DOE Office of Scientific and Technical Information (OSTI.GOV)
Serell, D.C.; Kaplan, S.
1980-09-01
Purpose of this evaluation is to estimate the magnitude and effects of irradiation and creep induced fuel bundle deformations in the developmental plant. This report focuses on the trends of the results and the ability of present models to evaluate the assembly temperatures in the presence of bundle deformation. Although this analysis focuses on the developmental plant, the conclusions are applicable to LMFBR fuel assemblies in general if they have wire spacers.
75 FR 7557 - Airworthiness Directives; The Boeing Company Model 767 Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-22
... shorts in many systems, including the spar fuel shut off valve, oxygen mask deployment, and burned wires... and wire bundles, causing shorts in many systems, including the spar fuel shut off valve, oxygen mask... and wire bundles, causing shorts in many systems, including the spar fuel shut off valve, oxygen mask...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reese, A.P.; Crowther, R.L. Jr.
1992-02-18
This patent describes improvement in a boiling water reactor core having a plurality of vertically upstanding fuel bundles; each fuel bundle containing longitudinally extending sealed rods with fissile material therein; the improvement comprises the fissile material including a mixture of uranium and recovered plutonium in rods of the fuel bundle at locations other than the corners of the fuel bundle; and, neutron absorbing material being located in rods of the fuel bundle at rod locations adjacent the corners of the fuel bundles whereby the neutron absorbing material has decreased shielding from the plutonium and maximum exposure to thermal neutrons formore » shaping the cold reactivity shutdown zone in the fuel bundle.« less
Townsend, Harold E.; Barbanti, Giancarlo
1994-01-01
A nuclear fuel bundle fuel transfer system includes a transfer pool containing water at a level above a reactor core. A fuel transfer machine therein includes a carriage disposed in the transfer pool and under the water for transporting fuel bundles. The carriage is selectively movable through the water in the transfer pool and individual fuel bundles are carried vertically in the carriage. In a preferred embodiment, a first movable bridge is disposed over an upper pool containing the reactor core, and a second movable bridge is disposed over a fuel storage pool, with the transfer pool being disposed therebetween. A fuel bundle may be moved by the first bridge from the reactor core and loaded into the carriage which transports the fuel bundle to the second bridge which picks up the fuel bundle and carries it to the fuel storage pool.
Townsend, H.E.; Barbanti, G.
1994-03-01
A nuclear fuel bundle fuel transfer system includes a transfer pool containing water at a level above a reactor core. A fuel transfer machine therein includes a carriage disposed in the transfer pool and under the water for transporting fuel bundles. The carriage is selectively movable through the water in the transfer pool and individual fuel bundles are carried vertically in the carriage. In a preferred embodiment, a first movable bridge is disposed over an upper pool containing the reactor core, and a second movable bridge is disposed over a fuel storage pool, with the transfer pool being disposed therebetween. A fuel bundle may be moved by the first bridge from the reactor core and loaded into the carriage which transports the fuel bundle to the second bridge which picks up the fuel bundle and carries it to the fuel storage pool. 6 figures.
76 FR 62653 - Airworthiness Directives; Airbus Model A310 Series Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-11
... the fuel electrical circuit in the Right Hand (RH) wing must be modified in order to ensure better... 2S of the fuel electrical circuit in the Right Hand (RH) wing must be modified in order to ensure... the wire bundle 2S in the RH wing pylon area to the generator wire bundle of engine 2. The...
Quasi-heterogeneous efficient 3-D discrete ordinates CANDU calculations using Attila
DOE Office of Scientific and Technical Information (OSTI.GOV)
Preeti, T.; Rulko, R.
2012-07-01
In this paper, 3-D quasi-heterogeneous large scale parallel Attila calculations of a generic CANDU test problem consisting of 42 complete fuel channels and a perpendicular to fuel reactivity device are presented. The solution method is that of discrete ordinates SN and the computational model is quasi-heterogeneous, i.e. fuel bundle is partially homogenized into five homogeneous rings consistently with the DRAGON code model used by the industry for the incremental cross-section generation. In calculations, the HELIOS-generated 45 macroscopic cross-sections library was used. This approach to CANDU calculations has the following advantages: 1) it allows detailed bundle (and eventually channel) power calculationsmore » for each fuel ring in a bundle, 2) it allows the exact reactivity device representation for its precise reactivity worth calculation, and 3) it eliminates the need for incremental cross-sections. Our results are compared to the reference Monte Carlo MCNP solution. In addition, the Attila SN method performance in CANDU calculations characterized by significant up scattering is discussed. (authors)« less
CFD Analysis of Coolant Flow in VVER-440 Fuel Assemblies with the Code ANSYS CFX 10.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toth, Sandor; Legradi, Gabor; Aszodi, Attila
2006-07-01
From the aspect of planning the power upgrading of nuclear reactors - including the VVER-440 type reactor - it is essential to get to know the flow field in the fuel assembly. For this purpose we have developed models of the fuel assembly of the VVER-440 reactor using the ANSYS CFX 10.0 CFD code. At first a 240 mm long part of a 60 degrees segment of the fuel pin bundle was modelled. Implementing this model a sensitivity study on the appropriate meshing was performed. Based on the development of the above described model, further models were developed: a 960more » mm long part of a 60-degree-segment and a full length part (2420 mm) of the fuel pin bundle segment. The calculations were run using constant coolant properties and several turbulence models. The impacts of choosing different turbulence models were investigated. The results of the above-mentioned investigations are presented in this paper. (authors)« less
Calculation of Heat-Bearing Agent’s Steady Flow in Fuel Bundle
NASA Astrophysics Data System (ADS)
Amosova, E. V.; Guba, G. G.
2017-11-01
This paper introduces the result of studying the heat exchange in the fuel bundle of the nuclear reactor’s fuel magazine. The article considers the fuel bundle of the infinite number of fuel elements, fuel elements are considered in the checkerboard fashion (at the tops of a regular triangle a fuel element is a plain round rod. The inhomogeneity of volume energy release in the rod forms the inhomogeneity of temperature and velocity fields, and pressure. Computational methods for studying hydrodynamics in magazines and cores with rod-shape fuel elements are based on a significant simplification of the problem: using basic (averaged) equations, isobaric section hypothesis, porous body model, etc. This could be explained by the complexity of math description of the three-dimensional fluid flow in the multi-connected area with the transfer coefficient anisotropy, curved boundaries and technical computation difficulties. Thus, calculative studying suggests itself as promising and important. There was developed a method for calculating the heat-mass exchange processes of inter-channel fuel element motions, which allows considering the contribution of natural convection to the heat-mass exchange based on the Navier-Stokes equations and Boussinesq approximation.
Numerical Study on Influence of Cross Flow on Rewetting of AHWR Fuel Bundle
Kumar, Mithilesh; Mukhopadhyay, D.; Ghosh, A. K.; Kumar, Ravi
2014-01-01
Numerical study on AHWR fuel bundle has been carried out to assess influence of circumferential and cross flow rewetting on the conduction heat transfer. The AHWR fuel bundle quenching under accident condition is designed primarily with radial jets at several axial locations. A 3D (r, θ, z) transient conduction fuel pin model has been developed to carry out the study with a finite difference method (FDM) technique with alternating direction implicit (ADI) scheme. The single pin has been considered to study effect of circumferential conduction and multipins have been considered to study the influence of cross flow. Both analyses are carried out with the same fluid temperature and heat transfer coefficients as boundary conditions. It has been found from the analyses that, for radial jet, the circumferential conduction is significant and due to influence of overall cross flow the reductions in fuel temperature in the same quench plane in different rings are different with same initial surface temperature. Influence of cross flow on rewetting is found to be very significant. Outer fuel pins rewetting time is higher than inner. PMID:24672341
Two-phase pressure drop reduction BWR assembly design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dix, G.E.; Crowther, R.L.; Colby, M.J.
1992-05-12
This patent describes a boiling water reactor having discrete bundles of fuel rods confined within channel enclosed fuel assemblies, an improvement to a fuel bundle assembly for placement in the reactor. It comprises a fuel channel having vertically extending walls forming a continuous channel around a fuel assembly volume, the channel being open at the bottom end for engagement to a lower tie plate and open at the upper end for engagement to an upper tie plate; rods for placement within the chamber, each the rod containing fissile material for producing nuclear reaction when in the presence of sufficient moderatedmore » neutron flux; a lower tie plate for supporting the bundle of rods within the channel, the lower tie plate for supporting the bundle of rods within the channel, the lower tie plate joining the bottom of the channel to close the bottom end of the channel, the lower tie plate providing defined apertures for the inflow of water in the channel between the rods for the generating of steam during the nuclear reaction; the plurality of fuel rods extending from the lower tie plate wherein a single phase region of the water in the bundle is defined to an upward portion of the bundle wherein a two phase region of the water and steam in the bundle is defined during nuclear steam generating reaction in the fuel bundle.« less
NASA Astrophysics Data System (ADS)
Maskal, Alan B.
Spacer grids maintain the structural integrity of the fuel rods within fuel bundles of nuclear power plants. They can also improve flow characteristics within the nuclear reactor core. However, spacer grids add reactor coolant pressure losses, which require estimation and engineering into the design. Several mathematical models and computer codes were developed over decades to predict spacer grid pressure loss. Most models use generalized characteristics, measured by older, less precise equipment. The study of OECD/US-NRC BWR Full-Size Fine Mesh Bundle Tests (BFBT) provides updated and detailed experimental single and two-phase results, using technically advanced flow measurements for a wide range of boundary conditions. This thesis compares the predictions from the mathematical models to the BFBT experimental data by utilizing statistical formulae for accuracy and precision. This thesis also analyzes the effects of BFBT flow characteristics on spacer grids. No single model has been identified as valid for all flow conditions. However, some models' predictions perform better than others within a range of flow conditions, based on the accuracy and precision of the models' predictions. This study also demonstrates that pressure and flow quality have a significant effect on two-phase flow spacer grid models' biases.
NASA Astrophysics Data System (ADS)
Satyanarayana, G.; Narayana, K. L.; Boggarapu, Nageswara Rao
2018-03-01
In the nuclear industry, a critical welding process is joining of an end plate to a fuel rod to form a fuel bundle. Literature on zirconium welding in such a critical operation is limited. A CFD model is developed and performed for the three-dimensional non-linear thermo-fluid analysis incorporating buoyancy and Marnangoni stress and specifying temperature dependent properties to predict weld geometry and temperature field in and around the melt pool of laser spot during welding of a zirconium alloy E110 endplate with a fuel rod. Using this method, it is possible to estimate the weld pool dimensions for the specified laser power and laser-on-time. The temperature profiles will estimate the HAZ and microstructure. The adequacy of generic nature of the model is validated with existing experimental data.
Seed and blanket fuel arrangement for dual-phase nuclear reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Congdon, S.P.; Fawcett, R.M.
1992-09-22
This patent describes a fuel management method for a dual-phase nuclear reactor, it comprises: installing a fuel bundle at a first core location accessed by coolant through a relatively small aperture, each of the bundles having a predetermined group of fuel elements; operating the reactor a first time; shutting down the reactor; reinstalling the fuel bundle at a second core location accessed by coolant through a relatively large aperture; and operating the reactor a second time.
Sensitivity Analysis of Fuel Centerline Temperatures in SuperCritical Water-cooled Reactors (SCWRs)
NASA Astrophysics Data System (ADS)
Abdalla, Ayman
SuperCritical Water-cooled Reactors (SCWRs) are one of the six nuclear-reactor concepts currently being developed under the Generation-IV International Forum (GIF). A main advantage of SCW Nuclear Power Plants (NPPs) is that they offer higher thermal efficiencies compared to those of current conventional NPPs. Unlike today's conventional NPPs, which have thermal efficiencies between 30 - 35%, SCW NPPs will have thermal efficiencies within a range of 45 - 50%, owing to high operating temperatures and pressures (i.e., coolant temperatures as high as 625°C at 25 MPa pressure). The use of current fuel bundles with UO2 fuel at the high operating parameters of SCWRs may cause high fuel centerline temperatures, which could lead to fuel failure and fission gas release. Studies have shown that when the Variant-20 (43-element) fuel bundle was examined at SCW conditions, the fuel centerline temperature industry limit of 1850°C for UO2 and the sheath temperature design limit of 850°C might be exceeded. Therefore, new fuel-bundle designs, which comply with the design requirements, are required for future use in SCWRs. The main objective of this study to conduct a sensitivity analysis in order to identify the main factors that leads to fuel centerline temperature reduction. Therefore, a 54-element fuel bundle with smaller diameter of fuel elements compared to that of the 43-element bundle was designed and various nuclear fuels are examined for future use in a generic Pressure Tube (PT) SCWR. The 54-element bundle consists of 53 heated fuel elements with an outer diameter of 9.5 mm and one central unheated element of 20-mm outer diameter which contains burnable poison. The 54-element fuel bundle has an outer diameter of 103.45 mm, which is the same as the outer diameter of the 43-element fuel bundle. After developing the 54-element fuel bundle, one-dimensional heat-transfer analysis was conducted using MATLAB and NIST REFPROP programs. As a result, the Heat Transfer Coefficient (HTC), bulk-fluid, sheath and fuel centerline temperature profiles were generated along the heated length of 5.772 m for a generic fuel channel. The fuel centerline and sheath temperature profiles have been determined at four Axial Heat Flux Profiles (AHFPs) using an average thermal power per channel of 8.5 MWth. The four examined AHFPs are the uniform, cosine, upstream-skewed and downstream-skewed profiles. Additionally, this study focuses on investigating a possibility of using low, enhanced and high thermal-conductivity fuels. The low thermal-conductivity fuels, which have been examined in this study, are uranium dioxide (UO 2), Mixed Oxide (MOX) and Thoria (ThO2) fuels. The examined enhanced thermal-conductivity fuels are uranium dioxide - silicon carbide (UO2 - SiC) and uranium dioxide - beryllium oxide (UO2 - BeO). Lastly, uranium carbide (UC), uranium dicarbide (UC2) and uranium nitride (UN) are the selected high thermal-conductivity fuels, which have been proposed for use in SCWRs. A comparison has been made between the low, enhanced and high thermal-conductivity fuels in order to identify the fuel centerline temperature behaviour when different nuclear fuels are used. Also, in the process of conducting the sensitivity analysis, the HTC was calculated using the Mokry et al. correlation, which is the most accurate supercritical water heat-transfer correlation so far. The sheath and the fuel centerline temperature profiles were determined for two cases. In Case 1, the HTC was calculated based on the Mokry et al. correlation, while in Case 2, the HTC values calculated for Case 1 were multiplied by a factor of 2. This factor was used in order to identify the amount of decrease in temperatures if the heat transfer is enhanced with appendages. Results of this analysis indicate that the use of the newly developed 54-element fuel bundle along with the proposed fuels is promising when compared with the Variant-20 (43-element) fuel bundle. Overall, the fuel centerline and sheath temperatures were below the industry and design limits when most of the proposed fuels were examined in the 54-element fuel bundle, however, the fuel centerline temperature limit was exceeded while MOX fuel was examined. Keywords: SCWRs, Fuel Centerline Temperature, Sheath Temperature, High Thermal Conductivity Fuels, Low Thermal Conductivity Fuels, HTC.
Wheelock, C.W.; Baumeister, E.B.
1961-09-01
A reactor fuel element utilizing fissionable fuel materials in plate form is described. This fuel element consists of bundles of fuel-bearing plates. The bundles are stacked inside of a tube which forms the shell of the fuel element. The plates each have longitudinal fins running parallel to the direction of coolant flow, and interspersed among and parallel to the fins are ribs which position the plates relative to each other and to the fuel element shell. The plate bundles are held together by thin bands or wires. The ex tended surface increases the heat transfer capabilities of a fuel element by a factor of 3 or more over those of a simple flat plate.
System for supporting a bundled tube fuel injector within a combustor
DOE Office of Scientific and Technical Information (OSTI.GOV)
LeBegue, Jeffrey Scott; Melton, Patrick Benedict; Westmoreland, III, James Harold
A combustor includes an end cover having an outer side and an inner side, an outer barrel having a forward end that is adjacent to the inner side of the end cover and an aft end that is axially spaced from the forward end. An inner barrel is at least partially disposed concentrically within the outer barrel and is fixedly connected to the outer barrel. A fluid conduit extends downstream from the end cover. A first bundled tube fuel injector segment is disposed concentrically within the inner barrel. The bundled tube fuel injector segment includes a fuel plenum that ismore » in fluid communication with the fluid conduit and a plurality of parallel tubes that extend axially through the fuel plenum. The bundled tube fuel injector segment is fixedly connected to the inner barrel.« less
Generator module architecture for a large solid oxide fuel cell power plant
Gillett, James E.; Zafred, Paolo R.; Riggle, Matthew W.; Litzinger, Kevin P.
2013-06-11
A solid oxide fuel cell module contains a plurality of integral bundle assemblies, the module containing a top portion with an inlet fuel plenum and a bottom portion receiving air inlet feed and containing a base support, the base supports dense, ceramic exhaust manifolds which are below and connect to air feed tubes located in a recuperator zone, the air feed tubes passing into the center of inverted, tubular, elongated, hollow electrically connected solid oxide fuel cells having an open end above a combustion zone into which the air feed tubes pass and a closed end near the inlet fuel plenum, where the fuel cells comprise a fuel cell stack bundle all surrounded within an outer module enclosure having top power leads to provide electrical output from the stack bundle, where the fuel cells operate in the fuel cell mode and where the base support and bottom ceramic air exhaust manifolds carry from 85% to all 100% of the weight of the stack, and each bundle assembly has its own control for vertical and horizontal thermal expansion control.
Coupling procedure for TRANSURANUS and KTF codes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jimenez, J.; Alglave, S.; Avramova, M.
2012-07-01
The nuclear industry aims to ensure safe and economic operation of each single fuel rod introduced in the reactor core. This goal is even more challenging nowadays due to the current strategy of going for higher burn-up (fuel cycles of 18 or 24 months) and longer residence time. In order to achieve that goal, fuel modeling is the key to predict the fuel rod behavior and lifetime under thermal and pressure loads, corrosion and irradiation. In this context, fuel performance codes, such as TRANSURANUS, are used to improve the fuel rod design. The modeling capabilities of the above mentioned toolsmore » can be significantly improved if they are coupled with a thermal-hydraulic code in order to have a better description of the flow conditions within the rod bundle. For LWR applications, a good representation of the two phase flow within the fuel assembly is necessary in order to have a best estimate calculation of the heat transfer inside the bundle. In this paper we present the coupling methodology of TRANSURANUS with KTF (Karlsruhe Two phase Flow subchannel code) as well as selected results of the coupling proof of principle. (authors)« less
Experimental study of burnout in channels with twisted fuel rods
NASA Astrophysics Data System (ADS)
Bol'Shakov, V. V.; Bashkirtsev, S. M.; Kobzar', L. L.; Morozov, A. G.
2007-05-01
The results of experimental studies of pressure drop and critical heat flux in the models of fuel assemblies (FAs) with fuel rod simulators twisted relative to the longitudinal axis and a three-ray cross section are considered. The experimental data are compared to the results obtained with the use of techniques adopted for design calculations with fuel rod bundles of type-VVER reactors.
Checkerboard seed-blanket thorium fuel core concepts for heavy water moderated reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bromley, B.P.; Hyland, B.
2013-07-01
New reactor concepts to implement thorium-based fuel cycles have been explored to achieve maximum resource utilization. Pressure tube heavy water reactors (PT-HWR) are highly advantageous for implementing the use of thorium-based fuels because of their high neutron economy and on-line re-fuelling capability. The use of heterogeneous seed-blanket core concepts in a PT-HWR where higher-fissile-content seed fuel bundles are physically separate from lower-fissile-content blanket bundles allows more flexibility and control in fuel management to maximize the fissile utilization and conversion of fertile fuel. The lattice concept chosen was a 35-element bundle made with a homogeneous mixture of reactor grade Pu (aboutmore » 67 wt% fissile) and Th, and with a central zirconia rod to help reduce coolant void reactivity. Several checkerboard heterogeneous seed-blanket core concepts with plutonium-thorium-based fuels in a 700-MWe-class PT-HWR were analyzed, using a once-through thorium (OTT) cycle. Different combinations of seed and blanket fuel were tested to determine the impact on core-average burnup, fissile utilization, power distributions, and other performance parameters. It was found that various checkerboard core concepts can achieve a fissile utilization that is up to 26% higher than that achieved in a PT-HWR using more conventional natural uranium fuel bundles. Up to 60% of the Pu is consumed; up to 43% of the energy is produced from thorium, and up to 303 kg/year of Pa-233/U-233/U-235 are produced. Checkerboard cores with about 50% of low-power blanket bundles may require power de-rating (65% to 74%) to avoid exceeding maximum limits for channel and bundle powers and linear element ratings. (authors)« less
Annular seed-blanket thorium fuel core concepts for heavy water moderated reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bromley, B.P.; Hyland, B.
2013-07-01
New reactor concepts to implement thorium-based fuel cycles have been explored to achieve maximum resource utilization. Pressure tube heavy water reactors (PT-HWR) are highly advantageous for implementing the use of thorium-based fuels because of their high neutron economy and on-line re-fuelling capability. The use of heterogeneous seed-blanket core concepts in a PT-HWR where higher-fissile-content seed fuel bundles are physically separate from lower-fissile-content blanket bundles allows more flexibility and control in fuel management to maximize the fissile utilization and conversion of fertile fuel. The lattice concept chosen is a 35-element bundle made with a homogeneous mixture of reactor grade Pu andmore » Th, and with a central zirconia rod to help reduce coolant void reactivity. Several annular heterogeneous seed-blanket core concepts with plutonium-thorium-based fuels in a 700-MWe-class PT-HWR were analyzed, using a once-through thorium (OTT) cycle. Different combinations of seed and blanket fuel were tested to determine the impact on core-average burnup, fissile utilization, power distributions, and other performance parameters. It was found that the various core concepts can achieve a fissile utilization that is up to 30% higher than is currently achieved in a PT-HWR using conventional natural uranium fuel bundles. Up to 67% of the Pu is consumed; up to 43% of the energy is produced from thorium, and up to 363 kg/year of U-233 is produced. Seed-blanket cores with ∼50% content of low-power blanket bundles may require power de-rating (∼58% to 65%) to avoid exceeding maximum limits for peak channel power, bundle power and linear element ratings. (authors)« less
Improved perturbation method for gadolinia worth calculation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiang, R.T.; Congdon, S.P.
1986-01-01
Gadolinia is utilized in light water power reactors as burnable poison for reserving excess reactivity. Good gadolinia worth estimation is useful for evaluating fuel bundle designs, core operating strategies, and fuel cycle economics. The authors have developed an improved perturbation method based on exact perturbation theory for gadolinia worth calculations in fuel bundles. The method predicts much more accurate gadolinia worth than the first-order perturbation method (commonly used to estimate nuclide worths) for bundles containing fresh or partly burned gadolinia.
Recent developments in BWR fuel design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Congdon, S.P.; Noble, L.D.; Wood, J.E.
1991-11-01
Substantial increases in the cost effectiveness and performance capability of boiling water reactor (BWR) fuel designs have been implemented in the past 5 to 7 yr. This increase has been driven by (a) utility desires to lower fuel and operating costs and (b) design innovations that have lowered enrichment requirements, improved thermal-hydraulic performance, and increased discharge exposure. Higher discharge exposures reduce disposal costs for European and Asian utilities and enable US utilities to lengthen operating cycles. A typical BWR reload fuel bundle fabricated today has 25% higher {sup 235}U enrichment and a factor of 2 higher gadolinium loading than onemore » made several years ago. Today's BWR fuel bundles also contain more unheated water reduces the axial water density variation, lowers the void coefficient, and enhances the neutron efficiency of the bundle, reducing both the gadolinium poison and the enrichment requirements. In addition to these general trends, the following unique design innovations have further enhanced the fuel cost efficiency and performance characteristics of BWR fuel: ferrule spacer, part length rods, interactive channel, and bundle enhanced spectral shift. GE's fuel designs offer the flexibility for modern BWR fuel requirements and contain unique design features that enhance flexibility for modern BWR fuel requirements and contain unique design features that enhance flexibility and fuel cycle economics.« less
Recent GE BWR fuel experience and design evolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wood, J.E.; Potts, G.A.; Proebstle, R.A.
1992-01-01
Reliable fuel operation is essential to the safe, reliable, and economic power production by today's commercial nuclear reactors. GE Nuclear Energy is committed to maximize fuel reliability through the progressive development of improved fuel design features and dedication to provide the maximum quality of the design features and dedication to provide the maximum quality of the design, fabrication, and operation of GE BWR fuel. Over the last 35 years, GE has designed, fabricated, and placed in operation over 82,000 BWR fuel bundles containing over 5 million fuel rods. This experience includes successful commercial reactor operation of fuel assemblies to greatermore » than 45000 MWd/MTU bundle average exposure. This paper reports that this extensive experience base has enabled clear identification and characterization of the active failure mechanisms. With this failure mechanism characterization, mitigating actions have been developed and implemented by GE to provide the highest reliability BWR fuel bundles possible.« less
Fuel bundle design for enhanced usage of plutonium fuel
Reese, Anthony P.; Stachowski, Russell E.
1995-01-01
A nuclear fuel bundle includes a square array of fuel rods each having a concentration of enriched uranium and plutonium. Each rod of an interior array of the rods also has a concentration of gadolinium. The interior array of rods is surrounded by an exterior array of rods void of gadolinium. By this design, usage of plutonium in the nuclear reactor is enhanced.
Fuel bundle design for enhanced usage of plutonium fuel
Reese, A.P.; Stachowski, R.E.
1995-08-08
A nuclear fuel bundle includes a square array of fuel rods each having a concentration of enriched uranium and plutonium. Each rod of an interior array of the rods also has a concentration of gadolinium. The interior array of rods is surrounded by an exterior array of rods void of gadolinium. By this design, usage of plutonium in the nuclear reactor is enhanced. 10 figs.
TREAT Neutronics Analysis of Water-Loop Concept Accommodating LWR 9-rod Bundle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hill, Connie M.; Woolstenhulme, Nicolas E.; Parry, James R.
Abstract. Simulation of a variety of transient conditions has been successfully achieved in the Transient Reactor Test (TREAT) facility during operation between 1959 and 1994 to support characterization and safety analysis of nuclear fuels and materials. A majority of previously conducted tests were focused on supporting sodium-cooled fast reactor (SFR) designs. Experiments evolved in complexity. Simulation of thermal-hydraulic conditions expected to be encountered by fuels and materials in a reactor environment was realized in the development of TREAT sodium loop experiment vehicles. These loops accommodated up to 7-pin fuel bundles and served to simulate more closely the reactor environment whilemore » safely delivering large quantities of energy into the test specimen. Some of the immediate TREAT restart operations will be focused on testing light water reactor (LWR) accident tolerant fuels (ATF). Similar to the sodium loop objectives, a water loop concept, developed and analyzed in the 1990’s, aimed at achieving thermal-hydraulic conditions encountered in commercial power reactors. The historic water loop concept has been analyzed in the context of a reactivity insertion accident (RIA) simulation for high burnup LWR 2-pin and 3-pin fuel bundles. Findings showed sufficient energy could be deposited into the specimens for evaluation. Similar results of experimental feasibility for the water loop concept (past and present) have recently been obtained using MCNP6.1 with ENDF/B-VII.1 nuclear data libraries. The old water loop concept required only two central TREAT core grid spaces. Preparation for future experiments has resulted in a modified water loop conceptual design designated the TREAT water environment recirculating loop (TWERL). The current TWERL design requires nine TREAT core grid spaces in order to place the water recirculating pump under the TREAT core. Due to the effectiveness of water moderation, neutronics analysis shows that removal of seven additional TREAT fuel elements to facilitate the experiment will not inhibit the ability to successfully simulate a RIA for the 2-pin or 3-pin bundle. This new water loop design leaves room for accommodating a larger fuel pin bundle than previously analyzed. The 7-pin fuel bundle in a hexagonal array with similar spacing of fuel pins in a SFR fuel assembly was considered the minimum needed for one central fuel pin to encounter the most correct thermal conditions. The 9-rod fuel bundle in a square array similar in spacing to pins in a LWR fuel assembly would be considered the LWR equivalent. MCNP analysis conducted on a preliminary LWR 9-rod bundle design shows that sufficient energy deposition into the central pin can be achieved well within range to investigate fuel and cladding performance in a simulated RIA. This is achieved by surrounding the flow channel with an additional annulus of water. Findings also show that a highly significant increase in TREAT to specimen power coupling factor (PCF) within the central pin can be achieved by surrounding the experiment with one to two rings of TREAT upgrade fuel assemblies. The experiment design holds promise for the performance evaluation of PWR fuel at extremely high burnup under similar reactor environment conditions.« less
Posttest examination of Sodium Loop Safety Facility experiments. [LMFBR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holland, J.W.
In-reactor, safety experiments performed in the Sodium Loop Safety Facility (SLSF) rely on comprehensive posttest examinations (PTE) to characterize the postirradiation condition of the cladding, fuel, and other test-subassembly components. PTE information and on-line instrumentation data, are analyzed to identify the sequence of events and the severity of the accident for each experiment. Following in-reactor experimentation, the SLSF loop and test assembly are transported to the Hot Fuel Examination Facility (HFEF) for initial disassembly. Goals of the HFEF-phase of the PTE are to retrieve the fuel bundle by dismantling the loop and withdrawing the test assembly, to assess the macro-conditionmore » of the fuel bundle by nondestructive examination techniques, and to prepare the fuel bundle for shipment to the Alpha-Gamma Hot Cell Facility (AGHCF) at Argonne National Laboratory.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dearing, J.F.
The Subchannel Analysis of Blockages in Reactor Elements (SABRE) computer code, developed by the United Kingdom Atomic Energy Authority, is currently the only practical tool available for performing detailed analyses of velocity and temperature fields in the recirculating flow regions downstream of blockages in liquid-metal fast breeder reactor (LMFBR) pin bundles. SABRE is a subchannel analysis code; that is, it accurately represents the complex geometry of nuclear fuel pins arranged on a triangular lattice. The results of SABRE computational models are compared here with temperature data from two out-of-pile 19-pin test bundles from the Thermal-Hydraulic Out-of-Reactor Safety (THORS) Facility atmore » Oak Ridge National Laboratory. One of these bundles has a small central flow blockage (bundle 3A), while the other has a large edge blockage (bundle 5A). Values that give best agreement with experiment for the empirical thermal mixing correlation factor, FMIX, in SABRE are suggested. These values of FMIX are Reynolds-number dependent, however, indicating that the coded turbulent mixing correlation is not appropriate for wire-wrap pin bundles.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loftus, M J; Hochreiter, L E; McGuire, M F
This report presents data from the 163-Rod Bundle Blow Blockage Task of the Full-Length Emergency Cooling Heat Transfer Systems Effects and Separate Effects Test Program (FLECHT SEASET). The task consisted of forced and gravity reflooding tests utilizing electrical heater rods with a cosine axial power profile to simulate PWR nuclear core fuel rod arrays. These tests were designed to determine effects of flow blockage and flow bypass on reflooding behavior and to aid in the assessment of computational models in predicting the reflooding behavior of flow blockage in rod bundle arrays.
Material distribution in light water reactor-type bundles tested under severe accident conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noack, V.; Hagen, S.J.L.; Hofmann, P.
1997-02-01
Severe fuel damage experiments simulating small-break loss-of-coolant accidents have been carried out in the CORA out-of-pile test facility at Forschungszentrum Karlsruhe. Rod bundles with electrically heated fuel rod simulators containing annular UO{sub 2} pellets, UO{sub 2} full pellet rods, and absorber rods of two kinds (Ag/In/Cd to represent pressurized water reactor conditions and B{sub 4}C to represent boiling water reactor and VVER-1000 fuel elements) were subjected to temperature transients up to 2,300 K. A special method was applied to determine the axial mass distribution of bundle materials. The low-temperature melt formation by various interactions between zirconium and components of absorbermore » and spacer grids strongly influences the bundle degradation and material relocation. Absorber materials can separate from the fuel by a noncoherent relocation of the materials at different temperatures. The distributions of solidified materials in the different test bundles show a clear dependence on the axial temperature profile. Coolant channel blockages are observed mainly at the lower end of the bundle, i.e., near the lowest elevation at which an oxidation excursion resulting from the highly exothermic zirconium-steam reaction had been experienced. This elevation corresponds with a steep axial temperature gradient in the maximum temperature attained. Oxide layers on Zircaloy result in reduced melt formation.« less
NASA Astrophysics Data System (ADS)
Uwaba, Tomoyuki; Ito, Masahiro; Nemoto, Junichi; Ichikawa, Shoichi; Katsuyama, Kozo
2014-09-01
The BAMBOO computer code was verified by results for the out-of-pile bundle compression test with large diameter pin bundle deformation under the bundle-duct interaction (BDI) condition. The pin diameters of the examined test bundles were 8.5 mm and 10.4 mm, which are targeted as preliminary fuel pin diameters for the upgraded core of the prototype fast breeder reactor (FBR) and for demonstration and commercial FBRs studied in the FaCT project. In the bundle compression test, bundle cross-sectional views were obtained from X-ray computer tomography (CT) images and local parameters of bundle deformation such as pin-to-duct and pin-to-pin clearances were measured by CT image analyses. In the verification, calculation results of bundle deformation obtained by the BAMBOO code analyses were compared with the experimental results from the CT image analyses. The comparison showed that the BAMBOO code reasonably predicts deformation of large diameter pin bundles under the BDI condition by assuming that pin bowing and cladding oval distortion are the major deformation mechanisms, the same as in the case of small diameter pin bundles. In addition, the BAMBOO analysis results confirmed that cladding oval distortion effectively suppresses BDI in large diameter pin bundles as well as in small diameter pin bundles.
Toxicity of irradiated advanced heavy water reactor fuels.
Priest, N D; Richardson, R B; Edwards, G W R
2013-02-01
The good neutron economy and online refueling capability of the CANDU® heavy water moderated reactor (HWR) enable it to use many different fuels such as low enriched uranium (LEU), plutonium, or thorium, in addition to its traditional natural uranium (NU) fuel. The toxicity and radiological protection methods for these proposed fuels, unlike those for NU, are not well established. This study uses software to compare the fuel composition and toxicity of irradiated NU fuel against those of two irradiated advanced HWR fuel bundles as a function of post-irradiation time. The first bundle investigated is a CANFLEX® low void reactor fuel (LVRF), of which only the dysprosium-poisoned central element, and not the outer 42 LEU elements, is specifically analyzed. The second bundle investigated is a heterogeneous high-burnup (LEU,Th)O(2) fuelled bundle, whose two components (LEU in the outer 35 elements and thorium in the central eight elements) are analyzed separately. The LVRF central element was estimated to have a much lower toxicity than that of NU at all times after shutdown. Both the high burnup LEU and the thorium fuel had similar toxicity to NU at shutdown, but due to the creation of such inhalation hazards as (238)Pu, (240)Pu, (242)Am, (242)Cm, and (244)Cm (in high burnup LEU), and (232)U and (228)Th (in irradiated thorium), the toxicity of these fuels was almost double that of irradiated NU after 2,700 d of cooling. New urine bioassay methods for higher actinoids and the analysis of thorium in fecal samples are recommended to assess the internal dose from these two fuels.
The Japanese utilities` expectations for subchannel analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toba, Akio; Omoto, Akira
1995-12-01
Boiling water reactor (BWR) utilities in Japan began to consider the development of a mechanistic model to describe the critical heat transfer conditions in the BWR fuel subchannel. Such a mechanistic model will not only decrease the necessity of tests, but will also help by removing some overly conservative safety margins in thermal hydraulics. With the use of a postdryout heat transfer correlation, new acceptance criteria may be applicable to evaluate the fuel integrity. Mechanistic subchannel analysis models will certainly back up this approach. This model will also be applicable to the analysis of large-size fuel bundles and examination ofmore » corrosion behavior.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-10
... manufacturer. We are issuing this AD to increase the level of protection from lightning strikes and prevent the... of protection from lightning strikes and prevent the potential of ignition sources inside fuel tanks... existing unshielded fuel quantity indication system (FQIS) wire bundles with double shielded FQIS wire...
Zafred, Paolo R [Murrysville, PA; Gillett, James E [Greensburg, PA
2012-04-24
A plurality of integral bundle assemblies contain a top portion with an inlet fuel plenum and a bottom portion containing a base support, the base supports a dense, ceramic air exhaust manifold having four supporting legs, the manifold is below and connects to air feed tubes located in a recuperator zone, the air feed tubes passing into the center of inverted, tubular, elongated, hollow electrically connected solid oxide fuel cells having an open end above a combustion zone into which the air feed tubes pass and a closed end near the inlet fuel plenum, where the open end of the fuel cells rest upon and within a separate combination ceramic seal and bundle support contained in a ceramic support casting, where at least one flexible cushion ceramic band seal located between the recuperator and fuel cells protects and controls horizontal thermal expansion, and where the fuel cells operate in the fuel cell mode and where the base support and bottom ceramic air exhaust manifolds carry from 85% to all of the weight of the generator.
Thermal Aspects of Using Alternative Nuclear Fuels in Supercritical Water-Cooled Reactors
NASA Astrophysics Data System (ADS)
Grande, Lisa Christine
A SuperCritical Water-cooled Nuclear Reactor (SCWR) is a Generation IV concept currently being developed worldwide. Unique to this reactor type is the use of light-water coolant above its critical point. The current research presents a thermal-hydraulic analysis of a single fuel channel within a Pressure Tube (PT)-type SCWR with a single-reheat cycle. Since this reactor is in its early design phase many fuel-channel components are being investigated in various combinations. Analysis inputs are: steam cycle, Axial Heat Flux Profile (AHFP), fuel-bundle geometry, and thermophysical properties of reactor coolant, fuel sheath and fuel. Uniform and non-uniform AHFPs for average channel power were applied to a variety of alternative fuels (mixed oxide, thorium dioxide, uranium dicarbide, uranium nitride and uranium carbide) enclosed in an Inconel-600 43-element bundle. The results depict bulk-fluid, outer-sheath and fuel-centreline temperature profiles together with the Heat Transfer Coefficient (HTC) profiles along the heated length of fuel channel. The objective is to identify the best options in terms of fuel, sheath material and AHFPS in which the outer-sheath and fuel-centreline temperatures will be below the accepted temperature limits of 850°C and 1850°C respectively. The 43-element Inconel-600 fuel bundle is suitable for SCWR use as the sheath-temperature design limit of 850°C was maintained for all analyzed cases at average channel power. Thoria, UC2, UN and UC fuels for all AHFPs are acceptable since the maximum fuel-centreline temperature does not exceed the industry accepted limit of 1850°C. Conversely, the fuel-centreline temperature limit was exceeded for MOX at all AHFPs, and UO2 for both cosine and downstream-skewed cosine AHFPs. Therefore, fuel-bundle modifications are required for UO2 and MOX to be feasible nuclear fuels for SCWRs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kenneth Krebs, John Svoboda
2009-11-01
SCAN+ is a software application specifically designed to control the positioning of a gamma spectrometer by a two dimensional translation system above spent fuel bundles located in a sealed spent fuel cask. The gamma spectrometer collects gamma spectrum information for the purpose of spent fuel cask fuel loading verification. SCAN+ performs manual and automatic gamma spectrometer positioning functions as-well-as exercising control of the gamma spectrometer data acquisitioning functions. Cask configuration files are used to determine the positions of spent fuel bundles. Cask scanning files are used to determine the desired scan paths for scanning a spent fuel cask allowing formore » automatic unattended cask scanning that may take several hours.« less
Dissolution of Material and Test reactor Fuel in an H-Canyon Dissolver
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daniel, W. E.; Rudisill, T. S.; O'Rourke, P. E.
2017-01-26
In an amended record of decision for the management of spent nuclear fuel (SNF) at the Savannah River Site, the US Department of Energy has authorized the dissolution and recovery of U from 1000 bundles of Al-clad SNF. The SNF is fuel from domestic and foreign research reactors and is typically referred to as Material Test Reactor (MTR) fuel. Bundles of MTR fuel containing assemblies fabricated from U-Al alloys (or other U compounds) are currently dissolved using a Hg-catalyzed HNO3 flowsheet. Since the development of the existing flowsheet, improved experimental methods have been developed to more accurately characterize the offgasmore » composition and generation rate during laboratory dissolutions. Recently, these new techniques were successfully used to develop a flowsheet for the dissolution of High Flux Isotope Reactor (HFIR) fuel. Using the data from the HFIR dissolution flowsheet development and necessary laboratory experiments, the Savannah River National Laboratory (SRNL) was requested to define flowsheet conditions for the dissolution of MTR fuels. With improved offgas characterization techniques, SRNL will be able define the number of bundles of fuel which can be charged to an H-Canyon dissolver with much less conservatism.« less
Coolant mixing in LMFBR rod bundles and outlet plenum mixing transients. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Todreas, N.E.; Cheng, S.K.; Basehore, K.
1984-08-01
This project principally undertook the investigation of the thermal hydraulic performance of wire wrapped fuel bundles of LMFBR configuration. Results obtained included phenomenological models for friction factors, flow split and mixing characteristics; correlations for predicting these characteristics suitable for insertion in design codes; numerical codes for analyzing bundle behavior both of the lumped subchannel and distributed parameter categories and experimental techniques for pressure velocity, flow split, salt conductivity and temperature measurement in water cooled mockups of bundles and subchannels. Flow regimes investigated included laminar, transition and turbulent flow under forced convection and mixed convection conditions. Forced convections conditions were emphasized.more » Continuing efforts are underway at MIT to complete the investigation of the mixed convection regime initiated here. A number of investigations on outlet plenum behavior were also made. The reports of these investigations are identified.« less
Breden, C.R.; Schultz, A.B.
1961-06-01
A reactor core formed of bundles of parallel fuel elements in the form of ribbons is patented. The fuel ribbons are twisted about their axes so as to have contact with one another at regions spaced lengthwise of the ribbons and to be out of contact with one another at locations between these spaced regions. The contact between the ribbons is sufficient to allow them to be held together in a stable bundle in a containing tube without intermediate support, while permitting enough space between the ribbon for coolant flowing.
Development of burnup dependent fuel rod model in COBRA-TF
NASA Astrophysics Data System (ADS)
Yilmaz, Mine Ozdemir
The purpose of this research was to develop a burnup dependent fuel thermal conductivity model within Pennsylvania State University, Reactor Dynamics and Fuel Management Group (RDFMG) version of the subchannel thermal-hydraulics code COBRA-TF (CTF). The model takes into account first, the degradation of fuel thermal conductivity with high burnup; and second, the fuel thermal conductivity dependence on the Gadolinium content for both UO2 and MOX fuel rods. The modified Nuclear Fuel Industries (NFI) model for UO2 fuel rods and Duriez/Modified NFI Model for MOX fuel rods were incorporated into CTF and fuel centerline predictions were compared against Halden experimental test data and FRAPCON-3.4 predictions to validate the burnup dependent fuel thermal conductivity model in CTF. Experimental test cases from Halden reactor fuel rods for UO2 fuel rods at Beginning of Life (BOL), through lifetime without Gd2O3 and through lifetime with Gd 2O3 and a MOX fuel rod were simulated with CTF. Since test fuel rod and FRAPCON-3.4 results were based on single rod measurements, CTF was run for a single fuel rod surrounded with a single channel configuration. Input decks for CTF were developed for one fuel rod located at the center of a subchannel (rod-centered subchannel approach). Fuel centerline temperatures predicted by CTF were compared against the measurements from Halden experimental test data and the predictions from FRAPCON-3.4. After implementing the new fuel thermal conductivity model in CTF and validating the model with experimental data, CTF model was applied to steady state and transient calculations. 4x4 PWR fuel bundle configuration from Purdue MOX benchmark was used to apply the new model for steady state and transient calculations. First, one of each high burnup UO2 and MOX fuel rods from 4x4 matrix were selected to carry out single fuel rod calculations and fuel centerline temperatures predicted by CTF/TORT-TD were compared against CTF /TORT-TD /FRAPTRAN predictions. After confirming that the new fuel thermal conductivity model in CTF worked and provided consistent results with FRAPTRAN predictions for a single fuel rod configuration, the same type of analysis was carried out for a bigger system which is the 4x4 PWR bundle consisting of 15 fuel pins and one control guide tube. Steady- state calculations at Hot Full Power (HFP) conditions for control guide tube out (unrodded) were performed using the 4x4 PWR array with CTF/TORT-TD coupled code system. Fuel centerline, surface and average temperatures predicted by CTF/TORT-TD with and without the new fuel thermal conductivity model were compared against CTF/TORT-TD/FRAPTRAN predictions to demonstrate the improvement in fuel centerline predictions when new model was used. In addition to that constant and CTF dynamic gap conductance model were used with the new thermal conductivity model to show the performance of the CTF dynamic gap conductance model and its impact on fuel centerline and surface temperatures. Finally, a Rod Ejection Accident (REA) scenario using the same 4x4 PWR array was run both at Hot Zero Power (HZP) and Hot Full Power (HFP) condition, starting at a position where half of the control rod is inserted. This scenario was run using CTF/TORT-TD coupled code system with and without the new fuel thermal conductivity model. The purpose of this transient analysis was to show the impact of thermal conductivity degradation (TCD) on feedback effects, specifically Doppler Reactivity Coefficient (DRC) and, eventually, total core reactivity.
Evaluation of CASL boiling model for DNB performance in full scale 5x5 fuel bundle with spacer grids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Seung Jun
As one of main tasks for FY17 CASL-THM activity, Evaluation study on applicability of the CASL baseline boiling model for 5x5 DNB application is conducted and the predictive capability of the DNB analysis is reported here. While the baseline CASL-boiling model (GEN- 1A) approach has been successfully implemented and validated with a single pipe application in the previous year’s task, the extended DNB validation for realistic sub-channels with detailed spacer grid configurations are tasked in FY17. The focus area of the current study is to demonstrate the robustness and feasibility of the CASL baseline boiling model for DNB performance inmore » a full 5x5 fuel bundle application. A quantitative evaluation of the DNB predictive capability is performed by comparing with corresponding experimental measurements (i.e. reference for the model validation). The reference data are provided from the Westinghouse Electricity Company (WEC). Two different grid configurations tested here include Non-Mixing Vane Grid (NMVG), and Mixing Vane Grid (MVG). Thorough validation studies with two sub-channel configurations are performed at a wide range of realistic PWR operational conditions.« less
PWR integral tie plate and locking mechanism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flora, B.S.; Osborne, J.L.
1980-08-26
A locking mechanism for securing an upper tie plate to the tie rods of a nuclear fuel bundle is described. The mechanism includes an upper tie plate assembly and locking sleeves fixed to the ends of the tie rods. The tie plate is part of the upper tie plate assembly and is secured to the fuel bundle by securing the entire upper tie plate assembly to the locking sleeves fixed to the tie rods. The assembly includes, in addition to the tie plate, locking nuts for engaging the locking sleeves, retaining sleeves to operably connect the locking nuts to themore » assembly, a spring biased reaction plate to restrain the locking nuts in the locked position and a means to facilitate the removal of the entire assembly as a unit from the fuel bundle.« less
Methodology for the study of the boiling crisis in a nuclear fuel bundle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crecy, F. de; Juhel, D.
1995-09-01
The boiling crisis is one of the phenoumena limiting the available power from a nuclear power plant. It has been widely studied for decades, and numerous data, models, correlations or tables are now available in the literature. If we now try to obtain a general view of previous work in this field, we may note that there are several ways of tackling the subject. The mechanistic models try to model the two-phase flow topology and the interaction between different sublayers, and must be validated by comparison with basic experiments, such as DEBORA, where we try to obtain some detailed informationsmore » on the two-phase flow pattern in a pure and simple geometry. This allows us to obtain better knowledge of the so-called {open_quotes}intrinsic effect{close_quotes}. These models are not yet acceptable for nuclear use. As the geometry of the rod bundles and grids has a tremendous importance for the Critical Heat Flux (CHF), it is mandatory to have more precise results for a given fuel rod bundle in a restricted range of parameters: this leads to the empirical approach, using empirical CHF predictors (tables, correlations, splines, etc...). One of the key points of such a method is the obtaining local thermohydraulic values, that is to say the evaluation of the so-called {open_quotes}mixing effect{close_quotes}. This is done by a subchannel analysis code or equivalent, which can be qualified on two kinds of experiments: overall flow measurements in a subchannel, such as HYDROMEL in single-phase flow or GRAZIELLA in two-phase flow, or detailed measurements inside a subchannel, such as AGATE. Nevertheless, the final qualification of a specific nuclear fuel, i.e. the synthesis of these mechanistic and empirical approaches, intrinsic and mixing effects, etc..., must be achieved on a global test such as OMEGA. This is the strategy used in France by CEA and its partners FRAMATOME and EdF.« less
Large-break LOCA, in-reactor fuel bundle Materials Test MT-6A
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, C.L.; Hesson, G.M.; Pilger, J.P.
1993-09-01
This is a report on one of a series of experiments to simulates a loss-of-coolant accident (LOCA) using full-length fuel rods for pressurized water reactors (PWR). The experiments were conducted by Pacific Northwest Laboratory (PNL) under the LOCA simulation Program sponsored by the US Nuclear Regulatory Commission (NRC). The major objective of this program was causing the maximum possible expansion of the cladding on the fuel rods from a short-term adiabatic temperature transient to 1200 K (1700 F) leading to the rupture of the cladding; and second, by reflooding the fuel rods to determine the rate at which the fuelmore » bundle is cooled.« less
Hsu, Ryan S; Higgins, Drew; Chen, Zhongwei
2010-04-23
Novel tin-oxide (SnO(2))-coated single-walled carbon nanotube (SWNT) bundles supporting platinum (Pt) electrocatalysts for ethanol oxidation were developed for direct ethanol fuel cells. SnO(2)-coated SWNT (SnO(2)-SWNT) bundles were synthesized by a simple chemical-solution route. SnO(2)-SWNT bundles supporting Pt (Pt/SnO(2)-SWNTs) electrocatalysts and SWNT-supported Pt (Pt/SWNT) electrocatalysts were prepared by an ethylene glycol reduction method. The catalysts were physically characterized using TGA, XRD and TEM and electrochemically evaluated through cyclic voltammetry experiments. The Pt/SnO(2)-SWNTs showed greatly enhanced electrocatalytic activity for ethanol oxidation in acid medium, compared to the Pt/SWNT. The optimal SnO(2) loading of Pt/SnO(2)-SWNT catalysts with respect to specific catalytic activity for ethanol oxidation was also investigated.
75 FR 43097 - Airworthiness Directives; The Boeing Company Model 757 Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-23
... must be sealed for lightning strike protection. Relevant Service Information AD 2008-23-19 referred to... additional fasteners in the main fuel tanks must be sealed for lightning strike protection. The Federal... bundles inside the left and right equipment cooling system bays, on the left and right rear spars, and on...
Cosmic Ray Muon Imaging of Spent Nuclear Fuel in Dry Storage Casks
Durham, J. Matthew; Guardincerri, Elena; Morris, Christopher L.; ...
2016-04-29
In this paper, cosmic ray muon radiography has been used to identify the absence of spent nuclear fuel bundles inside a sealed dry storage cask. The large amounts of shielding that dry storage casks use to contain radiation from the highly radioactive contents impedes typical imaging methods, but the penetrating nature of cosmic ray muons allows them to be used as an effective radiographic probe. This technique was able to successfully identify missing fuel bundles inside a sealed Westinghouse MC-10 cask. This method of fuel cask verification may prove useful for international nuclear safeguards inspectors. Finally, muon radiography may findmore » other safety and security or safeguards applications, such as arms control verification.« less
NASA Astrophysics Data System (ADS)
Pham, Son; Kawara, Zensaku; Yokomine, Takehiko; Kunugi, Tomoaki
2012-11-01
Playing important roles in the mass and heat transfer as well as the safety of boiling water reactor, the liquid film flow on nuclear fuel rods has been studied by different measurement techniques such as ultrasonic transmission, conductivity probe, etc. Obtained experimental data of this annular two-phase flow, however, are still not enough to construct the physical model for critical heat flux analysis especially at the micro-scale. Remain problems are mainly caused by complicated geometry of fuel rod bundles, high velocity and very unstable interface behavior of liquid and gas flow. To get over these difficulties, a new approach using a very high speed digital camera system has been introduced in this work. The test section simulating a 3×3 rectangular rod bundle was made of acrylic to allow a full optical observation of the camera. Image data were taken through Cassegrain optical system to maintain the spatiotemporal resolution up to 7 μm and 20 μs. The results included not only the real-time visual information of flow patterns, but also the quantitative data such as liquid film thickness, the droplets' size and speed distributions, and the tilt angle of wavy surfaces. These databases could contribute to the development of a new model for the annular two-phase flow. Partly supported by the Global Center of Excellence (G-COE) program (J-051) of MEXT, Japan.
Optical fuel pin scanner. [Patent application; for reading identifications
Kirchner, T.L.; Powers, H.G.
1980-12-09
This patent relates to an optical identification system developed for post-irradiation disassembly and analysis of fuel bundle assemblies. The apparatus is designed to be lowered onto a stationary fuel pin to read identification numbers or letters imprinted on the circumference of the top fuel pin and cap. (DLC)
Distributed temperature sensing inside a 19-rod bundle
Lomperski, S.; Bremer, N.; Gerardi, C.
2017-05-23
The temperature field within a model of a sodium-cooled fast reactor fuel rod bundle was measured using Ø155 μm fiber optic distributed temperature sensors (DTS). The bundle consists of 19 electrically-heated rods Ø6.3 mm and 865 mm long. Working fluids were argon and air at atmospheric pressure and Reynolds numbers up to 300. A 20 m-long DTS was threaded through Ø1 mm capillaries wound around rods as wire-wraps. The sensor generated 173 measurements along each rod at 5 mm resolution for a total of 3300 data locations. A second DTS, 58 m long, was suspended between rods to provide 9300more » fluid temperature measurements at 20 mm resolution. Such data density makes it possible to construct 3D maps of the temperature field that are beyond the reach of traditional sensors such as thermocouples. This is illustrated through a series of steady-state and transient tests. As a result, the work demonstrates the feasibility of mapping temperature within the close confines of a rod bundle at resolutions suitable for validation of computational fluid dynamics codes.« less
Summary and evaluation: fuel dynamics loss-of-flow experiments (tests L2, L3, and L4)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barts, E.W.; Deitrich, L.W.; Eberhart, J.G.
1975-09-01
Three similar experiments conducted to support the analyses of hypothetical LMFBR unprotected-loss-of-flow accidents are summarized and evaluated. The tests, designated L2, L3, and L4, provided experimental data against which accident-analysis codes could be compared, so as to guide further analysis and modeling of the initiating phases of the hypothetical accident. The tests were conducted using seven-pin bundles of mixed-oxide fuel pins in Mark-II flowing-sodium loops in the TREAT reactor. Test L2 used fresh fuel. Tests L3 and L4 used irradiated fuel pins having, respectively, ''intermediate-power'' (no central void) and ''high-power'' (fully developed central void) microstructure. 12 references. (auth)
Modeling CANDU-6 liquid zone controllers for effects of thorium-based fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
St-Aubin, E.; Marleau, G.
2012-07-01
We use the DRAGON code to model the CANDU-6 liquid zone controllers and evaluate the effects of thorium-based fuels on their incremental cross sections and reactivity worth. We optimize both the numerical quadrature and spatial discretization for 2D cell models in order to provide accurate fuel properties for 3D liquid zone controller supercell models. We propose a low computer cost parameterized pseudo-exact 3D cluster geometries modeling approach that avoids tracking issues on small external surfaces. This methodology provides consistent incremental cross sections and reactivity worths when the thickness of the buffer region is reduced. When compared with an approximate annularmore » geometry representation of the fuel and coolant region, we observe that the cluster description of fuel bundles in the supercell models does not increase considerably the precision of the results while increasing substantially the CPU time. In addition, this comparison shows that it is imperative to finely describe the liquid zone controller geometry since it has a strong impact of the incremental cross sections. This paper also shows that liquid zone controller reactivity worth is greatly decreased in presence of thorium-based fuels compared to the reference natural uranium fuel, since the fission and the fast to thermal scattering incremental cross sections are higher for the new fuels. (authors)« less
Cosmic ray muon computed tomography of spent nuclear fuel in dry storage casks
Poulson, Daniel Cris; Durham, J. Matthew; Guardincerri, Elena; ...
2016-10-22
Radiography with cosmic ray muon scattering has proven to be a successful method of imaging nuclear material through heavy shielding. Of particular interest is monitoring dry storage casks for diversion of plutonium contained in spent reactor fuel. Using muon tracking detectors that surround a cylindrical cask, cosmic ray muon scattering can be simultaneously measured from all azimuthal angles, giving complete tomographic coverage of the cask interior. This article describes the first application of filtered back projection algorithms, typically used in medical imaging, to cosmic ray muon scattering imaging. The specific application to monitoring spent nuclear fuel in dry storage casksmore » is investigated via GEANT4 simulations. With a cylindrical muon tracking detector surrounding a typical spent fuel cask, simulations indicate that missing fuel bundles can be detected with a statistical significance of ~18σ in less than two days exposure and a sensitivity at 1σ to a 5% missing portion of a fuel bundle. Finally, we discuss potential detector technologies and geometries.« less
Cosmic ray muon computed tomography of spent nuclear fuel in dry storage casks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poulson, Daniel Cris; Durham, J. Matthew; Guardincerri, Elena
Radiography with cosmic ray muon scattering has proven to be a successful method of imaging nuclear material through heavy shielding. Of particular interest is monitoring dry storage casks for diversion of plutonium contained in spent reactor fuel. Using muon tracking detectors that surround a cylindrical cask, cosmic ray muon scattering can be simultaneously measured from all azimuthal angles, giving complete tomographic coverage of the cask interior. This article describes the first application of filtered back projection algorithms, typically used in medical imaging, to cosmic ray muon scattering imaging. The specific application to monitoring spent nuclear fuel in dry storage casksmore » is investigated via GEANT4 simulations. With a cylindrical muon tracking detector surrounding a typical spent fuel cask, simulations indicate that missing fuel bundles can be detected with a statistical significance of ~18σ in less than two days exposure and a sensitivity at 1σ to a 5% missing portion of a fuel bundle. Finally, we discuss potential detector technologies and geometries.« less
Cosmic ray muon computed tomography of spent nuclear fuel in dry storage casks
NASA Astrophysics Data System (ADS)
Poulson, D.; Durham, J. M.; Guardincerri, E.; Morris, C. L.; Bacon, J. D.; Plaud-Ramos, K.; Morley, D.; Hecht, A. A.
2017-01-01
Radiography with cosmic ray muon scattering has proven to be a successful method of imaging nuclear material through heavy shielding. Of particular interest is monitoring dry storage casks for diversion of plutonium contained in spent reactor fuel. Using muon tracking detectors that surround a cylindrical cask, cosmic ray muon scattering can be simultaneously measured from all azimuthal angles, giving complete tomographic coverage of the cask interior. This paper describes the first application of filtered back projection algorithms, typically used in medical imaging, to cosmic ray muon scattering imaging. The specific application to monitoring spent nuclear fuel in dry storage casks is investigated via GEANT4 simulations. With a cylindrical muon tracking detector surrounding a typical spent fuel cask, simulations indicate that missing fuel bundles can be detected with a statistical significance of ∼ 18 σ in less than two days exposure and a sensitivity at 1σ to a 5% missing portion of a fuel bundle. Potential detector technologies and geometries are discussed.
Numerical determination of lateral loss coefficients for subchannel analysis in nuclear fuel bundles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sin Kim; Goon-Cherl Park
1995-09-01
An accurate prediction of cross-flow based on detailed knowledge of the velocity field in subchannels of a nuclear fuel assembly is of importance in nuclear fuel performance analysis. In this study, the low-Reynolds number {kappa}-{epsilon} turbulence model has been adopted in two adjacent subchannels with cross-flow. The secondary flow is estimated accurately by the anisotropic algebraic Reynolds stress model. This model was numerically calculated by the finite element method and has been verified successfully through comparison with existing experimental data. Finally, with the numerical analysis of the velocity field in such subchannel domain, an analytical correlation of the lateral lossmore » coefficient is obtained to predict the cross-flow rate in subchannel analysis codes. The correlation is expressed as a function of the ratio of the lateral flow velocity to the donor subchannel axial velocity, recipient channel Reynolds number and pitch-to-diameter.« less
System and method for reducing combustion dynamics in a combustor
Uhm, Jong Ho; Johnson, Thomas Edward; Zuo, Baifang; York, William David
2015-09-01
A system for reducing combustion dynamics in a combustor includes an end cap having an upstream surface axially separated from a downstream surface, and tube bundles extend from the upstream surface through the downstream surface. A divider inside a tube bundle defines a diluent passage that extends axially through the downstream surface, and a diluent supply in fluid communication with the divider provides diluent flow to the diluent passage. A method for reducing combustion dynamics in a combustor includes flowing a fuel through tube bundles, flowing a diluent through a diluent passage inside a tube bundle, wherein the diluent passage extends axially through at least a portion of the end cap into a combustion chamber, and forming a diluent barrier in the combustion chamber between the tube bundle and at least one other adjacent tube bundle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohr, C.L.; Rausch, W.N.; Hesson, G.M.
The LOCA Simulation Program in the NRU reactor is the first set of experiments to provide data on the behavior of full-length, nuclear-heated PWR fuel bundles during the heatup, reflood, and quench phases of a loss-of-coolant accident (LOCA). This paper compares the temperature time histories of 4 experimental test cases with 4 computer codes: CE-THERM, FRAP-T5, GT3-FLECHT, and TRUMP-FLECHT. The preliminary comparisons between prediction and experiment show that the state-of-the art fuel codes have large uncertainties and are not necessarily conservative in predicting peak temperatures, turn around times, and bundle quench times.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ionescu-Bujor, Mihaela; Jin Xuezhou; Cacuci, Dan G.
2005-09-15
The adjoint sensitivity analysis procedure for augmented systems for application to the RELAP5/MOD3.2 code system is illustrated. Specifically, the adjoint sensitivity model corresponding to the heat structure models in RELAP5/MOD3.2 is derived and subsequently augmented to the two-fluid adjoint sensitivity model (ASM-REL/TF). The end product, called ASM-REL/TFH, comprises the complete adjoint sensitivity model for the coupled fluid dynamics/heat structure packages of the large-scale simulation code RELAP5/MOD3.2. The ASM-REL/TFH model is validated by computing sensitivities to the initial conditions for various time-dependent temperatures in the test bundle of the Quench-04 reactor safety experiment. This experiment simulates the reflooding with water ofmore » uncovered, degraded fuel rods, clad with material (Zircaloy-4) that has the same composition and size as that used in typical pressurized water reactors. The most important response for the Quench-04 experiment is the time evolution of the cladding temperature of heated fuel rods. The ASM-REL/TFH model is subsequently used to perform an illustrative sensitivity analysis of this and other time-dependent temperatures within the bundle. The results computed by using the augmented adjoint sensitivity system, ASM-REL/TFH, highlight the reliability, efficiency, and usefulness of the adjoint sensitivity analysis procedure for computing time-dependent sensitivities.« less
Hawkes, Grant L.; Herring, James S.; Stoots, Carl M.; O& #x27; Brien, James E.
2013-03-05
Electrolytic/fuel cell bundles and systems including such bundles include an electrically conductive current collector in communication with an anode or a cathode of each of a plurality of cells. A cross-sectional area of the current collector may vary in a direction generally parallel to a general direction of current flow through the current collector. The current collector may include a porous monolithic structure. At least one cell of the plurality of cells may include a current collector that surrounds an outer electrode of the cell and has at least six substantially planar exterior surfaces. The planar surfaces may extend along a length of the cell, and may abut against a substantially planar surface of a current collector of an adjacent cell. Methods for generating electricity and for performing electrolysis include flowing current through a conductive current collector having a varying cross-sectional area.
78 FR 16198 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-14
... determine if wires touch the upper surface of the center upper auxiliary fuel tank, and marking the location, as necessary; inspecting all wire bundles above the center upper auxiliary fuel tank for splices and... requires inspecting to determine if wires touch the upper surface of the center upper auxiliary fuel tank...
NASA Astrophysics Data System (ADS)
Santarelli, M.; Leone, P.; Calì, M.; Orsello, G.
The tubular SOFC generator CHP-100, built by Siemens Power Generation (SPG) Stationary Fuel Cells (SFC), is running at the Gas Turbine Technologies (GTT) in Torino (Italy), in the framework of the EOS Project. The nominal load of the generator ensures a produced electric power of around 105 kW e ac and around 60 kW t of thermal power at 250 °C to be used for the custom tailored HVAC system. Several experimental sessions have been scheduled on the generator; the aim is to characterize the operation through the analysis of some global performance index and the detailed control of the operation of the different bundles of the whole stack. All the scheduled tests have been performed by applying the methodology of design of experiment; the main obtained results show the effect of the change of the analysed operating factors in terms of distribution of voltage and temperature over the stack. Fuel consumption tests give information about the sensitivity of the voltage and temperature distribution along the single bundles. On the other hand, since the generator is an air cooled system, the results of the tests on the air stoichs have been used to analyze the generator thermal management (temperature distribution and profiles) and its effect on the polarization. The sensitivity analysis of the local voltage to the overall fuel consumption modifications can be used as a powerful procedure to deduce the local distribution of fuel utilization (FU) along the single bundles: in fact, through a model obtained by deriving the polarization curve respect to FU, it is possible to link the distribution of voltage sensitivities to FC to the distribution of the local FU. The FU distribution will be shown as non-uniform, and this affects the local voltage and temperatures, causing a high warming effect in some rows of the generator. Therefore, a discussion around the effectiveness of the thermal regulation made by the air stoichs, in order to reduce the non-uniform distribution of temperature and the overheating (increasing therefore the voltage behavior along the generator) has been performed. It is demonstrated that the utilization of one air plenum is not effective in the thermal regulation of the whole generator, in particular in the reduction of the temperature gradients linked to the non-uniform fuel distribution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barber, Laura Jeaneen
The purpose of the L’Innovator is to assemble unique, state-of-the-art IP bundles developed at the national labs that aggregate synergistic technologies in furtherance of the emerging hydrogen and fuel cell market. The first L’Innovator IP bundle consists of Oxygen Reduction Reaction (ORR) Catalyst technology developed at Brookhaven National Laboratory (BNL), combined with Membrane Electrode Assembly (MEA) technology developed at Los Alamos National Laboratory (LANL).
Coolant mass flow equalizer for nuclear fuel
Betten, Paul R.
1978-01-01
The coolant mass flow distribution in a liquid metal cooled reactor is enhanced by restricting flow in sub-channels defined in part by the peripheral fuel elements of a fuel assembly. This flow restriction, which results in more coolant flow in interior sub-channels, is achieved through the use of a corrugated liner positioned between the bundle of fuel elements and the inner wall of the fuel assembly coolant duct. The corrugated liner is expandable to accommodate irradiation induced growth of fuel assembly components.
NASA Technical Reports Server (NTRS)
Gomez, C. F.; Mireles, O. R.; Stewart, E.
2016-01-01
The Space Capable Cryogenic Thermal Engine (SCCTE) effort considers a nuclear thermal rocket design based around a Low-Enriched Uranium (LEU) design fission reactor. The reactor core is comprised of bundled hexagonal fuel elements that directly heat hydrogen for expansion in a thrust chamber and hexagonal tie-tubes that house zirconium hydride moderator mass for the purpose of thermalizing fast neutrons resulting from fission events. Created 3D steady state Hex fuel rod model with 1D flow channels. Hand Calculation were used to set up initial conditions for fluid flow. The Hex Fuel rod uses 1D flow paths to model the channels using empirical correlations for heat transfer in a pipe. Created a 2-D axisymmetric transient to steady state model using the CFD turbulent flow and Heat Transfer module in COMSOL. This model was developed to find and understand the hydrogen flow that might effect the thermal gradients axially and at the end of the tie tube where the flow turns and enters an annulus. The Hex fuel rod and Tie tube models were made based on requirements given to us by CSNR and the SCCTE team. The models helped simplify and understand the physics and assumptions. Using pipe correlations reduced the complexity of the 3-D fuel rod model and is numerically more stable and computationally more time-efficient compared to the CFD approach. The 2-D axisymmetric tie tube model can be used as a reference "Virtual test model" for comparing and improving 3-D Models.
System and method for reducing combustion dynamics in a combustor
Uhm, Jong Ho; Johnson, Thomas Edward; Zuo, Baifang; York, William David
2013-08-20
A system for reducing combustion dynamics in a combustor includes an end cap having an upstream surface axially separated from a downstream surface, and tube bundles extend through the end cap. A diluent supply in fluid communication with the end cap provides diluent flow to the end cap. Diluent distributors circumferentially arranged inside at least one tube bundle extend downstream from the downstream surface and provide fluid communication for the diluent flow through the end cap. A method for reducing combustion dynamics in a combustor includes flowing fuel through tube bundles that extend axially through an end cap, flowing a diluent through diluent distributors into a combustion chamber, wherein the diluent distributors are circumferentially arranged inside at least one tube bundle and each diluent distributor extends downstream from the end cap, and forming a diluent barrier in the combustion chamber between at least one pair of adjacent tube bundles.
SLSF in-reactor local fault safety experiment P4. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, D. H.; Holland, J. W.; Braid, T. H.
The Sodium Loop Safety Facility (SLSF), a major facility in the US fast-reactor safety program, has been used to simulate a variety of sodium-cooled fast reactor accidents. SLSF experiment P4 was conducted to investigate the behavior of a "worse-than-case" local fault configuration. Objectives of this experiment were to eject molten fuel into a 37-pin bundle of full-length Fast-Test-Reactor-type fuel pins form heat-generating fuel canisters, to characterize the severity of any molten fuel-coolant interaction, and to demonstrate that any resulting blockage could either be tolerated during continued power operation or detected by global monitors to prevent fuel failure propagation. The designmore » goal for molten fuel release was 10 to 30 g. Explusion of molten fuel from fuel canisters caused failure of adjacent pins and a partial flow channel blockage in the fuel bundle during full-power operation. Molten fuel and fuel debris also lodged against the inner surface of the test subassembly hex-can wall. The total fuel disruption of 310 g evaluated from posttest examination data was in excellent agreement with results from the SLSF delayed neutron detection system, but exceeded the target molten fuel release by an order of magnitude. This report contains a summary description of the SLSF in-reactor loop and support systems and the experiment operations. results of the detailed macro- and microexamination of disrupted fuel and metal and results from the analysis of the on-line experimental data are described, as are the interpretations and conclusions drawn from the posttest evaluations. 60 refs., 74 figs.« less
Validation Data and Model Development for Fuel Assembly Response to Seismic Loads
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bardet, Philippe; Ricciardi, Guillaume
2016-01-31
Vibrations are inherently present in nuclear reactors, especially in cores and steam generators of pressurized water reactors (PWR). They can have significant effects on local heat transfer and wear and tear in the reactor and often set safety margins. The simulation of these multiphysics phenomena from first principles requires the coupling of several codes, which is one the most challenging tasks in modern computer simulation. Here an ambitious multiphysics multidisciplinary validation campaign is conducted. It relied on an integrated team of experimentalists and code developers to acquire benchmark and validation data for fluid-structure interaction codes. Data are focused on PWRmore » fuel bundle behavior during seismic transients.« less
ADDING REALISM TO NUCLEAR MATERIAL DISSOLVING ANALYSIS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williamson, B.
2011-08-15
Two new criticality modeling approaches have greatly increased the efficiency of dissolver operations in H-Canyon. The first new approach takes credit for the linear, physical distribution of the mass throughout the entire length of the fuel assembly. This distribution of mass is referred to as the linear density. Crediting the linear density of the fuel bundles results in using lower fissile concentrations, which allows higher masses to be charged to the dissolver. Also, this approach takes credit for the fact that only part of the fissile mass is wetted at a time. There are multiple assemblies stacked on top ofmore » each other in a bundle. On average, only 50-75% of the mass (the bottom two or three assemblies) is wetted at a time. This means that only 50-75% (depending on operating level) of the mass is moderated and is contributing to the reactivity of the system. The second new approach takes credit for the progression of the dissolving process. Previously, dissolving analysis looked at a snapshot in time where the same fissile material existed both in the wells and in the bulk solution at the same time. The second new approach models multiple consecutive phases that simulate the fissile material moving from a high concentration in the wells to a low concentration in the bulk solution. This approach is more realistic and allows higher fissile masses to be charged to the dissolver.« less
Optimizing the use of a John Deere bundling unit in a southern logging system
Steven Meadows; Tom Gallagher; Dana Mitchell
2009-01-01
With the current energy crisis and with petroleum prices skyrocketing, all sources of alternative fuels need to be explored. John Deereâs Biomass Bundler unit is an effective machine for harvesting forest residues, which can be used as a source of fuel wood and/or a feedstock for bioâfuel production. This project aims to explore an...
Piro, M.H.A; Wassermann, F.; Grundmann, S.; ...
2017-05-23
The current work presents experimental and computational investigations of fluid flow through a 37 element CANDU nuclear fuel bundle. Experiments based on Magnetic Resonance Velocimetry (MRV) permit three-dimensional, three-component fluid velocity measurements to be made within the bundle with sub-millimeter resolution that are non-intrusive, do not require tracer particles or optical access of the flow field. Computational fluid dynamic (CFD) simulations of the foregoing experiments were performed with the hydra-th code using implicit large eddy simulation, which were in good agreement with experimental measurements of the fluid velocity. Greater understanding has been gained in the evolution of geometry-induced inter-subchannel mixing,more » the local effects of obstructed debris on the local flow field, and various turbulent effects, such as recirculation, swirl and separation. These capabilities are not available with conventional experimental techniques or thermal-hydraulic codes. Finally, the overall goal of this work is to continue developing experimental and computational capabilities for further investigations that reliably support nuclear reactor performance and safety.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piro, M.H.A; Wassermann, F.; Grundmann, S.
The current work presents experimental and computational investigations of fluid flow through a 37 element CANDU nuclear fuel bundle. Experiments based on Magnetic Resonance Velocimetry (MRV) permit three-dimensional, three-component fluid velocity measurements to be made within the bundle with sub-millimeter resolution that are non-intrusive, do not require tracer particles or optical access of the flow field. Computational fluid dynamic (CFD) simulations of the foregoing experiments were performed with the hydra-th code using implicit large eddy simulation, which were in good agreement with experimental measurements of the fluid velocity. Greater understanding has been gained in the evolution of geometry-induced inter-subchannel mixing,more » the local effects of obstructed debris on the local flow field, and various turbulent effects, such as recirculation, swirl and separation. These capabilities are not available with conventional experimental techniques or thermal-hydraulic codes. Finally, the overall goal of this work is to continue developing experimental and computational capabilities for further investigations that reliably support nuclear reactor performance and safety.« less
Connections for solid oxide fuel cells
Collie, Jeffrey C.
1999-01-01
A connection for fuel cell assemblies is disclosed. The connection includes compliant members connected to individual fuel cells and a rigid member connected to the compliant members. Adjacent bundles or modules of fuel cells are connected together by mechanically joining their rigid members. The compliant/rigid connection permits construction of generator fuel cell stacks from basic modular groups of cells of any desired size. The connections can be made prior to installation of the fuel cells in a generator, thereby eliminating the need for in-situ completion of the connections. In addition to allowing pre-fabrication, the compliant/rigid connections also simplify removal and replacement of sections of a generator fuel cell stack.
NASA Astrophysics Data System (ADS)
Amosova, E. V.; Shishkin, A. V.
