Science.gov

Sample records for fuel benefits challenges

  1. Used Nuclear Fuel: From Liability to Benefit

    NASA Astrophysics Data System (ADS)

    Orbach, Raymond L.

    2011-03-01

    Nuclear power has proven safe and reliable, with operating efficiencies in the U.S. exceeding 90%. It provides a carbon-free source of electricity (with about a 10% penalty arising from CO2 released from construction and the fuel cycle). However, used fuel from nuclear reactors is highly toxic and presents a challenge for permanent disposal -- both from technical and policy perspectives. The half-life of the ``bad actors'' is relatively short (of the order of decades) while the very long lived isotopes are relatively benign. At present, spent fuel is stored on-site in cooling ponds. Once the used fuel pools are full, the fuel is moved to dry cask storage on-site. Though the local storage is capable of handling used fuel safely and securely for many decades, the law requires DOE to assume responsibility for the used fuel and remove it from reactor sites. The nuclear industry pays a tithe to support sequestration of used fuel (but not research). However, there is currently no national policy in place to deal with the permanent disposal of nuclear fuel. This administration is opposed to underground storage at Yucca Mountain. There is no national policy for interim storage---removal of spent fuel from reactor sites and storage at a central location. And there is no national policy for liberating the energy contained in used fuel through recycling (separating out the fissionable components for subsequent use as nuclear fuel). A ``Blue Ribbon Commission'' has been formed to consider alternatives, but will not report until 2012. This paper will examine alternatives for used fuel disposition, their drawbacks (e.g. proliferation issues arising from recycling), and their benefits. For recycle options to emerge as a viable technology, research is required to develop cost effective methods for treating used nuclear fuel, with attention to policy as well as technical issues.

  2. Whole grains: benefits and challenges.

    PubMed

    Jones, Julie Miller; Engleson, Jodi

    2010-01-01

    Inclusion of whole grains (WG) in the diet is recommended in dietary guidance around the world because of their associations with increased health and reduced risk of chronic disease. WGs are linked to reduced risk of obesity or weight gain; reduced risk of cardiovascular disease (CVD), including coronary heart disease (CHD), hypertension, and stroke; improved gut health and decreased risk of cancers of the upper gut; perhaps reduced risk of colorectal cancer; and lower mortality rate. The 2005 United States Dietary Guidelines Advisory Committee has recommended that consumers make "half their grains whole." Yet, whole grains are puzzling both consumers and scientists. Scientists are trying to determine whether their health benefits are due to the synergy of WG components, individual WG components, or the fact that WG eaters make many of the recommended diet and lifestyle choices. Consumers need to understand the WG benefits and how to identify WG foods to have incentive to purchase and use such foods. Industry needs to develop great-tasting, clearly-labeled products. With both these factors working together, it will be possible to change WG consumption habits among consumers.

  3. Online Credit Recovery: Benefits and Challenges

    ERIC Educational Resources Information Center

    Pettyjohn, Teri; LaFrance, Jason

    2014-01-01

    School leaders are faced with selecting programs to support at-risk students in high schools across the United States. Increasingly, supplemental online learning is being selected as an innovative way to assist these students. The purpose of this qualitative study was to understand stakeholders' perceptions of the benefits and challenges of high…

  4. Orff Ensembles: Benefits, Challenges, and Solutions

    ERIC Educational Resources Information Center

    Taylor, Donald M.

    2012-01-01

    Playing Orff instruments provides students with a wide variety of opportunities to explore creative musicianship. This article examines the benefits of classroom instrument study, common challenges encountered, and viable teaching strategies to promote student success. The ability to remove notes from barred instruments makes note accuracy more…

  5. Sustainable Facility Development: Perceived Benefits and Challenges

    ERIC Educational Resources Information Center

    Stinnett, Brad; Gibson, Fred

    2016-01-01

    Purpose: The purpose of this paper is to assess the perceived benefits and challenges of implementing sustainable initiatives in collegiate recreational sports facilities. Additionally, this paper intends to contribute to the evolving field of facility sustainability in higher education. Design/methodology/approach The design included qualitative…

  6. Physics challenges for advanced fuel cycle assessment

    SciTech Connect

    Giuseppe Palmiotti; Massimo Salvatores; Gerardo Aliberti

    2014-06-01

    Advanced fuel cycles and associated optimized reactor designs will require substantial improvements in key research area to meet new and more challenging requirements. The present paper reviews challenges and issues in the field of reactor and fuel cycle physics. Typical examples are discussed with, in some cases, original results.

  7. Developing a PPO: challenges and benefits.

    PubMed

    Range, R P

    1984-12-01

    When deciding upon which kind of alternative delivery system to develop, Saint Vincent Charity Hospital and Health Center, Cleveland, selected the preferred provider organization (PPO) mode because of four basic advantages: (1) the health care consumer's freedom to choose providers; (2) effective cost containment; (3) coordination of services among allied providers; and (4) health promotion programs. More specifically, the Ohio Health Choice Plan (OHCP) benefits hospitals by assisting to maintain or increase market share, facilitating prompt claims payments, and improving financial mix. Physicians benefit not only because they receive prompt payment and are not a risk but also because the fee-for-service system is retained and their market shares can also be preserved or enhanced. Employers' advantages include savings through controlled utilization, positive employee relations, and improved management information. Employees' benefits include lower out-of-pocket costs and freedom of choice. As a full-service PPO, the organization provides benefits plans designed to meet each employer's needs as well as actuary services, claims screening and processing, benefits coordination, utilization control, management reporting, health promotion activities, and networking capabilities. Four major challenges do confront PPOs: 1. Start-up and operating costs can be significant; 2. The administrative skills required are different from those used in traditional health care systems; 3. The commitment in implementing and operating a PPO; and 4. All participating providers must genuinely accept the PPO. A PPO's success also can be measured in three ways: the development of a strong network; size of enrollment; and effectiveness in utilization control.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. The challenges and benefits of lunar exploration

    NASA Astrophysics Data System (ADS)

    Cohen, Aaron

    1992-02-01

    Three decades into the Space Age, the United States is experiencing a fundamental shift in space policy with the adoption of a broad national goal to expand human presence and activity beyond Earth orbit and out into the Solar System. These plans mark a turning point in American space exploration, for they entail a shift away from singular forays to a long-term, evolutionary program of exploration and utilization of space. No longer limited to the technical and operational specifics of any one vehicle or any one mission plan, this new approach will involve a fleet of spacecraft and a stable of off-planet research laboratories, industrial facilities, and exploration programs. The challenges inherent in this program are immense, but so too are the benefits. Central to this new space architecture is the concept of using a lunar base for in-situ resource utilization, and for the development of planetary surface exploration systems, applicable to the Moon, Mars, and other planetary bodies in the Solar System. This paper discusses the technical, economic, and political challenges involved in this new approach, and details the latest thinking on the benefits that could come from bold new endeavors on the final frontier.

  9. The challenges and benefits of lunar exploration

    NASA Technical Reports Server (NTRS)

    Cohen, Aaron

    1992-01-01

    Three decades into the Space Age, the United States is experiencing a fundamental shift in space policy with the adoption of a broad national goal to expand human presence and activity beyond Earth orbit and out into the Solar System. These plans mark a turning point in American space exploration, for they entail a shift away from singular forays to a long-term, evolutionary program of exploration and utilization of space. No longer limited to the technical and operational specifics of any one vehicle or any one mission plan, this new approach will involve a fleet of spacecraft and a stable of off-planet research laboratories, industrial facilities, and exploration programs. The challenges inherent in this program are immense, but so too are the benefits. Central to this new space architecture is the concept of using a lunar base for in-situ resource utilization, and for the development of planetary surface exploration systems, applicable to the Moon, Mars, and other planetary bodies in the Solar System. This paper discusses the technical, economic, and political challenges involved in this new approach, and details the latest thinking on the benefits that could come from bold new endeavors on the final frontier.

  10. Doing clinical research: the challenges and benefits.

    PubMed

    Higgins, Isabel; Parker, Vicki; Keatinge, Diana; Giles, Michelle; Winskill, Rhonda; Guest, Eileen; Kepreotes, Elizabeth; Phelan, Caroline

    2010-06-01

    The need for research in practice is well documented within nursing and other health care disciplines. This acceptance is predicated on the belief that clinically applied research will inform and improve practice and health service delivery resulting in better outcomes for consumers and their families. Nurses, however, find doing clinical research challenging. This paper describes nurses' experiences of doing clinical research. The main challenges of doing clinical research arise from a culture that prioritises practice where nursing work is core business and there is the need to address immediate and short term goals. There are also problems associated with the use of research language amongst clinical nurses and ambiguity in relation to research role expectations. Lack of support and resources for doing research along with keeping up the momentum for a research project also pose significant challenges. The benefits of doing clinical nursing research include experiential learning that has the potential to lead to practice change and improved patient outcomes that are evidence based.

  11. Undergraduate Research: Opportunities, Challenges, and Benefits

    NASA Astrophysics Data System (ADS)

    Singer, J.

    2001-05-01

    Undergraduate research is one of the best ways students can experience investigative learning. Undergraduates involved in research often cite the experience as the highlight of their education. Because many geoscience departments now recognize the benefits of undergraduate research, they are creating more opportunities for students and are expecting their faculty to provide research mentoring. The Council on Undergraduate Research (CUR) is a national organization of individual and institutional members representing nearly 900 public and private colleges and universities. CUR generates awareness and support for undergraduate research and offers a variety of faculty development opportunities and services. CUR also conducts workshops where teams of faculty develop a campus plan for institutionalizing undergraduate research. A new online registry facilitates matchmaking between undergraduates with research experience and a desire to pursue an advanced degree, and graduate schools seeking high quality students who are well prepared for research. This presentation will describe the role of CUR in supporting undergraduate research, give examples of successful undergraduate research programs, and highlight some of the challenges and benefits of undergraduate research.

  12. The all electric airplane-benefits and challenges

    NASA Technical Reports Server (NTRS)

    Spitzer, C. R.; Hood, R. V.

    1982-01-01

    The all electric aircraft considered in the present investigation is an aircraft which has digital flight crucial controls, electromechanical actuators, and electrical secondary power. There are no hydraulic or pneumatic systems. The characteristics of an all electric aircraft are related to reduced acquisition cost, reduced weight, reduced fuel consumption, increased reliability, reduced support equipment, simpler maintenance, an expanded flight envelope, and improved survivability. An additional benefit is the dramatically increased design flexibility and mission adaptability. However, the implementation of the all electric aircraft concept requires the resolution of a number of major technology issues. Issues in the digital flight controls area are related to achieving the required levels of safety and reliability in a cost effective manner. Other challenges which have to be met are concerned with electromechanical actuators, environmental control and ice protection systems, and engine technology.

  13. Organisational Blogs: Benefits and Challenges of Implementation

    ERIC Educational Resources Information Center

    Baxter, Gavin J.; Connolly, Thomas M.; Stansfield, Mark H.

    2010-01-01

    Purpose: The purpose of this paper is to identify the theoretical link between blogs and organisational learning. It aims to provide a set of practical guidelines on how to overcome the challenges of implementing an organisational blog. Design/methodology/approach: A literature review will be used to examine blogs and their association towards…

  14. Environmental benefits of transport and stationary fuel cells

    NASA Astrophysics Data System (ADS)

    Hart, David; Hörmandinger, Günter

    The potential environmental benefits of using fuel cells in cars, buses and stationary combined heat and power (CHP) plants of different sizes have not been well-researched. This environmental analysis was conducted for the UK on a `full fuel cycle' basis, encompassing all greenhouse gas and regulated pollutant emissions for the supply chain and end-use technology under consideration. Solid polymer fuel cells (SPFCs) with methanol or natural gas reformers were analysed for cars, SPFCs and phosphoric acid fuel cells (PAFCs) with on-board hydrogen for buses. CHP plants were PAFCs or solid oxide fuel cells (SOFCs). Each option was compared with one or more conventional technologies. In all cases fuel cell technologies have substantially reduced emissions in comparison with conventional technologies. Regulated emissions are lowest, by up to two orders of magnitude, and those that do occur are primarily in the fuel supply chain. The fuel cell technologies are more efficient in all cases, and carbon dioxide (CO2) emissions are reduced broadly in line with energy savings. Methane emissions increase due to fuel switching, e.g. from petrol to natural gas powered buses, but from a very low base. The study pinpoints some areas in which alternative approaches could be made - the methods for generating and transporting hydrogen have a significant bearing on energy consumption and emissions. However, it is clear that from an overall emissions perspective the use of fuel cells in transport and power generation is highly beneficial.

  15. A methodology for assessing the market benefits of alternative motor fuels: The Alternative Fuels Trade Model

    SciTech Connect

    Leiby, P.N.

    1993-09-01

    This report describes a modeling methodology for examining the prospective economic benefits of displacing motor gasoline use by alternative fuels. The approach is based on the Alternative Fuels Trade Model (AFTM). AFTM development was undertaken by the US Department of Energy (DOE) as part of a longer term study of alternative fuels issues. The AFTM is intended to assist with evaluating how alternative fuels may be promoted effectively, and what the consequences of substantial alternative fuels use might be. Such an evaluation of policies and consequences of an alternative fuels program is being undertaken by DOE as required by Section 502(b) of the Energy Policy Act of 1992. Interest in alternative fuels is based on the prospective economic, environmental and energy security benefits from the substitution of these fuels for conventional transportation fuels. The transportation sector is heavily dependent on oil. Increased oil use implies increased petroleum imports, with much of the increase coming from OPEC countries. Conversely, displacement of gasoline has the potential to reduce US petroleum imports, thereby reducing reliance on OPEC oil and possibly weakening OPEC`s ability to extract monopoly profits. The magnitude of US petroleum import reduction, the attendant fuel price changes, and the resulting US benefits, depend upon the nature of oil-gas substitution and the supply and demand behavior of other world regions. The methodology applies an integrated model of fuel market interactions to characterize these effects.

  16. [Biomass energy utilization in microbial fuel cells: potentials and challenges].

    PubMed

    Huang, Liping; Cheng, Shaoan

    2010-07-01

    Microbial fuel cells (MFCs) that can harvest biomass energy from organic wastes through microbial catalysis have garnered more and more attention within the past decade due to its potential benefits to ecological environment. In this article, the updated progress in MFCs is reviewed, with a focus on frontier technologies such as chamber configurations, feedstock varieties and the integration of MFCs with microbial electrolysis cells for hydrogen production. And on the other hand, the challenges like development of cost-effective electrode materials, improvement of biomass energy recovery and power output, design and optimization of commercial MFC devices are presented.

  17. Campus Challenge - Part 2: Benefits and Challenges of BACnet

    DOE PAGES

    Masica, Ken

    2016-01-15

    Additional challenges of implementing a BACnet network in a large campus environment are explored in this article: providing BACnet campus connectivity, protecting BACnet network traffic, and controlling the resulting broadcast traffic. An example of BACnet implementation is also presented, unifying concepts presented in this and Part One of the article.

  18. Risk-benefit perception: The research challenge

    SciTech Connect

    Peelle, E.

    1987-01-01

    Factors predisposing to perception of repositories as risky include the nuclear track record of secrecy and ineptitude, the overconfidence of some pro-nukes and the premature commercialization of an immature technology. Then, in parallel, we have the AEC-DOE track record including a bureaucratic approach involving premature policy decisions and continual changes in nuclear waste policy as demanded by Congress. The confusion of nuclear power with nuclear weapons is encouraged by those whose goal is to get rid of nuclear power. Media coverge feeds on controversy and a crisis, is a major factor in public perception of N-power and repositories as risky. Beyond their actual physical effects, there is the signal value of accidents such as Browns Ferry, Chernobyl, the Hanford tank leaks, Challenger, and TMI. These accidents have signaled that either the managers and operators don't understand the technology well enough to manage it, or worse yet, that the technology itself may not be manageable. With wodefully inadequate science and technology eduation, US citizens are unprepared to make decisions about management and uses of technology or to conduct their own risk evaluations. All of the above is occurring against the backdrop of the widespread and pervasive decline of trust in government and institutions in the past 25 years. And finally, there is Murphy's Law - everyone has some personal knowledge that whatever can go wrong will go wrong some day. In this social context, the tilt is toward perception of repositories as risky.

  19. Miniaturized biological and electrochemical fuel cells: challenges and applications.

    PubMed

    Yang, Jie; Ghobadian, Sasan; Goodrich, Payton J; Montazami, Reza; Hashemi, Nastaran

    2013-09-14

    This paper discusses the fundamentals and developments of miniaturized fuel cells, both biological and electrochemical. An overview of microfluidic fuel cells, miniaturized microbial fuel cells, enzymatic biofuel cells, and implanted biofuel cells in an attempt to provide green energy and to power implanted microdevices is provided. Also, the challenges and applications of each type of fuel cell are discussed in detail. Most recent developments in fuel cell technologies such as novel catalysts, compact designs, and fabrication methods are reviewed.

  20. Electronic Payment System in Nigeria: Its Economic Benefits and Challenges

    ERIC Educational Resources Information Center

    Okifo, Joseph; Igbunu, Richard

    2015-01-01

    The crux of this study is on the adoption of E-payment system in Nigeria: Its economic benefits and challenges. The arrival of the internet has taken electronic payments and transactions to an exponential growth level. Consumers could purchase goods and services from the internet and send unencrypted credit card numbers across the network, which…

  1. Faculty Perception on International Students in Turkey: Benefits and Challenges

    ERIC Educational Resources Information Center

    Acar, Erkan

    2016-01-01

    The purpose of this qualitative case study is to examine faculty perceptions on international students with respect to benefits and challenges of having them in a liberal arts university located in Istanbul, Turkey. The research data were collected through evaluation of pertinent documents of the school and interviews with sixteen faculty members…

  2. Use of Demonstration Gardens in Extension: Challenges and Benefits

    ERIC Educational Resources Information Center

    Glen, Charlotte D.; Moore, Gary E.; Jayaratne, K. S. U.; Bradley, Lucy K.

    2014-01-01

    Extension agents' use of demonstration gardens was studied to determine how gardens are employed in horticultural programming, perceived benefits and challenges of using gardens for Extension programming, and desired competencies. Gardens are primarily used to enhance educational efforts by providing hands-on learning experiences. Greatest…

  3. Reflection in a Workplace Qualification: Challenges and Benefits

    ERIC Educational Resources Information Center

    Hegarty, Pauline M.; Kelly, Henry A.; Walsh, Anita

    2011-01-01

    Purpose: The purpose of this paper is to discuss the challenges and benefits that arose from the implementation of an innovative example of employer responsive provision, i.e. of a postgraduate programme that is work-based and designed specifically to meet the needs of the organisation. Design/methodology/approach: The approach is to outline the…

  4. Immobilization of enzymes on porous silicas--benefits and challenges.

    PubMed

    Hartmann, Martin; Kostrov, Xenia

    2013-08-07

    Porous silica materials have extensively been used for the immobilization of enzymes aiming at their use as biocatalysts or biosensors. This tutorial review will discuss the benefits and challenges of different immobilization techniques and will provide references to recent papers for further reading. Moreover, novel trends and unsolved problems will be introduced.

  5. Santini memorial lecture: Space Challenges and Opportunities for Human Benefit

    NASA Astrophysics Data System (ADS)

    Yarymovych, Michael I.

    2012-06-01

    Since the beginning of the Space Age the public was fascinated by the great challenges that needed to be overcome, but also inspired by the potential benefits that might arise from the utilization of space systems. This lecture examines the major technological breakthroughs that were necessary for many of the key space programs to succeed, and postulates the immediate and future benefits to humanity that became evident as a result of these advances. A dozen programs ranging from Sputnik and Apollo to the Global Navigation Satellite System are reviewed in view of the technical challenges in elements such as propulsion, power, structures, computing, guidance and control, spectrum management and payloads. Challenges in the cost of space launch, large structures, debris mitigation, humans in space and commercial promise are discussed and opportunities for improvements in the future are postulated.

  6. Social media and physicians: Exploring the benefits and challenges.

    PubMed

    Panahi, Sirous; Watson, Jason; Partridge, Helen

    2016-06-01

    Healthcare professionals' use of social media platforms, such as blogs, wikis, and social networking web sites has grown considerably in recent years. However, few studies have explored the perspectives and experiences of physicians in adopting social media in healthcare. This article aims to identify the potential benefits and challenges of adopting social media by physicians and demonstrates this by presenting findings from a survey conducted with physicians. A qualitative survey design was employed to achieve the research goal. Semi-structured interviews were conducted with 24 physicians from around the world who were active users of social media. The data were analyzed using the thematic analysis approach. The study revealed six main reasons and six major challenges for physicians adopting social media. The main reasons to join social media were as follows: staying connected with colleagues, reaching out and networking with the wider community, sharing knowledge, engaging in continued medical education, benchmarking, and branding. The main challenges of adopting social media by physicians were also as follows: maintaining confidentiality, lack of active participation, finding time, lack of trust, workplace acceptance and support, and information anarchy. By revealing the main benefits as well as the challenges of adopting social media by physicians, the study provides an opportunity for healthcare professionals to better understand the scope and impact of social media in healthcare, and assists them to adopt and harness social media effectively, and maximize the benefits for the specific needs of the clinical community.

  7. Nuclear fuel performance: Trends, remedies and challenges

    NASA Astrophysics Data System (ADS)

    Rusch, C. A.

    2008-12-01

    It is unacceptable to have nuclear power plants unavailable or power restricted due to fuel reliability issues. 'Fuel reliability' has a much broader definition than just maintaining mechanical integrity and being leaker free - fuel must fully meet the specifications, impose no adverse impacts on plant operation and safety, and maintain quantifiable margins within design and operational envelopes. The fuel performance trends over the last decade are discussed and the significant contributors to reduced reliability experienced with commercial PWR and BWR designs are identified and discussed including grid-to-rod fretting and debris fretting in PWR designs and accelerated corrosion, debris fretting and pellet-cladding interaction in BWR designs. In many of these cases, the impacts have included not only fuel failures but also plant operating restrictions, forced shutdowns, and/or enhanced licensing authority oversight. Design and operational remedies are noted. The more demanding operating regimes and the constant quest to improve fuel performance require enhancements to current designs and/or new design features. Fuel users must continue to and enhance interaction with fuel suppliers in such areas as oversight of supplier design functions, lead test assembly irradiation programs and quality assurance oversight and surveillance. With the implementation of new designs and/or features, such fuel user initiatives can help to minimize the potential for performance problems.

  8. A Vulnerability-Benefit Analysis of Fossil Fuel CO2 Emissions

    NASA Astrophysics Data System (ADS)

    Delman, E. M.; Stephenson, S. R.; Davis, S. J.; Diffenbaugh, N. S.

    2015-12-01

    Although we can anticipate continued improvements in our understanding of future climate impacts, the central challenge of climate change is not scientific, but rather political and economic. In particular, international climate negotiations center on how to share the burden of uncertain mitigation and adaptation costs. We expose the relative economic interests of different countries by assessing and comparing their vulnerability to climate impacts and the economic benefits they derive from the fossil fuel-based energy system. Vulnerability refers to the propensity of humans and their assets to suffer when impacted by hazards, and we draw upon the results from a number of prior studies that have quantified vulnerability using multivariate indices. As a proxy for benefit, we average CO2 related to each country's extraction of fossil fuels, production of CO2 emissions, and consumption of goods and services (Davis et al., 2011), which should reflect benefits accrued in proportion to national economic dependence on fossil fuels. We define a nondimensional vulnerability-benefit ratio for each nation and find a large range across countries. In general, we confirm that developed and emerging economies such as the U.S., Western Europe, and China rely heavily on fossil fuels and have substantial resources to respond to the impacts of climate change, while smaller, less-developed economies such as Sierra Leone and Vanuatu benefit little from current CO2 emissions and are much more vulnerable to adverse climate impacts. In addition, we identify some countries with a high vulnerability and benefit, such as Iraq and Nigeria; conversely, some nations exhibit both a low vulnerability and benefit, such as New Zealand. In most cases, the ratios reflect the nature of energy-climate policies in each country, although certain nations - such as the United Kingdom and France - assume a level of responsibility incongruous with their ratio and commit to mitigation policy despite

  9. Multidimensional Challenges and Benefits of the CASSIOPE Mission

    NASA Astrophysics Data System (ADS)

    Yau, A.; James, G.; Enno, G.; Hum, R.; Duggan, P.; Senez, M.; Ali, Z.; Brassard, G.; Desjardins, B.; Dubé, L.; Guroux, R.; Beattie, D.; Walkty, I.

    2008-08-01

    We discuss both the synergistic benefits and the challenges of the multi-purpose Canadian CASSIOPE small satellite mission, in which we merge a science mission (e-POP), a technology demonstration mission (CASCADE), and the Canadian Small Satellite Bus Development Program into a single mission. The scientific objectives of the mission concentrate on understanding the central role of the polar ionosphere in moderating the exchange of energy and mass among the ionosphere, thermosphere and magnetosphere. The cross- disciplinary merger posed a number of technical and programmatic challenges on both payloads and the spacecraft bus, including a stringent level of electro- magnetic cleanliness and surface electrical conductivity for plasma and high-sensitivity electric and magnetic field measurements on e-POP; differences in development philosophies, mission reliability requirements, and product assurance-cost tradeoff between the two payloads and between mission subsystems, and cost- effective management of technical and programmatic interfaces between subsystems and between development teams. As well, the mission exemplifies the significant benefits that can be achieved with efficient and pragmatic cooperation between development teams and practical, "outside-the-box" problem solving in addressing these challenges.

  10. Empowering patients through social media: the benefits and challenges.

    PubMed

    Househ, Mowafa; Borycki, Elizabeth; Kushniruk, Andre

    2014-03-01

    This article explores the range of social media platforms used by patients and examines the benefits and challenges of using these tools from a patient perspective. A literature review was performed to investigate the use of social media technology by patients. The MEDLINE database was searched using the terms "social media" and "patient." The search was conducted in September 2012 and yielded 765 abstracts. Initially, 63 abstracts were selected. All articles dating from 2004 through 2012 were included. Only 12 articles were found to be relevant for the purposes of the review. The results of this research found that there appears to be an increase in the use of social media by patients across the healthcare spectrum. The research indicates a promising future for the use of social media by patients; however, evidence related to the efficacy and effectiveness of social media is currently limited. Various challenges have also been identified relating to privacy and security concerns, usability, the manipulation of identity, and misinformation. The use of social media technology is an emerging trend for patients who are seeking health information. Conclusions are that such technology holds promise for improving patient engagement and empowerment and community building. Social media has a future in healthcare, especially with regard to patient engagement and empowerment; however, there are several challenges to overcome before the technology can achieve its potential.

  11. Searching for grey literature for systematic reviews: challenges and benefits.

    PubMed

    Mahood, Quenby; Van Eerd, Dwayne; Irvin, Emma

    2014-09-01

    There is ongoing interest in including grey literature in systematic reviews. Including grey literature can broaden the scope to more relevant studies, thereby providing a more complete view of available evidence. Searching for grey literature can be challenging despite greater access through the Internet, search engines and online bibliographic databases. There are a number of publications that list sources for finding grey literature in systematic reviews. However, there is scant information about how searches for grey literature are executed and how it is included in the review process. This level of detail is important to ensure that reviews follow explicit methodology to be systematic, transparent and reproducible. The purpose of this paper is to provide a detailed account of one systematic review team's experience in searching for grey literature and including it throughout the review. We provide a brief overview of grey literature before describing our search and review approach. We also discuss the benefits and challenges of including grey literature in our systematic review, as well as the strengths and limitations to our approach. Detailed information about incorporating grey literature in reviews is important in advancing methodology as review teams adapt and build upon the approaches described.

  12. Costs and benefits of automotive fuel economy improvement: A partial analysis

    SciTech Connect

    Greene, D.L. ); Duleep, K.G. )

    1992-03-01

    This paper is an exercise in estimating the costs and benefits of technology-based fuel economy improvements for automobiles and light trucks. Benefits quantified include vehicle cots, fuel savings, consumer's surplus effects, the effect of reduced weight on vehicle safety, impacts on emissions of CO{sub 2} and criteria pollutants, world oil market and energy security benefits, and the transfer of wealth from US consumes to oil producers. A vehicle stock model is used to capture sales, scrappage, and vehicle use effects under three fuel price scenarios. Three alternative fuel economy levels for 2001 are considered, ranging from 32.9 to 36.5 MPG for cars and 24.2 to 27.5 MPG for light trucks. Fuel economy improvements of this size are probably cost-effective. The size of the benefit, and whether there is a benefit, strongly depends on the financial costs of fuel economy improvement and judgments about the values of energy security, emissions, safety, etc. Three sets of values for eight parameters are used to define the sensitivity of costs and benefits to key assumptions. The net present social value (1989$) of costs and benefits ranges from a cost of $11 billion to a benefit of $286 billion. The critical parameters being the discount rate (10% vs. 3%) and the values attached to externalities. The two largest components are always the direct vehicle costs and fuel savings, but these tend to counterbalance each other for the fuel economy levels examined here. Other components are the wealth transfer, oil cost savings, CO{sub 2} emissions reductions, and energy security benefits. Safety impacts, emissions of criteria pollutants, and consumer's surplus effects are relatively minor components. The critical issues for automotive fuel economy are therefore: (1) the value of present versus future costs and benefits, (2) the values of external costs and benefits, and (3) the financially cost-effective level of MPG achievable by available technology. 53 refs.

  13. Costs and benefits of automotive fuel economy improvement: A partial analysis

    SciTech Connect

    Greene, D.L.; Duleep, K.G.

    1992-03-01

    This paper is an exercise in estimating the costs and benefits of technology-based fuel economy improvements for automobiles and light trucks. Benefits quantified include vehicle cots, fuel savings, consumer`s surplus effects, the effect of reduced weight on vehicle safety, impacts on emissions of CO{sub 2} and criteria pollutants, world oil market and energy security benefits, and the transfer of wealth from US consumes to oil producers. A vehicle stock model is used to capture sales, scrappage, and vehicle use effects under three fuel price scenarios. Three alternative fuel economy levels for 2001 are considered, ranging from 32.9 to 36.5 MPG for cars and 24.2 to 27.5 MPG for light trucks. Fuel economy improvements of this size are probably cost-effective. The size of the benefit, and whether there is a benefit, strongly depends on the financial costs of fuel economy improvement and judgments about the values of energy security, emissions, safety, etc. Three sets of values for eight parameters are used to define the sensitivity of costs and benefits to key assumptions. The net present social value (1989$) of costs and benefits ranges from a cost of $11 billion to a benefit of $286 billion. The critical parameters being the discount rate (10% vs. 3%) and the values attached to externalities. The two largest components are always the direct vehicle costs and fuel savings, but these tend to counterbalance each other for the fuel economy levels examined here. Other components are the wealth transfer, oil cost savings, CO{sub 2} emissions reductions, and energy security benefits. Safety impacts, emissions of criteria pollutants, and consumer`s surplus effects are relatively minor components. The critical issues for automotive fuel economy are therefore: (1) the value of present versus future costs and benefits, (2) the values of external costs and benefits, and (3) the financially cost-effective level of MPG achievable by available technology. 53 refs.

  14. Animal models of protein allergenicity: potential benefits, pitfalls and challenges.

    PubMed

    Dearman, R J; Kimber, I

    2009-04-01

    Food allergy is an important health issue. With an increasing interest in novel foods derived from transgenic crop plants, there is a growing need for the development of approaches suitable for the characterization of the allergenic potential of proteins. There are methods available currently (such as homology searches and serological testing) that are very effective at identifying proteins that are likely to cross-react with known allergens. However, animal models may play a role in the identification of truly novel proteins, such as bacterial or fungal proteins, that have not been experienced previously in the diet. We consider here the potential benefits, pitfalls and challenges of the selection of various animal models, including the mouse, the rat, the dog and the neonatal swine. The advantages and disadvantages of various experimental end-points are discussed, including the measurement of specific IgE by ELISA, Western blotting or functional tests such as the passive cutaneous anaphylaxis assay, and the assessment of challenge-induced clinical symptoms in previously sensitized animals. The experimental variables of route of exposure to test proteins and the incorporation of adjuvant to increase the sensitivity of the responses are considered also. It is important to emphasize that currently none of these approaches has been validated for the purposes of hazard identification in the context of a safety assessment. However, the available evidence suggests that the judicious use of an accurate and robust animal model could provide important additional data that would contribute significantly to the assessment of the potential allergenicity of novel proteins.

  15. Landing on empty: estimating the benefits from reducing fuel uplift in US Civil Aviation

    NASA Astrophysics Data System (ADS)

    Ryerson, Megan S.; Hansen, Mark; Hao, Lu; Seelhorst, Michael

    2015-09-01

    Airlines and Air Navigation Service Providers are united in their goal to reduce fuel consumption. While changes to flight operations and technology investments are the focus of a number of studies, our study is among the first to investigate an untapped source of aviation fuel consumption: excess contingency fuel loading. Given the downside risk of fuel exhaustion of diverting to an alternate airport, airline dispatchers may load excess fuel onto an aircraft. Such conservatism comes at a cost of consuming excess fuel, as fuel consumed is a function of, among other factors, aircraft weight. The aim of this paper is to quantify, on a per-flight basis, the fuel burned due to carrying fuel beyond what is needed for foreseeable contingencies, and thereby motivate research, federal guidance, and investments that allow airline dispatchers to reduce fuel uplift while maintaining near zero risks of fuel exhaustion. We merge large publicly available aviation and weather databases with a detailed dataset from a major US airline. Upon estimating factors that capture the quantity fuel consumed due to carrying a pound of weight for a range of aircraft types, we calculate the cost and greenhouse gas emissions from carrying unused fuel on arrival and additional contingency fuel above a conservative buffer for foreseeable contingencies. We establish that the major US carrier does indeed load fuel conservatively. We find that 4.48% of the fuel consumed by an average flight is due to carrying unused fuel and 1.04% of the fuel consumed by an average flight is due to carrying additional contingency fuel above a reasonable buffer. We find that simple changes in flight dispatching that maintain a statistically minimal risk of fuel exhaustion could result in yearly savings of 338 million lbs of CO2, the equivalent to the fuel consumed from 4760 flights on midsized commercial aircraft. Moreover, policy changes regarding maximum fuel loads or investments that reduce uncertainty or increase

  16. Being empathetic: benefits and challenges for the clinician and client.

    PubMed

    Abbott Moore, Lisa

    2010-01-01

    This article explores the meaning of empathy and how it influences clinicians in their personal and professional lives. Empathy may benefit client and clinician by improving patient satisfaction and pain management, reducing medical errors, and helping to keep clinicians grounded in the priorities of patient care. The cultural and developmental origins and neural basis of empathy are reviewed to provide insight into how a clinician's and client's emotions can interact and influence each other. Methods for cultivating and communicating empathetic responses in the clinical setting are provided, including ways of identifying and dealing with difficult clients. Concepts such as attunement, emotional labor, and parallel emotions are explained. The limitations to empathy and potential challenges or difficulties for the clinician are also explored, along with possible solutions. Narratives from the author's personal and professional life are included to illustrate how a clinician's emotions can play a significant part in interactions with clients. This discussion shows that clinicians must combine both evidenced-based practice and empathy in their interactions with clients to achieve the professional goal of high-quality care.

  17. Implementing root cause analysis in Iranian hospitals: challenges and benefits.

    PubMed

    Abdi, Zhaleh; Ravaghi, Hamid

    2016-01-12

    Root cause analysis (RCA) has been widely used for retrospective investigations of patient safety incidents. To increase patient safety competencies, RCA has recently been introduced in Iranian hospitals. The aims of the current study were to explore team members' experiences and perceptions of RCA and to identify the challenges and benefits of using it in Iranian hospitals from their perspective. A qualitative study was conducted consisting of 32 semi-structured interviews with health professionals who participated in the national training programme and were involved in RCA investigations. Data were analysed using the thematic analysis method. The participants encountered a range of obstacles while conducting RCA, including time constraints, a lack of resources, the blame culture and unsupportive colleagues. They stressed the need for further leadership support and cultural change within the Iranian healthcare system to facilitate the application of RCA. RCA was perceived as a beneficial analytical tool that improved patient care, fostered teamwork and communication among staff and promoted safety culture. This study concluded that applying RCA in the Iranian healthcare setting has had a significant impact on improving commitment to safety. However, the general adoption of this method is hindered by the lack of workplace and system supports. To maximize profits from RCA, clinical leaders must assign a high priority to RCA investigations and support RCA team efforts. Copyright © 2016 John Wiley & Sons, Ltd.

  18. Hydrogen as a transportation fuel: Costs and benefits

    SciTech Connect

    Berry, G.D.

    1996-03-01

    Hydrogen fuel and vehicles are assessed and compared to other alternative fuels and vehicles. The cost, efficiency, and emissions of hydrogen storage, delivery, and use in hybrid-electric vehicles (HEVs) are estimated. Hydrogen made thermochemically from natural gas and electrolytically from a range of electricity mixes is examined. Hydrogen produced at central plants and delivered by truck is compared to hydrogen produced on-site at filling stations, fleet refueling centers, and residences. The impacts of hydrogen HEVs, fueled using these pathways, are compared to ultra-low emissions gasoline internal-combustion-engine vehicles (ICEVs), advanced battery-powered electric vehicles (BPEVs), and HEVs using gasoline or natural gas.

  19. Top Benefits Challenges Facing School Business Decision Makers

    ERIC Educational Resources Information Center

    Bohling, Joseph

    2012-01-01

    What's the main factor coloring employee satisfaction? Many organizations' leaders think the answer is salary, yet in reality, employee benefits packages are one of the biggest incentives an employer can offer. Educational institutions have done well in providing benefits to employees. However, with an unpredictable economic climate and a complex…

  20. Benefits of an Integrated Fuel Cycle on Repository Effective Capacity

    SciTech Connect

    Davidson, D.; Hunter, I.; Vinoche, R.; Clement, G.; Louvet, T.; Bruyere, J.

    2006-07-01

    Today, the Yucca Mountain repository is limited by legislation to a maximum capacity of 70,000 metric tons of initial heavy metal (MTiHM), of which 63,000 MTiHM is reserved for civilian nuclear used fuel. Various sources have estimated the 'real' or 'technical' capacity of Yucca Mountain could be around 125,000 MTiHM. Whatever the actual number is, it will be significantly less than the anticipated total volume of used fuel expected to be generated in the US by 2100. This paper briefly reviews the design constraints of the Yucca Mountain repository and shows the potential gains in capacity by early recycling of used fuel from US commercial reactors using an evolutionary COEX process (co-extraction of uranium and plutonium) design. To optimize the Yucca Mountain loading, two important constraints need to be addressed: heat load and physical volume. For heat load there is a long-term issue with actinides (primarily plutonium and americium) and a short-term issue with fission products (primarily cesium and strontium). We present a new way to increase the capacity of Yucca Mountain by increasing the unit loading of the repository - early recycling approach. For the once-through option and the early recycling solution, drift loading factors are calculated, looking at both volume and heat. The resulting densification factor (ratio of drift loading factor of treatment high level waste residues to used fuel) is 4 using COEX technology. In simple terms, the total length of Yucca Mountain tunnels needed to dispose of 63,000 MTiHM of used fuel (legal limit) could be used to dispose of the residues from the treatment of 252,000 MTiHM of used fuel. (authors)

  1. Benefits and Challenges of Achieving a Mainstream Market for Electric Vehicles

    SciTech Connect

    Ungar, Edward; Mueller, Howard; Smith, Brett

    2010-08-01

    The Plug-in Hybrid electric Vehicle (PHEV) Market Introduction Study Final Report identified a range of policies, incentives and regulations designed to enhance the probability of success in commercializing PHEVs as they enter the automotive marketplace starting in 2010. The objective of the comprehensive PHEV Value Proposition study, which encompasses the PHEV Market Introduction Study, is to better understand the value proposition that PHEVs (as well as other plug-in electric vehicle platforms - PEVs) provide to the auto companies themselves, to the consumer and to the public at large as represented by the government and its public policies. In this report we use the more inclusive term PEVs, to include PHEVs, BEVs (battery electric vehicles that operate only on battery) and EREVs (extended range electric vehicles that combine battery electric vehicles with an internal combustion engine that charges the battery as needed). The objective of Taratec's contribution to Phase 2 of the PHEV Value Proposition Study is to develop a clear understanding of the benefits of PEVs to three stakeholders - auto original equipment manufacturers (OEMs), utilities, and the government - and of the technical and commercial challenges and risks to be overcome in order to achieve commercial success for these vehicles. The goal is to understand the technical and commercial challenges in moving from the 'early adopters' at the point of market introduction of these vehicles to a 'sustainable' mainstream market in which PEVs and other PEVs represent a normal, commercially available and attractive vehicle to the mainstream consumer. For the purpose of this study, that sustainable market is assumed to be in place in the 2030 timeframe. The principal focus of the study is to better understand the technical and commercial challenges in the transition from early adopters to a sustainable mainstream consumer market. Effectively, that translates to understanding the challenges to be overcome

  2. Presidential Green Chemistry Challenge: 2015 Specific Environmental Benefit: Climate Change Award

    EPA Pesticide Factsheets

    Presidential Green Chemistry Challenge 2015 award winner, Algenol, blue-green algae to produce ethanol and other fuels, uses CO2 from air or industrial emitters, reduces the carbon footprint, costs and water usage, no reliance on food crops

  3. Doing Qualitative Comparative Research on Teaching: Challenges and Benefits of Working with Grounded Theory

    ERIC Educational Resources Information Center

    Rupp, Claudia

    2016-01-01

    The last decades have seen the completion of an increasing number of qualitative comparative research projects on teaching. Challenges and benefits which might arise from a qualitative international comparative research design have been considered. However, very little has been published on challenges and benefits which may arise from using…

  4. Benefits and Challenges of School-Based Crisis Response Teams.

    ERIC Educational Resources Information Center

    Kline, Marsha; And Others

    1995-01-01

    Offers a rationale for the importance of school-based intervention in crisis and emergency situations, outlining a model for crisis response policies and procedures. Discusses benefits to schools of developing a team to implement the model, obstacles that can impede full implementation, and strategies for minimizing identified obstacles. (SM)

  5. Online Distance Learning and Music Training: Benefits, Drawbacks and Challenges

    ERIC Educational Resources Information Center

    Koutsoupidou, Theano

    2014-01-01

    This study examines online distance learning (ODL) as applied in music and music education programmes at different educational levels with a special focus on the digital tools employed in such programmes. It aims to provide an up-to-date snapshot of the current online courses focusing on the potential benefits and drawbacks of ODL from the…

  6. NUCLEAR FUEL LEASING – AN ASSESSMENT OF ECONOMIC AND NONPROLIFERATION BENEFITS

    SciTech Connect

    Short, Steven M.; Weimar, Mark R.; Kreyling, Sean J.; Gastelum, Zoe N.; Phillips, Jon R.; Wood, Thomas W.

    2009-06-11

    To enable the expansion of nuclear energy for peaceful purposes while discouraging the spread of enrichment and reprocessing technology to additional countries, existing front- and back-end supplier States are considering a variety of approaches to encourage the establishment of Reliable Fuel Service & Supply (RFS&S) arrangements for providing fresh fuel and taking back of spent fuel. Important aspects of such a trade regime are the economic basis, the product offerings, and alternative business models for RFS&S arrangements. This paper provides an assessment of the potential economic and nonproliferation benefits of one type of RFS&S trade regime currently under active consideration: full-service nuclear fuel leasing arrangements. Several different fuel leasing implementation models are evaluated to develop an understanding of the range of potential economic benefit to the lessee and, conversely, the economic liability to the lessor. Results suggest that while economic benefits are potentially substantial, these benefits also vary substantially depending on how a fuel leasing arrangement is implemented.

  7. Wireless Intra-Spacecraft Communication: The Benefits and the Challenges

    NASA Technical Reports Server (NTRS)

    Zheng, Will H.; Armstrong, John T.

    2010-01-01

    In this paper we present a systematic study of how intra-spacecraft wireless communication can be adopted to various subsystems of the spacecraft including C&DH (Command & Data Handling), Telecom, Power, Propulsion, and Payloads, and the interconnects between them. We discuss the advantages of intra-spacecraft wireless communication and the disadvantages and challenges and a proposal to address them.

  8. Searching for Grey Literature for Systematic Reviews: Challenges and Benefits

    ERIC Educational Resources Information Center

    Mahood, Quenby; Van Eerd, Dwayne; Irvin, Emma

    2014-01-01

    There is ongoing interest in including grey literature in systematic reviews. Including grey literature can broaden the scope to more relevant studies, thereby providing a more complete view of available evidence. Searching for grey literature can be challenging despite greater access through the Internet, search engines and online bibliographic…

  9. Borderland Spaces for Learning Partnership: Opportunities, Benefits and Challenges

    ERIC Educational Resources Information Center

    Hill, Jennifer; Thomas, Greg; Diaz, Anita; Simm, David

    2016-01-01

    This paper uses case studies and secondary literature to critically examine how learning spaces inhabited by geographers might be used productively as borderland spaces for learning partnership. Borderland spaces are novel, challenging, permissive and liminal, destabilizing traditional power hierarchies. In these spaces, students gain confidence…

  10. Bioconversion of natural gas to liquid fuel: opportunities and challenges.

    PubMed

    Fei, Qiang; Guarnieri, Michael T; Tao, Ling; Laurens, Lieve M L; Dowe, Nancy; Pienkos, Philip T

    2014-01-01

    Natural gas is a mixture of low molecular weight hydrocarbon gases that can be generated from either fossil or anthropogenic resources. Although natural gas is used as a transportation fuel, constraints in storage, relatively low energy content (MJ/L), and delivery have limited widespread adoption. Advanced utilization of natural gas has been explored for biofuel production by microorganisms. In recent years, the aerobic bioconversion of natural gas (or primarily the methane content of natural gas) into liquid fuels (Bio-GTL) by biocatalysts (methanotrophs) has gained increasing attention as a promising alternative for drop-in biofuel production. Methanotrophic bacteria are capable of converting methane into microbial lipids, which can in turn be converted into renewable diesel via a hydrotreating process. In this paper, biodiversity, catalytic properties and key enzymes and pathways of these microbes are summarized. Bioprocess technologies are discussed based upon existing literature, including cultivation conditions, fermentation modes, bioreactor design, and lipid extraction and upgrading. This review also outlines the potential of Bio-GTL using methane as an alternative carbon source as well as the major challenges and future research needs of microbial lipid accumulation derived from methane, key performance index, and techno-economic analysis. An analysis of raw material costs suggests that methane-derived diesel fuel has the potential to be competitive with petroleum-derived diesel.

  11. Bioconversion of natural gas to liquid fuel: Opportunities and challenges

    SciTech Connect

    Fei, Q; Guarnieri, MT; Tao, L; Laurens, LML; Dowe, N; Pienkos, PT

    2014-05-01

    Natural gas is a mixture of low molecular weight hydrocarbon gases that can be generated from either fossil or anthropogenic resources. Although natural gas is used as a transportation fuel, constraints in storage, relatively low energy content (MJ/L), and delivery have limited widespread adoption. Advanced utilization of natural gas has been explored for biofuel production by microorganisms. In recent years, the aerobic bioconversion of natural gas (or primarily the methane content of natural gas) into liquid fuels (Bio-GTL) by biocatalysts (methanotrophs) has gained increasing attention as a promising alternative for drop-in biofuel production. Methanotrophic bacteria are capable of converting methane into microbial lipids, which can in turn be converted into renewable diesel via a hydrotreating process. In this paper, biodiversity, catalytic properties and key enzymes and pathways of these microbes are summarized. Bioprocess technologies are discussed based upon existing literature, including cultivation conditions, fermentation modes, bioreactor design, and lipid extraction and upgrading. This review also outlines the potential of Bio-GTL using methane as an alternative carbon source as well as the major challenges and future research needs of microbial lipid accumulation derived from methane, key performance index, and techno-economic analysis. An analysis of raw material costs suggests that methane-derived diesel fuel has the potential to be competitive with petroleum-derived diesel. (C) 2014 The Authors. Published by Elsevier Inc.

  12. Bioconversion of Natural Gas to Liquid Fuel. Opportunities and Challenges

    SciTech Connect

    Fei, Qiang; Guarnieri, Michael T.; Tao, Ling; Laurens, Lieve M. L.; Dowe, Nancy; Pienkos, Philip T.

    2014-05-01

    Natural gas is a mixture of low molecular weight hydrocarbon gases that can be generated from either fossil or anthropogenic resources. Although natural gas is used as a transportation fuel, constraints in storage, relatively low energy content (MJ/L), and delivery have limited widespread adoption. Advanced utilization of natural gas has been explored for biofuel production by microorganisms. In recent years, the aerobic bioconversion of natural gas (or primarily the methane content of natural gas) into liquid fuels (Bio-GTL) by biocatalysts (methanotrophs) has gained increasing attention as a promising alternative for drop-in biofuel production. Moreover, methanotrophic bacteria are capable of converting methane into microbial lipids, which can in turn be converted into renewable diesel via a hydrotreating process. In this paper, biodiversity, catalytic properties and key enzymes and pathways of these microbes are summarized. Bioprocess technologies are discussed based upon existing literature, including cultivation conditions, fermentation modes, bioreactor design, and lipid extraction and upgrading. Our review also outlines the potential of Bio-GTL using methane as an alternative carbon source as well as the major challenges and future research needs of microbial lipid accumulation derived from methane, key performance index, and techno-economic analysis. An analysis of raw material costs suggests that methane-derived diesel fuel has the potential to be competitive with petroleum-derived diesel.

  13. Nitrogen fertilization challenges the climate benefit of cellulosic biofuels

    NASA Astrophysics Data System (ADS)

    Ruan, Leilei; Bhardwaj, Ajay K.; Hamilton, Stephen K.; Robertson, G. Philip

    2016-06-01

    Cellulosic biofuels are intended to improve future energy and climate security. Nitrogen (N) fertilizer is commonly recommended to stimulate yields but can increase losses of the greenhouse gas nitrous oxide (N2O) and other forms of reactive N, including nitrate. We measured soil N2O emissions and nitrate leaching along a switchgrass (Panicum virgatum) high resolution N-fertilizer gradient for three years post-establishment. Results revealed an exponential increase in annual N2O emissions that each year became stronger (R 2 > 0.9, P < 0.001) and deviated further from the fixed percentage assumed for IPCC Tier 1 emission factors. Concomitantly, switchgrass yields became less responsive each year to N fertilizer. Nitrate leaching (and calculated indirect N2O emissions) also increased exponentially in response to N inputs, but neither methane (CH4) uptake nor soil organic carbon changed detectably. Overall, N fertilizer inputs at rates greater than crop need curtailed the climate benefit of ethanol production almost two-fold, from a maximum mitigation capacity of -5.71 ± 0.22 Mg CO2e ha-1 yr-1 in switchgrass fertilized at 56 kg N ha-1 to only -2.97 ± 0.18 Mg CO2e ha-1 yr-1 in switchgrass fertilized at 196 kg N ha-1. Minimizing N fertilizer use will be an important strategy for fully realizing the climate benefits of cellulosic biofuel production.

  14. Nitrogen fertilization challenges the climate benefit of cellulosic biofuels

    DOE PAGES

    Ruan, Leilei; Bhardwaj, Ajay K.; Hamilton, Stephen K.; ...

    2016-06-01

    Cellulosic biofuels are intended to improve future energy and climate security. Nitrogen (N) fertilizer is commonly recommended to stimulate yields but can increase losses of the greenhouse gas nitrous oxide (N2O) and other forms of reactive N, including nitrate. We measured soil N2O emissions and nitrate leaching along a switchgrass (Panicum virgatum) high resolution N-fertilizer gradient for three years post-establishment. Results revealed an exponential increase in annual N2O emissions that each year became stronger (R2 > 0.9, P < 0.001) and deviated further from the fixed percentage assumed for IPCC Tier 1 emission factors. Concomitantly, switchgrass yields became less responsivemore » each year to N fertilizer. Nitrate leaching (and calculated indirect N2O emissions) also increased exponentially in response to N inputs, but neither methane (CH4) uptake nor soil organic carbon changed detectably. Overall, N fertilizer inputs at rates greater than crop need curtailed the climate benefit of ethanol production almost two-fold, from a maximum mitigation capacity of–5.71 ± 0.22 Mg CO2e ha–1 yr–1 in switchgrass fertilized at 56 kgNha–1 to only –2.97 ± 0.18 MgCO2e ha–1 yr–1 in switchgrass fertilized at 196 kgNha–1. In conclusion, minimizing N fertilizer use will be an important strategy for fully realizing the climate benefits of cellulosic biofuel production.« less

  15. Polarized Heliospheric Imaging: Lessons, Benefits, Challenges, and Status (Invited)

    NASA Astrophysics Data System (ADS)

    DeForest, C. E.; Howard, T. A.

    2013-12-01

    STEREO has delivered on the promise of continuous, photometric imaging of coronal and heliospheric transients from Sun to Earth. It is time to explore polarized heliospheric imaging. Applications include 3-D location of individual features and improved separation of signal from background. These scientific applications have different advantages and challenges in the heliosphere than the corona. We present analytical and numerical results on 3-D location of features both large and small with polarized heliospheric imaging; describe advantages to polarimetry for both in-ecliptic and out-of-ecliptic missions; and discuss some of the design considerations for PHI-C, our proposed mission to prototype this technology from LEO.

  16. Life cycle benefits, challenges, and the potential of recycled aluminum

    SciTech Connect

    Martchek, K.J.

    1997-12-31

    Recently, a number of prominent articles have appeared in the national press questioning the environmental benefits and economic rationale of post consumer materials recycling. This paper reviews the evolution of aluminum recycling and then examines its role in the life cycle of aluminum products based on the most recent industry studies conducted in Europe and North America. The environmental and economic viability of today`s recovery and reuse of aluminum products is explored based on these life cycle assessments and current market conditions. This paper then summarizes technology and issues associated with aluminum recycling including the current state of automotive aluminum dismantling, shredding, recycle and reuse. Afterwards, the paper highlights opportunities for recovering the full environmental and economic potential of aluminum recycling based on emerging technologies, ``producer responsibility`` legislation, voluntary initiatives, and product design considerations.

  17. Capacity building in emerging space nations: Experiences, challenges and benefits

    NASA Astrophysics Data System (ADS)

    Jason, Susan; da Silva Curiel, Alex; Liddle, Doug; Chizea, Francis; Leloglu, Ugur Murat; Helvaci, Mustafa; Bekhti, Mohammed; Benachir, Djouad; Boland, Lee; Gomes, Luis; Sweeting, Martin

    2010-09-01

    This paper focuses on ways in which space is being used to build capacity in science and technology in order to: Offer increasing support for national and global solutions to current and emerging problems including: how to improve food security; resource management; understanding the impacts of climate change and how to deal with them; improving disaster mitigation, management and response. Support sustainable economic development. We present some of the experiences, lessons learned and benefits gained in capacity building projects undertaken by Surrey Satellite Technology Ltd. and our partners from developing and mature space nations. We focus on the Turkish, Algerian and Nigerian know-how and technology transfer programmes which form part of the first Disaster Monitoring Constellation (DMC) in orbit. From the lessons learned on Surrey's know-how and technology transfer partnership programmes, it is clear that space technology needs to be implemented responsibly as part of a long-term capacity building plan to be a sustainable one. It needs to be supported with appropriate policy and legal frameworks, institutional development, including community participation, human resources development and strengthening of managerial systems. In taking this on board, DMC has resulted in a strong international partnership combining national objectives, humanitarian aid and commerce. The benefits include: Ownership of space-based and supporting ground assets with low capital expenditure that is in line with national budgets of developing nations. Ownership of data and control over data acquisition. More for the money via collaborative consortium. Space related capacity building in organisations and nations with the goal of sustainable development. Opportunities for international collaboration, including disaster management and relief.

  18. Nitrogen fertilization challenges the climate benefit of cellulosic biofuels

    SciTech Connect

    Ruan, Leilei; Bhardwaj, Ajay K.; Hamilton, Stephen K.; Robertson, G. Philip

    2016-06-01

    Cellulosic biofuels are intended to improve future energy and climate security. Nitrogen (N) fertilizer is commonly recommended to stimulate yields but can increase losses of the greenhouse gas nitrous oxide (N2O) and other forms of reactive N, including nitrate. We measured soil N2O emissions and nitrate leaching along a switchgrass (Panicum virgatum) high resolution N-fertilizer gradient for three years post-establishment. Results revealed an exponential increase in annual N2O emissions that each year became stronger (R2 > 0.9, P < 0.001) and deviated further from the fixed percentage assumed for IPCC Tier 1 emission factors. Concomitantly, switchgrass yields became less responsive each year to N fertilizer. Nitrate leaching (and calculated indirect N2O emissions) also increased exponentially in response to N inputs, but neither methane (CH4) uptake nor soil organic carbon changed detectably. Overall, N fertilizer inputs at rates greater than crop need curtailed the climate benefit of ethanol production almost two-fold, from a maximum mitigation capacity of–5.71 ± 0.22 Mg CO2e ha–1 yr–1 in switchgrass fertilized at 56 kgNha–1 to only –2.97 ± 0.18 MgCO2e ha–1 yr–1 in switchgrass fertilized at 196 kgNha–1. In conclusion, minimizing N fertilizer use will be an important strategy for fully realizing the climate benefits of cellulosic biofuel production.

  19. Benefits and Challenges of Conducting Psychotherapy by Telephone

    PubMed Central

    Brenes, Gretchen A.; Ingram, Cobi W.; Danhauer, Suzanne C.

    2011-01-01

    Telephone-delivered psychotherapy has increased utility as a method of service delivery in the current world, where a number of barriers, including economic hardships and limited access to care, may prevent people from receiving the treatment they need. This method of service provision is practical and has the potential to reach large numbers of underserved people in a cost-effective manner. The aim of this paper is to review the state-of-the-art of telephone-delivered psychotherapy and to identify improvements and possible solutions to challenges. Results of randomized controlled trials indicate high client acceptance and positive outcomes with this method of delivering psychotherapy. Nonetheless, psychotherapists wishing to deliver psychotherapy by telephone face a number of challenges, including a lack of control over the environment, potential compromises of privacy and confidentiality, developing therapeutic alliance without face-to-face contact, ethical and legal issues in providing psychotherapy by telephone, handling crisis situations at a distance, and psychotherapist adjustment to conducting psychotherapy in an alternative manner. There remains a need for further research, including direct comparisons of face-to-face psychotherapy with telephone-delivered psychotherapy and feasibility of telephone delivery of psychotherapies other than cognitive behavioral therapy. PMID:22247588

  20. Fuel switching from wood to LPG can benefit the environment

    SciTech Connect

    Nautiyal, Sunil Kaechele, Harald

    2008-11-15

    The Himalaya in India is one of the world's biodiversity hotspots. Various scientific studies have reported and proven that many factors are responsible for the tremendous decline of the Himalayan forests. Extraction of wood biomass from the forests for fuel is one of the factors, as rural households rely entirely on this for their domestic energy. Efforts continue for both conservation and development of the Himalayan forests and landscape. It has been reported that people are still looking for more viable solutions that could help them to improve their lifestyle as well as facilitate ecosystem conservation and preservation of existing biodiversity. In this direction, we have documented the potential of the introduction of liquefied petroleum gas (LPG), which is one of the solutions that have been offered to the local people as a substitute for woodfuel to help meet their domestic energy demand. The results of the current study found dramatic change in per capita woodfuel consumption in the last two decades in the villages where people are using LPG. The outcome showed that woodfuel consumption had been about 475 kg per capita per year in the region, but after introduction of LPG, this was reduced to 285 kg per capita per year in 1990-1995, and was further reduced to 46 kg per capita per year in 2000-2005. Besides improving the living conditions of the local people, this transformation has had great environmental consequences. Empirical evidence shows that this new paradigm shift is having positive external effects on the surrounding forests. Consequently, we have observed a high density of tree saplings and seedlings in adjacent forests, which serves as an assessment indicator of forest health. With the help of the current study, we propose that when thinking about a top-down approach to conservation, better solutions, which are often ignored, should be offered to local people.

