Sample records for fuel conservation

  1. Alternative Fuels Data Center: Vehicle Parts and Equipment to Conserve Fuel

    Science.gov Websites

    Vehicle Parts and Equipment to Conserve Fuel to someone by E-mail Share Alternative Fuels Data Center: Vehicle Parts and Equipment to Conserve Fuel on Facebook Tweet about Alternative Fuels Data Center: Vehicle Parts and Equipment to Conserve Fuel on Twitter Bookmark Alternative Fuels Data Center

  2. Voluntary Truck and Bus Fuel-Economy-Program marketing plan. Final technical report, September 29, 1980-January 29, 1982

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The aim of the program is to improve the utilization of fuel by commercial trucks and buses by updating and implementing specific approaches for educating and monitoring the trucking industry on methods and means of conserving fuels. The following outlines the marketing plan projects: increase use of program logo by voluntary program members and others; solicit trade publication membership and support; brief Congressional delegations on fuel conservation efforts; increase voluntary program presence before trade groups; increase voluntary program presence at truck and trade shows; create a voluntary program display for use at trade shows and in other areas; review voluntarymore » program graphics; increase voluntary program membership; and produce placemats carrying fuel conservation messages; produce a special edition of Fuel Economy News, emphasizing the driver's involvement in fuel conservation; produce posters carrying voluntary program fuel conservation message. Project objectives, activities, and results for each project are summarized.« less

  3. Alternative Fuels Data Center: Strategies to Conserve Fuel

    Science.gov Websites

    conserve fuel. Idle Reduction Idle Reduction Find ways to save fuel and money by idling less. Driving save money. Parts and Equipment Parts and Equipment Learn about outfitting your fleet's vehicles with

  4. Examination of the costs, benefits and enery conservation aspects of the NASA aircraft fuel conservation technology program

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The costs and benefits of the NASA Aircraft Fuel Conservation Technology Program are discussed. Consideration is given to a present worth analysis of the planned program expenditures, an examination of the fuel savings to be obtained by the year 2005 and the worth of this fuel savings relative to the investment required, a comparison of the program funding with that planned by other Federal agencies for energy conservation, an examination of the private industry aeronautical research and technology financial posture for the period FY 76 - FY 85, and an assessment of the potential impacts on air and noise pollution. To aid in this analysis, a computerized fleet mix forecasting model was developed. This model enables the estimation of fuel consumption and present worth of fuel expenditures for selected commerical aircraft fleet mix scenarios.

  5. An assessment of the benefits of the use of NASA developed fuel conservative technology in the US commercial aircraft fleet

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Cost and benefits of a fuel conservative aircraft technology program proposed by NASA are estimated. NASA defined six separate technology elements for the proposed program: (a) engine component improvement (b) composite structures (c) turboprops (d) laminar flow control (e) fuel conservative engine and (f) fuel conservative transport. There were two levels postulated: The baseline program was estimated to cost $490 million over 10 years with peak funding in 1980. The level two program was estimated to cost an additional $180 million also over 10 years. Discussions with NASA and with representatives of the major commercial airframe manufacturers were held to estimate the combinations of the technology elements most likely to be implemented, the potential fuel savings from each combination, and reasonable dates for incorporation of these new aircraft into the fleet.

  6. Examination of commercial aviation operational energy conservation strategies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Forty-seven fuel conservation strategies are identified for commercial aviation and the fuel saving potential, costs, constraints, and current implementation levels of these options are examined. This assessment is based on a comprehensive review of published data and discussions with representatives from industry and government. Analyses were performed to quantify the fuel saving potential of each option, and to assess the fuel savings achieved to date by the airline industry. Those options requiring further government support for option implementation were identified, rated, and ranked in accordance with a rating methodology developed in the study. Finally, recommendations are made for future governmentmore » efforts in the area of fuel conservation in commercial aviation.« less

  7. 18 CFR 281.304 - Computation of alternative fuel volume.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Computation of alternative fuel volume. 281.304 Section 281.304 Conservation of Power and Water Resources FEDERAL ENERGY... not a diesel engine or turbine designed to use distillate fuels as the only substitute for natural gas...

  8. 18 CFR 281.304 - Computation of alternative fuel volume.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Computation of alternative fuel volume. 281.304 Section 281.304 Conservation of Power and Water Resources FEDERAL ENERGY... not a diesel engine or turbine designed to use distillate fuels as the only substitute for natural gas...

  9. 18 CFR 281.304 - Computation of alternative fuel volume.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Computation of alternative fuel volume. 281.304 Section 281.304 Conservation of Power and Water Resources FEDERAL ENERGY... not a diesel engine or turbine designed to use distillate fuels as the only substitute for natural gas...

  10. 18 CFR 281.304 - Computation of alternative fuel volume.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Computation of alternative fuel volume. 281.304 Section 281.304 Conservation of Power and Water Resources FEDERAL ENERGY... not a diesel engine or turbine designed to use distillate fuels as the only substitute for natural gas...

  11. 18 CFR 281.304 - Computation of alternative fuel volume.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Computation of alternative fuel volume. 281.304 Section 281.304 Conservation of Power and Water Resources FEDERAL ENERGY... not a diesel engine or turbine designed to use distillate fuels as the only substitute for natural gas...

  12. Thermal Analysis of ZPPR High Pu Content Stored Fuel

    DOE PAGES

    Solbrig, Charles W.; Pope, Chad L.; Andrus, Jason P.

    2014-09-17

    The Zero Power Physics Reactor (ZPPR) operated from April 18, 1969, until 1990. ZPPR operated at low power for testing nuclear reactor designs. This paper examines the temperature of Pu content ZPPR fuel while it is in storage. Heat is generated in the fuel due to Pu and Am decay and is a concern for possible cladding damage. Damage to the cladding could lead to fuel hydriding and oxidizing. A series of computer simulations were made to determine the range of temperatures potentially occuring in the ZPPR fuel. The maximum calculated fuel temperature is 292°C (558°F). Conservative assumptions in themore » model intentionally overestimate temperatures. The stored fuel temperatures are dependent on the distribution of fuel in the surrounding storage compartments, the heat generation rate of the fuel, and the orientation of fuel. Direct fuel temperatures could not be measured but storage bin doors, storage sleeve doors, and storage canister temperatures were measured. Comparison of these three temperatures to the calculations indicates that the temperatures calculated with conservative assumptions are, as expected, higher than the actual temperatures. The maximum calculated fuel temperature with the most conservative assumptions is significantly below the fuel failure criterion of 600°C (1,112°F).« less

  13. A fuel conservation study for transport aircraft utilizing advanced technology and hydrogen fuel

    NASA Technical Reports Server (NTRS)

    Berry, W.; Calleson, R.; Espil, J.; Quartero, C.; Swanson, E.

    1972-01-01

    The conservation of fossil fuels in commercial aviation was investigated. Four categories of aircraft were selected for investigation: (1) conventional, medium range, low take-off gross weight; (2) conventional, long range, high take-off gross weights; (3) large take-off gross weight aircraft that might find future applications using both conventional and advanced technology; and (4) advanced technology aircraft of the future powered with liquid hydrogen fuel. It is concluded that the hydrogen fueled aircraft can perform at reduced size and gross weight the same payload/range mission as conventionally fueled aircraft.

  14. An early glimpse at long-term subsonic commercial turbofan technology requirements. [fuel conservation

    NASA Technical Reports Server (NTRS)

    Gray, D. E.; Dugan, J. F.

    1975-01-01

    This paper reports on the exploratory investigation and initial findings of the study of future turbofan concepts to conserve fuel. To date, these studies have indicated a potential reduction in cruise thrust specific fuel consumption in 1990 turbofans of approximately 15% relative to present day new engines through advances in internal aerodynamics, structure-mechanics, and materials. Advanced materials also offer the potential for fuel savings through engine weight reduction. Further studies are required to balance fuel consumption reduction with sound airlines operational economics.

  15. Planning fuel-conservative descents in an airline environmental using a small programmable calculator: Algorithm development and flight test results

    NASA Technical Reports Server (NTRS)

    Knox, C. E.; Vicroy, D. D.; Simmon, D. A.

    1985-01-01

    A simple, airborne, flight-management descent algorithm was developed and programmed into a small programmable calculator. The algorithm may be operated in either a time mode or speed mode. The time mode was designed to aid the pilot in planning and executing a fuel-conservative descent to arrive at a metering fix at a time designated by the air traffic control system. The speed model was designed for planning fuel-conservative descents when time is not a consideration. The descent path for both modes was calculated for a constant with considerations given for the descent Mach/airspeed schedule, gross weight, wind, wind gradient, and nonstandard temperature effects. Flight tests, using the algorithm on the programmable calculator, showed that the open-loop guidance could be useful to airline flight crews for planning and executing fuel-conservative descents.

  16. Planning fuel-conservative descents in an airline environmental using a small programmable calculator: algorithm development and flight test results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knox, C.E.; Vicroy, D.D.; Simmon, D.A.

    A simple, airborne, flight-management descent algorithm was developed and programmed into a small programmable calculator. The algorithm may be operated in either a time mode or speed mode. The time mode was designed to aid the pilot in planning and executing a fuel-conservative descent to arrive at a metering fix at a time designated by the air traffic control system. The speed model was designed for planning fuel-conservative descents when time is not a consideration. The descent path for both modes was calculated for a constant with considerations given for the descent Mach/airspeed schedule, gross weight, wind, wind gradient, andmore » nonstandard temperature effects. Flight tests, using the algorithm on the programmable calculator, showed that the open-loop guidance could be useful to airline flight crews for planning and executing fuel-conservative descents.« less

  17. Alternative Fuels Data Center: Newsletters

    Science.gov Websites

    Offers information on the development and maintenance of electric motors, drives, and related components Fuels Fuel Prices Conserve Fuel Idle Reduction Parts & Equipment Maintenance Driving Behavior Fleet

  18. Vehicle energy conservation indicating device and process for use

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crump, J.M.

    A vehicle energy conservation indicating device comprises an integrated instrument cluster functioning basically as a nomographic computing mechanism. The odometer distance traveled indicator computing mechanism is linked with the fuel indicating gauge mechanism such that a three variable equation computing mechanism is obtained. The three variables are distance traveled, quantity of fuel consumed and distance traveled per unit of fuel consumed. Energy conservation is achieved by operating the vehicle under such performance conditions as to produce the highest possible value for distance traveled per unit of fuel consumed. The instrument panel cluster brings the operator's attention to focus upon andmore » continuously stimulated to conserving energy. Furthermore, the vehicle energy conservation indicating device can be adapted for recording these performance variables on tape type print out. The speedometer advises the vehicle operator when he is obeying or breaking the speed laws which are enforced and monitored by the police with specific punishment prescribed for violations of the law. At this time there is no comparable procedure for enforcing vehicle energy conservation. Thus, this direct read out of distance traveled per unit of energy will moderate the operation in an analogous manner similar to subliminal advertising. This device becomes the focal point of the instrument panel along with the speedometer, thereby providing constant motivation to obey both the speed and energy conservation laws.« less

  19. MDA Establishes Effective Metrics for Energy Reduction and Other Environmental Performance Improvements

    DTIC Science & Technology

    2009-05-06

    More Efficient Fuel, Electricity & Water Use (Cont’d.)  Energy and resource conservation campaign: beginning to implement an energy and resource...articles about energy conservation awareness and soliciting employee ideas  Reducing water temperature at MDIOC came from someone reporting the...issue after reading about conservation tips in the newsletter 12 Fuel, Electricity & Water Use Metrics  MDA’s objective is energy use reduction of 3

  20. Evaluation of low wing-loading fuel conservative, short-haul transports

    NASA Technical Reports Server (NTRS)

    Pasley, L. H.; Waldeck, T. A.

    1976-01-01

    Fuel conservation that could be attained with two technology advancements, Q fan propulsion system and active control technology (ACT) was studied. Aircraft incorporating each technology were sized for a Federal Aviation Regulation (FAR) field length of 914 meters (3,000 feet), 148 passengers, and a 926 kilometer (500 nautical mile) mission. The cruise Mach number was .70 at 10100 meter (33,000 foot) altitude. The improvement resulting from application of the Q fan propulsion system was computed relative to an optimized fuel conservative transport design. The performance improvements resulting from application of ACT technology were relative to the optimized Q fan propulsion system configuration.

  1. Cost/benefit tradeoffs for reducing the energy consumption of the commercial air transportation system

    NASA Technical Reports Server (NTRS)

    Kraus, E. F.; Vanabkoude, J. C.

    1976-01-01

    The fuel saving potential and cost effectiveness of numerous operational and technical options proposed for reducing the fuel consumption of the U.S. commercial airline fleet was examined and compared. The impact of the most promising fuel conserving options on fuel consumption, passenger demand, operating costs and airline profits when implemented in the U.S. domestic and international airline fleets was determined. A forecast estimate was made of the potential fuel savings achievable in the U.S. scheduled air transportation system. Specifically, the means for reducing the jet fuel consumption of the U.S. scheduled airlines in domestic and international passenger operations were investigated. A design analysis was made of two turboprop aircraft as possible fuel conserving derivatives of the DC-9-30.

  2. Increased Automobile Fuel Efficiency and Synthetic Fuels: Alternatives for Reducing Oil Imports

    DOT National Transportation Integrated Search

    1982-09-01

    This report assesses and compares increased automobile fuel efficiency and synthetic fuels production with respect to their potential to reduce conventional oil consumption, and their costs and impacts. Conservation and fuel switching as a means of r...