2017-11-01
This article introduces the result of studying the heat exchange in the fuel element of the nuclear reactor fuel magazine. Fuel assemblies are completed as a bundle of cylindrical fuel elements located at the tops of a regular triangle. Uneven distribution of fuel rods in a nuclear reactor’s core forms the inhomogeneity of temperature fields. This article describes the developed method for heat exchange calculation with the account for impact of an inhomogeneous temperature field on the thermal-physical properties of materials and unsteady effects. The acquired calculation results are used for evaluating the tolerable temperature levels in protective case materials.
Design of pellet surface grooves for fission gas plenum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carter, T.J.; Jones, L.R.; Macici, N.
1986-01-01
In the Canada deuterium uranium pressurized heavy water reactor, short (50-cm) Zircaloy-4 clad bundles are fueled on-power. Although internal void volume within the fuel rods is adequate for the present once-through natural uranium cycle, the authors have investigated methods for increasing the internal gas storage volume needed in high-power, high-burnup, experimental ceramic fuels. This present work sought to prove the methodology for design of gas storage volume within the fuel pellets - specifically the use of grooves pressed or machined into the relatively cool pellet/cladding interface. Preanalysis and design of pellet groove shape and volume was accomplished using the TRUMPmore » heat transfer code. Postirradiation examination (PIE) was used to check the initial design and heat transfer assumptions. Fission gas release was found to be higher for the grooved pellet rods than for the comparison rods with hollow or unmodified pellets. This had been expected from the initial TRUMP thermal analyses. The ELESIM fuel modeling code was used to check in-reactor performance, but some modifications were necessary to accommodate the loss of heat transfer surface to the grooves. It was concluded that for plenum design purposes, circumferential pellet grooves could be adequately modeled by the codes TRUMP and ELESIM.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bessho, Yasunori; Yokomizo, Osamu; Yoshimoto, Yuichiro
1997-03-01
Development and qualification results are described for a three-dimensional, time-domain core dynamics analysis program for commercial boiling water reactors (BWRs). The program allows analysis of the reactor core with a detailed mesh division, which eliminates calculational ambiguity in the nuclear-thermal-hydraulic stability analysis caused by reactor core regional division. During development, emphasis was placed on high calculational speed and large memory size as attained by the latest supercomputer technology. The program consists of six major modules, namely a core neutronics module, a fuel heat conduction/transfer module, a fuel channel thermal-hydraulic module, an upper plenum/separator module, a feedwater/recirculation flow module, and amore » control system module. Its core neutronics module is based on the modified one-group neutron kinetics equation with the prompt jump approximation and with six delayed neutron precursor groups. The module is used to analyze one fuel bundle of the reactor core with one mesh (region). The fuel heat conduction/transfer module solves the one-dimensional heat conduction equation in the radial direction with ten nodes in the fuel pin. The fuel channel thermal-hydraulic module is based on separated three-equation, two-phase flow equations with the drift flux correlation, and it analyzes one fuel bundle of the reactor core with one channel to evaluate flow redistribution between channels precisely. Thermal margin is evaluated by using the GEXL correlation, for example, in the module.« less
VICTORIA-92 pretest analyses of PHEBUS-FPT0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bixler, N.E.; Erickson, C.M.
FPT0 is the first of six tests that are scheduled to be conducted in an experimental reactor in Cadarache, France. The test apparatus consists of an in-pile fuel bundle, an upper plenum, a hot leg, a steam generator, a cold leg, and a small containment. Thus, the test is integral in the sense that it attempts to simulate all of the processes that would be operative in a severe nuclear accident. In FPT0, the fuel will be trace irradiated; in subsequent tests high burn-up fuel will be used. This report discusses separate pretest analyses of the FPT0 fuel bundle andmore » primary circuit have been conducted using the USNRC`s source term code, VICTORIA-92. Predictions for release of fission product, control rod, and structural elements from the test section are compared with those given by CORSOR-M. In general, the releases predicted by VICTORIA-92 occur earlier than those predicted by CORSOR-M. The other notable difference is that U release is predicted to be on a par with that of the control rod elements; CORSOR-M predicts U release to be about 2 orders of magnitude greater.« less
Local load-sharing fiber bundle model in higher dimensions.
Sinha, Santanu; Kjellstadli, Jonas T; Hansen, Alex
2015-08-01
We consider the local load-sharing fiber bundle model in one to five dimensions. Depending on the breaking threshold distribution of the fibers, there is a transition where the fracture process becomes localized. In the localized phase, the model behaves as the invasion percolation model. The difference between the local load-sharing fiber bundle model and the equal load-sharing fiber bundle model vanishes with increasing dimensionality with the characteristics of a power law.
Fuel or irradiation subassembly
Seim, O.S.; Hutter, E.
1975-12-23
A subassembly for use in a nuclear reactor is described which incorporates a loose bundle of fuel or irradiation pins enclosed within an inner tube which in turn is enclosed within an outer coolant tube and includes a locking comb consisting of a head extending through one side of the inner sleeve and a plurality of teeth which extend through the other side of the inner sleeve while engaging annular undercut portions in the bottom portion of the fuel or irradiation pins to prevent movement of the pins.
Tayyib, Nahla; Coyer, Fiona
This article reports on the development and implementation process used to integrate a care bundle approach (a pressure ulcer [PU] prevention bundle to improve patients' skin integrity in intensive care) and the Ottawa Model of Research Use (OMRU). The PU prevention care bundle demonstrated significant reduction in PU incidence, with the OMRU model providing a consolidated framework for the implementation of bundled evidence in an effective and consistent manner into daily clinical nursing practice.
NASA Astrophysics Data System (ADS)
Verma, Shashi Kant; Sinha, S. L.; Chandraker, D. K.
2018-05-01
Numerical simulation has been carried out for the study of natural mixing of a Tracer (Passive scalar) to describe the development of turbulent diffusion in an injected sub-channel and, afterwards on, cross-mixing between adjacent sub-channels. In this investigation, post benchmark evaluation of the inter-subchannel mixing was initiated to test the ability of state-of-the-art Computational Fluid Dynamics (CFD) codes to numerically predict the important turbulence parameters downstream of a ring type spacer grid in a rod-bundle. A three-dimensional Computational Fluid Dynamics (CFD) tool (STAR-CCM+) was used to model the single phase flow through a 30° segment or 1/12th of the cross segment of a 54-rod bundle with a ring shaped spacer grid. Polyhedrons were used to discretize the computational domain, along with prismatic cells near the walls, with an overall mesh count of 5.2 M cell volumes. The Reynolds Stress Models (RSM) was tested because of RSM accounts for the turbulence anisotropy, to assess their capability in predicting the velocities as well as mass fraction of potassium nitrate measured in the experiment. In this way, the line probes are located in the different position of subchannels which could be used to characterize the progress of the mixing along the flow direction, and the degree of cross-mixing assessed using the quantity of tracer arriving in the neighbouring sub-channels. The predicted dimensionless mixing scalar along the length, however, was in good agreement with the measurements downstream of spacers.
Inert matrix fuel neutronic, thermal-hydraulic, and transient behavior in a light water reactor
NASA Astrophysics Data System (ADS)
Carmack, W. J.; Todosow, M.; Meyer, M. K.; Pasamehmetoglu, K. O.
2006-06-01
Currently, commercial power reactors in the United States operate on a once-through or open cycle, with the spent nuclear fuel eventually destined for long-term storage in a geologic repository. Since the fissile and transuranic (TRU) elements in the spent nuclear fuel present a proliferation risk, limit the repository capacity, and are the major contributors to the long-term toxicity and dose from the repository, methods and systems are needed to reduce the amount of TRU that will eventually require long-term storage. An option to achieve a reduction in the amount, and modify the isotopic composition of TRU requiring geological disposal is 'burning' the TRU in commercial light water reactors (LWRs) and/or fast reactors. Fuel forms under consideration for TRU destruction in light water reactors (LWRs) include mixed-oxide (MOX), advanced mixed-oxide, and inert matrix fuels. Fertile-free inert matrix fuel (IMF) has been proposed for use in many forms and studied by several researchers. IMF offers several advantages relative to MOX, principally it provides a means for reducing the TRU in the fuel cycle by burning the fissile isotopes and transmuting the minor actinides while producing no new TRU elements from fertile isotopes. This paper will present and discuss the results of a four-bundle, neutronic, thermal-hydraulic, and transient analyses of proposed inert matrix materials in comparison with the results of similar analyses for reference UOX fuel bundles. The results of this work are to be used for screening purposes to identify the general feasibility of utilizing specific inert matrix fuel compositions in existing and future light water reactors. Compositions identified as feasible using the results of these analyses still require further detailed neutronic, thermal-hydraulic, and transient analysis study coupled with rigorous experimental testing and qualification.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kraus, A.; Garner, P.; Hanan, N.
Thermal-hydraulic simulations have been performed using computational fluid dynamics (CFD) for the highly-enriched uranium (HEU) design of the IVG.1M reactor at the Institute of Atomic Energy (IAE) at the National Nuclear Center (NNC) in the Republic of Kazakhstan. Steady-state simulations were performed for both types of fuel assembly (FA), i.e. the FA in rows 1 & 2 and the FA in row 3, as well as for single pins in those FA (600 mm and 800 mm pins). Both single pin calculations and bundle sectors have been simulated for the most conservative operating conditions corresponding to the 10 MW outputmore » power, which corresponds to a pin unit cell Reynolds number of only about 7500. Simulations were performed using the commercial code STAR-CCM+ for the actual twisted pin geometry as well as a straight-pin approximation. Various Reynolds-Averaged Navier-Stokes (RANS) turbulence models gave different results, and so some validation runs with a higher-fidelity Large Eddy Simulation (LES) code were performed given the lack of experimental data. These singled out the Realizable Two-Layer k-ε as the most accurate turbulence model for estimating surface temperature. Single-pin results for the twisted case, based on the average flow rate per pin and peak pin power, were conservative for peak clad surface temperature compared to the bundle results. Also the straight-pin calculations were conservative as compared to the twisted pin simulations, as expected, but the single-pin straight case was not always conservative with regard to the straight-pin bundle. This was due to the straight-pin temperature distribution being strongly influenced by the pin orientation, particularly near the outer boundary. The straight-pin case also predicted the peak temperature to be in a different location than the twisted-pin case. This is a limitation of the straight-pin approach. The peak temperature pin was in a different location from the peak power pin in every case simulated, and occurred at an inner pin just before the enrichment change. The 600 mm case demonstrated a peak clad surface temperature of 370.4 K, while the 800 mm case had a temperature of 391.6 K. These temperatures are well below the necessary temperatures for boiling to occur at the rated pressure. Fuel temperatures are also well below the melting point. Future bundle work will include simulations of the proposed low-enriched uranium (LEU) design. Two transient scenarios were also investigated for the single-pin geometries. Both were “model” problems that were focused on pure thermal-hydraulic behavior, and as such were simple power changes that did not incorporate neutron kinetics modeling. The first scenario was a high-power, ramp increase, while the second scenario was a low-power, step increase. A cylindrical RELAP model was also constructed to investigate its accuracy as compared to the higher-fidelity CFD. Comparisons between the two codes showed good agreement for peak temperatures in the fuel and at the cladding surface for both cases. In the step transient, temperatures at four axial levels were also computed. These showed greater but reasonable discrepancy, with RELAP outputting higher temperatures. These results provide some evidence that RELAP can be used with confidence in modeling transients for IVG.« less
Interconnection of bundled solid oxide fuel cells
Brown, Michael; Bessette, II, Norman F; Litka, Anthony F; Schmidt, Douglas S
2014-01-14
A system and method for electrically interconnecting a plurality of fuel cells to provide dense packing of the fuel cells. Each one of the plurality of fuel cells has a plurality of discrete electrical connection points along an outer surface. Electrical connections are made directly between the discrete electrical connection points of adjacent fuel cells so that the fuel cells can be packed more densely. Fuel cells have at least one outer electrode and at least one discrete interconnection to an inner electrode, wherein the outer electrode is one of a cathode and and anode and wherein the inner electrode is the other of the cathode and the anode. In tubular solid oxide fuel cells the discrete electrical connection points are spaced along the length of the fuel cell.
Treshow, M.
1958-08-19
A neuclear reactor is described of the heterogeneous type and employing replaceable tubular fuel elements and heavy water as a coolant and moderator. A pluraltty of fuel tubesa having their axes parallel, extend through a tank type pressure vessel which contatns the liquid moderator. The fuel elements are disposed within the fuel tubes in the reaetive portion of the pressure vessel during normal operation and the fuel tubes have removable plug members at each end to permit charging and discharging of the fuel elements. The fuel elements are cylindrical strands of jacketed fissionable material having helical exterior ribs. A bundle of fuel elements are held within each fuel tube with their longitudinal axes parallel, the ribs serving to space them apart along their lengths. Coolant liquid is circulated through the fuel tubes between the spaced fuel elements. Suitable control rod and monitoring means are provided for controlling the reactor.
Morreale, A C; Novog, D R; Luxat, J C
2012-01-01
Technetium-99m is an important medical isotope utilized worldwide in nuclear medicine and is produced from the decay of its parent isotope, molybdenum-99. The online fueling capability and compact fuel of the CANDU(®)(1) reactor allows for the potential production of large quantities of (99)Mo. This paper proposes (99)Mo production strategies using modified target fuel bundles loaded into CANDU fuel channels. Using a small group of channels a yield of 89-113% of the weekly world demand for (99)Mo can be obtained. Copyright © 2011 Elsevier Ltd. All rights reserved.
FUEL ELEMENT FOR NUCLEAR REACTORS
Dickson, J.J.
1963-09-24
A method is described whereby fuel tubes or pins are cut, loaded with fuel pellets and a heat transfer medium, sealed at each end with slotted fittings, and assembled into a rectangular tube bundle to form a fuel element. The tubes comprising the fuel element are laterally connected between their ends by clips and tabs to form a linear group of spaced parallel tubes, which receive their vertical support by resting on a grid. The advantages of this method are that it permits elimination of structural material (e.g., fuel-element cans) within the reactor core, and removal of at least one fuel pin from an element and replacement thereof so that a burnable poison may be utilized during the core lifetime. (AEC)
Signal detection by active, noisy hair bundles
NASA Astrophysics Data System (ADS)
O'Maoiléidigh, Dáibhid; Salvi, Joshua D.; Hudspeth, A. J.
2018-05-01
Vertebrate ears employ hair bundles to transduce mechanical movements into electrical signals, but their performance is limited by noise. Hair bundles are substantially more sensitive to periodic stimulation when they are mechanically active, however, than when they are passive. We developed a model of active hair-bundle mechanics that predicts the conditions under which a bundle is most sensitive to periodic stimulation. The model relies only on the existence of mechanotransduction channels and an active adaptation mechanism that recloses the channels. For a frequency-detuned stimulus, a noisy hair bundle's phase-locked response and degree of entrainment as well as its detection bandwidth are maximized when the bundle exhibits low-amplitude spontaneous oscillations. The phase-locked response and entrainment of a bundle are predicted to peak as functions of the noise level. We confirmed several of these predictions experimentally by periodically forcing hair bundles held near the onset of self-oscillation. A hair bundle's active process amplifies the stimulus preferentially over the noise, allowing the bundle to detect periodic forces less than 1 pN in amplitude. Moreover, the addition of noise can improve a bundle's ability to detect the stimulus. Although, mechanical activity has not yet been observed in mammalian hair bundles, a related model predicts that active but quiescent bundles can oscillate spontaneously when they are loaded by a sufficiently massive object such as the tectorial membrane. Overall, this work indicates that auditory systems rely on active elements, composed of hair cells and their mechanical environment, that operate on the brink of self-oscillation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frankhouser, W.L.; Eyler, J.H.
1956-07-24
Five reference fuel rod bundles were welded and evaluated dimensionally. Dimensional data are presented for the as-welded condition and for the annealed bundle with spacer strips removed (prior to the final machining operations). The welding sequence developed for Core Manufacturing should provide A'' boundles in respect to rod spacing measurements. It will probably not be possible to meet the same requirements for water channel averages, because the design tolerances are not consistent with some factors inherent to the production process. A method to improve this situation is presented. The data presented were evaluated in a fashion similar to that whichmore » would be used in the proposed scheme. Rods tended to bow resulting in a slightly barrel-shaped'' boundle. It is believed this condition can be overcome by providing special bundle peripheral clamps during annealing. Rod distortion should also be reduced by a redesign and relocation of strip spacers. The new design is proposed. (auth)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, W.R.; Giovengo, J.F.
1987-10-01
Light Water Breeder Reactor (LWBR) fuel rods were designed to provide a reliable fuel system utilizing thorium/uranium-233 mixed-oxide fuel while simultaneously minimizing structural material to enhance fuel breeding. The fuel system was designed to be capable of operating successfully under both load follow and base load conditions. The breeding objective required thin-walled, low hafnium content Zircaloy cladding, tightly spaced fuel rods with a minimum number of support grid levels, and movable fuel rod bundles to supplant control rods. Specific fuel rod design considerations and their effects on performance capability are described. Successful completion of power operations to over 160 percentmore » of design lifetime including over 200 daily load follow cycles has proven the performance capability of the fuel system. 68 refs., 19 figs., 44 tabs.« less
Cap assembly for a bundled tube fuel injector
DOE Office of Scientific and Technical Information (OSTI.GOV)
LeBegue, Jeffrey Scott; Melton, Patrick Benedict; Westmoreland, III, James Harold
2016-04-26
A cap assembly for a bundled tube fuel injector includes an impingement plate and an aft plate that is disposed downstream from the impingement plate. The aft plate includes a forward side that is axially separated from an aft side. A tube passage extends through the impingement plate and the aft plate. A tube sleeve extends through the impingement plate within the tube passage towards the aft plate. The tube sleeve includes a flange at a forward end and an aft end that is axially separated from the forward end. A retention plate is positioned upstream from the impingement plate.more » A spring is disposed between the retention plate and the flange. The spring provides a force so as to maintain contact between at least a portion of the aft end of the tube sleeve and the forward side of the aft plate.« less
Heat Transfer Analysis in Wire Bundles for Aerospace Vehicles
NASA Technical Reports Server (NTRS)
Rickman, S. L.; Iamello, C. J.
2016-01-01
Design of wiring for aerospace vehicles relies on an understanding of "ampacity" which refers to the current carrying capacity of wires, either, individually or in wire bundles. Designers rely on standards to derate allowable current flow to prevent exceedance of wire temperature limits due to resistive heat dissipation within the wires or wire bundles. These standards often add considerable margin and are based on empirical data. Commercial providers are taking an aggressive approach to wire sizing which challenges the conventional wisdom of the established standards. Thermal modelling of wire bundles may offer significant mass reduction in a system if the technique can be generalized to produce reliable temperature predictions for arbitrary bundle configurations. Thermal analysis has been applied to the problem of wire bundles wherein any or all of the wires within the bundle may carry current. Wire bundles present analytical challenges because the heat transfer path from conductors internal to the bundle is tortuous, relying on internal radiation and thermal interface conductance to move the heat from within the bundle to the external jacket where it can be carried away by convective and radiative heat transfer. The problem is further complicated by the dependence of wire electrical resistivity on temperature. Reduced heat transfer out of the bundle leads to higher conductor temperatures and, hence, increased resistive heat dissipation. Development of a generalized wire bundle thermal model is presented and compared with test data. The steady state heat balance for a single wire is derived and extended to the bundle configuration. The generalized model includes the effects of temperature varying resistance, internal radiation and thermal interface conductance, external radiation and temperature varying convective relief from the free surface. The sensitivity of the response to uncertainties in key model parameters is explored using Monte Carlo analysis.
Assessment of SFR Wire Wrap Simulation Uncertainties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delchini, Marc-Olivier G.; Popov, Emilian L.; Pointer, William David
Predictive modeling and simulation of nuclear reactor performance and fuel are challenging due to the large number of coupled physical phenomena that must be addressed. Models that will be used for design or operational decisions must be analyzed for uncertainty to ascertain impacts to safety or performance. Rigorous, structured uncertainty analyses are performed by characterizing the model’s input uncertainties and then propagating the uncertainties through the model to estimate output uncertainty. This project is part of the ongoing effort to assess modeling uncertainty in Nek5000 simulations of flow configurations relevant to the advanced reactor applications of the Nuclear Energy Advancedmore » Modeling and Simulation (NEAMS) program. Three geometries are under investigation in these preliminary assessments: a 3-D pipe, a 3-D 7-pin bundle, and a single pin from the Thermal-Hydraulic Out-of-Reactor Safety (THORS) facility. Initial efforts have focused on gaining an understanding of Nek5000 modeling options and integrating Nek5000 with Dakota. These tasks are being accomplished by demonstrating the use of Dakota to assess parametric uncertainties in a simple pipe flow problem. This problem is used to optimize performance of the uncertainty quantification strategy and to estimate computational requirements for assessments of complex geometries. A sensitivity analysis to three turbulent models was conducted for a turbulent flow in a single wire wrapped pin (THOR) geometry. Section 2 briefly describes the software tools used in this study and provides appropriate references. Section 3 presents the coupling interface between Dakota and a computational fluid dynamic (CFD) code (Nek5000 or STARCCM+), with details on the workflow, the scripts used for setting up the run, and the scripts used for post-processing the output files. In Section 4, the meshing methods used to generate the THORS and 7-pin bundle meshes are explained. Sections 5, 6 and 7 present numerical results for the 3-D pipe, the single pin THORS mesh, and the 7-pin bundle mesh, respectively.« less
Characterization of active hair-bundle motility by a mechanical-load clamp
NASA Astrophysics Data System (ADS)
Salvi, Joshua D.; Maoiléidigh, Dáibhid Ó.; Fabella, Brian A.; Tobin, Mélanie; Hudspeth, A. J.
2015-12-01
Active hair-bundle motility endows hair cells with several traits that augment auditory stimuli. The activity of a hair bundle might be controlled by adjusting its mechanical properties. Indeed, the mechanical properties of bundles vary between different organisms and along the tonotopic axis of a single auditory organ. Motivated by these biological differences and a dynamical model of hair-bundle motility, we explore how adjusting the mass, drag, stiffness, and offset force applied to a bundle control its dynamics and response to external perturbations. Utilizing a mechanical-load clamp, we systematically mapped the two-dimensional state diagram of a hair bundle. The clamp system used a real-time processor to tightly control each of the virtual mechanical elements. Increasing the stiffness of a hair bundle advances its operating point from a spontaneously oscillating regime into a quiescent regime. As predicted by a dynamical model of hair-bundle mechanics, this boundary constitutes a Hopf bifurcation.
Nuclear reactor composite fuel assembly
Burgess, Donn M.; Marr, Duane R.; Cappiello, Michael W.; Omberg, Ronald P.
1980-01-01
A core and composite fuel assembly for a liquid-cooled breeder nuclear reactor including a plurality of elongated coextending driver and breeder fuel elements arranged to form a generally polygonal bundle within a thin-walled duct. The breeder elements are larger in cross section than the driver elements, and each breeder element is laterally bounded by a number of the driver elements. Each driver element further includes structure for spacing the driver elements from adjacent fuel elements and, where adjacent, the thin-walled duct. A core made up of the fuel elements can advantageously include fissile fuel of only one enrichment, while varying the effective enrichment of any given assembly or core region, merely by varying the relative number and size of the driver and breeder elements.
Garyfallidis, Eleftherios; Côté, Marc-Alexandre; Rheault, Francois; Sidhu, Jasmeen; Hau, Janice; Petit, Laurent; Fortin, David; Cunanne, Stephen; Descoteaux, Maxime
2018-04-15
Virtual dissection of diffusion MRI tractograms is cumbersome and needs extensive knowledge of white matter anatomy. This virtual dissection often requires several inclusion and exclusion regions-of-interest that make it a process that is very hard to reproduce across experts. Having automated tools that can extract white matter bundles for tract-based studies of large numbers of people is of great interest for neuroscience and neurosurgical planning. The purpose of our proposed method, named RecoBundles, is to segment white matter bundles and make virtual dissection easier to perform. This can help explore large tractograms from multiple persons directly in their native space. RecoBundles leverages latest state-of-the-art streamline-based registration and clustering to recognize and extract bundles using prior bundle models. RecoBundles uses bundle models as shape priors for detecting similar streamlines and bundles in tractograms. RecoBundles is 100% streamline-based, is efficient to work with millions of streamlines and, most importantly, is robust and adaptive to incomplete data and bundles with missing components. It is also robust to pathological brains with tumors and deformations. We evaluated our results using multiple bundles and showed that RecoBundles is in good agreement with the neuroanatomical experts and generally produced more dense bundles. Across all the different experiments reported in this paper, RecoBundles was able to identify the core parts of the bundles, independently from tractography type (deterministic or probabilistic) or size. Thus, RecoBundles can be a valuable method for exploring tractograms and facilitating tractometry studies. Copyright © 2017 Elsevier Inc. All rights reserved.
Premixed direct injection nozzle for highly reactive fuels
Ziminsky, Willy Steve; Johnson, Thomas Edward; Lacy, Benjamin Paul; York, William David; Uhm, Jong Ho; Zuo, Baifang
2013-09-24
A fuel/air mixing tube for use in a fuel/air mixing tube bundle is provided. The fuel/air mixing tube includes an outer tube wall extending axially along a tube axis between an inlet end and an exit end, the outer tube wall having a thickness extending between an inner tube surface having a inner diameter and an outer tube surface having an outer tube diameter. The tube further includes at least one fuel injection hole having a fuel injection hole diameter extending through the outer tube wall, the fuel injection hole having an injection angle relative to the tube axis. The invention provides good fuel air mixing with low combustion generated NOx and low flow pressure loss translating to a high gas turbine efficiency, that is durable, and resistant to flame holding and flash back.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rose, S.D.; Dearing, J.F.
An understanding of conditions that may cause sodium boiling and boiling propagation that may lead to dryout and fuel failure is crucial in liquid-metal fast-breeder reactor safety. In this study, the SABRE-2P subchannel analysis code has been used to analyze the ultimate transient of the in-core W-1 Sodium Loop Safety Facility experiment. This code has a 3-D simple nondynamic boiling model which is able to predict the flow instability which caused dryout. In other analyses dryout has been predicted for out-of-core test bundles and so this study provides additional confirmation of the model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Becker, Ines; Schillig, Cora
A double-sided adhesive metal-based tape for use as contacting aid for SOFC fuel cells is provided. The double-sided metal-based adhesive tape is suitable for simplifying the construction of cell bundles. The double-sided metal-based adhesive tape is used for electrical contacting of the cell connector with the anode and for electrical contacting of the interconnector of the fuel cells with the cell connector. A method for producing the double-sided adhesive metal-base tape is also provided.
Heterotic line bundle models on elliptically fibered Calabi-Yau three-folds
NASA Astrophysics Data System (ADS)
Braun, Andreas P.; Brodie, Callum R.; Lukas, Andre
2018-04-01
We analyze heterotic line bundle models on elliptically fibered Calabi-Yau three-folds over weak Fano bases. In order to facilitate Wilson line breaking to the standard model group, we focus on elliptically fibered three-folds with a second section and a freely-acting involution. Specifically, we consider toric weak Fano surfaces as base manifolds and identify six such manifolds with the required properties. The requisite mathematical tools for the construction of line bundle models on these spaces, including the calculation of line bundle cohomology, are developed. A computer scan leads to more than 400 line bundle models with the right number of families and an SU(5) GUT group which could descend to standard-like models after taking the ℤ2 quotient. A common and surprising feature of these models is the presence of a large number of vector-like states.
COMPARISON OF PRESSURE DROP PRODUCED BY SPIRAL WRAPS, COOKIE CUTTERS AND OTHER ROD BUNDLE SPACERS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noyes, R.C.
The problem of predicting pressure drop due to various fuel bundle spacers is considered in some detail. Three sets of experimental data are reviewed and presented in reduced form. These data are compared to several semitheoretical approaches to pressure drop prediction and a best method is selected to make the required predictions. The comparison between predictions for the ASCR spiral wrap spacer and cookie cutter spacer shows that both types of spacers produce about the same pressure drop. Spacer pressure drop is shown to be strongly dependent on spacer frontal area and pitch. (auth)
Application of a transient heat transfer model for bundled, multiphase pipelines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, T.S.; Clapham, J.; Danielson, T.J.
1996-12-31
A computer model has been developed which accurately describes transient heat transfer in pipeline bundles. An arbitrary number of internal pipelines containing different fluids, flowing in either direction along with the input of heat to one or more of the fluids can be accommodated. The model is coupled to the transient, multiphase flow simulator OLGA. The lines containing the multiphase production fluids are modeled by OLGA, and the heat transfer between the internal lines, carrier pipe, and surroundings is handled by the bundle model. The model has been applied extensively to the design of a subsea, heated bundle system formore » the Britannia gas condensate field in the North Sea. The 15-km bundle system contains a 14{double_prime} production line, an 8{double_prime} test line, a 3{double_prime} methanol line, and a 12{double_prime} internal heating medium line within a 37.25{double_prime} carrier. The heating medium (water) flows in the internal heating medium line and in the annulus at 82,500 BPD. The primary purpose of the bundle system is to avoid the formation of hydrates. A secondary purpose is to avoid the deposition of paraffin. The bundle model was used to (1) compare the merits of two coaxial lines vs. a single bundle; (2) optimize the insulation levels on the carrier and internal lines; (3) determine the minimum time required to heat up the bundle; (4) determine heat input requirements to avoid hydrates throughout the field life, (5) determine temperature profiles along the lines for a range of production rates; (6) study ruptures of the production line into the bundle annulus; (7) determine minimum temperatures during depressurization; and (8) determine cool-down times. The results of these studies were used to size lines, select insulation levels, assess erosion potential, design for thermal expansion-induced stresses, and to select materials of construction.« less
Gilmartin, Heather M; Sousa, Karen H; Battaglia, Catherine
2016-01-01
The central line (CL) bundle interventions are important for preventing central line-associated bloodstream infections (CLABSIs), but a modeling method for testing the CL bundle interventions within a health systems framework is lacking. Guided by the Quality Health Outcomes Model (QHOM), this study tested the CL bundle interventions in reflective and composite, latent, variable measurement models to assess the impact of the modeling approaches on an investigation of the relationships between adherence to the CL bundle interventions, organizational context, and CLABSIs. A secondary data analysis study was conducted using data from 614 U.S. hospitals that participated in the Prevention of Nosocomial Infection and Cost-Effectiveness Refined study. The sample was randomly split into exploration and validation subsets. The two CL bundle modeling approaches resulted in adequate fitting structural models (RMSEA = .04; CFI = .94) and supported similar relationships within the QHOM. Adherence to the CL bundle had a direct effect on organizational context (reflective = .23; composite = .20; p = .01) and CLABSIs (reflective = -.28; composite = -.25; p = .01). The relationship between context and CLABSIs was not significant. Both modeling methods resulted in partial support of the QHOM. There were little statistical, but large, conceptual differences between the reflective and composite modeling approaches. The empirical impact of the modeling approaches was inconclusive, for both models resulted in a good fit to the data. Lessons learned are presented. The comparison of modeling approaches is recommended when initially modeling variables that have never been modeled or with directional ambiguity to increase transparency and bring confidence to study findings.
Gilmartin, Heather M.; Sousa, Karen H.; Battaglia, Catherine
2016-01-01
Background The central line (CL) bundle interventions are important for preventing central line-associated bloodstream infections (CLABSIs), but a modeling method for testing the CL bundle interventions within a health systems framework is lacking. Objectives Guided by the Quality Health Outcomes Model (QHOM), this study tested the CL bundle interventions in reflective and composite, latent, variable measurement models to assess the impact of the modeling approaches on an investigation of the relationships between adherence to the CL bundle interventions, organizational context, and CLABSIs. Methods A secondary data analysis study was conducted using data from 614 U.S. hospitals that participated in the Prevention of Nosocomial Infection and Cost-Effectiveness-Refined study. The sample was randomly split into exploration and validation subsets. Results The two CL bundle modeling approaches resulted in adequate fitting structural models (RMSEA = .04; CFI = .94) and supported similar relationships within the QHOM. Adherence to the CL bundle had a direct effect on organizational context (reflective = .23; composite = .20; p = .01), and CLABSIs (reflective = −.28; composite = −.25; p =.01). The relationship between context and CLABSIs was not significant. Both modeling methods resulted in partial support of the QHOM. Discussion There were little statistical, but large, conceptual differences between the reflective and composite modeling approaches. The empirical impact of the modeling approaches was inconclusive, for both models resulted in a good fit to the data. Lessons learned are presented. The comparison of modeling approaches is recommended when initially modeling variables that have never been modeled, or with directional ambiguity, to increase transparency and bring confidence to study findings. PMID:27579507
Bundled payments in orthopedic surgery.
Bushnell, Brandon D
2015-02-01
As a result of reading this article, physicians should be able to: 1. Describe the concept of bundled payments and the potential applications of bundled payments in orthopedic surgery. 2. For specific situations, outline a clinical episode of care, determine the participants in a bundling situation, and define care protocols and pathways. 3. Recognize the importance of resource utilization management, quality outcome measurement, and combined economic-clinical value in determining the value of bundled payment arrangements. 4. Identify the implications of bundled payments for practicing orthopedists, as well as the legal issues and potential future directions of this increasingly popular alternative payment method. Bundled payments, the idea of paying a single price for a bundle of goods and services, is a financial concept familiar to most American consumers because examples appear in many industries. The idea of bundled payments has recently gained significant momentum as a financial model with the potential to decrease the significant current costs of health care. Orthopedic surgery as a field of medicine is uniquely positioned for success in an environment of bundled payments. This article reviews the history, logistics, and implications of the bundled payment model relative to orthopedic surgery. Copyright 2015, SLACK Incorporated.
Framework for shape analysis of white matter fiber bundles.
Glozman, Tanya; Bruckert, Lisa; Pestilli, Franco; Yecies, Derek W; Guibas, Leonidas J; Yeom, Kristen W
2018-02-15
Diffusion imaging coupled with tractography algorithms allows researchers to image human white matter fiber bundles in-vivo. These bundles are three-dimensional structures with shapes that change over time during the course of development as well as in pathologic states. While most studies on white matter variability focus on analysis of tissue properties estimated from the diffusion data, e.g. fractional anisotropy, the shape variability of white matter fiber bundle is much less explored. In this paper, we present a set of tools for shape analysis of white matter fiber bundles, namely: (1) a concise geometric model of bundle shapes; (2) a method for bundle registration between subjects; (3) a method for deformation estimation. Our framework is useful for analysis of shape variability in white matter fiber bundles. We demonstrate our framework by applying our methods on two datasets: one consisting of data for 6 normal adults and another consisting of data for 38 normal children of age 11 days to 8.5 years. We suggest a robust and reproducible method to measure changes in the shape of white matter fiber bundles. We demonstrate how this method can be used to create a model to assess age-dependent changes in the shape of specific fiber bundles. We derive such models for an ensemble of white matter fiber bundles on our pediatric dataset and show that our results agree with normative human head and brain growth data. Creating these models for a large pediatric longitudinal dataset may improve understanding of both normal development and pathologic states and propose novel parameters for the examination of the pediatric brain. Copyright © 2017 Elsevier Inc. All rights reserved.
A strategy for improved computational efficiency of the method of anchored distributions
NASA Astrophysics Data System (ADS)
Over, Matthew William; Yang, Yarong; Chen, Xingyuan; Rubin, Yoram
2013-06-01
This paper proposes a strategy for improving the computational efficiency of model inversion using the method of anchored distributions (MAD) by "bundling" similar model parametrizations in the likelihood function. Inferring the likelihood function typically requires a large number of forward model (FM) simulations for each possible model parametrization; as a result, the process is quite expensive. To ease this prohibitive cost, we present an approximation for the likelihood function called bundling that relaxes the requirement for high quantities of FM simulations. This approximation redefines the conditional statement of the likelihood function as the probability of a set of similar model parametrizations "bundle" replicating field measurements, which we show is neither a model reduction nor a sampling approach to improving the computational efficiency of model inversion. To evaluate the effectiveness of these modifications, we compare the quality of predictions and computational cost of bundling relative to a baseline MAD inversion of 3-D flow and transport model parameters. Additionally, to aid understanding of the implementation we provide a tutorial for bundling in the form of a sample data set and script for the R statistical computing language. For our synthetic experiment, bundling achieved a 35% reduction in overall computational cost and had a limited negative impact on predicted probability distributions of the model parameters. Strategies for minimizing error in the bundling approximation, for enforcing similarity among the sets of model parametrizations, and for identifying convergence of the likelihood function are also presented.
High Fidelity BWR Fuel Simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoon, Su Jong
This report describes the Consortium for Advanced Simulation of Light Water Reactors (CASL) work conducted for completion of the Thermal Hydraulics Methods (THM) Level 3 milestone THM.CFD.P13.03: High Fidelity BWR Fuel Simulation. High fidelity computational fluid dynamics (CFD) simulation for Boiling Water Reactor (BWR) was conducted to investigate the applicability and robustness performance of BWR closures. As a preliminary study, a CFD model with simplified Ferrule spacer grid geometry of NUPEC BWR Full-size Fine-mesh Bundle Test (BFBT) benchmark has been implemented. Performance of multiphase segregated solver with baseline boiling closures has been evaluated. Although the mean values of void fractionmore » and exit quality of CFD result for BFBT case 4101-61 agreed with experimental data, the local void distribution was not predicted accurately. The mesh quality was one of the critical factors to obtain converged result. The stability and robustness of the simulation was mainly affected by the mesh quality, combination of BWR closure models. In addition, the CFD modeling of fully-detailed spacer grid geometry with mixing vane is necessary for improving the accuracy of CFD simulation.« less
Localized Statistics for DW-MRI Fiber Bundle Segmentation
Lankton, Shawn; Melonakos, John; Malcolm, James; Dambreville, Samuel; Tannenbaum, Allen
2013-01-01
We describe a method for segmenting neural fiber bundles in diffusion-weighted magnetic resonance images (DWMRI). As these bundles traverse the brain to connect regions, their local orientation of diffusion changes drastically, hence a constant global model is inaccurate. We propose a method to compute localized statistics on orientation information and use it to drive a variational active contour segmentation that accurately models the non-homogeneous orientation information present along the bundle. Initialized from a single fiber path, the proposed method proceeds to capture the entire bundle. We demonstrate results using the technique to segment the cingulum bundle and describe several extensions making the technique applicable to a wide range of tissues. PMID:23652079
Zhou, Qin; Ames, Peter; Parkinson, John S.
2009-01-01
SUMMARY To test the gearbox model of HAMP signaling in the E. coli serine receptor, Tsr, we generated a series of amino acid replacements at each residue of the AS1 and AS2 helices. The residues most critical for Tsr function defined hydrophobic packing faces consistent with a 4-helix bundle. Suppression patterns of helix lesions conformed to the the predicted packing layers in the bundle. Although the properties and patterns of most AS1 and AS2 lesions were consistent with both proposed gearbox structures, some mutational features specifically indicate the functional importance of an x-da bundle over an alternative a-d bundle. These genetic data suggest that HAMP signaling could simply involve changes in the stability of its x-da bundle. We propose that Tsr HAMP controls output signals by modulating destabilizing phase clashes between the AS2 helices and the adjoining kinase control helices. Our model further proposes that chemoeffectors regulate HAMP bundle stability through a control cable connection between the transmembrane segments and AS1 helices. Attractant stimuli, which cause inward piston displacements in chemoreceptors, should reduce cable tension, thereby stabilizing the HAMP bundle. This study shows how transmembrane signaling and HAMP input-output control could occur without the helix rotations central to the gearbox model. PMID:19656294
Bundling of elastic filaments induced by hydrodynamic interactions
NASA Astrophysics Data System (ADS)
Man, Yi; Page, William; Poole, Robert J.; Lauga, Eric
2017-12-01
Peritrichous bacteria swim in viscous fluids by rotating multiple helical flagellar filaments. As the bacterium swims forward, all its flagella rotate in synchrony behind the cell in a tight helical bundle. When the bacterium changes its direction, the flagellar filaments unbundle and randomly reorient the cell for a short period of time before returning to their bundled state and resuming swimming. This rapid bundling and unbundling is, at its heart, a mechanical process whereby hydrodynamic interactions balance with elasticity to determine the time-varying deformation of the filaments. Inspired by this biophysical problem, we present in this paper what is perhaps the simplest model of bundling whereby two or more straight elastic filaments immersed in a viscous fluid rotate about their centerline, inducing rotational flows which tend to bend the filaments around each other. We derive an integrodifferential equation governing the shape of the filaments resulting from mechanical balance in a viscous fluid at low Reynolds number. We show that such equation may be evaluated asymptotically analytically in the long-wavelength limit, leading to a local partial differential equation governed by a single dimensionless bundling number. A numerical study of the dynamics predicted by the model reveals the presence of two configuration instabilities with increasing bundling numbers: first to a crossing state where filaments touch at one point and then to a bundled state where filaments wrap along each other in a helical fashion. We also consider the case of multiple filaments and the unbundling dynamics. We next provide an intuitive physical model for the crossing instability and show that it may be used to predict analytically its threshold and adapted to address the transition to a bundling state. We then use a macroscale experimental implementation of the two-filament configuration in order to validate our theoretical predictions and obtain excellent agreement. This long-wavelength model of bundling will be applicable to other problems in biological physics and provides the groundwork for further, more realistic, models of flagellar bundling.
Creep relaxation of fuel pin bending and ovalling stresses. [BEND code, OVAL code, MARC-CDC code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chan, D.P.; Jackson, R.J.
1981-10-01
Analytical methods for calculating fuel pin cladding bending and ovalling stresses due to pin bundle-duct mechanical interaction taking into account nonlinear creep are presented. Calculated results are in agreement with finite element results by MARC-CDC program. The methods are used to investigate the effect of creep on the FTR fuel cladding bending and ovalling stresses. It is concluded that the cladding of 316 SS 20 percent CW and reference design has high creep rates in the FTR core region to keep the bending and ovalling stresses to acceptable levels. 6 refs.
Improvements to Wire Bundle Thermal Modeling for Ampacity Determination
NASA Technical Reports Server (NTRS)
Rickman, Steve L.; Iannello, Christopher J.; Shariff, Khadijah
2017-01-01
Determining current carrying capacity (ampacity) of wire bundles in aerospace vehicles is critical not only to safety but also to efficient design. Published standards provide guidance on determining wire bundle ampacity but offer little flexibility for configurations where wire bundles of mixed gauges and currents are employed with varying external insulation jacket surface properties. Thermal modeling has been employed in an attempt to develop techniques to assist in ampacity determination for these complex configurations. Previous developments allowed analysis of wire bundle configurations but was constrained to configurations comprised of less than 50 elements. Additionally, for vacuum analyses, configurations with very low emittance external jackets suffered from numerical instability in the solution. A new thermal modeler is presented allowing for larger configurations and is not constrained for low bundle infrared emissivity calculations. Formulation of key internal radiation and interface conductance parameters is discussed including the effects of temperature and air pressure on wire to wire thermal conductance. Test cases comparing model-predicted ampacity and that calculated from standards documents are presented.
Analytical methods in the high conversion reactor core design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeggel, W.; Oldekop, W.; Axmann, J.K.
High conversion reactor (HCR) design methods have been used at the Technical University of Braunschweig (TUBS) with the technological support of Kraftwerk Union (KWU). The present state and objectives of this cooperation between KWU and TUBS in the field of HCRs have been described using existing design models and current activities aimed at further development and validation of the codes. The hard physical and thermal-hydraulic boundary conditions of pressurized water reactor (PWR) cores with a high degree of fuel utilization result from the tight packing of the HCR fuel rods and the high fissionable plutonium content of the fuel. Inmore » terms of design, the problem will be solved with rod bundles whose fuel rods are adjusted by helical spacers to the proposed small rod pitches. These HCR properties require novel computational models for neutron physics, thermal hydraulics, and fuel rod design. By means of a survey of the codes, the analytical procedure for present-day HCR core design is presented. The design programs are currently under intensive development, as design tools with a solid, scientific foundation and with essential parameters that are widely valid and are required for a promising optimization of the HCR core. Design results and a survey of future HCR development are given. In this connection, the reoptimization of the PWR core in the direction of an HCR is considered a fascinating scientific task, with respect to both economic and safety aspects.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, W. Jr.; West, G.A.; Stacy, R.G.
1979-03-22
Sieve fractionation was performed with oxide particles dislodged during shearing of unirradiated or irradiated fuel bundles or single rods of UO/sub 2/ or 96 to 97% ThO/sub 2/--3 to 4% UO/sub 2/. Analyses of these data by nonlinear least-squares techniques demonstrated that the particle size distribution is lognormal. Variables involved in the numerical analyses include lognormal median size, lognormal standard deviation, and shear cut length. Sieve-fractionation data are presented for unirradiated bundles of stainless-steel-clad or Zircaloy-2-clad UO/sub 2/ or ThO/sub 2/--UO/sub 2/ sheared into lengths from 0.5 to 2.0 in. Data are also presented for irradiated single rods (sheared intomore » lengths of 0.25 to 2.0 in.) of Zircaloy-2-clad UO/sub 2/ from BWRs and of Zircaloy-4-clad UO/sub 2/ from PWRs. Median particle sizes of UO/sub 2/ from shearing irradiated stainless-steel-clad fuel ranged from 103 to 182 ..mu..m; particle sizes of ThO/sub 2/--UO/sub 2/, under these same conditions, ranged from 137 to 202 ..mu..m. Similarly, median particle sizes of UO/sub 2/ from shearing unirradiated Zircaloy-2-clad fuel ranged from 230 to 957 ..mu..m. Irradiation levels of fuels from reactors ranged from 9,000 to 28,000 MWd/MTU. In general, particle sizes from shearing these irradiated fuels are larger than those from the unirradiated fuels; however, unirradiated fuel from vendors was not available for performing comparative shearing experiments. In addition, variations in particle size parameters pertaining to samples of a single vendor varied as much as those between different vendors. The fraction of fuel dislodged from the cladding is nearly proportional to the reciprocal of the shear cut length, until the cut length attains some minimum value below which all fuel is dislodged. Particles of fuel are generally elongated with a long-to-short axis ratio usually less than 3. Using parameters of the lognormal distribution estimates can be made of fractions of dislodged fuel having dimensions less than specified values.« less
Delay Tolerant Networking - Bundle Protocol Simulation
NASA Technical Reports Server (NTRS)
SeGui, John; Jenning, Esther
2006-01-01
In this paper, we report on the addition of MACHETE models needed to support DTN, namely: the Bundle Protocol (BP) model. To illustrate the useof MACHETE with the additional DTN model, we provide an example simulation to benchmark its performance. We demonstrate the use of the DTN protocol and discuss statistics gathered concerning the total time needed to simulate numerous bundle transmissions.
Accelerator-Driven Subcritical System for Disposing of the U.S. Spent Nuclear Fuel Inventory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gohar, Yousry; Cao, Yan; Kraus, Adam R.
The current United States inventory of the spent nuclear fuel (SNF) is ~80,000 metric tons of heavy metal (MTHM), including ~131 tons of minor actinides (MAs) and ~669 tons of plutonium. This study describes a conceptual design of an accelerator-driven subcritical (ADS) system for disposing of this SNF inventory by utilizing the 131 tons of MAs inventory and a fraction of the plutonium inventory for energy production, and transmuting some long-lived fission products. An ADS system with a homogeneous subcritical fission blanket was first examined. A spallation neutron source is used to drive the blanket and it is produced frommore » the interaction of a 1-GeV proton beam with a lead-bismuth eutectic (LBE) target. The blanket has a liquid mobile fuel using LBE as the fuel carrier. The fuel materials are dissolved, mixed, or suspended in the liquid fuel carrier. Monte Carlo analyses were performed to determine the overall parameters of the concept. Steady-state Monte Carlo simulations were performed for three similar fission blankets. Except for, the loaded amount of actinide materials in the LBE is either 5, 7, or 10% of the total volume of the blanket, respectively. The neutron multiplication factors of the three blankets are ~0.98 and the initial MAs blanket inventories are ~10 tons. In addition, Monte Carlo burnup simulations using the MCB5 code were performed to analyze the performance of the three conceptual ADS systems. During operation, fresh fuel was fed into the fission blanket to adjust its reactivity and to control the system power. The burnup analysis shows that the three ADS concepts consume about 1.2 tons of actinides per full power year and produce 3 GW thermal power, with a proton beam power of 25 MW. For the blankets with 5, 7, or 10% actinide fuel particles loaded in the LBE, assuming that the ADS systems can be operated for 35 full-power years, the total MA materials consumed in the three ADS systems are about 30.6, 35.3, and 37.2 tons, respectively. Thus, the corresponding numbers of ADS systems to utilize the 131 tons of MA materials of the SNF inventory are 4.3, 3.7, or 3.5, respectively. ADS concepts with tube bundles inserted in the fission blanket were analyzed to overcome the disadvantages of the homogeneous blanket concept. The liquid lead is used as the target material, the mobile fuel carrier, and the primary coolant to avoid the polonium production from bismuth. Reactor physics and thermal-hydraulic analyses were coupled to determine the parameters of the heterogeneous fission blanket. The engineering requirements for a satisfactory operation performance of the HT-9 ferritic steel structure material have been realized. Two heterogeneous concepts of the subcritical fission blanket with the liquid lead mobile fuel inside or outside the tube bundles were considered. The heterogeneous configuration with the mobile fuel inside the tubes showed better performance than the configuration with mobile fuel outside the bundle tubes. The Monte Carlo burnup codes, MCB5 and SERPENT were both used to simulate the fuel burnup in the ADS concepts with the mobile fuels inside the tubes. The burnup analyses were carried out for 35 full power years. The results show that 5 ADS systems can dispose of the total United States inventory of the spent nuclear fuel.« less
Calculation of Non-Bonded Forces Due to Sliding of Bundled Carbon Nanotubes
NASA Technical Reports Server (NTRS)
Frankland, S. J. V.; Bandorawalla, T.; Gates, T. S.
2003-01-01
An important consideration for load transfer in bundles of single-walled carbon nanotubes is the nonbonded (van der Waals) forces between the nanotubes and their effect on axial sliding of the nanotubes relative to each other. In this research, the non-bonded forces in a bundle of seven hexagonally packed (10,10) single-walled carbon nanotubes are represented as an axial force applied to the central nanotube. A simple model, based on momentum balance, is developed to describe the velocity response of the central nanotube to the applied force. The model is verified by comparing its velocity predictions with molecular dynamics simulations that were performed on the bundle with different force histories applied to the central nanotube. The model was found to quantitatively predict the nanotube velocities obtained from the molecular dynamics simulations. Both the model and the simulations predict a threshold force at which the nanotube releases from the bundle. This force converts to a shear yield strength of 10.5-11.0 MPa for (10,10) nanotubes in a bundle.
ERIC Educational Resources Information Center
Ong, Yoke Mooi; Williams, Julian; Lamprianou, Iasonas
2013-01-01
Researchers interested in exploring substantive group differences are increasingly attending to bundles of items (or testlets): the aim is to understand how gender differences, for instance, are explained by differential performances on different types or bundles of items, hence differential bundle functioning (DBF). Some previous work has…
NASA Astrophysics Data System (ADS)
Limbach, H. J.; Sayar, M.; Holm, C.
2004-06-01
Using extensive Molecular Dynamics simulations we study the behavior of polyelectrolytes with hydrophobic side chains, which are known to form cylindrical micelles in aqueous solution. We investigate the stability of such bundles with respect to hydrophobicity, the strength of the electrostatic interaction, and the bundle size. We show that for the parameter range relevant for sulfonated poly-para-phenylenes (PPP) one finds a stable finite bundle size. In a more generic model we also show the influence of the length of the precursor oligomer on the stability of the bundles. We also point out that our model has close similarities to DNA solutions with added condensing agents, hinting to the possibility that the size of DNA aggregates is under certain circumstances thermodynamically limited.
A macroscopic scale model of bacterial flagellar bundling
NASA Astrophysics Data System (ADS)
Kim, Munju; Bird, James C.; van Parys, Annemarie J.; Breuer, Kenneth S.; Powers, Thomas R.
2003-12-01
Escherichia coli and other bacteria use rotating helical filaments to swim. Each cell typically has about four filaments, which bundle or disperse depending on the sense of motor rotation. To study the bundling process, we built a macroscopic scale model consisting of stepper motor-driven polymer helices in a tank filled with a high-viscosity silicone oil. The Reynolds number, the ratio of viscous to elastic stresses, and the helix geometry of our experimental model approximately match the corresponding quantities of the full-scale E. coli cells. We analyze digital video images of the rotating helices to show that the initial rate of bundling is proportional to the motor frequency and is independent of the characteristic relaxation time of the filament. We also determine which combinations of helix handedness and sense of motor rotation lead to bundling.
Solid oxide fuel cell generator with removable modular fuel cell stack configurations
Gillett, J.E.; Dederer, J.T.; Zafred, P.R.; Collie, J.C.
1998-04-21
A high temperature solid oxide fuel cell generator produces electrical power from oxidation of hydrocarbon fuel gases such as natural gas, or conditioned fuel gases, such as carbon monoxide or hydrogen, with oxidant gases, such as air or oxygen. This electrochemical reaction occurs in a plurality of electrically connected solid oxide fuel cells bundled and arrayed in a unitary modular fuel cell stack disposed in a compartment in the generator container. The use of a unitary modular fuel cell stack in a generator is similar in concept to that of a removable battery. The fuel cell stack is provided in a pre-assembled self-supporting configuration where the fuel cells are mounted to a common structural base having surrounding side walls defining a chamber. Associated generator equipment may also be mounted to the fuel cell stack configuration to be integral therewith, such as a fuel and oxidant supply and distribution systems, fuel reformation systems, fuel cell support systems, combustion, exhaust and spent fuel recirculation systems, and the like. The pre-assembled self-supporting fuel cell stack arrangement allows for easier assembly, installation, maintenance, better structural support and longer life of the fuel cells contained in the fuel cell stack. 8 figs.
Solid oxide fuel cell generator with removable modular fuel cell stack configurations
Gillett, James E.; Dederer, Jeffrey T.; Zafred, Paolo R.; Collie, Jeffrey C.
1998-01-01
A high temperature solid oxide fuel cell generator produces electrical power from oxidation of hydrocarbon fuel gases such as natural gas, or conditioned fuel gases, such as carbon monoxide or hydrogen, with oxidant gases, such as air or oxygen. This electrochemical reaction occurs in a plurality of electrically connected solid oxide fuel cells bundled and arrayed in a unitary modular fuel cell stack disposed in a compartment in the generator container. The use of a unitary modular fuel cell stack in a generator is similar in concept to that of a removable battery. The fuel cell stack is provided in a pre-assembled self-supporting configuration where the fuel cells are mounted to a common structural base having surrounding side walls defining a chamber. Associated generator equipment may also be mounted to the fuel cell stack configuration to be integral therewith, such as a fuel and oxidant supply and distribution systems, fuel reformation systems, fuel cell support systems, combustion, exhaust and spent fuel recirculation systems, and the like. The pre-assembled self-supporting fuel cell stack arrangement allows for easier assembly, installation, maintenance, better structural support and longer life of the fuel cells contained in the fuel cell stack.
Manifold, bus support and coupling arrangement for solid oxide fuel cells
Parry, G.W.
1988-04-21
Individual, tubular solid oxide fuel cells (SOFCs) are assembled into bundles called a module within a housing, with a plurality of modules arranged end-to-end in a linear, stacked configuration called a string. A common set of piping comprised of a suitable high temperature resistant material (1) provides fuel and air to each module housing, (2) serves as electrically conducting buses, and (3) provides structural support for a string of SOFC modules. Ceramic collars are used to connect fuel and air inlet piping to each of the electrodes in an SOFC module and provide (1) electrical insulation for the current carrying bus bars and gas manifolds, (2) damping for the fuel and air inlet piping, and (3) proper spacing between the fuel and air inlet piping to prevent contact between these tubes and possible damage to the SOFC. 11 figs.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-18
...: We propose to adopt a new airworthiness directive (AD) for certain Model 737-600, -700, -700C, -800... and any wire bundle damage between wire bundle W443 and the left forward rudder quadrant, followed by adjusting the minimum clearance between the wire bundle and the left forward rudder quadrant, and repairing...
Annual progress report on the NSRR experiments, (21)
NASA Astrophysics Data System (ADS)
1992-05-01
Fuel behavior studies under simulated reactivity-initiated accident (RIA) conditions have been performed in the Nuclear Safety Research Reactor (NSRR) since 1975. This report gives the results of experiments performed from April, 1989 through March, 1990 and discussions of them. A total of 41 tests were carried out during this period. The tests are distinguished into pre-irradiated fuel tests and fresh fuel tests; the former includes 2 JMTR pre-irradiated fuel tests, 2 PWR pre-irradiated fuel tests, and 2 BWR pre-irradiated fuel tests, and the latter includes 6 standard fuel tests (6 SP(center dot)CP scoping tests), 7 power and cooling condition parameter tests (4 flow shrouded fuel tests, 1 bundle simulation test, 1 fully water-filled vessel test, 1 high pressure/high temperature loop test), 12 special fuel tests (3 stainless steel clad fuel tests, 3 improved PWR fuel tests, 6 improved BWR fuel tests), 3 severe fuel damage tests (1 high temperature flooding test, 1 flooding behavior observation test, 1 debris coolability test), 3 fast breeder reactor fuel tests (2 moderator material characteristic measurement tests, 1 fuel behavior observation test), and 2 miscellaneous tests (2 preliminary tests for pre-irradiated fuel tests).
Heat transfer enhancement with mixing vane spacers using the field synergy principle
NASA Astrophysics Data System (ADS)
Yang, Lixin; Zhou, Mengjun; Tian, Zihao
2017-01-01
The single-phase heat transfer characteristics in a PWR fuel assembly are important. Many investigations attempt to obtain the heat transfer characteristics by studying the flow features in a 5 × 5 rod bundle with a spacer grid. The field synergy principle is used to discuss the mechanism of heat transfer enhancement using mixing vanes according to computational fluid dynamics results, including a spacer grid without mixing vanes, one with a split mixing vane, and one with a separate mixing vane. The results show that the field synergy principle is feasible to explain the mechanism of heat transfer enhancement in a fuel assembly. The enhancement in subchannels is more effective than on the rod's surface. If the pressure loss is ignored, the performance of the split mixing vane is superior to the separate mixing vane based on the enhanced heat transfer. Increasing the blending angle of the split mixing vane improves heat transfer enhancement, the maximum of which is 7.1%. Increasing the blending angle of the separate mixing vane did not significantly enhance heat transfer in the rod bundle, and even prevented heat transfer at a blending angle of 50°. This finding testifies to the feasibility of predicting heat transfer in a rod bundle with a spacer grid by field synergy, and upon comparison with analyzed flow features only, the field synergy method may provide more accurate guidance for optimizing the use of mixing vanes.
Bundled Payments in Total Joint Replacement: Keeping Our Care Affordable and High in Quality.
McLawhorn, Alexander S; Buller, Leonard T
2017-09-01
The purpose of this review was to evaluate the literature regarding bundle payment reimbursement models for total joint arthroplasty (TJA). From an economic standpoint, TJA are cost-effective, but they represent a substantial expense to the Centers for Medicare & Medicaid Services (CMS). Historically, fee-for-service payment models resulted in highly variable cost and quality. CMS introduced Bundled Payments for Care Improvement (BPCI) in 2012 and subsequently the Comprehensive Care for Joint Replacement (CJR) reimbursement model in 2016 to improve the value of TJA from the perspectives of both CMS and patients, by improving quality via cost control. Early results of bundled payments are promising, but preserving access to care for patients with high comorbidity burdens and those requiring more complex care is a lingering concern. Hospitals, regardless of current participation in bundled payments, should develop care pathways for TJA to maximize efficiency and patient safety.
A simple numerical model for membrane oxygenation of an artificial lung machine
NASA Astrophysics Data System (ADS)
Subraveti, Sai Nikhil; Sai, P. S. T.; Viswanathan Pillai, Vinod Kumar; Patnaik, B. S. V.
2015-11-01
Optimal design of membrane oxygenators will have far reaching ramification in the development of artificial heart-lung systems. In the present CFD study, we simulate the gas exchange between the venous blood and air that passes through the hollow fiber membranes on a benchmark device. The gas exchange between the tube side fluid and the shell side venous liquid is modeled by solving mass, momentum conservation equations. The fiber bundle was modelled as a porous block with a bundle porosity of 0.6. The resistance offered by the fiber bundle was estimated by the standard Ergun correlation. The present numerical simulations are validated against available benchmark data. The effect of bundle porosity, bundle size, Reynolds number, non-Newtonian constitutive relation, upstream velocity distribution etc. on the pressure drop, oxygen saturation levels etc. are investigated. To emulate the features of gas transfer past the alveoli, the effect of pulsatility on the membrane oxygenation is also investigated.
Supercritical fluid attachment of palladium nanoparticles on aligned carbon nanotubes.
Ye, Xiang-Rong; Lin, Yuehe; Wai, Chien M; Talbot, Jan B; Jin, Sungho
2005-06-01
Nanocomposite materials consisting of Pd nanoparticles deposited on aligned multi-walled carbon nanotubes have been fabricated through hydrogen reduction of palladium-beta-diketone precursor in supercritical carbon dioxide. The supercritical fluid processing allowed deposition of high-density Pd nanoparticles (approximately 5-10 nm) on both as-grown (unfunctionalized) and functionalized (using HNO3 oxidation) nanotubes. However, the wet processing for functionalization results in pre-agglomerated, bundle-shaped nanotubes, thus significantly reducing the effective surface area for Pd particle deposition, although the bundling provides more secure, lock-in-place positioning of nanotubes and Pd catalyst particles. The nanotube bundling is substantially mitigated by Pd nanoparticle deposition on the unfunctionalized and geometrically separated nanotubes, which provides much higher catalyst surface area. Such nanocomposite materials utilizing geometrically secured and aligned nanotubes can be useful for providing much enhanced catalytic activities to chemical and electrochemical reactions (e.g., fuel cell reactions), and eliminate the need for tedious catalyst recovery process after the reaction is completed.
Cations Modulate Actin Bundle Mechanics, Assembly Dynamics, and Structure.
Castaneda, Nicholas; Zheng, Tianyu; Rivera-Jacquez, Hector J; Lee, Hyun-Ju; Hyun, Jaekyung; Balaeff, Alexander; Huo, Qun; Kang, Hyeran
2018-04-12
Actin bundles are key factors in the mechanical support and dynamic reorganization of the cytoskeleton. High concentrations of multivalent counterions promote bundle formation through electrostatic attraction between actin filaments that are negatively charged polyelectrolytes. In this study, we evaluate how physiologically relevant divalent cations affect the mechanical, dynamic, and structural properties of actin bundles. Using a combination of total internal reflection fluorescence microscopy, transmission electron microscopy, and dynamic light scattering, we demonstrate that divalent cations modulate bundle stiffness, length distribution, and lateral growth. Molecular dynamics simulations of an all-atom model of the actin bundle reveal specific actin residues coordinate cation-binding sites that promote the bundle formation. Our work suggests that specific cation interactions may play a fundamental role in the assembly, structure, and mechanical properties of actin bundles.
Catalytic membranes for fuel cells
Liu, Di-Jia [Naperville, IL; Yang, Junbing [Bolingbrook, IL; Wang, Xiaoping [Naperville, IL
2011-04-19
A fuel cell of the present invention comprises a cathode and an anode, one or both of the anode and the cathode including a catalyst comprising a bundle of longitudinally aligned graphitic carbon nanotubes including a catalytically active transition metal incorporated longitudinally and atomically distributed throughout the graphitic carbon walls of said nanotubes. The nanotubes also include nitrogen atoms and/or ions chemically bonded to the graphitic carbon and to the transition metal. Preferably, the transition metal comprises at least one metal selected from the group consisting of Fe, Co, Ni, Mn, and Cr.
An analytical fiber bundle model for pullout mechanics of root bundles
NASA Astrophysics Data System (ADS)
Cohen, D.; Schwarz, M.; Or, D.
2011-09-01
Roots in soil contribute to the mechanical stability of slopes. Estimation of root reinforcement is challenging because roots form complex biological networks whose geometrical and mechanical characteristics are difficult to characterize. Here we describe an analytical model that builds on simple root descriptors to estimate root reinforcement. Root bundles are modeled as bundles of heterogeneous fibers pulled along their long axes neglecting root-soil friction. Analytical expressions for the pullout force as a function of displacement are derived. The maximum pullout force and corresponding critical displacement are either derived analytically or computed numerically. Key model inputs are a root diameter distribution (uniform, Weibull, or lognormal) and three empirical power law relations describing tensile strength, elastic modulus, and length of roots as functions of root diameter. When a root bundle with root tips anchored in the soil matrix is pulled by a rigid plate, a unique parameter, ?, that depends only on the exponents of the power law relations, dictates the order in which roots of different diameters break. If ? < 1, small roots break first; if ? > 1, large roots break first. When ? = 1, all fibers break simultaneously, and the maximum tensile force is simply the roots' mean force times the number of roots in the bundle. Based on measurements of root geometry and mechanical properties, the value of ? is less than 1, usually ranging between 0 and 0.7. Thus, small roots always fail first. The model shows how geometrical and mechanical characteristics of roots and root diameter distribution affect the pullout force, its maximum and corresponding displacement. Comparing bundles of roots that have similar mean diameters, a bundle with a narrow variance in root diameter will result in a larger maximum force and a smaller displacement at maximum force than a bundle with a wide diameter distribution. Increasing the mean root diameter of a bundle without changing the distribution's shape increases both the maximum force and corresponding displacement. Estimates of the maximum pullout forces for bundles of 100 roots with identical diameter distribution for different species range from less than 1 kN for barley (Hordeum vulgare) to almost 16 kN for pistachio (Pistacia lentiscus). The model explains why a commonly used assumption that all roots break simultaneously overpredicts the maximum pullout force by a factor of about 1.6-2. This ratio may exceed 3 for diameter distributions that have a large number of small roots like the exponential distribution.
Bundled payment and enhanced recovery after surgery.
Huang, Jeffrey
2015-01-01
Medicare's fee-for-service (FFS) payment model may contribute to unsustainable spending growth. Payers are turning to alternative payment methods. The leading alternative payment model to the FFS problem is bundled payment. The Centers for Medicare & Medicaid Services (CMS) is taking another step to improve healthcare quality at lower cost. The CMS's Center for Medicare and Medicaid Innovation developed four models of bundled payments and 48 discrete clinical condition episodes. Many surgical care procedures are included in the 48 different clinical condition episodes.
Large-eddy simulations of turbulent flow for grid-to-rod fretting in nuclear reactors
Bakosi, J.; Christon, M. A.; Lowrie, R. B.; ...
2013-07-12
The grid-to-rod fretting (GTRF) problem in pressurized water reactors is a flow-induced vibration problem that results in wear and failure of the fuel rods in nuclear assemblies. In order to understand the fluid dynamics of GTRF and to build an archival database of turbulence statistics for various configurations, implicit large-eddy simulations of time-dependent single-phase turbulent flow have been performed in 3 × 3 and 5 × 5 rod bundles with a single grid spacer. To assess the computational mesh and resolution requirements, a method for quantitative assessment of unstructured meshes with no-slip walls is described. The calculations have been carriedmore » out using Hydra-TH, a thermal-hydraulics code developed at Los Alamos for the Consortium for Advanced Simulation of Light water reactors, a United States Department of Energy Innovation Hub. Hydra-TH uses a second-order implicit incremental projection method to solve the singlephase incompressible Navier-Stokes equations. The simulations explicitly resolve the large scale motions of the turbulent flow field using first principles and rely on a monotonicity-preserving numerical technique to represent the unresolved scales. Each series of simulations for the 3 × 3 and 5 × 5 rod-bundle geometries is an analysis of the flow field statistics combined with a mesh-refinement study and validation with available experimental data. Our primary focus is the time history and statistics of the forces loading the fuel rods. These hydrodynamic forces are believed to be the key player resulting in rod vibration and GTRF wear, one of the leading causes for leaking nuclear fuel which costs power utilities millions of dollars in preventive measures. As a result, we demonstrate that implicit large-eddy simulation of rod-bundle flows is a viable way to calculate the excitation forces for the GTRF problem.« less
Computational imaging through a fiber-optic bundle
NASA Astrophysics Data System (ADS)
Lodhi, Muhammad A.; Dumas, John Paul; Pierce, Mark C.; Bajwa, Waheed U.
2017-05-01
Compressive sensing (CS) has proven to be a viable method for reconstructing high-resolution signals using low-resolution measurements. Integrating CS principles into an optical system allows for higher-resolution imaging using lower-resolution sensor arrays. In contrast to prior works on CS-based imaging, our focus in this paper is on imaging through fiber-optic bundles, in which manufacturing constraints limit individual fiber spacing to around 2 μm. This limitation essentially renders fiber-optic bundles as low-resolution sensors with relatively few resolvable points per unit area. These fiber bundles are often used in minimally invasive medical instruments for viewing tissue at macro and microscopic levels. While the compact nature and flexibility of fiber bundles allow for excellent tissue access in-vivo, imaging through fiber bundles does not provide the fine details of tissue features that is demanded in some medical situations. Our hypothesis is that adapting existing CS principles to fiber bundle-based optical systems will overcome the resolution limitation inherent in fiber-bundle imaging. In a previous paper we examined the practical challenges involved in implementing a highly parallel version of the single-pixel camera while focusing on synthetic objects. This paper extends the same architecture for fiber-bundle imaging under incoherent illumination and addresses some practical issues associated with imaging physical objects. Additionally, we model the optical non-idealities in the system to get lower modelling errors.
Marcucci, Lorenzo; Reggiani, Carlo; Natali, Arturo N; Pavan, Piero G
2017-12-01
Muscles exhibit highly complex, multi-scale architecture with thousands of muscle fibers, each with different properties, interacting with each other and surrounding connective structures. Consequently, the results of single-fiber experiments are scarcely linked to the macroscopic or whole muscle behavior. This is especially true for human muscles where it would be important to understand of how skeletal muscles disorders affect patients' life. In this work, we developed a mathematical model to study how fast and slow muscle fibers, well characterized in single-fiber experiments, work and generate together force and displacement in muscle bundles. We characterized the parameters of a Hill-type model, using experimental data on fast and slow single human muscle fibers, and comparing experimental data with numerical simulations obtained from finite element (FE) models of single fibers. Then, we developed a FE model of a bundle of 19 fibers, based on an immunohistochemically stained cross section of human diaphragm and including the corresponding properties of each slow or fast fiber. Simulations of isotonic contractions of the bundle model allowed the generation of its apparent force-velocity relationship. Although close to the average of the force-velocity curves of fast and slow fibers, the bundle curve deviates substantially toward the fast fibers at low loads. We believe that the present model and the characterization of the force-velocity curve of a fiber bundle represents the starting point to link the single-fiber properties to those of whole muscle with FE application in phenomenological models of human muscles.
Episodic payments (bundling): PART I.
Jacofsky, D J
2017-10-01
Episodic, or bundled payments, is a concept now familiar to most in the healthcare arena, but the models are often misunderstood. Under a traditional fee-for-service model, each provider bills separately for their services which creates financial incentives to maximise volumes. Under a bundled payment, a single entity, often referred to as a convener (maybe the hospital, the physician group, or a third party) assumes the risk through a payer contract for all services provided within a defined episode of care, and receives a single (bundled) payment for all services provided for that episode. The time frame around the intervention is variable, but defined in advance, as are included and excluded costs. Timing of the actual payment in a bundle may either be before the episode occurs (prospective payment model), or after the end of the episode through a reconciliation (retrospective payment model). In either case, the defined costs over the defined time frame are borne by the convener. Cite this article: Bone Joint J 2017;99-B:1280-5. ©2017 The British Editorial Society of Bone & Joint Surgery.
Time-dependent fiber bundles with local load sharing.
Newman, W I; Phoenix, S L
2001-02-01
Fiber bundle models, where fibers have random lifetimes depending on their load histories, are useful tools in explaining time-dependent failure in heterogeneous materials. Such models shed light on diverse phenomena such as fatigue in structural materials and earthquakes in geophysical settings. Various asymptotic and approximate theories have been developed for bundles with various geometries and fiber load-sharing mechanisms, but numerical verification has been hampered by severe computational demands in larger bundles. To gain insight at large size scales, interest has returned to idealized fiber bundle models in 1D. Such simplified models typically assume either equal load sharing (ELS) among survivors, or local load sharing (LLS) where a failed fiber redistributes its load onto its two nearest flanking survivors. Such models can often be solved exactly or asymptotically in increasing bundle size, N, yet still capture the essence of failure in real materials. The present work focuses on 1D bundles under LLS. As in previous works, a fiber has failure rate following a power law in its load level with breakdown exponent rho. Surviving fibers under fixed loads have remaining lifetimes that are independent and exponentially distributed. We develop both new asymptotic theories and new computational algorithms that greatly increase the bundle sizes that can be treated in large replications (e.g., one million fibers in thousands of realizations). In particular we develop an algorithm that adapts several concepts and methods that are well-known among computer scientists, but relatively unknown among physicists, to dramatically increase the computational speed with no attendant loss of accuracy. We consider various regimes of rho that yield drastically different behavior as N increases. For 1/2< or =rho< or =1, ELS and LLS have remarkably similar behavior (they have identical lifetime distributions at rho=1) with approximate Gaussian bundle lifetime statistics and a finite limiting mean. For rho>1 this Gaussian behavior also applies to ELS, whereas LLS behavior diverges sharply showing brittle, weakest volume behavior in terms of characteristic elements derived from critical cluster formation. For 0
Seim, O.S.; Filewicz, E.C.; Hutter, E.
1973-10-23
An irradiation subassembly for use in a nuclear reactor is described which includes a bundle of slender elongated irradiation -capsules or fuel elements enclosed by a coolant tube and having yieldable retaining liner between the irradiation capsules and the coolant tube. For a hexagonal bundle surrounded by a hexagonal tube the yieldable retaining liner may consist either of six segments corresponding to the six sides of the tube or three angular segments each corresponding in two adjacent sides of the tube. The sides of adjacent segments abut and are so cut that metal-tometal contact is retained when the volume enclosed by the retaining liner is varied and Springs are provided for urging the segments toward the center of the tube to hold the capsules in a closely packed configuration. (Official Gazette)
Ridgely, M Susan; de Vries, David; Bozic, Kevin J; Hussey, Peter S
2014-08-01
To determine whether bundled payment could be an effective payment model for California, the Integrated Healthcare Association convened a group of stakeholders (health plans, hospitals, ambulatory surgery centers, physician organizations, and vendors) to develop, through a consensus process, the methods and means of implementing bundled payment. In spite of a high level of enthusiasm and effort, the pilot did not succeed in its goal to implement bundled payment for orthopedic procedures across multiple payers and hospital-physician partners. An evaluation of the pilot documented a number of barriers, such as administrative burden, state regulatory uncertainty, and disagreements about bundle definition and assumption of risk. Ultimately, few contracts were signed, which resulted in insufficient volume to test hypotheses about the impact of bundled payment on quality and costs. Although bundled payment failed to gain a foothold in California, the evaluation provides lessons for future bundled payment initiatives. Project HOPE—The People-to-People Health Foundation, Inc.
Experience with Designing and Implementing a Bundled Payment Program for Total Hip Replacement
Whitcomb, Winthrop F.; Lagu, Tara; Krushell, Robert J.; Lehman, Andrew P.; Greenbaum, Jordan; McGirr, Joan; Pekow, Penelope S.; Calcasola, Stephanie; Benjamin, Evan; Mayforth, Janice; Lindenauer, Peter K.