  1. Vehicle Technologies and Fuel Cell Technologies Program: Prospective Benefits Assessment Report for Fiscal Year 2016

    SciTech Connect

    Stephens, T. S.; Taylor, C. H.; Moore, J. S.; Ward, J.

    2016-02-23

    Under a diverse set of programs, the Vehicle Technologies and Fuel Cell Technologies offices of DOE’s Office of Energy Efficiency and Renewable Energy invest in research, development, demonstration, and deployment of advanced vehicle, hydrogen production, delivery and storage, and fuel cell technologies. This report estimates the benefits of successfully developing and deploying these technologies (a “Program Success” case) relative to a base case (the “No Program” case). The Program Success case represents the future with completely successful deployment of Vehicle Technologies Office (VTO) and Fuel Cell Technologies Office (FCTO) technologies. The No Program case represents a future in which there is no contribution after FY 2016 by the VTO or FCTO to these technologies. The benefits of advanced vehicle, hydrogen production, delivery and storage, and fuel cell technologies were estimated on the basis of differences in fuel use, primary energy use, and greenhouse gas (GHG) emissions from light-, medium- and heavy-duty vehicles, including energy and emissions from fuel production, between the base case and the Program Success case. Improvements in fuel economy of various vehicle types, growth in the stock of fuel cell vehicles and other advanced technology vehicles, and decreased GHG intensity of hydrogen production and delivery in the Program Success case over the No Program case were projected to result in savings in petroleum use and GHG emissions. Benefits were disaggregated by individual program technology areas, which included the FCTO program and the VTO subprograms of batteries and electric drives; advanced combustion engines; fuels and lubricants; materials (for reduction in vehicle mass, or “lightweighting”); and, for medium- and heavy-duty vehicles, reduction in rolling and aerodynamic resistance. Projections for the Program Success case indicate that by 2035, the average fuel economy of on-road, light-duty vehicle stock could be 47% to 76

  2. Benefits of two mitigation strategies for container vessels: cleaner engines and cleaner fuels.

    PubMed

    Khan, M Yusuf; Giordano, Michael; Gutierrez, James; Welch, William A; Asa-Awuku, A; Miller, J Wayne; Cocker, David R

    2012-05-01

    Emissions from ocean-going vessels (OGVs) are a significant health concern for people near port communities. This paper reports the emission benefits for two mitigation strategies, cleaner engines and cleaner fuels, for a 2010 container vessel. In-use emissions were measured following International Organization for Standardization (ISO) protocols. The overall in-use nitrogen oxide (NO(x)) emission factor was 16.1 ± 0.1 gkW(-1) h(-1), lower than the Tier 1 certification (17 gkW(-1) h(-1)) and significantly lower than the benchmark value of 18.7 gkW(-1) h(-1) commonly used for estimating emission inventories. The in-use particulate matter (PM(2.5)) emission was 1.42 ± 0.04 gkW(-1) h(-1) for heavy fuel oil (HFO) containing 2.51 wt % sulfur. Unimodal (∼30 nm) and bimodal (∼35 nm; ∼75 nm) particle number size distributions (NSDs) were observed when the vessel operated on marine gas oil (MGO) and HFO, respectively. First-time emission measurements during fuel switching (required 24 nautical miles from coastline) showed that concentrations of sulfur dioxide (SO(2)) and particle NSD took ∼55 min to reach steady-state when switching from MGO to HFO and ∼84 min in the opposite direction. Therefore, if OGVs commence fuel change at the regulated boundary, then vessels can travel up to 90% of the distance to the port before steady-state values are re-established. The transient behavior follows a classic, nonlinear mixing function driven by the amount of fuel in day tank and the fuel consumption rate. Hence, to achieve the maximum benefits from a fuel change regulation, fuel switch boundary should be further increased to provide the intended benefits for the people living near the ports.

  3. Future nuclear fuel cycles: Prospect and challenges for actinide recycling

    NASA Astrophysics Data System (ADS)

    Warin, Dominique

    2010-03-01

    The global energy context pleads in favour of a sustainable development of nuclear energy since the demand for energy will likely increase, whereas resources will tend to get scarcer and the prospect of global warming will drive down the consumption of fossil fuel. In this context, nuclear power has the worldwide potential to curtail the dependence on fossil fuels and thereby to reduce the amount of greenhouse gas emissions while promoting energy independence. How we deal with nuclear radioactive waste is crucial in this context. In France, the public's concern regarding the long-term waste management made the French Governments to prepare and pass the 1991 and 2006 Acts, requesting in particular the study of applicable solutions for still minimizing the quantity and the hazardousness of final waste. This necessitates High Active Long Life element (such as the Minor Actinides MA) recycling, since the results of fuel cycle R&D could significantly change the challenges for the storage of nuclear waste. HALL recycling can reduce the heat load and the half-life of most of the waste to be buried to a couple of hundred years, overcoming the concerns of the public related to the long-life of the waste and thus aiding the "burying approach" in securing a "broadly agreed political consensus" of waste disposal in a geological repository. This paper presents an overview of the recent R and D results obtained at the CEA Atalante facility on innovative actinide partitioning hydrometallurgical processes. For americium and curium partitioning, these results concern improvements and possible simplifications of the Diamex-Sanex process, whose technical feasibility was already demonstrated in 2005. Results on the first tests of the Ganex process (grouped actinide separation for homogeneous recycling) are also discussed. In the coming years, next steps will involve both better in-depth understanding of the basis of these actinide partitioning processes and, for the new promising

  4. Haptics in Robot-Assisted Surgery: Challenges and Benefits.

    PubMed

    Enayati, Nima; De Momi, Elena; Ferrigno, Giancarlo

    2016-01-01

    Robotic surgery is transforming the current surgical practice, not only by improving the conventional surgical methods but also by introducing innovative robot-enhanced approaches that broaden the capabilities of clinicians. Being mainly of man-machine collaborative type, surgical robots are seen as media that transfer pre- and intraoperative information to the operator and reproduce his/her motion, with appropriate filtering, scaling, or limitation, to physically interact with the patient. The field, however, is far from maturity and, more critically, is still a subject of controversy in medical communities. Limited or absent haptic feedback is reputed to be among reasons that impede further spread of surgical robots. In this paper, objectives and challenges of deploying haptic technologies in surgical robotics are discussed, and a systematic review is performed on works that have studied the effects of providing haptic information to the users in major branches of robotic surgery. It attempts to encompass both classical works and the state-of-the-art approaches, aiming at delivering a comprehensive and balanced survey both for researchers starting their work in this field and for the experts.

  5. Investigating the Benefits and Challenges of Using Laptop Computers in Higher Education Classrooms

    ERIC Educational Resources Information Center

    Kay, Robin Holding; Lauricella, Sharon

    2014-01-01

    The purpose of this study was to investigate the benefits and challenges using laptop computers (hereafter referred to as laptops) inside and outside higher education classrooms. Quantitative and qualitative data were collected from 156 university students (54 males, 102 females) enrolled in either education or communication studies. Benefits of…

  6. The Benefits and Challenges Hospitality Management Students Experience by Working in Conjunction with Completing Their Studies

    ERIC Educational Resources Information Center

    Schoffstall, Donald G.

    2013-01-01

    Previous researchers have suggested that in order to be successful in the hospitality industry, students need to obtain work experience in addition to completing their degrees. Although the benefit of gaining such experience from the industry viewpoint has been well documented, few studies have assessed the benefits and challenges faced by…

  7. Benefits and challenges of molecular diagnostics for childhood tuberculosis.

    PubMed

    Gutierrez, Cristina

    2016-12-01

    Expanding tuberculosis (TB)-diagnostic services, including access to rapid tests, is a World Health Organization (WHO) strategy to accelerate progress toward ending TB. Faster and more sensitive molecular tests capable of diagnosing TB and drug-resistant TB have the technical capacity to address limitations associated with smears and cultures by increasing accuracy and shortening turnaround times as compared with those of these conventional laboratory methods. Nucleic acid amplification assays used to detect and analyze Mycobacterium tuberculosis (MTB)-complex nucleic acids can be used directly on specimens from patients suspected of having TB. Recently, several commercial molecular tests were developed to detect MTB and determine the drug resistance (DR) based on detection of specific genetic mutations conferring resistance. The first to be endorsed by the WHO was molecular line-probe assay technology. This test uses polymerase chain reaction (PCR) and reverse-hybridization methods to rapidly identify MTB and DR-related mutations simultaneously. More recently, the WHO endorsed Xpert MTB/RIF, Cepheid Inc, CA, USA, a fully automated assay used for TB diagnosis that relies upon PCR techniques for detection of TB and rifampicin resistance-related mutations. Other promising molecular TB assays for simplifying PCR-based testing protocols and increasing their accuracy are under development and evaluation. Although we lack a practical gold standard for the diagnosis of childhood TB, its bacteriological confirmation is always recommended to be sought whenever possible prior to a diagnostic decision being made. Conventional diagnostic laboratory TB tests are less efficient for children as compared with adults, because sufficient sputum samples are more difficult to collect from infants and young children, and their disease is often paucibacillary, resulting in smear-negative disease. These inherent challenges associated with childhood TB are due to immunological- and

  8. Getting People Involved: The Benefit of Intellectual Capital Management for Addressing HR Challenges

    ERIC Educational Resources Information Center

    Pook, Katja

    2011-01-01

    Purpose: This paper aims to explore the benefits of intellectual capital assessment for facing current challenges of human resources work and organizational development. Design/methodology/approach: The paper takes findings of studies on challenges in HR work and maps them with features of intellectual capital assessment methods. It is thus a…

  9. Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles

    NASA Astrophysics Data System (ADS)

    Hajbabaei, Maryam

    There is a global effort to expand the use of alternative fuels due to their several benefits such as improving air quality with reducing some criteria emissions, reducing dependency on fossil fuels, and reducing greenhouse gases such as carbon dioxide. This dissertation is focused on investigating the impact of two popular alternative fuels, biodiesel and natural gas (NG), on emissions from heavy-duty engines. Biodiesel is one of the most popular renewable fuels with diesel applications. Although biodiesel blends are reported to reduce particulate matter, carbon monoxide, and total hydrocarbon emissions; there is uncertainty on their impact on nitrogen oxides (NOx) emissions. This dissertation evaluated the effect of biodiesel feedstock, biodiesel blend level, engine technology, and driving conditions on NOx emissions. The results showed that NOx emissions increase with 20% and higher biodiesel blends. Also, in this study some strategies were proposed and some fuel formulations were found for mitigating NOx emissions increases with biodiesel. The impact of 5% biodiesel on criteria emissions specifically NOx was also fully studied in this thesis. As a part of the results of this study, 5% animal-based biodiesel was certified for use in California based on California Air Resources Board emissions equivalent procedure. NG is one of the most prominent alternative fuels with larger reserves compared to crude oil. However, the quality of NG depends on both its source and the degree to which it is processed. The current study explored the impact of various NG fuels, ranging from low methane/high energy gases to high methane/low energy gases, on criteria and toxic emissions from NG engines with different combustion and aftertreatment technologies. The results showed stronger fuel effects for the lean-burn technology bus. Finally, this thesis investigated the impact of changing diesel fuel composition on the criteria emissions from a variety of heavy-duty engine

  10. Energy and emission benefits of alternative transportation liquid fuels derived from switchgrass: a fuel life cycle assessment.

    PubMed

    Wu, May; Wu, Ye; Wang, Michael

    2006-01-01

    We conducted a mobility chains, or well-to-wheels (WTW), analysis to assess the energy and emission benefits of cellulosic biomass for the U.S. transportation sector in the years 2015-2030. We estimated the life-cycle energy consumption and emissions associated with biofuel production and use in light-duty vehicle (LDV) technologies by using the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model. Analysis of biofuel production was based on ASPEN Plus model simulation of an advanced fermentation process to produce fuel ethanol/protein, a thermochemical process to produce Fischer-Tropsch diesel (FTD) and dimethyl ether (DME), and a combined heat and power plant to co-produce steam and electricity. Our study revealed that cellulosic biofuels as E85 (mixture of 85% ethanol and 15% gasoline by volume), FTD, and DME offer substantial savings in petroleum (66-93%) and fossil energy (65-88%) consumption on a per-mile basis. Decreased fossil fuel use translates to 82-87% reductions in greenhouse gas emissions across all unblended cellulosic biofuels. In urban areas, our study shows net reductions for almost all criteria pollutants, with the exception of carbon monoxide (unchanged), for each of the biofuel production option examined. Conventional and hybrid electric vehicles, when fueled with E85, could reduce total sulfur oxide (SO(x)) emissions to 39-43% of those generated by vehicles fueled with gasoline. By using bio-FTD and bio-DME in place of diesel, SO(x) emissions are reduced to 46-58% of those generated by diesel-fueled vehicles. Six different fuel production options were compared. This study strongly suggests that integrated heat and power co-generation by means of gas turbine combined cycle is a crucial factor in the energy savings and emission reductions.

  11. CHALLENGES AND BENEFITS OF CONDUCTING ENVIRONMENTAL JUSTICE RESEARCH IN A SCHOOL SETTING

    PubMed Central

    GUIDRY, VIRGINIA T.; LOWMAN, AMY; HALL, DEVON; BARON, DOTHULA; WING, STEVE

    2015-01-01

    Environmental justice (EJ) research requires attention to consequences for research participants beyond those typically considered by institutional review boards. The imbalance of power between impacted communities and those who create and regulate pollution creates challenges for participation, yet research can also benefit those involved. Our community-academic partnership designed the Rural Air Pollutants and Children's Health (RAPCH) study to provide positive impacts while measuring health effects at three low-resource public middle schools near concentrated animal feeding operations (CAFOs) in North Carolina. We evaluated perceived benefits and challenges of study involvement by interviewing school staff and community liaisons who facilitated data collection. Reported benefits included enhancement of students’ academic environment and increased community environmental awareness; challenges were associated mainly with some participants’ immaturity. Leadership from a strong community-based organization was crucial to recruitment, yet our approach entailed minimal focus on EJ, which may have limited opportunities for community education or organizing for environmental health. PMID:25085828

  12. The doubtful environmental benefit of reduced maximum sulfur limit in international shipping fuel.

    PubMed

    Mestl, Thomas; Løvoll, Grunde; Stensrud, Erik; Le Breton, Arnaud

    2013-06-18

    On January 1st, 2012, the maximum limit for sulfur concentration in marine fuels on the high seas was lowered from 4.50% to 3.50% by the International Maritime Organization (IMO). It was one of a series of planned steps toward reducing the negative environmental and health impacts of international shipping. This study investigates the effectiveness of the IMO regulation in reducing global sulfur emissions. We found a reduction in global average sulfur concentration of only 0.07% points from 2011 to 2012. On the positive side, we also found that only 2.3% of the bunkerings were noncompliant in 2012, that is, exceeded the new 3.50% sulfur concentration cap. The analysis furthermore suggests that compliance with the new regulation is achieved by blending high sulfur fuel with lower sulfur fuel, rather than by removing high sulfur fuel from the market or removing the excess sulfur. The main conclusion is that the regulation has been effective in reducing the maximum sulfur concentration but has not been very effective in reducing the average sulfur concentration. Thus, the regulation may have resulted in local environmental benefits but has not resulted in global benefits with respect to global sulfur emissions from international shipping.

  13. Challenges for fuel cells as stationary power resource in the evolving energy enterprise

    NASA Astrophysics Data System (ADS)

    Rastler, Dan

    The primary market challenges for fuel cells as stationary power resources in evolving energy markets are reviewed. Fuel cell power systems have significant barriers to overcome in their anticipated role as decentralized energy power systems. Market segments for fuel cells include combined heat and power; low-cost energy, premium power; peak shaving; and load management and grid support. Understanding the role and fit of fuel cell systems in evolving energy markets and the highest value applications are a major challenge for developers and government funding organizations. The most likely adopters of fuel cell systems and the challenges facing each adopter in the target market segment are reviewed. Adopters include generation companies, utility distribution companies, retail energy service providers and end-users. Key challenges include: overcoming technology risk; achieving retail competitiveness; understanding high value markets and end-user needs; distribution and service channels; regulatory policy issues; and the integration of these decentralized resources within the electrical distribution system.

  14. Realistic Challenges to Optimize the Closed Nuclear Fuel Cycle

    SciTech Connect

    Shigeo Nomura; Hisao Ojima; Hirohisa Ishikawa

    2002-07-01

    The first generation nuclear fuel cycle system will be closed in Japan by 2010 with the successful combination of LWR-MOX, industrial operation of reprocessing and MOX fuel fabrication plants, interim storage of spent fuel, and plans for the location of final disposal of radioactive wastes. To tailor nuclear power as the globally sustainable and environmentally benign energy source for future society, however, an advanced fuel cycle option is needed that is well suited to the fast reactor. It should recycle fissile materials of plutonium and uranium whilst transmuting minor actinides and generating minimum waste. (authors)

  15. Advanced nuclear fuel cycles - Main challenges and strategic choices

    SciTech Connect

    Le Biez, V.; Machiels, A.; Sowder, A.

    2013-07-01

    A graphical conceptual model of the uranium fuel cycles has been developed to capture the present, anticipated, and potential (future) nuclear fuel cycle elements. The once-through cycle and plutonium recycle in fast reactors represent two basic approaches that bound classical options for nuclear fuel cycles. Chief among these other options are mono-recycling of plutonium in thermal reactors and recycling of minor actinides in fast reactors. Mono-recycling of plutonium in thermal reactors offers modest savings in natural uranium, provides an alternative approach for present-day interim management of used fuel, and offers a potential bridging technology to development and deployment of future fuel cycles. In addition to breeder reactors' obvious fuel sustainability advantages, recycling of minor actinides in fast reactors offers an attractive concept for long-term management of the wastes, but its ultimate value is uncertain in view of the added complexity in doing so,. Ultimately, there are no simple choices for nuclear fuel cycle options, as the selection of a fuel cycle option must reflect strategic criteria and priorities that vary with national policy and market perspectives. For example, fuel cycle decision-making driven primarily by national strategic interests will likely favor energy security or proliferation resistance issues, whereas decisions driven primarily by commercial or market influences will focus on economic competitiveness.

  16. Integrating Quantitative and Qualitative Data in Mixed Methods Research--Challenges and Benefits

    ERIC Educational Resources Information Center

    Almalki, Sami

    2016-01-01

    This paper is concerned with investigating the integration of quantitative and qualitative data in mixed methods research and whether, in spite of its challenges, it can be of positive benefit to many investigative studies. The paper introduces the topic, defines the terms with which this subject deals and undertakes a literature review to outline…

  17. The Twenty-First Century Multiple Generation Workforce: Overlaps and Differences but Also Challenges and Benefits

    ERIC Educational Resources Information Center

    Helyer, Ruth; Lee, Dionne

    2012-01-01

    Purpose: The purpose of this paper is to explore the issues around a multiple generational workforce and more specifically, the challenges and benefits for education providers and employers. Design/methodology/approach: Reviewing research papers, analysing academic texts, interrogating market intelligence and contextualising case studies, the…

  18. Military Veterans Face Challenges in Accessing Educational Benefits at Florida Community Colleges

    ERIC Educational Resources Information Center

    Spiro, Rivka; Hill, Robert

    2010-01-01

    Florida's community colleges are seeing an influx of students who face unique challenges. They are the men and women who served in the military after the attacks of September 11, 2001, and who are now attending college on the new Post-9/11 GI Bill, with its greatly enhanced educational benefits, and on the expanded, old Montgomery GI Bill, which…

  19. Benefits, Challenges, and Perceptions of the Multiple Article Dissertation Format in Instructional Technology

    ERIC Educational Resources Information Center

    Thomas, Rebecca Arlene; West, Richard E.; Rich, Peter

    2016-01-01

    This study used survey data to investigate the benefits, challenges, perceptions, and current practices of the multiple article dissertation format in instructional technology. Online surveys were sent to current students, alumni, faculty, and department representatives of instructional technology programs, and data were analysed using qualitative…

  20. Scheduling Recess before Lunch: Exploring the Benefits and Challenges in Montana Schools

    ERIC Educational Resources Information Center

    Bark, Katie; Stenberg, Molly; Sutherland, Shelly; Hayes, Dayle

    2010-01-01

    Purpose/Objectives: The purpose of the "Montana Recess Before Lunch Survey" was to explore benefits, challenges, and factors associated with successful implementation of Recess Before Lunch (RBL), from the perspective of school principals. Methods: An online written questionnaire was distributed to all (N = 661) Montana elementary and…

  1. University and Corporate Partnerships: Benefits and Challenges of Offering College Degrees in Collaboration with Private Corporations.

    ERIC Educational Resources Information Center

    Brown-Welty, Sharon; Patterson, Teresa

    2002-01-01

    Examines the relationship between universities and private corporations in providing college-level educational programs to better understand the central issues in collaboration, including the benefits and challenges of these partnerships. Also explores why some corporations choose not to partner with universities, but offer their own programs…

  2. How Benefits and Challenges of Personal Response System Impact Students' Continuance Intention? A Taiwanese Context

    ERIC Educational Resources Information Center

    Yeh, C. Rosa; Tao, Yu-Hui

    2013-01-01

    To address four issues observed from the latest Personal Response System (PRS) review by Kay and LeSage (2009), this paper investigates, through a systematic research, how the derived benefits and challenges of PRS affect the satisfaction and continuance intention of college students in Taiwan. The empirical study samples representative college…

  3. Implementing Portfolio-Based Language Assessment in LINC Programs: Benefits and Challenges

    ERIC Educational Resources Information Center

    Ripley, Daniel

    2012-01-01

    Although earlier research has examined the potential of portfolios as assessment tools, research on the use of portfolios in the context of second-language education in Canada has been limited. The goal of this study was to explore the benefits and challenges of implementing a portfolio-based language assessment (PBLA) model in Language…

  4. The Benefits and Challenges of Culturally Responsive EFL Critical Literature Circles

    ERIC Educational Resources Information Center

    Fredricks, Lori

    2012-01-01

    Though some research has shown what applying a culturally relevant framework entails in an American context, and occasionally in an EFL setting, there is still too little research on how students respond to critical, culturally responsive pedagogy. More insight is needed into the specific challenges and benefits of critical approaches in diverse…

  5. Benefits and Challenges of a Teacher Cluster in South Africa: The Case of Sizabantwana

    ERIC Educational Resources Information Center

    Mitchell, Carol; Jonker, David

    2013-01-01

    This article explores teacher clusters as possible mechanisms for teacher development in dealing with a number of the difficulties facing education in the South African context. It describes the benefits and challenges experienced by primary school teachers who are involved in a self-sustaining teacher cluster (development and support group). This…

  6. Cochlear Implantation among Deaf Children with Additional Disabilities: Parental Perceptions of Benefits, Challenges, and Service Provision

    ERIC Educational Resources Information Center

    Zaidman-Zait, Anat; Curle, Deirdre; Jamieson, Janet R.; Chia, Ruth; Kozak, Frederick K.

    2015-01-01

    Although increasing numbers of children with additional disabilities are receiving cochlear implants (CIs), little is known about family perspectives of the benefits and the challenges of cochlear implantation in this pediatric population. This study examines perceptions among parents of deaf children with additional disabilities regarding…

  7. System-Agnostic Clinical Decision Support Services: Benefits and Challenges for Scalable Decision Support

    PubMed Central

    Kawamoto, Kensaku; Del Fiol, Guilherme; Orton, Charles; Lobach, David F

    2010-01-01

    System-agnostic clinical decision support (CDS) services provide patient evaluation capabilities that are independent of specific CDS systems and system implementation contexts. While such system-agnostic CDS services hold great potential for facilitating the widespread implementation of CDS systems, little has been described regarding the benefits and challenges of their use. In this manuscript, the authors address this need by describing potential benefits and challenges of using a system-agnostic CDS service. This analysis is based on the authors’ formal assessments of, and practical experiences with, various approaches to developing, implementing, and maintaining CDS capabilities. In particular, the analysis draws on the authors’ experience developing and leveraging a system-agnostic CDS Web service known as SEBASTIAN. A primary potential benefit of using a system-agnostic CDS service is the relative ease and flexibility with which the service can be leveraged to implement CDS capabilities across applications and care settings. Other important potential benefits include facilitation of centralized knowledge management and knowledge sharing; the potential to support multiple underlying knowledge representations and knowledge resources through a common service interface; improved simplicity and componentization; easier testing and validation; and the enabling of distributed CDS system development. Conversely, important potential challenges include the increased effort required to develop knowledge resources capable of being used in many contexts and the critical need to standardize the service interface. Despite these challenges, our experiences to date indicate that the benefits of using a system-agnostic CDS service generally outweigh the challenges of using this approach to implementing and maintaining CDS systems. PMID:21603281

  8. System-agnostic clinical decision support services: benefits and challenges for scalable decision support.

    PubMed

    Kawamoto, Kensaku; Del Fiol, Guilherme; Orton, Charles; Lobach, David F

    2010-01-01

    System-agnostic clinical decision support (CDS) services provide patient evaluation capabilities that are independent of specific CDS systems and system implementation contexts. While such system-agnostic CDS services hold great potential for facilitating the widespread implementation of CDS systems, little has been described regarding the benefits and challenges of their use. In this manuscript, the authors address this need by describing potential benefits and challenges of using a system-agnostic CDS service. This analysis is based on the authors' formal assessments of, and practical experiences with, various approaches to developing, implementing, and maintaining CDS capabilities. In particular, the analysis draws on the authors' experience developing and leveraging a system-agnostic CDS Web service known as SEBASTIAN. A primary potential benefit of using a system-agnostic CDS service is the relative ease and flexibility with which the service can be leveraged to implement CDS capabilities across applications and care settings. Other important potential benefits include facilitation of centralized knowledge management and knowledge sharing; the potential to support multiple underlying knowledge representations and knowledge resources through a common service interface; improved simplicity and componentization; easier testing and validation; and the enabling of distributed CDS system development. Conversely, important potential challenges include the increased effort required to develop knowledge resources capable of being used in many contexts and the critical need to standardize the service interface. Despite these challenges, our experiences to date indicate that the benefits of using a system-agnostic CDS service generally outweigh the challenges of using this approach to implementing and maintaining CDS systems.

  9. Biogas from waste materials as transportation fuel-benefits from an environmental point of view.

    PubMed

    Börjesson, P

    2008-01-01

    In this paper various biogas systems based on waste materials have been analysed from an environmental point of view. The analyses are based on Swedish conditions using a systems analysis approach from an energy and life cycle perspective. The biogas produced is used as a transportation fuel replacing petrol in light-duty vehicles. The overall aims are to quantify the potential environmental effects when current waste handling and transportation fuel systems are replaced. A general conclusion is that the indirect environmental benefits (e.g. reduced emissions of ammonia and methane, and nitrogen leaching) from altered handling of organic waste materials and land-use may often significantly exceed the direct environmental benefits achieved when biogas replaces petrol (e.g. reduced emissions of carbon dioxide and air pollutants). Such indirect benefits are seldom considered when biogas is evaluated from an environmental point of view. However, the environmental impact from different biogas systems can vary significantly due to factors such as the waste materials utilised, different reference systems being replaced, and local conditions.

  10. CONVERTING PYROLYSIS OILS TO RENEWABLE TRANSPORT FUELS: PROCESSING CHALLENGES & OPPORTUNITIES

    SciTech Connect

    Holmgren, Jennifer; Nair, Prabhakar N.; Elliott, Douglas C.; Bain, Richard; Marinangelli, Richard

    2008-03-11

    To enable a sustained supply of biomass-based transportation fuels, the capability to process feedstocks outside the food chain must be developed. Significant industry efforts are underway to develop these new technologies, such as converting cellulosic wastes to ethanol. UOP, in partnership with U.S. Government labs, NREL and PNNL, is developing an alternate route using cellulosic feedstocks. The waste biomass is first subjected to a fast pyrolysis operation to generate pyrolysis oil (pyoil for short). Current efforts are focused on developing a thermochemical platform to convert pyoils to renewable gasoline, diesel and jet fuel. The fuels produced will be indistinguishable from their fossil fuel counterparts and, therefore, will be compatible with existing transport and distribution infrastructure.

  11. Materials and Manufacturing Challenges of Direct Methanol Fuel Cells

    DTIC Science & Technology

    2009-04-27

    SPSf. Figure 5 shows four basic polymers in which benzimidazole (BIm), amino- benzimidazole (ABIm), nitrobenzimidazole (NBIm), and perimidine (PImd...Membranes Based on Sulfonated Polyetheretherketone and Polysulfone Bearing Benzimidazole Side Groups for Fuel Cells,” Electrochemistry Communications...Bearing Benzimidazole Side Groups for Direct Methanol Fuel Cells,” Electrochemical and Solid State Letters, Vol. 10, 2007, p. B70-B73. [12] Fu, Y.-Z

  12. Molten-salt fuel cells-Technical and economic challenges

    NASA Astrophysics Data System (ADS)

    Selman, J. Robert

    This paper presents a personal view of the status and research needs of the MCFC and other molten-salt fuel cells. After an overview of current MCFC performance, compared with performance and cost of other fuel cells, improvements in power density and lifetime as well as cost reduction are identified as key priorities to accelerate the commercialization of the MCFC. In spite of its unfavorable public image (compared to, in particular, PEMFC and planar SOFC) MCFC technology has progressed steadily and cost reduction has been significant. Large-scale commercialization, especially in the distributed generation and cogeneration market, remains a possibility but its chances are highly dependent on a forceful and consistent energy policy, for example taking into account the externalities associated with various modes of electric power production from fossil fuels. In spite of steady improvements in performance, important defects in fundamental knowledge remain about wetting properties, oxygen reduction kinetics, corrosion paths and control mechanisms. These must be addressed to stimulate further simplification of design and find solutions to lifetime issues. Recently, alternative concepts of molten-salt fuel cells have been capturing attention. The direct carbon fuel cell (DCFC), reviving an old concept, has caught the attention of energy system analysts and some important advances have been made in this technology. Direct CO and CH 4 oxidation have also been a focus of study. Finally, the potential of nanotechnology for high-temperature fuel cells should not be a priori excluded.

  13. Recent progress and continuing challenges in bio-fuel cells. Part II: Microbial.

    PubMed

    Osman, M H; Shah, A A; Walsh, F C

    2010-11-15

    Recent key developments in microbial fuel cell technology are reviewed. Fuel sources, electron transfer mechanisms, anode materials and enhanced O(2) reduction are discussed in detail. A summary of recently developed microbial fuel cell systems, including performance measurements, is conveniently provided in tabular form. The current challenges involved in developing practical bio-fuel cell systems are described, with particular emphasis on a fundamental understanding of the reaction environment, the performance and stability requirements, modularity and scalability. This review is the second part of a review of bio-fuel cells. In Part 1 a general introduction to bio-fuel cells, including their operating principles and applications, was provided and enzymatic fuel cell technology was reviewed.

  14. Assessment of the environmental benefits of transport and stationary fuel cells

    NASA Astrophysics Data System (ADS)

    Bauen, A.; Hart, D.

    Fuel cells (FCs) offer significant environmental benefits over competing technologies and hence the environment is a strong driving force behind the development of FC systems for transport and stationary applications. This paper provides a comprehensive comparison of FC and competing systems, and points out strengths and weaknesses of the different FC systems, suggesting areas for improvement. The results presented build on earlier work [D. Hart, G. Hörmandinger, Initial assessment of the environmental characteristics of fuel cells and competing technologies, ETSU F/02/00111/REP/1, ETSU, Harwell, UK, 1997.] and provide a detailed analysis of a wider range of systems. The analysis takes the form of a model, which compares system emissions (global, regional and local pollutants) and energy consumption on a full fuel cycle basis. It considers a variety of primary energy sources, intermediate fuel supply steps and FC systems for transport and stationary end-uses. These are compared with alternative systems for transport and stationary applications. Energy and pollutant emission reductions of FC systems compared to alternative vehicle technology vary considerably, though all FC technologies show reductions in energy use and CO 2 emissions of at least 20%; as well as reductions of several orders of magnitude in regulated pollutants compared to the base-case vehicle. The location of emissions is also of importance, with most emissions in the case of FC vehicles occurring in the fuel supply stage. The energy, CO 2 and regulated emissions advantages of FC systems for distributed and baseload electricity are more consistent than for transport applications, with reductions in regulated pollutants generally larger than one order of magnitude compared to competing technologies. For CHP applications, the advantages of FC systems with regard to regulated pollutants remain large. However, energy and CO 2 emission advantages are reduced, depending largely on the assumptions made

  15. Fuel cells for transportation: Status, opportunities and challenges

    SciTech Connect

    Lloyd, A.C.; Leonard, J.H.

    1996-12-31

    Environmental issues will become important drivers influencing technology in the years ahead. For example, air quality legislation and regulation - locally, regionally, and globally - will continue to play an increasing role in influencing decisions made in choosing a particular energy source. Health concerns related to ambient fine particles and the ongoing debate on global climate change and the need to reduce CO{sub 2} emissions are two examples of the nexus between energy and the environment. Additionally, as conventional sources of energy and petroleum become depleted and as political issues remain, desires for energy diversity and energy security will require a menu of technologies and fuels. It is recognized that many of the renewable and environmentally benign fuels and energy sources are expensive and that economics will play a key role in dictating which of these is going to be most successful. For example, generating hydrogen from wind or solar is expensive compared to conventional technologies and price competition is likely to be more intense in the area of electricity de-regulation. However, the cost of conventional fuels are also increasing because of a desire to clean them up or a desire to change their chemical and physical properties through partial oxidation or steam reforming. These additional treatments lead to increased costs so that the gap between the {open_quotes}clean{close_quotes} fuels and cleaning up conventional fuels becomes much narrower.

  16. The Benefits and Challenges of Preconsent in a Multisite, Pediatric Sickle Cell Intervention Trial.

    PubMed

    Nimmer, Mark; Czachor, Jason; Turner, Laura; Thomas, Bobbe; Woodford, Ashley L; Carpenter, Karli; Gonzalez, Victor; Liem, Robert I; Ellison, Angela; Casper, T Charles; Brousseau, David C

    2016-09-01

    Enrollment of patients in sickle cell intervention trials has been challenging due to difficulty in obtaining consent from a legal guardian and lack of collaboration between emergency medicine and hematology. We utilized education and preconsent in a pediatric multisite sickle cell intervention trial to overcome these challenges. Overall, 48 patients were enrolled after being preconsented. Variable Institutional Review Board policies related to preconsent validity and its allowable duration decreased the advantages of preconsent at some sites. The utility of preconsent for future intervention trials largely depends on local Institutional Review Board policies. Preeducation may also benefit the consent process, regardless of site differences.

  17. Incorporating Systems Science Principles into the Development of Obesity Prevention Interventions: Principles, Benefits, and Challenges.

    PubMed

    Gittelsohn, Joel; Mui, Yeeli; Adam, Atif; Lin, Sen; Kharmats, Anna; Igusa, Takeru; Lee, Bruce Y

    2015-06-01

    Systems modeling represents an innovative approach for addressing the obesity epidemic at the community level. We developed an agent-based model of the Baltimore City food environment that permits us to assess the relative impact of different programs and policies, alone and in combination, and potential unexpected consequences. Based on this experience, and a review of literature, we have identified a set of principles, potential benefits, and challenges. Some of the key principles include the importance of early and multilevel engagement with the community prior to initiating model development and continued engagement and testing with community stakeholders. Important benefits include improving community stakeholder understanding of the system, testing of interventions before implementation, and identification of unexpected consequences. Challenges in these models include deciding on the most important, yet parsimonious factors to consider, how to model food source and food selection behavior in a realistic yet transferable manner, and identifying the appropriate outcomes and limitations of the model.

  18. A transition strategy for becoming a baby-friendly hospital: exploring the costs, benefits, and challenges.

    PubMed

    DelliFraine, Jami; Langabeer, James; Delgado, Rigoberto; Williams, Janet F; Gong, Alice

    2013-04-01

    The objectives of this study were to provide an economic assessment as well as a calculated projection of the costs that typical U.S. tertiary-care hospitals would incur through policy reconfiguration and implementation to achieve the UNICEF/World Health Organization Baby-Friendly® Hospital designation and to examine the associated challenges and benefits of becoming a Baby-Friendly Hospital. We analyzed hospital resource utilization, focusing on formula use and staffing profiles at one U.S. urban tertiary-care teaching hospital, as well as conducted an online survey and telephone interviews with a selection of Baby-Friendly Hospitals to obtain their perspective on costs, challenges, and benefits. Findings indicate that added costs for a new Baby-Friendly Hospital will approximate $148 per birth, but these costs sharply decrease over time as breastfeeding rates increase in a Baby-Friendly environment.

  19. Blood Derived Induced Pluripotent Stem Cells (iPSCs): Benefits, Challenges and the Road Ahead

    PubMed Central

    El Hokayem, Jimmy; Dykxhoorn, Derek M

    2016-01-01

    Since the creation of induced Pluripotent Stem Cells (iPSCs) ten years ago, hundreds of publications have demonstrated their considerable impact on disease modeling and therapy. In this commentary, we will summarize key milestones, benefits and challenges in the iPSC field. Furthermore, we will highlight blood as an effective and easily accessible source for patient-specific iPSCs derivation in the context of work done in our laboratory and others. PMID:27882265

  20. A COMPARISON OF CHALLENGES ASSOCIATED WITH SLUDGE REMOVAL & TREATMENT & DISPOSAL AT SEVERAL SPENT FUEL STORAGE LOCATIONS

    SciTech Connect

    PERES, M.W.

    2007-01-09

    Challenges associated with the materials that remain in spent fuel storage pools are emerging as countries deal with issues related to storing and cleaning up nuclear fuel left over from weapons production. The K Basins at the Department of Energy's site at Hanford in southeastern Washington State are an example. Years of corrosion products and piles of discarded debris are intermingled in the bottom of these two pools that stored more 2,100 metric tons (2,300 tons) of spent fuel. Difficult, costly projects are underway to remove radioactive material from the K Basins. Similar challenges exist at other locations around the globe. This paper compares the challenges of handling and treating radioactive sludge at several locations storing spent nuclear fuel.

  1. Estimating the climate and air quality benefits of aviation fuel and emissions reductions

    NASA Astrophysics Data System (ADS)

    Dorbian, Christopher S.; Wolfe, Philip J.; Waitz, Ian A.

    2011-05-01

    In this study we consider the implications of our current understanding of aviation climate impacts as it relates to the ratio of non-CO 2 to CO 2 effects from aviation. We take as inputs recent estimates from the literature of the magnitude of the component aviation impacts and associated uncertainties. We then employ a simplified probabilistic impulse response function model for the climate and a range of damage functions to estimate the ratio of non-CO 2 to CO 2 impacts of aviation for a range of different metrics, scientific assumptions, future background emissions scenarios, economic growth scenarios, and discount rates. We take cost-benefit analysis as our primary context and thus focus on integral metrics that can be related to damages: the global warming potential, the time-integrated change in surface temperature, and the net present value of damages. We also present results based on an endpoint metric, the global temperature change potential. These latter results would be more appropriate for use in a cost-effectiveness framework (e.g., with a well-defined policy target for the anthropogenic change in surface temperature at a specified time in the future). We find that the parameter that most influences the ratio of non-CO 2 to CO 2 impacts of aviation is the discount rate, or analogously the time window used for physical metrics; both are expressions of the relative importance of long-lived versus short-lived impacts. Second to this is the influence of the radiative forcing values that are assumed for aviation-induced cloudiness effects. Given the large uncertainties in short-lived effects from aviation, and the dominating influence of discounting or time-windowing, we find that the choice of metric is relatively less influential. We express the ratios of non-CO 2 to CO 2 impacts on a per unit fuel burn basis so that they can be multiplied by a social cost of carbon to estimate the additional benefits of fuel burn reductions from aviation beyond those

  2. Higher education experiences of students with autism spectrum disorder: challenges, benefits and support needs.

    PubMed

    Van Hees, Valérie; Moyson, Tinneke; Roeyers, Herbert

    2015-06-01

    The transition into higher education constitutes a precarious life stage for students with autism spectrum disorder (ASD). Research on how students with ASD navigate college life is needed for the development of adequate support. This study investigated the challenges and support needs of 23 students with ASD in higher education through semi-structured interviews. Data were analyzed following the principles of Grounded Theory. Students faced difficulties with new situations and unexpected changes, social relationships, problems with information processing and time management and had doubts about disclosure. Facing these challenges simultaneously in the domains of education, student life and daily (independent) living, had a major impact on students' well being. Besides these challenges, students also reported benefits that contributed to success in the three domains. They pointed out to a set of recommendations for support. These findings are linked with previous research and implications for higher education institutions are extrapolated on the basis of these findings.

  3. Challenges in microbial fuel cell development and operation.

    PubMed

    Kim, Byung Hong; Chang, In Seop; Gadd, Geoffrey M

    2007-09-01

    A microbial fuel cell (MFC) is a device that converts chemical energy into electricity through the catalytic activities of microorganisms. Although there is great potential of MFCs as an alternative energy source, novel wastewater treatment process, and biosensor for oxygen and pollutants, extensive optimization is required to exploit the maximum microbial potential. In this article, the main limiting factors of MFC operation are identified and suggestions are made to improve performance.

  4. Small group learning: graduate health students' views of challenges and benefits.

    PubMed

    Jackson, Debra; Hickman, Louise D; Power, Tamara; Disler, Rebecca; Potgieter, Ingrid; Deek, Hiba; Davidson, Patricia M

    2014-07-19

    Abstract Background: For health care professionals, particularly nurses, the need to work productively and efficiently in small groups is a crucial skill required to meet the challenges of the contemporary health-care environment. Small group work is an educational technique that is used extensively in nurse education. The advantage of group work includes facilitation of deep, active and collaborative learning. However, small group work can be problematic and present challenges for students. Many of the challenges occur because group work necessitates the coming together of collections of individuals, each with their own personalities and sets of experiences. Aim: This study aimed to identify challenges and benefits associated with small group work and to explore options for retaining the positive aspects of group work while reducing or eliminating the aspects the students experienced as negative. Method: Online survey; thematic analysis. Results: Over all, students experienced a range of challenges that necessitated the development of problem-solving strategies. However, they were able to elucidate some enjoyable and positive aspects of group work. Implications for teaching and learning are drawn from this study. Conclusion: The ability to work effectively in small groups and teams is essential for all health care workers in the contemporary health environment. Findings of this study highlight the need for educators to explore novel and effective ways in which to engage nurses in group work.

  5. Outlook for benefits of sediment microbial fuel cells with two bio‐electrodes

    PubMed Central

    De Schamphelaire, Liesje; Rabaey, Korneel; Boeckx, Pascal; Boon, Nico; Verstraete, Willy

    2008-01-01

    Summary The benefits of sediment microbial fuel cells (SMFCs) go beyond energy generation for low‐power applications. Aside from producing electrical energy, SMFCs can enhance the oxidation of reduced compounds at the anode, thus bringing about the removal of excessive or unwanted reducing equivalents from submerged soils. Moreover, an SMFC could be applied to control redox‐dependent processes in sediment layers. Several cathodic reactions that may drive these sediment oxidation reactions are examined. Special attention is given to two biologically mediated cathodic reactions, respectively employing an oxygen reduction and a manganese cycle. Both reactions imply a low cost and a high electrode potential and are of interest for reactor‐type MFCs as well as for SMFCs. PMID:21261866

  6. Early access programs: Benefits, challenges, and key considerations for successful implementation

    PubMed Central

    Patil, Sanjaykumar

    2016-01-01

    Early access programs, (EAPs) are adopted by an increasing number of pharma companies due to several benefits offered by these programs. EAPs offer ethical, compliant, and controlled mechanisms of access to investigational drugs outside of the clinical trial space and before the commercial launch of the drug, to patients with life-threatening diseases having no treatment options available. In addition to the development of positive relationships with key opinion leaders (KOL), patients, advocacy groups and regulators, the data captured from the implementation of EAPs supports in the formulation of global commercialization strategies. This white paper outlines various circumstances to be considered for the implementation of EAPs named patient programs, the regulatory landscape, the benefits and challenges associated with implementing these programs and the key considerations for their successful implementation. PMID:26955570

  7. Cost-Benefit Analysis of Flexibility Retrofits for Coal and Gas-Fueled Power Plants: August 2012 - December 2013

    SciTech Connect

    Venkataraman, S.; Jordan, G.; O'Connor, M.; Kumar, N.; Lefton, S.; Lew, D.; Brinkman, G.; Palchak, D.; Cochran, J.

    2013-12-01

    High penetrations of wind and solar power plants can induce on/off cycling and ramping of fossil-fueled generators. This can lead to wear-and-tear costs and changes in emissions for fossil-fueled generators. Phase 2 of the Western Wind and Solar Integration Study (WWSIS-2) determined these costs and emissions and simulated grid operations to investigate the full impact of wind and solar on the fossil-fueled fleet. This report studies the costs and benefits of retrofitting existing units for improved operational flexibility (i.e., capability to turndown lower, start and stop faster, and ramp faster between load set-points).

  8. Examination of the costs, benefits and enery conservation aspects of the NASA aircraft fuel conservation technology program

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The costs and benefits of the NASA Aircraft Fuel Conservation Technology Program are discussed. Consideration is given to a present worth analysis of the planned program expenditures, an examination of the fuel savings to be obtained by the year 2005 and the worth of this fuel savings relative to the investment required, a comparison of the program funding with that planned by other Federal agencies for energy conservation, an examination of the private industry aeronautical research and technology financial posture for the period FY 76 - FY 85, and an assessment of the potential impacts on air and noise pollution. To aid in this analysis, a computerized fleet mix forecasting model was developed. This model enables the estimation of fuel consumption and present worth of fuel expenditures for selected commerical aircraft fleet mix scenarios.

  9. Benefits, Challenges, and Potential Utility of a Gait Database for Diabetes Patients

    PubMed Central

    Brown, Steven; Boulton, Andrew; Bowling, Frank; Reeves, Neil

    2016-01-01

    Gait analysis is a useful tool in understanding movement impairments, which impact on patient well-being. The use of gait analysis in patients with diabetes has led to improvements in health care including the treatment and prevention of ulceration and development of targeted exercise interventions. The current convention when analyzing gait is to address specific complications of diabetes, controlling for potential influencing conditions within a study sample to understand the effects of the few specific complications chosen for analysis. Databases allow for the storage of data in a structured format, allowing easy access to large quantities of data in a consistent, comparable manner. A database of gait analyses of patients with diabetes has the potential to include far greater sample sizes for statistical analyses, allowing multiple influencing factors to be assessed simultaneously, and relationships identified between multiple influencing factors. However, a database of this type would encounter ethical and methodological challenges in its implementation, which are discussed. This article introduces some of the potential benefits, challenges, and utility of a gait database for diabetes patients. We highlight that, whereas the creation of a database within this clinical population would be a complex process both ethically and practically, huge potential benefits could be gained, overcoming some of the limitations faced by traditional isolated gait analysis studies. PMID:27022098

  10. Timely Diagnosis for Alzheimer’s Disease: A Literature Review on Benefits and Challenges

    PubMed Central

    Dubois, Bruno; Padovani, Alessandro; Scheltens, Philip; Rossi, Andrea; Dell’Agnello, Grazia

    2015-01-01

    Background: Timely diagnosis of Alzheimer’s disease (AD) refers to a diagnosis at the stage when patients come to the attention of clinicians because of concerns about changes in cognition, behavior, or functioning and can be still free of dementia and functionally independent. Objectives: To comprehensively review existing scientific evidence on the benefits and potential challenges of making a timely diagnosis of AD. Methods: Relevant studies were identified by searching electronic databases (Medline, Embase) and bibliographies for studies published in English between 1 January 2000 and 2 June 2014 on the consequences of a timely diagnosis of AD. Results: Nine studies were identified that investigated the consequences of diagnosing AD at the initial stages; none were specifically focused on prodromal AD. A timely diagnosis potentially offers the opportunities of early intervention, implementation of coordinated care plans, better management of symptoms, patient safety, cost savings, and postponement of institutionalization. Barriers to making a timely diagnosis include stigma, suicide risk, lack of training, diagnostic uncertainty, shortage of specialized diagnostic services, and the reluctance of healthcare providers to make a diagnosis when no effective disease-modifying options are available. Conclusions: Despite its potential benefits, few published studies have explored the advantages or risks of a timely diagnosis of AD. In light of the cultural shift toward diagnosis at the initial stage of the disease continuum, when the patient does not yet have dementia, more investigations are needed to evaluate the benefits and address the barriers that may impede making a timely AD diagnosis. PMID:26484931

  11. Multinational medical support to operations: challenges, benefits and recommendations for the future.

    PubMed

    Cordell, R F

    2012-03-01

    This paper considers the strategic aspects of medical support to military operations as delivered through multi-national collaboration. The military medical services are in essence a people organisation; the purpose of the organisation is primarily to support the people engaged in military operations, and also the people providing healthcare to them. Increasingly, supporting the latter also includes preparation for the ethical dilemmas that they will face. Providing health advice and healthcare on operations is now usually undertaken on a multinational basis, in order to generate sufficient medical capacity to meet the requirement with assets of the appropriate (and NATO mandated) capability. This will be an enduring feature, particularly in light of increasing costs of providing high quality healthcare and the operational and logistic challenges of delivering this capability in adverse environments, and in the context of medical personnel being a limited resource. The key to overcoming the challenges, often the result of the "people issues" such as cultural differences, is to recognise the value that the inherent diversity of multinational healthcare provision brings. The benefit is realised through sharing best practice, and the lessons from challenges met, as well as through burden sharing, and to understand that challenges are most commonly the result of misunderstandings, such as those inherent in language differences. The advice for those bringing a multinational team together includes considering the implications of culture (noting differences in national and military perspectives, and in medical processes such as clinical governance), to ensure effective communication, and to utilise feedback to confirm understanding. It is important not to prejudge or denigrate others. Share information and knowledge, provide positive reinforcement when things go well, and recognise that there will inevitably be challenges and use these as an opportunity to learn. Above

  12. Increasing Diversity in the Sciences: a Partial Solution to the Challenge and the Benefits it Produces

    NASA Astrophysics Data System (ADS)

    Givan, A. V.

    2009-12-01

    Science is supposed to be about talent devoid of the bias’ and judgments generated by background, gender, ethnicity or any culturally determined discriminators. The scientific, academic, corporate and government communities have a vested interest in developing models, practices and policies that significantly increase the number of U.S. graduates in scientific disciplines. Additionally, it is crucial that these graduates possess the essential competencies and creative problem solving skills to compete in the current global economy. The stakeholders (corporations, researchers, educational practitioners, policymakers and funders) who have the common goal of producing highly qualified scientists must commit to collaborate in developing innovative strategies and solutions to this complex challenge. Volumes of research data from a variety of sources such the social and cognitive sciences, educational psychology, National Science Foundation and non-profit groups have been and are available for use enabling us to rise to the challenge we have been charged with, and are responsible for the outcome. A proposed solution to part of the challenge and discussion of the impacts of increasing diversity in science will be discussed in this paper. The paper will address one element of the issue - strategies for the recruitment and retention of under-represented groups in science focusing on the historical and current culture, climate and barriers encountered by minorities as they progress through the educational system and career pathways. The paper will examine the benefits of diversity to the individual and society as a whole.

  13. Nanomaterials for Polymer Electrolyte Membrane Fuel Cells; Materials Challenges Facing Electrical Energy Storate

    SciTech Connect

    Gopal Rao, MRS Web-Editor; Yury Gogotsi, Drexel University; Karen Swider-Lyons, Naval Research Laboratory

    2010-08-05

    Symposium T: Nanomaterials for Polymer Electrolyte Membrane Fuel Cells Polymer electrolyte membrane (PEM) fuel cells are under intense investigation worldwide for applications ranging from transportation to portable power. The purpose of this seminar is to focus on the nanomaterials and nanostructures inherent to polymer fuel cells. Symposium topics will range from high-activity cathode and anode catalysts, to theory and new analytical methods. Symposium U: Materials Challenges Facing Electrical Energy Storage Electricity, which can be generated in a variety of ways, offers a great potential for meeting future energy demands as a clean and efficient energy source. However, the use of electricity generated from renewable sources, such as wind or sunlight, requires efficient electrical energy storage. This symposium will cover the latest material developments for batteries, advanced capacitors, and related technologies, with a focus on new or emerging materials science challenges.

  14. Hybrid-Electric Passenger Car Carbon Dioxide and Fuel Consumption Benefits Based on Real-World Driving.

    PubMed

    Holmén, Britt A; Sentoff, Karen M

    2015-08-18

    Hybrid-electric vehicles (HEVs) have lower fuel consumption and carbon dioxide (CO2) emissions than conventional vehicles (CVs), on average, based on laboratory tests, but there is a paucity of real-world, on-road HEV emissions and performance data needed to assess energy use and emissions associated with real-world driving, including the effects of road grade. This need is especially great as the electrification of the passenger vehicle fleet (from HEVs to PHEVs to BEVs) increases in response to climate and energy concerns. We compared tailpipe CO2 emissions and fuel consumption of an HEV passenger car to a CV of the same make and model during real-world, on-the-road network driving to quantify the in-use benefit of one popular full HEV technology. Using vehicle specific power (VSP) assignments that account for measured road grade, the mean CV/HEV ratios of CO2 tailpipe emissions or fuel consumption defined the corresponding HEV "benefit" factor for each VSP class (1 kW/ton resolution). Averaging over all VSP classes for driving in all seasons, including temperatures from -13 to +35 °C in relatively steep (-13.2 to +11.5% grade), hilly terrain, mean (±SD) CO2 emission benefit factors were 4.5 ± 3.6, 2.5 ± 1.7, and 1.4 ± 0.5 for city, exurban/suburban arterial and highway driving, respectively. Benefit factor magnitude corresponded to the frequency of electric-drive-only (EDO) operation, which was modeled as a logarithmic function of VSP. A combined model explained 95% of the variance in HEV benefit for city, 75% for arterial and 57% for highway driving. Benefit factors consistently exceeded 2 for VSP classes with greater than 50% EDO (i.e., only city and arterial driving). The reported HEV benefits account for real-world road grade that is often neglected in regulatory emissions and fuel economy tests. Fuel use HEV benefit factors were 1.3 and 2 for the regulatory highway (HWFET) and city (FTP) cycles, respectively, 18% and 31% higher than the EPA adjusted

  15. An assessment of the benefits of the use of NASA developed fuel conservative technology in the US commercial aircraft fleet

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Cost and benefits of a fuel conservative aircraft technology program proposed by NASA are estimated. NASA defined six separate technology elements for the proposed program: (a) engine component improvement (b) composite structures (c) turboprops (d) laminar flow control (e) fuel conservative engine and (f) fuel conservative transport. There were two levels postulated: The baseline program was estimated to cost $490 million over 10 years with peak funding in 1980. The level two program was estimated to cost an additional $180 million also over 10 years. Discussions with NASA and with representatives of the major commercial airframe manufacturers were held to estimate the combinations of the technology elements most likely to be implemented, the potential fuel savings from each combination, and reasonable dates for incorporation of these new aircraft into the fleet.

  16. Dynamic Human Reliability Analysis: Benefits and Challenges of Simulating Human Performance

    SciTech Connect

    R. L. Boring

    2007-06-01

    To date, there has been considerable work on dynamic event trees and other areas related to dynamic probabilistic safety assessment (PSA). The counterpart to these efforts in human reliability analysis (HRA) has centered on the development of specific methods to account for the dynamic nature of human performance. In this paper, the author posits that the key to dynamic HRA is not in the development of specific methods but in the utilization of cognitive modeling and simulation to produce a framework of data that may be used in quantifying the likelihood of human error. This paper provides an overview of simulation approaches to HRA; reviews differences between first, second, and dynamic generation HRA; and outlines potential benefits and challenges of this approach.

  17. Photovoltaics (PV) as an Eligible Measure in Residential PACE Programs: Benefits and Challenges (Fact Sheet)

    SciTech Connect

    Coughlin, J.

    2010-06-01

    Property Assessed Clean Energy (PACE) financing is one of several new financial models broadening access to clean energy by addressing the barrier of initial capital cost. The majority of the PACE programs in the market today include PV as an eligible measure. PV appeals to homeowners as a way to reduce utility bills, self-generate sustainable power, increase energy independence and demonstrate a commitment to the environment. If substantial state incentives for PV exist, PV projects can be economic under PACE, especially when partnered with good net metering policies. At the same time, PV is expensive relative to other eligible measures with a return on investment horizon that might exceed program targets. This fact sheet reviews the benefits and potential challenges of including PV in PACE programs.

  18. Patient-Centered Participatory Research in Three Health Clinics: Benefits, Challenges, and Lessons Learned.

    PubMed

    Fava, Nicole M; Munro-Kramer, Michelle L; Felicetti, Irene L; Darling-Fisher, Cynthia S; Pardee, Michelle; Helman, Abigail; Trucco, Elisa M; Martyn, Kristy K

    2016-06-23

    Research informed by individuals' lived experiences is a critical component of participatory research and nursing interventions for health promotion. Yet, few examples of participatory research in primary care settings with adolescents and young adults exist, especially with respect to their sexual health and health-risk behaviors. Therefore, we implemented a validated patient-centered clinical assessment tool to improve the quality of communication between youth patients and providers, sexual risk assessment, and youths' health-risk perception to promote sexual health and reduce health-risk behaviors among adolescents and young adults in three community health clinic settings, consistent with national recommendations as best practices in adolescent health care. We describe guiding principles, benefits, challenges, and lessons learned from our experience. Improving clinical translation of participatory research requires consideration of the needs and desires of key stakeholders (e.g., providers, patients, and researchers) while retaining flexibility to successfully navigate imperfect, real-world conditions.

  19. Student leadership in interprofessional education: benefits, challenges and implications for educators, researchers and policymakers.

    PubMed

    Hoffman, Steven J; Rosenfield, Daniel; Gilbert, John H V; Oandasan, Ivy F

    2008-07-01

    Context Interprofessional collaboration is gaining increasing prominence as a team-based approach to health care delivery that synergistically maximises the strengths of each health professional to enhance patient care, decrease medical errors and optimise efficiency. The often neglected role that student leaders have in preparing their peers, as the health professionals of the future, for collaboration in health care should not be overlooked. Objective This paper offers the foundational arguments supporting the integral role that student leadership in interprofessional education (IPE) can play and its comparative advantages. Methods Evidence from previous literature and the National Health Science Students' Association in Canada was reviewed and a questionnaire on student-initiated IPE was administered among Canada's top student leaders in this area. Results Student leadership is essential to the success of IPE because it enhances students' willingness to collaborate and facilitates the longterm sustainability of IPE efforts. Student-initiated IPE, a subset of student leadership, is particularly important to achieving the aforementioned goals and offers a number of benefits, comparative advantages and associated challenges. Conclusions Successful student leadership in IPE will yield significant benefits for everyone in the years to come. However, it requires the support of educators, researchers and policymakers in fostering an enabling environment that will facilitate the efforts and contributions of student leaders.

  20. Harmonisation of food labelling regulations in Southeast Asia: benefits, challenges and implications.

    PubMed

    Kasapila, William; Shaarani, Sharifudin Md

    2011-01-01

    In the globalised world of the 21st century, issues of food and nutrition labelling are of pre-eminent importance. Several international bodies, including the World Health Organisation and World Trade Organisation, are encouraging countries to harmonise their food and nutrition regulations with international standards, guidelines and recommendations such as those for Codex Alimentarius. Through harmonisation, these organisations envisage fewer barriers to trade and freer movement of food products between countries, which would open doors to new markets and opportunities for the food industry. In turn, increased food trade would enhance economic development and allow consumers a greater choice of products. Inevitably, however, embracing harmonisation brings along cost implications and challenges that have to be overcome. Moreover, the harmonisation process is complex and sporadic in light of the tasks that countries have to undertake; for example, updating legislation, strengthening administrative capabilities and establishing analytical laboratories. This review discusses the legislation and regulations that govern food and nutrition labelling in Southeast Asia, and highlights the discrepancies that exist in this regard, their origin and consequences. It also gives an account of the current status of harmonising labelling of pre-packaged foodstuffs in the region and explains the subsequent benefits, challenges and implications for governments, the food industry and consumers.