  3. Federal Funds: Fuel Conservation Fellowship Program

    ERIC Educational Resources Information Center

    Bobowski, Rita Cipalla

    1977-01-01

    To train individuals who might design and implement plans for developing alternative sources of energy like solar or geothermal power, the Office of Education supports graduate fellowships in mining, mineral, and mineral fuel conservation. Describes three projects funded by the fellowship program during the 1976-77 academic year. (Author/RK)

  4. Automotive Fleet Fuel Consumption Model : Fuel For

    DOT National Transportation Integrated Search

    1978-01-01

    The computer model described in this report is a tool for determining the fuel conservation benefits arising from various hypothetical schedules of new car fuel economy standards. (Portions of this document are not fully legible)

  5. Alternative Fuels Data Center: Methanol

    Science.gov Websites

    (CH3OH), also known as wood alcohol, is considered an alternative fuel under the Energy Policy Act of 1992. As an engine fuel, methanol has chemical and physical fuel properties similar to ethanol Ethanol Hydrogen Natural Gas Propane Emerging Fuels Fuel Prices Conserve Fuel Idle Reduction Parts &

  6. Alternative Fuels Data Center: Propane

    Science.gov Websites

    they work, and find information about vehicle availability, conversions, emissions, maintenance, and Fuel Prices Conserve Fuel Idle Reduction Parts & Equipment Maintenance Driving Behavior Fleet

  7. Identification of Federal Aviation Administration regulations and procedures that impact fuel consumption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mckinly, J.B.

    The impact of the Federal Aviation Regulations (FARs) on fuel conservation in the air-transportation system. To date there exist over 89 identifiable fuel-conservation program and research areas. Operational constraints in the areas of FARs and Air Traffic Control (ATC), which hinder further fuel savings in any of the 89 program and research areas, are identified. The nature of this investigation presents an update of analyses from previous FAA, DOE, and NASA publications from a DOE viewpoint. The short duration and cost constraints of this study did not allow an assessment of safety, social, or any of the broader impacts ofmore » the regulations. However, this study was not intended to solve all of the regulatory problems. Rather, this was a cursory review of the FARs intended to pinpoint those fuel inefficient regulations which could be changed to improve the overall fuel-conservation effort in the air transportation industry. The program and research areas identified as being negatively impacted by FARs were analyzed to quantify the fuel savings available through revision or removal of those constraints. A recommended list of new R and D initiatives are proposed in order to improve fuel efficiency of the FARs in the air-transportation industry.« less

  8. Simulator evaluation of optimal thrust management/fuel conservation strategies for airbus aircraft on short haul routes

    NASA Technical Reports Server (NTRS)

    Bochem, J. H.; Mossman, D. C.; Lanier, P. D.

    1977-01-01

    The feasibility of incorporating optimal concepts into a practical system was determined. Various earlier theoretical analyses were confirmed, and insight was gained into the sensitivity of fuel conservation strategies to nonlinear and second order aerodynamic and engine characteristics. In addition to the investigation of optimal trajectories the study ascertained combined fuel savings by utilizing various procedure-oriented improvements such as delayed flap/decelerating approaches and great circle navigation.

  9. Description of the computations and pilot procedures for planning fuel-conservative descents with a small programmable calculator

    NASA Technical Reports Server (NTRS)

    Vicroy, D. D.; Knox, C. E.

    1983-01-01

    A simplified flight management descent algorithm was developed and programmed on a small programmable calculator. It was designed to aid the pilot in planning and executing a fuel conservative descent to arrive at a metering fix at a time designated by the air traffic control system. The algorithm may also be used for planning fuel conservative descents when time is not a consideration. The descent path was calculated for a constant Mach/airspeed schedule from linear approximations of airplane performance with considerations given for gross weight, wind, and nonstandard temperature effects. The flight management descent algorithm and the vertical performance modeling required for the DC-10 airplane is described.

  10. The NASA Energy Conservation Program

    NASA Technical Reports Server (NTRS)

    Gaffney, G. P.

    1977-01-01

    Large energy-intensive research and test equipment at NASA installations is identified, and methods for reducing energy consumption outlined. However, some of the research facilities are involved in developing more efficient, fuel-conserving aircraft, and tradeoffs between immediate and long-term conservation may be necessary. Major programs for conservation include: computer-based systems to automatically monitor and control utility consumption; a steam-producing solid waste incinerator; and a computer-based cost analysis technique to engineer more efficient heating and cooling of buildings. Alternate energy sources in operation or under evaluation include: solar collectors; electric vehicles; and ultrasonically emulsified fuel to attain higher combustion efficiency. Management support, cooperative participation by employees, and effective reporting systems for conservation programs, are also discussed.

  11. Fuel-conservative engine technology

    NASA Technical Reports Server (NTRS)

    Dugan, J. F., Jr.; Mcaulay, J. E.; Reynolds, T. W.; Strack, W. C.

    1975-01-01

    Aircraft fuel consumption is discussed in terms of its efficient use, and the conversion of energy from sources other than petroleum. Topics discussed include: fuel from coal and oil shale, hydrogen deficiency of alternate sources, alternate fuels evaluation program, and future engines.

  12. 10 CFR 490.506 - Alternative fueled vehicle credit transfers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Alternative fueled vehicle credit transfers. 490.506 Section 490.506 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fueled Vehicle Credit Program § 490.506 Alternative fueled vehicle credit transfers. (a) Any fleet...

  13. 10 CFR 490.506 - Alternative fueled vehicle credit transfers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Alternative fueled vehicle credit transfers. 490.506 Section 490.506 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fueled Vehicle Credit Program § 490.506 Alternative fueled vehicle credit transfers. (a) Any fleet...

  14. 10 CFR 490.506 - Alternative fueled vehicle credit transfers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Alternative fueled vehicle credit transfers. 490.506 Section 490.506 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fueled Vehicle Credit Program § 490.506 Alternative fueled vehicle credit transfers. (a) Any fleet...

  15. 10 CFR 490.506 - Alternative fueled vehicle credit transfers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Alternative fueled vehicle credit transfers. 490.506 Section 490.506 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fueled Vehicle Credit Program § 490.506 Alternative fueled vehicle credit transfers. (a) Any fleet...

  16. 10 CFR 490.506 - Alternative fueled vehicle credit transfers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Alternative fueled vehicle credit transfers. 490.506 Section 490.506 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fueled Vehicle Credit Program § 490.506 Alternative fueled vehicle credit transfers. (a) Any fleet...

  17. Citizen's actions

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The various ways in which energy may be conserved by individual citizens as consumers were explored. The following barriers against citizens implementing an effective conservation program were described: credibility gap between producers and consumers, consumptive lifestyles, inverted rate structure, low fuel costs, and initial costs compared to life cycle costs. The following indices for saving energy were identified: time to develop alternatives, scarcity of fuels, reduction of dependence on imports, and decreasing environmental pollution. The various approaches to encourage energy conservation by individuals were described, followed by specific conclusions and recommendations.

  18. Conservation and Renewable Energy Program: Bibliography, 1988 edition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaughan, K.H.

    The 831 references covering the period 1980 through Feb. 1988, are arranged under the following: analysis and evaluation, building equipment, building thermal envelope systems and materials, community systems and cogeneration, residential conservation service, retrofit, advanced heat engine ceramics, alternative fuels, microemulsion fuels, industrial chemical heat pumps, materials for waste heat utilization, energy conversion and utilization materials, tribology, emergency energy conservation,inventions, electric energy systems, thermal storage, biofuels production, biotechnology, solar technology, geothermal, and continuous chromatography in multicomponent separations. An author index is included.

  19. Furfural-based polymers for the sealing of reactor vessels dumped in the Arctic Kara Sea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    HEISER,J.H.; COWGILL,M.G.; SIVINTSEV,Y.V.

    1996-10-07

    Between 1965 and 1988, 16 naval reactor vessels were dumped in the Arctic Kara Sea. Six of the vessels contained spent nuclear fuel that had been damaged during accidents. In addition, a container holding {approximately} 60% of the damaged fuel from the No. 2 reactor of the atomic icebreaker Lenin was dumped in 1967. Before dumping, the vessels were filled with a solidification agent, Conservant F, in order to prevent direct contact between the seawater and the fuel and other activated components, thereby reducing the potential for release of radionuclides into the environment. The key ingredient in Conservant F ismore » furfural (furfuraldehyde). Other constituents vary, depending on specific property requirements, but include epoxy resin, mineral fillers, and hardening agents. In the liquid state (prior to polymerization) Conservant F is a low viscosity, homogeneous resin blend that provides long work times (6--9 hours). In the cured state, Conservant F provides resistance to water and radiation, has high adhesion properties, and results in minimal gas evolution. This paper discusses the properties of Conservant F in both its cured and uncured states and the potential performance of the waste packages containing spent nuclear fuel in the Arctic Kara Sea.« less

  20. [Effects of small hydropower substitute fuel project on forest ecosystem services].

    PubMed

    Yu, Hai Yan; Zha, Tong Gang; Nie, Li Shui; Lyu, Zhi Yuan

    2016-10-01

    Based on the Forest Ecosystem Services Assessment Standards (LY/T 1721-2008) issued by the State Forestry Administration, this paper evaluated four key functions of forest ecosystems, i.e., water conservation, soil conservation, carbon fixation and oxygen release, and nutrient accumulation. Focusing on the project area of Majiang County in Guizhou Province, this study provided some quantitative evidence that the implementation of the small hydropower substituting fuel project had positive effects on the values and material quantities of ecosystem service functions. The results showed that the small hydropower substituting fuel project had a significant effect on the increase of forest ecosystem services. Water conservation quantity of Pinus massoniana and Cupressus funebris plantations inside project area was 20662.04 m 3 ·hm -2 ·a -1 , 20.5% higher than outside project area, with soil conservation quantity of 119.1 t·hm -2 ·a -1 , 29.7% higher than outside project area, carbon fixation and oxygen release of 220.49 t·hm -2 ·a -1 , 40.2% higher than outside project area, and forest tree nutrition accumulation of 3.49 t·hm -2 ·a -1 , 48.5% higher than outside project area. Small hydropower substituting fuel project for increasing the quota of forest ecosystem service function value was in the order of carbon fixation and oxygen release function (71400 yuan·hm -2 ·a -1 ) > water conservation function (60100 yuan·hm -2 ·a -1 ) > tree nutrition accumulation function (13800 yuan·hm -2 ·a -1 ) > soil conservation function (8100 yuan·hm -2 ·a -1 ). Small hydropower substituting fuel project played an important role for improving the forest ecological service function value and realizing the sustainable development of forest.

  1. 10 CFR 490.300 - Purpose and Scope.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Purpose and Scope. 490.300 Section 490.300 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fuel Provider... vehicles acquired by alternative fuel providers must be alternative fueled vehicles. ...

  2. 10 CFR 490.300 - Purpose and Scope.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Purpose and Scope. 490.300 Section 490.300 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fuel Provider... vehicles acquired by alternative fuel providers must be alternative fueled vehicles. ...

  3. 10 CFR 490.300 - Purpose and Scope.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Purpose and Scope. 490.300 Section 490.300 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fuel Provider... vehicles acquired by alternative fuel providers must be alternative fueled vehicles. ...

  4. 10 CFR 490.300 - Purpose and Scope.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Purpose and Scope. 490.300 Section 490.300 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fuel Provider... vehicles acquired by alternative fuel providers must be alternative fueled vehicles. ...

  5. 10 CFR 490.300 - Purpose and Scope.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Purpose and Scope. 490.300 Section 490.300 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fuel Provider... vehicles acquired by alternative fuel providers must be alternative fueled vehicles. ...

  6. Fuel Efficiency Improvement in Rail Freight Transportation

    DOT National Transportation Integrated Search

    1975-12-01

    Railroad diesel fuel conservation is becoming increasingly cost-effective. The price of diesel fuel has increased almost two and one-half times since the October 1973 Embargo. The estimated value of diesel fuel, if in short supply, is over 1 dollar a...

  7. 14 CFR 152.609 - Energy conservation practices.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Energy conservation practices. 152.609... (CONTINUED) AIRPORTS AIRPORT AID PROGRAM Energy Conservation in Airport Aid Program § 152.609 Energy conservation practices. Each sponsor shall require fuel and energy conservation practices in the operation and...

  8. 14 CFR 152.609 - Energy conservation practices.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Energy conservation practices. 152.609... (CONTINUED) AIRPORTS AIRPORT AID PROGRAM Energy Conservation in Airport Aid Program § 152.609 Energy conservation practices. Each sponsor shall require fuel and energy conservation practices in the operation and...

  9. 14 CFR 152.609 - Energy conservation practices.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Energy conservation practices. 152.609... (CONTINUED) AIRPORTS AIRPORT AID PROGRAM Energy Conservation in Airport Aid Program § 152.609 Energy conservation practices. Each sponsor shall require fuel and energy conservation practices in the operation and...

  10. 14 CFR 152.609 - Energy conservation practices.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Energy conservation practices. 152.609... (CONTINUED) AIRPORTS AIRPORT AID PROGRAM Energy Conservation in Airport Aid Program § 152.609 Energy conservation practices. Each sponsor shall require fuel and energy conservation practices in the operation and...

  11. 14 CFR 152.609 - Energy conservation practices.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Energy conservation practices. 152.609... (CONTINUED) AIRPORTS AIRPORT AID PROGRAM Energy Conservation in Airport Aid Program § 152.609 Energy conservation practices. Each sponsor shall require fuel and energy conservation practices in the operation and...