2015-01-01
Background Bundled payments, also known as episode-based payments, are intended to contain health care costs and promote quality. In 2011 a bundled payment pilot program for total hip replacement was implemented by an integrated health care delivery system in conjunction with a commercial health plan subsidiary. In July 2015 the Centers for Medicare & Medicaid Services (CMS) proposed the Comprehensive Care for Joint Replacement Model to test bundled payment for hip and knee replacement. Methods Stakeholders were identified and a structure for program development and implementation was created. An Oversight Committee provided governance over a Clinical Model Subgroup and a Financial Model Subgroup. Results The pilot program included (1) a clinical model of care encompassing the period from the preoperative evaluation through the third postoperative visit, (2) a pricing model, (3) a program to share savings, and (4) a patient engagement and expectation strategy. Compared to 32 historical controls— patients treated before bundle implementation—45 post-bundle-implementation patients with total hip replacement had a similar length of hospital stay (3.0 versus 3.4 days, p = .24), higher rates of discharge to home or home with services than to a rehabilitation facility (87% versus 63%), similar adjusted median total payments ($22,272 versus $22,567, p = .43), and lower median posthospital payments ($704 versus $1,121, p = .002), and were more likely to receive guideline-consistent care (99% versus 95%, p = .05). Discussion The bundled payment pilot program was associated with similar total costs, decreased posthospital costs, fewer discharges to rehabilitation facilities, and improved quality. Successful implementation of the program hinged on buy-in from stakeholders and close collaboration between stakeholders and the clinical and financial teams. PMID:26289235
Experience with Designing and Implementing a Bundled Payment Program for Total Hip Replacement.
Whitcomb, Winthrop F; Lagu, Tara; Krushell, Robert J; Lehman, Andrew P; Greenbaum, Jordan; McGirr, Joan; Pekow, Penelope S; Calcasola, Stephanie; Benjamin, Evan; Mayforth, Janice; Lindenauer, Peter K
2015-09-01
Bundled payments, also known as episode-based payments, are intended to contain health care costs and promote quality. In 2011 a bundled payment pilot program for total hip replacement was implemented by an integrated health care delivery system in conjunction with a commercial health plan subsidiary. In July 2015 the Centers for Medicare & Medicaid Services (CMS) proposed the Comprehensive Care for Joint Replacement Model to test bundled payment for hip and knee replacement. Stakeholders were identified and a structure for program development and implementation was created. An Oversight Committee provided governance over a Clinical Model Subgroup and a Financial Model Subgroup. The pilot program included (1) a clinical model of care encompassing the period from the preoperative evaluation through the third postoperative visit, (2) a pricing model, (3) a program to share savings, and (4) a patient engagement and expectation strategy. Compared to 32 historical controls-patients treated before bundle implementation-45 post-bundle-implementation patients with total hip replacement had a similar length of hospital stay (3.0 versus 3.4 days, p=.24), higher rates of discharge to home or home with services than to a rehabilitation facility (87% versus 63%), similar adjusted median total payments ($22,272 versus $22,567, p=.43), and lower median posthospital payments ($704 versus $1,121, p=.002), and were more likely to receive guideline-consistent care (99% versus 95%, p=.05). The bundled payment pilot program was associated with similar total costs, decreased posthospital costs, fewer discharges to rehabilitation facilities, and improved quality. Successful implementation of the program hinged on buy-in from stakeholders and close collaboration between stakeholders and the clinical and financial teams.
NASA Astrophysics Data System (ADS)
Bayaskhalanov, M. V.; Vlasov, M. N.; Korsun, A. S.; Merinov, I. G.; Philippov, M. Ph
2017-11-01
Research results of “k-ε” turbulence integral model (TIM) parameters dependence on the angle of a coolant flow in regular smooth cylindrical rod-bundle are presented. TIM is intended for the definition of efficient impulse and heat transport coefficients in the averaged equations of a heat and mass transfer in the regular rod structures in an anisotropic porous media approximation. The TIM equations are received by volume-averaging of the “k-ε” turbulence model equations on periodic cell of rod-bundle. The water flow across rod-bundle under angles from 15 to 75 degrees was simulated by means of an ANSYS CFX code. Dependence of the TIM parameters on flow angle was as a result received.
Robust peptide bundles designed computationally
NASA Astrophysics Data System (ADS)
Haider, Michael; Zhang, Huixi Violet; Kiick, Kristi; Saven, Jeffery; Pochan, Darrin
Peptides are ideal candidates for the design and controlled assembly of nanoscale materials due to their potential to assemble with atomistic precision as in biological systems. Unlike other work utilizing natural proteins and structural motifs, this effort is completely de novo in order to build arbitrary structures with desired size for the specific placement and separation of functional groups. We have successfully computationally designed soluble, coiled coil, peptide, tetramer bundles which are robust and stable. Using circular dichroism we demonstrated the thermal stability of these bundles as well as confirmed their alpha helical and coiled coil nature. The stability of these bundles arises from the computational design of the coiled coil interior core residues. The coiled coil tetramer was confirmed to be the dominant species by analytical ultra-centrifugation sedimentation studies. We also established how these bundles behave in solution using small angle neutron scattering. The form factor of the bundles is well represented by a cylinder model and their behavior at high concentrations is modeled using a structure factor for aggregates of the cylinders. All of these experiments support our claim that the designed coiled coil bundles were achieved in solution. NSF DMREF 1234161.
Kucharski, Timothy J; Ferralis, Nicola; Kolpak, Alexie M; Zheng, Jennie O; Nocera, Daniel G; Grossman, Jeffrey C
2014-05-01
Large-scale utilization of solar-energy resources will require considerable advances in energy-storage technologies to meet ever-increasing global energy demands. Other than liquid fuels, existing energy-storage materials do not provide the requisite combination of high energy density, high stability, easy handling, transportability and low cost. New hybrid solar thermal fuels, composed of photoswitchable molecules on rigid, low-mass nanostructures, transcend the physical limitations of molecular solar thermal fuels by introducing local sterically constrained environments in which interactions between chromophores can be tuned. We demonstrate this principle of a hybrid solar thermal fuel using azobenzene-functionalized carbon nanotubes. We show that, on composite bundling, the amount of energy stored per azobenzene more than doubles from 58 to 120 kJ mol(-1), and the material also maintains robust cyclability and stability. Our results demonstrate that solar thermal fuels composed of molecule-nanostructure hybrids can exhibit significantly enhanced energy-storage capabilities through the generation of template-enforced steric strain.
The MIMIC Model as a Tool for Differential Bundle Functioning Detection
ERIC Educational Resources Information Center
Finch, W. Holmes
2012-01-01
Increasingly, researchers interested in identifying potentially biased test items are encouraged to use a confirmatory, rather than exploratory, approach. One such method for confirmatory testing is rooted in differential bundle functioning (DBF), where hypotheses regarding potential differential item functioning (DIF) for sets of items (bundles)…
FUEL ELEMENT INTERLOCKING ARRANGEMENT
Fortescue, P.; Nicoll, D.
1963-01-01
This patent relates to a system for mutually interlocking a multiplicity of elongated, parallel, coextensive, upright reactor fuel elements so as to render a laterally selfsupporting bundle, while admitting of concurrent, selective, vertical withdrawal of a sizeable number of elements without any of the remaining elements toppling, Each element is provided with a generally rectangular end cap. When a rank of caps is aligned in square contact, each free edge centrally defines an outwardly profecting dovetail, and extremitally cooperates with its adjacent cap by defining a juxtaposed half of a dovetail- receptive mortise. Successive ranks are staggered to afford mating of their dovetails and mortises. (AEC)
Shao, Qiang
2014-06-05
A comparative study on the folding of multiple three-α-helix bundle proteins including α3D, α3W, and the B domain of protein A (BdpA) is presented. The use of integrated-tempering-sampling molecular dynamics simulations achieves reversible folding and unfolding events in individual short trajectories, which thus provides an efficient approach to sufficiently sample the configuration space of protein and delineate the folding pathway of α-helix bundle. The detailed free energy landscape analyses indicate that the folding mechanism of α-helix bundle is not uniform but sequence dependent. A simple model is then proposed to predict folding mechanism of α-helix bundle on the basis of amino acid composition: α-helical proteins containing higher percentage of hydrophobic residues than charged ones fold via nucleation-condensation mechanism (e.g., α3D and BdpA) whereas proteins having opposite tendency in amino acid composition more likely fold via the framework mechanism (e.g., α3W). The model is tested on various α-helix bundle proteins, and the predicted mechanism is similar to the most approved one for each protein. In addition, the common features in the folding pathway of α-helix bundle protein are also deduced. In summary, the present study provides comprehensive, atomic-level picture of the folding of α-helix bundle proteins.
NASA Astrophysics Data System (ADS)
Bao, Minle; Wang, Lu; Li, Wenyao; Gao, Tianze
2017-09-01
Fluid elastic excitation in shell side of heat exchanger was deduced theoretically in this paper. Model foundation was completed by using Pro / Engineer software. The finite element model was constructed and imported into the FLUENT module. The flow field simulation adopted the dynamic mesh model, RNG k-ε model and no-slip boundary conditions. Analysing different positions vibration of tube bundles by selecting three regions in shell side of heat exchanger. The results show that heat exchanger tube bundles at the inlet of the shell side are more likely to be failure due to fluid induced vibration.
76 FR 53137 - Bundled Payments for Care Improvement Initiative: Request for Applications
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-25
... (RFA) will test episode-based payment for acute care and associated post-acute care, using both retrospective and prospective bundled payment methods. The RFA requests applications to test models centered around acute care; these models will inform the design of future models, including care improvement for...
78 FR 29139 - Medicare Program; Bundled Payments for Care Improvement Model 1 Open Period
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-17
... initiative. DATES: Model 1 of the Bundled Payments for Care Improvement Deadline: Interested organizations... initiative. For additional information on this initiative go to the CMS Center for Medicare and Medicaid Innovation Web site at http://innovation.cms.gov/initiatives/BPCI-Model-1/index.html . SUPPLEMENTARY...
Stability of the matrix model in operator interpretation
NASA Astrophysics Data System (ADS)
Sakai, Katsuta
2017-12-01
The IIB matrix model is one of the candidates for nonperturbative formulation of string theory, and it is believed that the model contains gravitational degrees of freedom in some manner. In some preceding works, it was proposed that the matrix model describes the curved space where the matrices represent differential operators that are defined on a principal bundle. In this paper, we study the dynamics of the model in this interpretation, and point out the necessity of the principal bundle from the viewpoint of the stability and diffeomorphism invariance. We also compute the one-loop correction which yields a mass term for each field due to the principal bundle. We find that the stability is not violated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Repetto, G.; Dominguez, C.; Durville, B.
The safety principle in case of a LOCA is to preserve the short and long term coolability of the core. The associated safety requirements are to ensure the resistance of the fuel rods upon quench and post-quench loads and to maintain a coolable geometry in the core. An R&D program has been launched by IRSN with the support of EDF, to perform both experimental and modeling activities in the frame of the LOCA transient, on technical issues such as: - flow blockage within a fuel rods bundle and its potential impact on coolability, - fuel fragment relocation in the balloonedmore » areas: its potential impact on cladding PCT (Peak Cladding Temperature) and on the maximum oxidation rate, - potential loss of cladding integrity upon quench and post-quench loads. The PERFROI project (2014-2019) focusing on the first above issue, is structured in two axes: 1. axis 1: thermal mechanical behavior of deformation and rupture of cladding taking into account the contact between fuel rods; specific research at LaMCoS laboratory focus on the hydrogen behavior in cladding alloys and its impact on the mechanical behavior of the rod; and, 2. axis 2: thermal hydraulics study of a partially blocked region of the core (ballooned area taking into account the fuel relocation with local over power), during cooling phase by water injection; More detailed activities foreseen in collaboration with LEMTA laboratory will focus on the characterization of two phase flows with heat transfer in deformed structures.« less
NASA Astrophysics Data System (ADS)
Najeeb, Umair
This thesis experimentally investigates the enhancement of single-phase heat transfer, frictional loss and pressure drop characteristics in a Single Heater Element Loop Tester (SHELT). The heater element simulates a single fuel rod for Pressurized Nuclear reactor. In this experimental investigation, the effect of the outer surface roughness of a simulated nuclear rod bundle was studied. The outer surface of a simulated fuel rod was created with a three-dimensional (Diamond-shaped blocks) surface roughness. The angle of corrugation for each diamond was 45 degrees. The length of each side of a diamond block is 1 mm. The depth of each diamond block was 0.3 mm. The pitch of the pattern was 1.614 mm. The simulated fuel rod had an outside diameter of 9.5 mm and wall thickness of 1.5 mm and was placed in a test-section made of 38.1 mm inner diameter, wall thickness 6.35 mm aluminum pipe. The Simulated fuel rod was made of Nickel 200 and Inconel 625 materials. The fuel rod was connected to 10 KW DC power supply. The Inconel 625 material of the rod with an electrical resistance of 32.3 kO was used to generate heat inside the test-section. The heat energy dissipated from the Inconel tube due to the flow of electrical current flows into the working fluid across the rod at constant heat flux conditions. The DI water was employed as working fluid for this experimental investigation. The temperature and pressure readings for both smooth and rough regions of the fuel rod were recorded and compared later to find enhancement in heat transfer coefficient and increment in the pressure drops. Tests were conducted for Reynold's Numbers ranging from 10e4 to 10e5. Enhancement in heat transfer coefficient at all Re was recorded. The maximum heat transfer co-efficient enhancement recorded was 86% at Re = 4.18e5. It was also observed that the pressure drop and friction factor increased by 14.7% due to the increased surface roughness.
Simulators IV; Proceedings of the SCS Conference, Orlando, FL, Apr. 6-9, 1987
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fairchild, B.T.
1987-01-01
The conference presents papers on the applicability of AI techniques to simulation models, the simulation of a reentry vehicle on Simstar, simstar missile simulation, measurement issues associated with simulator sickness, and tracing the etiology of simulator sickness. Consideration is given to a simulator of a steam generator tube bundle response to a blowdown transient, the census of simulators for fossil fueled boiler and gas turbine plant operation training, and a new approach for flight simulator visual systems. Other topics include past and present simulated aircraft maintenance trainers, an AI-simulation based approach for aircraft maintenance training, simulator qualification using EPRI methodology,more » and the role of instinct in organizational dysfunction.« less
A collagen and elastic network in the wing of the bat.
Holbrook, K A; Odland, G F
1978-05-01
Bundles of collagen fibrils, elastic fibres and fibroblasts are organized into a network that lies in the plane of a large portion of the bat wing. By ultrastructural (TEM and SEM) and biochemical analyses it was found that individual bundles of the net are similar to elastic ligaments. Although elastic fibres predominate, they are integrated and aligned in parallel with small bundles of collagen. A reticulum of fibroblasts, joined by focal junctions, forms a cellular framework throughout each bundle. Because of the unique features of the fibre bundles of the bat's wing, in particular their accessibility, and the parallel alignment of the collagen fibrils and elastic fibres in each easily isolatable fibre bundle, they should prove a most valuable model for connective tissue studies, particularly for the study of collagen-elastin interactions.
Computed tomography of radioactive objects and materials
NASA Astrophysics Data System (ADS)
Sawicka, B. D.; Murphy, R. V.; Tosello, G.; Reynolds, P. W.; Romaniszyn, T.
1990-12-01
Computed tomography (CT) has been performed on a number of radioactive objects and materials. Several unique technical problems are associated with CT of radioactive specimens. These include general safety considerations, techniques to reduce background-radiation effects on CT images and selection criteria for the CT source to permit object penetration and to reveal accurate values of material density. In the present paper, three groups of experiments will be described, for objects with low, medium and high levels of radioactivity. CT studies on radioactive specimens will be presented. They include the following: (1) examination of individual ceramic reactor-fuel (uranium dioxide) pellets, (2) examination of fuel samples from the Three Mile Island reactor, (3) examination of a CANDU (CANada Deuterium Uraniun: registered trademark) nuclear-fuel bundle which underwent a simulated loss-of-coolant accident resulting in high-temperature damage and (4) examination of a PWR nuclear-reactor fuel assembly.
Modeling of Thermal Conductivity of CVI-Densified Composites at Fiber and Bundle Level
Guan, Kang; Wu, Jianqing; Cheng, Laifei
2016-01-01
The evolution of the thermal conductivities of the unidirectional, 2D woven and 3D braided composites during the CVI (chemical vapor infiltration) process have been numerically studied by the finite element method. The results show that the dual-scale pores play an important role in the thermal conduction of the CVI-densified composites. According to our results, two thermal conductivity models applicable for CVI process have been developed. The sensitivity analysis demonstrates the parameter with the most influence on the CVI-densified composites’ thermal conductivity is matrix cracking’s density, followed by volume fraction of the bundle and thermal conductance of the matrix cracks, finally by micro-porosity inside the bundles and macro-porosity between the bundles. The obtained results are well consistent with the reported data, thus our models could be useful for designing the processing and performance of the CVI-densified composites. PMID:28774130
Gustafson, William Jr; Vogelmann, Andrew; Endo, Satoshi; Toto, Tami; Xiao, Heng; Li, Zhijin; Cheng, Xiaoping; Kim, Jinwon; Krishna, Bhargavi
2015-08-31
The Alpha 2 release is the second release from the LASSO Pilot Phase that builds upon the Alpha 1 release. Alpha 2 contains additional diagnostics in the data bundles and focuses on cases from spring-summer 2016. A data bundle is a unified package consisting of LASSO LES input and output, observations, evaluation diagnostics, and model skill scores. LES input include model configuration information and forcing data. LES output includes profile statistics and full domain fields of cloud and environmental variables. Model evaluation data consists of LES output and ARM observations co-registered on the same grid and sampling frequency. Model performance is quantified by skill scores and diagnostics in terms of cloud and environmental variables.
SO(32) heterotic line bundle models
NASA Astrophysics Data System (ADS)
Otsuka, Hajime
2018-05-01
We search for the three-generation standard-like and/or Pati-Salam models from the SO(32) heterotic string theory on smooth, quotient complete intersection Calabi-Yau threefolds with multiple line bundles, each with structure group U(1). These models are S- and T-dual to intersecting D-brane models in type IIA string theory. We find that the stable line bundles and Wilson lines lead to the standard model gauge group with an extra U(1) B-L via a Pati-Salam-like symmetry and the obtained spectrum consists of three chiral generations of quarks and leptons, and vector-like particles. Green-Schwarz anomalous U(1) symmetries control not only the Yukawa couplings of the quarks and leptons but also the higher-dimensional operators causing the proton decay.
Rinaldi, Antonio
2011-04-01
Traditional fiber bundles models (FBMs) have been an effective tool to understand brittle heterogeneous systems. However, fiber bundles in modern nano- and bioapplications demand a new generation of FBM capturing more complex deformation processes in addition to damage. In the context of loose bundle systems and with reference to time-independent plasticity and soft biomaterials, we formulate a generalized statistical model for ductile fracture and nonlinear elastic problems capable of handling more simultaneous deformation mechanisms by means of two order parameters (as opposed to one). As the first rational FBM for coupled damage problems, it may be the cornerstone for advanced statistical models of heterogeneous systems in nanoscience and materials design, especially to explore hierarchical and bio-inspired concepts in the arena of nanobiotechnology. Applicative examples are provided for illustrative purposes at last, discussing issues in inverse analysis (i.e., nonlinear elastic polymer fiber and ductile Cu submicron bars arrays) and direct design (i.e., strength prediction).
Actin-binding proteins sensitively mediate F-actin bundle stiffness
NASA Astrophysics Data System (ADS)
Claessens, Mireille M. A. E.; Bathe, Mark; Frey, Erwin; Bausch, Andreas R.
2006-09-01
Bundles of filamentous actin (F-actin) form primary structural components of a broad range of cytoskeletal processes including filopodia, sensory hair cell bristles and microvilli. Actin-binding proteins (ABPs) allow the cell to tailor the dimensions and mechanical properties of the bundles to suit specific biological functions. Therefore, it is important to obtain quantitative knowledge on the effect of ABPs on the mechanical properties of F-actin bundles. Here we measure the bending stiffness of F-actin bundles crosslinked by three ABPs that are ubiquitous in eukaryotes. We observe distinct regimes of bundle bending stiffness that differ by orders of magnitude depending on ABP type, concentration and bundle size. The behaviour observed experimentally is reproduced quantitatively by a molecular-based mechanical model in which ABP shearing competes with F-actin extension/compression. Our results shed new light on the biomechanical function of ABPs and demonstrate how single-molecule properties determine mesoscopic behaviour. The bending mechanics of F-actin fibre bundles are general and have implications for cytoskeletal mechanics and for the rational design of functional materials.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-05
... AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: We are adopting a new... clearance and any wire bundle damage between wire bundle W443 and the left forward rudder quadrant, followed by adjusting the minimum clearance between the wire bundle and the left forward rudder quadrant, and...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, J.D.; Joiner, W.C.H.
1979-10-01
Flux-flow noise power spectra taken on Pb/sub 80/In/sub 20/ foils as a function of the orientation of the magnetic field with respect to the sample surfaces are used to study changes in frequencies and bundle sizes as distances of fluxoid traversal and fluxoid lengths change. The results obtained for the frequency dependence of the noise spectra are entirely consistent with our model for flux motion interrupted by pinning centers, provided one makes the reasonable assumption that the distance between pinning centers which a fluxoid may encounter scales inversely with the fluxoid length. The importance of pinning centers in determining themore » noise characteristics is also demonstrated by the way in which subpulse distributions and generalized bundle sizes are altered by changes in the metallurgical structure of the sample. In unannealed samples the dependence of bundle size on magnetic field orientation is controlled by a structural anisotropy, and we find a correlation between large bundle size and the absence of short subpulse times. Annealing removes this anisotropy, and we find a stronger angular variation of bundle size than would be expected using present simplified models.« less
A momentum source model for wire-wrapped rod bundles—Concept, validation, and application
Hu, Rui; Fanning, Thomas H.
2013-06-19
Large uncertainties still exist in the treatment of wire-spacers and drag models for momentum transfer in current lumped parameter models. Here, to improve the hydraulic modeling of wire-wrap spacers in a rod bundle, a three-dimensional momentum source model (MSM) has been developed to model the anisotropic flow without the need to resolve the geometric details of the wire-wraps. The MSM is examined for 7-pin and 37-pin bundles steady-state simulations using the commercial CFD code STAR-CCM+. The calculated steady-state inter-subchannel cross flow velocities match very well in comparisons between bare bundles with the MSM applied and the wire-wrapped bundles with explicitmore » geometry. The validity of the model is further verified by mesh and parameter sensitivity studies. Furthermore, the MSM is applied to a 61-pin EBR-II experimental subassembly for both steady state and PLOF transient simulations. Reasonably accurate predictions of temperature, pressure, and fluid flow velocities have been achieved using the MSM for both steady-state and transient conditions. Significant computing resources are saved with the MSM since it can be used on a much coarser computational mesh.« less
Spinor Geometry and Signal Transmission in Three-Space
NASA Astrophysics Data System (ADS)
Binz, Ernst; Pods, Sonja; Schempp, Walter
2002-09-01
For a singularity free gradient field in an open set of an oriented Euclidean space of dimension three we define a natural principal bundle out of an immanent complex line bundle. The elements of both bundles are called internal variables. Several other natural bundles are associated with the principal bundle and, in turn, determine the vector field. Two examples are given and it is shown that for a constant vector field circular polarized waves travelling along a field line can be considered as waves of internal variables. Einstein's equation epsilon = m [middle dot] c2 is derived from the geometry of the principal bundle. On SU(2) a relation between spin representations and Schrodinger representations is established. The link between the spin 1/2-model and the Schrodinger representations yields a connection between a microscopic and a macroscopic viewpoint.
Essays on economic development, energy demand, and the environment
NASA Astrophysics Data System (ADS)
Medlock, Kenneth Barry, III
2000-10-01
The rapid expansion of industry at the outset of economic development and the subsequent growth of the transportation and residential and commercial sectors dictate both the rate at which energy demand increases and the composition of primary fuel sources used to meet secondary requirements. Each of these factors each has an impact on the pollution problems that nations may face. Growth in consumer wealth, however, appears to eventually lead to a shift in priorities. In particular, the importance of the environment begins to take precedent over the acquisition of goods. Accordingly, cleaner energy alternatives are sought out. The approach taken here is to determine the energy profile of an average nation, and apply those results to a model of economic growth. Dematerialization of production and saturation of consumer bundles results in declining rates of growth of energy demand in broadly defined end-use sectors. The effects of technological change in fossil fuel efficiency, fossil fuel recovery, and 'backstop' energy resources on economic growth and the emissions of carbon dioxide are then analyzed. A central planner is assumed to optimize the consumption of goods and services subject to capital and resource constraints. Slight perturbations in the parameters are used to determine their local elasticities with respect to different endogenous variables, and give an indication of the effects of changes in the various assumptions.
NASA Astrophysics Data System (ADS)
Ji, S.; Yuan, X.
2016-06-01
A generic probabilistic model, under fundamental Bayes' rule and Markov assumption, is introduced to integrate the process of mobile platform localization with optical sensors. And based on it, three relative independent solutions, bundle adjustment, Kalman filtering and particle filtering are deduced under different and additional restrictions. We want to prove that first, Kalman filtering, may be a better initial-value supplier for bundle adjustment than traditional relative orientation in irregular strips and networks or failed tie-point extraction. Second, in high noisy conditions, particle filtering can act as a bridge for gap binding when a large number of gross errors fail a Kalman filtering or a bundle adjustment. Third, both filtering methods, which help reduce the error propagation and eliminate gross errors, guarantee a global and static bundle adjustment, who requires the strictest initial values and control conditions. The main innovation is about the integrated processing of stochastic errors and gross errors in sensor observations, and the integration of the three most used solutions, bundle adjustment, Kalman filtering and particle filtering into a generic probabilistic localization model. The tests in noisy and restricted situations are designed and examined to prove them.
Dolgobrodov, S G; Lukashkin, A N; Russell, I J
2000-12-01
This paper is based on our model [Dolgobrodov et al., 2000. Hear. Res., submitted for publication] in which we examine the significance of the polyanionic surface layers of stereocilia for electrostatic interaction between them. We analyse how electrostatic forces modify the mechanical properties of the sensory hair bundle. Different charge distribution profiles within the glycocalyx are considered. When modelling a typical experiment on bundle stiffness measurements, applying an external force to the tallest row of stereocilia shows that the asymptotic stiffness of the hair bundle for negative displacements is always larger than the asymptotic stiffness for positive displacements. This increase in stiffness is monotonic for even charge distribution and shows local minima when the negative charge is concentrated in a thinner layer within the cell coat. The minima can also originate from the co-operative effect of electrostatic repulsion and inter-ciliary links with non-linear mechanical properties. Existing experimental observations are compared with the predictions of the model. We conclude that the forces of electrostatic interaction between stereocilia may influence the mechanical properties of the hair bundle and, being strongly non-linear, contribute to the non-linear phenomena, which have been recorded from the auditory periphery.
Nanomechanics of Pectin-Linked β-Lactoglobulin Nanofibril Bundles.
Loveday, Simon M; Gunning, A Patrick
2018-06-14
Nanofibrils of β-lactoglobulin can be assembled into bundles by site-specific noncovalent cross-linking with high-methoxyl pectin (Hettiarachchi et al. Soft Matter 2016, 12, 756). Here we characterized the nanomechanical properties of bundles using atomic force microscopy and force spectroscopy. Bundles had Gaussian cross sections and a mean height of 17.4 ± 1.4 nm. Persistence lengths were calculated using image analysis with the mean-squared end-to-end model. The relationship between the persistence length and the thickness had exponents of 1.69-2.30, which is consistent with previous reports for other fibril types. In force spectroscopy experiments, the bundles stretched in a qualitatively different manner to fibrils, and some of the force curves were consistent with peeling fibrils away from bundles. The flexibility of pectin-linked nanofibril bundles is likely to be tunable by modulating the stiffness and length of fibrils and the ratio of pectin to fibrils, giving rise to a wide range of structures and functionalities.
Design and impact of bundled payment for detox and follow-up care.
Quinn, Amity E; Hodgkin, Dominic; Perloff, Jennifer N; Stewart, Maureen T; Brolin, Mary; Lane, Nancy; Horgan, Constance M
2017-11-01
Recent payment reforms promote movement from fee-for-service to alternative payment models that shift financial risk from payers to providers, incentivizing providers to manage patients' utilization. Bundled payment, an episode-based fixed payment that includes the prices of a group of services that would typically treat an episode of care, is expanding in the United States. Bundled payment has been recommended as a way to pay for comprehensive SUD treatment and has the potential to improve treatment engagement after detox, which could reduce detox readmissions, improve health outcomes, and reduce medical care costs. However, if moving to bundled payment creates large losses for some providers, it may not be sustainable. The objective of this study was to design the first bundled payment for detox and follow-up care and to estimate its impact on provider revenues. Massachusetts Medicaid beneficiaries' behavioral health, medical, and pharmacy claims from July 2010-April 2013 were used to build and test a detox bundled payment for continuously enrolled adults (N=5521). A risk adjustment model was developed using general linear modeling to predict beneficiaries' episode costs. The projected payments to each provider from the risk adjustment analysis were compared to the observed baseline costs to determine the potential impact of a detox bundled payment reform on organizational revenues. This was modeled in two ways: first assuming no change in behavior and then assuming a supply-side cost sharing behavioral response of a 10% reduction in detox readmissions and an increase of one individual counseling and one group counseling session. The mean total 90-day detox episode cost was $3743. Nearly 70% of the total mean cost consists of the index detox, psychiatric inpatient care, and short-term residential care. Risk mitigation, including risk adjustment, substantially reduced the variation of the mean episode cost. There are opportunities for organizations to gain revenue under this bundled payment design, but many providers will lose money under a bundled payment designed using historic payment and costs. Designing a bundled payment for detox and follow-up care is feasible, but low case volume and the adequacy of the payment are concerns. Thus, a detox episode-based payment will likely be more challenging for smaller, independent SUD treatment providers. These providers are experiencing many changes as financing shifts away from block grant funding toward Medicaid funding. A detox bundled payment in practice would need to consider different risk mitigation strategies, provider pooling, and costs based on episodes of care meeting quality standards, but could incentivize care coordination, which is important to reducing detox readmissions and engaging patients in care. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Lashkari Zadeh, Ali; Shariati, Mahmoud; Torabi, Hamid
2012-11-01
A structural mechanics model is employed for the investigation of the buckling behavior of carbon nanotube bundles of three single-walled carbon nanotubes (SWCNTs) under axial compressive, bending and torsional loadings. The effects of van der Waals (vdW) forces are further modeled using a nonlinear spring element.The effects of different types of boundary conditions are studied for nanotubes with various aspect ratios. The results reveal that bundles comprising longer SWCNTs exhibit lower critical buckling load. Moreover, for the fixed-free boundary condition the rate of critical buckling load reduction is highest, while the lowest critical buckling load occurs. Simulations show good agreement between our model and molecular dynamics results.
A compressed sensing approach for resolution improvement in fiber-bundle based endomicroscopy
NASA Astrophysics Data System (ADS)
Dumas, John P.; Lodhi, Muhammad A.; Bajwa, Waheed U.; Pierce, Mark C.
2018-02-01
Endomicroscopy techniques such as confocal, multi-photon, and wide-field imaging have all been demonstrated using coherent fiber-optic imaging bundles. While the narrow diameter and flexibility of fiber bundles is clinically advantageous, the number of resolvable points in an image is conventionally limited to the number of individual fibers within the bundle. We are introducing concepts from the compressed sensing (CS) field to fiber bundle based endomicroscopy, to allow images to be recovered with more resolvable points than fibers in the bundle. The distal face of the fiber bundle is treated as a low-resolution sensor with circular pixels (fibers) arranged in a hexagonal lattice. A spatial light modulator is located conjugate to the object and distal face, applying multiple high resolution masks to the intermediate image prior to propagation through the bundle. We acquire images of the proximal end of the bundle for each (known) mask pattern and then apply CS inversion algorithms to recover a single high-resolution image. We first developed a theoretical forward model describing image formation through the mask and fiber bundle. We then imaged objects through a rigid fiber bundle and demonstrate that our CS endomicroscopy architecture can recover intra-fiber details while filling inter-fiber regions with interpolation. Finally, we examine the relationship between reconstruction quality and the ratio of the number of mask elements to the number of fiber cores, finding that images could be generated with approximately 28,900 resolvable points for a 1,000 fiber region in our platform.
NASA Astrophysics Data System (ADS)
Aitomäki, Yvonne; Westin, Mikael; Korpimäki, Jani; Oksman, Kristiina
2016-07-01
In this study a model based on simple scattering is developed and used to predict the distribution of nanofibrillated cellulose in composites manufactured by resin transfer moulding (RTM) where the resin contains nanofibres. The model is a Monte Carlo based simulation where nanofibres are randomly chosen from probability density functions for length, diameter and orientation. Their movements are then tracked as they advance through a random arrangement of fibres in defined fibre bundles. The results of the model show that the fabric filters the nanofibres within the first 20 µm unless clear inter-bundle channels are available. The volume fraction of the fabric fibres, flow velocity and size of nanofibre influence this to some extent. To verify the model, an epoxy with 0.5 wt.% Kraft Birch nanofibres was made through a solvent exchange route and stained with a colouring agent. This was infused into a glass fibre fabric using an RTM process. The experimental results confirmed the filtering of the nanofibres by the fibre bundles and their penetration in the fabric via the inter-bundle channels. Hence, the model is a useful tool for visualising the distribution of the nanofibres in composites in this manufacturing process.
Spinal surgery: variations in health care costs and implications for episode-based bundled payments.
Ugiliweneza, Beatrice; Kong, Maiying; Nosova, Kristin; Huang, Kevin T; Babu, Ranjith; Lad, Shivanand P; Boakye, Maxwell
2014-07-01
Retrospective, observational. To simulate what episodes of care in spinal surgery might look like in a bundled payment system and to evaluate the associated costs and characteristics. Episode-based payment bundling has received considerable attention as a potential method to help curb the rise in health care spending and is being investigated as a new payment model as part of the Affordable Care Act. Although earlier studies investigated bundled payments in a number of surgical settings, very few focused on spine surgery, specifically. We analyzed data from MarketScan. Patients were included in the study if they underwent cervical or lumbar spinal surgery during 2000-2009, had at least 2-year preoperative and 90-day postoperative follow-up data. Patients were grouped on the basis of their diagnosis-related group (DRG) and then tracked in simulated episodes-of-care/payment bundles that lasted for the duration of 30, 60, and 90 days after the discharge from the index-surgical hospitalization. The total cost associated with each episode-of-care duration was measured and characterized. A total of 196,918 patients met our inclusion criteria. Significant variation existed between DRGs, ranging from $11,180 (30-day bundle, DRG 491) to $107,642 (30-day bundle, DRG 456). There were significant cost variations within each individual DRG. Postdischarge care accounted for a relatively small portion of overall bundle costs (range, 4%-8% in 90-day bundles). Total bundle costs remained relatively flat as bundle-length increased (total average cost of 30-day bundle: $33,522 vs. $35,165 for 90-day bundle). Payments to hospitals accounted for the largest portion of bundle costs (76%). There exists significant variation in total health care costs for patients who undergo spinal surgery, even within a given DRG. Better characterization of impacts of a bundled payment system in spine surgery is important for understanding the costs of index procedure hospital, physician services, and postoperative care on potential future health care policy decision making. N/A.
What Financial Incentives Will Be Created by Medicare Bundled Payments for Total Hip Arthroplasty?
Clement, R Carter; Kheir, Michael M; Soo, Adrianne E; Derman, Peter B; Levin, L Scott; Fleisher, Lee A
2016-09-01
Bundled payments are gaining popularity in arthroplasty as a tactic for encouraging providers and hospitals to work together to reduce costs. However, this payment model could potentially motivate providers to avoid unprofitable patients, limiting their access to care. Rigorous risk adjustment can prevent this adverse effect, but most current bundling models use limited, if any, risk-adjustment techniques. This study aims to identify and quantify the financial incentives that are likely to develop with total hip arthroplasty (THA) bundled payments that are not accompanied by comprehensive risk stratification. Financial data were collected for all Medicare-eligible patients (age 65+) undergoing primary unilateral THA at an academic center over a 2-year period (n = 553). Bundles were considered to include operative hospitalizations and unplanned readmissions. Multivariate regression was performed to assess the impact of clinical and demographic factors on the variable cost of THA episodes, including unplanned readmissions. (Variable costs reflect the financial incentives that will emerge under bundled payments). Increased costs were associated with advanced age (P < .001), elevated body mass index (BMI; P = .005), surgery performed for hip fracture (P < .001), higher American Society of Anaesthesiologists (ASA) Physical Classification System grades (P < .001), and MCCs (Medicare modifier for major complications; P < .001). Regression coefficients were $155/y, $107/BMI point, $2775 for fracture cases, $2137/ASA grade, and $4892 for major complications. No association was found between costs and gender or race. If generalizable, our results suggest that Centers for Medicare and Medicaid Services bundled payments encompassing acute inpatient care should be adjusted upward by the aforementioned amounts (regression coefficients above) for advanced age, increasing BMI, cases performed for fractures, elevated ASA grade, and major complications (as defined by Medicare MCC modifiers). Furthermore, these figures likely underestimate costs in many bundling models which incorporate larger proportions of postdischarge care. Failure to adjust for factors affecting costs may create barriers to care for specific patient populations. Copyright © 2016 Elsevier Inc. All rights reserved.
Bundle Payment Program Initiative: Roles of a Nurse Navigator and Home Health Professionals.
Peiritsch, Heather
2017-06-01
With the passage of the Affordable Care Act, The Centers for Medicare and Medicaid (CMS) introduced a new value-based payment model, the Bundle Payment Care Initiative. The CMS Innovation (Innovation Center) authorized hospitals to participate in a pilot to test innovative payment and service delivery models that have a potential to reduce Medicare expenditures while maintaining or improving the quality of care for beneficiaries. A hospital-based home care agency, Abington Jefferson Health Home Care Department, led the initiative for the development and implementation of the Bundled Payment Program. This was a creative and innovative method to improve care along the continuum while testing a value-based care model.
Negative hair-bundle stiffness betrays a mechanism for mechanical amplification by the hair cell.
Martin, P; Mehta, A D; Hudspeth, A J
2000-10-24
Hearing and balance rely on the ability of hair cells in the inner ear to sense miniscule mechanical stimuli. In each cell, sound or acceleration deflects the mechanosensitive hair bundle, a tuft of rigid stereocilia protruding from the cell's apical surface. By altering the tension in gating springs linked to mechanically sensitive transduction channels, this deflection changes the channels' open probability and elicits an electrical response. To detect weak stimuli despite energy losses caused by viscous dissipation, a hair cell can use active hair-bundle movement to amplify its mechanical inputs. This amplificatory process also yields spontaneous bundle oscillations. Using a displacement-clamp system to measure the mechanical properties of individual hair bundles from the bullfrog's ear, we found that an oscillatory bundle displays negative slope stiffness at the heart of its region of mechanosensitivity. Offsetting the hair bundle's position activates an adaptation process that shifts the region of negative stiffness along the displacement axis. Modeling indicates that the interplay between negative bundle stiffness and the motor responsible for mechanical adaptation produces bundle oscillation similar to that observed. Just as the negative resistance of electrically excitable cells and of tunnel diodes can be embedded in a biasing circuit to amplify electrical signals, negative stiffness can be harnessed to amplify mechanical stimuli in the ear.
Influence of fiber packing structure on permeability
NASA Technical Reports Server (NTRS)
Cai, Zhong; Berdichevsky, Alexander L.
1993-01-01
The study on the permeability of an aligned fiber bundle is the key building block in modeling the permeability of advanced woven and braided preforms. Available results on the permeability of fiber bundles in the literature show that a substantial difference exists between numerical and analytical calculations on idealized fiber packing structures, such as square and hexagonal packing, and experimental measurements on practical fiber bundles. The present study focuses on the variation of the permeability of a fiber bundle under practical process conditions. Fiber bundles are considered as containing openings and fiber clusters within the bundle. Numerical simulations on the influence of various openings on the permeability were conducted. Idealized packing structures are used, but with introduced openings distributed in different patterns. Both longitudinal and transverse flow are considered. The results show that openings within the fiber bundle have substantial effect on the permeability. In the longitudinal flow case, the openings become the dominant flow path. In the transverse flow case, the fiber clusters reduce the gap sizes among fibers. Therefore the permeability is greatly influenced by these openings and clusters, respectively. In addition to the porosity or fiber volume fraction, which is commonly used in the permeability expression, another fiber bundle status parameter, the ultimate fiber volume fraction, is introduced to capture the disturbance within a fiber bundle.
Accuracy of Shack-Hartmann wavefront sensor using a coherent wound fibre image bundle
NASA Astrophysics Data System (ADS)
Zheng, Jessica R.; Goodwin, Michael; Lawrence, Jon
2018-03-01
Shack-Hartmannwavefront sensors using wound fibre image bundles are desired for multi-object adaptive optical systems to provide large multiplex positioned by Starbugs. The use of a large-sized wound fibre image bundle provides the flexibility to use more sub-apertures wavefront sensor for ELTs. These compact wavefront sensors take advantage of large focal surfaces such as the Giant Magellan Telescope. The focus of this paper is to study the wound fibre image bundle structure defects effect on the centroid measurement accuracy of a Shack-Hartmann wavefront sensor. We use the first moment centroid method to estimate the centroid of a focused Gaussian beam sampled by a simulated bundle. Spot estimation accuracy with wound fibre image bundle and its structure impact on wavefront measurement accuracy statistics are addressed. Our results show that when the measurement signal-to-noise ratio is high, the centroid measurement accuracy is dominated by the wound fibre image bundle structure, e.g. tile angle and gap spacing. For the measurement with low signal-to-noise ratio, its accuracy is influenced by the read noise of the detector instead of the wound fibre image bundle structure defects. We demonstrate this both with simulation and experimentally. We provide a statistical model of the centroid and wavefront error of a wound fibre image bundle found through experiment.
Avoiding revenue loss due to 'lesser of' contract clauses.
Stodolak, Frederick; Gutierrez, Henry
2014-08-01
Finance managers seeking to avoid lost revenue attributable to lesser-of-charge-or-fixed-fee (lesser-of) clauses in their contracts should: Identify payer contracts that contain lesser-of clauses. Prepare lesser-of lost-revenue reports for non-bundled and bundled rates. For claims with covered charges below the bundled rate, identify service codes associated with the greatest proportion of total gross revenue and determine new, higher charge levels for those codes. Establish an approach for setting charges for non-bundled fee schedules to address lost-revenue-related issues. Incorporate changes into overall strategic or hospital zero-based pricing modeling and parameters.
NASA Astrophysics Data System (ADS)
Mohan, Vandana; Sundaramoorthi, Ganesh; Kubicki, Marek; Terry, Douglas; Tannenbaum, Allen
2010-03-01
We propose a novel framework for population analysis of DW-MRI data using the Tubular Surface Model. We focus on the Cingulum Bundle (CB) - a major tract for the Limbic System and the main connection of the Cingulate Gyrus, which has been associated with several aspects of Schizophrenia symptomatology. The Tubular Surface Model represents a tubular surface as a center-line with an associated radius function. It provides a natural way to sample statistics along the length of the fiber bundle and reduces the registration of fiber bundle surfaces to that of 4D curves. We apply our framework to a population of 20 subjects (10 normal, 10 schizophrenic) and obtain excellent results with neural network based classification (90% sensitivity, 95% specificity) as well as unsupervised clustering (k-means). Further, we apply statistical analysis to the feature data and characterize the discrimination ability of local regions of the CB, as a step towards localizing CB regions most relevant to Schizophrenia.
Delisle, Dennis R
2013-01-01
With passage of the Affordable Care Act, the ever-evolving landscape of health care braces for another shift in the reimbursement paradigm. As health care costs continue to rise, providers are pressed to deliver efficient, high-quality care at flat to minimally increasing rates. Inherent systemwide inefficiencies between payers and providers at various clinical settings pose a daunting task for enhancing collaboration and care coordination. A change from Medicare's fee-for-service reimbursement model to bundled payments offers one avenue for resolution. Pilots using such payment models have realized varying degrees of success, leading to the development and upcoming implementation of a bundled payment initiative led by the Center for Medicare and Medicaid Innovation. Delivery integration is critical to ensure high-quality care at affordable costs across the system. Providers and payers able to adapt to the newly proposed models of payment will benefit from achieving cost reductions and improved patient outcomes and realize a competitive advantage.
Retta, Moges; Ho, Quang Tri; Yin, Xinyou; Verboven, Pieter; Berghuijs, Herman N C; Struik, Paul C; Nicolaï, Bart M
2016-05-01
CO2 exchange in leaves of maize (Zea mays L.) was examined using a microscale model of combined gas diffusion and C4 photosynthesis kinetics at the leaf tissue level. Based on a generalized scheme of photosynthesis in NADP-malic enzyme type C4 plants, the model accounted for CO2 diffusion in a leaf tissue, CO2 hydration and assimilation in mesophyll cells, CO2 release from decarboxylation of C4 acids, CO2 fixation in bundle sheath cells and CO2 retro-diffusion from bundle sheath cells. The transport equations were solved over a realistic 2-D geometry of the Kranz anatomy obtained from light microscopy images. The predicted responses of photosynthesis rate to changes in ambient CO2 and irradiance compared well with those obtained from gas exchange measurements. A sensitivity analysis showed that the CO2 permeability of the mesophyll-bundle sheath and airspace-mesophyll interfaces strongly affected the rate of photosynthesis and bundle sheath conductance. Carbonic anhydrase influenced the rate of photosynthesis, especially at low intercellular CO2 levels. In addition, the suberin layer at the exposed surface of the bundle sheath cells was found beneficial in reducing the retro-diffusion. The model may serve as a tool to investigate CO2 diffusion further in relation to the Kranz anatomy in C4 plants. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Choe, Yong; Magnasco, Marcelo O.; Hudspeth, A. J.
1998-12-01
Amplification of auditory stimuli by hair cells augments the sensitivity of the vertebrate inner ear. Cell-body contractions of outer hair cells are thought to mediate amplification in the mammalian cochlea. In vertebrates that lack these cells, and perhaps in mammals as well, active movements of hair bundles may underlie amplification. We have evaluated a mathematical model in which amplification stems from the activity of mechanoelectrical-transduction channels. The intracellular binding of Ca2+ to channels is posited to promote their closure, which increases the tension in gating springs and exerts a negative force on the hair bundle. By enhancing bundle motion, this force partially compensates for viscous damping by cochlear fluids. Linear stability analysis of a six-state kinetic model reveals Hopf bifurcations for parameter values in the physiological range. These bifurcations signal conditions under which the system's behavior changes from a damped oscillatory response to spontaneous limit-cycle oscillation. By varying the number of stereocilia in a bundle and the rate constant for Ca2+ binding, we calculate bifurcation frequencies spanning the observed range of auditory sensitivity for a representative receptor organ, the chicken's cochlea. Simulations using prebifurcation parameter values demonstrate frequency-selective amplification with a striking compressive nonlinearity. Because transduction channels occur universally in hair cells, this active-channel model describes a mechanism of auditory amplification potentially applicable across species and hair-cell types.
Cost-Effectiveness of a Central Venous Catheter Care Bundle
Halton, Kate A.; Cook, David; Paterson, David L.; Safdar, Nasia; Graves, Nicholas
2010-01-01
Background A bundled approach to central venous catheter care is currently being promoted as an effective way of preventing catheter-related bloodstream infection (CR-BSI). Consumables used in the bundled approach are relatively inexpensive which may lead to the conclusion that the bundle is cost-effective. However, this fails to consider the nontrivial costs of the monitoring and education activities required to implement the bundle, or that alternative strategies are available to prevent CR-BSI. We evaluated the cost-effectiveness of a bundle to prevent CR-BSI in Australian intensive care patients. Methods and Findings A Markov decision model was used to evaluate the cost-effectiveness of the bundle relative to remaining with current practice (a non-bundled approach to catheter care and uncoated catheters), or use of antimicrobial catheters. We assumed the bundle reduced relative risk of CR-BSI to 0.34. Given uncertainty about the cost of the bundle, threshold analyses were used to determine the maximum cost at which the bundle remained cost-effective relative to the other approaches to infection control. Sensitivity analyses explored how this threshold alters under different assumptions about the economic value placed on bed-days and health benefits gained by preventing infection. If clinicians are prepared to use antimicrobial catheters, the bundle is cost-effective if national 18-month implementation costs are below $1.1 million. If antimicrobial catheters are not an option the bundle must cost less than $4.3 million. If decision makers are only interested in obtaining cash-savings for the unit, and place no economic value on either the bed-days or the health benefits gained through preventing infection, these cost thresholds are reduced by two-thirds. Conclusions A catheter care bundle has the potential to be cost-effective in the Australian intensive care setting. Rather than anticipating cash-savings from this intervention, decision makers must be prepared to invest resources in infection control to see efficiency improvements. PMID:20862246
Cost-effectiveness of a central venous catheter care bundle.
Halton, Kate A; Cook, David; Paterson, David L; Safdar, Nasia; Graves, Nicholas
2010-09-17
A bundled approach to central venous catheter care is currently being promoted as an effective way of preventing catheter-related bloodstream infection (CR-BSI). Consumables used in the bundled approach are relatively inexpensive which may lead to the conclusion that the bundle is cost-effective. However, this fails to consider the nontrivial costs of the monitoring and education activities required to implement the bundle, or that alternative strategies are available to prevent CR-BSI. We evaluated the cost-effectiveness of a bundle to prevent CR-BSI in Australian intensive care patients. A Markov decision model was used to evaluate the cost-effectiveness of the bundle relative to remaining with current practice (a non-bundled approach to catheter care and uncoated catheters), or use of antimicrobial catheters. We assumed the bundle reduced relative risk of CR-BSI to 0.34. Given uncertainty about the cost of the bundle, threshold analyses were used to determine the maximum cost at which the bundle remained cost-effective relative to the other approaches to infection control. Sensitivity analyses explored how this threshold alters under different assumptions about the economic value placed on bed-days and health benefits gained by preventing infection. If clinicians are prepared to use antimicrobial catheters, the bundle is cost-effective if national 18-month implementation costs are below $1.1 million. If antimicrobial catheters are not an option the bundle must cost less than $4.3 million. If decision makers are only interested in obtaining cash-savings for the unit, and place no economic value on either the bed-days or the health benefits gained through preventing infection, these cost thresholds are reduced by two-thirds. A catheter care bundle has the potential to be cost-effective in the Australian intensive care setting. Rather than anticipating cash-savings from this intervention, decision makers must be prepared to invest resources in infection control to see efficiency improvements.
Choi, Chong Hyuk; Kim, Sung-Jae; Chun, Yong-Min; Kim, Sung-Hwan; Lee, Su-Keon; Eom, Nam-Kyu; Jung, Min
2018-01-01
The purpose of this study was to find appropriate flexion angle and transverse drill angle for optimal femoral tunnels of anteromedial (AM) bundle and posterolateral (PL) bundle in double-bundle ACL reconstruction using transportal technique. Thirty three-dimensional knee models were reconstructed. Knee flexion angles were altered from 100° to 130° at intervals of 10°. Maximum transverse drill angle (MTA), MTA minus 10° and 20° were set up. Twelve different tunnels were determined by four flexion angles and three transverse drill angles for each bundle. Tunnel length, wall breakage, inter-tunnel communication and graft-bending angle were assessed. Mean tunnel length of AM bundle was >30mm at 120° and 130° of flexion in all transverse drill angles. Mean tunnel length of PL bundle was >30mm during every condition. There were ≥1 cases of wall breakage except at 120° and 130° of flexion with MTA for AM bundle. There was no case of wall breakage for PL bundle. Considering inter-tunnel gap of >2mm without communication and obtuse graft-bending angle, 120° of flexion and MTA could be recommended as optimal condition for femoral tunnels of AM and PL bundles. Flexion angle and transverse drill angle had combined effect on femoral tunnel in double-bundle ACL reconstruction using transportal technique. Achieving flexion angle of 120° and transverse drill angle close to the medial femoral condyle could be recommended as optimal condition for femoral tunnels of AM and PL bundles to avoid insufficient tunnel length, wall breakage, inter-tunnel communication and acute graft-bending angle. Copyright © 2017 Elsevier B.V. All rights reserved.
Siddiqi, Ahmed; White, Peter B; Mistry, Jaydev B; Gwam, Chukwuweike U; Nace, James; Mont, Michael A; Delanois, Ronald E
2017-08-01
In an effort to control rising healthcare costs, healthcare reforms have developed initiatives to evaluate the efficacy of alternative payment models (APMs) for Medicare reimbursements. The Center for Medicare and Medicaid Services Innovation Center (CMMSIC) introduced the voluntary Bundled Payments for Care Improvement (BPCI) model experiment as a means to curtail Medicare cost by allotting a fixed payment for an episode of care. The purpose of this review is to (1) summarize the preliminary clinical results of the BPCI and (2) discuss how it has led to other healthcare reforms and alternative payment models. A literature search was performed using PubMed and the CMMSIC to explore different APMs and clinical results after implementation. All studies that were not in English or unrelated to the topic were excluded. Preliminary results of bundled payment models have shown reduced costs in total joint arthroplasty largely by reducing hospital length of stay, decreasing readmission rates, as well as reducing the number of patients sent to in-patient rehabilitation facilities. In order to refine episode of care bundles, CMMSIC has also developed other initiatives such as the Comprehensive Care for Joint Replacement (CJR) pathway and Surgical Hip and Femur Fracture (SHFFT). Despite the unknown future of the Affordable Care Act, BPCI, and CJR, preliminary results of alternative models have shown promise to reduce costs and improve quality of care. Moving into the future, surgeon control of the BPCI and CJR bundle should be investigated to further improve patient care and maximize financial compensation. Copyright © 2017 Elsevier Inc. All rights reserved.
Risk Adjustment for Medicare Total Knee Arthroplasty Bundled Payments.
Clement, R Carter; Derman, Peter B; Kheir, Michael M; Soo, Adrianne E; Flynn, David N; Levin, L Scott; Fleisher, Lee
2016-09-01
The use of bundled payments is growing because of their potential to align providers and hospitals on the goal of cost reduction. However, such gain sharing could incentivize providers to "cherry-pick" more profitable patients. Risk adjustment can prevent this unintended consequence, yet most bundling programs include minimal adjustment techniques. This study was conducted to determine how bundled payments for total knee arthroplasty (TKA) should be adjusted for risk. The authors collected financial data for all Medicare patients (age≥65 years) undergoing primary unilateral TKA at an academic center over a period of 2 years (n=941). Multivariate regression was performed to assess the effect of patient factors on the costs of acute inpatient care, including unplanned 30-day readmissions. This analysis mirrors a bundling model used in the Medicare Bundled Payments for Care Improvement initiative. Increased age, American Society of Anesthesiologists (ASA) class, and the presence of a Medicare Major Complications/Comorbid Conditions (MCC) modifier (typically representing major complications) were associated with increased costs (regression coefficients, $57 per year; $729 per ASA class beyond I; and $3122 for patients meeting MCC criteria; P=.003, P=.001, and P<.001, respectively). Differences in costs were not associated with body mass index, sex, or race. If the results are generalizable, Medicare bundled payments for TKA encompassing acute inpatient care should be adjusted upward by the stated amounts for older patients, those with elevated ASA class, and patients meeting MCC criteria. This is likely an underestimate for many bundling models, including the Comprehensive Care for Joint Replacement program, incorporating varying degrees of postacute care. Failure to adjust for factors that affect costs may create adverse incentives, creating barriers to care for certain patient populations. [Orthopedics. 2016; 39(5):e911-e916.]. Copyright 2016, SLACK Incorporated.
NASA Astrophysics Data System (ADS)
Hight Walker, A. R.; Simpson, J. R.; Roslyak, O.; Haroz, E.; Telg, H.; Duque, J. G.; Crochet, J. J.; Piryatinski, A.; Doorn, S. K.
Understanding the photophysics of exciton behavior in single wall carbon nanotube (SWCNT) bundles remains important for opto-electronic device applications. We report resonance Raman spectroscopy (RRS) measurements on (6 , 5) -enriched SWCNTs, dispersed in aqueous solutions and separated using density gradient ultracentrifugation into fractions of increasing bundling. Near-IR to UV absorption spectroscopy shows a redshift and broadening of the main excitonic transitions with increasing bundling. A continuously tunable dye laser coupled to a triple-grating spectrometer affords measurement of Raman resonance excitation profiles (REPs) over a range of wavelengths covering the (6 , 5) -E22 range (505 to 585) nm. REPs of both the radial breathing mode (RBM) and G-band reveal a redshifting and broadening of the (6 , 5) E22 transition energy with increasing bundling. Additionally, we observe an unexpected peak in the REP of bundled SWCNTs, which is shifted lower in energy than the main E22 and is anomalously narrow. We compare these observations to a theoretical model that examines the origin of this peak in relation to bundle polarization-enhanced exciton response.
BiSet: Semantic Edge Bundling with Biclusters for Sensemaking.
Sun, Maoyuan; Mi, Peng; North, Chris; Ramakrishnan, Naren
2016-01-01
Identifying coordinated relationships is an important task in data analytics. For example, an intelligence analyst might want to discover three suspicious people who all visited the same four cities. Existing techniques that display individual relationships, such as between lists of entities, require repetitious manual selection and significant mental aggregation in cluttered visualizations to find coordinated relationships. In this paper, we present BiSet, a visual analytics technique to support interactive exploration of coordinated relationships. In BiSet, we model coordinated relationships as biclusters and algorithmically mine them from a dataset. Then, we visualize the biclusters in context as bundled edges between sets of related entities. Thus, bundles enable analysts to infer task-oriented semantic insights about potentially coordinated activities. We make bundles as first class objects and add a new layer, "in-between", to contain these bundle objects. Based on this, bundles serve to organize entities represented in lists and visually reveal their membership. Users can interact with edge bundles to organize related entities, and vice versa, for sensemaking purposes. With a usage scenario, we demonstrate how BiSet supports the exploration of coordinated relationships in text analytics.
Spatial confinement of active microtubule networks induces large-scale rotational cytoplasmic flow
Suzuki, Kazuya; Miyazaki, Makito; Takagi, Jun; Itabashi, Takeshi; Ishiwata, Shin’ichi
2017-01-01
Collective behaviors of motile units through hydrodynamic interactions induce directed fluid flow on a larger length scale than individual units. In cells, active cytoskeletal systems composed of polar filaments and molecular motors drive fluid flow, a process known as cytoplasmic streaming. The motor-driven elongation of microtubule bundles generates turbulent-like flow in purified systems; however, it remains unclear whether and how microtubule bundles induce large-scale directed flow like the cytoplasmic streaming observed in cells. Here, we adopted Xenopus egg extracts as a model system of the cytoplasm and found that microtubule bundle elongation induces directed flow for which the length scale and timescale depend on the existence of geometrical constraints. At the lower activity of dynein, kinesins bundle and slide microtubules, organizing extensile microtubule bundles. In bulk extracts, the extensile bundles connected with each other and formed a random network, and vortex flows with a length scale comparable to the bundle length continually emerged and persisted for 1 min at multiple places. When the extracts were encapsulated in droplets, the extensile bundles pushed the droplet boundary. This pushing force initiated symmetry breaking of the randomly oriented bundle network, leading to bundles aligning into a rotating vortex structure. This vortex induced rotational cytoplasmic flows on the length scale and timescale that were 10- to 100-fold longer than the vortex flows emerging in bulk extracts. Our results suggest that microtubule systems use not only hydrodynamic interactions but also mechanical interactions to induce large-scale temporally stable cytoplasmic flow. PMID:28265076
Item Response Models for Local Dependence among Multiple Ratings
ERIC Educational Resources Information Center
Wang, Wen-Chung; Su, Chi-Ming; Qiu, Xue-Lan
2014-01-01
Ratings given to the same item response may have a stronger correlation than those given to different item responses, especially when raters interact with one another before giving ratings. The rater bundle model was developed to account for such local dependence by forming multiple ratings given to an item response as a bundle and assigning…
Gopal, Suhasini R; Chen, Daniel H-C; Chou, Shih-Wei; Zang, Jingjing; Neuhauss, Stephan C F; Stepanyan, Ruben; McDermott, Brian M; Alagramam, Kumar N
2015-07-15
Usher syndrome type III (USH3) is characterized by progressive loss of hearing and vision, and varying degrees of vestibular dysfunction. It is caused by mutations that affect the human clarin-1 protein (hCLRN1), a member of the tetraspanin protein family. The missense mutation CLRN1(N48K), which affects a conserved N-glycosylation site in hCLRN1, is a common causative USH3 mutation among Ashkenazi Jews. The affected individuals hear at birth but lose that function over time. Here, we developed an animal model system using zebrafish transgenesis and gene targeting to provide an explanation for this phenotype. Immunolabeling demonstrated that Clrn1 localized to the hair cell bundles (hair bundles). The clrn1 mutants generated by zinc finger nucleases displayed aberrant hair bundle morphology with diminished function. Two transgenic zebrafish that express either hCLRN1 or hCLRN1(N48K) in hair cells were produced to examine the subcellular localization patterns of wild-type and mutant human proteins. hCLRN1 localized to the hair bundles similarly to zebrafish Clrn1; in contrast, hCLRN1(N48K) largely mislocalized to the cell body with a small amount reaching the hair bundle. We propose that this small amount of hCLRN1(N48K) in the hair bundle provides clarin-1-mediated function during the early stages of life; however, the presence of hCLRN1(N48K) in the hair bundle diminishes over time because of intracellular degradation of the mutant protein, leading to progressive loss of hair bundle integrity and hair cell function. These findings and genetic tools provide an understanding and path forward to identify therapies to mitigate hearing loss linked to the CLRN1 mutation. Mutations in the clarin-1 gene affect eye and ear function in humans. Individuals with the CLRN1(N48K) mutation are born able to hear but lose that function over time. Here, we develop an animal model system using zebrafish transgenesis and gene targeting to provide an explanation for this phenotype. This approach illuminates the role of clarin-1 and the molecular mechanism linked to the CLRN1(N48K) mutation in sensory hair cells of the inner ear. Additionally, the investigation provided an in vivo model to guide future drug discovery to rescue the hCLRN1(N48K) in hair cells. Copyright © 2015 the authors 0270-6474/15/3510188-14$15.00/0.
Heat transfer in laminar flow along circular rods in infinite square arrays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, J.H.; Li, W.H.
1988-02-01
The need to understand heat transfer characteristics over rods or tube bundles often arises in the design of compact heat exchangers and safety analysis of nuclear reactors. In particular, the fuel bundles of typical light water nuclear reactors are composed of a large number of circular rods arranged in square array pattern. The purpose of the present study is to analyze heat transfer characteristics of flow in such a multirod geometric configuration. The analysis given here will follow as closely as possible the method of Sparrow et al. who analyzed a similar problem for circular cylinders arranged in an equilateralmore » triangular array. The following major assumptions are made in the present analysis: (1) Flow is fully developed laminar flow paralleled to the axis of rods. (2) The axial profile of the surface heat flux to the fluid is uniform.(3) Thermodynamic properties are assumed constant.« less
Alpha1 LASSO data bundles Lamont, OK
Gustafson, William Jr; Vogelmann, Andrew; Endo, Satoshi; Toto, Tami; Xiao, Heng; Li, Zhijin; Cheng, Xiaoping; Krishna, Bhargavi (ORCID:000000018828528X)
2016-08-03
A data bundle is a unified package consisting of LASSO LES input and output, observations, evaluation diagnostics, and model skill scores. LES input includes model configuration information and forcing data. LES output includes profile statistics and full domain fields of cloud and environmental variables. Model evaluation data consists of LES output and ARM observations co-registered on the same grid and sampling frequency. Model performance is quantified by skill scores and diagnostics in terms of cloud and environmental variables.
Fiber Bundle Model Under Heterogeneous Loading
NASA Astrophysics Data System (ADS)
Roy, Subhadeep; Goswami, Sanchari
2018-03-01
The present work deals with the behavior of fiber bundle model under heterogeneous loading condition. The model is explored both in the mean-field limit as well as with local stress concentration. In the mean field limit, the failure abruptness decreases with increasing order k of heterogeneous loading. In this limit, a brittle to quasi-brittle transition is observed at a particular strength of disorder which changes with k. On the other hand, the model is hardly affected by such heterogeneity in the limit where local stress concentration plays a crucial role. The continuous limit of the heterogeneous loading is also studied and discussed in this paper. Some of the important results related to fiber bundle model are reviewed and their responses to our new scheme of heterogeneous loading are studied in details. Our findings are universal with respect to the nature of the threshold distribution adopted to assign strength to an individual fiber.
Stability in a fiber bundle model: Existence of strong links and the effect of disorder
NASA Astrophysics Data System (ADS)
Roy, Subhadeep
2018-05-01
The present paper deals with a fiber bundle model which consists of a fraction α of infinitely strong fibers. The inclusion of such an unbreakable fraction has been proven to affect the failure process in early studies, especially around a critical value αc. The present work has a twofold purpose: (i) a study of failure abruptness, mainly the brittle to quasibrittle transition point with varying α and (ii) variation of αc as we change the strength of disorder introduced in the model. The brittle to quasibrittle transition is confirmed from the failure abruptness. On the other hand, the αc is obtained from the knowledge of failure abruptness as well as the statistics of avalanches. It is observed that the brittle to quasibrittle transition point scales to lower values, suggesting more quasi-brittle-like continuous failure when α is increased. At the same time, the bundle becomes stronger as there are larger numbers of strong links to support the external stress. High α in a highly disordered bundle leads to an ideal situation where the bundle strength, as well as the predictability in failure process is very high. Also, the critical fraction αc, required to make the model deviate from the conventional results, increases with decreasing strength of disorder. The analytical expression for αc shows good agreement with the numerical results. Finally, the findings in the paper are compared with previous results and real-life applications of composite materials.
Study on galloping behavior of iced eight bundle conductor transmission lines
NASA Astrophysics Data System (ADS)
Zhou, Linshu; Yan, Bo; Zhang, Liang; Zhou, Song
2016-02-01
Wind tunnel test was carried out to obtain the aerodynamic coefficients of an eight bundle conductor accreted with crescent-shaped ice. A user-defined cable element with torsional degree of freedom is developed in ABAQUS software to capture the torsional deformation of the iced conductors during galloping. By means of the user-defined cable element, different damping ratios in in-plane, out-of-plane and torsional directions of the conductors can be defined and the aerodynamic forces varying with their motion status can be exerted on the conductors conveniently when ABAQUS is used to simulate galloping of transmission lines. A wind tunnel test to model galloping of an iced eight bundle conductor segment was carried out, and the validity of the numerical simulation method is demonstrated by the agreement of the galloping orbit of the bundle conductor segment model recorded in the test and that by the numerical simulation. Furthermore, galloping behavior, including dynamic responses, galloping orbits, frequencies, vibration modes and amplitudes, of typical iced eight bundle conductor transmission lines in the cases of different span lengths, initial tensions in sub-conductors, wind velocities, angles of wind attack and damping ratios is studied, and the galloping behavior of the lines with internal resonance conditions is discussed. The obtained results may provide a fundamental tool for the development of anti-galloping techniques of eight bundle conductor transmission lines.
NASA Astrophysics Data System (ADS)
Marques, G.
2015-12-01
Biofuels such as ethanol from sugar cane remain an important element to help mitigate the impacts of fossil fuels on the atmosphere. However, meeting fuel demands with biofuels requires technological advancement for water productivity and scale of production. This may translate into increased water demands for biofuel crops and potential for conflicts with incumbent crops and other water uses including domestic, hydropower generation and environmental. It is therefore important to evaluate the effects of increased biofuel production on the verge of water scarcity costs and hydropower production. The present research applies a hydro-economic optimization model to compare different scenarios of irrigated biofuel and hydropower production, and estimates the potential tradeoffs. A case study from the Araguari watershed in Brazil is provided. These results should be useful to (i) identify improved water allocation among competing economic demands, (ii) support water management and operations decisions in watersheds where biofuels are expected to increase, and (iii) identify the impact of bio fuel production in the water availability and economic value. Under optimized conditions, adoption of sugar cane for biofuel production heavily relies on the opportunity costs of other crops and hydropower generation. Areas with a lower value crop groups seem more suitable to adopt sugar cane for biofuel when the price of ethanol is sufficiently high and the opportunity costs of hydropower productions are not conflicting. The approach also highlights the potential for insights in water management from studying regional versus larger scales bundled systems involving water use, food production and power generation.
NASA Astrophysics Data System (ADS)
Zhang, Sheng; Gao, Xiguang; Song, Yingdong
2018-04-01
A new in situ strength model of carbon fibers was developed based on the distribution of defects to predict the stress-strain response and the strength of C/SiC composites. Different levels of defects in the fibers were considered in this model. The defects in the fibers were classified by their effects on the strength of the fiber. The strength of each defect and the probability that the defect appears were obtained from the tensile test of single fibers. The strength model of carbon fibers was combined with the shear-lag model to predict the stress-strain responses and the strengths of fiber bundles and C/SiC minicomposites. To verify the strength model, tensile tests were performed on fiber bundles and C/SiC minicomposites. The predicted and experimental results were in good agreement. Effects of the fiber length, the fiber number and the heat treatment on the final strengths of fiber bundles and C/SiC minicomposites were also discussed.
Time dependence of breakdown in a global fiber-bundle model with continuous damage.
Moral, L; Moreno, Y; Gómez, J B; Pacheco, A F
2001-06-01
A time-dependent global fiber-bundle model of fracture with continuous damage is formulated in terms of a set of coupled nonlinear differential equations. A first integral of this set is analytically obtained. The time evolution of the system is studied by applying a discrete probabilistic method. Several results are discussed emphasizing their differences with the standard time-dependent model. The results obtained show that with this simple model a variety of experimental observations can be qualitatively reproduced.
Application of the SHARP Toolkit to Sodium-Cooled Fast Reactor Challenge Problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shemon, E. R.; Yu, Y.; Kim, T. K.
The Simulation-based High-efficiency Advanced Reactor Prototyping (SHARP) toolkit is under development by the Nuclear Energy Advanced Modeling and Simulation (NEAMS) Campaign of the U.S. Department of Energy, Office of Nuclear Energy. To better understand and exploit the benefits of advanced modeling simulations, the NEAMS Campaign initiated the “Sodium-Cooled Fast Reactor (SFR) Challenge Problems” task, which include the assessment of hot channel factors (HCFs) and the demonstration of zooming capability using the SHARP toolkit. If both challenge problems are resolved through advanced modeling and simulation using the SHARP toolkit, the economic competitiveness of a SFR can be significantly improved. The effortsmore » in the first year of this project focused on the development of computational models, meshes, and coupling procedures for multi-physics calculations using the neutronics (PROTEUS) and thermal-hydraulic (Nek5000) components of the SHARP toolkit, as well as demonstration of the HCF calculation capability for the 100 MWe Advanced Fast Reactor (AFR-100) design. Testing the feasibility of the SHARP zooming capability is planned in FY 2018. The HCFs developed for the earlier SFRs (FFTF, CRBR, and EBR-II) were reviewed, and a subset of these were identified as potential candidates for reduction or elimination through high-fidelity simulations. A one-way offline coupling method was used to evaluate the HCFs where the neutronics solver PROTEUS computes the power profile based on an assumed temperature, and the computational fluid dynamics solver Nek5000 evaluates the peak temperatures using the neutronics power profile. If the initial temperature profile used in the neutronics calculation is reasonably accurate, the one-way offline method is valid because the neutronics power profile has weak dependence on small temperature variation. In order to get more precise results, the proper temperature profile for initial neutronics calculations was obtained from the STAR-CCM+ calculations. The HCFs of the peak temperatures at cladding outer surface, cladding inner wall surface, and fuel centerline induced by cladding manufacturing tolerance and uncertainties on the cladding, coolant, and fuel properties were evaluated for the AFR-100. Some assessment on the effect of wire wrap configuration and size of the bundle shows that it is practical to use the 7-pin bare rod bundle to calculate the HCFs. The resulting HCFs obtained from the high-fidelity SHARP calculations are generally smaller than those developed for the earlier SFRs because the most uncertainties involved in the modeling and simulations were disappeared. For completeness, additional investigations are planned in FY 2018, which will use random sampling techniques.« less
Darcy Permeability of Hollow Fiber Bundles Used in Blood Oxygenation Devices
Pacella, Heather E.; Eash, Heidi J.; Federspiel, William J.
2011-01-01
Many industrial and biomedical devices (e.g. blood oxygenators and artificial lungs) use bundles of hollow fiber membranes for separation processes. Analyses of flow and mass transport within the shell-side of the fiber bundles most often model the bundle for simplicity as a packed bed or porous media, using a Darcy permeability coefficient estimated from the Blake-Kozeny equation to account for viscous drag from the fibers. In this study, we developed a simple method for measuring the Darcy permeability of hollow fiber membrane bundles and evaluated how well the Blake-Kozeny (BK) equation predicted the Darcy permeability for these bundles. Fiber bundles were fabricated from commercially available Celgard® ×30-240 fiber fabric (300 μm outer diameter fibers @ 35 and 54 fibers/inch) and from a fiber fabric with 193 μm fibers (61 fibers/inch). The fiber bundles were mounted to the bottom of an acrylic tube and Darcy permeability was determined by measuring the elapsed time for a column of glycerol solution to flow through a fiber bundle. The ratio of the measured Darcy permeability to that predicted from the BK equation varied from 1.09 to 0.56. A comprehensive literature review suggested a modified BK equation with the “constant” correlated to porosity. This modification improved the predictions of the BK equation, with the ratio of measured to predicted permeability varying from 1.13 to 0.84. PMID:22927706
Benchmarking study of the MCNP code against cold critical experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sitaraman, S.
1991-01-01
The purpose of this study was to benchmark the widely used Monte Carlo code MCNP against a set of cold critical experiments with a view to using the code as a means of independently verifying the performance of faster but less accurate Monte Carlo and deterministic codes. The experiments simulated consisted of both fast and thermal criticals as well as fuel in a variety of chemical forms. A standard set of benchmark cold critical experiments was modeled. These included the two fast experiments, GODIVA and JEZEBEL, the TRX metallic uranium thermal experiments, the Babcock and Wilcox oxide and mixed oxidemore » experiments, and the Oak Ridge National Laboratory (ORNL) and Pacific Northwest Laboratory (PNL) nitrate solution experiments. The principal case studied was a small critical experiment that was performed with boiling water reactor bundles.« less
Manifold, bus support and coupling arrangement for solid oxide fuel cells
Parry, Gareth W.
1989-01-01
Individual, tubular solid oxide fuel cells (SOFCs) are assembled into bundles called a module within a housing, with a plurality of modules arranged end-to-end in a linear, stacked configuration called a string. A common set of piping comprised of a suitable high temperture resistant material (1) provides fuel and air to each module housing, (2) serves as electrically conducting buses, and (3) provides structural support for a string of SOFC modules. The piping thus forms a manfold for directing fuel and air to each module in a string and makes electrical contact with the module's anode and cathode to conduct the DC power generated by the SOFC. The piping also provides structureal support for each individual module and maintains each string of modules as a structurally integral unit for ensuring high strength in a large 3-dimensional array of SOFC modules. Ceramic collars are used to connect fuel and air inlet piping to each of the electrodes in an SOFC module and provide (1) electrical insulation for the current carrying bus bars and gas manifolds, (2) damping for the fuel and air inlet piping, and (3) proper spacing between the fuel and air inlet piping to prevent contact between these tubes and possible damage to the SOFC.