  1. Benefits and Challenges of Antivirulence Antimicrobials at the Dawn of the Post-Antibiotic Era

    PubMed Central

    Totsika, Makrina

    2016-01-01

    In April 2014, the World Health Organization announced the beginning of a post-antibiotic era and declared antimicrobial resistance (AMR) a public health priority demanding global action. If no action is taken, by 2050 AMR will kill more people each year than cancer, with 10 million estimated annual deaths at a cost of $100 trillion to the global economy. New therapies to tackle multidrug resistant bacterial pathogens are urgently needed. Unlike traditional antibiotics, antivirulence drugs inhibit bacterial virulence instead of growth promising to offer a new class of superior therapeutics that will be ‘evolution-proof’ and ‘tailored-spectrum’. This mini-review discusses the latest emerging evidence on the promised benefits of antivirulence drugs over conventional antibiotics, also highlighting the challenges in evaluating these properties for each of the diverse virulence targets that are currently under investigation. The author argues that overcoming such challenges early in the development process constitutes an important step towards successfully progressing each of the expanding number of antivirulence strategies into next-generation therapies for common human and animal infections that are becoming increasingly refractory to all available antibiotics.

  2. Social Media in the Dental School Environment, Part A: Benefits, Challenges, and Recommendations for Use.

    PubMed

    Spallek, Heiko; Turner, Sharon P; Donate-Bartfield, Evelyn; Chambers, David; McAndrew, Maureen; Zarkowski, Pamela; Karimbux, Nadeem

    2015-10-01

    Social media consist of powerful tools that impact not only communication but relationships among people, thus posing an inherent challenge to the traditional standards of who we are as dental educators and what we can expect of each other. This article examines how the world of social media has changed dental education. Its goal is to outline the complex issues that social media use presents for academic dental institutions and to examine these issues from personal, professional, and legal perspectives. After providing an update on social media, the article considers the advantages and risks associated with the use of social media at the interpersonal, professional, and institutional levels. Policies and legal issues of which academic dental institutions need to be aware from a compliance perspective are examined, along with considerations and resources needed to develop effective social media policies. The challenge facing dental educators is how to capitalize on the benefits that social media offer, while minimizing risks and complying with the various forms of legal constraint.

  3. Long-term hand tele-rehabilitation on the PlayStation 3: benefits and challenges.

    PubMed

    Burdea, Grigore C; Jain, Abhishek; Rabin, Bryan; Pellosie, Richard; Golomb, Meredith

    2011-01-01

    Rehabilitation interventions for the hand have shown benefits for children with Hemiplegia due to cerebral palsy or traumatic brain injury. Longer interventions are facilitated if training is provided in the patient's home, due to easier access to care and reduced impact on school or work activities. Providing remote rehabilitation over lengthy periods of time has however its own challenges. This paper presents two pediatric patients with hemiplegia, who practiced virtual hand rehabilitation games using a modified PlayStation 3 and 5DT sensing gloves. Despite severe initial hand spasticity, and occasional technology shortcomings, the subjects practiced for about 14 months, and 6 months, respectively. Game performance data for the second patient is presented. Follow-up evaluations 14 months from the removal of the PlayStation 3 from the home of the child with cerebral palsy showed that the patient had good retention in terms of grasp strength, hand function and bone health. Challenges of long-term home tele-rehabilitation are also discussed.

  4. The introduction of graduate entry medical programmes: potential benefits and likely challenges.

    PubMed

    Cullen, W; Power, D; Bury, G

    2007-06-01

    There have been moves to introduce graduate entry programmes at medical schools both internationally and nationally. This, paper aims to review the recent literature on this policy issue and to discuss its implications in the context of the proposed introduction of graduate entry programmes at medical schools in Ireland. A number of potential advantages to this policy have been described, including: better educational outcomes, increased student motivation, benefits to student wellbeing, increased diversity of the student body, improved student learning strategies and improved professional outcomes. An equal number of challenges associated with this policy have also been described, including: increased stress levels for students, increased difficulties establishing an equitable admissions process, challenges to the curriculum to accommodate students with different educational backgrounds and other organisational issues. These issues must be considered in the transition to graduate entry programmes at medical schools in Ireland. The introduction of graduate entry programmes at medical schools in Ireland represents an important opportunity to inform the international debate on this subject.

  5. The public health benefits of reducing fine particulate matter through conversion to cleaner heating fuels in New York City.

    PubMed

    Kheirbek, Iyad; Haney, Jay; Douglas, Sharon; Ito, Kazuhiko; Caputo, Steven; Matte, Thomas

    2014-12-02

    In recent years, both New York State and City issued regulations to reduce emissions from burning heating oil. To assess the benefits of these programs in New York City, where the density of emissions and vulnerable populations vary greatly, we simulated the air quality benefits of scenarios reflecting no action, partial, and complete phase-out of high-sulfur heating fuels using the Community MultiScale Air Quality (CMAQ) model conducted at a high spatial resolution (1 km). We evaluated the premature mortality and morbidity benefits of the scenarios within 42 city neighborhoods and computed benefits by neighborhood poverty status. The complete phase-out scenario reduces annual average fine particulate matter (PM2.5) by an estimated 0.71 μg/m(3) city-wide (average of 1 km estimates, 10-90th percentile: 0.1-1.6 μg/m(3)), avoiding an estimated 290 premature deaths, 180 hospital admissions for respiratory and cardiovascular disease, and 550 emergency department visits for asthma each year. The largest improvements were seen in areas of highest building and population density and the majority of benefits have occurred through the partial phase out of high-sulfur heating fuel already achieved. While emissions reductions were greatest in low-poverty neighborhoods, health benefits are estimated to be greatest in high-poverty neighborhoods due to higher baseline morbidity and mortality rates.

  6. The challenges and opportunities for integration of solar syngas production with liquid fuel synthesis

    NASA Astrophysics Data System (ADS)

    Hinkley, James T.; McNaughton, Robbie K.; Pye, John; Saw, Woei; Stechel, Ellen B.

    2016-05-01

    Reforming of methane is practiced on a vast scale globally for the production of syngas as a precursor for the production of many commodities, including hydrogen, ammonia and synthetic liquid fuels. Solar reforming can reduce the greenhouse gas intensity of syngas production by up to about 40% by using solar thermal energy to provide the endothermic heat of reaction, traditionally supplied by combustion of some of the feed. This has the potential to enable the production of solar derived synthetic fuels as drop in replacements for conventional fuels with significantly lower CO2 intensity than conventional gas to liquids (GTL) processes. However, the intermittent nature of the solar resource - both diurnal and seasonal - poses significant challenges for such a concept, which relies on synthesis processes that typically run continuously on very stable feed compositions. We find that the integration of solar syngas production to a GTL process is a non-trivial exercise, with the ability to turn down the capacity of the GTL synthesis section, and indeed to suspend operations for short periods without significant detriment to product quality or process operability, likely to be a key driver for the commercial implementation of solar liquid fuels. Projected costs for liquid fuel synthesis suggest that solar reforming and small scale gas to liquid synthesis can potentially compete with conventional oil derived transport fuels in the short to medium term.

  7. Assessment of costs and benefits of flexible and alternative fuel use in the US transportation sector

    SciTech Connect

    Not Available

    1991-10-01

    The DOE is conducting a comprehensive technical analysis of a flexible-fuel transportation system in the United States -- that is, a system that could easily switch between petroleum and another fuel, depending on price and availability. The DOE Alternative Fuels Assessment is aimed directly at questions of energy security and fuel availability, but covers a wide range of issues. This report examines environmental, health, and safety concerns associated with a switch to alternative- and flexible-fuel vehicles. Three potential alternatives to oil-based fuels in the transportation sector are considered: methanol, compressed natural gas (CNG), and electricity. The objective is to describe and discuss qualitatively potential environmental, health, and safety issues that would accompany widespread use of these three fuels. This report presents the results of exhaustive literature reviews; discussions with specialists in the vehicular and fuel-production industries and with Federal, State, and local officials; and recent information from in-use fleet tests. Each chapter deals with the end-use and process emissions of air pollutants, presenting an overview of the potential air pollution contribution of the fuel --relative to that of gasoline and diesel fuel -- in various applications. Carbon monoxide, particulate matter, ozone precursors, and carbon dioxide are emphasized. 67 refs., 6 figs. , 8 tabs.

  8. Benefits and challenges of linking green infrastructure and highway planning in the United States.

    PubMed

    Marcucci, Daniel J; Jordan, Lauren M

    2013-01-01

    Landscape-level green infrastructure creates a network of natural and semi-natural areas that protects and enhances ecosystem services, regenerative capacities, and ecological dynamism over long timeframes. It can also enhance quality of life and certain economic activity. Highways create a network for moving goods and services efficiently, enabling commerce, and improving mobility. A fundamentally profound conflict exists between transportation planning and green infrastructure planning because they both seek to create connected, functioning networks across the same landscapes and regions, but transportation networks, especially in the form of highways, fragment and disconnect green infrastructure networks. A key opportunity has emerged in the United States during the last ten years with the promotion of measures to link transportation and environmental concerns. In this article we examined the potential benefits and challenges of linking landscape-level green infrastructure planning and implementation with integrated transportation planning and highway project development in the United States policy context. This was done by establishing a conceptual model that identified logical flow lines from planning to implementation as well as the potential interconnectors between green infrastructure and highway infrastructure. We analyzed the relationship of these activities through literature review, policy analysis, and a case study of a suburban Maryland, USA landscape. We found that regionally developed and adopted green infrastructure plans can be instrumental in creating more responsive regional transportation plans and streamlining the project environmental review process while enabling better outcomes by enabling more targeted mitigation. In order for benefits to occur, however, landscape-scale green infrastructure assessments and plans must be in place before integrated transportation planning and highway project development occurs. It is in the transportation

  9. Benefits and Challenges of Linking Green Infrastructure and Highway Planning in the United States

    NASA Astrophysics Data System (ADS)

    Marcucci, Daniel J.; Jordan, Lauren M.

    2013-01-01

    Landscape-level green infrastructure creates a network of natural and semi-natural areas that protects and enhances ecosystem services, regenerative capacities, and ecological dynamism over long timeframes. It can also enhance quality of life and certain economic activity. Highways create a network for moving goods and services efficiently, enabling commerce, and improving mobility. A fundamentally profound conflict exists between transportation planning and green infrastructure planning because they both seek to create connected, functioning networks across the same landscapes and regions, but transportation networks, especially in the form of highways, fragment and disconnect green infrastructure networks. A key opportunity has emerged in the United States during the last ten years with the promotion of measures to link transportation and environmental concerns. In this article we examined the potential benefits and challenges of linking landscape-level green infrastructure planning and implementation with integrated transportation planning and highway project development in the United States policy context. This was done by establishing a conceptual model that identified logical flow lines from planning to implementation as well as the potential interconnectors between green infrastructure and highway infrastructure. We analyzed the relationship of these activities through literature review, policy analysis, and a case study of a suburban Maryland, USA landscape. We found that regionally developed and adopted green infrastructure plans can be instrumental in creating more responsive regional transportation plans and streamlining the project environmental review process while enabling better outcomes by enabling more targeted mitigation. In order for benefits to occur, however, landscape-scale green infrastructure assessments and plans must be in place before integrated transportation planning and highway project development occurs. It is in the transportation

  10. Assessment of costs and benefits of flexible and alternative fuel use in the US transportation sector

    SciTech Connect

    Not Available

    1990-12-01

    In 1988 the Department of Energy (DOE) undertook a comprehensive technical analysis of a flexible-fuel transportation system in the United States. During the next two decades, alternative fuels such as alcohol (methanol or ethanol), compressed natural gas (CNG), and electricity could become practical alternatives to oil-based fuels in the US transportation sector. The DOE Alternative Fuels Assessment is aimed directly at questions of energy security and fuel availability. To keep interested parties informed about the progress of the DOE Alternative Fuels Assessment, the Department periodically publishes reports dealing with particular aspects of this complex study. This report provides an analysis of the expected costs to produce methanol from biomass feedstock.

  11. Emerging Fuel Cell Technology Being Developed: Offers Many Benefits to Air Vehicles

    NASA Technical Reports Server (NTRS)

    Walker, James F.; Civinskas, Kestutis C.

    2004-01-01

    Fuel cells, which have recently received considerable attention for terrestrial applications ranging from automobiles to stationary power generation, may enable new aerospace missions as well as offer fuel savings, quiet operations, and reduced emissions for current and future aircraft. NASA has extensive experience with fuel cells, having used them on manned space flight systems over four decades. Consequently, the NASA Glenn Research Center has initiated an effort to investigate and develop fuel cell technologies for multiple aerospace applications. Two promising fuel cell types are the proton exchange membrane (PEM) and solid oxide fuel cell (SOFC). PEM technology, first used on the Gemini spacecraft in the sixties, remained unutilized thereafter until the automotive industry recently recognized the potential. PEM fuel cells are low-temperature devices offering quick startup time but requiring relatively pure hydrogen fuel. In contrast, SOFCs operate at high temperatures and tolerate higher levels of impurities. This flexibility allows SOFCs to use hydrocarbon fuels, which is an important factor considering our current liquid petroleum infrastructure. However, depending on the specific application, either PEM or SOFC can be attractive. As only NASA can, the Agency is pursuing fuel cell technology for civil uninhabited aerial vehicles (UAVs) because it offers enhanced scientific capabilities, including enabling highaltitude, long-endurance missions. The NASA Helios aircraft demonstrated altitudes approaching 100,000 ft using solar power in 2001, and future plans include the development of a regenerative PEM fuel cell to provide nighttime power. Unique to NASA's mission, the high-altitude aircraft application requires the PEM fuel cell to operate on pure oxygen, instead of the air typical of terrestrial applications.

  12. The Challenge Facing Efforts to Encourage Military Use of Biodiesel as a Drop-In Fuel

    DTIC Science & Technology

    2012-05-01

    150 years after the first drilling derricks were erected in Titusville, Pennsylvania; Man has a renewed need to satisfy that addiction . Human’s... addiction to oil has intensified the research and development into new forms of alternative fuels. The challenges today are numerous and multi-layered...oil prices increase the demand for corn-based biofuel production, and higher sugar prices have increased the demand for com-based sweeteners. There is

  13. Investigating Epigenetic Effects of Prenatal Exposure to Toxic Metals in Newborns: Challenges and Benefits.

    PubMed

    Nye, Monica D; Fry, Rebecca C; Hoyo, Cathrine; Murphy, Susan K

    2014-01-01

    Increasing evidence suggest that epigenetic alterations can greatly impact human health, and that epigenetic mechanisms (DNA methylation, histone modifications, and microRNAs) may be particularly relevant in responding to environmental toxicant exposure early in life. The epigenome plays a vital role in embryonic development, tissue differentiation and disease development by controlling gene expression. In this review we discuss what is currently known about epigenetic alterations in response to prenatal exposure to inorganic arsenic (iAs) and lead (Pb), focusing specifically on their effects on DNA methylation. We then describe how epigenetic alterations are being studied in newborns as potential biomarkers of in utero environmental toxicant exposure, and the benefits and challenges of this approach. In summary, the studies highlighted herein indicate how epigenetic mechanisms are impacted by early life exposure to iAs and Pb, and the research that is being done to move towards understanding the relationships between toxicant-induced epigenetic alterations and disease development. Although much remains unknown, several groups are working to understand the correlative and causal effects of early life toxic metal exposure on epigenetic changes and how these changes may result in later development of disease.

  14. Exploring the benefits and challenges of establishing a DRI-like process for bioactives.

    PubMed

    Lupton, Joanne R; Atkinson, Stephanie A; Chang, Namsoo; Fraga, Cesar G; Levy, Joseph; Messina, Mark; Richardson, David P; van Ommen, Ben; Yang, Yuexin; Griffiths, James C; Hathcock, John

    2014-04-01

    Bioactives can be defined as: "Constituents in foods or dietary supplements, other than those needed to meet basic human nutritional needs, which are responsible for changes in health status" (Office of Disease Prevention and Health Promotion, Office of Public Health and Science, Department of Health and Human Services in Fed Reg 69:55821-55822, 2004). Although traditional nutrients, such as vitamins, minerals, protein, essential fatty acids and essential amino acids, have dietary reference intake (DRI) values, there is no such evaluative process for bioactives. For certain classes of bioactives, substantial scientific evidence exists to validate a relationship between their intake and enhanced health conditions or reduced risk of disease. In addition, the study of bioactives and their relationship to disease risk is a growing area of research supported by government, academic institutions, and food and supplement manufacturers. Importantly, consumers are purchasing foods containing bioactives, yet there is no evaluative process in place to let the public know how strong the science is behind the benefits or the quantitative amounts needed to achieve these beneficial health effects. This conference, Bioactives: Qualitative Nutrient Reference Values for Life-stage Groups?, explored why it is important to have a DRI-like process for bioactives and challenges for establishing such a process.

  15. IED Cleanup: A Cooperative Classroom Robotics Challenge--The Benefits and Execution of a Cooperative Classroom Robotics Challenge

    ERIC Educational Resources Information Center

    Piotrowski, Mark; Kressly, Rich

    2009-01-01

    This article describes a cooperative classroom robotics challenge named "IED Cleanup". This classroom challenge was created to incorporate a humanitarian project with the use of a robotics design system in order to remove simulated IEDs (Improvised Explosive Devices) to a detonation zone within a specified amount of time. Throughout the activity,…

  16. Appendix B: Hydrogen, Fuel Cells, and Infrastructure Technologies Program inputs for FY 2008 benefits estimates

    SciTech Connect

    None, None

    2009-01-18

    Document summarizes the results of the benefits analysis of EERE’s programs, as described in the FY 2008 Budget Request. EERE estimates benefits for its overall portfolio and nine Research, Development, Demonstration, and Deployment (RD3) programs.

  17. The benefits and costs of new fuels and engines for light-duty vehicles in the United States.

    PubMed

    Keefe, Ryan; Griffin, James P; Graham, John D

    2008-10-01

    Rising oil prices and concerns about energy security and climate change are spurring reconsideration of both automobile propulsion systems and the fuels that supply energy to them. In addition to the gasoline internal combustion engine, recent years have seen alternatives develop in the automotive marketplace. Currently, hybrid-electric vehicles, advanced diesels, and flex-fuel vehicles running on a high percentage mixture of ethanol and gasoline (E85) are appearing at auto shows and in driveways. We conduct a rigorous benefit-cost analysis from both the private and societal perspective of the marginal benefits and costs of each technology--using the conventional gasoline engine as a baseline. The private perspective considers only those factors that influence the decisions of individual consumers, while the societal perspective accounts for environmental, energy, and congestion externalities as well. Our analysis illustrates that both hybrids and diesels show promise for particular light-duty applications (sport utility vehicles and pickup trucks), but that vehicles running continuously on E85 consistently have greater costs than benefits. The results for diesels were particularly robust over a wide range of sensitivity analyses. The results from the societal analysis are qualitatively similar to the private analysis, demonstrating that the most relevant factors to the benefit-cost calculations are the factors that drive the individual consumer's decision. We conclude with a brief discussion of marketplace and public policy trends that will both illustrate and influence the relative adoption of these alternative technologies in the United States in the coming decade.

  18. The Challenges Associated with High Burnup and High Temperature for UO2 TRISO-Coated Particle Fuel

    SciTech Connect

    David Petti; John Maki

    2005-02-01

    The fuel service conditions for the DOE Next Generation Nuclear Plant (NGNP) will be challenging. All major fuel related design parameters (burnup, temperature, fast neutron fluence, power density, particle packing fraction) exceed the values that were qualified in the successful German UO2 TRISO-coated particle fuel development program in the 1980s. While TRISO-coated particle fuel has been irradiated at NGNP relevant levels for two or three of the design parameters, no data exist for TRISO-coated particle fuel for all five parameters simultaneously. Of particular concern are the high burnup and high temperatures expected in the NGNP. In this paper, where possible, we evaluate the challenges associated with high burnup and high temperature quantitatively by examining the performance of the fuel in terms of different known failure mechanisms. Potential design solutions to ameliorate the negative effects of high burnup and high temperature are also discussed.

  19. Air Quality Benefits of Ship Fuel Regulations in the San Francisco Bay Area

    NASA Astrophysics Data System (ADS)

    Tao, L.; Harley, R. A.; Fairley, D.; Martien, P. T.

    2012-12-01

    Ocean-going vessels burning high-sulfur heavy fuel oil are an important emission source of air pollutants such as sulfur dioxide and particulate matter. Beginning July 1, 2009, an emission control area was put into effect at ports and along the California coastline, requiring use of low-sulfur marine fuels in place of heavy fuel oil in main engines of ships. To assess impacts of the fuel changes on air quality at the Port of Oakland and in the surrounding San Francisco Bay area, we analyzed speciated fine particle composition data from 4 urban sites and 2 more remote sites (Point Reyes and Pinnacles) from the IMPROVE network. Measured changes in concentrations of vanadium, a useful and specific tracer for heavy fuel oil combustion, are related to overall changes in primary aerosol emissions from ships. The results indicate a substantial reduction in vanadium concentrations after the fuel change, and a 13 to 38% decrease in SO2 concentration, with the SO2 decrease varying depending on proximity to shipping lanes. We inferred from emission factors documented in the literature that marine vessel contributions to primary fine particulate matter mass in the Bay Area, prior to the fuel change, were on the order of 1 to 5%.

  20. Business Education Students' Evaluation of the Benefits and Challenges Confronting Student Industrial Works Experience Scheme in Edo and Delta States

    ERIC Educational Resources Information Center

    Olumese, H. A.; Ediagbonya, Kennedy

    2016-01-01

    This research paper specifically investigated Business Education students' evaluation of the benefits and challenges confronting Student Industrial Works Experience Scheme (SIWES) in Edo and Delta States. Two research questions were raised to guide the study and were answered descriptively. The descriptive survey research design was adopted for…

  1. The Interactive Whiteboard: Uses, Benefits, and Challenges. A Survey of 11,683 Students and 1,131 Teachers

    ERIC Educational Resources Information Center

    Karsenti, Thierry

    2016-01-01

    Over the past five years, the interactive whiteboard (IWB) has been massively introduced into schools across the province of Quebec, Canada. This study explores how the IWB is being used, and the associated benefits and challenges. Data on 11,683 students (from 4th year elementary to grade 12) and 1,131 teachers were collected with five…

  2. Insights of Public High School Teachers and Administrators Regarding the Benefits and Challenges of Co-Teaching

    ERIC Educational Resources Information Center

    Dagna, Jeanne M.

    2012-01-01

    The purpose of this study was to identify the benefits and challenges of co-teaching, as self-reported by high school general education teachers, special education teachers, and administrators and determine if they shared common beliefs regarding supporting students with special needs within the general education curriculum. Participants included…

  3. Benefits and Challenges of Information and Communication Technologies (ICT) Integration in Québec English Schools

    ERIC Educational Resources Information Center

    Rabah, Jihan

    2015-01-01

    This paper investigated teachers' and educational consultants' perceptions of ICT integration in Québec English Schools, specifically with regards to the benefits and challenges of ICT integration therein. 23 teachers and educational consultants from seven different school boards participated in the focus group sessions. Results revealed higher…

  4. What Challenges and Benefits Can Non-Formal Law and Language Integrated Learning Bring to University Students?

    ERIC Educational Resources Information Center

    Atabekova, Atabekova; Gorbatenko, Rimma; Belousov, Aleksandr; Grebnev, Ruslan; Sheremetieva, Olga

    2016-01-01

    The paper explores the ways in which non-formal content and language integrated learning within university studies can affect students' academic progress. The research has included theoretical and empirical studies. The article focuses on the observation of students' learning process, draws attention to challenges and benefits students experienced…

  5. Benefits and Challenges of Technology in High Schools: A Voice from Educational Leaders with a Freire Echo

    ERIC Educational Resources Information Center

    Preston, Jane P.; Wiebe, Sean; Gabriel, Martha; McAuley, Alexander; Campbell, Barbara; MacDonald, Ron

    2015-01-01

    The purpose of this study is to document the perceptions of school leaders pertaining to the benefits and challenges of technology in high schools located on Prince Edward Island (PEI) (Canada). For this qualitative study, we interviewed 11 educational leaders representing the PEI Department of Education, principals, vice-principals, and…

  6. PBL in the Era of Reform Standards: Challenges and Benefits Perceived by Teachers in One Elementary School

    ERIC Educational Resources Information Center

    Nariman, Nahid; Chrispeels, Janet

    2016-01-01

    We explore teachers' efforts to implement problem-based learning (PBL) in an elementary school serving predominantly English learners. Teachers had an opportunity to implement the Next Generation Science Standards (NGSS) using PBL in a summer school setting with no test-pressures. To understand the challenges and benefits of PBL implementation, a…

  7. The Challenges and Benefits of Using Computer Technology for Communication and Teaching in the Geosciences

    NASA Astrophysics Data System (ADS)

    Fairley, J. P.; Hinds, J. J.

    2003-12-01

    The advent of the World Wide Web in the early 1990s not only revolutionized the exchange of ideas and information within the scientific community, but also provided educators with a new array of teaching, informational, and promotional tools. Use of computer graphics and animation to explain concepts and processes can stimulate classroom participation and student interest in the geosciences, which has historically attracted students with strong spatial and visualization skills. In today's job market, graduates are expected to have knowledge of computers and the ability to use them for acquiring, processing, and visually analyzing data. Furthermore, in addition to promoting visibility and communication within the scientific community, computer graphics and the Internet can be informative and educational for the general public. Although computer skills are crucial for earth science students and educators, many pitfalls exist in implementing computer technology and web-based resources into research and classroom activities. Learning to use these new tools effectively requires a significant time commitment and careful attention to the source and reliability of the data presented. Furthermore, educators have a responsibility to ensure that students and the public understand the assumptions and limitations of the materials presented, rather than allowing them to be overwhelmed by "gee-whiz" aspects of the technology. We present three examples of computer technology in the earth sciences classroom: 1) a computer animation of water table response to well pumping, 2) a 3-D fly-through animation of a fault controlled valley, and 3) a virtual field trip for an introductory geology class. These examples demonstrate some of the challenges and benefits of these new tools, and encourage educators to expand the responsible use of computer technology for teaching and communicating scientific results to the general public.

  8. IEEE 802.16J-Relay Fortified Aeromacs Networks; Benefits and Challenges

    NASA Technical Reports Server (NTRS)

    Kamali, Behnam; Apaza, Rafael D.

    2014-01-01

    Aeronautical Mobile Airport Communications System (AeroMACS) is an IEEE 802.16 standard-based (WiMAX) broadband aviation transmission technology, developed to provide safety critical communications coverage for airport surface in support of fixed and mobile ground to ground applications and services. We have previously demonstrated that IEEE 802.16j-amendment-based WiMAX is most feasible for AeroMACS applications. The principal argument in favor of application of IEEE 802.16j technology is the flexible and cost effective extension of radio coverage that is afforded by relay fortified WiMAX networks, with virtually no increase in the power requirements. In this article, following introductory remarks on airport surface communications, WiMAX and AeroMACS; the IEEE 802.16j-based WiMAX technology and multihop relay systems are briefly described. The two modes of relay operation supported by IEEE 802.16j amendment; i.e., transparent (TRS) and non-transparent (NTRS) modes, are discussed in some detail. Advantages and disadvantages of using TRS and NTRS in AeroMACS networks are summarized in a table. Practical issues vis--vis the inclusion of relays in AeroMACS networks are addressed. It is argued that the selection of relay type may affect a number of network parameters. A discussion on specific benefits and challenges of inclusion of relays in AeroMACS networks is provided. The article concludes that in case it is desired or necessary to exclusively employ one type of relay mode for all applications throughout an AeroMACS network, the proper selection would be the non-transparent mode.

  9. Certification challenges in the development of an innovative high payload capacity spent fuel transportation cask

    SciTech Connect

    Mair, B.R.; Severson, M.J.; Ciez, A.P. )

    1990-01-01

    The design approach and certification strategy used in the development of an innovative transportation cask for legal weight truck shipments of spent nuclear fuel is presented. The proposed approach represents a significant departure from conventional cask designs in that it uses titanium alloy, a material with a high strength-to-weight ratio which has no precedent in transportation cask certification. The significant increase in payload obtainable with the proposed approach, and the associated benefits such as reduced life cycle costs, lower personnel exposure, and lower transportation accident risks are discussed. 8 refs., 3 figs., 1 tab.

  10. Xylose fermentation as a challenge for commercialization of lignocellulosic fuels and chemicals.

    PubMed

    Sànchez Nogué, Violeta; Karhumaa, Kaisa

    2015-04-01

    Fuel ethanol production from lignocellulosic materials is at a level where commercial biofuel production is becoming a reality. The solubilization of the hemicellulose fraction in lignocellulosic-based feedstocks results in a large variety of sugar mixtures including xylose. However, allowing xylose fermentation in yeast that normally is used for fuel ethanol production requires genetic engineering. Moreover, the efficiency of lignocellulosic pretreatment, together with the release and generation of inhibitory compounds in this step, are some of the new challenges faced during second generation ethanol production. Successful advances in all these aspects will improve ethanol yield, productivity and titer, which will reduce the impact on capital and operating costs, leading to the consolidation of the fermentation of lignocellulosic biomass as an economically feasible option for the production of renewable fuels. Therefore the development of yeast strains capable of fermenting a wide variety of sugars in a highly inhibitory environment, while maintaining a high ethanol yield and production rate, is required. This review provides an overview of the current status in the use of xylose-engineered yeast strains and describes the remaining challenges to achieve an efficient deployment of lignocellulosic-based ethanol production.

  11. Key challenges and recent progress in batteries, fuel cells, and hydrogen storage for clean energy systems

    NASA Astrophysics Data System (ADS)

    Chalk, Steven G.; Miller, James F.

    Reducing or eliminating the dependency on petroleum of transportation systems is a major element of US energy research activities. Batteries are a key enabling technology for the development of clean, fuel-efficient vehicles and are key to making today's hybrid electric vehicles a success. Fuel cells are the key enabling technology for a future hydrogen economy and have the potential to revolutionize the way we power our nations, offering cleaner, more efficient alternatives to today's technology. Additionally fuel cells are significantly more energy efficient than combustion-based power generation technologies. Fuel cells are projected to have energy efficiency twice that of internal combustion engines. However before fuel cells can realize their potential, significant challenges remain. The two most important are cost and durability for both automotive and stationary applications. Recent electrocatalyst developments have shown that Pt alloy catalysts have increased activity and greater durability than Pt catalysts. The durability of conventional fluorocarbon membranes is improving, and hydrocarbon-based membranes have also shown promise of equaling the performance of fluorocarbon membranes at lower cost. Recent announcements have also provided indications that fuel cells can start from freezing conditions without significant deterioration. Hydrogen storage systems for vehicles are inadequate to meet customer driving range expectations (>300 miles or 500 km) without intrusion into vehicle cargo or passenger space. The United States Department of Energy has established three centers of Excellence for hydrogen storage materials development. The centers are focused on complex metal hydrides that can be regenerated onboard a vehicle, chemical hydrides that require off-board reprocessing, and carbon-based storage materials. Recent developments have shown progress toward the 2010 DOE targets. In addition DOE has established an independent storage material testing center

  12. Video observation in HIT development: lessons learned on benefits and challenges

    PubMed Central

    2012-01-01

    Background Experience shows that the precondition for the development of successful health information technologies is a thorough insight into clinical work practice. In contemporary clinical work practice, clinical work and health information technology are integrated, and part of the practice is tacit. When work practice becomes routine, it slips to the background of the conscious awareness and becomes difficult to recognize without the context to support recall. This means that it is difficult to capture with traditional ethnographic research methods or in usability laboratories or clinical set ups. Observation by the use of the video technique within healthcare settings has proven to be capable of providing a thorough insight into the complex clinical work practice and its context - including parts of the tacit practice. The objective of this paper is 1) to argue for the video observation technique to inform and improve health-information-technology development and 2) to share insights and lessons learned on benefits and challenges when using the video observation technique within healthcare settings. Methods A multiple case study including nine case studies conducted by DaCHI researchers 2004–2011 using audio-visual, non-participant video observation for data collection within different healthcare settings. Results In HIT development, video observation is beneficial for 1) informing and improving system design 2) studying changes in work practice 3) identifying new potentials and 4) documenting current work practices. Conclusions The video observation technique used within healthcare settings is superior to other ethnographic research methods when it comes to disclosing the complexity in clinical work practice. The insights gained are far more realistic compared to traditional ethnographic studies or usability studies and studies in clinical set ups. Besides, the data generated through video recordings provide a solid basis for dialog between the health care

  13. PEM fuel cells: status and challenges for commercial stationary power applications

    NASA Astrophysics Data System (ADS)

    Du, Bin; Guo, Qunhui; Pollard, Richard; Rodriguez, Daniel; Smith, Christopher; Elter, John

    2006-08-01

    The past decade has seen tremendous advances in proton exchange membrane fuel cell (PEMFC) technology: However, there remain many challenges to bring commercially viable stationary PEMFC products to the market. This review, from a manufacturer's perspective, focuses on system reliability and materials compatibility and their strong impact on stack life and overall system durability. Statistical analysis is based on field data from more than 600 stationary PEMFC systems for both continuous and back-up power applications. Sealing materials and coolants are used to illustrate the approaches taken to evaluate materials compatibility studies.

  14. Potential Benefits from the Use of JP-8 Fuel in Military Ground Equipment

    DTIC Science & Technology

    1989-02-01

    08990 ByU A.F. Montemayor L.L. Stavizba V LY S.J. Lestz Belvoir Fuels and Lubricants Research Facility (SwRI) Southwest Research Institute San Antonio...ZPERSONALAUTHOR(S) Montemayor , Alan F., and Stavinoha, Leo L., and Lestz, Sidney J.., and LePera, Maurice E. (Belvoir RDE Center) 13*. TYPE OF REPORT 13b. TIME...San Antonio, TX, January 1988. 18. Montemayor , A.F., et al., "Fuel Property Effects on the Cold Startability of Navy High-Speed Diesel Engines

  15. Benefits of utilizing CellProfiler as a characterization tool for U-10Mo nuclear fuel

    SciTech Connect

    Collette, R.; Douglas, J.; Patterson, L.; Bahun, G.; King, J.; Keiser, D.; Schulthess, J.

    2015-05-01

    Automated image processing techniques have the potential to aid in the performance evaluation of nuclear fuels by eliminating judgment calls that may vary from person-to-person or sample-to-sample. Analysis of in-core fuel performance is required for design and safety evaluations related to almost every aspect of the nuclear fuel cycle. This study presents a methodology for assessing the quality of uranium-molybdenum fuel images and describes image analysis routines designed for the characterization of several important microstructural properties. The analyses are performed in CellProfiler, an open-source program designed to enable biologists without training in computer vision or programming to automatically extract cellular measurements from large image sets. The quality metric scores an image based on three parameters: the illumination gradient across the image, the overall focus of the image, and the fraction of the image that contains scratches. The metric presents the user with the ability to ‘pass’ or ‘fail’ an image based on a reproducible quality score. Passable images may then be characterized through a separate CellProfiler pipeline, which enlists a variety of common image analysis techniques. The results demonstrate the ability to reliably pass or fail images based on the illumination, focus, and scratch fraction of the image, followed by automatic extraction of morphological data with respect to fission gas voids, interaction layers, and grain boundaries.

  16. Benefits of utilizing CellProfiler as a characterization tool for U-10Mo nuclear fuel

    DOE PAGES

    Collette, R.; Douglas, J.; Patterson, L.; ...

    2015-05-01

    Automated image processing techniques have the potential to aid in the performance evaluation of nuclear fuels by eliminating judgment calls that may vary from person-to-person or sample-to-sample. Analysis of in-core fuel performance is required for design and safety evaluations related to almost every aspect of the nuclear fuel cycle. This study presents a methodology for assessing the quality of uranium-molybdenum fuel images and describes image analysis routines designed for the characterization of several important microstructural properties. The analyses are performed in CellProfiler, an open-source program designed to enable biologists without training in computer vision or programming to automatically extract cellularmore » measurements from large image sets. The quality metric scores an image based on three parameters: the illumination gradient across the image, the overall focus of the image, and the fraction of the image that contains scratches. The metric presents the user with the ability to ‘pass’ or ‘fail’ an image based on a reproducible quality score. Passable images may then be characterized through a separate CellProfiler pipeline, which enlists a variety of common image analysis techniques. The results demonstrate the ability to reliably pass or fail images based on the illumination, focus, and scratch fraction of the image, followed by automatic extraction of morphological data with respect to fission gas voids, interaction layers, and grain boundaries.« less

  17. An overview of current practice in external beam radiation oncology with consideration to potential benefits and challenges for nanotechnology.

    PubMed

    King, Raymond B; McMahon, Stephen J; Hyland, Wendy B; Jain, Suneil; Butterworth, Karl T; Prise, Kevin M; Hounsell, Alan R; McGarry, Conor K

    2017-01-01

    Over the past two decades, there has been a significant evolution in the technologies and techniques employed within the radiation oncology environment. Over the same period, extensive research into the use of nanotechnology in medicine has highlighted a range of potential benefits to its incorporation into clinical radiation oncology. This short communication describes key tools and techniques that have recently been introduced into specific stages of a patient's radiotherapy pathway, including diagnosis, external beam treatment and subsequent follow-up. At each pathway stage, consideration is given towards how nanotechnology may be combined with clinical developments to further enhance their benefit, with some potential opportunities for future research also highlighted. Prospective challenges that may influence the introduction of nanotechnology into clinical radiotherapy are also discussed, indicating the need for close collaboration between academic and clinical staff to realise the full clinical benefit of this exciting technology.

  18. Vermont Yankee's benefits and concerns operating with Axially zoned GE9 fuel

    SciTech Connect

    Woehlke, R.A. )

    1993-01-01

    Vermont Yankee (VY) is a 368-assembly, D-lattice, boiling water reactor (BWR)/4. The current cycle 16 contains 252 GE9 assemblies with axial zoning of gadolinium and enrichment, 112 GE8 assemblies with axially zoned gadolinium, and 4 Siemens 9 x 9-IX lead qualification assemblies. In this paper, the performance of the GE9-dominated core is evaluated against previous cores containing less sophisticated fuel designs.

  19. Benefits of utilizing CellProfiler as a characterization tool for U–10Mo nuclear fuel

    SciTech Connect

    Collette, R.; Douglas, J.; Patterson, L.; Bahun, G.; King, J.; Keiser, D.; Schulthess, J.

    2015-07-15

    Automated image processing techniques have the potential to aid in the performance evaluation of nuclear fuels by eliminating judgment calls that may vary from person-to-person or sample-to-sample. Analysis of in-core fuel performance is required for design and safety evaluations related to almost every aspect of the nuclear fuel cycle. This study presents a methodology for assessing the quality of uranium–molybdenum fuel images and describes image analysis routines designed for the characterization of several important microstructural properties. The analyses are performed in CellProfiler, an open-source program designed to enable biologists without training in computer vision or programming to automatically extract cellular measurements from large image sets. The quality metric scores an image based on three parameters: the illumination gradient across the image, the overall focus of the image, and the fraction of the image that contains scratches. The metric presents the user with the ability to ‘pass’ or ‘fail’ an image based on a reproducible quality score. Passable images may then be characterized through a separate CellProfiler pipeline, which enlists a variety of common image analysis techniques. The results demonstrate the ability to reliably pass or fail images based on the illumination, focus, and scratch fraction of the image, followed by automatic extraction of morphological data with respect to fission gas voids, interaction layers, and grain boundaries. - Graphical abstract: Display Omitted - Highlights: • A technique is developed to score U–10Mo FIB-SEM image quality using CellProfiler. • The pass/fail metric is based on image illumination, focus, and area scratched. • Automated image analysis is performed in pipeline fashion to characterize images. • Fission gas void, interaction layer, and grain boundary coverage data is extracted. • Preliminary characterization results demonstrate consistency of the algorithm.

  20. Potential benefits of solar reflective car shells: cooler cabins, fuel savings and emission reductions

    SciTech Connect

    Levinson, Ronnen; Pan, Heng; Ban-Weiss, George; Rosado, Pablo; Paolini, Riccardo; Akbari, Hashem

    2011-05-11

    Abstract: Vehicle thermal loads and air conditioning ancillary loads are strongly influenced by the absorption of solar energy. The adoption of solar reflective coatings for opaque surfaces of the vehicle shell can decrease the ?soak? temperature of the air in the cabin of a vehicle parked in the sun, potentially reducing the vehicle?s ancillary load and improving its fuel economy by permitting the use of a smaller air conditioner. An experimental comparison of otherwise identical black and silver compact sedans indicated that increasing the solar reflectance (?) of the car?s shell by about 0.5 lowered the soak temperature of breath-level air by about 5?6?C. Thermal analysis predicts that the air conditioning capacity required to cool the cabin air in the silver car to 25?C within 30min is 13percent less than that required in the black car. Assuming that potential reductions in AC capacity and engine ancillary load scale linearly with increase in shell solar reflectance, ADVISOR simulations of the SC03 driving cycle indicate that substituting a typical cool-colored shell (?=0.35) for a black shell (?=0.05) would reduce fuel consumption by 0.12L per 100km (1.1percent), increasing fuel economy by 0.10kmL?1 [0.24mpg] (1.1percent). It would also decrease carbon dioxide (CO2) emissions by 2.7gkm?1 (1.1percent), nitrogen oxide (NOx) emissions by 5.4mgkm?1 (0.44percent), carbon monoxide (CO) emissions by 17mgkm?1 (0.43percent), and hydrocarbon (HC) emissions by 4.1mgkm?1 (0.37percent). Selecting a typical white or silver shell (?=0.60) instead of a black shell would lower fuel consumption by 0.21L per 100km (1.9percent), raising fuel economy by 0.19kmL?1 [0.44mpg] (2.0percent). It would also decrease CO2 emissions by 4.9gkm?1 (1.9percent), NOx emissions by 9.9mgkm?1 (0.80percent), CO emissions by 31mgkm?1 (0.79percent), and HC emissions by 7.4mgkm?1 (0.67percent). Our simulations may underestimate emission reductions because emissions in standardized driving cycles are

  1. Presidential Green Chemistry Challenge: 2016 Designing Greener Chemicals and Specific Environmental Benefit: Climate Change Awards

    EPA Pesticide Factsheets

    Presidential Green Chemistry Challenge 2016 award winner, Newlight Technologies, developed a net carbon negative plastic made from methane-based GHG. It is cheaper than petroleum-based plastic; used to make cell phone cases, furniture, and other products.

  2. [Challenges for clinical trials in oncology within the scope of early benefit assessment of drugs].

    PubMed

    Lange, Stefan

    2015-01-01

    Until May 31, 2015 the German Institute for Quality and Efficiency in Health Care (IQWiG) conducted 108 assessments for various diseases on the basis of 103 dossiers within the scope of the early benefit assessment of drugs pursuant to the Act on the Reform of the Market for Medicinal Products (AMNOG). 29 of these assessments (28 dossiers) referred to advanced stages of oncologic (including neoplastic-hematologic) diseases. In 21 of these 29 assessments (72%), IQWiG found an added benefit for at least one subpopulation or subgroup, compared to 33% with non-oncologic diseases. For oncologic diseases, the extent of benefit was classified as "major" in six assessments (21%), compared to 5% for non-oncologic disorders. In contrast, the conclusions of the oncologic studies were less certain: only one assessment provided proof (of an added benefit); for non-oncologic diseases, this was the case in eight assessments. A distinctive methodological feature of the available oncologic studies is that, as a rule, treatment switching was planned in the event of progression (normally on the basis of imaging or laboratory findings) and that shortly afterwards the follow-up of important endpoints (adverse events and patient-reported outcomes) was normally discontinued. In particular, the pre-specified option in the study protocol allowing the control group to switch treatment to the experimental intervention after progression ("protocol-permitted treatment switches") makes it extremely difficult to interpret the results beyond the outcome "progression" (or progression-free survival). This treatment switching is mostly justified by reference to ethical necessity. This, however, alleges that the experimental intervention (i. e., the new drug) is superior to the control intervention, which means that circular reasoning is unavoidable. But despite this, oncologic studies are better than their reputation. Hence, so far the results of the early benefit assessment of new drugs (regarding

  3. Analyzing the Extensive Reading Approach: Benefits and Challenges in the Mexican Context

    ERIC Educational Resources Information Center

    Varona Archer, Aurora

    2012-01-01

    Some scholars have highlighted the benefits of using extensive reading as a way to motivate students to learn a second language (L2). This article is derived from a study that aimed at implementing extensive reading in an action research project in a public University in Mexico. Therefore, the following article examines some arguments of different…

  4. Religious Challenges to School Voucher and Tax Benefit/Scholarship Programs

    ERIC Educational Resources Information Center

    McCarthy, Martha

    2016-01-01

    A key component of current school reform efforts focuses on increasing parental choice through voucher systems and programs that provide tax benefits for contributions to scholarship programs for private school tuition. Indeed, proposals to adopt such programs have been or currently are being considered in four-fifths of the states, and about half…

  5. Implementing Structured English Immersion in Arizona: Benefits, Costs, Challenges, and Opportunities

    ERIC Educational Resources Information Center

    Rios-Aguilar, Cecilia; Gonzalez-Canche, Manuel; Moll, Luis C.

    2010-01-01

    This study conducted telephone interviews with 26 randomly selected English Language Coordinators from 26 Arizona school districts with enrollment patterns that were representative of the state as whole. Three primary questions were posed to the respondents: (a) How is the 4-hour ELD block being implemented?; (b) What are the benefits of the…

  6. Service-Learning in Supply Chain Management: Benefits, Challenges and Best Practices

    ERIC Educational Resources Information Center

    Schoenherr, Tobias

    2015-01-01

    Service-learning (SL) is a pedagogical approach in which students are assigned a course-related project in a not-for-profit organization, and are tasked to apply course content to execute the project. While the benefits are multifarious, only recently have supply chain management (SCM) courses adapted this innovative teaching methodology. The…

  7. Challenges faced when using radiocarbon measurements to estimate fossil fuel emissions in the UK.

    NASA Astrophysics Data System (ADS)

    Wenger, A.; O'Doherty, S.; Rigby, M. L.; Ganesan, A.; Manning, A.; Allen, G.

    2015-12-01

    Estimating the anthropogenic component of carbon dioxide emissions from direct atmospheric measurements is difficult, due to the large natural carbon dioxide fluxes. One way of determining the fossil fuel component of atmospheric carbon dioxide is the use of radiocarbon measurements. Whilst carbon reservoirs with a reasonably fast carbon exchange rate all have a similar radiocarbon content, fossil fuels are completely devoid of radiocarbon due to their age. Previous studies have 14CO2 (UK) this approach is compromised by the high density of 14CO2 emitting nuclear power plants. Of the 16 nuclear reactors in the UK, 14 are advanced gas cooled reactors, which have one of the highest 14CO2 emission rates of all reactor types. These radiocarbon emissions not only lead to a serious underestimation of the recently added fossil fuel CO2, by masking the depletion of 14C in CO2, but can in fact overshadow the depletion by a factor of 2 or more. While a correction for this enhancement can be applied, the emissions from the nuclear power plants are highly variable, and an accurate correction is therefore not straightforward. We present the first attempt to quantify UK fossil fuel CO2 emissions through the use of 14CO2. We employ a sampling strategy that makes use of a Lagrangian particle dispersion model, in combination with nuclear industry emission estimates, to forecast "good" sampling times, in an attempt to minimize the correction due to emissions from the nuclear industry. As part of the Greenhouse gAs Uk and Global Emissions (GAUGE) project, 14CO2measurements are performed at two measurement sites in the UK and Ireland, as well as during science flights around the UK. The measurement locations have been chosen with a focus on high emitting regions such as London and the Midlands. We discuss the unique challenges that face the determination of fossil fuel emissions through radiocarbon measurements in the UK and our sampling strategy to deal with them. In addition we

  8. Noise control at fossil fuel power plants: an industrywide assessment of costs and benefits. Final report

    SciTech Connect

    Hoover, R.M.

    1983-12-01

    This report presents the results of a study on the costs and perceived benefits of noise control measures currently installed at fossil power plants. Information for this study was sought from the entire fossil power plant industry in this country through a questionnaire survey and through discussions with utility personnel. A total of 84 power companies responded with information on plants. In addition, five power plants with extensive noise control measures were selected for detailed study. For these plants, case histories were prepared following plant visits and discussions with utility personnel regarding the specific noise control measures. Based on these case histories and the results of the questionnaire survey, noise control costs and perceived benefits are presented for major power plant equipment categories including draft fans, boiler feed pumps, turbine-generator systems, valves, and transformers. 12 references, 14 figures, 7 tables.

  9. Assessment of costs and benefits of flexible and alternative fuel use in the US transportation sector

    SciTech Connect

    Not Available

    1991-07-01

    The Alternative Motor Fuels Act of 1988 (Public Law 100-494), Section 400EE, states that the Secretary of Energy ...shall study methanol plants, including the costs and practicability of such plants that are (A) capable of utilizing current domestic supplies of unutilized natural gas; (B) relocatable; or (C) suitable for natural gas to methanol conversion by natural gas distribution companies...'' The purpose of this report is to characterize unutilized gas within the lower 48 states and to perform an economic analysis of methanol plants required by the act. The approach with regard to unutilized lower 48 gas is to (1) compare the costs of converting such gas to methanol against the expected price of gasoline over the next 20 years, and (2) compare the economics of converting such gas to methanol against the economics of using the gas as a pipeline-transported fuel. This study concludes that remote gas and low-Btu gas generally cannot be converted to methanol at costs near the expected competitive value of gasoline because of the poor economies of scale of small methanol plants.

  10. Challenges in evaluating influenza vaccine effectiveness and the mortality benefits controversy.

    PubMed

    Nichol, Kristin L

    2009-10-23

    Randomized, controlled trials are the gold standard study design. However, ethical constraints and practical considerations may necessitate other types of studies for evaluating influenza vaccine effectiveness in the elderly--a high priority group for annual vaccination in many countries. Observational studies therefore comprise the bulk of the vaccine effectiveness evidence in older persons, but these types of studies can be susceptible to selection bias and residual confounding. All observational studies should utilize strategies to minimize the impact of bias and confounding. Recent studies questioning the plausibility of reported mortality benefits among vaccinated elderly persons may themselves be based on assumptions that are susceptible to important limitations and multiple biases. Future studies that incorporate prospectively collected information on functional status, life expectancy, and other types of data may provide additional insights into these concerns. At present, even after taking into account the potential for residual bias and confounding, most studies confirm the benefits of vaccination among the elderly for reducing hospitalization and death.

  11. Higher Education Experiences of Students with Autism Spectrum Disorder: Challenges, Benefits and Support Needs

    ERIC Educational Resources Information Center

    Van Hees, Valérie; Moyson, Tinneke; Roeyers, Herbert

    2015-01-01

    The transition into higher education constitutes a precarious life stage for students with autism spectrum disorder (ASD). Research on how students with ASD navigate college life is needed for the development of adequate support. This study investigated the challenges and support needs of 23 students with ASD in higher education through…

  12. Benefits and Challenges of the Passport Broadcast Intervention in Long-Term Care

    ERIC Educational Resources Information Center

    Wittenberg-Lyles, Elaine; Oliver, Debra Parker; Demiris, George; Shaunfield, Sara

    2012-01-01

    Creative activities are a challenge for long-term care facilities. The Passport intervention uses web-based video technology to provide long-term care residents with a virtual travel experience. Passport broadcasts were conducted and staff and residents were interviewed about the experience. A thematic analysis of interviews was used to discern…

  13. Activity-Based Management System Implementation in Higher Education Institution: Benefits and Challenges

    ERIC Educational Resources Information Center

    Ismail, Noor Azizi

    2010-01-01

    Purpose: The purpose of this paper is to discuss how activity-based costing (ABC) technique can be applied in the context of higher education institutions. It also discusses the obstacles and challenges to the successful implementation of activity-based management (ABM) in the higher education environment. Design/methodology/approach: This paper…

  14. A Cost-Benefit Analysis of the National Guard Youth ChalleNGe Program. Technical Report

    ERIC Educational Resources Information Center

    Perez-Arce, Francisco; Constant, Louay; Loughran, David S.; Karoly, Lynn A.

    2012-01-01

    Decades of research show that high school dropouts are more likely than graduates to commit crimes, abuse drugs and alcohol, have children out of wedlock, earn low wages, be unemployed, and suffer from poor health. The ChalleNGe program, currently operating in 27 states, is a residential program coupled with post-residential mentoring that seeks…

  15. Developing and using expert systems and neural networks in medicine: a review on benefits and challenges.

    PubMed

    Sheikhtaheri, Abbas; Sadoughi, Farahnaz; Hashemi Dehaghi, Zahra

    2014-09-01

    Complicacy of clinical decisions justifies utilization of information systems such as artificial intelligence (e.g. expert systems and neural networks) to achieve better decisions, however, application of these systems in the medical domain faces some challenges. We aimed at to review the applications of these systems in the medical domain and discuss about such challenges. Following a brief introduction of expert systems and neural networks by representing few examples, the challenges of these systems in the medical domain are discussed. We found that the applications of expert systems and artificial neural networks have been increased in the medical domain. These systems have shown many advantages such as utilization of experts' knowledge, gaining rare knowledge, more time for assessment of the decision, more consistent decisions, and shorter decision-making process. In spite of all these advantages, there are challenges ahead of developing and using such systems including maintenance, required experts, inputting patients' data into the system, problems for knowledge acquisition, problems in modeling medical knowledge, evaluation and validation of system performance, wrong recommendations and responsibility, limited domains of such systems and necessity of integrating such systems into the routine work flows. We concluded that expert systems and neural networks can be successfully used in medicine; however, there are many concerns and questions to be answered through future studies and discussions.

  16. Materials Development in the Colombian Context: Some Considerations about Its Benefits and Challenges

    ERIC Educational Resources Information Center

    Ramos Holguín, Bertha; Aguirre Morales, Jahir

    2014-01-01

    Materials development is a field of study which has recently acquired significant importance in the Colombian context due to the fact that teachers, as materials developers, consider materials development as an area of knowledge that helps them to improve their teaching practices. However, the rationale, the gains as well as the challenges that…

  17. The Benefits and Challenges of Special Education Positions in Rural Settings: Listening to the Teachers

    ERIC Educational Resources Information Center

    Berry, Ann B.; Gravelle, Maggie

    2013-01-01

    Special education teachers, through a national survey conducted in 55 rural districts, provided information on the positive and negative aspects of teaching in rural schools. The 203 special educators were asked what they liked best about their position and what they found challenging. Some of the themes identified in the analysis centered on…

  18. Microbial fuel cells and osmotic membrane bioreactors have mutual benefits for wastewater treatment and energy production.

    PubMed

    Hou, Dianxun; Lu, Lu; Ren, Zhiyong Jason

    2016-07-01

    This study demonstrates that microbial fuel cells (MFCs) and osmotic membrane bioreactors (OMBRs) can be mutually beneficial when integrated together for wastewater treatment. When connecting MFCs with OMBRs, the solute buildup increased conductivity and buffer capacity, which greatly increased MFC power density from 3 W/m(3) up to 11.5 W/m(3). In turn, the MFCs conditioned and reduced sludge production and therefore reduced forward osmosis (FO) membrane fouling. The MFC-OMBR equipped with new thin-film composite (TFC) membrane showed excellent organic (>95%) and phosphorus removal (>99%) and therefore maintained effluent sCOD below 20 mg/L. However, the nitrogen removal was limited due to the negative surface charge of the thin-film composite membrane and solution chemistry, which led to higher flux of ammonium toward the OMBR draw solution. Further studies are needed to improve nitrogen removal, reduce fouling, and optimize system integration.

  19. Culinary Herbs and Spices: Their Bioactive Properties, the Contribution of Polyphenols and the Challenges in Deducing Their True Health Benefits

    PubMed Central

    Opara, Elizabeth I.; Chohan, Magali

    2014-01-01

    Herbs and spices have been used for both culinary and medicinal purposes for centuries. Over the last decade, research into their role as contributors of dietary polyphenols, known to possess a number of properties associated with reducing the risk of developing chronic non-communicable diseases, has increased. However, bearing in mind how these foods are consumed, normally in small quantities and in combination with other foods, it is unclear what their true benefit is from a health perspective. The aim of this review is to use the literature to discuss how preparative and digestive processes, bioavailability and interactions between foods may influence the bioactive properties of these foods, and whether or not polyphenols are responsible for these properties. Furthermore, this review aims to highlight the challenges that need to be addressed so as to determine the true benefits of these foods and the mechanisms of action that underpin their purported efficacy. PMID:25340982

  20. Culinary herbs and spices: their bioactive properties, the contribution of polyphenols and the challenges in deducing their true health benefits.

    PubMed

    Opara, Elizabeth I; Chohan, Magali

    2014-10-22

    Herbs and spices have been used for both culinary and medicinal purposes for centuries. Over the last decade, research into their role as contributors of dietary polyphenols, known to possess a number of properties associated with reducing the risk of developing chronic non-communicable diseases, has increased. However, bearing in mind how these foods are consumed, normally in small quantities and in combination with other foods, it is unclear what their true benefit is from a health perspective. The aim of this review is to use the literature to discuss how preparative and digestive processes, bioavailability and interactions between foods may influence the bioactive properties of these foods, and whether or not polyphenols are responsible for these properties. Furthermore, this review aims to highlight the challenges that need to be addressed so as to determine the true benefits of these foods and the mechanisms of action that underpin their purported efficacy.

  1. The Controversy, Challenges, and Potential Benefits of Putative Female Germline Stem Cells Research in Mammals

    PubMed Central

    Pan, Zezheng; Sun, Mengli; Liang, Xia; Li, Jia; Zhou, Fangyue; Zhong, Zhisheng; Zheng, Yuehui

    2016-01-01

    The conventional view is that female mammals lose their ability to generate new germ cells after birth. However, in recent years, researchers have successfully isolated and cultured a type of germ cell from postnatal ovaries in a variety of mammalian species that have the abilities of self-proliferation and differentiation into oocytes, and this finding indicates that putative germline stem cells maybe exist in the postnatal mammalian ovaries. Herein, we review the research history and discovery of putative female germline stem cells, the concept that putative germline stem cells exist in the postnatal mammalian ovary, and the research progress, challenge, and application of putative germline stem cells in recent years. PMID:26788065

  2. The Controversy, Challenges, and Potential Benefits of Putative Female Germline Stem Cells Research in Mammals.

    PubMed

    Pan, Zezheng; Sun, Mengli; Liang, Xia; Li, Jia; Zhou, Fangyue; Zhong, Zhisheng; Zheng, Yuehui

    2016-01-01

    The conventional view is that female mammals lose their ability to generate new germ cells after birth. However, in recent years, researchers have successfully isolated and cultured a type of germ cell from postnatal ovaries in a variety of mammalian species that have the abilities of self-proliferation and differentiation into oocytes, and this finding indicates that putative germline stem cells maybe exist in the postnatal mammalian ovaries. Herein, we review the research history and discovery of putative female germline stem cells, the concept that putative germline stem cells exist in the postnatal mammalian ovary, and the research progress, challenge, and application of putative germline stem cells in recent years.

  3. Moving Toward Space Internetworking via DTN: Its Operational Challenges, Benefits, and Management

    NASA Technical Reports Server (NTRS)

    Barkley, Erik; Burleigh, Scott; Gladden, Roy; Malhotra, Shan; Shames, Peter

    2010-01-01

    The international space community has begun to recognize that the established model for management of communications with spacecraft - commanded data transmission over individual pair-wise contacts - is operationally unwieldy and will not scale in support of increasingly complex and sophisticated missions such as NASA's Constellation project. Accordingly, the international Inter-Agency Operations Advisory Group (IOAG) ichartered a Space Internetworking Strategy Group (SISG), which released its initial recommendations in a November 2008 report. The report includes a recommendation that the space flight community adopt Delay-Tolerant Networking (DTN) to address the problem of interoperability and communication scaling, especially in mission environments where there are multiple spacecraft operating in concert. This paper explores some of the issues that must be addressed in implementing, deploying, and operating DTN as part of a multi-mission, multi-agency space internetwork as well as benefits and future operational scenarios afforded by DTN-based space internetworking.

