier particles offers several advantages in chemical looping combustion operation using solid fuels. The large difference in size and weight between the oxygen carrier particles and the smaller coal or ash particles allows the oxygen carrier to be easily segregated for recirculation; the increased solids mixing due to dynamic flow pattern in the spout-fluidization regime prevents agglomeration. The primary objective in this work is to determine the effectiveness of the MFiX-DEM model in predicting the flow regime in a spouted bed. Successful validation of the code will allow the user to finemore » tune the operating conditions of a spouted bed to achieve the desired operating condition.« less
[Environmental impact of a public hospital in the city of Lima, Peru].
Bambarén-Alatrista, Celso; Alatrista-Gutiérrez de Bambarén, María del Socorro
2014-01-01
The operation of hospitals produces negative effects on the environment which contributes to air pollution and climate change. The institution in this study is a category III health care facility located in the city of Lima. It generates 4.89 kg/bed/day of solid waste, and consumes 1.36 m3/bed/day of water; 25.22 kWh/bed/day of electricity, and 2.76 liters/bed/day of fuel. The level of PM10 and measured parameters of disposal to the public network are within legal limits, while mobile source noise exceeds the maximum allowable limit. The institution releases into the atmosphere 2,291 tons of CO2 equivalents per year. In conclusion, the institution studied generates a negative impact on the environment.
NASA Astrophysics Data System (ADS)
Dixit, Anoop; Khurana, Rohinish; Verma, Aseem; Singh, Arshdeep; Manes, G. S.
2018-05-01
India is the second largest producer of vegetables in the world. For vegetable cultivation, a good seed bed preparation is an important task which involves 6-10 different operations. To tackle the issue of multiple operations, a prototype of tractor operated wide bed former was developed and evaluated. The machine comprises of a rotary tiller and a bed forming setup. It forms bed of 1000 mm top width which is suitable as per the track width of an average sized tractor in India. The height of the beds formed is 130 mm whereas the top and bottom width of channel formed on both sides of the bed is 330 and 40 mm respectively at soil moisture content of 12.5-16% (db). The forward speed of 2.75 km/h was observed to be suitable for proper bed formation. The average fuel consumption of the machine was 5.9 l/h. The average bulk density of soil before and after the bed formation was 1.46 and 1.63 g/cc respectively. Field capacity of the machine was found to be 0.31 ha/h. The machine resulted in 93.8% labour saving and 80.4% saving in cost of bed preparation as compared to conventional farmer practice. Overall performance of wide-bed former was found to be satisfactory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mutanen, K.I.
Development of fluidized bed combustion (FBC) was started both in North America and in Europe in the 1960`s. In Europe and especially in Scandinavia the major driving force behind the development was the need to find new more efficient technologies for utilization of low-grade fuels like different biomasses and wastes. Both bubbling fluidized bed (BFB) and circulating fluidized bed (CFB) technologies were under intensive R&D,D efforts and have now advanced to dominating role in industrial and district heating power plant markets in Europe. New advanced CFB designs are now entering the markets. In North America and especially in the USmore » the driving force behind the FBC development was initially the need to utilize different types of coals in a more efficient and environmentally acceptable way. The present and future markets seem to be mainly in biomass and multifuel applications where there is benefit from high combustion efficiency, high fuel flexibility and low emissions such as in the pulp and paper industry. The choice between CFB technology and BFB technology is based on selected fuels, emission requirements, plant size and on technical and economic feasibility. Based on Scandinavian experience there is vast potential in the North American industry to retrofit existing oil fired, pulverized coal fired, chemical recovery or grate fired boilers with FBC systems or to build a new FBC based boiler plant. This paper will present the status of CFB technologies and will compare technical and economic feasibility of CFB technology to CFB technology to BFB and also to other combustion methods. Power plant projects that are using advanced CFB technology e.g. Ahlstrom Pyroflow Compact technology for biomass firing and co-firing of biomass with other fuels will also be introduced.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Terry A.; Bowman, Robert; Smith, Barton
Conventional hydrogen compressors often contribute over half of the cost of hydrogen stations, have poor reliability, and have insufficient flow rates for a mature FCEV market. Fatigue associated with their moving parts including cracking of diaphragms and failure of seal leads to failure in conventional compressors, which is exacerbated by the repeated starts and stops expected at fueling stations. Furthermore, the conventional lubrication of these compressors with oil is generally unacceptable at fueling stations due to potential fuel contamination. Metal hydride (MH) technology offers a very good alternative to both conventional (mechanical) and newly developed (electrochemical, ionic liquid pistons) methodsmore » of hydrogen compression. Advantages of MH compression include simplicity in design and operation, absence of moving parts, compactness, safety and reliability, and the possibility to utilize waste industrial heat to power the compressor. Beyond conventional H2 supplies of pipelines or tanker trucks, another attractive scenario is the on-site generating, pressuring and delivering pure H 2 at pressure (≥ 875 bar) for refueling vehicles at electrolysis, wind, or solar generating production facilities in distributed locations that are too remote or widely distributed for cost effective bulk transport. MH hydrogen compression utilizes a reversible heat-driven interaction of a hydride-forming metal alloy with hydrogen gas to form the MH phase and is a promising process for hydrogen energy applications [1,2]. To deliver hydrogen continuously, each stage of the compressor must consist of multiple MH beds with synchronized hydrogenation & dehydrogenation cycles. Multistage pressurization allows achievement of greater compression ratios using reduced temperature swings compared to single stage compressors. The objectives of this project are to investigate and demonstrate on a laboratory scale a two-stage MH hydrogen (H 2) gas compressor with a feed pressure of >50 bar and a delivery pressure ≥ 875 bar of high purity H 2 gas using the scheme shown in Figure 1. Progress to date includes the selection of two candidate metal hydrides for each compressor stage, supplier engagement and synthesis of small samples, and the beginning of in-depth characterization of their thermodynamics, kinetics, and hydrogen capacities for optimal performance with respect to energy requirements and efficiency. Additionally, bed design trade studies are underway and will be finalized in FY18. Subsequently, the prototype two-stage compressor will be fabricated, assembled and experimentally evaluated in FY19.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sargent, S.A.; Pierson, T.R.; Steffe, J.F.
Apple juice processors generating up to 100 ton/day (90,718 kg/day) of pomace and incurring no disposal costs could not economically invest in a pile burning, fluidized-bed or suspension-fired system at present fossil fuel costs. Cost analysis is warranted for situations in which disposal costs are greater than $9.15/ton ($8.30/1000 kg) or in which fossil fuel price increases are expected in excess of 25%.
Smoke from wildfires and prescribed burning in Australia: effects on human health and ecosystems
Tina Bell; Mark Adams
2009-01-01
Much of Australia is seasonally hot and dry, and fuel beds can become very flammable. Biomass burning ranges from annual savanna fires in the north to sporadic but extensive forest fires in the south. In addition, prescribed burning (the controlled application of fire) is being used more frequently as a means of reducing fuel loads, for maintenance of plant and animal...
Use of models to study forest fire behavior
Wallace L. Fons
1961-01-01
The U.S. Forest Service has started a laboratory study with the ultimate objective of determining model laws for fire behavior. The study includes an examination of the effect of such variables as species of wood, density of wood, moisture content, size of fuel particle, spacing, dimensions of fuel bed, wind, and slope on the rate of spread of fire and the partition of...
Transport And Chemical Effects On Concurrent And Opposed-Flow Flame Spread At Microgravity
NASA Technical Reports Server (NTRS)
Son, Y.; Zouein, G.; Ronney, P. D.; Gokoglu, S.
2003-01-01
Flame spread over flat solid fuel beds is a useful means of understanding more complex two-phase non-premixed spreading flames, such as those that may occur due to accidents in inhabited buildings and orbiting spacecraft. The role of buoyant convection on flame spread is substantial, especially for thermally-thick fuels. With suitable assumptions, deRis showed that the spread rate (S(sub f)) is proportional to the buoyant or forced convection velocity (U) and thus suggests that S(sub f) is indeterminate at mu g (since S(sub f) = U) unless a forced flow is applied. (In contrast, for thermally thin fuels, the ideal S(sub f) is independent of U.) The conventional view, as supported by computations and space experiments, is that for quiescent g conditions, S(sub f) must be unsteady and decreasing until extinction occurs due to radiative losses. However, this view does not consider that radiative transfer to the fuel surface can enhance flame spread. In recent work we have found evidence that radiative transfer from the flame itself can lead to steady flame spread at mu g over thick fuel beds. Our current work focuses on refining these experiments and a companion modeling effort toward the goal of a space flight experiment called Radiative Enhancement Effects on Flame Spread (REEFS) planned for the International Space Station (ISS) c. 2007.
Feasibility study of a fission-suppressed Tokamak fusion breeder
NASA Astrophysics Data System (ADS)
Moir, R. W.; Lee, J. D.; Neef, W. S., Jr.; Berwald, D. H.; Garner, J. K.; Whitley, R. H.; Ghoniem, N.; Wong, C. P. C.; Maya, I.; Schultz, K. R.
1984-12-01
The preliminary conceptual design of a tokama fissile fuel producer is described. The blanket technology is based on the fission suppressed breeding concept where neutron multiplication occurs in a bed of 2 cm diameter beryllium pebbles which are cooled by helium at 50 atmospheres pressure. Uranium-233 is bred in thorium metal fuel elements which are in the form of snap rings attached to each beryllium pebble. Tritium is bred in lithium bearing material contained in tubes immersed in the pebble bed and is recovered by a purge flow of helium. The neutron wall load is 3 MW/m(2) and the blanket material is ferritic steel. The net fissile breeding ratio is 0.54 plus or minus 30% per fusion reaction. This results in the production of 4900 kg of (223)U per year from 3000 MW of fusion power. This quantity of fuel will provide makeup fuel for about 12 LWRs of equal thermal power or about 18 1 GW sub e LWRs. The calculated cost of the produced uranium-233 is between $23/g and $53/g or equivalent to $10/kg to $90/kg of U308 depending on government financing or utility financing assumptions. Additional topics discussed include the Tokamak operating mode (both steady state and long pulse considered), the design and breeding implications of using a poloidal divertor for impurity control, reactor safety, the choice of a tritium breeder, and fuel management.
Cho, Chang-Sang; Sa, Jae-Hwan; Lim, Ki-Kyo; Youk, Tae-Mi; Kim, Seung-Jin; Lee, Seul-Ki; Jeon, Eui-Chan
2012-01-01
This study makes use of this distinction to analyze the exhaust gas concentration and fuel of the circulating fluidized bed (CFB) boiler that mainly uses wood biomass, and to develop the emission factors of Methane (CH4), Nitrous oxide (N2O). The fuels used as energy sources in the subject working sites are Wood Chip Fuel (WCF), RDF and Refused Plastic Fuel (RPF) of which heating values are 11.9 TJ/Gg, 17.1 TJ/Gg, and 31.2 TJ/Gg, respectively. The average concentrations of CH4 and N2O were measured to be 2.78 ppm and 7.68 ppm, respectively. The analyzed values and data collected from the field survey were used to calculate the emission factor of CH4 and N2O exhausted from the CFB boiler. As a result, the emission factors of CH4 and N2O are 1.4 kg/TJ (0.9–1.9 kg/TJ) and 4.0 kg/TJ (2.9–5.3 kg/TJ) within a 95% confidence interval. Biomass combined with the combustion technology for the CFB boiler proved to be more effective in reducing the N2O emission, compared to the emission factor of the CFB boiler using fossil fuel. PMID:23365540
Design of a laboratory scale fluidized bed reactor
NASA Astrophysics Data System (ADS)
Wikström, E.; Andersson, P.; Marklund, S.
1998-04-01
The aim of this project was to construct a laboratory scale fluidized bed reactor that simulates the behavior of full scale municipal solid waste combustors. The design of this reactor is thoroughly described. The size of the laboratory scale fluidized bed reactor is 5 kW, which corresponds to a fuel-feeding rate of approximately 1 kg/h. The reactor system consists of four parts: a bed section, a freeboard section, a convector (postcombustion zone), and an air pollution control (APC) device system. The inside diameter of the reactor is 100 mm at the bed section and it widens to 200 mm in diameter in the freeboard section; the total height of the reactor is 1760 mm. The convector part consists of five identical sections; each section is 2700 mm long and has an inside diameter of 44.3 mm. The reactor is flexible regarding the placement and number of sampling ports. At the beginning of the first convector unit and at the end of each unit there are sampling ports for organic micropollutants (OMP). This makes it possible to study the composition of the flue gases at various residence times. Sampling ports for inorganic compounds and particulate matter are also placed in the convector section. All operating parameters, reactor temperatures, concentrations of CO, CO2, O2, SO2, NO, and NO2 are continuously measured and stored at selected intervals for further evaluation. These unique features enable full control over the fuel feed, air flows, and air distribution as well as over the temperature profile. Elaborate details are provided regarding the configuration of the fuel-feeding systems, the fluidized bed, the convector section, and the APC device. This laboratory reactor enables detailed studies of the formation mechanisms of OMP, such as polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), poly-chlorinated biphenyls (PCBs), and polychlorinated benzenes (PCBzs). With this system formation mechanisms of OMP occurring in both the combustion and postcombustion zones can be studied. Other advantages are memory effect minimization and the reduction of experimental costs compared to full scale combustors. Comparison of the combustion parameters and emission data from this 5 kW laboratory scale reactor with full scale combustors shows good agreement regarding emission levels and PCDD/PCDF congener patterns. This indicates that the important formation and degradation reactions of OMP in the reactor are the same formation mechanisms as in full scale combustors.
NASA Astrophysics Data System (ADS)
Millan, R.; Rignot, E. J.; Morlighem, M.; Bjork, A. A.; Mouginot, J.; Wood, M.
2017-12-01
Southeast Greenland has been one of the largest contributors to ice mass loss in Greenland in part because of significant changes in glacier dynamics. The leading hypothesis for the changes in glacier dynamics is that enhanced thermal forcing from the ocean has dislodged a number of glaciers from their anchoring positions and some of them retreated rapidly along a reverse bed. The glaciers response has been observed to vary significantly from one fjord to the next, but until now there was not enough data to understand or interpret these changes. In particular, there was no data on glacier bed topography and seafloor bathymetry in the fjords. Here we present the results of new fjord mapping by the NASA Ocean Melting Greenland mission combined with a recent high-resolution airborne gravity survey by NASA Operation IceBridge. We combine these data with a reconstruction of the bed using a mass conservation approach upstream extending into the glacial fjords for the first time. In the fjord and along the ice-ocean transition, we employ a 3D inversion of gravity data to infer the bed elevation along a set of 9 survey boxes spanning south of Helheim Glacier to the southern tip of Southeast Greenland. We combine the results with an analysis of the glacier front history since the 1930's and Conductivity Temperature Depth data obtained in the fjord by OMG in 2016. The data reveals bed elevations several 100-m deeper than previously thought, for almost all the glaciers, up to 500 m for some of them. For many glaciers, the bed profiles help to completely understand the history of retreat of the glaciers. For instance, glaciers stranded on sills have been stable; glaciers on a reverse slope have retreated rapidly; and glaciers with a normal slope have retreated slowly. The mapping also helps document the extent of the marine portion of the glacier basins. In many of the fjords, we document the presence of warm, salty Atlantic Water which fuels large melt rates. We employ simulations from the MITgcm model to estimate the melt rates and further interpret the glacier retreat pattern. In addition, we estimate that more than half of the glaciers surveyed in most detail is very likely to retreat rapidly in the near future because they stand neat retrograde slope. These glaciers will contribute further to the mass loss from this part of Greenland into the ocean.
Carbon attrition during the circulating fluidized bed combustion of a packaging-derived fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mastellone, M.L.; Arena, U.
1999-05-01
Cylindrical pellets of a market-available packaging-derived fuel, obtained from a mono-material collection of polyethylene terephthalate (PET) bottles, were batchwise fed to a laboratory scale circulating fluidized bed (CFB) combustor. The apparatus, whose riser was 41 mm ID and 4 m high, was operated under both inert and oxidizing conditions to establish the relative importance of purely mechanical attrition and combustion-assisted attrition in generating carbon fines. Silica sand particles of two size distributions were used as inert materials. For each run, carbon load and carbon particle size distribution in the riser and rates of attrited carbon fines escaping the combustor weremore » determined as a function of time. A parallel investigation was carried out with a bubbling fluidized bed (BFB) combustor to point out peculiarities of attrition in CFB combustors. After devolatilization, PET pellets generated fragile aggregates of char and sand, which easily crumbled, leading to single particles, partially covered by a carbon-rich layer. The injected fixed carbon was therefore present in the bed in three phases: an A-phase, made of aggregates of sand and char, an S-phase, made of individual carbon-covered sand particles and an F-phase, made of carbon fines, abraded by the surfaces of the A- and S-phases. The effects of the size of inert material on the different forms under which fixed carbon was present in the bed and on the rate of escape of attrited carbon fines from the combustor were investigated. Features of carbon attrition in CFB and BFB combustors are discussed.« less
Diaz, J.I.; Palanques, A.; Nelson, C.H.; Guillen, J.
1996-01-01
The Ebro "mud belt" is a Holocene prodeltaic deposit which has developed around, and southwestward from, the present Ebro Delta plain, covering most of the inner and middle Ebro continental shelf. Seismic-reflection profiles of this mud belt exhibit a complex sigmoid-oblique configuration. Top-set strata dip gently seaward to the 20 m isobath, and overly the fore-set beds which are exposed in up to 40-60 m water depth. Top-set and fore-set beds have mostly parallel and high continuity reflectors. Thin, acoustically transparent bottom-set beds are present at the base of the fore-set beds and extend to the distal edge of the prodelta (60-80 m water depth), where they overly relict transgressive sand deposits. There is no evidence of mass movement. The suspended load discharged by the river is mainly transported alongshelf by advective processes. This dynamics produces thin clinoform deposits that extend alongshelf for tens of kilometres. Mud belt deposition began about 10,000-11,000 years BP. Accumulation rate ranges from less than 0.5 mm y-1 on the seaward and southern edges of the deposit to about 2.5 mm y-1 near the present river mouth. Copyright ?? 1995 Elsevier Science Ltd. All rights reserved.
Sediment mobility in fish bearing streams: the influence of floods and spawning salmon
NASA Astrophysics Data System (ADS)
Hassan, M. A.; Gottesfeld, A. S.; Tunnicliffe, J. F.
2002-12-01
Magnetically tagged particles were used to investigate the effects of sockeye salmon (Oncorhynchus nerka) on the mobility of substrate in gravel bed streams in the Stuart-Takla region of north-central British Columbia. The study reaches in Forfar and O'Ne-ell Creeks have gradients of from 0.005 to 0.019 and have a forced pool-riffle morphology. The dominant annual sediment-transporting event in the channels is the snow-melt flood events in late May or June, with lesser work usually accomplished during summer and fall storm floods. In August every year, the channel beds material is reworked by the Early Stuart salmon spawning event, as the fish excavated the streambed to deposit and bury their eggs. At each of the 5 reaches within the 2 study creeks, 250 tracers (8.5mm - 180mm) were placed in a line on the bed before and after transport events. Results were highly variable, subject to the magnitude of floods, and the returning population of salmon. Overall, the depositional pattern from nival flood events usually demonstrated a high degree of clast mobilization, long travel distances (up to 150m) and mean depths of burial up to 18cm. Storm flood events showed somewhat lower rates of mobilization, distances of travel and depths of burial. Although the fish did not move the tracers very far, their effect on the bed was generally quite pervasive: up to 100% of the clasts were mobilized, and the depth of burial was considerable (mean burial depths up to 14cm). Repeat topographic surveys of the streambed before and after transport events revealed considerable disruption of the bed surface. The geomorphic effect of fish was enhanced in the lower reaches where the hydraulic transporting capacity is somewhat less (lower stream power), the sediment calibre is finer, and fish spawning density is higher. The amount of sediment mobilized by salmonids is often on the same order of magnitude as flood events. The significant vertical mixing of sediments by the fish has important implications for the mobility of sediment in the stream. Since any armouring layer formed during high flows throughout the year are subject to the bioturbation of salmonids, the transport threshold in the creeks remains relatively low. Salmonids thus play an integral role in the annual sediment budget of the lower reaches of these creeks.
Method and apparatus for automated, modular, biomass power generation
Diebold, James P; Lilley, Arthur; Browne, III, Kingsbury; Walt, Robb Ray; Duncan, Dustin; Walker, Michael; Steele, John; Fields, Michael; Smith, Trevor
2013-11-05
Method and apparatus for generating a low tar, renewable fuel gas from biomass and using it in other energy conversion devices, many of which were designed for use with gaseous and liquid fossil fuels. An automated, downdraft gasifier incorporates extensive air injection into the char bed to maintain the conditions that promote the destruction of residual tars. The resulting fuel gas and entrained char and ash are cooled in a special heat exchanger, and then continuously cleaned in a filter prior to usage in standalone as well as networked power systems.
Method and apparatus for automated, modular, biomass power generation
Diebold, James P [Lakewood, CO; Lilley, Arthur [Finleyville, PA; Browne, Kingsbury III [Golden, CO; Walt, Robb Ray [Aurora, CO; Duncan, Dustin [Littleton, CO; Walker, Michael [Longmont, CO; Steele, John [Aurora, CO; Fields, Michael [Arvada, CO; Smith, Trevor [Lakewood, CO
2011-03-22
Method and apparatus for generating a low tar, renewable fuel gas from biomass and using it in other energy conversion devices, many of which were designed for use with gaseous and liquid fossil fuels. An automated, downdraft gasifier incorporates extensive air injection into the char bed to maintain the conditions that promote the destruction of residual tars. The resulting fuel gas and entrained char and ash are cooled in a special heat exchanger, and then continuously cleaned in a filter prior to usage in standalone as well as networked power systems.
Advanced Turbine Technology Applications Project (ATTAP)
NASA Technical Reports Server (NTRS)
1989-01-01
Work to develop and demonstrate the technology of structural ceramics for automotive engines and similar applications is described. Long-range technology is being sought to produce gas turbine engines for automobiles with reduced fuel consumption and reduced environmental impact. The Advanced Turbine Technology Application Project (ATTAP) test bed engine is designed such that, when installed in a 3,000 pound inertia weight automobile, it will provide low emissions, 42 miles per gallon fuel economy on diesel fuel, multifuel capability, costs competitive with current spark ignition engines, and noise and safety characteristics that meet Federal standards.
Jin, Yu; Teng, Chunying; Yu, Sumei; Song, Tao; Dong, Liying; Liang, Jinsong; Bai, Xin; Liu, Xuesheng; Hu, Xiaojing; Qu, Juanjuan
2018-01-01
To prevent the blockage in a continuous fix-bed system, Pleurotus Ostreatus spent substrate (POSS), a composite agricultural waste, was immobilized into granular adsorbents (IPOSS) with polymeric matrix, and used to remove Cd(II) from synthetic wastewater in batch experiment as well as in continuous fixed-bed column system. In batch experiment, higher pH, temperature and Cd(II) initial concentration were conducive to a higher biosorption capacity, and the maximum biosorption capacity reached up to 87.2 mg/g at Cd(II) initial concentration of 200 mg/L, pH 6 and 25 °C. The biosorption of Cd(II) onto IPOSS followed the Langmuir isotherm model with the maximum adsorption capacity(q max ) of 100 mg/g. The biosorption was an endothermic reaction and a spontaneous process based on positive value of ΔH 0 and negative value of ΔG 0 . In fixed-bed column system, higher bed depth, lower flow rate and influent Cd(II) concentration led to a longer breakthrough and exhaustion time, and the best performance (equilibrium uptake (q e ) of 14.4 mg, breakthrough time at 31 h and exhaustion time at 78 h) was achieved at a bed depth of 110 cm, a flow rate of 1.2 L/h and an influent concentration of 100 mg/L. Furthermore, regeneration experiment revealed a good reusability of IPOSS with 0.1 M HNO 3 as eluting agent during three cycles of adsorption and desorption. Cd(II) biosorption onto IPOSS mainly relied on a chemical process including ion exchange and complexation or coordination revealed by SEM-EDX, FTIR and XRD analysis. Copyright © 2017. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Jansen, John D.; Nanson, Gerald C.