  12. 10 CFR 490.504 - Use of alternative fueled vehicle credits.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Use of alternative fueled vehicle credits. 490.504 Section 490.504 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fueled Vehicle Credit Program § 490.504 Use of alternative fueled vehicle credits. At the request...

  13. 10 CFR 490.504 - Use of alternative fueled vehicle credits.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Use of alternative fueled vehicle credits. 490.504 Section 490.504 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fueled Vehicle Credit Program § 490.504 Use of alternative fueled vehicle credits. At the request...

  14. 10 CFR 490.504 - Use of alternative fueled vehicle credits.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Use of alternative fueled vehicle credits. 490.504 Section 490.504 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fueled Vehicle Credit Program § 490.504 Use of alternative fueled vehicle credits. At the request...

  15. 10 CFR 490.504 - Use of alternative fueled vehicle credits.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Use of alternative fueled vehicle credits. 490.504 Section 490.504 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fueled Vehicle Credit Program § 490.504 Use of alternative fueled vehicle credits. At the request...

  16. 10 CFR 490.504 - Use of alternative fueled vehicle credits.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Use of alternative fueled vehicle credits. 490.504 Section 490.504 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fueled Vehicle Credit Program § 490.504 Use of alternative fueled vehicle credits. At the request...

  17. 10 CFR 490.703 - Biodiesel fuel use credit allocation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Biodiesel fuel use credit allocation. 490.703 Section 490.703 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Biodiesel Fuel Use Credit § 490.703 Biodiesel fuel use credit allocation. (a) DOE shall allocate to a fleet or...

  18. 10 CFR 490.703 - Biodiesel fuel use credit allocation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Biodiesel fuel use credit allocation. 490.703 Section 490.703 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Biodiesel Fuel Use Credit § 490.703 Biodiesel fuel use credit allocation. (a) DOE shall allocate to a fleet or...

  19. 10 CFR 490.703 - Biodiesel fuel use credit allocation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Biodiesel fuel use credit allocation. 490.703 Section 490.703 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Biodiesel Fuel Use Credit § 490.703 Biodiesel fuel use credit allocation. (a) DOE shall allocate to a fleet or...

  20. 10 CFR 490.703 - Biodiesel fuel use credit allocation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Biodiesel fuel use credit allocation. 490.703 Section 490.703 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Biodiesel Fuel Use Credit § 490.703 Biodiesel fuel use credit allocation. (a) DOE shall allocate to a fleet or...

  1. 10 CFR 490.703 - Biodiesel fuel use credit allocation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Biodiesel fuel use credit allocation. 490.703 Section 490.703 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Biodiesel Fuel Use Credit § 490.703 Biodiesel fuel use credit allocation. (a) DOE shall allocate to a fleet or...

  2. Conservation education for Fire, Fuel and Smoke Program

    Treesearch

    Wayne Cook

    2009-01-01

    The mission of Conservation Education for the Fire, Fuel and Smoke (FFS) Program is to develop and deliver high-quality, science-based education about wildland fire to students, educators, the general public, and agency staff. Goals: 1) Increase awareness of the scope and content of FFS research. 2) Improve understanding of fundamental concepts in wildland fire science...

  3. Planning fuel-conservative descents with or without time constraints using a small programmable calculator: Algorithm development and flight test results

    NASA Technical Reports Server (NTRS)

    Knox, C. E.

    1983-01-01

    A simplified flight-management descent algorithm, programmed on a small programmable calculator, was developed and flight tested. It was designed to aid the pilot in planning and executing a fuel-conservative descent to arrive at a metering fix at a time designated by the air traffic control system. The algorithm may also be used for planning fuel-conservative descents when time is not a consideration. The descent path was calculated for a constant Mach/airspeed schedule from linear approximations of airplane performance with considerations given for gross weight, wind, and nonstandard temperature effects. The flight-management descent algorithm is described. The results of flight tests flown with a T-39A (Sabreliner) airplane are presented.

  4. Description of the computations and pilot procedures for planning fuel-conservative descents with a small programmable calculator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vicroy, D.D.; Knox, C.E.

    A simplified flight management descent algorithm was developed and programmed on a small programmable calculator. It was designed to aid the pilot in planning and executing a fuel conservative descent to arrive at a metering fix at a time designated by the air traffic control system. The algorithm may also be used for planning fuel conservative descents when time is not a consideration. The descent path was calculated for a constant Mach/airspeed schedule from linear approximations of airplane performance with considerations given for gross weight, wind, and nonstandard temperature effects. The flight management descent algorithm and the vertical performance modelingmore » required for the DC-10 airplane is described.« less

  5. Alternative Fuels Data Center: Transportation System Efficiency

    Science.gov Websites

    energy use. Transportation planners and corporate decision makers can implement combinations of these corporate decision makers can help employees telework to conserve fuel. Maps & Data Average Annual Fuel

  6. ECASTAR: Energy conservation. An assessment of systems, technologies and requirements

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A methodology was presented for a systems approach to energy conservation actions and their potentials and impacts in the United States. Constraints affecting the approach were ranked, and the most important ones are the present economic and technical conditions. The following unresolved issues were identified: consumptive lifestyles vs. conservation ethic, environmental standards vs. energy conservation, capital availability, decentralization and vertical integration vs. centralization, fuel rich regions vs. fuel poor regions, supply vs. end use conservation, life cycle costing vs. initial cost, mandatory savings vs. voluntary savings, labor intensive vs. capital intensive, price control vs. free market. The following recommendations were made: provide action/impact assessment, establish regional energy centers, improve technology articulation with government, design total energy systems, utilize existing systems approach expertise.

  7. Alternative Fuels Data Center: Alternative Fuels and Advanced Vehicles

    Science.gov Websites

    -sector vehicle fleets are the primary users for most of these fuels and vehicles, but individual conventional fuels and vehicles helps the United States conserve fuel and lower vehicle emissions. Biodiesel , animal fats, or recycled cooking grease for use in diesel vehicles. Icon of a vehicle Diesel Vehicles

  8. Alternative Fuels Data Center: Idle Reduction Laws and Incentives

    Science.gov Websites

    Conserve Fuel Printable Version Share this resource Send a link to Alternative Fuels Data Center : Idle Reduction Laws and Incentives to someone by E-mail Share Alternative Fuels Data Center: Idle Fuels Data Center: Idle Reduction Laws and Incentives on Digg Find More places to share Alternative

  9. 10 CFR 490.201 - Alternative fueled vehicle acquisition mandate schedule.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Alternative fueled vehicle acquisition mandate schedule. 490.201 Section 490.201 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Mandatory State Fleet Program § 490.201 Alternative fueled vehicle acquisition mandate...

  10. 10 CFR 490.201 - Alternative fueled vehicle acquisition mandate schedule.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Alternative fueled vehicle acquisition mandate schedule. 490.201 Section 490.201 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Mandatory State Fleet Program § 490.201 Alternative fueled vehicle acquisition mandate...

  11. 10 CFR 490.201 - Alternative fueled vehicle acquisition mandate schedule.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Alternative fueled vehicle acquisition mandate schedule. 490.201 Section 490.201 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Mandatory State Fleet Program § 490.201 Alternative fueled vehicle acquisition mandate...

  12. 10 CFR 490.201 - Alternative fueled vehicle acquisition mandate schedule.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Alternative fueled vehicle acquisition mandate schedule. 490.201 Section 490.201 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Mandatory State Fleet Program § 490.201 Alternative fueled vehicle acquisition mandate...

  13. 10 CFR 490.201 - Alternative fueled vehicle acquisition mandate schedule.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Alternative fueled vehicle acquisition mandate schedule. 490.201 Section 490.201 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Mandatory State Fleet Program § 490.201 Alternative fueled vehicle acquisition mandate...

  14. Prospects for reduced energy transports: A preliminary analysis

    NASA Technical Reports Server (NTRS)

    Ardema, M. D.; Harper, M.; Smith, C. L.; Waters, M. H.; Williams, L. J.

    1974-01-01

    The recent energy crisis and subsequent substantial increase in fuel prices have provided increased incentive to reduce the fuel consumption of civil transport aircraft. At the present time many changes in operational procedures have been introduced to decrease fuel consumption of the existing fleet. In the future, however, it may become desirable or even necessary to introduce new fuel-conservative aircraft designs. This paper reports the results of a preliminary study of new near-term fuel conservative aircraft. A parametric study was made to determine the effects of cruise Mach number and fuel cost on the optimum configuration characteristics and on economic performance. For each design, the wing geometry was optimized to give maximum return on investment at a particular fuel cost. Based on the results of the parametric study, a nominal reduced energy configuration was selected. Compared with existing transport designs, the reduced energy design has a higher aspect ratio wing with lower sweep, and cruises at a lower Mach number. It has about 30% less fuel consumption on a seat-mile basis.

  15. 10 CFR 490.501 - Applicability.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Applicability. 490.501 Section 490.501 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fueled Vehicle... required to acquire alternative fueled vehicles by this part. ...

  16. 10 CFR 490.501 - Applicability.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Applicability. 490.501 Section 490.501 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fueled Vehicle... required to acquire alternative fueled vehicles by this part. ...

  17. 10 CFR 490.501 - Applicability.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Applicability. 490.501 Section 490.501 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fueled Vehicle... required to acquire alternative fueled vehicles by this part. ...

  18. 10 CFR 490.501 - Applicability.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Applicability. 490.501 Section 490.501 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fueled Vehicle... required to acquire alternative fueled vehicles by this part. ...

  19. 10 CFR 490.501 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Applicability. 490.501 Section 490.501 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fueled Vehicle... required to acquire alternative fueled vehicles by this part. ...

  20. Aeronautical fuel conservation possibilities for advanced subsonic transports. [application of aeronautical technology for drag and weight reduction

    NASA Technical Reports Server (NTRS)

    Braslow, A. L.; Whitehead, A. H., Jr.

    1973-01-01

    The anticipated growth of air transportation is in danger of being constrained by increased prices and insecure sources of petroleum-based fuel. Fuel-conservation possibilities attainable through the application of advances in aeronautical technology to aircraft design are identified with the intent of stimulating NASA R and T and systems-study activities in the various disciplinary areas. The material includes drag reduction; weight reduction; increased efficiency of main and auxiliary power systems; unconventional air transport of cargo; and operational changes.

  1. 10 CFR 490.500 - Purpose and Scope.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Purpose and Scope. 490.500 Section 490.500 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fueled Vehicle... alternative fueled vehicles in excess of the number they are required or obtain alternative fueled vehicles...

  2. 10 CFR 490.500 - Purpose and Scope.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Purpose and Scope. 490.500 Section 490.500 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fueled Vehicle... alternative fueled vehicles in excess of the number they are required or obtain alternative fueled vehicles...

  3. 10 CFR 490.500 - Purpose and Scope.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Purpose and Scope. 490.500 Section 490.500 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fueled Vehicle... alternative fueled vehicles in excess of the number they are required or obtain alternative fueled vehicles...

  4. 10 CFR 490.500 - Purpose and Scope.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Purpose and Scope. 490.500 Section 490.500 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fueled Vehicle... alternative fueled vehicles in excess of the number they are required or obtain alternative fueled vehicles...

  5. 10 CFR 490.500 - Purpose and Scope.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Purpose and Scope. 490.500 Section 490.500 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fueled Vehicle... alternative fueled vehicles in excess of the number they are required or obtain alternative fueled vehicles...

  6. Integration of energy management concepts into the flight deck

    NASA Technical Reports Server (NTRS)

    Morello, S. A.

    1981-01-01

    The rapid rise of fuel costs has become a major concern of the commercial aviation industry, and it has become mandatory to seek means by which to conserve fuel. A research program was initiated in 1979 to investigate the integration of fuel-conservative energy/flight management computations and information into today's and tomorrow's flight deck. One completed effort within this program has been the development and flight testing of a fuel-efficient, time-based metering descent algorithm in a research cockpit environment. Research flights have demonstrated that time guidance and control in the cockpit was acceptable to both pilots and ATC controllers. Proper descent planning and energy management can save fuel for the individual aircraft as well as the fleet by helping to maintain a regularized flow into the terminal area.

  7. User's manual for a fuel-conservative descent planning algorithm implemented on a small programmable calculator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vicroy, D.D.

    A simplified flight management descent algorithm was developed and programmed on a small programmable calculator. It was designed to aid the pilot in planning and executing a fuel conservative descent to arrive at a metering fix at a time designated by the air traffic control system. The algorithm may also be used for planning fuel conservative descents when time is not a consideration. The descent path was calculated for a constant Mach/airspeed schedule from linear approximations of airplane performance with considerations given for gross weight, wind, and nonstandard temperature effects. An explanation and examples of how the algorithm is used,more » as well as a detailed flow chart and listing of the algorithm are contained.« less

  8. Planning fuel-conservative descents with or without time constraints using a small programmable calculator: algorithm development and flight test results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knox, C.E.

    A simplified flight-management descent algorithm, programmed on a small programmable calculator, was developed and flight tested. It was designed to aid the pilot in planning and executing a fuel-conservative descent to arrive at a metering fix at a time designated by the air traffic control system. The algorithm may also be used for planning fuel-conservative descents when time is not a consideration. The descent path was calculated for a constant Mach/airspeed schedule from linear approximations of airplane performance with considerations given for gross weight, wind, and nonstandard temperature effects. The flight-management descent algorithm is described. The results of flight testsmore » flown with a T-39A (Sabreliner) airplane are presented.« less

  9. Internal combustion engine fuel controls. (Latest citations from the US Patent database). Published Search

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-12-01

    The bibliography contains citations of selected patents concerning fuel control devices and methods for use in internal combustion engines. Patents describe air-fuel ratio control, fuel injection systems, evaporative fuel control, and surge-corrected fuel control. Citations also discuss electronic and feedback control, methods for engine protection, and fuel conservation. (Contains a minimum of 232 citations and includes a subject term index and title list.)