NASA Astrophysics Data System (ADS)
Schmidt-Rohr, Klaus; Chen, Q.
2006-03-01
The perfluorinated ionomer, Nafion, which consists of a (-CF2-)n backbone and charged side branches, is useful as a proton exchange membrane in H2/O2 fuel cells. A modified model of the nanometer-scale structure of hydrated Nafion will be presented. It features hydrated ionic clusters familiar from some previous models, but is based most prominently on pronounced backbone rigidity between branch points and limited orientational correlation of local chain axes. These features have been revealed by solid-state NMR measurements, which take advantage of fast rotations of the backbones around their local axes. The resulting alternating curvature of the backbones towards the hydrated clusters also better satisfies the requirement of dense space filling in solids. Simulations based on this ``alternating curvature'' model reproduce orientational correlation data from NMR, as well as scattering features such as the ionomer peak and the I(q) ˜ 1/q power law at small q values, which can be attributed to modulated cylinders resulting from the chain stiffness. The shortcomings of previous models, including Gierke's cluster model and more recent lamellar or bundle models, in matching all requirements imposed by the experimental data will be discussed.
The Influence of Consumer Goals and Marketing Activities on Product Bundling
NASA Astrophysics Data System (ADS)
Haijun, Wang
Upon entering a store, consumers are faced with the questions of whether to buy, what to buy, and how much to buy. Consumers include products from different categories in their decision process. Product categories can be related in different ways. Product bundling is a process that involves the choice of at least two non-substitutable items. In this research, the consumers' explicit product bundling activity at the point of sale is focused. We focuses on the retailers' perspective and therefore leaves out consumers' brand choice decisions, concentrating on purchase incidence and quantity. At the base of the current model of the exist researches, we integrate behavioural choice analysis and predictive choice modelling through the underlying behavioural models, called random utility maximization (RUM) models. The methodological contribution of this research lies therein to combine a nested logit choice model with a latent variable factor model. We point out several limitations for both theory and practice at the end.
Invited Lectures from a Spatial Orientation Symposium in Honor of Frederick Guedry, Day 1
2014-01-01
111 Computational Fluid Dynamics Model of Endolymph Flow around Hair Cell Bundle ̶ Wallace Grant...Wallace Grant: Computational Fluid Dynamics Model of Endolymph Flow around Hair Cell Bundle Ian Curthoys: Update from Sydney Discussion Tactile...usefulness of preserving free- flowing scholarly discussion. It is in the spirit of those fascinating early discussions among vestibular researchers1
Nanomechanics modeling of carbon nanotubes interacting with surfaces in various configurations
NASA Astrophysics Data System (ADS)
Wu, Yu-Chiao
Carbon nanotubes (CNTs) have been widely used as potential components in reported nanoelectromechanical (NEM) devices due to their excellent mechanical and electrical properties. This thesis models the experiments by the continuum mechanics in two distinct scenarios. In the first situation, measurements are made of CNT configurations after manipulations. Modeling is then used to determine the interfacial properties during the manipulation which led to the observed configuration. This technique is used to determine the shear stress between a SWNT bundle and other materials. During manipulation, a SWNT bundle slipped on two micro-cantilevers. According to the slack due to the slippage after testing and the device configuration, the shear stress between a SWNT bundle and other materials can be determined. In another model, the work of adhesion was determined on two accidentally fabricated devices. Through the configuration of two SWNT adhered bundles and the force-distance curves measured by an atomic force microscope (AFM), modeling was used to determine the work of adhesion between two bundles and the shear stress at the SWNT-substrate interface. In the second situation, modeling is used in a more traditional fashion to make theoretical predictions as to how a device will operate. Using this technique, the actuation mechanism of a single-trench SWNT-based switch was investigated. During the actuation, the deflection-induced tension causes the SWNT bundle to slip on both platforms and to be partially peeled from two side recessed electrodes. These effects produce a slack which reduces the threshold voltages subsequent to the first actuation. The result shows excellent agreement between the theory and the measurement. Furthermore, the operation of a double-trenched SWNT-based switch was investigated. A slack is produced in the 1st actuated trench region by the slip and peeling effects. This slack reduces the 2nd actuation voltage in the neighbor trench. Finally, the adhesive slip process at the SWNT-substrate interface was simulated. The result shows that the force for slip of a SWNT remains constant for lengths less than about 240 nm. Beyond that length, increasing the contact length causes increase the force for slippage. This phenomenon agrees well with reported experiments.
The Shape of a Ponytail and the Statistical Physics of Hair Fiber Bundles
NASA Astrophysics Data System (ADS)
Goldstein, Raymond E.; Warren, Patrick B.; Ball, Robin C.
2012-02-01
From Leonardo to the Brothers Grimm our fascination with hair has endured in art and science. Yet, a quantitative understanding of the shapes of a hair bundles has been lacking. Here we combine experiment and theory to propose an answer to the most basic question: What is the shape of a ponytail? A model for the shape of hair bundles is developed from the perspective of statistical physics, treating individual fibers as elastic filaments with random intrinsic curvatures. The combined effects of bending elasticity, gravity, and bundle compressibility are recast as a differential equation for the envelope of a bundle, in which the compressibility enters through an ``equation of state.'' From this, we identify the balance of forces in various regions of the ponytail, extract the equation of state from analysis of ponytail shapes, and relate the observed pressure to the measured random curvatures of individual hairs.
The Actions of Calcium on Hair Bundle Mechanics in Mammalian Cochlear Hair Cells
Beurg, Maryline; Nam, Jong-Hoon; Crawford, Andrew; Fettiplace, Robert
2008-01-01
Sound stimuli excite cochlear hair cells by vibration of each hair bundle, which opens mechanotransducer (MT) channels. We have measured hair-bundle mechanics in isolated rat cochleas by stimulation with flexible glass fibers and simultaneous recording of the MT current. Both inner and outer hair-cell bundles exhibited force-displacement relationships with a nonlinearity that reflects a time-dependent reduction in stiffness. The nonlinearity was abolished, and hair-bundle stiffness increased, by maneuvers that diminished calcium influx through the MT channels: lowering extracellular calcium, blocking the MT current with dihydrostreptomycin, or depolarizing to positive potentials. To simulate the effects of Ca2+, we constructed a finite-element model of the outer hair cell bundle that incorporates the gating-spring hypothesis for MT channel activation. Four calcium ions were assumed to bind to the MT channel, making it harder to open, and, in addition, Ca2+ was posited to cause either a channel release or a decrease in the gating-spring stiffness. Both mechanisms produced Ca2+ effects on adaptation and bundle mechanics comparable to those measured experimentally. We suggest that fast adaptation and force generation by the hair bundle may stem from the action of Ca2+ on the channel complex and do not necessarily require the direct involvement of a myosin motor. The significance of these results for cochlear transduction and amplification are discussed. PMID:18178649
Spontaneous Oscillation by Hair Bundles of the Bullfrog's Sacculus
Martin, Pascal; Bozovic, D.; Choe, Y.; Hudspeth, A. J.
2007-01-01
One prominent manifestation of mechanical activity in hair cells is spontaneous otoacoustic emission, the unprovoked emanation of sound by an internal ear. Because active hair-bundle motility probably constitutes the active process of non-mammalian hair cells, we investigated the ability of hair bundles in the bullfrog's sacculus to produce oscillations that might underlie spontaneous otoacoustic emissions. When maintained in the ear's normal ionic milieu, many bundles oscillated spontaneously through distances as great as 80 nm at frequencies of 5-50 Hz. Whole-cell recording disclosed that the positive phase of movement was associated with the opening of transduction channels. Gentamicin, which blocks transduction channels, reversibly arrested oscillation; drugs that affect the cAMP phosphorylation pathway and might influence myosin's activity altered the rate of oscillation. Increasing the Ca2+ concentration rendered oscillations faster and smaller until they were suppressed; lowering the Ca2+ concentration moderately with chelators had the opposite effect. When a bundle was offset with a stimulus fiber, oscillations were transiently suppressed but gradually resumed. Loading a bundle by partial displacement clamping, which simulated the presence of the accessory structures to which a bundle is ordinarily attached, increased the frequency and diminished the magnitude of oscillation. These observations accord with a model in which oscillations arise from the interplay of the hair bundle's negative stiffness with the activity of adaptation motors and with Ca2+-dependent relaxation of gating springs. PMID:12805294
NASA Astrophysics Data System (ADS)
Abir, Ahmed Musafi
Spacer grids are used in Pressurized Water Reactors (PWRs) fuel assemblies which enhances heat transfer from fuel rods. However, there remain regions of low turbulence in between the spacer grids. To enhance turbulence in these regions surface roughness is applied on the fuel rod walls. Meyer [1] used empirical correlations to predict heat transfer and friction factor for artificially roughened fuel rod bundles at High Performance Light Water Reactors (LWRs). Their applicability was tested by Carrilho at University of South Carolina's (USC) Single Heated Element Loop Tester (SHELT). He attained a heat transfer and friction factor enhancement of 50% and 45% respectively, using Inconel nuclear fuel rods with square transverse ribbed surface. Following him Najeeb conducted a similar study due to three dimensional diamond shaped blocks in turbulent flow. He recorded a maximum heat transfer enhancement of 83%. At present, several types of materials are being used for fuel rod cladding including Zircaloy, Uranium oxide, etc. But researchers are actively searching for new material that can be a more practical alternative. Silicon Carbide (SiC) has been identified as a material of interest for application as fuel rod cladding [2]. The current study deals with the experimental investigation to find out the friction factor increase of a SiC fuel rod with 3D surface roughness. The SiC rod was tested at USC's SHELT loop. The experiment was conducted in turbulent flowing Deionized (DI) water at steady state conditions. Measurements of Flow rate and pressure drop were made. The experimental results were also validated by Computational Fluid Dynamics (CFD) analysis in ANSYS Fluent. To simplify the CFD analysis and to save computational resources the 3D roughness was approximated as a 2D one. The friction factor results of the CFD investigation was found to lie within +/-8% of the experimental results. A CFD model was also run with the energy equation turned on, and a heat generation of 8 kW applied to the rod. A maximum heat transfer enhancement of 18.4% was achieved at the highest flow rate investigated (i.e. Re=109204).
Effectiveness of a Model Bundle Payment Initiative for Femur Fracture Patients.
Lott, Ariana; Belayneh, Rebekah; Haglin, Jack; Konda, Sanjit; Egol, Kenneth A
2018-05-28
Analyze the effectiveness of a BPCI (Bundle Payments for Care Improvement) initiative for patients who would be included in a future potential Surgical Hip and Femur Fracture Treatment (SHFFT) bundle. Retrospective cohort SETTING:: Single Academic Institution PATIENTS/PARTICIPANTS:: Patients discharged with operative fixation of a hip or femur fracture (DRG codes 480-482) between 1/2015-10/2016 were included. A BPCI initiative based upon an established program for BPCI Total Joint Arthroplasty (TJA) was initiated for patients with hip and femur fractures in January 2016. Patients were divided into non-bundle (care before initiative) and bundle (care with initiative) cohorts. Application of BPCI principles MAIN OUTCOME MEASURES:: Length of stay, location of discharge, readmissions RESULTS:: 116 patients participated in the "institutional bundle," and 126 received care prior to the initiative. There was a trend towards decreased mean length of stay, (7.3 ± 6.3 days vs. 6.8 ± 4.0 days, p=0.457) and decreased readmission within 90 days (22.2% vs. 18.1%, p=0.426). The number of patients discharged home doubled (30.2% vs. 14.3%, p=0.008). There was no difference in readmission rates in bundle vs. non-bundle patients based on discharged home status; however, bundle patients discharged to SNF trended towards less readmissions than non-bundle patients discharged to SNF (37.3% vs. 50.6%, p=0.402). Mean episode cost reduction due to initiative was estimated to be $6,450 using Medicare reimbursement data. This study demonstrates the potential success of a BPCI initiative at one institution in decreasing post-acute care facility utilization and cost of care when used for a hip and femur fracture population. Therapeutic Level IV. See Instructions for Authors for a complete description of levels of evidence.
NASA Technical Reports Server (NTRS)
Burleigh, Scott C.
2011-01-01
Contact Graph Routing (CGR) is a dynamic routing system that computes routes through a time-varying topology of scheduled communication contacts in a network based on the DTN (Delay-Tolerant Networking) architecture. It is designed to enable dynamic selection of data transmission routes in a space network based on DTN. This dynamic responsiveness in route computation should be significantly more effective and less expensive than static routing, increasing total data return while at the same time reducing mission operations cost and risk. The basic strategy of CGR is to take advantage of the fact that, since flight mission communication operations are planned in detail, the communication routes between any pair of bundle agents in a population of nodes that have all been informed of one another's plans can be inferred from those plans rather than discovered via dialogue (which is impractical over long one-way-light-time space links). Messages that convey this planning information are used to construct contact graphs (time-varying models of network connectivity) from which CGR automatically computes efficient routes for bundles. Automatic route selection increases the flexibility and resilience of the space network, simplifying cross-support and reducing mission management costs. Note that there are no routing tables in Contact Graph Routing. The best route for a bundle destined for a given node may routinely be different from the best route for a different bundle destined for the same node, depending on bundle priority, bundle expiration time, and changes in the current lengths of transmission queues for neighboring nodes; routes must be computed individually for each bundle, from the Bundle Protocol agent's current network connectivity model for the bundle s destination node (the contact graph). Clearly this places a premium on optimizing the implementation of the route computation algorithm. The scalability of CGR to very large networks remains a research topic. The information carried by CGR contact plan messages is useful not only for dynamic route computation, but also for the implementation of rate control, congestion forecasting, transmission episode initiation and termination, timeout interval computation, and retransmission timer suspension and resumption.
Higher groupoid bundles, higher spaces, and self-dual tensor field equations
NASA Astrophysics Data System (ADS)
Jurčo, Branislav; Sämann, Christian; Wolf, Martin
2016-08-01
We develop a description of higher gauge theory with higher groupoids as gauge structure from first principles. This approach captures ordinary gauge theories and gauged sigma models as well as their categorifications on a very general class of (higher) spaces comprising presentable differentiable stacks, as e.g. orbifolds. We start off with a self-contained review on simplicial sets as models of $(\\infty,1)$-categories. We then discuss principal bundles in terms of simplicial maps and their homotopies. We explain in detail a differentiation procedure, suggested by Severa, that maps higher groupoids to $L_\\infty$-algebroids. Generalising this procedure, we define connections for higher groupoid bundles. As an application, we obtain six-dimensional superconformal field theories via a Penrose-Ward transform of higher groupoid bundles over a twistor space. This construction reduces the search for non-Abelian self-dual tensor field equations in six dimensions to a search for the appropriate (higher) gauge structure. The treatment aims to be accessible to theoretical physicists.
NASA Astrophysics Data System (ADS)
Burdo, James S.
This research is based on the concept that the diversion of nuclear fuel pins from Light Water Reactor (LWR) spent fuel assemblies is feasible by a careful comparison of spontaneous fission neutron and gamma levels in the guide tube locations of the fuel assemblies. The goal is to be able to determine whether some of the assembly fuel pins are either missing or have been replaced with dummy or fresh fuel pins. It is known that for typical commercial power spent fuel assemblies, the dominant spontaneous neutron emissions come from Cm-242 and Cm-244. Because of the shorter half-life of Cm-242 (0.45 yr) relative to that of Cm-244 (18.1 yr), Cm-244 is practically the only neutron source contributing to the neutron source term after the spent fuel assemblies are more than two years old. Initially, this research focused upon developing MCNP5 models of PWR fuel assemblies, modeling their depletion using the MONTEBURNS code, and by carrying out a preliminary depletion of a ¼ model 17x17 assembly from the TAKAHAMA-3 PWR. Later, the depletion and more accurate isotopic distribution in the pins at discharge was modeled using the TRITON depletion module of the SCALE computer code. Benchmarking comparisons were performed with the MONTEBURNS and TRITON results. Subsequently, the neutron flux in each of the guide tubes of the TAKAHAMA-3 PWR assembly at two years after discharge as calculated by the MCNP5 computer code was determined for various scenarios. Cases were considered for all spent fuel pins present and for replacement of a single pin at a position near the center of the assembly (10,9) and at the corner (17,1). Some scenarios were duplicated with a gamma flux calculation for high energies associated with Cm-244. For each case, the difference between the flux (neutron or gamma) for all spent fuel pins and with a pin removed or replaced is calculated for each guide tube. Different detection criteria were established. The first was whether the relative error of the difference was less than 1.00, allowing for the existence of the difference within the margin of error. The second was whether the difference between the two values was big enough to prevent their error bars from overlapping. Error analysis was performed both using a one second count and pseudo-Maxwell statistics for a projected 60 second count, giving four criteria for detection. The number of guide tubes meeting these criteria was compared and graphed for each case. Further analysis at extremes of high and low enrichment and long and short burnup times was done using data from assemblies at the Beaver Valley 1 and 2 PWR. In all neutron flux cases, at least two guide tube locations meet all the criteria for detection of pin diversion. At least one location in almost all of the gamma flux cases does. These results show that placing detectors in the empty guide tubes of spent fuel bundles to identify possible pin diversion is feasible.
Consensus Bundle on Maternal Mental Health: Perinatal Depression and Anxiety.
Kendig, Susan; Keats, John P; Hoffman, M Camille; Kay, Lisa B; Miller, Emily S; Moore Simas, Tiffany A; Frieder, Ariela; Hackley, Barbara; Indman, Pec; Raines, Christena; Semenuk, Kisha; Wisner, Katherine L; Lemieux, Lauren A
2017-03-01
Perinatal mood and anxiety disorders are among the most common mental health conditions encountered by women of reproductive age. When left untreated, perinatal mood and anxiety disorders can have profound adverse effects on women and their children, ranging from increased risk of poor adherence to medical care, exacerbation of medical conditions, loss of interpersonal and financial resources, smoking and substance use, suicide, and infanticide. Perinatal mood and anxiety disorders are associated with increased risks of maternal and infant mortality and morbidity and are recognized as a significant patient safety issue. In 2015, the Council on Patient Safety in Women's Health Care convened an interdisciplinary workgroup to develop an evidence-based patient safety bundle to address maternal mental health. The focus of this bundle is perinatal mood and anxiety disorders. The bundle is modeled after other bundles released by the Council on Patient Safety in Women's Health Care and provides broad direction for incorporating perinatal mood and anxiety disorder screening, intervention, referral, and follow-up into maternity care practice across health care settings. This commentary provides information to assist with bundle implementation.
Electro-mechanical response of a 3D nerve bundle model to mechanical loads leading to axonal injury.
Cinelli, I; Destrade, M; Duffy, M; McHugh, P
2017-07-01
Axonal damage is one of the most common pathological features of traumatic brain injury, leading to abnormalities in signal propagation for nervous systems. We present a 3D fully coupled electro-mechanical model of a nerve bundle, made with the finite element software Abaqus 6.13-3. The model includes a real-time coupling, modulated threshold for spiking activation and independent alteration of the electrical properties for each 3-layer fibre within the bundle. Compression and tension are simulated to induce damage at the nerve membrane. Changes in strain, stress distribution and neural activity are investigated for myelinated and unmyelinated nerve fibres, by considering the cases of an intact and of a traumatized nerve membrane. Results show greater changes in transmitting action potential in the myelinated fibre.
The impact of Lean bundles on hospital performance: does size matter?
Al-Hyari, Khalil; Abu Hammour, Sewar; Abu Zaid, Mohammad Khair Saleem; Haffar, Mohamed
2016-10-10
Purpose The purpose of this paper is to study the effect of the implementation of Lean bundles on hospital performance in private hospitals in Jordan and evaluate how much the size of organization can affect the relationship between Lean bundles implementation and hospital performance. Design/methodology/approach The research is considered as quantitative method (descriptive and hypothesis testing). Three statistical techniques were adopted to analyse the data. Structural equation modeling techniques and multi-group analysis were used to examine the research's hypothesis, and to perform the required statistical analysis of the data from the survey. Reliability analysis and confirmatory factor analysis were used to test the construct validity, reliability and measurement loadings that were performed. Findings Lean bundles have been identified as an effective approach that can dramatically improve the organizational performance of private hospitals in Jordan. Main Lean bundles - just in time, human resource management, and total quality management are applicable to large, small and medium hospitals without significant differences in advantages that depend on size. Originality/value According to the researchers' best knowledge, this is the first research that studies the impact of Lean bundles implementation in healthcare sector in Jordan. This research also makes a significant contribution for decision makers in healthcare to increase their awareness of Lean bundles.
Bundling in Place: Translating the NGSS into Place-Based Earth-System Science Curricula
NASA Astrophysics Data System (ADS)
Semken, S. C.
2016-12-01
Bundling is the process of grouping Performance Expectations (PEs) from the Next Generation Science Standards (NGSS) into coherent units based on a defined topic, idea, question, or phenomenon. Bundling sorts the PEs for a given grade or grade band into a teachable narrative: a key stage in building curriculum, instruction, and assessment from the NGSS. To encourage and facilitate this, bundling guidelines have recently been released on the NGSS website (nextgenscience.org/glossary/bundlesbundling), and example bundles for different grade bands and disciplines are also being developed and posted there. According to these guidelines the iterative process of bundling begins with organization of PEs according to natural connections among them, and alignment of the three NGSS dimensions (Disciplinary Core Ideas, Cross-Cutting Concepts, and Science and Engineering Practices) that underpin each PE. Bundles are grouped by coherence and increasing complexity into courses, and courses into course sets that should encompass all PEs for a grade band. Bundling offers a natural way to translate the NGSS into highly contextualized curricula such as place-based (PB) teaching, which is situated in specific places or regions and focused on natural and cultural features, processes, phenomena, history, and challenges to sustainability therein. Attributes of place and our individual and collective connections to place (sense of place) directly inform PB curriculum, pedagogy, and assessment. PEs can be bundled by their relevance to these themes. Following the NGSS guidelines, I model the process for PB instruction by bundling PEs around the themes of Paleozoic geology and carbonate deposition and their relationships to mining and calcining of limestone in Anthropocene cement production for developing communities. The bundles integrate aspects of Earth history, the carbon cycle, mineral resources, climate change, and sustainability using specific local examples and narratives. They are designed for a hypothetical place-based high-school Earth-science course situated in the Greater American Southwest, but could be readily modified for another region with similar geology and resource use.
Sievers, Robert K.; Cooper, Martin H.; Tupper, Robert B.
1987-01-01
A self-actuated shutdown system incorporated into a reactivity control assembly in a nuclear reactor includes pumping means for creating an auxiliary downward flow of a portion of the heated coolant exiting from the fuel assemblies disposed adjacent to the control assembly. The shutdown system includes a hollow tubular member which extends through the outlet of the control assembly top nozzle so as to define an outer annular flow channel through the top nozzle outlet separate from an inner flow channel for primary coolant flow through the control assembly. Also, a latching mechanism is disposed in an inner duct of the control assembly and is operable for holding absorber bundles in a raised position in the control assembly and for releasing them to drop them into the core of the reactor for shutdown purposes. The latching mechanism has an inner flow passage extending between and in flow communication with the absorber bundles and the inner flow channel of the top nozzle for accommodating primary coolant flow upwardly through the control assembly. Also, an outer flow passage separate from the inner flow passage extends through the latching mechanism between and in flow communication with the inner duct and the outer flow channel of the top nozzle for accommodating inflow of a portion of the heated coolant from the adjacent fuel assemblies. The latching mechanism contains a magnetic material sensitive to temperature and operable to cause mating or latching together of the components of the latching mechanism when the temperature sensed is below a known temperature and unmating or unlatching thereof when the temperature sensed is above a given temperature. The temperature sensitive magnetic material is positioned in communication with the heated coolant flow through the outer flow passage for directly sensing the temperature thereof. Finally, the pumping means includes a jet induction pump nozzle and diffuser disposed adjacent the bottom nozzle of the control assembly and in flow communication with the inlet thereof. The pump nozzle is operable to create an upward driving flow of primary coolant through the pump diffuser and then to the absorber bundles. The upward driving flow of primary coolant, in turn, creates a suction head within the outer flow channel of the top nozzle and thereby an auxiliary downward flow of the heated coolant portion exiting from the upper end of the adjacent fuel assemblies through the outer flow channel to the pump nozzle via the outer flow passage of the latching mechanism and an annular space between the outer and inner spaced ducts of the control assembly housing. The temperature of the heated coolant exiting from the adjacent fuel assemblies can thereby be sensed directly by the temperature sensitive magnetic material in the latching mechanism.
ECM remodeling and its plasticity
NASA Astrophysics Data System (ADS)
Feng, Jingchen; Jones, Christopher A. R.; Cibula, Matthew; Mao, Xiaoming; Sander, Leonard M.; Levine, Herbert; Sun, Bo
The mechanical interactions between cells and Extracellular Matrix (ECM) are of great importance in many cellular processes. These interactions are reciprocal, i.e. contracting cells pull and reorganize the surrounding matrix, while the remodeled matrix feeds back to regulate cell activities. Recent experiments show in collagen gels with densely distributed cells, aligned fiber bundles are formed in the direction between neighboring cells. Fibers flow into the center region between contracting cell pairs in this process, which causes the concentration of fibers in the fiber bundles to become significantly enhanced. Using an extended lattice-based model, we show that viscoelasticity plays an essential role in ECM remodeling and contributes to the enhanced concentration in fiber bundles. We further characterize ECM plasticity within our model and verify our results with rheometer experiments.
Creep rupture of fiber bundles: A molecular dynamics investigation
NASA Astrophysics Data System (ADS)
Linga, G.; Ballone, P.; Hansen, Alex
2015-08-01
The creep deformation and eventual breaking of polymeric samples under a constant tensile load F is investigated by molecular dynamics based on a particle representation of the fiber bundle model. The results of the virtual testing of fibrous samples consisting of 40 000 particles arranged on Nc=400 chains reproduce characteristic stages seen in the experimental investigations of creep in polymeric materials. A logarithmic plot of the bundle lifetime τ versus load F displays a marked curvature, ruling out a simple power-law dependence of τ on F . A power law τ ˜F-4 , however, is recovered at high load. We discuss the role of reversible bond breaking and formation on the eventual fate of the sample and simulate a different type of creep testing, imposing a constant stress rate on the sample up to its breaking point. Our simulations, relying on a coarse-grained representation of the polymer structure, introduce new features into the standard fiber bundle model, such as real-time dynamics, inertia, and entropy, and open the way to more detailed models, aiming at material science aspects of polymeric fibers, investigated within a sound statistical mechanics framework.
75 FR 51701 - Airworthiness Directives; Learjet Inc. Model 45 Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-23
... configuration of the engine and alternator wire harnesses, and the starter/generator wire bundles. For certain... necessary. For certain airplanes, inspecting for clearance between the wire harnesses and the hydraulic and... wire harnesses and the starter/generator wire bundles. (2) Do a detailed inspection for chafing damage...
Rue, John-Paul H; Ghodadra, Neil; Bach, Bernard R
2008-01-01
There is controversy regarding the necessity of reconstructing both the posterolateral and anteromedial bundles of the anterior cruciate ligament. A laterally oriented transtibial drilled femoral tunnel replaces portions of the femoral footprints of the anteromedial and posterolateral bundles of the anterior cruciate ligament. Descriptive laboratory study. Footprints of the anteromedial and posterolateral bundles of the anterior cruciate ligament were preserved on 7 matched pairs (5 female, 2 male) of fresh-frozen human cadaveric femurs (14 femurs total). Each femur was anatomically oriented and secured in a custom size-appropriate, side-matched replica tibia model to simulate transtibial retrograde drilling of a 10-mm femoral tunnel in each specimen. The relationship of the tunnel relative to footprints of both bundles of the anterior cruciate ligament was recorded using a Microscribe MX digitizer. The angle of the femoral tunnel relative to the vertical 12-o'clock position was recorded for all 14 specimens; only 10 specimens were used for footprint measurements. On average, the 10-mm femoral tunnel overlapped 50% of the anteromedial bundle (range, 2%-83%) and 51% of the posterolateral bundle (range, 16%-97%). The footprint of the anteromedial bundle occupied 32% (range, 3%-49%) of the area of the tunnel; the footprint of the posterolateral bundle contributed 26% (range, 7%-41%). The remainder of the area of the 10-mm tunnel did not overlap with the anterior cruciate ligament footprint. The mean absolute angle of the femoral tunnel as measured directly on the specimen was 48 degrees (range, 42 degrees-53 degrees) from vertical, corresponding to approximately a 10:30 clock face position on a right knee. Anterior cruciate ligament reconstruction using a laterally oriented transtibial drilled femoral tunnel incorporates portions of the anteromedial and posterolateral bundle origins of the native anterior cruciate ligament. A laterally oriented transtibial drilled femoral tunnel placed at the 10:30 position (1:30 for left knees) reconstructs portions of the anteromedial and posterolateral bundles of the anterior cruciate ligament.
Slotkin, Jonathan R; Ross, Olivia A; Newman, Eric D; Comrey, Janet L; Watson, Victoria; Lee, Rachel V; Brosious, Megan M; Gerrity, Gloria; Davis, Scott M; Paul, Jacquelyn; Miller, E Lynn; Feinberg, David T; Toms, Steven A
2017-04-01
One significant driver of the disjointed healthcare often observed in the United States is the traditional fee-for-service payment model which financially incentivizes the volume of care delivered over the quality and coordination of care. This problem is compounded by the wide, often unwarranted variation in healthcare charges that purchasers of health services encounter for substantially similar episodes of care. The last 10 years have seen many stakeholder organizations begin to experiment with novel financial payment models that strive to obviate many of the challenges inherent in customary quantity-based cost paradigms. The Patient Protection and Affordable Care Act has allowed many care delivery systems to partner with Medicare in episode-based payment programs such as the Bundled Payments for Care Improvement (BPCI) initiative, and in patient-based models such as the Medicare Shared Savings Program. Several employer purchasers of healthcare services are experimenting with innovative payment models to include episode-based bundled rate destination centers of excellence programs and the direct purchasing of accountable care organization services. The Geisinger Health System has over 10 years of experience with episode-based payment bundling coupled with the care delivery reengineering which is integral to its ProvenCare® program. Recent experiences at Geisinger have included participation in BPCI and also partnership with employer-purchasers of healthcare through the Pacific Business Group on Health (representing Walmart, Lowe's, and JetBlue Airways). As the shift towards value-focused care delivery and patient experience progresses forward, bundled payment arrangements and direct purchasing of healthcare will be critical financial drivers in effecting change. Copyright © 2017 by the Congress of Neurological Surgeons.
Loosli, Y; Vianay, B; Luginbuehl, R; Snedeker, J G
2012-05-01
We present a novel approach to modeling cell spreading, and use it to reveal a potentially central mechanism regulating focal adhesion maturation in various cell phenotypes. Actin bundles that span neighboring focal complexes at the lamellipodium-lamellum interface were assumed to be loaded by intracellular forces in proportion to bundle length. We hypothesized that the length of an actin bundle (with the corresponding accumulated force at its adhesions) may thus regulate adhesion maturation to ensure cell mechanical stability and morphological integrity. We developed a model to test this hypothesis, implementing a "top-down" approach to simplify certain cellular processes while explicitly incorporating complexity of other key subcellular mechanisms. Filopodial and lamellipodial activities were treated as modular processes with functional spatiotemporal interactions coordinated by rules regarding focal adhesion turnover and actin bundle dynamics. This theoretical framework was able to robustly predict temporal evolution of cell area and cytoskeletal organization as reported from a wide range of cell spreading experiments using micropatterned substrates. We conclude that a geometric/temporal modeling framework can capture the key functional aspects of the rapid spreading phase and resultant cytoskeletal complexity. Hence the model is used to reveal mechanistic insight into basic cell behavior essential for spreading. It demonstrates that actin bundles spanning nascent focal adhesions such that they are aligned to the leading edge may accumulate centripetal endogenous forces along their length, and could thus trigger focal adhesion maturation in a force-length dependent fashion. We suggest that this mechanism could be a central "integrating" factor that effectively coordinates force-mediated adhesion maturation at the lamellipodium-lamellum interface.
Schwarzkopf, Ran; Laster, Scott K; Cross, Michael B; Lenz, Nathaniel M
2016-04-01
Proper ligament tension in flexion with posterior cruciate retaining (CR) total knee arthroplasty (TKA) has long been associated with clinical success. The purpose of this study was to determine the effect of varying levels of posterior cruciate ligament (PCL) release on the tibiofemoral kinematics and PCL strain. A computational analysis was performed and varying levels of PCL release were simulated. Tibiofemoral kinematics was evaluated. The maximum PCL strain was determined for each bundle to evaluate the risk of rupture based on the failure strain. The femoral AP position shifted anteriorly as the PCL stiffness was reduced. PCL strain in both bundles increased as stiffness was reduced. The model predicts that the AL bundle should not rupture for a 75% release. Risk of PM bundle rupture is greater than AL bundle. Our findings suggest that a partial PCL release impacts tibiofemoral kinematics and ligament tension and strain. The relationship is dynamic and care should be taken when seeking optimal balance intra-operatively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagase, F.; Ishikawa, J.; Kurata, M.
2013-07-01
Estimation of the accident progress and status inside the pressure vessels (RPV) and primary containment vessels (PCV) is required for appropriate conductance of decommissioning in the Fukushima-Daiichi NPP. For that, it is necessary to obtain additional experimental data and revised models for the estimation using computer codes with increased accuracies. The Japan Atomic Energy Agency (JAEA) has selected phenomena to be reviewed and developed, considering previously obtained information, conditions specific to the Fukushima-Daiichi NPP accident, and recent progress of experimental and analytical technologies. As a result, research and development items have been picked up in terms of thermal-hydraulic behavior inmore » the RPV and PCV, progression of fuel bundle degradation, failure of the lower head of RPV, and analysis of the accident. This paper introduces the selected phenomena to be reviewed and developed, research plans and recent results from the JAEA's corresponding research programs. (authors)« less
Pretest predictions for degraded shutdown heat-removal tests in THORS-SHRS Assembly 1. [LMFBR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rose, S.D.; Carbajo, J.J.
The recent modification of the Thermal-Hydraulic Out-of-Reactor Safety (THORS) facility at ORNL will allow testing of parallel simulated fuel assemblies under natural-convection and low-flow forced-convection conditions similar to those that might occur during a partial failure of the Shutdown Heat Removal System (SHRS) of an LMFBR. An extensive test program has been prepared and testing will be started in September 1983. THORS-SHRS Assembly 1 consists of two 19-pin bundles in parallel with a third leg serving as a bypass line and containing a sodium-to-sodium intermediate heat exchanger. Testing at low powers wil help indicate the maximum amount of heat thatmore » can be removed from the reactor core during conditions of degraded shutdown heat removal. The thermal-hydraulic behavior of the test bundles will be characterized for single-phase and two-phase conditions up to dryout. The influence of interassembly flow redistribution including transients from forced- to natural-convection conditions will be investigated during testing.« less
High thermodynamic stability of parametrically designed helical bundles
Huang, Po -Ssu; Oberdorfer, Gustav; Xu, Chunfu; ...
2014-10-24
Here we describe a procedure for designing proteins with backbones produced by varying the parameters in the Crick coiled coil–generating equations. Combinatorial design calculations identify low-energy sequences for alternative helix supercoil arrangements, and the helices in the lowest-energy arrangements are connected by loop building. We design an antiparallel monomeric untwisted three-helix bundle with 80-residue helices, an antiparallel monomeric right-handed four-helix bundle, and a pentameric parallel left-handed five-helix bundle. The designed proteins are extremely stable (extrapolated ΔG fold > 60 kilocalories per mole), and their crystal structures are close to those of the design models with nearly identical core packing betweenmore » the helices. The approach enables the custom design of hyperstable proteins with fine-tuned geometries for a wide range of applications.« less
Aga, Cathrine; Kartus, Jüri-Tomas; Lind, Martin; Lygre, Stein Håkon Låstad; Granan, Lars-Petter; Engebretsen, Lars
2017-10-01
Double-bundle anterior cruciate ligament (ACL) reconstruction has demonstrated improved biomechanical properties and moderately better objective outcomes compared with single-bundle reconstructions. This could make an impact on the rerupture rate and reduce the risk of revisions in patients undergoing double-bundle ACL reconstruction compared with patients reconstructed with a traditional single-bundle technique. The National Knee Ligament Registers in Scandinavia provide information that can be used to evaluate the revision outcome after ACL reconstructions. The purposes of the study were (1) to compare the risk of revision between double-bundle and single-bundle reconstructions, reconstructed with autologous hamstring tendon grafts; (2) to compare the risk of revision between double-bundle hamstring tendon and single-bundle bone-patellar tendon-bone autografts; and (3) to compare the hazard ratios for the same two research questions after Cox regression analysis was performed. Data collection of primary ACL reconstructions from the National Knee Ligament Registers in Denmark, Norway, and Sweden from July 1, 2005, to December 31, 2014, was retrospectively analyzed. A total of 60,775 patients were included in the study; 994 patients were reconstructed with double-bundle hamstring tendon grafts, 51,991 with single-bundle hamstring tendon grafts, and 7790 with single-bundle bone-patellar tendon-bone grafts. The double-bundle ACL-reconstructed patients were compared with the two other groups. The risk of revision for each research question was detected by the risk ratio, hazard ratio, and the corresponding 95% confidence intervals. Kaplan-Meier analysis was used to estimate survival at 1, 2, and 5 years for the three different groups. Furthermore, a Cox proportional hazard regression model was applied and the hazard ratios were adjusted for country, age, sex, meniscal or chondral injury, and utilized fixation devices on the femoral and tibial sides. There were no differences in the crude risk of revision between the patients undergoing the double-bundle technique and the two other groups. A total of 3.7% patients were revised in the double-bundle group (37 of 994 patients) versus 3.8% in the single-bundle hamstring tendon group (1952 of 51,991; risk ratio, 1.01; 95% confidence interval (CI), 0.73-1.39; p = 0.96), and 2.8% of the patients were revised in the bone-patellar tendon-bone group (219 of the 7790 bone-patellar tendon-bone patients; risk ratio, 0.76; 95% CI, 0.54-1.06; p = 0.11). Cox regression analysis with adjustment for country, age, sex, menisci or cartilage injury, and utilized fixation device on the femoral and tibial sides, did not reveal any further difference in the risk of revision between the single-bundle hamstring tendon and double-bundle hamstring tendon groups (hazard ratio, 1.18; 95% CI, 0.85-1.62; p = 0.33), but the adjusted hazard ratio showed a lower risk of revision in the single-bundle bone-patellar tendon-bone group compared with the double-bundle group (hazard ratio, 0.62; 95% CI, 0.43-0.90; p = 0.01). Comparisons of the graft revision rates reported separately for each country revealed that double-bundle hamstring tendon reconstructions in Sweden had a lower hazard ratio compared with the single-bundle hamstring tendon reconstructions (hazard ratio, 1.00 versus 1.89; 95% CI, 1.09-3.29; p = 0.02). Survival at 5 years after index surgery was 96.0% for the double-bundle group, 95.4% for the single-bundle hamstring tendon group, and 97.0% for the single-bundle bone-patellar tendon-bone group. Based on the data from all three national registers, the risk of revision was not influenced by the reconstruction technique in terms of using single- or double-bundle hamstring tendons, although national differences in survival existed. Using bone-patellar tendon-bone grafts lowered the risk of revision compared with double-bundle hamstring tendon grafts. These findings should be considered when deciding what reconstruction technique to use in ACL-deficient knees. Future studies identifying the reasons for graft rerupture in single- and double-bundle reconstructions would be of interest to understand the findings of the present study. Level III, therapeutic study.
Wieser, L; Fischer, G; Nowak, C N; Tilg, B
2007-05-01
Increased local load in branching atrial tissue (muscle fibers and bundle insertions) influences wave propagation during atrial fibrillation (AF). This computer model study reveals two principal phenomena: if the branching is distant from the driving rotor (>19 mm), the load causes local slowing of conduction or wavebreaks. If the driving rotor is close to the branching, the increased load causes first a slow drift of the rotor towards the branching. Finally, the rotor anchors, and a stable, repeatable pattern of activation can be observed. Variation of the bundle geometry from a cylindrical, volumetric structure to a flat strip of a comparable load in a monolayer model changed the local activation sequence in the proximity of the bundle. However, the global behavior and the basic effects are similar in all models. Wavebreaks in branching tissue contribute to the chaotic nature of AF (fibrillatory conduction). The stabilization (anchoring) of driving rotors by branching tissue might contribute to maintain sustained AF.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dearing, J F; Nelson, W R; Rose, S D
Computational thermal-hydraulic models of a 19-pin, electrically heated, wire-wrap liquid-metal fast breeder reactor test bundle were developed using two well-known subchannel analysis codes, COBRA III-C and SABRE-1 (wire-wrap version). These two codes use similar subchannel control volumes for the finite difference conservation equations but vary markedly in solution strategy and modeling capability. In particular, the empirical wire-wrap-forced diversion crossflow models are different. Surprisingly, however, crossflow velocity predictions of the two codes are very similar. Both codes show generally good agreement with experimental temperature data from a test in which a large radial temperature gradient was imposed. Differences between data andmore » code results are probably caused by experimental pin bowing, which is presently the limiting factor in validating coded empirical models.« less
Rinke, Michael L; Chen, Allen R; Bundy, David G; Colantuoni, Elizabeth; Fratino, Lisa; Drucis, Kim M; Panton, Stephanie Y; Kokoszka, Michelle; Budd, Alicia P; Milstone, Aaron M; Miller, Marlene R
2012-10-01
To investigate whether a multidisciplinary, best-practice central line maintenance care bundle reduces central line-associated blood stream infection (CLABSI) rates in hospitalized pediatric oncology patients and to further delineate the epidemiology of CLABSIs in this population. We performed a prospective, interrupted time series study of a best-practice bundle addressing all areas of central line care: reduction of entries, aseptic entries, and aseptic procedures when changing components. Based on a continuous quality improvement model, targeted interventions were instituted to improve compliance with each of the bundle elements. CLABSI rates and epidemiological data were collected for 10 months before and 24 months after implementation of the bundle and compared in a Poisson regression model. CLABSI rates decreased from 2.25 CLABSIs per 1000 central line days at baseline to 1.79 CLABSIs per 1000 central line days during the intervention period (incidence rate ratio [IRR]: 0.80, P = .58). Secondary analyses indicated CLABSI rates were reduced to 0.81 CLABSIs per 1000 central line days in the second 12 months of the intervention (IRR: 0.36, P = .091). Fifty-nine percent of infections resulted from Gram-positive pathogens, 37% of patients with a CLABSI required central line removal, and patients with Hickman catheters were more likely to have a CLABSI than patients with Infusaports (IRR: 4.62, P = .02). A best-practice central line maintenance care bundle can be implemented in hospitalized pediatric oncology patients, although long ramp-up times may be necessary to reap maximal benefits. Further research is needed to determine if this CLABSI rate reduction can be sustained and spread.
Revascularization of diaphyseal bone segments by vascular bundle implantation.
Nagi, O N
2005-11-01
Vascularized bone transfer is an effective, established treatment for avascular necrosis and atrophic or infected nonunions. However, limited donor sites and technical difficulty limit its application. Vascular bundle transplantation may provide an alternative. However, even if vascular ingrowth is presumed to occur in such situations, its extent in aiding revascularization for ultimate graft incorporation is not well understood. A rabbit tibia model was used to study and compare vascularized, segmental, diaphyseal, nonvascularized conventional, and vascular bundle-implanted grafts with a combination of angiographic, radiographic, histopathologic, and bone scanning techniques. Complete graft incorporation in conventional grafts was observed at 6 months, whereas it was 8 to 12 weeks with either of the vascularized grafts. The pattern of radionuclide uptake and the duration of graft incorporation between vascular segmental bone grafts (with intact endosteal blood supply) and vascular bundle-implanted segmental grafts were similar. A vascular bundle implanted in the recipient bone was found to anastomose extensively with the intraosseous circulation at 6 weeks. Effective revascularization of bone could be seen when a simple vascular bundle was introduced into a segment of bone deprived of its normal blood supply. This simple technique offers promise for improvement of bone graft survival in clinical circumstances.
Surgical Management of Neurovascular Bundle in Uterine Fibroid Pseudocapsule
Malvasi, Antonio; Hurst, Brad S.; Tsin, Daniel A.; Davila, Fausto; Dominguez, Guillermo; Dell'edera, Domenico; Cavallotti, Carlo; Negro, Roberto; Gustapane, Sarah; Teigland, Chris M.; Mettler, Liselotte
2012-01-01
The uterine fibroid pseudocapsule is a fibro-neurovascular structure surrounding a leiomyoma, separating it from normal peripheral myometrium. The fibroid pseudocapsule is composed of a neurovascular network rich in neurofibers similar to the neurovascular bundle surrounding a prostate. The nerve-sparing radical prostatectomy has several intriguing parallels to myomectomy. It may serve either as a useful model in modern fibroid surgical removal, or it may accelerate our understanding of the role of the fibrovascular bundle and neurotransmitters in the healing and restoration of reproductive potential after intracapsular myomectomy. Surgical innovations, such as laparoscopic or robotic myomectomy applied to the intracapsular technique with magnification of the fibroid pseudocapsule surrounding a leiomyoma, originated from the radical prostatectomy method that highlighted a careful dissection of the neurovascular bundle to preserve sexual functioning after prostatectomy. Gentle uterine leiomyoma detachment from the pseudocapsule neurovascular bundle has allowed a reduction in uterine bleeding and uterine musculature trauma with sparing of the pseudocapsule neuropeptide fibers. This technique has had a favorable impact on functionality in reproduction and has improved fertility outcomes. Further research should determine the role of the myoma pseudocapsule neurovascular bundle in the formation, growth, and pathophysiological consequences of fibroids, including pain, infertility, and reproductive outcomes. PMID:22906340
Consensus Bundle on Maternal Mental Health: Perinatal Depression and Anxiety.
Kendig, Susan; Keats, John P; Hoffman, M Camille; Kay, Lisa B; Miller, Emily S; Simas, Tiffany A Moore; Frieder, Ariela; Hackley, Barbara; Indman, Pec; Raines, Christena; Semenuk, Kisha; Wisner, Katherine L; Lemieux, Lauren A
2017-03-01
Perinatal mood and anxiety disorders are among the most common mental health conditions encountered by women of reproductive age. When left untreated, perinatal mood and anxiety disorders can have profound adverse effects on women and their children, ranging from increased risk of poor adherence to medical care, exacerbation of medical conditions, loss of interpersonal and financial resources, smoking and substance use, suicide, and infanticide. Perinatal mood and anxiety disorders are associated with increased risks of maternal and infant mortality and morbidity and are recognized as a significant patient safety issue. In 2015, the Council on Patient Safety in Women's Health Care convened an interdisciplinary work group to develop an evidence-based patient safety bundle to address maternal mental health. The focus of this bundle is perinatal mood and anxiety disorders. The bundle is modeled after other bundles released by the Council on Patient Safety in Women's Health Care and provides broad direction for incorporating perinatal mood and anxiety disorder screening, intervention, referral, and follow-up into maternity care practice across health care settings. This commentary provides information to assist with bundle implementation. © 2017 by the American College of Nurse-Midwives.
Consensus Bundle on Maternal Mental Health: Perinatal Depression and Anxiety.
Kendig, Susan; Keats, John P; Hoffman, M Camille; Kay, Lisa B; Miller, Emily S; Moore Simas, Tiffany A; Frieder, Ariela; Hackley, Barbara; Indman, Pec; Raines, Christena; Semenuk, Kisha; Wisner, Katherine L; Lemieux, Lauren A
Perinatal mood and anxiety disorders are among the most common mental health conditions encountered by women of reproductive age. When left untreated, perinatal mood and anxiety disorders can have profound adverse effects on women and their children, ranging from increased risk of poor adherence to medical care, exacerbation of medical conditions, loss of interpersonal and financial resources, smoking and substance use, suicide, and infanticide. Perinatal mood and anxiety disorders are associated with increased risks of maternal and infant mortality and morbidity and are recognized as a significant patient safety issue. In 2015, the Council on Patient Safety in Women's Health Care convened an interdisciplinary workgroup to develop an evidence-based patient safety bundle to address maternal mental health. The focus of this bundle is perinatal mood and anxiety disorders. The bundle is modeled after other bundles released by the Council on Patient Safety in Women's Health Care and provides broad direction for incorporating perinatal mood and anxiety disorder screening, intervention, referral, and follow-up into maternity care practice across health care settings. This commentary provides information to assist with bundle implementation. Copyright © 2017 AWHONN, the Association of Women’s Health, Obstetric and Neonatal Nurses. Published by Elsevier Inc. All rights reserved.
Thoresen, Todd; Lenz, Martin; Gardel, Margaret L.
2013-01-01
Diverse myosin II isoforms regulate contractility of actomyosin bundles in disparate physiological processes by variations in both motor mechanochemistry and the extent to which motors are clustered into thick filaments. Although the role of mechanochemistry is well appreciated, the extent to which thick filament length regulates actomyosin contractility is unknown. Here, we study the contractility of minimal actomyosin bundles formed in vitro by mixtures of F-actin and thick filaments of nonmuscle, smooth, and skeletal muscle myosin isoforms with varied length. Diverse myosin II isoforms guide the self-organization of distinct contractile units within in vitro bundles with shortening rates similar to those of in vivo myofibrils and stress fibers. The tendency to form contractile units increases with the thick filament length, resulting in a bundle shortening rate proportional to the length of constituent myosin thick filament. We develop a model that describes our data, providing a framework in which to understand how diverse myosin II isoforms regulate the contractile behaviors of disordered actomyosin bundles found in muscle and nonmuscle cells. These experiments provide insight into physiological processes that use dynamic regulation of thick filament length, such as smooth muscle contraction. PMID:23442916
Sliding wear and friction behaviour of zircaloy-4 in water
NASA Astrophysics Data System (ADS)
Sharma, Garima; Limaye, P. K.; Jadhav, D. T.
2009-11-01
In water cooled nuclear reactors, the sliding of fuel bundles in fuel channel handling system can lead to severe wear and it is an important topic to study. In the present study, sliding wear behaviour of zircaloy-4 was investigated in water (pH ˜ 10.5) using ball-on-plate sliding wear tester. Sliding wear resistance zircaloy-4 against SS 316 was examined at room temperature. Sliding wear tests were carried out at different load and sliding frequencies. The coefficient of friction of zircaloy-4 was also measured during each tests and it was found to decrease slightly with the increase in applied load. The micro-mechanisms responsible for wear in zircaloy-4 were identified to be microcutting, micropitting and microcracking of deformed subsurface zones in water.
X-ray coherent diffraction imaging of cellulose fibrils in situ.
Lal, Jyotsana; Harder, Ross; Makowski, Lee
2011-01-01
Cellulose is the most abundant renewable source of organic molecules on earth[1]. As fossil fuel reserves become depleted, the use of cellulose as a feed stock for fuels and chemicals is being aggressively explored. Cellulose is a linear polymer of glucose that packs tightly into crystalline fibrils that make up a substantial proportion of plant cell walls. Extraction of the cellulose chains from these fibrils in a chemically benign process has proven to be a substantial challenge [2]. Monitoring the deconstruction of the fibrils in response to physical and chemical treatments would expedite the development of efficient processing methods. As a step towards achieving that goal, we here describe Bragg-coherent diffraction imaging (CDI) as an approach to producing images of cellulose fibrils in situ within vascular bundles from maize.
The fee-for-service shift to bundled payments: financial considerations for hospitals.
Scamperle, Keely
2013-01-01
Skyrocketing health care costs are forcing payers to demand delivery efficiencies that preserve and promote quality care while reducing costs. Hospitals are challenged to meet the pressure from payers to deliver value and outcome-based health care while preserving sufficient financial margins. The fee-for-service (FFS) model with its perverse incentives to incur high-volume services is no longer, if ever, sufficient to ensure quality, cost-efficient health care. In response, payers have sought to force the issue through accelerated efforts to bundle payments to providers. It is theorized that by tying together providers throughout the continuum or episode of care for a patient, efficiencies in delivery inclusive of cost reductions will be obtained. This article examines the bundled payment models and the financial considerations for hospital facility providers.
Durango delta: Complications on San Juan basin Cretaceous linear strandline theme
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zech, R.S.; Wright, R.
1989-09-01
The Upper Cretaceous Point Lookout Sandstone generally conforms to a predictable cyclic shoreface model in which prograding linear strandline lithosomes dominate formation architecture. Multiple transgressive-regressive cycles results in systematic repetition of lithologies deposited in beach to inner shelf environments. Deposits of approximately five cycles are locally grouped into bundles. Such bundles extend at least 20 km along depositional strike and change from foreshore sandstone to offshore, time-equivalent Mancos mud rock in a downdip distance of 17 to 20 km. Excellent hydrocarbon reservoirs exist where well-sorted shoreface sandstone bundles stack and the formation thickens. This depositional model breaks down in themore » vicinity of Durango, Colorado, where a fluvial-dominated delta front and associated large distributary channels characterize the Point Lookout Sandstone and overlying Menefee Formation.« less
Porter, Michael E; Kaplan, Robert S
2016-01-01
The United States stands at a crossroads in how to pay for health care. Fee for service, the dominant payment model in the U.S. and many other countries, is now widely recognized as perhaps the single biggest obstacle to improving health care delivery. A battle is currently raging, outside of the public eye, between the advocates of two radically different payment approaches: capitation and bundled payments. The stakes are high, and the outcome will define the shape of the health care system for many years to come, for better or for worse. In this article, the authors argue that although capitation may deliver modest savings in the short run, it brings significant risks and will fail to fundamentally change the trajectory of a broken system. The bundled payment model, in contrast, triggers competition between providers to create value where it matters--at the individual patient level--and puts health care on the right path. The authors provide robust proof-of-concept examples of bundled payment initiatives in the U.S. and abroad, address the challenges of transitioning to bundled payments, and respond to critics' concerns about obstacles to implementation.
Erickson, Timothy; Morgan, Clive P; Olt, Jennifer; Hardy, Katherine; Busch-Nentwich, Elisabeth; Maeda, Reo; Clemens, Rachel; Krey, Jocelyn F; Nechiporuk, Alex; Barr-Gillespie, Peter G; Marcotti, Walter; Nicolson, Teresa
2017-01-01
Transmembrane O-methyltransferase (TOMT/LRTOMT) is responsible for non-syndromic deafness DFNB63. However, the specific defects that lead to hearing loss have not been described. Using a zebrafish model of DFNB63, we show that the auditory and vestibular phenotypes are due to a lack of mechanotransduction (MET) in Tomt-deficient hair cells. GFP-tagged Tomt is enriched in the Golgi of hair cells, suggesting that Tomt might regulate the trafficking of other MET components to the hair bundle. We found that Tmc1/2 proteins are specifically excluded from the hair bundle in tomt mutants, whereas other MET complex proteins can still localize to the bundle. Furthermore, mouse TOMT and TMC1 can directly interact in HEK 293 cells, and this interaction is modulated by His183 in TOMT. Thus, we propose a model of MET complex assembly where Tomt and the Tmcs interact within the secretory pathway to traffic Tmc proteins to the hair bundle. DOI: http://dx.doi.org/10.7554/eLife.28474.001 PMID:28534737
Yanke, Eric; Moriarty, Helene; Carayon, Pascale; Safdar, Nasia
2018-03-01
Clostridium difficile infection (CDI) is increasingly prevalent, severe, and costly. Adherence to infection prevention practices remains suboptimal. More effective strategies to implement guidelines and evidence are needed. Interprofessional focus groups consisting of physicians, resident physicians, nurses, and health technicians were conducted for a quality improvement project evaluating adherence to the Department of Veterans Affairs' (VA) nationally mandated C difficile prevention bundle. Qualitative analysis with a visual matrix display identified barrier and facilitator themes guided by the Systems Engineering Initiative for Patient Safety model, a human factors engineering approach. Several themes, encompassing both barriers and facilitators to bundle adherence, emerged. Rapid turnaround time of C difficile polymerase chain reaction testing was a facilitator of timely diagnosis. Too few, poorly located, and cluttered sinks were barriers to appropriate hand hygiene. Patient care workload and the time-consuming process of contact isolation precautions were also barriers to adherence. Multiple work system components serve as barriers to and facilitators of adherence to the VA CDI prevention bundle among an interprofessional group of health care workers. Organizational factors appear to significantly influence bundle adherence. Interprofessional perspectives are needed to identify barriers to and facilitators of bundle implementation, which is a necessary first step to address adherence to bundled infection prevention practices. Published by Elsevier Inc.
1983-03-01
both types of cellulose , the cell walls are still intact with the microfibrils showing little damage. The cellulose microfibrils consist of long chains...25 2. Model of Cellulose Microfibril ... S............. .............. .26 3. Model of Plant Cell Wall Bonding of Microfibril Bundles...molecules protrude above and below the plane of the cellulose ribbon.J’ (See Figures 2 and 3,) Bundles of these cellulose ribbons are called microfibrils
Hammond, Nathan A; Kamm, Roger D
2008-07-01
The synthetic peptide RAD16-II has shown promise in tissue engineering and drug delivery. It has been studied as a vehicle for cell delivery and controlled release of IGF-1 to repair infarcted cardiac tissue, and as a scaffold to promote capillary formation for an in vitro model of angiogenesis. The structure of RAD16-II is hierarchical, with monomers forming long beta-sheets that pair together to form filaments; filaments form bundles approximately 30-60 nm in diameter; branching networks of filament bundles form macroscopic gels. We investigate the mechanics of shearing between the two beta-sheets constituting one filament, and between cohered filaments of RAD16-II. This shear loading is found in filament bundle bending or in tensile loading of fibers composed of partial-length filaments. Molecular dynamics simulations show that time to failure is a stochastic function of applied shear stress, and that for a given loading time behavior is elastic for sufficiently small shear loads. We propose a coarse-grained model based on Langevin dynamics that matches molecular dynamics results and facilities extending simulations in space and time. The model treats a filament as an elastic string of particles, each having potential energy that is a periodic function of its position relative to the neighboring filament. With insight from these simulations, we discuss strategies for strengthening RAD16-II and similar materials.
Modular Bundle Adjustment for Photogrammetric Computations
NASA Astrophysics Data System (ADS)
Börlin, N.; Murtiyoso, A.; Grussenmeyer, P.; Menna, F.; Nocerino, E.
2018-05-01
In this paper we investigate how the residuals in bundle adjustment can be split into a composition of simple functions. According to the chain rule, the Jacobian (linearisation) of the residual can be formed as a product of the Jacobians of the individual steps. When implemented, this enables a modularisation of the computation of the bundle adjustment residuals and Jacobians where each component has limited responsibility. This enables simple replacement of components to e.g. implement different projection or rotation models by exchanging a module. The technique has previously been used to implement bundle adjustment in the open-source package DBAT (Börlin and Grussenmeyer, 2013) based on the Photogrammetric and Computer Vision interpretations of Brown (1971) lens distortion model. In this paper, we applied the technique to investigate how affine distortions can be used to model the projection of a tilt-shift lens. Two extended distortion models were implemented to test the hypothesis that the ordering of the affine and lens distortion steps can be changed to reduce the size of the residuals of a tilt-shift lens calibration. Results on synthetic data confirm that the ordering of the affine and lens distortion steps matter and is detectable by DBAT. However, when applied to a real camera calibration data set of a tilt-shift lens, no difference between the extended models was seen. This suggests that the tested hypothesis is false and that other effects need to be modelled to better explain the projection. The relatively low implementation effort that was needed to generate the models suggest that the technique can be used to investigate other novel projection models in photogrammetry, including modelling changes in the 3D geometry to better understand the tilt-shift lens.
Nolan, Emily R; Feng, Meihua Rose; Koup, Jeffrey R; Liu, Jing; Turluck, Daniel; Zhang, Yiqun; Paulissen, Jerome B; Olivier, N Bari; Miller, Teresa; Bailie, Marc B
2006-01-01
Terfenadine, cisapride, and E-4031, three drugs that prolong ventricular repolarization, were selected to evaluate the sensitivity of the conscious chronic atrioventricular node--ablated, His bundle-paced Dog for defining drug induced cardiac repolarization prolongation. A novel predictive pharmacokinetic/pharmacodynamic model of repolarization prolongation was generated from these data. Three male beagle dogs underwent radiofrequency AV nodal ablation, and placement of a His bundle-pacing lead and programmable pacemaker under anesthesia. Each dog was restrained in a sling for a series of increasing dose infusions of each drug while maintained at a constant heart rate of 80 beats/min. RT interval, a surrogate for QT interval in His bundle-paced dogs, was recorded throughout the experiment. E-4031 induced a statistically significant RT prolongation at the highest three doses. Cisapride resulted in a dose-dependent increase in RT interval, which was statistically significant at the two highest doses. Terfenadine induced a dose-dependent RT interval prolongation with a statistically significant change occurring only at the highest dose. The relationship between drug concentration and RT interval change was described by a sigmoid E(max) model with an effect site. Maximum RT change (E(max)), free drug concentration at half of the maximum effect (EC(50)), and free drug concentration associated with a 10 ms RT prolongation (EC(10 ms)) were estimated. A linear correlation between EC(10 ms) and HERG IC(50) values was identified. The conscious dog with His bundle-pacing detects delayed cardiac repolarization related to I(Kr) inhibition, and detects repolarization change induced by drugs with activity at multiple ion channels. A clinically relevant sensitivity and a linear correlation with in vitro HERG data make the conscious His bundle-paced dog a valuable tool for detecting repolarization effect of new chemical entities.
Electro-mechanical response of a 3D nerve bundle model to mechanical loads leading to axonal injury.
Cinelli, I; Destrade, M; Duffy, M; McHugh, P
2018-03-01
Traumatic brain injuries and damage are major causes of death and disability. We propose a 3D fully coupled electro-mechanical model of a nerve bundle to investigate the electrophysiological impairments due to trauma at the cellular level. The coupling is based on a thermal analogy of the neural electrical activity by using the finite element software Abaqus CAE 6.13-3. The model includes a real-time coupling, modulated threshold for spiking activation, and independent alteration of the electrical properties for each 3-layer fibre within a nerve bundle as a function of strain. Results of the coupled electro-mechanical model are validated with previously published experimental results of damaged axons. Here, the cases of compression and tension are simulated to induce (mild, moderate, and severe) damage at the nerve membrane of a nerve bundle, made of 4 fibres. Changes in strain, stress distribution, and neural activity are investigated for myelinated and unmyelinated nerve fibres, by considering the cases of an intact and of a traumatised nerve membrane. A fully coupled electro-mechanical modelling approach is established to provide insights into crucial aspects of neural activity at the cellular level due to traumatic brain injury. One of the key findings is the 3D distribution of residual stresses and strains at the membrane of each fibre due to mechanically induced electrophysiological impairments, and its impact on signal transmission. Copyright © 2017 John Wiley & Sons, Ltd.
Modeling of Electrical Cable Failure in a Dynamic Assessment of Fire Risk
NASA Astrophysics Data System (ADS)
Bucknor, Matthew D.
Fires at a nuclear power plant are a safety concern because of their potential to defeat the redundant safety features that provide a high level of assurance of the ability to safely shutdown the plant. One of the added complexities of providing protection against fires is the need to determine the likelihood of electrical cable failure which can lead to the loss of the ability to control or spurious actuation of equipment that is required for safe shutdown. A number of plants are now transitioning from their deterministic fire protection programs to a risk-informed, performance based fire protection program according to the requirements of National Fire Protection Association (NFPA) 805. Within a risk-informed framework, credit can be taken for the analysis of fire progression within a fire zone that was not permissible within the deterministic framework of a 10 CFR 50.48 Appendix R safe shutdown analysis. To perform the analyses required for the transition, plants need to be able to demonstrate with some level of assurance that cables related to safe shutdown equipment will not be compromised during postulated fire scenarios. This research contains the development of new cable failure models that have the potential to more accurately predict electrical cable failure in common cable bundle configurations. Methods to determine the thermal properties of the new models from empirical data are presented along with comparisons between the new models and existing techniques used in the nuclear industry today. A Dynamic Event Tree (DET) methodology is also presented which allows for the proper treatment of uncertainties associated with fire brigade intervention and its effects on cable failure analysis. Finally a shielding analysis is performed to determine the effects on the temperature response of a cable bundle that is shielded from a fire source by an intervening object such as another cable tray. The results from the analyses demonstrate that models of similar complexity to existing cable failure techniques and tuned to empirical data can better approximate the temperature response of a cables located in tightly packed cable bundles. The new models also provide a way to determine the conditions insides a cable bundle which allows for separate treatment of cables on the interior of the bundle from cables on the exterior of the bundle. The results from the DET analysis show that the overall assessed probability of cable failure can be significantly reduced by more realistically accounting for the influence that the fire brigade has on a fire progression scenario. The shielding analysis results demonstrate a significant reduction in the temperature response of a shielded versus a non-shielded cable bundle; however the computational cost of using a fire progression model that can capture these effects may be prohibitive for performing DET analyses with currently available computational fluid dynamics models and computational resources.
The 5 Clinical Pillars of Value for Total Joint Arthroplasty in a Bundled Payment Paradigm.
Kim, Kelvin; Iorio, Richard
2017-06-01
Our large, urban, tertiary, university-based institution reflects on its 4-year experience with Bundled Payments for Care Improvement. We will describe the importance of 5 clinical pillars that have contributed to the early success of our bundled payment initiative. We are convinced that value-based care delivered through bundled payment initiatives is the best method to optimize patient outcomes while rewarding surgeons and hospitals for adapting to the evolving healthcare reforms. We summarize a number of experiences and lessons learned since the implementation of Bundled Payments for Care Improvement at our institution. Our experience has led to the development of more refined clinical pathways and coordination of care through evidence-based approaches. We have established that the success of the bundled payment program rests on the following 5 main clinical pillars: (1) optimizing patient selection and comorbidities; (2) optimizing care coordination, patient education, shared decision making, and patient expectations; (3) using a multimodal pain management protocol and minimizing narcotic use to facilitate rapid rehabilitation; (4) optimizing blood management, and standardizing venous thromboembolic disease prophylaxis treatment by risk standardizing patients and minimizing the use of aggressive anticoagulation; and (5) minimizing post-acute facility and resource utilization, and maximizing home resources for patient recovery. From our extensive experience with bundled payment models, we have established 5 clinical pillars of value for bundled payments. Our hope is that these principles will help ease the transition to value-based care for less-experienced healthcare systems. Copyright © 2017 Elsevier Inc. All rights reserved.
Using the HELIOS facility for assessment of bundle-jacket thermal coupling in a CICC
NASA Astrophysics Data System (ADS)
Lacroix, B.; Rousset, B.; Cloez, H.; Decool, P.; Duchateau, J. L.; Hoa, C.; Luchier, N.; Nicollet, S.; Topin, F.
2016-12-01
In a Cable In Conduit Conductor (CICC) cooled by forced circulation of supercritical helium, the heat exchange in the bundle region can play a significant role for conductor safe operation, while remaining a quite uncertain parameter. Heat exchange between bundle and jacket depends on the relative contributions of convective heat transfer due to the helium flow inside the bundle and of thermal resistance due to the wrappings between the cable and the conduit. In order to qualify this thermal coupling at realistic operating conditions, a dedicated experiment on a 1.2 m sample of ITER Toroidal Field (TF) dummy conductor was designed and performed in the HELIOS test facility at CEA Grenoble. Several methods were envisaged, and the choice was made to assess bundle-jacket heat transfer coefficient by measuring the temperature of a solid copper cylinder inserted over the conductor jacket and submitted to heat deposition on its outer surface. The mock-up was manufactured and tested in spring 2015. Bundle-jacket heat transfer coefficient was found in the range 300-500 W m-2 K-1. Results analysis suggests that the order of magnitude of convective heat transfer coefficient inside bundle is closer to Colburn-Reynolds analogy than to Dittus-Boelter correlation, and that bundle-jacket thermal coupling is mainly limited by thermal resistance due to wrappings. A model based on an equivalent layer of stagnant helium between wraps and jacket was proposed and showed a good consistency with the experiment, with relevant values for the helium layer thickness.
Large-eddy simulation, fuel rod vibration and grid-to-rod fretting in pressurized water reactors
Christon, Mark A.; Lu, Roger; Bakosi, Jozsef; ...
2016-10-01
Grid-to-rod fretting (GTRF) in pressurized water reactors is a flow-induced vibration phenomenon that results in wear and fretting of the cladding material on fuel rods. GTRF is responsible for over 70% of the fuel failures in pressurized water reactors in the United States. Predicting the GTRF wear and concomitant interval between failures is important because of the large costs associated with reactor shutdown and replacement of fuel rod assemblies. The GTRF-induced wear process involves turbulent flow, mechanical vibration, tribology, and time-varying irradiated material properties in complex fuel assembly geometries. This paper presents a new approach for predicting GTRF induced fuelmore » rod wear that uses high-resolution implicit large-eddy simulation to drive nonlinear transient dynamics computations. The GTRF fluid–structure problem is separated into the simulation of the turbulent flow field in the complex-geometry fuel-rod bundles using implicit large-eddy simulation, the calculation of statistics of the resulting fluctuating structural forces, and the nonlinear transient dynamics analysis of the fuel rod. Ultimately, the methods developed here, can be used, in conjunction with operational management, to improve reactor core designs in which fuel rod failures are minimized or potentially eliminated. Furthermore, robustness of the behavior of both the structural forces computed from the turbulent flow simulations and the results from the transient dynamics analyses highlight the progress made towards achieving a predictive simulation capability for the GTRF problem.« less
Large-eddy simulation, fuel rod vibration and grid-to-rod fretting in pressurized water reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christon, Mark A.; Lu, Roger; Bakosi, Jozsef
Grid-to-rod fretting (GTRF) in pressurized water reactors is a flow-induced vibration phenomenon that results in wear and fretting of the cladding material on fuel rods. GTRF is responsible for over 70% of the fuel failures in pressurized water reactors in the United States. Predicting the GTRF wear and concomitant interval between failures is important because of the large costs associated with reactor shutdown and replacement of fuel rod assemblies. The GTRF-induced wear process involves turbulent flow, mechanical vibration, tribology, and time-varying irradiated material properties in complex fuel assembly geometries. This paper presents a new approach for predicting GTRF induced fuelmore » rod wear that uses high-resolution implicit large-eddy simulation to drive nonlinear transient dynamics computations. The GTRF fluid–structure problem is separated into the simulation of the turbulent flow field in the complex-geometry fuel-rod bundles using implicit large-eddy simulation, the calculation of statistics of the resulting fluctuating structural forces, and the nonlinear transient dynamics analysis of the fuel rod. Ultimately, the methods developed here, can be used, in conjunction with operational management, to improve reactor core designs in which fuel rod failures are minimized or potentially eliminated. Furthermore, robustness of the behavior of both the structural forces computed from the turbulent flow simulations and the results from the transient dynamics analyses highlight the progress made towards achieving a predictive simulation capability for the GTRF problem.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, L.; Graham, M. E.; Li, G.
The photoreduction of CO{sub 2} into methane provides a carbon-neutral energy alternative to fossil fuels, but its feasibility requires improvements in the photo-efficiency of materials tailored to this reaction. We hypothesize that mixed phase TiO{sub 2} nano-materials with high interfacial densities are extremely active photocatalysts well suited to solar fuel production by reducing CO{sub 2} to methane and shifting to visible light response. Mixed phase TiO{sub 2} films were synthesized by direct current (DC) magnetron sputtering and characterized by X-ray diffraction (XRD), atomic force microscope (AFM), scanning electron microscope (SEM) and transmission electron microscope (TEM). Bundles of anatase-rutile nano-columns havingmore » high densities of two kinds of interfaces (those among the bundles and those between the columns) are fabricated. Films sputtered at a low deposition angle showed the highest methane yield, compared to TiO{sub 2} fabricated under other sputtering conditions and commercial standard Degussa P25 under UV irradiation. The yield of methane could be significantly increased ({approx} 12% CO{sub 2} conversion) by increasing the CO{sub 2} to water ratio and temperature (< 100 C) as a combined effect. These films also displayed a light response strongly shifted into the visible range. This is explained by the creation of non-stoichiometric titania films having unique features that we can potentially tailor to the solar energy applications.« less
Song, Yuanli; Pipalia, Nina H; Fung, L W-M
2009-01-01
The bundling of the N-terminal, partial domain helix (Helix C′) of human erythroid α-spectrin (αI) with the C-terminal, partial domain helices (Helices A′ and B′) of erythroid β-spectrin (βI) to give a spectrin pseudo structural domain (triple helical bundle A′B′C′) has long been recognized as a crucial step in forming functional spectrin tetramers in erythrocytes. We have used apparent polarity and Stern–Volmer quenching constants of Helix C′ of αI bound to Helices A′ and B′ of βI, along with previous NMR and EPR results, to propose a model for the triple helical bundle. This model was used as the input structure for molecular dynamics simulations for both wild type (WT) and αI mutant L49F. The simulation output structures show a stable helical bundle for WT, but not for L49F. In WT, four critical interactions were identified: two hydrophobic clusters and two salt bridges. However, in L49F, the region downstream of Helix C′ was unable to assume a helical conformation and one critical hydrophobic cluster was disrupted. Other molecular interactions critical to the WT helical bundle were also weakened in L49F, possibly leading to the lower tetramer levels observed in patients with this mutation-induced blood disorder. PMID:19593814
Analysis and Evaluation of the Dynamic Performance of SMA Actuators for Prosthetic Hand Design
NASA Astrophysics Data System (ADS)
O'Toole, Kevin T.; McGrath, Mark M.; Coyle, Eugene
2009-08-01
It is widely acknowledged within the biomedical engineering community that shape memory alloys (SMAs) exhibit great potential for application in the actuation of upper limb prosthesis designs. These lightweight actuators are particularly suitable for prosthetic hand solutions. A four-fingered, 12 degree-of-freedom prosthetic hand has been developed featuring SMA bundle actuators embedded within the palmar structure. Joule heating of the SMA bundle actuators generates sufficient torque at the fingers to allow a wide range of everyday tasks to be carried out. Transient characterization of SMA bundles has shown that performance/response during heating and cooling differs substantially. Natural convection is insufficient to provide for adequate cooling during elongation of the actuators. An experimental test-bed has been developed to facilitate analysis of the heat transfer characteristics of the appropriately sized SMA bundle actuators for use within the prosthetic hand design. Various modes of heat sinking are evaluated so that the most effective wire-cooling solution can be ascertained. SMA bundles of varying size will be used so that a generalized model of the SMA displacement performance under natural and forced cooling conditions can be obtained. The optimum cooling solution will be implemented onto the mechanical hand framework in future work. These results, coupled with phenomenological models of SMA behavior, will be used in the development of an effective control strategy for this application in future work.
NASA Astrophysics Data System (ADS)
Farajpour, A.; Rastgoo, A.
Carbon nanotubes are a new class of microtubule-stabilizing agents since they interact with protein microtubules in living cells, interfering with cell division and inducing apoptosis. In the present work, a modified beam model is developed to investigate the effect of carbon nanotubes on the buckling of microtubule bundles in living cell. A realistic interaction model is employed using recent experimental data on the carbon nanotube-stabilized microtubules. Small scale and surface effects are taken into account applying the nonlocal strain gradient theory and surface elasticity theory. Pasternak model is used to describe the normal and shearing effects of enclosing filament matrix on the buckling behavior of the system. An exact solution is obtained for the buckling growth rates of the mixed bundle in viscoelastic surrounding cytoplasm. The present results are compared with those reported in the open literature for single microtubules and an excellent agreement is found. Finally, the effects of different parameters such as the size, chirality, position and surface energy of carbon nanotubes on the buckling growth rates of microtubule bundles are studied. It is found that the buckling growth rate may increase or decrease by adding carbon nanotubes, depending on the diameter and chirality of carbon nanotubes.