2010-12-01
Water and sediment flux interactions are examined in Magela Creek, an alluvial (anabranching) sand bed river in the northern Australian tropics. Dense riparian vegetation stabilizes the channels and floodplains thereby preventing erosional instability at flow depths up to 6.2 times bankfull and discharges up to 15 times bankfull. Narrow anabranching channels characterize >92% of the alluvial reach and transport bed load more efficiently than short reaches of wide single-channels, yet overall 29 ± 12% of the bed load is sequestered and the average vertical accretion rate is 0.41 ± 0.17 mm yr-1 along the 12 km study reach. The most effective discharge for transporting sediment (40-45 m3 s-1) is consistent at all 5 stations (10 channels) examined and is equivalent to the channel-forming discharge. It has an average recurrence interval of 1.01 years, occurs for an exceptionally long portion (13-15%) of the annual flow duration, and averages a remarkable 2.1 times bankfull. The high flow efficiency (i.e., bed load transport rate to stream power ratio) of the anabranches is facilitated by low width/depth channels with banks reinforced by vegetation. Colonnades of bank top trees confine high-velocity flows overbed (i.e., over the channel bed) at stages well above bankfull. At even larger overbank flows, momentum exchange between the channels and forested floodplains restrains overbed velocities, in some cases causing them to decline, thereby limiting erosion. Magela Creek exhibits a complicated set of planform, cross-sectional and vegetative adjustments that boost overbed velocities and enhance bed load yield in multiple channels while restraining velocities and erosion at the largest discharges.
Factors affecting cleanup of exhaust gases from a pressurized, fluidized-bed coal combustor
NASA Technical Reports Server (NTRS)
Rollbuhler, R. J.; Kobak, J. A.
1980-01-01
The cleanup of effluent gases from the fluidized-bed combustion of coal is examined. Testing conditions include the type and feed rate of the coal and the sulfur sorbent, the coal-sorbent ratio, the coal-combustion air ratio, the depth of the reactor fluidizing bed, and the technique used to physically remove fly ash from the reactor effluent gases. Tests reveal that the particulate loading matter in the effluent gases is a function not only of the reactor-bed surface gas velocity, but also of the type of coal being burnt and the time the bed is operating. At least 95 percent of the fly ash particules in the effluent gas are removed by using a gas-solids separator under controlled operating conditions. Gaseous pollutants in the effluent (nitrogen and sulfur oxides) are held within the proposed Federal limits by controlling the reactor operating conditions and the type and quantity of sorbent material.
CFD-DEM Onset of Motion Analysis for Application to Bed Scour Risk Assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sitek, M. A.; Lottes, S. A.
This CFD study with DEM was done as a part of the Federal Highway Administration’s (FHWA’s) effort to improve scour design procedures. The Computational Fluid Dynamics-Discrete Element Method (CFD-DEM) model, available in CD-Adapco’s StarCCM+ software, was used to simulate multiphase systems, mainly those which combine fluids and solids. In this method the motion of discrete solids is accounted for by DEM, which applies Newton's laws of motion to every particle. The flow of the fluid is determined by the local averaged Navier–Stokes equations that can be solved using the traditional CFD approach. The interactions between the fluid phase and solidsmore » phase are modeled by use of Newton's third law. The inter-particle contact forces are included in the equations of motion. Soft-particle formulation is used, which allows particles to overlap. In this study DEM was used to model separate sediment grains and spherical particles laying on the bed with the aim to analyze their movement due to flow conditions. Critical shear stress causing the incipient movement of the sediment was established and compared to the available experimental data. An example of scour around a cylindrical pier is considered. Various depths of the scoured bed and flow conditions were taken into account to gain a better understanding of the erosion forces existing around bridge foundations. The decay of these forces with increasing scour depth was quantified with a ‘decay function’, which shows that particles become increasingly less likely to be set in motion by flow forces as a scour hole increases in depth. Computational and experimental examples of the scoured bed around a cylindrical pier are presented.« less
NASA Astrophysics Data System (ADS)
Quest, D.; Gayer, C.; Hering, P.
2012-01-01
Laser osteotomy is one possible method of preparing beds for dental implants in the human jaw. A major problem in using this contactless treatment modality is the lack of haptic feedback to control the depth while drilling the implant bed. A contactless measurement system called laser triangulation is presented as a new procedure to overcome this problem. Together with a tomographic picture the actual position of the laser ablation in the bone can be calculated. Furthermore, the laser response is sufficiently fast as to pose little risk to surrounding sensitive areas such as nerves and blood vessels. In the jaw two different bone structures exist, namely the cancellous bone and the compact bone. Samples of both bone structures were examined with test drillings performed either by laser osteotomy or by a conventional rotating drilling tool. The depth of these holes was measured using laser triangulation. The results and the setup are reported in this study.
Rangabhashiyam, S; Nandagopal, M S Giri; Nakkeeran, E; Selvaraju, N
2016-07-01
Packed bed column studies were carried out to evaluate the performance of chemically modified adsorbents for the sequestration of hexavalent chromium from synthetic and electroplating industrial effluent. The effects of parameters such as bed height (3-9 cm), inlet flow rate (5-15 mL/min), and influent Cr(VI) concentration (50-200 mg/L) on the percentage removal of Cr(VI) and the adsorption capacity of the adsorbents in a packed bed column were investigated. The breakthrough time increased with increasing bed height and decreased with the increase of inlet flow rate and influent Cr(VI) concentration. The adsorption column models such as Thomas, Adams-Bohart, Yoon-Nelson, and bed depth service time (BDST) were successfully correlated with the experimental data. The Yoon-Nelson and BDST model showed good agreement with the experimental data for all the studied parameter conditions. Results of the present study indicated that the chemically modified Swietenia mahagoni shell can be used as an adsorbent for the removal of Cr(VI) from industrial wastewater in a packed bed column.
Obayan, Busayo; Geller, Alan C; Resnick, Elissa A; Demierre, Marie-France
2010-07-01
Passing tanning bed legislation restricting underage use has remained challenging. We sought to determine the resources required to pass tanning bed legislation restricting use to children and identify key barriers to its passage. A total of 15 states sought to pass tanning bed legislation in 2006; in-depth surveys were completed with advocates in 10 states and legislators in 5 states. Advocates sought advice from the sponsoring legislator or legislators (n = 9), held discussions with other organizations (n = 8), and used a lobbyist (n = 5). The 3 major barriers were strong lobbying efforts by the tanning bed industry (n = 10), proceedings after the bill was filed (n = 5), and obtaining support from other organizations (n = 4). For legislators, the most significant barrier was making colleagues aware of the health effects of tanning bed use. Five of 10 legislators and 10 of 15 advocates responded to the survey. Barriers to passage of tanning bed legislation can potentially be surmounted with advice to advocates and coordinated efforts by multiple organizations. Copyright (c) 2009 American Academy of Dermatology, Inc. Published by Mosby, Inc. All rights reserved.
Cofiring lignite with hazelnut shell and cotton residue in a pilot-scale fluidized bed combustor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zuhal Gogebakan; Nevin Selcuk
In this study, cofiring of high ash and sulfur content lignite with hazelnut shell and cotton residue was investigated in 0.3 MWt METU Atmospheric Bubbling Fluidized Bed Combustion (ABFBC) Test Rig in terms of combustion and emission performance of different fuel blends. The results reveal that cofiring of hazelnut shell and cotton residue with lignite increases the combustion efficiency and freeboard temperatures compared to those of lignite firing with limestone addition only. CO{sub 2} emission is not found sensitive to increase in hazelnut shell and cotton residue share in fuel blend. Cofiring lowers SO{sub 2} emissions considerably. Cofiring of hazelnutmore » shell reduces NO and N{sub 2}O emissions; on the contrary, cofiring cotton residue results in higher NO and N{sub 2}O emissions. Higher share of biomass in the fuel blend results in coarser cyclone ash particles. Hazelnut shell and cotton residue can be cofired with high ash and sulfur-containing lignite without operational problems. 32 refs., 12 figs., 11 tabs.« less
NASA Astrophysics Data System (ADS)
Hayano, Akira; Ishii, Eiichi
2016-10-01
This study investigates the mechanical relationship between bedding-parallel and bedding-oblique faults in a Neogene massive siliceous mudstone at the site of the Horonobe Underground Research Laboratory (URL) in Hokkaido, Japan, on the basis of observations of drill-core recovered from pilot boreholes and fracture mapping on shaft and gallery walls. Four bedding-parallel faults with visible fault gouge, named respectively the MM Fault, the Last MM Fault, the S1 Fault, and the S2 Fault (stratigraphically, from the highest to the lowest), were observed in two pilot boreholes (PB-V01 and SAB-1). The distribution of the bedding-parallel faults at 350 m depth in the Horonobe URL indicates that these faults are spread over at least several tens of meters in parallel along a bedding plane. The observation that the bedding-oblique fault displaces the Last MM fault is consistent with the previous interpretation that the bedding- oblique faults formed after the bedding-parallel faults. In addition, the bedding-parallel faults terminate near the MM and S1 faults, indicating that the bedding-parallel faults with visible fault gouge act to terminate the propagation of younger bedding-oblique faults. In particular, the MM and S1 faults, which have a relatively thick fault gouge, appear to have had a stronger control on the propagation of bedding-oblique faults than did the Last MM fault, which has a relatively thin fault gouge.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalyan Annamalai; John Sweeten; Saqib Mukhtar
2003-08-28
Intensive animal feeding operations create large amounts of animal waste that must be safely disposed of in order to avoid environmental degradation. Cattle feedlots and chicken houses are two examples. In feedlots, cattle are confined to small pens and fed a high calorie grain-diet diet in preparation for slaughter. In chicken houses, thousands of chickens are kept in close proximity. In both of these operations, millions of tons of manure are produced every year. The manure could be used as a fuel by mixing it with coal in a 90:10 blend and firing it in an existing coal suspension firedmore » combustion systems. This technique is known as co-firing, and the high temperatures produced by the coal will allow the biomass to be completely combusted. Reburn is a process where a small percentage of fuel called reburn fuel is injected above the NO{sub x} producing, conventional coal fired burners in order to reduce NO{sub x}. The manure could also be used as reburn fuel for reducing NO{sub x} in coal fired plants. An alternate approach of using animal waste is to adopt the gasification process using a fixed bed gasifier and then use the gases for firing in gas turbine combustors. In this report, the cattle manure is referred to as feedlot biomass (FB) and chicken manure as litter biomass (LB). The report generates data on FB and LB fuel characteristics. Co-firing, reburn, and gasification tests of coal, FB, LB, coal: FB blends, and coal: LB blends and modeling on cofiring, reburn systems and economics of use of FB and LB have also been conducted. The biomass fuels are higher in ash, lower in heat content, higher in moisture, and higher in nitrogen and sulfur (which can cause air pollution) compared to coal. Small-scale cofiring experiments revealed that the biomass blends can be successfully fired, and NO{sub x} emissions will be similar to or lower than pollutant emissions when firing coal. Further experiments showed that biomass is twice or more effective than coal when used in a reburning process. Computer simulations for coal: LB blends were performed by modifying an existing computer code to include the drying and phosphorus (P) oxidation models. The gasification studies revealed that there is bed agglomeration in the case of chicken litter biomass due to its higher alkaline oxide content in the ash. Finally, the results of the economic analysis show that considerable fuel cost savings can be achieved with the use of biomass. In the case of higher ash and moisture biomass, the fuel cost savings is reduced.« less
Effects of wind velocity and slope on fire behavior
D.R. Weise; G.S. Biging
1994-01-01
Effects of wind velocity and slope on fire spread rate and flame length were examined. Fuel beds of vertical sticks (13.97 cm x 0.455 cm x 0.1 10 cm) and coarse excelsior were burned in an open-topped tilting wind tunnel. Mean fuel moisture content of sticks and excelsior was 11% and 12%, respectively. Mean surface area to volume ratio was 23 cm-! Five slopes (negative...
Emission studies from combustion of empty fruit bunch pellets in a fluidized bed combustor
NASA Astrophysics Data System (ADS)
Fazli Othaman, Muhamad; Sabudin, Sulastri; Faizal Mohideen Batcha, Mohd
2017-08-01
Malaysia is producing a very large amount of biomass annually from milling activities of oil palm. This biomass is currently being used efficiently in many ways including as fuel for boilers together with fossil fuels. This paper reports the emission characteristics from biomass combustion in a swirling fluidized bed combustor (SFBC). Pelletized empty fruit bunch (PEFB), one of largest biomass produced from oil palm industries were used as fuel in the present study. Combustion experiments were conducted with several quantitiesof excess air: 20%, 40%, 60% and 80% for a constant fuel feedrate of 30kg/hr. The effect of excess air was investigated for three major emissions gaseous namely CO, CO2 and NOx. Fly ash produced from the combustion was also analysed to find the contents of unburnt carbon and other impurities. From the results, it was found that the emission of CO decreased from 64 ppm to 40 ppm while the amount of CO2 increased slightly with the increasing of excess air from 20% to 80%. The NOx emission also increased from 290 ppm to 350 ppm because of N2 in the EA reacts with O2 due to high combustion temperature. The combustion efficiencies of about 99% obtained in the present study, showing the prospects of using SFBC in commercial scale.
Ground-water geology of the Gonaives Plain, Haiti
Taylor, George C.; Lemoine, Rémy C.
1950-01-01
The Gonaives Plain lies in northern Haiti at the head of the Gulf of Gonaives. Ground water in the plain is used widely for domestic and stock purposes but only to limited extent for irrigation. The future agricultural development of the plain will depend in large measure on the proper utilization of available ground-water supplies for irrigation. The rocks in the region of the Gonaives Plain belong to the upper (?) Cretaceous series of the Cretaceous system, the Nocene and Oligovene series of the Tertiary system, and the Pleistocene and Recent series of the Quarternary system. The structural depression occupied by the Gonaives Plain was formed in post-Miocene time by the dislocation of Oligocene and older rocks along normal faults and by the tilting of the adjacent crustal blocks. The lower parts of the depression contain a Pleistocene and Recent alluvial fill deposited by streams tributary to the plain. The upper (?) Cretaceous rocks include aniesite and basalt lava flows locally intercalated with some beds of tuff and agglomerate. These rocks are generally dense and impervious but locally small springs rise from fractures and bedding planes or from weathered zones. The Nocene rocks are hard, thin-bedded, cherty limestones with some beds of massive chalky limestone. Considerable ground water circulates through joints, bedding planes, and solution passages in these rocks giving rise to important springs such as Sources Madame Charles. These springs discharge at the rate of about 110 liters per second. The Oligocene rocks include limestone, shely limestone, limy sandstone, marl, and shale. The limestone beds contain solution passages and other openings and these may afford capacity for the circulation of ground water. However, no wells or springs in Oligocene rocks were observed during the present study. The alluvial fill of the plain is composed of interbedded lenses of clay, silt, sand, and gravel. These deposits contain a zone of saturation whose upper limit is marked by a water table. The depth to the water table beneath the alluvial lowland of the plain ranges from less than one meter to about 20 meters. In most places in the plain the depth to water is less that 15 meters. Where present in the zone of saturation the coarse, well-sorted sand and gravel beds of the alluvium will probably yield moderate to large supplies of water to wells and infiltration galleries. The individual yields of existing wells range from a few liters to about 60 liters per second. The most favorable part of the plain for ground-water prospecting and development lies 5 to 10 kilometers northeast of Gonaives. In this area yields of 10 to 50 liters per second could be obtained from the alluvium in simple wells drilled to depths of about 35 to 45 meters. Additional information on the yield and physical character of aquifers in the alluvium would be provided by test wells drilled to depths of 40 to 60 meters.
Process for the production of fuel gas from coal
Patel, Jitendra G.; Sandstrom, William A.; Tarman, Paul B.
1982-01-01
An improved apparatus and process for the conversion of hydrocarbonaceous materials, such as coal, to more valuable gaseous products in a fluidized bed gasification reaction and efficient withdrawal of agglomerated ash from the fluidized bed is disclosed. The improvements are obtained by introducing an oxygen containing gas into the bottom of the fluidized bed through a separate conduit positioned within the center of a nozzle adapted to agglomerate and withdraw the ash from the bottom of the fluidized bed. The conduit extends above the constricted center portion of the nozzle and preferably terminates within and does not extend from the nozzle. In addition to improving ash agglomeration and withdrawal, the present invention prevents sintering and clinkering of the ash in the fluidized bed and permits the efficient recycle of fine material recovered from the product gases by contacting the fines in the fluidized bed with the oxygen as it emanates from the conduit positioned within the withdrawal nozzle. Finally, the present method of oxygen introduction permits the efficient recycle of a portion of the product gases to the reaction zone to increase the reducing properties of the hot product gas.
Improvement of Human Keratinocyte Migration by a Redox Active Bioelectric Dressing
Banerjee, Jaideep; Das Ghatak, Piya; Roy, Sashwati; Khanna, Savita; Sequin, Emily K.; Bellman, Karen; Dickinson, Bryan C.; Suri, Prerna; Subramaniam, Vish V.; Chang, Christopher J.; Sen, Chandan K.
2014-01-01
Exogenous application of an electric field can direct cell migration and improve wound healing; however clinical application of the therapy remains elusive due to lack of a suitable device and hence, limitations in understanding the molecular mechanisms. Here we report on a novel FDA approved redox-active Ag/Zn bioelectric dressing (BED) which generates electric fields. To develop a mechanistic understanding of how the BED may potentially influence wound re-epithelialization, we direct emphasis on understanding the influence of BED on human keratinocyte cell migration. Mapping of the electrical field generated by BED led to the observation that BED increases keratinocyte migration by three mechanisms: (i) generating hydrogen peroxide, known to be a potent driver of redox signaling, (ii) phosphorylation of redox-sensitive IGF1R directly implicated in cell migration, and (iii) reduction of protein thiols and increase in integrinαv expression, both of which are known to be drivers of cell migration. BED also increased keratinocyte mitochondrial membrane potential consistent with its ability to fuel an energy demanding migration process. Electric fields generated by a Ag/Zn BED can cross-talk with keratinocytes via redox-dependent processes improving keratinocyte migration, a critical event in wound re-epithelialization. PMID:24595050
Packing microstructure and local density variations of experimental and computational pebble beds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Auwerda, G. J.; Kloosterman, J. L.; Lathouwers, D.
2012-07-01
In pebble bed type nuclear reactors the fuel is contained in graphite pebbles, which form a randomly stacked bed with a non-uniform packing density. These variations can influence local coolant flow and power density and are a possible cause of hotspots. To analyse local density variations computational methods are needed that can generate randomly stacked pebble beds with a realistic packing structure on a pebble-to-pebble level. We first compare various properties of the local packing structure of a computed bed with those of an image made using computer aided X-ray tomography, looking at properties in the bulk of the bedmore » and near the wall separately. Especially for the bulk of the bed, properties of the computed bed show good comparison with the scanned bed and with literature, giving confidence our method generates beds with realistic packing microstructure. Results also show the packing structure is different near the wall than in the bulk of the bed, with pebbles near the wall forming ordered layers similar to hexagonal close packing. Next, variations in the local packing density are investigated by comparing probability density functions of the packing fraction of small clusters of pebbles throughout the bed. Especially near the wall large variations in local packing fractions exists, with a higher probability for both clusters of pebbles with low (<0.6) and high (>0.65) packing fraction, which could significantly affect flow rates and, together with higher power densities, could result in hotspots. (authors)« less
NASA Astrophysics Data System (ADS)
Long, Dustin J.; Baco, Amy R.
2014-01-01
Seamounts are largely unexplored undersea mountains rising abruptly from the ocean floor, which can support an increased abundance and diversity of organisms. Deep-sea corals are important benthic structure-formers on current-swept hard substrates in these habitats. While depth is emerging as a factor structuring the fauna of seamounts on a large spatial scale, most work addressing deep-sea coral and seamount community structure has not considered the role of small-scale variation in species distributions. Video from six ROV dives over a depth range of ~320-530 m were analyzed to assess the diversity and density of benthic megafaunal invertebrates across the Makapu'u deep-sea coral bed, offshore of Oahu, Hawaii. At the same time, the physical environment along the dive track was surveyed to relate biotic patterns with abiotic variables including depth, aspect, rugosity, substrate, slope and relief to test the factors structuring community assemblages. Despite the narrow range examined, depth was found to be the strongest structuring gradient, and six unique macrobenthic communities were found, with a 93% faunal dissimilarity over the depth surveyed. Relief, rugosity and slope were also factors in the final model. Alcyonacean octocorals were the dominant macrofaunal invertebrates at all but the deepest depth zone. The commercially harvested precious coral C. secundum was the dominant species at depths 370-470 m, with a distribution that is on average deeper than similar areas. This may be artificial due to the past harvesting of this species on the shallower portion of its range. Primnoid octocorals were the most abundant octocoral family overall. This work yields new insight on the spatial ecology of seamounts, pointing out that community changes can occur over narrow depth ranges and that communities can be structured by small-scale physiography.
NASA Astrophysics Data System (ADS)
Rokhman, B. B.
2015-03-01
The problem on the evolution of the state of an ensemble of reacting coke-ash particles in a fluidized-bed gas generator is considered. A kinetic equation for the distribution function of particles within small ranges of carbon concentration variation for the stages of surface and bulk reaction has been constructed and integrated. Boundary conditions ("matching" conditions) at the boundaries between these ranges are formulated. The influence of the granulometric composition of the starting coal, height, porosity, and of the bed temperature on the process of steam-oxygen gasification of coke-ash particles of individual sorts of fuel and of a binary coal mixture has been investigated.
West Virginia Geological Survey's role in siting fluidized bed combustion facilities
Smith, C.J.; King, Hobart M.; Ashton, K.C.; Kirstein, D.S.; McColloch, G.H.
1989-01-01
A project is presented which demonstrates the role of geology in planning and siting a fluidized bed combustion facility. Whenever a project includes natural resource utilization, cooperation between geologists and design engineers will provide an input that could and should save costs, similar to the one stated in our initial premise. Regardless of whether cost reductions stem from a better knowledge of fuel and sorbent availabilities, or a better understanding of the local hydrology, susceptibility to mine-subsidence, or other geologic hazards, the geological survey has a vital role in planning. Input to planning could help the fluidized-bed developer and design-engineer solve some economic questions and stretch the financial resources at their disposal.
NASA Astrophysics Data System (ADS)
Pearson, A.; Pizzuto, J. E.
2015-12-01
Previous work at run-of-river (ROR) dams in northern Delaware has shown that bedload supplied to ROR impoundments can be transported over the dam when impoundments remain unfilled. Transport is facilitated by high levels of sand in the impoundment that lowers the critical shear stresses for particle entrainment, and an inversely sloping sediment ramp connecting the impoundment bed (where the water depth is typically equal to the dam height) with the top of the dam (Pearson and Pizzuto, in press). We demonstrate with one-dimensional bed material transport modeling that bed material can move through impoundments and that equilibrium transport (i.e., a balance between supply to and export from the impoundment, with a constant bed elevation) is possible even when the bed elevation is below the top of the dam. Based on our field work and previous HEC-RAS modeling, we assess bed material transport capacity at the base of the sediment ramp (and ignore detailed processes carrying sediment up and ramp and over the dam). The hydraulics at the base of the ramp are computed using a weir equation, providing estimates of water depth, velocity, and friction, based on the discharge and sediment grain size distribution of the impoundment. Bedload transport rates are computed using the Wilcock-Crowe equation, and changes in the impoundment's bed elevation are determined by sediment continuity. Our results indicate that impoundments pass the gravel supplied from upstream with deep pools when gravel supply rate is low, gravel grain sizes are relatively small, sand supply is high, and discharge is high. Conversely, impoundments will tend to fill their pools when gravel supply rate is high, gravel grain sizes are relatively large, sand supply is low, and discharge is low. The rate of bedload supplied to an impoundment is the primary control on how fast equilibrium transport is reached, with discharge having almost no influence on the timing of equilibrium.