  10. 10 CFR 474.3 - Petroleum-equivalent fuel economy calculation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Petroleum-equivalent fuel economy calculation. 474.3 Section 474.3 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ELECTRIC AND HYBRID VEHICLE RESEARCH, DEVELOPMENT, AND DEMONSTRATION PROGRAM; PETROLEUM-EQUIVALENT FUEL ECONOMY CALCULATION § 474.3 Petroleum-equivalent fuel economy calculation. (a) The...

  11. 10 CFR 490.203 - Light Duty Alternative Fueled Vehicle Plan.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Light Duty Alternative Fueled Vehicle Plan. 490.203 Section 490.203 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Mandatory State Fleet Program § 490.203 Light Duty Alternative Fueled Vehicle Plan. (a) General Provisions...

  12. 10 CFR 490.8 - Replacement fuel production goal.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Replacement fuel production goal. 490.8 Section 490.8 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM General... sufficient to replace, on an energy equivalent basis, at least 30 percent of motor fuel consumption in the...

  13. 10 CFR 490.203 - Light Duty Alternative Fueled Vehicle Plan.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Light Duty Alternative Fueled Vehicle Plan. 490.203 Section 490.203 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Mandatory State Fleet Program § 490.203 Light Duty Alternative Fueled Vehicle Plan. (a) General Provisions...

  14. 10 CFR 490.203 - Light Duty Alternative Fueled Vehicle Plan.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Light Duty Alternative Fueled Vehicle Plan. 490.203 Section 490.203 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Mandatory State Fleet Program § 490.203 Light Duty Alternative Fueled Vehicle Plan. (a) General Provisions...

  15. 10 CFR 490.8 - Replacement fuel production goal.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Replacement fuel production goal. 490.8 Section 490.8 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM General... sufficient to replace, on an energy equivalent basis, at least 30 percent of motor fuel consumption in the...

  16. 10 CFR 490.8 - Replacement fuel production goal.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Replacement fuel production goal. 490.8 Section 490.8 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM General... sufficient to replace, on an energy equivalent basis, at least 30 percent of motor fuel consumption in the...

  17. 10 CFR 490.203 - Light Duty Alternative Fueled Vehicle Plan.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Light Duty Alternative Fueled Vehicle Plan. 490.203 Section 490.203 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Mandatory State Fleet Program § 490.203 Light Duty Alternative Fueled Vehicle Plan. (a) General Provisions...

  18. 10 CFR 490.203 - Light Duty Alternative Fueled Vehicle Plan.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Light Duty Alternative Fueled Vehicle Plan. 490.203 Section 490.203 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Mandatory State Fleet Program § 490.203 Light Duty Alternative Fueled Vehicle Plan. (a) General Provisions...

  19. 10 CFR 490.8 - Replacement fuel production goal.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Replacement fuel production goal. 490.8 Section 490.8 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM General... sufficient to replace, on an energy equivalent basis, at least 30 percent of motor fuel consumption in the...

  20. 10 CFR 490.8 - Replacement fuel production goal.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Replacement fuel production goal. 490.8 Section 490.8 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM General... sufficient to replace, on an energy equivalent basis, at least 30 percent of motor fuel consumption in the...

  1. Fuel Economy Label and CAFE Data

    EPA Pesticide Factsheets

    The Engine and Vehicle Compliance Certification and Fuel Economy Inventory contains measured emissions and fuel economy compliance information for light duty vehicles. Data is collected by EPA to certify compliance with the applicable fuel economy provisions of the Energy Policy and Conservation Act (EPCA) and The Energy Independent Security Act of 2007

  2. 76 FR 21272 - Special Areas; Roadless Area Conservation; Applicability to the National Forests in Colorado

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-15

    ... roads for fuels treatment and for ecosystem maintenance and restoration, but these are restricted to..., the tree cutting exceptions for fuel treatment and ecosystem maintenance and restoration are... term hazardous fuels has been added. Hazardous fuels are defined as excessive live or dead wildland...

  3. Sociology: Clean-energy conservatism

    NASA Astrophysics Data System (ADS)

    McCright, Aaron M.

    2017-03-01

    US conservatives receive a steady stream of anti-environmental messaging from Republican politicians. However, clean-energy conservatives sending strong counter-messages on energy issues could mobilize moderate conservatives to break away from the dominant right-wing defence of fossil fuels.

  4. National Highway Traffic Safety Administration Corporate Average Fuel Economy (CAFE) Standards

    DOT National Transportation Integrated Search

    2003-01-01

    The National Highway Traffic Safety Administration (NHTSA) must set Corporate Average Fuel Economy (CAFE) standards for light trucks. This was authorized by the Energy Policy and Conservation Act, which added Title V: Imporving Automotive Fuel Effici...

  5. Conserving old-growth forest diversity in disturbance-prone landscapes.

    PubMed

    Spies, Thomas A; Hemstrom, Miles A; Youngblood, Andrew; Hummel, Susan

    2006-04-01

    A decade after its creation, the Northwest Forest Plan is contributing to the conservation of old-growth forests on federal land. However the success and outlook for the plan are questionable in the dry provinces, where losses of old growth to wildfire have been relatively high and risks of further loss remain. We summarize the state of knowledge of old-growth forests in the plan area, identify challenges to conserve them, and suggest some conservation approaches that might better meet the goals of the plan. Historically, old-growth forests in these provinces ranged from open, patchy stands, maintained by frequent low-severity fire, to a mosaic of dense and open stands maintained by mixed-severity fires. Old-growth structure and composition were spatially heterogeneous, varied strongly with topography and elevation, and were shaped by a complex disturbance regime of fire, insects, and disease. With fire suppression and cutting of large pines (Pinus spp.) and Douglas-firs (Pseudotsuga menziesii [Mirbel] Franco), old-growth diversity has declined and dense understories have developed across large areas. Challenges to conserving these forests include a lack of definitions needed for planning of fire-dependent old-growth stands and landscapes, and conflicts in conservation goals that can be resolved only at the landscape level. Fire suppression has increased the area of the dense, older forest favored by Northern Spotted Owls (Strix occidentalis caurina) but increased the probability of high-severity fire. The plan allows for fuel reduction in late-successional reserves; fuel treatments, however apparently have not happened at a high enough rate or been applied in a landscape-level approach. Landscape-level strategies are needed that prioritize fuel treatments by vegetation zones, develop shaded fuel breaks in strategic positions, and thin and apply prescribed fire to reduce ladder fuels around remaining old trees. Evaluations of the current and alternative strategies are needed to determine whether the current reserve-matrix approach is the best strategy to meet plan goals in these dynamic landscapes.

  6. Mixed strategies for energy conservation and alternative energy utilization (solar) in buildings. Final report. Volume II. Detailed results. [New York, Atlanta, Omaha, and Albuquerque

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1977-06-01

    The mixed-strategy analysis was a tradeoff analysis between energy-conservation methods and an alternative energy source (solar) considering technical and economic benefits. The objective of the analysis was to develop guidelines for: reducing energy requirements; reducing conventional fuel use; and identifying economic alternatives for building owners. The analysis was done with a solar system in place. This makes the study unique in that it is determining the interaction of energy conservation with a solar system. The study, therefore, established guidelines as to how to minimize capital investment while reducing the conventional fuel consumption through either a larger solar system or anmore » energy-conserving technique. To focus the scope of energy-conservation techniques and alternative energy sources considered, five building types (house, apartment buildings, commercial buildings, schools, and office buildings) were selected. Finally, the lists of energy-conservation techniques and alternative energy sources were reduced to lists of manageable size by using technical attributes to select the best candidates for further study. The resultant energy-conservation techniques were described in detail and installed costs determined. The alternative energy source reduced to solar. Building construction characteristics were defined for each building for each of four geographic regions of the country. A mixed strategy consisting of an energy-conservation technique and solar heating/hot water/cooling system was analyzed, using computer simulation to determine the interaction between energy conservation and the solar system. Finally, using FEA fuel-price scenarios and installed costs for the solar system and energy conservation techniques, an economic analysis was performed to determine the cost effectiveness of the combination. (MCW)« less

  7. 7 CFR 4288.1 - Purpose and scope.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., Conservation, and Energy Act of 2008 (the 2008 Farm Bill) (Pub. L. 110-246), to replace the use of fossil fuels... percentage reduction in fossil fuel used by the biorefinery (including the quantity of fossil fuels a... reduction in fossil fuel used by the biorefinery that will result from the installation of the renewable...

  8. 7 CFR 4288.1 - Purpose and scope.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., Conservation, and Energy Act of 2008 (the 2008 Farm Bill) (Pub. L. 110-246), to replace the use of fossil fuels... percentage reduction in fossil fuel used by the biorefinery (including the quantity of fossil fuels a... reduction in fossil fuel used by the biorefinery that will result from the installation of the renewable...

  9. 7 CFR 4288.1 - Purpose and scope.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., Conservation, and Energy Act of 2008 (the 2008 Farm Bill) (Pub. L. 110-246), to replace the use of fossil fuels... percentage reduction in fossil fuel used by the biorefinery (including the quantity of fossil fuels a... reduction in fossil fuel used by the biorefinery that will result from the installation of the renewable...

  10. 10 CFR 490.705 - Use of credits.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Biodiesel Fuel Use Credit § 490... the Energy Policy Act of 1992. (c) A fleet or covered person that is a biodiesel alternative fuel... person may not trade or bank biodiesel fuel credits. [64 FR 27174, May 19, 1999, as amended at 66 FR 2210...

  11. 10 CFR 490.705 - Use of credits.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Biodiesel Fuel Use Credit § 490... the Energy Policy Act of 1992. (c) A fleet or covered person that is a biodiesel alternative fuel... person may not trade or bank biodiesel fuel credits. [64 FR 27174, May 19, 1999, as amended at 66 FR 2210...

  12. 10 CFR 490.705 - Use of credits.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Biodiesel Fuel Use Credit § 490... the Energy Policy Act of 1992. (c) A fleet or covered person that is a biodiesel alternative fuel... person may not trade or bank biodiesel fuel credits. [64 FR 27174, May 19, 1999, as amended at 66 FR 2210...

  13. 10 CFR 490.705 - Use of credits.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Biodiesel Fuel Use Credit § 490... the Energy Policy Act of 1992. (c) A fleet or covered person that is a biodiesel alternative fuel... person may not trade or bank biodiesel fuel credits. [64 FR 27174, May 19, 1999, as amended at 66 FR 2210...

  14. 10 CFR 490.705 - Use of credits.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Biodiesel Fuel Use Credit § 490... the Energy Policy Act of 1992. (c) A fleet or covered person that is a biodiesel alternative fuel... person may not trade or bank biodiesel fuel credits. [64 FR 27174, May 19, 1999, as amended at 66 FR 2210...

  15. 75 FR 52892 - Energy Conservation Program for Consumer Products: Test Procedures for Residential Water Heaters...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-30

    .... Treatment of Fossil-Fuel Consumption in Existing Test Procedures for Fossil-Fuel Vented Heaters 2. Specific.... Proposed Test Procedure Amendments for Pool Heaters 1. Treatment of Fossil-Fuel Consumption in Existing.... Fossil-fuel standby mode and off mode energy use is already integrated into the vented [[Page 52895...

  16. 10 CFR 490.306 - Vehicle operation requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Vehicle operation requirements. 490.306 Section 490.306 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fuel Provider Vehicle Acquisition Mandate § 490.306 Vehicle operation requirements. The alternative fueled...

  17. 10 CFR 490.306 - Vehicle operation requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Vehicle operation requirements. 490.306 Section 490.306 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fuel Provider Vehicle Acquisition Mandate § 490.306 Vehicle operation requirements. The alternative fueled...

  18. 10 CFR 490.306 - Vehicle operation requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Vehicle operation requirements. 490.306 Section 490.306 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fuel Provider Vehicle Acquisition Mandate § 490.306 Vehicle operation requirements. The alternative fueled...

  19. 10 CFR 490.306 - Vehicle operation requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Vehicle operation requirements. 490.306 Section 490.306 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fuel Provider Vehicle Acquisition Mandate § 490.306 Vehicle operation requirements. The alternative fueled...

  20. 10 CFR 490.306 - Vehicle operation requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Vehicle operation requirements. 490.306 Section 490.306 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fuel Provider Vehicle Acquisition Mandate § 490.306 Vehicle operation requirements. The alternative fueled...

  1. 10 CFR 490.505 - Credit accounts.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Credit accounts. 490.505 Section 490.505 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fueled Vehicle... covered person who obtains an alternative fueled vehicle credit. (b) DOE shall send to each fleet and...

  2. 10 CFR 490.505 - Credit accounts.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Credit accounts. 490.505 Section 490.505 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fueled Vehicle... covered person who obtains an alternative fueled vehicle credit. (b) DOE shall send to each fleet and...

  3. 10 CFR 490.505 - Credit accounts.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Credit accounts. 490.505 Section 490.505 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fueled Vehicle... covered person who obtains an alternative fueled vehicle credit. (b) DOE shall send to each fleet and...