Elevated temperature triggers human respiratory syncytial virus F protein six-helix bundle formation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yunus, Abdul S.; Jackson, Trent P.; Crisafi, Katherine
2010-01-20
Human respiratory syncytial virus (RSV) is a major cause of severe lower respiratory tract infection in infants, immunocompromised patients, and the elderly. The RSV fusion (F) protein mediates fusion of the viral envelope with the target cell membrane during virus entry and is a primary target for antiviral drug and vaccine development. The F protein contains two heptad repeat regions, HR1 and HR2. Peptides corresponding to these regions form a six-helix bundle structure that is thought to play a critical role in membrane fusion. However, characterization of six-helix bundle formation in native RSV F protein has been hindered by themore » fact that a trigger for F protein conformational change has yet to be identified. Here we demonstrate that RSV F protein on the surface of infected cells undergoes a conformational change following exposure to elevated temperature, resulting in the formation of the six-helix bundle structure. We first generated and characterized six-helix bundle-specific antibodies raised against recombinant peptides modeling the RSV F protein six-helix bundle structure. We then used these antibodies as probes to monitor RSV F protein six-helix bundle formation in response to a diverse array of potential triggers of conformational changes. We found that exposure of 'membrane-anchored' RSV F protein to elevated temperature (45-55 deg. C) was sufficient to trigger six-helix bundle formation. Antibody binding to the six-helix bundle conformation was detected by both flow cytometry and cell-surface immunoprecipitation of the RSV F protein. None of the other treatments, including interaction with a number of potential receptors, resulted in significant binding by six-helix bundle-specific antibodies. We conclude that native, untriggered RSV F protein exists in a metastable state that can be converted in vitro to the more stable, fusogenic six-helix bundle conformation by an increase in thermal energy. These findings help to better define the mechanism of RSV F-mediated membrane fusion and have important implications for the identification of therapeutic strategies and vaccines targeting RSV F protein conformational changes.« less
Cracking the omega code: hydraulic architecture of the cycad leaf axis.
Tomlinson, P Barry; Ricciardi, Alison; Huggett, Brett A
2018-03-05
The leaf axis of members of the order Cycadales ('cycads') has long been recognized by its configuration of independent vascular bundles that, in transverse section, resemble the Greek letter omega (hence the 'omega pattern'). This provides a useful diagnostic character for the order, especially when applied to paleobotany. The function of this pattern has never been elucidated. Here we provide a three-dimensional analysis and explain the pattern in terms of the hydraulic architecture of the pinnately compound cycad leaf. The genus Cycas was used as a simple model, because each leaflet is supplied by a single vascular bundle. Sequential sectioning was conducted throughout the leaf axis and photographed with a digital camera. Photographs were registered and converted to a cinematic format, which provided an objective method of analysis. The omega pattern in the petiole can be sub-divided into three vascular components, an abaxial 'circle', a central 'column' and two adaxial 'wings', the last being the only direct source of vascular supply to the leaflets. Each leaflet is supplied by a vascular bundle that has divided or migrated directly from the closest wing bundle. There is neither multiplication nor anastomoses of vascular bundles in the other two components. Thus, as one proceeds from base to apex along the leaf axis, the number of vascular bundles in circle and column components is reduced distally by their uniform migration throughout all components. Consequently, the distal leaflets are irrigated by the more abaxial bundles, guaranteeing uniform water supply along the length of the axis. The omega pattern exemplifies one of the many solutions plants have achieved in supplying distal appendages of an axis with a uniform water supply. Our method presents a model that can be applied to other genera of cycads with more complex vascular organization. © The Author(s) 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Computational knee ligament modeling using experimentally determined zero-load lengths.
Bloemker, Katherine H; Guess, Trent M; Maletsky, Lorin; Dodd, Kevin
2012-01-01
This study presents a subject-specific method of determining the zero-load lengths of the cruciate and collateral ligaments in computational knee modeling. Three cadaver knees were tested in a dynamic knee simulator. The cadaver knees also underwent manual envelope of motion testing to find their passive range of motion in order to determine the zero-load lengths for each ligament bundle. Computational multibody knee models were created for each knee and model kinematics were compared to experimental kinematics for a simulated walk cycle. One-dimensional non-linear spring damper elements were used to represent cruciate and collateral ligament bundles in the knee models. This study found that knee kinematics were highly sensitive to altering of the zero-load length. The results also suggest optimal methods for defining each of the ligament bundle zero-load lengths, regardless of the subject. These results verify the importance of the zero-load length when modeling the knee joint and verify that manual envelope of motion measurements can be used to determine the passive range of motion of the knee joint. It is also believed that the method described here for determining zero-load length can be used for in vitro or in vivo subject-specific computational models.
Doran, James P; Zabinski, Stephen J
2015-03-01
In the setting of current United States healthcare reform, bundled payment initiatives and episode of care payment models for total joint arthroplasty (TJA) have become increasingly common. The following is a review of our results and experience in a community hospital with bundled payment initiatives for both non-Medicare and Medicare TJA patients since 2011. We have successfully decreased the cost of the TJA episode of care in comparison to our historical averages prior to 2011. This cost-reduction has primarily been achieved through decreased length of inpatient stay, increased discharge to home rather than to skilled nursing or inpatient rehabilitation facilities, reduction in implant cost, improvement in readmission rate and migration of cases to lower cost sites of service. Copyright © 2015 Elsevier Inc. All rights reserved.
Magnetic Propulsion of Microswimmers with DNA-Based Flagellar Bundles.
Maier, Alexander M; Weig, Cornelius; Oswald, Peter; Frey, Erwin; Fischer, Peer; Liedl, Tim
2016-02-10
We show that DNA-based self-assembly can serve as a general and flexible tool to construct artificial flagella of several micrometers in length and only tens of nanometers in diameter. By attaching the DNA flagella to biocompatible magnetic microparticles, we provide a proof of concept demonstration of hybrid structures that, when rotated in an external magnetic field, propel by means of a flagellar bundle, similar to self-propelling peritrichous bacteria. Our theoretical analysis predicts that flagellar bundles that possess a length-dependent bending stiffness should exhibit a superior swimming speed compared to swimmers with a single appendage. The DNA self-assembly method permits the realization of these improved flagellar bundles in good agreement with our quantitative model. DNA flagella with well-controlled shape could fundamentally increase the functionality of fully biocompatible nanorobots and extend the scope and complexity of active materials.
Simulations of resonant Raman response in bundles of semiconductor carbon nanotubes
NASA Astrophysics Data System (ADS)
Roslyak, Oleksiy; Piryatinski, Andrei; Doorn, Stephen; Haroz, Erik; Telg, Hagen; Duque, Juan; Crochet, Jared; Simpson, J. R.; Hight Walker, A. R.; LANL Collaboration; Fordham Collaboration; NIST Collaboration
This work is motivated by an experimental study of resonant Raman spectroscopy under E22 excitation, which shows a new, sharp feature associated with bundling in (6,5) semiconductor carbon nanotubes. In order to provide an insight into the experimental data, we model Raman excitation spectra using our modified discrete dipole approximation (DDA) method. The calculations account for the exciton states polarized along and across the nanotube axis that are characterized by a small energy splitting. Strong polarization of the nanotubes forming the bundle results in the exciton state mixing whose spectroscopic signatures such as peaks positions, line widths, and depolarization ratio are calculated and compared to the experiment. Furthermore, the effects of the energy and structural disorder, as well as structural defects within the bundle are also examined and compared with the experimental data.
Simulations of resonant Raman response in bundles of semiconductor carbon nanotubes
NASA Astrophysics Data System (ADS)
Roslyak, Oleksiy; Doorn, Stephen; Haroz, Erik; Duque, Juan; Crochet, Jared; Telg, Hagen; Hight Walker, Angela; Simpson, Jeffrey; Piryatinski, Andrei
This work is motivated by experimental study of resonant Raman response associated with E22 exciton state coupled to G+-mode vibrational mode in bundles of (6,5) semiconductor carbon nanotubes. In order to provide an insight into experimental data, we model Raman excitation spectra using our modified discrete dipole approximation (DDA) method. The calculations account for the exciton states polarized along and across the nanotube axis that are characterized by a small energy splitting. Strong polarization of the nanotubes forming the bundle results in the exciton state mixing whose spectroscopic signatures such as peaks positions, line widths, and depolarization ratio are calculated and compared to the experiment. Furthermore, the effects of the energy and structural disorder, as well as structural defects within the bundle are also examined and compared with the experimental data.
Experiment Needs and Facilities Study Appendix A Transient Reactor Test Facility (TREAT) Upgrade
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
The TREAT Upgrade effort is designed to provide significant new capabilities to satisfy experiment requirements associated with key LMFBR Safety Issues. The upgrade consists of reactor-core modifications to supply the physics performance needed for the new experiments, an Advanced TREAT loop with size and thermal-hydraulics capabilities needed for the experiments, associated interface equipment for loop operations and handling, and facility modifications necessary to accommodate operations with the Loop. The costs and schedules of the tasks to be accomplished under the TREAT Upgrade project are summarized. Cost, including contingency, is about 10 million dollars (1976 dollars). A schedule for execution ofmore » 36 months has been established to provide the new capabilities in order to provide timely support of the LMFBR national effort. A key requirement for the facility modifications is that the reactor availability will not be interrupted for more than 12 weeks during the upgrade. The Advanced TREAT loop is the prototype for the STF small-bundle package loop. Modified TREAT fuel elements contain segments of graphite-matrix fuel with graded uranium loadings similar to those of STF. In addition, the TREAT upgrade provides for use of STF-like stainless steel-UO{sub 2} TREAT fuel for tests of fully enriched fuel bundles. This report will introduce the Upgrade study by presenting a brief description of the scope, performance capability, safety considerations, cost schedule, and development requirements. This work is followed by a "Design Description". Because greatly upgraded loop performance is central to the upgrade, a description is given of Advanced TREAT loop requirements prior to description of the loop concept. Performance requirements of the upgraded reactor system are given. An extensive discussion of the reactor physics calculations performed for the Upgrade concept study is provided. Adequate physics performance is essential for performance of experiments with the Advanced TREAT loop, and the stress placed on these calculations reflects this. Additional material on performance and safety is provided. Backup calculations on calculations of plutonium-release limits are described. Cost and schedule information for the Upgrade are presented.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-24
... the compliance times specified, unless already done. Installation of New Relay and Wiring Bundle (g... certain wiring changes, installing a new relay and necessary wiring in the cabin air conditioning and... for changing the wire bundle route and wiring, installing a new relay and applicable wiring in the...
NASA Astrophysics Data System (ADS)
Yuguchi, Y.; Urakawa, H.; Kajiwara, K.; Draget, K. I.; Stokke, B. T.
2000-10-01
Gelation was observed by time-resolved small-angle X-ray scattering and rheology on 10 mg/ml Ca-alginate gels prepared by in situ release of Ca 2+ from CaEGTA or CaCO 3 with total Ca 2+ concentration in the range 10-20 mM. This was carried out for alginates having a fraction of α- L-GulA (G) of FG=0.39 and 0.68, respectively, obtained by the selection of alginates isolated from two different brown algae, Ascophyllum nodosum and Laminaria hyperborea stipe. Correlation between the rheological data and SAXS data shows that a large fraction of the lateral association precedes the formation of a continuous network through the sample cell. Following the initial association of chain segments in junction zones, the analysis using two-component broken rod model indicates the formation of larger bundles, and that the relative weight of these bundles increases with increasing time. The molecular model for the bundles is proposed by associating 2-16 units (G-blocks) composed of 14 (1→4) linked residues of α- L-GulA in parallel according to the available crystallographic data. The storage modulus increases as the bundles composed of associated alginate chains grow during the gel formation. The gel elasticity is mainly sustained by single chains in the alginate sample with a low fraction of α- L-GulA. The alginates with a high fraction of α- L-GulA associate into thicker bundles which join to form a network. Here the gel elasticity seems to be due to the flexible joints between bundles, since the fraction of single chains is extremely low.
Photoacoustic imaging of hidden dental caries by using a bundle of hollow optical fibers
NASA Astrophysics Data System (ADS)
Koyama, Takuya; Kakino, Satoko; Matsuura, Yuji
2018-02-01
Photoacoustic imaging system using a bundle of hollow-optical fibers to detect hidden dental caries is proposed. Firstly, we fabricated a hidden caries model with a brown pigment simulating a common color of caries lesion. It was found that high frequency ultrasonic waves are generated from hidden carious part when radiating Nd:YAG laser light with a 532 nm wavelength to occlusal surface of model tooth. We calculated by Fourier transform and found that the waveform from the carious part provides frequency components of approximately from 0.5 to 1.2 MHz. Then a photoacoustic imaging system using a bundle of hollow optical fiber was fabricated for clinical applications. From intensity map of frequency components in 0.5-1.2 MHz, photoacoustic images of hidden caries in the simulated samples were successfully obtained.
Thoresen, Todd; Lenz, Martin; Gardel, Margaret L
2013-02-05
Diverse myosin II isoforms regulate contractility of actomyosin bundles in disparate physiological processes by variations in both motor mechanochemistry and the extent to which motors are clustered into thick filaments. Although the role of mechanochemistry is well appreciated, the extent to which thick filament length regulates actomyosin contractility is unknown. Here, we study the contractility of minimal actomyosin bundles formed in vitro by mixtures of F-actin and thick filaments of nonmuscle, smooth, and skeletal muscle myosin isoforms with varied length. Diverse myosin II isoforms guide the self-organization of distinct contractile units within in vitro bundles with shortening rates similar to those of in vivo myofibrils and stress fibers. The tendency to form contractile units increases with the thick filament length, resulting in a bundle shortening rate proportional to the length of constituent myosin thick filament. We develop a model that describes our data, providing a framework in which to understand how diverse myosin II isoforms regulate the contractile behaviors of disordered actomyosin bundles found in muscle and nonmuscle cells. These experiments provide insight into physiological processes that use dynamic regulation of thick filament length, such as smooth muscle contraction. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Development of an Efficient Meso- scale Multi-phase Flow Solver in Nuclear Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Taehun
2015-10-20
The proposed research aims at formulating a predictive high-order Lattice Boltzmann Equation for multi-phase flows relevant to nuclear energy related application - namely, saturated and sub-cooled boiling in reactors, and liquid- liquid mixing and extraction for fuel cycle separation. An efficient flow solver will be developed based on the Finite Element based Lattice Boltzmann Method (FE- LBM), accounting for phase-change heat transfer and capable of treating multiple phases over length scales from the submicron to the meter. A thermal LBM will be developed in order to handle adjustable Prandtl number, arbitrary specific heat ratio, a wide range of temperature variations,more » better numerical stability during liquid-vapor phase change, and full thermo-hydrodynamic consistency. Two-phase FE-LBM will be extended to liquid–liquid–gas multi-phase flows for application to high-fidelity simulations building up from the meso-scale up to the equipment sub-component scale. While several relevant applications exist, the initial applications for demonstration of the efficient methods to be developed as part of this project include numerical investigations of Critical Heat Flux (CHF) phenomena in nuclear reactor fuel bundles, and liquid-liquid mixing and interfacial area generation for liquid-liquid separations. In addition, targeted experiments will be conducted for validation of this advanced multi-phase model.« less
Ravichandiran, Kajeandra; Ravichandiran, Mayoorendra; Oliver, Michele L; Singh, Karan S; McKee, Nancy H; Agur, Anne M R
2009-09-01
Architectural parameters and physiological cross-sectional area (PCSA) are important determinants of muscle function. Extensor carpi radialis longus (ECRL) and brevis (ECRB) are used in muscle transfers; however, their regional architectural differences have not been investigated. The aim of this study is to develop computational algorithms to quantify and compare architectural parameters (fiber bundle length, pennation angle, and volume) and PCSA of ECRL and ECRB. Fiber bundles distributed throughout the volume of ECRL (75+/-20) and ECRB (110+/-30) were digitized in eight formalin embalmed cadaveric specimens. The digitized data was reconstructed in Autodesk Maya with computational algorithms implemented in Python. The mean PCSA and fiber bundle length were significantly different between ECRL and ECRB (p < or = 0.05). Superficial ECRL had significantly longer fiber bundle length than the deep region, whereas the PCSA of superficial ECRB was significantly larger than the deep region. The regional quantification of architectural parameters and PCSA provides a framework for the exploration of partial tendon transfers of ECRL and ECRB.
Validation of geometric models for fisheye lenses
NASA Astrophysics Data System (ADS)
Schneider, D.; Schwalbe, E.; Maas, H.-G.
The paper focuses on the photogrammetric investigation of geometric models for different types of optical fisheye constructions (equidistant, equisolid-angle, sterographic and orthographic projection). These models were implemented and thoroughly tested in a spatial resection and a self-calibrating bundle adjustment. For this purpose, fisheye images were taken with a Nikkor 8 mm fisheye lens on a Kodak DSC 14n Pro digital camera in a hemispherical calibration room. Both, the spatial resection and the bundle adjustment resulted in a standard deviation of unit weight of 1/10 pixel with a suitable set of simultaneous calibration parameters introduced into the camera model. The camera-lens combination was treated with all of the four basic models mentioned above. Using the same set of additional lens distortion parameters, the differences between the models can largely be compensated, delivering almost the same precision parameters. The relative object space precision obtained from the bundle adjustment was ca. 1:10 000 of the object dimensions. This value can be considered as a very satisfying result, as fisheye images generally have a lower geometric resolution as a consequence of their large field of view and also have a inferior imaging quality in comparison to most central perspective lenses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daniel, G.; Rudisill, T.; Almond, P.
The Idaho National Laboratory (INL) is actively engaged in the development of electrochemical processing technology for the treatment of fast reactor fuels using irradiated fuel from the Experimental Breeder Reactor-II (EBR-II) as the primary test material. The research and development (R&D) activities generate a low enriched uranium (LEU) metal product from the electrorefining of the EBR-II fuel and the subsequent consolidation and removal of chloride salts by the cathode processor. The LEU metal ingots from past R&D activities are currently stored at INL awaiting disposition. One potential disposition pathway is the shipment of the ingots to the Savannah River Sitemore » (SRS) for dissolution in H-Canyon. Carbon steel cans containing the LEU metal would be loaded into reusable charging bundles in the H-Canyon Crane Maintenance Area and charged to the 6.4D or 6.1D dissolver. The LEU dissolution would be accomplished as the final charge in a dissolver batch (following the dissolution of multiple charges of spent nuclear fuel (SNF)). The solution would then be purified and the 235U enrichment downblended to allow use of the U in commercial reactor fuel. To support this potential disposition path, the Savannah River National Laboratory (SRNL) developed a dissolution flowsheet for the LEU using samples of the material received from INL.« less
NASA Astrophysics Data System (ADS)
Kwon, Young Joo; Choi, Jong Won
This paper presents the finite element stress analysis of a spent nuclear fuel disposal canister to provide basic information for dimensioning the canister and configuration of canister components and consequently to suggest the structural analysis methodology for the disposal canister in a deep geological repository which is nowadays very important in the environmental waste treatment technology. Because of big differences in the pressurized water reactor (PWR) and the Canadian deuterium and uranium reactor (CANDU) fuel properties, two types of canisters are conceived. For manufacturing, operational reasons and standardization, however, both canisters have the same outer diameter and length. The construction type of canisters introduced here is a solid structure with a cast insert and a corrosion resistant overpack. The structural stress analysis is carried out using a finite element analysis code, NISA, and focused on the structural strength of the canister against the expected external pressures due to the swelling of the bentonite buffer and the hydrostatic head. The canister must withstand these large pressure loads. Consequently, canisters presented here contain 4 PWR fuel assemblies and 33×9 CANDU fuel bundles. The outside diameter of the canister for both fuels is 122cm and the cast insert diameter is 112cm. The total length of the canister is 483cm with the lid/bottom and the outer shell of 5cm.
Imaging quality evaluation method of pixel coupled electro-optical imaging system
NASA Astrophysics Data System (ADS)
He, Xu; Yuan, Li; Jin, Chunqi; Zhang, Xiaohui
2017-09-01
With advancements in high-resolution imaging optical fiber bundle fabrication technology, traditional photoelectric imaging system have become ;flexible; with greatly reduced volume and weight. However, traditional image quality evaluation models are limited by the coupling discrete sampling effect of fiber-optic image bundles and charge-coupled device (CCD) pixels. This limitation substantially complicates the design, optimization, assembly, and evaluation image quality of the coupled discrete sampling imaging system. Based on the transfer process of grayscale cosine distribution optical signal in the fiber-optic image bundle and CCD, a mathematical model of coupled modulation transfer function (coupled-MTF) is established. This model can be used as a basis for following studies on the convergence and periodically oscillating characteristics of the function. We also propose the concept of the average coupled-MTF, which is consistent with the definition of traditional MTF. Based on this concept, the relationships among core distance, core layer radius, and average coupled-MTF are investigated.
Predictability and strength of a heterogeneous system: The role of system size and disorder
NASA Astrophysics Data System (ADS)
Roy, Subhadeep
2017-10-01
In this paper, I have studied the effect of disorder (δ ) and system size (L ) in a fiber bundle model with a certain range R of stress redistribution. The strength of the bundle as well as the failure abruptness is observed with varying disorder, stress release range, and system sizes. With a local stress concentration, the strength of the bundle is observed to decrease with system size. The behavior of such decrements changes drastically as disorder strength is tuned. At moderate disorder, σc scales with the system size as σc˜1 /logL . In low disorder, where the brittle response is highly expected, the strength decreases in a scale-free manner (σc˜1 /L ). With increasing L and R , the model approaches the thermodynamic limit and the mean-field limit, respectively. A detailed study shows different limits of the model and the corresponding modes of failure on the plane of the above-mentioned parameters (δ ,L , and R ).
Dimer model for Tau proteins bound in microtubule bundles
NASA Astrophysics Data System (ADS)
Hall, Natalie; Kluber, Alexander; Hayre, N. Robert; Singh, Rajiv; Cox, Daniel
2013-03-01
The microtubule associated protein tau is important in nucleating and maintaining microtubule spacing and structure in neuronal axons. Modification of tau is implicated as a later stage process in Alzheimer's disease, but little is known about the structure of tau in microtubule bundles. We present preliminary work on a proposed model for tau dimers in microtubule bundles (dimers are the minimal units since there is one microtubule binding domain per tau). First, a model of tau monomer was created and its characteristics explored using implicit solvent molecular dynamics simulation. Multiple simulations yield a partially collapsed form with separate positively/negatively charged clumps, but which are a factor of two smaller than required by observed microtubule spacing. We argue that this will elongate in dimer form to lower electrostatic energy at a cost of entropic ``spring'' energy. We will present preliminary results on steered molecular dynamics runs on tau dimers to estimate the actual force constant. Supported by US NSF Grant DMR 1207624.
Probabilistic model of ligaments and tendons: quasistatic linear stretching.
Bontempi, M
2009-03-01
Ligaments and tendons have a significant role in the musculoskeletal system and are frequently subjected to injury. This study presents a model of collagen fibers, based on the study of a statistical distribution of fibers when they are subjected to quasistatic linear stretching. With respect to other methodologies, this model is able to describe the behavior of the bundle using less ad hoc hypotheses and is able to describe all the quasistatic stretch-load responses of the bundle, including the yield and failure regions described in the literature. It has two other important results: the first is that it is able to correlate the mechanical behavior of the bundle with its internal structure, and it suggests a methodology to deduce the fibers population distribution directly from the tensile-test data. The second is that it can follow fibers' structure evolution during the stretching and it is possible to study the internal adaptation of fibers in physiological and pathological conditions.
Probabilistic model of ligaments and tendons: Quasistatic linear stretching
NASA Astrophysics Data System (ADS)
Bontempi, M.
2009-03-01
Ligaments and tendons have a significant role in the musculoskeletal system and are frequently subjected to injury. This study presents a model of collagen fibers, based on the study of a statistical distribution of fibers when they are subjected to quasistatic linear stretching. With respect to other methodologies, this model is able to describe the behavior of the bundle using less ad hoc hypotheses and is able to describe all the quasistatic stretch-load responses of the bundle, including the yield and failure regions described in the literature. It has two other important results: the first is that it is able to correlate the mechanical behavior of the bundle with its internal structure, and it suggests a methodology to deduce the fibers population distribution directly from the tensile-test data. The second is that it can follow fibers’ structure evolution during the stretching and it is possible to study the internal adaptation of fibers in physiological and pathological conditions.
NASA Astrophysics Data System (ADS)
Kattke, K. J.; Braun, R. J.
2011-08-01
A novel, highly integrated tubular SOFC system intended for small-scale power is characterized through a series of sensitivity analyses and parametric studies using a previously developed high-fidelity simulation tool. The high-fidelity tubular SOFC system modeling tool is utilized to simulate system-wide performance and capture the thermofluidic coupling between system components. Stack performance prediction is based on 66 anode-supported tubular cells individually evaluated with a 1-D electrochemical cell model coupled to a 3-D computational fluid dynamics model of the cell surroundings. Radiation is the dominate stack cooling mechanism accounting for 66-92% of total heat loss at the outer surface of all cells at baseline conditions. An average temperature difference of nearly 125 °C provides a large driving force for radiation heat transfer from the stack to the cylindrical enclosure surrounding the tube bundle. Consequently, cell power and voltage disparities within the stack are largely a function of the radiation view factor from an individual tube to the surrounding stack can wall. The cells which are connected in electrical series, vary in power from 7.6 to 10.8 W (with a standard deviation, σ = 1.2 W) and cell voltage varies from 0.52 to 0.73 V (with σ = 81 mV) at the simulation baseline conditions. It is observed that high cell voltage and power outputs directly correspond to tubular cells with the smallest radiation view factor to the enclosure wall, and vice versa for tubes exhibiting low performance. Results also reveal effective control variables and operating strategies along with an improved understanding of the effect that design modifications have on system performance. By decreasing the air flowrate into the system by 10%, the stack can wall temperature increases by about 6% which increases the minimum cell voltage to 0.62 V and reduces deviations in cell power and voltage by 31%. A low baseline fuel utilization is increased by decreasing the fuel flowrate and by increasing the stack current demand. Simulation results reveal fuel flow as a poor control variable because excessive tail-gas combustor temperatures limit fuel flow to below 110% of the baseline flowrate. Additionally, system efficiency becomes inversely proportional to fuel utilization over the practical fuel flow range. Stack current is found to be an effective control variable in this type of system because system efficiency becomes directly proportional to fuel utilization. Further, the integrated system acts to dampen temperature spikes when fuel utilization is altered by varying current demand. Radiation remains the dominate heat transfer mechanism within the stack even if stack surfaces are polished lowering emissivities to 0.2. Furthermore, the sensitivity studies point to an optimal system insulation thickness that balances the overall system volume and total conductive heat loss.
Carey, Irene; Shouls, Susanna; Bristowe, Katherine; Morris, Michelle; Briant, Linda; Robinson, Carole; Caulkin, Ruth; Griffiths, Mathew; Clark, Kieron; Koffman, Jonathan; Hopper, Adrian
2015-03-01
Despite preferences to the contrary, 53% of deaths in England occur in hospital. Difficulties in managing clinical uncertainty can result in delayed recognition that a person may be approaching the end of life, and a failure to address his/her preferences. Planning and shared decision-making for hospital patients need to improve where an underlying condition responds poorly to acute medical treatment and there is a risk of dying in the next 1-2 months. This paper suggests an approach to improve this care. A care bundle (the AMBER care bundle) was designed by a multiprofessional development team, which included service users, utilising the model for improvement following an initial scoping exercise. The care bundle includes two identification questions, four subsequent time restricted actions and systematic daily follow-up. This paper describes the development and implementation of a care bundle. From August 2011 to July 2012, 638 patients received care supported by the AMBER care bundle. In total 42.8% died in hospital and a further 14.5% were readmitted as emergencies within 30 days of discharge. Clinical outcome measures are in development. It has been possible to develop a care bundle addressing a complex area of care which can be a lever for cultural change. The implementation of the AMBER care bundle has the potential to improve care of clinically uncertain hospital patients who may be approaching the end of life by supporting their recognition and prompting discussion of their preferences. Outcomes associated with its use are currently being formally evaluated. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Carey, Irene; Shouls, Susanna; Bristowe, Katherine; Morris, Michelle; Briant, Linda; Robinson, Carole; Caulkin, Ruth; Griffiths, Mathew; Clark, Kieron; Koffman, Jonathan; Hopper, Adrian
2015-12-01
Despite preferences to the contrary, 53% of deaths in England occur in hospital. Difficulties in managing clinical uncertainty can result in delayed recognition that a person may be approaching the end of life, and a failure to address his/her preferences. Planning and shared decision-making for hospital patients need to improve where an underlying condition responds poorly to acute medical treatment and there is a risk of dying in the next 1-2 months. This paper suggests an approach to improve this care. A care bundle (the AMBER care bundle) was designed by a multiprofessional development team, which included service users, utilising the model for improvement following an initial scoping exercise. The care bundle includes two identification questions, four subsequent time restricted actions and systematic daily follow-up. This paper describes the development and implementation of a care bundle. From August 2011 to July 2012, 638 patients received care supported by the AMBER care bundle. In total 42.8% died in hospital and a further 14.5% were readmitted as emergencies within 30 days of discharge. Clinical outcome measures are in development. It has been possible to develop a care bundle addressing a complex area of care which can be a lever for cultural change. The implementation of the AMBER care bundle has the potential to improve care of clinically uncertain hospital patients who may be approaching the end of life by supporting their recognition and prompting discussion of their preferences. Outcomes associated with its use are currently being formally evaluated. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Lamellar and fibre bundle mechanics of the annulus fibrosus in bovine intervertebral disc.
Vergari, Claudio; Mansfield, Jessica; Meakin, Judith R; Winlove, Peter C
2016-06-01
The intervertebral disc is a multicomposite structure, with an outer fibrous ring, the annulus fibrosus, retaining a gel-like core, the nucleus pulposus. The disc presents complex mechanical behaviour, and it is of high importance for spine biomechanics. Advances in multiscale modelling and disc repair raised a need for new quantitative data on the finest details of annulus fibrosus mechanics. In this work we explored inter-lamella and inter-bundle behaviour of the outer annulus using micromechanical testing and second harmonic generation microscopy. Twenty-one intervertebral discs were dissected from cow tails; the nucleus and inner annulus were excised to leave a ring of outer annulus, which was tested in circumferential loading while imaging the tissue's collagen fibres network with sub-micron resolution. Custom software was developed to determine local tissue strains through image analysis. Inter-bundle linear and shear strains were 5.5 and 2.8 times higher than intra-bundle strains. Bundles tended to remain parallel while rotating under loading, with large slipping between them. Inter-lamella linear strain was almost 3 times the intra-lamella one, but no slipping was observed at the junction between lamellae. This study confirms that outer annulus straining is mainly due to bundles slipping and rotating. Further development of disc multiscale modelling and repair techniques should take into account this modular behaviour of the lamella, rather than considering it as a homogeneous fibre-reinforced matrix. The intervertebral disc is an organ tucked between each couple of vertebrae in the spine. It is composed by an outer fibrous layer retaining a gel-like core. This organ undergoes severe and repeated loading during everyday life activities, since it is the compliant component that gives the spine its flexibility. Its properties are affected by pathologies such as disc degeneration, a major cause of back pain. In this article we explored the micromechanical behaviour of the disc's outer layer using second harmonic generation, a technique which allowed us to visualize, with unprecedented detail, how bundles of collagen fibres slide relative to each other when loaded. Our results will help further the development of new multiscale numerical models and repairing techniques. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Are Bundled Payments a Viable Reimbursement Model for Revision Total Joint Arthroplasty?
Courtney, P Maxwell; Ashley, Blair S; Hume, Eric L; Kamath, Atul F
2016-12-01
Alternative payment models, such as the Centers for Medicare & Medicaid Services (CMS) Bundled Payment for Care Improvement (BPCI) initiative, aim to decrease overall costs for hip and knee arthroplasties. We asked: (1) Is there any difference in the CMS episode-of-care costs, hospital length of stay, and readmission rate from before and after implementation of our bundled-payment program? (2) Is there any difference in reimbursements and resource utilization between revision THA and TKA at our institution? (3) Are there any independent risk factors for patients with high costs who may not be appropriate for a bundled-payment system for revision total joint arthroplasty (TJA)? Between October 2013 and March 2015, 218 patients underwent revision TKA or THA in one health system. Two hundred seventeen patients were reviewed as part of this study, and one patient with hemophilia was excluded from the analysis as an outlier. Our institution began a BPCI program for revision TJA during this study period. Patients' procedures done before January 1, 2014 at one hospital and January 1, 2015 at another hospital were not included in the bundled-care arrangement (70 revision TKAs and 56 revision THAs), whereas 50 revision TKAs and 41 revision THAs were performed under the BPCI initiative. Patient demographics, medical comorbidities, episode-of-care reimbursement data derived directly from CMS, length of stay, and readmission proportions were compared between the bundled and nonbundled groups. Length of stay in the group that underwent surgery before the bundled-care arrangement was longer than for patients whose procedures were done under the BPCI (mean 4.02 [SD, 3.0 days] versus mean 5.27 days [SD, 3.6 days]; p = 0.001). Index hospitalization reimbursement for the bundled group was less than for the nonbundled group (mean USD 17,754 [SD, USD 2741] versus mean USD 18,316 [SD, USD 4732]; p = 0.030). There was no difference, with the numbers available, in total episode-of-care CMS costs between the two groups (mean USD 38,107 [SD, USD 18,328] versus mean USD 37,851 [SD, USD 17,208]; p = 0.984). There was no difference, with the numbers available, in the total episode-of-care CMS costs between revision hip arthroplasties and revision knee arthroplasties (mean USD 38,627 [SD, USD 18,607] versus mean USD 37,414 [SD, USD 16,884]; p = 0.904). Disposition to rehabilitation (odds ratio [OR], 5.49; 95% CI, 1.97-15.15; p = 0.001), length of stay 4 days or greater (OR, 3.66; 95% CI, 1.60-8.38; p = 0.002), and readmission within 90 days (OR, 6.99; 95% CI, 2.58-18.91; p < 0.001) were independent risk factors for high-cost episodes. Bundled payments have the potential to be a viable reimbursement model for revision TJA. Owing to the unpredictable nature of the surgical procedures, inherent high risks of complications, and varying degrees of surgical complexity, future studies are needed to determine whether bundling patients having revision TJA will result in improved care and decreased costs. Level IV, economic and decision analysis.
Iorio, Richard; Clair, Andrew J; Inneh, Ifeoma A; Slover, James D; Bosco, Joseph A; Zuckerman, Joseph D
2016-02-01
In 2011 Medicare initiated a Bundled Payment for Care Improvement (BPCI) program with the goal of introducing a payment model that would "lead to higher quality, more coordinated care at a lower cost to Medicare." A Model 2 bundled payment initiative for Total Joint Replacement (TJR) was implemented at a large, tertiary, urban academic medical center. The episode of care includes all costs through 90 days following discharge. After one year, data on 721 Medicare primary TJR patients were available for analysis. Average length of stay (LOS) was decreased from 4.27 days to 3.58 days (Median LOS 3 days). Discharges to inpatient facilities decreased from 71% to 44%. Readmissions occurred in 80 patients (11%), which is slightly lower than before implementation. The hospital has seen cost reduction in the inpatient component over baseline. Early results from the implementation of a Medicare BPCI Model 2 primary TJR program at this medical center demonstrate cost-savings. IV economic and decision analyses-developing an economic or decision model. Copyright © 2016 Elsevier Inc. All rights reserved.
Mesoscale mechanics of twisting carbon nanotube yarns.
Mirzaeifar, Reza; Qin, Zhao; Buehler, Markus J
2015-03-12
Fabricating continuous macroscopic carbon nanotube (CNT) yarns with mechanical properties close to individual CNTs remains a major challenge. Spinning CNT fibers and ribbons for enhancing the weak interactions between the nanotubes is a simple and efficient method for fabricating high-strength and tough continuous yarns. Here we investigate the mesoscale mechanics of twisting CNT yarns using full atomistic and coarse grained molecular dynamics simulations, considering concurrent mechanisms at multiple length-scales. To investigate the mechanical response of such a complex structure without losing insights into the molecular mechanism, we applied a multiscale strategy. The full atomistic results are used for training a coarse grained model for studying larger systems consisting of several CNTs. The mesoscopic model parameters are updated as a function of the twist angle, based on the full atomistic results, in order to incorporate the atomistic scale deformation mechanisms in larger scale simulations. By bridging across two length scales, our model is capable of accurately predicting the mechanical behavior of twisted yarns while the atomistic level deformations in individual nanotubes are integrated into the model by updating the parameters. Our results focused on studying a bundle of close packed nanotubes provide novel mechanistic insights into the spinning of CNTs. Our simulations reveal how twisting a bundle of CNTs improves the shear interaction between the nanotubes up to a certain level due to increasing the interaction surface. Furthermore, twisting the bundle weakens the intertube interactions due to excessive deformation in the cross sections of individual CNTs in the bundle.
Cryopreservation of sperm bundles (spermatozeugmata) from endangered livebearing goodeids.
Liu, Yue; Torres, Leticia; Tiersch, Terrence R
2018-04-14
More than half of fishes in the family Goodeidae are considered to be endangered, threatened, or vulnerable. Sperm cryopreservation is an effective tool for conserving genetic resources of imperiled populations, but development of protocols with livebearing fishes faces numerous challenges including the natural packaging of sperm into bundles. In this study the cryopreservation of sperm bundles (spermatozeugmata) of three goodeids species was evaluated. Sperm quality was evaluated by activation with NaCl-NaOH solution (at 300 mOsmol/kg and pH 11.8), and analysis of dissociable bundles and dissociation duration. Using Redtail Splitfin (Xenotoca eiseni) as a model, the effects of cryoprotectants (dimethyl sulfoxide, methanol, and glycerol) with different concentrations (5-15% v/v %), equilibration exposure times (1-60 min), cooling rates (5-40 °C/min), concentrations (4 × 10 4 -4 × 10 6 bundles/ml), buffers (HBSS, PBS and NaCl), and buffer osmolalities (200-400 mOsmol/kg) were investigated. After cooling and thawing, sperm bundles maintained their packed form. A specific protocol was developed (10% dimethyl sulfoxide, 20-min equilibration, 10 °C/min cooling rate, 4 × 10 6 bundles/ml, and 300 mOsmol/kg HBSS). This protocol yielded 89 ± 5% of post-thaw dissociable bundles with 209 ± 10 s of dissociation duration for X. eiseni, 96 ± 9% with 814 ± 14 s for Blackfin Goodea (Goodea atripinni), and 66 ± 2% with 726 ± 25 s for Striped Goodeid (Ataeniobius toweri). This is the first study of cryopreservation of sperm within bundles for livebearing fishes and provides a basis for establishment of germplasm repositories for goodeids and other livebearers. Copyright © 2018 Elsevier Inc. All rights reserved.
In-Pile Instrumentation Multi- Parameter System Utilizing Photonic Fibers and Nanovision
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burgett, Eric
2015-10-13
An advanced in-pile multi-parameter reactor monitoring system is being proposed in this funding opportunity. The proposed effort brings cutting edge, high fidelity optical measurement systems into the reactor environment in an unprecedented fashion, including in-core, in-cladding and in-fuel pellet itself. Unlike instrumented leads, the proposed system provides a unique solution to a multi-parameter monitoring need in core while being minimally intrusive in the reactor core. Detector designs proposed herein can monitor fuel compression and expansion in both the radial and axial dimensions as well as monitor linear power profiles and fission rates during the operation of the reactor. In additionmore » to pressure, stress, strain, compression, neutron flux, neutron spectra, and temperature can be observed inside the fuel bundle and fuel rod using the proposed system. The proposed research aims at developing radiation-hard, harsh-environment multi-parameter systems for insertion into the reactor environment. The proposed research holds the potential to drastically increase the fidelity and precision of in-core instrumentation with little or no impact in the neutron economy in the reactor environment while providing a measurement system capable of operation for entire operating cycles.« less
Reinforcement of single-walled carbon nanotube bundles by intertube bridging
NASA Astrophysics Data System (ADS)
Kis, A.; Csányi, G.; Salvetat, J.-P.; Lee, Thien-Nga; Couteau, E.; Kulik, A. J.; Benoit, W.; Brugger, J.; Forró, L.
2004-03-01
During their production, single-walled carbon nanotubes form bundles. Owing to the weak van der Waals interaction that holds them together in the bundle, the tubes can easily slide on each other, resulting in a shear modulus comparable to that of graphite. This low shear modulus is also a major obstacle in the fabrication of macroscopic fibres composed of carbon nanotubes. Here, we have introduced stable links between neighbouring carbon nanotubes within bundles, using moderate electron-beam irradiation inside a transmission electron microscope. Concurrent measurements of the mechanical properties using an atomic force microscope show a 30-fold increase of the bending modulus, due to the formation of stable crosslinks that effectively eliminate sliding between the nanotubes. Crosslinks were modelled using first-principles calculations, showing that interstitial carbon atoms formed during irradiation in addition to carboxyl groups, can independently lead to bridge formation between neighbouring nanotubes.
Development of framework for sustainable Lean implementation: an ISM approach
NASA Astrophysics Data System (ADS)
Jadhav, Jagdish Rajaram; Mantha, S. S.; Rane, Santosh B.
2014-07-01
The survival of any organization depends upon its competitive edge. Even though Lean is one of the most powerful quality improvement methodologies, nearly two-thirds of the Lean implementations results in failures and less than one-fifth of those implemented have sustained results. One of the most significant tasks of top management is to identify, understand and deploy the significant Lean practices like quality circle, Kanban, Just-in-time purchasing, etc. The term `bundle' is used to make groups of inter-related and internally consistent Lean practices. Eight significant Lean practice bundles have been identified based on literature reviewed and opinion of the experts. The order of execution of Lean practice bundles is very important. Lean practitioners must be able to understand the interrelationship between these practice bundles. The objective of this paper is to develop framework for sustainable Lean implementation using interpretive structural modelling approach.
Assembly kinetics determine the architecture of α-actinin crosslinked F-actin networks.
Falzone, Tobias T; Lenz, Martin; Kovar, David R; Gardel, Margaret L
2012-05-29
The actin cytoskeleton is organized into diverse meshworks and bundles that support many aspects of cell physiology. Understanding the self-assembly of these actin-based structures is essential for developing predictive models of cytoskeletal organization. Here we show that the competing kinetics of bundle formation with the onset of dynamic arrest arising from filament entanglements and crosslinking determine the architecture of reconstituted actin networks formed with α-actinin crosslinks. Crosslink-mediated bundle formation only occurs in dilute solutions of highly mobile actin filaments. As actin polymerization proceeds, filament mobility and bundle formation are arrested concomitantly. By controlling the onset of dynamic arrest, perturbations to actin assembly kinetics dramatically alter the architecture of biochemically identical samples. Thus, the morphology of reconstituted F-actin networks is a kinetically determined structure similar to those formed by physical gels and glasses. These results establish mechanisms controlling the structure and mechanics in diverse semiflexible biopolymer networks.
Void fraction distribution in a heated rod bundle under flow stagnation conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herrero, V.A.; Guido-Lavalle, G.; Clausse, A.
1995-09-01
An experimental study was performed to determine the axial void fraction distribution along a heated rod bundle under flow stagnation conditions. The development of the flow pattern was investigated for different heat flow rates. It was found that in general the void fraction is overestimated by the Zuber & Findlay model while the Chexal-Lellouche correlation produces a better prediction.
75 FR 74663 - Airworthiness Directives; The Boeing Company Model 747-400 and -400D Series Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-01
... number three engine pylons near the leading edge, and related investigative and corrective actions, if... routing of the wire bundles in the number two and number three engine pylons near the leading edge, and... routing of the wire bundles in the number two and number three engine pylons near the leading edge; and do...
Characterization of the Chicken Ovarian Cancer Model
2005-08-01
Typical staining of tumor in an area of stromal hyperplasia . Figure 5. Adenocarcinoma, Ovary, Chicken, Her2/neu. Intense staining of tumor cells in...variable amounts of interstitial fibrovascular tissue and/or smooth muscle bundles, which accounted for their scirrhous nature grossly. 22...Figure 25). Figure 25. Peritoneum, Adenocarcinoma. Interstitial fibrovascular tissue and/or smooth muscle bundles account for the scirrhous
Flagellar Hook Flexibility Is Essential for Bundle Formation in Swimming Escherichia coli Cells
Brown, Mostyn T.; Steel, Bradley C.; Silvestrin, Claudio; Wilkinson, David A.; Delalez, Nicolas J.; Lumb, Craig N.; Obara, Boguslaw; Berry, Richard M.
2012-01-01
Swimming Escherichia coli cells are propelled by the rotary motion of their flagellar filaments. In the normal swimming pattern, filaments positioned randomly over the cell form a bundle at the posterior pole. It has long been assumed that the hook functions as a universal joint, transmitting rotation on the motor axis through up to ∼90° to the filament in the bundle. Structural models of the hook have revealed how its flexibility is expected to arise from dynamic changes in the distance between monomers in the helical lattice. In particular, each of the 11 protofilaments that comprise the hook is predicted to cycle between short and long forms, corresponding to the inside and outside of the curved hook, once each revolution of the motor when the hook is acting as a universal joint. To test this, we genetically modified the hook so that it could be stiffened by binding streptavidin to biotinylated monomers, impeding their motion relative to each other. We found that impeding the action of the universal joint resulted in atypical swimming behavior as a consequence of disrupted bundle formation, in agreement with the universal joint model. PMID:22522898
Risk-adjusted payment and performance assessment for primary care.
Ash, Arlene S; Ellis, Randall P
2012-08-01
Many wish to change incentives for primary care practices through bundled population-based payments and substantial performance feedback and bonus payments. Recognizing patient differences in costs and outcomes is crucial, but customized risk adjustment for such purposes is underdeveloped. Using MarketScan's claims-based data on 17.4 million commercially insured lives, we modeled bundled payment to support expected primary care activity levels (PCAL) and 9 patient outcomes for performance assessment. We evaluated models using 457,000 people assigned to 436 primary care physician panels, and among 13,000 people in a distinct multipayer medical home implementation with commercially insured, Medicare, and Medicaid patients. Each outcome is separately predicted from age, sex, and diagnoses. We define the PCAL outcome as a subset of all costs that proxies the bundled payment needed for comprehensive primary care. Other expected outcomes are used to establish targets against which actual performance can be fairly judged. We evaluate model performance using R(2)'s at patient and practice levels, and within policy-relevant subgroups. The PCAL model explains 67% of variation in its outcome, performing well across diverse patient ages, payers, plan types, and provider specialties; it explains 72% of practice-level variation. In 9 performance measures, the outcome-specific models explain 17%-86% of variation at the practice level, often substantially outperforming a generic score like the one used for full capitation payments in Medicare: for example, with grouped R(2)'s of 47% versus 5% for predicting "prescriptions for antibiotics of concern." Existing data can support the risk-adjusted bundled payment calculations and performance assessments needed to encourage desired transformations in primary care.
Yazdandoost, Fatemeh; Mirzaeifar, Reza; Qin, Zhao; Buehler, Markus J
2017-05-04
While individual carbon nanotubes (CNTs) are known as one of the strongest fibers ever known, even the strongest fabricated macroscale CNT yarns and fibers are still significantly weaker than individual nanotubes. The loss in mechanical properties is mainly because the deformation mechanism of CNT fibers is highly governed by the weak shear strength corresponding to sliding of nanotubes on each other. Adding polymer coating to the bundles, and twisting the CNT yarns to enhance the intertube interactions are both efficient methods to improve the mechanical properties of macroscale yarns. Here, we perform molecular dynamics (MD) simulations to unravel the unknown deformation mechanism in the intertube polymer chains and also local deformations of the CNTs at the atomistic scale. Our results show that the lateral pressure can have both beneficial and adverse effects on shear strength of polymer coated CNTs, depending on the local deformations at the atomistic scale. In this paper we also introduce a bottom-up bridging strategy between a full atomistic model and a coarse-grained (CG) model. Our trained CG model is capable of incorporating the atomistic scale local deformations of each CNT to the larger scale collect behavior of bundles, which enables the model to accurately predict the effect of lateral pressure on larger CNT bundles and yarns. The developed multiscale CG model is implemented to study the effect of lateral pressure on the shear strength of straight polymer coated CNT yarns, and also the effect of twisting on the pull-out force of bundles in spun CNT yarns.
Motor-mediated microtubule self-organization in dilute and semi-dilute filament solutions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swaminathan, S.; Ziebert, F.; Aranson, I. S.
We study molecular motor-induced microtubule self-organization in dilute and semi-dilute filament solutions. In the dilute case, we use a probabilistic model of microtubule interaction via molecular motors to investigate microtubule bundle dynamics. Microtubules are modeled as polar rods interacting through fully inelastic, binary collisions. Our model indicates that initially disordered systems of interacting rods exhibit an orientational instability resulting in spontaneous ordering. We study the existence and dynamic interaction of microtubule bundles analytically and numerically. Our results reveal a long term attraction and coalescing of bundles indicating a clear coarsening in the system; microtubule bundles concentrate into fewer orientations onmore » a slow logarithmic time scale. In semi-dilute filament solutions, multiple motors can bind a filament to several others and, for a critical motor density, induce a transition to an ordered phase with a nonzero mean orientation. Motors attach to a pair of filaments and walk along the pair bringing them into closer alignment. We develop a spatially homogenous, mean-field theory that explicitly accounts for a force-dependent detachment rate of motors, which in turn affects the mean and the fluctuations of the net force acting on a filament. We show that the transition to the oriented state can be both continuous and discontinuous when the force-dependent detachment of motors is important.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, J.; Strzalka, J; Tronin, A
2009-01-01
We demonstrate that cyano-phenylalanine (PheCN) can be utilized to probe the binding of the inhalational anesthetic halothane to an anesthetic-binding, model ion channel protein hbAP-PheCN. The Trp to PheCN mutation alters neither the a-helical conformation nor the 4-helix bundle structure. The halothane binding properties of this PheCN mutant hbAP-PheCN, based on fluorescence quenching, are consistent with those of the prototype, hbAP1. The dependence of fluorescence lifetime as a function of halothane concentration implies that the diffusion of halothane in the nonpolar core of the protein bundle is one-dimensional. As a consequence, at low halothane concentrations, the quenching of the fluorescencemore » is dynamic, whereas at high concentrations the quenching becomes static. The 4-helix bundle structure present in aqueous detergent solution and at the air-water interface, is preserved in multilayer films of hbAP-PheCN, enabling vibrational spectroscopy of both the protein and its nitrile label (-CN). The nitrile groups' stretching vibration band shifts to higher frequency in the presence of halothane, and this blue-shift is largely reversible. Due to the complexity of this amphiphilic 4-helix bundle model membrane protein, where four PheCN probes are present adjacent to the designed cavity forming the binding site within each bundle, all contributing to the infrared absorption, molecular dynamics (MD) simulation is required to interpret the infrared results. The MD simulations indicate that the blue-shift of -CN stretching vibration induced by halothane arises from an indirect effect, namely an induced change in the electrostatic protein environment averaged over the four probe oscillators, rather than a direct interaction with the oscillators. hbAP-PheCN therefore provides a successful template for extending these investigations of the interactions of halothane with the model membrane protein via vibrational spectroscopy, using cyano-alanine residues to form the anesthetic binding cavity.« less
NASA Astrophysics Data System (ADS)
Ye, X.; Tang, Q.; Li, T.; Wang, Y. L.; Zhang, X.; Ye, S. Y.
2017-05-01
The wind, photovoltaic and hydro power bundled transmission system attends to become common in Northwest and Southwest of China. To make better use of the power complementary characteristic of different power sources, the installed capacity proportion of wind, photovoltaic and hydro power, and their capacity distribution for each integration node is a significant issue to be solved in power system planning stage. An optimal capacity proportion and capacity distribution model for wind, photovoltaic and hydro power bundled transmission system is proposed here, which considers the power out characteristic of power resources with different type and in different area based on real operation data. The transmission capacity limit of power grid is also considered in this paper. Simulation cases are tested referring to one real regional system in Southwest China for planning level year 2020. The results verify the effectiveness of the model in this paper.
Fluctuation Pressure Assisted Ejection of DNA From Bacteriophage
NASA Astrophysics Data System (ADS)
Harrison, Michael J.
2011-03-01
The role of thermal pressure fluctuations excited within tightly packaged DNA while it is ejected from protein capsid shells is discussed in a model calculation. At equilibrium before ejection we assume the DNA is folded many times into a bundle of parallel segments that forms an equilibrium conformation at minimum free energy, which presses tightly against capsid walls. Using a canonical ensemble at temperature T we calculate internal pressure fluctuations against a slowly moving or static capsid mantle for an elastic continuum model of the folded DNA bundle. It is found that fluctuating pressures on the capsid from thermal excitation of longitudinal acoustic vibrations in the bundle whose wavelengths are exceeded by the bend persistence length may have root-mean-square values that are several tens of atmospheres for typically small phage dimensions. Comparisons are given with measured data on three mutants of lambda phage with different base pair lengths and total genome ejection pressures.
Modeling Composite Laminate Crushing for Crash Analysis
NASA Technical Reports Server (NTRS)
Fleming, David C.; Jones, Lisa (Technical Monitor)
2002-01-01
Crash modeling of composite structures remains limited in application and has not been effectively demonstrated as a predictive tool. While the global response of composite structures may be well modeled, when composite structures act as energy-absorbing members through direct laminate crushing the modeling accuracy is greatly reduced. The most efficient composite energy absorbing structures, in terms of energy absorbed per unit mass, are those that absorb energy through a complex progressive crushing response in which fiber and matrix fractures on a small scale dominate the behavior. Such failure modes simultaneously include delamination of plies, failure of the matrix to produce fiber bundles, and subsequent failure of fiber bundles either in bending or in shear. In addition, the response may include the significant action of friction, both internally (between delaminated plies or fiber bundles) or externally (between the laminate and the crushing surface). A figure shows the crushing damage observed in a fiberglass composite tube specimen, illustrating the complexity of the response. To achieve a finite element model of such complex behavior is an extremely challenging problem. A practical crushing model based on detailed modeling of the physical mechanisms of crushing behavior is not expected in the foreseeable future. The present research describes attempts to model composite crushing behavior using a novel hybrid modeling procedure. Experimental testing is done is support of the modeling efforts, and a test specimen is developed to provide data for validating laminate crushing models.
Burnable absorber arrangement for fuel bundle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crowther, R.L.; Townsend, D.B.
1986-12-16
This patent describes a boiling water reactor core whose operation is characterized by a substantial proportion of steam voids with concomitantly reduced moderation toward the top of the core when the reactor is in its hot operating condition. The reduced moderation leads to slower burnup and greater conversion ratio in an upper core region so that when the reactor is in its cold shut down condition the resulting relatively increased moderation in the upper core region is accompanied by a reactivity profile that peaks in the upper core region. A fuel assembly is described comprising; a component of fissile materialmore » distributed over a substantial axial extent of the fuel assembly; and a component of neutron absorbing material having an axial distribution characterized by an enhancement in an axial zone of the fuel assembly, designated the cold shutdown control zone, corresponding to at least a portion of the axial region of the core when the cold shutdown reactivity peaks. The aggregate amount of neutron absorbing material in the cold shutdown zone of the fuel assembly is greater than the aggregate amount of neutron absorbing material in the axial zones of the fuel assembly immediately above and immediately below the cold shutdown control zone whereby the cold shutdown reactivity peak is reduced relative to the cold shutdown reactivity in the zones immediately above and immediately below the cold shutdown control zone. The cold shutdown zone has an axial extent measured from the bottom of the fuel assembly in the range between 68-88 percent of the height of the fissile material in the fuel assembly.« less
Minor actinide transmutation in thorium and uranium matrices in heavy water moderated reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhatti, Zaki; Hyland, B.; Edwards, G.W.R.
2013-07-01
The irradiation of Th{sup 232} breeds fewer of the problematic minor actinides (Np, Am, Cm) than the irradiation of U{sup 238}. This characteristic makes thorium an attractive potential matrix for the transmutation of these minor actinides, as these species can be transmuted without the creation of new actinides as is the case with a uranium fuel matrix. Minor actinides are the main contributors to long term decay heat and radiotoxicity of spent fuel, so reducing their concentration can greatly increase the capacity of a long term deep geological repository. Mixing minor actinides with thorium, three times more common in themore » Earth's crust than natural uranium, has the additional advantage of improving the sustainability of the fuel cycle. In this work, lattice cell calculations have been performed to determine the results of transmuting minor actinides from light water reactor spent fuel in a thorium matrix. 15-year-cooled group-extracted transuranic elements (Np, Pu, Am, Cm) from light water reactor (LWR) spent fuel were used as the fissile component in a thorium-based fuel in a heavy water moderated reactor (HWR). The minor actinide (MA) transmutation rates, spent fuel activity, decay heat and radiotoxicity, are compared with those obtained when the MA were mixed instead with natural uranium and taken to the same burnup. Each bundle contained a central pin containing a burnable neutron absorber whose initial concentration was adjusted to have the same reactivity response (in units of the delayed neutron fraction β) for coolant voiding as standard NU fuel. (authors)« less
Computational Knee Ligament Modeling Using Experimentally Determined Zero-Load Lengths
Bloemker, Katherine H; Guess, Trent M; Maletsky, Lorin; Dodd, Kevin
2012-01-01
This study presents a subject-specific method of determining the zero-load lengths of the cruciate and collateral ligaments in computational knee modeling. Three cadaver knees were tested in a dynamic knee simulator. The cadaver knees also underwent manual envelope of motion testing to find their passive range of motion in order to determine the zero-load lengths for each ligament bundle. Computational multibody knee models were created for each knee and model kinematics were compared to experimental kinematics for a simulated walk cycle. One-dimensional non-linear spring damper elements were used to represent cruciate and collateral ligament bundles in the knee models. This study found that knee kinematics were highly sensitive to altering of the zero-load length. The results also suggest optimal methods for defining each of the ligament bundle zero-load lengths, regardless of the subject. These results verify the importance of the zero-load length when modeling the knee joint and verify that manual envelope of motion measurements can be used to determine the passive range of motion of the knee joint. It is also believed that the method described here for determining zero-load length can be used for in vitro or in vivo subject-specific computational models. PMID:22523522
Mathematical modeling of alignment dynamics in active motor-filament systems
NASA Astrophysics Data System (ADS)
Swaminathan, Sumanth
The formation of the cytoskeleton, via motor-mediated microtubule self-organization, is an important subject of study in the biological sciences as well as in nonequilibrium, soft matter physics. Accurate modeling of the dynamics is a formidable task as it involves intrinsic nonlinearities, structural anisotropies, nonequilibrium processes, and a broad window of time scales, length scales, and densities. In this thesis, we study the ordering dynamics and pattern formations arising from motor-mediated microtubule self-organization in dilute and semi-dilute filament solutions. In the dilute case, we use a probabilistic model in which microtubules interact through motor induced, inelastic binary collisions. This model shows that initially disordered filament solutions exhibit an ordering transition resulting in the emergence of well aligned rod bundles. We study the existence and dynamic interaction of microtubule bundles analytically and numerically. Our results show a long term attraction and coalescing of bundles indicating a clear coarsening in the system; microtubule bundles concentrate into fewer orientations on a slow logarithmic time scale. In the semi-dilute case, multiple motors can bind a filament to several others and, for a critical motor density, induce a transition to an ordered state with a nonzero mean orientation. We develop a spatially homogeneous, mean-field theory that explicitly accounts for motor forcing and thermal fluctuations which enter into the model as multiplicative and additive noises respectively. Our model further incorporates a force-dependent detachment rate of motors, which in turn affects the mean and the fluctuations of the net force acting on a filament. We demonstrate that the transition to the oriented state changes from second order to first order when the force-dependent detachment becomes important. In our final analysis, we add complex spatial inhomogeneities to our mean field theory. The revised model consists of a system of stochastic differential equations governing the time evolution of the orientation and center of mass of each filament; microtubules translate and rotate under the influence of motor forces and intrinsic thermal fluctuations. We show through a molecular dynamics type stochastic simulation that initially disordered systems of microtubules exhibit an ordering transition resulting in the formation of bundles and vortices. This finding is compared with previous binary interaction and hydrodynamic models and shown to be consistent with in vitro experiments on motor-mediated self-organization of microtubules and actin filaments.
Association of a Bundled-Payment Program With Cost and Outcomes in Full-Cycle Breast Cancer Care.
Wang, C Jason; Cheng, Skye H; Wu, Jen-You; Lin, Yi-Ping; Kao, Wen-Hsin; Lin, Chia-Li; Chen, Yin-Jou; Tsai, Shu-Ling; Kao, Feng-Yu; Huang, Andrew T
2017-03-01
Value-driven payment system reform is a potential tool for aligning economic incentives with the improvement of quality and efficiency of health care and containment of cost. Such a payment system has not been researched satisfactorily in full-cycle cancer care. To examine the association of outcomes and medical expenditures with a bundled-payment pay-for-performance program for breast cancer in Taiwan compared with a fee-for-service (FFS) program. Data were obtained from the Taiwan Cancer Database, National Health Insurance Claims Data, the National Death Registry, and the bundled-payment enrollment file. Women with newly diagnosed breast cancer and a documented first cancer treatment from January 1, 2004, to December 31, 2008, were selected from the Taiwan Cancer Database and followed up for 5 years, with the last follow-up data available on December 31, 2013. Patients in the bundled-payment program were matched at a ratio of 1:3 with control individuals in an FFS program using a propensity score method. The final sample of 17 940 patients included 4485 (25%) in the bundled-payment group and 13 455 (75%) in the FFS group. Rates of adherence to quality indicators, survival rates, and medical payments (excluding bonuses paid in the bundled-payment group). The Kaplan-Meier method was used to calculate 5-year overall and event-free survival rates by cancer stage, and the Cox proportional hazards regression model was used to examine the effect of the bundled-payment program on overall and event-free survival. Sensitivity analysis for bonus payments in the bundled-payment group was also performed. The study population included 17 940 women (mean [SD] age, 52.2 [10.3] years). In the bundled-payment group, 1473 of 4215 patients (34.9%) with applicable quality indicators had full (100%) adherence to quality indicators compared with 3438 of 12 506 patients (27.5%) with applicable quality indicators in the FFS group (P < .001). The 5-year event-free survival rates for patients with stages 0 to III breast cancer were 84.48% for the bundled-payment group and 80.88% for the FFS group (P < .01). Although the 5-year medical payments of the bundled-payment group remained stable, the cumulative medical payments for the FFS group steadily increased from $16 000 to $19 230 and exceeded pay-for-performance bundled payments starting in 2008. In Taiwan, compared with the regular FFS program, bundled payment may lead to better adherence to quality indicators, better outcomes, and more effective cost-control over time.
Remarks on non-maximal integral elements of the Cartan plane in jet spaces
NASA Astrophysics Data System (ADS)
Bächtold, M.; Moreno, G.
2014-11-01
There is a natural filtration on the space of degree-k homogeneous polynomials in n independent variables with coefficients in the algebra of smooth functions on the Grassmannian Gr (n,s), determined by the tautological bundle. In this paper we show that the space of s-dimensional integral elements of a Cartan plane on J(E,n), with dimE=n+m, has an affine bundle structure modeled by the so-obtained bundles over Gr (n,s), and we study a natural distribution associated with it. As an example, we show that a third-order nonlinear PDE of Monge-Ampère type is not contact-equivalent to a quasi-linear one.
Segmentation of Nerve Bundles and Ganglia in Spine MRI Using Particle Filters
Dalca, Adrian; Danagoulian, Giovanna; Kikinis, Ron; Schmidt, Ehud; Golland, Polina
2011-01-01
Automatic segmentation of spinal nerve bundles that originate within the dural sac and exit the spinal canal is important for diagnosis and surgical planning. The variability in intensity, contrast, shape and direction of nerves seen in high resolution myelographic MR images makes segmentation a challenging task. In this paper, we present an automatic tracking method for nerve segmentation based on particle filters. We develop a novel approach to particle representation and dynamics, based on Bézier splines. Moreover, we introduce a robust image likelihood model that enables delineation of nerve bundles and ganglia from the surrounding anatomical structures. We demonstrate accurate and fast nerve tracking and compare it to expert manual segmentation. PMID:22003741
Segmentation of nerve bundles and ganglia in spine MRI using particle filters.
Dalca, Adrian; Danagoulian, Giovanna; Kikinis, Ron; Schmidt, Ehud; Golland, Polina
2011-01-01
Automatic segmentation of spinal nerve bundles that originate within the dural sac and exit the spinal canal is important for diagnosis and surgical planning. The variability in intensity, contrast, shape and direction of nerves seen in high resolution myelographic MR images makes segmentation a challenging task. In this paper, we present an automatic tracking method for nerve segmentation based on particle filters. We develop a novel approach to particle representation and dynamics, based on Bézier splines. Moreover, we introduce a robust image likelihood model that enables delineation of nerve bundles and ganglia from the surrounding anatomical structures. We demonstrate accurate and fast nerve tracking and compare it to expert manual segmentation.
A Case Study of Wind-PV-Thermal-Bundled AC/DC Power Transmission from a Weak AC Network
NASA Astrophysics Data System (ADS)
Xiao, H. W.; Du, W. J.; Wang, H. F.; Song, Y. T.; Wang, Q.; Ding, J.; Chen, D. Z.; Wei, W.
2017-05-01
Wind power generation and photovoltaic (PV) power generation bundled with the support by conventional thermal generation enables the generation controllable and more suitable for being sent over to remote load centre which are beneficial for the stability of weak sending end systems. Meanwhile, HVDC for long-distance power transmission is of many significant technique advantages. Hence the effects of wind-PV-thermal-bundled power transmission by AC/DC on power system have become an actively pursued research subject recently. Firstly, this paper introduces the technical merits and difficulties of wind-photovoltaic-thermal bundled power transmission by AC/DC systems in terms of meeting the requirement of large-scale renewable power transmission. Secondly, a system model which contains a weak wind-PV-thermal-bundled sending end system and a receiving end system in together with a parallel AC/DC interconnection transmission system is established. Finally, the significant impacts of several factors which includes the power transmission ratio between the DC and AC line, the distance between the sending end system and receiving end system, the penetration rate of wind power and the sending end system structure on system stability are studied.
An Efficient Bundle Adjustment Model Based on Parallax Parametrization for Environmental Monitoring
NASA Astrophysics Data System (ADS)
Chen, R.; Sun, Y. Y.; Lei, Y.
2017-12-01
With the rapid development of Unmanned Aircraft Systems (UAS), more and more research fields have been successfully equipped with this mature technology, among which is environmental monitoring. One difficult task is how to acquire accurate position of ground object in order to reconstruct the scene more accurate. To handle this problem, we combine bundle adjustment method from Photogrammetry with parallax parametrization from Computer Vision to create a new method call APCP (aerial polar-coordinate photogrammetry). One impressive advantage of this method compared with traditional method is that the 3-dimensional point in space is represented using three angles (elevation angle, azimuth angle and parallax angle) rather than the XYZ value. As the basis for APCP, bundle adjustment could be used to optimize the UAS sensors' pose accurately, reconstruct the 3D models of environment, thus serving as the criterion of accurate position for monitoring. To verity the effectiveness of the proposed method, we test on several UAV dataset obtained by non-metric digital cameras with large attitude angles, and we find that our methods could achieve 1 or 2 times better efficiency with no loss of accuracy than traditional ones. For the classical nonlinear optimization of bundle adjustment model based on the rectangular coordinate, it suffers the problem of being seriously dependent on the initial values, making it unable to converge fast or converge to a stable state. On the contrary, APCP method could deal with quite complex condition of UAS when conducting monitoring as it represent the points in space with angles, including the condition that the sequential images focusing on one object have zero parallax angle. In brief, this paper presents the parameterization of 3D feature points based on APCP, and derives a full bundle adjustment model and the corresponding nonlinear optimization problems based on this method. In addition, we analyze the influence of convergence and dependence on the initial values through math formulas. At last this paper conducts experiments using real aviation data, and proves that the new model can effectively solve bottlenecks of the classical method in a certain degree, that is, this paper provides a new idea and solution for faster and more efficient environmental monitoring.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mays, Brian; Jackson, R. Brian
2017-03-08
The project, Toward a Longer Life Core: Thermal Hydraulic CFD Simulations and Experimental Investigation of Deformed Fuel Assemblies, DOE Project code DE-NE0008321, was a verification and validation project for flow and heat transfer through wire wrapped simulated liquid metal fuel assemblies that included both experiments and computational fluid dynamics simulations of those experiments. This project was a two year collaboration between AREVA, TerraPower, Argonne National Laboratory and Texas A&M University. Experiments were performed by AREVA and Texas A&M University. Numerical simulations of these experiments were performed by TerraPower and Argonne National Lab. Project management was performed by AREVA Federal Services.more » The first of a kind project resulted in the production of both local point temperature measurements and local flow mixing experiment data paired with numerical simulation benchmarking of the experiments. The project experiments included the largest wire-wrapped pin assembly Mass Index of Refraction (MIR) experiment in the world, the first known wire-wrapped assembly experiment with deformed duct geometries and the largest numerical simulations ever produced for wire-wrapped bundles.« less
Johnson, Japera; Bozeman, Barry
2012-11-01
The authors contend that increasing diversity in academic medicine, science, technology, engineering, and mathematics requires the adoption of a systematic approach to retain minority high school and college students as they navigate the scientific pipeline. Such an approach should focus on the interrelated and multilayered challenges that these students face. The authors fuse an alternative conceptualization of the scientific and technical human capital theoretical framework and the theory of social identity contingencies to offer a conceptual model for targeting the critical areas in which minority students may need additional support to continue toward careers in science. Their proposed asset bundles model is grounded in the central premise that making greater progress in recruiting and retaining minorities likely requires institutions to respond simultaneously to various social cues that signal devaluation of certain identities (e.g., gender, race, socioeconomic status). The authors define "asset bundles" as the specific sets of abilities and resources individuals develop that help them succeed in educational and professional tasks, including but not limited to science and research. The model consists of five asset bundles, each of which is supported in the research literature as a factor relevant to educational achievement and, the authors contend, may lead to improved and sustained diversity: educational endowments, science socialization, network development, family expectations, and material resources. Using this framework, they suggest possible ways of thinking about the task of achieving diversity as well as guideposts for next steps. Finally, they discuss the feasibility of implementing such an approach.
The on-orbit calibration of geometric parameters of the Tian-Hui 1 (TH-1) satellite
NASA Astrophysics Data System (ADS)
Wang, Jianrong; Wang, Renxiang; Hu, Xin; Su, Zhongbo
2017-02-01
The on-orbit calibration of geometric parameters is a key step in improving the location accuracy of satellite images without using Ground Control Points (GCPs). Most methods of on-orbit calibration are based on the self-calibration using additional parameters. When using additional parameters, different number of additional parameters may lead to different results. The triangulation bundle adjustment is another way to calibrate the geometric parameters of camera, which can describe the changes in each geometric parameter. When triangulation bundle adjustment method is applied to calibrate geometric parameters, a prerequisite is that the strip model can avoid systematic deformation caused by the rate of attitude changes. Concerning the stereo camera, the influence of the intersection angle should be considered during calibration. The Equivalent Frame Photo (EFP) bundle adjustment based on the Line-Matrix CCD (LMCCD) image can solve the systematic distortion of the strip model, and obtain high accuracy location without using GCPs. In this paper, the triangulation bundle adjustment is used to calibrate the geometric parameters of TH-1 satellite cameras based on LMCCD image. During the bundle adjustment, the three-line array cameras are reconstructed by adopting the principle of inverse triangulation. Finally, the geometric accuracy is validated before and after on-orbit calibration using 5 testing fields. After on-orbit calibration, the 3D geometric accuracy is improved to 11.8 m from 170 m. The results show that the location accuracy of TH-1 without using GCPs is significantly improved using the on-orbit calibration of the geometric parameters.
Kerr, I D; Sansom, M S
1997-01-01
Although there is a large body of site-directed mutagenesis data that identify the pore-lining sequence of the voltage-gated potassium channel, the structure of this region remains unknown. We have interpreted the available biochemical data as a set of topological and orientational restraints and employed these restraints to produce molecular models of the potassium channel pore region, H5. The H5 sequence has been modeled either as a tetramer of membrane-spanning beta-hairpins, thus producing an eight-stranded beta-barrel, or as a tetramer of incompletely membrane-spanning alpha-helical hairpins, thus producing an eight-staved alpha-helix bundle. In total, restraints-directed modeling has produced 40 different configurations of the beta-barrel model, each configuration comprising an ensemble of 20 structures, and 24 different configurations of the alpha-helix bundle model, each comprising an ensemble of 24 structures. Thus, over 1300 model structures for H5 have been generated. Configurations have been ranked on the basis of their predicted pore properties and on the extent of their agreement with the biochemical data. This ranking is employed to identify particular configurations of H5 that may be explored further as models of the pore-lining region of the voltage-gated potassium channel pore. Images FIGURE 7 FIGURE 12 PMID:9251779
Experience using individually supplied heater rods in critical power testing of advanced BWR fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Majed, M.; Morback, G.; Wiman, P.
1995-09-01
The ABB Atom FRIGG loop located in Vasteras Sweden has during the last six years given a large experience of critical power measurements for BWR fuel designs using indirectly heated rods with individual power supply. The loop was built in the sixties and designed for maximum 100 bar pressure. Testing up to the mid eighties was performed with directly heated rods using a 9 MW, 80 kA power supply. Providing test data to develop critical power correlations for BWR fuel assemblies requires testing with many radial power distributions over the full range of hydraulic conditions. Indirectly heated rods give largemore » advantages for the testing procedure, particularly convenient for variation of individual rod power. A test method being used at Stern Laboratories (formerly Westinghouse Canada) since the early sixties, allows one fuel assembly to simulate all required radial power distributions. This technique requires reliable indirectly heated rods with independently controlled power supplies and uses insulated electric fuel rod simulators with built-in instrumentation. The FRIGG loop was adapted to this system in 1987. A 4MW power supply with 10 individual units was then installed, and has since been used for testing 24 and 25 rod bundles simulating one subbundle of SVEA-96/100 type fuel assemblies. The experience with the system is very good, as being presented, and it is selected also for a planned upgrading of the facility to 15 MW.« less
Structure based computational assessment of channel properties of assembled ORF-8a from SARS-CoV.
Hsu, Hao-Jen; Lin, Meng-Han; Schindler, Christina; Fischer, Wolfgang B
2015-02-01
ORF 8a is a short 39 amino acid bitopic membrane protein encoded by severe acute respiratory syndrome causing corona virus (SARS-CoV). It has been identified to increase permeability of the lipid membrane for cations. Permeability is suggested to occur due to the assembly of helical bundles. Computational models of a pentameric assembly of 8a peptides are generated using the first 22 amino acids, which include the transmembrane domain. Low energy structures reveal a hydrophilic pore mantled by residues Thr-8, and -18, Ser-11, Cys-13, and Arg-22. Potential of mean force (PMF) profiles for mono (Na(+) , K(+) , Cl(-) ) and divalent (Ca(2+) ) ions along the pore are calculated. The data support experimental findings of a weak cation selectivity of the channel. Calculations on 8a are compared to data derived for a pentameric bundle consisting of the M2 helices of the bacterial pentameric ligand gated ion channel GLIC (3EHZ). PMF curves of both, bundles 8a and M2, show sigmoidal shaped profiles. In comparison to the data for the M2-GLIC model, data of the 8a bundle show lower amplitude of the PMF values between maximum and minimum and less discrimination amongst ions. © 2014 Wiley Periodicals, Inc.