Induction Heating Model of Cermet Fuel Element Environmental Test (CFEET)
NASA Technical Reports Server (NTRS)
Gomez, Carlos F.; Bradley, D. E.; Cavender, D. P.; Mireles, O. R.; Hickman, R. R.; Trent, D.; Stewart, E.
2013-01-01
Deep space missions with large payloads require high specific impulse and relatively high thrust to achieve mission goals in reasonable time frames. Nuclear Thermal Rockets (NTR) are capable of producing a high specific impulse by employing heat produced by a fission reactor to heat and therefore accelerate hydrogen through a rocket nozzle providing thrust. Fuel element temperatures are very high (up to 3000 K) and hydrogen is highly reactive with most materials at high temperatures. Data covering the effects of high-temperature hydrogen exposure on fuel elements are limited. The primary concern is the mechanical failure of fuel elements due to large thermal gradients; therefore, high-melting-point ceramics-metallic matrix composites (cermets) are one of the fuels under consideration as part of the Nuclear Cryogenic Propulsion Stage (NCPS) Advance Exploration System (AES) technology project at the Marshall Space Flight Center. The purpose of testing and analytical modeling is to determine their ability to survive and maintain thermal performance in a prototypical NTR reactor environment of exposure to hydrogen at very high temperatures and obtain data to assess the properties of the non-nuclear support materials. The fission process and the resulting heating performance are well known and do not require that active fissile material to be integrated in this testing. A small-scale test bed; Compact Fuel Element Environmental Tester (CFEET), designed to heat fuel element samples via induction heating and expose samples to hydrogen is being developed at MSFC to assist in optimal material and manufacturing process selection without utilizing fissile material. This paper details the analytical approach to help design and optimize the test bed using COMSOL Multiphysics for predicting thermal gradients induced by electromagnetic heating (Induction heating) and Thermal Desktop for radiation calculations.
Christine L. May; Bonnie S. Pryor; Thomas E. Lisle; Margaret M. Lang
2009-01-01
n order to assess the risk of scour and fill of spawning redds during floods, an understanding of the relations among river discharge, bed mobility, and scour and fill depths in areas of the streambed heavily utilized by spawning salmon is needed. Our approach coupled numerical flow modeling and empirical data from the Trinity River, California, to quantify spatially...
Evaluation of a depth proportional intake device for automatic pumping samplers
Rand E. Eads; Robert B. Thomas
1983-01-01
Abstract - A depth proportional intake boom for portable pumping samplers was used to collect suspended sediment samples in two coastal streams for three winters. The boom pivots on the stream bed while a float on the downstream end allows debris to depress the boom and pass without becoming trapped. This equipment modifies point sampling by maintaining the intake...
ERIC Educational Resources Information Center
Lawson, Rebecca
2009-01-01
A sequential matching task was used to compare how the difficulty of shape discrimination influences the achievement of object constancy for depth rotations across haptic and visual object recognition. Stimuli were nameable, 3-dimensional plastic models of familiar objects (e.g., bed, chair) and morphs midway between these endpoint shapes (e.g., a…
NASA Technical Reports Server (NTRS)
Sapyta, Joe; Reid, Hank; Walton, Lew
1993-01-01
The topics are presented in viewgraph form and include the following: particle bed reactor (PBR) core cross section; PBR bleed cycle; fuel and moderator flow paths; PBR modeling requirements; characteristics of PBR and nuclear thermal propulsion (NTP) modeling; challenges for PBR and NTP modeling; thermal hydraulic computer codes; capabilities for PBR/reactor application; thermal/hydralic codes; limitations; physical correlations; comparison of predicted friction factor and experimental data; frit pressure drop testing; cold frit mask factor; decay heat flow rate; startup transient simulation; and philosophy of systems modeling.
Low Cost Nuclear Thermal Rocket Cermet Fuel Element Environment Testing
NASA Technical Reports Server (NTRS)
Bradley, D. E.; Mireles, O. R.; Hickman, R. R.
2011-01-01
Deep space missions with large payloads require high specific impulse and relatively high thrust to achieve mission goals in reasonable time frames.1,2 Conventional storable propellants produce average specific impulse. Nuclear thermal rockets capable of producing high specific impulse are proposed. Nuclear thermal rockets employ heat produced by fission reaction to heat and therefore accelerate hydrogen, which is then forced through a rocket nozzle providing thrust. Fuel element temperatures are very high (up to 3000 K), and hydrogen is highly reactive with most materials at high temperatures. Data covering the effects of high-temperature hydrogen exposure on fuel elements are limited.3 The primary concern is the mechanical failure of fuel elements that employ high-melting-point metals, ceramics, or a combination (cermet) as a structural matrix into which the nuclear fuel is distributed. The purpose of the testing is to obtain data to assess the properties of the non-nuclear support materials, as-fabricated, and determine their ability to survive and maintain thermal performance in a prototypical NTR reactor environment of exposure to hydrogen at very high temperatures. The fission process of the planned fissile material and the resulting heating performance is well known and does not therefore require that active fissile material be integrated in this testing. A small-scale test bed designed to heat fuel element samples via non-contact radio frequency heating and expose samples to hydrogen is being developed to assist in optimal material and manufacturing process selection without employing fissile material. This paper details the test bed design and results of testing conducted to date.
Thermal decomposition of selected chlorinated hydrocarbons during gas combustion in fluidized bed
2013-01-01
Background The process of thermal decomposition of dichloromethane (DCM) and chlorobenzene (MCB) during the combustion in an inert, bubbling fluidized bed, supported by LPG as auxiliary fuel, have been studied. The concentration profiles of C6H5CI, CH2Cl2, CO2, CO, NOx, COCl2, CHCl3, CH3Cl, C2H2, C6H6, CH4 in the flue gases were specified versus mean bed temperature. Results The role of preheating of gaseous mixture in fluidized bed prior to its ignition inside bubbles was identified as important factor for increase the degree of conversion of DCM and MCB in low bed temperature, in comparison to similar process in the tubular reactor. Conclusions Taking into account possible combustion mechanisms, it was identified that autoignition in bubbles rather than flame propagation between bubbles is needed to achieve complete destruction of DCM and MCB. These condition occurs above 900°C causing the degree of conversion of chlorine compounds of 92-100%. PMID:23289764
Thermal decomposition of selected chlorinated hydrocarbons during gas combustion in fluidized bed.
Olek, Malgorzata; Baron, Jerzy; Zukowski, Witold
2013-01-06
The process of thermal decomposition of dichloromethane (DCM) and chlorobenzene (MCB) during the combustion in an inert, bubbling fluidized bed, supported by LPG as auxiliary fuel, have been studied. The concentration profiles of C6H5CI, CH2Cl2, CO2, CO, NOx, COCl2, CHCl3, CH3Cl, C2H2, C6H6, CH4 in the flue gases were specified versus mean bed temperature. The role of preheating of gaseous mixture in fluidized bed prior to its ignition inside bubbles was identified as important factor for increase the degree of conversion of DCM and MCB in low bed temperature, in comparison to similar process in the tubular reactor. Taking into account possible combustion mechanisms, it was identified that autoignition in bubbles rather than flame propagation between bubbles is needed to achieve complete destruction of DCM and MCB. These condition occurs above 900°C causing the degree of conversion of chlorine compounds of 92-100%.
BRIDGER WILDERNESS AND GREEN-SWEETWATER ROADLESS AREA, WYOMING.
Worl, Ronald G.; Ryan, George S.
1984-01-01
A mineral-resource appraisal of the Bridger Wilderness and contiguous Green-Sweetwater Roadless Area in Wyoming was made. This rugged and remote region is mostly Precambrian crystalline granitic rocks that contain only small and discontinuous areas of mineralization. The area is considered to have little promise for metallic mineral deposits. Sedimentary rocks in the area have minor coal seams and beds of phosphate rock, but the coal beds are thin and of limited extent, and the phosphate rock is low-grade compared to similar rocks elsewhere in the region. A probable potential for oil and gas at depth, assigned to part of the area, is based on the assumption that oil- and gas-bearing rocks exist at depth below a low-angle thrust fault and a wedge of Precambrian crystalline rock.
Missouri S&T hydrogen transportation test bed equipment & construction.
DOT National Transportation Integrated Search
2010-08-01
Investments through the National University Transportation Center at Missouri University of Science and Technology have really scored on the Centers mission areas and particularly Transition-state fuel vehicle infrastructure leading to a hydrogen ...
Topping, David J.; Rubin, David M.; Wright, Scott A.; Melis, Theodore S.
2011-01-01
Several common methods for measuring suspended-sediment concentration in rivers in the United States use depth-integrating samplers to collect a velocity-weighted suspended-sediment sample in a subsample of a river cross section. Because depth-integrating samplers are always moving through the water column as they collect a sample, and can collect only a limited volume of water and suspended sediment, they collect only minimally time-averaged data. Four sources of error exist in the field use of these samplers: (1) bed contamination, (2) pressure-driven inrush, (3) inadequate sampling of the cross-stream spatial structure in suspended-sediment concentration, and (4) inadequate time averaging. The first two of these errors arise from misuse of suspended-sediment samplers, and the third has been the subject of previous study using data collected in the sand-bedded Middle Loup River in Nebraska. Of these four sources of error, the least understood source of error arises from the fact that depth-integrating samplers collect only minimally time-averaged data. To evaluate this fourth source of error, we collected suspended-sediment data between 1995 and 2007 at four sites on the Colorado River in Utah and Arizona, using a P-61 suspended-sediment sampler deployed in both point- and one-way depth-integrating modes, and D-96-A1 and D-77 bag-type depth-integrating suspended-sediment samplers. These data indicate that the minimal duration of time averaging during standard field operation of depth-integrating samplers leads to an error that is comparable in magnitude to that arising from inadequate sampling of the cross-stream spatial structure in suspended-sediment concentration. This random error arising from inadequate time averaging is positively correlated with grain size and does not largely depend on flow conditions or, for a given size class of suspended sediment, on elevation above the bed. Averaging over time scales >1 minute is the likely minimum duration required to result in substantial decreases in this error. During standard two-way depth integration, a depth-integrating suspended-sediment sampler collects a sample of the water-sediment mixture during two transits at each vertical in a cross section: one transit while moving from the water surface to the bed, and another transit while moving from the bed to the water surface. As the number of transits is doubled at an individual vertical, this error is reduced by ~30 percent in each size class of suspended sediment. For a given size class of suspended sediment, the error arising from inadequate sampling of the cross-stream spatial structure in suspended-sediment concentration depends only on the number of verticals collected, whereas the error arising from inadequate time averaging depends on both the number of verticals collected and the number of transits collected at each vertical. Summing these two errors in quadrature yields a total uncertainty in an equal-discharge-increment (EDI) or equal-width-increment (EWI) measurement of the time-averaged velocity-weighted suspended-sediment concentration in a river cross section (exclusive of any laboratory-processing errors). By virtue of how the number of verticals and transits influences the two individual errors within this total uncertainty, the error arising from inadequate time averaging slightly dominates that arising from inadequate sampling of the cross-stream spatial structure in suspended-sediment concentration. Adding verticals to an EDI or EWI measurement is slightly more effective in reducing the total uncertainty than adding transits only at each vertical, because a new vertical contributes both temporal and spatial information. However, because collection of depth-integrated samples at more transits at each vertical is generally easier and faster than at more verticals, addition of a combination of verticals and transits is likely a more practical approach to reducing the total uncertainty in most field situatio
NASA Astrophysics Data System (ADS)
Myrow, P.; Chen, J.
2013-12-01
A wide variety of unusual penecontemporaneous deformation structures exist in grainstone and flat-pebble conglomerate beds of the Upper Cambrian strata, western Colorado, including slide scarps, thrusted beds, irregular blocks and internally deformed beds. Slide scarps are characterized by concave-up, sharp surfaces that truncate one or more underlying beds. Thrusted beds record movement of a part of a bed onto itself along a moderate to steeply inclined (generally 25°-40°) ramp. The hanging wall lenses in cases show fault-bend geometries, with either intact or mildly deformed bedding. Irregular bedded to internally deformed blocks isolated on generally flat upper bedding surfaces are similar in composition to the underlying beds. These features represent parts of beds that were detached, moved up onto, and some distances across, the laterally adjacent undisturbed bed surfaces. The blocks moved either at the sediment-water interface or intrastratally at shallow depths within overlying muddy deposits. Finally, internally deformed beds have large blocks, fitted fabrics of highly irregular fragments, and contorted lamination, which represent heterogeneous deformation, such as brecciation and liquefaction. The various deformation structures were most probably triggered by earthquakes, considering the nature of deformation (regional distribution of liquefaction structures, and the brittle segmentation and subsequent transportation of semi-consolidated beds) and the reactivation of Mesoproterozoic, crustal-scale shear zones in the central Rockies during the Late Cambrian. Features produced by initial brittle deformation are unusual relative to most reported seismites, and may represent poorly recognized to unrecognized seismogenic structures in the rock record.
Influence of bed surface changes on snow avalanche simulation
NASA Astrophysics Data System (ADS)
Fischer, Jan-Thomas; Issler, Dieter
2014-05-01
Gravitational flows, such as snow avalanches, are often modeled employing the shallowness assumption. The driving gravitational force has a first order effect on the dynamics of the flow, especially in complex terrain. Under suitable conditions, erosion and deposition during passage of the flow may change the bed surface by a similar amount as the flow depth itself. The accompanying changes of local slope angle and curvature are particularly significant at the side margins of the flow, where they may induce self-channeling and levée formation. Generally, one ought to expect visible effects wherever the flow depth and velocity are small, e.g., in deposition zones. Most current numerical models in practical use neglect this effect. In order to study the importance of these effects in typical applications, we modified the quasi-3D (depth-averaged) code MoT-Voellmy, which implements the well-known Voellmy friction law that is traditionally used in hazard mapping: The bed shear stress is given by τiz(h,u) = -ui(μgh cosθ+ ku2), ||u|| (1) with μ = O(0.1...0.5) and k = O(10-3...10-2) the dimensionless friction and drag coefficients, respectively. The leading curvature effects, i.e., extra friction due to centrifugal normal forces, are taken into account. The mass and momentum balances are solved by the (simplified) method of transport on a grid whose cells are squares when projected onto the horizontal plane. The direction of depth-averaging is everywhere perpendicular to the topographic surface. A simple erosion model is used. The erosion formula is based on the assumption that the snow cover behaves as a perfectly brittle solid with shear strength τc, above which it instantaneously fails. The erosion rate is derived from the balance of momentum across the interface between bed and flow, where there is a discontinuity of the shear stress, which is given by equation 1 just above the interface and by τc just below it according to the assumptions. This immediately leads to the formula 2 qe = μgh-cosθ+-ku- τc/ρfΘ (μgh cosθ+ ku2 - τc/ρf). ||u|| (2) We present numerical simulations with static and dynamic beds in two different cases. First, an avalanche simulation on an inclined plane allows to study the occurring effects in their most immediate form. This allows to study the influence of spatial resolution of the computational grid. Second, we back-calculate a typical mid-size avalanche that was measured and documented in 1993 at the Norwegian test site Ryggfonn. This case study serves to test the relevance of including bed surface changes under conditions typical of real-world applications.
Prevention of Bridge Scour with Non-uniform Circular Piers Plane under Steady Flows
NASA Astrophysics Data System (ADS)
Chen, Hsing-Ting; Wang, Chuan-Yi
2017-04-01
River bed scour and deposit variation extremely severe because of most of rivers are steep and rapid flows, and river discharge extremely unstable and highly unsteady during different seasons in Taiwan. In addition to the obstruction of piers foundation, it causes local scour and threatens the safety of bridges. In the past, riprap, wire gabion or wrap pier works were adopted as the protections of piers foundation, but there were no effectual outcomes. The events of break off piers still happen sometimes. For example, typhoon Kalmaegi (2008) and Morakot (2009) caused heavy damages on Ho-Fon bridge in the Da-jia river and Shuang-Yuan bridge in the Kao-Ping river, respectively. Accordingly, to understand the piers scour system and propose an appropriate protection of piers foundation becomes an important topic for this study currently. This research improves the protection works of the existing uniform bridge pier (diameter D) to ensure the safety of the bridge. The non-uniform plane of circular piers (diameter D*) are placed on the top of a bridge pier foundation to reduce the down flow impacting energy and scour by its' surface roughness characteristics. This study utilize hydraulic models to simulate local scour depth and scour depth change with time for non-uniform pier diameter ratio D/D* of 0.3,0.4,0.5,0.6,0.7 and 0.8, and different type pier and initial bed level (Y) relative under the foundation top elevation under steady flows of V/Vc=0.95,0.80 and 0.65. The research results show that the scour depth increases with an increase of flow intensity (V/Vc) under different types of steady flow hydrographs. The scour depth decreases with increase of initial bed level (Y=+0.2D*,0D*and -0.2D*) relative under the foundation top elevation of the different type pier. The maximum scour depth occurred in the front of the pier for all conditions. Because of the scouring retardation by the non-uniform plane of foundation, the scour depth is reduced for the un-exposed bridge foundation (Y=+0.2D*) under any steady flows. Opposite results are found for the exposed (Y=-0.2D*) bridge foundation. For the condition non-uniform pier diameter ratio (D/D*=0.3 0.8) scours, when D/D* is equal to 0.4, because pier oncoming flow area is the smallest one so that down flow intensity is less; as non-uniform area is bigger and decrease more down flow energy so that bring smaller scour depth and effect area. Therefore, local scour depth for pier diameter ratio of 0.4 is less than other type of pier. Considering the safety of bridge structure, a non-uniform circular pier with D/D* which equals to 0.4 and initial bed level relative to Y=+0.2D* is the most ideal pier allocations.
Catalyst Development for Hydrogen Peroxide Rocket Engines
NASA Technical Reports Server (NTRS)
Morlan, P. W.; Wu, P.-K.; Ruttle, D. W.; Fuller, R. P.; Nejad, A. S.; Anderson, W. E.
1999-01-01
The development of various catalysts of hydrogen peroxide was conducted for the applications of liquid rocket engines. The catalyst development includes silver screen technology, solid catalyst technology, and homogeneous catalyst technology. The silver screen technology development was performed with 85% (by weight) hydrogen peroxide. The results of this investigation were used as the basis for the catalyst design of a pressure-fed liquid-fueled upper stage engine. Both silver-plated nickel 200 screens and pure silver screens were used as the active metal catalyst during the investigation, The data indicate that a high decomposition efficiency (greater than 90%) of 85% hydrogen peroxide can be achieved at a bed loading of 0.5 lbm/sq in/sec with both pure silver and silver plated screens. Samarium oxide coating, however, was found to retard the decomposition process and the catalyst bed was flooded at lower bed loading. A throughput of 200 lbm of hydrogen peroxide (1000 second run time) was tested to evaluate the catalyst aging issue and performance degradation was observed starting at approximately 400 seconds. Catalyst beds of 3.5 inch in diameter was fabricated using the same configuration for a 1,000-lbf rocket engine. High decomposition efficiency was obtained with a low pressure drop across the bed. Solid catalyst using precious metal was also developed for the decomposition of hydrogen peroxide from 85% to 98% by weight. Preliminary results show that the catalyst has a strong reactivity even after 15 minutes of peroxide decomposition. The development effort also includes the homogeneous catalyst technology. Various non-toxic catalysts were evaluated with 98% peroxide and hydrocarbon fuels. The results of open cup drop tests indicate an ignition delay around 11 ms.
Drainage of Southeast Greenland firn aquifer water through crevasses to the bed
NASA Astrophysics Data System (ADS)
Poinar, Kristin; Joughin, Ian; Lilien, David; Brucker, Ludovic; Kehrl, Laura; Nowicki, Sophie
2017-02-01
A firn aquifer in the Helheim Glacier catchment of Southeast Greenland lies directly upstream of a crevasse field. Previous measurements show that a 3.5-km long segment of the aquifer lost a large volume of water (26,000 - 65,000 m2 in cross section) between spring 2012 and spring 2013, compared to annual meltwater accumulation of 6000 - 15,000 m2. The water is thought to have entered the crevasses, but whether the water reached the bed or refroze within the ice sheet is unknown. We used a thermo-visco-elastic model for crevasse propagation to calculate the depths and volumes of these water-filled crevasses. We compared our model output to data from the Airborne Topographic Mapper (ATM), which reveals the near-surface geometry of specific crevasses, and WorldView images, which capture the surface expressions of crevasses across our 1.5-km study area. We found a best fit with a shear modulus between 0.2 and 1.5 GPa within our study area. We show that surface meltwater can drive crevasses to the top surface of the firn aquifer ( 20 m depth), whereupon it receives water at rates corresponding to the water flux through the aquifer. Our model shows that crevasses receiving firn-aquifer water hydrofracture through to the bed, 1000 m below, in 10-40 days. Englacial refreezing of firn-aquifer water raises the average local ice temperature by 4°C over a ten-year period, which enhances deformational ice motion by 50 m/yr, compared to the observed surface velocity of 200 m/yr. The effect of the basal water on the sliding velocity remains unknown. Were the firn aquifer not present to concentrate surface meltwater into crevasses, we find that no surface melt would reach the bed; instead, it would refreeze annually in crevasses at depths <500 m. The crevasse field downstream of the firn aquifer likely allows a large fraction of the aquifer water in our study area to reach the bed. Thus, future studies should consider the aquifer and crevasses as part of a common system. This system may uniquely affect ice-sheet dynamics by routing a large volume of water to the bed outside of the typical runoff period.
Quantifying the accuracy of snow water equivalent estimates using broadband radar signal phase
NASA Astrophysics Data System (ADS)
Deeb, E. J.; Marshall, H. P.; Lamie, N. J.; Arcone, S. A.
2014-12-01
Radar wave velocity in dry snow depends solely on density. Consequently, ground-based pulsed systems can be used to accurately measure snow depth and snow water equivalent (SWE) using signal travel-time, along with manual depth-probing for signal velocity calibration. Travel-time measurements require a large bandwidth pulse not possible in airborne/space-borne platforms. In addition, radar backscatter from snow cover is sensitive to grain size and to a lesser extent roughness of layers at current/proposed satellite-based frequencies (~ 8 - 18 GHz), complicating inversion for SWE. Therefore, accurate retrievals of SWE still require local calibration due to this sensitivity to microstructure and layering. Conversely, satellite radar interferometry, which senses the difference in signal phase between acquisitions, has shown a potential relationship with SWE at lower frequencies (~ 1 - 5 GHz) because the phase of the snow-refracted signal is sensitive to depth and dielectric properties of the snowpack, as opposed to its microstructure and stratigraphy. We have constructed a lab-based, experimental test bed to quantify the change in radar phase over a wide range of frequencies for varying depths of dry quartz sand, a material dielectrically similar to dry snow. We use a laboratory grade Vector Network Analyzer (0.01 - 25.6 GHz) and a pair of antennae mounted on a trolley over the test bed to measure amplitude and phase repeatedly/accurately at many frequencies. Using ground-based LiDAR instrumentation, we collect a coordinated high-resolution digital surface model (DSM) of the test bed and subsequent depth surfaces with which to compare the radar record of changes in phase. Our plans to transition this methodology to a field deployment during winter 2014-2015 using precision pan/tilt instrumentation will also be presented, as well as applications to airborne and space-borne platforms toward the estimation of SWE at high spatial resolution (on the order of meters) over large regions (> 100 square kilometers).