  4. 10 CFR 490.505 - Credit accounts.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Credit accounts. 490.505 Section 490.505 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fueled Vehicle... covered person who obtains an alternative fueled vehicle credit. (b) DOE shall send to each fleet and...

  5. 10 CFR 490.505 - Credit accounts.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Credit accounts. 490.505 Section 490.505 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fueled Vehicle... covered person who obtains an alternative fueled vehicle credit. (b) DOE shall send to each fleet and...

  6. 10 CFR 490.702 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Definitions. 490.702 Section 490.702 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Biodiesel Fuel Use Credit § 490.702...— Biodiesel means a diesel fuel substitute produced from nonpetroleum renewable resources that meets the...

  7. 10 CFR 490.702 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Definitions. 490.702 Section 490.702 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Biodiesel Fuel Use Credit § 490.702...— Biodiesel means a diesel fuel substitute produced from nonpetroleum renewable resources that meets the...

  8. 10 CFR 490.702 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Definitions. 490.702 Section 490.702 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Biodiesel Fuel Use Credit § 490.702...— Biodiesel means a diesel fuel substitute produced from nonpetroleum renewable resources that meets the...

  9. 10 CFR 490.702 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Definitions. 490.702 Section 490.702 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Biodiesel Fuel Use Credit § 490.702...— Biodiesel means a diesel fuel substitute produced from nonpetroleum renewable resources that meets the...

  10. 10 CFR 490.702 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Definitions. 490.702 Section 490.702 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Biodiesel Fuel Use Credit § 490.702...— Biodiesel means a diesel fuel substitute produced from nonpetroleum renewable resources that meets the...

  11. Direct and indirect conservation of fossil-fuel energy: the influence of financial and philosophical motivators and available human resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilhelm, M.S.

    1982-01-01

    The research was conducted as a secondary analysis of data collected during the evaluation of a statewide household energy audit conducted at Michigan State University. Energy-consumption data from utility and oil companies served as the measure of direct conservation. Indirect conservation was investigated through the analysis of self-reported participation in a variety of behaviors collectively defined as voluntary simplicity. The household was the unit of analysis served as the primary statistical procedure for testing the hypotheses. A 1.8 percentage reduction in direct household energy consumption was found between the years 1977-78 and 1979-80. Nearly three-fourths of the households were foundmore » to have practiced at least some voluntary simplicity behaviors. Relative cost of fuel used by the household was the only significant motivator for direct conservation (p = .016). Availability of human resources did not influence direct conservation. Neither did direct conservation contribute to a sense of personal control over energy problems.« less

  12. 10 CFR 490.503 - Credit allocation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Credit allocation. 490.503 Section 490.503 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fueled Vehicle... described in section 490.507 of this part, DOE shall allocate one credit for each alternative fueled vehicle...

  13. 10 CFR 490.303 - Who must comply.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Who must comply. 490.303 Section 490.303 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fuel Provider..., distributing, importing or selling at wholesale or retail any alternative fuel other than electricity; or (2) A...

  14. 10 CFR 490.303 - Who must comply.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Who must comply. 490.303 Section 490.303 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fuel Provider..., distributing, importing or selling at wholesale or retail any alternative fuel other than electricity; or (2) A...

  15. 10 CFR 490.503 - Credit allocation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Credit allocation. 490.503 Section 490.503 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fueled Vehicle... described in section 490.507 of this part, DOE shall allocate one credit for each alternative fueled vehicle...

  16. 10 CFR 490.503 - Credit allocation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Credit allocation. 490.503 Section 490.503 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fueled Vehicle... described in section 490.507 of this part, DOE shall allocate one credit for each alternative fueled vehicle...

  17. 10 CFR 490.503 - Credit allocation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Credit allocation. 490.503 Section 490.503 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fueled Vehicle... described in section 490.507 of this part, DOE shall allocate one credit for each alternative fueled vehicle...

  18. 10 CFR 490.303 - Who must comply.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Who must comply. 490.303 Section 490.303 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fuel Provider..., distributing, importing or selling at wholesale or retail any alternative fuel other than electricity; or (2) A...

  19. 10 CFR 490.303 - Who must comply.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Who must comply. 490.303 Section 490.303 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fuel Provider..., distributing, importing or selling at wholesale or retail any alternative fuel other than electricity; or (2) A...

  20. 10 CFR 490.303 - Who must comply.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Who must comply. 490.303 Section 490.303 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fuel Provider..., distributing, importing or selling at wholesale or retail any alternative fuel other than electricity; or (2) A...

  1. 10 CFR 490.503 - Credit allocation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Credit allocation. 490.503 Section 490.503 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fueled Vehicle... described in section 490.507 of this part, DOE shall allocate one credit for each alternative fueled vehicle...

  2. Alternative Fuels Data Center: Telework

    Science.gov Websites

    for vehicle fleet managers and corporate decision makers to work with employees to conserve fuel . Telecommute Resources These resources can help corporate decision makers develop and support telework

  3. Alternative Fuels Data Center: Techniques for Drivers to Conserve Fuel

    Science.gov Websites

    techniques to save fuel and money. The amount of fuel your vehicle consumes depends heavily on how you drive and money. Vehicles use the most energy when accelerating. Using cruise control on the highway can trips can save you time and money by avoiding unnecessary stopping and starting of your vehicle, which

  4. KSC-2009-2874

    NASA Image and Video Library

    2009-04-28

    CAPE CANAVERAL, Fla. –– A variety of alternative fuel vehicles are driven around NASA's Kennedy Space Center in Florida in an effort to reduce gasoline consumption and conserve energy. These include compressed natural gas, bi-fuel, diesel fuel and flex fuel vehicles. Here they are on display at the NASA News Center. In the background is the Vehicle Assembly Building. Photo credit: NASA/Jim Grossmann

  5. KSC-2009-2873

    NASA Image and Video Library

    2009-04-28

    CAPE CANAVERAL, Fla. –– A variety of alternative fuel vehicles are driven around NASA's Kennedy Space Center in Florida in an effort to reduce gasoline consumption and conserve energy. These include compressed natural gas, bi-fuel, diesel fuel and flex fuel vehicles. Here they are on display at the NASA News Center. In the background is the Vehicle Assembly Building. Photo credit: NASA/Jim Grossmann

  6. KSC-2009-2871

    NASA Image and Video Library

    2009-04-28

    CAPE CANAVERAL, Fla. –– A variety of alternative fuel vehicles are driven around NASA's Kennedy Space Center in Florida in an effort to reduce gasoline consumption and conserve energy. These include compressed natural gas, bi-fuel, diesel fuel and flex fuel vehicles. Here they are on display at the NASA News Center. In the background is the Vehicle Assembly Building. Photo credit: NASA/Jim Grossmann

  7. Alternative Fuels Data Center

    Science.gov Websites

    governments may issue Qualified Energy Conservation Bonds subsidized by the U.S. Department of Treasury at competitive rates to fund capital expenditures on qualified energy conservation projects. Eligible activities

  8. 10 CFR 490.701 - Purpose and scope.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Purpose and scope. 490.701 Section 490.701 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Biodiesel Fuel Use Credit... of a qualifying volume of the biodiesel component of a fuel containing at least 20 percent biodiesel...

  9. 10 CFR 490.701 - Purpose and scope.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Purpose and scope. 490.701 Section 490.701 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Biodiesel Fuel Use Credit... of a qualifying volume of the biodiesel component of a fuel containing at least 20 percent biodiesel...

  10. 10 CFR 490.701 - Purpose and scope.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Purpose and scope. 490.701 Section 490.701 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Biodiesel Fuel Use Credit... of a qualifying volume of the biodiesel component of a fuel containing at least 20 percent biodiesel...

  11. 10 CFR 490.701 - Purpose and scope.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Purpose and scope. 490.701 Section 490.701 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Biodiesel Fuel Use Credit... of a qualifying volume of the biodiesel component of a fuel containing at least 20 percent biodiesel...

  12. 10 CFR 490.701 - Purpose and scope.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Purpose and scope. 490.701 Section 490.701 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Biodiesel Fuel Use Credit... of a qualifying volume of the biodiesel component of a fuel containing at least 20 percent biodiesel...

  13. Driver Education Curriculum Guide. Energy Conservation.

    ERIC Educational Resources Information Center

    Governor's Highway Safety Program Office, Columbus, OH.

    Designed to provide high school students with information concerning energy-efficient driving, this curriculum guide covers techniques of conserving energy, efficient use of motor vehicles, safe driving techniques, and development of energy-efficient driving habits. The guide consists of six lessons: (1) Fuel Conservation: Why It Is Essential; (2)…

  14. Energy Conservation in School Transportation Systems. Energy Conservation Guidelines 4.

    ERIC Educational Resources Information Center

    Giesguth, John, Ed.; Scheingold, Edward, Ed.

    Fourth in a series of four publications on energy conservation, this booklet offers basic guidelines for sound fuel reduction in school transportation. The pamphlet suggests ways to implement energy-saving practices, guidelines for preventive maintenance of school vehicles, a definition of the drivers' and superintendents' roles, school policies…

  15. Energy metabolism in feasting and fasting.

    PubMed

    Owen, O E; Reichard, G A; Patel, M S; Boden, G

    1979-01-01

    During feasting on a balanced carbohydrate, fat, and protein meal resting metabolic rate, body temperature and respiratory quotient all increase. The dietary components are utilized to replenish and augment glycogen and fat stores in the body. Excessive carbohydrate is also converted to lipid in the liver and stored along with the excessive lipids of dietary origin as triglycerides in adipose tissue, the major fuel storage depot. Amino acids in excess of those needed for protein synthesis are preferentially catabolized over glucose and fat for energy production. This occurs because there are no significant storage sites for amino acids or proteins, and the accumulation of nitrogenous compounds is ill tolerated. During fasting, adipose tissue, muscle, liver, and kidneys work in concert to supply, to convert, and to conserve fuels for the body. During the brief postabsorptive period, blood fuel homeostasis is maintained primarily by hepatic glycogenolysis and adipose tissue lipolysis. As fasting progresses, muscle proteolysis supplies glycogenic amino acids for heightened hepatic gluconeogenesis for a short period of time. After about three days of starvation, the metabolic profile is set to conserve protein and to supply greater quantities of alternate fuels. In particular, free fatty acids and ketone bodies are utilized to maintain energy needs. The ability of the kidney to conserve ketone bodies prevents the loss of large quantities of these valuable fuels in the urine. This delicate interplay among liver, muscle, kidney, and adipose tissue maintains blood fuel homeostasis and allows humans to survive caloric deprivation for extended periods.

  16. Technology assessment of portable energy RDT and P

    NASA Technical Reports Server (NTRS)

    Vanston, J. H., Jr.; Frisbie, W. P.; Poston, D. L.

    1975-01-01

    Results are presented of a workshop conducted to assess portable energy technology. The results were evaluated and areas for future research were considered. Several research categories were studied: increasing presently available fuel supplies, developing new fuel sources, utilization of new transportation fuels, improving conservation practices, and equitable distribution of fuel supplies. Several research projects were proposed, and work statements were constructed for those considered suitable.

  17. Clean Cities Tools: Tools to Help You Save Money, Use Less Petroleum, and Reduce Emissions (Brochure)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2012-01-01

    Clean Cities Alternative Fuels and Advanced Vehicles Data Center (AFDC) features a wide range of Web-based tools to help vehicle fleets and individual consumers reduce their petroleum use. This brochure lists and describes Clean Cities online tools related to vehicles, alternative fueling stations, electric vehicle charging stations, fuel conservation, emissions reduction, fuel economy, and more.

  18. Forum on energy conservation in buildings : implications for transportation

    DOT National Transportation Integrated Search

    1981-12-01

    In a transportation-dependent society constrained by potential : shortages and the high costs of conventional fuels, as well as by : sometimes conflicting national objectives for increased energy : conservation, improved environmental quality, enhanc...

  19. Energy: Conservation, Energy Briefs

    ERIC Educational Resources Information Center

    Nation's Schools and Colleges, 1975

    1975-01-01

    A comprehensive energy conservation program at College of the Holy Cross has saved nearly one-third of the fuel oil and one-fifth of the electricity used at the college; briefs on boilers, lights, design. (Author/MLF)

  20. 10 CFR Appendix to Part 474 - Sample Petroleum-Equivalent Fuel Economy Calculations

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Sample Petroleum-Equivalent Fuel Economy Calculations Appendix to Part 474 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ELECTRIC AND HYBRID VEHICLE RESEARCH, DEVELOPMENT, AND DEMONSTRATION PROGRAM; PETROLEUM-EQUIVALENT FUEL ECONOMY CALCULATION Pt. 474, App. Appendix to Part 474—Sample...

  1. 75 FR 64621 - Energy Conservation Program for Consumer Products: Test Procedures for Residential Furnaces and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-20

    ... and oil-fired furnaces and boilers consume both fossil fuel and electricity. Electric furnaces and boilers only consume electricity. In this test procedure, fossil-fuel energy consumption is accounted for comprehensively over a full-year cycle, thereby satisfying EISA 2007 requirements for fossil-fuel standby mode and...

  2. 77 FR 74559 - Energy Conservation Program for Consumer Products: Test Procedures for Residential Water Heaters...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-17

    ... fossil fuel as applicable to a given water heater. Specifically, the standby loss testing in the existing... important to note that fossil-fueled direct heating equipment and pool heaters typically consume both fossil... procedures for direct heating equipment, fossil-fuel energy consumption is accounted for comprehensively over...