Tashiro, Yasutaka; Okazaki, Ken; Iwamoto, Yukihide
2015-01-01
Purpose We aimed to clarify the distance between the anteromedial (AM) bundle and posterolateral (PL) bundle tunnel-aperture centers by simulating the anatomical femoral tunnel placement during double-bundle anterior cruciate ligament reconstruction using 3-D computer-aided design models of the knee, in order to discuss the risk of tunnel overlap. Relationships between the AM to PL center distance, body height, and sex difference were also analyzed. Patients and methods The positions of the AM and PL tunnel centers were defined based on previous studies using the quadrant method, and were superimposed anatomically onto the 3-D computer-aided design knee models from 68 intact femurs. The distance between the tunnel centers was measured using the 3-D DICOM software package. The correlation between the AM–PL distance and the subject’s body height was assessed, and a cutoff height value for a higher risk of overlap of the AM and PL tunnel apertures was identified. Results The distance between the AM and PL centers was 10.2±0.6 mm in males and 9.4±0.5 mm in females (P<0.01). The AM–PL center distance demonstrated good correlation with body height in both males (r=0.66, P<0.01) and females (r=0.63, P<0.01). When 9 mm was defined as the critical distance between the tunnel centers to preserve a 2 mm bony bridge between the two tunnels, the cutoff value was calculated to be a height of 160 cm in males and 155 cm in females. Conclusion When AM and PL tunnels were placed anatomically in simulated double-bundle anterior cruciate ligament reconstruction, the distance between the two tunnel centers showed a strong positive correlation with body height. In cases with relatively short stature, the AM and PL tunnel apertures are considered to be at a higher risk of overlap when surgeons choose the double-bundle technique. PMID:26170727
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edwards, G.W.R.; Priest, N.D.; Richardson, R.B.
The online refueling capability of Heavy Water Reactors (HWRs), and their good neutron economy, allows a relatively high amount of neutron absorption in breeding materials to occur during normal fuel irradiation. This characteristic makes HWRs uniquely suited to the extraction of energy from thorium. In Canada, the toxicity and radiological protection methods dealing with personnel exposure to natural uranium (NU) spent fuel (SF) are well-established, but the corresponding methods for irradiated thorium fuel are not well known. This study uses software to compare the activity and toxicity of irradiated thorium fuel ('thorium SF') against those of NU. Thorium elements, containedmore » in the inner eight elements of a heterogeneous high-burnup bundle having LEU (Low-enriched uranium) in the outer 35 elements, achieve a similar burnup to NU SF during its residence in a reactor, and the radiotoxicity due to fission products was found to be similar. However, due to the creation of such inhalation hazards as U-232 and Th-228, the radiotoxicity of thorium SF was almost double that of NU SF after sufficient time has passed for the decay of shorter-lived fission products. Current radio-protection methods for NU SF exposure are likely inadequate to estimate the internal dose to personnel to thorium SF, and an analysis of thorium in fecal samples is recommended to assess the internal dose from exposure to this fuel. (authors)« less
Balas, Michele C.; Vasilevskis, Eduard E.; Olsen, Keith M.; Schmid, Kendra K.; Shostrom, Valerie; Cohen, Marlene Z.; Peitz, Gregory; Gannon, David E.; Sisson, Joseph; Sullivan, James; Stothert, Joseph C.; Lazure, Julie; Nuss, Suzanne L.; Jawa, Randeep S.; Freihaut, Frank; Ely, E. Wesley; Burke, William J.
2014-01-01
Objective The debilitating and persistent effects of intensive care unit (ICU)-acquired delirium and weakness warrant testing of prevention strategies. The purpose of this study was to evaluate the effectiveness and safety of implementing the Awakening and Breathing Coordination, Delirium monitoring/management, and Early exercise/mobility (ABCDE) bundle into everyday practice. Design Eighteen-month, prospective, cohort, before-after study conducted between November 2010 and May 2012. Setting Five adult ICUs, one step-down unit, and one oncology/hematology special care unit located in a 624-bed tertiary medical center. Patients Two hundred ninety-six patients (146 pre- and 150 post-bundle implementation), age ≥ 19 years, managed by the institutions’ medical or surgical critical care service. Interventions ABCDE bundle. Measurements For mechanically ventilated patients (n = 187), we examined the association between bundle implementation and ventilator-free days. For all patients, we used regression models to quantify the relationship between ABCDE bundle implementation and the prevalence/duration of delirium and coma, early mobilization, mortality, time to discharge, and change in residence. Safety outcomes and bundle adherence were monitored. Main Results Patients in the post-implementation period spent three more days breathing without mechanical assistance than did those in the pre-implementation period (median [IQR], 24 [7 to 26] vs. 21 [0 to 25]; p = 0.04). After adjusting for age, sex, severity of illness, comorbidity, and mechanical ventilation status, patients managed with the ABCDE bundle experienced a near halving of the odds of delirium (odds ratio [OR], 0.55; 95% confidence interval [CI], 0.33–0.93; p = 0.03) and increased odds of mobilizing out of bed at least once during an ICU stay (OR, 2.11; 95% CI, 1.29–3.45; p = 0.003). No significant differences were noted in self-extubation or reintubation rates. Conclusions Critically ill patients managed with the ABCDE bundle spent three more days breathing without assistance, experienced less delirium, and were more likely to be mobilized during their ICU stay than patients treated with usual care. PMID:24394627
Simulated Cytoskeletal Collapse via Tau Degradation
Sendek, Austin; Fuller, Henry R.; Hayre, N. Robert; Singh, Rajiv R. P.; Cox, Daniel L.
2014-01-01
We present a coarse-grained two dimensional mechanical model for the microtubule-tau bundles in neuronal axons in which we remove taus, as can happen in various neurodegenerative conditions such as Alzheimers disease, tauopathies, and chronic traumatic encephalopathy. Our simplified model includes (i) taus modeled as entropic springs between microtubules, (ii) removal of taus from the bundles due to phosphorylation, and (iii) a possible depletion force between microtubules due to these dissociated phosphorylated taus. We equilibrate upon tau removal using steepest descent relaxation. In the absence of the depletion force, the transverse rigidity to radial compression of the bundles falls to zero at about 60% tau occupancy, in agreement with standard percolation theory results. However, with the attractive depletion force, spring removal leads to a first order collapse of the bundles over a wide range of tau occupancies for physiologically realizable conditions. While our simplest calculations assume a constant concentration of microtubule intercalants to mediate the depletion force, including a dependence that is linear in the detached taus yields the same collapse. Applying percolation theory to removal of taus at microtubule tips, which are likely to be the protective sites against dynamic instability, we argue that the microtubule instability can only obtain at low tau occupancy, from 0.06–0.30 depending upon the tau coordination at the microtubule tips. Hence, the collapse we discover is likely to be more robust over a wide range of tau occupancies than the dynamic instability. We suggest in vitro tests of our predicted collapse. PMID:25162587
Defects in crystalline packings of twisted filament bundles. I. Continuum theory of disclinations.
Grason, Gregory M
2012-03-01
We develop the theory of the coupling between in-plane order and out-of-plane geometry in twisted, two-dimensionally ordered filament bundles based on the nonlinear continuum elasticity theory of columnar materials. We show that twisted textures of filament backbones necessarily introduce stresses into the cross-sectional packing of bundles and that these stresses are formally equivalent to the geometrically induced stresses generated in thin elastic sheets that are forced to adopt spherical curvature. As in the case of crystalline order on curved membranes, geometrically induced stresses couple elastically to the presence of topological defects in the in-plane order. We derive the effective theory of multiple disclination defects in the cross section of bundle with a fixed twist and show that above a critical degree of twist, one or more fivefold disclinations is favored in the elastic energy ground state. We study the structure and energetics of multidisclination packings based on models of equilibrium and nonequilibrium cross-sectional order.
Assembly Kinetics Determine the Architecture of α-actinin Crosslinked F-actin Networks
Falzone, Tobias T.; Lenz, Martin; Kovar, David R.; Gardel, Margaret L.
2013-01-01
The actin cytoskeleton is organized into diverse meshworks and bundles that support many aspects of cell physiology. Understanding the self-assembly of these actin-based structures is essential for developing predictive models of cytoskeletal organization. Here we show that the competing kinetics of bundle formation with the onset of dynamic arrest arising from filament entanglements and cross-linking determine the architecture of reconstituted actin networks formed with α-actinin cross-links. Cross-link mediated bundle formation only occurs in dilute solutions of highly mobile actin filaments. As actin polymerization proceeds, filament mobility and bundle formation are arrested concomitantly. By controlling the onset of dynamic arrest, perturbations to actin assembly kinetics dramatically alter the architecture of biochemically identical samples. Thus, the morphology of reconstituted F-actin networks is a kinetically determined structure similar to those formed by physical gels and glasses. These results establish mechanisms controlling the structure and mechanics in diverse semi-flexible biopolymer networks. PMID:22643888
On the concept of a filtered bundle
NASA Astrophysics Data System (ADS)
Bruce, Andrew James; Grabowska, Katarzyna; Grabowski, Janusz
We present the notion of a filtered bundle as a generalization of a graded bundle. In particular, we weaken the necessity of the transformation laws for local coordinates to exactly respect the weight of the coordinates by allowing more general polynomial transformation laws. The key examples of such bundles include affine bundles and various jet bundles, both of which play fundamental roles in geometric mechanics and classical field theory. We also present the notion of double filtered bundles which provide natural generalizations of double vector bundles and double affine bundles. Furthermore, we show that the linearization of a filtered bundle — which can be seen as a partial polarization of the admissible changes of local coordinates — is well defined.
Anatomy of the anterior cruciate ligament with regard to its two bundles.
Petersen, Wolf; Zantop, Thore
2007-01-01
The anterior cruciate ligament (ACL) consists of two major fiber bundles, namely the anteromedial and posterolateral bundle. When the knee is extended, the posterolateral bundle (PL) is tight and the anteromedial (AM) bundle is moderately lax. As the knee is flexed, the femoral attachment of the ACL becomes a more horizontal orientation; causing the AM bundle to tighten and the PL bundle to relax. There is some degree of variability for the femoral origin of the anterome-dial and posterolateral bundle. The anteromedial bundle is located proximal and anterior in the femoral ACL origin (high and deep in the notch when the knee is flexed at 90 degrees ); the posterolateral bundle starts in the distal and posterior aspect of the femoral ACL origin (shallow and low when the knee is flexed at 90 degrees ). In the frontal plane the anteromedial bundle origin is in the 10:30 clock position and the postero-lateral bundle origin in the 9:30 clock position. At the tibial insertion the ACL fans out to form the foot region. The anteromedial bundle insertion is in the anterior part of the tibial ACL footprint, the posterolateral bundle in the posterior part. While the anteromedial bundle is the primary restraint against anterior tibial translation, the posterolateral bundle tends to stabilize the knee near full extension, particularly against rotatory loads.
Experimental and theoretical study of horizontal tube bundle for passive condensation heat transfer
NASA Astrophysics Data System (ADS)
Song, Yong Jae
The research in this thesis supports the design of a horizontal tube bundle condenser for passive heat removal system in nuclear reactors. From nuclear power plant containment, condensation of steam from a steam/noncondensable gas occurs on the primary side and boiling occurs on the secondary side; thus, heat exchanger modeling is a challenge. For the purpose of this experimental study, a six-tube bundle is used, where the outer diameter, inner diameter, and length of each stainless steel tube measures 38.10mm (1.5 inches), 31.75mm (1.25 inches) and 3.96m (156 inches), respectively. The pitch to diameter ratio was determined based on information gathered from literature surveys, and the dimensions were determined from calculations and experimental data. The objective of the calculations, correlations, and experimental data was to obtain complete condensation within the tube bundle. Experimental conditions for the tests in this thesis work were determined from Design Basis Accident (DBA). The applications are for an actual Passive Containment Cooling Systems (PCCS) condenser under postulated accident conditions in future light water reactors. In this research, steady state and transient experiments were performed to investigate the effect of noncondensable gas on steam condensation inside and boiling outside a tube bundle heat exchanger. The condenser tube inlet steam mass flow rate varied from 18.0 to 48.0 g/s, the inlet pressure varied from 100 kPa to 400 kPa, and the inlet noncondensable gas mass fraction varied from 1% to 10%. The effect of the noncondensable gas was examined by comparing the tube centerline temperatures for various inlet and system conditions. As a result, it was determined that the noncondensable gas accumulated near the condensate film causing a decrease of mass and energy transfer. In addition, the effect of the inlet steam flow rate gas was investigated by comparing the tube centerline temperatures, the conclusion being that, as the inlet steam mass flow rate increased, the length required for complete condensation also increased. Comparison of tube centerline temperature profiles was also used to examine the effect of inlet pressure on the heat transfer performance. From this assessment, it was determined that as the inlet pressure increased, the length required for complete condensation decreased. The investigation of tube bundle effects was conducted by comparing the condensate flow rates. The experimental results showed that the upper tubes in the bundle had better heat transfer performance than the lower tubes. In regard to modeling of the heat exchanger in this study, for the primary side, an empirical correlation was developed herein to provide Nusselt numbers for condensation heat transfer in horizontal tubes with noncondensable gases. Nusselt numbers were correlated as: Nu = 106.31·Re m0.147·W a-0.843. The empirical model for condensation heat transfer coefficients and the secondary-side model were integrated within a Matlab program to provide an analysis tool for horizontal tube bundle condenser heat exchangers. Also on the secondary side, two phase heat transfer coefficients were modeled considering both convective boiling and nucleate boiling as: hTP = 10.03·exp(-2.28·alpha)· hCV + 0.076·exp[3.73x10-6·(Re f-1.6x105)]·hNB.
Mergers, Acquisitions, and Access: STM Publishing Today
NASA Astrophysics Data System (ADS)
Robertson, Kathleen
Electronic publishing is changing the fundamentals of the entire printing/delivery/archive system that has served as the distribution mechanism for scientific research over the last century and a half. The merger-mania of the last 20 years, preprint pools, and publishers' licensing and journals-bundling plans are among the phenomena impacting the scientific information field. Science-Technology-Medical (STM) publishing is experiencing a period of intense consolidation and reorganization. This paper gives an overview of the economic factors fueling these trends, the major STM publishers, and the government regulatory bodies that referee this industry in Europe, Canada, and the USA.
Standardization of Type 2 Diabetes Outpatient Expenditure with Bundled Payment Method in China.
Xu, Guo-Chao; Luo, Yun; Li, Qian; Wu, Meng-Fan; Zhou, Zi-Jun
2016-04-20
In recent years, the prevalence of type 2 diabetes among Chinese population has been increasing by years, directly leading to an average annual growth rate of 19.90% of medical expenditure. Therefore, it is urgent to work on strategies to control the growth of medical expenditure on type 2 diabetes on the basis of the reality of China. Therefore, in this study, we explored the feasibility of implementing bundled payment in China through analyzing bundled payment standards of type 2 diabetes outpatient services. This study analyzed the outpatient expenditure on type 2 diabetes with Beijing Urban Employee's Basic Medical Insurance from 2010 to 2012. Based on the analysis of outpatient expenditure and its influential factors, we adopted decision tree approach to conduct a case-mix analysis. In the end, we built a case-mix model to calculate the standard expenditure and the upper limit of each combination. We found that age, job status, and whether with complication were significant factors that influence outpatient expenditure for type 2 diabetes. Through the analysis of the decision tree, we used six variables (complication, age, diabetic foot, diabetic nephropathy, cardiac-cerebrovascular disease, and neuropathy) to group the cases, and obtained 11 case-mix groups. We argued that it is feasible to implement bundled payment on type 2 diabetes outpatient services. Bundled payment is effective to control the increase of outpatient expenditure. Further improvements are needed for the implementation of bundled payment reimbursement standards, together with relevant policies and measures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hursin, M.; Perret, G.
The research program LIFE (Large-scale Irradiated Fuel Experiment) between PSI and Swissnuclear has been started in 2006 to study the interaction between large sets of burnt and fresh fuel pins in conditions representative of power light water reactors. Reactor physics parameters such as flux ratios and reaction rate distributions ({sup 235}U and {sup 238}U fissions and {sup 238}U capture) are calculated to estimate an appropriate arrangement of burnt and fresh fuel pins within the central element of the test zone of the zero-power research reactor PROTEUS. The arrangement should minimize the number of burnt fuel pins to ease fuel handlingmore » and reduce costs, whilst guaranteeing that the neutron spectrum in both burnt and fresh fuel regions and at their interface is representative of a large uniform array of burnt and fresh pins in the same moderation conditions. First results are encouraging, showing that the burnt/fresh fuel interface is well represented with a 6 x 6 bundle of burnt pins. The second part of the project involves the use of TSUNAMI, CASMO-4E and DAKOTA to perform parametric and optimization studies on the PROTEUS lattice by varying its pitch (P) and fraction of D{sub 2}O in moderator (F{sub D2O}) to be as representative as possible of a power light water reactor core at hot full power conditions at beginning of cycle (BOC). The parameters P and F{sub D2O} that best represent a PWR at BOC are 1.36 cm and 5% respectively. (authors)« less
A Mathematical Model for Continuous Fiber Reinforced Thermoplastic Composite in Melt Impregnation
NASA Astrophysics Data System (ADS)
Ren, Feng; Yu, Yang; Yang, Jianjun; Xin, Chunling; He, Yadong
2017-06-01
Through the combination of Reynolds equation and Darcy's law, a mathematical model was established to calculate the pressure distribution in wedge area, which contributed to the forecast effect of processing parameters on impregnation degree of the fiber bundle. The experiments were conducted to verify the capacity of the proposed model with satisfactory results, which means that the model is effective in predicting the influence of processing parameters on impregnation. From the mathematical model, it was known that the impregnation degree of the fiber bundle would be improved by increasing the processing temperature, number and radius of pins, or decreasing the pulling speed and the center distance of pins, which provided a possible solution to the difficulty of melt with high viscosity in melt impregnation and optimization of impregnation processing.
Nanostructured Composites: Effective Mechanical Property Determination of Nanotube Bundles
NASA Technical Reports Server (NTRS)
Saether, E.; Pipes, R. B.; Frankland, S. J. V.
2002-01-01
Carbon nanotubes naturally tend to form crystals in the form of hexagonally packed bundles or ropes that should exhibit a transversely isotropic constitutive behavior. Although the intratube axial stiffness is on the order of 1 TPa due to a strong network of delocalized bonds, the intertube cohesive strength is orders of magnitude less controlled by weak, nonbonding van der Waals interactions. An accurate determination of the effective mechanical properties of nanotube bundles is important to assess potential structural applications such as reinforcement in future composite material systems. A direct method for calculating effective material constants is developed in the present study. The Lennard-Jones potential is used to model the nonbonding cohesive forces. A complete set of transverse moduli are obtained and compared with existing data.
Feld, April; Madden-Baer, Rose; McCorkle, Ruth
2016-01-01
The Centers for Medicare and Medicaid Services Innovation Center's Episode-Based Payment initiatives propose a large opportunity to reduce cost from waste and variation and stand to align hospitals, physicians, and postacute providers in the redesign of care that achieves savings and improve quality. Community-based organizations are at the forefront of this care redesign through innovative models of care aimed at bridging gaps in care coordination and reducing hospital readmissions. This article describes a community-based provider's approach to participation under the Bundled Payments for Care Improvement initiative and a 90-day model of care for congestive heart failure in home care.
NASA Technical Reports Server (NTRS)
Baird, R. A.
1994-01-01
1. Hair cells in whole-mount in vitro preparations of the utricular macula of the bullfrog (Rana catesbeiana) were selected according to their macular location and hair bundle morphology. The sensitivity and response dynamics of selected hair cells to natural stimulation were examined by recording their voltage responses to step and sinusoidal hair bundle displacements applied to their longest stereocilia. 2. The voltage responses of 31 hair cells to sinusoidal hair bundle displacements were characterized by their gains and phases, taken with respect to peak hair bundle displacement. The gains of Type B and Type C cells at both 0.5 and 5.0 Hz were markedly lower than those of Type F and Type E cells. Phases, with the exception of Type C cells, lagged hair bundle displacement at 0.5 Hz. Type C cells had phase leads of 25-40 degrees. At 5.0 Hz, response phases in all cells were phase lagged with respect to those at 0.5 Hz. Type C cells had larger gains and smaller phase leads at 5.0 Hz than at 0.5 Hz, suggesting the presence of low-frequency adaptation. 3. Displacement-response curves, derived from the voltage responses to 5.0-Hz sinusoids, were sigmoidal in shape and asymmetrical, with the depolarizing response having a greater magnitude and saturating less abruptly than the hyperpolarizing response. When normalized to their largest displacement the linear ranges of these curves varied from < 0.5 to 1.25 microns and were largest in Type B and smallest in Type F and Type E cells. Sensitivity, defined as the slope of the normalized displacement-response curve, was inversely correlated with linear range. 4. The contribution of geometric factors associated with the hair bundle to linear range and sensitivity were predicted from realistic models of utricular hair bundles created using morphological data obtained from light and electron microscopy. Three factors, including 1) the inverse ratio of the lengths of the kinocilium and longest stereocilia, representing the lever arm between kinociliary and stereociliary displacement; 2) tip link extension/linear displacement, largely a function of stereociliary height and separation; and 3) stereociliary number, an estimate of the number of transduction channels, were considered in this analysis. The first of these factors was quantitatively more important than the latter two factors and their total contribution was largest in Type B and Type C cells. Theoretical models were also used to calculate the relation between rotary and linear displacement.(ABSTRACT TRUNCATED AT 400 WORDS).
Deformation behavior and mechanical analysis of vertically aligned carbon nanotube (VACNT) bundles
NASA Astrophysics Data System (ADS)
Hutchens, Shelby B.
Vertically aligned carbon nanotubes (VACNTs) serve as integral components in a variety of applications including MEMS devices, energy absorbing materials, dry adhesives, light absorbing coatings, and electron emitters, all of which require structural robustness. It is only through an understanding of VACNT's structural mechanical response and local constitutive stress-strain relationship that future advancements through rational design may take place. Even for applications in which the structural response is not central to device performance, VACNTs must be sufficiently robust and therefore knowledge of their microstructure-property relationship is essential. This thesis first describes the results of in situ uniaxial compression experiments of 50 micron diameter cylindrical bundles of these complex, hierarchical materials as they undergo unusual deformation behavior. Most notably they deform via a series of localized folding events, originating near the bundle base, which propagate laterally and collapse sequentially from bottom to top. This deformation mechanism accompanies an overall foam-like stress-strain response having elastic, plateau, and densification regimes with the addition of undulations in the stress throughout the plateau regime that correspond to the sequential folding events. Microstructural observations indicate the presence of a strength gradient, due to a gradient in both tube density and alignment along the bundle height, which is found to play a key role in both the sequential deformation process and the overall stress-strain response. Using the complicated structural response as both motivation and confirmation, a finite element model based on a viscoplastic solid is proposed. This model is characterized by a flow stress relation that contains an initial peak followed by strong softening and successive hardening. Analysis of this constitutive relation results in capture of the sequential buckling phenomenon and a strength gradient effect. This combination of experimental and modeling approaches motivates discussion of the particular microstructural mechanisms and local material behavior that govern the non-trivial energy absorption via sequential, localized buckle formation in the VACNT bundles.
Park, Haesuk; Rascati, Karen L; Keith, Michael S
2015-06-01
From January 2016, payment for oral-only renal medications (including phosphate binders and cinacalcet) was expected to be included in the new Medicare bundled end-stage renal disease (ESRD) prospective payment system (PPS). The implementation of the ESRD PPS has generated concern within the nephrology community because of the potential for inadequate funding and the impact on patient quality of care. To estimate the potential economic impact of the new Medicare bundled ESRD PPS reimbursement from the perspective of a large dialysis organization in the United States. We developed an interactive budget impact model to evaluate the potential economic implications of Medicare payment changes to large dialysis organizations treating patients with ESRD who are receiving phosphate binders. In this analysis, we focused on the budget impact of the intended 2016 integration of oral renal drugs, specifically oral phosphate binders, into the PPS. We also utilized the model to explore the budgetary impact of a variety of potential shifts in phosphate binder market shares under the bundled PPS from 2013 to 2016. The base model predicts that phosphate binder costs will increase to $34.48 per dialysis session in 2016, with estimated U.S. total costs for phosphate binders of over $682 million. Based on these estimates, a projected Medicare PPS $33.44 reimbursement rate for coverage of all oral-only renal medications (i.e., phosphate binders and cinacalcet) would be insufficient to cover these costs. A potential renal drugs and services budget shortfall for large dialysis organizations of almost $346 million was projected. Our findings suggest that large dialysis organizations will be challenged to manage phosphate binder expenditures within the planned Medicare bundled rate structure. As a result, large dialysis organizations may have to make treatment choices in light of potential inadequate funding, which could have important implications for the quality of care for patients with ESRD.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strzalka, J.; Liu, J; Tronin, A
2009-01-01
We previously reported the synthesis and structural characterization of a model membrane protein comprised of an amphiphilic 4-helix bundle peptide with a hydrophobic domain based on a synthetic ion channel and a hydrophilic domain with designed cavities for binding the general anesthetic halothane. In this work, we synthesized an improved version of this halothane-binding amphiphilic peptide with only a single cavity and an otherwise identical control peptide with no such cavity, and applied x-ray reflectivity to monolayers of these peptides to probe the distribution of halothane along the length of the core of the 4-helix bundle as a function ofmore » the concentration of halothane. At the moderate concentrations achieved in this study, approximately three molecules of halothane were found to be localized within a broad symmetric unimodal distribution centered about the designed cavity. At the lowest concentration achieved, of approximately one molecule per bundle, the halothane distribution became narrower and more peaked due to a component of {approx}19Angstroms width centered about the designed cavity. At higher concentrations, approximately six to seven molecules were found to be uniformly distributed along the length of the bundle, corresponding to approximately one molecule per heptad. Monolayers of the control peptide showed only the latter behavior, namely a uniform distribution along the length of the bundle irrespective of the halothane concentration over this range. The results provide insight into the nature of such weak binding when the dissociation constant is in the mM regime, relevant for clinical applications of anesthesia. They also demonstrate the suitability of both the model system and the experimental technique for additional work on the mechanism of general anesthesia, some of it presented in the companion parts II and III under this title.« less
Numerical analysis of the blade tip-timing signal of a fiber bundle sensor probe
NASA Astrophysics Data System (ADS)
Guo, Haotian; Duan, Fajie; Cheng, Zhonghai
2015-03-01
Blade tip-timing is the most effective method for online blade vibration measurement of large rotating machines like turbine engines. Fiber bundle sensors are utilized in tip-timing system to measure the arrival time of the blade. The model of the tip-timing signal of the fiber bundle sensor is established. Experiments are conducted and the results are in concordance with the model established. The rising speed of the tip-timing signal is analyzed. To minimize the tip-timing error, the effects of the clearance change between the sensor and the blade and the deflection of the tip surface are analyzed. Simulation results indicate that the variable gain amplifier, which amplifies the signals to a similar level, can eliminate the measurement error caused by the variation of the clearance between the sensor and blade. Increasing the clearance between the sensor and blade can reduce the measurement error introduced by deflection of the tip surface.
SfM with MRFs: discrete-continuous optimization for large-scale structure from motion.
Crandall, David J; Owens, Andrew; Snavely, Noah; Huttenlocher, Daniel P
2013-12-01
Recent work in structure from motion (SfM) has built 3D models from large collections of images downloaded from the Internet. Many approaches to this problem use incremental algorithms that solve progressively larger bundle adjustment problems. These incremental techniques scale poorly as the image collection grows, and can suffer from drift or local minima. We present an alternative framework for SfM based on finding a coarse initial solution using hybrid discrete-continuous optimization and then improving that solution using bundle adjustment. The initial optimization step uses a discrete Markov random field (MRF) formulation, coupled with a continuous Levenberg-Marquardt refinement. The formulation naturally incorporates various sources of information about both the cameras and points, including noisy geotags and vanishing point (VP) estimates. We test our method on several large-scale photo collections, including one with measured camera positions, and show that it produces models that are similar to or better than those produced by incremental bundle adjustment, but more robustly and in a fraction of the time.
An analysis of FtsZ assembly using small angle X-ray scattering and electron microscopy.
Kuchibhatla, Anuradha; Abdul Rasheed, A S; Narayanan, Janaky; Bellare, Jayesh; Panda, Dulal
2009-04-09
Small angle X-ray scattering (SAXS) was used for the first time to study the self-assembly of the bacterial cell division protein, FtsZ, with three different additives: calcium chloride, monosodium glutamate and DEAE-dextran hydrochloride in solution. The SAXS data were analyzed assuming a model form factor and also by a model-independent analysis using the pair distance distribution function. Transmission electron microscopy (TEM) was used for direct observation of the FtsZ filaments. By sectioning and negative staining with glow discharged grids, very high bundling as well as low bundling polymers were observed under different assembly conditions. FtsZ polymers formed different structures in the presence of different additives and these additives were found to increase the bundling of FtsZ protofilaments by different mechanisms. The combined use of SAXS and TEM provided us a significant insight of the assembly of FtsZ and microstructures of the assembled FtsZ polymers.
Veth, Klaske N; Van der Heijden, Beatrice I J M; Korzilius, Hubert P L M; De Lange, Annet H; Emans, Ben J M
2018-01-01
This two-wave complete panel study aims to examine human resource management (HRM) bundles of practices in relation to social support [i.e., leader-member exchange (LMX), coworker exchange (CWX)] and employee outcomes (i.e., work engagement, employability, and health), within a context of workers aged 65+. Based upon the social exchange theory and the Job Demands-Resources (JD-R) framework, it was hypothesized that HRM bundles at Time 1 would increase bridge workers' outcomes at Time 2, and that this relationship would be mediated by perceptions of LMX and CWX at Time 2. Using a longitudinal design, hypotheses were tested in a unique sample of Dutch bridge employees ( N = 228). Results of several structural equation modeling analyses revealed no significant associations between HRM bundles, and social support, moreover, no significant associations were found in relation to employee outcomes. However, the results of the best-fitting final model revealed the importance of the impact of social support on employee (65+) outcomes over time.
2011 Annual Criticality Safety Program Performance Summary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrea Hoffman
The 2011 review of the INL Criticality Safety Program has determined that the program is robust and effective. The review was prepared for, and fulfills Contract Data Requirements List (CDRL) item H.20, 'Annual Criticality Safety Program performance summary that includes the status of assessments, issues, corrective actions, infractions, requirements management, training, and programmatic support.' This performance summary addresses the status of these important elements of the INL Criticality Safety Program. Assessments - Assessments in 2011 were planned and scheduled. The scheduled assessments included a Criticality Safety Program Effectiveness Review, Criticality Control Area Inspections, a Protection of Controlled Unclassified Information Inspection,more » an Assessment of Criticality Safety SQA, and this management assessment of the Criticality Safety Program. All of the assessments were completed with the exception of the 'Effectiveness Review' for SSPSF, which was delayed due to emerging work. Although minor issues were identified in the assessments, no issues or combination of issues indicated that the INL Criticality Safety Program was ineffective. The identification of issues demonstrates the importance of an assessment program to the overall health and effectiveness of the INL Criticality Safety Program. Issues and Corrective Actions - There are relatively few criticality safety related issues in the Laboratory ICAMS system. Most were identified by Criticality Safety Program assessments. No issues indicate ineffectiveness in the INL Criticality Safety Program. All of the issues are being worked and there are no imminent criticality concerns. Infractions - There was one criticality safety related violation in 2011. On January 18, 2011, it was discovered that a fuel plate bundle in the Nuclear Materials Inspection and Storage (NMIS) facility exceeded the fissionable mass limit, resulting in a technical safety requirement (TSR) violation. The TSR limits fuel plate bundles to 1085 grams U-235, which is the maximum loading of an ATR fuel element. The overloaded fuel plate bundle contained 1097 grams U-235 and was assembled under an 1100 gram U-235 limit in 1982. In 2003, the limit was reduced to 1085 grams citing a new criticality safety evaluation for ATR fuel elements. The fuel plate bundle inventories were not checked for compliance prior to implementing the reduced limit. A subsequent review of the NMIS inventory did not identify further violations. Requirements Management - The INL Criticality Safety program is organized and well documented. The source requirements for the INL Criticality Safety Program are from 10 CFR 830.204, DOE Order 420.1B, Chapter III, 'Nuclear Criticality Safety,' ANSI/ANS 8-series Industry Standards, and DOE Standards. These source requirements are documented in LRD-18001, 'INL Criticality Safety Program Requirements Manual.' The majority of the criticality safety source requirements are contained in DOE Order 420.1B because it invokes all of the ANSI/ANS 8-Series Standards. DOE Order 420.1B also invokes several DOE Standards, including DOE-STD-3007, 'Guidelines for Preparing Criticality Safety Evaluations at Department of Energy Non-Reactor Nuclear Facilities.' DOE Order 420.1B contains requirements for DOE 'Heads of Field Elements' to approve the criticality safety program and specific elements of the program, namely, the qualification of criticality staff and the method for preparing criticality safety evaluations. This was accomplished by the approval of SAR-400, 'INL Standardized Nuclear Safety Basis Manual,' Chapter 6, 'Prevention of Inadvertent Criticality.' Chapter 6 of SAR-400 contains sufficient detail and/or reference to the specific DOE and contractor documents that adequately describe the INL Criticality Safety Program per the elements specified in DOE Order 420.1B. The Safety Evaluation Report for SAR-400 specifically recognizes that the approval of SAR-400 approves the INL Criticality Safety Program. No new source requirements were released in 2011. A revision to LRD-18001 is planned for 2012 to clarify design requirements for criticality alarms. Training - Criticality Safety Engineering has developed training and provides training for many employee positions, including fissionable material handlers, facility managers, criticality safety officers, firefighters, and criticality safety engineers. Criticality safety training at the INL is a program strength. A revision to the training module developed in 2010 to supplement MFC certified fissionable material handlers (operators) training was prepared and presented in August of 2011. This training, 'Applied Science of Criticality Safety,' builds upon existing training and gives operators a better understanding of how their criticality controls are derived. Improvements to 00INL189, 'INL Criticality Safety Principles' are planned for 2012 to strengthen fissionable material handler training.« less
Madhani, Shalv P; D'Aloiso, Brandon D; Frankowski, Brian; Federspiel, William J
2016-01-01
Hollow fiber membranes (HFMs) are used in blood oxygenators for cardiopulmonary bypass or in next generation artificial lungs. Flow analyses of these devices is typically done using computational fluid dynamics (CFD) modeling HFM bundles as porous media, using a Darcy permeability coefficient estimated from the Blake-Kozeny (BK) equation to account for viscous drag from fibers. We recently published how well this approach can predict Darcy permeability for fiber bundles made from polypropylene HFMs, showing the prediction can be significantly improved using an experimentally derived correlation between the BK constant (A) and bundle porosity (ε). In this study, we assessed how well our correlation for A worked for predicting the Darcy permeability of fiber bundles made from Membrana polymethylpentene (PMP) HFMs, which are increasingly being used clinically. Swatches in the porosity range of 0.4 to 0.8 were assessed in which sheets of fiber were stacked in parallel, perpendicular, and angled configurations. Our previously published correlation predicted Darcy within ±8%. A new correlation based on current and past measured permeability was determined: A = 497ε - 103; using this correlation measured Darcy permeability was within ±6%. This correlation varied from 8% to -3.5% of our prior correlation over the tested porosity range.
Madhani, Shalv. P.; D’Aloiso, Brandon. D.; Frankowski, Brian.; Federspiel, William. J.
2016-01-01
Hollow fiber membranes (HFMs) are used in blood oxygenators for cardiopulmonary bypass or in next generation artificial lungs. Flow analyses of these devices is typically done using computational fluid dynamics (CFD) modeling HFM bundles as porous media, using a Darcy permeability coefficient estimated from the Blake – Kozeny (BK) equation to account for viscous drag from fibers. We recently published how well this approach can predict Darcy permeability for fiber bundles made from polypropylene HFMs, showing the prediction can be significantly improved using an experimentally derived correlation between the BK constant (A) and bundle porosity (ε). In this study, we assessed how well our correlation for A worked for predicting the Darcy permeability of fiber bundles made from Membrana® polymethylpentene (PMP) HFMs, which are increasingly being used clinically. Swatches in the porosity range of 0.4 to 0.8 were assessed in which sheets of fiber were stacked in parallel, perpendicular and angled configurations. Our previously published correlation predicted Darcy within ±8%. A new correlation based on current and past measured permeability was determined: A=497ε-103; using this correlation measured Darcy permeability was within ±6%. This correlation varied from 8% to −3.5% of our prior correlation over the tested porosity range. PMID:26809086
Enhanced signal-to-noise ratios in frog hearing can be achieved through amplitude death
Ahn, Kang-Hun
2013-01-01
In the ear, hair cells transform mechanical stimuli into neuronal signals with great sensitivity, relying on certain active processes. Individual hair cell bundles of non-mammals such as frogs and turtles are known to show spontaneous oscillation. However, hair bundles in vivo must be quiet in the absence of stimuli, otherwise the signal is drowned in intrinsic noise. Thus, a certain mechanism is required in order to suppress intrinsic noise. Here, through a model study of elastically coupled hair bundles of bullfrog sacculi, we show that a low stimulus threshold and a high signal-to-noise ratio (SNR) can be achieved through the amplitude death phenomenon (the cessation of spontaneous oscillations by coupling). This phenomenon occurs only when the coupled hair bundles have inhomogeneous distribution, which is likely to be the case in biological systems. We show that the SNR has non-monotonic dependence on the mass of the overlying membrane, and find out that the SNR has maximum value in the region of amplitude death. The low threshold of stimulus through amplitude death may account for the experimentally observed high sensitivity of frog sacculi in detecting vibration. The hair bundles' amplitude death mechanism provides a smart engineering design for low-noise amplification. PMID:23883956
An operating principle of the turtle utricle to detect wide dynamic range.
Nam, Jong-Hoon
2018-03-01
The utricle encodes both static information such as head orientation, and dynamic information such as vibrations. It is not well understood how the utricle can encode both static and dynamic information for a wide dynamic range (from <0.05 to >2 times the gravitational acceleration; from DC to > 1000 Hz vibrations). Using computational models of the hair cells in the turtle utricle, this study presents an explanation on how the turtle utricle encodes stimulations over such a wide dynamic range. Two hair bundles were modeled using the finite element method-one representing the striolar hair cell (Cell S), and the other representing the medial extrastriolar hair cell (Cell E). A mechano-transduction (MET) channel model was incorporated to compute MET current (i MET ) due to hair bundle deflection. A macro-mechanical model of the utricle was used to compute otoconial motions from head accelerations (a Head ). According to known anatomical data, Cell E has a long kinocilium that is embedded into the stiff otoconial layer. Unlike Cell E, the hair bundle of Cell S falls short of the otoconial layer. Considering such difference in the mechanical connectivity between the hair cell bundle and the otoconial layer, three cases were simulated: Cell E displacement-clamped, Cell S viscously-coupled, and Cell S displacement-clamped. Head accelerations at different amplitude levels and different frequencies were simulated for the three cases. When a realistic head motion was simulated, Cell E was responsive to head orientation, while the viscously-coupled Cell S was responsive to fast head motion imitating the feeding strike of a turtle. Copyright © 2017 Elsevier B.V. All rights reserved.
An extended OpenSim knee model for analysis of strains of connective tissues.
Marieswaran, M; Sikidar, Arnab; Goel, Anu; Joshi, Deepak; Kalyanasundaram, Dinesh
2018-04-17
OpenSim musculoskeletal models provide an accurate simulation environment that eases limitations of in vivo and in vitro studies. In this work, a biomechanical knee model was formulated with femoral articular cartilages and menisci along with 25 connective tissue bundles representing ligaments and capsules. The strain patterns of the connective tissues in the presence of femoral articular cartilage and menisci in the OpenSim knee model was probed in a first of its kind study. The effect of knee flexion (0°-120°), knee rotation (- 40° to 30°) and knee adduction (- 15° to 15°) on the anterior cruciate, posterior cruciate, medial collateral, lateral collateral ligaments and other connective tissues were studied by passive simulation. Further, a new parameter for assessment of strain namely, the differential inter-bundle strain of the connective tissues were analyzed to provide new insights for injury kinematics. ACL, PCL, LCL and PL was observed to follow a parabolic strain pattern during flexion while MCL represented linear strain patterns. All connective tissues showed non-symmetric parabolic strain variation during rotation. During adduction, the strain variation was linear for the knee bundles except for FL, PFL and TL. Strains higher than 0.1 were observed in most of the bundles during lateral rotation followed by abduction, medial rotation and adduction. In the case of flexion, highest strains were observed in aACL and aPCL. A combination of strains at a flexion of 0° with medial rotation of 30° or a flexion of 80° with rotation of 30° are evaluated as rupture-prone kinematics.
On the force-velocity relationship of a bundle of rigid bio-filaments
NASA Astrophysics Data System (ADS)
Perilli, Alessia; Pierleoni, Carlo; Ciccotti, Giovanni; Ryckaert, Jean-Paul
2018-03-01
In various cellular processes, bio-filaments like F-actin and F-tubulin are able to exploit chemical energy associated with polymerization to perform mechanical work against an obstacle loaded with an external force. The force-velocity relationship quantitatively summarizes the nature of this process. By a stochastic dynamical model, we give, together with the evolution of a staggered bundle of Nf rigid living filaments facing a loaded wall, the corresponding force-velocity relationship. We compute the evolution of the model in the infinite wall diffusion limit and in supercritical conditions (monomer density reduced by critical density ρ^ 1>1 ), and we show that this solution remains valid for moderate non-zero values of the ratio between the wall diffusion and the chemical time scales. We consider two classical protocols: the bundle is opposed either to a constant load or to an optical trap setup, characterized by a harmonic restoring force. The constant load case leads, for each F value, to a stationary velocity Vs t a t(F ;Nf,ρ^ 1 ) after a relaxation with characteristic time τmicro(F). When the bundle (initially taken as an assembly of filament seeds) is subjected to a harmonic restoring force (optical trap load), the bundle elongates and the load increases up to stalling over a characteristic time τOT. Extracted from this single experiment, the force-velocity VO T(F ;Nf,ρ^ 1 ) curve is found to coincide with Vs t a t(F ;Nf,ρ^ 1 ) , except at low loads. We show that this result follows from the adiabatic separation between τmicro and τOT, i.e., τmicro ≪ τOT.
Bumgarner, Johnathan R; McCray, John E
2007-06-01
During operation of an onsite wastewater treatment system, a low-permeability biozone develops at the infiltrative surface (IS) during application of wastewater to soil. Inverse numerical-model simulations were used to estimate the biozone saturated hydraulic conductivity (K(biozone)) under variably saturated conditions for 29 wastewater infiltration test cells installed in a sandy loam field soil. Test cells employed two loading rates (4 and 8cm/day) and 3 IS designs: open chamber, gravel, and synthetic bundles. The ratio of K(biozone) to the saturated hydraulic conductivity of the natural soil (K(s)) was used to quantify the reductions in the IS hydraulic conductivity. A smaller value of K(biozone)/K(s,) reflects a greater reduction in hydraulic conductivity. The IS hydraulic conductivity was reduced by 1-3 orders of magnitude. The reduction in IS hydraulic conductivity was primarily influenced by wastewater loading rate and IS type and not by the K(s) of the native soil. The higher loading rate yielded greater reductions in IS hydraulic conductivity than the lower loading rate for bundle and gravel cells, but the difference was not statistically significant for chamber cells. Bundle and gravel cells exhibited a greater reduction in IS hydraulic conductivity than chamber cells at the higher loading rates, while the difference between gravel and bundle systems was not statistically significant. At the lower rate, bundle cells exhibited generally lower K(biozone)/K(s) values, but not at a statistically significant level, while gravel and chamber cells were statistically similar. Gravel cells exhibited the greatest variability in measured values, which may complicate design efforts based on K(biozone) evaluations for these systems. These results suggest that chamber systems may provide for a more robust design, particularly for high or variable wastewater infiltration rates.
Helder, Onno; Kornelisse, René; van der Starre, Cynthia; Tibboel, Dick; Looman, Caspar; Wijnen, René; Poley, Marten; Ista, Erwin
2013-10-14
Central venous catheter-associated bloodstream infections in children are an increasingly recognized serious safety problem worldwide, but are often preventable. Central venous catheter bundles have proved effective to prevent such infections. Successful implementation requires changes in the hospital system as well as in healthcare professionals' behaviour. The aim of the study is to evaluate process and outcome of implementation of a state-of-the-art central venous catheter insertion and maintenance bundle in a large university children's hospital. An interrupted time series design will be used; the study will encompass all children who need a central venous catheter. New state-of-the-art central venous catheter bundles will be developed. The Pronovost-model will guide the implementation process. We developed a tailored multifaceted implementation strategy consisting of reminders, feedback, management support, local opinion leaders, and education. Primary outcome measure is the number of catheter-associated infections per 1000 line-days. The process outcome is degree of adherence to use of these central venous catheter bundles is the secondary outcome. A cost-effectiveness analysis is part of the study. Outcomes will be monitored during three periods: baseline, pre-intervention, and post-intervention for over 48 months. This model-based implementation strategy will reveal the challenges of implementing a hospital-wide safety program. This work will add to the body of knowledge in the field of implementation. We postulate that healthcare workers' willingness to shift from providing habitual care to state-of-the-art care may reflect the need for consistent care improvement. Trial registration: Dutch trials registry, trial # 3635. Dutch trials registry (http://www.trialregister.nl), trial # 3635.
A cost-effectiveness analysis of two different antimicrobial stewardship programs.
Okumura, Lucas Miyake; Riveros, Bruno Salgado; Gomes-da-Silva, Monica Maria; Veroneze, Izelandia
2016-01-01
There is a lack of formal economic analysis to assess the efficiency of antimicrobial stewardship programs. Herein, we conducted a cost-effectiveness study to assess two different strategies of Antimicrobial Stewardship Programs. A 30-day Markov model was developed to analyze how cost-effective was a Bundled Antimicrobial Stewardship implemented in a university hospital in Brazil. Clinical data derived from a historical cohort that compared two different strategies of antimicrobial stewardship programs and had 30-day mortality as main outcome. Selected costs included: workload, cost of defined daily doses, length of stay, laboratory and imaging resources used to diagnose infections. Data were analyzed by deterministic and probabilistic sensitivity analysis to assess model's robustness, tornado diagram and Cost-Effectiveness Acceptability Curve. Bundled Strategy was more expensive (Cost difference US$ 2119.70), however, it was more efficient (US$ 27,549.15 vs 29,011.46). Deterministic and probabilistic sensitivity analysis suggested that critical variables did not alter final Incremental Cost-Effectiveness Ratio. Bundled Strategy had higher probabilities of being cost-effective, which was endorsed by cost-effectiveness acceptability curve. As health systems claim for efficient technologies, this study conclude that Bundled Antimicrobial Stewardship Program was more cost-effective, which means that stewardship strategies with such characteristics would be of special interest in a societal and clinical perspective. Copyright © 2016 Elsevier Editora Ltda. All rights reserved.
An engineering closure for heavily under-resolved coarse-grid CFD in large applications
NASA Astrophysics Data System (ADS)
Class, Andreas G.; Yu, Fujiang; Jordan, Thomas
2016-11-01
Even though high performance computation allows very detailed description of a wide range of scales in scientific computations, engineering simulations used for design studies commonly merely resolve the large scales thus speeding up simulation time. The coarse-grid CFD (CGCFD) methodology is developed for flows with repeated flow patterns as often observed in heat exchangers or porous structures. It is proposed to use inviscid Euler equations on a very coarse numerical mesh. This coarse mesh needs not to conform to the geometry in all details. To reinstall physics on all smaller scales cheap subgrid models are employed. Subgrid models are systematically constructed by analyzing well-resolved generic representative simulations. By varying the flow conditions in these simulations correlations are obtained. These comprehend for each individual coarse mesh cell a volume force vector and volume porosity. Moreover, for all vertices, surface porosities are derived. CGCFD is related to the immersed boundary method as both exploit volume forces and non-body conformal meshes. Yet, CGCFD differs with respect to the coarser mesh and the use of Euler equations. We will describe the methodology based on a simple test case and the application of the method to a 127 pin wire-wrap fuel bundle.
Modelling the development and arrangement of the primary vascular structure in plants.
Cartenì, Fabrizio; Giannino, Francesco; Schweingruber, Fritz Hans; Mazzoleni, Stefano
2014-09-01
The process of vascular development in plants results in the formation of a specific array of bundles that run throughout the plant in a characteristic spatial arrangement. Although much is known about the genes involved in the specification of procambium, phloem and xylem, the dynamic processes and interactions that define the development of the radial arrangement of such tissues remain elusive. This study presents a spatially explicit reaction-diffusion model defining a set of logical and functional rules to simulate the differentiation of procambium, phloem and xylem and their spatial patterns, starting from a homogeneous group of undifferentiated cells. Simulation results showed that the model is capable of reproducing most vascular patterns observed in plants, from primitive and simple structures made up of a single strand of vascular bundles (protostele), to more complex and evolved structures, with separated vascular bundles arranged in an ordered pattern within the plant section (e.g. eustele). The results presented demonstrate, as a proof of concept, that a common genetic-molecular machinery can be the basis of different spatial patterns of plant vascular development. Moreover, the model has the potential to become a useful tool to test different hypotheses of genetic and molecular interactions involved in the specification of vascular tissues.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haniff, S.; Taylor, P. A.
In this paper, we conducted computational macroscale simulations predicting blast-induced intracranial fluid cavitation possibly leading to brain injury. To further understanding of this problem, we developed microscale models investigating the effects of blast-induced cavitation bubble collapse within white matter axonal fiber bundles of the brain. We model fiber tracks of myelinated axons whose diameters are statistically representative of white matter. Nodes of Ranvier are modeled as unmyelinated sections of axon. Extracellular matrix envelops the axon fiber bundle, and gray matter is placed adjacent to the bundle. Cavitation bubbles are initially placed assuming an intracranial wave has already produced them. Pressuremore » pulses, of varied strengths, are applied to the upper boundary of the gray matter and propagate through the model, inducing bubble collapse. Simulations, conducted using the shock wave physics code CTH, predict an increase in pressure and von Mises stress in axons downstream of the bubbles after collapse. This appears to be the result of hydrodynamic jetting produced during bubble collapse. Interestingly, results predict axon cores suffer significantly lower shear stresses from proximal bubble collapse than does their myelin sheathing. Finally, simulations also predict damage to myelin sheathing, which, if true, degrades axonal electrical transmissibility and general health of the white matter structures in the brain.« less
Haniff, S.; Taylor, P. A.
2017-10-17
In this paper, we conducted computational macroscale simulations predicting blast-induced intracranial fluid cavitation possibly leading to brain injury. To further understanding of this problem, we developed microscale models investigating the effects of blast-induced cavitation bubble collapse within white matter axonal fiber bundles of the brain. We model fiber tracks of myelinated axons whose diameters are statistically representative of white matter. Nodes of Ranvier are modeled as unmyelinated sections of axon. Extracellular matrix envelops the axon fiber bundle, and gray matter is placed adjacent to the bundle. Cavitation bubbles are initially placed assuming an intracranial wave has already produced them. Pressuremore » pulses, of varied strengths, are applied to the upper boundary of the gray matter and propagate through the model, inducing bubble collapse. Simulations, conducted using the shock wave physics code CTH, predict an increase in pressure and von Mises stress in axons downstream of the bubbles after collapse. This appears to be the result of hydrodynamic jetting produced during bubble collapse. Interestingly, results predict axon cores suffer significantly lower shear stresses from proximal bubble collapse than does their myelin sheathing. Finally, simulations also predict damage to myelin sheathing, which, if true, degrades axonal electrical transmissibility and general health of the white matter structures in the brain.« less
A Biophysical Model for the Staircase Geometry of Stereocilia
Orly, Gilad; Manor, Uri; Gov, Nir S.
2015-01-01
Cochlear hair cell bundles, made up of 10s to 100s of individual stereocilia, are essential for hearing, and even relatively minor structural changes, due to mutations or injuries, can result in total deafness. Consistent with its specialized role, the staircase geometry (SCG) of hair cell bundles presents one of the most striking, intricate, and precise organizations of actin-based cellular shapes. Composed of rows of actin-filled stereocilia with increasing lengths, the hair cell’s staircase-shaped bundle is formed from a progenitor field of smaller, thinner, and uniformly spaced microvilli with relatively invariant lengths. While recent genetic studies have provided a significant increase in information on the multitude of stereocilia protein components, there is currently no model that integrates the basic physical forces and biochemical processes necessary to explain the emergence of the SCG. We propose such a model derived from the biophysical and biochemical characteristics of actin-based protrusions. We demonstrate that polarization of the cell’s apical surface, due to the lateral polarization of the entire epithelial layer, plays a key role in promoting SCG formation. Furthermore, our model explains many distinct features of the manifestations of SCG in different species and in the presence of various deafness-associated mutations. PMID:26207893
NASA Astrophysics Data System (ADS)
Haniff, S.; Taylor, P. A.
2017-11-01
We conducted computational macroscale simulations predicting blast-induced intracranial fluid cavitation possibly leading to brain injury. To further understanding of this problem, we developed microscale models investigating the effects of blast-induced cavitation bubble collapse within white matter axonal fiber bundles of the brain. We model fiber tracks of myelinated axons whose diameters are statistically representative of white matter. Nodes of Ranvier are modeled as unmyelinated sections of axon. Extracellular matrix envelops the axon fiber bundle, and gray matter is placed adjacent to the bundle. Cavitation bubbles are initially placed assuming an intracranial wave has already produced them. Pressure pulses, of varied strengths, are applied to the upper boundary of the gray matter and propagate through the model, inducing bubble collapse. Simulations, conducted using the shock wave physics code CTH, predict an increase in pressure and von Mises stress in axons downstream of the bubbles after collapse. This appears to be the result of hydrodynamic jetting produced during bubble collapse. Interestingly, results predict axon cores suffer significantly lower shear stresses from proximal bubble collapse than does their myelin sheathing. Simulations also predict damage to myelin sheathing, which, if true, degrades axonal electrical transmissibility and general health of the white matter structures in the brain.
Shape memory alloy actuation for a variable area fan nozzle
NASA Astrophysics Data System (ADS)
Rey, Nancy; Tillman, Gregory; Miller, Robin M.; Wynosky, Thomas; Larkin, Michael J.; Flamm, Jeffrey D.; Bangert, Linda S.
2001-06-01
The ability to control fan nozzle exit area is an enabling technology for next generation high-bypass-ratio turbofan engines. Performance benefits for such designs are estimated at up to 9% in thrust specific fuel consumption (TSFC) relative to current fixed-geometry engines. Conventionally actuated variable area fan nozzle (VAN) concepts tend to be heavy and complicated, with significant aircraft integration, reliability and packaging issues. The goal of this effort was to eliminate these undesirable features and formulate a design that meets or exceeds leakage, durability, reliability, maintenance and manufacturing cost goals. A Shape Memory Alloy (SMA) bundled cable actuator acting to move an array of flaps around the fan nozzle annulus is a concept that meets these requirements. The SMA bundled cable actuator developed by the United Technologies Corporation (Patents Pending) provides significant work output (greater than 2200 in-lb per flap, through the range of motion) in a compact package and minimizes system complexity. Results of a detailed design study indicate substantial engine performance, weight, and range benefits. The SMA- based actuation system is roughly two times lighter than a conventional mechanical system, with significant aircraft direct operating cost savings (2-3%) and range improvements (5-6%) relative to a fixed-geometry nozzle geared turbofan. A full-scale sector model of this VAN system was built and then tested at the Jet Exit Test Facility at NASA Langley to demonstrate the system's ability to achieve 20% area variation of the nozzle under full scale aerodynamic loads. The actuator exceeded requirements, achieving repeated actuation against full-scale loads representative of typical cruise as well as greater than worst-case (ultimate) aerodynamic conditions. Based on these encouraging results, work is continuing with the goal of a flight test on a C-17 transport aircraft.
Standardization of Type 2 Diabetes Outpatient Expenditure with Bundled Payment Method in China
Xu, Guo-Chao; Luo, Yun; Li, Qian; Wu, Meng-Fan; Zhou, Zi-Jun
2016-01-01
Background: In recent years, the prevalence of type 2 diabetes among Chinese population has been increasing by years, directly leading to an average annual growth rate of 19.90% of medical expenditure. Therefore, it is urgent to work on strategies to control the growth of medical expenditure on type 2 diabetes on the basis of the reality of China. Therefore, in this study, we explored the feasibility of implementing bundled payment in China through analyzing bundled payment standards of type 2 diabetes outpatient services. Methods: This study analyzed the outpatient expenditure on type 2 diabetes with Beijing Urban Employee's Basic Medical Insurance from 2010 to 2012. Based on the analysis of outpatient expenditure and its influential factors, we adopted decision tree approach to conduct a case-mix analysis. In the end, we built a case-mix model to calculate the standard expenditure and the upper limit of each combination. Results: We found that age, job status, and whether with complication were significant factors that influence outpatient expenditure for type 2 diabetes. Through the analysis of the decision tree, we used six variables (complication, age, diabetic foot, diabetic nephropathy, cardiac-cerebrovascular disease, and neuropathy) to group the cases, and obtained 11 case-mix groups. Conclusions: We argued that it is feasible to implement bundled payment on type 2 diabetes outpatient services. Bundled payment is effective to control the increase of outpatient expenditure. Further improvements are needed for the implementation of bundled payment reimbursement standards, together with relevant policies and measures. PMID:27064041
Time-dependent fiber bundles with local load sharing. II. General Weibull fibers.
Phoenix, S Leigh; Newman, William I
2009-12-01
Fiber bundle models (FBMs) are useful tools in understanding failure processes in a variety of material systems. While the fibers and load sharing assumptions are easily described, FBM analysis is typically difficult. Monte Carlo methods are also hampered by the severe computational demands of large bundle sizes, which overwhelm just as behavior relevant to real materials starts to emerge. For large size scales, interest continues in idealized FBMs that assume either equal load sharing (ELS) or local load sharing (LLS) among fibers, rules that reflect features of real load redistribution in elastic lattices. The present work focuses on a one-dimensional bundle of N fibers under LLS where life consumption in a fiber follows a power law in its load, with exponent rho , and integrated over time. This life consumption function is further embodied in a functional form resulting in a Weibull distribution for lifetime under constant fiber stress and with Weibull exponent, beta. Thus the failure rate of a fiber depends on its past load history, except for beta=1 . We develop asymptotic results validated by Monte Carlo simulation using a computational algorithm developed in our previous work [Phys. Rev. E 63, 021507 (2001)] that greatly increases the size, N , of treatable bundles (e.g., 10(6) fibers in 10(3) realizations). In particular, our algorithm is O(N ln N) in contrast with former algorithms which were O(N2) making this investigation possible. Regimes are found for (beta,rho) pairs that yield contrasting behavior for large N. For rho>1 and large N, brittle weakest volume behavior emerges in terms of characteristic elements (groupings of fibers) derived from critical cluster formation, and the lifetime eventually goes to zero as N-->infinity , unlike ELS, which yields a finite limiting mean. For 1/2
Time-dependent fiber bundles with local load sharing. II. General Weibull fibers
NASA Astrophysics Data System (ADS)
Phoenix, S. Leigh; Newman, William I.
2009-12-01
Fiber bundle models (FBMs) are useful tools in understanding failure processes in a variety of material systems. While the fibers and load sharing assumptions are easily described, FBM analysis is typically difficult. Monte Carlo methods are also hampered by the severe computational demands of large bundle sizes, which overwhelm just as behavior relevant to real materials starts to emerge. For large size scales, interest continues in idealized FBMs that assume either equal load sharing (ELS) or local load sharing (LLS) among fibers, rules that reflect features of real load redistribution in elastic lattices. The present work focuses on a one-dimensional bundle of N fibers under LLS where life consumption in a fiber follows a power law in its load, with exponent ρ , and integrated over time. This life consumption function is further embodied in a functional form resulting in a Weibull distribution for lifetime under constant fiber stress and with Weibull exponent, β . Thus the failure rate of a fiber depends on its past load history, except for β=1 . We develop asymptotic results validated by Monte Carlo simulation using a computational algorithm developed in our previous work [Phys. Rev. EPLEEE81063-651X 63, 021507 (2001)] that greatly increases the size, N , of treatable bundles (e.g., 106 fibers in 103 realizations). In particular, our algorithm is O(NlnN) in contrast with former algorithms which were O(N2) making this investigation possible. Regimes are found for (β,ρ) pairs that yield contrasting behavior for large N . For ρ>1 and large N , brittle weakest volume behavior emerges in terms of characteristic elements (groupings of fibers) derived from critical cluster formation, and the lifetime eventually goes to zero as N→∞ , unlike ELS, which yields a finite limiting mean. For 1/2≤ρ≤1 , however, LLS has remarkably similar behavior to ELS (appearing to be virtually identical for ρ=1 ) with an asymptotic Gaussian lifetime distribution and a finite limiting mean for large N . The coefficient of variation follows a power law in increasing N but, except for ρ=1 , the value of the negative exponent is clearly less than 1/2 unlike in ELS bundles where the exponent remains 1/2 for 1/2<ρ≤1 . For sufficiently small values 0<ρ≪1 , a transition occurs, depending on β , whereby LLS bundle lifetimes become dominated by a few long-lived fibers. Thus the bundle lifetime appears to approximately follow an extreme-value distribution for the longest lived of a parallel group of independent elements, which applies exactly to ρ=0 . The lower the value of β , the higher the transition value of ρ , below which such extreme-value behavior occurs. No evidence was found for limiting Gaussian behavior for ρ>1 but with 0<β(ρ+1)<1 , as might be conjectured from quasistatic bundle models where β(ρ+1) mimics the Weibull exponent for fiber strength.
Liebling, Steven L; Palenzuela, Carlos
2017-01-01
The idea of stable, localized bundles of energy has strong appeal as a model for particles. In the 1950s, John Wheeler envisioned such bundles as smooth configurations of electromagnetic energy that he called geons , but none were found. Instead, particle-like solutions were found in the late 1960s with the addition of a scalar field, and these were given the name boson stars . Since then, boson stars find use in a wide variety of models as sources of dark matter, as black hole mimickers, in simple models of binary systems, and as a tool in finding black holes in higher dimensions with only a single Killing vector. We discuss important varieties of boson stars, their dynamic properties, and some of their uses, concentrating on recent efforts.
STEAM STIRRED HOMOGENEOUS NUCLEAR REACTOR
Busey, H.M.
1958-06-01
A homogeneous nuclear reactor utilizing a selfcirculating liquid fuel is described. The reactor vessel is in the form of a vertically disposed tubular member having the lower end closed by the tube walls and the upper end closed by a removal fianged assembly. A spherical reaction shell is located in the lower end of the vessel and spaced from the inside walls. The reaction shell is perforated on its lower surface and is provided with a bundle of small-diameter tubes extending vertically upward from its top central portion. The reactor vessel is surrounded in the region of the reaction shell by a neutron reflector. The liquid fuel, which may be a solution of enriched uranyl sulfate in ordinary or heavy water, is mainiained at a level within the reactor vessel of approximately the top of the tubes. The heat of the reaction which is created in the critical region within the spherical reaction shell forms steam bubbles which more upwardly through the tubes. The upward movement of these bubbles results in the forcing of the liquid fuel out of the top of these tubes, from where the fuel passes downwardly in the space between the tubes and the vessel wall where it is cooled by heat exchangers. The fuel then re-enters the critical region in the reaction shell through the perforations in the bottom. The upper portion of the reactor vessel is provided with baffles to prevent the liquid fuel from splashing into this region which is also provided with a recombiner apparatus for recombining the radiolytically dissociated moderator vapor and a control means.
A discrete method for modal analysis of overhead line conductor bundles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Migdalovici, M.A.; Sireteanu, T.D.; Albrecht, A.A.
The paper presents a mathematical model and a semi-analytical procedure to calculate the vibration modes and eigenfrequencies of single or bundled conductors with spacers which are needed for evaluation of the wind induced vibration of conductors and for optimization of spacer-dampers placement. The method consists in decomposition of conductors in modules and the expansion by polynomial series of unknown displacements on each module. A complete system of polynomials are deduced for this by Legendre polynomials. Each module is considered either boundary conditions at the extremity of the module or the continuity conditions between the modules and also a number ofmore » projections of module equilibrium equation on the polynomials from the expansion series of unknown displacement. The global system of the eigenmodes and eigenfrequencies is of the matrix form: A X + {omega}{sup 2} M X = 0. The theoretical considerations are exemplified on one conductor and on bundle of two conductors with spacers. From this, a method for forced vibration calculus of a single or bundled conductors is also presented.« less
Geometrical and Mechanical Properties Control Actin Filament Organization
Ennomani, Hajer; Théry, Manuel; Nedelec, Francois; Blanchoin, Laurent
2015-01-01
The different actin structures governing eukaryotic cell shape and movement are not only determined by the properties of the actin filaments and associated proteins, but also by geometrical constraints. We recently demonstrated that limiting nucleation to specific regions was sufficient to obtain actin networks with different organization. To further investigate how spatially constrained actin nucleation determines the emergent actin organization, we performed detailed simulations of the actin filament system using Cytosim. We first calibrated the steric interaction between filaments, by matching, in simulations and experiments, the bundled actin organization observed with a rectangular bar of nucleating factor. We then studied the overall organization of actin filaments generated by more complex pattern geometries used experimentally. We found that the fraction of parallel versus antiparallel bundles is determined by the mechanical properties of actin filament or bundles and the efficiency of nucleation. Thus nucleation geometry, actin filaments local interactions, bundle rigidity, and nucleation efficiency are the key parameters controlling the emergent actin architecture. We finally simulated more complex nucleation patterns and performed the corresponding experiments to confirm the predictive capabilities of the model. PMID:26016478
A structural model for the osmosensor, transporter, and osmoregulator ProP of Escherichia coli.
Wood, Janet M; Culham, Doreen E; Hillar, Alexander; Vernikovska, Yaroslava I; Liu, Feng; Boggs, Joan M; Keates, Robert A B
2005-04-19
Transporter ProP of Escherichia coli, a member of the major facilitator superfamily (MFS), acts as an osmosensor and an osmoregulator in cells and after purification and reconstitution in proteoliposomes. H(+)-osmoprotectant symport via ProP is activated when medium osmolality is elevated with membrane impermeant osmolytes. The three-dimensional structure of ProP was modeled with the crystal structure of MFS member GlpT as a template. This GlpT structure represents the inward (or cytoplasm)-facing conformation predicted by the alternating access model for transport. LacZ-PhoA fusion analysis and site-directed fluorescence labeling substantiated the membrane topology and orientation predicted by this model and most hydropathy analyses. The model predicts the presence of a proton pathway within the N-terminal six-helix bundle of ProP (as opposed to the corresponding pathway found within the C-terminal helix bundle of its paralogue, LacY). Replacement of residues within the N-terminal helix bundle impaired the osmotic activation of ProP, providing the first indication that residues outside the C-terminal domain are involved in osmosensing. Some residues that were accessible from the periplasmic side, as predicted by the structural model, were more susceptible to covalent labeling in permeabilized membrane fractions than in intact bacteria. These residues may be accessible from the cytoplasmic side in structures not represented by our current model, or their limited exposure in vivo may reflect constraints on transporter structure that are related to its osmosensory mechanism.
Crossed Module Bundle Gerbes; Classification, String Group and Differential Geometry
NASA Astrophysics Data System (ADS)
Jurčo, Branislav
We discuss nonabelian bundle gerbes and their differential geometry using simplicial methods. Associated to any crossed module there is a simplicial group NC, the nerve of the 1-category defined by the crossed module and its geometric realization |NC|. Equivalence classes of principal bundles with structure group |NC| are shown to be one-to-one with stable equivalence classes of what we call crossed module gerbes bundle gerbes. We can also associate to a crossed module a 2-category C'. Then there are two equivalent ways how to view classifying spaces of NC-bundles and hence of |NC|-bundles and crossed module bundle gerbes. We can either apply the W-construction to NC or take the nerve of the 2-category C'. We discuss the string group and string structures from this point of view. Also a simplicial principal bundle can be equipped with a simplicial connection and a B-field. It is shown how in the case of a simplicial principal NC-bundle these simplicial objects give the bundle gerbe connection and the bundle gerbe B-field.
CO 2 Capture by Cold Membrane Operation with Actual Power Plant Flue Gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chaubey, Trapti; Kulkarni, Sudhir; Hasse, David
The main objective of the project was to develop a post-combustion CO 2 capture process based on the hybrid cold temperature membrane operation. The CO 2 in the flue gas from coal fired power plant is pre-concentrated to >60% CO 2 in the first stage membrane operation followed by further liquefaction of permeate stream to achieve >99% CO 2 purity. The aim of the project was based on DOE program goal of 90% CO 2 capture with >95% CO 2 purity from Pulverized Coal (PC) fired power plants with $40/tonne of carbon capture cost by 2025. The project moves themore » technology from TRL 4 to TRL 5. The project involved optimization of Air Liquide commercial 12” PI-1 bundle to improve the bundle productivity by >30% compared to the previous baseline (DE-FE0004278) using computational fluid dynamics (CFD) modeling and bundle testing with synthetic flue gas at 0.1 MWe bench scale skid located at Delaware Research and Technology Center (DRTC). In parallel, the next generation polyimide based novel PI-2 membrane was developed with 10 times CO 2 permeance compared to the commercial PI-1 membrane. The novel PI-2 membrane was scaled from mini-permeator to 1” permeator and 1” bundle for testing. Bundle development was conducted with a Development Spin Unit (DSU) installed at MEDAL. Air Liquide’s cold membrane technology was demonstrated with real coal fired flue gas at the National Carbon Capture Center (NCCC) with a 0.3 MWe field-test unit (FTU). The FTU was designed to incorporate testing of two PI-1 commercial membrane bundles (12” or 6” diameter) in parallel or series. A slip stream was sent to the next generation PI-2 membrane for testing with real flue gas. The system exceeded performance targets with stable PI-1 membrane operation for over 500 hours of single bundle, steady state testing. The 12” PI-1 bundle exceeded the productivity target by achieving ~600 Nm3/hr, where the target was set at ~455 Nm3/hr at 90% capture rate. The cost of 90% CO 2 capture from a 550 MWe net coal power plant was estimated between 40 and $45/tonne. A 6” PI-1 bundle exhibited superior bundle performance compared to the 12” PI-1 bundle. However, the carbon capture cost was not lower with the 6” PI-1 bundle due to the higher bundle installed cost. A 1” PI-1 bundle was tested to compare bundles with different length / diameter ratios. This bundle exhibited the lowest performance due to the different fiber winding pattern and increased bundle non-ideality. Several long-term and parametric tests were conducted with 3,200 hours of total run-time at NCCC. Finally, the new PI-2 membrane fiber was tested at a small scale (1” modules) in real flue gas and exhibited up to 10 times the CO 2 permeance and slightly lower CO 2/N 2 selectivity as the commercial PI-1 fiber. This corresponded to a projected 4 - 5 times increase in the productivity per bundle and a potential cost reduction of $3/tonne for CO2 capture, as compared with PI-1. An analytical campaign was conducted to trace different impurities such as NOx, mercury, Arsenic, Selenium in gas and liquid samples through the carbon capture system. An Environmental, Health and Safety (EH&S) analysis was completed to estimate emissions from a 550 MWe net power plant with carbon capture using cold membrane. A preliminary design and cost analysis was completed for 550 tpd (~25 MWe) plant to assess the capital investment and carbon capture cost for PI-1 and PI-2 membrane solutions from coal fired flue gas. A comparison was made with an amine based solution with significant cost advantage for the membrane at this scale. Additional preliminary design and cost analysis was completed between coal, natural gas and SMR flue gas for carbon capture at 550 tpd (~25 MWe) plant.« less
Kim, Soo Y.; Sachdeva, Rohit; Li, Zi; Rosser, Benjamin W. C.
2015-01-01
Supraspinatus tendon tears are common and lead to changes in the muscle architecture. To date, these changes have not been investigated for the distinct regions and parts of the pathologic supraspinatus. The purpose of this study was to create a novel three-dimensional (3D) model of the muscle architecture throughout the supraspinatus and to compare the architecture between muscle regions and parts in relation to tear severity. Twelve cadaveric specimens with varying degrees of tendon tears were used. Three-dimensional coordinates of fiber bundles were collected in situ using serial dissection and digitization. Data were reconstructed and modeled in 3D using Maya. Fiber bundle length (FBL) and pennation angle (PA) were computed and analyzed. FBL was significantly shorter in specimens with large retracted tears compared to smaller tears, with the deeper fibers being significantly shorter than other parts in the anterior region. PA was significantly greater in specimens with large retracted tears, with the superficial fibers often demonstrating the largest PA. The posterior region was absent in two specimens with extensive tears. Architectural changes associated with tendon tears affect the regions and varying depths of supraspinatus differently. The results provide important insights on residual function of the pathologic muscle, and the 3D model includes detailed data that can be used in future modeling studies. PMID:26413533
Stand-alone containment analysis of Phébus FPT tests with ASTEC and MELCOR codes: the FPT-2 test.
Gonfiotti, Bruno; Paci, Sandro
2018-03-01
During the last 40 years, many studies have been carried out to investigate the different phenomena occurring during a Severe Accident (SA) in a Nuclear Power Plant (NPP). Such efforts have been supported by the execution of different experimental campaigns, and the integral Phébus FP tests were probably some of the most important experiments in this field. In these tests, the degradation of a Pressurized Water Reactor (PWR) fuel bundle was investigated employing different control rod materials and burn-up levels in strongly or weakly oxidizing conditions. From the findings on these and previous tests, numerical codes such as ASTEC and MELCOR have been developed to analyze the evolution of a SA in real NPPs. After the termination of the Phébus FP campaign, these two codes have been furthermore improved to implement the more recent findings coming from different experimental campaigns. Therefore, continuous verification and validation is still necessary to check that the new improvements introduced in such codes allow also a better prediction of these Phébus tests. The aim of the present work is to re-analyze the Phébus FPT-2 test employing the updated ASTEC and MELCOR code versions. The analysis focuses on the stand-alone containment aspects of this test, and three different spatial nodalizations of the containment vessel (CV) have been developed. The paper summarizes the main thermal-hydraulic results and presents different sensitivity analyses carried out on the aerosols and fission products (FP) behavior. When possible, a comparison among the results obtained during this work and by different authors in previous work is also performed. This paper is part of a series of publications covering the four Phébus FP tests using a PWR fuel bundle: FPT-0, FPT-1, FPT-2, and FPT-3, excluding the FPT-4 one, related to the study of the release of low-volatility FP and transuranic elements from a debris bed and a pool of melted fuel.
Anatomical approach to permanent His bundle pacing: Optimizing His bundle capture.
Vijayaraman, Pugazhendhi; Dandamudi, Gopi
2016-01-01
Permanent His bundle pacing is a physiological alternative to right ventricular pacing. In this article we describe our approach to His bundle pacing in patients with AV nodal and intra-Hisian conduction disease. It is essential for the implanters to understand the anatomic variations of the His bundle course and its effect on the type of His bundle pacing achieved. We describe several case examples to illustrate our anatomical approach to permanent His bundle pacing in this article. Copyright © 2016 Elsevier Inc. All rights reserved.