  4. Meaningful use of health information technology: evidence suggests benefits and challenges lie ahead.

    PubMed

    Furukawa, Michael F; Poon, Eric

    2011-12-01

    Less than 3 years into the passage of the Health Information Technology for Economic and Clinical Health (HITECH) provisions of the American Recovery and Reinvestment Act of 2009, measurable results are emerging. For example, in the first 11 months during which healthcare providers ("eligible professionals") and acute care hospitals ("eligible hospitals") had the opportunity to demonstrate stage 1 "Meaningful Use" of Healthcare Information Technology (HIT), more than 20,000 "eligible professionals" and 750 "eligible hospitals" have done so. In the current issue of The American Journal of Managed Care, we showcase examples of HITECH's potential impact, as well as illustrate the opportunities and challenges ahead. Two studies in this issue illustrate how HIT can improve the capacity of our healthcare system to manage chronic illnesses. The study by Vollmer et al describes how an interactive voice recognition system can improve adherence to inhaled corticosteroids among individuals with asthma in a large health maintenance organization. Shelley's study shows that the combination of electronic medical records, clinical decision support, and performance feedback can improve the rate of blood pressure control in patients with hypertension who receive care in community health centers. Together, these studies provide hope that the nation's investment in HIT could one day yield clinical dividends. Three other studies in this issue suggest that success for HIT will require attention to both technological and sociological factors. The study by Millery et al attributes the success of an HIT-based intervention to a multi-faceted approach that involves a combination of decision support tools, systematic provider feedback, implementation support, and leadership. Results from Abramson's study suggest that the full error-reduction potential of e-prescribing may only be reached with the combination of on-line clinical decision support and support for clinicians. The study by

  5. Feasibility, benefits and challenges of using telemonitoring for the aging with Developmental Disabilities (DD): An exploratory study

    PubMed Central

    Nambisan, Priya; Lamkin, Donna; DeLong, Carrie

    2014-01-01

    Telemonitoring is being increasingly used to provide services to patients with developmental disabilities in residential community settings. The objective of this study is to assess the feasibility, benefits and challenges of using telemonitoring for aging patients with developmental disabilities. We also assess the benefits and challenges of telemonitoring for the caregivers of these patients. Focus groups and questionnaire-based surveys were used to collect data from patients and caregivers. The study found that telemonitoring was feasible and beneficial for the aging with developmental disabilities, albeit for those who are moderate to high functioning. It was not beneficial or feasible for those with very low functional capabilities. The study found that telemonitoring was beneficial towards providing more independence, more self-confidence in carrying out daily activities, and more knowledge regarding their disease. The study also found that telemonitoring was useful for caregivers to better understand their patients and their needs, better coordinate the services delivered, and to enhance the satisfaction of caregiving. The discussions include limitations of using quantitative methods in this type of setting. PMID:25422722

  6. Viewing Health Care Delivery as Science: Challenges, Benefits, and Policy Implications

    PubMed Central

    Pronovost, Peter J; Goeschel, Christine A

    2010-01-01

    The need for health services research is likely to rise rapidly as the population ages, health care costs soar, and therapeutic and diagnostic choices proliferate. Building an effective and efficient health care delivery system is a national priority. Yet the national health care quality report concludes that we lack the ability to monitor progress toward even basic quality and patient safety goals effectively. The gap between the need to improve and our ability to do so exists in part because we fail to view the delivery of health care as science, we lack national improvement priorities, and we lack a national infrastructure to achieve our stated goals. We discuss key challenges implicit in correcting these failures and recommend actions to expedite progress. PMID:21054369

  7. Benefits and challenges of starting a new therapeutic apheresis service in a resource-constrained setting.

    PubMed

    Arogundade, Fatiu A; Sanusi, Abubakr A; Oguntola, Stephen O; Omotoso, Bolanle A; Abdel-Rahman, Emaad M; Akinsola, Adewale; Balogun, Rasheed A

    2014-08-01

    Therapeutic apheresis (TA) refers to a group of extracorporeal blood treatment modalities with clinical indications for which the clinicians' knowledge, availability and applicability vary widely worldwide. Therapeutic plasma exchange (TPE), the most common TA technique, is neither readily available nor affordable in many parts of Africa. This article focuses on the challenges of starting a TPE program in a resource-constrained economy and the result of a survey of Nigerian nephrology professionals on TPE. A critical appraisal of published manuscripts from Nigeria on TA was undertaken to assess uses, methods, and challenges encountered followed by a survey of the perceptions of Nigerian nephrology professionals on TPE. Survey results: 56.7% of respondents had very little or no knowledge of TPE; 40.5% moderate and only 2.7% admitting to having a good knowledge. Only 18.9% of respondents have ever participated or observed a TPE procedure with the remaining 81.1% not having any exposure to the procedure. A vast majority of the respondents 97.3% felt they needed better exposure and training in TPE and its applications. Among consultants, 56% had little knowledge, 88% had never participated or observed the TPE procedure, and 94% felt they needed better exposure and training. There is significant limitation in accessibility, availability, and use of TPE in Nigeria; knowledge of TPE and its applications is minimal among nephrology professionals. Efforts should be concentrated on improving the knowledge and availability of TPE in resource-constrained economy like Nigeria. Centers that would be able to manage cases requiring TA should be developed.

  8. Actinide ion extraction using room temperature ionic liquids: opportunities and challenges for nuclear fuel cycle applications.

    PubMed

    Mohapatra, Prasanta Kumar

    2017-02-14

    Studies on the extraction of actinide ions from radioactive feeds have great relevance in nuclear fuel cycle activities, mainly in the back end processes focused on reprocessing and waste management. Room temperature ionic liquid (RTIL) based diluents are becoming increasingly popular due to factors such as more efficient extraction vis-à-vis molecular diluents, higher metal loading, higher radiation resistance, etc. The fascinating chemistry of the actinide ions in RTIL based solvent systems due to complex extraction mechanisms makes it a challenging area of research. By the suitable tuning of the cationic and anionic parts of the ionic liquids, their physical properties such as density, dielectric constant and viscosity can be changed which are considered key parameters in metal ion extraction. Aqueous solubility of the RTILs, which can lead to significant loss in the solvent inventory, can be avoided by appending the extractant moieties onto the ionic liquid. While the low vapour pressure and non-flammability of the ionic liquids make them appear as 'green' diluents, their aqueous solubility raises concerns of environmental hazards. The present article gives a summary of studies carried out on actinide ion extraction and presents perspectives of its applications in the nuclear fuel cycle. The article discusses various extractants used for actinide ion extraction and at many places, comparison is made vis-à-vis molecular diluents which includes the nature of the extracted species and the mechanism of extraction. Results of studies on rare earth elements are also included in view of their similarities with the trivalent minor actinides.

  9. Early Child Development and Nutrition: A Review of the Benefits and Challenges of Implementing Integrated Interventions1234

    PubMed Central

    Hurley, Kristen M; Yousafzai, Aisha K; Lopez-Boo, Florencia

    2016-01-01

    Poor nutrition (substandard diet quantity and/or quality resulting in under- or overnutrition) and the lack of early learning opportunities contribute to the loss of developmental potential and life-long health and economic disparities among millions of children aged <5 y. Single-sector interventions representing either early child development (ECD) or nutrition have been linked to positive child development and/or nutritional status, and recommendations currently advocate for the development and testing of integrated interventions. We reviewed the theoretical and practical benefits and challenges of implementing integrated nutrition and ECD interventions along with the evidence for best practice and benefit-cost and concluded that the strong theoretical rationale for integration is more nuanced than the questions that the published empirical evidence have addressed. For example, further research is needed to 1) answer questions related to how integrated messaging influences caregiver characteristics such as well-being, knowledge, and behavior and how these influence early child nutrition and development outcomes; 2) understand population and nutritional contexts in which integrated interventions are beneficial; and 3) explore how varying implementation processes influence the efficacy, uptake, and cost-benefit of integrated nutrition and ECD interventions. PMID:26980819

  10. Information technology in pharmacovigilance: Benefits, challenges, and future directions from industry perspectives

    PubMed Central

    Lu, Zhengwu

    2009-01-01

    Risk assessment during clinical product development needs to be conducted in a thorough and rigorous manner. However, it is impossible to identify all safety concerns during controlled clinical trials. Once a product is marketed, there is generally a large increase in the number of patients exposed, including those with comorbid conditions and those being treated with concomitant medications. Therefore, postmarketing safety data collection and clinical risk assessment based on observational data are critical for evaluating and characterizing a product’s risk profile and for making informed decisions on risk minimization. Information science promises to deliver effective e-clinical or e-health solutions to realize several core benefits: time savings, high quality, cost reductions, and increased efficiencies with safer and more efficacious medicines. The development and use of standard-based pharmacovigilance system with integration connection to electronic medical records, electronic health records, and clinical data management system holds promise as a tool for enabling early drug safety detections, data mining, results interpretation, assisting in safety decision making, and clinical collaborations among clinical partners or different functional groups. The availability of a publicly accessible global safety database updated on a frequent basis would further enhance detection and communication about safety issues. Due to recent high-profile drug safety problems, the pharmaceutical industry is faced with greater regulatory enforcement and increased accountability demands for the protection and welfare of patients. This changing climate requires biopharmaceutical companies to take a more proactive approach in dealing with drug safety and pharmacovigilance. PMID:21701609

  11. Teaching Outside the Box: Challenging Gifted Students with Polar Sciences Without Benefit of a Science Classroom

    NASA Astrophysics Data System (ADS)

    Dooley, J.

    2013-12-01

    In the high-stakes-testing world of one-size-fits-most educational practices, it is often the needs of the most able students that are unmet, yet these high ability learners can benefit greatly from exploration in the area of polar science. With school schedules and budgets already stretched to the breaking point and Common Core (CCSS) subjects are the focus, very few resources remain for topics considered by some as unimportant. Polar and climate science are prime examples. Here, a council member of Polar Educators International and Gifted Education Teacher, shares resources and ideas to engage this unique group of students and others. She draws from experiences and knowledge gained through ANDRILL's Arise Educator program, IPY Oslo and Montreal PolarEDUCATOR workshops, and Consortium for Ocean Leadership's Deep Earth Academy. Topics include School-wide Enrichment through use of ANDRILL's Flexhibit material and participation in Antarctica Day, afterschool Deep Freeze clubs that presented in public outreach venues for polar science events at the Maryland Science Center in Baltimore and NYC's Museum of Natural History, group project work using IODP core data from Antarctica, interaction with polar scientists via Skype, and other projects.

  12. Periconception pre-exposure prophylaxis to prevent HIV transmission: benefits, risks, and challenges to implementation

    PubMed Central

    Matthews, Lynn T; Baeten, Jared M; Celum, Connie; Bangsberg, David R

    2013-01-01

    HIV-serodiscordant couples face complicated choices between fulfilling reproductive desire and risking HIV transmission to their partners and children. Sexual HIV transmission can be dramatically reduced through artificial insemination and sperm washing, however most couples cannot access these resources. We propose that periconception pre-exposure prophylaxis (PrEP) could offer an important, complementary therapy to harm reduction counseling programs that aim to decrease HIV transmission for couples who choose to conceive. In this paper we describe the potential benefits of periconception PrEP and define critical points of clarification prior to implementation of PrEP as part of a reproductive health program. We consider sexual transmission risk, current risk reduction options, PrEP efficacy, cost, adherence, resistance, fetal toxicity, and impact of PrEP counseling on entry into health services. We address PrEP in the context of other periconception HIV prevention strategies, including antiretroviral treatment of the HIV-infected partner. We conclude that, should PrEP prove safe and efficacious in ongoing trials, periconception PrEP may offer a useful approach to minimize risk of HIV transmission for individuals of reproductive age in HIV-endemic countries. PMID:20679759

  13. Challenge to promote change: both young and older adults benefit from contextual interference

    PubMed Central

    Pauwels, Lisa; Vancleef, Kathleen; Swinnen, Stephan P.; Beets, Iseult A. M.

    2015-01-01

    Current society has to deal with major challenges related to our constantly increasing population of older adults. Since, motor performance generally deteriorates at older age, research investigating the effects of different types of training on motor improvement is particularly important. Here, we tested the effects of contextual interference (CI) while learning a bimanual coordination task in both young and older subjects. Both age groups acquired a low and high complexity task variant following either a blocked or random practice schedule. Typical CI effects, i.e., better overall performance during acquisition but detrimental effects during retention for the blocked compared with the random groups, were found for the low complexity task variant in both age groups. With respect to the high complexity task variant, no retention differences between both practice schedules were found. However, following random practice, better skill persistence (i.e., from end of acquisition to retention) over a 1 week time interval was observed for both task complexity variants and in both age groups. The current study provides clear evidence that the effects of different practice schedules on learning a complex bimanual task are not modulated by age. PMID:26321950

  14. Use of online clinical videos for clinical skills training for medical students: benefits and challenges

    PubMed Central

    2014-01-01

    Background Multimedia learning has been shown effective in clinical skills training. Yet, use of technology presents both opportunities and challenges to learners. The present study investigated student use and perceptions of online clinical videos for learning clinical skills and in preparing for OSCE (Objective Structured Clinical Examination). This study aims to inform us how to make more effective us of these resources. Methods A mixed-methods study was conducted for this study. A 30-items questionnaire was administered to investigate student use and perceptions of OSCE videos. Year 3 and 4 students from 34 Korean medical schools who had access to OSCE videos participated in the online survey. Additionally, a semi-structured interview of a group of Year 3 medical students was conducted for an in-depth understanding of student experience with OSCE videos. Results 411 students from 31 medical schools returned the questionnaires; a majority of them found OSCE videos effective for their learning of clinical skills and in preparing for OSCE. The number of OSCE videos that the students viewed was moderately associated with their self-efficacy and preparedness for OSCE (p < 0.05). One-thirds of those surveyed accessed the video clips using mobile devices; they agreed more with the statement that it was convenient to access the video clips than their peers who accessed the videos using computers (p < 0.05). Still, students reported lack of integration into the curriculum and lack of interaction as barriers to more effective use of OSCE videos. Conclusions The present study confirms the overall positive impact of OSCE videos on student learning of clinical skills. Having faculty integrate these learning resources into their teaching, integrating interactive tools into this e-learning environment to foster interactions, and using mobile devices for convenient access are recommended to help students make more effective use of these resources. PMID:24650290

  15. Biodiesel biorefinery: opportunities and challenges for microbial production of fuels and chemicals from glycerol waste.

    PubMed

    Almeida, João R M; Fávaro, Léia C L; Quirino, Betania F

    2012-07-18

    The considerable increase in biodiesel production worldwide in the last 5 years resulted in a stoichiometric increased coproduction of crude glycerol. As an excess of crude glycerol has been produced, its value on market was reduced and it is becoming a "waste-stream" instead of a valuable "coproduct". The development of biorefineries, i.e. production of chemicals and power integrated with conversion processes of biomass into biofuels, has been singled out as a way to achieve economically viable production chains, valorize residues and coproducts, and reduce industrial waste disposal. In this sense, several alternatives aimed at the use of crude glycerol to produce fuels and chemicals by microbial fermentation have been evaluated. This review summarizes different strategies employed to produce biofuels and chemicals (1,3-propanediol, 2,3-butanediol, ethanol, n-butanol, organic acids, polyols and others) by microbial fermentation of glycerol. Initially, the industrial use of each chemical is briefly presented; then we systematically summarize and discuss the different strategies to produce each chemical, including selection and genetic engineering of producers, and optimization of process conditions to improve yield and productivity. Finally, the impact of the developments obtained until now are placed in perspective and opportunities and challenges for using crude glycerol to the development of biodiesel-based biorefineries are considered. In conclusion, the microbial fermentation of glycerol represents a remarkable alternative to add value to the biodiesel production chain helping the development of biorefineries, which will allow this biofuel to be more competitive.

  16. Addressing the challenges of solar thermal fuels via atomic-scale computational design and experiment

    NASA Astrophysics Data System (ADS)

    Kolpak, Alexie; Kucharski, Timothy; Grossman, Jeffrey

    2012-02-01

    By reversibly storing solar energy in the conformations of photo-isomers, solar thermal fuels (STFs) provide a mechanism for emissions-free, renewable energy storage and conversion in a single system. Development of STFs as a large-scale energy technology has been hampered by technical challenges that beset the photo-isomers of interest: low energy density, storage lifetime, and quantum yield; UV absorption; and irreversible degradation upon repeated cycling. In this talk, we discuss our efforts to design new STFs that overcome these hurdles. We present computational results on various STFs based on our recently proposed photo-isomer/template STF concept [Kolpak and Grossman, Nano Letters 11, 3156 (2011)], as well as new experimental results on azobenzene-functionalized carbon nanotube STFs. Our approach yields significant improvements with respect to STFs studied in the past, with energy densities similar to Li-ion batteries, storage lifetimes > 1 year, and increased quantum yield and absorption efficiency. Our strategy also suggests mechanisms for inhibiting photo-isomer degradation. With a large phase space yet to be explored, there remain numerous possibilites for property enhancement, suggesting that STFs could become a competitive renewable energy technology.

  17. NIOZ high-resolution moored temperature observations: benefits and new challenges.

    NASA Astrophysics Data System (ADS)

    Cimatoribus, Andrea; Gostiaux, Louis; Cyr, Frederic; van Haren, Hans

    2016-04-01

    spectrum, modulation by submesoscale and mesoscale activity and seasonal variations. These features have been exploited for characterising the internal wave spectrum in the open ocean, for evaluating turbulence parameters above seamounts, and to characterise the statistics of temperature fluctuations. Main results include the observational demonstration of extreme inhomogeneity in space and intermittency in time of turbulence, and evidence of the importance of convective activity within strong geophysical turbulence. The data collected challenges the classical methods of turbulence parameters estimation in the ocean. Classical "Thorpe scale" methods have been adapted to the particular characteristics of the data, and efforts have been made to adapt other methods, providing higher detail on the vertical and temporal modulation of turbulence. The large datasets have also enabled the application on observational data of analysis methods previously used on laboratory data alone.

  18. Hybrid modeling for quality by design and PAT-benefits and challenges of applications in biopharmaceutical industry.

    PubMed

    von Stosch, Moritz; Davy, Steven; Francois, Kjell; Galvanauskas, Vytautas; Hamelink, Jan-Martijn; Luebbert, Andreas; Mayer, Martin; Oliveira, Rui; O'Kennedy, Ronan; Rice, Paul; Glassey, Jarka

    2014-06-01

    This report highlights the drivers, challenges, and enablers of the hybrid modeling applications in biopharmaceutical industry. It is a summary of an expert panel discussion of European academics and industrialists with relevant scientific and engineering backgrounds. Hybrid modeling is viewed in its broader sense, namely as the integration of different knowledge sources in form of parametric and nonparametric models into a hybrid semi-parametric model, for instance the integration of fundamental and data-driven models. A brief description of the current state-of-the-art and industrial uptake of the methodology is provided. The report concludes with a number of recommendations to facilitate further developments and a wider industrial application of this modeling approach. These recommendations are limited to further exploiting the benefits of this methodology within process analytical technology (PAT) applications in biopharmaceutical industry.

  19. The iPad and mobile technology revolution: benefits and challenges for individuals who require augmentative and alternative communication.

    PubMed

    McNaughton, David; Light, Janice

    2013-06-01

    The iPad and other mobile technologies provide powerful new tools to potentially enhance communication for individuals with developmental disabilities, acquired neurogenic disorders, and degenerative neurological conditions. These mobile technologies offer a number of potential benefits, including: (a) increased awareness and social acceptance of augmentative and alternative communication (AAC), (b) greater consumer empowerment in accessing AAC solutions, (c) increased adoption of AAC technologies, (d) greater functionality and interconnectivity, and (e) greater diffusion of AAC research and development. However, there remain a number of significant challenges that must be addressed if these benefits are to be fully realized: (a) to ensure the focus is on communication, not just technology, (b) to develop innovative models of AAC service delivery to ensure successful outcomes, (c) to ensure ease of access for all individuals who require AAC, and, (d) to maximize AAC solutions to support a wide variety of communication functions. There is an urgent need for effective collaboration among key stakeholders to support research and development activities, and to ensure the successful implementation of mobile technologies to enhance communication outcomes for individuals who require AAC and their families.

  20. Cost, time, and benefit measures for personal use fuel-wood collection in Colorado. Forest Service research paper

    SciTech Connect

    Betters, D.R.; Markstrom, D.C.; Aukerman, R.

    1990-01-01

    The average fuel-wood collector is willing to pay, beyond current perceived costs, an additional $21 to $29 per cord in order to continue collecting fuel-wood. The difference between willingness-to-pay estimates for fuel-wood collection and for wood purchased from a commercial vendor is assumed to present recreational value of fuel-wood collection. On that basis, the recreation values for the average collection is estimated to be between $6 and $12 per cord.

  1. Biodiesel biorefinery: opportunities and challenges for microbial production of fuels and chemicals from glycerol waste

    PubMed Central

    2012-01-01

    The considerable increase in biodiesel production worldwide in the last 5 years resulted in a stoichiometric increased coproduction of crude glycerol. As an excess of crude glycerol has been produced, its value on market was reduced and it is becoming a “waste-stream” instead of a valuable “coproduct”. The development of biorefineries, i.e. production of chemicals and power integrated with conversion processes of biomass into biofuels, has been singled out as a way to achieve economically viable production chains, valorize residues and coproducts, and reduce industrial waste disposal. In this sense, several alternatives aimed at the use of crude glycerol to produce fuels and chemicals by microbial fermentation have been evaluated. This review summarizes different strategies employed to produce biofuels and chemicals (1,3-propanediol, 2,3-butanediol, ethanol, n-butanol, organic acids, polyols and others) by microbial fermentation of glycerol. Initially, the industrial use of each chemical is briefly presented; then we systematically summarize and discuss the different strategies to produce each chemical, including selection and genetic engineering of producers, and optimization of process conditions to improve yield and productivity. Finally, the impact of the developments obtained until now are placed in perspective and opportunities and challenges for using crude glycerol to the development of biodiesel-based biorefineries are considered. In conclusion, the microbial fermentation of glycerol represents a remarkable alternative to add value to the biodiesel production chain helping the development of biorefineries, which will allow this biofuel to be more competitive. PMID:22809320

  2. Space Shuttle main engine. NASA has not evaluated the alternate fuel turbopump costs and benefits. Report to the Administrator of the National Aeronautics and Space Administration

    NASA Astrophysics Data System (ADS)

    1993-10-01

    NASA's plans to develop an alternate high pressure fuel turbopump for the Space Shuttle's main engines were assessed by the General Accounting Office as a part of the evaluation of the Space Shuttle Safety and Obsolescence Upgrade program. The objective was to determine whether NASA has adequately analyzed cost, performance, and benefits that are expected to result from this program in comparison to other alternatives before resuming development of the alternate pump, which was suspended in 1992. The alternate fuel pump is one of five improvements being developed or planned to significantly enhance safety margins of the engines.

  3. Opportunities and challenges for developing an oilseed to renewable jet fuel industry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Military and commercial aviation have expressed interest in using renewable aviation biofuels, with an initial goal of 1 billion gallons of drop-in aviation biofuels by 2018. While these fuels could come from many sources, hydrotreated renewable jet fuel (HRJ) from vegetable oils have been demonstra...

  4. Proton Exchange Membrane (PEM) Fuel Cell Status and Remaining Challenges for Manned Space-Flight Applications

    NASA Technical Reports Server (NTRS)

    Reaves, Will F.; Hoberecht, Mark A.

    2003-01-01

    The Fuel Cell has been used for manned space flight since the Gemini program. Its power output and water production capability over long durations for the mass and volume are critical for manned space-flight requirements. The alkaline fuel cell used on the Shuttle, while very reliable and capable for it s application, has operational sensitivities, limited life, and an expensive recycle cost. The PEM fuel cell offers many potential improvements in those areas. NASA Glenn Research Center is currently leading a PEM fuel cell development and test program intended to move the technology closer to the point required for manned space-flight consideration. This paper will address the advantages of PEM fuel cell technology and its potential for future space flight as compared to existing alkaline fuel cells. It will also cover the technical hurdles that must be overcome. In addition, a description of the NASA PEM fuel cell development program will be presented, and the current status of this effort discussed. The effort is a combination of stack and ancillary component hardware development, culminating in breadboard and engineering model unit assembly and test. Finally, a detailed roadmap for proceeding fiom engineering model hardware to qualification and flight hardware will be proposed. Innovative test engineering and potential payload manifesting may be required to actually validate/certify a PEM fuel cell for manned space flight.

  5. On the benefits and challenges of a coordinated Validation and Quality Assessment of the GMES Service Element for Atmosphere (PROMOTE)

    NASA Astrophysics Data System (ADS)

    Rosalia Delgado Blanco, Maria; Lambert, Jean-Christopher; Skarlas, Pauline

    PROtocol MOniToring for the GMES Service Element for Atmosphere (PROMOTE) is an ESA- funded project delivering sustainable geo-spatial information services related to atmospheric ozone, surface UV exposure, air quality, climate change, and volcanic hazards to aviation. Services are based on ground-, airand satellite-based Earth observation data and on numerical models and assimilation systems. As a major step in the building of Global Monitoring of Environment and Security (GMES), a European contribution to the Global Earth Observation System of Systems (GEOSS), PROMOTE Services are to support informed decisions relevant to the nine Societal Benefit Areas addressed by GEOSS. GEOSS objectives of interoperability, sustainability, traceability and dedication to users are particular challenges that are addressed, among others, by the PROMOTE Validation Office. The first goal of this cross-cutting body is to ensure appropriate, user-driven quality assessment and validation of all PROMOTE services. Going beyond the classical validation of individual data products from a satellite or a model, the Validation Office verifies not only the "fitness for purpose" of all PROMOTE Products and Services against service specifications and user requirements, but also the "fitness for purpose" of the validation itself against user requirements, and generally coordinates validation activities at project level. A driving task under the responsibility of the Validation Office is to establish the PROMOTE Service Validation Protocol which sets the top-level definition of applicable standards and validation approaches for all constituents of the PROMOTE Service Portfolio. It is through the development and implementation of such a Validation Protocol, that the fitness for purpose of every product and service and of their validation can be assessed and sustained. At the same time, their compliance with high-level recommendations (e.g. GEO-CEOS Best Practices for Cal/Val) and regulations

  6. PEM Fuel Cells for Transport Applications: State of the Art and Challenges

    NASA Astrophysics Data System (ADS)

    de Bruijn, Frank A.

    2009-09-01

    In order to offer a true alternative to the internal combustion engine, whether fuelled with today's fossil fuels or with first and second generation biofuels, the fuel cell technology needs to mature to such a level that it meets consumer expectations with respect to vehicle performance, driving range and refueling time, while at the same time vehicle efficiency and well to tank emissions are such that overall emissions can be diminished drastically. The present paper addresses the present state of the art of fuel cell technology (PEMFC—proton exchange membrane fuel cells) for transportation, and the materials issues for both the short term and the long term that need to be addressed to fulfill the expectations.

  7. Challenge to Aviation: Hatching a Leaner Pterosauer. [Improving Commercial Aircraft Design for Greater Fuel Efficiency

    NASA Technical Reports Server (NTRS)

    Moss, F. E.

    1975-01-01

    Modifications in commercial aircraft design, particularly the development of lighter aircraft, are discussed as effective means of reducing aviation fuel consumption. The modifications outlined include: (1) use of the supercritical wing; (2) generation of the winglet; (3) production and flight testing of composite materials; and, (4) implementation of fly-by-wire control systems. Attention is also given to engineering laminar air flow control, improving cargo payloads, and adapting hydrogen fuels for aircraft use.

  8. Manufacturing Challenges and Benefits when Scaling the HIAD Stacked-Torus Aeroshell to a 15m Class System

    NASA Technical Reports Server (NTRS)

    Cheatwood, F. McNeil; Swanson, Gregory T.; Johnson, R. Keith; Hughes, Stephen; Calomino, Anthony; Gilles, Brian; Anderson, Paul; Bond, Bruce

    2016-01-01

    stitching of F-TPS gores. Additionally, new approaches and hardware will be required for handling and ground testing of both individual tori and the fully assembled HIADs. There are also noteworthy benefits of scaling up the HIAD aeroshell to 15m-class system. Two complications in working with handmade textiles structures are the non-linearity of the materials and the role of human accuracy during fabrication. Larger, more capable, HIAD structures should see much larger operational loads, potentially bringing the structural response of the materials out of the non-linear regime and into the preferred linear response range. Also, making the reasonable assumption that the magnitude of fabrication accuracy remains constant as the structures grow, the relative effect of fabrication errors should decrease as a percentage of the textile component size. Combined, these two effects improve the predictive capability and the uniformity of the structural response for a 12-15m class HIAD. In this paper, the challenges and associated mitigation plans related to scaling up the HIAD stacked-torus aeroshell to a 15m class system will be discussed. In addition, the benefits of enlarging the structure will be further explored.

  9. Manufacturing Challenges and Benefits When Scaling the HIAD Stacked-Torus Aeroshell to a 15 Meter Class System

    NASA Technical Reports Server (NTRS)

    Swanson, G. T.; Cheatwood, F. M.; Johnson, R. K.; Hughes, S. J.; Calomino, A. M.

    2016-01-01

    structural webbing, initial inflation of tori, and stitching of F-TPS gores. Additionally, new approaches and hardware will be required for handling and ground testing of both individual tori and the fully assembled HIADs. There are also noteworthy benefits of scaling up the HIAD aeroshell to a 15m-class system. Two complications in working with handmade textile structures are the non-linearity of the material components and the role of human accuracy during fabrication. Larger, more capable, HIAD structures should see much larger operational loads, potentially bringing the structural response of the material components out of the non-linear regime and into the preferred linear response range. Also, making the reasonable assumption that the magnitude of fabrication accuracy remains constant as the structures grow, the relative effect of fabrication errors should decrease as a percentage of the textile component size. Combined, these two effects improve the predictive capability and the uniformity of the structural response for a 12-15-meter HIAD. In this presentation, a handful of the challenges and associated mitigation plans will be discussed, as well as an update on current manufacturing and testing that addressing these challenges.

  10. Manufacturing Challenges and Benefits when Scaling the HIAD Stacked-Torus Aeroshell to a 15m-Class System

    NASA Technical Reports Server (NTRS)

    Swanson, Gregory; Cheatwood, Neil; Johnson, Keith; Calomino, Anthony; Gilles, Brian; Anderson, Paul; Bond, Bruce

    2016-01-01

    , and stitching of F-TPS gores. Additionally, new approaches and hardware will be required for handling and ground testing of both individual tori and the fully assembled HIADs.There are also noteworthy benefits of scaling up the HIAD aeroshell to a 15m-class system. Two complications in working with handmade textile structures are the non-linearity of the material components and the role of human accuracy during fabrication. Larger, more capable, HIAD structures should see much larger operational loads, potentially bringing the structural response of the material components out of the non-linear regime and into the preferred linear response range. Also, making the reasonable assumption that the magnitude of fabrication accuracy remains constant as the structures grow, the relative effect of fabrication errors should decrease as a percentage of the textile component size. Combined, these two effects improve the predictive capability and the uniformity of the structural response for a 12-15m HIAD.In this presentation, a handful of the challenges and associated mitigation plans will be discussed, as well as an update on current 12m aeroshell manufacturing and testing that is addressing these challenges

  11. Fuel cell commercialization issues for light-duty vehicle applications

    NASA Astrophysics Data System (ADS)

    Borroni-Bird, Christopher E.

    The major challenges facing fuel cells in light-duty vehicle applications relate to the high cost of the fuel cell stack components (membrane, electro-catalyst and bipolar plate) which dictate that new manufacturing processes and materials must be developed. Initially, the best fuel for a mass market light-duty vehicle will probably not be the best fuel for the fuel cell (hydrogen); refueling infrastructure and energy density concerns may demand the use of an on-board fuel processor for petroleum-based fuels since this will increase customer acceptance. The use of fuel processors does, however, reduce the fuel cell system's efficiency. Moreover, if such fuels are used then the emissions benefit associated with fuel cells may come with a significant penalty in terms of added complexity, weight, size and cost. However, ultimately, fuel cells powered by hydrogen do promise to be the most efficient and cleanest of automotive powertrains.

  12. The Euratom Fast Collar (EFC): A Safeguards Instrument Design to Address Future Fuel Measurement Challenges

    SciTech Connect

    Evans, Louise; Swinhoe, Martyn T.; Menlove, Howard O.; Browne, Michael C.

    2012-08-13

    Summary of this presentation: (1) EFC instrument design for {sup 235}U verification measurements issued to EURATOM to issue a call for commercial tender; (2) Achieved a fast (Cd mode) measurement with less than 2% relative uncertainty in the doubles neutron counting rate in 10 minutes using a standard source strength; (3) Assay time in fast mode consistent with the needs of an inspector; (4) Extended to realistic calibration range for modern fuel designs - Relatively insensitive to gadolinia content for fuel designs with up to 32 burnable poison rods and 15 wt % gadolinia concentration, which is a realistic maximum for modern PWR fuel; (5) Improved performance over the standard thermal neutron collar with greater than twice the efficiency of the original design; (6) Novel tube pattern to reduce the impact of accidental pile-up; and (7) Joint test of prototype unit - EURATOM-LANL.

  13. Materials challenges toward proton-conducting oxide fuel cells: a critical review.

    PubMed

    Fabbri, Emiliana; Pergolesi, Daniele; Traversa, Enrico

    2010-11-01

    The increasing world population and the need to improve quality of life for a large percentage of human beings are the driving forces for the search for sustainable energy production systems, alternative to fossil fuel combustion. Among the various types of alternative energy production technologies, solid oxide fuel cells (SOFCs) operating at intermediate temperatures (400-700 °C) show the advantage of possible use both for stationary and mobile energy production. To reach the goal of reducing the SOFC operating temperature, proton-conducting oxides are gaining wide interest as electrolyte materials. This critical review provides a broad overview of the most recent progresses obtained tailoring the properties of proton-conducting oxides for fuel cell applications, analyzing and comparing the different strategies proposed to match high-proton conductivity with good chemical stability (170 references).

  14. Challenges in Measuring Benefit of Clinical Research Training Programs--the ASH Clinical Research Training Institute Example.

    PubMed

    Sung, Lillian; Crowther, Mark; Byrd, John; Gitlin, Scott D; Basso, Joe; Burns, Linda

    2015-12-01

    The American Society of Hematology developed the Clinical Research Training Institute (CRTI) to address the lack of training in patient-oriented research among hematologists. As the program continues, we need to consider metrics for measuring the benefits of such a training program. This article addresses the benefits of clinical research training programs. The fundamental and key components are education and mentorship. However, there are several other benefits including promotion of collaboration, job and advancement opportunities, and promotion of work-life balance. The benefits of clinical research training programs need to be measured so that funders and society can judge if they are worth the investment in time and resources. Identification of elements that are important to program benefit is essential to measuring the benefit of the program as well as program planning. Future work should focus on the constructs which contribute to benefits of clinical research training programs such as CRTI.

  15. The Challenges and Benefits of Employing a Mobile Research Fellow to Facilitate Team Work on a Large, Interdisciplinary, Multi-Sited Project

    ERIC Educational Resources Information Center

    Sugden, Fraser; Punch, Samantha

    2014-01-01

    Over the last few years research funding has increasingly moved in favour of large, multi-partner, interdisciplinary and multi-site research projects. This article explores the benefits and challenges of employing a full-time research fellow to work across multiple field sites, with all the local research teams, on an international,…

  16. What Do Students Think about Group Work in Business Education? An Investigation into the Benefits, Challenges, and Student-Suggested Solutions

    ERIC Educational Resources Information Center

    Lee, Seung Hwan Mark; Smith, Donna; Sergueeva, Ksenia

    2016-01-01

    The authors sought to gain insight on how students view group learning and development as part of their business education experience. Specifically, the authors categorize benefits and challenges using S. A. Wheelan's (2005) integrated model of group development. Additionally, they investigate (from the students' perspective) best practices that…

  17. Researcher and institutional review board perspectives on the benefits and challenges of reporting back biomonitoring and environmental exposure results.

    PubMed

    Ohayon, Jennifer Liss; Cousins, Elicia; Brown, Phil; Morello-Frosch, Rachel; Brody, Julia Green

    2017-02-01

    As the number of personal exposure studies expands and trends favor greater openness and transparency in the health sciences, ethical issues arise around reporting back individual results for contaminants without clear health guidelines. Past research demonstrates that research participants want their results even when the health implications are not known. The experiences of researchers and institutional review boards (IRBs) in studies that have reported personal chemical exposures can provide insights about ethical and practical approaches while also revealing areas of continued uncertainty. We conducted semi-structured interviews with 17 researchers and nine IRB members from seven personal exposure studies across the United States to investigate their experiences and attitudes about the report-back process. Researchers reported multiple benefits of report-back, including increasing retention and recruitment, advancing environmental health literacy, empowering study participants to take actions to reduce exposures, encouraging shifts in government and industry practices, and helping researchers discover sources of exposure through participant consultation. Researchers also reported challenges, including maintaining ongoing contact with participants, adopting protocols for notification of high exposures to chemicals without health guidelines, developing meaningful report-back materials, and resource limitations. IRB members reported concern for potential harm to participants, such as anxiety about personal results and counterproductive behavior changes. In contrast, researchers who have conducted personal report-back in their studies said that participants did not appear overly alarmed and noted that worry can be a positive outcome to motivate action to reduce harmful exposures. While key concerns raised during the early days of report-back have been substantially resolved for scientists with report-back experience, areas of uncertainty remain. These include

  18. Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration.

    PubMed

    Zaldivar, J; Nielsen, J; Olsson, L

    2001-07-01

    With industrial development growing rapidly, there is a need for environmentally sustainable energy sources. Bioethanol (ethanol from biomass) is an attractive, sustainable energy source to fuel transportation. Based on the premise that fuel bioethanol can contribute to a cleaner environment and with the implementation of environmental protection laws in many countries, demand for this fuel is increasing. Efficient ethanol production processes and cheap substrates are needed. Current ethanol production processes using crops such as sugar cane and corn are well-established; however, utilization of a cheaper substrate such as lignocellulose could make bioethanol more competitive with fossil fuel. The processing and utilization of this substrate is complex, differing in many aspects from crop-based ethanol production. One important requirement is an efficient microorganism able to ferment a variety of sugars (pentoses, and hexoses) as well as to tolerate stress conditions. Through metabolic engineering, bacterial and yeast strains have been constructed which feature traits that are advantageous for ethanol production using lignocellulose sugars. After several rounds of modification/evaluation/modification, three main microbial platforms, Saccharomyces cerevisiae, Zymomonas mobilis, and Escherichia coli, have emerged and they have performed well in pilot studies. While there are ongoing efforts to further enhance their properties, improvement of the fermentation process is just one of several factors-that needs to be fully optimized and integrated to generate a competitive lignocellulose ethanol plant.

  19. Maximizing Societal Benefits Associated With Alternative Fuel Subsidies: The Case of Plug-in Hybrid Electric Vehicles

    NASA Astrophysics Data System (ADS)

    Nazir, Samir M.

    Government seeks to improve the welfare of its citizenry and intervenes in marketplaces to maximize benefits when externalities are not captured. By analyzing how welfare changes from area to area across the country in response to the same intervention informs where government should act. This thesis analyzes the case of plug-in hybrid electric vehicles (PHEVs). PHEVs have many societal benefits, including improving national security, economic, environmental, and health advantages. The magnitude and distribution of these benefits depends on where PHEVs are deployed. This thesis develops and applies a methodology to determine if the benefits from PHEV deployment vary across the country and for ranking regions where positive PHEV consequences are likely to be maximized. The metrics in this method are proxies of key variables which predict the level of benefits in a county from the deployment of a PHEV there; they include population, health benefits from reduced ozone concentration, vehicle miles traveled per capita, existence of non-federal policies, and CO 2 intensity of electricity. By shedding light on how benefits from PHEV deployment vary across counties, this thesis seeks to better inform where to enact government interventions to maximize the benefits of this technology.

  20. Fuel ethanol production from L-arabinose: Constraints, challenges, current status and future trends

    SciTech Connect

    Saha, B.C.; Bothast, R.J.

    1995-12-01

    Interest in fermentation of L-arabinose to ethanol has increased in recent years because corn fiber contains 11% L-arabinose and is available in sufficient quantities to serve as a low cost feedstock to produce fuel ethanol. Various L-arabinose utilizing yeasts were screened for cost feedstock to produce fuel ethanol of their ability to ferment L-arabinose to ethanol. Most yeasts produced L-arabitol instead ethanol. The optimal conditions for production of L-arabitol in high yield from L-arabinose alone, in mixed sugars and in corn fiber acid hydrolyzate by certain yeasts will be described. In addition, the fermentative performance of an ethanologenic recombinant organism on L-arabinose will be discussed. Current status of microbial fermentation of L-arabinose to ethanol, problems and prospects of ethanol production from L-arabinose by yeasts and future directions of research will be reviewed.

  1. Efficiency maximization in solar-thermochemical fuel production: challenging the concept of isothermal water splitting.

    PubMed

    Ermanoski, I; Miller, J E; Allendorf, M D

    2014-05-14

    Widespread adoption of solar-thermochemical fuel production depends on its economic viability, largely driven by the efficiency of use of the available solar resource. Herein, we analyze the efficiency of two-step cycles for thermochemical hydrogen production, with emphasis on efficiency. Owing to water thermodynamics, isothermal H2 production is shown to be impractical and inefficient, irrespective of reactor design or reactive oxide properties, but an optimal temperature difference between cycle steps, for which efficiency is the highest, can be determined for a wide range of other operating parameters. A combination of well-targeted pressure and temperature swing, rather than either individually, emerges as the most efficient mode of operation of a two-step thermochemical cycle for solar fuel production.

  2. Preparing undergraduates for the future of scientific collaboration: Benefits, challenges and technological solutions in Distributed REU Sites

    NASA Astrophysics Data System (ADS)

    Hubenthal, M.; Anagnos, T.

    2012-12-01

    As research problems increasingly require multi-disciplinary approaches they naturally foster scientific collaborations between geographically distributed colleagues. This increasing trend in scientific research, the rapid evolution of communication technology, cognitive research into distance education, and the current generation of undergraduate students' eagerness to embrace and use technology, increases the relevance of distributed REU sites. Like traditional REU sites that host a cohort of students in one geographic location, distributed REU sites also seek to attract, nurture, and retain students in a STEM career pipeline. Distributed REU sites are unique in that some or all of the interns are geographically distributed during the research period. This arrangement allows the REU site to capitalize on distributed scientific resources such as field sites, research facilities, or human capital. At their core, distributed REU sites are fundamentally constructed of elements that have proven to be effective components of any undergraduate research experience. They also strive to develop and employ specialized programming that leverages collaboration tools through a cyberinfrastructure to enable interns to develop meaningful social and academic relationships with one another. Since 2006 the IRIS Consortium and NEES have facilitated separate, NSF funded, distributed REU Sites. Implementation and evaluations of these programs have revealed a number of successes and benefits. Longitudinal tracking indicates that distributed REU Sites are at least as successful as traditional sites in attracting, nurturing, and retaining students in a STEM career pipeline. A distributed arrangement also offers benefits over a traditional REU site, such as the flexibility to place interns at a variety of institutions with mentors making only an annual commitment to participate. This ensures that all mentors are eager to participate and are concerned with their intern's growth. It also

  3. Development and Qualification of a Specialized Gas Turbine Test Stand to Research the Potential Benefits of Nanocatalyst Fuel Additives

    DTIC Science & Technology

    2007-12-01

    71 ix LIST OF FIGURES Figure 1. Activation Energy Affect on Residence Time (from Davis...altered on a molecular level in order to achieve higher catalytic energies or increase operating ranges. The use of nanocatalysts as a means of...stored fuel. Anti- oxidants can also act to inhibit the formation of peroxide compounds. 3. Static dissipater additives reduce the effects of static

  4. World Biofuels Production Potential Understanding the Challenges to Meeting the U.S. Renewable Fuel Standard

    SciTech Connect

    Sastri, B.; Lee, A.

    2008-09-15

    This study by the U.S. Department of Energy (DOE) estimates the worldwide potential to produce biofuels including biofuels for export. It was undertaken to improve our understanding of the potential for imported biofuels to satisfy the requirements of Title II of the 2007 Energy Independence and Security Act (EISA) in the coming decades. Many other countries biofuels production and policies are expanding as rapidly as ours. Therefore, we modeled a detailed and up-to-date representation of the amount of biofuel feedstocks that are being and can be grown, current and future biofuels production capacity, and other factors relevant to the economic competitiveness of worldwide biofuels production, use, and trade. The Oak Ridge National Laboratory (ORNL) identified and prepared feedstock data for countries that were likely to be significant exporters of biofuels to the U.S. The National Renewable Energy Laboratory (NREL) calculated conversion costs by conducting material flow analyses and technology assessments on biofuels technologies. Brookhaven National Laboratory (BNL) integrated the country specific feedstock estimates and conversion costs into the global Energy Technology Perspectives (ETP) MARKAL (MARKet ALlocation) model. The model uses least-cost optimization to project the future state of the global energy system in five year increments. World biofuels production was assessed over the 2010 to 2030 timeframe using scenarios covering a range U.S. policies (tax credits, tariffs, and regulations), as well as oil prices, feedstock availability, and a global CO{sub 2} price. All scenarios include the full implementation of existing U.S. and selected other countries biofuels policies (Table 4). For the U.S., the most important policy is the EISA Title II Renewable Fuel Standard (RFS). It progressively increases the required volumes of renewable fuel used in motor vehicles (Appendix B). The RFS requires 36 billion (B) gallons (gal) per year of renewable fuels by 2022

  5. Automotive Fuel Processor Development and Demonstration with Fuel Cell Systems

    SciTech Connect

    Nuvera Fuel Cells

    2005-04-15

    The potential for fuel cell systems to improve energy efficiency and reduce emissions over conventional power systems has generated significant interest in fuel cell technologies. While fuel cells are being investigated for use in many applications such as stationary power generation and small portable devices, transportation applications present some unique challenges for fuel cell technology. Due to their lower operating temperature and non-brittle materials, most transportation work is focusing on fuel cells using proton exchange membrane (PEM) technology. Since PEM fuel cells are fueled by hydrogen, major obstacles to their widespread use are the lack of an available hydrogen fueling infrastructure and hydrogen's relatively low energy storage density, which leads to a much lower driving range than conventional vehicles. One potential solution to the hydrogen infrastructure and storage density issues is to convert a conventional fuel such as gasoline into hydrogen onboard the vehicle using a fuel processor. Figure 2 shows that gasoline stores roughly 7 times more energy per volume than pressurized hydrogen gas at 700 bar and 4 times more than liquid hydrogen. If integrated properly, the fuel processor/fuel cell system would also be more efficient than traditional engines and would give a fuel economy benefit while hydrogen storage and distribution issues are being investigated. Widespread implementation of fuel processor/fuel cell systems requires improvements in several aspects of the technology, including size, startup time, transient response time, and cost. In addition, the ability to operate on a number of hydrocarbon fuels that are available through the existing infrastructure is a key enabler for commercializing these systems. In this program, Nuvera Fuel Cells collaborated with the Department of Energy (DOE) to develop efficient, low-emission, multi-fuel processors for transportation applications. Nuvera's focus was on (1) developing fuel processor

  6. Challenges and constraints of using oxygen cathodes in microbial fuel cells.

    PubMed

    Zhao, Feng; Harnisch, Falk; Schröder, Uwe; Scholz, Fritz; Bogdanoff, Peter; Herrmann, Iris

    2006-09-01

    The performance of oxygen reduction catalysts (platinum, pyrolyzed iron(ll) phthalocyanine (pyr-FePc) and cobalt tetramethoxyphenylporphyrin (pyr-CoTMPP)) is discussed in light of their application in microbial fuel cells. It is demonstrated that the physical and chemical environment in microbial fuel cells severely affects the thermodynamics and the kinetics of the electrocatalytic oxygen reduction. The neutral pH in combination with low buffer capacities and low ionic concentrations strongly affect the cathode performance and limit the fuel cell power output. Thus, the limiting current density in galvanodyanamic polarization experiments decreases from 1.5 mA cm(-2) to 0.6 mA cm(-2) (pH 3.3, E(cathode) = 0 V) when the buffer concentration is decreased from 500 to 50 mM. The cathode limitations are superposed by the increasing internal resistance of the MFC that substantially contributes to the decrease of power output. For example, the maximum power output of a model MFC decreased by 35%, from 2.3 to 1.5 mW, whereas the difference between the electrode potentials (deltaE = E(anode) - E(cathode)) decreased only by 10%. The increase of the catalyst load of pyr-FePc from 0.25 to 2 mg cm(-2) increased the cathodic current density from 0.4 to 0.97 mA cm(-2) (pH 7, 50 mM phosphate buffer). The increase of the load of such inexpensive catalyst thus represents a suitable means to improve the cathode performance in microbial fuel cells. Due to the low concentration of protons in MFCs in comparison to relatively high alkali cation levels (ratio C(Na+,K+)/C(H+) = 5 x E5 in pH 7, 50 mM phosphate buffer) the transfer of alkali ions through the proton exchange membrane plays a major role in the charge-balancing ion flux from the anodic into the cathodic compartment. This leads to the formation of pH gradients between the anode and the cathode compartment.

  7. Trends and challenges in the microbial production of lignocellulosic bioalcohol fuels.

    PubMed

    Weber, Christian; Farwick, Alexander; Benisch, Feline; Brat, Dawid; Dietz, Heiko; Subtil, Thorsten; Boles, Eckhard

    2010-07-01

    Bioalcohols produced by microorganisms from renewable materials are promising substitutes for traditional fuels derived from fossil sources. For several years already ethanol is produced in large amounts from feedstocks such as cereals or sugar cane and used as a blend for gasoline or even as a pure biofuel. However, alcohols with longer carbon chains like butanol have even more suitable properties and would better fit with the current fuel distribution infrastructure. Moreover, ethical concerns contradict the use of food and feed products as a biofuel source. Lignocellulosic biomass, especially when considered as a waste material offers an attractive alternative. However, the recalcitrance of these materials and the inability of microorganisms to efficiently ferment lignocellulosic hydrolysates still prevent the production of bioalcohols from these plentiful sources. Obviously, no known organism exist which combines all the properties necessary to be a sustainable bioalcohol producer. Therefore, breeding technologies, genetic engineering and the search for undiscovered species are promising means to provide a microorganism exhibiting high alcohol productivities and yields, converting all lignocellulosic sugars or are even able to use carbon dioxide or monoxide, and thereby being highly resistant to inhibitors and fermentation products, and easy to cultivate in huge bioreactors. In this review, we compare the properties of various microorganisms, bacteria and yeasts, as well as current research efforts to develop a reliable lignocellulosic bioalcohol producing organism.

  8. Sputtered cathodes for polymer electrolyte fuel cells: insights into potentials, challenges and limitations.

    PubMed

    Schwanitz, Bernhard; Rabis, Annett; Horisberger, Michael; Scherer, Günther G; Schmidt, Thomas J

    2012-01-01

    The level of Pt loadings in polymer electrolyte fuel cells (PEFC) is still one of the main hindrances for implementation of PEFCs into the market. Therefore, new catalyst and electrode preparation methods such as sputtering are of current interest, because they allow thin film production and have many cost saving advantages for electrode preparation. This paper summarises some of the most important studies done for sputtered PEFCs, including non carbon supported electrodes. Furthermore, it will be shown that an understanding of the main morphological differences between sputtered and ink-based electrodes is crucial for a better understanding of the resulting fuel cell performance. Especially, the electrochemical surface area (ECSA) plays a key role for a further increase in PEFC performance of sputtered electrodes. The higher surface specific activities i(k,spec) of sputtered compared to ink-based electrodes will be discussed as advantage of the thin film formation. The so- called particle size effect, known in literature for several years, will be discussed as reason for the higher i(k,spec) of sputtered electrodes. Therefore, a model system on a rotating disc electrode (RDE) was studied. For sputtered PEFC cathodes Pt loadings were lowered to 100 μg(Pt)/cm(2), yet with severe performance losses compared to ink-based electrodes. Still, for Pt sputtered electrodes on a carbon support structure remarkably high current densities of 0.46 A/cm(2) at 0.6 V could be achieved.

  9. Border Security: Observations on Costs, Benefits, and Challenges of a Department of Defense Role in Helping to Secure the Southwest Land Border

    DTIC Science & Technology

    2012-04-17

    BORDER SECURITY Observations on Costs, Benefits, and Challenges of a Department of Defense Role in Helping to Secure...Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of...information if it does not display a currently valid OMB control number. 1. REPORT DATE 17 APR 2012 2. REPORT TYPE 3. DATES COVERED 00-00-2012

  10. The balance sheet of benefits and harms of breast cancer population-based screening in Europe: outcome research, practice and future challenges.

    PubMed

    Broeders, Mireille; Paci, Eugenio

    2015-11-01

    Breast cancer screening programs are still object of harsh debate. In 2012, the Independent UK Panel reviewed the benefits and harms of mammography screening based on randomized trials and the EUROSCREEN Working Group reviewed European observational outcome studies. The conclusion was that screening programs should continue, while acknowledging that harms, such as the occurrence of false-positive results and overdiagnosis, can have a negative impact on a woman's life. Information on the balance sheet of the benefits and harms of breast cancer screening should help women and their physicians to make an informed choice. The future challenge for breast screening programs is to assess the feasibility, acceptability, effectiveness and impact of risk-based screening in order to maximize benefit-to-harm ratios.

  11. Challenges

    ERIC Educational Resources Information Center

    Moore, Thomas R.

    1975-01-01

    Domestic and international challenges facing the National Society for the Prevention of Blindness are discussed; and U.S. and Russian programs in testing and correcting children's vision, developing eye safety programs in agriculture and industry, and disseminating information concerning the detection and treatment of cataracts are compared. (SB)

  12. Challenger

    ERIC Educational Resources Information Center

    Allday, Jonathan

    2002-01-01

    The events that led to the spectacular destruction of the Space Shuttle "Challenger" in 1986 are detailed here. They show how NASA should have heeded engineers' worries over materials problems resulting from a launch in cold weather. Suggestions are made of how pupils could also learn from this tragedy. (Contains 4 figures and 2 footnotes.)

  13. Successes and Challenges in the Resale of Alternative Fuel Vehicles: July 2001 - March 2002

    SciTech Connect

    Not Available

    2002-05-01

    This report provides the outcome of Dorfman & O'Neal's effort to examine the resale market for automobiles as it relates to the resale of late-model, original equipment manufacture (OEM), alternative fuel vehicles. Auctions provide an exceptionally rapid, effective, and efficient market for the transfer of property between buyers and sellers at reasonable prices. The first automobile auction in the United States was successful because used cars were in reasonably constant supply, were uniformly packaged, and were easily graded for quality. Also, the auction had sufficient volume to significantly lower the handling and transaction costs for wholesalers and dealers. To this day, the automobile auction industry conducts business primarily with registered wholesalers and dealers. Except for the U.S. General Services Administration (GSA) auctions and some consignment auctions, nearly all automobile auctions are closed to the public. The auction system represents a near-perfect market, validated by the lack of statistical price differences in value of specific model cars between various regions of the country. However, specialty cars may be subject to arbitrage. The buyer purchases the vehicle believing that it can be sold immediately at a profit in another region. A variety of vehicle pricing services are available to serve the consumer and the wholesale automobile industry. Each has a different philosophy for collecting, analyzing, and reporting data. ''The Automobile Lease Guide'' (ALG) is clearly the authority on vehicle residual values. Auction companies continue to apply automated technologies to lower transaction costs. Automated technologies are the only way to track the increasing number of transactions in the growing industry. Nevertheless, people-to-people relationships remain critical to the success of all auction companies. Our assessment is that everyone in the secondary automobile market is aware of alternative fuel vehicles (AFVs) and is interested to

  14. Electrode materials: a challenge for the exploitation of protonic solid oxide fuel cells

    PubMed Central

    Fabbri, Emiliana; Pergolesi, Daniele; Traversa, Enrico

    2010-01-01

    High temperature proton conductor (HTPC) oxides are attracting extensive attention as electrolyte materials alternative to oxygen-ion conductors for use in solid oxide fuel cells (SOFCs) operating at intermediate temperatures (400–700 °C). The need to lower the operating temperature is dictated by cost reduction for SOFC pervasive use. The major stake for the deployment of this technology is the availability of electrodes able to limit polarization losses at the reduced operation temperature. This review aims to comprehensively describe the state-of-the-art anode and cathode materials that have so far been tested with HTPC oxide electrolytes, offering guidelines and possible strategies to speed up the development of protonic SOFCs. PMID:27877342

  15. TOPICAL REVIEW: Electrode materials: a challenge for the exploitation of protonic solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Fabbri, Emiliana; Pergolesi, Daniele; Traversa, Enrico

    2010-08-01

    High temperature proton conductor (HTPC) oxides are attracting extensive attention as electrolyte materials alternative to oxygen-ion conductors for use in solid oxide fuel cells (SOFCs) operating at intermediate temperatures (400-700 °C). The need to lower the operating temperature is dictated by cost reduction for SOFC pervasive use. The major stake for the deployment of this technology is the availability of electrodes able to limit polarization losses at the reduced operation temperature. This review aims to comprehensively describe the state-of-the-art anode and cathode materials that have so far been tested with HTPC oxide electrolytes, offering guidelines and possible strategies to speed up the development of protonic SOFCs.

  16. Radioactive waste partitioning and transmutation within advanced fuel cycles: Achievements and challenges

    NASA Astrophysics Data System (ADS)

    Salvatores, M.; Palmiotti, G.

    2011-01-01

    If nuclear power becomes a sustainable source of energy, a safe, robust, and acceptable solution must be pursued for existing and projected inventories of high-activity, long-lived radioactive waste. Remarkable progress in the field of geological disposal has been made in the last two decades. Some countries have reached important milestones, and geological disposal (of spent fuel) is expected to start in 2020 in Finland and in 2022 in Sweden. In fact, the licensing of the geological repositories in both countries is now entering into its final phase. In France, disposal of intermediate-level waste (ILW) and vitrified high-level waste (HLW) is expected to start around 2025, according to the roadmap defined by an Act of Parliament in 2006. In this context, transmutation of part of the waste through use of advanced fuel cycles, probably feasible in the coming decades, can reduce the burden on the geological repository. This article presents the physical principle of transmutation and reviews several strategies of partitioning and transmutation (P&T). Many recent studies have demonstrated that the impact of P&T on geological disposal concepts is not overwhelmingly high. However, by reducing waste heat production, a more efficient utilization of repository space is likely. Moreover, even if radionuclide release from the waste to the environment and related calculated doses to the population are only partially reduced by P&T, it is important to point out that a clear reduction of the actinide inventory in the HLW definitely reduces risks arising from less probable evolutions of a repository (i.e., an increase of actinide mobility in certain geochemical situations and radiological impact by human intrusion).