  3. 10 CFR 436.16 - Establishing non-fuel and non-water cost categories.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Establishing non-fuel and non-water cost categories. 436.16 Section 436.16 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION FEDERAL ENERGY MANAGEMENT AND PLANNING PROGRAMS Methodology and Procedures for Life Cycle Cost Analyses § 436.16 Establishing non-fuel...

  4. Fuel-Conservation Guidance System for Powered-Lift Aircraft

    NASA Technical Reports Server (NTRS)

    Erzberger, Heinz; McLean, John D.

    1981-01-01

    A technique is described for the design of fuel-conservative guidance systems and is applied to a system that was flight tested on board NASA's sugmentor wing jet STOL research aircraft. An important operational feature of the system is its ability to rapidly synthesize fuel-efficient trajectories for a large set of initial aircraft positions, altitudes, and headings. This feature allows the aircraft to be flown efficiently under conditions of changing winds and air traffic control vectors. Rapid synthesis of fuel-efficient trajectories is accomplished in the airborne computer by fast-time trajectory integration using a simplified dynamic performance model of the aircraft. This technique also ensures optimum flap deployment and, for powered-lift STOL aircraft, optimum transition to low-speed flight. Also included in the design is accurate prediction of touchdown time for use in four-dimensional guidance applications. Flight test results have demonstrated that the automatically synthesized trajectories produce significant fuel savings relative to manually flown conventional approaches.

  5. Why CAFE Worked

    DOT National Transportation Integrated Search

    1997-11-01

    The 1975 Energy Policy and Conservation Act established mandatory fuel economy standards for passenger cars and light trucks sold in the U.S. Since that time the Corporate Average Fuel Economy (CAFE) standards have often been criticized as costly, in...

  6. Alternative Fuels Data Center: Efficient Driving Behaviors to Conserve Fuel

    Science.gov Websites

    Energy Futures Series: Effects of Travel Reduction and Efficient Driving on Transportation: Energy Use and Greenhouse Gas Emissions Transportation Energy Futures Series: Effects of the Built Environment on

  7. Manufacturer's Policies Concerning Average Fuel Economy Standards

    DOT National Transportation Integrated Search

    1979-01-01

    The National Highway Traffic Safety Administration (NHTSA) has been given the responsibility for implementing the average fuel economy standards for passenger automobiles mandated by the Energy Policy and Conservation Act (P.L. 94-163). The standards...

  8. The energy dilemma and its impact on air transportation

    NASA Technical Reports Server (NTRS)

    Dyer, C. R. (Editor); Sincoff, M. Z. (Editor); Cribbins, P. D. (Editor)

    1973-01-01

    The dimensions of the energy situation are discussed in relation to air travel. Energy conservation, fuel consumption, and combustion efficiency are examined, as well as the proposal for subsonic aircraft using hydrogen fuel.

  9. 40 CFR 243.202-2 - Recommended procedures: Design.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... collection vehicles: (1) Exterior rear-view mirrors. (2) Back-up lights. (3) Four-way emergency flashers. (4... conserve fuel and minimize pollution should be used in collection vehicles to reduce fuel consumption and air pollution. ...

  10. Energy Conservation Projects to Benefit the Railroad Industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clifford Mirman; Promod Vohra

    The Energy Conservation Projects to benefit the railroad industry using the Norfolk Southern Company as a model for the railroad industry has five unique tasks which are in areas of importance within the rail industry, and specifically in the area of energy conservation. The NIU Engineering and Technology research team looked at five significant areas in which research and development work can provide unique solutions to the railroad industry in energy the conservation. (1) Alternate Fuels - An examination of various blends of bio-based diesel fuels for the railroad industry, using Norfolk Southern as a model for the industry. Themore » team determined that bio-diesel fuel is a suitable alternative to using straight diesel fuel, however, the cost and availability across the country varies to a great extent. (2) Utilization of fuel cells for locomotive power systems - While the application of the fuel cell has been successfully demonstrated in the passenger car, this is a very advanced topic for the railroad industry. There are many safety and power issues that the research team examined. (3) Thermal and emission reduction for current large scale diesel engines - The current locomotive system generates large amount of heat through engine cooling and heat dissipation when the traction motors are used to decelerate the train. The research team evaluated thermal management systems to efficiently deal with large thermal loads developed by the operating engines. (4) Use of Composite and Exotic Replacement Materials - Research team redesigned various components using new materials, coatings, and processes to provide the needed protection. Through design, analysis, and testing, new parts that can withstand the hostile environments were developed. (5) Tribology Applications - Identification of tribology issues in the Railroad industry which play a significant role in the improvement of energy usage. Research team analyzed and developed solutions which resulted in friction modification to improve energy efficiency.« less

  11. KSC-2009-2872

    NASA Image and Video Library

    2009-04-28

    CAPE CANAVERAL, Fla. –– On display at NASA's Kennedy Space Center in Florida is one of the variety of alternative fuel vehicles driven around the center in an effort to reduce gasoline consumption and conserve energy. This car is a LiV Dash, a lithium vehicle Smart Car that uses lithium batteries. The other vehicles include compressed natural gas, bi-fuel, diesel fuel and flex fuel vehicles. Photo credit: NASA/Jim Grossmann

  12. SCORE-EVET: a computer code for the multidimensional transient thermal-hydraulic analysis of nuclear fuel rod arrays. [BWR; PWR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benedetti, R. L.; Lords, L. V.; Kiser, D. M.

    1978-02-01

    The SCORE-EVET code was developed to study multidimensional transient fluid flow in nuclear reactor fuel rod arrays. The conservation equations used were derived by volume averaging the transient compressible three-dimensional local continuum equations in Cartesian coordinates. No assumptions associated with subchannel flow have been incorporated into the derivation of the conservation equations. In addition to the three-dimensional fluid flow equations, the SCORE-EVET code ocntains: (a) a one-dimensional steady state solution scheme to initialize the flow field, (b) steady state and transient fuel rod conduction models, and (c) comprehensive correlation packages to describe fluid-to-fuel rod interfacial energy and momentum exchange. Velocitymore » and pressure boundary conditions can be specified as a function of time and space to model reactor transient conditions such as a hypothesized loss-of-coolant accident (LOCA) or flow blockage.« less

  13. Future fuels and engines for railroad locomotives. Volume 1: Summary

    NASA Technical Reports Server (NTRS)

    Liddle, S. G.; Bonzo, B. B.; Purohit, G. P.; Stallkamp, J. A.

    1981-01-01

    The potential for reducing the dependence of railroads on petroleum fuel, particularly Diesel No. 2 was investigated. Two approaches are studied: (1) to determine how the use of Diesel No. 2 can be reduced through increased efficiency and conservation, and (2) to use fuels other than Diesel No. 2 both in Diesel and other types of engines. Because synthetic hydrocarbon fuels are particularly suited to medium speed diesel engines, the first commercial application of these fuels may be by the railroad industry.

  14. Alternative Fuels Data Center: Atlanta Airport Converts Shuttles to CNG

    Science.gov Websites

    company saves money and conserves fuel with compressed natural gas airport shuttles. For information about . Rental Cars Go Electric in Florida Feb. 15, 2014 Renzenberger Inc Saves Money With Propane Vans Feb. 1 Save Money Nov. 12, 2011 Metropolitan Utilities District Fuels Vehicles With Natural Gas Oct. 1, 2011

  15. Alternative Fuels Data Center: Vehicle Maintenance to Conserve Fuel

    Science.gov Websites

    to the tire specifications provided by the manufacturer. Recommended Motor Oil Using the manufacturer's recommended grade of motor oil in an engine can improve fuel economy by 1%-2%. Check your owner's manual for the manufacturer's recommended grade of motor oil. Also, you may select motor oil that

  16. Algorithm for fuel conservative horizontal capture trajectories

    NASA Technical Reports Server (NTRS)

    Neuman, F.; Erzberger, H.

    1981-01-01

    A real time algorithm for computing constant altitude fuel-conservative approach trajectories for aircraft is described. The characteristics of the trajectory computed were chosen to approximate the extremal trajectories obtained from the optimal control solution to the problem and showed a fuel difference of only 0.5 to 2 percent for the real time algorithm in favor of the extremals. The trajectories may start at any initial position, heading, and speed and end at any other final position, heading, and speed. They consist of straight lines and a series of circular arcs of varying radius to approximate constant bank-angle decelerating turns. Throttle control is maximum thrust, nominal thrust, or zero thrust. Bank-angle control is either zero or aproximately 30 deg.

  17. RAZORBACK - A Research Reactor Transient Analysis Code Version 1.0 - Volume 3: Verification and Validation Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Talley, Darren G.

    2017-04-01

    This report describes the work and results of the verification and validation (V&V) of the version 1.0 release of the Razorback code. Razorback is a computer code designed to simulate the operation of a research reactor (such as the Annular Core Research Reactor (ACRR)) by a coupled numerical solution of the point reactor kinetics equations, the energy conservation equation for fuel element heat transfer, the equation of motion for fuel element thermal expansion, and the mass, momentum, and energy conservation equations for the water cooling of the fuel elements. This V&V effort was intended to confirm that the code showsmore » good agreement between simulation and actual ACRR operations.« less

  18. Numerical study of supersonic combustors by multi-block grids with mismatched interfaces

    NASA Technical Reports Server (NTRS)

    Moon, Young J.

    1990-01-01

    A three dimensional, finite rate chemistry, Navier-Stokes code was extended to a multi-block code with mismatched interface for practical calculations of supersonic combustors. To ensure global conservation, a conservative algorithm was used for the treatment of mismatched interfaces. The extended code was checked against one test case, i.e., a generic supersonic combustor with transverse fuel injection, examining solution accuracy, convergence, and local mass flux error. After testing, the code was used to simulate the chemically reacting flow fields in a scramjet combustor with parallel fuel injectors (unswept and swept ramps). Computational results were compared with experimental shadowgraph and pressure measurements. Fuel-air mixing characteristics of the unswept and swept ramps were compared and investigated.

  19. 10 CFR 474.1 - Purpose and Scope.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... OF ENERGY ENERGY CONSERVATION ELECTRIC AND HYBRID VEHICLE RESEARCH, DEVELOPMENT, AND DEMONSTRATION... procedures for calculating a value for the petroleum-equivalent fuel economy of electric vehicles, as... regulations at 40 CFR Part 600—Fuel Economy of Motor Vehicles. ...

  20. 10 CFR 474.1 - Purpose and Scope.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... OF ENERGY ENERGY CONSERVATION ELECTRIC AND HYBRID VEHICLE RESEARCH, DEVELOPMENT, AND DEMONSTRATION... procedures for calculating a value for the petroleum-equivalent fuel economy of electric vehicles, as... regulations at 40 CFR Part 600—Fuel Economy of Motor Vehicles. ...

  1. 10 CFR 474.1 - Purpose and Scope.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... OF ENERGY ENERGY CONSERVATION ELECTRIC AND HYBRID VEHICLE RESEARCH, DEVELOPMENT, AND DEMONSTRATION... procedures for calculating a value for the petroleum-equivalent fuel economy of electric vehicles, as... regulations at 40 CFR Part 600—Fuel Economy of Motor Vehicles. ...

  2. 10 CFR 474.1 - Purpose and Scope.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... OF ENERGY ENERGY CONSERVATION ELECTRIC AND HYBRID VEHICLE RESEARCH, DEVELOPMENT, AND DEMONSTRATION... procedures for calculating a value for the petroleum-equivalent fuel economy of electric vehicles, as... regulations at 40 CFR Part 600—Fuel Economy of Motor Vehicles. ...

  3. 10 CFR 474.1 - Purpose and Scope.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... OF ENERGY ENERGY CONSERVATION ELECTRIC AND HYBRID VEHICLE RESEARCH, DEVELOPMENT, AND DEMONSTRATION... procedures for calculating a value for the petroleum-equivalent fuel economy of electric vehicles, as... regulations at 40 CFR Part 600—Fuel Economy of Motor Vehicles. ...

  4. Energy conservation and air transportation

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Air transportation demand and passenger energy demand are discussed, in relation to energy conservation. Alternatives to air travel are reviewed, along with airline advertising and ticket pricing. Cargo energy demand and airline systems efficiency are also examined, as well as fuel conservation techniques. Maximum efficiency of passenger aircraft, from B-747 to V/STOL to British Concorde, is compared.

  5. Airline energy conservation options : summary options

    DOT National Transportation Integrated Search

    1973-07-27

    In late May, 1973 the task of determining and evaluating measures for conserving fuel consumed by the airline industry was undertaken. This task was a part of the larger effort conducted by the Transportation Systems Center to determine measures that...

  6. 10 CFR 490.200 - Purpose and scope.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Purpose and scope. 490.200 Section 490.200 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Mandatory State Fleet... duty motor vehicles acquired for State fleets be alternative fueled vehicles. ...

  7. 10 CFR 490.200 - Purpose and scope.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Purpose and scope. 490.200 Section 490.200 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Mandatory State Fleet... duty motor vehicles acquired for State fleets be alternative fueled vehicles. ...

  8. 10 CFR 490.200 - Purpose and scope.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Purpose and scope. 490.200 Section 490.200 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Mandatory State Fleet... duty motor vehicles acquired for State fleets be alternative fueled vehicles. ...

  9. 10 CFR 490.810 - Record retention.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Record retention. 490.810 Section 490.810 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Compliance § 490... documentation pertaining to its waiver application and alternative compliance, including petroleum fuel...