FUEL ELEMENTS FOR NUCLEAR REACTORS AND PROCESS OF MAKING
Roake, W.E.
1958-08-19
A process is described for producing uranium metal granules for use in reactor fuel elements. The granules are made by suspending powdered uramiunn metal or uranium hydride in a viscous, non-reactive liquid, such as paraffin oil, aad pouring the resulting suspension in droplet, on to a bed of powdered absorbent. In this manner the liquid vehicle is taken up by the sorbent and spherical pellets of uranium metal are obtained. The
2011-02-01
of a multi- year program to develop, optimize, and demonstrate the military viability of a technology for on-demand production of high...continuous reactor system used for kinetic rate data experiment 86 52 Schematic of a differential reactor. The catalyst bed is kept small , and...program to develop, optimize, and demonstrate the military viability of a technology for on-demand production of high-pressure hydrogen for fuel
Mapping water surface roughness in a shallow, gravel-bed river using hyperspectral imagery
NASA Astrophysics Data System (ADS)
Overstreet, B. T.; Legleiter, C. J.
2014-12-01
Rapid advances in remote sensing are narrowing the gap between the data available for characterizing physical and biological processes in rivers and the information needed to guide river management decisions. The availability and quality of hyperspectral imagery have increased drastically over the past 20 years and hyperspectral data is now used in a number of different capacities that range from classifying riverine environments to measuring river bathymetry. A fundamental challenge in relating the spectral data from images to biophysical processes is the difficulty of isolating individual contributions to the at-sensor radiance, each associated with a different component of the fluvial environment. In this presentation we describe a method for isolating the contribution of light reflected from the water surface, or sun glint, from a hyperspectral image of a shallow gravel-bed river. We show that isolation and removal of sun glint can improve the accuracy of spectrally-based depth retrieval in cases where sun glint dominates the at-sensor radiance. Observed-vs.-predicted R2 values for depth retrieval improved from 0.56 to 0.68 following sun glint removal. In addition to clarifying the signal associated with the water column and bed, isolating sun glint could unlock important hydraulic information contained within the topography of the water surface. We present data from flume and field experiments suggesting that the intensity of sun glint is a function of water surface roughness. In rivers, water surface roughness depends on local flow hydraulics: depth, velocity, and bed material grain size. To explore this relationship, we coupled maps of image-derived sun glint with hydraulic measurements collected with a kayak-borne acoustic Doppler current profiler along 2 km of the Snake River in Grand Teton National Park. Spatial patterns of sun glint are spatially correlated with field observations of near-surface velocity and depth, suggesting that reach scale hydraulics could be mapped from hyperspectral images. These findings also suggest that aquatic habitats, which are often associated with specific hydraulic conditions and manifested as distinct surface textures, could be mapped quantitatively over large areas using hyperspectral imagery.
Biomass gasification for liquid fuel production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Najser, Jan, E-mail: jan.najser@vsb.cz, E-mail: vaclav.peer@vsb.cz; Peer, Václav, E-mail: jan.najser@vsb.cz, E-mail: vaclav.peer@vsb.cz; Vantuch, Martin
2014-08-06
In our old fix-bed autothermal gasifier we tested wood chips and wood pellets. We make experiments for Czech company producing agro pellets - pellets made from agricultural waste and fastrenewable natural resources. We tested pellets from wheat and rice straw and hay. These materials can be very perspective, because they dońt compete with food production, they were formed in sufficient quantity and in the place of their treatment. New installation is composed of allothermal biomass fixed bed gasifier with conditioning and using produced syngas for Fischer - Tropsch synthesis. As a gasifying agent will be used steam. Gas purification willmore » have two parts - separation of dust particles using a hot filter and dolomite reactor for decomposition of tars. In next steps, gas will be cooled, compressed and removed of sulphur and chlorine compounds and carbon dioxide. This syngas will be used for liquid fuel synthesis.« less
Biomass gasification for liquid fuel production
NASA Astrophysics Data System (ADS)
Najser, Jan; Peer, Václav; Vantuch, Martin
2014-08-01
In our old fix-bed autothermal gasifier we tested wood chips and wood pellets. We make experiments for Czech company producing agro pellets - pellets made from agricultural waste and fastrenewable natural resources. We tested pellets from wheat and rice straw and hay. These materials can be very perspective, because they dońt compete with food production, they were formed in sufficient quantity and in the place of their treatment. New installation is composed of allothermal biomass fixed bed gasifier with conditioning and using produced syngas for Fischer - Tropsch synthesis. As a gasifying agent will be used steam. Gas purification will have two parts - separation of dust particles using a hot filter and dolomite reactor for decomposition of tars. In next steps, gas will be cooled, compressed and removed of sulphur and chlorine compounds and carbon dioxide. This syngas will be used for liquid fuel synthesis.
PEBBLE: a two-dimensional steady-state pebble bed reactor thermal hydraulics code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vondy, D.R.
1981-09-01
This report documents the local implementation of the PEBBLE code to treat the two-dimensional steady-state pebble bed reactor thermal hydraulics problem. This code is implemented as a module of a computation system used for reactor core history calculations. Given power density data, the geometric description in (RZ), and basic heat removal conditions and thermal properties, the coolant properties, flow conditions, and temperature distributions in the pebble fuel elements are predicted. The calculation is oriented to the continuous fueling, steady state condition with consideration of the effect of the high energy neutron flux exposure and temperature history on the thermal conductivity.more » The coolant flow conditions are calculated for the same geometry as used in the neutronics calculation, power density and fluence data being used directly, and temperature results are made available for subsequent use.« less
Preliminary Design of an Autonomous Underwater Vehicle Using Multi-Objective Optimization
2014-03-01
fuel cell PC propulsive coefficient PEMFC proton exchange membrane fuel cell PHP propulsive horsepower PO Pareto optimal PSO particle swarm...membrane fuel cell ( PEMFC ), molten carbonate fuel cell (MCFC), solid oxide fuel cell (SOFC) and direct and indirect methanol fuel cell (DMFC). Figure...of fuel cells in depth, I will note that PEMFCs are smaller and have a lower operating temperature compared to the other types. Those are the main
Erosion and Accretion on a Mudflat: The Importance of Very Shallow-Water Effects
NASA Astrophysics Data System (ADS)
Shi, Benwei; Cooper, James R.; Pratolongo, Paula D.; Gao, Shu; Bouma, T. J.; Li, Gaocong; Li, Chunyan; Yang, S. L.; Wang, Ya Ping
2017-12-01
Understanding erosion and accretion dynamics during an entire tidal cycle is important for assessing their impacts on the habitats of biological communities and the long-term morphological evolution of intertidal mudflats. However, previous studies often omitted erosion and accretion during very shallow-water stages (VSWS, water depths < 0.20 m). It is during these VSWS that bottom friction becomes relatively strong and thus erosion and accretion dynamics are likely to differ from those during deeper flows. In this study, we examine the contribution of very shallow-water effects to erosion and accretion of the entire tidal cycle, based on measured and modeled time-series of bed-level changes. Our field experiments revealed that the VSWS accounted for only 11% of the duration of the entire tidal cycle, but erosion and accretion during these stages accounted for 35% of the bed-level changes of the entire tidal cycle. Predicted cumulative bed-level changes agree much better with measured results when the entire tidal cycle is modeled than when only the conditions at water depths of >0.2 m (i.e., probe submerged) are considered. These findings suggest that the magnitude of bed-level changes during VSWS should not be neglected when modeling morphodynamic processes. Our results are useful in understanding the mechanisms of micro-topography formation and destruction that often occur at VSWS, and also improve our understanding and modeling ability of coastal morphological changes.
Deep trophoblast invasion and spiral artery remodelling in the placental bed of the lowland gorilla.
Pijnenborg, R; Vercruysse, L; Carter, A M
2011-08-01
In contrast to baboon or rhesus macaque, trophoblast invasion in the human placental bed occurs by the interstitial as well as the endovascular route and reaches as deep as the inner myometrium. We here describe two rare specimens of gorilla placenta. In the light of recent findings in the chimpanzee, we postulated the occurrence of deep invasion in gorilla pregnancy. Tissues were processed for histology (PAS, orcein), lectin staining (Ulex europaeus agglutinin 1) and immunohistochemistry (cytokeratin 7/17, α-actin). A specimen of young but undetermined gestational age included deep placental bed tissue, showing interstitial and spiral artery invasion of the inner myometrium as well as the decidua. The cell density and depth of trophoblast invasion was equivalent to a human placental bed of 10-14 weeks. Intraluminal trophoblasts were not seen in any of the invaded vessels, allowing no definite conclusions about the origin of the intramural trophoblast and the time-course of spiral artery invasion. A different late second trimester placenta specimen showed scattered extravillous trophoblast in the basal plate and underlying decidua, as well as a remodelled spiral artery containing intramural trophoblast. Absence of inner myometrial tissue precluded assessment of invasion depth in this later specimen. Despite the limited material we can conclude that key aspects of trophoblast invasion are shared by the three hominid species: gorilla, chimpanzee and human. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
McNeese, L. E.
1981-01-01
Increased utilization of coal and other fossil fuel alternatives as sources of clean energy is reported. The following topics are discussed: coal conversion development, chemical research and development, materials technology, component development and process evaluation studies, technical support to major liquefaction projects, process analysis and engineering evaluations, fossil energy environmental analysis, flue gas desulfurization, solid waste disposal, coal preparation waste utilization, plant control development, atmospheric fluidized bed coal combustor for cogeneration, TVA FBC demonstration plant program technical support, PFBC systems analysis, fossil fuel applications assessments, performance assurance system support for fossil energy projects, international energy technology assessment, and general equilibrium models of liquid and gaseous fuel supplies.
Cell module and fuel conditioner development
NASA Technical Reports Server (NTRS)
Hoover, D. Q., Jr.
1981-01-01
The design features and plans for fabrication of Stacks 564 and 800 are described. The results of the OS/IES loop testing of Stack 562, endurance testing of Stack 560 and the post test analysis of Stack 561 are reported. Progress on construction and modification of the fuel cell test facilities and the 10 kW reformer test station is described. Efforts to develop the technical data base for the fuel conditioning system included vendor contacts, packed bed heat transfer tests, development of the BOLTAR computer program, and work on the detailed design of the 10 kW reformer are described.
Bed Surface Adjustments to Spatially Variable Flow in Low Relative Submergence Regimes
NASA Astrophysics Data System (ADS)
Monsalve, A.; Yager, E. M.
2017-11-01
In mountainous rivers, large relatively immobile grains partly control the local and reach-averaged flow hydraulics and sediment fluxes. When the flow depth is similar to the size of these grains (low relative submergence), heterogeneous flow structures and plunging flow cause spatial distributions of bed surface elevations, textures, and sedimentation rates. To explore how the bed surface responds to these flow variations we conducted a set of experiments in which we varied the relative submergence of staggered hemispheres (simulated large boulders) between runs. All experiments had the same average sediment transport capacity, upstream sediment supply, and initial bed thickness and grain size distribution. We combined our laboratory measurements with a 3-D flow model to obtain the detailed flow structure around the hemispheres. The local bed shear stress field displayed substantial variability and controlled the bed load transport rates and direction in which sediment moved. The divergence in bed shear stress caused by the hemispheres promoted size-selective bed load deposition, which formed patches of coarse sediment upstream of the hemisphere. Sediment deposition caused a decrease in local bed shear stress, which combined with the coarser grain size, enhanced the stability of this patch. The region downstream of the hemispheres was largely controlled by a recirculation zone and had little to no change in grain size, bed elevation, and bed shear stress. The formation, development, and stability of sediment patches in mountain streams is controlled by the bed shear stress divergence and magnitude and direction of the local bed shear stress field.
NASA Astrophysics Data System (ADS)
Schneider, Johannes M.; Turowski, Jens M.; Rickenmann, Dieter; Hegglin, Ramon; Arrigo, Sabrina; Mao, Luca; Kirchner, James W.
2014-03-01
Bed load transport during storm events is both an agent of geomorphic change and a significant natural hazard in mountain regions. Thus, predicting bed load transport is a central challenge in fluvial geomorphology and natural hazard risk assessment. Bed load transport during storm events depends on the width and depth of bed scour, as well as the transport distances of individual sediment grains. We traced individual gravels in two steep mountain streams, the Erlenbach (Switzerland) and Rio Cordon (Italy), using magnetic and radio frequency identification tags, and measured their bed load transport rates using calibrated geophone bed load sensors in the Erlenbach and a bed load trap in the Rio Cordon. Tracer transport distances and bed load volumes exhibited approximate power law scaling with both the peak stream power and the cumulative stream energy of individual hydrologic events. Bed load volumes scaled much more steeply with peak stream power and cumulative stream energy than tracer transport distances did, and bed load volumes scaled as roughly the third power of transport distances. These observations imply that large bed load transport events become large primarily by scouring the bed deeper and wider, and only secondarily by transporting the mobilized sediment farther. Using the sediment continuity equation, we can estimate the mean effective thickness of the actively transported layer, averaged over the entire channel width and the duration of individual flow events. This active layer thickness also followed approximate power law scaling with peak stream power and cumulative stream energy and ranged up to 0.57 m in the Erlenbach, broadly consistent with independent measurements.
Couch, Richard W.; Gemperle, Michael
1982-01-01
Spectral analysis of aeromagnetic data collected over 6orth-central California during the summer of 1980 aided in determining magnetic-source bottom depths beneath the survey area. Five regions of shallow magnetic source bottom depths were detected: 1) Secret Spring Mountain and National Lava Beds Monument area, 2) the Mount Shasta area, 3) the Eddys Mountain area, 4) the Big Valley Mountains area, and 5) an area northeast of Lassen Peak. Except for the Eddys Mountain area, all regions exhibiting shallow depths are suggested to be due to elevated Curie-point isotherms. The elevated Curie-point depth beneath Secret Spring Mountain and the National Lava Beds Monument area was found to be 4-7 km BSL (Below Sea Level) and is an extension of a zone mapped beneath an area immediately to the north in Oregon. A similar depth was detected for the Mount Shasta area and the area northeast of Lassen Peak. A depth of 4-6 km BSL was detected beneath the Big Valley Mountains area. The shallow Curie-point depths beneath Secret Spring Mountain, Mount Shasta, Big Valley Mountains, and the area northeast of Lassen Peak appear to form a segmented Zone of elevated Curie-point isotherm depths which underlies the High Cascade Mountains and Modoc Plateau in north-central California. A small area of shallow depths to magnetic-source bottoms, 4-5 km BSL, beneath the Eddys Mountain area is attributed to a lithologic boundary rather than an elevated Curie-point isotherm. Deeper magnetic source bottom depths were mapped throughout the remainder of the study area, with depths greater than 9 km BSL indicated beneath Lassen Peak and greater than ii km BSL indicated beneath the Western Cascades, Eastern Klamath Mountains, and Great Valley.
Fractured-aquifer hydrogeology from geophysical logs; the passaic formation, New Jersey
Morin, R.H.; Carleton, G.B.; Poirier, S.
1997-01-01
The Passaic Formation consists of gradational sequences of mudstone, siltstone, and sandstone, and is a principal aquifer in central New Jersey. Ground-water flow is primarily controlled by fractures interspersed throughout these sedimentary rocks and characterizing these fractures in terms of type, orientation, spatial distribution, frequency, and transmissivity is fundamental towards understanding local fluid-transport processes. To obtain this information, a comprehensive suite of geophysical logs was collected in 10 wells roughly 46 m in depth and located within a .05 km2 area in Hopewell Township, New Jersey. A seemingly complex, heterogeneous network of fractures identified with an acoustic televiewer was statistically reduced to two principal subsets corresponding to two distinct fracture types: (1) bedding-plane partings and (2) high-angle fractures. Bedding-plane partings are the most numerous and have an average strike of N84??W and dip of 20??N. The high-angle fractures are oriented subparallel to these features, with an average strike of N79??E and dip of 71??S, making the two fracture types roughly orthogonal. Their intersections form linear features that also retain this approximately east-west strike. Inspection of fluid temperature and conductance logs in conjunction with flowmeter measurements obtained during pumping allows the transmissive fractures to be distinguished from the general fracture population. These results show that, within the resolution capabilities of the logging tools, approximately 51 (or 18 percent) of the 280 total fractures are water producing. The bedding-plane partings exhibit transmissivities that average roughly 5 m2/day and that generally diminish in magnitude and frequency with depth. The high-angle fractures have average transmissivities that are about half those of the bedding-plane partings and show no apparent dependence upon depth. The geophysical logging results allow us to infer a distinct hydrogeologic structure within this aquifer that is defined by fracture type and orientation. Fluid flow near the surface is controlled primarily by the highly transmissive, subhorizontal bedding-plane partings. As depth increases, the high-angle fractures apparently become more dominant hydrologically.The Passaic Formation consists of gradational sequences of mudstone, siltstone, and sandstone, and is a principal aquifer in central New Jersey. Ground-water flow is primarily controlled by fractures interspersed throughout these sedimentary rocks and characterizing these fractures in terms of type, orientation, spatial distribution, frequency, and transmissivity is fundamental towards understanding local fluid-transport processes. To obtain this information, a comprehensive suite of geophysical logs was collected in 10 wells roughly 46 m in depth and located within a .05 km2 area in Hopewell Township, New Jersey. A seemingly complex, heterogeneous network of fractures identified with an acoustic televiewer was statistically reduced to two principal subsets corresponding to two distinct fracture types: (1) bedding-plane partings and (2) high-angle fractures. Bedding-plane partings are the most numerous and have an average strike of N84?? W and dip of 20?? N. The high-angle fractures are oriented subparallel to these features, with an average strike of N79?? E and dip of 71?? S, making the two fracture types roughly orthogonal. Their intersections form linear features that also retain this approximately east-west strike. Inspection of fluid temperature and conductance logs in conjunction with flowmeter measurements obtained during pumping allows the transmissive fractures to be distinguished from the general fracture population. These results show that, within the resolution capabilities of the logging tools, approximately 51 (or 18 percent) of the 280 total fractures are water producing. The bedding-plane partings exhibit transmissivities that average roughly 5 m2/day and that generally dimi
Wu, H.-Y.; Ma, K.-F.; Zoback, M.; Boness, N.; Ito, H.; Hung, J.-H.; Hickman, S.
2007-01-01
The Taiwan Chelungpu-fault Drilling Project (TCDP) drilled a 2-km-deep research borehole to investigate the structure and mechanics of the Chelungpu Fault that ruptured in the 1999 Mw 7.6 Chi-Chi earthquake. Geophysical logs of the TCDP were carried out over depths of 500-1900 in, including Dipole Sonic Imager (DSI) logs and Formation Micro Imager (FMI) logs in order to identify bedding planes, fractures and shear zones. From the continuous core obtained from the borehole, a shear zone at a depth of 1110 meters is interpreted to be the Chelungpu fault, located within the Chinshui Shale, which extends from 1013 to 1300 meters depth. Stress-induced borehole breakouts were observed over nearly the entire length of the wellbore. These data show an overall stress direction (???N115??E) that is essentially parallel to the regional stress field and parallel to the convergence direction of the Philippine Sea plate with respect to the Eurasian plate. Variability in the average stress direction is seen at various depths. In particular there is a major stress orientation anomaly in the vicinity of the Chelungpu fault. Abrupt stress rotations at depths of 1000 in and 1310 in are close to the Chinshui Shale's upper and lower boundaries, suggesting the possibility that bedding plane slip occurred during the Chi-Chi earthquake. Copyright 2007 by the American Geophysical Union.
A Pebble-Bed Breed-and-Burn Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greenspan, Ehud
2016-03-31
The primary objective of this project is to use three-dimensional fuel shuffling in order to reduce the minimum peak radiation damage of ~550 dpa present Breed-and-Burn (B&B) fast nuclear reactor cores designs (they feature 2-D fuel shuffling) call for to as close as possible to the presently accepted value of 200 dpa thereby enabling earlier commercialization of B&B reactors which could make substantial contribution to energy sustainability and economic stability without need for fuel recycling. Another objective is increasing the average discharge burnup for the same peak discharge burnup thereby (1) increasing the fuel utilization of 2-D shuffled B&B reactorsmore » and (2) reducing the reprocessing capacity required to support a given capacity of FRs that are to recycle fuel.« less
Liquid fuel vaporizer and combustion chamber having an adjustable thermal conductor
Powell, Michael R; Whyatt, Greg A; Howe, Daniel T; Fountain, Matthew S
2014-03-04
The efficiency and effectiveness of apparatuses for vaporizing and combusting liquid fuel can be improved using thermal conductors. For example, an apparatus having a liquid fuel vaporizer and a combustion chamber can be characterized by a thermal conductor that conducts heat from the combustion chamber to the vaporizer. The thermal conductor can be a movable member positioned at an insertion depth within the combustion chamber that corresponds to a rate of heat conduction from the combustion chamber to the vaporizer. The rate of heat conduction can, therefore, be adjusted by positioning the movable member at a different insertion depth.
Sulc, Jindřich; Stojdl, Jiří; Richter, Miroslav; Popelka, Jan; Svoboda, Karel; Smetana, Jiří; Vacek, Jiří; Skoblja, Siarhei; Buryan, Petr
2012-04-01
A pilot scale gasification unit with novel co-current, updraft arrangement in the first stage and counter-current downdraft in the second stage was developed and exploited for studying effects of two stage gasification in comparison with one stage gasification of biomass (wood pellets) on fuel gas composition and attainable gas purity. Significant producer gas parameters (gas composition, heating value, content of tar compounds, content of inorganic gas impurities) were compared for the two stage and the one stage method of the gasification arrangement with only the upward moving bed (co-current updraft). The main novel features of the gasifier conception include grate-less reactor, upward moving bed of biomass particles (e.g. pellets) by means of a screw elevator with changeable rotational speed and gradual expanding diameter of the cylindrical reactor in the part above the upper end of the screw. The gasifier concept and arrangement are considered convenient for thermal power range 100-350 kW(th). The second stage of the gasifier served mainly for tar compounds destruction/reforming by increased temperature (around 950°C) and for gasification reaction of the fuel gas with char. The second stage used additional combustion of the fuel gas by preheated secondary air for attaining higher temperature and faster gasification of the remaining char from the first stage. The measurements of gas composition and tar compound contents confirmed superiority of the two stage gasification system, drastic decrease of aromatic compounds with two and higher number of benzene rings by 1-2 orders. On the other hand the two stage gasification (with overall ER=0.71) led to substantial reduction of gas heating value (LHV=3.15 MJ/Nm(3)), elevation of gas volume and increase of nitrogen content in fuel gas. The increased temperature (>950°C) at the entrance to the char bed caused also substantial decrease of ammonia content in fuel gas. The char with higher content of ash leaving the second stage presented only few mass% of the inlet biomass stream. Copyright © 2011 Elsevier Ltd. All rights reserved.
Observations of wave-induced pore pressure gradients and bed level response on a surf zone sandbar
NASA Astrophysics Data System (ADS)
Anderson, Dylan; Cox, Dan; Mieras, Ryan; Puleo, Jack A.; Hsu, Tian-Jian
2017-06-01
Horizontal and vertical pressure gradients may be important physical mechanisms contributing to onshore sediment transport beneath steep, near-breaking waves in the surf zone. A barred beach was constructed in a large-scale laboratory wave flume with a fixed profile containing a mobile sediment layer on the crest of the sandbar. Horizontal and vertical pore pressure gradients were obtained by finite differences of measurements from an array of pressure transducers buried within the upper several centimeters of the bed. Colocated observations of erosion depth were made during asymmetric wave trials with wave heights between 0.10 and 0.98 m, consistently resulting in onshore sheet flow sediment transport. The pore pressure gradient vector within the bed exhibited temporal rotations during each wave cycle, directed predominantly upward under the trough and then rapidly rotating onshore and downward as the wavefront passed. The magnitude of the pore pressure gradient during each phase of rotation was correlated with local wave steepness and relative depth. Momentary bed failures as deep as 20 grain diameters were coincident with sharp increases in the onshore-directed pore pressure gradients, but occurred at horizontal pressure gradients less than theoretical critical values for initiation of the motion for compact beds. An expression combining the effects of both horizontal and vertical pore pressure gradients with bed shear stress and soil stability is used to determine that failure of the bed is initiated at nonnegligible values of both forces.