  17. Teaching Science with Case Studies: A National Survey of Faculty Perceptions of the Benefits and Challenges of Using Cases

    ERIC Educational Resources Information Center

    Yadav, Aman; Lundeberg, Mary; DeSchryver, Michael; Dirkin, Kathryn; Schiller, Nancy A.; Maier, Kimberly; Herreid, Clyde Freeman

    2007-01-01

    To understand more about faculty perceptions of the instructional benefits of and barriers to using case studies, the authors surveyed 101 science faculty at universities and colleges in the United States and Canada. The results provided evidence that, overall, faculty think cases have a positive impact on student learning, critical thinking, and…

  18. Teachers' Views on Digital Educational Tools in English Language Learning: Benefits and Challenges in the Turkish Context

    ERIC Educational Resources Information Center

    Çelik, Servet; Aytin, Kübra

    2014-01-01

    Despite the clear benefits provided by digital educational tools, Turkish teachers of English as a foreign language (EFL) are often seen as failing to take advantage of computing technologies in the classroom. Deficiencies in terms of teachers' digital literacies are often faulted for this omission. The majority of studies concerning Turkish EFL…

  19. Analysis of the FeCrAl Accident Tolerant Fuel Concept Benefits during BWR Station Blackout Accidents

    SciTech Connect

    Robb, Kevin R

    2015-01-01

    Iron-chromium-aluminum (FeCrAl) alloys are being considered for fuel concepts with enhanced accident tolerance. FeCrAl alloys have very slow oxidation kinetics and good strength at high temperatures. FeCrAl could be used for fuel cladding in light water reactors and/or as channel box material in boiling water reactors (BWRs). To estimate the potential safety gains afforded by the FeCrAl concept, the MELCOR code was used to analyze a range of postulated station blackout severe accident scenarios in a BWR/4 reactor employing FeCrAl. The simulations utilize the most recently known thermophysical properties and oxidation kinetics for FeCrAl. Overall, when compared to the traditional Zircaloy-based cladding and channel box, the FeCrAl concept provides a few extra hours of time for operators to take mitigating actions and/or for evacuations to take place. A coolable core geometry is retained longer, enhancing the ability to stabilize an accident. Finally, due to the slower oxidation kinetics, substantially less hydrogen is generated, and the generation is delayed in time. This decreases the amount of non-condensable gases in containment and the potential for deflagrations to inhibit the accident response.

  20. Benefits and Challenges of Scaling Up Expansion of Marine Protected Area Networks in the Verde Island Passage, Central Philippines

    PubMed Central

    Horigue, Vera; Pressey, Robert L.; Mills, Morena; Brotánková, Jana; Cabral, Reniel; Andréfouët, Serge

    2015-01-01

    Locally-established marine protected areas (MPAs) have been proven to achieve local-scale fisheries and conservation objectives. However, since many of these MPAs were not designed to form ecologically-connected networks, their contributions to broader-scale goals such as complementarity and connectivity can be limited. In contrast, integrated networks of MPAs designed with systematic conservation planning are assumed to be more effective—ecologically, socially, and economically—than collections of locally-established MPAs. There is, however, little empirical evidence that clearly demonstrates the supposed advantages of systematic MPA networks. A key reason is the poor record of implementation of systematic plans attributable to lack of local buy-in. An intermediate scenario for the expansion of MPAs is scaling up of local decisions, whereby locally-driven MPA initiatives are coordinated through collaborative partnerships among local governments and their communities. Coordination has the potential to extend the benefits of individual MPAs and perhaps to approach the potential benefits offered by systematic MPA networks. We evaluated the benefits of scaling up local MPAs to form networks by simulating seven expansion scenarios for MPAs in the Verde Island Passage, central Philippines. The scenarios were: uncoordinated community-based establishment of MPAs; two scenarios reflecting different levels of coordinated MPA expansion through collaborative partnerships; and four scenarios guided by systematic conservation planning with different contexts for governance. For each scenario, we measured benefits through time in terms of achievement of objectives for representation of marine habitats. We found that: in any governance context, systematic networks were more efficient than non-systematic ones; systematic networks were more efficient in broader governance contexts; and, contrary to expectations but with caveats, the uncoordinated scenario was slightly more

  1. Teachers' Perceptions of the Benefits and Challenges of Three-Dimensional Virtual Worlds for Social Skills Practice

    ERIC Educational Resources Information Center

    Nussli, Natalie; Oh, Kevin

    2016-01-01

    This case study describes how a systematic 7-Step Virtual Worlds Teacher Training Workshop guided the enculturation of 18 special education teachers into three-dimensional virtual worlds. The main purpose was to enable these teachers to make informed decisions about the usability of virtual worlds for students with social skills challenges, such…

  2. Benefits, Challenges, and Dynamism of Positionalities Associated with Mixed Methods Research in Developing Countries: Evidence from Ghana

    ERIC Educational Resources Information Center

    Teye, Joseph Kofi

    2012-01-01

    Although mixed methods designs have gained visibility in recent years, most of the publications on this methodological strategy have been written by scholars in the developed world. Consequently, the practical challenges associated with mixed methods research in developing countries have not been adequately discussed in the literature. Relying on…

  3. Research Stakeholders’ Views on Benefits and Challenges for Public Health Research Data Sharing in Kenya: The Importance of Trust and Social Relations

    PubMed Central

    Jao, Irene; Kombe, Francis; Mwalukore, Salim; Bull, Susan; Parker, Michael; Kamuya, Dorcas; Molyneux, Sassy; Marsh, Vicki

    2015-01-01

    Background There is increasing recognition of the importance of sharing research data within the international scientific community, but also of the ethical and social challenges this presents, particularly in the context of structural inequities and varied capacity in international research. Public involvement is essential to building locally responsive research policies, including on data sharing, but little research has involved stakeholders from low-to-middle income countries. Methods Between January and June 2014, a qualitative study was conducted in Kenya involving sixty stakeholders with varying experiences of research in a deliberative process to explore views on benefits and challenges in research data sharing. In-depth interviews and extended small group discussions based on information sharing and facilitated debate were used to collect data. Data were analysed using Framework Analysis, and charting flow and dynamics in debates. Findings The findings highlight both the opportunities and challenges of communicating about this complex and relatively novel topic for many stakeholders. For more and less research-experienced stakeholders, ethical research data sharing is likely to rest on the development and implementation of appropriate trust-building processes, linked to local perceptions of benefits and challenges. The central nature of trust is underpinned by uncertainties around who might request what data, for what purpose and when. Key benefits perceived in this consultation were concerned with the promotion of public health through science, with legitimate beneficiaries defined differently by different groups. Important challenges were risks to the interests of study participants, communities and originating researchers through stigmatisation, loss of privacy, impacting autonomy and unfair competition, including through forms of intentional and unintentional 'misuse' of data. Risks were also seen for science. Discussion Given background structural

  4. The challenges and benefits of a genuine partnership between Music Therapy and Neuroscience: a dialog between scientist and therapist

    PubMed Central

    Magee, Wendy L.; Stewart, Lauren

    2015-01-01

    Collaborations between neuroscience and music therapy promise many mutual benefits given the different knowledge bases, experiences and specialist skills possessed by each discipline. Primarily, music therapists deliver music-based interventions on a daily basis with numerous populations; neuroscientists measure clinical changes in ways that provide an evidence base for progressing clinical care. Although recent developments suggest that partnerships between the two can produce positive outcomes for both fields, these collaborations are not considered mainstream. The following dialog between an experienced professional from each discipline explores the potential for collaboration, as well as the misconceptions that may be preventing further synergies from developing. PMID:25983683

  5. Nutritional, Health, and Technological Functionality of Lupin Flour Addition to Bread and Other Baked Products: Benefits and Challenges.

    PubMed

    Villarino, C B J; Jayasena, V; Coorey, R; Chakrabarti-Bell, S; Johnson, S K

    2016-01-01

    Lupin is an undervalued legume despite its high protein and dietary fiber content and potential health benefits. This review focuses on the nutritional value, health benefits, and technological effects of incorporating lupin flour into wheat-based bread. Results of clinical studies suggest that consuming lupin compared to wheat bread and other baked products reduce chronic disease risk markers; possibly due to increased protein and dietary fiber and bioactive compounds. However, lupin protein allergy has also been recorded. Bread quality has been improved when 10% lupin flour is substituted for refined wheat flour; possibly due to lupin-wheat protein cross-linking assisting bread volume and the high water-binding capacity (WBC) of lupin fiber delaying staling. Above 10% substitution appears to reduce bread quality due to lupin proteins low elasticity and the high WBC of its dietary fiber interrupting gluten network development. Gaps in understanding of the role of lupin flour in bread quality include the optimal formulation and processing conditions to maximize lupin incorporation, role of protein cross-linking, antistaling functionality, and bioactivity of its γ-conglutin protein.

  6. The Benefits and Challenges of Having AN Open and Free Basis Satellite Data Sharing Platform in Turkey: GEZGİN

    NASA Astrophysics Data System (ADS)

    Seda Deveci, Hüsne; Koru, Aziz; Sakarya, Ufuk; Tevrizoğlu, İsmail; Teke, Mustafa; Küpçü, Ramazan; Avenoğlu, Bülent; Demirkesen, Can; Zübeyde Gürbüz, Sevgi; Feray Öztoprak, A.; Açıkgöz, İbrahim Serdar; Hakkı Demirhan, İsmail; Ömer Kozal, Ali; Efendioğlu, Mehmet; Berke, Erdinç; Fehmi Şimşek, F.; Atıl, İlkay; Kaya, Derya; Uçmak, Pınar; Ersöz, Eda; Özen, Hilal

    2016-06-01

    Turkey is a county that experiences rapid socioeconomic development, which, in turn, leads to high urbanization rates due to migration of people from rural to urban areas, many large-scale development projects (e.g. highways, dams, housing and infrastructure), and environmental problems that adversely affect agriculture, such as soil erosion and deforestation. Furthermore, Turkey lies in a region prone to natural disasters, especially earthquakes, landslides, flooding and forest fires. Successfully overcoming these challenges requires continuous monitoring to enable rapid response as well as the development of effective socioeconomic policies. In this regard, space-based earth observation (EO) systems play a critical role in the rapid acquisiton and extraction of crucial information. The first launch of the first Turkish-designed satellite, RASAT, in 2011 led to the wide-spread exploitation of space-based resources by Turkish institutions through the dissemination of EO data on an open and free basis via the GEZGIN internet portal (http://www.gezgin.gov.tr). The push for data sharing was further instigated by the nationally funded project GEOPORTAL ("Satellite Image Processing and Geoportal Development Project") and European Union FP7 project EOPOWER ("Earth Observation for Economic Empowerment"), which strove to create conditions for sustainable economic development through the increased use of Earth observation products and services for environmental applications. In this work, the technical challenges involving processing and preparing raw satellite data for dissemination as well as software design of the GEZGIN Portal will be presented.

  7. Photocatalytic conversion of CO(2) into renewable hydrocarbon fuels: state-of-the-art accomplishment, challenges, and prospects.

    PubMed

    Tu, Wenguang; Zhou, Yong; Zou, Zhigang

    2014-07-16

    Photocatalytic reduction of CO2 into hydrocarbon fuels, an artificial photosynthesis, is based on the simulation of natural photosynthesis in green plants, whereby O2 and carbohydrates are produced from H2 O and CO2 using sunlight as an energy source. It couples the reductive half-reaction of CO2 fixation with a matched oxidative half-reaction such as water oxidation, to achieve a carbon neutral cycle, which is like killing two birds with one stone in terms of saving the environment and supplying future energy. The present review provides an overview and highlights recent state-of-the-art accomplishments of overcoming the drawback of low photoconversion efficiency and selectivity through the design of highly active photocatalysts from the point of adsorption of reactants, charge separation and transport, light harvesting, and CO2 activation. It specifically includes: i) band-structure engineering, ii) nanostructuralization, iii) surface oxygen vacancy engineering, iv) macro-/meso-/microporous structuralization, v) exposed facet engineering, vi) co-catalysts, vii) the development of a Z-scheme system. The challenges and prospects for future development of this field are also present.

  8. Challenges in the quality assurance of elemental and isotopic analyses in the nuclear domain benefitting from high resolution ICP-OES and sector field ICP-MS.

    PubMed

    Krachler, Michael; Alvarez-Sarandes, Rafael; Van Winckel, Stefaan

    Accurate analytical data reinforces fundamentally the meaningfulness of nuclear fuel performance assessments and nuclear waste characterization. Regularly lacking matrix-matched certified reference materials, quality assurance of elemental and isotopic analysis of nuclear materials remains a challenging endeavour. In this context, this review highlights various dedicated experimental approaches envisaged at the European Commission-Joint Research Centre-Institute for Transuranium Elements to overcome this limitation, mainly focussing on the use of high resolution-inductively coupled plasma-optical emission spectrometry (HR-ICP-OES) and sector field-inductively coupled plasma-mass spectrometry (SF-ICP-MS). However, also α- and γ-spectrometry are included here to help characterise extensively the investigated actinide solutions for their actual concentration, potential impurities and isotopic purity.

  9. Perceived benefits and challenges for low-income mothers of having family meals with preschool-aged children: childhood memories matter.

    PubMed

    Malhotra, Khushi; Herman, Allison N; Wright, Gretchen; Bruton, Yasmeen; Fisher, Jennifer O; Whitaker, Robert C

    2013-11-01

    Eating regular family meals is associated with a lower risk of obesity among preschool-aged children. Children in lower-income households are at higher risk for obesity, but there is little information about their mothers' perceptions of family meals, and such information could improve nutrition counseling. To identify the perceived benefits and challenges of having family meals, four focus groups were conducted with 20 mothers of preschool-aged children living in low-income households in Philadelphia, PA. Three authors independently analyzed verbatim transcripts using an inductive method of open coding, and themes were established by consensus among all authors. Of the 20 mothers, 18 were black, 11 had education beyond high school, and 12 were living with an adult partner or husband. Mothers' strong childhood memories of mealtimes, both negative and positive, motivated them to have family meals because of the opportunities afforded by mealtimes to build strong relationships with their children. However, mothers also described needing help, especially from other household adults, in preparing meals and establishing calm and order with their children during mealtimes. To identify what motivates the mothers of low-income, preschool-aged children to have family meals, registered dietitians can benefit from asking about the mothers' own childhood experiences of family meals. Studies are needed to examine whether such an approach to identifying maternal motivations, when combined with practical advice about overcoming challenges with meal preparation and managing children's mealtime behavior, could lead to more frequent and nutritious family meals in this population.

  10. Benefits and Challenges with Applying Unique Molecular Identifiers in Next Generation Sequencing to Detect Low Frequency Mutations.

    PubMed

    Kou, Ruqin; Lam, Ham; Duan, Hairong; Ye, Li; Jongkam, Narisra; Chen, Weizhi; Zhang, Shifang; Li, Shihong

    2016-01-01

    Indexing individual template molecules with a unique identifier (UID) before PCR and deep sequencing is promising for detecting low frequency mutations, as true mutations could be distinguished from PCR errors or sequencing errors based on consensus among reads sharing same index. In an effort to develop a robust assay to detect from urine low-abundant bladder cancer cells carrying well-documented mutations, we have tested the idea first on a set of mock templates, with wild type and known mutants mixed at defined ratios. We have measured the combined error rate for PCR and Illumina sequencing at each nucleotide position of three exons, and demonstrated the power of a UID in distinguishing and correcting errors. In addition, we have demonstrated that PCR sampling bias, rather than PCR errors, challenges the UID-deep sequencing method in faithfully detecting low frequency mutation.

  11. Family meals: perceptions of benefits and challenges among parents of 8- to 10-year-old children.

    PubMed

    Fulkerson, Jayne A; Story, Mary; Neumark-Sztainer, Dianne; Rydell, Sarah

    2008-04-01

    The study purpose was to examine parental perceptions of the mealtime environment in families with school-aged children and identify strategies to improve the dietary quality of meals. Cross-sectional surveys were completed by a convenience sample of 107 parents (86% mothers, 14% fathers) of 8- to 10-year-old children who were recruited from afterschool child care programs/elementary schools. SAS (version 9.1) was used to produce descriptive frequencies of parental reports of positive and negative perceptions of mealtime. Parents reported frequent family meals; however, they indicated that family dinners were eaten at full-service restaurants, purchased from fast-food establishments, or picked up as takeout foods at least weekly (47.0%, 28.3%, and 23.8%, respectively). Conflicts about food were problematic for some families (40.2% on at least some days), and appeared to be related to children's food pickiness. Parents reported many benefits of family meals, including time for conversation, feelings of togetherness, shared nutrition, and ceremony. Areas where parents desired change included assistance with meal planning, food preparation, and clean-up; spending more time at meals; assistance with children's food pickiness; new recipes and meal ideas; and decreasing conflict at mealtimes. Findings suggest that interventions to increase family meal frequency and promote healthful foods at mealtimes should address promoting food acceptance among children, sharing responsibilities among parents and children for meal planning and preparation, decreasing conflict at meals, and eating out healthfully.

  12. Exploiting Nutritional Value of Staple Foods in the World's Semi-Arid Areas: Risks, Benefits, Challenges and Opportunities of Sorghum.

    PubMed

    Proietti, Ilaria; Frazzoli, Chiara; Mantovani, Alberto

    2015-03-30

    Sorghum (Sorghum bicolor (L.) Moench) is a drought-resistant crop and an important food resource in terms of nutritional as well as social-economic values, especially in semi-arid environments. Cultivar selection and processing methods have been observed to impact on composition and functional and nutritional value of sorghum. Amino acid imbalance, cyanogenic glycosides, endogenous anti-nutrients, mycotoxins and toxic elements are among factors impairing its nutritional value. This paper reviews possible approaches (varieties selection, production practices, cooking processes) to improve the benefits-to-risks balance of sorghum meal, to mitigate the risk of deficiencies and/or imbalances and to improve effects on human nutrition. Opportunity for avoiding dietary diversification in high sorghum consumers is also discussed, e.g., tryptophan and niacin deficits potentially related to pellagra, or unavailability of proteins and divalent cations (e.g., Fe, Zn) due to the antinutrient activity of phytic acid and tannins. As potential candidate for production investments, the role of sorghum in preserving biological diversity is also considered.

  13. Functional foods: benefits, concerns and challenges-a position paper from the american council on science and health.

    PubMed

    Hasler, Clare M

    2002-12-01

    Functional foods can be considered to be those whole, fortified, enriched or enhanced foods that provide health benefits beyond the provision of essential nutrients (e.g., vitamins and minerals), when they are consumed at efficacious levels as part of a varied diet on a regular basis. Linking the consumption of functional foods or food ingredients with health claims should be based on sound scientific evidence, with the "gold standard" being replicated, randomized, placebo-controlled, intervention trials in human subjects. However, not all foods on the market today that are claimed to be functional foods are supported by enough solid data to merit such claims. This review categorizes a variety of functional foods according to the type of evidence supporting their functionality, the strength of that evidence and the recommended intakes. Functional foods represent one of the most intensively investigated and widely promoted areas in the food and nutrition sciences today. However, it must be emphasized that these foods and ingredients are not magic bullets or panaceas for poor health habits. Diet is only one aspect of a comprehensive approach to good health.

  14. A case study of the implementation of an ergonomics improvement committee in a Brazilian hospital--Challenges and benefits.

    PubMed

    Bolis, Ivan; Sznelwar, Laerte I

    2016-03-01

    This article discusses the creation of an improvement committee (IC) to implement policies aimed at improving working conditions in a public health institution in the city of São Paulo. Suggestions were proposed for future implementations of this organizational mechanism, pursuant to the presentation of the process of its formation and the main results achieved. The findings led to the conclusion that good outcomes require autonomy and support from management, and the adoption of effective measures to improve and legitimize the improvement committee's existence. Another important issue is facilitating worker involvement and creating a locus for dialog among people with different visions within the organization. Thus, two approaches converge: a top-down approach in which policies are defined and improvement actions are actually implemented based on a general outlook of the production and work system, and a bottom-up approach specific to employees who are also engaged in improvement policies and in putting them into practice. It is also possible to point out problems and opportunities arising from actual work situations to the higher levels of management. This kind of approach fits with macroergonomics, because it integrates strategy, organization and work issues. It is possible to discuss the benefits of this approach for companies and provide conditions for workers to engage effectively in these processes. In conclusion, these proposals can be considered from an emancipatory perspective, given that different actors should be able to codetermine working conditions and work content, thus directly influencing their individual and collective experiences. The support and commitment of upper management are essential elements of success in maximizing the effectiveness of this organizational approach.

  15. Coming Out in Class: Challenges and Benefits of Active Learning in a Biology Classroom for LGBTQIA Students

    PubMed Central

    Cooper, Katelyn M.; Brownell, Sara E.

    2016-01-01

    As we transition our undergraduate biology classrooms from traditional lectures to active learning, the dynamics among students become more important. These dynamics can be influenced by student social identities. One social identity that has been unexamined in the context of undergraduate biology is the spectrum of lesbian, gay, bisexual, transgender, queer, intersex, and asexual (LGBTQIA) identities. In this exploratory interview study, we probed the experiences and perceptions of seven students who identify as part of the LGBTQIA community. We found that students do not always experience the undergraduate biology classroom to be a welcoming or accepting place for their identities. In contrast to traditional lectures, active-learning classes increase the relevance of their LGBTQIA identities due to the increased interactions among students during group work. Finally, working with other students in active-learning classrooms can present challenges and opportunities for students considering their LGBTQIA identity. These findings indicate that these students’ LGBTQIA identities are affecting their experience in the classroom and that there may be specific instructional practices that can mitigate some of the possible obstacles. We hope that this work can stimulate discussions about how to broadly make our active-learning biology classes more inclusive of this specific population of students. PMID:27543636

  16. Integral Healthcare: The Benefits and Challenges of Integrating Complementary and Alternative Medicine with a Conventional Healthcare Practice

    PubMed Central

    Ross, Christina L.

    2009-01-01

    Today’s medicine is in the midst of an undeniable crisis. Calls to reform healthcare are in the forefront of economic and political discussions worldwide. Economic pressures reduce the amount of time physicians can spend with patients contributing to burnout among medical staff and endangering the patient iatrogenically. Politicians are getting involved as the public is calling for more affordable healthcare. A new paradigm must be embraced in order to address all aspects of this dilemma. It is clear that science and technology have resulted in vastly improved understanding, diagnosis, and treatment of disease, but the emphasis on science and technology to the exclusion of other elements of healing has also served to limit the development of a model that humanizes healthcare. The healing of a patient must include more than the biology and chemistry of their physical body; by necessity, it must include the mental, emotional and spiritual aspects. Because of these challenges, the development of an integral healthcare system that is rooted in appropriate regulation and supported by rigorous scientific evidence is the direction that many models of integrative healthcare are moving towards in the 21st century. PMID:21614160

  17. Schools of the Pacific Rainfall Climate Experiment: The Benefits and Challenges of Student Participation in Scientific Research Programs

    NASA Astrophysics Data System (ADS)

    Morrissey, M. L.; Postawko, S.

    2005-12-01

    The Schools of the Pacific Rainfall Climate Experiment (SPaRCE) is a cooperative field project involving elementary, middle school, high school, college and trade school students, along with personnel from Pacific Island meteorological services, in expanding and enhancing the climate observation network across the Pacific Basin. The goals of the program are to: 1. foster interest and increase awareness among students, teachers, and local island meteorologists as to the importance of cooperation between nations in investigating potential climate change, 2. to educate students and teachers as to the importance of rainfall (particularly in the Pacific region) to climate studies, 3. to increase the observations of climate variable across the Pacific, and to incorporate the collected observations into a comprehensive Pacific database to be used for climate research purposes 4. to make a major contribution to the global climate research effort by collecting and analyzing Pacific climate data, 5. and to encourage scientific and cultural exchange. The SPaRCE program has been working with students, teachers, and meteorological service personnel on various Pacific islands and atolls since 1991. Much of the data collected has been incorporated into the Comprehensive Pacific Rainfall Database and has been used as verification data for several satellite rainfall studies. In addition, several students who got involved in the SPaRCE program at their school have gone on to work at their local meteorological service upon graduation. Significant advances in the technological capabilities in most of the Pacific island countries have taken place over the years. These advances have been both a help and a hindrance in getting schools involved in making accurate, reliable, long-term climate observations and getting students excited about analyzing these data. One challenge that has remained fairly constant over the years is that of teacher turn-over in these developing island nations.

  18. Modeling and managing urban water demand through smart meters: Benefits and challenges from current research and emerging trends

    NASA Astrophysics Data System (ADS)

    Cominola, A.; Giuliani, M.; Castelletti, A.; Piga, D.; Rizzoli, A. E.

    2015-12-01

    Urban population growth, climate and land use change are expected to boost residential water demand in urban contexts in the next decades. In such a context, developing suitable demand-side management strategies is essential to meet future water demands, pursue water savings, and reduce the costs for water utilities. Yet, the effectiveness of water demand management strategies (WDMS) relies on our understanding of water consumers' behavior, their consumption habits, and the water use drivers. While low spatial and temporal resolution water consumption data, as traditionally gathered for billing purposes, hardly support this understanding, the advent of high-resolution, smart metering technologies allowed for quasi real-time monitoring water consumption at the single household level. This, in turn, is advancing our ability in characterizing consumers' behavior, modeling, and designing user-oriented residential water demand management strategies. Several water smart metering programs have been rolled-out in the last two decades worldwide, addressing one or more of the following water demand management phases: (i) data gathering, (ii) water end-uses characterization, (iii) user modeling, (iv) design and implementation of personalized WDMS. Moreover, the number of research studies in this domain is quickly increasing and big economic investments are currently being devoted worldwide to smart metering programs. With this work, we contribute the first comprehensive review of more than 100 experiences in the field of residential water demand modeling and management, and we propose a general framework for their classification. We revise consolidated practices, identify emerging trends and highlight the challenges and opportunities for future developments given by the use of smart meters advancing residential water demand management. Our analysis of the status quo of smart urban water demand management research and market constitutes a structured collection of information

  19. Ebola Preparedness Resources for Acute-Care Hospitals in the United States: A Cross-Sectional Study of Costs, Benefits, and Challenges.

    PubMed

    Smit, Michael A; Rasinski, Kenneth A; Braun, Barbara I; Kusek, Linda L; Milstone, Aaron M; Morgan, Daniel J; Mermel, Leonard A

    2017-04-01

    OBJECTIVE To assess resource allocation and costs associated with US hospitals preparing for the possible spread of the 2014-2015 Ebola virus disease (EVD) epidemic in the United States. METHODS A survey was sent to a stratified national probability sample (n=750) of US general medical/surgical hospitals selected from the American Hospital Association (AHA) list of hospitals. The survey was also sent to all children's general hospitals listed by the AHA (n=60). The survey assessed EVD preparation supply costs and overtime staff hours. The average national wage was multiplied by labor hours to calculate overtime labor costs. Additional information collected included challenges, benefits, and perceived value of EVD preparedness activities. RESULTS The average amount spent by hospitals on combined supply and overtime labor costs was $80,461 (n=133; 95% confidence interval [CI], $56,502-$104,419). Multivariate analysis indicated that small hospitals (mean, $76,167) spent more on staff overtime costs per 100 beds than large hospitals (mean, $15,737; P<.0001). The overall cost for acute-care hospitals in the United States to prepare for possible EVD cases was estimated to be $361,108,968. The leading challenge was difficulty obtaining supplies from vendors due to shortages (83%; 95% CI, 78%-88%) and the greatest benefit was improved knowledge about personal protective equipment (89%; 95% CI, 85%-93%). CONCLUSIONS The financial impact of EVD preparedness activities was substantial. Overtime cost in smaller hospitals was >3 times that in larger hospitals. Planning for emerging infectious disease identification, triage, and management should be conducted at regional and national levels in the United States to facilitate efficient and appropriate allocation of resources in acute-care facilities. Infect Control Hosp Epidemiol 2017;38:405-410.

  20. The challenge of documenting water quality benefits of conservation practices: a review of USDA-ARS's conservation effects assessment project watershed studies.

    PubMed

    Tomer, M D; Locke, M A

    2011-01-01

    The Conservation Effects Assessment Project was established to quantify water quality benefits of conservation practices supported by the U.S. Department of Agriculture (USDA). In 2004, watershed assessment studies were begun in fourteen agricultural watersheds with varying cropping systems, landscapes, climate, and water quality concerns. This paper reviews USDA Agricultural Research Service 'Benchmark' watershed studies and the challenge of identifying water quality benefits in watersheds. Study goals included modeling and field research to assess practices, and evaluation of practice placement in watersheds. Not all goals were met within five years but important lessons were learned. While practices improved water quality, problems persisted in larger watersheds. This dissociation between practice-focused and watershed-scale assessments occurred because: (1) Conservation practices were not targeted at critical sources/pathways of contaminants; (2) Sediment in streams originated more from channel and bank erosion than from soil erosion; (3) Timing lags, historical legacies, and shifting climate combined to mask effects of practice implementation; and (4) Water quality management strategies addressed single contaminants with little regard for trade-offs among contaminants. These lessons could help improve conservation strategies and set water quality goals with realistic timelines. Continued research on agricultural water quality could better integrate modeling and monitoring capabilities, and address ecosystem services.

  1. Management of Legacy Spent Nuclear Fuel Wastes at the Chalk River Laboratories: The Challenges and Innovative Solutions Implemented - 13301

    SciTech Connect

    Schruder, Kristan; Goodwin, Derek

    2013-07-01

    AECL's Fuel Packaging and Storage (FPS) Project was initiated in 2004 to retrieve, transfer, and stabilize an identified inventory of degraded research reactor fuel that had been emplaced within in-ground 'Tile Hole' structures in Chalk River Laboratories' Waste Management Area in the 1950's and 60's. Ongoing monitoring of the legacy fuel storage conditions had identified that moisture present in the storage structures had contributed to corrosion of both the fuel and the storage containers. This prompted the initiation of the FPS Project which has as its objective to design, construct, and commission equipment and systems that would allow for the ongoing safe storage of this fuel until a final long-term management, or disposition, pathway was available. The FPS Project provides systems and technologies to retrieve and transfer the fuel from the Waste Management Area to a new facility that will repackage, dry, safely store and monitor the fuel for a period of 50 years. All equipment and the new storage facility are designed and constructed to meet the requirements for Class 1 Nuclear Facilities in Canada. (authors)

  2. Conductive Education: Benefits and Challenges

    ERIC Educational Resources Information Center

    Ratliffe, Katherine T.; Sanekane, Cindy

    2009-01-01

    Conductive education (CE) is an intensive, holistic approach to the education of people with physical disabilities that recognizes that teaching and learning are related to the emotional, cognitive, and physical aspects of individuals. Despite its popularity in the United States and throughout the world, research has not demonstrated a clear…

  3. The electrolyte challenge for a direct methanol-air polymer electrolyte fuel cell operating at temperatures up to 200 C

    NASA Technical Reports Server (NTRS)

    Savinell, Robert; Yeager, Ernest; Tryk, Donald; Landau, Uziel; Wainright, Jesse; Gervasio, Dominic; Cahan, Boris; Litt, Morton; Rogers, Charles; Scherson, Daniel

    1993-01-01

    Novel polymer electrolytes are being evaluated for use in a direct methanol-air fuel cell operating at temperatures in excess of 100 C. The evaluation includes tests of thermal stability, ionic conductivity, and vapor transport characteristics. The preliminary results obtained to date indicate that a high temperature polymer electrolyte fuel cell is feasible. For example, Nafion 117 when equilibrated with phosphoric acid has a conductivity of at least 0.4 Omega(exp -1)cm(exp -1) at temperatures up to 200 C in the presence of 400 torr of water vapor and methanol vapor cross over equivalent to 1 mA/cm(exp 2) under a one atmosphere methanol pressure differential at 135 C. Novel polymers are also showing similar encouraging results. The flexibility to modify and optimize the properties by custom synthesis of these novel polymers presents an exciting opportunity to develop an efficient and compact methanol fuel cell.

  4. Sharing the tracks to good tucker: identifying the benefits and challenges of implementing community food programs for Aboriginal communities in Victoria.

    PubMed

    Murray, Margaret; Bonnell, Emily; Thorpe, Sharon; Browne, Jennifer; Barbour, Liza; MacDonald, Catherine; Palermo, Claire

    2014-01-01

    Food insecurity is a significant issue in the Victorian Aboriginal population, contributing to the health disparity and reduced life expectancy. Community food programs are a strategy used to minimise individual level food insecurity, with little evidence regarding their effectiveness for Aboriginal populations. The aim of this study was to explore the role of community food programs operating for Aboriginal people in Victoria and their perceived influence on food access and nutrition. Semistructured interviews were conducted with staff (n=23) from a purposive sample of 18 community food programs across Victoria. Interviews explored the programs' operation, key benefits to the community, challenges and recommendations for setting up a successful community food program. Results were analysed using a qualitative thematic approach and revealed three main themes regarding key factors for the success of community food programs: (1) community food programs for Aboriginal people should support access to safe, affordable, nutritious food in a socially and culturally acceptable environment; (2) a community development approach is essential for program sustainability; and (3) there is a need to build the capacity of community food programs as part of a strategy to ensure sustainability. Community food programs may be an effective initiative for reducing food insecurity in the Victorian Aboriginal population.

  5. Assessment of costs and benefits of flexible and alternative fuel use in the U.S. transportation sector. Technical report fourteen: Market potential and impacts of alternative fuel use in light-duty vehicles -- A 2000/2010 analysis

    SciTech Connect

    1996-01-01

    In this report, estimates are provided of the potential, by 2010, to displace conventional light-duty vehicle motor fuels with alternative fuels--compressed natural gas (CNG), liquefied petroleum gas (LPG), methanol from natural gas, ethanol from grain and from cellulosic feedstocks, and electricity--and with replacement fuels such as oxygenates added to gasoline. The 2010 estimates include the motor fuel displacement resulting both from government programs (including the Clean Air Act and EPACT) and from potential market forces. This report also provides an estimate of motor fuel displacement by replacement and alterative fuels in the year 2000. However, in contrast to the 2010 estimates, the year 2000 estimate is restricted to an accounting of the effects of existing programs and regulations. 27 figs., 108 tabs.

  6. Benefits of a health impact assessment in relation to fuel poverty: assessing Luton's Affordable Warmth Strategy and the need for a national mandatory strategy.

    PubMed

    Stewart, Jill; Habgood, Veronica

    2008-05-01

    The links between fuel poverty and poor health are well documented, yet there is no statutory requirement on local authorities to develop fuel poverty strategies, which tend to be patchy nationally and differ substantially in quality. Fuel poverty starts from the perspective of income, even though interventions can improve health. The current public health agenda calls for more partnership-based, cost-effective strategies based on sound evidence. Fuel poverty represents a key area where there is currently little local evidence quantifying and qualifying health gain arising from strategic interventions. As a result, this initial study sought to apply the principles of a health impact assessment to Luton's Affordable Warmth Strategy, exploring the potential to identify health impact arising--as a baseline for future research--in the context of the public health agenda. A national strategy would help ensure the promotion of targeted fuel poverty strategies.

  7. An external peer review of the U.S. Department of Energy`s assessment of ``damages and benefits of the fuel cycles: Estimation methods, impacts, and values``. Final report

    SciTech Connect

    Not Available

    1993-08-09

    The need for better assessments of the ``external`` benefits and costs of environmental effects of various fuel cycles was identified during the development of the National Energy Strategy. The growing importance of this issue was emphasized by US Department of Energy (DOE) management because over half of the states were already pursuing some form of social costing in electricity regulation and a well-established technical basis for such decisions was lacking. This issue was identified as a major area of controversy--both scientifically and politically--in developing energy policies at the state and national level. In 1989, the DOE`s Office of Domestic and International Energy Policy commissioned a study of the external environmental damages and benefits of the major fuel cycles involved in electric power generation. Over the next 3-year period, Oak Ridge National Laboratory and Resources for the Future conducted the study and produced a series of documents (fuel cycle documents) evaluating the costs of environmental damages of the coal, oil, natural gas, biomass, hydroelectric, and nuclear fuel cycles, as well as the Background Document on methodological issues. These documents described work that took almost 3 years and $2.5 million to complete and whose implications could be far reaching. In 1992, the Secretary of Energy sought advice on the overall concepts underlying the studies and the means employed to estimate environmental externalities. He asked the Secretary of Energy`s Advisory Board to undertake a peer review of the fuel cycle studies and encouraged the Board to turn to outside expertise, as needed.

  8. Genetic Evaluation and Use of Chromosome Microarray in Patients with Isolated Heart Defects: Benefits and Challenges of a New Model in Cardiovascular Care

    PubMed Central

    Helm, Benjamin M.; Freeze, Samantha L.

    2016-01-01

    . We also provide perspective regarding the benefits and challenges that lie ahead for this model in the clinical setting. PMID:27379245

  9. Balancing benefits and costs in a 4°C world: the need for and challenges of natural-social science dialogue

    NASA Astrophysics Data System (ADS)

    Kopp, R. E.

    2012-12-01

    Making wise policy decisions regarding mitigation, adaptation and geoengineering requires fair assessments of the risks of both action and inaction. Such assessments necessitate dialogue between natural and social scientists. Recent attempts by the U.S. government to estimate the social cost of carbon (SCC) for use in balancing the benefits and costs of proposed mitigatory regulations highlight some of the challenges involved. Among them: (1) Scale: The costs and benefits of adaptation decisions generally take place locally, while the benefits of mitigation accrue globally. Most studies to inform adaptation decision have, quite reasonably, taken place at the local scale, but this has left globally aggregate estimates of climate risk in a fairly tenuous state, engaging only a handful of economists. More accurate assessments, needed for making critical policy decisions as we approach a 4°C world, will require both better top-down analyses and a better framework for integrating bottom-up analyses. (2) Historical validation: Integrated assessment models have not been subject to validation studies, such as the historical runs used to test physical climate models. Conducting such studies for impact analyses will require the integration and further development of statistical analyses of the human impact of past and ongoing climate change. If models don't work for a 0.8°C world, there's no reason to think they'll work for a 4°C world. (3) Looking beyond a 4°C world: A world that reaches 4°C in this century may exceed it in the next century; and even if temperature is stabilized, understanding the economic impacts of 4°C warming will require more than the current approach of extrapolating from 2°C impacts. Natural scientists and social scientists need to work together to estimate damage calibration points for considerably warmer conditions. Recent work on the loss of physiologically habitable regions in a >8°C warmer world is a rare step in this direction (Sherwood

  10. The Stability Challenge on the Pathway to Low and Ultra‐Low Platinum Loading for Oxygen Reduction in Fuel Cells

    PubMed Central

    Cherevko, Serhiy

    2015-01-01

    Abstract We report the influence of catalyst loading on rates of platinum degradation in acidic electrolyte at room temperature. A piezoelectric printer is used to deposit spotted arrays of a commercially available catalyst comprised of Pt nanoparticles on a porous carbon support. The kinetically controlled oxygen reduction reaction (ORR) activity at different loadings is measured using an electrochemical scanning flow cell (SFC), and found to be quite stable over the range of loadings studied. This behaviour, however, contrasts sharply with rates of both transient and quasi‐steady‐state platinum dissolution. These are shown using downstream inductively coupled plasma mass spectrometry (ICP‐MS) analytics, to increase as loading becomes lower. This dichotomy between activity and stability has direct implications for the development of improved catalyst materials, as well as for the achievement of current targets for reduced loadings of noble metals for fuel cells and other energy storage devices. PMID:27525211

  11. The Stability Challenge on the Pathway to Low and Ultra-Low Platinum Loading for Oxygen Reduction in Fuel Cells.

    PubMed

    Keeley, Gareth P; Cherevko, Serhiy; Mayrhofer, Karl J J

    2016-01-01

    We report the influence of catalyst loading on rates of platinum degradation in acidic electrolyte at room temperature. A piezoelectric printer is used to deposit spotted arrays of a commercially available catalyst comprised of Pt nanoparticles on a porous carbon support. The kinetically controlled oxygen reduction reaction (ORR) activity at different loadings is measured using an electrochemical scanning flow cell (SFC), and found to be quite stable over the range of loadings studied. This behaviour, however, contrasts sharply with rates of both transient and quasi-steady-state platinum dissolution. These are shown using downstream inductively coupled plasma mass spectrometry (ICP-MS) analytics, to increase as loading becomes lower. This dichotomy between activity and stability has direct implications for the development of improved catalyst materials, as well as for the achievement of current targets for reduced loadings of noble metals for fuel cells and other energy storage devices.

  12. Energy Storage Fuel Cell Vehicle Analysis

    SciTech Connect

    Pesaran, A; Markel, T; Zolot, M; Sprik, S; Tataria, H; Duong, T

    2005-08-01

    In recent years, hydrogen fuel cell (FC) vehicle technology has received considerable attention as a strategy to decrease oil consumption and reduce harmful emissions. However, the cost, transient response, and cold performance of FC systems may present significant challenges to widespread adoption of the technology for transportation in the next 15 years. The objectives of this effort were to perform energy storage modeling with fuel cell vehicle simulations to quantify the benefits of hybridization and to identify a process for setting the requirements of ES for hydrogen-powered FC vehicles for U.S. Department of Energy's Energy Storage Program.

  13. Benefits of Java

    MedlinePlus

    ... Training and Recovery Exercise Topics Fueling Your Workout Benefits of Physical Activity Exercise Nutrition Top Articles Man running - Protein and the Athlete - How Much Do You Need? Protein and the Athlete — How Much Do You Need? stop watch - Timing Your Pre- and Post-Workout ... of Java Published September 29, 2014 Print Email ...

  14. Integrated gasification fuel cell (IGFC) demonstration test

    SciTech Connect

    Steinfeld, G.; Ghezel-Ayagh, H.; Sanderson, R.; Abens, S.

    2000-07-01

    As concern about the environment generates interest in ultra-clean energy plants, fuel cell power plants can respond to the challenge. Fuel cells convert hydrocarbon fuels to electricity at efficiencies exceeding conventional heat engine technologies while generating extremely low emissions. Emissions of SOx and NOx are expected to be well below current and anticipated future standards. Nitrogen oxides, a product of combustion, will be extremely low in this power plant because power is produced electrochemically rather than by combustion. Due to its higher efficiencies, a fuel cell power plant also produces less carbon dioxide. Fuel cells in combination with coal gasification, are an efficient and environmentally acceptable means to utilize the abundant coal reserves both in the US and around the world. To demonstrate this technology, FuelCell Energy, Inc. (FCE), is planning to build and test a 2-MW Fuel Cell Power Plant for operation on coal derived gas. This power plant is based on Direct Fuel Cell (DFC{trademark}) technology and will be part of a Clean Coal V IGCC project supported by the US DOE. A British Gas Lurgi (BGL) slagging fixed-bed gasification system with cold gas clean up is planned as part of a 400 MW IGCC power plant to provide a fuel gas slip stream to the fuel cell. The IGFC power plant will be built by Kentucky Pioneer Energy, A subsidiary of Global Energy, in Clark County, KY. This demonstration will result in the world's largest fuel cell power plant operating on coal derived gas. The objective of this test is to demonstrate fuel cell operation on coal derived gas at a commercial scale and to verify the efficiency and environmental benefits.

  15. Review of Biojet Fuel Conversion Technologies

    SciTech Connect

    Wang, Wei-Cheng; Tao, Ling; Markham, Jennifer; Zhang, Yanan; Tan, Eric; Batan, Liaw; Warner, Ethan; Biddy, Mary

    2016-07-01

    Biomass-derived jet (biojet) fuel has become a key element in the aviation industry’s strategy to reduce operating costs and environmental impacts. Researchers from the oil-refining industry, the aviation industry, government, biofuel companies, agricultural organizations, and academia are working toward developing commercially viable and sustainable processes that produce long-lasting renewable jet fuels with low production costs and low greenhouse gas emissions. Additionally, jet fuels must meet ASTM International specifications and potentially be a 100% drop-in replacement for the current petroleum jet fuel. The combustion characteristics and engine tests demonstrate the benefits of running the aviation gas turbine with biojet fuels. In this study, the current technologies for producing renewable jet fuels, categorized by alcohols-to-jet, oil-to-jet, syngas-to-jet, and sugar-to-jet pathways, are reviewed. The main challenges for each technology pathway, including feedstock availability, conceptual process design, process economics, life-cycle assessment of greenhouse gas emissions, and commercial readiness, are discussed. Although the feedstock price and availability and energy intensity of the process are significant barriers, biomass-derived jet fuel has the potential to replace a significant portion of conventional jet fuel required to meet commercial and military demand.

  16. Fuel flexible fuel injector

    DOEpatents

    Tuthill, Richard S; Davis, Dustin W; Dai, Zhongtao

    2015-02-03

    A disclosed fuel injector provides mixing of fuel with airflow by surrounding a swirled fuel flow with first and second swirled airflows that ensures mixing prior to or upon entering the combustion chamber. Fuel tubes produce a central fuel flow along with a central airflow through a plurality of openings to generate the high velocity fuel/air mixture along the axis of the fuel injector in addition to the swirled fuel/air mixture.

  17. Critical assessment of power trains with fuel-cell systems and different fuels

    NASA Astrophysics Data System (ADS)

    Höhlein, B.; von Andrian, S.; Grube, Th; Menzer, R.

    Legal regulations (USA, EU) are a major driving force for intensifying technological developments with respect to the global automobile market. In the future, highly efficient vehicles with very low emission levels will include low-temperature fuel-cell systems (PEFC) as units of electric power trains. With alcohols, ether or hydrocarbons used as fuels for these new electric power trains, hydrogen as PEFC fuel has to be produced on board. These concepts including the direct use of methanol in fuel-cell systems, differ considerably in terms of both their development prospects and the results achieved so far. Based on process engineering analyses for net electricity generation in PEFC-powered power trains, as well as on assumptions for electric power trains and vehicle configurations, different fuel-cell performances and fuel processing units for octane, diesel, methanol, ethanol, propane and dimethylether have been evaluated as fuels. The possible benefits and key challenges for different solutions of power trains with fuel-cell systems/on-board hydrogen production and with direct methanol fuel-cell (DMFC) systems have been assessed. Locally, fuel-cell power trains are almost emission-free and, unlike battery-powered vehicles, their range is comparable to conventional vehicles. Therefore, they have application advantages cases of particularly stringent emission standards requiring zero emission. In comparison to internal combustion engines, using fuel-cell power trains can lead to clear reductions in primary energy demand and global, climate-relevant emissions providing the advantage of the efficiency of the hydrogen/air reaction in the fuel cell is not too drastically reduced by additional conversion steps of on-board hydrogen production, or by losses due to fuel supply provision.

  18. Capital requirements and fuel-cycle energy and emissions impacts of potential PNGV fuels.

    SciTech Connect

    Johnson, L.; Mintz, M.; Singh, M.; Stork, K.; Vyas, A.; Wang, M.

    1999-03-11

    Our study reveals that supplying gasoline-equivalent demand for the low-market-share scenario requires a capital investment of less than $40 billion for all fuels except H{sub 2}, which will require a total cumulative investment of $150 billion. By contrast, cumulative capital investments under the high-market-share scenario are $50 billion for LNG, $90 billion for ethanol, $100 billion for methanol, $160 billion for CNG and DME, and $560 billion for H{sub 2}. Although these substantial capital requirements are spread over many years, their magnitude could pose a challenge to the widespread introduction of 3X vehicles. Fossil fuel use by US light-duty vehicles declines significantly with introduction of 3X vehicles because of fuel-efficiency improvements for 3X vehicles and because of fuel substitution (which applies to the nonpetroleum-fueled alternatives). Petroleum use for light-duty vehicles in 2030 is reduced by as much as 45% relative to the reference scenario. GHG emissions follow a similar pattern. Total GHG emissions decline by 25-30% with most of the propulsion system/fuel alternatives. For those using renewable fuels (i.e., ethanol and H{sub 2} from solar energy), GHG emissions drop by 33% (H{sub 2}) and 45% (ethanol). Among urban air pollutants, urban NOX emissions decline slightly for 3X vehicles using CIDI and SIDI engines and drop substantially for fuel-cell vehicles. Urban CO emissions decline for CIDI and FCV alternatives, while VOC emissions drop significantly for all alternatives except RFG-, methanol-, and ethanol-fueled SIDI engines. With the exception of CIDI engines fueled by RFD, FT50, or B20 (which increase urban PM{sub 10} emissions by over 30%), all propulsion system/fuel alternatives reduce urban PM{sub 10} emissions. Reductions are approximately 15-20% for fuel cells and for methanol-, ethanol-, CNG-, or LPG-fueled SIDI engines. Table 3 qualitatively summarizes impacts of the 13 alternatives on capital requirements and on energy use and

  19. Fuel removal, transport, and storage

    SciTech Connect

    Reno, H.W.

    1986-01-01

    The March 1979 accident at Unit 2 of the Three Mile Island Nuclear Power Station (TMI-2) which damaged the core of the reactor resulted in numerous scientific and technical challenges. Some of those challenges involve removing the core debris from the reactor, packaging it into canisters, loading canisters into a rail cask, and transporting the debris to the Idaho National Engineering Laboratory (INEL) for storage, examination, and preparation for final disposal. This paper highlights how some challenges were resolved, including lessons learned and benefits derived therefrom. Key to some success at TMI was designing, testing, fabricating, and licensing two rail casks, which each provide double containment of the damaged fuel. 10 refs., 12 figs.

  20. Flexible Fuel Vehicles: Providing a Renewable Fuel Choice

    SciTech Connect

    Not Available

    2007-05-01

    This Clean Cities Program fact sheet describes aspects of flexible fuel vehicles such as use of E85, special features, benefits of use, costs, and fueling locations. It discusses performance and lists additional resources.

  1. Benefits/fringes under better control

    SciTech Connect

    Mantho, M.

    1995-07-01

    Fringe benefits, e.g., health insurance for employees in the fuel oil industry are discussed. It was concluded that only 12% of the companies had cut benefits but that these benefits were costing less. This would seem to indicate that the cost of these benefits was being controlled better perhaps by more sharing of these costs.

  2. Vision for the development of an international nuclear fuel recycling program

    SciTech Connect

    Kok, Kenneth D.

    2007-07-01

    The purpose of the development of an international nuclear fuel recycle program is to: - Demonstrate advanced recycling by working to prove the technologies needed to close the fuel cycle, minimize waste, and obtain more energy benefit for each unit of fuel. - Build a global vision by enlisting partners to limit the spread of sensitive nuclear technologies in a way that enables nuclear power to meet global challenges. The program will begin with the establishment of a smaller scale secure fuel cycle facility that would serve as a model for international nuclear fuel reprocessing centers that would eventually be built in several countries world wide. The operating process plants will provide the secure and safe guarded environment for the recycle of spent fuel from nuclear power stations around the world. The demonstration site will provide for developing and testing processes that would lead to the more complete use of the energy available in nuclear fuels and the minimization of long lived nuclear waste. (author)

  3. RDF (Refuse-Derived Fuel) Co-Firing Cost/Benefit Analysis Using the NCEL RDF Cost Model. Volume 1. Project Results.

    DTIC Science & Technology

    1986-08-01

    2-1 2.2 Initial Data Collection . ................ 2-2 3.0 Case Study Cost/Benefit Analysis ..... .............. ... 3-1 3.1 Introduction...RDFCostModl. VlumeII* ..,,.. continstherefrencd apenic . Tese ppedics cntai prgra ,-’-’ litigs mdfiatondtals cmlee rorm utut oreah civty vi"i-.... and ativiy...considerable effort in the study of the RDF technology. This has included the determination of optimum heat recovery incinerator (HRI) design, the systemization

  4. Energy Switching Threshold for Climatic Benefits

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Cao, L.; Caldeira, K.

    2013-12-01

    Climate change is one of the great challenges facing humanity currently and in the future. Its most severe impacts may still be avoided if efforts are made to transform current energy systems (1). A transition from the global system of high Greenhouse Gas (GHG) emission electricity generation to low GHG emission energy technologies is required to mitigate climate change (2). Natural gas is increasingly seen as a choice for transitions to renewable sources. However, recent researches in energy and climate puzzled about the climate implications of relying more energy on natural gas. On one hand, a shift to natural gas is promoted as climate mitigation because it has lower carbon per unit energy than coal (3). On the other hand, the effect of switching to natural gas on nuclear-power and other renewable energies development may offset benefits from fuel-switching (4). Cheap natural gas is causing both coal plants and nuclear plants to close in the US. The objective of this study is to measure and evaluate the threshold of energy switching for climatic benefits. We hypothesized that the threshold ratio of energy switching for climatic benefits is related to GHGs emission factors of energy technologies, but the relation is not linear. A model was developed to study the fuel switching threshold for greenhouse gas emission reduction, and transition from coal and nuclear electricity generation to natural gas electricity generation was analyzed as a case study. The results showed that: (i) the threshold ratio of multi-energy switching for climatic benefits changes with GHGs emission factors of energy technologies. (ii)The mathematical relation between the threshold ratio of energy switching and GHGs emission factors of energies is a curved surface function. (iii) The analysis of energy switching threshold for climatic benefits can be used for energy and climate policy decision support.

  5. Coal and biomass to fuels and power.

    PubMed

    Williams, Robert H; Liu, Guangjian; Kreutz, Thomas G; Larson, Eric D

    2011-01-01

    Systems with CO(2) capture and storage (CCS) that coproduce transportation fuels and electricity from coal plus biomass can address simultaneously challenges of climate change from fossil energy and dependence on imported oil. Under a strong carbon policy, such systems can provide competitively clean low-carbon energy from secure domestic feedstocks by exploiting the negative emissions benefit of underground storage of biomass-derived CO(2), the low cost of coal, the scale economies of coal energy conversion, the inherently low cost of CO(2) capture, the thermodynamic advantages of coproduction, and expected high oil prices. Such systems require much less biomass to make low-carbon fuels than do biofuels processes. The economics are especially attractive when these coproduction systems are deployed as alternatives to CCS for stand-alone fossil fuel power plants. If CCS proves to be viable as a major carbon mitigation option, the main obstacles to deployment of coproduction systems as power generators would be institutional.

  6. Opportunities and challenges to capturing the multiple potential benefits of REDD+ in a traditional transnational savanna-woodland region in West Africa.

    PubMed

    Olsson, E Gunilla A; Ouattara, Syna

    2013-04-01

    The REDD+ scheme of the United Nations intends to offer developing countries financial incentives to reduce the rates of deforestation and forest degradation for reducing global CO2 emissions. This is combined with building carbon stocks in existing wooded ecosystems and fostering other soil, biodiversity and water conservation objectives. Successful application of REDD+ to the Xylophone Triangle of West Africa faces substantial challenges and risks to both meeting REDD+ objectives and to the local people's rights and livelihoods. The transnationality of the culturally coherent area requires collaboration of three national governments. The opportunities, however, are great to capitalize on the region's biodiversity, the well-developed traditional ecological knowledge and the use of local medicinal plants as an integral part of the agro-ecosystem. Possibilities open to, not only sequester carbon, but also to increase the resilience of the ecosystem and of independent rural livelihoods in the face of climate change and globalization.

  7. Exploiting Nutritional Value of Staple Foods in the World’s Semi-Arid Areas: Risks, Benefits, Challenges and Opportunities of Sorghum

    PubMed Central

    Proietti, Ilaria; Frazzoli, Chiara; Mantovani, Alberto

    2015-01-01

    Sorghum (Sorghum bicolor (L.) Moench) is a drought-resistant crop and an important food resource in terms of nutritional as well as social-economic values, especially in semi-arid environments. Cultivar selection and processing methods have been observed to impact on composition and functional and nutritional value of sorghum. Amino acid imbalance, cyanogenic glycosides, endogenous anti-nutrients, mycotoxins and toxic elements are among factors impairing its nutritional value. This paper reviews possible approaches (varieties selection, production practices, cooking processes) to improve the benefits-to-risks balance of sorghum meal, to mitigate the risk of deficiencies and/or imbalances and to improve effects on human nutrition. Opportunity for avoiding dietary diversification in high sorghum consumers is also discussed, e.g., tryptophan and niacin deficits potentially related to pellagra, or unavailability of proteins and divalent cations (e.g., Fe, Zn) due to the antinutrient activity of phytic acid and tannins. As potential candidate for production investments, the role of sorghum in preserving biological diversity is also considered. PMID:27417755

  8. Physiological Benefits of Being Small in a Changing World: Responses of Coho Salmon (Oncorhynchus kisutch) to an Acute Thermal Challenge and a Simulated Capture Event

    PubMed Central

    Clark, Timothy D.; Donaldson, Michael R.; Pieperhoff, Sebastian; Drenner, S. Matthew; Lotto, Andrew; Cooke, Steven J.; Hinch, Scott G.; Patterson, David A.; Farrell, Anthony P.

    2012-01-01

    Evidence is building to suggest that both chronic and acute warm temperature exposure, as well as other anthropogenic perturbations, may select for small adult fish within a species. To shed light on this phenomenon, we investigated physiological and anatomical attributes associated with size-specific responses to an acute thermal challenge and a fisheries capture simulation (exercise+air exposure) in maturing male coho salmon (Oncorhynchus kisutch). Full-size females were included for a sex-specific comparison. A size-specific response in haematology to an acute thermal challenge (from 7 to 20°C at 3°C h−1) was apparent only for plasma potassium, whereby full-size males exhibited a significant increase in comparison with smaller males (‘jacks’). Full-size females exhibited an elevated blood stress response in comparison with full-size males. Metabolic recovery following exhaustive exercise at 7°C was size-specific, with jacks regaining resting levels of metabolism at 9.3±0.5 h post-exercise in comparison with 12.3±0.4 h for full-size fish of both sexes. Excess post-exercise oxygen consumption scaled with body mass in male fish with an exponent of b = 1.20±0.08. Jacks appeared to regain osmoregulatory homeostasis faster than full-size males, and they had higher ventilation rates at 1 h post-exercise. Peak metabolic rate during post-exercise recovery scaled with body mass with an exponent of b∼1, suggesting that the slower metabolic recovery in large fish was not due to limitations in diffusive or convective oxygen transport, but that large fish simply accumulated a greater ‘oxygen debt’ that took longer to pay back at the size-independent peak metabolic rate of ∼6 mg min−1 kg−1. Post-exercise recovery of plasma testosterone was faster in jacks compared with full-size males, suggesting less impairment of the maturation trajectory of smaller fish. Supporting previous studies, these findings suggest that environmental change and non

  9. Alcohol fuels

    SciTech Connect

    Not Available

    1990-07-01

    Ethanol is an alcohol made from grain that can be blended with gasoline to extend petroleum supplies and to increase gasoline octane levels. Congressional proposals to encourage greater use of alternative fuels could increase the demand for ethanol. This report evaluates the growth potential of the ethanol industry to meet future demand increases and the impacts increased production would have on American agriculture and the federal budget. It is found that ethanol production could double or triple in the next eight years, and that American farmers could provide the corn for this production increase. While corn growers would benefit, other agricultural segments would not; soybean producers, for example could suffer for increased corn oil production (an ethanol byproduct) and cattle ranchers would be faced with higher feed costs because of higher corn prices. Poultry farmers might benefit from lower priced feed. Overall, net farm cash income should increase, and consumers would see slightly higher food prices. Federal budget impacts would include a reduction in federal farm program outlays by an annual average of between $930 million (for double current production of ethanol) to $1.421 billion (for triple production) during the eight-year growth period. However, due to an partial tax exemption for ethanol blended fuels, federal fuel tax revenues could decrease by between $442 million and $813 million.

  10. Current Challenges in Commercially Producing Biofuels from Lignocellulosic Biomass

    PubMed Central

    Balan, Venkatesh

    2014-01-01

    Biofuels that are produced from biobased materials are a good alternative to petroleum based fuels. They offer several benefits to society and the environment. Producing second generation biofuels is even more challenging than producing first generation biofuels due the complexity of the biomass and issues related to producing, harvesting, and transporting less dense biomass to centralized biorefineries. In addition to this logistic challenge, other challenges with respect to processing steps in converting biomass to liquid transportation fuel like pretreatment, hydrolysis, microbial fermentation, and fuel separation still exist and are discussed in this review. The possible coproducts that could be produced in the biorefinery and their importance to reduce the processing cost of biofuel are discussed. About $1 billion was spent in the year 2012 by the government agencies in US to meet the mandate to replace 30% existing liquid transportation fuels by 2022 which is 36 billion gallons/year. Other countries in the world have set their own targets to replace petroleum fuel by biofuels. Because of the challenges listed in this review and lack of government policies to create the demand for biofuels, it may take more time for the lignocellulosic biofuels to hit the market place than previously projected. PMID:25937989

  11. Current Challenges in Commercially Producing Biofuels from Lignocellulosic Biomass

    DOE PAGES

    Balan, Venkatesh

    2014-01-01

    Biofuels that are produced from biobased materials are a good alternative to petroleum based fuels. They offer several benefits to society and the environment. Producing second generation biofuels is even more challenging than producing first generation biofuels due the complexity of the biomass and issues related to producing, harvesting, and transporting less dense biomass to centralized biorefineries. In addition to this logistic challenge, other challenges with respect to processing steps in converting biomass to liquid transportation fuel like pretreatment, hydrolysis, microbial fermentation, and fuel separation still exist and are discussed in this review. The possible coproducts that could be producedmore » in the biorefinery and their importance to reduce the processing cost of biofuel are discussed. About $1 billion was spent in the year 2012 by the government agencies in US to meet the mandate to replace 30% existing liquid transportation fuels by 2022 which is 36 billion gallons/year. Other countries in the world have set their own targets to replace petroleum fuel by biofuels. Because of the challenges listed in this review and lack of government policies to create the demand for biofuels, it may take more time for the lignocellulosic biofuels to hit the market place than previously projected.« less

  12. Uncertain translation, uncertain benefit and uncertain risk: ethical challenges facing first-in-human trials of induced pluripotent stem (ips) cells.