  10. 10 CFR 490.200 - Purpose and scope.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Purpose and scope. 490.200 Section 490.200 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Mandatory State Fleet... duty motor vehicles acquired for State fleets be alternative fueled vehicles. ...

  11. 10 CFR 490.810 - Record retention.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Record retention. 490.810 Section 490.810 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Compliance § 490... documentation pertaining to its waiver application and alternative compliance, including petroleum fuel...

  12. 10 CFR 490.810 - Record retention.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Record retention. 490.810 Section 490.810 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Compliance § 490... documentation pertaining to its waiver application and alternative compliance, including petroleum fuel...

  13. 10 CFR 490.810 - Record retention.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Record retention. 490.810 Section 490.810 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Compliance § 490... documentation pertaining to its waiver application and alternative compliance, including petroleum fuel...

  14. 10 CFR 490.200 - Purpose and scope.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Purpose and scope. 490.200 Section 490.200 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Mandatory State Fleet... duty motor vehicles acquired for State fleets be alternative fueled vehicles. ...

  15. 10 CFR 490.810 - Record retention.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Record retention. 490.810 Section 490.810 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Compliance § 490... documentation pertaining to its waiver application and alternative compliance, including petroleum fuel...

  16. 10 CFR 490.301 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fuel Provider Vehicle..., is controlled by, or is under common ownership or control of a person subject to vehicle acquisition... selling at wholesale or retail electricity. Business Unit means a semi-autonomous major grouping of...

  17. 10 CFR 490.301 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fuel Provider Vehicle..., is controlled by, or is under common ownership or control of a person subject to vehicle acquisition... selling at wholesale or retail electricity. Business Unit means a semi-autonomous major grouping of...

  18. 10 CFR 490.301 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fuel Provider Vehicle..., is controlled by, or is under common ownership or control of a person subject to vehicle acquisition... selling at wholesale or retail electricity. Business Unit means a semi-autonomous major grouping of...

  19. 10 CFR 490.301 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fuel Provider Vehicle..., is controlled by, or is under common ownership or control of a person subject to vehicle acquisition... selling at wholesale or retail electricity. Business Unit means a semi-autonomous major grouping of...

  20. Aircraft fuel conservation technology. Task force report, September 10, 1975

    NASA Technical Reports Server (NTRS)

    1975-01-01

    An advanced technology program is described for reduced fuel consumption in air transport. Cost benefits and estimates are given for improved engine design and components, turboprop propulsion systems, active control systems, laminar flow control, and composite primary structures.

  1. 40 CFR 85.1510 - Maintenance instructions, warranties, emission labeling and fuel economy requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the Energy Tax Act of 1978, 15 U.S.C. 4064. (f) Corporate Average Fuel Economy (CAFE). (1) Certificate holders shall comply with any applicable CAFE requirements of the Energy Policy and Conservation Act, 15 U...

  2. Evaluation of FFTF fuel pin design procedure vis-a-vis steady state irradiation performance in EBR II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, R.J.

    1976-11-01

    The FFTF fuel pin design analysis is shown to be conservative through comparison with pin irradiation experience in EBR-II. This comparison shows that the actual lifetimes of EBR-II fuel pins are either greater than 80,000 MWd/MTM or greater than the calculated allowable lifetimes based on thermal creep strain.

  3. 10 CFR 436.16 - Establishing non-fuel and non-water cost categories.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Establishing non-fuel and non-water cost categories. 436.16 Section 436.16 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION FEDERAL ENERGY MANAGEMENT AND PLANNING PROGRAMS Methodology and Procedures for Life Cycle Cost Analyses § 436.16 Establishing non-fuel and non-water cost categories. (a) The relevant...

  4. Compact Fuel-Cell System Would Consume Neat Methanol

    NASA Technical Reports Server (NTRS)

    Narayanan, Sekharipuram; Kindler, Andrew; Valdez, Thomas

    2007-01-01

    In a proposed direct methanol fuel-cell electric-power-generating system, the fuel cells would consume neat methanol, in contradistinction to the dilute aqueous methanol solutions consumed in prior direct methanol fuel-cell systems. The design concept of the proposed fuel-cell system takes advantage of (1) electro-osmotic drag and diffusion processes to manage the flows of hydrogen and water between the anode and the cathode and (2) evaporative cooling for regulating temperature. The design concept provides for supplying enough water to the anodes to enable the use of neat methanol while ensuring conservation of water for the whole fuel-cell system.

  5. Fluid flow and fuel-air mixing in a motored two-dimensional Wankel rotary engine

    NASA Technical Reports Server (NTRS)

    Shih, T. I.-P.; Nguyen, H. L.; Stegeman, J.

    1986-01-01

    The implicit-factored method of Beam and Warming was employed to obtain numerical solutions to the conservation equations of mass, species, momentum, and energy to study the unsteady, multidimensional flow and mixing of fuel and air inside the combustion chambers of a two-dimensional Wankel rotary engine under motored conditions. The effects of the following engine design and operating parameters on fluid flow and fuel-air mixing during the intake and compression cycles were studied: engine speed, angle of gaseous fuel injection during compression cycle, and speed of the fuel leaving fuel injector.

  6. Fluid flow and fuel-air mixing in a motored two-dimensional Wankel rotary engine

    NASA Astrophysics Data System (ADS)

    Shih, T. I.-P.; Nguyen, H. L.; Stegeman, J.

    1986-06-01

    The implicit-factored method of Beam and Warming was employed to obtain numerical solutions to the conservation equations of mass, species, momentum, and energy to study the unsteady, multidimensional flow and mixing of fuel and air inside the combustion chambers of a two-dimensional Wankel rotary engine under motored conditions. The effects of the following engine design and operating parameters on fluid flow and fuel-air mixing during the intake and compression cycles were studied: engine speed, angle of gaseous fuel injection during compression cycle, and speed of the fuel leaving fuel injector.

  7. Intergenerational equity and conservation

    NASA Technical Reports Server (NTRS)

    Otoole, R. P.; Walton, A. L.

    1980-01-01

    The issue of integenerational equity in the use of natural resources is discussed in the context of coal mining conversion. An attempt to determine if there is a clear-cut benefit to future generations in setting minimum coal extraction efficiency standards in mining is made. It is demonstrated that preserving fossil fuels beyond the economically efficient level is not necessarily beneficial to future generations even in terms of their own preferences. Setting fossil fuel conservation targets for intermediate products (i.e. energy) may increase the quantities of fossil fuels available to future generations and hence lower the costs, but there may be serious disadvantages to future generations as well. The use of relatively inexpensive fossil fuels in this generation may result in more infrastructure development and more knowledge production available to future generations. The value of fossil fuels versus these other endowments in the future depends on many factors which cannot possibly be evaluated at present. Since there is no idea of whether future generations are being helped or harmed, it is recommended that integenerational equity not be used as a factor in setting coal mine extraction efficiency standards, or in establishing requirements.

  8. Future fuels and engines for railroad locomotives. Volume 2: Technical document

    NASA Technical Reports Server (NTRS)

    Liddle, S. G.

    1981-01-01

    The potential for reducing the dependence of railroads on petroleum fuel, particularly Diesel No. 2 was studied. The study takes two approaches: to determine the use of Diesel No. 2 can be reduced through increased efficiency and conservation, and to use fuels other than Diesel No. 2 both in Diesel and other types of engines. Synthetic hydrocarbon fuels, probably derived from oil shale, will be needed if present diesel-electric locomotives continue to be used.

  9. Benefits of solar/fossil hybrid gas turbine systems

    NASA Technical Reports Server (NTRS)

    Bloomfield, H. S.

    1978-01-01

    The potential benefits of solar/fossil hybrid gas turbine power systems were assessed. Both retrofit and new systems were considered from the aspects of; cost of electricity, fuel conservation, operational mode, technology requirements, and fuels flexibility. Hybrid retrofit (repowering) of existing combustion (simple Brayton cycle) turbines can provide near-term fuel savings and solar experience, while new and advanced recuperated or combined cycle systems may be an attractive fuel saving and economically competitive vehicle to transition from today's gas and oil-fired powerplants to other more abundant fuels.

  10. Benefits of solar/fossil hybrid gas turbine systems

    NASA Technical Reports Server (NTRS)

    Bloomfield, H. S.

    1979-01-01

    The potential benefits of solar/fossil hybrid gas turbine power systems were assessed. Both retrofit and new systems were considered from the aspects of cost of electricity, fuel conservation, operational mode, technology requirements, and fuels flexibility. Hybrid retrofit (repowering) of existing combustion (simple Brayton cycle) turbines can provide near-term fuel savings and solar experience, while new and advanced recuperated or combined cycle systems may be an attractive fuel saving and economically competitive vehicle to transition from today's gas and oil-fired powerplants to other more abundant fuels.

  11. Cost/benefit trade-offs for reducing the energy consumption of commercial air transportation (RECAT)

    NASA Technical Reports Server (NTRS)

    Gobetz, F. W.; Leshane, A. A.

    1976-01-01

    The RECAT study evaluated the opportunities for reducing the energy requirements of the U.S. domestic air passenger transport system through improved operational techniques, modified in-service aircraft, derivatives of current production models, or new aircraft using either current or advanced technology. Each of these fuel-conserving alternatives was investigated individually to test its potential for fuel conservation relative to a hypothetical baseline case in which current, in-production aircraft types are assumed to operate, without modification and with current operational techniques, into the future out to the year 2000. Consequently, while the RECAT results lend insight into the directions in which technology can best be pursued for improved air transport fuel economy, no single option studied in the RECAT program is indicative of a realistic future scenario.

  12. 10 CFR 490.310 - Violations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Violations. 490.310 Section 490.310 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fuel Provider Vehicle Acquisition Mandate § 490.310 Violations. Violations of this subpart are subject to investigation and...

  13. 10 CFR 490.302 - Vehicle acquisition mandate schedule.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Vehicle acquisition mandate schedule. 490.302 Section 490.302 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fuel Provider Vehicle Acquisition Mandate § 490.302 Vehicle acquisition mandate schedule. (a...

  14. 10 CFR 490.3 - Excluded vehicles.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Excluded vehicles. 490.3 Section 490.3 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM General Provisions § 490.3... has a fleet or to calculate alternative fueled vehicle acquisition requirements, the following...

  15. 10 CFR 490.3 - Excluded vehicles.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Excluded vehicles. 490.3 Section 490.3 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM General Provisions § 490.3... has a fleet or to calculate alternative fueled vehicle acquisition requirements, the following...

  16. 10 CFR 490.305 - Acquisitions satisfying the mandate.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Acquisitions satisfying the mandate. 490.305 Section 490.305 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fuel Provider Vehicle Acquisition Mandate § 490.305 Acquisitions satisfying the mandate. The...

  17. 10 CFR 490.302 - Vehicle acquisition mandate schedule.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Vehicle acquisition mandate schedule. 490.302 Section 490.302 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fuel Provider Vehicle Acquisition Mandate § 490.302 Vehicle acquisition mandate schedule. (a...

  18. 10 CFR 490.305 - Acquisitions satisfying the mandate.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Acquisitions satisfying the mandate. 490.305 Section 490.305 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fuel Provider Vehicle Acquisition Mandate § 490.305 Acquisitions satisfying the mandate. The...

  19. 10 CFR 490.3 - Excluded vehicles.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Excluded vehicles. 490.3 Section 490.3 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM General Provisions § 490.3... has a fleet or to calculate alternative fueled vehicle acquisition requirements, the following...

  20. 10 CFR 490.305 - Acquisitions satisfying the mandate.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Acquisitions satisfying the mandate. 490.305 Section 490.305 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fuel Provider Vehicle Acquisition Mandate § 490.305 Acquisitions satisfying the mandate. The...

  1. 10 CFR 490.3 - Excluded vehicles.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Excluded vehicles. 490.3 Section 490.3 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM General Provisions § 490.3... has a fleet or to calculate alternative fueled vehicle acquisition requirements, the following...

  2. 10 CFR 490.310 - Violations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Violations. 490.310 Section 490.310 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fuel Provider Vehicle Acquisition Mandate § 490.310 Violations. Violations of this subpart are subject to investigation and...

  3. 10 CFR 490.310 - Violations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Violations. 490.310 Section 490.310 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fuel Provider Vehicle Acquisition Mandate § 490.310 Violations. Violations of this subpart are subject to investigation and...

  4. 10 CFR 490.305 - Acquisitions satisfying the mandate.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Acquisitions satisfying the mandate. 490.305 Section 490.305 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fuel Provider Vehicle Acquisition Mandate § 490.305 Acquisitions satisfying the mandate. The...

  5. 10 CFR 490.310 - Violations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Violations. 490.310 Section 490.310 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fuel Provider Vehicle Acquisition Mandate § 490.310 Violations. Violations of this subpart are subject to investigation and...

  6. 10 CFR 490.310 - Violations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Violations. 490.310 Section 490.310 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fuel Provider Vehicle Acquisition Mandate § 490.310 Violations. Violations of this subpart are subject to investigation and...

  7. 10 CFR 490.302 - Vehicle acquisition mandate schedule.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Vehicle acquisition mandate schedule. 490.302 Section 490.302 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fuel Provider Vehicle Acquisition Mandate § 490.302 Vehicle acquisition mandate schedule. (a...

  8. 10 CFR 490.302 - Vehicle acquisition mandate schedule.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Vehicle acquisition mandate schedule. 490.302 Section 490.302 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fuel Provider Vehicle Acquisition Mandate § 490.302 Vehicle acquisition mandate schedule. (a...