NASA Astrophysics Data System (ADS)
Voepel, H.; Hodge, R. A.; Leyland, J.; Sear, D. A.; Ahmed, S. I.
2014-12-01
Uncertainty for bedload estimates in gravel bed rivers is largely driven by our inability to characterize the arrangement and orientation of the sediment grains within the bed. The characteristics of the surface structure are produced by the water working of grains, which leads to structural differences in bedforms through differential patterns of grain sorting, packing, imbrication, mortaring and degree of bed armoring. Until recently the technical and logistical difficulties of characterizing the arrangement of sediment in 3D have prohibited a full understanding of how grains interact with stream flow and the feedback mechanisms that exist. Micro-focus X-ray CT has been used for non-destructive 3D imaging of grains within a series of intact sections of river bed taken from key morphological units (see Figure 1). Volume, center of mass, points of contact, protrusion and spatial orientation of individual surface grains are derived from these 3D images, which in turn, facilitates estimates of 3D static force properties at the grain-scale such as pivoting angles, buoyancy and gravity forces, and grain exposure. By aggregating representative samples of grain-scale properties of localized interacting sediment into overall metrics, we can compare and contrast bed stability at a macro-scale with respect to stream bed morphology. Understanding differences in bed stability through representative metrics derived at the grain-scale will ultimately lead to improved bedload estimates with reduced uncertainty and increased understanding of interactions between grain-scale properties on channel morphology. Figure 1. CT-Scans of a water worked gravel-filled pot. a. 3D rendered scan showing the outer mesh, and b. the same pot with the mesh removed. c. vertical change in porosity of the gravels sampled in 5mm volumes. Values are typical of those measured in the field and lab. d. 2-D slices through the gravels at 20% depth from surface (porosity = 0.35), and e. 75% depth from surface (porosity = 0.24), showing the presence of fine sediments 'mortaring' the larger gravels. f. shows a longitudinal slide from which pivot angle measurements can be determined for contact points between particles. g. Example of two particle extraction from the CT scan showing how particle contact areas can be measured (dark area).
NASA Astrophysics Data System (ADS)
Lansdown, Katrina; Heppell, Kate; Ullah, Sami; Heathwaite, A. Louise; Trimmer, Mark; Binley, Andrew; Heaton, Tim; Zhang, Hao
2010-05-01
The dynamics of groundwater and surface water mixing and associated nitrogen transformations in the hyporheic zone have been investigated within a gaining reach of a groundwater-fed river (River Leith, Cumbria, UK). The regional aquifer consists of Permo-Triassic sandstone, which is overlain by varying depths of glaciofluvial sediments (~15 to 50 cm) to form the river bed. The reach investigated (~250m long) consists of a series of riffle and pool sequences (Käser et al. 2009), with other geomorphic features such as vegetated islands and marginal bars also present. A network of 17 piezometers, each with six depth-distributed pore water samplers based on the design of Rivett et al. (2008), was installed in the river bed in June 2009. An additional 18 piezometers with a single pore water sampler were installed in the riparian zone along the study reach. Water samples were collected from the pore water samplers on three occasions during summer 2009, a period of low flow. The zone of groundwater-surface water mixing within the river bed sediments was inferred from depth profiles (0 to 100 cm) of conservative chemical species and isotopes of water with the collected samples. Sediment cores collected during piezometer installation also enabled characterisation of grain size within the hyporheic zone. A multi-component mixing model was developed to quantify the relative contributions of different water sources (surface water, groundwater and bank exfiltration) to the hyporheic zone. Depth profiles of ‘predicted' nitrate concentration were constructed using the relative contribution of each water source to the hyporheic and the nitrate concentration of the end members. This approach assumes that the mixing of different sources of water is the only factor controlling the nitrate concentration of pore water in the river bed sediments. Comparison of predicted nitrate concentrations (which assume only mixing of waters with different nitrate concentrations) with actual nitrate concentrations (measured from samples collected in the field) then allows patches of biogeochemical activity to be identified. The depth of the groundwater-surface water mixing zone was not uniform along the study reach or over the three sampling periods, varying from <10 to 50 cm in depth. The influence of factors such as the strength of groundwater upwelling, channel geomorphology, substrate composition (permeability) and river discharge on the extent of groundwater-surface mixing have been investigated. During the three field campaigns conducted, groundwater nitrate concentrations (100 cm) were higher than surface water nitrate concentrations (3.7 ± 0.4 mg N/L versus 2.0 ± 0.03 mg N/L; p < 0.001; n = 27), indicating that throughout the reach investigated groundwater will supply nitrate to the overlying water column unless nitrate attenuation occurs along the upwelling flow path. Actual (measured) pore water nitrate concentrations often differed from concentrations predicted using the mixing model, which suggests that biogeochemical transformations also affected nitrate concentrations in the hyporheic zone. The initial field data suggested that there were regions of both nitrate production and nitrate consumption in the subsurface sediments, and that these zones may extend beyond the depths commonly associated with the hyporheic zone. This research demonstrates that a multi-component mixing model can be used to identify possible hotspots of nitrate production or consumption in the bed of a groundwater-fed river. Käser, DH, Binley, A, Heathwaite, AL and Krause, S (2009) Spatio-temporal variations of hyporheic flow in a riffle-pool sequence. Hydrological Processes 23: 2138 - 2149. Rivett, MO, Ellis, PA, Greswell, RB, Ward, RS, Roche, RS, Cleverly, MG, Walker, C, Conran, D, Fitzgerald, PJ, Willcox, T and Dowle, J (2008) Cost-effective mini drive-point piezometers and multilevel samplers for monitoring the hyporheic zone. Quarterly Journal of Engineering Geology and Hydrogeology 41: 49 - 60.
Fire behavior of halogen-free flame retardant electrical cables with the cone calorimeter.
Meinier, Romain; Sonnier, Rodolphe; Zavaleta, Pascal; Suard, Sylvain; Ferry, Laurent
2018-01-15
Fires involving electrical cables are one of the main hazards in Nuclear Power Plants (NPPs). Cables are complex assemblies including several polymeric parts (insulation, bedding, sheath) constituting fuel sources. This study provides an in-depth characterization of the fire behavior of two halogen-free flame retardant cables used in NPPs using the cone calorimeter. The influence of two key parameters, namely the external heat flux and the spacing between cables, on the cable fire characteristics is especially investigated. The prominent role of the outer sheath material on the ignition and the burning at early times was highlighted. A parameter of utmost importance called transition heat flux, was identified and depends on the composition and the structure of the cable. Below this heat flux, the decomposition is limited and concerns only the sheath. Above it, fire hazard is greatly enhanced because most often non-flame retarded insulation part contributes to heat release. The influence of spacing appears complex, and depends on the considered fire property. Copyright © 2017 Elsevier B.V. All rights reserved.
Patterns and drivers of daily bed-level dynamics on two tidal flats with contrasting wave exposure.
Hu, Zhan; Yao, Peng; van der Wal, Daphne; Bouma, Tjeerd J
2017-08-02
Short-term bed-level dynamics has been identified as one of the main factors affecting biota establishment or retreat on tidal flats. However, due to a lack of proper instruments and intensive labour involved, the pattern and drivers of daily bed-level dynamics are largely unexplored in a spatiotemporal context. In this study, 12 newly-developed automatic bed-level sensors were deployed for nearly 15 months on two tidal flats with contrasting wave exposure, proving an unique dataset of daily bed-level changes and hydrodynamic forcing. By analysing the data, we show that (1) a general steepening trend exists on both tidal flats, even with contrasting wave exposure and different bed sediment grain size; (2) daily morphodynamics level increases towards the sea; (3) tidal forcing sets the general morphological evolution pattern at both sites; (4) wave forcing induces short-term bed-level fluctuations at the wave-exposed site, but similar effect is not seen at the sheltered site with smaller waves; (5) storms provoke aggravated erosion, but the impact is conditioned by tidal levels. This study provides insights in the pattern and drivers of daily intertidal bed-level dynamics, thereby setting a template for future high-resolution field monitoring programmes and inviting in-depth morphodynamic modelling for improved understanding and predictive capability.
García-Sánchez, J J; Solache-Ríos, M; Martínez-Miranda, V; Solís Morelos, C
2013-10-01
The purpose of this work was to evaluate the potential of aluminum modified iron oxides, in a continuous flow for removal of fluoride ions from aqueous solutions and drinking water. The breakthrough curves obtained for fluoride ions adsorption from aqueous solutions and drinking water were fitted to Thomas, Bohart-Adams, and bed depth service time model (BDST). Adsorption capacities at the breakthroughs, Thomas model constant, kinetic constant and the saturation concentration were determined. The results show that in general, the adsorption efficiency decreases as the bed depth increases, and this behavior shows that the adsorption is controlled by the mass transport resistance. The adsorption capacity for fluoride ions by CP-Al is higher for fluoride aqueous solutions than drinking water. Copyright © 2013 Elsevier Inc. All rights reserved.
Mustafa, Yasmen A; Zaiter, Maysoon J
2011-11-30
Iraqi synthetic zeolite type Na-A has been suggested as ion exchange material to treat cobalt-60 in radioactive liquid waste which came from neutron activation for corrosion products. Batch experiments were conducted to find out the equilibrium isotherm for source sample. The equilibrium isotherm for radioactive cobalt in the source sample showed unfavorable type, while the equilibrium isotherm for the total cobalt (the radioactive and nonradioactive cobalt) in the source sample showed a favorable type. The ability of Na-A zeolite to remove cobalt from wastewater was checked for high cobalt concentration (822 mg/L) in addition to low cobalt concentration in the source sample (0.093 mg/L). A good fitting for the experimental data with Langmuir equilibrium model was observed. Langmuir constant qm which is related to monolayer adsorption capacity for low and high cobalt concentration was determined to be 0.021 and 140 mg/g(zeolite). The effects of important design variables on the zeolite column performance were studied these include initial concentration, flow rate, and bed depth. The experimental results have shown that high sorption capacity can be obtained at high influent concentration, low flow rate, and high bed depth. Higher column performance was obtained at higher bed depth. Thomas model was employed to predict the breakthrough carves for the above variables. A good fitting was observed with correlation coefficients between 0.915 and 0.985. Copyright © 2011 Elsevier B.V. All rights reserved.
Li, Jingji; Yang, Hairui; Wu, Yuxin; Lv, Junfu; Yue, Guangxi
2013-06-18
The advantage of circulating fluidized bed (CFB) boilers in China is their ability to utilize low rank coal with low cost emission control. However, the new National Emission Regulation (NER) issued in early 2012 brings much more stringent challenges on the CFB industries, which also causes much attention from other countries. Based on the principle of a CFB boiler and previous operating experience, it is possible for the CFB boilers to meet the new NER and maintain the advantage of low cost emission control, while, more influences should be considered in their design and operation. To meet the requirement of the new NER, the fly ash collector should adopt a bag house or combination of electrostatic precipitator and bag filter to ensure dust emissions of less than 30 mg · Nm(-3). For SO2 emission control, the bed temperature should be strictly lower than 900 °C to maintain high reactivity and pores. The limestone particle size distribution should be ranged within a special scope to optimize the residence time and gas-solid reaction. At the same time, the injecting point should be optimized to ensure fast contact of lime with oxygen. In such conditions, the desulfurization efficiency could be increased more than 90%. For lower sulfur content fuels (<1.5%, referred value based on the heating value of standard coal of China), increasing Ca/S enough could decrease SO2 emissions lower than that of the new NER, 100 mg · Nm(-3). For fuels with sulfur content higher than 1.5%, some simplified systems for flue gas desulfurization, such as flash dryer absorber (FDA), are needed. And the NOx emissions of a CFB can be controlled to less than 100 mg · Nm(-3) without any equipment at a bed temperature lower than 900 °C for fuels with low volatiles content (<12%), while for fuels with high volatiles, selective non-catalytic reduction (SNCR) should be considered. Due to the unique temperature in CFB as well as the circulating ash, the efficiency of SNCR could reach as high as 70%. The Hg emission of CFB is very low for the new NER due to its innate property.
Evaluation of selected chemical processes for production of low-cost silicon, phases 1 and 2
NASA Technical Reports Server (NTRS)
Blocher, J. M.; Browning, M. F.
1978-01-01
A miniplant, consisting of a 5 cm-diameter fluidized-bed reactor and associated equipment was used to study the deposition parameters, temperature, reactant composition, seed particle size, bed depth, reactant throughput, and methods of reactant introduction. It was confirmed that the permissible range of fluidized-bed temperature was limited at the lower end by zinc condensation (918 C) and at higher temperatures by rapidly decreasing conversion efficiency. Use of a graded bed temperature was shown to increase the conversion efficiency over that obtained in an isothermal bed. Other aspects of the process such as the condensation and fused-salt electrolysis of the ZnCl2 by-product for recycle of zinc and chlorine were studied to provide information required for design of a 50 MT/year experimental facility. In view of the favorable technical and economic indications obtained, it was recommended that construction and operation of the 50 MT/year experimental facility be implemented.
Strata-based forest fuel classification for wild fire hazard assessment using terrestrial LiDAR
NASA Astrophysics Data System (ADS)
Chen, Yang; Zhu, Xuan; Yebra, Marta; Harris, Sarah; Tapper, Nigel
2016-10-01
Fuel structural characteristics affect fire behavior including fire intensity, spread rate, flame structure, and duration, therefore, quantifying forest fuel structure has significance in understanding fire behavior as well as providing information for fire management activities (e.g., planned burns, suppression, fuel hazard assessment, and fuel treatment). This paper presents a method of forest fuel strata classification with an integration between terrestrial light detection and ranging (LiDAR) data and geographic information system for automatically assessing forest fuel structural characteristics (e.g., fuel horizontal continuity and vertical arrangement). The accuracy of fuel description derived from terrestrial LiDAR scanning (TLS) data was assessed by field measured surface fuel depth and fuel percentage covers at distinct vertical layers. The comparison of TLS-derived depth and percentage cover at surface fuel layer with the field measurements produced root mean square error values of 1.1 cm and 5.4%, respectively. TLS-derived percentage cover explained 92% of the variation in percentage cover at all fuel layers of the entire dataset. The outcome indicated TLS-derived fuel characteristics are strongly consistent with field measured values. TLS can be used to efficiently and consistently classify forest vertical layers to provide more precise information for forest fuel hazard assessment and surface fuel load estimation in order to assist forest fuels management and fire-related operational activities. It can also be beneficial for mapping forest habitat, wildlife conservation, and ecosystem management.
NASA Astrophysics Data System (ADS)
Shao, Yuanyuan; Zhu, Jesse; Preto, Fernando; Tourigny, Guy; Wang, Jinsheng; Badour, Chadi; Li, Hanning; Xu, Chunbao Charles
Characterizations of ash deposits from co-firing/co-combusting of a woody biomass (i.e., white pine) and lignite coal were investigated in a fluidized-bed combustor using a custom designed air-cooled probe installed in the freeboard region of the reactor. Ash deposition behaviors on a heat transfer surface were comprehensively investigated and discussed under different conditions including fuel type, fuel blending ratios (20-80% biomass on a thermal basis), and moisture contents. For the combustion of 100% lignite, the compositions of the deposited ash were very similar to those of the fuel ash, while in the combustion of 100% white pine pellets or sawdust the deposited ash contained a much lower contents of CaO, SO3, K2O and P2O5 compared with the fuel ash, but the deposited ash was enriched with SiO2, Al2O3 and MgO. A small addition of white pine (20% on a heat input basis) to the coal led to the highest ash deposition rates likely due to the strong interaction of the CaO and MgO (from the biomass ash) with the alumina and silica (from the lignite ash) during the co-combustion process, evidenced by the detection of high concentrations of calcium/magnesium sulfates, aluminates and silicates in the ash deposits. Interestingly, co-firing of white pine pellets and lignite at a 50% blending ratio led to the lowest ash deposition rates. Ash deposition rates in combustion of fuels as received with a higher moisture content was found to be much lower than those of oven-dried fuels.
Spurrier, Francis R.; DeZubay, Egon A.; Murray, Alexander P.; Vidt, Edward J.
1984-02-07
Slab-shaped high efficiency catalytic reformer configurations particularly useful for generation of fuels to be used in fuel cell based generation systems. A plurality of structures forming a generally rectangular peripheral envelope are spaced about one another to form annular regions, an interior annular region containing a catalytic bed and being regeneratively heated on one side by a hot comubstion gas and on the other side by the gaseous products of the reformation. An integrally mounted combustor is cooled by impingement of incoming oxidant.
Spurrier, Francis R.; DeZubay, Egon A.; Murray, Alexander P.; Vidt, Edward J.
1985-03-12
Slab-shaped high efficiency catalytic reformer configurations particularly useful for generation of fuels to be used in fuel cell based generation systems. A plurality of structures forming a generally rectangular peripheral envelope are spaced about one another to form annular regions, an interior annular region containing a catalytic bed and being regeneratively heated on one side by a hot combustion gas and on the other side by the gaseous products of the reformation. An integrally mounted combustor is cooled by impingement of incoming oxidant.
NASA Technical Reports Server (NTRS)
Spurrier, Francis R. (Inventor); DeZubay, Egon A. (Inventor); Murray, Alexander P. (Inventor); Vidt, Edward J. (Inventor)
1984-01-01
Slab-shaped high efficiency catalytic reformer configurations particularly useful for generation of fuels to be used in fuel cell based generation systems. A plurality of structures forming a generally rectangular peripheral envelope are spaced about one another to form annular regions, an interior annular region containing a catalytic bed and being regeneratively heated on one side by a hot comubstion gas and on the other side by the gaseous products of the reformation. An integrally mounted combustor is cooled by impingement of incoming oxidant.
NASA Technical Reports Server (NTRS)
Spurrier, Francis R. (Inventor); DeZubay, Egon A. (Inventor); Murray, Alexander P. (Inventor); Vidt, Edward J. (Inventor)
1985-01-01
Slab-shaped high efficiency catalytic reformer configurations particularly useful for generation of fuels to be used in fuel cell based generation systems. A plurality of structures forming a generally rectangular peripheral envelope are spaced about one another to form annular regions, an interior annular region containing a catalytic bed and being regeneratively heated on one side by a hot combustion gas and on the other side by the gaseous products of the reformation. An integrally mounted combustor is cooled by impingement of incoming oxidant.
Wang, Huamin; Elliott, Douglas C; French, Richard J; Deutch, Steve; Iisa, Kristiina
2016-12-25
Lignocellulosic biomass conversion to produce biofuels has received significant attention because of the quest for a replacement for fossil fuels. Among the various thermochemical and biochemical routes, fast pyrolysis followed by catalytic hydrotreating is considered to be a promising near-term opportunity. This paper reports on experimental methods used 1) at the National Renewable Energy Laboratory (NREL) for fast pyrolysis of lignocellulosic biomass to produce bio-oils in a fluidized-bed reactor and 2) at Pacific Northwest National Laboratory (PNNL) for catalytic hydrotreating of bio-oils in a two-stage, fixed-bed, continuous-flow catalytic reactor. The configurations of the reactor systems, the operating procedures, and the processing and analysis of feedstocks, bio-oils, and biofuels are described in detail in this paper. We also demonstrate hot-vapor filtration during fast pyrolysis to remove fine char particles and inorganic contaminants from bio-oil. Representative results showed successful conversion of biomass feedstocks to fuel-range hydrocarbon biofuels and, specifically, the effect of hot-vapor filtration on bio-oil production and upgrading. The protocols provided in this report could help to generate rigorous and reliable data for biomass pyrolysis and bio-oil hydrotreating research.
Wang, Huamin; Elliott, Douglas C.; French, Richard J.; Deutch, Steve; Iisa, Kristiina
2016-01-01
Lignocellulosic biomass conversion to produce biofuels has received significant attention because of the quest for a replacement for fossil fuels. Among the various thermochemical and biochemical routes, fast pyrolysis followed by catalytic hydrotreating is considered to be a promising near-term opportunity. This paper reports on experimental methods used 1) at the National Renewable Energy Laboratory (NREL) for fast pyrolysis of lignocellulosic biomass to produce bio-oils in a fluidized-bed reactor and 2) at Pacific Northwest National Laboratory (PNNL) for catalytic hydrotreating of bio-oils in a two-stage, fixed-bed, continuous-flow catalytic reactor. The configurations of the reactor systems, the operating procedures, and the processing and analysis of feedstocks, bio-oils, and biofuels are described in detail in this paper. We also demonstrate hot-vapor filtration during fast pyrolysis to remove fine char particles and inorganic contaminants from bio-oil. Representative results showed successful conversion of biomass feedstocks to fuel-range hydrocarbon biofuels and, specifically, the effect of hot-vapor filtration on bio-oil production and upgrading. The protocols provided in this report could help to generate rigorous and reliable data for biomass pyrolysis and bio-oil hydrotreating research. PMID:28060311
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bodnaruk, W.H. Jr.
1983-04-01
The aim of this study was to develop and demonstrate low energy climate control and production techniques for greenhouse grown citrus and ornamental crops. Emphasis was placed on design, fuel efficiency and plant response to warm water soil heating systems using solar energy and LP gas. An energy requirement of 28Btus output per hour per square foot of bed space will provide soil temperature of 70/sup 0/F minimum when air temperatures are maintained at 60/sup 0/F. Soil heating to 70/sup 0/ increased rooting and growth of 8 foliage plant varieties by 25 to 45% compared to plants grown under 60/supmore » 0/F air temperature conditions. Providing soil heating, however, increased fuel consumption in the central Florida test facilities by 30% in the winters of 1980-81 and 1981-82. Solar tie-in to soil heating systems has the potential of reducing fuel usage. Solar heated water provided 4 hours of soil heating following a good collection day. Decreased in-bed pipe spacing and increased storage capacity should increase the solar percentage to 6 hours.« less
Method and apparatus for chemically altering fluids in continuous flow
Heath, W.O.; Virden, J.W. Jr.; Richardson, R.L.; Bergsman, T.M.
1993-10-19
The present invention relates to a continuous flow fluid reactor for chemically altering fluids. The reactor operates on standard frequency (50 to 60 Hz) electricity. The fluid reactor contains particles that are energized by the electricity to form a corona throughout the volume of the reactor and subsequently a non-equilibrium plasma that interacts with the fluid. Particles may form a fixed bed or a fluid bed. Electricity may be provided through electrodes or through an inductive coil. Fluids include gases containing exhaust products and organic fuels requiring oxidation. 4 figures.
Method and apparatus for chemically altering fluids in continuous flow
Heath, William O.; Virden, Jr., Judson W.; Richardson, R. L.; Bergsman, Theresa M.
1993-01-01
The present invention relates to a continuous flow fluid reactor for chemically altering fluids. The reactor operates on standard frequency (50 to 60 Hz) electricity. The fluid reactor contains particles that are energized by the electricity to form a corona throughout the volume of the reactor and subsequently a non-equilibrium plasma that interacts with the fluid. Particles may form a fixed bed or a fluid bed. Electricity may be provided through electrodes or through an inductive coil. Fluids include gases containing exhaust products and organic fuels requiring oxidation.