    PubMed

    Fung, Ronald K F; Kerridge, Ian H

    2013-02-01

    The discovery of induced pluripotent stem (iPS) cells in 2006 was heralded as a major breakthrough in stem cell research. Since then, progress in iPS cell technology has paved the way towards clinical application, particularly cell replacement therapy, which has refueled debate on the ethics of stem cell research. However, much of the discourse has focused on questions of moral status and potentiality, overlooking the ethical issues which are introduced by the clinical testing of iPS cell replacement therapy. First-in-human trials, in particular, raise a number of ethical concerns including informed consent, subject recruitment and harm minimisation as well as the inherent uncertainty and risks which are involved in testing medical procedures on humans for the first time. These issues, while a feature of any human research, become more complex in the case of iPS cell therapy, given the seriousness of the potential risks, the unreliability of available animal models, the vulnerability of the target patient group, and the high stakes of such an intensely public area of science. Our paper will present a detailed case study of iPS cell replacement therapy for Parkinson's disease to highlight these broader ethical and epistemological concerns. If we accept that iPS cell technology is fraught with challenges which go far beyond merely refuting the potentiality of the stem cell line, we conclude that iPS cell research should not replace, but proceed alongside embryonic and adult somatic stem cell research to promote cross-fertilisation of knowledge and better clinical outcomes.

  13. DOE Hydrogen & Fuel Cell Overview

    DTIC Science & Technology

    2011-01-13

    Overview of Combined Heat+Power PowerElectricity Natural Gas Heat + Cooling Natural Gas or Biogas ...Fuel Cell Technologies Program eere.energy.gov Source: US DOE 10/2010 Biogas Benefits: Preliminary Analysis Stationary fuel...with the national grid. Source: US DOE 1/2011 6 | Fuel Cell Technologies Program eere.energy.gov Biogas Resource Example

  14. Vegetable oil fuels: A review

    SciTech Connect

    Karaosmanoglu, F.

    1999-04-01

    Using vegetable oils as fuel alternatives has economic, environmental, and energy benefits for Turkey. The present work provides insight to the status of vegetable oil fuels in Turkey. A brief historical background of the issue, as well as an up to date review of the research carried out on vegetable oil fuels, is given and the future of their production and application is discussed.

  15. Liquid fuel cells.

    PubMed

    Soloveichik, Grigorii L

    2014-01-01

    The advantages of liquid fuel cells (LFCs) over conventional hydrogen-oxygen fuel cells include a higher theoretical energy density and efficiency, a more convenient handling of the streams, and enhanced safety. This review focuses on the use of different types of organic fuels as an anode material for LFCs. An overview of the current state of the art and recent trends in the development of LFC and the challenges of their practical implementation are presented.

  16. Liquid fuel cells

    PubMed Central

    2014-01-01

    Summary The advantages of liquid fuel cells (LFCs) over conventional hydrogen–oxygen fuel cells include a higher theoretical energy density and efficiency, a more convenient handling of the streams, and enhanced safety. This review focuses on the use of different types of organic fuels as an anode material for LFCs. An overview of the current state of the art and recent trends in the development of LFC and the challenges of their practical implementation are presented. PMID:25247123

  17. Fuel Cell Activities at the NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Kohout, Lisa L.; Lyons, Valerie (Technical Monitor)

    2002-01-01

    Fuel cells have a long history in space applications and may have potential application in aeronautics as well. A fuel cell is an electrochemical energy conversion device that directly transforms the chemical energy of a fuel and oxidant into electrical energy. Alkaline fuel cells have been the mainstay of the U.S. space program, providing power for the Apollo missions and the Space Shuttle. However, Proton Exchange Membrane (PEM) fuel cells offer potential benefits over alkaline systems and are currently under development for the next generation Reusable Launch Vehicle (RLV). Furthermore, primary and regenerative systems utilizing PEM technology are also being considered for future space applications such as surface power and planetary aircraft. In addition to these applications, the NASA Glenn Research Center is currently studying the feasibility of the use of both PEM and solid oxide fuel cells for low- or zero-emission electric aircraft propulsion. These types of systems have potential applications for high altitude environmental aircraft, general aviation and commercial aircraft, and high attitude airships. NASA Glenn has a unique set of capabilities and expertise essential to the successful development of advanced fuel cell power systems for space and aeronautics applications. NASA Glenn's role in past fuel cell development programs as well as current activities to meet these new challenges will be presented

  18. Flexible Fuel Vehicles: Providing a Renewable Fuel Choice (Fact Sheet)

    SciTech Connect

    Not Available

    2010-03-01

    Flexible Fuel vehicles are able to operate using more than one type of fuel. FFVs can be fueled with unleaded gasoline, E85, or any combination of the two. Today more than 7 million vehicles on U.S. highways are flexible fuel vehicles. The fact sheet discusses how E85 affects vehicle performance, the costs and benefits of using E85, and how to find E85 station locations.

  19. Solving Aviation Challenges

    NASA Video Gallery

    This video highlights the challenges NASA aeronautics researchers are tackling to reduce aircraft noise, emissions, fuel consumption, and the innovative ways they're helping to debut NextGen, a rev...

  20. Green Flight Challenge Highlights

    NASA Video Gallery

    On Monday, October 3, 2011, NASA's Centennial Challenges program awarded the largest prize in aviation history, created to inspire the development of more fuel-efficient aircraft and spark the star...

  1. Understanding the benefits and challenges of community engagement in the development of community mental health services for common mental disorders: lessons from a case study in a rural South African subdistrict site.

    PubMed

    Petersen, Inge; Baillie, Kim; Bhana, Arvin

    2012-07-01

    Against the backdrop of a large treatment gap for mental disorders in low- to middle-income countries (LMICs), the 2007 Lancet series on global mental health calls for a scaling up of mental health services. Community participation is largely harnessed as one strategy to facilitate this call. Using a participatory implementation framework for the development of mental health services for common mental disorders (CMDs) in a rural subdistrict in South Africa as a case study, this study sought to understand the benefits and challenges of community participation beyond that of scaling up. Qualitative process evaluation involving interviews with service providers and users was employed. The results suggest that in addition to promoting mobilization of resources and actions for scaling up mental health services, community participation can potentially contribute to more culturally competent services and personal empowerment of recipients of care. In addition, community participation holds promise for engendering community-led public health actions to ameliorate some of the social determinants of mental ill health. Challenges include that community members involved in these activities are mainly marginalized women, who have limited power to achieve structural change, including cultural practices that may be harmful to the mental health of women and children. We conclude that in addition to contributing to scaling up mental health services, community participation can potentially promote the development of culturally competent mental health services and greater community control of mental health.

  2. Promising Fuel Cycle Options for R&D – Results, Insights, and Future Directions

    SciTech Connect

    Wigeland, Roald Arnold

    2015-05-01

    The Fuel Cycle Options (FCO) campaign in the U.S. DOE Fuel Cycle Research & Development Program conducted a detailed evaluation and screening of nuclear fuel cycles. The process for this study was described at the 2014 ICAPP meeting. This paper reports on detailed insights and questions from the results of the study. The comprehensive study identified continuous recycle in fast reactors as the most promising option, using either U/Pu or U/TRU recycle, and potentially in combination with thermal reactors, as reported at the ICAPP 2014 meeting. This paper describes the examination of the results in detail that indicated that there was essentially no difference in benefit between U/Pu and U/TRU recycle, prompting questions about the desirability of pursuing the more complex U/TRU approach given that the estimated greater challenges for development and deployment. The results will be reported from the current effort that further explores what, if any, benefits of TRU recycle (minor actinides in addition to plutonium recycle) may be in order to inform decisions on future R&D directions. The study also identified continuous recycle using thorium-based fuel cycles as potentially promising, in either fast or thermal systems, but with lesser benefit. Detailed examination of these results indicated that the lesser benefit was confined to only a few of the evaluation metrics, identifying the conditions under which thorium-based fuel cycles would be promising to pursue. For the most promising fuel cycles, the FCO is also conducting analyses on the potential transition to such fuel cycles to identify the issues, challenges, and the timing for critical decisions that would need to be made to avoid unnecessary delay in deployment, including investigation of issues such as the effects of a temporary lack of plutonium fuel resources or supporting infrastructure. These studies are placed in the context of an overall analysis approach designed to provide comprehensive information to

  3. System design of a large fuel cell hybrid locomotive

    NASA Astrophysics Data System (ADS)

    Miller, A. R.; Hess, K. S.; Barnes, D. L.; Erickson, T. L.

    Fuel cell power for locomotives combines the environmental benefits of a catenary-electric locomotive with the higher overall energy efficiency and lower infrastructure costs of a diesel-electric. A North American consortium, a public-private partnership, is developing a prototype hydrogen-fueled fuel cell-battery hybrid switcher locomotive for urban and military-base rail applications. Switcher locomotives are used in rail yards for assembling and disassembling trains and moving trains from one point to another. At 127 tonnes (280,000 lb), continuous power of 250 kW from its (proton exchange membrane) PEM fuel cell prime mover, and transient power well in excess of 1 MW, the hybrid locomotive will be the heaviest and most powerful fuel cell land vehicle yet. This fast-paced project calls for completion of the vehicle itself near the end of 2007. Several technical challenges not found in the development of smaller vehicles arise when designing and developing such a large fuel cell vehicle. Weight, center of gravity, packaging, and safety were design factors leading to, among other features, the roof location of the lightweight 350 bar compressed hydrogen storage system. Harsh operating conditions, especially shock loads during coupling to railcars, require component mounting systems capable of absorbing high energy. Vehicle scale-up by increasing mass, density, or power presents new challenges primarily related to issues of system layout, hydrogen storage, heat transfer, and shock loads.

  4. Teaching Focus Group Interviewing: Benefits and Challenges

    ERIC Educational Resources Information Center

    George, Molly

    2013-01-01

    Focus group interviewing is widely used by academic and applied researchers. Given the popularity and strengths of this method, it is surprising how rarely focus group interviewing is taught in the undergraduate classroom and how few resources exist to support instructors who wish to train students to use this technique. This article fills the gap…

  5. The Benefits and Challenges of Kinship Care

    ERIC Educational Resources Information Center

    O'Brien, Valerie

    2012-01-01

    The outcomes for children in kinship care are generally seen as positive in terms of identity formation, stability of placement, behavioural and mental health outcomes, enabling siblings to live together and child protection. However, there is some disquiet about the length of time children stay with relatives; agencies are not sure about how best…

  6. Synthetic fuels handbook: properties, process and performance

    SciTech Connect

    Speight, J.

    2008-07-01

    The handbook is a comprehensive guide to the benefits and trade-offs of numerous alternative fuels, presenting expert analyses of the different properties, processes, and performance characteristics of each fuel. It discusses the concept systems and technology involved in the production of fuels on both industrial and individual scales. Chapters 5 and 7 are of special interest to the coal industry. Contents: Chapter 1. Fuel Sources - Conventional and Non-conventional; Chapter 2. Natural Gas; Chapter 3. Fuels From Petroleum and Heavy Oil; Chapter 4. Fuels From Tar Sand Bitumen; Chapter 5. Fuels From Coal; Chapter 6. Fuels From Oil Shale; Chapter 7. Fuels From Synthesis Gas; Chapter 8. Fuels From Biomass; Chapter 9. Fuels From Crops; Chapter 10. Fuels From Wood; Chapter 11. Fuels From Domestic and Industrial Waste; Chapter 12. Landfill Gas. 3 apps.

  7. Fossil fuels -- future fuels

    SciTech Connect

    1998-03-01

    Fossil fuels -- coal, oil, and natural gas -- built America`s historic economic strength. Today, coal supplies more than 55% of the electricity, oil more than 97% of the transportation needs, and natural gas 24% of the primary energy used in the US. Even taking into account increased use of renewable fuels and vastly improved powerplant efficiencies, 90% of national energy needs will still be met by fossil fuels in 2020. If advanced technologies that boost efficiency and environmental performance can be successfully developed and deployed, the US can continue to depend upon its rich resources of fossil fuels.

  8. Shale Gas: Development Opportunities and Challenges

    SciTech Connect

    Zoback, Mark D.; Arent, Douglas J.

    2014-03-01

    The use of horizontal drilling and multistage hydraulic fracturing technologies has enabled the production of immense quantities of natural gas, to date principally in North America but increasingly in other countries around the world. The global availability of this resource creates both opportunities and challenges that need to be addressed in a timely and effective manner. There seems little question that rapid shale gas development, coupled with fuel switching from coal to natural gas for power generation, can have beneficial effects on air pollution, greenhouse gas emissions, and energy security in many countries. In this context, shale gas resources represent a critically important transition fuel on the path to a decarbonized energy future. For these benefits to be realized, however, it is imperative that shale gas resources be developed with effective environmental safeguards to reduce their impact on land use, water resources, air quality, and nearby communities.

  9. Technology Benefits

    NASA Technical Reports Server (NTRS)

    Haller, William

    2001-01-01

    An assessment was recently performed by NASA s Inter-Center Systems Analysis Team to quantify the potential emission reduction benefits from technologies being developed under UEET. The CO2 and LTO NO, reductions were estimated for 4 vehicles: a 50-passenger regional jet, a twin-engine, long-range subsonic transport, a high-speed (Mach 2.4) civil transport and a supersonic (Mach 2) business jet. The results of the assessment confirm that the current portfolio of technologies within the UEET program provides an opportunity for substantial reductions in CO2 and NO, emissions.

  10. New developments in RTR fuel recycling

    SciTech Connect

    Lelievre, F.; Brueziere, J.; Domingo, X.; Valery, J.F.; Leroy, J.F.; Tribout-Maurizi, A.

    2013-07-01

    As most utilities in the world, Research and Test Reactors (RTR) operators are currently facing two challenges regarding the fuel, in order to comply with local safety and waste management requirements as well as global non-proliferation obligation: - How to manage used fuel today, and - How fuel design changes that are currently under development will influence used fuel management. AREVA-La-Hague plant has a large experience in used fuel recycling, including traditional RTR fuel (UAl). Based on that experience and deep knowledge of RTR fuel manufacturing, AREVA is currently examining possible options to cope with both challenges. This paper describes the current experience of AREVA-La-Hague in UAl used fuels recycling and its plan to propose recycling for various types of fuels such as U{sub 3}Si{sub 2} fuel or UMo fuel on an industrial scale. (authors)

  11. EXTENDING SODIUM FAST REACTOR DRIVER FUEL USE TO HIGHER TEMPERATURES

    SciTech Connect

    Douglas L. Porter

    2011-02-01

    Calculations of potential sodium-cooled fast reactor fuel temperatures were performed to estimate the effects of increasing the outlet temperature of a given fast reactor design by increasing pin power, decreasing assembly flow, or increasing inlet temperature. Based upon experience in the U.S., both metal and mixed oxide (MOX) fuel types are discussed in terms of potential performance effects created by the increased operating temperatures. Assembly outlet temperatures of 600, 650 and 700 °C were used as goal temperatures. Fuel/cladding chemical interaction (FCCI) and fuel melting, as well as challenges to the mechanical integrity of the cladding material, were identified as the limiting phenomena. For example, starting with a recent 1000 MWth fast reactor design, raising the outlet temperature to 650 °C through pin power increase increased the MOX centerline temperature to more than 3300 °C and the metal fuel peak cladding temperature to more than 700 °C. These exceeded limitations to fuel performance; fuel melting was limiting for MOX and FCCI for metal fuel. Both could be alleviated by design ‘fixes’, such as using a barrier inside the cladding to minimize FCCI in the metal fuel, or using annular fuel in the case of MOX. Both would also require an advanced cladding material with improved stress rupture properties. While some of these are costly, the benefits of having a high-temperature reactor which can support hydrogen production, or other missions requiring high process heat may make the extra costs justified.

  12. INTERIM STORAGE AND LONG TERM DISPOSAL OF RESEARCH REACTOR SPENT FUEL

    SciTech Connect

    Vinson, D

    2006-08-22

    Aluminum clad research reactor spent nuclear fuel (SNF) is currently being consolidated in wet storage basins (pools). Approximately 20 metric tons (heavy metal) of aluminum-based spent nuclear fuel (Al-SNF) is being consolidated for treatment, packaging, interim storage, and preparation for ultimate disposal in a geologic repository. The storage and disposal of Al-SNF are subject to requirements that provide for safety and acceptable radionuclide release. The options studied for interim storage of SNF include wet storage and dry storage. Two options have also been studied to develop the technical basis for the qualification and repository disposal of aluminum spent fuel. The two options studied include Direct Disposal and Melt-Dilute treatment. The implementation of these options present relative benefits and challenges. Both the Direct Disposal and the Melt-Dilute treatment options have been developed and their technical viability assessed. Adaptation of the melt-dilute technology for the treatment of spent fuel offers the benefits of converting the spent fuel into a proliferation resistant form and/or significantly reducing the volume of the spent fuel. A Mobile Melt-Dilute system concept has emerged to realize these benefits and a prototype system developed. The application of the melt-dilute technology for the treatment of legacy nuclear materials has been evaluated and also offers the promise for the safe disposal of these materials.

  13. Flexible Fuel Vehicles: Providing a Renewable Fuel Choice (Revised)

    SciTech Connect

    Not Available

    2008-06-01

    Clean Cities fact sheet describing aspects of flexible fuel vehicles such as use of E85, special features, benefits of use, costs, and fueling locations. It includes discussion on performance and how to identify these vehicles as well as listing additional resources.

  14. Comparative costs and benefits of hydrogen vehicles

    SciTech Connect

    Berry, G.D.

    1996-10-01

    The costs and benefits of hydrogen as a vehicle fuel are compared to gasoline, natural gas, and battery-powered vehicles. Costs, energy, efficiency, and tail-pipe and full fuel cycle emissions of air pollutants and greenhouse gases were estimated for hydrogen from a broad range of delivery pathways and scales: from individual vehicle refueling systems to large stations refueling 300 cars/day. Hydrogen production from natural gas, methanol, and ammonia, as well as water electrolysis based on alkaline or polymer electrolytes and steam electrolysis using solid oxide electrolytes are considered. These estimates were compared to estimates for competing fuels and vehicles, and used to construct oil use, air pollutant, and greenhouse gas emission scenarios for the U.S. passenger car fleet from 2005-2050. Fuel costs need not be an overriding concern in evaluating the suitability of hydrogen as a fuel for passenger vehicles. The combined emissions and oil import reduction benefits of hydrogen cars are estimated to be significant, valued at up to {approximately}$400/yr for each hydrogen car when primarily clean energy sources are used for hydrogen production. These benefits alone, however, become tenuous as the basis supporting a compelling rationale for hydrogen fueled vehicles, if efficient, advanced fossil-fuel hybrid electric vehicles (HEV`s) can achieve actual on-road emissions at or below ULEV standards in the 2005-2015 timeframe. It appears a robust rationale for hydrogen fuel and vehicles will need to also consider unique, strategic, and long-range benefits of hydrogen vehicles which can be achieved through the use of production, storage, delivery, and utilization methods for hydrogen which are unique among fuels: efficient use of intermittent renewable energy sources, (e,g, wind, solar), small-scale feasibility, fuel production at or near the point of use, electrolytic production, diverse storage technologies, and electrochemical conversion to electricity.

  15. Development Plan for the Fuel Cycle Simulator

    SciTech Connect

    Brent Dixon

    2011-09-01

    The Fuel Cycle Simulator (FCS) project was initiated late in FY-10 as the activity to develop a next generation fuel cycle dynamic analysis tool for achieving the Systems Analysis Campaign 'Grand Challenge.' This challenge, as documented in the Campaign Implementation Plan, is to: 'Develop a fuel cycle simulator as part of a suite of tools to support decision-making, communication, and education, that synthesizes and visually explains the multiple attributes of potential fuel cycles.'

  16. FY2015 ceramic fuels development annual highlights

    SciTech Connect

    Mcclellan, Kenneth James

    2015-09-22

    Key challenges for the Advanced Fuels Campaign are the development of fuel technologies to enable major increases in fuel performance (safety, reliability, power and burnup) beyond current technologies, and development of characterization methods and predictive fuel performance models to enable more efficient development and licensing of advanced fuels. Ceramic fuel development activities for fiscal year 2015 fell within the areas of 1) National and International Technical Integration, 2) Advanced Accident Tolerant Ceramic Fuel Development, 3) Advanced Techniques and Reference Materials Development, and 4) Fabrication of Enriched Ceramic Fuels. High uranium density fuels were the focus of the ceramic fuels efforts. Accomplishments for FY15 primarily reflect the prioritization of identification and assessment of new ceramic fuels for light water reactors which have enhanced accident tolerance while also maintaining or improving normal operation performance, and exploration of advanced post irradiation examination techniques which will support more efficient testing and qualification of new fuel systems.

  17. 2017 TRI University Challenge

    EPA Pesticide Factsheets

    Details about the 2017 TRI University Challenge, in which EPA is looking to academic institutions to help build a diverse portfolio of practical and replicable projects that benefit communities, the environment, academic institutions, and the TRI Program.

  18. Alternative Fuels

    EPA Pesticide Factsheets

    Alternative fuels include gaseous fuels such as hydrogen, natural gas, and propane; alcohols such as ethanol, methanol, and butanol; vegetable and waste-derived oils; and electricity. Overview of alternative fuels is here.

  19. Sodium Borohydride/Hydrogen Peroxide Fuel Cells For Space Application

    NASA Technical Reports Server (NTRS)

    Valdez, T. I.; Deelo, M. E.; Narayanan, S. R.

    2006-01-01

    This viewgraph presentation examines Sodium Borohydride and Hydrogen Peroxide Fuel Cells as they are applied to space applications. The topics include: 1) Motivation; 2) The Sodium Borohydride Fuel Cell; 3) Sodium Borohydride Fuel Cell Test Stands; 4) Fuel Cell Comparisons; 5) MEA Performance; 6) Anode Polarization; and 7) Electrode Analysis. The benefits of hydrogen peroxide as an oxidant and benefits of sodium borohydride as a fuel are also addressed.

  20. Application of a Tractive Energy Analysis to Quantify the Benefits of Advanced Efficiency Technologies Using Characteristic Drive Cycle Data

    SciTech Connect

    LaClair, Tim J

    2012-01-01

    Accurately predicting the fuel savings that can be achieved with the implementation of various technologies developed for fuel efficiency can be very challenging, particularly when considering combinations of technologies. Differences in the usage of highway vehicles can strongly influence the benefits realized with any given technology, which makes generalizations about fuel savings inappropriate for different vehicle applications. A model has been developed to estimate the potential for reducing fuel consumption when advanced efficiency technologies, or combinations of these technologies, are employed on highway vehicles, particularly medium- and heavy-duty trucks. The approach is based on a tractive energy analysis applied to drive cycles representative of the vehicle usage, and the analysis specifically accounts for individual energy loss factors that characterize the technologies of interest. This tractive energy evaluation is demonstrated by analyzing measured drive cycles from a long-haul trucking fleet and the results of an assessment of the fuel savings potential for combinations of technologies are presented. The results of this research will enable more reliable estimates of the fuel savings benefits that can be realized with particular technologies and technology combinations for individual trucking applications so that decision makers can make informed investment decisions for the implementation of advanced efficiency technologies.

  1. Fuel pin

    DOEpatents

    Christiansen, David W.; Karnesky, Richard A.; Leggett, Robert D.; Baker, Ronald B.

    1989-01-01

    A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

  2. Fuel pin

    DOEpatents

    Christiansen, D.W.; Karnesky, R.A.; Leggett, R.D.; Baker, R.B.

    1987-11-24

    A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

  3. Fuel pin

    DOEpatents

    Christiansen, David W.; Karnesky, Richard A.; Leggett, Robert D.; Baker, Ronald B.

    1989-10-03

    A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

  4. Performance Benefits for Wave Rotor-Topped Gas Turbine Engines

    NASA Technical Reports Server (NTRS)

    Jones, Scott M.; Welch, Gerard E.

    1996-01-01

    The benefits of wave rotor-topping in turboshaft engines, subsonic high-bypass turbofan engines, auxiliary power units, and ground power units are evaluated. The thermodynamic cycle performance is modeled using a one-dimensional steady-state code; wave rotor performance is modeled using one-dimensional design/analysis codes. Design and off-design engine performance is calculated for baseline engines and wave rotor-topped engines, where the wave rotor acts as a high pressure spool. The wave rotor-enhanced engines are shown to have benefits in specific power and specific fuel flow over the baseline engines without increasing turbine inlet temperature. The off-design steady-state behavior of a wave rotor-topped engine is shown to be similar to a conventional engine. Mission studies are performed to quantify aircraft performance benefits for various wave rotor cycle and weight parameters. Gas turbine engine cycles most likely to benefit from wave rotor-topping are identified. Issues of practical integration and the corresponding technical challenges with various engine types are discussed.

  5. Fuel pump

    SciTech Connect

    Bellis, P.D.; Nesselrode, F.

    1991-04-16

    This patent describes a fuel pump. It includes: a fuel reservoir member, the fuel reservoir member being formed with fuel chambers, the chambers comprising an inlet chamber and an outlet chamber, means to supply fuel to the inlet chamber, means to deliver fuel from the outlet chamber to a point of use, the fuel reservoir member chambers also including a bypass chamber, means interconnecting the bypass chamber with the outlet chamber; the fuel pump also comprising pump means interconnecting the inlet chamber and the outlet chamber and adapted to suck fuel from the fuel supply means into the inlet chamber, through the pump means, out the outlet chamber, and to the fuel delivery means; the bypass chamber and the pump means providing two substantially separate paths of fuel flow in the fuel reservoir member, bypass plunger means normally closing off the flow of fuel through the bypass chamber one of the substantially separate paths including the fuel supply means and the fuel delivery means when the bypass plunger means is closed, the second of the substantially separate paths including the bypass chamber when the bypass plunger means is open, and all of the chambers and the interconnecting means therebetween being configured so as to create turbulence in the flow of any fuel supplied to the outlet chamber by the pump means and bypassed through the bypass chamber and the interconnecting means.

  6. Fuel Cycle Performance of Thermal Spectrum Small Modular Reactors

    SciTech Connect

    Worrall, Andrew; Todosow, Michael

    2016-01-01

    Small modular reactors may offer potential benefits, such as enhanced operational flexibility. However, it is vital to understand the holistic impact of small modular reactors on the nuclear fuel cycle and fuel cycle performance. The focus of this paper is on the fuel cycle impacts of light water small modular reactors in a once-through fuel cycle with low-enriched uranium fuel. A key objective of this paper is to describe preliminary reactor core physics and fuel cycle analyses conducted in support of the U.S. Department of Energy Office of Nuclear Energy Fuel Cycle Options Campaign. Challenges with small modular reactors include: increased neutron leakage, fewer assemblies in the core (and therefore fewer degrees of freedom in the core design), complex enrichment and burnable absorber loadings, full power operation with inserted control rods, the potential for frequent load-following operation, and shortened core height. Each of these will impact the achievable discharge burn-up in the reactor and the fuel cycle performance. This paper summarizes the results of an expert elicitation focused on developing a list of the factors relevant to small modular reactor fuel, core, and operation that will impact fuel cycle performance. Preliminary scoping analyses were performed using a regulatory-grade reactor core simulator. The hypothetical light water small modular reactor considered in these preliminary scoping studies is a cartridge type one-batch core with 4.9% enrichment. Some core parameters, such as the size of the reactor and general assembly layout, are similar to an example small modular reactor concept from industry. The high-level issues identified and preliminary scoping calculations in this paper are intended to inform on potential fuel cycle impacts of one-batch thermal spectrum SMRs. In particular, this paper highlights the impact of increased neutron leakage and reduced number of batches on the achievable burn-up of the reactor. Fuel cycle performance

  7. Estimating Impacts of Diesel Fuel Reformulation with Vector-based Blending

    SciTech Connect

    Hadder, G.R.

    2003-01-23

    The Oak Ridge National Laboratory Refinery Yield Model has been used to study the refining cost, investment, and operating impacts of specifications for reformulated diesel fuel (RFD) produced in refineries of the U.S. Midwest in summer of year 2010. The study evaluates different diesel fuel reformulation investment pathways. The study also determines whether there are refinery economic benefits for producing an emissions reduction RFD (with flexibility for individual property values) compared to a vehicle performance RFD (with inflexible recipe values for individual properties). Results show that refining costs are lower with early notice of requirements for RFD. While advanced desulfurization technologies (with low hydrogen consumption and little effect on cetane quality and aromatics content) reduce the cost of ultra low sulfur diesel fuel, these technologies contribute to the increased costs of a delayed notice investment pathway compared to an early notice investment pathway for diesel fuel reformulation. With challenging RFD specifications, there is little refining benefit from producing emissions reduction RFD compared to vehicle performance RFD. As specifications become tighter, processing becomes more difficult, blendstock choices become more limited, and refinery benefits vanish for emissions reduction relative to vehicle performance specifications. Conversely, the emissions reduction specifications show increasing refinery benefits over vehicle performance specifications as specifications are relaxed, and alternative processing routes and blendstocks become available. In sensitivity cases, the refinery model is also used to examine the impact of RFD specifications on the economics of using Canadian synthetic crude oil. There is a sizeable increase in synthetic crude demand as ultra low sulfur diesel fuel displaces low sulfur diesel fuel, but this demand increase would be reversed by requirements for diesel fuel reformulation.

  8. Commercial Nuclear Fuel Leasing - The Relationships to Nonproliferation and Repository Site Performance

    SciTech Connect

    Pentz, D.L.; Stoll, R.H.

    2007-07-01

    This paper describes the authors' concept of nuclear fuel leasing - - commercially-based and market-driven - - for nuclear power plant (NPP) facilities. Key issues currently affecting further development of this fuel leasing concept are examined, including issues of nonproliferation contribution and spent fuel management. If the nuclear power renaissance is to be realized in conjunction with a serious effort to reduce the impacts of greenhouse gas emissions from increasing electricity demand, nuclear fuel leasing is an important option for the current fuel cycle by its ability to extend the positive benefits of the current nonproliferation regime to countries where the scale of small programs and the complexities of the geology make final disposition so challenging. The authors believe that a principal focus on commercial options for nuclear fuel leasing is essential in order to make these options sustainable and acceptable, especially in countries wanting to build nuclear power plants to meet energy demands in an internationally acceptable way and to meet international concerns for preventing further proliferation of nuclear weapons technology and for reducing climate change effects. The authors are unaware of any public documents that describe market-priced and commercially-driven examples for fuel leasing. This paper discusses the main elements and issues for commercial fuel leasing based on detailed examinations of several conceptual models during the past eight years. (authors)

  9. Current status, key challenges and its solutions in the design and development of graphene based ORR catalysts for the microbial fuel cell applications.

    PubMed

    Kannan, M V; Gnana Kumar, G

    2016-03-15

    Microbial fuel cells (MFC) are considered as the futuristic energy device that generates electricity from the catalytic degradation of biodegradable organic wastes using microbes, which exist in waste water. In MFCs, oxygen serves as a cathodic electron acceptor and oxygen reduction kinetics played a significant role in the determination of overall efficiency. A wide range of strategies have been developed for the preparation and substantial modification of oxygen reduction reaction (ORR) catalysts to improve the maximum volumetric power density of MFCs, in which the efforts on graphene based ORR catalysts are highly imperative. Although numerous research endeavors have been achieved in relation with the graphene based ORR catalysts applicable for MFCs, still their collective summary has not been developed, which hinders the acquirement of adequate knowledge on tuning the specific properties of said catalysts. The intension of this review is to outline the significant role of ORR catalysts, factors influencing the ORR activity, strategies behind the modifications of ORR catalysts and update the research efforts devoted on graphene based ORR catalysts. This review can be considered as a pertinent guide to understand the design and developmental strategies of competent graphene based ORR catalysts, which are not only applicable for MFCs but also for number of electrochemical applications.

  10. ELN implementation challenges.

    PubMed

    Drake, David J

    2007-08-01

    Electronic Laboratory Notebooks are becoming foundation platforms within many pharmaceutical companies because of the benefits that they offer to both the business and the scientists alike. Implementing an ELN within an established organisation presents challenges for the project team, both in terms of managing the impact on the scientists and the technical requirements for integration and data management. Implementation of a commercial ELN is not exempt from such challenges, and working with a third party supplier offers both advantages and additional challenges.

  11. Fuel Cell Powered Lift Truck

    SciTech Connect

    Moulden, Steve

    2015-08-20

    This project, entitled “Recovery Act: Fuel Cell-Powered Lift Truck Sysco (Houston) Fleet Deployment”, was in response to DOE funding opportunity announcement DE-PS36-08GO98009, Topic 7B, which promotes the deployment of fuel cell powered material handling equipment in large, multi-shift distribution centers. This project promoted large-volume commercialdeployments and helped to create a market pull for material handling equipment (MHE) powered fuel cell systems. Specific outcomes and benefits involved the proliferation of fuel cell systems in 5-to 20-kW lift trucks at a high-profile, real-world site that demonstrated the benefits of fuel cell technology and served as a focal point for other nascent customers. The project allowed for the creation of expertise in providing service and support for MHE fuel cell powered systems, growth of existing product manufacturing expertise, and promoted existing fuel cell system and component companies. The project also stimulated other MHE fleet conversions helping to speed the adoption of fuel cell systems and hydrogen fueling technology. This document also contains the lessons learned during the project in order to communicate the successes and difficulties experienced, which could potentially assist others planning similar projects.

  12. LADWP FUEL CELL DEMONSTRATION PROJECT

    SciTech Connect

    Thai Ta

    2003-09-12

    Los Angeles Department of Water and Power (LADWP) is currently one of the most active power utility companies in researching fuel cell technology. Fuel cells offer many benefits and are now used as an alternative to traditional internal combustion engines in power generation. In continuing it's role as the leader in fuel cell research, LADWP has installed a pre-commercial molten carbonate fuel cell on August 2001 at its headquarter, the John Ferraro Building (JFB). The goal of this project is to learn more about the actual behavior of the fuel cell running under real world conditions. The fuel cell ran smoothly through the first year of operation with very high efficiency, but with some minor setbacks. The JFB fuel cell project is funded by the City of Los Angeles Department of Water and Power with partial grant funding from the Department of Defense's Climate Change Fuel Cell Buydown Program. The technical evaluation and the benefit-cost evaluation of the JFB fuel cell are both examined in this report.

  13. National Fuel Cell Technology Evaluation Center (NFCTEC); (NREL) National Renewable Energy Laboratory

    SciTech Connect

    Kurtz, Jennifer; Sprik, Sam

    2014-03-11

    This presentation gives an overview of the National Fuel Cell Technology Evaluation Center (NFCTEC), describes how NFCTEC benefits the hydrogen and fuel cell community, and introduces a new fuel cell cost/price aggregation project.

  14. Fuel Cell Handbook, Fourth Edition

    SciTech Connect

    Stauffer, D.B; Hirschenhofer, J.H.; Klett, M.G.; Engleman, R.R.

    1998-11-01

    Robust progress has been made in fuel cell technology since the previous edition of the Fuel Cell Handbook was published in January 1994. This Handbook provides a foundation in fuel cells for persons wanting a better understanding of the technology, its benefits, and the systems issues that influence its application. Trends in technology are discussed, including next-generation concepts that promise ultra high efficiency and low cost, while providing exceptionally clean power plant systems. Section 1 summarizes fuel cell progress since the last edition and includes existing power plant nameplate data. Section 2 addresses the thermodynamics of fuel cells to provide an understanding of fuel cell operation at two levels (basic and advanced). Sections 3 through 6 describe the four major fuel cell types and their performance based on cell operating conditions. The section on polymer electrolyte membrane fuel cells has been added to reflect their emergence as a significant fuel cell technology. Phosphoric acid, molten carbonate, and solid oxide fuel cell technology description sections have been updated from the previous edition. New information indicates that manufacturers have stayed with proven cell designs, focusing instead on advancing the system surrounding the fuel cell to lower life cycle costs. Section 7, Fuel Cell Systems, has been significantly revised to characterize near-term and next-generation fuel cell power plant systems at a conceptual level of detail. Section 8 provides examples of practical fuel cell system calculations. A list of fuel cell URLs is included in the Appendix. A new index assists the reader in locating specific information quickly.

  15. Low Cost PEM Fuel Cell Metal Bipolar Plates

    SciTech Connect

    Wang, Conghua

    2013-05-30

    Bipolar plate is an important component in fuel cell stacks and accounts for more than 75% of stack weight and volume. The technology development of metal bipolar plates can effectively reduce the fuel cells stack weight and volume over 50%. The challenge is the metal plate corrosion protection at low cost for the broad commercial applications. This project is aimed to develop innovative technological solutions to overcome the corrosion barrier of low cost metal plates. The feasibility of has been demonstrated and patented (US Patent 7,309,540). The plan is to further reduce the cost, and scale up the technology. The project is built on three pillars: 1) robust experimental evidence demonstrating the feasibility of our technology, 2) a team that consists of industrial leaders in fuel cell stack application, design, and manufactures; 3) a low-risk, significant-milestone driven program that proves the feasibility of meeting program objectives The implementation of this project will reduce the fuel cell stack metal bipolar separator plate cost which accounts 15-21% of the overall stack cost. It will contribute to the market adoption of fuel cell technologies. In addition, this corrosion protection technology can be used similar energy devices, such as batteries and electrolyzers. Therefore, the success of the project will be benefit in broad markets.

  16. Predicting Individual Fuel Economy

    SciTech Connect

    Lin, Zhenhong; Greene, David L

    2011-01-01

    To make informed decisions about travel and vehicle purchase, consumers need unbiased and accurate information of the fuel economy they will actually obtain. In the past, the EPA fuel economy estimates based on its 1984 rules have been widely criticized for overestimating on-road fuel economy. In 2008, EPA adopted a new estimation rule. This study compares the usefulness of the EPA's 1984 and 2008 estimates based on their prediction bias and accuracy and attempts to improve the prediction of on-road fuel economies based on consumer and vehicle attributes. We examine the usefulness of the EPA fuel economy estimates using a large sample of self-reported on-road fuel economy data and develop an Individualized Model for more accurately predicting an individual driver's on-road fuel economy based on easily determined vehicle and driver attributes. Accuracy rather than bias appears to have limited the usefulness of the EPA 1984 estimates in predicting on-road MPG. The EPA 2008 estimates appear to be equally inaccurate and substantially more biased relative to the self-reported data. Furthermore, the 2008 estimates exhibit an underestimation bias that increases with increasing fuel economy, suggesting that the new numbers will tend to underestimate the real-world benefits of fuel economy and emissions standards. By including several simple driver and vehicle attributes, the Individualized Model reduces the unexplained variance by over 55% and the standard error by 33% based on an independent test sample. The additional explanatory variables can be easily provided by the individuals.

  17. 76 FR 65382 - Regulation of Fuel and Fuel Additives: Alternative Test Method for Olefins in Gasoline

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-21

    ... AGENCY 40 CFR Part 80 RIN 2060-AP17 Regulation of Fuel and Fuel Additives: Alternative Test Method for... alternative test method for olefin content in gasoline. This final rule will provide flexibility to the... environmental benefits achieved from our fuels programs. ] DATES: This rule is effective November 21,...

  18. Fuel Cell Handbook, Fifth Edition

    SciTech Connect

    Energy and Environmental Solutions

    2000-10-31

    Progress continues in fuel cell technology since the previous edition of the Fuel Cell Handbook was published in November 1998. Uppermost, polymer electrolyte fuel cells, molten carbonate fuel cells, and solid oxide fuel cells have been demonstrated at commercial size in power plants. The previously demonstrated phosphoric acid fuel cells have entered the marketplace with more than 220 power plants delivered. Highlighting this commercial entry, the phosphoric acid power plant fleet has demonstrated 95+% availability and several units have passed 40,000 hours of operation. One unit has operated over 49,000 hours. Early expectations of very low emissions and relatively high efficiencies have been met in power plants with each type of fuel cell. Fuel flexibility has been demonstrated using natural gas, propane, landfill gas, anaerobic digester gas, military logistic fuels, and coal gas, greatly expanding market opportunities. Transportation markets worldwide have shown remarkable interest in fuel cells; nearly every major vehicle manufacturer in the U.S., Europe, and the Far East is supporting development. This Handbook provides a foundation in fuel cells for persons wanting a better understanding of the technology, its benefits, and the systems issues that influence its application. Trends in technology are discussed, including next-generation concepts that promise ultrahigh efficiency and low cost, while providing exceptionally clean power plant systems. Section 1 summarizes fuel cell progress since the last edition and includes existing power plant nameplate data. Section 2 addresses the thermodynamics of fuel cells to provide an understanding of fuel cell operation at two levels (basic and advanced). Sections 3 through 8 describe the six major fuel cell types and their performance based on cell operating conditions. Alkaline and intermediate solid state fuel cells were added to this edition of the Handbook. New information indicates that manufacturers have stayed

  19. Synthetic Fuel

    ScienceCinema

    Idaho National Laboratory - Steve Herring, Jim O'Brien, Carl Stoots

    2016-07-12

    Two global energy priorities today are finding environmentally friendly alternatives to fossil fuels, and reducing greenhouse gass Two global energy priorities today are finding environmentally friendly alternatives to fossil fuels, and reducing greenhous

  20. Synthetic Fuel

    SciTech Connect

    Idaho National Laboratory - Steve Herring, Jim O'Brien, Carl Stoots

    2008-03-26

    Two global energy priorities today are finding environmentally friendly alternatives to fossil fuels, and reducing greenhouse gass Two global energy priorities today are finding environmentally friendly alternatives to fossil fuels, and reducing greenhous

  1. Fuel cells

    NASA Astrophysics Data System (ADS)

    1984-12-01

    The US Department of Energy (DOE), Office of Fossil Energy, has supported and managed a fuel cell research and development (R and D) program since 1976. Responsibility for implementing DOE's fuel cell program, which includes activities related to both fuel cells and fuel cell systems, has been assigned to the Morgantown Energy Technology Center (METC) in Morgantown, West Virginia. The total United States effort of the private and public sectors in developing fuel cell technology is referred to as the National Fuel Cell Program (NFCP). The goal of the NFCP is to develop fuel cell power plants for base-load and dispersed electric utility systems, industrial cogeneration, and on-site applications. To achieve this goal, the fuel cell developers, electric and gas utilities, research institutes, and Government agencies are working together. Four organized groups are coordinating the diversified activities of the NFCP. The status of the overall program is reviewed in detail.

  2. Current Comparison of Advanced Fuel Cycle Options

    SciTech Connect

    Steven J. Piet; B. W. Dixon; A. Goldmann; R. N. Hill; J. J. Jacobson; G. E. Matthern; J. D. Smith; A. M. Yacout

    2006-03-01

    The nuclear fuel cycle includes mining, enrichment, nuclear power plants, recycling (if done), and residual waste disposition. The U.S. Advanced Fuel Cycle Initiative (AFCI) has four program objectives to guide research on how best to glue these pieces together, as follows: waste management, proliferation resistance, energy recovery, and systematic management/economics/safety. We have developed a comprehensive set of metrics to evaluate fuel cycle options against the four program objectives. The current list of metrics is long-term heat, long-term dose, radiotoxicity and weapons usable material. This paper describes the current metrics and initial results from comparisons made using these metrics. The data presented were developed using a combination of “static” calculations and a system dynamic model, DYMOND. In many cases, we examine the same issue both dynamically and statically to determine the robustness of the observations. All analyses are for the U.S. reactor fleet. This work aims to clarify many of the issues being discussed within the AFCI program, including Inert Matrix Fuel (IMF) versus Mixed Oxide (MOX) fuel, single-pass versus multi-pass recycling, thermal versus fast reactors, and the value of separating cesium and strontium. The results from a series of dynamic simulations evaluating these options are included in this report. The model interface includes a few “control knobs” for flying or piloting the fuel cycle system into the future. The results from the simulations show that the future is dark (uncertain) and that the system is sluggish with slow time response times to changes (i.e., what types of reactors are built, what types of fuels are used, and the capacity of separation and fabrication plants). Piloting responsibilities are distributed among utilities, government, and regulators, compounding the challenge of making the entire system work and respond to changing circumstances. We identify four approaches that would increase our

  3. Advanced Fuels Campaign Execution Plan

    SciTech Connect

    Kemal Pasamehmetoglu

    2011-09-01

    The purpose of the Advanced Fuels Campaign (AFC) Execution Plan is to communicate the structure and management of research, development, and demonstration (RD&D) activities within the Fuel Cycle Research and Development (FCRD) program. Included in this document is an overview of the FCRD program, a description of the difference between revolutionary and evolutionary approaches to nuclear fuel development, the meaning of science-based development of nuclear fuels, and the 'Grand Challenge' for the AFC that would, if achieved, provide a transformational technology to the nuclear industry in the form of a high performance, high reliability nuclear fuel system. The activities that will be conducted by the AFC to achieve success towards this grand challenge are described and the goals and milestones over the next 20 to 40 year period of research and development are established.

  4. Assessment of costs and benefits of flexible and alternative fuel use in the US transportation sector. Technical report twelve: Economic analysis of alternative uses for Alaskan North Slope natural gas

    SciTech Connect

    Not Available

    1993-12-01

    As part of the Altemative Fuels Assessment, the Department of Energy (DOE) is studying the use of derivatives of natural gas, including compressed natural gas and methanol, as altemative transportation fuels. A critical part of this effort is determining potential sources of natural gas and the economics of those sources. Previous studies in this series characterized the economics of unutilized gas within the lower 48 United States, comparing its value for methanol production against its value as a pipelined fuel (US Department of Energy 1991), and analyzed the costs of developing undeveloped nonassociated gas reserves in several countries (US Department of Energy 1992c). This report extends those analyses to include Alaskan North Slope natural gas that either is not being produced or is being reinjected. The report includes the following: A description of discovered and potential (undiscovered) quantities of natural gas on the Alaskan North Slope. A discussion of proposed altemative uses for Alaskan North Slope natural gas. A comparison of the economics of the proposed alternative uses for Alaskan North Slope natural gas. The purpose of this report is to illustrate the costs of transporting Alaskan North Slope gas to markets in the lower 48 States as pipeline gas, liquefied natural gas (LNG), or methanol. It is not intended to recommend one alternative over another or to evaluate the relative economics or timing of using North Slope gas in new tertiary oil recovery projects. The information is supplied in sufficient detail to allow incorporation of relevant economic relationships (for example, wellhead gas prices and transportation costs) into the Altemative Fuels Trade Model, the analytical framework DOE is using to evaluate various policy options.

  5. Future Fuels

    DTIC Science & Technology

    2005-10-04

    tactical ground mobility and increasing operational reach • Identify, review, and assess – Technologies for reducing fuel consumption, including...T I O N S A C T I O N S TOR Focus - Tactical ground mobility - Operational reach - Not A/C, Ships, or troops Hybrid Electric Vehicle Fuel Management...Fuel Management During Combat Operations Energy Fundamentals • Energy Density • Tactical Mobility • Petroleum Use • Fuel Usage (TWV) • TWV OP TEMPO TOR

  6. Fossil Fuels.

    ERIC Educational Resources Information Center

    Crank, Ron

    This instructional unit is one of 10 developed by students on various energy-related areas that deals specifically with fossil fuels. Some topics covered are historic facts, development of fuels, history of oil production, current and future trends of the oil industry, refining fossil fuels, and environmental problems. Material in each unit may…

  7. Modeling fuel succession

    USGS Publications Warehouse

    Davis, Brett; Van Wagtendonk, Jan W.; Beck, Jen; van Wagtendonk, Kent A.

    2009-01-01

    Surface fuels data are of critical importance for supporting fire incident management, risk assessment, and fuel management planning, but the development of surface fuels data can be expensive and time consuming. The data development process is extensive, generally beginning with acquisition of remotely sensed spatial data such as aerial photography or satellite imagery (Keane and others 2001). The spatial vegetation data are then crosswalked to a set of fire behavior fuel models that describe the available fuels (the burnable portions of the vegetation) (Anderson 1982, Scott and Burgan 2005). Finally, spatial fuels data are used as input to tools such as FARSITE and FlamMap to model current and potential fire spread and behavior (Finney 1998, Finney 2006). The capture date of the remotely sensed data defines the period for which the vegetation, and, therefore, fuels, data are most accurate. The more time that passes after the capture date, the less accurate the data become due to vegetation growth and processes such as fire. Subsequently, the results of any fire simulation based on these data become less accurate as the data age. Because of the amount of labor and expense required to develop these data, keeping them updated may prove to be a challenge. In this article, we describe the Sierra Nevada Fuel Succession Model, a modeling tool that can quickly and easily update surface fuel models with a minimum of additional input data. Although it was developed for use by Yosemite, Sequoia, and Kings Canyon National Parks, it is applicable to much of the central and southern Sierra Nevada. Furthermore, the methods used to develop the model have national applicability.

  8. Nuclear Fuel Cycle Options Evaluation to Inform R&D Planning

    SciTech Connect

    R. Wigeland; T. Taiwo; M. Todosow; H. Ludewig; W. Halsey; J. Gehin; R. Jubin; J. Buelt; S. Stockinger; K. Jenni; B. Oakley

    2014-04-01

    An Evaluation and Screening (E&S) of nuclear fuel cycle options has been conducted in fulfilment of a Charter specified for the study by the U.S. Department of Energy (DOE) Office of Nuclear Energy. The E&S study used an objective and independently reviewed evaluation process to provide information about the potential benefits and challenges that could strengthen the basis and provide guidance for the research and development(R&D) activities undertaken by the DOE Fuel Cycle Technologies Program Office. Using the nine evaluation criteria specified in the Charter and associated evaluation metrics and processes developed during the E&S study, a screening was conducted of 40 nuclear fuel cycle evaluation groups to provide answers to the questions: (1) Which nuclear fuel cycle system options have the potential for substantial beneficial improvements in nuclear fuel cycle performance, and what aspects of the options make these improvements possible? (2)Which nuclear material management approaches can favorably impact the performance of fuel cycle options? (3)Where would R&D investment be needed to support the set of promising fuel cycle system options and nuclear material management approaches identified above, and what are the technical objectives of associated technologies?

  9. Benefits of solar/fossil hybrid gas turbine systems

    NASA Technical Reports Server (NTRS)

    Bloomfield, H. S.

    1978-01-01

    The potential benefits of solar/fossil hybrid gas turbine power systems were assessed. Both retrofit and new systems were considered from the aspects of; cost of electricity, fuel conservation, operational mode, technology requirements, and fuels flexibility. Hybrid retrofit (repowering) of existing combustion (simple Brayton cycle) turbines can provide near-term fuel savings and solar experience, while new and advanced recuperated or combined cycle systems may be an attractive fuel saving and economically competitive vehicle to transition from today's gas and oil-fired powerplants to other more abundant fuels.

  10. Benefits of solar/fossil hybrid gas turbine systems

    NASA Technical Reports Server (NTRS)

    Bloomfield, H. S.

    1979-01-01

    The potential benefits of solar/fossil hybrid gas turbine power systems were assessed. Both retrofit and new systems were considered from the aspects of cost of electricity, fuel conservation, operational mode, technology requirements, and fuels flexibility. Hybrid retrofit (repowering) of existing combustion (simple Brayton cycle) turbines can provide near-term fuel savings and solar experience, while new and advanced recuperated or combined cycle systems may be an attractive fuel saving and economically competitive vehicle to transition from today's gas and oil-fired powerplants to other more abundant fuels.

  11. Compassionate Care Leave & Benefits. CAUT Briefing Note

    ERIC Educational Resources Information Center

    Canadian Association of University Teachers, 2016

    2016-01-01

    Compassionate care leave and benefits were introduced in 2003/04 to help employees cope with this difficult work-life balance challenge. Employment Standards legislation and the Employment Insurance program (EI) were amended to provide leave without pay, with payment of EI benefits for compassionate care leave. Collective agreements have been…

  12. Alternative fuels

    NASA Technical Reports Server (NTRS)

    Grobman, J. S.; Butze, H. F.; Friedman, R.; Antoine, A. C.; Reynolds, T. W.

    1977-01-01

    Potential problems related to the use of alternative aviation turbine fuels are discussed and both ongoing and required research into these fuels is described. This discussion is limited to aviation turbine fuels composed of liquid hydrocarbons. The advantages and disadvantages of the various solutions to the problems are summarized. The first solution is to continue to develop the necessary technology at the refinery to produce specification jet fuels regardless of the crude source. The second solution is to minimize energy consumption at the refinery and keep fuel costs down by relaxing specifications.

  13. Alternative Fuels (Briefing Charts)

    DTIC Science & Technology

    2009-06-19

    University of North Dakota EERC – UOP – General Electric (GE) – Swedish Biofuels AB • Cellulosic and algal feedstocks that are non- competitive with...data and resources – Conduct gap analysis – synfuel efforts, expand to biofuels , ID potential joint efforts – Increase visibility outside SCP world...bio fuel emissions Operational assessment Impacts assessment Benefits assessment GE/cruise ships burn biofuel in turbines Generic mat. Compat list

  14. Systems biology solutions for biochemical production challenges.

    PubMed

    Hansen, Anne Sofie Lærke; Lennen, Rebecca M; Sonnenschein, Nikolaus; Herrgård, Markus J

    2017-03-16

    There is an urgent need to significantly accelerate the development of microbial cell factories to produce fuels and chemicals from renewable feedstocks in order to facilitate the transition to a biobased society. Methods commonly used within the field of systems biology including omics characterization, genome-scale metabolic modeling, and adaptive laboratory evolution can be readily deployed in metabolic engineering projects. However, high performance strains usually carry tens of genetic modifications and need to operate in challenging environmental conditions. This additional complexity compared to basic science research requires pushing systems biology strategies to their limits and often spurs innovative developments that benefit fields outside metabolic engineering. Here we survey recent advanced applications of systems biology methods in engineering microbial production strains for biofuels and -chemicals.

  15. The Global Energy Challenge

    ScienceCinema

    Crabtree, George

    2016-07-12

    The expected doubling of global energy demand by 2050 challenges our traditional patterns of energy production, distribution and use.   The continued use of fossil fuels raises concerns about supply, security, environment and climate.  New routes are needed for the efficient conversion of energy from chemical fuel, sunlight, and heat to electricity or hydrogen as an energy carrier and finally to end uses like transportation, lighting, and heating. Opportunities for efficient new energy conversion routes based on nanoscale materials will be presented, with emphasis on the sustainable energy technologies they enable.

  16. Benefits and Costs of Improved Cookstoves: Assessing the Implications of Variability in Health, Forest and Climate Impacts

    PubMed Central

    Jeuland, Marc A.; Pattanayak, Subhrendu K.

    2012-01-01

    Current attention to improved cook stoves (ICS) focuses on the “triple benefits” they provide, in improved health and time savings for households, in preservation of forests and associated ecosystem services, and in reducing emissions that contribute to global climate change. Despite the purported economic benefits of such technologies, however, progress in achieving large-scale adoption and use has been remarkably slow. This paper uses Monte Carlo simulation analysis to evaluate the claim that households will always reap positive and large benefits from the use of such technologies. Our analysis allows for better understanding of the variability in economic costs and benefits of ICS use in developing countries, which depend on unknown combinations of numerous uncertain parameters. The model results suggest that the private net benefits of ICS will sometimes be negative, and in many instances highly so. Moreover, carbon financing and social subsidies may help enhance incentives to adopt, but will not always be appropriate. The costs and benefits of these technologies are most affected by their relative fuel costs, time and fuel use efficiencies, the incidence and cost-of-illness of acute respiratory illness, and the cost of household cooking time. Combining these results with the fact that households often find these technologies to be inconvenient or culturally inappropriate leads us to understand why uptake has been disappointing. Given the current attention to the scale up of ICS, this analysis is timely and important for highlighting some of the challenges for global efforts to promote ICS. PMID:22348005

  17. A Raman-Based Portable Fuel Analyzer

    NASA Astrophysics Data System (ADS)

    Farquharson, Stuart

    2010-08-01

    Fuel is the single most import supply during war. Consider that the US Military is employing over 25,000 vehicles in Iraq and Afghanistan. Most fuel is obtained locally, and must be characterized to ensure proper operation of these vehicles. Fuel properties are currently determined using a deployed chemical laboratory. Unfortunately, each sample requires in excess of 6 hours to characterize. To overcome this limitation, we have developed a portable fuel analyzer capable of determine 7 fuel properties that allow determining fuel usage. The analyzer uses Raman spectroscopy to measure the fuel samples without preparation in 2 minutes. The challenge, however, is that as distilled fractions of crude oil, all fuels are composed of hundreds of hydrocarbon components that boil at similar temperatures, and performance properties can not be simply correlated to a single component, and certainly not to specific Raman peaks. To meet this challenge, we measured over 800 diesel and jet fuels from around the world and used chemometrics to correlate the Raman spectra to fuel properties. Critical to the success of this approach is laser excitation at 1064 nm to avoid fluorescence interference (many fuels fluoresce) and a rugged interferometer that provides 0.1 cm-1 wavenumber (x-axis) accuracy to guarantee accurate correlations. Here we describe the portable fuel analyzer, the chemometric models, and the successful determination of these 7 fuel properties for over 100 unknown samples provided by the US Marine Corps, US Navy, and US Army.

  18. Benefits of Microalgae for Human Space Exploration

    NASA Technical Reports Server (NTRS)

    Verrecchia, Angelique; Bebout, Brad M.; Murphy, Thomas

    2015-01-01

    Algae have long been known to offer a number of benefits to support long duration human space exploration. Algae contain proteins, essential amino acids, vitamins, and lipids needed for human consumption, and can be produced using waste streams, while consuming carbon dioxide, and producing oxygen. In comparison with higher plants, algae have higher growth rates, fewer environmental requirements, produce far less "waste" tissue, and are resistant to digestion and/or biodegradation. As an additional benefit, algae produce many components (fatty acids, H2, etc.) which are useful as biofuels. On Earth, micro-algae survive in many harsh environments including low humidity, extremes in temperature, pH, and as well as high salinity and solar radiation. Algae have been shown to survive inmicro-gravity, and can adapt to high and low light intensity while retaining their ability to perform nitrogen fixation and photosynthesis. Studies have demonstrated that some algae are resistant to the space radiation environment, including solar ultraviolet radiation. It remains to be experimentally demonstrated, however, that an algal-based system could fulfil the requirements for a space-based Bioregenerative Life Support System (BLSS) under comparable spaceflight power, mass, and environmental constraints. Two specific challenges facing algae cultivation in space are that (i) conventional growth platforms require large masses of water, which in turn require a large amount of propulsion fuel, and (ii) most nutrient delivery mechanisms (predominantly bubbling) are dependent on gravity. To address these challenges, we have constructed a low water biofilm based bioreactor whose operation is enabled by capillary forces. Preliminary characterization of this Surface Adhering BioReactor (SABR) suggests that it can serve as a platform for cultivating algae in space which requires about 10 times less mass than conventional reactors without sacrificing growth rate. Further work is necessary to

  19. Fuel Cell Buses in U.S. Transit Fleets: Current Status 2009

    SciTech Connect

    Eudy, L.; Chandler, K.; Gikakis, C.