Modeling the failure of magmatic foams with application to Stromboli volcano, Italy
NASA Astrophysics Data System (ADS)
O'Shaughnessy, Cedrick; Brun, Francesco; Mancini, Lucia; Fife, Julie L.; Baker, Don R.
2014-10-01
The failure of magmatic foams has been implicated as a fundamental process in eruptions occurring at open-conduit, basaltic volcanoes. In order to investigate the failure of magmatic foams we applied the fiber bundle model using global load sharing. The strengths of the fibers for the model were taken from bubble wall widths measured in four computer-simulated foams of low-porosity and from one very low-porosity and two high-porosity foams produced in the laboratory by heating hydrated basaltic glasses to 1200 °C. The relative strength of an individual fiber in the model was calculated from the square of a bubble wall's average width and absolute strengths of the foams were calculated based upon the correlation of the strength of one modeled foam with experimental data. The fiber bundle model is shown to successfully reproduce measured tensile strengths of porous volcanic rocks studied by other researchers and confirms previous findings of the primary importance of foam porosity, as well as the secondary importance of structural details that affect the number and size of bubble walls and permeability. Because of the success of the fiber bundle model in reproducing experimental foam failure, its results are compared to infrasonic measurements associated with bubbles at Stromboli (Italy) and demonstrate that within uncertainty the power-law exponents of the infrasonic energies and of the fiber bundle model energies are in agreement; both show a crossover from an exponent of 5/2 associated with the bursting of small bubbles in the infrasonic measurements to an exponent of 3/2 for normal Strombolian eruptions associated with infrasonic signals from meter-scale bubbles. The infrasonic signals for major explosions and a paroxysmal eruption at Stromboli fall near the extrapolation of the power law defined by the low-amplitude, bubble bursting events and are interpreted to reflect the bursting of multitudes of small bubbles, rather than a few large bubbles. The measurement of small-amplitude infrasonic events at Stromboli appears useful in predicting the recurrence interval of paroxysmal eruptions at this volcano and may also provide a tool that uses common, small-amplitude infrasonic events to constrain the frequency of larger eruptions at other volcanoes.
Warps, grids and curvature in triple vector bundles
NASA Astrophysics Data System (ADS)
Flari, Magdalini K.; Mackenzie, Kirill
2018-06-01
A triple vector bundle is a cube of vector bundle structures which commute in the (strict) categorical sense. A grid in a triple vector bundle is a collection of sections of each bundle structure with certain linearity properties. A grid provides two routes around each face of the triple vector bundle, and six routes from the base manifold to the total manifold; the warps measure the lack of commutativity of these routes. In this paper we first prove that the sum of the warps in a triple vector bundle is zero. The proof we give is intrinsic and, we believe, clearer than the proof using decompositions given earlier by one of us. We apply this result to the triple tangent bundle T^3M of a manifold and deduce (as earlier) the Jacobi identity. We further apply the result to the triple vector bundle T^2A for a vector bundle A using a connection in A to define a grid in T^2A . In this case the curvature emerges from the warp theorem.
Cocowood Fibrovascular Tissue System—Another Wonder of Plant Evolution
González, Oswaldo M.; Nguyen, Khoi A.
2016-01-01
The coconut palm (Cocos nucifera L.) stem tissue (referred to as cocowood in this study) is a complex fibrovascular system that is made up of fibrovascular bundles embedded into a parenchymatous ground tissue. The complex configuration of fibrovascular bundles along with the non-uniform distribution of the material properties likely allow senile coconut stems to optimize their biomechanical performance per unit mass (i.e., mechanical efficiency) and grow into tall, slender, and very flexible plants with minimum resources of biomass and water. For the first time, to the best of the authors' knowledge, this paper examines, from the integral (i.e., stem structure) and macroscopic (i.e., tissue structure) levels of hierarchy, the characteristic triple helix formation depicted by the fibrovascular bundles within the monocotyledon cocowood. The natural course of the tangential orientation of the axial fibrovascular bundles is mapped for the whole cocowood structure by quantifying 264 cocowood discs, corresponding to 41 senile coconut palms estimated to be >70 years old. The observed variations were modeled in this paper by simple equations that partially enabled characterization of the cocowood fibrovascular tissue system. Furthermore, 11 finite element analyses (FEA) were performed over a three dimensional (3D) finite element (FE) model resembling a characteristic coconut palm stem of 25 m in height to analyze the biomaterial reactions produced by the progressive deviation of the tangential fibrovascular bundles on the cocowood mechanical response (i.e., on the material compressive strength and the bending stiffness). The analyses in this study were carried out for the critical wind speed of 23 m/s (i.e., Gale tornado according to the Fujita tornado scale). For each analysis, the characteristic average maxima degree of orientation of the cocowood fibrovascular bundles was varied from 0° to 51°. The acquired results provided a deep understanding of the cocowood optimum fibrovascular tissue system that denotes the natural evolution of the material through millions of years. The knowledge advanced from this study may also serve as concept generators for innovative biomimetic applications to improve current engineered wood products. PMID:27555849
NASA Astrophysics Data System (ADS)
Roongthumskul, Yuttana; Fredrickson-Hemsing, Lea; Kao, Albert; Bozovic, Dolores
2011-11-01
Hair bundles of the bullfrog sacculus display spontaneous oscillations that show complex temporal profiles. Quiescent intervals are typically interspersed with oscillations, analogous to bursting behavior observed in neural systems. By introducing slow calcium dynamics into the theoretical model of bundle mechanics, we reproduce numerically the multi-mode oscillations and explore the effects of internal parameters on the temporal profiles and the frequency tuning of their linear response functions. We also study the effects of mechanical overstimulation on the oscillatory behavior.
Spoon, Corrie; Moravec, W J; Rowe, M H; Grant, J W; Peterson, E H
2011-12-01
Spatial and temporal properties of head movement are encoded by vestibular hair cells in the inner ear. One of the most striking features of these receptors is the orderly structural variation in their mechanoreceptive hair bundles, but the functional significance of this diversity is poorly understood. We tested the hypothesis that hair bundle structure is a significant contributor to hair bundle mechanics by comparing structure and steady-state stiffness of 73 hair bundles at varying locations on the utricular macula. Our first major finding is that stiffness of utricular hair bundles varies systematically with macular locus. Stiffness values are highest in the striola, near the line of hair bundle polarity reversal, and decline exponentially toward the medial extrastriola. Striolar bundles are significantly more stiff than those in medial (median: 8.9 μN/m) and lateral (2.0 μN/m) extrastriolae. Within the striola, bundle stiffness is greatest in zone 2 (106.4 μN/m), a band of type II hair cells, and significantly less in zone 3 (30.6 μN/m), which contains the only type I hair cells in the macula. Bathing bundles in media that break interciliary links produced changes in bundle stiffness with predictable time course and magnitude, suggesting that links were intact in our standard media and contributed normally to bundle stiffness during measurements. Our second major finding is that bundle structure is a significant predictor of steady-state stiffness: the heights of kinocilia and the tallest stereocilia are the most important determinants of bundle stiffness. Our results suggest 1) a functional interpretation of bundle height variability in vertebrate vestibular organs, 2) a role for the striola in detecting onset of head movement, and 3) the hypothesis that differences in bundle stiffness contribute to diversity in afferent response dynamics.
Steady-state stiffness of utricular hair cells depends on macular location and hair bundle structure
Spoon, Corrie; Moravec, W. J.; Rowe, M. H.; Grant, J. W.
2011-01-01
Spatial and temporal properties of head movement are encoded by vestibular hair cells in the inner ear. One of the most striking features of these receptors is the orderly structural variation in their mechanoreceptive hair bundles, but the functional significance of this diversity is poorly understood. We tested the hypothesis that hair bundle structure is a significant contributor to hair bundle mechanics by comparing structure and steady-state stiffness of 73 hair bundles at varying locations on the utricular macula. Our first major finding is that stiffness of utricular hair bundles varies systematically with macular locus. Stiffness values are highest in the striola, near the line of hair bundle polarity reversal, and decline exponentially toward the medial extrastriola. Striolar bundles are significantly more stiff than those in medial (median: 8.9 μN/m) and lateral (2.0 μN/m) extrastriolae. Within the striola, bundle stiffness is greatest in zone 2 (106.4 μN/m), a band of type II hair cells, and significantly less in zone 3 (30.6 μN/m), which contains the only type I hair cells in the macula. Bathing bundles in media that break interciliary links produced changes in bundle stiffness with predictable time course and magnitude, suggesting that links were intact in our standard media and contributed normally to bundle stiffness during measurements. Our second major finding is that bundle structure is a significant predictor of steady-state stiffness: the heights of kinocilia and the tallest stereocilia are the most important determinants of bundle stiffness. Our results suggest 1) a functional interpretation of bundle height variability in vertebrate vestibular organs, 2) a role for the striola in detecting onset of head movement, and 3) the hypothesis that differences in bundle stiffness contribute to diversity in afferent response dynamics. PMID:21918003
Svantesson, Eleonor; Sundemo, David; Hamrin Senorski, Eric; Alentorn-Geli, Eduard; Musahl, Volker; Fu, Freddie H; Desai, Neel; Stålman, Anders; Samuelsson, Kristian
2017-12-01
Studies comparing single- and double-bundle anterior cruciate ligament (ACL) reconstructions often include a combined analysis of anatomic and non-anatomic techniques. The purpose of this study was to compare the revision rates between single- and double-bundle ACL reconstructions in the Swedish National Knee Ligament Register with regard to surgical variables as determined by the anatomic ACL reconstruction scoring checklist (AARSC). Patients from the Swedish National Knee Ligament Register who underwent either single- or double-bundle ACL reconstruction with hamstring tendon autograft during the period 2007-2014 were included. The follow-up period started with primary ACL reconstruction, and the outcome measure was set as revision surgery. An online questionnaire based on the items of the AARSC was used to determine the surgical technique implemented in the single-bundle procedures. These were organized into subgroups based on surgical variables, and the revision rates were compared with the double-bundle ACL reconstruction. Hazard ratios (HR) with 95% confidence interval (CI) was calculated and adjusted for confounders by Cox regression. A total of 22,460 patients were included in the study, of which 21,846 were single-bundle and 614 were double-bundle ACL reconstruction. Double-bundle ACL reconstruction had a revision frequency of 2.0% (n = 12) and single-bundle 3.2% (n = 689). Single-bundle reconstruction had an increased risk of revision surgery compared with double-bundle [adjusted HR 1.98 (95% CI 1.12-3.51), p = 0.019]. The subgroup analysis showed a significantly increased risk of revision surgery in patients undergoing single-bundle with anatomic technique using transportal drilling [adjusted HR 2.51 (95% CI 1.39-4.54), p = 0.002] compared with double-bundle ACL reconstruction. Utilizing a more complete anatomic technique according to the AARSC lowered the hazard rate considerably when transportal drilling was performed but still resulted in significantly increased risk of revision surgery compared with double-bundle ACL reconstruction [adjusted HR 1.87 (95% CI 1.04-3.38), p = 0.037]. Double-bundle ACL reconstruction is associated with a lower risk of revision surgery than single-bundle ACL reconstruction. Single-bundle procedures performed using transportal femoral drilling technique had significantly higher risk of revision surgery compared with double-bundle. However, a reference reconstruction with transportal drilling defined as a more complete anatomic reconstruction reduces the risk of revision surgery considerably. III.
Lafyatis, Robert; Burkly, Linda C.
2017-01-01
Systemic sclerosis (SSc) is a devastating disease affecting the skin and internal organs. Dermal fibrosis manifests early and Modified Rodnan Skin Scores (MRSS) correlate with disease progression. Transcriptomics of SSc skin biopsies suggest the role of the in vivo microenvironment in maintaining the pathological myofibroblasts. Therefore, defining the structural changes in dermal collagen in SSc patients could inform our understanding of fibrosis pathogenesis. Here, we report a method for quantitative whole-slide image analysis of dermal collagen from SSc patients, and our findings of more aligned dermal collagen bundles in diffuse cutaneous SSc (dcSSc) patients. Using the bleomycin-induced mouse model of SSc, we identified a distinct high dermal collagen bundle alignment gene signature, characterized by a concerted upregulation in cell migration, adhesion, and guidance pathways, and downregulation of spindle, replication, and cytokinesis pathways. Furthermore, increased bundle alignment induced a cell migration gene signature in fibroblasts in vitro, and these cells demonstrated increased directed migration on aligned ECM fibers that is dependent on expression of Arhgdib (Rho GDP-dissociation inhibitor 2). Our results indicate that increased cell migration is a cellular response to the increased collagen bundle alignment featured in fibrotic skin. Moreover, many of the cell migration genes identified in our study are shared with human SSc skin and may be new targets for therapeutic intervention. PMID:28662216
Moisture separator reheater with round tube bundle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Byerley, W. M.
1984-11-27
A moisture separator reheater having a central chamber with cylindrical wall protions and a generally round tube bundle, the tube bundle having arcuate plates disposed on each side of the bundle which form a wrapper on each side of the bundle and having a tongue and groove juncture between the wrapper and cylindrical wall portions to provide a seal therebetween and a track for installing and removing the tube bundle from the central chamber.
["Habitual" left branch block alternating with 2 "disguised" bracnch block].
Lévy, S; Jullien, G; Mathieu, P; Mostefa, S; Gérard, R
1976-10-01
Two cases of alternating left bundle branch block and "masquerading block" (with left bundle branch morphology in the stnadard leads and right bundle branch block morphology in the precordial leads) were studied by serial tracings and his bundle electrocardiography. In case 1 "the masquerading" block was associated with a first degree AV block related to a prolongation of HV interval. This case is to our knowledge the first cas of alternating bundle branch block in which his bundle activity was recorded in man. In case 2, the patient had atrial fibrilation and His bundle recordings were performed while differents degrees of left bundle branch block were present: The mechanism of the alternation and the concept of "masquerading" block are discussed. It is suggested that this type of block represents a right bundle branch block associated with severe lesions of the "left system".
Tube failures in moisture separator-reheater tube bundles due to restrained thermal expansion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heilker, W.J.; Cassell, D.S.
1983-01-01
In a nuclear power plant, moisture separator-reheater components (MSRs) are used to dry and superheat the exhaust steam from the high pressure turbine before admitting this steam to the low pressure turbines. MSRs have experienced numerous problems which have caused loss of plant thermal efficiency, poor unit availability and high maintenance costs. The most serious problem has been the progressive failure of the U-tubes, which has necessitated replacement of MSR tube bundles at several plants. This paper presents an explanation of the failure mode and identifies critical operational and geometric parameters as to their respective roles in the process. Detailedmore » thermal-hydraulic analytic modeling enables the calculation of tube wall temperatures along the length of each tube for selected power levels. These temperature data are input to finite element models of the tube bundle which yield interactive displacements, rotations and stresses. The results of these studies provide the rational basis for the tube failure mechanism, which is supported by data acquired from inspection of in-service MSRs.« less
Lamarque, Pénélope; Lavorel, Sandra; Mouchet, Maud; Quétier, Fabien
2014-01-01
Land use and climate change are primary causes of changes in the supply of ecosystem services (ESs). Although the consequences of climate change on ecosystem properties and associated services are well documented, the cascading impacts of climate change on ESs through changes in land use are largely overlooked. We present a trait-based framework based on an empirical model to elucidate how climate change affects tradeoffs among ESs. Using alternative scenarios for mountain grasslands, we predicted how direct effects of climate change on ecosystems and indirect effects through farmers’ adaptations are likely to affect ES bundles through changes in plant functional properties. ES supply was overall more sensitive to climate than to induced management change, and ES bundles remained stable across scenarios. These responses largely reflected the restricted extent of management change in this constrained system, which was incorporated when scaling up plot level climate and management effects on ecosystem properties to the entire landscape. The trait-based approach revealed how the combination of common driving traits and common responses to changed fertility determined interactions and tradeoffs among ESs. PMID:25225382
NASA Astrophysics Data System (ADS)
Fukayama, Osamu; Taniguchi, Noriyuki; Suzuki, Takafumi; Mabuchi, Kunihiko
We are developing a brain-machine interface (BMI) called “RatCar," a small vehicle controlled by the neural signals of a rat's brain. An unconfined adult rat with a set of bundled neural electrodes in the brain rides on the vehicle. Each bundle consists of four tungsten wires isolated with parylene polymer. These bundles were implanted in the primary motor and premotor cortices in both hemispheres of the brain. In this paper, methods and results for estimating locomotion speed and directional changes are described. Neural signals were recorded as the rat moved in a straight line and as it changed direction in a curve. Spike-like waveforms were then detected and classified into several clusters to calculate a firing rate for each neuron. The actual locomotion velocity and directional changes of the rat were recorded concurrently. Finally, the locomotion states were correlated with the neural firing rates using a simple linear model. As a result, the abstract estimation of the locomotion velocity and directional changes were achieved.
Local gene therapy durably restores vestibular function in a mouse model of Usher syndrome type 1G.
Emptoz, Alice; Michel, Vincent; Lelli, Andrea; Akil, Omar; Boutet de Monvel, Jacques; Lahlou, Ghizlene; Meyer, Anaïs; Dupont, Typhaine; Nouaille, Sylvie; Ey, Elody; Franca de Barros, Filipa; Beraneck, Mathieu; Dulon, Didier; Hardelin, Jean-Pierre; Lustig, Lawrence; Avan, Paul; Petit, Christine; Safieddine, Saaid
2017-09-05
Our understanding of the mechanisms underlying inherited forms of inner ear deficits has considerably improved during the past 20 y, but we are still far from curative treatments. We investigated gene replacement as a strategy for restoring inner ear functions in a mouse model of Usher syndrome type 1G, characterized by congenital profound deafness and balance disorders. These mice lack the scaffold protein sans, which is involved both in the morphogenesis of the stereociliary bundle, the sensory antenna of inner ear hair cells, and in the mechanoelectrical transduction process. We show that a single delivery of the sans cDNA by the adenoassociated virus 8 to the inner ear of newborn mutant mice reestablishes the expression and targeting of the protein to the tips of stereocilia. The therapeutic gene restores the architecture and mechanosensitivity of stereociliary bundles, improves hearing thresholds, and durably rescues these mice from the balance defects. Our results open up new perspectives for efficient gene therapy of cochlear and vestibular disorders by showing that even severe dysmorphogenesis of stereociliary bundles can be corrected.
RGB-D SLAM Based on Extended Bundle Adjustment with 2D and 3D Information
Di, Kaichang; Zhao, Qiang; Wan, Wenhui; Wang, Yexin; Gao, Yunjun
2016-01-01
In the study of SLAM problem using an RGB-D camera, depth information and visual information as two types of primary measurement data are rarely tightly coupled during refinement of camera pose estimation. In this paper, a new method of RGB-D camera SLAM is proposed based on extended bundle adjustment with integrated 2D and 3D information on the basis of a new projection model. First, the geometric relationship between the image plane coordinates and the depth values is constructed through RGB-D camera calibration. Then, 2D and 3D feature points are automatically extracted and matched between consecutive frames to build a continuous image network. Finally, extended bundle adjustment based on the new projection model, which takes both image and depth measurements into consideration, is applied to the image network for high-precision pose estimation. Field experiments show that the proposed method has a notably better performance than the traditional method, and the experimental results demonstrate the effectiveness of the proposed method in improving localization accuracy. PMID:27529256
Lamarque, Pénélope; Lavorel, Sandra; Mouchet, Maud; Quétier, Fabien
2014-09-23
Land use and climate change are primary causes of changes in the supply of ecosystem services (ESs). Although the consequences of climate change on ecosystem properties and associated services are well documented, the cascading impacts of climate change on ESs through changes in land use are largely overlooked. We present a trait-based framework based on an empirical model to elucidate how climate change affects tradeoffs among ESs. Using alternative scenarios for mountain grasslands, we predicted how direct effects of climate change on ecosystems and indirect effects through farmers' adaptations are likely to affect ES bundles through changes in plant functional properties. ES supply was overall more sensitive to climate than to induced management change, and ES bundles remained stable across scenarios. These responses largely reflected the restricted extent of management change in this constrained system, which was incorporated when scaling up plot level climate and management effects on ecosystem properties to the entire landscape. The trait-based approach revealed how the combination of common driving traits and common responses to changed fertility determined interactions and tradeoffs among ESs.
Veth, Klaske N.; Van der Heijden, Beatrice I. J. M.; Korzilius, Hubert P. L. M.; De Lange, Annet H.; Emans, Ben J. M.
2018-01-01
This two-wave complete panel study aims to examine human resource management (HRM) bundles of practices in relation to social support [i.e., leader–member exchange (LMX), coworker exchange (CWX)] and employee outcomes (i.e., work engagement, employability, and health), within a context of workers aged 65+. Based upon the social exchange theory and the Job Demands-Resources (JD-R) framework, it was hypothesized that HRM bundles at Time 1 would increase bridge workers' outcomes at Time 2, and that this relationship would be mediated by perceptions of LMX and CWX at Time 2. Using a longitudinal design, hypotheses were tested in a unique sample of Dutch bridge employees (N = 228). Results of several structural equation modeling analyses revealed no significant associations between HRM bundles, and social support, moreover, no significant associations were found in relation to employee outcomes. However, the results of the best-fitting final model revealed the importance of the impact of social support on employee (65+) outcomes over time. PMID:29755386
Lattice model for self-assembly with application to the formation of cytoskeletal-like structures
NASA Astrophysics Data System (ADS)
Stewman, Shannon F.; Dinner, Aaron R.
2007-07-01
We introduce a stochastic approach for self-assembly in systems far from equilibrium. The building blocks are represented by a lattice of discrete variables (Potts-like spins), and physically meaningful mechanisms are obtained by restricting transitions through spatially local rules based on experimental data. We use the method to study nucleation of filopodia-like bundles in a system consisting of purified actin, fascin, actin-related protein 2/3 , and beads coated with Wiskott-Aldrich syndrome protein. Consistent with previous speculation based on static experimental images, we find that bundles derive from Λ -precursor-like patterns of spins on the lattice. The ratcheting of the actin network relative to the surface that represents beads plays an important role in determining the number and orientation of bundles due to the fact that branching is the primary means for generating barbed ends pointed in directions that allow rapid filament growth. By enabling the de novo formation of coexisting morphologies without the computational cost of explicit representation of proteins, the approach introduced complements earlier models of cytoskeletal behavior in vitro and in vivo.
A Modeling Approach to Fiber Fracture in Melt Impregnation
NASA Astrophysics Data System (ADS)
Ren, Feng; Zhang, Cong; Yu, Yang; Xin, Chunling; Tang, Ke; He, Yadong
2017-02-01
The effect of process variables such as roving pulling speed, melt temperature and number of pins on the fiber fracture during the processing of thermoplastic based composites was investigated in this study. The melt impregnation was used in this process of continuous glass fiber reinforced thermoplastic composites. Previous investigators have suggested a variety of models for melt impregnation, while comparatively little effort has been spent on modeling the fiber fracture caused by the viscous resin. Herein, a mathematical model was developed for impregnation process to predict the fiber fracture rate and describe the experimental results with the Weibull intensity distribution function. The optimal parameters of this process were obtained by orthogonal experiment. The results suggest that the fiber fracture is caused by viscous shear stress on fiber bundle in melt impregnation mold when pulling the fiber bundle.
NASA Technical Reports Server (NTRS)
Smith, Andrew M.; Davis, R. Benjamin; LaVerde, Bruce T.; Fulcher, Clay W.; Jones, Douglas C.; Waldon, James M.; Craigmyle, Benjamin B.
2012-01-01
This validation study examines the effect on vibroacoustic response resulting from the installation of cable bundles on a curved orthogrid panel. Of interest is the level of damping provided by the installation of the cable bundles and whether this damping could be potentially leveraged in launch vehicle design. The results of this test are compared with baseline acoustic response tests without cables. Damping estimates from the measured response data are made using a new software tool that leverages a finite element model of the panel in conjunction with advanced optimization techniques. While the full test series is not yet complete, the first configuration of cable bundles that was assessed effectively increased the viscous critical damping fraction of the system by as much as 0.02 in certain frequency ranges.
NASA Astrophysics Data System (ADS)
Ando, Yoriko; Sawahata, Hirohito; Kawano, Takeshi; Koida, Kowa; Numano, Rika
2018-02-01
Bundled fiber optics allow in vivo imaging at deep sites in a body. The intrinsic optical contrast detects detailed structures in blood vessels and organs. We developed a bundled-fiber-coupled endomicroscope, enabling stereoscopic three-dimensional (3-D) reflectance imaging with a multipositional illumination scheme. Two illumination sites were attached to obtain reflectance images with left and right illumination. Depth was estimated by the horizontal disparity between the two images under alternative illuminations and was calibrated by the targets with known depths. This depth reconstruction was applied to an animal model to obtain the 3-D structure of blood vessels of the cerebral cortex (Cereb cortex) and preputial gland (Pre gla). The 3-D endomicroscope could be instrumental to microlevel reflectance imaging, improving the precision in subjective depth perception, spatial orientation, and identification of anatomical structures.
Fiberoptic characteristics for extreme operating environments
NASA Technical Reports Server (NTRS)
Delcher, R. C.
1992-01-01
Fiberoptics could offer several major benefits for cryogenic liquid-fueled rocket engines, including lightning immunity, weight reduction, and the possibility of implementing a number of new measurements for engine condition monitoring. The technical feasibility of using fiberoptics in the severe environments posed by cryogenic liquid-fueled rocket engines was determined. The issues of importance and subsequent requirements for this use of fiberoptics were compiled. These included temperature ranges, moisture embrittlement succeptability, and the ability to withstand extreme shock and vibration levels. Different types of optical fibers were evaluated and several types of optical fibers' ability to withstand use in cryogenic liquid-fueled rocket engines was demonstrated through environmental testing of samples. This testing included: cold-bend testing, moisture embrittlement testing, temperature cycling, temperature extremes testing, vibration testing, and shock testing. Three of five fiber samples withstood the tests to a level proving feasibility, and two of these remained intact in all six of the tests. A fiberoptic bundle was also tested, and completed testing without breakage. Preliminary cabling and harnessing for fiber protection was also demonstrated. According to cable manufacturers, the successful -300 F cold bend, vibration, and shock tests are the first instance of any major fiberoptic cable testing below roughly -55 F. This program has demonstrated the basic technical feasibility of implementing optical fibers on cryogenic liquid-fueled rocket engines, and a development plan is included highlighting requirements and issues for such an implementation.
Rickard, John; Karim, Mohammad; Baranowski, Bryan; Cantillon, Daniel; Spragg, David; Tang, W H Wilson; Niebauer, Mark; Grimm, Richard; Trulock, Kevin; Wilkoff, Bruce; Varma, Niraj
2017-10-01
Although the influence of QRS duration (QRSd) and/or bundle branch block morphology on outcomes of cardiac resynchronization therapy (CRT) have been well studied, the effect of PR interval remains uncertain. The purpose of this study was to evaluate the impact of PR prolongation (PRp) before CRT on long-term outcomes, specifically taking into account bundle branch block morphology and QRSd. We extracted clinical data on consecutive patients undergoing CRT. Multivariate models were constructed to analyze the effect of PRp (≥200 ms) on the combined endpoint of death, heart transplant, or left ventricular assist device. Kaplan-Meier curves were constructed stratifying patients based on bundle branch block and QRSd (dichotomized by 150 ms). Of the 472 patients who met inclusion criteria, 197 (41.7%) had PR interval ≥200 ms. During follow-up (mean 5.1 ± 2.6 years) there were 214 endpoints, of which 109 (23.1%) occurred in patients with PRp. In multivariate analysis, PRp was independently associated with worsened outcomes (hazard ratio 1.34, 95% confidence interval 1.01-1.77, P = .04). When stratified by bundle branch block morphology, PRp was significantly associated with worsened outcomes (log-rank P <.001) in patients with LBBB but not in those with non-LBBB (log-rank P = .55). Among patients with LBBB, stratified by QRSd, patients without PRp had improved outcomes compared to those with PRp independent of QRSd (log-rank P <.001). PRp is an independent predictor of impaired long-term outcome after CRT among patients with LBBB but not in non-LBBB patients. Notably, among LBBB patients, PRp is a more important predictor than QRSd in assessing long-term outcomes. Copyright © 2017. Published by Elsevier Inc.
Do heart failure disease management programs make financial sense under a bundled payment system?
Eapen, Zubin J; Reed, Shelby D; Curtis, Lesley H; Hernandez, Adrian F; Peterson, Eric D
2011-05-01
Policy makers have proposed bundling payments for all heart failure (HF) care within 30 days of an HF hospitalization in an effort to reduce costs. Disease management (DM) programs can reduce costly HF readmissions but have not been economically attractive for caregivers under existing fee-for-service payment. Whether a bundled payment approach can address the negative financial impact of DM programs is unknown. Our study determined the cost-neutral point for the typical DM program and examined whether published HF DM programs can be cost saving under bundled payment programs. We used a decision analytic model using data from retrospective cohort studies, meta-analyses, 5 randomized trials evaluating DM programs, and inpatient claims for all Medicare beneficiaries discharged with an HF diagnosis from 2001 to 2004. We determined the costs of DM programs and inpatient care over 30 and 180 days. With a baseline readmission rate of 22.9%, the average cost for readmissions over 30 days was $2,272 per patient. Under base-case assumptions, a DM program that reduced readmissions by 21% would need to cost $477 per patient to be cost neutral. Among evaluated published DM programs, 2 of the 5 would increase provider costs (+$15 to $283 per patient), whereas 3 programs would be cost saving (-$241 to $347 per patient). If bundled payments were broadened to include care over 180 days, then program saving estimates would increase, ranging from $419 to $1,706 per patient. Proposed bundled payments for HF admissions provide hospitals with a potential financial incentive to implement DM programs that efficiently reduce readmissions. Copyright © 2011 Mosby, Inc. All rights reserved.
Compressive force generation by a bundle of living biofilaments
NASA Astrophysics Data System (ADS)
Ramachandran, Sanoop; Ryckaert, Jean-Paul
2013-08-01
To study the compressional forces exerted by a bundle of living stiff filaments pressing on a surface, akin to the case of an actin bundle in filopodia structures, we have performed particulate molecular dynamics simulations of a grafted bundle of parallel living (self-assembling) filaments, in chemical equilibrium with a solution of their constitutive monomers. Equilibrium is established as these filaments, grafted at one end to a wall of the simulation box, grow at their chemically active free end, and encounter the opposite confining wall of the simulation box. Further growth of filaments requires bending and thus energy, which automatically limit the populations of longer filaments. The resulting filament sizes distribution and the force exerted by the bundle on the obstacle are analyzed for different grafting densities and different sub- or supercritical conditions, these properties being compared with the predictions of the corresponding ideal confined bundle model. In this analysis, non-ideal effects due to interactions between filaments and confinement effects are singled out. For all state points considered at the same temperature and at the same gap width between the two surfaces, the force per filament exerted on the opposite wall appears to be a function of a rescaled free monomer density hat{ρ }_1^eff. This quantity can be estimated directly from the characteristic length of the exponential filament size distribution P observed in the size domain where these grafted filaments are not in direct contact with the wall. We also analyze the dynamics of the filament contour length fluctuations in terms of effective polymerization (U) and depolymerization (W) rates, where again it is possible to disentangle non-ideal and confinement effects.
Baumgartner, Billy T; Karas, Vasili; Kildow, Beau J; Cunningham, Daniel J; Klement, Mitchell R; Green, Cindy L; Attarian, David E; Seyler, Thorsten M
2018-04-01
The Centers for Medicare and Medicaid Services (CMS) are implementing changes in hospital reimbursement models for total joint arthroplasty (TJA), moving to value-based bundled payments from the fee-for-service model. The purpose of this study is to identify consults and complications during the perioperative period that increase financial burden. We combined CMS payment data for inpatient, professional, and postoperative with retrospective review of patients undergoing primary TJA and developed profiles of patients included in the Comprehensive Care for Joint Replacement bundle undergoing TJA. Statistical comparison of episode inpatient events and payments was conducted. Multiple regression analysis was adjusted for length of stay, disposition, and Charlson-Deyo comorbidity profile. Median total payment was $21,577.36, which exceeded the median bundle target payment of $20,625.00. Adjusted analyses showed that psychiatry consults (increase of $73,123.32; P < .001), internal medicine consults ($5789.38; P ≤ .001), pulmonary embolism ($35,273.68; P < .001), intensive care unit admission ($14,078.37; P < .001), and deep vein thrombosis ($9471.26; P = .019) resulted in increased payments using multivariate analysis adjusted for length of stay, Charlson-Deyo comorbidities, and discharge disposition. Patients with inpatient complications such as pulmonary embolism and/or deep vein thrombosis, intensive care unit admission, and medical/psychiatric consultation exceeded the CMS target. Although study results showed typical complication rates, acute inpatient consultation significantly increased utilization beyond the CMS target even when adjusted for length of stay, patient comorbidities, and discharge. Needed medical care should continue to be a priority for inpatients, and allowance for individual outliers should be considered in policy discussions. Copyright © 2017 Elsevier Inc. All rights reserved.
Further evaluations of the toxicity of irradiated advanced heavy water reactor fuels.
Edwards, Geoffrey W R; Priest, Nicholas D
2014-11-01
The neutron economy and online refueling capability of heavy water moderated reactors enable them to use many different fuel types, such as low enriched uranium, plutonium mixed with uranium, or plutonium and/or U mixed with thorium, in addition to their traditional natural uranium fuel. However, the toxicity and radiological protection methods for fuels other than natural uranium are not well established. A previous paper by the current authors compared the composition and toxicity of irradiated natural uranium to that of three potential advanced heavy water fuels not containing plutonium, and this work uses the same method to compare irradiated natural uranium to three other fuels that do contain plutonium in their initial composition. All three of the new fuels are assumed to incorporate plutonium isotopes characteristic of those that would be recovered from light water reactor fuel via reprocessing. The first fuel investigated is a homogeneous thorium-plutonium fuel designed for a once-through fuel cycle without reprocessing. The second fuel is a heterogeneous thorium-plutonium-U bundle, with graded enrichments of U in different parts of a single fuel assembly. This fuel is assumed to be part of a recycling scenario in which U from previously irradiated fuel is recovered. The third fuel is one in which plutonium and Am are mixed with natural uranium. Each of these fuels, because of the presence of plutonium in the initial composition, is determined to be considerably more radiotoxic than is standard natural uranium. Canadian nuclear safety regulations require that techniques be available for the measurement of 1 mSv of committed effective dose after exposure to irradiated fuel. For natural uranium fuel, the isotope Pu is a significant contributor to the committed effective dose after exposure, and thermal ionization mass spectrometry is sensitive enough that the amount of Pu excreted in urine is sufficient to estimate internal doses, from all isotopes, as low as 1 mSv. In addition, if this method is extended so that Pu is also measured, then the combined amount of Pu and Pu is sufficiently high in the thorium-plutonium fuel that a committed effective dose of 1 mSv would be measurable. However, the fraction of Pu and Pu in the other two fuels is sufficiently low that a 1 mSv dose would remain below the detection limit using this technique. Thus new methods, such as fecal measurements of Pu (or other alpha emitters), will be required to measure exposure to these new fuels.
Quantitative study of bundle size effect on thermal conductivity of single-walled carbon nanotubes
NASA Astrophysics Data System (ADS)
Feng, Ya; Inoue, Taiki; An, Hua; Xiang, Rong; Chiashi, Shohei; Maruyama, Shigeo
2018-05-01
Compared with isolated single-walled carbon nanotubes (SWNTs), thermal conductivity is greatly impeded in SWNT bundles; however, the measurement of the bundle size effect is difficult. In this study, the number of SWNTs in a bundle was determined based on the transferred horizontally aligned SWNTs on a suspended micro-thermometer to quantitatively study the effect of the bundle size on thermal conductivity. Increasing the bundle size significantly degraded the thermal conductivity. For isolated SWNTs, thermal conductivity was approximately 5000 ± 1000 W m-1 K-1 at room temperature, three times larger than that of the four-SWNT bundle. The logarithmical deterioration of thermal conductivity resulting from the increased bundle size can be attributed to the increased scattering rate with neighboring SWNTs based on the kinetic theory.
NASA Astrophysics Data System (ADS)
Lee, Woo Seok; Jeong, Wonhee; Ahn, Kang-Hun
2014-12-01
We provide a simple dynamical model of a hair cell with an afferent neuron where the spectral and the temporal responses are controlled by the hair bundle's criticality and the neuron's excitability. To demonstrate that these parameters, indeed, specify the resolution of the sound encoding, we fabricate a neuromorphic device that models the hair cell bundle and its afferent neuron. Then, we show that the neural response of the biomimetic system encodes sounds with either high temporal or spectral resolution or with a combination of both resolutions. Our results suggest that the hair cells may easily specialize to fulfil various roles in spite of their similar physiological structures.
Brownian dynamics simulation of fission yeast mitotic spindle formation
NASA Astrophysics Data System (ADS)
Edelmaier, Christopher
2014-03-01
The mitotic spindle segregates chromosomes during mitosis. The dynamics that establish bipolar spindle formation are not well understood. We have developed a computational model of fission-yeast mitotic spindle formation using Brownian dynamics and kinetic Monte Carlo methods. Our model includes rigid, dynamic microtubules, a spherical nuclear envelope, spindle pole bodies anchored in the nuclear envelope, and crosslinkers and crosslinking motor proteins. Crosslinkers and crosslinking motor proteins attach and detach in a grand canonical ensemble, and exert forces and torques on the attached microtubules. We have modeled increased affinity for crosslinking motor attachment to antiparallel microtubule pairs, and stabilization of microtubules in the interpolar bundle. We study parameters controlling the stability of the interpolar bundle and assembly of a bipolar spindle from initially adjacent spindle-pole bodies.
Nurses' perceptions of a pressure ulcer prevention care bundle: a qualitative descriptive study.
Roberts, Shelley; McInnes, Elizabeth; Wallis, Marianne; Bucknall, Tracey; Banks, Merrilyn; Chaboyer, Wendy
2016-01-01
Pressure ulcer prevention is a critical patient safety indicator for acute care hospitals. An innovative pressure ulcer prevention care bundle targeting patient participation in their care was recently tested in a cluster randomised trial in eight Australian hospitals. Understanding nurses' perspectives of such an intervention is imperative when interpreting results and translating evidence into practice. As part of a process evaluation for the main trial, this study assessed nurses' perceptions of the usefulness and impact of a pressure ulcer prevention care bundle intervention on clinical practice. This qualitative descriptive study involved semi-structured interviews with nursing staff at four Australian hospitals that were intervention sites for a cluster randomised trial testing a pressure ulcer prevention care bundle. Four to five participants were purposively sampled at each site. A trained interviewer used a semi-structured interview guide to question participants about their perceptions of the care bundle. Interviews were digitally recorded, transcribed and analysed using thematic analysis. Eighteen nurses from four hospitals participated in the study. Nurses' perceptions of the intervention are described in five themes: 1) Awareness of the pressure ulcer prevention care bundle and its similarity to current practice; 2) Improving awareness, communication and participation with the pressure ulcer prevention care bundle; 3) Appreciating the positive aspects of patient participation in care; 4) Perceived barriers to engaging patients in the pressure ulcer prevention care bundle; and 5) Partnering with nursing staff to facilitate pressure ulcer prevention care bundle implementation. Overall, nurses found the care bundle feasible and acceptable. They identified a number of benefits from the bundle, including improved communication, awareness and participation in pressure ulcer prevention care among patients and staff. However, nurses thought the care bundle was not appropriate or effective for all patients, such as those who were cognitively impaired. Perceived enablers to implementation of the bundle included facilitation through effective communication and dissemination of evidence about the care bundle; strong leadership and ability to influence staff behaviour; and simplicity of the care bundle.
Section sigma models coupled to symplectic duality bundles on Lorentzian four-manifolds
NASA Astrophysics Data System (ADS)
Lazaroiu, C. I.; Shahbazi, C. S.
2018-06-01
We give the global mathematical formulation of a class of generalized four-dimensional theories of gravity coupled to scalar matter and to Abelian gauge fields. In such theories, the scalar fields are described by a section of a surjective pseudo-Riemannian submersion π over space-time, whose total space carries a Lorentzian metric making the fibers into totally-geodesic connected Riemannian submanifolds. In particular, π is a fiber bundle endowed with a complete Ehresmann connection whose transport acts through isometries between the fibers. In turn, the Abelian gauge fields are "twisted" by a flat symplectic vector bundle defined over the total space of π. This vector bundle is endowed with a vertical taming which locally encodes the gauge couplings and theta angles of the theory and gives rise to the notion of twisted self-duality, of crucial importance to construct the theory. When the Ehresmann connection of π is integrable, we show that our theories are locally equivalent to ordinary Einstein-Scalar-Maxwell theories and hence provide a global non-trivial extension of the universal bosonic sector of four-dimensional supergravity. In this case, we show using a special trivializing atlas of π that global solutions of such models can be interpreted as classical "locally-geometric" U-folds. In the non-integrable case, our theories differ locally from ordinary Einstein-Scalar-Maxwell theories and may provide a geometric description of classical U-folds which are "locally non-geometric".
Polycation induced actin bundles.
Muhlrad, Andras; Grintsevich, Elena E; Reisler, Emil
2011-04-01
Three polycations, polylysine, the polyamine spermine and the polycationic protein lysozyme were used to study the formation, structure, ionic strength sensitivity and dissociation of polycation-induced actin bundles. Bundles form fast, simultaneously with the polymerization of MgATP-G-actins, upon the addition of polycations to solutions of actins at low ionic strength conditions. This indicates that nuclei and/or nascent filaments bundle due to attractive, electrostatic effect of polycations and the neutralization of repulsive interactions of negative charges on actin. The attractive forces between the filaments are strong, as shown by the low (in nanomolar range) critical concentration of their bundling at low ionic strength. These bundles are sensitive to ionic strength and disassemble partially in 100 mM NaCl, but both the dissociation and ionic strength sensitivity can be countered by higher polycation concentrations. Cys374 residues of actin monomers residing on neighboring filaments in the bundles can be cross-linked by the short span (5.4Å) MTS-1 (1,1-methanedyl bismethanethiosulfonate) cross-linker, which indicates a tight packing of filaments in the bundles. The interfilament cross-links, which connect monomers located on oppositely oriented filaments, prevent disassembly of bundles at high ionic strength. Cofilin and the polysaccharide polyanion heparin disassemble lysozyme induced actin bundles more effectively than the polylysine-induced bundles. The actin-lysozyme bundles are pathologically significant as both proteins are found in the pulmonary airways of cystic fibrosis patients. Their bundles contribute to the formation of viscous mucus, which is the main cause of breathing difficulties and eventual death in this disorder. Copyright © 2011 Elsevier B.V. All rights reserved.
Huebner, Kyla D; O'Brien, Etienne J O; Heard, Bryan J; Chung, May; Achari, Yamini; Shrive, Nigel G; Frank, Cyril B
2012-01-01
The human anterior cruciate ligament (ACL) is a composite structure of two anatomically distinct bundles: an anteromedial (AM) and posterolateral (PL) bundles. Tendons are often used as autografts for surgical reconstruction of ACL following severe injury. However, despite successful surgical reconstruction, some people experience re-rupture and later development of osteoarthritis. Understanding the structure and molecular makeup of normal ACL is essential for its optimal replacement. Reportedly the two bundles display different tensions throughout joint motion and may be fundamentally different. This study assessed the similarities and differences in ultrastructure and molecular composition of the AM and PL bundles to test the hypothesis that the two bundles of the ACL develop unique characteristics with maturation. ACLs from nine mature and six immature sheep were compared. The bundles were examined for mRNA and protein levels of collagen types I, III, V, and VI, and two proteoglycans. The fibril diameter composition of the two bundles was examined with transmission electron microscopy. Maturation does alter the molecular and structural composition of the two bundles of ACL. Although the PL band appears to mature slower than the AM band, no significant differences were detected between the bundles in the mature animals. We thus reject our hypothesis that the two ACL bundles are distinct. The two anatomically distinct bundles of the sheep ACL can be considered as two parts of one structure at maturity and material that would result in a structure of similar functionality can be used to replace each ACL bundle in the sheep.
Cairns, Mark A; Ostrum, Robert F; Clement, R Carter
2018-02-21
The U.S. Centers for Medicare & Medicaid Services (CMS) has been considering the implementation of a mandatory bundled payment program, the Surgical Hip and Femur Fracture Treatment (SHFFT) model. However, bundled payments without appropriate risk adjustment may be inequitable to providers and may restrict access to care for certain patients. The SHFFT proposal includes adjustment using the Diagnosis-Related Group (DRG) and geographic location. The goal of the current study was to identify and quantify patient factors that could improve risk adjustment for SHFFT bundled payments. We retrospectively reviewed a 5% random sample of Medicare data from 2008 to 2012. A total of 27,898 patients were identified who met SHFFT inclusion criteria (DRG 480, 481, and 482). Reimbursement was determined for each patient over the bundle period (the surgical hospitalization and 90 days of post-discharge care). Multivariable regression was performed to test demographic factors, comorbidities, geographic location, and specific surgical procedures for associations with reimbursement. The average reimbursement was $23,632 ± $17,587. On average, reimbursements for male patients were $1,213 higher than for female patients (p < 0.01). Younger age was also associated with higher payments; e.g., reimbursement for those ≥85 years of age averaged $2,282 ± $389 less than for those aged 65 to 69 (p < 0.01). Most comorbidities were associated with higher reimbursement, but dementia was associated with lower payments, by an average of $2,354 ± $243 (p < 0.01). Twenty-two procedure codes are included in the bundle, and patients with the 3 most common codes accounted for 98% of the cases, with average reimbursement ranging from $22,527 to $24,033. Less common procedures varied by >$20,000 in average reimbursement (p < 0.01). DRGs also showed significant differences in reimbursement (p < 0.01); e.g., DRG 480 was reimbursed by an average of $10,421 ± $543 more than DRG 482. Payments varied significantly by state (p ≤ 0.01). Risk adjustment incorporating specific comorbidities demonstrated better performance than with use of DRG alone (r = 0.22 versus 0.15). Our results suggest that the proposed SHFFT bundled payment model should use more robust risk-adjustment methods to ensure that providers are reimbursed fairly and that patients retain access to care. At a minimum, payments should be adjusted for age, comorbidities, demographic factors, geographic location, and surgical procedure.
Main, Elliott K; Cape, Valerie; Abreo, Anisha; Vasher, Julie; Woods, Amanda; Carpenter, Andrew; Gould, Jeffrey B
2017-03-01
Obstetric hemorrhage is the leading cause of severe maternal morbidity and of preventable maternal mortality in the United States. The California Maternal Quality Care Collaborative developed a comprehensive quality improvement tool kit for hemorrhage based on the national patient safety bundle for obstetric hemorrhage and noted promising results in pilot implementation projects. We sought to determine whether these safety tools can be scaled up to reduce severe maternal morbidity in women with obstetric hemorrhage using a large maternal quality collaborative. We report on 99 collaborative hospitals (256,541 annual births) using a before-and-after model with 48 noncollaborative comparison hospitals (81,089 annual births) used to detect any systemic trends. Both groups participated in the California Maternal Data Center providing baseline and rapid-cycle data. Baseline period was the 48 months from January 2011 through December 2014. The collaborative started in January 2015 and the postintervention period was the 6 months from October 2015 through March 2016. We modified the Institute for Healthcare Improvement collaborative model for achieving breakthrough improvement to include the mentor model whereby 20 pairs of nurse and physician mentors experienced in quality improvement gave additional support to small groups of 6-8 hospitals. The national hemorrhage safety bundle served as the template for quality improvement action. The main outcome measurement was the composite Centers for Disease Control and Prevention severe maternal morbidity measure, for both the target population of women with hemorrhage and the overall delivery population. The rate of adoption of bundle elements was used as an indicator of hospital engagement and intensity. Compared to baseline period, women with hemorrhage in collaborative hospitals experienced a 20.8% reduction in severe maternal morbidity while women in comparison hospitals had a 1.2% reduction (P < .0001). Women in hospitals with prior hemorrhage collaborative experience experienced an even larger 28.6% reduction. Fewer mothers with transfusions accounted for two thirds of the reduction in collaborative hospitals and fewer procedures and medical complications, the remainder. The rate of severe maternal morbidity among all women in collaborative hospitals was 11.7% lower and women in hospitals with prior hemorrhage collaborative experience had a 17.5% reduction. Improved outcomes for women were noted in all hospital types (regional, medium, small, health maintenance organization, and nonhealth maintenance organization). Overall, 54% of hospitals completed 14 of 17 bundle elements, 76% reported regular unit-based drills, and 65% reported regular posthemorrhage debriefs. Higher rate of bundle adoption was associated with improvement of maternal morbidity only in hospitals with high initial rates of severe maternal morbidity. We used an innovative collaborative quality improvement approach (mentor model) to scale up implementation of the national hemorrhage bundle. Participation in the collaborative was strongly associated with reductions in severe maternal morbidity among hemorrhage patients. Women in hospitals in their second collaborative had an even greater reduction in morbidity than those approaching the bundle for the first time, reinforcing the concept that quality improvement is a long-term and cumulative process. Copyright © 2017 Elsevier Inc. All rights reserved.
Nonabelian Bundle Gerbes, Their Differential Geometry and Gauge Theory
NASA Astrophysics Data System (ADS)
Aschieri, Paolo; Cantini, Luigi; Jurčo, Branislav
2005-03-01
Bundle gerbes are a higher version of line bundles, we present nonabelian bundle gerbes as a higher version of principal bundles. Connection, curving, curvature and gauge transformations are studied both in a global coordinate independent formalism and in local coordinates. These are the gauge fields needed for the construction of Yang-Mills theories with 2-form gauge potential.
Global Gauge Anomalies in Two-Dimensional Bosonic Sigma Models
NASA Astrophysics Data System (ADS)
Gawȩdzki, Krzysztof; Suszek, Rafał R.; Waldorf, Konrad
2011-03-01
We revisit the gauging of rigid symmetries in two-dimensional bosonic sigma models with a Wess-Zumino term in the action. Such a term is related to a background closed 3-form H on the target space. More exactly, the sigma-model Feynman amplitudes of classical fields are associated to a bundle gerbe with connection of curvature H over the target space. Under conditions that were unraveled more than twenty years ago, the classical amplitudes may be coupled to the topologically trivial gauge fields of the symmetry group in a way which assures infinitesimal gauge invariance. We show that the resulting gauged Wess-Zumino amplitudes may, nevertheless, exhibit global gauge anomalies that we fully classify. The general results are illustrated on the example of the WZW and the coset models of conformal field theory. The latter are shown to be inconsistent in the presence of global anomalies. We introduce a notion of equivariant gerbes that allow an anomaly-free coupling of the Wess-Zumino amplitudes to all gauge fields, including the ones in non-trivial principal bundles. Obstructions to the existence of equivariant gerbes and their classification are discussed. The choice of different equivariant structures on the same bundle gerbe gives rise to a new type of discrete-torsion ambiguities in the gauged amplitudes. An explicit construction of gerbes equivariant with respect to the adjoint symmetries over compact simply connected simple Lie groups is given.
Double-bundle ACL reconstruction can improve rotational stability.
Yagi, Masayoshi; Kuroda, Ryosuke; Nagamune, Kouki; Yoshiya, Shinichi; Kurosaka, Masahiro
2007-01-01
Double-bundle anterior cruciate ligament (ACL) reconstruction reproduces anteromedial and posterolateral bundles, and thus has theoretical advantages over conventional single-bundle reconstruction in controlling rotational torque in vitro. However, its superiority in clinical practice has not been proven. We analyzed rotational stability with three reconstruction techniques in 60 consecutive patients who were randomly divided into three groups (double-bundle, anteromedial single-bundle, posterolateral single-bundle). In the reconstructive procedure, the hamstring tendon was harvested and used as a free tendon graft. Followup examinations were performed 1 year after surgery. Anteroposterior laxity of the knee was examined with a KT-1000 arthrometer, whereas rotatory instability, as elicited by the pivot shift test, was assessed using a new measurement system incorporating three-dimensional electromagnetic sensors. Routine clinical evaluations, including KT examination, demonstrated no differences among the three groups. However, using the new measurement system, patients with double-bundle ACL reconstruction showed better pivot shift control of complex instability than patients with anteromedial and posterolateral single-bundle reconstruction.
Zhang, Xiaodong; Yan, Yumei; Tong, Frank; Li, Chun-Xia; Jones, Benjamin; Wang, Silun; Meng, Yuguang; Muly, E Chris; Kempf, Doty; Howell, Leonard
2018-01-01
Previous Diffusion Tensor Imaging (DTI) studies have demonstrated the temporal evolution of stroke injury in grey matter and white matter can be characterized by DTI indices. However, it still remains not fully understood how the DTI indices of white matter are altered progressively during the hyperacute (first 6 hours) and acute stage of stroke (≤ 1 week). In the present study, DTI was employed to characterize the temporal evolution of infarction and white matter injury after stroke insult using a macaque model with permanent ischemic occlusion. Permanent middle cerebral artery (MCA) occlusion was induced in rhesus monkeys (n=4, 10-21 years old). The brain lesion was examined longitudinally with DTI during the hyperacute phase (2-6 hours, n=4), 48 hours (n=4) and 96 hours (n=3) post-occlusion. Cortical infarction was seen in all animals. The Mean Diffusivity (MD) in lesion regions decreased substantially at the first time point (2 hours post stroke) (35%, p <0.05, compared to the contralateral side) and became pseudo-normalized at 96 hours. In contrast, evident FA reduction was seen at 48 hours (39%, p <0.10) post-stroke. MD reduction in white matter bundles of the lesion area was much less than that in the grey matter during the hyper-acute phase but significant change was observed 4 hours (4.2%, p < 0.05) post stroke . Also, MD pseudonormalisation was seen at 96 hours post stroke. There was a significant correlation between the temporal changes of MD in white matter bundles and those in whole lesion areas during the entire study period. Meanwhile, no obvious fractional anisotropy (FA) changes were seen during the hyper-acute phase in either the entire infarct region or white matter bundles. Significant FA alteration was observed in entire lesion areas and injured white matter bundles 48 and 96 hours post stroke. The stroke lesion in grey matter and white matter was validated by pathological findings. The temporal evolution of ischemic injury to the grey matter and white matter from 2 to 96 hours after stroke onset was characterized using a macaque model and DTI. Progressive MD changes in white matter bundles are seen from hyperacute phase to acute phase after permanent MCA occlusion and temporally correlated with the MD changes in entire infarction regions. MD reduction in white matter bundles is mild in comparison with that in the grey matter but significant and progressive, indicating it may be useful to detect early white matter degeneration after stroke.
Joint Multi-Fiber NODDI Parameter Estimation and Tractography Using the Unscented Information Filter
Reddy, Chinthala P.; Rathi, Yogesh
2016-01-01
Tracing white matter fiber bundles is an integral part of analyzing brain connectivity. An accurate estimate of the underlying tissue parameters is also paramount in several neuroscience applications. In this work, we propose to use a joint fiber model estimation and tractography algorithm that uses the NODDI (neurite orientation dispersion diffusion imaging) model to estimate fiber orientation dispersion consistently and smoothly along the fiber tracts along with estimating the intracellular and extracellular volume fractions from the diffusion signal. While the NODDI model has been used in earlier works to estimate the microstructural parameters at each voxel independently, for the first time, we propose to integrate it into a tractography framework. We extend this framework to estimate the NODDI parameters for two crossing fibers, which is imperative to trace fiber bundles through crossings as well as to estimate the microstructural parameters for each fiber bundle separately. We propose to use the unscented information filter (UIF) to accurately estimate the model parameters and perform tractography. The proposed approach has significant computational performance improvements as well as numerical robustness over the unscented Kalman filter (UKF). Our method not only estimates the confidence in the estimated parameters via the covariance matrix, but also provides the Fisher-information matrix of the state variables (model parameters), which can be quite useful to measure model complexity. Results from in-vivo human brain data sets demonstrate the ability of our algorithm to trace through crossing fiber regions, while estimating orientation dispersion and other biophysical model parameters in a consistent manner along the tracts. PMID:27147956
Reddy, Chinthala P; Rathi, Yogesh
2016-01-01
Tracing white matter fiber bundles is an integral part of analyzing brain connectivity. An accurate estimate of the underlying tissue parameters is also paramount in several neuroscience applications. In this work, we propose to use a joint fiber model estimation and tractography algorithm that uses the NODDI (neurite orientation dispersion diffusion imaging) model to estimate fiber orientation dispersion consistently and smoothly along the fiber tracts along with estimating the intracellular and extracellular volume fractions from the diffusion signal. While the NODDI model has been used in earlier works to estimate the microstructural parameters at each voxel independently, for the first time, we propose to integrate it into a tractography framework. We extend this framework to estimate the NODDI parameters for two crossing fibers, which is imperative to trace fiber bundles through crossings as well as to estimate the microstructural parameters for each fiber bundle separately. We propose to use the unscented information filter (UIF) to accurately estimate the model parameters and perform tractography. The proposed approach has significant computational performance improvements as well as numerical robustness over the unscented Kalman filter (UKF). Our method not only estimates the confidence in the estimated parameters via the covariance matrix, but also provides the Fisher-information matrix of the state variables (model parameters), which can be quite useful to measure model complexity. Results from in-vivo human brain data sets demonstrate the ability of our algorithm to trace through crossing fiber regions, while estimating orientation dispersion and other biophysical model parameters in a consistent manner along the tracts.
Tsai, Thomas C; Greaves, Felix; Zheng, Jie; Orav, E John; Zinner, Michael J; Jha, Ashish K
2016-09-01
US policy makers are making efforts to simultaneously improve the quality of and reduce spending on health care through alternative payment models such as bundled payment. Bundled payment models are predicated on the theory that aligning financial incentives for all providers across an episode of care will lower health care spending while improving quality. Whether this is true remains unknown. Using national Medicare fee-for-service claims for the period 2011-12 and data on hospital quality, we evaluated how thirty- and ninety-day episode-based spending were related to two validated measures of surgical quality-patient satisfaction and surgical mortality. We found that patients who had major surgery at high-quality hospitals cost Medicare less than those who had surgery at low-quality institutions, for both thirty- and ninety-day periods. The difference in Medicare spending between low- and high-quality hospitals was driven primarily by postacute care, which accounted for 59.5 percent of the difference in thirty-day episode spending, and readmissions, which accounted for 19.9 percent. These findings suggest that efforts to achieve value through bundled payment should focus on improving care at low-quality hospitals and reducing unnecessary use of postacute care. Project HOPE—The People-to-People Health Foundation, Inc.
Design principles of the LVT-2 model laser instrument for the measurement of visual characteristics
NASA Astrophysics Data System (ADS)
Sun, Wende
1989-10-01
As far as the LVT-2 model laser visual acuity measuring instrument, after its model improvement, is concerned, it not only is capable of measuring the visual acuity of retina (LVA), but also capable of measuring the MTF of retina. The light path system of the instrument has three sections. One is a double light bundle common path interference system making use of double Dufu prisms to divide bundles. In conjunction with this, it uses the movement of a reflection lens M2 in order to change the interval distance of the two mutually interfering bundles. As a result of this, it changes the spacial frequency of the interference bands. This acts as the light path to measure LVA. The second is the background light set composed of such components as the tungsten filament lamp T sub L, the interference filter optical plate OF, and the polarization lens P2. It is used in order to form, on the retina, a uniform background base light. In conjunction with this, through adjustments of the dispersion prism B in the light path, adjustments are made in the degree of contrast change I sub O/I sub u measuring the MTF of the retina.
Need for higher fuel burnup at the Hatch Plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beckhman, J.T.
1996-03-01
Hatch is a BWR 4 and has been in operation for some time. The first unit became commercial about 1975. Obtaining higher burnups, or higher average discharge exposures, is nothing new at Hatch. Since we have started, the discharge exposure of the plant has increased. Now, of course, we are not approaching the numbers currently being discussed but, the average discharge exposure has increased from around 20,000 MWD/MTU in the early to mid-1980s to 34,000 MWD/MTU in 1994, I am talking about batch average values. There are also peak bundle and peak rod values. You will have to make themore » conversions if you think in one way or the other because I am talking in batch averages. During Hatch`s operating history we have had some problems with fuel failure. Higher burnup fuel raises a concern about how much fuel failure you are going to have. Fuel failure is, of course, an economic issue with us. Back in the early 1980s, we had a problem with crud-induced localized corrosion, known as CILC. We have gotten over that, but we had some times when it was up around 27 fuel failures a year. That is not a pleasant time to live through because it is not what you want from an economic viewpoint or any other. We have gotten that down. We have had some fuel failures recently, but they have not been related to fuel burnup or to corrosion. In fact, the number of failures has decreased from the early 1980s to the 90s even though burnup increased during that time. The fuel failures are more debris-related-type failures. In addition to increasing burnups, utilities are actively evaluating or have already incorporated power uprate and longer fuel cycles (e.g., 2-year cycles). The goal is to balance out the higher power density, longer cycles, higher burnup, and to have no leakers. Why do we as an industry want to have higher burnup fuel? That is what I want to tell you a little bit about.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-20
... service bundles, music bundles, paid locker services, and purchased content locker services. The technical... downloads, limited offerings, mixed service bundles, music bundles, paid locker services, and purchased...
Vicente-Manzanares, Miguel; Newell-Litwa, Karen; Bachir, Alexia I; Whitmore, Leanna A; Horwitz, Alan Rick
2011-04-18
Migratory front-back polarity emerges from the cooperative effect of myosin IIA (MIIA) and IIB (MIIB) on adhesive signaling. We demonstrate here that, during polarization, MIIA and MIIB coordinately promote localized actomyosin bundling, which generates large, stable adhesions that do not signal to Rac and thereby form the cell rear. MIIA formed dynamic actomyosin proto-bundles that mark the cell rear during spreading; it also bound to actin filament bundles associated with initial adhesion maturation in protrusions. Subsequent incorporation of MIIB stabilized the adhesions and actomyosin filaments with which it associated and formed a stable, extended rear. These adhesions did not turn over and no longer signal to Rac. Microtubules fine-tuned the polarity by positioning the front opposite the MIIA/MIIB-specified rear. Decreased Rac signaling in the vicinity of the MIIA/MIIB-stabilized proto-bundles and adhesions was accompanied by the loss of Rac guanine nucleotide exchange factor (GEFs), like βPIX and DOCK180, and by inhibited phosphorylation of key residues on adhesion proteins that recruit and activate Rac GEFs. These observations lead to a model for front-back polarity through local GEF depletion.
Geng, Ruishuang; Melki, Sami; Chen, Daniel H.-C.; Tian, Guilian; Furness, David; Oshima-Takago, Tomoko; Neef, Jakob; Moser, Tobias; Askew, Charles; Horwitz, Geoff; Holt, Jeffrey; Imanishi, Yoshikazu; Alagramam, Kumar N.
2012-01-01
Mutation in the clarin-1 gene results in loss of hearing and vision in humans (Usher syndrome III), but the role of clarin-1 in the sensory hair cells is unknown. Clarin-1 is predicted to be a four transmembrane domain protein similar to members of the tetraspanin family. Mice carrying null mutation in the clarin-1 (Clrn1−/−) gene show loss of hair cell function and a possible defect in ribbon synapse. We investigated the role of clarin-1 using various in vitro and in vivo approaches. We show by immunohistochemistry and patch-clamp recordings of Ca2+ currents and membrane capacitance from IHCs that clarin-1 is not essential for formation or function of ribbon synapse. However, reduced cochlear microphonic potentials, FM1-43 loading and transduction currents pointed to diminished cochlear hair bundle function in Clrn1−/− mice. Electron microscopy of cochlear hair cells revealed loss of some tall stereocilia and gaps in the v-shaped bundle, although tip-links and staircase arrangement of stereocilia were not primarily affected by Clrn1−/− mutation. Human clarin-1 protein expressed in transfected mouse cochlear hair cells localized to the bundle; however, the pathogenic variant, p.N48K, failed to localize to the bundle. The mouse model generated to study the in vivo consequence of p. N48K in clarin-1 (Clrn1N48K) supports our in vitro and Clrn1−/− mouse data and the conclusion that CLRN1 is an essential hair bundle protein. Further, the ear phenotype in the Clrn1N48K mouse suggests that it is a valuable model for ear disease in CLRN1N48K, the most prevalent Usher III mutation in North America. PMID:22787034
Geng, Ruishuang; Melki, Sami; Chen, Daniel H-C; Tian, Guilian; Furness, David N; Oshima-Takago, Tomoko; Neef, Jakob; Moser, Tobias; Askew, Charles; Horwitz, Geoff; Holt, Jeffrey R; Imanishi, Yoshikazu; Alagramam, Kumar N
2012-07-11
Mutation in the clarin-1 gene (Clrn1) results in loss of hearing and vision in humans (Usher syndrome III), but the role of clarin-1 in the sensory hair cells is unknown. Clarin-1 is predicted to be a four transmembrane domain protein similar to members of the tetraspanin family. Mice carrying null mutation in the clarin-1 gene (Clrn1(-/-)) show loss of hair cell function and a possible defect in ribbon synapse. We investigated the role of clarin-1 using various in vitro and in vivo approaches. We show by immunohistochemistry and patch-clamp recordings of Ca(2+) currents and membrane capacitance from inner hair cells that clarin-1 is not essential for formation or function of ribbon synapse. However, reduced cochlear microphonic potentials, FM1-43 [N-(3-triethylammoniumpropyl)-4-(4-(dibutylamino)styryl) pyridinium dibromide] loading, and transduction currents pointed to diminished cochlear hair bundle function in Clrn1(-/-) mice. Electron microscopy of cochlear hair cells revealed loss of some tall stereocilia and gaps in the v-shaped bundle, although tip links and staircase arrangement of stereocilia were not primarily affected by Clrn1(-/-) mutation. Human clarin-1 protein expressed in transfected mouse cochlear hair cells localized to the bundle; however, the pathogenic variant p.N48K failed to localize to the bundle. The mouse model generated to study the in vivo consequence of p.N48K in clarin-1 (Clrn1(N48K)) supports our in vitro and Clrn1(-/-) mouse data and the conclusion that CLRN1 is an essential hair bundle protein. Furthermore, the ear phenotype in the Clrn1(N48K) mouse suggests that it is a valuable model for ear disease in CLRN1(N48K), the most prevalent Usher syndrome III mutation in North America.
Prodanovic, Srdjan; Gracewski, Sheryl; Nam, Jong-Hoon
2015-02-03
The stereocilia bundle is the mechano-transduction apparatus of the inner ear. In the mammalian cochlea, the stereocilia bundles are situated in the subtectorial space (STS)--a micrometer-thick space between two flat surfaces vibrating relative to each other. Because microstructures vibrating in fluid are subject to high-viscous friction, previous studies considered the STS as the primary place of energy dissipation in the cochlea. Although there have been extensive studies on how metabolic energy is used to compensate the dissipation, much less attention has been paid to the mechanism of energy dissipation. Using a computational model, we investigated the power dissipation in the STS. The model simulates fluid flow around the inner hair cell (IHC) stereocilia bundle. The power dissipation in the STS because of the presence IHC stereocilia increased as the stimulating frequency decreased. Along the axis of the stimulating frequency, there were two asymptotic values of power dissipation. At high frequencies, the power dissipation was determined by the shear friction between the two flat surfaces of the STS. At low frequencies, the power dissipation was dominated by the viscous friction around the IHC stereocilia bundle--the IHC stereocilia increased the STS power dissipation by 50- to 100-fold. There exists a characteristic frequency for STS power dissipation, CFSTS, defined as the frequency where power dissipation drops to one-half of the low frequency value. The IHC stereocilia stiffness and the gap size between the IHC stereocilia and the tectorial membrane determine the characteristic frequency. In addition to the generally assumed shear flow, nonshear STS flow patterns were simulated. Different flow patterns have little effect on the CFSTS. When the mechano-transduction of the IHC was tuned near the vibrating frequency, the active motility of the IHC stereocilia bundle reduced the power dissipation in the STS. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Patient Perception of Value in Bundled Payments for Total Joint Arthroplasty.
Schwartz, Adam J; Fraser, James F; Shannon, Allison M; Jackson, Nikki T; Raghu, T S
2016-12-01
A central concern for providers in a bundled payment model is determining how the bundle is distributed. Prior studies have shown that current reimbursement rates are often not aligned with patients' values. While willingness-to-pay (WTP) surveys are perhaps useful in a fee-for-service arrangement to determine overall reimbursement, the percentage of payment distribution might be as or more important in a bundled payment model. All patients undergoing primary total joint arthroplasty by a single surgeon were offered participation in a preoperative WTP survey. At a minimum 3 months postoperatively, patients were mailed instructions for an online follow-up survey asking how they would allocate a hypothetical bonus payment. From January through December 2014, 45 patients agreed to participate in the preoperative WTP survey. Twenty patients who were minimum 3 months postoperative also completed the follow-up survey. Patients valued total knee and hip arthroplasty at $28,438 (95% confidence interval [CI]: $20,551-36,324) and $39,479 (95% CI: $27,848-$51,112), respectively. At 3 months postoperatively, patients distributed a hypothetical bonus payment 55.5% to the surgeon (95% CI: 47.8%-63.1%), 38% to the hospital (95% CI: 30.3%-45.7%), and 6.5% (95% CI: -1.2% to 14.2%) to the implant manufacturer (P < .001). The data suggest that total joint arthroplasty patients have vastly different perceptions of payment distributions than what actually exists. In contrast to the findings of this study, the true distribution of payments for an episode of care averages 65% to the hospital, 27% to the implant manufacturer, and 8% to the surgeon. While many drivers of payment distribution exist, this study suggests that patients would allocate a larger proportion of a bundled payment to surgeons than is currently disbursed. This finding may also provide a plausible explanation for patients' consistent overestimation of surgeon reimbursements. Copyright © 2016 Elsevier Inc. All rights reserved.
Adhering to a national surgical care bundle reduces the risk of surgical site infections
Hopmans, Titia E. M.; Soetens, Loes C.; Wille, Jan C.; Geerlings, Suzanne E.; Vos, Margreet C.; van Benthem, Birgit H. B.; de Greeff, Sabine C.
2017-01-01
Background In 2008, a bundle of care to prevent Surgical Site Infections (SSIs) was introduced in the Netherlands. The bundle consisted of four elements: antibiotic prophylaxis according to local guidelines, no hair removal, normothermia and ‘hygiene discipline’ in the operating room (i.e. number of door movements). Dutch hospitals were advised to implement the bundle and to measure the outcome. This study’s goal was to assess how effective the bundle was in reducing SSI risk. Methods Hospitals assessed whether their staff complied with each of the bundle elements and voluntary reported compliance data to the national SSI surveillance network (PREZIES). From PREZIES data, we selected data from 2009 to 2014 relating to 13 types of surgical procedures. We excluded surgeries with missing (non)compliance data, and calculated for each remaining surgery with reported (non)compliance data the level of compliance with the bundle (that is, being compliant with 0, 1, 2, 3, or 4 of the elements). Subsequently, we used this level of compliance to assess the effect of bundle compliance on the SSI risk, using multilevel logistic regression techniques. Results 217 489 surgeries were included, of which 62 486 surgeries (29%) had complete bundle reporting. Within this group, the SSI risk was significantly lower for surgeries with complete bundle compliance compared to surgeries with lower compliance levels. Odds ratios ranged from 0.63 to 0.86 (risk reduction of 14% to 37%), while a 13% risk reduction was demonstrated for each point increase in compliance-level. Sensitivity analysis indicated that due to analysing reported bundles only, we probably underestimated the total effect of implementing the bundle. Conclusions This study demonstrated that adhering to a surgical care bundle significantly reduced the risk of SSIs. Reporting of and compliance with the bundle compliance can, however, still be improved. Therefore an even greater effect might be achieved. PMID:28877223
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ninokata, H.; Deguchi, A.; Kawahara, A.
1995-09-01
A new void drift model for the subchannel analysis method is presented for the thermohydraulics calculation of two-phase flows in rod bundles where the flow model uses a two-fluid formulation for the conservation of mass, momentum and energy. A void drift model is constructed based on the experimental data obtained in a geometrically simple inter-connected two circular channel test sections using air-water as working fluids. The void drift force is assumed to be an origin of void drift velocity components of the two-phase cross-flow in a gap area between two adjacent rods and to overcome the momentum exchanges at themore » phase interface and wall-fluid interface. This void drift force is implemented in the cross flow momentum equations. Computational results have been successfully compared to experimental data available including 3x3 rod bundle data.« less
Continuum mechanical model for cross-linked actin networks with contractile bundles
NASA Astrophysics Data System (ADS)
Ferreira, J. P. S.; Parente, M. P. L.; Natal Jorge, R. M.
2018-01-01
In the context of a mechanical approach to cell biology, there is a close relationship between cellular function and mechanical properties. In recent years, an increasing amount of attention has been given to the coupling between biochemical and mechanical signals by means of constitutive models. In particular, on the active contractility of the actin cytoskeleton. Given the importance of the actin contraction on the physiological functions, this study propose a constitutive model to describe how the filamentous network controls its mechanics actively. Embedded in a soft isotropic ground substance, the network behaves as a viscous mechanical continuum, comprised of isotropically distributed cross-linked actin filaments and actomyosin bundles. Trough virtual rheometry experiments, the present model relates the dynamics of the myosin motors with the network stiffness, which is to a large extent governed by the time-scale of the applied deformations/forces.
Folding and stability of helical bundle proteins from coarse-grained models.
Kapoor, Abhijeet; Travesset, Alex
2013-07-01
We develop a coarse-grained model where solvent is considered implicitly, electrostatics are included as short-range interactions, and side-chains are coarse-grained to a single bead. The model depends on three main parameters: hydrophobic, electrostatic, and side-chain hydrogen bond strength. The parameters are determined by considering three level of approximations and characterizing the folding for three selected proteins (training set). Nine additional proteins (containing up to 126 residues) as well as mutated versions (test set) are folded with the given parameters. In all folding simulations, the initial state is a random coil configuration. Besides the native state, some proteins fold into an additional state differing in the topology (structure of the helical bundle). We discuss the stability of the native states, and compare the dynamics of our model to all atom molecular dynamics simulations as well as some general properties on the interactions governing folding dynamics. Copyright © 2013 Wiley Periodicals, Inc.
Contribution of actin filaments to the global compressive properties of fibroblasts.
Ujihara, Yoshihiro; Nakamura, Masanori; Miyazaki, Hiroshi; Wada, Shigeo
2012-10-01
Actin filaments are often regarded as tension-bearing components. Here, we examined the effects of actin filaments on global compressive properties of cells experimentally and numerically. Fibroblasts were harvested from the patellar tendon of a mature Japanese white rabbit and treated with cytochalasin D to depolymerize the actin filaments. Intact cells and cells with disrupted actin filaments were subjected to the compressive tests. Each floating cell was held between the cantilever and compressive plates and compressed by moving the compressive plate with a linear actuator to obtain a load-deformation curve under quasi-static conditions. The experimental results demonstrated that the initial stiffness of a cell with disrupted actin filaments decreased by 51%. After the experiments, we simulated the compressive test of cells with/without bundles of actin filaments. A bundle of actin filaments was modeled as a tension-bearing component that generates a force based on Hooke's law only when it was elongated. By contrast, if it was shortened, it was assumed to exert no force. The computational results revealed that the alignment of bundles of actin filaments significantly affected the cell stiffness. In addition, the passive reorientation of bundles of actin filaments perpendicular to the compression induced an increase in the resistance to the vertical elongation of a cell and thereby increased the cell stiffness. These results clearly indicated that bundles of actin filaments contribute to the compressive properties of a cell, even if they are tension-bearing components. Copyright © 2012 Elsevier Ltd. All rights reserved.