Nuclear Thermal Propulsion: A Joint NASA/DOE/DOD Workshop
NASA Technical Reports Server (NTRS)
Clark, John S. (Editor)
1991-01-01
Papers presented at the joint NASA/DOE/DOD workshop on nuclear thermal propulsion are compiled. The following subject areas are covered: nuclear thermal propulsion programs; Rover/NERVA and NERVA systems; Low Pressure Nuclear Thermal Rocket (LPNTR); particle bed reactor nuclear rocket; hybrid propulsion systems; wire core reactor; pellet bed reactor; foil reactor; Droplet Core Nuclear Rocket (DCNR); open cycle gas core nuclear rockets; vapor core propulsion reactors; nuclear light bulb; Nuclear rocket using Indigenous Martian Fuel (NIMF); mission analysis; propulsion and reactor technology; development plans; and safety issues.
Sun, Rui; Ismail, Tamer M; Ren, Xiaohan; Abd El-Salam, M
2015-05-01
In order to reveal the features of the combustion process in the porous bed of a waste incinerator, a two-dimensional unsteady state model and experimental study were employed to investigate the combustion process in a fixed bed of municipal solid waste (MSW) on the combustion process in a fixed bed reactor. Conservation equations of the waste bed were implemented to describe the incineration process. The gas phase turbulence was modeled using the k-ε turbulent model and the particle phase was modeled using the kinetic theory of granular flow. The rate of moisture evaporation, devolatilization rate, and char burnout was calculated according to the waste property characters. The simulation results were then compared with experimental data for different moisture content of MSW, which shows that the incineration process of waste in the fixed bed is reasonably simulated. The simulation results of solid temperature, gas species and process rate in the bed are accordant with experimental data. Due to the high moisture content of fuel, moisture evaporation consumes a vast amount of heat, and the evaporation takes up most of the combustion time (about 2/3 of the whole combustion process). The whole bed combustion process reduces greatly as MSW moisture content increases. The experimental and simulation results provide direction for design and optimization of the fixed bed of MSW. Copyright © 2015 Elsevier Ltd. All rights reserved.
The regime of aerosol optical depth over Central Asia based on MODIS Aqua Deep Blue data
NASA Astrophysics Data System (ADS)
Floutsi, Athina; KorrasCarraca, Marios; Matsoukas, Christos; Biskos, George
2015-04-01
Atmospheric aerosols, both natural and anthropogenic, can affect the regional and global climate through their direct, indirect, and semi-direct effects on the radiative energy budget of the Earth-atmosphere system. To quantify these effects it is therefore important to determine the aerosol load, and an effective way to do that is by measuring the aerosol optical depth (AOD). In this study we investigate the spatial and temporal variability of the AOD over the climatically sensitive region of Central Asia (36° N - 50° N, 46° E - 75° E), which has significant sources of both natural and anthropogenic particles. The primary source of anthropogenic particles is fossil fuel combustion occurring mainly at oil refineries in the Caspian Sea basin. Natural particles originate mostly from the two deserts in the region (namely Kara-Kum and Kyzyl-Kum), where persistent dust activity is observed. Another source is the Aral Sea region, which due to its phenomenal desertification also drives an intense salt and dust transport from the exposed sea-bed to the surrounding regions. This transport is of particular interest because of health-hazardous materials contained in the Aral Sea sea-bed. For our analysis we use Level-3 daily MODIS - Aqua Dark Target - Deep Blue combined product, from the latest MODIS collection (006), available in 1° x 1° resolution (about 100 km x 100 km) over the period 2002-2014.Our first results indicate a significant spatial variability of the aerosol load over the study region. The data also show a clear seasonal cycle, with large aerosol load being associated with strong dust activity during spring and summer (AOD up to 0.5), and low during autumn and winter (AOD up to 0.4). In spring and summer significant aerosol load is observed in the Garabogazköl basin, Northeast and South-southeast Caspian Sea (offshore North Iran and Azerbaijan), as well as southwest of the Aral Sea. In the later region, the high AOD values can be explained by export of dust from the exposed sea-bed under strong northerly and north-easterly winds, and was found to be slightly larger during summer. From this analysis we have excluded the Aral Sea, over which the AOD values were extreme (up to 2.1 and 1.3 during July and January, respectively). The AOD exhibits statistically-significant increasing trend, with an ~40% mean regional relative change. The changes over are more pronounced over and around the Aral Sea, and are stronger during the warm period of the year (April to September). Our results suggest that these trends are associated with increased dust transport from the exposed Aral Sea sea-bed during the study period, which will be examined with the trends of the frequency and strength of aerosol events over central Asia, as well as their association with the Aral Sea desertification.
Fuel-rich catalytic combustion: A fuel processor for high-speed propulsion
NASA Technical Reports Server (NTRS)
Brabbs, Theodore A.; Rollbuhler, R. James; Lezberg, Erwin A.
1990-01-01
Fuel-rich catalytic combustion of Jet-A fuel was studied over the equivalence ratio range 4.7 to 7.8, which yielded combustion temperatures of 1250 to 1060 K. The process was soot-free and the gaseous products were similar to those obtained in the iso-octane study. A carbon atom balance across the catalyst bed calculated for the gaseous products accounted for about 70 to 90 percent of the fuel carbon; the balance was condensed as a liquid in the cold trap. It was shown that 52 to 77 percent of the fuel carbon was C1, C2, and C3 molecules. The viability of using fuel-rich catalytic combustion as a technique for preheating a practical fuel to very high temperatures was demonstrated. Preliminary results from the scaled up version of the catalytic combustor produced a high-temperature fuel containing large amounts of hydrogen and carbon monoxide. The balance of the fuel was completely vaporized and in various stages of pyrolysis and oxidation. Visual observations indicate that there was no soot present.
Liu, Siyang; Zhu, Qingqing; Guan, Qingxin; He, Liangnian; Li, Wei
2015-05-01
Bio-aviation fuel was firstly synthesized by hydroprocessing castor oil in a continuous-flow fixed-bed microreactor with the main objective to obtain the high yield of aviation fuel and determine the elemental compositions of the product phases as well as the reaction mechanism. Highest aviation range alkane yields (91.6 wt%) were achieved with high isomer/n-alkane ratio (i/n) 4.4-7.2 over Ni supported on acidic zeolites. In addition, different fuel range alkanes can be obtained by adjusting the degree of hydrodeoxygenation (HDO) and hydrocracking. And the observations are rationalized by a set of reaction pathways for the various product phases. Copyright © 2015 Elsevier Ltd. All rights reserved.
Iuchi, Terumi; Nakajima, Yukari; Fukuda, Moriyoshi; Matsuo, Junko; Okamoto, Hiroyuki; Sanada, Hiromi; Sugama, Junko
2014-05-01
Bed sheets generate high surface tension across the support surface and increase pressure to the body through a process known as the hammock effect. Using an anatomical model and a loading device characterized by extreme bony prominences, the present study compared pressure distributions on support surfaces across different bed making methods and bed sheet materials to determine the factors that influence pressure distribution. The model was placed on a pressure mapping system (CONFORMat; NITTA Corp., Osaka, Japan), and interface pressure was measured. Bed sheet elasticity and friction between the support surface and the bed sheets were also measured. For maximum interface pressure, the relative values of the following methods were higher than those of the control method, which did not use any bed sheets: cotton sheets with hospital corners (1.28, p = 0.02), polyester with no corners (1.29, p = 0.01), cotton with no corners (1.31, p = 0.003), and fitted polyester sheets (1.35, p = 0.002). Stepwise multiple regression analysis indicated that maximum interface pressure was negatively correlated with bed sheet elasticity (R(2) = 0.74). A statistically significant negative correlation was observed between maximum interface pressure and immersion depth, which was measured using the loading device (r = -0.40 and p = 0.04). We found that several combinations of bed making methods and bed sheet materials induced maximum interface pressures greater than those observed for the control method. Bed sheet materials influenced maximum interface pressure, and bed sheet elasticity was particularly important in reducing maximum interface pressure. Copyright © 2014 Tissue Viability Society. Published by Elsevier Ltd. All rights reserved.
Code of Federal Regulations, 2010 CFR
2010-07-01
... produces both electric (or mechanical) and useful thermal energy from the same primary energy source. Coke.... Conventional technology means wet flue gas desulfurization (FGD) technology, dry FGD technology, atmospheric fluidized bed combustion technology, and oil hydrodesulfurization technology. Distillate oil means fuel oils...
Hydrocarbon Source Rocks in the Deep River and Dan River Triassic Basins, North Carolina
Reid, Jeffrey C.; Milici, Robert C.
2008-01-01
This report presents an interpretation of the hydrocarbon source rock potential of the Triassic sedimentary rocks of the Deep River and Dan River basins, North Carolina, based on previously unpublished organic geochemistry data. The organic geochemical data, 87 samples from 28 drill holes, are from the Sanford sub-basin (Cumnock Formation) of the Deep River basin, and from the Dan River basin (Cow Branch Formation). The available organic geochemical data are biased, however, because many of the samples collected for analyses by industry were from drill holes that contained intrusive diabase dikes, sills, and sheets of early Mesozoic age. These intrusive rocks heated and metamorphosed the surrounding sediments and organic matter in the black shale and coal bed source rocks and, thus, masked the source rock potential that they would have had in an unaltered state. In places, heat from the intrusives generated over-mature vitrinite reflectance (%Ro) profiles and metamorphosed the coals to semi-anthracite, anthracite, and coke. The maximum burial depth of these coal beds is unknown, and depth of burial may also have contributed to elevated thermal maturation profiles. The organic geochemistry data show that potential source rocks exist in the Sanford sub-basin and Dan River basin and that the sediments are gas prone rather than oil prone, although both types of hydrocarbons were generated. Total organic carbon (TOC) data for 56 of the samples are greater than the conservative 1.4% TOC threshold necessary for hydrocarbon expulsion. Both the Cow Branch Formation (Dan River basin) and the Cumnock Formation (Deep River basin, Sanford sub-basin) contain potential source rocks for oil, but they are more likely to have yielded natural gas. The organic material in these formations was derived primarily from terrestrial Type III woody (coaly) material and secondarily from lacustrine Type I (algal) material. Both the thermal alteration index (TAI) and vitrinite reflectance data (%Ro) indicate levels of thermal maturity suitable for generation of hydrocarbons. The genetic potential of the source rocks in these Triassic basins is moderate to high and many source rock sections have at least some potential for hydrocarbon generation. Some data for the Cumnock Formation indicate a considerably higher source rock potential than the basin average, with S1 + S2 data in the mid-20 mg HC/g sample range, and some hydrocarbons have been generated. This implies that the genetic potential for all of these strata may have been higher prior to the igneous activity. However, the intergranular porosity and permeability of the Triassic strata are low, which makes fractured reservoirs more attractive as drilling targets. In some places, gravity and magnetic surveys that are used to locate buried intrusive rock may identify local thermal sources that have facilitated gas generation. Alternatively, awareness of the distribution of large intrusive igneous bodies at depth may direct exploration into other areas, where thermal maturation is less than the limits of hydrocarbon destruction. Areas prospective for natural gas also contain large surficial clay resources and any gas discovered could be used as fuel for local industries that produce clay products (principally brick), as well as fuel for other local industries.
NASA Astrophysics Data System (ADS)
Reiss, Martin; Chifflard, Peter
2016-04-01
Runoff generation processes in low mountain ranges in middle Europe are strongly influenced by lateral fluxes of soil water caused by periglacial cover beds. Less attention has been paid to the stratification of soils in hydrologic research as a major trigger of lateral slope water paths (REISS & CHIFFLARD 2014) although especially in the low mountain ranges in Middle Europe subsurface stormflow generation is strongly influenced by the periglacial cover beds (MOLDENHAUER et al. 2013) which are a typical example for stratified soils and almost widespread everywhere in the low mountain ranges. By contrast in soil science the Substrate-Oriented-Soil-Evolution-Model (LORZ et al. 2011) underlines the importance of stratified soils and lithological discontinuities (LD) as a key element controlling ecological processes and depth functions of soil properties. Whereas depth distributions of e.g. trace elements in the soil matrix at the point scale have been already detected, investigations of dissolved trace metal concentrations in the soil pore water and their depth distribution depending on soil stratification are scarce. Based on a typical depth distribution of trace metal concentrations in soil pore water depending on lithological discontinuities these depth functions may indicate zones of preferential transport. Additionally, there is still a missing link of investigations at different scales regarding the impacts of the geochemical barriers and the pronounced depth distributions on the chemical composition of the subsurface stormflow and consequently the hillslope runoff. Therefore, we validated the hypotheses that LDs act as geochemical barriers for their vertical distribution at the point and hillslope scale and that this typical depth functions of trace elements can be used to identify sources of subsurface stormflow at the catchment scale. To address these objectives, our research and sampling design is based on a multi-scale approach combining experimental research at the point and hillslope scale in a small forested catchment (0.24 square kilometer) in Central-Germany called "Krofdorfer Forst". The study area is totally covered by beech forest and characterized as a typically sloped terrain of the mid-latitudes with periglacial cover beds. The catchment is devoid of any riparian zone and is characterized by steep hillslopes that issue directly into the receiving creek. At the point scale the impacts of LDs on the depth distribution of metals (Cr, Mn, Fe, Ni, Cu, Zn, Ar, Se, Cd, Pb) and alkaline earths (Na, Mg, K, Ca) were investigated. Soil water samples were captured at several soil profiles along a hillslope (upper, middle, foot slope) by soil solution access tubes which are installed in different depths depending on the LDs ranging from 10 cm to 110 cm. Soil water samples were taken since October 2012 in an irregular interval. In a complementary effort the temporal variability of the same geochemical parameters mentioned above were investigated in a high temporal resolution in the catchment runoff by using an automatic water sampler. All water samples were filtered and analyzed by using an ICP-MS. First results show that especially manganese is a very suitable element to identify chemical depth functions in soil pore water at the point scale. For this element the LDs act as geochemical barrier. Further elements have to be considered under different aspects since their depth distribution depends not on the lithological discontinuities. At the catchment scale the temporal variability of manganese concentration during different rainfall-runoff events can be used to detect sources of subsurface stormflow. References Reiss, M. & Chifflard, P. (2014): Short Report: Identifying sources of subsurface flow - A theoretical framework assessing the hydrological implications of lithological discontinuities. In: Open Journal of Modern Hydrology 4(3):91-94 Moldenhauer, K.-M., Heller, K., Chifflard, P., Hübner, R. & Kleber, A. (2013): Influence of Cover Beds on Slope Hydrology. In: Kleber, A. & Terhorst, B. (eds.): Mid-Latitude Slope Deposits (Cover Beds). Elsevier, pp. 127-152 Lorz, C., Heller, K. & Kleber, A. (2011): Stratification of the Regolith Continuum - A Key Property for Processes and Functions of Landscapes. In: Zeitschrift für Geomorphologie 55:277-292
Soria, José; Gauthier, Daniel; Flamant, Gilles; Rodriguez, Rosa; Mazza, Germán
2015-09-01
Municipal Solid Waste Incineration (MSWI) in fluidized bed is a very interesting technology mainly due to high combustion efficiency, great flexibility for treating several types of waste fuels and reduction in pollutants emitted with the flue gas. However, there is a great concern with respect to the fate of heavy metals (HM) contained in MSW and their environmental impact. In this study, a coupled two-scale CFD model was developed for MSWI in a bubbling fluidized bed. It presents an original scheme that combines a single particle model and a global fluidized bed model in order to represent the HM vaporization during MSW combustion. Two of the most representative HM (Cd and Pb) with bed temperatures ranging between 923 and 1073K have been considered. This new approach uses ANSYS FLUENT 14.0 as the modelling platform for the simulations along with a complete set of self-developed user-defined functions (UDFs). The simulation results are compared to the experimental data obtained previously by the research group in a lab-scale fluid bed incinerator. The comparison indicates that the proposed CFD model predicts well the evolution of the HM release for the bed temperatures analyzed. It shows that both bed temperature and bed dynamics have influence on the HM vaporization rate. It can be concluded that CFD is a rigorous tool that provides valuable information about HM vaporization and that the original two-scale simulation scheme adopted allows to better represent the actual particle behavior in a fluid bed incinerator. Copyright © 2015 Elsevier Ltd. All rights reserved.
Uzdevenes, Chad G; Gao, Chi; Sandhu, Amandeep K; Yagiz, Yavuz; Gu, Liwei
2018-03-24
Muscadine grape pomace, a by-product of juicing and wine-making, contains significant amounts of anthocyanin 3,5-diglucosides, known to be beneficial to human health. The objective of this research was to use mathematical modeling to investigate the adsorption/desorption characteristics of these anthocyanins from muscadine grape pomace on Amberlite FPX66 resin in a fixed bed column. Anthocyanins were extracted using hot water and ultrasound, and the extracts were loaded onto a resin column at five bed depths (5, 6, 8, 10 and 12 cm) using three flow rates (4, 6 and 8 mL min -1 ). It was found that adsorption on the column fitted the bed depth service time (BDST) model and the empty bed residence time (EBRT) model. Desorption was achieved by eluting the column using ethanol at four concentrations (25, 40, 55 and 70% v/v) and could be described with an empirical sigmoid model. The breakthrough curves of anthocyanins fitted the BDST model for all three flow rates with R 2 values of 0.983, 0.992 and 0.984 respectively. The EBRT model was successfully employed to find the operating lines, which allow for column scale-up while still achieving similar results to those found in a laboratory operation. Desorption with 40% (v/v) ethanol achieved the highest recovery rate of anthocyanins at 79.6%. The mathematical models established in this study can be used in designing a pilot/industrial- scale column for the separation and concentration of anthocyanins from muscadine juice pomace. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.
Fine Sediment Residency in Streambeds in Southeastern Australia.
NASA Astrophysics Data System (ADS)
Croke, J. C.; Thompson, C. J.; Rhodes, E.
2007-12-01
A detailed understanding of channel forming and maintenance processes in streams requires some measurement and/or prediction of bed load transport and sediment mobility. Traditional field based measurements of such processes are often problematic due to the high discharge characteristics of upland streams. In part to compensate for such difficulties, empirical flow competence equations have also been developed to predict armour or bedform stabilising grain mobility. These equations have been applied to individual reaches to predict the entrainment of a threshold grain size and the vertical extent of flushing. In cobble- and boulder-bed channels the threshold grain size relates to the size of the bedform stabilising grains (eg. D84, D90). This then allows some prediction of when transport of the matrix material occurs. The application of Optically Stimulated Luminescence (OSL) dating is considered here as an alternative and innovative way to determine fine sediment residency times in stream beds. Age estimates derived from the technique are used to assist in calibrating sediment entrainment models to specific channel types and hydrological regimes. The results from a one-dimensional HEC-RAS model indicate that recurrence interval floods exceeding bankfull up to 13 years are competent to mobilise the maximum overlying surface grain sizes at the sites. OSL minimum age model results of well bleached quartz in the fine matrix particles are in general agreement with selected competence equation predictions. The apparent long (100-1400y) burial age of most of the mineral quartz suggests that competent flows are not able to flush all subsurface fine-bed material. Maximum bed load exchange (flushing) depth was limited to twice the depth of the overlying D90 grain size. Application of OSL in this study provides important insight into the nature of matrix material storage and flushing in mountain streams.
NASA Astrophysics Data System (ADS)
Albroomi, H. I.; Elsayed, M. A.; Baraka, A.; Abdelmaged, M. A.
2017-07-01
This work describes the potential of utilizing prepared activated carbon from apricot stones as an efficient adsorbent material for tartrazine (TZ) azo-dye removal in a batch and dynamic adsorption system. The results revealed that activated carbons with well-developed surface area (774 m2/g) and pore volume (1.26 cm3/g) can be manufactured from apricot stones by H3PO4 activation. In batch experiments, effects of the parameters such as initial dye concentration and temperature on the removal of the dye were studied. Equilibrium was achieved in 120 min. Adsorption capacity was found to be dependent on the initial concentration of dye solution, and maximum adsorption was found to be 76 mg/g at 100 mg/L of TZ. The adsorption capacity at equilibrium ( q e) increased from 22.6 to 76 mg/g with an increase in the initial dye concentrations from 25 to 100 mg/L. The thermodynamic parameters such as change in free energy (Δ G 0), enthalpy (Δ H 0) and entropy (Δ S 0) were determined and the positive value of (Δ H) 78.1 (K J mol-1) revealed that adsorption efficiency increased with an increase in the process temperature. In fixed-bed column experiments, the effect of selected operating parameters such as bed depth, flow rate and initial dye concentration on the adsorption capacity was evaluated. Increase in bed height of adsorption columns leads to an extension of breakthrough point as well as the exhaustion time of adsorbent. However, the maximum adsorption capacities decrease with increases of flow rate. The breakthrough data fitted well to bed depth service time and Thomas models with high coefficient of determination, R 2 ≥ 94.
Demonstration of Sparse Signal Reconstruction for Radar Imaging of Ice Sheets
NASA Astrophysics Data System (ADS)
Heister, Anton; Scheiber, Rolf
2017-04-01
Conventional processing of ice-sounder data produces 2-D images of the ice sheet and bed, where the two dimensions are along-track and depth, while the across-track direction is fixed to nadir. The 2-D images contain information about the topography and radar reflectivity of the ice sheet's surface, bed, and internal layers in the along-track direction. Having multiple antenna phase centers in the across-track direction enables the production of 3-D images of the ice sheet and bed. Compared to conventional 2-D images, these contain additional information about the surface and bed topography, and orientation of the internal layers over a swath in the across-track direction. We apply a 3-D SAR tomographic ice-sounding method based on sparse signal reconstruction [1] to the data collected by Center for Remote Sensing of Ice Sheets (CReSIS) in 2008 in Greenland [2] using their multichannel coherent radar depth sounder (MCoRDS). The MCoRDS data have 16 effective phase centers which allows us to better understand the performance of the method. Lastly we offer sparsity improvement by including wavelet dictionaries into the reconstruction.The results show improved scene feature resolvability in across-track direction compared to MVDR beamformer. References: [1] A. Heister, R. Scheiber, "First Analysis of Sparse Signal Reconstruction for Radar Imaging of Ice Sheets". In: Proceedings of EUSAR, pp. 788-791, June 2016. [2] X. Wu, K. C. Jezek, E. Rodriguez, S. Gogineni, F. Rodriguez-Morales, and A. Freeman, "Ice sheet bed mapping with airborne SAR tomography". IEEE Transactions on Geoscience and Remote Sensing, vol. 49, no. 10 Part 1, pp. 3791-3802, 2011.
Preliminary CFD study of Pebble Size and its Effect on Heat Transfer in a Pebble Bed Reactor
NASA Astrophysics Data System (ADS)
Jones, Andrew; Enriquez, Christian; Spangler, Julian; Yee, Tein; Park, Jungkyu; Farfan, Eduardo
2017-11-01
In pebble bed reactors, the typical pebble diameter used is 6cm, and within each pebble is are thousands of nuclear fuel kernels. However, efficiency of the reactor does not solely depend on the number of kernels of fuel within each graphite sphere, but also depends on the type and motion of the coolant within the voids between the spheres and the reactor itself. In this work a physical analysis of the pebble bed nuclear reactor's fluid dynamics is undertaken using Computational Fluid Dynamics software. The primary goal of this work is to observe the relationship between the different pebble diameters in an idealized alignment and the thermal transport efficiency of the reactor. The model constructed of our idealized argument will consist on stacked 8 pebble columns that fixed at the inlet on the reactor. Two different pebble sizes 4 cm and 6 cm will be studied and helium will be supplied as coolant with a fixed flow rate of 96 kg/s, also a fixed pebble surface temperatures will be used. Comparison will then be made to evaluate the efficiency of coolant to transport heat due to the varying sizes of the pebbles. Assistant Professor for the Department of Civil and Construction Engineering PhD.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gayathri Devi, V.; Sircar, A.; Sarkar, B.