    2009-10-01

    This report documents progress in meeting the technological challenges of fuel cell propulsion for transportation based on current fuel cell transit bus demonstrations and plans for more fuel cell transit buses and hydrogen infrastructure.

  20. Fuel compositions

    SciTech Connect

    Zaweski, E.F.; Niebylski, L.M.

    1986-08-05

    This patent describes distillate fuel for indirect injection compression ignition engines containing, in an amount sufficient to minimize coking, especially throttling nozzle coking in the prechambers or swirl chambers of indirect injection compression ignition engines operated on such fuel, at least the combination of (i) organic nitrate ignition accelerator and (ii) an esterified cycle dehydration product of sorbitol which, when added to the fuel in combination with the organic nitrate ignition accelerator minimizes the coking.

  1. Fuel cells 101

    SciTech Connect

    Hirschenhofer, J.H.

    1999-07-01

    This paper discusses the various types of fuel cells, the importance of cell voltage, fuel processing for natural gas, cell stacking, fuel cell plant description, advantages and disadvantages of the types of fuel cells, and applications. The types covered include: polymer electrolyte fuel cell, alkaline fuel cell, phosphoric acid fuel cell; molten carbonate fuel cell, and solid oxide fuel cell.

  2. Chronic disease and climate change: understanding co-benefits and their policy implications.

    PubMed

    Capon, Anthony G; Rissel, Chris E

    2010-01-01

    Chronic disease and climate change are major public policy challenges facing governments around the world. An improved understanding of the relationship between chronic disease and climate change should enable improved policy formulation to support both human health and the health of the planet. Chronic disease and climate change are both unintended consequences of our way of life, and are attributable in part to the ready availability of inexpensive fossil fuel energy. There are co-benefits for health from actions to address climate change. For example, substituting physical activity and a vegetable-rich diet for motor vehicle transport and a meat-rich diet is both good for health and good for the planet. We should encourage ways of living that use less carbon as these can be healthy ways of living, for both individuals and society. Quantitative modelling of co-benefits should inform policy responses.

  3. Fuel dehazers

    SciTech Connect

    Lyons, W.R.

    1986-03-01

    Hazy fuels can be caused by the emulsification of water into the fuel during refining, blending, or transportation operations. Detergent additive packages used in gasoline tend to emulsify water into the fuel. Fuels containing water haze can cause corrosion and contamination, and support microbiological growth. This results in problems. As the result of these problems, refiners, marketers, and product pipeline companies customarily have haze specifications. The haze specification may be a specific maximum water content or simply ''bright and clear'' at a specified temperature.

  4. Motor fuel

    SciTech Connect

    Burns, L.D.

    1982-07-13

    Liquid hydrocarbon fuel compositions are provided containing antiknock quantities of ashless antiknock agents comprising selected furyl compounds including furfuryl alcohol, furfuryl amine, furfuryl esters, and alkyl furoates.

  5. Alternative fuels

    SciTech Connect

    Not Available

    1991-07-01

    This paper presents the preliminary results of a review, of the experiences of Brazil, Canada, and New Zealand, which have implemented programs to encourage the use of alternative motor fuels. It will also discuss the results of a separate completed review of the Department of Energy's (DOE) progress in implementing the Alternative Motor Fuels Act of 1988. The act calls for, among other things, the federal government to use alternative-fueled vehicles in its fleet. The Persian Gulf War, environmental concerns, and the administration's National Energy Strategy have greatly heightened interest in the use of alternative fuels in this country.

  6. Quantify information system benefits

    SciTech Connect

    Koppel, L.B.

    1995-06-01

    What are information systems and how do they relate to control systems? How do information systems produce benefits in hydrocarbon processing? What are some examples of benefit-generating information system applications? Information System Benefits (ISBEN) is a structured methodology for estimating information system benefits in hydrocarbon processing. The paper discusses information and control systems, information system benefits and applications, objectives, strategies and measures of ISBEN, ISBEN business drivers, ISBEN database, ISBEN methodology, and implementation.

  7. Safeguards Considerations for Thorium Fuel Cycles

    DOE PAGES

    Worrall, Louise G.; Worrall, Andrew; Flanagan, George F.; ...

    2016-04-21

    We report that by around 2025, thorium-based fuel cycles are likely to be deployed internationally. States such as China and India are pursuing research, development, and deployment pathways toward a number of commercial-scale thorium fuel cycles, and they are already building test reactors and the associated fuel cycle infrastructure. In the future, the potential exists for these emerging programs to sell, export, and deploy thorium fuel cycle technology in other states. Without technically adequate international safeguards protocols and measures in place, any future potential clandestine misuse of these fuel cycles could go undetected, compromising the deterrent value of these protocolsmore » and measures. The development of safeguards approaches for thorium-based fuel cycles is therefore a matter of some urgency. Yet, the focus of the international safeguards community remains mainly on safeguarding conventional 235U- and 239Pu-based fuel cycles while the safeguards challenges of thorium-uranium fuel cycles remain largely uninvestigated. This raises the following question: Is the International Atomic Energy Agency and international safeguards system ready for thorium fuel cycles? Furthermore, is the safeguards technology of today sufficiently mature to meet the verification challenges posed by thorium-based fuel cycles? In defining these and other related research questions, the objectives of this paper are to identify key safeguards considerations for thorium-based fuel cycles and to call for an early dialogue between the international safeguards and the nuclear fuel cycle communities to prepare for the potential safeguards challenges associated with these fuel cycles. In this paper, it is concluded that directed research and development programs are required to meet the identified safeguards challenges and to take timely action in preparation for the international deployment of thorium fuel cycles.« less

  8. Safeguards Considerations for Thorium Fuel Cycles

    SciTech Connect

    Worrall, Louise G.; Worrall, Andrew; Flanagan, George F.; Croft, Steven

    2016-04-21

    We report that by around 2025, thorium-based fuel cycles are likely to be deployed internationally. States such as China and India are pursuing research, development, and deployment pathways toward a number of commercial-scale thorium fuel cycles, and they are already building test reactors and the associated fuel cycle infrastructure. In the future, the potential exists for these emerging programs to sell, export, and deploy thorium fuel cycle technology in other states. Without technically adequate international safeguards protocols and measures in place, any future potential clandestine misuse of these fuel cycles could go undetected, compromising the deterrent value of these protocols and measures. The development of safeguards approaches for thorium-based fuel cycles is therefore a matter of some urgency. Yet, the focus of the international safeguards community remains mainly on safeguarding conventional 235U- and 239Pu-based fuel cycles while the safeguards challenges of thorium-uranium fuel cycles remain largely uninvestigated. This raises the following question: Is the International Atomic Energy Agency and international safeguards system ready for thorium fuel cycles? Furthermore, is the safeguards technology of today sufficiently mature to meet the verification challenges posed by thorium-based fuel cycles? In defining these and other related research questions, the objectives of this paper are to identify key safeguards considerations for thorium-based fuel cycles and to call for an early dialogue between the international safeguards and the nuclear fuel cycle communities to prepare for the potential safeguards challenges associated with these fuel cycles. In this paper, it is concluded that directed research and development programs are required to meet the identified safeguards challenges and to take timely action in preparation for the international deployment of thorium fuel cycles.

  9. Fuel Preprocessor (FPP) for a Solid Oxide Fuel Cell Auxiliary Power Unit

    SciTech Connect

    M. Namazian, S. Sethuraman and G. Venkataraman

    2004-12-31

    Auxiliary Power Units (APUs), driven by truck engines, consume over 800 million gallon of diesel fuel while idling. Use of separate SOFC based APUs are an excellent choice to reduce the cost and pollution associated with producing auxiliary power. However, diesel fuel is a challenging fuel to use in fuel cell systems because it has heavy hydrocarbons that can transform into carbon deposits and gums that can block passages and deactivate fuel reformer and fuel cell reactor elements. The work reported herein addresses the challenges associated with the diesel fuel sulfur and carbon producing contaminants in a Fuel Preprocessor (FPP). FPP processes the diesel fuel onboard and ahead of the reformer to reduce its carbon deposition tendency and its sulfur content, thus producing a fuel suitable for SOFC APU systems. The goal of this DOE supported Invention and Innovation program was to design, develop and test a prototype Fuel Preprocessor (FPP) that efficiently and safely converts the diesel fuel into a clean fuel suitable for a SOFC APU system. The goals were achieved. A 5 kWe FPP was designed, developed and tested. It was demonstrated that FPP removes over 80% of the fuel sulfur and over 90% of its carbon residues and it was demonstrated that FPP performance exceeds the original project goals.

  10. A glucose fuel cell for implantable brain-machine interfaces.

    PubMed

    Rapoport, Benjamin I; Kedzierski, Jakub T; Sarpeshkar, Rahul

    2012-01-01

    We have developed an implantable fuel cell that generates power through glucose oxidation, producing 3.4 μW cm(-2) steady-state power and up to 180 μW cm(-2) peak power. The fuel cell is manufactured using a novel approach, employing semiconductor fabrication techniques, and is therefore well suited for manufacture together with integrated circuits on a single silicon wafer. Thus, it can help enable implantable microelectronic systems with long-lifetime power sources that harvest energy from their surrounds. The fuel reactions are mediated by robust, solid state catalysts. Glucose is oxidized at the nanostructured surface of an activated platinum anode. Oxygen is reduced to water at the surface of a self-assembled network of single-walled carbon nanotubes, embedded in a Nafion film that forms the cathode and is exposed to the biological environment. The catalytic electrodes are separated by a Nafion membrane. The availability of fuel cell reactants, oxygen and glucose, only as a mixture in the physiologic environment, has traditionally posed a design challenge: Net current production requires oxidation and reduction to occur separately and selectively at the anode and cathode, respectively, to prevent electrochemical short circuits. Our fuel cell is configured in a half-open geometry that shields the anode while exposing the cathode, resulting in an oxygen gradient that strongly favors oxygen reduction at the cathode. Glucose reaches the shielded anode by diffusing through the nanotube mesh, which does not catalyze glucose oxidation, and the Nafion layers, which are permeable to small neutral and cationic species. We demonstrate computationally that the natural recirculation of cerebrospinal fluid around the human brain theoretically permits glucose energy harvesting at a rate on the order of at least 1 mW with no adverse physiologic effects. Low-power brain-machine interfaces can thus potentially benefit from having their implanted units powered or recharged by

  11. Modeling and energy management control design for a fuel cell hybrid passenger bus

    NASA Astrophysics Data System (ADS)

    Simmons, Kyle; Guezennec, Yann; Onori, Simona

    2014-01-01

    This paper presents the modeling and supervisory energy management design of a hybrid fuel cell/battery-powered passenger bus. With growing concerns about petroleum usage and greenhouse gas emissions in the transportation sector, finding alternative methods for vehicle propulsion is necessary. Proton Exchange Membrane (PEM) fuel cell systems are viable possibilities for energy converters due to their high efficiencies and zero emissions. It has been shown that the benefits of PEM fuel cell systems can be greatly improved through hybridization. In this work, the challenge of developing an on-board energy management strategy with near-optimal performance is addressed by a two-step process. First, an optimal control based on Pontryagin's Minimum Principle (PMP) is implemented to find the global optimal solution which minimizes fuel consumption, for different drive cycles, with and without grade. The optimal solutions are analyzed in order to aid in development of a practical controller suitable for on-board implementation, in the form of an Auto-Regressive Moving Average (ARMA) regulator. Simulation results show that the ARMA controller is capable of achieving fuel economy within 3% of the PMP controller while being able to limit the transient demand on the fuel cell system.

  12. Fuel injector

    DOEpatents

    Lambeth, Malcolm David Dick

    2001-02-27

    A fuel injector comprises first and second housing parts, the first housing part being located within a bore or recess formed in the second housing part, the housing parts defining therebetween an inlet chamber, a delivery chamber axially spaced from the inlet chamber, and a filtration flow path interconnecting the inlet and delivery chambers to remove particulate contaminants from the flow of fuel therebetween.

  13. Advanced Fuels Campaign Execution Plan

    SciTech Connect

    Kemal Pasamehmetoglu

    2010-10-01

    The purpose of the Advanced Fuels Campaign (AFC) Execution Plan is to communicate the structure and management of research, development, and demonstration (RD&D) activities within the Fuel Cycle Research and Development (FCRD) program. Included in this document is an overview of the FCRD program, a description of the difference between revolutionary and evolutionary approaches to nuclear fuel development, the meaning of science-based development of nuclear fuels, and the “Grand Challenge” for the AFC that would, if achieved, provide a transformational technology to the nuclear industry in the form of a high performance, high reliability nuclear fuel system. The activities that will be conducted by the AFC to achieve success towards this grand challenge are described and the goals and milestones over the next 20 to 40 year period of research and development are established.

  14. In situ PEM fuel cell water measurements

    SciTech Connect

    Borup, Rodney L; Mukundan, Rangachary; Davey, John R; Spendalow, Jacob S

    2008-01-01

    Efficient PEM fuel cell performance requires effective water management. The materials used, their durability, and the operating conditions under which fuel cells run, make efficient water management within a practical fuel cell system a primary challenge in developing commercially viable systems. We present experimental measurements of water content within operating fuel cells. in response to operational conditions, including transients and freezing conditions. To help understand the effect of components and operations, we examine water transport in operating fuel cells, measure the fuel cell water in situ and model the water transport within the fuel cell. High Frequency Resistance (HFR), AC Impedance and Neutron imaging (using NIST's facilities) were used to measure water content in operating fuel cells with various conditions, including current density, relative humidity, inlet flows, flow orientation and variable GDL properties. Ice formation in freezing cells was also monitored both during operation and shut-down conditions.

  15. Advanced Fuels Campaign FY 2015 Accomplishments Report

    SciTech Connect

    Braase, Lori Ann; Carmack, William Jonathan

    2015-10-29

    The mission of the Advanced Fuels Campaign (AFC) is to perform research, development, and demonstration (RD&D) activities for advanced fuel forms (including cladding) to enhance the performance and safety of the nation’s current and future reactors; enhance proliferation resistance of nuclear fuel; effectively utilize nuclear energy resources; and address the longer-term waste management challenges. This report is a compilation of technical accomplishment summaries for FY-15. Emphasis is on advanced accident-tolerant LWR fuel systems, advanced transmutation fuels technologies, and capability development.

  16. Status of hydrogen fuel cell electric buses worldwide

    NASA Astrophysics Data System (ADS)

    Hua, Thanh; Ahluwalia, Rajesh; Eudy, Leslie; Singer, Gregg; Jermer, Boris; Asselin-Miller, Nick; Wessel, Silvia; Patterson, Timothy; Marcinkoski, Jason

    2014-12-01

    This review summarizes the background and recent status of the fuel cell electric bus (FCEB) demonstration projects in North America and Europe. Key performance metrics include accumulated miles, availability, fuel economy, fuel cost, roadcalls, and hydrogen fueling. The state-of-the-art technology used in today's fuel cell bus is highlighted. Existing hydrogen infrastructure for refueling is described. The article also presents the challenges encountered in these projects, the experiences learned, as well as current and future performance targets.

  17. Fuel cell-fuel cell hybrid system

    DOEpatents

    Geisbrecht, Rodney A.; Williams, Mark C.

    2003-09-23

    A device for converting chemical energy to electricity is provided, the device comprising a high temperature fuel cell with the ability for partially oxidizing and completely reforming fuel, and a low temperature fuel cell juxtaposed to said high temperature fuel cell so as to utilize remaining reformed fuel from the high temperature fuel cell. Also provided is a method for producing electricity comprising directing fuel to a first fuel cell, completely oxidizing a first portion of the fuel and partially oxidizing a second portion of the fuel, directing the second fuel portion to a second fuel cell, allowing the first fuel cell to utilize the first portion of the fuel to produce electricity; and allowing the second fuel cell to utilize the second portion of the fuel to produce electricity.

  18. Commercializing fuel cells: managing risks

    NASA Astrophysics Data System (ADS)

    Bos, Peter B.

    Commercialization of fuel cells, like any other product, entails both financial and technical risks. Most of the fuel cell literature has focussed upon technical risks, however, the most significant risks during commercialization may well be associated with the financial funding requirements of this process. Successful commercialization requires an integrated management of these risks. Like any developing technology, fuel cells face the typical 'Catch-22' of commercialization: "to enter the market, the production costs must come down, however, to lower these costs, the cumulative production must be greatly increased, i.e. significant market penetration must occur". Unless explicit steps are taken to address this dilemma, fuel cell commercialization will remain slow and require large subsidies for market entry. To successfully address this commercialization dilemma, it is necessary to follow a market-driven commercialization strategy that identifies high-value entry markets while minimizing the financial and technical risks of market entry. The financial and technical risks of fuel cell commercialization are minimized, both for vendors and end-users, with the initial market entry of small-scale systems into high-value stationary applications. Small-scale systems, in the order of 1-40 kW, benefit from economies of production — as opposed to economies to scale — to attain rapid cost reductions from production learning and continuous technological innovation. These capital costs reductions will accelerate their commercialization through market pull as the fuel cell systems become progressively more viable, starting with various high-value stationary and, eventually, for high-volume mobile applications. To facilitate market penetration via market pull, fuel cell systems must meet market-derived economic and technical specifications and be compatible with existing market and fuels infrastructures. Compatibility with the fuels infrastructure is facilitated by a

  19. Innovating team-based outpatient mental health care in the Veterans Health Administration: Staff-perceived benefits and challenges to pilot implementation of the Behavioral Health Interdisciplinary Program (BHIP).

    PubMed

    Barry, Catherine N; Abraham, Kristen M; Weaver, Kendra R; Bowersox, Nicholas W

    2016-05-01

    In the past decade, the demand for Veterans Health Administration (VHA) mental health care has increased rapidly. In response to the increased demand, the VHA developed the Behavioral Health Interdisciplinary Program (BHIP) team model as an innovative approach to transform VHA general outpatient mental health delivery. The present formative evaluation gathered information about pilot implementation of BHIP to understand the struggles and successes that staff experienced during facility transitions to the BHIP model. Using a purposive, nonrandom sampling approach, we conducted 1-on-1, semistructured interviews with 37 licensed and nonlicensed clinical providers and 13 clerical support staff assigned to BHIP teams in 21 facilities across the VHA. Interviews revealed that having actively involved facility mental health leaders, obtaining adequate staffing for teams to meet the requirements of the BHIP model, creating clear descriptions and expectations for team member roles within the BHIP framework, and allocating designated time for BHIP team meetings challenged many VHA sites but are crucial for successful BHIP implementation. Despite the challenges, staff reported that the transition to BHIP improved team work and improved patient care. Staff specifically highlighted the potential for the BHIP model to improve staff working relationships and enhance communication, collaboration, morale, and veteran treatment consistency. Future evaluations of the BHIP implementation process and BHIP team functioning focusing on patient outcomes, organizational outcomes, and staff functioning are recommended for fully understanding effects of transitioning to the BHIP model within VHA general mental health clinics and to identify best practices and areas for improvement. (PsycINFO Database Record

  20. The benefits of biofuels

    SciTech Connect

    Hinman, N.D.

    1997-07-01

    This article discusses the economic, environmental, and national security advantages of using biofuels instead of petroleum products in vehicles. Smog and carbon monoxide, two of the most trouble-some urban air pollutants, are largely caused by combustion of conventional petroleum based fuels. Topics include sustainable transportation fuels, emphasis on ethanol, the process of producing biofuels, and the growing market for biofuels. 1 tab.

  1. Fuels research: Fuel thermal stability overview

    NASA Technical Reports Server (NTRS)

    Cohen, S. M.

    1980-01-01

    Alternative fuels or crude supplies are examined with respect to satisfying aviation fuel needs for the next 50 years. The thermal stability of potential future fuels is discussed and the effects of these characteristics on aircraft fuel systems are examined. Advanced fuel system technology and design guidelines for future fuels with lower thermal stability are reported.

  2. Fuel cell energy service Enron`s commerical program

    SciTech Connect

    Jacobson, M.W.

    1996-04-01

    Enron, the premier provider of clean fuels worldwide, has launched a unique energy service based on fuel cell technology. The goal of this program is to bring the benefits of fuel cell power to the broad commercial marketplace. Enron`s Energy Service is currently based on a 200 kilowatt phosphoric acid power plant manufactured by ONSI Corporation. This plant is fueled by natural gas or propane, and exhibits superior performance. Enron offers a `no hassle` package that provides customers with immediate benefits with no upfront capital or technical risks. This paper describes Enron`s fuel cell commercial program.

  3. Market penetration scenarios for fuel cell vehicles

    SciTech Connect

    Thomas, C.E.; James, B.D.; Lomax, F.D. Jr.

    1997-12-31

    Fuel cell vehicles may create the first mass market for hydrogen as an energy carrier. Directed Technologies, Inc., working with the US Department of Energy hydrogen systems analysis team, has developed a time-dependent computer market penetration model. This model estimates the number of fuel cell vehicles that would be purchased over time as a function of their cost and the cost of hydrogen relative to the costs of competing vehicles and fuels. The model then calculates the return on investment for fuel cell vehicle manufacturers and hydrogen fuel suppliers. The model also projects the benefit/cost ratio for government--the ratio of societal benefits such as reduced oil consumption, reduced urban air pollution and reduced greenhouse gas emissions to the government cost for assisting the development of hydrogen energy and fuel cell vehicle technologies. The purpose of this model is to assist industry and government in choosing the best investment strategies to achieve significant return on investment and to maximize benefit/cost ratios. The model can illustrate trends and highlight the sensitivity of market penetration to various parameters such as fuel cell efficiency, cost, weight, and hydrogen cost. It can also illustrate the potential benefits of successful R and D and early demonstration projects. Results will be shown comparing the market penetration and return on investment estimates for direct hydrogen fuel cell vehicles compared to fuel cell vehicles with onboard fuel processors including methanol steam reformers and gasoline partial oxidation systems. Other alternative fueled vehicles including natural gas hybrids, direct injection diesels and hydrogen-powered internal combustion hybrid vehicles will also be analyzed.

  4. Fuel ethanol

    SciTech Connect

    Not Available

    1989-02-01

    This report discusses the Omnibus Trade and Competitiveness Act of 1988 which requires GAO to examine fuel ethanol imports from Central America and the Caribbean and their impact on the U.S. fuel ethanol industry. Ethanol is the alcohol in beverages, such as beer, wine, and whiskey. It can also be used as a fuel by blending with gasoline. It can be made from renewable resources, such as corn, wheat, grapes, and sugarcane, through a process of fermentation. This report finds that, given current sugar and gasoline prices, it is not economically feasible for Caribbean ethanol producers to meet the current local feedstock requirement.

  5. Chemical Kinetic Modeling of Advanced Transportation Fuels

    SciTech Connect

    PItz, W J; Westbrook, C K; Herbinet, O

    2009-01-20

    Development of detailed chemical kinetic models for advanced petroleum-based and nonpetroleum based fuels is a difficult challenge because of the hundreds to thousands of different components in these fuels and because some of these fuels contain components that have not been considered in the past. It is important to develop detailed chemical kinetic models for these fuels since the models can be put into engine simulation codes used for optimizing engine design for maximum efficiency and minimal pollutant emissions. For example, these chemistry-enabled engine codes can be used to optimize combustion chamber shape and fuel injection timing. They also allow insight into how the composition of advanced petroleum-based and non-petroleum based fuels affect engine performance characteristics. Additionally, chemical kinetic models can be used separately to interpret important in-cylinder experimental data and gain insight into advanced engine combustion processes such as HCCI and lean burn engines. The objectives are: (1) Develop detailed chemical kinetic reaction models for components of advanced petroleum-based and non-petroleum based fuels. These fuels models include components from vegetable-oil-derived biodiesel, oil-sand derived fuel, alcohol fuels and other advanced bio-based and alternative fuels. (2) Develop detailed chemical kinetic reaction models for mixtures of non-petroleum and petroleum-based components to represent real fuels and lead to efficient reduced combustion models needed for engine modeling codes. (3) Characterize the role of fuel composition on efficiency and pollutant emissions from practical automotive engines.

  6. PEM Fuel Cell Mechanisms and Processes

    NASA Astrophysics Data System (ADS)

    Wilson, Mahlon

    2000-03-01

    A fuel cell produces electrical energy via an electrochemical reaction. Unlike a conventional battery, the "fuel" and oxidant are supplied to the device from external sources. The device can thus be operated until the fuel (or oxidant) supply is exhausted, which can provide very high energy densities for the overall system. Historically, fuel cells have been of principle interest to the space program because of their high intrinsic conversion efficiencies and benign reaction product (water). Because of these various advantages and ever increasing environmental concerns, most types of fuel cells are attracting greater commercial and government interest. However, the popularity of a relatively new type of fuel cell, the polymer electrolyte membrane (PEM) fuel cell, is rapidly outpacing the others. Unlike most other types of fuel cells, which use liquid electrolytes, the PEM fuel cell uses a quasi-solid electrolyte based on a polymer backbone with side-chains possessing acid-based groups. The numerous advantages of this family of electrolytes make the PEM fuel cell particularly attractive for smaller scale terrestrial applications such as transportation, home-based distributed power, and portable power applications. Despite the many advantages, the conventional PEM introduces some unique challenges that significantly impact the design and operation of PEM-based fuel cells. In this presentation, an overview of PEM fuel cells will be provided starting with the fundamental principles on through the contributions and characteristics of the key components, the basics of PEM fuel cell operation, the considerations of various applications and the ramifications on system design.

  7. CLIMATE CHANGE FUEL CELL PROGRAM

    SciTech Connect

    Mike Walneuski

    2004-09-16

    ChevronTexaco has successfully operated a 200 kW PC25C phosphoric acid fuel cell power plant at the corporate data center in San Ramon, California for the past two years and seven months following installation in December 2001. This site was chosen based on the ability to utilize the combined heat (hot water) and power generation capability of this modular fuel cell power plant in an office park setting . In addition, this project also represents one of the first commercial applications of a stationary fuel cell for a mission critical data center to assess power reliability benefits. This fuel cell power plant system has demonstrated outstanding reliability and performance relative to other comparably sized cogeneration systems.

  8. Fuel cell technology for prototype logistic fuel cell mobile systems

    SciTech Connect

    Sederquist, R.A.; Garow, J.

    1995-08-01

    Under the aegis of the Advanced Research Project Agency`s family of programs to develop advanced technology for dual use applications, International Fuel Cells Corporation (IFC) is conducting a 39 month program to develop an innovative system concept for DoD Mobile Electric Power (MEP) applications. The concept is to integrate two technologies, the phosphoric acid fuel cell (PAFC) with an auto-thermal reformer (ATR), into an efficient fuel cell power plant of nominally 100-kilowatt rating which operates on logistic fuels (JP-8). The ATR fuel processor is the key to meeting requirements for MEP (including weight, volume, reliability, maintainability, efficiency, and especially operation on logistic fuels); most of the effort is devoted to ATR development. An integrated demonstration test unit culminates the program and displays the benefits of the fuel cell system, relative to the standard 100-kilowatt MEP diesel engine generator set. A successful test provides the basis for proceeding toward deployment. This paper describes the results of the first twelve months of activity during which specific program aims have remained firm.

  9. Benefits negotiation: three Swedish hospitals pursuit of potential electronic health record benefits.

    PubMed

    Jeansson, John S

    2013-01-01

    At the very heart of Swedish healthcare digitalisation are large investments in electronic health records (EHRs). These integrated information systems (ISs) carry promises of great benefits and value for organisations. However, realising IS benefits and value has, in general, proven to be a challenging task, and as organisations strive to formalise their realisation efforts a misconception of rationality threatens to emerge. This misconception manifests itself when the formality of analysis threatens to underrate the impact of social processes in deciding which potential benefits to pursue. This paper suggests that these decisions are the result of a social process of negotiation. The purpose of this paper is to observe three benefits analysis projects of three Swedish hospitals to better understand the character and management of proposed benefits negotiations. Findings depict several different categories of benefits negotiations, as well as key factors to consider during the benefits negotiation process.

  10. NASA Advanced Fuels Program

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan

    1998-01-01

    NASA with the USAF Research Laboratory and it's industry partners, has been conducting planning and research into advanced fuels. This work is sponsored under the NASA Advanced Space Transportation Program (ASTP). The current research focus is on Alternative Hydrocarbon fuels, Monopropellants, and Solid Cryogens for storing atoms of Hydrogen, Boron, Carbon, and Aluminum. Alternative hydrocarbons that are under consideration are bi cyclo propylidene, spiro pentane, and tri propargyl amine. These three fuels have been identified as initial candidates to increase the specific impulse of hydrocarbon fueled rockets by 10-15 seconds over 02/RP-1. Formulation of these propellants is proceeding this year, and rocket engine testing is planned for the near future. Monopropellant investigations are focused on dinitramine based fuels, and potential collaborations with the US Navy. The dinitramine fuel work is being conducted under an Small Business Innovation research (SBIR) contract with the team of Orbital Technologies Corp. (Madison, WI) and SRI (Menlo Park, CA). This work may lead to a high density, high specific impulse monopropellants that can simplify the operations for launch vehicles and spacecraft. Solid Cryogens are being considered to store atoms of Hydrogen, Boron, Carbon, and Aluminum. Stored atom propellants are potentially the highest specific impulse chemical rockets that may be practical. These fuels are composed of atoms, stored in solid cryogenic particles, suspended in a cryogenic liquid or gel. The fuel would be fed to a rocket engine as a slurry or gelled cryogenic liquid with the suspended particles with the trapped atoms. Testing is planned to demonstrate the formation of the particles, and then characterize the slurry flows. Rocket propellant and propulsion technology improvements can be used to reduce the development time and operational costs of new space vehicle programs. Advanced propellant technologies can make the space vehicles safer, more

  11. 'Strategic approach' can reveal benefits.

    PubMed

    Baillie, Jonathan

    2011-01-01

    Speaking at last October's Healthcare Estates 2010 conference in Manchester, Peter Haggarty, assistant director, Health Facilities Scotland, outlined some of the key steps and priorities for large healthcare providers seeking to establish and implement an effective asset management strategy, focusing particularly on work ongoing in this area in the Scottish public health service. While any radical change to a large healthcare organisation's existing asset management practices could be "challenging", both for the organisation itself, and for its staff, with "sufficient planning, persistence, and support", such changes could, he told delegates, often result in "unanticipated benefits". HEJ editor Jonathan Baillie reports.

  12. The Effect of Compression Ratio, Fuel Octane Rating, and Ethanol Content on Spark-Ignition Engine Efficiency.

    PubMed

    Leone, Thomas G; Anderson, James E; Davis, Richard S; Iqbal, Asim; Reese, Ronald A; Shelby, Michael H; Studzinski, William M

    2015-09-15

    Light-duty vehicles (LDVs) in the United States and elsewhere are required to meet increasingly challenging regulations on fuel economy and greenhouse gas (GHG) emissions as well as criteria pollutant emissions. New vehicle trends to improve efficiency include higher compression ratio, downsizing, turbocharging, downspeeding, and hybridization, each involving greater operation of spark-ignited (SI) engines under higher-load, knock-limited conditions. Higher octane ratings for regular-grade gasoline (with greater knock resistance) are an enabler for these technologies. This literature review discusses both fuel and engine factors affecting knock resistance and their contribution to higher engine efficiency and lower tailpipe CO2 emissions. Increasing compression ratios for future SI engines would be the primary response to a significant increase in fuel octane ratings. Existing LDVs would see more advanced spark timing and more efficient combustion phasing. Higher ethanol content is one available option for increasing the octane ratings of gasoline and would provide additional engine efficiency benefits for part and full load operation. An empirical calculation method is provided that allows estimation of expected vehicle efficiency, volumetric fuel economy, and CO2 emission benefits for future LDVs through higher compression ratios for different assumptions on fuel properties and engine types. Accurate "tank-to-wheel" estimates of this type are necessary for "well-to-wheel" analyses of increased gasoline octane ratings in the context of light duty vehicle transportation.

  13. Polyvalent fuel treatment facility (TCP): shearing and dissolution of used fuel at La Hague facility

    SciTech Connect

    Brueziere, J.; Tribout-Maurizi, A.; Durand, L.; Bertrand, N.

    2013-07-01

    Although many used nuclear fuel types have already been recycled, recycling plants are generally optimized for Light Water Reactor (LWR) UO{sub x} fuel. Benefits of used fuel recycling are consequently restricted to those fuels, with only limited capacity for the others like LWR MOX, Fast Reactor (FR) MOX or Research and Test Reactor (RTR) fuel. In order to recycle diverse fuel types, an innovative and polyvalent shearing and dissolving cell is planned to be put in operation in about 10 years at AREVA's La Hague recycling plant. This installation, called TCP (French acronym for polyvalent fuel treatment) will benefit from AREVA's industrial feedback, while taking part in the next steps towards a fast reactor fuel cycle development using innovative treatment solutions. Feasibility studies and R/Development trials on dissolution and shearing are currently ongoing. This new installation will allow AREVA to propose new services to its customers, in particular in term of MOX fuel, Research Test Reactors fuel and Fast Reactor fuel treatment. (authors)

  14. Presidential Green Chemistry Challenge: 1996 Academic Award

    EPA Pesticide Factsheets

    Presidential Green Chemistry Challenge 1996 award winner, Professor Mark Holtzapple, developed methods to convert waste biomass (e.g., sewage sludge, agricultural wastes), into animal feed, industrial chemicals, or fuels.

  15. The closed fuel cycle

    SciTech Connect

    Froment, Antoine; Gillet, Philippe

    2007-07-01

    Available in abstract form only. Full text of publication follows: The fast growth of the world's economy coupled with the need for optimizing use of natural resources, for energy security and for climate change mitigation make energy supply one of the 21. century most daring challenges. The high reliability and efficiency of nuclear energy, its competitiveness in an energy market undergoing a new oil shock are as many factors in favor of the 'renaissance' of this greenhouse gas free energy. Over 160,000 tHM of LWR1 and AGR2 Used Nuclear Fuel (UNF) have already been unloaded from the reactor cores corresponding to 7,000 tons discharged per year worldwide. By 2030, this amount could exceed 400,000 tHM and annual unloading 14,000 tHM/year. AREVA believes that closing the nuclear fuel cycle through the treatment and recycling of Used Nuclear Fuel sustains the worldwide nuclear power expansion. It is an economically sound and environmentally responsible choice, based on the preservation of natural resources through the recycling of used fuel. It furthermore provides a safe and secure management of wastes while significantly minimizing the burden left to future generations. (authors)

  16. Systems Challenges for Hypersonic Vehicles

    NASA Technical Reports Server (NTRS)

    Hunt, James L.; Laruelle, Gerard; Wagner, Alain

    1997-01-01

    This paper examines the system challenges posed by fully reusable hypersonic cruise airplanes and access to space vehicles. Hydrocarbon and hydrogen fueled airplanes are considered with cruise speeds of Mach 5 and 10, respectively. The access to space matrix is examined. Airbreathing and rocket powered, single- and two-stage vehicles are considered. Reference vehicle architectures are presented. Major systems/subsystems challenges are described. Advanced, enhancing systems concepts as well as common system technologies are discussed.

  17. Accelerator Reactor Coupling for Energy Production in Advanced Nuclear Fuel Cycles

    SciTech Connect

    Brown, Nicholas R.; Heidet, Florent; Haj Tahar, Malek

    2016-01-01

    This article is a review of several accelerator–reactor interface issues and nuclear fuel cycle applications of acceleratordriven subcritical systems. The systems considered here have the primary goal of energy production, but that goal is accomplished via a specific application in various proposed nuclear fuel cycles, such as breed-and-burn of fertile material or burning of transuranic material. Several basic principles are reviewed, starting from the proton beam window including the target, blanket, reactor core, and up to the fuel cycle. We focus on issues of interest, such as the impact of the energy required to run the accelerator and associated systems on the potential electricity delivered to the grid. Accelerator-driven systems feature many of the constraints and issues associated with critical reactors, with the added challenges of subcritical operation and coupling to an accelerator. Reliable accelerator operation and avoidance of beam trips are critically important. One interesting challenge is measurement of blanket subcriticality level during operation. We also review the potential benefits of accelerator-driven systems in various nuclear fuel cycle applications. Ultimately, accelerator-driven subcritical systems with the goal of transmutation of transuranic material have lower 100,000-year radioactivity than a critical fast reactor with recycling of uranium and plutonium.

  18. Accelerator Reactor Coupling for Energy Production in Advanced Nuclear Fuel Cycles

    DOE PAGES

    Brown, Nicholas R.; Heidet, Florent; Haj Tahar, Malek

    2016-01-01

    This article is a review of several accelerator–reactor interface issues and nuclear fuel cycle applications of acceleratordriven subcritical systems. The systems considered here have the primary goal of energy production, but that goal is accomplished via a specific application in various proposed nuclear fuel cycles, such as breed-and-burn of fertile material or burning of transuranic material. Several basic principles are reviewed, starting from the proton beam window including the target, blanket, reactor core, and up to the fuel cycle. We focus on issues of interest, such as the impact of the energy required to run the accelerator and associated systemsmore » on the potential electricity delivered to the grid. Accelerator-driven systems feature many of the constraints and issues associated with critical reactors, with the added challenges of subcritical operation and coupling to an accelerator. Reliable accelerator operation and avoidance of beam trips are critically important. One interesting challenge is measurement of blanket subcriticality level during operation. We also review the potential benefits of accelerator-driven systems in various nuclear fuel cycle applications. Ultimately, accelerator-driven subcritical systems with the goal of transmutation of transuranic material have lower 100,000-year radioactivity than a critical fast reactor with recycling of uranium and plutonium.« less

  19. Computational design and optimization of fuel cells and fuel cell systems: A review

    NASA Astrophysics Data System (ADS)

    Secanell, M.; Wishart, J.; Dobson, P.

    The design of fuel cells is a challenging endeavour due to the multitude of physical phenomena that need to be simultaneously optimized in order to achieve proper fuel cell operation. Fuel cell design is a multi-objective, multi-variable problem. In order to design fuel cells by computational design, a mathematical formulation of the design problem needs to be developed. The problem can then be solved using numerical optimization algorithms and a computational fuel cell model. In the past decade, the fuel cell community has gained momentum in the area of numerical design. In this article, research aimed at using numerical optimization to design fuel cells and fuel cell systems is reviewed. The review discusses the strengths, limitations, advantages, and disadvantages of optimization formulations and numerical optimization algorithms, and insight obtained from previous studies.

  20. Alternative jet aircraft fuels

    NASA Technical Reports Server (NTRS)

    Grobman, J.

    1979-01-01

    Potential changes in jet aircraft fuel specifications due to shifts in supply and quality of refinery feedstocks are discussed with emphasis on the effects these changes would have on the performance and durability of aircraft engines and fuel systems. Combustion characteristics, fuel thermal stability, and fuel pumpability at low temperature are among the factors considered. Combustor and fuel system technology needs for broad specification fuels are reviewed including prevention of fuel system fouling and fuel system technology for fuels with higher freezing points.

  1. Dry Processing of Used Nuclear Fuel

    SciTech Connect

    K. M. Goff; M. F. Simpson

    2009-09-01

    Dry (non-aqueous) separations technologies have been used for treatment of used nuclear fuel since the 1960s, and they are still being developed and demonstrated in many countries. Dry technologies offer potential advantages compared to traditional aqueous separations including: compactness, resistance to radiation effects, criticality control benefits, compatibility with advanced fuel types, and ability to produce low purity products. Within the Department of Energy’s Advanced Fuel Cycle Initiative, an electrochemical process employing molten salts is being developed for recycle of fast reactor fuel and treatment of light water reactor oxide fuel to produce a feed for fast reactors. Much of the development of this technology is based on treatment of used Experimental Breeder Reactor II (EBR-II) fuel, which is metallic. Electrochemical treatment of the EBR-II fuel has been ongoing in the Fuel Conditioning Facility, located at the Materials and Fuel Complex of Idaho National Laboratory since 1996. More than 3.8 metric tons of heavy metal of metallic fast reactor fuel have been treated using this technology. This paper will summarize the status of electrochemical development and demonstration activities with used nuclear fuel, including high-level waste work. A historic perspective on the background of dry processing will also be provided.

  2. Getting the best return on the employee benefit dollar.

    PubMed

    Carey, R G; Drachman, D A

    1988-12-01

    The value of employee benefits depends largely on employees' perceptions of those benefits, rather than on any intrinsic value the benefits have. If employees do not value a benefit highly, the hospital is not getting its money's worth. Hospital management now faces the challenge of reallocating benefit dollars to best meet employees' perceived needs and have the maximum positive impact on employee morale, while holding the line on benefit costs. To meet this challenge, administrators must first determine which benefits employees value the most, with which benefits they are most satisfied, and whether an employee's job category makes a difference. Parkside Associates, Inc., the hospital survey corporation of the Lutheran General Health Care System, Park Ridge, IL, has developed a system for gathering hospital-specific benefit data as part of an employee attitude survey. Employees rate each of their benefits according to (1) the benefit's importance to them and (2) their level of satisfaction with the benefit. Based on the assessment of employees' perceptions of the value and quality of benefits they receive, management can plan one or more strategies for response. For example, hospitals can: 1. Reduce benefits a majority of employees identify as having little importance. 2. Restructure benefits identified as being very important, but which produce little satisfaction. 3. Offer flexible, or "cafeteria," benefit plans so individual employees can increase the level of the benefits they value most and decrease the level of other benefits. 4. Offer educational activities, such as an annual benefits statement, to heighten the employees' awareness of the value of the benefits they are receiving.

  3. Mars - Destination and challenge

    NASA Astrophysics Data System (ADS)

    Aldrich, Arnold D.

    A general evaluation is conducted of the challenges associated with prospective Mars exploration efforts. The technical challenge posed stems from the unforgiving physical environment of space travel, and such peculiarities of Mars as its great orbital eccentricity and 15-year cyclic variation in transfer energy. Additional considerations arise from the 'architecture' of NASA's Space Exploration Initiative, encompassing the determination of a Mars exploration effort's purpose, scope, and schedule. Finally, numerous unresolved issues arise from the definition of detailed scientific experimentation that is to be done for the sake of the greatest long-term benefit to an understanding of Mars, and the rallying of political support behind a major new exploration initiative.

  4. Mars - Destination and challenge

    NASA Technical Reports Server (NTRS)

    Aldrich, Arnold D.

    1992-01-01

    A general evaluation is conducted of the challenges associated with prospective Mars exploration efforts. The technical challenge posed stems from the unforgiving physical environment of space travel, and such peculiarities of Mars as its great orbital eccentricity and 15-year cyclic variation in transfer energy. Additional considerations arise from the 'architecture' of NASA's Space Exploration Initiative, encompassing the determination of a Mars exploration effort's purpose, scope, and schedule. Finally, numerous unresolved issues arise from the definition of detailed scientific experimentation that is to be done for the sake of the greatest long-term benefit to an understanding of Mars, and the rallying of political support behind a major new exploration initiative.

  5. The Business Case for Fuel Cells 2012. America's Partner in Power

    SciTech Connect

    Curtin, Sandra; Gangi, Jennifer; Skukowski, Ryan

    2012-12-01

    This report, compiled by Fuel Cells 2000 with support from the Fuel Cell Technologies Program, profiles a select group of nationally recognizable companies and corporations that are deploying or demonstrating fuel cells. These businesses are taking advantage of a fuel cell's unique benefits, especially for powering lift trucks and providing combined heat and power to their stores and administrative offices.

  6. Solid oxidized fuel cells seals leakage setup and testing

    NASA Technical Reports Server (NTRS)

    Bastrzyk, Marta B.

    2004-01-01

    As the world s reserves of fossil fuels are depleted, the U.S. Government, as well as other countries and private industries, is researching solutions for obtaining power, answers that would be more efficient and environmentally friendly. For a long time engineers have been trying to obtain the benefits of clean electric power without heavy batteries or pollution-producing engines. While some of the inventions proved to be effective (i.e. solar panels or windmills) their applications are limited due to dependency on the energy source (i.e. sun or wind). Currently, as energy concerns increase, research is being carried out on the development of a Solid Oxide Fuel Cell (SOFC). The United States government is taking a proactive role in expanding the technology through the Solid State Energy Conversion Alliance (SECA) Program, which is coordinated by the Department of Energy. into an electrical energy. This occurs by the means of natural tendency of oxygen and hydrogen to chemically react. While controlling the process, it is possible to harvest the energy given off by the reaction. SOFCs use currently available fossil fuels and convert a variety of those fuels with very high efficiency (about 40% more efficient than modem thermal power plants). At the same time they are almost entirely nonpolluting and due to their size they can be placed in remote areas. The main fields where the application of the fuel cells appears to be the most useful for are stationary energy sources, transportation, and military applications. structure and materials must be resolved. All the components must be operational in harsh environments including temperatures reaching 800 C and cyclic thermal- mechanical loading. Under these conditions, the main concern is the requirement for hermetic seals to: (1) prevent mixing of the fuel and oxidant within the stack, (2) prevent parasitic leakage of the fuel from the stack, (3) prevent contamination of the anode by air leaking into the stack, (4

  7. Reforming of fuel inside fuel cell generator

    DOEpatents

    Grimble, R.E.

    1988-03-08

    Disclosed is an improved method of reforming a gaseous reformable fuel within a solid oxide fuel cell generator, wherein the solid oxide fuel cell generator has a plurality of individual fuel cells in a refractory container, the fuel cells generating a partially spent fuel stream and a partially spent oxidant stream. The partially spent fuel stream is divided into two streams, spent fuel stream 1 and spent fuel stream 2. Spent fuel stream 1 is burned with the partially spent oxidant stream inside the refractory container to produce an exhaust stream. The exhaust stream is divided into two streams, exhaust stream 1 and exhaust stream 2, and exhaust stream 1 is vented. Exhaust stream 2 is mixed with spent fuel stream 2 to form a recycle stream. The recycle stream is mixed with the gaseous reformable fuel within the refractory container to form a fuel stream which is supplied to the fuel cells. Also disclosed is an improved apparatus which permits the reforming of a reformable gaseous fuel within such a solid oxide fuel cell generator. The apparatus comprises a mixing chamber within the refractory container, means for diverting a portion of the partially spent fuel stream to the mixing chamber, means for diverting a portion of exhaust gas to the mixing chamber where it is mixed with the portion of the partially spent fuel stream to form a recycle stream, means for injecting the reformable gaseous fuel into the recycle stream, and means for circulating the recycle stream back to the fuel cells. 1 fig.

  8. Reforming of fuel inside fuel cell generator

    DOEpatents

    Grimble, Ralph E.

    1988-01-01

    Disclosed is an improved method of reforming a gaseous reformable fuel within a solid oxide fuel cell generator, wherein the solid oxide fuel cell generator has a plurality of individual fuel cells in a refractory container, the fuel cells generating a partially spent fuel stream and a partially spent oxidant stream. The partially spent fuel stream is divided into two streams, spent fuel stream I and spent fuel stream II. Spent fuel stream I is burned with the partially spent oxidant stream inside the refractory container to produce an exhaust stream. The exhaust stream is divided into two streams, exhaust stream I and exhaust stream II, and exhaust stream I is vented. Exhaust stream II is mixed with spent fuel stream II to form a recycle stream. The recycle stream is mixed with the gaseous reformable fuel within the refractory container to form a fuel stream which is supplied to the fuel cells. Also disclosed is an improved apparatus which permits the reforming of a reformable gaseous fuel within such a solid oxide fuel cell generator. The apparatus comprises a mixing chamber within the refractory container, means for diverting a portion of the partially spent fuel stream to the mixing chamber, means for diverting a portion of exhaust gas to the mixing chamber where it is mixed with the portion of the partially spent fuel stream to form a recycle stream, means for injecting the reformable gaseous fuel into the recycle stream, and means for circulating the recycle stream back to the fuel cells.

  9. Graphene-modified electrodes for enhancing the performance of microbial fuel cells.

    PubMed

    Yuan, Heyang; He, Zhen

    2015-04-28

    Graphene is an emerging material with superior physical and chemical properties, which can benefit the development of microbial fuel cells (MFC) in several aspects. Graphene-based anodes can enhance MFC performance with increased electron transfer efficiency, higher specific surface area and more active microbe-electrode-electrolyte interaction. For cathodic processes, oxygen reduction reaction is effectively catalyzed by graphene-based materials because of a favorable pathway and an increase in active sites and conductivity. Despite challenges, such as complexity in synthesis and property degeneration, graphene-based electrodes will be promising for developing MFCs and other bioelectrochemical systems to achieve sustainable water/wastewater treatment and bioenergy production.

  10. Graphene-modified electrodes for enhancing the performance of microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Yuan, Heyang; He, Zhen

    2015-04-01

    Graphene is an emerging material with superior physical and chemical properties, which can benefit the development of microbial fuel cells (MFC) in several aspects. Graphene-based anodes can enhance MFC performance with increased electron transfer efficiency, higher specific surface area and more active microbe-electrode-electrolyte interaction. For cathodic processes, oxygen reduction reaction is effectively catalyzed by graphene-based materials because of a favorable pathway and an increase in active sites and conductivity. Despite challenges, such as complexity in synthesis and property degeneration, graphene-based electrodes will be promising for developing MFCs and other bioelectrochemical systems to achieve sustainable water/wastewater treatment and bioenergy production.

  11. FUEL ELEMENT

    DOEpatents

    Fortescue, P.; Zumwalt, L.R.

    1961-11-28

    A fuel element was developed for a gas cooled nuclear reactor. The element is constructed in the form of a compacted fuel slug including carbides of fissionable material in some cases with a breeder material carbide and a moderator which slug is disposed in a canning jacket of relatively impermeable moderator material. Such canned fuel slugs are disposed in an elongated shell of moderator having greater gas permeability than the canning material wherefore application of reduced pressure to the space therebetween causes gas diffusing through the exterior shell to sweep fission products from the system. Integral fission product traps and/or exterior traps as well as a fission product monitoring system may be employed therewith. (AEC)

  12. Fuel bundle

    SciTech Connect

    Lui, C.K.

    1989-04-04

    This patent describes a method of forming a fuel bundle of a nuclear reactor. The method consists of positioning the fuel rods in the bottom plate, positioning the tie rod in the bottom plate with the key passed through the receptacle to the underside of the bottom plate and, after the tie rod is so positioned, turning the tie rod so that the key is in engagement with the underside of the bottom plate. Thereafter mounting the top plate is mounted in engagement with the fuel rods with the upper end of the tie rod extending through the opening in the top plate and extending above the top plate, and the tie rod is secured to the upper side of sid top plate thus simultaneously securing the key to the underside of the bottom plate.

  13. The Biorefinery--Challenges, Opportunities, and an Australian Perspective

    ERIC Educational Resources Information Center

    Rowlands, William N.; Masters, Anthony; Maschmeyer, Thomas

    2008-01-01

    Biomass provides the only sustainable source of organic carbon for the production of chemicals used in manufacturing and as liquid transportation fuels. In this article, the authors examine some of the challenges that society faces in the transition from a global economy in which transportation fuels are derived from fossil fuels to one in which…

  14. FUEL ELEMENT

    DOEpatents

    Howard, R.C.; Bokros, J.C.

    1962-03-01

    A fueled matrlx eontnwinlng uncomblned carbon is deslgned for use in graphlte-moderated gas-cooled reactors designed for operatlon at temperatures (about 1500 deg F) at which conventional metallic cladding would ordlnarily undergo undesired carburization or physical degeneratlon. - The invention comprlses, broadly a fuel body containlng uncombined earbon, clad with a nickel alloy contalning over about 28 percent by' weight copper in the preferred embodlment. Thls element ls supporirted in the passageways in close tolerance with the walls of unclad graphite moderator materlal. (AEC)

  15. National Water Quality Benefits

    EPA Science Inventory

    This project will provide the basis for advancing the goal of producing tools in support of quantifying and valuing changes in water quality for EPA regulations. It will also identify specific data and modeling gaps and Improve benefits estimation for more complete benefit-cost a...

  16. Educational Reform: Who Benefits?

    ERIC Educational Resources Information Center

    Steffy, Betty E.

    1994-01-01

    Uses Blau and Scott concept of "cui bono" to describe who has benefited from 1990 Kentucky Education Reform Act. In eyes of legislators, everyone would benefit, and the economically depressed state would prosper. As implementation of KERA progresses, it is becoming increasingly clear that mandated changes may be structural and may…

  17. Hospital benefit segmentation.

    PubMed

    Finn, D W; Lamb, C W

    1986-12-01

    Market segmentation is an important topic to both health care practitioners and researchers. The authors explore the relative importance that health care consumers attach to various benefits available in a major metropolitan area hospital. The purposes of the study are to test, and provide data to illustrate, the efficacy of one approach to hospital benefit segmentation analysis.

  18. Seven challenges for neuroscience.

    PubMed

    Markram, Henry

    2013-01-01

    Although twenty-first century neuroscience is a major scientific enterprise, advances in basic research have not yet translated into benefits for society. In this paper, I outline seven fundamental challenges that need to be overcome. First, neuroscience has to become "big science" - we need big teams with the resources and competences to tackle the big problems. Second, we need to create interlinked sets of data providing a complete picture of single areas of the brain at their different levels of organization with "rungs" linking the descriptions for humans and other species. Such "data ladders" will help us to meet the third challenge - the development of efficient predictive tools, enabling us to drastically increase the information we can extract from expensive experiments. The fourth challenge goes one step further: we have to develop novel hardware and software sufficiently powerful to simulate the brain. In the future, supercomputer-based brain simulation will enable us to make in silico manipulations and recordings, which are currently completely impossible in the lab. The fifth and sixth challenges are translational. On the one hand we need to develop new ways of classifying and simulating brain disease, leading to better diagnosis and more effective drug discovery. On the other, we have to exploit our knowledge to build new brain-inspired technologies, with potentially huge benefits for industry and for society. This leads to the seventh challenge. Neuroscience can indeed deliver huge benefits but we have to be aware of widespread social concern about our work. We need to recognize the fears that exist, lay them to rest, and actively build public support for neuroscience research. We have to set goals for ourselves that the public can recognize and share. And then we have to deliver on our promises. Only in this way, will we receive the support and funding we need.

  19. Irradiated Nuclear Fuel Management: Resource Versus Waste

    SciTech Connect

    Nash, Kenneth L.; Lumetta, Gregg J.; Vienna, John D.

    2013-01-01

    Management of irradiated fuel is an important component of commercial nuclear power production. Although it is broadly agreed that the disposition of some fraction of the fuel in geological repositories will be necessary, there is a range of options that can be considered that affect exactly what fraction of material will be disposed in that manner. Furthermore, until geological repositories are available to accept commercial irradiated fuel, these materials must be safely stored. Temporary storage of irradiated fuel has traditionally been conducted in storage pools, and this is still true for freshly discharged fuel. Criticality control technologies have led to greater efficiencies in packing of irradiated fuel into storage pools. With continued delays in establishing permanent repositories, utilities have begun to move some of the irradiated fuel inventory into dry storage. Fuel cycle options being considered worldwide include the once-through fuel cycle, limited recycle in which U and Pu are recycled back to power reactors as mixed oxide fuel, and advance partitioning and transmutation schemes designed to reduce the long term hazards associated with geological disposal from millions of years to a few hundred years. Each of these options introduces specific challenges in terms of the waste forms required to safely immobilize the hazardous components of irradiated fuel.

  20. Nuclear Fuels.

    ERIC Educational Resources Information Center

    Nash, J. Thomas

    1983-01-01

    Trends in and factors related to the nuclear industry and nuclear fuel production are discussed. Topics addressed include nuclear reactors, survival of the U.S. uranium industry, production costs, budget cuts by the Department of Energy and U.S. Geological survey for resource studies, mining, and research/development activities. (JN)

  1. Fuel Cells

    ERIC Educational Resources Information Center

    Hawkins, M. D.

    1973-01-01

    Discusses the theories, construction, operation, types, and advantages of fuel cells developed by the American space programs. Indicates that the cell is an ideal small-scale power source characterized by its compactness, high efficiency, reliability, and freedom from polluting fumes. (CC)

  2. Future Fuel.

    ERIC Educational Resources Information Center

    Stover, Del

    1991-01-01

    Tough new environmental laws, coupled with fluctuating oil prices, are likely to prompt hundreds of school systems to examine alternative fuels. Literature reviews and interviews with 45 government, education, and industry officials provided data for a comparative analysis of gasoline, diesel, natural gas, methanol, and propane. (MLF)

  3. Alternative Fuels

    DTIC Science & Technology

    2009-06-11

    Swedish Biofuels AB • Cellulosic and algal feedstocks that are non-competitive with food material $ P r o d u c t P r o d u c t Traditional fuels...JP-8 BACK-UP SLIDES Unclassified 19 What Are Biofuels ? Cellulose “first generation”“second generation” C18:0 C16:1 Triglycerides (fats, oils

  4. Fuel savings and emissions reductions from light duty fuel cell vehicles

    NASA Astrophysics Data System (ADS)

    Mark, J.; Ohi, J. M.; Hudson, D. V., Jr.

    1994-04-01

    Fuel cell vehicles (FCV's) operate efficiently, emit few pollutants, and run on nonpetroleum fuels. Because of these characteristics, the large-scale deployment of FCV's has the potential to lessen U.S. dependence on foreign oil and improve air quality. This study characterizes the benefits of large-scale FCV deployment in the light duty vehicle market. Specifically, the study assesses the potential fuel savings and emissions reductions resulting from large-scale use of these FCV's and identifies the key parameters that affect the scope of the benefits from FCV use. The analysis scenario assumes that FCV's will compete with gasoline-powered light trucks and cars in the new vehicle market for replacement of retired vehicles and will compete for growth in the total market. Analysts concluded that the potential benefits from FCV's, measured in terms of consumer outlays for motor fuel and the value of reduced air emissions, are substantial.

  5. Fuel savings and emissions reductions from light duty fuel cell vehicles

    SciTech Connect

    Mark, J; Ohi, J M; Hudson, Jr, D V

    1994-04-01

    Fuel cell vehicles (FCVs) operate efficiently, emit few pollutants, and run on nonpetroleum fuels. Because of these characteristics, the large-scale deployment of FCVs has the potential to lessen US dependence on foreign oil and improve air quality. This study characterizes the benefits of large-scale FCV deployment in the light duty vehicle market. Specifically, the study assesses the potential fuel savings and emissions reductions resulting from large-scale use of these FCVs and identifies the key parameters that affect the scope of the benefits from FCV use. The analysis scenario assumes that FCVs will compete with gasoline-powered light trucks and cars in the new vehicle market for replacement of retired vehicles and will compete for growth in the total market. Analysts concluded that the potential benefits from FCVs, measured in terms of consumer outlays for motor fuel and the value of reduced air emissions, are substantial.

  6. Radiotoxicity Characterization of Multi-Recycled Thorium Fuel - 12394

    SciTech Connect

    Franceschini, F.; Wenner, M.; Fiorina, C.; Huang, M.; Petrovic, B.; Krepel, J.

    2012-07-01

    advantages compared to the U cycle, such as the smaller actinide radiotoxicity and decay heat for up to 25,000 years after irradiation. In order for these benefits to materialize, the capability to reprocess and remotely manufacture industrial amounts of recycled fuel appears to be the key. Westinghouse is proposing the implementation of a thorium based fuel cycle to burn the TRU contained in the current UNF. The general approach and the potential of thorium as TRU burner is described in other papers presented at this conference. The focus of this paper is to analyze the long-term potential of thorium, once the legacy TRU has been exhausted and the thorium reactor system will become self-sufficient. Therefore, a comparison of Th closed cycle, in fast and thermal neutron energy ranges, vs. U closed cycle, in the fast energy range, has been undertaken. The results presented focus on selected backend and front-end metrics: isotopic actinide composition and potential implications on ingested radiotoxicity, decay heat and gamma heat. The evaluation confirms potential substantial improvements in the backend of the fuel cycle by transitioning to a thorium closed cycle. These benefits are the result of a much lower TRU content, in particular Pu-241, Am-241 and Pu-240, characterizing the Th vs. U actinide inventories, and the ensuing process waste to be disposed. On the other hand, the larger gamma activity of Th recycled fuel, consisting predominantly of hard gammas from U-232's decay products, is a significant challenge for fuel handling, transportation and manufacturing but can be claimed as beneficial for the proliferation resistance of the fuel. It is worth remembering that in our perspective the Th closed cycle and the U closed cycle will follow a transmutation phase which will likely take place over several decades and dictate the technologies required. These will likely include remote fuel manufacturing, regardless of the specific system adopted for the transmutation, which

  7. Cost-Effective Fuel Treatment Planning

    NASA Astrophysics Data System (ADS)

    Kreitler, J.; Thompson, M.; Vaillant, N.