Auditory Mechanics of the Tectorial Membrane and the Cochlear Spiral
Gavara, Núria; Manoussaki, Daphne; Chadwick, Richard S.
2012-01-01
Purpose of review This review is timely and relevant since new experimental and theoretical findings suggest that cochlear mechanics from the nanoscale to the macroscale are affected by mechanical properties of the tectorial membrane and the spiral shape. Recent findings Main tectorial membrane themes covered are i) composition and morphology, ii) nanoscale mechanical interactions with the outer hair cell bundle, iii) macroscale longitudinal coupling, iv) fluid interaction with inner hair cell bundles, v) macroscale dynamics and waves. Main cochlear spiral themes are macroscale low-frequency energy focusing and microscale organ of Corti shear gain. Implications Findings from new experimental and theoretical models reveal exquisite sensitivity of cochlear mechanical performance to tectorial membrane structural organization, mechanics, and its positioning with respect to hair bundles. The cochlear spiral geometry is a major determinant of low frequency hearing. Suggestions are made for future research directions. PMID:21785353
Bundle adjustment with raw inertial observations in UAV applications
NASA Astrophysics Data System (ADS)
Cucci, Davide Antonio; Rehak, Martin; Skaloud, Jan
2017-08-01
It is well known that accurate aerial position and attitude control is beneficial for image orientation in airborne photogrammetry. The aerial control is traditionally obtained by Kalman filtering/smoothing inertial and GNSS observations prior to the bundle-adjustment. However, in Micro Aerial Vehicles this process may result in poor attitude determination due to the limited quality of the inertial sensors, large alignment uncertainty and residual correlations between sensor biases and initial attitude. We propose to include the raw inertial observations directly into the bundle-adjustment instead of as position and attitude weighted observations from a separate inertial/GNSS fusion step. The necessary observation models are derived in detail within the context of the so called "Dynamic Networks". We examine different real world cases and we show that the proposed approach is superior to the established processing pipeline in challenging scenarios such as mapping in corridors and in areas where the reception of GNSS signals is denied.
DiGioia, Anthony M; Greenhouse, Pamela K; Giarrusso, Michelle L; Kress, Justina M
2016-01-01
The Affordable Care Act accelerates health care providers' need to prepare for new care delivery platforms and payment models such as bundling and reference-based pricing (RBP). Thriving in this environment will be difficult without knowing the true cost of care delivery at the level of the clinical condition over the full cycle of care. We describe a project in which we identified true costs for both total hip and total knee arthroplasty. With the same tool, we identified cost drivers in each segment of care delivery and collected patient experience information. Combining cost and experience information with outcomes data we already collect allows us to drive costs down while protecting outcomes and experiences, and compete successfully in bundling and RBP programs. Copyright © 2016 Elsevier Inc. All rights reserved.
Homeostatic enhancement of active mechanotransduction
NASA Astrophysics Data System (ADS)
Milewski, Andrew; O'Maoiléidigh, Dáibhid; Hudspeth, A. J.
2018-05-01
Our sense of hearing boasts exquisite sensitivity to periodic signals. Experiments and modeling imply, however, that the auditory system achieves this performance for only a narrow range of parameter values. As a result, small changes in these values could compromise the ability of the mechanosensory hair cells to detect stimuli. We propose that, rather than exerting tight control over parameters, the auditory system employs a homeostatic mechanism that ensures the robustness of its operation to variation in parameter values. Through analytical techniques and computer simulations we investigate whether a homeostatic mechanism renders the hair bundle's signal-detection ability more robust to alterations in experimentally accessible parameters. When homeostasis is enforced, the range of values for which the bundle's sensitivity exceeds a threshold can increase by more than an order of magnitude. The robustness of cochlear function based on somatic motility or hair bundle motility may be achieved by employing the approach we describe here.
Loading Patterns of the Posterior Cruciate Ligament in the Healthy Knee: A Systematic Review
List, Renate; Oberhofer, Katja; Fucentese, Sandro F.; Snedeker, Jess G.; Taylor, William R.
2016-01-01
Background The posterior cruciate ligament (PCL) is the strongest ligament of the knee, serving as one of the major passive stabilizers of the tibio-femoral joint. However, despite a number of experimental and modelling approaches to understand the kinematics and kinetics of the ligament, the normal loading conditions of the PCL and its functional bundles are still controversially discussed. Objectives This study aimed to generate science-based evidence for understanding the functional loading of the PCL, including the anterolateral and posteromedial bundles, in the healthy knee joint through systematic review and statistical analysis of the literature. Data sources MEDLINE, EMBASE and CENTRAL Eligibility criteria for selecting studies Databases were searched for articles containing any numerical strain or force data on the healthy PCL and its functional bundles. Studied activities were as follows: passive flexion, flexion under 100N and 134N posterior tibial load, walking, stair ascent and descent, body-weight squatting and forward lunge. Method Statistical analysis was performed on the reported load data, which was weighted according to the number of knees tested to extract average strain and force trends of the PCL and identify deviations from the norms. Results From the 3577 articles retrieved by the initial electronic search, only 66 met all inclusion criteria. The results obtained by aggregating data reported in the eligible studies indicate that the loading patterns of the PCL vary with activity type, knee flexion angle, but importantly also the technique used for assessment. Moreover, different fibres of the PCL exhibit different strain patterns during knee flexion, with higher strain magnitudes reported in the anterolateral bundle. While during passive flexion the posteromedial bundle is either lax or very slightly elongated, it experiences higher strain levels during forward lunge and has a synergetic relationship with the anterolateral bundle. The strain patterns obtained for virtual fibres that connect the origin and insertion of the bundles in a straight line show similar trends to those of the real bundles but with different magnitudes. Conclusion This review represents what is now the best available understanding of the biomechanics of the PCL, and may help to improve programs for injury prevention, diagnosis methods as well as reconstruction and rehabilitation techniques. PMID:27880849
NASA Astrophysics Data System (ADS)
Moradian, Rostam; Behzad, Somayeh; Azadi, Sam
2008-09-01
By using ab initio density functional theory we investigated the structural and electronic properties of semiconducting (7, 0), (8, 0) and (10, 0) carbon nanotube bundles. The energetic and electronic evolutions of nanotubes in the bundling process are also studied. The effects of inter-tube coupling on the electronic dispersions of semiconducting carbon nanotube bundles are demonstrated. Our results show that the inter-tube coupling decreases the energy gap in semiconducting nanotubes. We found that bundles of (7, 0) and (8, 0) carbon nanotubes have metallic feature, while (10, 0) bundle is a semiconductor with an energy gap of 0.22 eV. To clarify our results the band structures of isolated and bundled nanotubes are compared.
Lexical bundles in an advanced INTOCSU writing class and engineering texts: A functional analysis
NASA Astrophysics Data System (ADS)
Alquraishi, Mohammed Abdulrahman
The purpose of this study is to investigate the functions of lexical bundles in two corpora: a corpus of engineering academic texts and a corpus of IEP advanced writing class texts. This study is concerned with the nature of formulaic language in Pathway IEPs and engineering texts, and whether those types of texts show similar or distinctive formulaic functions. Moreover, the study looked into lexical bundles found in an engineering 1.26 million-word corpus and an ESL 65000-word corpus using a concordancing program. The study then analyzed the functions of those lexical bundles and compared them statistically using chi-square tests. Additionally, the results of this investigation showed 236 unique frequent lexical bundles in the engineering corpus and 37 bundles in the pathway corpus. Also, the study identified several differences between the density and functions of lexical bundles in the two corpora. These differences were evident in the distribution of functions of lexical bundles and the minimal overlap of lexical bundles found in the two corpora. The results of this study call for more attention to formulaic language at ESP and EAP programs.
Biological natural retting for determining the hierarchical structuration of banana fibers.
Gañán, Piedad; Zuluaga, Robin; Velez, Juan Manuel; Mondragon, Iñaki
2004-10-20
Extraction processes of natural fibers can be performed by different procedures that include mechanical, chemical and biological methods. Each method presents different advantages or drawbacks according to the amount of fiber produced or the quality and properties of fiber bundles obtained. In this study, biological natural retting was satisfactorily used for obtaining banana fibers from plant bunches. However, the most important contribution of this work refers to the description of the hierarchical microstructural ordering present in banana fiber bundles in both bundle surface and inner region. The chemical composition of banana fiber bundles has been evaluated by FTIR spectroscopy. Through exposure time, the fiber bundle configuration presents small variations in composition. The main changes are related to hemicellulose and pectins as they conform the outer walls of the bundle. Hierarchical helicoidal ordering in the bundle surface as well as orientation on the longitudinal axis of the bundle were observed by optical microscopy (OM) and scanning electron microscopy (SEM) for 3-4 microm surface fibers and 10-15 microm inner elementary fibers, respectively. With increasing exposure time, fiber bundle walls lose integrity, as reflected in their mechanical behavior.
Wang, Sheng H; Lobier, Muriel; Siebenhühner, Felix; Puoliväli, Tuomas; Palva, Satu; Palva, J Matias
2018-06-01
It has not been well documented that MEG/EEG functional connectivity graphs estimated with zero-lag-free interaction metrics are severely confounded by a multitude of spurious interactions (SI), i.e., the false-positive "ghosts" of true interactions [1], [2]. These SI are caused by the multivariate linear mixing between sources, and thus they pose a severe challenge to the validity of connectivity analysis. Due to the complex nature of signal mixing and the SI problem, there is a need to intuitively demonstrate how the SI are discovered and how they can be attenuated using a novel approach that we termed hyperedge bundling. Here we provide a dataset with software with which the readers can perform simulations in order to better understand the theory and the solution to SI. We include the supplementary material of [1] that is not directly relevant to the hyperedge bundling per se but reflects important properties of the MEG source model and the functional connectivity graphs. For example, the gyri of dorsal-lateral cortices are the most accurately modeled areas; the sulci of inferior temporal, frontal and the insula have the least modeling accuracy. Importantly, we found the interaction estimates are heavily biased by the modeling accuracy between regions, which means the estimates cannot be straightforwardly interpreted as the coupling between brain regions. This raise a red flag that the conventional method of thresholding graphs by estimate values is rather suboptimal: because the measured topology of the graph reflects the geometric property of source-model instead of the cortical interactions under investigation.
Kalscheur, Matthew M; Kipp, Ryan T; Tattersall, Matthew C; Mei, Chaoqun; Buhr, Kevin A; DeMets, David L; Field, Michael E; Eckhardt, Lee L; Page, C David
2018-01-01
Cardiac resynchronization therapy (CRT) reduces morbidity and mortality in heart failure patients with reduced left ventricular function and intraventricular conduction delay. However, individual outcomes vary significantly. This study sought to use a machine learning algorithm to develop a model to predict outcomes after CRT. Models were developed with machine learning algorithms to predict all-cause mortality or heart failure hospitalization at 12 months post-CRT in the COMPANION trial (Comparison of Medical Therapy, Pacing, and Defibrillation in Heart Failure). The best performing model was developed with the random forest algorithm. The ability of this model to predict all-cause mortality or heart failure hospitalization and all-cause mortality alone was compared with discrimination obtained using a combination of bundle branch block morphology and QRS duration. In the 595 patients with CRT-defibrillator in the COMPANION trial, 105 deaths occurred (median follow-up, 15.7 months). The survival difference across subgroups differentiated by bundle branch block morphology and QRS duration did not reach significance ( P =0.08). The random forest model produced quartiles of patients with an 8-fold difference in survival between those with the highest and lowest predicted probability for events (hazard ratio, 7.96; P <0.0001). The model also discriminated the risk of the composite end point of all-cause mortality or heart failure hospitalization better than subgroups based on bundle branch block morphology and QRS duration. In the COMPANION trial, a machine learning algorithm produced a model that predicted clinical outcomes after CRT. Applied before device implant, this model may better differentiate outcomes over current clinical discriminators and improve shared decision-making with patients. © 2018 American Heart Association, Inc.
Stimulation of hair cells with ultraviolet light
NASA Astrophysics Data System (ADS)
Azimzadeh, Julien B.; Fabella, Brian A.; Hudspeth, A. J.
2018-05-01
Hair bundles are specialized organelles that transduce mechanical inputs into electrical outputs. To activate hair cells, physiologists have resorted to mechanical methods of hair-bundle stimulation. Here we describe a new method of hair-bundle stimulation, irradiation with ultraviolet light. A hair bundle illuminated by ultraviolet light rapidly moves towards its tall edge, a motion typically associated with excitatory stimulation. The motion disappears upon tip-link rupture and is associated with the opening of mechanotransduction channels. Hair bundles can be induced to move sinusoidally with oscillatory modulation of the stimulation power. We discuss the implications of ultraviolet stimulation as a novel hair-bundle stimulus.
NASA Astrophysics Data System (ADS)
Padilla-Gamiño, J. L.; Weatherby, T. M.; Waller, R. G.; Gates, R. D.
2011-06-01
The majority of scleractinian corals are hermaphrodites that broadcast spawn their gametes separately or packaged as egg-sperm bundles during spawning events that are timed to the lunar cycle. The egg-sperm bundle is an efficient way of transporting gametes to the ocean surface where fertilization takes place, while minimizing sperm dilution and maximizing the opportunity for gamete encounters during a spawning event. To date, there are few studies that focus on the formation and structure of egg-sperm bundle. This study explores formation, ultrastructure, and longevity of the egg-sperm bundle in Montipora capitata, a major reef building coral in Hawai`i. Our results show that the egg-sperm bundle is formed by a mucus layer secreted by the oocytes. The sperm package is located at the center of each bundle, possibly reflecting the development of male and female gametes in different mesenteries. Once the egg-sperm bundle has reached the ocean surface, it breaks open within 10-35 min, depending on the environmental conditions (i.e., wind, water turbulence). Although the bundle has an ephemeral life span, the formation of an egg-sperm bundle is a fundamental part of the reproductive process that could be strongly influenced by climate change and deterioration of water quality (due to anthropogenic effects) and thus requires further investigation.
Robust Mapping of Incoherent Fiber-Optic Bundles
NASA Technical Reports Server (NTRS)
Roberts, Harry E.; Deason, Brent E.; DePlachett, Charles P.; Pilgrim, Robert A.; Sanford, Harold S.
2007-01-01
A method and apparatus for mapping between the positions of fibers at opposite ends of incoherent fiber-optic bundles have been invented to enable the use of such bundles to transmit images in visible or infrared light. The method is robust in the sense that it provides useful mapping even for a bundle that contains thousands of narrow, irregularly packed fibers, some of which may be defective. In a coherent fiber-optic bundle, the input and output ends of each fiber lie at identical positions in the input and output planes; therefore, the bundle can be used to transmit images without further modification. Unfortunately, the fabrication of coherent fiber-optic bundles is too labor-intensive and expensive for many applications. An incoherent fiber-optic bundle can be fabricated more easily and at lower cost, but it produces a scrambled image because the position of the end of each fiber in the input plane is generally different from the end of the same fiber in the output plane. However, the image transmitted by an incoherent fiber-optic bundle can be unscrambled (or, from a different perspective, decoded) by digital processing of the output image if the mapping between the input and output fiber-end positions is known. Thus, the present invention enables the use of relatively inexpensive fiber-optic bundles to transmit images.
How to Hit a Home Run with Bundled Payments.
Kaldy, Joanne
2015-09-01
As health care payment reform continues to evolve, reimbursement increasingly is being linked to outcomes as well as to expenditures. Toward this end, the Centers for Medicare & Medicaid Services has established models for "bundled" payments to long-term care providers, using predetermined payments based on historical spending rates, in a new pay-for-performance landscape. The goal is to reward providers for quality and cost-effective care as well as penalize them for adverse patient outcomes and hospital readmissions based on the target spending rates. Pharmacists have a role in these new models of care, but need to broaden their partnerships and relationships with providers and be prepared to prove they are contributing both to quality care and to reducing costs.
Analysis and characterization of high-resolution and high-aspect-ratio imaging fiber bundles.
Motamedi, Nojan; Karbasi, Salman; Ford, Joseph E; Lomakin, Vitaliy
2015-11-10
High-contrast imaging fiber bundles (FBs) are characterized and modeled for wide-angle and high-resolution imaging applications. Scanning electron microscope images of FB cross sections are taken to measure physical parameters and verify the variations of irregular fibers due to the fabrication process. Modal analysis tools are developed that include irregularities in the fiber core shapes and provide results in agreement with experimental measurements. The modeling demonstrates that the irregular fibers significantly outperform a perfectly regular "ideal" array. Using this method, FBs are designed that can provide high contrast with core pitches of only a few wavelengths of the guided light. Structural modifications of the commercially available FB can reduce the core pitch by 60% for higher resolution image relay.
Chaboyer, Wendy; Gillespie, Brigid M
2014-12-01
To explore nurses' views of the barriers and facilitators to the use of a newly devised patient-centred pressure ulcer prevention care bundle. Given pressure ulcer prevention strategies are not implemented consistently, the use of a pressure ulcer care bundle may improve implementation given bundles generally assist in standardising care. A quality improvement project was undertaken after a pressure ulcer prevention care bundle was developed and pilot-tested. Short, conversational interviews with nurse explored their views of a patient-centred pressure ulcer care bundle. Interviews were audio-taped and transcribed. Inductive content analysis was used to analyse the transcripts. A total of 20 nurses were interviewed. Five categories with corresponding subcategories emerged from the analysis. They were increasing awareness of pressure ulcer prevention, prompting pressure ulcer prevention activities, promoting active patient participation, barriers to using a pressure ulcer prevention care bundle and enabling integration of the pressure ulcer prevention care bundle into routine practice. Benefits of using a patient-centred pressure ulcer prevention care bundle may include prompting patients and staff to implement prevention strategies and promote active patient participation in care. The success of the care bundle relied on both patients' willingness to participate and nurses' willingness to incorporate it into their routine work. A patient-centred pressure ulcer prevention care bundle may facilitate more consistent implementation of pressure ulcer prevention strategies and active patient participation in care. © 2014 John Wiley & Sons Ltd.
Hamrin Senorski, Eric; Sundemo, David; Murawski, Christopher D; Alentorn-Geli, Eduard; Musahl, Volker; Fu, Freddie; Desai, Neel; Stålman, Anders; Samuelsson, Kristian
2017-12-01
The purpose of this study was to investigate how different techniques of single-bundle anterior cruciate ligament (ACL) reconstruction affect subjective knee function via the Knee injury and Osteoarthritis Outcome Score (KOOS) evaluation 2 years after surgery. It was hypothesized that the surgical techniques of single-bundle ACL reconstruction would result in equivalent results with respect to subjective knee function 2 years after surgery. This cohort study was based on data from the Swedish National Knee Ligament Register during the 10-year period of 1 January 2005 through 31 December 2014. Patients who underwent primary single-bundle ACL reconstruction with hamstrings tendon autograft were included. Details on surgical technique were collected using a web-based questionnaire comprised of essential AARSC items, including utilization of accessory medial portal drilling, anatomic tunnel placement, and visualization of insertion sites and landmarks. A repeated measures ANOVA and an additional linear mixed model analysis were used to investigate the effect of surgical technique on the KOOS 4 from the pre-operative period to 2-year follow-up. A total of 13,636 patients who had undergone single-bundle ACL reconstruction comprised the study group for this analysis. A repeated measures ANOVA determined that mean subjective knee function differed between the pre-operative time period and at 2-year follow-up (p < 0.001). No differences were found with respect to the interaction between KOOS 4 and surgical technique or gender. Additionally, the linear mixed model adjusted for age at reconstruction, gender, and concomitant injuries showed no difference between surgical techniques in KOOS 4 improvement from baseline to 2-year follow-up. However, KOOS 4 improved significantly in patients for all surgical techniques of single-bundle ACL reconstruction (p < 0.001); the largest improvement was seen between the pre-operative time period and at 1-year follow-up. Surgical techniques of primary single-bundle ACL reconstruction did not demonstrate differences in the improvement in baseline subjective knee function as measured with the KOOS 4 during the first 2 years after surgery. However, subjective knee function improved from pre-operative baseline to 2-year follow-up independently of surgical technique.
Ista, Erwin; van der Hoven, Ben; Kornelisse, René F; van der Starre, Cynthia; Vos, Margreet C; Boersma, Eric; Helder, Onno K
2016-06-01
Central-line-associated bloodstream infections (CLABSIs) are a major problem in intensive care units (ICUs) worldwide. We aimed to quantify the effectiveness of central-line bundles (insertion or maintenance or both) to prevent these infections. We searched Embase, MEDLINE OvidSP, Web-of-Science, and Cochrane Library to identify studies reporting the implementation of central-line bundles in adult ICU, paediatric ICU (PICU), or neonatal ICU (NICU) patients. We searched for studies published between Jan 1, 1990, and June 30, 2015. For the meta-analysis, crude estimates of infections were pooled by use of a DerSimonian and Laird random effect model. The primary outcome was the number of CLABSIs per 1000 catheter-days before and after implementation. Incidence risk ratios (IRRs) were obtained by use of random-effects models. We initially identified 4337 records, and after excluding duplicates and those ineligible, 96 studies met the eligibility criteria, 79 of which contained sufficient information for a meta-analysis. Median CLABSIs incidence were 5·7 per 1000 catheter-days (range 1·2-46·3; IQR 3·1-9·5) on adult ICUs; 5·9 per 1000 catheter-days (range 2·6-31·1; 4·8-9·4) on PICUs; and 8·4 per 1000 catheter-days (range 2·6-24·1; 3·7-16·0) on NICUs. After implementation of central-line bundles the CLABSI incidence ranged from 0 to 19·5 per 1000 catheter-days (median 2·6, IQR 1·2-4·4) in all types of ICUs. In our meta-analysis the incidence of infections decreased significantly from median 6·4 per 1000 catheter-days (IQR 3·8-10·9) to 2·5 per 1000 catheter-days (1·4-4·8) after implementation of bundles (IRR 0·44, 95% CI 0·39-0·50, p<0·0001; I(2)=89%). Implementation of central-line bundles has the potential to reduce the incidence of CLABSIs. None. Copyright © 2016 Elsevier Ltd. All rights reserved.
Mechanical Overstimulation of Hair Bundles: Suppression and Recovery of Active Motility
Kao, Albert; Meenderink, Sebastiaan W. F.; Bozovic, Dolores
2013-01-01
We explore the effects of high-amplitude mechanical stimuli on hair bundles of the bullfrog sacculus. Under in vitro conditions, these bundles exhibit spontaneous limit cycle oscillations. Prolonged deflection exerted two effects. First, it induced an offset in the position of the bundle. Recovery to the original position displayed two distinct time scales, suggesting the existence of two adaptive mechanisms. Second, the stimulus suppressed spontaneous oscillations, indicating a change in the hair bundle’s dynamic state. After cessation of the stimulus, active bundle motility recovered with time. Both effects were dependent on the duration of the imposed stimulus. External calcium concentration also affected the recovery to the oscillatory state. Our results indicate that both offset in the bundle position and calcium concentration control the dynamic state of the bundle. PMID:23505461
That sinking feeling: Suspended sediments can prevent the ascent of coral egg bundles
Ricardo, Gerard F.; Jones, Ross J.; Negri, Andrew P.; Stocker, Roman
2016-01-01
Spawning synchrony represents a common reproductive strategy in sessile marine organisms and for broadcast spawning corals, buoyancy of egg-sperm bundles is critical to maximise fertilisation at the ocean surface. Here we demonstrate a novel threat to coral reproduction whereby buoyant egg-sperm bundles intercept and are “ballasted” by sediment grains on their journey to the ocean surface, preventing them from reaching the ocean surface and greatly reducing egg-sperm encounter rates. Empirical observations of this mechanism are successfully captured by a mathematical model that predicts the reduction in ascent probability and egg-sperm encounters as a function of sediment load. When applied to 15 m deep reefs, the model predicts that 10% and 50% reductions in egg-sperm encounters occur at 35 mg L−1 and 87 mg L−1 suspended sediment concentrations, respectively, and for a 5 m deep reef a 10% reduction occurs at 106 mg L−1. These concentrations are commonly associated with sediment plumes from dredging or natural resuspension events. The potential for sediments to sink coral gametes highlights the need to carefully manage the timing of turbidity-generating human activities near reefs during spawning periods. PMID:26898352
That sinking feeling: Suspended sediments can prevent the ascent of coral egg bundles.
Ricardo, Gerard F; Jones, Ross J; Negri, Andrew P; Stocker, Roman
2016-02-22
Spawning synchrony represents a common reproductive strategy in sessile marine organisms and for broadcast spawning corals, buoyancy of egg-sperm bundles is critical to maximise fertilisation at the ocean surface. Here we demonstrate a novel threat to coral reproduction whereby buoyant egg-sperm bundles intercept and are "ballasted" by sediment grains on their journey to the ocean surface, preventing them from reaching the ocean surface and greatly reducing egg-sperm encounter rates. Empirical observations of this mechanism are successfully captured by a mathematical model that predicts the reduction in ascent probability and egg-sperm encounters as a function of sediment load. When applied to 15 m deep reefs, the model predicts that 10% and 50% reductions in egg-sperm encounters occur at 35 mg L(-1) and 87 mg L(-1) suspended sediment concentrations, respectively, and for a 5 m deep reef a 10% reduction occurs at 106 mg L(-1). These concentrations are commonly associated with sediment plumes from dredging or natural resuspension events. The potential for sediments to sink coral gametes highlights the need to carefully manage the timing of turbidity-generating human activities near reefs during spawning periods.
Variable recruitment fluidic artificial muscles: modeling and experiments
NASA Astrophysics Data System (ADS)
Bryant, Matthew; Meller, Michael A.; Garcia, Ephrahim
2014-07-01
We investigate taking advantage of the lightweight, compliant nature of fluidic artificial muscles to create variable recruitment actuators in the form of artificial muscle bundles. Several actuator elements at different diameter scales are packaged to act as a single actuator device. The actuator elements of the bundle can be connected to the fluidic control circuit so that different groups of actuator elements, much like individual muscle fibers, can be activated independently depending on the required force output and motion. This novel actuation concept allows us to save energy by effectively impedance matching the active size of the actuators on the fly based on the instantaneous required load. This design also allows a single bundled actuator to operate in substantially different force regimes, which could be valuable for robots that need to perform a wide variety of tasks and interact safely with humans. This paper proposes, models and analyzes the actuation efficiency of this actuator concept. The analysis shows that variable recruitment operation can create an actuator that reduces throttling valve losses to operate more efficiently over a broader range of its force-strain operating space. We also present preliminary results of the design, fabrication and experimental characterization of three such bioinspired variable recruitment actuator prototypes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hughes, Michael John; McConnaughhay, Johnie Franklin
A combustor includes a tube bundle that extends radially across at least a portion of the combustor. The tube bundle includes an upstream surface axially separated from a downstream surface, and a plurality of tubes extend from the upstream surface through the downstream surface to provide fluid communication through the tube bundle. A barrier extends radially inside the tube bundle between the upstream and downstream surfaces, and a baffle extends axially inside the tube bundle between the upstream surface and the barrier.
French, Katy E; Guzman, Alexis B; Rubio, Augustin C; Frenzel, John C; Feeley, Thomas W
2016-09-01
With the movement towards bundled payments, stakeholders should know the true cost of the care they deliver. Time-driven activity-based costing (TDABC) can be used to estimate costs for each episode of care. In this analysis, TDABC is used to both estimate the costs of anesthesia care and identify the primary drivers of those costs of 11 common oncologic outpatient surgical procedures. Personnel cost were calculated by determining the hourly cost of each provider and the associated process time of the 11 surgical procedures. Using the anesthesia record, drugs, supplies and equipment costs were identified and calculated. The current staffing model was used to determine baseline personnel costs for each procedure. Using the costs identified through TDABC analysis, the effect of different staffing ratios on anesthesia costs could be predicted. Costs for each of the procedures were determined. Process time and costs are linearly related. Personnel represented 79% of overall cost while drugs, supplies and equipment represented the remaining 21%. Changing staffing ratios shows potential savings between 13% and 28% across the 11 procedures. TDABC can be used to estimate the costs of anesthesia care. This costing information is critical to assessing the anesthesiology component in a bundled payment. It can also be used to identify areas of cost savings and model costs of anesthesia care. CRNA to anesthesiologist staffing ratios profoundly influence the cost of care. This methodology could be applied to other medical specialties to help determine costs in the setting of bundled payments. Copyright © 2015 Elsevier Inc. All rights reserved.
French, Katy E.; Guzman, Alexis B.; Rubio, Augustin C.; Frenzel, John C.; Feeley, Thomas W
2015-01-01
Background With the movement towards bundled payments, stakeholders should know the true cost of the care they deliver. Time-driven activity-based costing (TDABC) can be used to estimate costs for each episode of care. In this analysis, TDABC is used to both estimate the costs of anesthesia care and identify the primary drivers of those costs of 11 common oncologic outpatient surgical procedures. Methods Personnel cost were calculated by determining the hourly cost of each provider and the associated process time of the 11 surgical procedures. Using the anesthesia record, drugs, supplies and equipment costs were identified and calculated. The current staffing model was used to determine baseline personnel costs for each procedure. Using the costs identified through TDABC analysis, the effect of different staffing ratios on anesthesia costs could be predicted. Results Costs for each of the procedures were determined. Process time and costs are linearly related. Personnel represented 79% of overall cost while drugs, supplies and equipment represented the remaining 21%. Changing staffing ratios shows potential savings between 13-28% across the 11 procedures. Conclusions TDABC can be used to estimate the costs of anesthesia care. This costing information is critical to assessing the anesthesiology component in a bundled payment. It can also be used to identify areas of cost savings and model costs of anesthesia care. CRNA to anesthesiologist staffing ratios profoundly influence the cost of care. This methodology could be applied to other medical specialties to help determine costs in the setting of bundled payments. PMID:27637823
Three-Dimensional Evaluation of Similarity of Right and Left Knee Joints
Jang, Ki-Mo; Park, Jong-Hoon; Chang, Minho; Kim, Youngjun; Lee, Deukhee; Park, Sehyung; Wang, Joon Ho
2017-01-01
Purpose The purpose of this study was to evaluate the anatomical similarity of three-dimensional (3D) morphometric parameters between right and left knees. Materials and Methods Ten fresh-frozen paired cadaveric knees were tested. Following dissection, footprint areas of the anterior cruciate ligament (ACL) and posterior cruciate ligament (PCL) were measured. Surface scanning was performed using a 3D scanner. Scanned data were reproduced and morphometric parameters were measured on specialized software. After making mirror models, we compared footprint center positions of the ACL and PCL of both sides and calculated the average deviation of 3D alignment between the right- and left-side models. Results No significant side-to-side differences were found in any morphometric parameters. Bony shapes displayed a side-to-side difference of <1 mm. Distal femoral and proximal tibial volumes did not present side-to-side differences, either; the average 3D deviations of alignment between the right and left sides were 0.8±0.4/1.1±0.6 mm (distal femur/proximal tibia). Center-to-center distances between the right and left ACL footprints were 2.6/2.7 mm (femur/tibia) for the anteromedial bundle and 2.4/2.8 mm for the posterolateral bundle. They were 1.9/1.5 mm for the anterolateral bundle and 2.2/1.8 mm for the posteromedial bundle of the PCL. Conclusions There was a remarkable 3D morphometric similarity between right and left knees. Our results might support the concept of obtaining morphologic reference data from the uninvolved contralateral knee. PMID:29046046
Decker, David L; Lyles, Brad F; Purcell, Richard G; Hershey, Ronald Lee
2014-05-20
An apparatus and method for supporting a tubing bundle during installation or removal. The apparatus includes a clamp for securing the tubing bundle to an external wireline. The method includes deploying the tubing bundle and wireline together, The tubing bundle is periodically secured to the wireline using a clamp.
Fiber-bundle-basis sparse reconstruction for high resolution wide-field microendoscopy.
Mekhail, Simon Peter; Abudukeyoumu, Nilupaer; Ward, Jonathan; Arbuthnott, Gordon; Chormaic, Síle Nic
2018-04-01
In order to observe deep regions of the brain, we propose the use of a fiber bundle for microendoscopy. Fiber bundles allow for the excitation and collection of fluorescence as well as wide field imaging while remaining largely impervious to image distortions brought on by bending. Furthermore, their thin diameter, from 200-500 µ m, means their impact on living tissue, though not absent, is minimal. Although wide field imaging with a bundle allows for a high temporal resolution since no scanning is involved, the largest criticism of bundle imaging is the drastically lowered spatial resolution. In this paper, we make use of sparsity in the object being imaged to up sample the low resolution images from the fiber bundle with compressive sensing. We take each image in a single shot by using a measurement basis dictated by the quasi-crystalline arrangement of the bundle's cores. We find that this technique allows us to increase the resolution of a typical image taken through a fiber bundle.
Equilibrium polyelectrolyte bundles with different multivalent counterion concentrations
NASA Astrophysics Data System (ADS)
Sayar, Mehmet; Holm, Christian
2010-09-01
We present the results of molecular-dynamics simulations on the salt concentration dependence of the formation of polyelectrolyte bundles in thermodynamic equilibrium. Extending our results on salt-free systems we investigate here deficiency or excess of trivalent counterions in solution. Our results reveal that the trivalent counterion concentration significantly alters the bundle size and size distribution. The onset of bundle formation takes place at earlier Bjerrum length values with increasing trivalent counterion concentration. For the cases of 80%, 95%, and 100% charge compensation via trivalent counterions, the net charge of the bundles decreases with increasing size. We suggest that competition among two different mechanisms, counterion condensation and merger of bundles, leads to a nonmonotonic change in line-charge density with increasing Bjerrum length. The investigated case of having an abundance of trivalent counterions by 200% prohibits such a behavior. In this case, we find that the difference in effective line-charge density of different size bundles diminishes. In fact, the system displays an isoelectric point, where all bundles become charge neutral.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lamartine, J T; Thurber, W C
1959-06-01
The feasibility of using electroless nickel, a chemical deposit containing about 10 wt.% phosphorous in nickel, as the brazing alloy for assembling tubular stainless steel fuel elements of the type specified in Core I of the N. S. Savannah was investigated. This material was selected primarily because of the ease of braze-metal preplacement by chemical deposition of the alloy on type 304 stainiess steel ferrule spacers, prior to fuelbundle assembly. Brazed joints produced by this method were generally characterized by a relatively ductile solid-solution region at the thinnest portions of the fillet. This ductile zone should minimize the possibility ofmore » complete propagation of hairline cracks, which form in the brittle, eutectic regions of fillet. The microstructural appearance of the electroless-nickel joints was not appreciably affected by variations in the brazing temperature from 1750 to 1900 deg F or the brazing time from 15 to 60 min. Several plating solutions were evaluated and all were found to be capable of producing deposits suitable for brazing applications. Corrosion tests conducted in static 525 deg F water indicated that no significant attack of joints brazed with electroless nickel had occurred after 300-hr exposure. A small fuel bundle was successfully assembled by brazing with electroless nickel. (auth)« less
Overhead electric power transmission line jumpering system for bundles of five or more subconductors
Winkelman, Paul F.
1982-01-01
Jumpering of electric power transmission lines at a dead end tower. Two transmission line conductor bundles each contain five or more spaced apart subconductors (5) arranged in the shape of a cylinder having a circular cross section. The ends of each bundle of subconductors are attached with insulators to a dead end tower (1). Jumpering allows the electric current to flow between the two bundles of subconductors using jumper buses, internal jumper conductors, and external jumper conductors. One or more current collecting jumper buses (37) are located inside each bundle of subconductors with each jumper bus being attached to the end of a subconductor. Small-diameter internal jumper conductors (33) are located in the inherently electrically shielded area inside each bundle of subconductors with each subconductor (except ones having an attached jumper bus) having one internal jumper conductor connected between that subconductor's end and a jumper bus. Large-diameter external jumper conductors (9) are located outside each bundle of subconductors with one or more external jumper conductors being connected between the jumper buses in one bundle of subconductors and the jumper buses in the other bundle.
Characterization of midrib vascular bundles of selected medicinal species in Rubiaceae
NASA Astrophysics Data System (ADS)
Nurul-Syahirah, M.; Noraini, T.; Latiff, A.
2016-11-01
An anatomical study was carried out on mature leaves of five selected medicinal species of Rubiaceae from Peninsular Malaysia. The chosen medicinal species were Aidia densiflora, Aidia racemosa, Chasallia chartacea, Hedyotis auricularia and Ixora grandifolia. The objective of this study is to determine the taxonomic value of midrib anatomical characteristics. Leaves samples were collected from Taman Paku Pakis, Universiti Kebangsaan Malaysia, Bangi, Selangor and Kledang Saiong Forest Reserve, Perak, Malaysia. Leaves samples then were fixed in spirit and acetic acid (3:1), the midrib parts then were sectioned using sliding microtome, cleared using Clorox, stained in Safranin and Alcian blue, mounted in Euparal and were observed under light microscope. Findings in this study have shown all species have collateral bundles. The midrib vascular bundles characteristics that can be used as tool to differentiate between species or genus are vascular bundles system (opened or closed), shape and arrangement of main vascular bundles, presence of both additional and medullary vascular bundles, position of additional vascular bundles, shape of medullary vascular bundles, presence of sclerenchyma cells ensheathed the vascular bundles. As a conclusion, midrib anatomical characteristics can be used to identify and discriminate medicinal plants species studied in the Rubiaceae.
NASA Astrophysics Data System (ADS)
Sun, Congcong; Wang, Zhijie; Liu, Sanming; Jiang, Xiuchen; Sheng, Gehao; Liu, Tianyu
2017-05-01
Wind power has the advantages of being clean and non-polluting and the development of bundled wind-thermal generation power systems (BWTGSs) is one of the important means to improve wind power accommodation rate and implement “clean alternative” on generation side. A two-stage optimization strategy for BWTGSs considering wind speed forecasting results and load characteristics is proposed. By taking short-term wind speed forecasting results of generation side and load characteristics of demand side into account, a two-stage optimization model for BWTGSs is formulated. By using the environmental benefit index of BWTGSs as the objective function, supply-demand balance and generator operation as the constraints, the first-stage optimization model is developed with the chance-constrained programming theory. By using the operation cost for BWTGSs as the objective function, the second-stage optimization model is developed with the greedy algorithm. The improved PSO algorithm is employed to solve the model and numerical test verifies the effectiveness of the proposed strategy.
Evidence for two populations of hair bundles in the sea anemone, Nematostella vectensis.
Menard, Shelcie S; Watson, Glen M
2017-06-01
Cytochalasin D (CD) was employed to disrupt F-actin within stereocilia of anemone hair bundles. CD treatment decreases the abundance of hair bundles (by 85%) while significantly impairing predation. The remaining hair bundles are 'CD-resistant.' Surprisingly, the morphology and F-actin content of resistant hair bundles are comparable to those of untreated controls. However, the resistant hair bundles fail to respond normally to the N-acetylated sugar, NANA, by elongating. Instead, they remain at resting length. Immediately after CD treatment, when only CD-resistant hair bundles are present, nematocyst discharge is normal into targets touched to tentacles in the absence of vibrations (i.e., baseline) but fails to increase normally in the presence of nearby vibrations at 56Hz, a key frequency. After CD treatment, the abundance of hair bundles recovers to control levels within three hours. At 2h after CD treatment, when CD-resistant and CD-sensitive hair bundles are both present, but a full-recovery is not yet complete, somewhat enhanced discharge of nematocysts occurs into targets touched to tentacles in the presence of nearby vibrations at 56Hz (at least as compared to the response of CD-treated animals to contact with test probes in the absence of vibrations). Additionally, at 2h after CD-treatment, prey capture recovers to normal. Thus, two populations of hair bundles may be present on tentacles of sea anemones: those that are CD-resistant and those that are CD-sensitive. The functions of these hair bundles may be distinct. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burgett, Eric; Al-Sheikhly, Mohamad; Summers, Christopher
An advanced in-pile multi-parameter reactor monitoring system is being proposed in this funding opportunity. The proposed effort brings cutting edge, high-fidelity optical measurement systems into the reactor environment in an unprecedented fashion, including in-core, in-cladding and in-fuel pellet itself. Unlike instrumented leads, the proposed system provides a unique solution to a multi-parameter monitoring need in core while being minimally intrusive in the reactor core. Detector designs proposed herein can monitor fuel compression and expansion in both the radial and axial dimensions as well as monitor linear power profiles and fission rates during the operation of the reactor. In addition tomore » pressure, stress, strain, compression, neutron flux, neutron spectra, and temperature can be observed inside the fuel bundle and fuel rod using the proposed system. The proposed research aims at developing radiation-hard, harsh-environment multi-parameter systems for insertion into the reactor environment. The proposed research holds the potential to drastically increase the fidelity and precision of in-core instrumentation with little or no impact in the neutron economy in the reactor environment while providing a measurement system capable of operation for entire operating cycles. Significant work has been done over the last few years on the use of nanoparticle-based scintillators. Through the use of metamaterials, the PIs aim to develop planar neutron detectors and large-volume neutron detectors. These detectors will have high efficiencies for neutron detection and will have a high gamma discrimination capability.« less
NASA Astrophysics Data System (ADS)
Sledkov, R. M.; Galkin, I. Yu.; Stepanov, O. E.; Strebnev, N. A.
2017-01-01
When one solves engineering problems related to the cooling of fuel assemblies (FAs) in a spent fuel storage pool (SFSP) and the assessment of nuclear safety of FA storage in an SFSP in the initial event of loss of SFSP cooling, it is essential to determine the coolant density and, consequently, steam volume fractions φ in bundles of fuel elements at a pressure of 0.1-0.5 MPa. Such formulas for calculating φ that remain valid in a wide range of operating parameters and geometric shapes of channels and take the conditions of loss of SFSP cooling into account are currently almost lacking. The results of systematization and analysis of the available formulas for φ are reported in the present study. The calculated values were compared with the experimental data obtained in the process of simulating the conditions of FA cooling in an SFSP in the event of loss of its cooling. Six formulas for calculating the steam volume fraction, which were used in this comparison, were chosen from a total of 11 considered relations. As a result, the formulas producing the most accurate values of φ in the conditions of loss of SFSP cooling were selected. In addition, a relation that allows one to perform more accurate calculations of steam volume fractions in the conditions of loss of SFSP cooling was derived based on the Fedorov formula in the two-group approximation.
Venkatram, Sindhaghatta; Rachmale, Sonal; Kanna, Balavenkatesh
2010-03-01
"Bundles" strategies improve health care-associated infection (HCAI) rates in medical intensive care units (MICUs). However, few studies have analyzed HCAI rates adjusted for the device removal component of the bundles. An observational study of adult MICU patients while using bundles to prevent HCAIs associated with endovascular catheters, mechanical ventilation, and urinary tract catheters was conducted. The HCAI rates, unadjusted and adjusted for device use, were calculated using incidence rate ratios (unadjusted IRRs [uIRR] and adjusted IRRs [aIRR], respectively). Among 4550 study patients, HCAIs declined from 47 in 2004 to 10 in 2005, 8 in 2006, and 3 in 2007. Catheter-related blood stream infection (CRBSI) rates decreased from 10.77 to 1.67 per 1000 central line days (uIRR, 0.155; 95% confidence interval [CI], 0.13-0.18; P < .0001). Foley-related urinary tract infections (CA-UTI) decreased from 6.23 to 0.63 per 1000 device days (uIRR, 0.1; 95% CI, 0.08-0.19; P < .0001). Ventilator-associated pneumonia (VAP) per 1000 ventilator days diminished from 2.17 to 0.62 (uIRR, 0.29; 95% CI, 0.21-0.38; P < .0001). After adjustment for device use, aIRRs of CRBSI (0.14; 95% CI, 0.11-0.18), UTI (0.09; 95% CI, 0.06-0.12), and VAP (0.33; 95% CI, 0.22-0.47) declined significantly (P < .00001). Implementing comprehensive bundle strategies reduces HCAI beyond the impact of device removal. Copyright 2010. Published by Elsevier Inc.
Smith, Amber Lanae; Palmer, Valerie; Farhat, Nada; Kalus, James S.; Thavarajah, Krishna; DiGiovine, Bruno; MacDonald, Nancy C.
2016-01-01
Background: No systematic evaluations of a comprehensive clinical pharmacy process measures currently exist to determine an optimal ambulatory care collaboration model for chronic obstructive pulmonary disease (COPD) patients. Objective: Describe the impact of a pharmacist-provided clinical COPD bundle on the management of COPD in a hospital-based ambulatory care clinic. Methods: This retrospective cohort analysis evaluated patients with COPD managed in an outpatient pulmonary clinic. The primary objective of this study was to assess the completion of 4 metrics known to improve the management of COPD: (1) medication therapy management, (2) quality measures including smoking cessation and vaccines, (3) patient adherence, and (4) patient education. The secondary objective was to evaluate the impact of the clinical COPD bundle on clinical and economic outcomes at 30 and 90 days post–initial visit. Results: A total of 138 patients were included in the study; 70 patients served as controls and 68 patients received the COPD bundle from the clinical pharmacist. No patients from the control group had all 4 metrics completed as documented, compared to 66 of the COPD bundle group (P < .0001). Additionally, a statistically significant difference was found in all 4 metrics when evaluated individually. Clinical pharmacy services reduced the number of phone call consults at 90 days (P = .04) but did not have a statistically significant impact on any additional pre-identified clinical outcomes. Conclusion: A pharmacist-driven clinical COPD bundle was associated with significant increases in the completion and documentation of 4 metrics known to improve the outpatient management of COPD.
Line-Tension Controlled Mechanism for Influenza Fusion
Risselada, Herre Jelger; Smirnova, Yuliya G.; Grubmüller, Helmut; Marrink, Siewert Jan; Müller, Marcus
2012-01-01
Our molecular simulations reveal that wild-type influenza fusion peptides are able to stabilize a highly fusogenic pre-fusion structure, i.e. a peptide bundle formed by four or more trans-membrane arranged fusion peptides. We rationalize that the lipid rim around such bundle has a non-vanishing rim energy (line-tension), which is essential to (i) stabilize the initial contact point between the fusing bilayers, i.e. the stalk, and (ii) drive its subsequent evolution. Such line-tension controlled fusion event does not proceed along the hypothesized standard stalk-hemifusion pathway. In modeled influenza fusion, single point mutations in the influenza fusion peptide either completely inhibit fusion (mutants G1V and W14A) or, intriguingly, specifically arrest fusion at a hemifusion state (mutant G1S). Our simulations demonstrate that, within a line-tension controlled fusion mechanism, these known point mutations either completely inhibit fusion by impairing the peptide’s ability to stabilize the required peptide bundle (G1V and W14A) or stabilize a persistent bundle that leads to a kinetically trapped hemifusion state (G1S). In addition, our results further suggest that the recently discovered leaky fusion mutant G13A, which is known to facilitate a pronounced leakage of the target membrane prior to lipid mixing, reduces the membrane integrity by forming a ‘super’ bundle. Our simulations offer a new interpretation for a number of experimentally observed features of the fusion reaction mediated by the prototypical fusion protein, influenza hemagglutinin, and might bring new insights into mechanisms of other viral fusion reactions. PMID:22761674
Bartos, Jason A.; Matsuura, Timothy R.; Sarraf, Mohammad; Youngquist, Scott T.; McKnite, Scott H.; Rees, Jennifer N.; Sloper, Daniel T.; Bates, Frank S.; Segal, Nicolas; Debaty, Guillaume; Lurie, Keith G.; Neumar, Robert W.; Metzger, Joseph M.; Riess, Matthias L.; Yannopoulos, Demetris
2014-01-01
Objective Ischemic postconditioning (stutter CPR) and sevoflurane have been shown to mitigate the effects of reperfusion injury in cardiac tissue after 15 minutes of ventricular fibrillation (VF) cardiac arrest. Poloxamer 188 (P188) has also proven beneficial to neuronal and cardiac tissue during reperfusion injury in human and animal models. We hypothesized that the use of stutter CPR, sevoflurane, and P188 combined with standard advanced life support would improve post-resuscitation cardiac and neurologic function after prolonged VF arrest. Methods Following 17 minutes of untreated VF, 20 pigs were randomized to Control treatment with active compression/decompression (ACD) CPR and impedance threshold device (ITD) (n=8) or Bundle therapy with stutter ACD CPR + ITD + sevoflurane + P188 (n=12). Epinephrine and post-resuscitation hypothermia were given in both groups per standard protocol. Animals that achieved return of spontaneous circulation (ROSC) were evaluated with echocardiography, biomarkers, and a blinded neurologic assessment with a cerebral performance category score. Results Bundle therapy improved hemodynamics during resuscitation, reduced need for epinephrine and repeated defibrillation, reduced biomarkers of cardiac injury and end-organ dysfunction, and increased left ventricular ejection fraction compared to Controls. Bundle therapy also improved rates of ROSC (100% vs. 50%), freedom from major adverse events (50% vs. 0% at 48 hours), and neurologic function (42% with mild or no neurologic deficit and 17% achieving normal function at 48 hours). Conclusions Bundle therapy with a combination of stutter ACD CPR, ITD, sevoflurane, and P188 improved cardiac and neurologic function after 17 minutes of untreated cardiac arrest in pigs. PMID:25447036
Hollesen, Rikke von Benzon; Johansen, Rie Laurine Rosenthal; Rørbye, Christina; Munk, Louise; Barker, Pierre; Kjaerbye-Thygesen, Anette
2018-02-03
A safe delivery is part of a good start in life, and a continuous focus on preventing harm during delivery is crucial, even in settings with a good safety record. In January 2013, the labour unit at Copenhagen University Hospital, Hvidovre, undertook a quality improvement (QI) project to prevent asphyxia and reduced the percentage of newborns with asphyxia by 48%. The change theory consisted of two primary elements: (1) the clinical content, including three clinical bundles of evidence-based care, a 'delivery bundle', an 'oxytocin bundle' and a 'vacuum extraction bundle'; (2) an implementation theory, including improving skills in interpretation of cardiotocography, use of QI methods and participation in a national learning network. The Model for Improvement and Deming's system of profound knowledge were used as a methodological framework. Data on compliance with the care bundles and the number of deliveries between newborns with asphyxia (Apgar <7 after 5 min or pH <7) were analysed using statistical process control. Compliance with all three clinical care bundles improved to 95% or more, and the percentages of newborns with pH <7 and Apgar <7 after 5 min were reduced by 48% and 31%, respectively. In general, the QI approach strengthened multidisciplinary teamwork, systematised workflow and structured communication around the deliveries. Changes included making a standard memo in the medical record, the use of a bedside whiteboard, bedside handovers, shared decisions with a peer when using an oxytocin infusion and the use of a checklist before vacuum extractions. This QI project illustrates how aspects of patient safety, such as the prevention of asphyxia, can be improved using QI methods to more reliably implement best practice, even in high-performing systems. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Field Emission Study of Carbon Nanotubes: High Current Density from Nanotube Bundle Arrays
NASA Technical Reports Server (NTRS)
Bronikowski, Micheal J.; Manohara, Harish M.; Siegel, Peter H.; Hunt, Brian D.
2004-01-01
We have investigated the field emission behavior of lithographically patterned bundles of multiwalled carbon nanotubes arranged in a variety of array geometries. Such arrays of nanotube bundles are found to perform significantly better in field emission than arrays of isolated nanotubes or dense, continuous mats of nanotubes, with the field emission performance depending on the bundle diameter and inter-bundle spacing. Arrays of 2-micrometers diameter nanotube bundles spaced 5 micrometers apart (edge-to-edge spacing) produced the largest emission densities, routinely giving 1.5 to 1.8 A/cm(sup 2) at approximately 4 V/micrometer electric field, and greater than 6 A/cm(sup 2) at 20 V/micrometers.
Lagrew, David C; Low, Lisa Kane; Brennan, Rita; Corry, Maureen P; Edmonds, Joyce K; Gilpin, Brian G; Frost, Jennifer; Pinger, Whitney; Reisner, Dale P; Jaffer, Sara
2018-03-01
Cesarean births and associated morbidity and mortality have reached near epidemic proportions. The National Partnership for Maternal Safety under the guidance of the Council on Patient Safety in Women's Health Care responded by developing a patient safety bundle to reduce the number of primary cesarean births. Safety bundles outline critical practices to implement in every maternity unit. This National Partnership for Maternity Safety bundle, as with other bundles, is organized into four domains: Readiness, Recognition and Prevention, Response, and Reporting and Systems Learning. Bundle components may be adapted to individual facilities, but standardization within an institution is advised. Evidence-based resources and recommendations are provided to assist implementation.
Jackson, Timothy J; Jarrell, Shelby E; Adamson, Gregory J; Chung, Kyung Chil; Lee, Thay Q
2016-07-01
The main purpose of this study was to examine the functional characteristics of the anterior and posterior bands of the anterior bundle of the ulnar collateral ligament (UCL). Six cadaveric elbows were tested using a digital tracking system to measure the strain in the anterior band and posterior band of the anterior bundle of the UCL throughout a flexion/extension arc. The specimens were then placed in an Instron materials testing machine and loaded to failure to determine yield load and ultimate load of the UCL. The posterior band showed a linear increase in strain with increasing degrees of elbow flexion while the anterior band showed minimal change in strain throughout. The bands showed similar strain at yield load and ultimate load, demonstrating similar intrinsic properties. The anterior band of the anterior bundle of the UCL shows an isometric strain pattern through elbow range of motion, while the posterior band shows an increasing strain pattern in higher degrees of elbow flexion. Both bands show similar strain in a load to failure model, indicating insertion point, not intrinsic differences, of the bands determine the function of the anterior bundle of the UCL. This demonstrates a biomechanical rationale for UCL reconstructions using single point anatomical insertion points.
Incremental Implicit Learning of Bundles of Statistical Patterns
Qian, Ting; Jaeger, T. Florian; Aslin, Richard N.
2016-01-01
Forming an accurate representation of a task environment often takes place incrementally as the information relevant to learning the representation only unfolds over time. This incremental nature of learning poses an important problem: it is usually unclear whether a sequence of stimuli consists of only a single pattern, or multiple patterns that are spliced together. In the former case, the learner can directly use each observed stimulus to continuously revise its representation of the task environment. In the latter case, however, the learner must first parse the sequence of stimuli into different bundles, so as to not conflate the multiple patterns. We created a video-game statistical learning paradigm and investigated 1) whether learners without prior knowledge of the existence of multiple “stimulus bundles” — subsequences of stimuli that define locally coherent statistical patterns — could detect their presence in the input, and 2) whether learners are capable of constructing a rich representation that encodes the various statistical patterns associated with bundles. By comparing human learning behavior to the predictions of three computational models, we find evidence that learners can handle both tasks successfully. In addition, we discuss the underlying reasons for why the learning of stimulus bundles occurs even when such behavior may seem irrational. PMID:27639552
Modes of failure in disordered solids
NASA Astrophysics Data System (ADS)
Roy, Subhadeep; Biswas, Soumyajyoti; Ray, Purusattam
2017-12-01
The two principal ingredients determining the failure modes of disordered solids are the strength of heterogeneity and the length scale of the region affected in the solid following a local failure. While the latter facilitates damage nucleation, the former leads to diffused damage—the two extreme natures of the failure modes. In this study, using the random fiber bundle model as a prototype for disordered solids, we classify all failure modes that are the results of interplay between these two effects. We obtain scaling criteria for the different modes and propose a general phase diagram that provides a framework for understanding previous theoretical and experimental attempts of interpolation between these modes. As the fiber bundle model is a long-standing model for interpreting various features of stressed disordered solids, the general phase diagram can serve as a guiding principle in anticipating the responses of disordered solids in general.
Coupling the Subtectorial Fluid with the Tectorial Membrane and Hair Bundles of the Cochlea
NASA Astrophysics Data System (ADS)
Li, Yizeng; Meaud, Julien; Grosh, Karl
2011-11-01
Two different kinds of flow—(i) shearing of fluid between the reticular lamina (RL) and tectorial membrane (TM) and (ii) so-called pulsating flow in the RL-TM gap—have been implicated as the dominant source of fluidic stimulation of the inner hair cell (IHC) hair bundle (HB). However, the frequency and spatial dependence of these flows for IHC stimulation is unresolved in vivo and estimates of the effect of the cochlear amplifier on these flows has not been quantified. Indeed, the relative importance these flow modalities and active processes likely varies with tonotopic location. In this paper, a microfluidic model is developed which features the interaction of the subtectorial fluid with the TM, IHC HBs, and the outer hair cell HBs. The framework of the model allows for incorporation into active macroscopic models as well as for comparison of experiments performed on excised sections of the cochlea.
Matrix remodeling between cells and cellular interactions with collagen bundle
NASA Astrophysics Data System (ADS)
Kim, Jihan; Sun, Bo
When cells are surrounded by complex environment, they continuously probe and interact with it by applying cellular traction forces. As cells apply traction forces, they can sense rigidity of their local environment and remodel the matrix microstructure simultaneously. Previous study shows that single human carcinoma cell (MDA-MB-231) remodeled its surrounding extracellular matrix (ECM) and the matrix remodeling was reversible. In this study we examined the matrix microstructure between cells and cellular interaction between them using quantitative confocal microscopy. The result shows that the matrix microstructure is the most significantly remodeled between cells consisting of aligned, and densified collagen fibers (collagen bundle)., the result shows that collagen bundle is irreversible and significantly change micromechanics of ECM around the bundle. We further examined cellular interaction with collagen bundle by analyzing dynamics of actin and talin formation along with the direction of bundle. Lastly, we analyzed dynamics of cellular protrusion and migrating direction of cells along the bundle.
Caterev, Sergiu; Nistor, Dan Viorel; Todor, Adrian
2016-10-01
Anatomic double-bundle anterior cruciate ligament (ACL) reconstruction aims to restore the 2 functional bundles of the ACL in an attempt to better reproduce the native biomechanics of the injured knee and promote long-term knee health. However, this concept is not fully accepted and is not performed on a standard basis. In addition, the superiority of this technique over the conventional single-bundle technique has been questioned, especially the long-term clinical results. One of the down sides of the double-bundle reconstruction is the complexity of the procedure, with increased risks, operative time, and costs compared with the single-bundle procedure. Also, the revision procedure, if necessary, is more challenging. We propose a technique that has some advantages over the traditional double-bundle procedure, using a single femoral tunnel, 2 tibial tunnels, and a free quadriceps tendon autograft.
Synchronization of Spontaneous Active Motility of Hair Cell Bundles
Zhang, Tracy-Ying; Ji, Seung; Bozovic, Dolores
2015-01-01
Hair cells of the inner ear exhibit an active process, believed to be crucial for achieving the sensitivity of auditory and vestibular detection. One of the manifestations of the active process is the occurrence of spontaneous hair bundle oscillations in vitro. Hair bundles are coupled by overlying membranes in vivo; hence, explaining the potential role of innate bundle motility in the generation of otoacoustic emissions requires an understanding of the effects of coupling on the active bundle dynamics. We used microbeads to connect small groups of hair cell bundles, using in vitro preparations that maintain their innate oscillations. Our experiments demonstrate robust synchronization of spontaneous oscillations, with either 1:1 or multi-mode phase-locking. The frequency of synchronized oscillation was found to be near the mean of the innate frequencies of individual bundles. Coupling also led to an improved regularity of entrained oscillations, demonstrated by an increase in the quality factor. PMID:26540409
Universal fiber-optic C.I.E. colorimeter
Kronberg, James W.
1992-01-01
Apparatus for color measurements according to the C.I.E. system comprises a first fiber optic cable for receiving and linearizing light from a light source, a lens system for spectrally displaying the linearized light and focusing the light on one end of a trifurcated fiber optic assembly that integrates and separates the light according to the three C.I.E. tristimulus functions. The separated light is received by three photodiodes and electronically evaluated to determine the magnitude of the light corresponding to the tristimulus functions. The fiber optic assembly is made by forming, at one end, a bundle of optic fibers to match the contours of one of the tristimulus functions, encapsulating that bundle, adding a second bundle that, together with the first bundle, will match the contours of the first plus one other tristimulus function, encapsulating that second bundle, then adding a third bundle which together with the first and second bundles, has contours matching the sum of all three tristimulus functions. At the other end of the assembly the three bundles are separated and aligned with their respective photodiodes.
Duffy, Elizabeth A; Rodgers, Cheryl C; Shever, Leah L; Hockenberry, Marilyn J
2015-01-01
Eliminating central line-associated bloodstream infection (CLABSI) is a national priority. Central venous catheter (CVC) care bundles are composed of a series of interventions that, when used together, are effective in preventing CLABSI. A CVC daily maintenance care bundle includes procedural guidelines for hygiene, dressing changes, and access as well as specific timeframes. Failure to complete one of the components of the care bundle predisposes the patient to a bloodstream infection. A nurse-led multidisciplinary team implemented and, for six months, sustained a daily maintenance care bundle for pediatric oncology patients. This quality improvement project focused on nursing staffs' implementation of the daily maintenance care bundle and the sustainment of the intervention. The project used a pre-post program design to evaluate outcomes of CVC daily maintenance care bundle compliancy and CLABSI. A statistically significant increase between the pre- and post-assessments of the compliance was noted with the CVC daily maintenance care bundle. CLABSI infection rates decreased during the intervention. Strategies to implement practice change and promote sustainability are discussed. © 2015 by Association of Pediatric Hematology/Oncology Nurses.
Bernstein, Peter S; Martin, James N; Barton, John R; Shields, Laurence E; Druzin, Maurice L; Scavone, Barbara M; Frost, Jennifer; Morton, Christine H; Ruhl, Catherine; Slager, Joan; Tsigas, Eleni Z; Jaffer, Sara; Menard, M Kathryn
2017-08-01
Complications arising from hypertensive disorders of pregnancy are among the leading causes of preventable severe maternal morbidity and mortality. Timely and appropriate treatment has the potential to significantly reduce hypertension-related complications. To assist health care providers in achieving this goal, this patient safety bundle provides guidance to coordinate and standardize the care provided to women with severe hypertension during pregnancy and the postpartum period. This is one of several patient safety bundles developed by multidisciplinary work groups of the National Partnership for Maternal Safety under the guidance of the Council on Patient Safety in Women's Health Care. These safety bundles outline critical clinical practices that should be implemented in every maternity care setting. Similar to other bundles that have been developed and promoted by the Partnership, the hypertension safety bundle is organized into four domains: Readiness, Recognition and Prevention, Response, and Reporting and Systems Learning. Although the bundle components may be adapted to meet the resources available in individual facilities, standardization within an institution is strongly encouraged. This commentary provides information to assist with bundle implementation.
Ma, Qianqian; Sun, Jingbo; Mao, Tonglin
2016-05-15
The gaseous hormone ethylene is known to regulate plant growth under etiolated conditions (the 'triple response'). Although organization of cortical microtubules is essential for cell elongation, the underlying mechanisms that regulate microtubule organization by hormone signaling, including ethylene, are ambiguous. In the present study, we demonstrate that ethylene signaling participates in regulation of cortical microtubule reorientation. In particular, regulation of microtubule bundling is important for this process in etiolated hypocotyls. Time-lapse analysis indicated that selective stabilization of microtubule-bundling structures formed in various arrays is related to ethylene-mediated microtubule orientation. Bundling events and bundle growth lifetimes were significantly increased in oblique and longitudinal arrays, but decreased in transverse arrays in wild-type cells in response to ethylene. However, the effects of ethylene on microtubule bundling were partially suppressed in a microtubule-bundling protein WDL5 knockout mutant (wdl5-1). This study suggests that modulation of microtubule bundles that have formed in certain orientations plays a role in reorienting microtubule arrays in response to ethylene-mediated etiolated hypocotyl cell elongation. © 2016. Published by The Company of Biologists Ltd.
Rosenbaum, M B; Girotti, L A; Lázzari, J O; Halpern, M S; Elizari, M V
1982-01-01
In five cases of anteroseptal myocardial infarction complicated by intermittent right bundle-branch block, the onset of right bundle-branch block provoked the appearance of abnormal Q waves in leads V1 and V2, whereas a small initial R wave was present in the same leads during normal conduction. The intermittency of the conduction disturbance indicated that the Q waves were "right bundle-branch block dependent". It was also apparent that right bundle-branch block shifted the electrical location of the infarct towards the right, and made it look much larger. Right bundle-branch block dependent Q waves may arise during the acute stage of an anterior infarct suggesting, fallaciously, that an acute extension has occurred, or during the chronic stage, leading to the erroneous supposition that a new infarct had developed. The abnormal Q waves anteroseptal infarction complicated by fixed right bundle-branch block, though obviously related to the infarct, may be dependent on the right bundle-branch block. PMID:7059400
Monoubiquitination Inhibits the Actin Bundling Activity of Fascin*
Lin, Shengchen; Lu, Shuang; Mulaj, Mentor; Fang, Bin; Keeley, Tyler; Wan, Lixin; Hao, Jihui; Muschol, Martin; Sun, Jianwei; Yang, Shengyu
2016-01-01
Fascin is an actin bundling protein that cross-links individual actin filaments into straight, compact, and stiff bundles, which are crucial for the formation of filopodia, stereocillia, and other finger-like membrane protrusions. The dysregulation of fascin has been implicated in cancer metastasis, hearing loss, and blindness. Here we identified monoubiquitination as a novel mechanism that regulates fascin bundling activity and dynamics. The monoubiquitination sites were identified to be Lys247 and Lys250, two residues located in a positive charge patch at the actin binding site 2 of fascin. Using a chemical ubiquitination method, we synthesized chemically monoubiquitinated fascin and determined the effects of monoubiquitination on fascin bundling activity and dynamics. Our data demonstrated that monoubiquitination decreased the fascin bundling EC50, delayed the initiation of bundle assembly, and accelerated the disassembly of existing bundles. By analyzing the electrostatic properties on the solvent-accessible surface of fascin, we proposed that monoubiquitination introduced steric hindrance to interfere with the interaction between actin filaments and the positively charged patch at actin binding site 2. We also identified Smurf1 as a E3 ligase regulating the monoubiquitination of fascin. Our findings revealed a previously unidentified regulatory mechanism for fascin, which will have important implications for the understanding of actin bundle regulation under physiological and pathological conditions. PMID:27879315
Courtwright, Suzanne E; Mastro, Kari A; Preuster, Christa; Dardashti, Navid; McGill, Sandra; Madelon, Myrlene; Johnson, Donna
2017-10-01
This review focuses on identifying (1) evidence of the effectiveness of care bundle methodology to reduce hospital-acquired pressure ulcers (HAPUs) in pediatric and neonatal patients receiving extracorporeal membrane oxygenation (ECMO) therapy and (2) barriers to implementing HAPU care bundles in this at-risk population. An integrative review was conducted and reported following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. A search of the scientific literature was performed. Studies included were published between January 2011 and February 2016. A total of seven articles met inclusion criteria. Data were extracted from each published article and analyzed to identify common themes, specifically bundle methodology and barriers to implementing HAPU bundles, in this population. There is limited research on effectiveness of care bundle methodology in reducing HAPUs in children, and no research specific to its effectiveness in pediatric or neonatal ECMO patients. No research was identified studying barriers to implementation of HAPU care bundles in this population. Nurses are well poised to test innovative strategies to prevent HAPUs. Nurses should consider implementing and testing bundle methodology to reduce HAPU in this at-risk population, and conduct research to identify any barriers to implementing this strategy. There is literature to support the use of nurses as unit-based skin care champions to facilitate teamwork and reliable use of the bundle, both critical components to the success of bundle methodology. © 2017 Wiley Periodicals, Inc.
Talbot, Thomas R; Carr, Devin; Parmley, C Lee; Martin, Barbara J; Gray, Barbara; Ambrose, Anna; Starmer, Jack
2015-11-01
The effectiveness of practice bundles on reducing ventilator-associated pneumonia (VAP) has been questioned. To implement a comprehensive program that included a real-time bundle compliance dashboard to improve compliance and reduce ventilator-associated complications. DESIGN Before-and-after quasi-experimental study with interrupted time-series analysis. SETTING Academic medical center. In 2007 a comprehensive institutional ventilator bundle program was developed. To assess bundle compliance and stimulate instant course correction of noncompliant parameters, a real-time computerized dashboard was developed. Program impact in 6 adult intensive care units (ICUs) was assessed. Bundle compliance was noted as an overall cumulative bundle adherence assessment, reflecting the percentage of time all elements were concurrently in compliance for all patients. The VAP rate in all ICUs combined decreased from 19.5 to 9.2 VAPs per 1,000 ventilator-days following program implementation (P<.001). Bundle compliance significantly increased (Z100 score of 23% in August 2007 to 83% in June 2011 [P<.001]). The implementation resulted in a significant monthly decrease in the overall ICU VAP rate of 3.28/1,000 ventilator-days (95% CI, 2.64-3.92/1,000 ventilator-days). Following the intervention, the VAP rate decreased significantly at a rate of 0.20/1,000 ventilator-days per month (95% CI, 0.14-0.30/1,000 ventilator-days per month). Among all adult ICUs combined, improved bundle compliance was moderately correlated with monthly VAP rate reductions (Pearson correlation coefficient, -0.32). A prevention program using a real-time bundle adherence dashboard was associated with significant sustained decreases in VAP rates and an increase in bundle compliance among adult ICU patients.
Takayama, Kohei; Ooto, Sotaro; Hangai, Masanori; Arakawa, Naoko; Oshima, Susumu; Shibata, Naohisa; Hanebuchi, Masaaki; Inoue, Takashi; Yoshimura, Nagahisa
2012-01-01
To conduct high-resolution imaging of the retinal nerve fiber layer (RNFL) in normal eyes using adaptive optics scanning laser ophthalmoscopy (AO-SLO). AO-SLO images were obtained in 20 normal eyes at multiple locations in the posterior polar area and a circular path with a 3-4-mm diameter around the optic disc. For each eye, images focused on the RNFL were recorded and a montage of AO-SLO images was created. AO-SLO images for all eyes showed many hyperreflective bundles in the RNFL. Hyperreflective bundles above or below the fovea were seen in an arch from the temporal periphery on either side of a horizontal dividing line to the optic disc. The dark lines among the hyperreflective bundles were narrower around the optic disc compared with those in the temporal raphe. The hyperreflective bundles corresponded with the direction of the striations on SLO red-free images. The resolution and contrast of the bundles were much higher in AO-SLO images than in red-free fundus photography or SLO red-free images. The mean hyperreflective bundle width around the optic disc had a double-humped shape; the bundles at the temporal and nasal sides of the optic disc were narrower than those above and below the optic disc (P<0.001). RNFL thickness obtained by optical coherence tomography correlated with the hyperreflective bundle widths on AO-SLO (P<0.001) AO-SLO revealed hyperreflective bundles and dark lines in the RNFL, believed to be retinal nerve fiber bundles and Müller cell septa. The widths of the nerve fiber bundles appear to be proportional to the RNFL thickness at equivalent distances from the optic disc.
Takayama, Kohei; Ooto, Sotaro; Hangai, Masanori; Ueda-Arakawa, Naoko; Yoshida, Sachiko; Akagi, Tadamichi; Ikeda, Hanako Ohashi; Nonaka, Atsushi; Hanebuchi, Masaaki; Inoue, Takashi; Yoshimura, Nagahisa
2013-05-01
To detect pathologic changes in retinal nerve fiber bundles in glaucomatous eyes seen on images obtained by adaptive optics (AO) scanning laser ophthalmoscopy (AO SLO). Prospective cross-sectional study. Twenty-eight eyes of 28 patients with open-angle glaucoma and 21 normal eyes of 21 volunteer subjects underwent a full ophthalmologic examination, visual field testing using a Humphrey Field Analyzer, fundus photography, red-free SLO imaging, spectral-domain optical coherence tomography, and imaging with an original prototype AO SLO system. The AO SLO images showed many hyperreflective bundles suggesting nerve fiber bundles. In glaucomatous eyes, the nerve fiber bundles were narrower than in normal eyes, and the nerve fiber layer thickness was correlated with the nerve fiber bundle widths on AO SLO (P < .001). In the nerve fiber layer defect area on fundus photography, the nerve fiber bundles on AO SLO were narrower compared with those in normal eyes (P < .001). At 60 degrees on the inferior temporal side of the optic disc, the nerve fiber bundle width was significantly lower, even in areas without nerve fiber layer defect, in eyes with glaucomatous eyes compared with normal eyes (P = .026). The mean deviations of each cluster in visual field testing were correlated with the corresponding nerve fiber bundle widths (P = .017). AO SLO images showed reduced nerve fiber bundle widths both in clinically normal and abnormal areas of glaucomatous eyes, and these abnormalities were associated with visual field defects, suggesting that AO SLO may be useful for detecting early nerve fiber bundle abnormalities associated with loss of visual function. Copyright © 2013 Elsevier Inc. All rights reserved.
Determination of Phobos' rotational parameters by an inertial frame bundle block adjustment
NASA Astrophysics Data System (ADS)
Burmeister, Steffi; Willner, Konrad; Schmidt, Valentina; Oberst, Jürgen
2018-01-01
A functional model for a bundle block adjustment in the inertial reference frame was developed, implemented and tested. This approach enables the determination of rotation parameters of planetary bodies on the basis of photogrammetric observations. Tests with a self-consistent synthetic data set showed that the implementation converges reliably toward the expected values of the introduced unknown parameters of the adjustment, e.g., spin pole orientation, and that it can cope with typical observational errors in the data. We applied the model to a data set of Phobos using images from the Mars Express and the Viking mission. With Phobos being in a locked rotation, we computed a forced libration amplitude of 1.14^circ ± 0.03^circ together with a control point network of 685 points.
Walters, Elizabeth Lea; Morawski, Kyle; Dorotta, Ihab; Ramsingh, Davinder; Lumen, Kelly; Bland, David; Clem, Kathleen; Nguyen, H Bryant
2011-04-01
Patients who present to the emergency department (ED) with return of spontaneous circulation after cardiac arrest generally have poor outcomes. Guidelines for treatment can be complicated and difficult to implement. This study examined the feasibility of implementing a care bundle including therapeutic hypothermia (TH) and early hemodynamic optimization for comatose patients with return of spontaneous circulation after out-of-hospital cardiac arrest. The study included patients over a 2-year period in the ED and intensive care unit of an academic tertiary-care medical center. The first year (prebundle) provided a historical control, followed by a prospective observational period of bundle implementation during the second year. The bundle elements included (a) TH initiated; (b) central venous pressure/central venous oxygen saturation monitoring in 2 h; (c) target temperature in 4 h; (d) central venous pressure greater than 12 mmHg in 6 h; (e) MAP greater than 65 mmHg in 6 h; (f) central venous oxygen saturation greater than 70% in 6 h; (g) TH maintained for 24 h; and (h) decreasing lactate in 24 h. Fifty-five patients were enrolled, 26 patients in the prebundle phase and 29 patients in the bundle phase. Seventy-seven percent of bundle elements were completed during the bundle phase. In-hospital mortality in bundle compared with prebundle patients was 55.2% vs. 69.2% (P = 0.29). In the bundle patients, those patients who received all elements of the care bundle had mortality 33.3% compared with 60.9% in those receiving some of the bundle elements (P = 0.22). Bundle patients tended to achieve good neurologic outcome compared with prebundle patients, Cerebral Performance Category 1 or 2 in 31 vs. 12% patients, respectively (P = 0.08). Our study demonstrated that a post-cardiac arrest care bundle that incorporates TH and early hemodynamic optimization can be implemented in the ED and intensive care unit collaboratively and can achieve similar clinical benefits compared with those observed in previous clinical trials.