One of the most challenging tasks in the design of the fuel cycle system lies in the effective design of Tritium Extraction System (TES) which involves proper extraction and purification of tritium in the fuel cycle of the fusion reactor. Indian Lead Lithium cooled Ceramic Breeder Test Blanket Module (LLCB-TBM) would extract hydrogen isotopes through Cryogenic Molecular Sieve Bed (CMSB) adsorber system. A prototype Hydrogen Isotopes Recovery System (HIRS) is being developed to validate the concepts for tritium extraction by adsorption mass transfer mechanism. In this study, a design model has been developed and analyzed to simulate the adsorption massmore » transfer kinetics in a fixed bed adsorption column. The simulation leads primarily to effective design of HIRS, which is a state-of-the-art technology. The paper describes the process simulation approach and the results of Computational Fluid Dynamics (CFD) analysis. The effects of different operating conditions are studied to investigate their influence on the hydrogen isotopes adsorption capacity. The results of the present simulation study would be used to understand the best optimized transport phenomenon before realizing the TES as a system for LLCB-TBM. (authors)« less
Rathbun, R.E.; Kennedy, Vance C.
1978-01-01
A fluorescent tracer technique was used to study the rates of transport and dispersion of sediment particles of various diameters and specific gravities for a dune-bed condition in an alluvial channel, Atrisco Feeder Canal near Bernalillo, N. Mex. The total transport rates of bed material measured by the steady-dilution and spatial-integration procedures were within the range of transport rates computed by the modified Einstein procedure. Lateral dispersion of the tracer particles increased with increase in the size of the tracer particles, whereas longitudinal dispersion decreased. The velocities of the tracer particles decreased with increase in the size of the tracer particles; dependence on particle diameter was large for the small particles, small for the large particles. Tracers were found at larger depths in the bed than would be expected on the basis of the sizes of the dunes in the channel. (Woodard-USGS)
Heitmuller, Franklin T.; Asquith, William H.
2008-01-01
The Texas Department of Transportation commonly builds and maintains low-water crossings (LWCs) over streams in the Edwards Plateau in Central Texas. LWCs are low-height structures, typically constructed of concrete and asphalt, that provide acceptable passage over seasonal rivers or streams with relatively low normal-depth flow. They are designed to accommodate flow by roadway overtopping during high-flow events. The streams of the Edwards Plateau are characterized by cobble- and gravel-sized bed material and highly variable flow regimes. Low base flows that occur most of the time occasionally are interrupted by severe floods. The floods entrain and transport substantial loads of bed material in the stream channels. As a result, LWCs over streams in the Edwards Plateau are bombarded and abraded by bed material during floods and periodically must be maintained or even replaced.
Han, Xiuli; Wang, Wei; Ma, Xiaojian
2011-01-01
The adsorption potential of lotus leaf to remove methylene blue (MB) from aqueous solution was investigated in batch and fixed-bed column experiments. Langmuir, Freundlich, Temkin and Koble-Corrigan isotherm models were employed to discuss the adsorption behavior. The results of analysis indicated that the equilibrium data were perfectly represented by Temkin isotherm and the Langmuir saturation adsorption capacity of lotus leaf was found to be 239.6 mg g(-1) at 303 K. In fixed-bed column experiments, the effects of flow rate, influent concentration and bed height on the breakthrough characteristics of adsorption were discussed. The Thomas and the bed-depth/service time (BDST) models were applied to the column experimental data to determine the characteristic parameters of the column adsorption. The two models were found to be suitable to describe the dynamic behavior of MB adsorbed onto the lotus leaf powder column.
Effect of finite container size on granular jet formation
NASA Astrophysics Data System (ADS)
von Kann, Stefan; Joubaud, Sylvain; Caballero-Robledo, Gabriel A.; Lohse, Detlef; van der Meer, Devaraj
2010-04-01
When an object is dropped into a bed of fine, loosely packed sand, a surprisingly energetic jet shoots out of the bed. In this work we study the effect that boundaries have on the granular jet formation. We did this by (i) decreasing the depth of the sand bed and (ii) reducing the container diameter to only a few ball diameters. These confinements change the behavior of the ball inside the bed, the void collapse, and the resulting jet height and shape. We map the parameter space of impact with Froude number, ambient pressure, and container dimensions as parameters. From these results we propose an explanation for the thick-thin structure of the jet reported by several groups ([J. R. Royer , Nat. Phys. 1, 164 (2005)], [G. Caballero , Phys. Rev. Lett. 99, 018001 (2007)], and [J. O. Marston , Phys. Fluids 20, 023301 (2008)]).
Fuel Gas Demonstration Plant Program. Volume I. Demonstration plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1979-01-01
The objective of this project is for Babcock Contractors Inc. (BCI) to provide process designs, and gasifier retort design for a fuel gas demonstration plant for Erie Mining Company at Hoyt Lake, Minnesota. The fuel gas produced will be used to supplement natural gas and fuel oil for iron ore pellet induration. The fuel gas demonstration plant will consist of five stirred, two-stage fixed-bed gasifier retorts capable of handling caking and non-caking coals, and provisions for the installation of a sixth retort. The process and unit design has been based on operation with caking coals; however, the retorts have beenmore » designed for easy conversion to handle non-caking coals. The demonstration unit has been designed to provide for expansion to a commercial plant (described in Commercial Plant Package) in an economical manner.« less
Concentration and Velocity Gradients in Fluidized Beds
NASA Technical Reports Server (NTRS)
McClymer, James P.
2003-01-01
In this work we focus on the height dependence of particle concentration, average velocity components, fluctuations in these velocities and, with the flow turned off, the sedimentation velocity. The latter quantities are measured using Particle Imaging Velocimetry (PIV). The PIV technique uses a 1-megapixel camera to capture two time-displaced images of particles in the bed. The depth of field of the imaging system is approximately 0.5 cm. The camera images a region with characteristic length of 2.6 cm for the small particles and 4.7 cm. for the large particles. The local direction of particle flow is determined by calculating the correlation function for sub-regions of 32 x 32 pixels. The velocity vector map is created from this correlation function using the time between images (we use 15 to 30 ms). The software is sensitive variations of 1/64th of a pixel. We produce velocity maps at various heights, each consisting of 3844 velocities. We break this map into three vertical zones for increased height information. The concentration profile is measured using an expanded (1 cm diameter) linearly polarized HeNe Laser incident on the fluidized bed. A COHU camera (gamma=1, AGC off) with a lens and a polarizer images the transmitted linearly polarized light to minimize the effects of multiply scattered light. The intensity profile (640 X 480 pixels) is well described by a Gaussian fit and the height of the Gaussian is used to characterize the concentration. This value is compared to the heights found for known concentrations. The sedimentation velocity is estimated using by imaging a region near the bottom of the bed and using PIV to measure the velocity as a function of time. With a nearly uniform concentration profile, the time can be converted to height information. The stable fluidized beds are made from large pseudo-monodisperse particles (silica spheres with radii (250-300) microns and (425-500) microns) dispersed in a glycerin/water mix. The Peclet number is sufficiently large that Brownian motion of the particles can be ignored and the Reynolds number sufficiently small that particle inertia is negligible. A packed particle bed is used to randomize and disperse the flowing fluid introduced by a peristaltic pump. The bed itself is a rectangular glass cell 8 cm wide (x), 0.8 cm deep and a height of 30.5 cm (z). The depth of field of the camera is approximately 0.5 cm so depth information is averaged. Over flow fluid is returned to the reservoir making a closed loop system. In these experiments the particles form a sediment approximately 5.7 cm high with the pump off and expand to 22 cm with the pump on. For the smaller particles the pump velocity is .5 millimeters per second and 1.1 millimeters per second for the large particles. At this concentration the bed has a very well defined top where particle concentration rapidly drops to zero.
NASA Astrophysics Data System (ADS)
Bandini, Filippo; Lopez-Tamayo, Alejandro; Merediz-Alonso, Gonzalo; Olesen, Daniel; Jakobsen, Jakob; Wang, Sheng; Garcia, Monica; Bauer-Gottwein, Peter
2018-04-01
Observations of water surface elevation (WSE) and bathymetry of the lagoons and cenotes of the Yucatán Peninsula (YP) in southeast Mexico are of hydrogeological interest. Observations of WSE (orthometric water height above mean sea level, amsl) are required to inform hydrological models, to estimate hydraulic gradients and groundwater flow directions. Measurements of bathymetry and water depth (elevation of the water surface above the bed of the water body) improve current knowledge on how lagoons and cenotes connect through the complicated submerged cave systems and the diffuse flow in the rock matrix. A novel approach is described that uses unmanned aerial vehicles (UAVs) to monitor WSE and bathymetry of the inland water bodies on the YP. UAV-borne WSE observations were retrieved using a radar and a global navigation satellite system on-board a multi-copter platform. Water depth was measured using a tethered floating sonar controlled by the UAV. This sonar provides depth measurements also in deep and turbid water. Bathymetry (wet-bed elevation amsl) can be computed by subtracting water depth from WSE. Accuracy of the WSE measurements is better than 5-7 cm and accuracy of the water depth measurements is estimated to be 3.8% of the actual water depth. The technology provided accurate measurements of WSE and bathymetry in both wetlands (lagoons) and cenotes. UAV-borne technology is shown to be a more flexible and lower cost alternative to manned aircrafts. UAVs allow monitoring of remote areas located in the jungle of the YP, which are difficult to access by human operators.
NASA Astrophysics Data System (ADS)
Demopoulos, A. W.; Bourque, J. R.; Brooke, S.
2015-12-01
Hydrocarbon seeps support distinct benthic communities capable of utilizing reduced chemical compounds for nutrition. In recent years, methane seepage has been increasingly documented along the continental slope of the U.S. Atlantic margin. In 2012 and 2013, two seeps were investigated in this region: a shallow site near Baltimore Canyon (410-450 m) and a deep site near Norfolk Canyon (1600 m). Both sites contain extensive mussel beds and microbial mats. Sediment cores and grab samples were collected to quantify the abundance, diversity, and community structure of benthic macrofauna (>300 mm) in relationship to the associated sediment environment (organic carbon and nitrogen, stable isotopes 13C and 15N, grain size, and depth) of mussel beds, mats, and slope habitats. Macrofaunal densities in microbial mats were four times greater than those present in mussel beds and slope sediments. Macrofaunal communities were distinctly different both between depths and among habitat types. Specifically, microbial mat sediments were dominated by the annelid families Dorvilleidae, Capitellidae, and Tubificidae, while mussel habitats had higher proportions of crustaceans. Diversity was lower in Baltimore microbial mat habitats, but higher in mussel and slope sediments compared to Norfolk seep habitats found at deeper depths. Multivariate statistical analysis identified sediment carbon:nitrogen (C:N) ratios and 13C values as important variables for structuring the macrofaunal communities. Higher C:N ratios were present within microbial mat habitats and depleted 13C values occurred in sediments adjacent to mussel beds found in Norfolk Canyon seeps. Differences in the quality and source of organic matter present in the seep habitats are known to be important drivers in macrofaunal community structure and associated food webs. The multivariate analysis provides new insight into the relative importance of the seep sediment quality in supporting dense macrofaunal communities compared to other seeps found throughout the region.
Flow and coherent structures around circular cylinders in shallow water
NASA Astrophysics Data System (ADS)
Zeng, Jie; Constantinescu, George
2017-06-01
Eddy-resolving numerical simulations are conducted to investigate the dynamics of the large-scale coherent structures around a circular cylinder in an open channel under very shallow flow conditions where the bed friction significantly affects the wake structure. Results are reported for three test cases, for which the ratio between the cylinder diameter, D, and the channel depth, H, is D/H = 10, 25, and 50, respectively. Simulation results show that a horseshoe vortex system forms in all test cases and the dynamics of the necklace vortices is similar to that during the breakaway sub-regime observed for cases when a laminar horseshoe vortex forms around the base of the cylinder. Given the shallow conditions and turbulence in the incoming channel flow, the necklace vortices occupy a large fraction of the flow depth (they penetrate until the free surface in the shallower cases with D/H = 25 and 50). The oscillations of the necklace vortices become less regular with increasing polar angle magnitude and can induce strong amplification of the bed shear stress beneath their cores. Strong interactions are observed between the legs of the necklace vortices and the eddies shed in the separated shear layers in the cases with D/H = 25 and 50. In these two cases, a vortex-street type wake is formed and strong three-dimensional effects are observed in the near-wake flow. A secondary instability in the form of arrays of co-rotating parallel horizontal vortices develops. Once the roller vortices get away from the cylinder, the horizontal vortices in the array orient themselves along the streamwise direction. This instability is not present for moderately shallow conditions (e.g., D/H ≈ 1) nor for very shallow cases when the wake changes to an unsteady bubble type (e.g., D/H = 50). For cases when this secondary instability is present, the horizontal vortices extend vertically over a large fraction of the flow depth and play an important role in the vertical mixing of fluid situated at the wake edges (e.g., by transporting the near-bed, lower-velocity fluid toward the free surface and vice versa). The largest amplification of the bed shear stress in the near-wake region is observed beneath these horizontal vortices, which means that they would play an important role in promoting bed erosion behind the cylinder in the case of a loose bed. Simulation results suggest that these co-rotating vortices form as a result of the interactions between the legs of the main necklace vortices and the vortical eddies contained into the newly forming roller at the back of the cylinder. The paper also analyzes how D/H affects the separation angle on the cylinder, the size of the recirculation bubble, the bed friction velocity distributions, and turbulence statistics.
1984-09-01
ambient air was drawn through Purafil beds (to remove NOx), compressed by a liquid (water) ring compressor to 100 psig, and passed successively...AD-R48 716 ATMOSPHERIC PHOTOCHEMICAL MODELING OF TURBNNE ENGINE 1/2 FUELS PHASE I EXPERI..(U) CALIFORNIA UNIV RIVERSIDE STATEWIDE AIR POLLUTION...of II Results and Disussion : t W.P.L. CARTER, A.M. WINER, R. ATKINSON, M.C. DODD, W.D. LONG, and S.M. ASCHMANN STATEWIDE AIR POLLUTION RESEARCH
Universal fuel basket for use with an improved oxide reduction vessel and electrorefiner vessel
Herrmann, Steven D.; Mariani, Robert D.
2002-01-01
A basket, for use in the reduction of UO.sub.2 to uranium metal and in the electrorefining of uranium metal, having a continuous annulus between inner and outer perforated cylindrical walls, with a screen adjacent to each wall. A substantially solid bottom and top plate enclose the continuous annulus defining a fuel bed. A plurality of scrapers are mounted adjacent to the outer wall extending longitudinally thereof, and there is a mechanism enabling the basket to be transported remotely.
Spurrier, F.R.; DeZubay, E.A.; Murray, A.P.; Vidt, E.J.
1984-02-07
Slab-shaped high efficiency catalytic reformer configurations are disclosed particularly useful for generation of fuels to be used in fuel cell based generation systems. A plurality of structures forming a generally rectangular peripheral envelope are spaced about one another to form annular regions, an interior annular region containing a catalytic bed and being regeneratively heated on one side by a hot combustion gas and on the other side by the gaseous products of the reformation. An integrally mounted combustor is cooled by impingement of incoming oxidant. 14 figs.
Solid Surface Combustion Experiment
1994-09-12
STS064-10-011 (12 Sept. 1994) --- The Solid Surface Combustion Experiment (SSCE), designed to supply information on flame spread over solid fuel surfaces in the reduced-gravity environment of space, is pictured during flight day four operations. The middeck experiment measured the rate of spreading, the solid-phase temperature, and the gas-phase temperature of flames spreading over rectangular fuel beds. STS-64 marked the seventh trip into space for the Lewis Research Center experiment. Photo credit: NASA or National Aeronautics and Space Administration
Advanced Expander Test Bed Program
1991-04-01
CHAMBER COOLANT DP 503. CHAMBER COOLANT DT 896. ETA C* 0.993 CHAMBER Q 12371. ENGINE STATION CONDITIONS FUEL SYSTEM CONDITIONS STATION PRESS TEMP FLOW...1597.3 452.5 7.44 1507.1 0.62 CHAMBER 1500.0 * OXYGEN SYSTEM CONDITIONS STATION PRESS TEMP FLOW ENTHALPY DENSITY ENGINE INLET 70.0 163.0- 44.64 61.2...FUEL SYSTEM CONOITIONS PRESS TEMP FLOM ENTHALPY OENSITY STATION (PSIA) (DEG R) (LB/SEC) [(BTU/LB) (LB/FT31 ENGINE INLET 73.0 38.0 7.440 -104.8 4.389
Wave trapping by dual porous barriers near a wall in the presence of bottom undulation
NASA Astrophysics Data System (ADS)
Kaligatla, R. B.; Manisha; Sahoo, T.
2017-09-01
Trapping of oblique surface gravity waves by dual porous barriers near a wall is studied in the presence of step type varying bottom bed that is connected on both sides by water of uniform depths. The porous barriers are assumed to be fixed at a certain distance in front of a vertical rigid wall. Using linear water wave theory and Darcy's law for flow past porous structure, the physical problem is converted into a boundary value problem. Using eigenfunction expansion in the uniform bottom bed region and modified mild-slope equation in the varying bottom bed region, the mathematical problem is handled for solution. Moreover, certain jump conditions are used to account for mass conservation at slope discontinuities in the bottom bed profile. To understand the effect of dual porous barriers in creating tranquility zone and minimum load on the sea wall, reflection coefficient, wave forces acting on the barrier and the wall, and surface wave elevation are computed and analyzed for different values of depth ratio, porous-effect parameter, incident wave angle, gap between the barriers and wall and slope length of undulated bottom. The study reveals that with moderate porosity and suitable gap between barriers and sea wall, using dual barriers an effective wave trapping system can be developed which will exert less wave force on the barriers and the rigid wall. The proposed wave trapping system is likely to be of immense help for protecting various facilities/ infrastructures in coastal environment.
Temporal Hyporheic Zone Response to Water Table Fluctuations.
Malzone, Jonathan M; Anseeuw, Sierra K; Lowry, Christopher S; Allen-King, Richelle
2016-03-01
Expansion and contraction of the hyporheic zone due to temporal hydrologic changes between stream and riparian aquifer influence the biogeochemical cycling capacity of streams. Theoretical studies have quantified the control of groundwater discharge on the depth of the hyporheic zone; however, observations of temporal groundwater controls are limited. In this study, we develop the concept of groundwater-dominated differential hyporheic zone expansion to explain the temporal control of groundwater discharge on the hyporheic zone in a third-order stream reach flowing through glacially derived terrain typical of the Great Lakes region. We define groundwater-dominated differential expansion of the hyporheic zone as: differing rates and magnitudes of hyporheic zone expansion in response to seasonal vs. storm-related water table fluctuation. Specific conductance and vertical hydraulic gradient measurements were used to map changes in the hyporheic zone during seasonal water table decline and storm events. Planar and riffle beds were monitored in order to distinguish the cause of increasing hyporheic zone depth. Planar bed seasonal expansion of the hyporheic zone was of a greater magnitude and longer in duration (weeks to months) than storm event expansion (hours to days). In contrast, the hyporheic zone beneath the riffle bed exhibited minimal expansion in response to seasonal groundwater decline compared to storm related expansion. Results indicated that fluctuation in the riparian water table controlled seasonal expansion of the hyporheic zone along the planar bed. This groundwater induced hyporheic zone expansion could increase the potential for biogeochemical cycling and natural attenuation. © 2015, National Ground Water Association.
Semeraro, Angela Marisa; Aliventi, Alessandra; Di Trani, Vittoria; Capocasa, Piero
2014-01-01
Bivalve molluscs represent an important source of cadmium exposure in humans, in particular oysters, because of their high filter feeding capability and high concentration of metal-binding metallothionein in tissues. In this study the authors investigated the difference in cadmium bioaccumulation in European flat oysters harvested from production areas in the district of San Benedetto del Tronto (Ascoli Piceno province, Italy), as a function of their origin (farming or natural beds) and the time of gathering. The beds lie 3 nm off-shore at a depth of 20-40 m and are collected by dredging. In the farms, baskets are suspended in the water column 2.5-3 nm offshore at a depth of 4 m. The authors analysed the results of cadmium monitoring plan carried out in oyster natural beds for a total of 15 samples collected from 2004 to 2012 and in two oyster farms for a total of 11 samples from 2009 to 2012. Although the few data did not allow to find a significant statistical association, they suggested two findings: i) cadmium concentration in oysters from natural beds seemed to be lower than in farmed oysters; and ii) in farmed oysters cadmium concentration even exceeded allowed maximum level for human consumption, in particular in autumn. The vertical stratification in the water column of phytoplankton and a cadmium dilution at oyster gonadal maturation might cause changes in oyster cadmium accumulation. PMID:27800338
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elliott, Douglas C.; Wang, Huamin; French, Richard
2014-08-14
Hot-vapor filtered bio-oils were produced from two different biomass feedstocks, oak and switchgrass, and the oils were evaluated in hydroprocessing tests for production of liquid hydrocarbon products. Hot-vapor filtering reduced bio-oil yields and increased gas yields. The yields of fuel carbon as bio-oil were reduced by ten percentage points by hot-vapor filtering for both feedstocks. The unfiltered bio-oils were evaluated alongside the filtered bio-oils using a fixed bed catalytic hydrotreating test. These tests showed good processing results using a two-stage catalytic hydroprocessing strategy. Equal-sized catalyst beds, a sulfided Ru on carbon catalyst bed operated at 220°C and a sulfided CoMomore » on alumina catalyst bed operated at 400°C were used with the entire reactor at 100 atm operating pressure. The products from the four tests were similar. The light oil phase product was fully hydrotreated so that nitrogen and sulfur were below the level of detection, while the residual oxygen ranged from 0.3 to 2.0%. The density of the products varied from 0.80 g/ml up to 0.86 g/ml over the period of the test with a correlated change of the hydrogen to carbon atomic ratio from 1.79 down to 1.57, suggesting some loss of catalyst activity through the test. These tests provided the data needed to assess the suite of liquid fuel products from the process and the activity of the catalyst in relationship to the existing catalyst lifetime barrier for the technology.« less
Rootless tephra stratigraphy and emplacement processes
NASA Astrophysics Data System (ADS)
Hamilton, Christopher W.; Fitch, Erin P.; Fagents, Sarah A.; Thordarson, Thorvaldur
2017-01-01
Volcanic rootless cones are the products of thermohydraulic explosions involving rapid heat transfer from active lava (fuel) to external sources of water (coolant). Rootless eruptions are attributed to molten fuel-coolant interactions (MFCIs), but previous studies have not performed systematic investigations of rootless tephrostratigraphy and grain-size distributions to establish a baseline for evaluating relationships between environmental factors, MFCI efficiency, fragmentation, and patterns of tephra dispersal. This study examines a 13.55-m-thick vertical section through an archetypal rootless tephra sequence, which includes a rhythmic succession of 28 bed pairs. Each bed pair is interpreted to be the result of a discrete explosion cycle, with fine-grained basal material emplaced dominantly as tephra fall during an energetic opening phase, followed by the deposition of coarser-grained material mainly as ballistic ejecta during a weaker coda phase. Nine additional layers are interleaved throughout the stratigraphy and are interpreted to be dilute pyroclastic density current (PDC) deposits. Overall, the stratigraphy divides into four units: unit 1 contains the largest number of sediment-rich PDC deposits, units 2 and 3 are dominated by a rhythmic succession of bed pairs, and unit 4 includes welded layers. This pattern is consistent with a general decrease in MFCI efficiency due to the depletion of locally available coolant (i.e., groundwater or wet sediments). Changing conduit/vent geometries, mixing conditions, coolant and melt temperatures, and/or coolant impurities may also have affected MFCI efficiency, but the rhythmic nature of the bed pairs implies a periodic explosion process, which can be explained by temporary increases in the water-to-lava mass ratio during cycles of groundwater recharge.