    2014-12-01

    The cost of fighting large wildland fires in the western United States has grown dramatically over the past decade. This trend will likely continue with growth of the WUI into fire prone ecosystems, dangerous fuel conditions from decades of fire suppression, and a potentially increasing effect from prolonged drought and climate change. Fuel treatments are often considered the primary pre-fire mechanism to reduce the exposure of values at risk to wildland fire, and a growing suite of fire models and tools are employed to prioritize where treatments could mitigate wildland fire damages. Assessments using the likelihood and consequence of fire are critical because funds are insufficient to reduce risk on all lands needing treatment, therefore prioritization is required to maximize the effectiveness of fuel treatment budgets. Cost-effectiveness, doing the most good per dollar, would seem to be an important fuel treatment metric, yet studies or plans that prioritize fuel treatments using costs or cost-effectiveness measures are absent from the literature. Therefore, to explore the effect of using costs in fuel treatment planning we test four prioritization algorithms designed to reduce risk in a case study examining fuel treatments on the Sisters Ranger District of central Oregon. For benefits we model sediment retention and standing biomass, and measure the effectiveness of each algorithm by comparing the differences among treatment and no treat alternative scenarios. Our objective is to maximize the averted loss of net benefits subject to a representative fuel treatment budget. We model costs across the study landscape using the My Fuel Treatment Planner software, tree list data, local mill prices, and GIS-measured site characteristics. We use fire simulations to generate burn probabilities, and estimate fire intensity as conditional flame length at each pixel. Two prioritization algorithms target treatments based on cost-effectiveness and show improvements over those

  8. Utilization of ventilation air methane as a supplementary fuel at a circulating fluidized bed combustion boiler.

    PubMed

    You, Changfu; Xu, Xuchang

    2008-04-01

    Ventilation air methane (VAM) accounts for 60-80% of the total emissions from coal mining activities in China, which is of serious greenhouse gas concerns as well as a waste of valuable fuel sources. This contribution evaluates the use of the VAM utilization methods as a supplementary fuel at a circulating fluidized bed combustion boiler. The paper describes the system design and discusses some potential technical challenges such as methane oxidation rate, corrosion, and efficiency. Laboratory experimentation has shown that the VAM can be burnt completely in circulated fluidized bed furnaces, and the VAM oxidation does not obviously affect the boiler operation when the methane concentration is less than 0.6%. The VAM decreased the incomplete combustion loss for the circulating fluidized bed combustion furnace. The economic benefit from the coal saving insures that the proposed system is more economically feasible.

  9. Analysis of H2 storage needs for early market non-motive fuel cell applications.

    SciTech Connect

    Johnson, Terry Alan; Moreno, Marcina; Arienti, Marco; Pratt, Joseph William; Shaw, Leo; Klebanoff, Leonard E.

    2012-03-01

    Hydrogen fuel cells can potentially reduce greenhouse gas emissions and the United States dependence on foreign oil, but issues with hydrogen storage are impeding their widespread use. To help overcome these challenges, this study analyzes opportunities for their near-term deployment in five categories of non-motive equipment: portable power, construction equipment, airport ground support equipment, telecom backup power, and man-portable power and personal electronics. To this end, researchers engaged end users, equipment manufacturers, and technical experts via workshops, interviews, and electronic means, and then compiled these data into meaningful and realistic requirements for hydrogen storage in specific target applications. In addition to developing these requirements, end-user benefits (e.g., low noise and emissions, high efficiency, potentially lower maintenance costs) and concerns (e.g., capital cost, hydrogen availability) of hydrogen fuel cells in these applications were identified. Market data show potential deployments vary with application from hundreds to hundreds of thousands of units.

  10. Alternatives to traditional transportation fuels 1994. Volume 1

    SciTech Connect

    1996-02-01

    In this report, alternative and replacement fuels are defined in accordance with the EPACT. Section 301 of the EPACT defines alternative fuels as: methanol, denatured ethanol, and other alcohols; mixtures containing 85% or more (or such other percentage, but not less than 70%, as determined by the Secretary of Energy, by rule, to provide for requirements relating to cold start, safety, or vehicle functions) by volume of methanol, denatured ethanol, and other alcohols with gasoline or other fuels; natural gas; liquefied petroleum gas; hydrogen; coal-derived liquid fuels; fuels (other than alcohol) derived from biological materials; electricity (including electricity from solar energy); and any other fuel the Secretary determines, by rule, is substantially not petroleum and would yield substantial energy security benefits and substantial environmental benefits. The EPACT defines replacement fuels as the portion of any motor fuel that is methanol, ethanol, or other alcohols, natural gas, liquefied petroleum gas, hydrogen, coal-derived liquid fuels, fuels (other than alcohol) derived from biological materials, electricity (including electricity from solar energy), ethers, or any other fuel the Secretary of Energy determines, by rule, is substantially not petroleum and would yield substantial energy security benefits and substantial environmental benefits. This report covers only those alternative and replacement fuels cited in the EPACT that are currently commercially available or produced in significant quantities for vehicle demonstration purposes. Information about other fuels, such as hydrogen and biodiesel, will be included in later reports as those fuels become more widely used. Annual data are presented for 1992 to 1996. Data for 1996 are based on plans or projections for 1996.

  11. Featherweight Challenge

    ERIC Educational Resources Information Center

    Love, Tyler S.; Ryan, Larry

    2012-01-01

    As science, technology education, and engineering programs suffer budget cuts, educators continue to seek cost-effective activities that engage students and reinforce standards. The featherweight challenge is a hands-on activity that challenges students to continually refine their design while not breaking the budget. This activity uses one of the…

  12. Medicare Hospice Benefits

    MedlinePlus

    ... 4 Care for a condition other than your terminal illness ......................................... 4 How your Medicare hospice benefit works ..................................................... ... care, counseling, drugs, equipment, and supplies for the terminal illness and related conditions. ■■ Care is generally provided ...

  13. Benefits of CHP Partnership

    EPA Pesticide Factsheets

    Learn about the benefits of being a EPA CHP Partner, which include expert advice and answers to questions, CHP news, marketing resources, publicity and recognition, and being associated with EPA through a demonstrated commitment to CHP.

  14. Benefits of breastfeeding

    MedlinePlus

    Experts say that breastfeeding your baby is good for you and your baby. If you breastfeed for any length of time, no matter ... is, you and your baby will benefit from breastfeeding. Learn about breastfeeding your baby and decide if ...

  15. Fuels from microalgae

    SciTech Connect

    Not Available

    1989-06-01

    Many species of aquatic plants can provide a source of renewable energy. Some species of microalgae, in particular, produce lipids -- oils that can be extracted and converted to a diesel fuel substitute or to gasoline. Since 1979 the Aquatic Species Program element of the Biofuels Program, has supported fundamental and applied research to develop the technology for using this renewable energy resource. This document, produced by the Solar Technical Information Program, provides an overview of the DOE/SERI Aquatic Species Program element. Chapter 1 is an introduction to the program and to the microalgae. Chapter 2 is an overview of the general principles involved in making fuels from microalgae. It also outlines the technical challenges to producing economic, high-energy transportation fuels. Chapter 3 provides an overview of the Algal Production and Economic Model (APEM). This model was developed by researchers within the program to identify aspects of the process critical to performance with the greatest potential to reduce costs. The analysis using this model has helped direct research sponsored by the program. Finally, Chapter 4 provides an overview of the Aquatic Species Program and describes current research. 28 refs., 17 figs.

  16. In Situ Optical Studies of Solid-Oxide Fuel Cells

    NASA Astrophysics Data System (ADS)

    Pomfret, Michael B.; Owrutsky, Jeffrey C.; Walker, Robert A.

    2010-07-01

    Thermal imaging and vibrational spectroscopy have become important tools for examining the physical and chemical changes that occur in real time in solid-oxide fuel cells (SOFCs). Imaging techniques can resolve temperature differences as fine as 0.1°C across a SOFC electrode at temperatures higher than 600°C. Vibrational spectroscopy can identify molecular species and changes in material phases in operating SOFCs. This review discusses the benefits and challenges associated with directly observing processes that are important to SOFC performance and durability. In situ optical methods can provide direct insight into reaction mechanisms that can be inferred only indirectly from electrochemical measurements such as voltammetry and electrochemical impedance spectroscopy and from kinetic models and postmortem, ex situ examinations of SOFC components. Particular attention is devoted to recent advances that, hopefully, will spur the development of new generations of efficient, versatile energy-producing devices.

  17. In situ optical studies of solid-oxide fuel cells.

    PubMed

    Pomfret, Michael B; Owrutsky, Jeffrey C; Walker, Robert A

    2010-01-01

    Thermal imaging and vibrational spectroscopy have become important tools for examining the physical and chemical changes that occur in real time in solid-oxide fuel cells (SOFCs). Imaging techniques can resolve temperature differences as fine as 0.1 degrees C across a SOFC electrode at temperatures higher than 600 degrees C. Vibrational spectroscopy can identify molecular species and changes in material phases in operating SOFCs. This review discusses the benefits and challenges associated with directly observing processes that are important to SOFC performance and durability. In situ optical methods can provide direct insight into reaction mechanisms that can be inferred only indirectly from electrochemical measurements such as voltammetry and electrochemical impedance spectroscopy and from kinetic models and postmortem, ex situ examinations of SOFC components. Particular attention is devoted to recent advances that, hopefully, will spur the development of new generations of efficient, versatile energy-producing devices.

  18. Proliferation Resistant Nuclear Reactor Fuel

    SciTech Connect

    Gray, L W; Moody, K J; Bradley, K S; Lorenzana, H E

    2011-02-18

    Global appetite for fission power is projected to grow dramatically this century, and for good reason. Despite considerable research to identify new sources of energy, fission remains the most plentiful and practical alternative to fossil fuels. The environmental challenges of fossil fuel have made the fission power option increasingly attractive, particularly as we are forced to rely on reserves in ecologically fragile or politically unstable corners of the globe. Caught between a globally eroding fossil fuel reserve as well as the uncertainty and considerable costs in the development of fusion power, most of the world will most likely come to rely on fission power for at least the remainder of the 21st century. Despite inevitable growth, fission power faces enduring challenges in sustainability and security. One of fission power's greatest hurdles to universal acceptance is the risk of potential misuse for nefarious purposes of fissionable byproducts in spent fuel, such as plutonium. With this issue in mind, we have discussed intrinsic concepts in this report that are motivated by the premise that the utility, desirability, and applicability of nuclear materials can be reduced. In a general sense, the intrinsic solutions aim to reduce or eliminate the quantity of existing weapons usable material; avoid production of new weapons-usable material through enrichment, breeding, extraction; or employ engineering solutions to make the fuel cycle less useful or more difficult for producing weapons-usable material. By their nature, these schemes require modifications to existing fuel cycles. As such, the concomitants of these modifications require engagement from the nuclear reactor and fuel-design community to fully assess their effects. Unfortunately, active pursuit of any scheme that could further complicate the spread of domestic nuclear power will probably be understandably unpopular. Nevertheless, the nonproliferation and counterterrorism issues are paramount, and

  19. Supersonic LFC: Challenges and opportunities

    NASA Technical Reports Server (NTRS)

    Powell, Arthur G.

    1992-01-01

    The discussion and viewgraphs on supersonic laminar control are provided. The high fuel fractions required for long range supersonic airplanes give significant leverage to technologies for cruise drag reduction such as laminar flow control (LFC). Fuel burn benefits are further enhanced when sizing effects are considered. These effects may even be powerful enough to reduce airplane production cost over a turbulent baseline. This is an important goal for LFC technology development. The results of aerodynamics studies on the application of LFC technology to the highly swept wings of supersonic airplanes are presented. Important questions of applicability, realistic benefit, and critical application issues, addressed in a NASA-sponsored study conducted by McDonnell Douglas Corporation in 1987-88 are reviewed. Efforts aimed at establishing the feasibility of demonstrating extensive laminarization on the F-16XL-2 airplane are summarized.

  20. Military Retirement Benefits.

    DTIC Science & Technology

    1984-05-17

    55, before they qualify for retirement benefits. 5 2. Approximately 94% of companies allow early retirement with reduced pensions. The Hay-Huggins...data indicate that the most common basis for eligibility for reduced early retirement is a combination of age and service (72% of plans). The most common...combination is age 55 and ten years of service. 13 • . . . . . . . . " " - .. . . . " . . . ’ For those companies providing early retirement benefits

  1. ADVANCED FUELS CAMPAIGN 2013 ACCOMPLISHMENTS

    SciTech Connect

    Not Listed

    2013-10-01

    The mission of the Advanced Fuels Campaign (AFC) is to perform Research, Development, and Demonstration (RD&D) activities for advanced fuel forms (including cladding) to enhance the performance and safety of the nation’s current and future reactors; enhance proliferation resistance of nuclear fuel; effectively utilize nuclear energy resources; and address the longer-term waste management challenges. This includes development of a state-of-the art Research and Development (R&D) infrastructure to support the use of “goal-oriented science-based approach.” In support of the Fuel Cycle Research and Development (FCRD) program, AFC is responsible for developing advanced fuels technologies to support the various fuel cycle options defined in the Department of Energy (DOE) Nuclear Energy Research and Development Roadmap, Report to Congress, April 2010. Accomplishments made during fiscal year (FY) 2013 are highlighted in this report, which focuses on completed work and results. The process details leading up to the results are not included; however, the technical contact is provided for each section.

  2. The use of hydrogen for aircraft propulsion in view of the fuel crisis.

    NASA Technical Reports Server (NTRS)

    Weiss, S.

    1973-01-01

    In view of projected decreases in available petroleum fuels, interest has been generated in exploiting the potential of liquid hydrogen (LH2) as an aircraft fuel. Cost studies of LH2 production show it to be more expensive than presently used fuels. Regardless of cost considerations, LH2 is viewed as an attractive aircraft fuel because of the potential performance benefits it offers. Accompanying these benefits, however, are many new problems associated with aircraft design and operations; for example, problems related to fuel system design and the handling of LH2 during ground servicing. Some of the factors influencing LH2 fuel tank design, pumping, heat exchange, and flow regulation are discussed.

  3. Fuel cell

    SciTech Connect

    Struthers, R.C.

    1983-06-28

    An improved fuel cell comprising an anode section including an anode terminal, an anode fuel, and an anolyte electrolyte, a cathode section including a cathode terminal, an electron distributor and a catholyte electrolyte, an ion exchange section between the anode and cathode sections and including an ionolyte electrolyte, ion transfer membranes separating the ionolyte from the anolyte and the catholyte and an electric circuit connected with and between the terminals conducting free electrons from the anode section and delivering free electrons to the cathode section, said ionolyte receives ions of one polarity moving from the anolyte through the membrane related thereto preventing chemical equilibrium in the anode section and sustaining chemical reaction and the generating of free electrons therein, said ions received by the ionolyte from the anolyte release different ions from the ionolyte which move through the membrane between the ionolyte and catholyte and which add to the catholyte.

  4. Electrochemical oxidation of carbon-containing fuels and their dynamics in low-temperature fuel cells.

    PubMed

    Krewer, Ulrike; Vidakovic-Koch, Tanja; Rihko-Struckmann, Liisa

    2011-10-04

    Fuel cells can convert the energy that is chemically stored in a compound into electrical energy with high efficiency. Hydrogen could be the first choice for chemical energy storage, but its utilization is limited due to storage and transport difficulties. Carbon-containing fuels store chemical energy with significantly higher energy density, which makes them excellent energy carriers. The electro-oxidation of carbon-containing fuels without prior reforming is a more challenging and complex process than anodic hydrogen oxidation. The current understanding of the direct electro-oxidation of carbon-containing fuels in low-temperature fuel cells is reviewed. Furthermore, this review covers various aspects of electro-oxidation for carbon-containing fuels in non-steady-state reaction conditions. Such dynamic investigations open possibilities to elucidate detailed reaction kinetics, to sense fuel concentration, or to diagnose the fuel-cell state during operation. Motivated by the challenge to decrease the consumption of fossil fuel, the production routes of the fuels from renewable resources also are reviewed.

  5. Fuel additives

    SciTech Connect

    Gheysens, J.L.G.

    1990-11-27

    This patent describes a composition for the improvement of hydrocarbon fuels exhibiting a boiling range of gasoline being suitable for use in spark ignition-type engines. It comprises an aromatic amine; a polyaminated detergent; a catalyst comprising a colloidal suspension or amine salt of transition/alkali/alkaline earth metal organic coordinations having at least one metal oxidehydroxide linked to an alkyl chain via a carboxyl group; and a solvent comprising an alkanol-aliphatic ether oxygenated hydrocarbon.

  6. Future Fuels

    DTIC Science & Technology

    2006-04-01

    Storage Devices, Fuel Management, Gasification, Fischer-Tropsch, Syngas , Hubberts’s Peak UNCLAS UNCLAS UNCLAS UU 80 Dr. Sujata Millick (703) 696...traction power – mission payloads – mobile electric power • Improved survivability • Inherent modularity improves maintainability & upgradability ...threatened the output of the Ploesti oil fields and refineries. In the FT process, so-called syngas (a mixture of molecular hydrogen and carbon monoxide

  7. Fuel conditioner

    SciTech Connect

    Nelson, M.L.; Nelson, O.L. Jr.

    1988-06-28

    A fuel conditioner is described comprising 10 to 80% of a polar oxygenated hydrocarbon having an average molecular weight from about 250 to about 500, an acid acid number from about 25 to about 125, and a saponification number from about 30 to about 250; and 5 to 50% of an oxygenated compatibilizing agent having a solubility parameter of from about 8.8 to about 11.5 and moderate to strong hydrogen-bonding capacity.

  8. Interdisciplinary engagement with inclusive design - the Challenge Workshops model.

    PubMed

    Cassim, Julia; Dong, Hua

    2015-01-01

    The DBA Inclusive Design Challenge and the Challenge Workshops organised by the lead author has exposed numerous design teams to the benefit of working with extreme users - this paper will analyse the challenges and benefits of this approach to inclusive design and suggest how the lessons learned from competition can be transferred into design practice.

  9. The Benefits and Challenges of Registered Apprenticeship: The Sponsors' Perspective

    ERIC Educational Resources Information Center

    Lerman, Robert; Eyster, Lauren; Chambers, Kate

    2009-01-01

    The Employment and Training Administration (ETA) of the U.S. Department of Labor oversees the registered apprenticeship system by issuing standards, monitoring state agencies, and promoting registered apprenticeship. Registered apprenticeship program "sponsors" are individual employers or groups of employers (sometimes in collaboration with…

  10. Challenges, Benefits, and Recommendations for Continued Nigerian Peacekeeping

    DTIC Science & Technology

    2012-11-02

    the U.S. Naval Health Research Center determined that the Nigerian military had an estimated infection rate of about 15%, as compared to about 5...UNSCR) 1983 which “Encourages the incorporation, as appropriate, of HIV prevention, treatment, care and support, including voluntary and...Nigerian Army: In the Shadow of Corruption,” Modern Ghana News, accessed September 17, 2012, http://www.modernghana.com/news/259133/1/nigerian-army-in-the

  11. Multicore Challenges and Benefits for High Performance Scientific Computing

    DOE PAGES

    Nielsen, Ida M. B.; Janssen, Curtis L.

    2008-01-01

    Until recently, performance gains in processors were achieved largely by improvements in clock speeds and instruction level parallelism. Thus, applications could obtain performance increases with relatively minor changes by upgrading to the latest generation of computing hardware. Currently, however, processor performance improvements are realized by using multicore technology and hardware support for multiple threads within each core, and taking full advantage of this technology to improve the performance of applications requires exposure of extreme levels of software parallelism. We will here discuss the architecture of parallel computers constructed from many multicore chips as well as techniques for managing the complexitymore » of programming such computers, including the hybrid message-passing/multi-threading programming model. We will illustrate these ideas with a hybrid distributed memory matrix multiply and a quantum chemistry algorithm for energy computation using Møller–Plesset perturbation theory.« less

  12. Nondegree Credentials in Correctional Education: Status, Challenges, and Benefits

    ERIC Educational Resources Information Center

    Tolbert, Michelle

    2016-01-01

    Nearly 2.3 million adults are incarcerated in our nation's prisons and jails. Incarcerated adults are, on average, less educated than the general population. Their lack of job skills and a steady employment history, combined with the stigma of their felony convictions, creates significant barriers to reentering the labor market when they are…

  13. Achieving biodiversity benefits with offsets: Research gaps, challenges, and needs.

    PubMed

    Gelcich, Stefan; Vargas, Camila; Carreras, Maria Jose; Castilla, Juan Carlos; Donlan, C Josh

    2017-03-01

    Biodiversity offsets are becoming increasingly common across a portfolio of settings: national policy, voluntary programs, international lending, and corporate business structures. Given the diversity of ecological, political, and socio-economic systems where offsets may be applied, place-based information is likely to be most useful in designing and implementing offset programs, along with guiding principles that assure best practice. We reviewed the research on biodiversity offsets to explore gaps and needs. While the peer-reviewed literature on offsets is growing rapidly, it is heavily dominated by ecological theory, wetland ecosystems, and U.S.-based research. Given that majority of offset policies and programs are occurring in middle- and low-income countries, the research gaps we identified present a number of risks. They also present an opportunity to create regionally based learning platforms focused on pilot projects and institutional capacity building. Scientific research should diversify, both topically and geographically, in order to support the successful design, implementation, and monitoring of biodiversity offset programs.

  14. Implementing Structured English Immersion in Arizona: Benefits, Challenges, and Opportunities

    ERIC Educational Resources Information Center

    Rios-Aguilar, Cecilia; Gonzalez Canche, Manuel S.; Moll, Luis C.

    2012-01-01

    Background/Context: Arizona's most recent English Language Learner (ELL) legislation, starting in the school year 2008-2009, requires all such students be educated through a specific Structured English Immersion (SEI) model: the 4-hour English Language Development (ELD) block. The basic premise behind this particular model is that ELL students…

  15. Assessment of bio-fuel options for solid oxide fuel cell applications

    NASA Astrophysics Data System (ADS)

    Lin, Jiefeng

    Rising concerns of inadequate petroleum supply, volatile crude oil price, and adverse environmental impacts from using fossil fuels have spurred the United States to promote bio-fuel domestic production and develop advanced energy systems such as fuel cells. The present dissertation analyzed the bio-fuel applications in a solid oxide fuel cell-based auxiliary power unit from environmental, economic, and technological perspectives. Life cycle assessment integrated with thermodynamics was applied to evaluate the environmental impacts (e.g., greenhouse gas emission, fossil energy consumption) of producing bio-fuels from waste biomass. Landfill gas from municipal solid wastes and biodiesel from waste cooking oil are both suggested as the promising bio-fuel options. A nonlinear optimization model was developed with a multi-objective optimization technique to analyze the economic aspect of biodiesel-ethanol-diesel ternary blends used in transportation sectors and capture the dynamic variables affecting bio-fuel productions and applications (e.g., market disturbances, bio-fuel tax credit, policy changes, fuel specification, and technological innovation). A single-tube catalytic reformer with rhodium/ceria-zirconia catalyst was used for autothermal reformation of various heavy hydrocarbon fuels (e.g., diesel, biodiesel, biodiesel-diesel, and biodiesel-ethanol-diesel) to produce a hydrogen-rich stream reformates suitable for use in solid oxide fuel cell systems. A customized mixing chamber was designed and integrated with the reformer to overcome the technical challenges of heavy hydrocarbon reformation. A thermodynamic analysis, based on total Gibbs free energy minimization, was implemented to optimize the operating environment for the reformations of various fuels. This was complimented by experimental investigations of fuel autothermal reformation. 25% biodiesel blended with 10% ethanol and 65% diesel was determined to be viable fuel for use on a truck travelling with

  16. Why Care About Aquatic Insects: Uses, Benefits, and Services

    EPA Science Inventory

    Mayflies and other aquatic insects are common subjects of ecological research, and environmental monitoring and assessment. However, their important role in protecting and restoring aquatic ecosystems is often challenged, because their benefits and services to humans are not obv...

  17. The Health Benefits of Exercise (Part 1 of 2).

    ERIC Educational Resources Information Center

    Physician and Sportsmedicine, 1987

    1987-01-01

    A panel of eight experts discuss the cardiovascular, lipoprotein, weight control, and psychological benefits of exercise on health. The challenge of motivating people to exercise regularly is explored. (Author/MT)

  18. Benefits of slush hydrogen for space missions

    NASA Technical Reports Server (NTRS)

    Friedlander, Alan; Zubrin, Robert; Hardy, Terry L.

    1991-01-01

    A study was performed to quantify the benefits of using slush hydrogen instead of normal boiling point liquid hydrogen as a fuel for several space missions. Vehicles considered in the study included the Space Shuttle/Shuttle-C, LEO to GEO transfer vehicles, Lunar and Mars transfer vehicles, and cryogenic depots in low Earth orbit. The advantages of using slush hydrogen were expressed in terms of initial mass differences at a constant payload, payload differences at a constant tank volume, and increases in fuel storage time for cryogenic depots. Both chemical oxygen/hydrogen and hydrogen nuclear thermal rocket propulsion were considered in the study. The results indicated that slush hydrogen offers the potential for significant decreases in initial mass and increases in payload for most missions studied. These advantages increase as the mission difficulty, or energy, increases.

  19. MONOLITHIC FUEL FABRICATION PROCESS DEVELOPMENT AT THE IDAHO NATIONAL LABORATORY

    SciTech Connect

    Glenn A. Moore; Francine J. Rice; Nicolas E. Woolstenhulme; W. David SwanK; DeLon C. Haggard; Jan-Fong Jue; Blair H. Park; Steven E. Steffler; N. Pat Hallinan; Michael D. Chapple; Douglas E. Burkes

    2008-10-01

    Within the Reduced Enrichment for Research and Test Reactors (RERTR) program directed by the US Department of Energy (DOE), UMo fuel-foils are being developed in an effort to realize high density monolithic fuel plates for use in high-flux research and test reactors. Namely, targeted are reactors that are not amenable to Low Enriched Uranium (LEU) fuel conversion via utilization of high density dispersion-based fuels, i.e. 8-9 gU/cc. LEU conversion of reactors having a need for >8-9 gU/cc fuel density will only be possible by way of monolithic fuel forms. The UMo fuel foils under development afford fuel meat density of ~16 gU/cc and thus have the potential to facilitate LEU conversions without any significant reactor-performance penalty. Two primary challenges have been established with respect to UMo monolithic fuel development; namely, fuel element fabrication and in-reactor fuel element performance. Both issues are being addressed concurrently at the Idaho National Laboratory. An overview is provided of the ongoing monolithic UMo fuel development effort at the Idaho National Laboratory (INL); including development of complex/graded fuel foils. Fabrication processes to be discussed include: UMo alloying and casting, foil fabrication via hot rolling, fuel-clad interlayer application via co-rolling and thermal spray processes, clad bonding via Hot Isostatic Pressing (HIP) and Friction Bonding (FB), and fuel plate finishing.

  20. THE MISSION AND ACCOMPLISHMENTS FROM DOE’S FUEL CYCLE RESEARCH AND DEVELOPMENT (FCRD) ADVANCED FUELS CAMPAIGN

    SciTech Connect

    J. Carmack; L. Braase; F. Goldner

    2015-09-01

    The mission of the Advanced Fuels Campaign (AFC) is to perform Research, Development, and Demonstration (RD&D) activities for advanced fuel forms (including cladding) to enhance the performance and safety of the nation’s current and future reactors, enhance proliferation resistance of nuclear fuel, effectively utilize nuclear energy resources, and address the longer-term waste management challenges. This includes development of a state of the art Research and Development (R&D) infrastructure to support the use of a “goal oriented science based approach.” AFC uses a “goal oriented, science based approach” aimed at a fundamental understanding of fuel and cladding fabrication methods and performance under irradiation, enabling the pursuit of multiple fuel forms for future fuel cycle options. This approach includes fundamental experiments, theory, and advanced modeling and simulation. One of the most challenging aspects of AFC is the management, integration, and coordination of major R&D activities across multiple organizations. AFC interfaces and collaborates with Fuel Cycle Technologies (FCT) campaigns, universities, industry, various DOE programs and laboratories, federal agencies (e.g., Nuclear Regulatory Commission [NRC]), and international organizations. Key challenges are the development of fuel technologies to enable major increases in fuel performance (safety, reliability, power and burnup) beyond current technologies, and development of characterization methods and predictive fuel performance models to enable more efficient development and licensing of advanced fuels. Challenged with the research and development of fuels for two different reactor technology platforms, AFC targeted transmutation fuel development and focused ceramic fuel development for Advanced LWR Fuels.

  1. Alcohol fuels in Illinois: prospects and implications

    SciTech Connect

    Rao, V.; Walzer, N.

    1981-10-01

    Because of the importance of corn to the Illinois economy, the use of corn in the production of fuel alcohol offered major economic benefits for the state. One of the advantages to Illinois resulting from the use of corn to produce ethanol was increased employment. Expansion of the alcohol fuels industry meant greater employment in the alcohol industry directly as well as increased employment in the industries indirectly involved in alcohol production. Finally, the increased income generated by the greater employment would create additional jobs throughout the economy. The increased employment which could result from an expansion of the alcohol fuels industry was estimated. The employment is estimated by first estimating the demand for gasoline and gasoline-alcohols fuels based on population and income trends. After the demand for gasoline-alcohol fuels has been estimated, the direct, indirect, and induced employment resulting from various market shares are determined.

  2. Fuel Cells: Status and Technical/Economic Needs

    NASA Technical Reports Server (NTRS)

    Rambach, Glenn

    1996-01-01

    The need for fuel cell and alternative fuels has become increasingly important in that the U.S. spends 1 billion dollars per week to import oil, and is expected to import 80-100 billion per year in oil by the year 2010. These imports account for half of our oil supply. If 20% of the U.S. vehicle fleet were powered by fuel cells there would be: an offset 1.1 million barrels of oil per day; and a reduction of 2 million tons per year of regulated air pollutants. Fueling fuel cells with hydrogen from reformed natural gas results in more than 90% reduction in regulated emissions, and a 70% reduction in CO2, a greenhouse gas. And fueling fuel cells with hydrogen from renewables (wind, solar geothermal, hydro) results in total elimination of all emissions. When fuel cells become commercialized: they will improve America's economic competitiveness; and the regions where they are produced will benefit economically.

  3. Final Progress Report, Renewable and Logistics Fuels for Fuel Cells at the Colorado School of Mines

    SciTech Connect

    Sullivan, Neal P.

    2012-08-06

    The objective of this program is to advance the current state of technology of solid-oxide fuel cells (SOFCs) to improve performance when operating on renewable and logistics hydrocarbon fuel streams. Outcomes will include: 1.) new SOFC materials and architectures that address the technical challenges associated with carbon-deposit formation and sulfur poisoning; 2.) new integration strategies for combining fuel reformers with SOFCs; 3.) advanced modeling tools that bridge the scales of fundamental charge-transfer chemistry to system operation and control; and 4.) outreach through creation of the Distinguished Lecturer Series to promote nationwide collaboration with fuel-cell researchers and scientists.

  4. Fuel cells: A utilities perspective

    NASA Astrophysics Data System (ADS)

    Hessenius, Chris A.; Ang, Amos; Hamilton, Stephanie

    Southern California Edison (SCE) is actively assessing how to maximize the benefits from fuel cell power systems and other distributed generation (DG) technologies deployed along existing distribution level circuits. From a utility perspective, the viability of DG fuel cell systems increase as the technology matures and more "value-added" features are incorporated. As the number of DG projects grows in SCE's service territory and optimism increases about the potential uses, so does the need to better understand the impact wide-scale deployment may have on the performance of California's energy system. Understanding how DG technologies affect distribution level circuits and devising effective deployment strategies is essential for the technology to gain widespread acceptance and become an integral part of SCE's Transmission and Distribution (T&D) system planning. Simulation results are presented in this paper that indicate fuel cell systems combined with electronically switched power inverters capable or providing reactive power (a.k.a. VAR) support are more advantageous than fuel cell systems without such inverter features. In fact, for the SCE circuit analyzed, a strategically placed 2.5 MW fuel cell system with VAR support capabilities has a greater affect on circuit performance than a 3 MW fuel cell system without VAR support. Even though the 2.5 MW fuel cell system with VAR support inverter possesses 16.7% less power rating than the 3 MW system without VAR support, it was more effective in reducing circuit current flows, reducing distribution line losses, and maintaining circuit voltage within ±5% of 12.47 kilovolts (kV).

  5. Benefits of an International Database for UF6 Cylinders

    SciTech Connect

    Babcock, R A; Whitaker, J M; Murphy, J; Oakberg, J

    2008-06-30

    A reasonable expectation regarding the nuclear energy renaissance is that the location of fuel cycle nuclear materials throughout the world will be known. We ask--would an international system for uranium hexafluoride (UF{sub 6}) cylinders provide the effective assurances expected for international fuel supply and of the international fuel centers? This paper introduces the question and discusses the potential benefits of tracking UF{sub 6} cylinders through the development of an international database. The nonproliferation benefits of an international database for UF{sub 6} cylinders being used in the fuel cycle include an enhanced capability to reconcile nuclear material imports and exports. Currently, import and export declarations only require the reporting of total 'rolled up' quantities of nuclear materials contained in all items--not the quantities of materials in individual items like individual UF{sub 6} cylinders. The database could provide supplier countries with more assurance on the location of the UF{sub 6} cylinders they export. Additionally, a comprehensive database on all declared cylinders would be a valuable resource in detecting and recognizing undeclared cylinders. The database could potentially be administered by the IAEA and be accessible to authorized countries around the world. During the nuclear renaissance, the general public, as well as the participants will expect transparency and quality information about movement of nuclear fuel cycle nuclear materials. We will discuss the potential benefits of such a database for the suppliers, inspectorates, and general public.

  6. Benefits of infant massage.

    PubMed

    Day, Jane

    2014-05-01

    After spending three months as a clinical midwifery tutor at a remote hospital in Zambia, where I helped to train student midwives and other students, my interest in infant massage was ignited, having witnessed the benefits of massage to both mother and baby. Once back in the UK, I trained and qualified as a massage instructor with an international infant massage training organisation, which has led me to work extensively with parents and babies, offering one-to-one and group courses. It has been a privilege to be able to teach parents the valuable skill of infant massage, and consequently pass on the benefits both physiological and psychosocial.

  7. Noncaloric Benefits of Carbohydrates.

    PubMed

    Reddy, B Ravinder

    2015-01-01

    Noncaloric benefits of carbohydrates are due to the presence of dietary fibers, which are a heterogeneous group of natural food sources and form an important component of a healthy diet. They differ in physiochemical properties such as solubility, fermentability and viscosity. They have a wide range of physiological effects resulting in gastrointestinal and systemic benefits. These include appetite, satiety, bowel transit time and function, production of short-chain fatty acids and certain vitamins, and effects on gut microbiota, immunity and inflammation, as well as mineral absorption. They also help to control the glycemic status and serum lipid levels, resulting in reduced incidence rates of atherosclerosis, hypertension, stroke and cardiovascular diseases.

  8. Aircraft fuel conservation technology. Task force report, September 10, 1975

    NASA Technical Reports Server (NTRS)

    1975-01-01

    An advanced technology program is described for reduced fuel consumption in air transport. Cost benefits and estimates are given for improved engine design and components, turboprop propulsion systems, active control systems, laminar flow control, and composite primary structures.

  9. Basic Research Needs for Clean and Efficient Combustion of 21st Century Transportation Fuels

    SciTech Connect

    McIlroy, A.; McRae, G.; Sick, V.; Siebers, D. L.; Westbrook, C. K.; Smith, P. J.; Taatjes, C.; Trouve, A.; Wagner, A. F.; Rohlfing, E.; Manley, D.; Tully, F.; Hilderbrandt, R.; Green, W.; Marceau, D.; O'Neal, J.; Lyday, M.; Cebulski, F.; Garcia, T. R.; Strong, D.

    2006-11-01

    To identify basic research needs and opportunities underlying utilization of evolving transportation fuels, with a focus on new or emerging science challenges that have the potential for significant long-term impact on fuel efficiency and emissions.

  10. Biodiesel: an alternative fuel.

    PubMed

    Manzanera, Maximino; Molina-Muñoz, Maria L; González-López, Jesús

    2008-01-01

    Biodiesel is an alternative energy source and could be a substitute for petroleum-based diesel fuel. To be a viable alternative, a biofuel should provide a net energy gain, have environmental benefits, be economically competitive, and be producible in large quantities without reducing food supplies. Most of the sources, methods and apparatus to produce biodiesel are reviewed here. Some of the patents propose the use of oils and fats of animal or vegetal origin and other kind of sources. Many others focus on the methods for the production or oxidation stability of the biofuel in order to make its production economically competitive. Several apparatus comprising reactors and refineries are also presented. This review article summarizes recent and important patents relating to the production of biodiesel to make its production a viable alternative.

  11. Changing the Rules on Fuel Export at Sellafield's First Fuel Storage Pond - 12065

    SciTech Connect

    Carlisle, Derek

    2012-07-01

    The Pile Fuel Storage Pond (PFSP) was built in 1949/50 to receive, store and de-can fuel and isotopes from the Windscale Piles. Following closure of the Piles in 1957, plant operations were scaled down until fuel processing eventually ceased in 1962. The facility has held an inventory of metal fuel both from the Piles and from other programmes since that time. The pond is currently undergoing remediation and removal of the fuel is a key step in that process, unfortunately the fuel export infrastructure on the plant is no longer functional and due to the size and limited lifting capability, the plant is not compatible with today's large volume heavy export flasks. The baseline scheme for the plant is to package fuel into a small capacity flask and transfer it to another facility for treatment and repackaging into a flask compatible with other facilities on site. Due to programme priorities the repackaging facility is not available to do this work for several years causing a delay to the work. In an effort accelerate the programme the Metal Fuel Pilot Project (MFPP) was initiated to challenge the norms for fuel transfer and develop a new methodology for transferring the fuel. In developing a transfer scheme the team had to overcome challenges associated with unknown fuel condition, transfers outside of bulk containment, pyro-phoricity and oxidisation hazards as well as developing remote control and recovery systems for equipment not designed for this purpose. A combination of novel engineering and enhanced operational controls were developed which resulted in the successful export of the first fuel to leave the Pile Fuel Storage Pond in over 40 years. The learning from the pilot project is now being considered by the main project team to see how the new methodology can be applied to the full inventory of the pond. (author)

  12. Benefits Assessment for Tactical Runway Configuration Management Tool

    NASA Technical Reports Server (NTRS)

    Oseguera-Lohr, Rosa; Phojanamongkolkij, Nipa; Lohr, Gary; Fenbert, James W.

    2013-01-01

    The Tactical Runway Configuration Management (TRCM) software tool was developed to provide air traffic flow managers and supervisors with recommendations for airport configuration changes and runway usage. The objective for this study is to conduct a benefits assessment at Memphis (MEM), Dallas Fort-Worth (DFW) and New York's John F. Kennedy (JFK) airports using the TRCM tool. Results from simulations using the TRCM-generated runway configuration schedule are compared with results using historical schedules. For the 12 days of data used in this analysis, the transit time (arrival fix to spot on airport movement area for arrivals, or spot to departure fix for departures) for MEM departures is greater (7%) than for arrivals (3%); for JFK, there is a benefit for arrivals (9%) but not for departures (-2%); for DFW, arrivals show a slight benefit (1%), but this is offset by departures (-2%). Departure queue length benefits show fewer aircraft in queue for JFK (29%) and MEM (11%), but not for DFW (-13%). Fuel savings for surface operations at MEM are seen for both arrivals and departures. At JFK there are fuel savings for arrivals, but these are offset by increased fuel use for departures. In this study, no surface fuel benefits resulted for DFW. Results suggest that the TRCM algorithm requires modifications for complex surface traffic operations that can cause taxi delays. For all three airports, the average number of changes in flow direction (runway configuration) recommended by TRCM was many times greater than the historical data; TRCM would need to be adapted to a particular airport's needs, to limit the number of changes to acceptable levels. The results from this analysis indicate the TRCM tool can provide benefits at some high-capacity airports. The magnitude of these benefits depends on many airport-specific factors and would require adaptation of the TRCM tool; a detailed assessment is needed prior to determining suitability for a particular airport.

  13. The Back End of the Fuel Cycle Moves Front and Center

    SciTech Connect

    Isaacs, T; Choi, J

    2006-02-16

    For many years, the commercial nuclear business has remained relatively stable in many ways. The introduction of new plants, the spread to new countries, and the development of key elements of the fuel cycle such as enrichment, reprocessing and waste disposal have been quite modest. That is unlikely to be the case in the coming years. A number of events and trends are becoming increasingly apparent and are cause for both opportunity and caution: (1) New nuclear power plant orders are likely to grow and spread, particularly in the developing world, e.g. China and India. (2) The growing recognition that the developing world will be a major competitor for limited energy resources is raising awareness in the developed world regarding concerns for future energy security. (3) Clearer evidence of the effects of greenhouse gas emissions on global warming, largely from the burning of fossil fuels, is creating more attention on the environmental benefits of nuclear power. (4) The last decade has shown unequivocal evidence of countries lying, cheating on their NPT obligation, and covertly carrying out nuclear weapons-related activities. Some have suggested their presumed need for a domestic nuclear fuel cycle as a rationale to pursue enrichment and/or reprocessing capabilities, which would move them to the doorstep of being nuclear weapons capable. The DPRK even took the action to abrogate the NPT to hold on to its nuclear weapons program. (5) 9/11 and other evidence have made it undeniable that terrorist groups would like to obtain weapons of mass destruction, particularly nuclear weapons, and would use them if they could. A number of initiatives have been proposed recently to allow for the growth and spread of nuclear power while limiting the justifications for additional countries to pursue the acquisition of enrichment or reprocessing capabilities. Most of these initiatives have fresh fuel assurance as a central component. The rationale is simple; if a country can have

  14. Fuel Burn Estimation Model

    NASA Technical Reports Server (NTRS)

    Chatterji, Gano

    2011-01-01

    Conclusions: Validated the fuel estimation procedure using flight test data. A good fuel model can be created if weight and fuel data are available. Error in assumed takeoff weight results in similar amount of error in the fuel estimate. Fuel estimation error bounds can be determined.

  15. Aviation fuels outlook

    NASA Technical Reports Server (NTRS)

    Momenthy, A. M.

    1980-01-01

    Options for satisfying the future demand for commercial jet fuels are analyzed. It is concluded that the most effective means to this end are to attract more refiners to the jet fuel market and encourage development of processes to convert oil shale and coal to transportation fuels. Furthermore, changing the U.S. refineries fuel specification would not significantly alter jet fuel availability.

  16. Final Scientific Report, New Proton Conductive Composite Materials for PEM Fuel Cells

    SciTech Connect

    Lvov, Serguei

    2010-11-08

    This project covered one of the main challenges in present-day PEM fuel cell technology: to design a membrane capable of maintaining high conductivity and mechanical integrity when temperature is elevated and water vapor pressure is severely reduced. The DOE conductivity milestone of 0.1 S cm-1 at 120 degrees C and 50 % relative humidity (RH) for designed membranes addressed the target for the project. Our approach presumed to develop a composite membrane with hydrophilic proton-conductive inorganic material and the proton conductive polymeric matrix that is able to “bridge” the conduction paths in the membrane. The unique aspect of our approach was the use of highly functionalized inorganic additives to benefit from their water retention properties and high conductivity as well. A promising result turns out that highly hydrophilic phosphorsilicate gels added in Nafion matrix improved PEM fuel cell performance by over 50% compared with bare Nafion membrane at 120 degrees C and 50 % RH. This achievement realizes that the fuel cell operating pressure can be kept low, which would make the PEM fuel cell much more cost efficient and adaptable to practical operating conditions and facilitate its faster commercialization particularly in automotive and stationary applications.

  17. 146. FUEL LINE TO SKID 2 (FUEL LOADER) IN FUEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    146. FUEL LINE TO SKID 2 (FUEL LOADER) IN FUEL CONTROL ROOM (215), LSB (BLDG. 751). LIQUID NITROGEN/HELIUM HEAT EXCHANGER ON RIGHT. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  18. Orientation to student placements: needs and benefits.

    PubMed

    Worrall, Katie

    2007-02-01

    A review of evidence on the benefits and challenges of student orientation is used in this article alongside experiences of orientation days on a children's ward to consider ways in which such programmes could be improved. Orientation to clinical placements can enhance learning by helping students to feel they fit in, reduce anxiety and increase motivation to learn through early identification of learning outcomes. However, there are challenges in the practical implementation of orientation including timing of students' starting dates, staff time, consistency and level of information and teaching. Increased involvement of individual mentors could improve orientation and optimise students' learning experiences.

  19. Benefits of Geothermal Energy

    SciTech Connect

    2004-07-01

    One of the principal benefits of geothermal power plants is that they provide baseload power. Baseload power plants provide power all or most of the time and contrast with peaker plants which turn on or off as demand rises, or peaks, throughout the day. Geothermal plants contrast with other renewable energy resources like wind and solar energy that generate power intermittently.

  20. The Benefits of Latin?

    ERIC Educational Resources Information Center

    Holliday, Lisa R.

    2012-01-01

    Classicists have long claimed that the study of Latin has benefits that exceed knowledge of the language itself, and in the current economic times, these claims are made with urgency. Indeed, many contend that Latin improves English grammar and writing skills, cognitive abilities, and develops transferable skills necessary for success in the…

  1. GIO benefits the USGS

    USGS Publications Warehouse

    McDermott, M.P.

    2004-01-01

    The Geographic Information Office (GIO) benefits the U.S. Geological Survey (USGS) by providing access to and delivery of USGS information and services, safety and security of USGS data and information, support for USGS science, and coordination of partnerships through Federal interagency data committees.

  2. Costs and benefits

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Two models of cost benefit analysis are illustrated and the application of these models to assessing the economic scope of space applications programs was discussed. Four major areas cited as improvable through space derived information - food supply and distribution, energy sources, mineral reserves, and communication and navigation were - discussed. Specific illustrations are given for agriculture and maritime traffic.

  3. Benefits of Conducting Research.

    ERIC Educational Resources Information Center

    Anderson, Frances E.

    2001-01-01

    Metaphors for researchers, such as a crusader; a traveler; an explorer; a miner; an astronaut; a biblical Daniel; a Samurai; and an archaeologist are discussed. Benefits of conducting research are enumerated, including building the knowledge base for art therapy; increasing professional opportunities; improving client care; and advancing the…

  4. The Benefits of Bilingualism.

    ERIC Educational Resources Information Center

    Zelasko, Nancy

    1998-01-01

    This paper presents the academic benefits of bilingual education gained by language-minority students, highlighting school districts that have had great success with bilingual education and discussing the negative consequences of the proposed English for Children initiative, which would end bilingual education and instead provide intensive…

  5. Space for Mankind's Benefit.

    ERIC Educational Resources Information Center

    von Puttkamer, Jesco, Ed.; McCullough, Thomas J., Ed.

    Presented are the proceedings of the first international Congress on "Space for Mankind's Benefit" organized by the Huntsville Association of Technical Societies and held November 15-19, 1971, at Huntsville, Alabama. Following introductory statements, a total of 45 articles read in 10 sessions are incorporated. The session headings are: Man in…

  6. Materials for solar fuels and chemicals

    NASA Astrophysics Data System (ADS)

    Montoya, Joseph H.; Seitz, Linsey C.; Chakthranont, Pongkarn; Vojvodic, Aleksandra; Jaramillo, Thomas F.; Nørskov, Jens K.

    2017-01-01

    The conversion of sunlight into fuels and chemicals is an attractive prospect for the storage of renewable energy, and photoelectrocatalytic technologies represent a pathway by which solar fuels might be realized. However, there are numerous scientific challenges in developing these technologies. These include finding suitable materials for the absorption of incident photons, developing more efficient catalysts for both water splitting and the production of fuels, and understanding how interfaces between catalysts, photoabsorbers and electrolytes can be designed to minimize losses and resist degradation. In this Review, we highlight recent milestones in these areas and some key scientific challenges remaining between the current state of the art and a technology that can effectively convert sunlight into fuels and chemicals.

  7. Materials for solar fuels and chemicals.

    PubMed

    Montoya, Joseph H; Seitz, Linsey C; Chakthranont, Pongkarn; Vojvodic, Aleksandra; Jaramillo, Thomas F; Nørskov, Jens K

    2016-12-20

    The conversion of sunlight into fuels and chemicals is an attractive prospect for the storage of renewable energy, and photoelectrocatalytic technologies represent a pathway by which solar fuels might be realized. However, there are numerous scientific challenges in developing these technologies. These include finding suitable materials for the absorption of incident photons, developing more efficient catalysts for both water splitting and the production of fuels, and understanding how interfaces between catalysts, photoabsorbers and electrolytes can be designed to minimize losses and resist degradation. In this Review, we highlight recent milestones in these areas and some key scientific challenges remaining between the current state of the art and a technology that can effectively convert sunlight into fuels and chemicals.

  8. FUEL FORMULATION EFFECTS ON DIESEL FUEL INJECTION, COMBUSTION, EMISSIONS AND EMISSION CONTROL

    SciTech Connect

    Boehman, A; Alam, M; Song, J; Acharya, R; Szybist, J; Zello, V; Miller, K

    2003-08-24

    This paper describes work under a U.S. DOE sponsored Ultra Clean Fuels project entitled ''Ultra Clean Fuels from Natural Gas,'' Cooperative Agreement No. DE-FC26-01NT41098. In this study we have examined the incremental benefits of moving from low sulfur diesel fuel and ultra low sulfur diesel fuel to an ultra clean fuel, Fischer-Tropsch diesel fuel produced from natural gas. Blending with biodiesel, B100, was also considered. The impact of fuel formulation on fuel injection timing, bulk modulus of compressibility, in-cylinder combustion processes, gaseous and particulate emissions, DPF regeneration temperature and urea-SCR NOx control has been examined. The primary test engine is a 5.9L Cummins ISB, which has been instrumented for in-cylinder combustion analysis and in-cylinder visualization with an engine videoscope. A single-cylinder engine has also been used to examine in detail the impacts of fuel formulation on injection timing in a pump-line-nozzle fueling system, to assist in the interpretation of results from the ISB engine.

  9. Medical big data: promise and challenges.

    PubMed

    Lee, Choong Ho; Yoon, Hyung-Jin

    2017-03-01

    The concept of big data, commonly characterized by volume, variety, velocity, and veracity, goes far beyond the data type and includes the aspects of data analysis, such as hypothesis-generating, rather than hypothesis-testing. Big data focuses on temporal stability of the association, rather than on causal relationship and underlying probability distribution assumptions are frequently not required. Medical big data as material to be analyzed has various features that are not only distinct from big data of other disciplines, but also distinct from traditional clinical epidemiology. Big data technology has many areas of application in healthcare, such as predictive modeling and clinical decision support, disease or safety surveillance, public health, and research. Big data analytics frequently exploits analytic methods developed in data mining, including classification, clustering, and regression. Medical big data analyses are complicated by many technical issues, such as missing values, curse of dimensionality, and bias control, and share the inherent limitations of observation study, namely the inability to test causality resulting from residual confounding and reverse causation. Recently, propensity score analysis and instrumental variable analysis have been introduced to overcome these limitations, and they have accomplished a great deal. Many challenges, such as the absence of evidence of practical benefits of big data, methodological issues including legal and ethical issues, and clinical integration and utility issues, must be overcome to realize the promise of medical big data as the fuel of a continuous learning healthcare system that will improve patient outcome and reduce waste in areas including nephrology.

  10. Medical big data: promise and challenges

    PubMed Central

    Lee, Choong Ho; Yoon, Hyung-Jin

    2017-01-01

    The concept of big data, commonly characterized by volume, variety, velocity, and veracity, goes far beyond the data type and includes the aspects of data analysis, such as hypothesis-generating, rather than hypothesis-testing. Big data focuses on temporal stability of the association, rather than on causal relationship and underlying probability distribution assumptions are frequently not required. Medical big data as material to be analyzed has various features that are not only distinct from big data of other disciplines, but also distinct from traditional clinical epidemiology. Big data technology has many areas of application in healthcare, such as predictive modeling and clinical decision support, disease or safety surveillance, public health, and research. Big data analytics frequently exploits analytic methods developed in data mining, including classification, clustering, and regression. Medical big data analyses are complicated by many technical issues, such as missing values, curse of dimensionality, and bias control, and share the inherent limitations of observation study, namely the inability to test causality resulting from residual confounding and reverse causation. Recently, propensity score analysis and instrumental variable analysis have been introduced to overcome these limitations, and they have accomplished a great deal. Many challenges, such as the absence of evidence of practical benefits of big data, methodological issues including legal and ethical issues, and clinical integration and utility issues, must be overcome to realize the promise of medical big data as the fuel of a continuous learning healthcare system that will improve patient outcome and reduce waste in areas including nephrology. PMID:28392994

  11. Fuel extender

    SciTech Connect

    Dorn, G.K.; Gilbert, H.A.

    1989-02-21

    An efficient and cost competitive fuel extender liquid is described for blending with lead-free gasoline as an additive thereto in a maximum amount of up to about 35% thereof with 65% by volume of the gasoline in a blended mixture wherein. The content of the extender in the resultant fuel as proportioned on the basis of its thus representative maximum content consists essentially of: naphtha X as represented by C/sub 4/, C/sub 5/ and C/sub 6/ hydrocarbons having a Reid vapor pressure of about 8.5 to 9.6 per ASTM, D323 test procedure and an initial distillation point of about 101/sup 0/F. and an end point of about 280/sup 0/F. within a range of about 10 to 25% by volume, about 3.8 to 6.0% by volume of anhydrous ethanol, a stabilizing amount of a water repellent of the class consisting of ethyl acetate and methyl isotubyl ketone; and about 4 to 10.5% by volume of aromatics benzene and toluene, of benzene and xylene or of benzene with toluene and xylene; the extender having a specific gravity substantially comparable with that of the lead-free gasoline to which it is to be added and having phase stability in the presence of water when mixed with the gasoline.

  12. Advanced Fuels Campaign FY 2014 Accomplishments Report

    SciTech Connect

    Braase, Lori; May, W. Edgar

    2014-10-01

    The mission of the Advanced Fuels Campaign (AFC) is to perform Research, Development, and Demonstration (RD&D) activities for advanced fuel forms (including cladding) to enhance the performance and safety of the nation’s current and future reactors; enhance proliferation resistance of nuclear fuel; effectively utilize nuclear energy resources; and address the longer-term waste management challenges. This includes development of a state-of-the art Research and Development (R&D) infrastructure to support the use of a “goal-oriented science-based approach.” In support of the Fuel Cycle Research and Development (FCRD) program, AFC is responsible for developing advanced fuels technologies to support the various fuel cycle options defined in the Department of Energy (DOE) Nuclear Energy Research and Development Roadmap, Report to Congress, April 2010. AFC uses a “goal-oriented, science-based approach” aimed at a fundamental understanding of fuel and cladding fabrication methods and performance under irradiation, enabling the pursuit of multiple fuel forms for future fuel cycle options. This approach includes fundamental experiments, theory, and advanced modeling and simulation. The modeling and simulation activities for fuel performance are carried out under the Nuclear Energy Advanced Modeling and Simulation (NEAMS) program, which is closely coordinated with AFC. In this report, the word “fuel” is used generically to include fuels, targets, and their associated cladding materials. R&D of light water reactor (LWR) fuels with enhanced accident tolerance is also conducted by AFC. These fuel systems are designed to achieve significantly higher fuel and plant performance to allow operation to significantly higher burnup, and to provide enhanced safety during design basis and beyond design basis accident conditions. The overarching goal is to develop advanced nuclear fuels and materials that are robust, have high performance capability, and are more tolerant to

  13. Harvest and utilization of chemical energy in wastes by microbial fuel cells.

    PubMed

    Sun, Min; Zhai, Lin-Feng; Li, Wen-Wei; Yu, Han-Qing

    2016-05-21

    Organic wastes are now increasingly viewed as a resource of energy that can be harvested by suitable biotechnologies. One promising technology is microbial fuel cells (MFC), which can generate electricity from the degradation of organic pollutants. While the environmental benefits of MFC in waste treatment have been recognized, their potential as an energy producer is not fully understood. Although progresses in material and engineering have greatly improved the power output from MFC, how to efficiently utilize the MFC's energy in real-world scenario remains a challenge. In this review, fundamental understandings on the energy-generating capacity of MFC from real waste treatment are provided and the challenges and opportunities are discussed. The limiting factors restricting the energy output and impairing the long-term reliability of MFC are also analyzed. Several energy storage and in situ utilization strategies for the management of MFC's energy are proposed, and future research needs for real-world application of this approach are explored.

  14. Presidential Green Chemistry Challenge: 2005 Small Business Award

    EPA Pesticide Factsheets

    Presidential Green Chemistry Challenge 2005 award winner, Metabolix, used biotechnology to develop microorganisms that produce polyhydroxyalkanoates: natural, biodegradable plastics with a range of environmental benefits.

  15. Hydrogen fuel cells could power ships at port

    SciTech Connect

    Pratt, Joe

    2013-06-27

    Sandia National Laboratories researcher Joe Pratt conducted a study on the use of hydrogen fuel cells to power docked ships at major ports. He found the potential environmental and cost benefits to be substantial. Here, he discusses the study and explains how hydrogen fuel cells can provide efficient, pollution-free energy to ships at port.

  16. Hydrogen fuel cells could power ships at port

    ScienceCinema

    Pratt, Joe

    2016-07-12

    Sandia National Laboratories researcher Joe Pratt conducted a study on the use of hydrogen fuel cells to power docked ships at major ports. He found the potential environmental and cost benefits to be substantial. Here, he discusses the study and explains how hydrogen fuel cells can provide efficient, pollution-free energy to ships at port.

  17. The challenges of big data

    PubMed Central

    2016-01-01

    ABSTRACT The largely untapped potential of big data analytics is a feeding frenzy that has been fueled by the production of many next-generation-sequencing-based data sets that are seeking to answer long-held questions about the biology of human diseases. Although these approaches are likely to be a powerful means of revealing new biological insights, there are a number of substantial challenges that currently hamper efforts to harness the power of big data. This Editorial outlines several such challenges as a means of illustrating that the path to big data revelations is paved with perils that the scientific community must overcome to pursue this important quest. PMID:27147249

  18. Fuel cells: A survey

    NASA Technical Reports Server (NTRS)

    Crowe, B. J.

    1973-01-01

    A survey of fuel cell technology and applications is presented. The operating principles, performance capabilities, and limitations of fuel cells are discussed. Diagrams of fuel cell construction and operating characteristics are provided. Photographs of typical installations are included.

  19. Renewable Fuel Standard Program

    EPA Pesticide Factsheets

    Information about regulations, developed by EPA, in collaboration with refiners, renewable fuel producers, and many other stakeholders, that ensure that transportation fuel sold in the United States contains a minimum volume of renewable fuel.

  20. The benefits of bioventing

    SciTech Connect

    Schweizer, J.W.

    1996-08-01

    Bioventing, a variation of soil vapor extraction (SVE), has been used in recent years as an in-situ soil remediation method. SVE is applicable to the remediation of soils contaminated by solvents, gasoline and other relatively high vapor pressure compounds that can be volatilized to subsurface soil gas. Bioventing adapts SVE to treat relatively non-volatile materials, such as diesel fuel oil. Bioventing also is useful for reducing the cost of air pollution abatement for in-situ treatment of biodegradable volatile materials, such as gasoline and non-halogenated solvents.