Brandon M. Collins; Heather A. Kramer; Kurt Menning; Colin Dillingham; David Saah; Peter A. Stine; Scott L. Stephens
2013-01-01
We built on previous work by performing a more in-depth examination of a completed landscape fuel treatment network. Our specific objectives were: (1) model hazardous fire potential with and without the treatment network, (2) project hazardous fire potential over several decades to assess fuel treatment network longevity, and (3) assess fuel treatment effectiveness and...
NASA Astrophysics Data System (ADS)
Trogisch, S.; Hoffmann, J.; Daza Bertrand, L.
In the past years research in the molten carbonate fuel cells (MCFC) area has been focusing its efforts on the utilisation of natural gas as fuel (S. Geitmann, Wasserstoff- & Brennstoffzellen-Projekte, 2002, ISBN 3-8311-3280-1). In order to increase the advantages of this technology, an international consortium has worked on the utilisation of biogas as fuel in MCFC. During the 4 years lasting RTD project EFFECTIVE two different gas upgrading systems have been developed and constructed together with two mobile MCFC test beds which were operated at different locations for approximately 2.000-5.000 h in each run with biogas from different origins and quality. The large variety of test locations has enabled to gather a large database for assessing the effect of the different biogas qualities on the complete system consisting of the upgrading and the fuel cell systems. The findings are challenging. This article also aims at giving an overview of the advantages of using biogas as fuel for fuel cells.
An assessment of advanced technology for industrial cogeneration
NASA Technical Reports Server (NTRS)
Moore, N.
1983-01-01
The potential of advanced fuel utilization and energy conversion technologies to enhance the outlook for the increased use of industrial cogeneration was assessed. The attributes of advanced cogeneration systems that served as the basis for the assessment included their fuel flexibility and potential for low emissions, efficiency of fuel or energy utilization, capital equipment and operating costs, and state of technological development. Over thirty advanced cogeneration systems were evaluated. These cogeneration system options were based on Rankine cycle, gas turbine engine, reciprocating engine, Stirling engine, and fuel cell energy conversion systems. The alternatives for fuel utilization included atmospheric and pressurized fluidized bed combustors, gasifiers, conventional combustion systems, alternative energy sources, and waste heat recovery. Two advanced cogeneration systems with mid-term (3 to 5 year) potential were found to offer low emissions, multi-fuel capability, and a low cost of producing electricity. Both advanced cogeneration systems are based on conventional gas turbine engine/exhaust heat recovery technology; however, they incorporate advanced fuel utilization systems.
Safeguards Challenges for Pebble-Bed Reactors (PBRs):Peoples Republic of China (PRC)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forsberg, Charles W.; Moses, David Lewis
2009-11-01
The Peoples Republic of China (PRC) is operating the HTR-10 pebble-bed reactor (PBR) and is in the process of building a prototype PBR plant with two modular reactors (250-MW(t) per reactor) feeding steam to a single turbine-generator. It is likely to be the first modular hightemperature reactor to be ready for commercial deployment in the world because it is a highpriority project for the PRC. The plant design features multiple modular reactors feeding steam to a single turbine generator where the number of modules determines the plant output. The design and commercialization strategy are based on PRC strengths: (1) amore » rapidly growing electric market that will support low-cost mass production of modular reactor units and (2) a balance of plant system based on economics of scale that uses the same mass-produced turbine-generator systems used in PRC coal plants. If successful, in addition to supplying the PRC market, this strategy could enable China to be the leading exporter of nuclear reactors to developing countries. The modular characteristics of the reactor match much of the need elsewhere in the world. PBRs have major safety advantages and a radically different fuel. The fuel, not the plant systems, is the primary safety system to prevent and mitigate the release of radionuclides under accident conditions. The fuel consists of small (6-cm) pebbles (spheres) containing coatedparticle fuel in a graphitized carbon matrix. The fuel loading per pebble is small (~9 grams of low-enriched uranium) and hundreds of thousands of pebbles are required to fuel a nuclear plant. The uranium concentration in the fuel is an order of magnitude less than in traditional nuclear fuels. These characteristics make the fuel significantly less attractive for illicit use (weapons production or dirty bomb); but, its unusual physical form may require changes in the tools used for safeguards. This report describes PBRs, what is different, and the safeguards challenges. A series of safeguards recommendations are made based on the assumption that the reactor is successfully commercialized and is widely deployed.« less
Blodgett, J.C.; Harris, Carroll D.; ,
1993-01-01
A study of the State Route 32 crossing of the Sacramento River near Hamilton City, California, is being made to determine those channel and bridge factors that contribute to scour at the site. Three types of scour data have been measured-channel bed (natural) scour, constriction (general) scour, and local (bridge-pier induced) scour. During the years 1979-93, a maximum of 3.4 ft of channel bed scour, with a mean of 1.4 ft, has been measured. Constriction scour, which may include channel bed scour, has been measured at the site nine times during the years 1987-92. The calculated amount of constriction scour ranged from 0.2 to 3.0 ft, assuming the reference is the mean bed elevation. Local scour was measured four times at the site in 1991 and 1992 and ranged from -2.1 (fill) to 11.6 ft , with the calculated amounts dependent on the bed reference elevation and method of computation used. Surveys of the channel bed near the bridge piers indicate the horizontal location of lowest bed elevation (maximum depth of scour) may vary at least 17 ft between different surveys at the same pier and most frequently is located downstream from the upstream face of the pier.
Depth discrimination in acousto-optic cerebral blood flow measurement simulation
NASA Astrophysics Data System (ADS)
Tsalach, A.; Schiffer, Z.; Ratner, E.; Breskin, I.; Zeitak, R.; Shechter, R.; Balberg, M.
2016-03-01
Monitoring cerebral blood flow (CBF) is crucial, as inadequate perfusion, even for relatively short periods of time, may lead to brain damage or even death. Thus, significant research efforts are directed at developing reliable monitoring tools that will enable continuous, bed side, simple and cost-effective monitoring of CBF. All existing non invasive bed side monitoring methods, which are mostly NIRS based, such as Laser Doppler or DCS, tend to underestimate CBF in adults, due to the indefinite effect of extra-cerebral tissues on the obtained signal. If those are to find place in day to day clinical practice, the contribution of extra-cerebral tissues must be eliminated and data from the depth (brain) should be extracted and discriminated. Recently, a novel technique, based on ultrasound modulation of light was developed for non-invasive, continuous CBF monitoring (termed ultrasound-tagged light (UTL or UT-NIRS)), and shown to correlate with readings of 133Xe SPECT and laser Doppler. We have assembled a comprehensive computerized simulation, modeling this acousto-optic technique in a highly scattering media. Using the combination of light and ultrasound, we show how depth information may be extracted, thus distinguishing between flow patterns taking place at different depths. Our algorithm, based on the analysis of light modulated by ultrasound, is presented and examined in a computerized simulation. Distinct depth discrimination ability is presented, suggesting that using such method one can effectively nullify the extra-cerebral tissues influence on the obtained signals, and specifically extract cerebral flow data.
Removal of heavy metals from acid mine drainage using chicken eggshells in column mode.
Zhang, Ting; Tu, Zhihong; Lu, Guining; Duan, Xingchun; Yi, Xiaoyun; Guo, Chuling; Dang, Zhi
2017-03-01
Chicken eggshells (ES) as alkaline sorbent were immobilized in a fixed bed to remove typical heavy metals from acid mine drainage (AMD). The obtained breakthrough curves showed that the breakthrough time increased with increasing bed height, but decreased with increasing flow rate and increasing particle size. The Thomas model and bed depth service time model could accurately predict the bed dynamic behavior. At a bed height of 10 cm, a flow rate of 10 mL/min, and with ES particle sizes of 0.18-0.425 mm, for a multi-component heavy metal solution containing Cd 2+ , Pb 2+ and Cu 2+ , the ES capacities were found to be 1.57, 146.44 and 387.51 mg/g, respectively. The acidity of AMD effluent clearly decreased. The ES fixed-bed showed the highest removal efficiency for Pb with a better adsorption potential. Because of the high concentration in AMD and high removal efficiency in ES fixed-bed of iron ions, iron floccules (Fe 2 (OH) 2 CO 3 ) formed and obstructed the bed to develop the overall effectiveness. The removal process was dominated by precipitation under the alkaline reaction of ES, and the co-precipitation of heavy metals with iron ions. The findings of this work will aid in guiding and optimizing pilot-scale application of ES to AMD treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.
Relative roughness controls on incipient sediment motion in steep channels
NASA Astrophysics Data System (ADS)
Prancevic, J.; Lamb, M. P.; Fuller, B. M.
2012-12-01
For over eight decades, researchers have noted an appreciable increase in the nondimensional shear stress (Shields number) at initiation of fluvial bedload transport with increasing bed slope. The precise cause of the trend, however, is obscured by the covariance of several factors with increased slope: a greater downstream component of the gravity acting on the grains and fluid, changes in bed morphology, increased grainsize relative to the channel width that may lead to grain bridging, and increased grainsize relative to flow depth (relative roughness) that may change flow hydraulics and particle buoyancy. Here, we report on ongoing laboratory experiments spanning a wide range of bed slopes (2% to 67%) designed to isolate these variables and determine the true cause of heightened critical Shields numbers on steep slopes. First, we eliminated bed morphology as a factor by using only planar beds. To investigate the effect of grain bridging, we used two different channel widths, representing width-to-grainsize ratios of 23:1 and 9:1. Finally, to separate the effects of slope from relative roughness, we compared incipient motion conditions for acrylic particles (submerged specific gravity of 0.15) to natural siliciclastic gravel (submerged specific gravity of 1.65). Different particle densities allowed us to explore incipient motion as a function of relative roughness, independent of channel slope, because lighter particles move at shallower flow depths than heavier ones of the same size. Results show that both materials exhibit a positive trend between bed slope and critical Shields number despite the existence of planar beds for all slopes. Furthermore, changing the grainsize-to-width ratio had a negligible effect on this trend. For all slopes, the critical Shields number for bedload transport was higher for the acrylic particles than for gravel, indicating that relative roughness has a strong control on incipient sediment motion independent of channel slope. These results are consistent with a simple force balance model that considers the effect of relative roughness on flow hydraulics and particle buoyancy, and neglects grain bridging and particle wedging. Together, our results indicate that heightened critical Shields number on steep planar beds is fundamentally due to the increase in relative roughness with increasing slope at the onset of sediment motion.
Computing nonhydrostatic shallow-water flow over steep terrain
Denlinger, R.P.; O'Connell, D. R. H.
2008-01-01
Flood and dambreak hazards are not limited to moderate terrain, yet most shallow-water models assume that flow occurs over gentle slopes. Shallow-water flow over rugged or steep terrain often generates significant nonhydrostatic pressures, violating the assumption of hydrostatic pressure made in most shallow-water codes. In this paper, we adapt a previously published nonhydrostatic granular flow model to simulate shallow-water flow, and we solve conservation equations using a finite volume approach and an Harten, Lax, Van Leer, and Einfeldt approximate Riemann solver that is modified for a sloping bed and transient wetting and drying conditions. To simulate bed friction, we use the law of the wall. We test the model by comparison with an analytical solution and with results of experiments in flumes that have steep (31??) or shallow (0.3??) slopes. The law of the wall provides an accurate prediction of the effect of bed roughness on mean flow velocity over two orders of magnitude of bed roughness. Our nonhydrostatic, law-of-the-wall flow simulation accurately reproduces flume measurements of front propagation speed, flow depth, and bed-shear stress for conditions of large bed roughness. ?? 2008 ASCE.
NASA Astrophysics Data System (ADS)
Devries, Paul; Burges, Stephen J.; Daigneau, Julie; Stearns, Daniel
2001-11-01
A relatively inexpensive prototype monitor was designed and developed to record temporal variation in scour depth and was field-tested in a gravel bed stream. The device consists of plastic practice golf balls that are fitted internally with ring magnets and strung on a two-conductor cable enclosing a small reed switch. The balls are installed and oriented near-vertically in the streambed. As each ball is disturbed and released, it slides along the cable past the reed switch, and the time of circuit closure caused by passage of the magnet is recorded by a data logger. The device can be applied in arrays that span large areas of the streambed, including in wide channels that are inaccessible during a flood. Data obtained from 19 devices installed in an aggrading site described scouring processes in a pool-riffle interface during a bed load transport event. Substantial bed excavation occurred in the region of the pool edge during the rising stage, indicating existence of a local, temporally varying imbalance in bed load transport rate. Bed disturbance in the rest of the site prior to aggradation was limited to the surface and immediate subpavement layer.
US RERTR FUEL DEVELOPMENT POST IRRADIATION EXAMINATION RESULTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
A. B. Robinson; D. M. Wachs; D. E. Burkes
2008-10-01
Post irradiation examinations of irradiated RERTR plate type fuel at the Idaho National Laboratory have led to in depth characterization of fuel behavior and performance. Both destructive and non-destructive examination capabilities at the Hot Fuels Examination Facility (HFEF) as well as recent results obtained are discussed herein. New equipment as well as more advanced techniques are also being developed to further advance the investigation into the performance of the high density U-Mo fuel.
NASA Astrophysics Data System (ADS)
Baar, Anne W.; de Smit, Jaco; Uijttewaal, Wim S. J.; Kleinhans, Maarten G.
2018-01-01
Large-scale morphology, in particular meander bend depth, bar dimensions, and bifurcation dynamics, are greatly affected by the deflection of sediment transport on transverse bed slopes due to gravity and by secondary flows. Overestimating the transverse bed slope effect in morphodynamic models leads to flattening of the morphology, while underestimating leads to unrealistically steep bars and banks and a higher braiding index downstream. However, existing transverse bed slope predictors are based on a small set of experiments with a minor range of flow conditions and sediment sizes, and in practice models are calibrated on measured morphology. The objective of this research is to experimentally quantify the transverse bed slope effect for a large range of near-bed flow conditions with varying secondary flow intensity, sediment sizes (0.17-4 mm), sediment transport mode, and bed state to test existing predictors. We conducted over 200 experiments in a rotating annular flume with counterrotating floor, which allows control of the secondary flow intensity separate from the streamwise flow velocity. Flow velocity vectors were determined with a calibrated analytical model accounting for rough bed conditions. We isolated separate effects of all important parameters on the transverse slope. Resulting equilibrium transverse slopes show a clear trend with varying sediment mobilities and secondary flow intensities that deviate from known predictors depending on Shields number, and strongly depend on bed state and sediment transport mode. Fitted functions are provided for application in morphodynamic modeling.
Linear Test Bed. Volume 2: Test Bed No. 2. [linear aerospike test bed for thrust vector control
NASA Technical Reports Server (NTRS)
1974-01-01
Test bed No. 2 consists of 10 combustors welded in banks of 5 to 2 symmetrical tubular nozzle assemblies, an upper stationary thrust frame, a lower thrust frame which can be hinged, a power package, a triaxial combustion wave ignition system, a pneumatic control system, pneumatically actuated propellant valves, a purge and drain system, and an electrical control system. The power package consists of the Mark 29-F fuel turbopump, the Mark 29-0 oxidizer turbopump, a gas generator assembly, and propellant ducting. The system, designated as a linear aerospike system, was designed to demonstrate the feasibility of the concept and to explore technology related to thrust vector control, thrust vector optimization, improved sequencing and control, and advanced ignition systems. The propellants are liquid oxygen/liquid hydrogen. The system was designed to operate at 1200-psia chamber pressure at an engine mixture ratio of 5.5. With 10 combustors, the sea level thrust is 95,000 pounds.
Dividers for reduction of aerodynamic drag of vehicles with open cavities
NASA Technical Reports Server (NTRS)
Storms, Bruce L. (Inventor)
2007-01-01
A drag-reduction concept for vehicles with open cavities includes dividing a cavity into smaller adjacent cavities through installation of one or more vertical dividers. The dividers may extend the full depth of the cavity or only partial depth. In either application, the top of the dividers are typically flush with the top of the bed or cargo bay of the vehicle. The dividers may be of any material, but are strong enough for both wind loads and forces encountered during cargo loading/unloading. For partial depth dividers, a structural angle may be desired to increase strength.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soria, José, E-mail: jose.soria@probien.gob.ar; Gauthier, Daniel; Flamant, Gilles
2015-09-15
Highlights: • A CFD two-scale model is formulated to simulate heavy metal vaporization from waste incineration in fluidized beds. • MSW particle is modelled with the macroscopic particle model. • Influence of bed dynamics on HM vaporization is included. • CFD predicted results agree well with experimental data reported in literature. • This approach may be helpful for fluidized bed reactor modelling purposes. - Abstract: Municipal Solid Waste Incineration (MSWI) in fluidized bed is a very interesting technology mainly due to high combustion efficiency, great flexibility for treating several types of waste fuels and reduction in pollutants emitted with themore » flue gas. However, there is a great concern with respect to the fate of heavy metals (HM) contained in MSW and their environmental impact. In this study, a coupled two-scale CFD model was developed for MSWI in a bubbling fluidized bed. It presents an original scheme that combines a single particle model and a global fluidized bed model in order to represent the HM vaporization during MSW combustion. Two of the most representative HM (Cd and Pb) with bed temperatures ranging between 923 and 1073 K have been considered. This new approach uses ANSYS FLUENT 14.0 as the modelling platform for the simulations along with a complete set of self-developed user-defined functions (UDFs). The simulation results are compared to the experimental data obtained previously by the research group in a lab-scale fluid bed incinerator. The comparison indicates that the proposed CFD model predicts well the evolution of the HM release for the bed temperatures analyzed. It shows that both bed temperature and bed dynamics have influence on the HM vaporization rate. It can be concluded that CFD is a rigorous tool that provides valuable information about HM vaporization and that the original two-scale simulation scheme adopted allows to better represent the actual particle behavior in a fluid bed incinerator.« less
Effect of pulsation on black liquor gasification. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zinn, B.T.; Jagoda, J.; Jeong, H.
1998-12-01
Pyrolysis is an endothermic process. The heat of reaction is provided either by partial combustion of the waste or by heat transfer from an external combustion process. In one proposed system black liquor is pyrolized in a fluidized bed to which heat is added through a series of pulse combustor tail pipes submerged in the bed material. This system appears promising because of the relatively high heat transfer in pulse combustors and in fluidized beds. Other advantages of pulse combustors are discussed elsewhere. The process is, however, only economically viable if a part of the pyrolysis products can be usedmore » to fire the pulse combustors. The overall goals of this study were to determine: (1) which is the limiting heat transfer rate in the process of transferring heat from the hot combustion products to the pipe, through the pipe, from the tail pipe to the bed and through the bed; i.e., whether increased heat transfer within the pulse combustor will significantly increase the overall heat transfer rate; (2) whether the heat transfer benefits of the pulse combustor can be utilized while maintaining the temperature in the bed within the narrow temperature range required by the process without generating hot spots in the bed; and (3) whether the fuel gas produced during the gasification process can be used to efficiently fire the pulse combustor.« less
40 CFR 90.311 - Test conditions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Test conditions. 90.311 Section 90.311 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF... must be installed on the test bed at their design installation angle to prevent abnormal fuel...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR THE THERMAL PROCESSING OF SOLID WASTES General Provisions § 240.101 Definitions. As used in these guidelines: (a) Air... quantity and direction, that is supplied from beneath and which passes through the solid wastes fuel bed...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cleland, J.; Purvis, C.R.
1998-06-01
The paper discusses a biomass energy conversion project being sponsored by EPA to demonstrate an enviromentally and economically sound electrical power option for government installations, industrial sites, rural cooperatives, small municipalities, and developing countries. Wood gasification combined with internal combustion engines was chosen because of (1) recent improvements in gas cleaning, (2) simple economical operation for units < 10 MW, and (3) the option of a clean cheap fuel for the many existing facilities generating expensive electricity from petroleum fuels with reciprocating engines. The plant incorporates a downdraft, moving-bed gasifier utilizing hogged waste wood from the Marine Corps Base atmore » Camp Lejeune, NC. A moving-bed bulk wood dryer and both spark ignition and diesel engines are included. Unique process design features are described briefly, relative to the gasifier, wood drying, tar separation, and process control. A test plan for process optimization and demonstration of reliability, economics, and environmental impact is outlined.« less
NASA Astrophysics Data System (ADS)
Shi, Benwei; Wang, Ya Ping; Wang, Li Hua; Li, Peng; Gao, Jianhua; Xing, Fei; Chen, Jing Dong
2018-06-01
Understanding of bottom sediment erodibility is necessary for the sustainable management and protection of coastlines, and is of great importance for numerical models of sediment dynamics and transport. To investigate the dependence of sediment erodibility on degree of consolidation, we measured turbidity, waves, tidal currents, intratidal bed-level changes, and sediment properties on an exposed macrotidal mudflat during a series of tidal cycles. We estimated the water content of surface sediments (in the uppermost 2 cm of sediment) and sub-surface sediments (at 2 cm below the sediment surface). Bed shear stress values due to currents (τc), waves (τw), and combined current-wave action (τcw) were calculated using a hydrodynamic model. In this study, we estimate the critical shear stress for erosion using two approaches and both of them give similar results. We found that the critical shear stress for erosion (τce) was 0.17-0.18 N/m2 in the uppermost 0-2 cm of sediment and 0.29 N/m2 in sub-surface sediment layers (depth, 2 cm), as determined by time series of τcw values and intratidal bed-level changes, and values of τce, obtained using the water content of bottom sediments, were 0.16 N/m2 in the uppermost 2 cm and 0.28 N/m2 in the sub-surface (depth, 2 cm) sediment. These results indicate that the value of τce for sub-surface sediments (depth, 2 cm) is much greater than that for the uppermost sediments (depth, 0-2 cm), and that the τce value is mainly related to the water content, which is determined by the extent of consolidation. Our results have implications for improving the predictive accuracy of models of sediment transport and morphological evolution, by introducing variable τce values for corresponding sediment layers, and can also provide a mechanistic understanding of bottom sediment erodibility at different sediment depths on intertidal mudflats, as related to differences in the consolidation time.
Space reactor fuel element testing in upgraded TREAT
NASA Astrophysics Data System (ADS)
Todosow, M.; Bezler, P.; Ludewig, H.; Kato, W. Y.
The testing of candidate fuel elements at prototypic operating conditions with respect to temperature, power density, hydrogen coolant flow rate, etc.; a crucial component in the development and qualification of nuclear rocket engines based on the Particle Bed Reactor (PBR); NERVA-derivative; and other concepts are discussed. Such testing may be performed at existing reactors, or at new facilities. A scoping study has been performed to assess the feasibility of testing PBR based fuel elements at the TREAT reactor. Initial results suggest that full-scale PBR elements could be tested at an average energy deposition of approximately 60-80 MW-s/L in the current TREAT reactor. If the TREAT reactor was upgraded to include fuel elements with a higher temperature limit, average energy deposition of approximately 100 MW/L may be achievable.
Space reactor fuel element testing in upgraded TREAT
NASA Astrophysics Data System (ADS)
Todosow, Michael; Bezler, Paul; Ludewig, Hans; Kato, Walter Y.
1993-01-01
The testing of candidate fuel elements at prototypic operating conditions with respect to temperature, power density, hydrogen coolant flow rate, etc., is a crucial component in the development and qualification of nuclear rocket engines based on the Particle Bed Reactor (PBR), NERVA-derivative, and other concepts. Such testing may be performed at existing reactors, or at new facilities. A scoping study has been performed to assess the feasibility of testing PBR based fuel elements at the TREAT reactor. Initial results suggests that full-scale PBR elements could be tested at an average energy deposition of ˜60-80 MW-s/L in the current TREAT reactor. If the TREAT reactor was upgraded to include fuel elements with a higher temperture limit, average energy deposition of ˜100 MW/L may be achievable.