  9. 10 CFR 490.302 - Vehicle acquisition mandate schedule.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Vehicle acquisition mandate schedule. 490.302 Section 490.302 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fuel Provider Vehicle Acquisition Mandate § 490.302 Vehicle acquisition mandate schedule. (a...

  10. 10 CFR 490.3 - Excluded vehicles.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Excluded vehicles. 490.3 Section 490.3 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM General Provisions § 490.3... has a fleet or to calculate alternative fueled vehicle acquisition requirements, the following...

  11. Potential alternative fuel sources for agricultural crops and plant components

    USDA-ARS?s Scientific Manuscript database

    The changing landscape of agricultural production is placing unprecedented demands on farmers as they face increasing global competition and greater natural resource conservation challenges. However, shrinking profit margins due to increasing input costs, particularly of fuel and fertilizer, can res...

  12. A statistical approach to nuclear fuel design and performance

    NASA Astrophysics Data System (ADS)

    Cunning, Travis Andrew

    As CANDU fuel failures can have significant economic and operational consequences on the Canadian nuclear power industry, it is essential that factors impacting fuel performance are adequately understood. Current industrial practice relies on deterministic safety analysis and the highly conservative "limit of operating envelope" approach, where all parameters are assumed to be at their limits simultaneously. This results in a conservative prediction of event consequences with little consideration given to the high quality and precision of current manufacturing processes. This study employs a novel approach to the prediction of CANDU fuel reliability. Probability distributions are fitted to actual fuel manufacturing datasets provided by Cameco Fuel Manufacturing, Inc. They are used to form input for two industry-standard fuel performance codes: ELESTRES for the steady-state case and ELOCA for the transient case---a hypothesized 80% reactor outlet header break loss of coolant accident. Using a Monte Carlo technique for input generation, 105 independent trials are conducted and probability distributions are fitted to key model output quantities. Comparing model output against recognized industrial acceptance criteria, no fuel failures are predicted for either case. Output distributions are well removed from failure limit values, implying that margin exists in current fuel manufacturing and design. To validate the results and attempt to reduce the simulation burden of the methodology, two dimensional reduction methods are assessed. Using just 36 trials, both methods are able to produce output distributions that agree strongly with those obtained via the brute-force Monte Carlo method, often to a relative discrepancy of less than 0.3% when predicting the first statistical moment, and a relative discrepancy of less than 5% when predicting the second statistical moment. In terms of global sensitivity, pellet density proves to have the greatest impact on fuel performance, with an average sensitivity index of 48.93% on key output quantities. Pellet grain size and dish depth are also significant contributors, at 31.53% and 13.46%, respectively. A traditional limit of operating envelope case is also evaluated. This case produces output values that exceed the maximum values observed during the 105 Monte Carlo trials for all output quantities of interest. In many cases the difference between the predictions of the two methods is very prominent, and the highly conservative nature of the deterministic approach is demonstrated. A reliability analysis of CANDU fuel manufacturing parametric data, specifically pertaining to the quantification of fuel performance margins, has not been conducted previously. Key Words: CANDU, nuclear fuel, Cameco, fuel manufacturing, fuel modelling, fuel performance, fuel reliability, ELESTRES, ELOCA, dimensional reduction methods, global sensitivity analysis, deterministic safety analysis, probabilistic safety analysis.

  13. Advisability of Regulating Electric Vehicles for Energy Conservation

    DOT National Transportation Integrated Search

    1976-08-01

    Vehicles that do not consume fuel are examined to determine if they should be included under the provisions of the Motor Vehicle Information and Cost Savings Act, as amended by Title III of the Energy Policy and Conservation Act. The manner if compar...

  14. DESIGN AND COST REDUCTION OF REMEDIATION TECHNOLOGY PILOT TESTING

    EPA Science Inventory

    In order to effectively address the inherent variability of MTBE concentrations at a small fuel contamination site chosen for an in-situ remedial technology test demonstration, curtain walls for metering mixtures of conservative and non-conservative tracers into an aquifer were u...

  15. Alternative Fuels Data Center: Maryland Conserves Fuel With Hybrid Trucks

    Science.gov Websites

    reducing fuel consumption, engine noise, and greenhouse gas emissions with hybrid trucks. For information of a car Electric Vehicles Charge up at State Parks in West Virginia Dec. 9, 2017 Photo of a car Smart Car Shopping Nov. 4, 2017 Photo of a truck Natural Gas Vehicles Make a Difference in Tennessee Oct

  16. Cost/benefit tradeoffs for reducing the energy consumption of the commercial air transportation system. Volume 2: Market and economic analyses

    NASA Technical Reports Server (NTRS)

    Vanabkoude, J. C.

    1976-01-01

    The impact of the most promising fuel conserving options on fuel consumption, passenger demand, operating costs, and airline profits when implemented into the U.S. domestic and international airline fleets is assessed. The potential fuel savings achievable in the U.S. scheduled air transportation system over the forecast period, 1973-1990, are estimated.

  17. 10 CFR 490.502 - Creditable actions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Creditable actions. 490.502 Section 490.502 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fueled Vehicle Credit Program § 490.502 Creditable actions. A fleet or covered person becomes entitled to alternative...

  18. 10 CFR 490.205 - Reporting requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Reporting requirements. 490.205 Section 490.205 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Mandatory State Fleet... of new light duty alternative fueled vehicles that are required to be acquired during the model year...

  19. 10 CFR 490.205 - Reporting requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Reporting requirements. 490.205 Section 490.205 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Mandatory State Fleet... of new light duty alternative fueled vehicles that are required to be acquired during the model year...

  20. 10 CFR 490.801 - Purpose and scope.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Purpose and scope. 490.801 Section 490.801 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Compliance § 490... States and alternative fuel providers to petition for alternative compliance waivers from the alternative...

  1. 10 CFR 490.507 - Credit activity reporting requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Credit activity reporting requirements. 490.507 Section 490.507 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fueled Vehicle Credit Program § 490.507 Credit activity reporting requirements. (a) A covered...

  2. 10 CFR 490.801 - Purpose and scope.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Purpose and scope. 490.801 Section 490.801 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Compliance § 490... States and alternative fuel providers to petition for alternative compliance waivers from the alternative...

  3. 10 CFR 490.205 - Reporting requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Reporting requirements. 490.205 Section 490.205 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Mandatory State Fleet... of new light duty alternative fueled vehicles that are required to be acquired during the model year...

  4. 10 CFR 490.507 - Credit activity reporting requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Credit activity reporting requirements. 490.507 Section 490.507 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fueled Vehicle Credit Program § 490.507 Credit activity reporting requirements. (a) A covered...

  5. 10 CFR 490.205 - Reporting requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Reporting requirements. 490.205 Section 490.205 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Mandatory State Fleet... of new light duty alternative fueled vehicles that are required to be acquired during the model year...

  6. 10 CFR 490.205 - Reporting requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Reporting requirements. 490.205 Section 490.205 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Mandatory State Fleet... of new light duty alternative fueled vehicles that are required to be acquired during the model year...

  7. 10 CFR 490.507 - Credit activity reporting requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Credit activity reporting requirements. 490.507 Section 490.507 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fueled Vehicle Credit Program § 490.507 Credit activity reporting requirements. (a) A covered...

  8. 10 CFR 490.507 - Credit activity reporting requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Credit activity reporting requirements. 490.507 Section 490.507 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fueled Vehicle Credit Program § 490.507 Credit activity reporting requirements. (a) A covered...

  9. 10 CFR 490.502 - Creditable actions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Creditable actions. 490.502 Section 490.502 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fueled Vehicle Credit Program § 490.502 Creditable actions. A fleet or covered person becomes entitled to alternative...

  10. 10 CFR 490.801 - Purpose and scope.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Purpose and scope. 490.801 Section 490.801 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Compliance § 490... States and alternative fuel providers to petition for alternative compliance waivers from the alternative...

  11. 10 CFR 490.502 - Creditable actions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Creditable actions. 490.502 Section 490.502 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fueled Vehicle Credit Program § 490.502 Creditable actions. A fleet or covered person becomes entitled to alternative...

  12. 10 CFR 490.507 - Credit activity reporting requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Credit activity reporting requirements. 490.507 Section 490.507 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fueled Vehicle Credit Program § 490.507 Credit activity reporting requirements. (a) A covered...

  13. 10 CFR 490.801 - Purpose and scope.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Purpose and scope. 490.801 Section 490.801 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Compliance § 490... States and alternative fuel providers to petition for alternative compliance waivers from the alternative...

  14. 10 CFR 490.801 - Purpose and scope.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Purpose and scope. 490.801 Section 490.801 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Compliance § 490... States and alternative fuel providers to petition for alternative compliance waivers from the alternative...

  15. 10 CFR 490.502 - Creditable actions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Creditable actions. 490.502 Section 490.502 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fueled Vehicle Credit Program § 490.502 Creditable actions. A fleet or covered person becomes entitled to alternative...

  16. 10 CFR 490.704 - Procedures and documentation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Procedures and documentation. 490.704 Section 490.704 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Biodiesel Fuel... include written documentation stating the quantity of biodiesel purchased, for the given model year, for...

  17. 10 CFR 490.704 - Procedures and documentation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Procedures and documentation. 490.704 Section 490.704 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Biodiesel Fuel... include written documentation stating the quantity of biodiesel purchased, for the given model year, for...

  18. 10 CFR 490.704 - Procedures and documentation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Procedures and documentation. 490.704 Section 490.704 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Biodiesel Fuel... include written documentation stating the quantity of biodiesel purchased, for the given model year, for...

  19. 10 CFR 490.704 - Procedures and documentation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Procedures and documentation. 490.704 Section 490.704 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Biodiesel Fuel... include written documentation stating the quantity of biodiesel purchased, for the given model year, for...

  20. 10 CFR 490.704 - Procedures and documentation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Procedures and documentation. 490.704 Section 490.704 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Biodiesel Fuel... include written documentation stating the quantity of biodiesel purchased, for the given model year, for...

  1. 10 CFR 490.502 - Creditable actions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Creditable actions. 490.502 Section 490.502 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fueled Vehicle Credit Program § 490.502 Creditable actions. A fleet or covered person becomes entitled to alternative...

  2. General aviation energy-conservation research programs at NASA-Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Willis, E. A.

    1977-01-01

    The major thrust of NASA's nonturbine general aviation engine programs is directed toward (1) reduced specific fuel consumption, (2) improved fuel tolerance; and (3) emission reduction. Current and planned future programs in such areas as lean operation, improved fuel management, advanced cooling techniques and advanced engine concepts, are described. These are expected to lay the technology base, by the mid to latter 1980's, for engines whose total fuel costs are as much as 30% lower than today's conventional engines.

  3. Cost/benefit trade-offs for reducing the energy consumption of commercial air transportation (RECAT)

    NASA Technical Reports Server (NTRS)

    Gobetz, F. W.; Dubin, A. P.

    1976-01-01

    A study has been performed to evaluate the opportunities for reducing the energy requirements of the U.S. domestic air passenger transport system through improved operational techniques, modified in-service aircraft, derivatives of current production models, or new aircraft using either current or advanced technology. Each of the fuel-conserving alternatives has been investigated individually to test its potential for fuel conservation relative to a hypothetical baseline case in which current, in-production aircraft types are assumed to operate, without modification and with current operational techniques, into the future out to the year 2000.

  4. Major Issues Facing the Conservation Movement in the Coming Decade and Beyond.

    ERIC Educational Resources Information Center

    Strong, Maurice

    1984-01-01

    The key issues facing the conservation movement may be grouped into three areas: (1) threats to human health; (2) threats to food and fuel supplies; and (3) long-term threats to the biosphere. Each of these areas is discussed. (JN)

  5. 18 CFR 46.2 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... plant equipment (316, 325, 335 and 346); Water wheels, turbines and generators (333); Fuel holders... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Definitions. 46.2 Section 46.2 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF...

  6. 18 CFR 46.2 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... plant equipment (316, 325, 335 and 346); Water wheels, turbines and generators (333); Fuel holders... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Definitions. 46.2 Section 46.2 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF...

  7. 18 CFR 46.2 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... plant equipment (316, 325, 335 and 346); Water wheels, turbines and generators (333); Fuel holders... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Definitions. 46.2 Section 46.2 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF...

  8. 18 CFR 46.2 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... plant equipment (316, 325, 335 and 346); Water wheels, turbines and generators (333); Fuel holders... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Definitions. 46.2 Section 46.2 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF...

  9. 18 CFR 46.2 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... plant equipment (316, 325, 335 and 346); Water wheels, turbines and generators (333); Fuel holders... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Definitions. 46.2 Section 46.2 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF...

  10. 10 CFR 490.307 - Option for Electric Utilities.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Option for Electric Utilities. 490.307 Section 490.307 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fuel... motor vehicles, the following percentages of new light duty motor vehicles acquired shall be alternative...

  11. 10 CFR 490.202 - Acquisitions satisfying the mandate.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Acquisitions satisfying the mandate. 490.202 Section 490.202 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Mandatory... (regardless of the model year of manufacture), capable of operating on alternative fuels that was not...

  12. 10 CFR 490.1 - Purpose and Scope.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Purpose and Scope. 490.1 Section 490.1 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM General Provisions § 490.1 Purpose and Scope. (a) The provisions of this part implement the alternative fuel transportation program...

  13. 10 CFR 490.1 - Purpose and Scope.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Purpose and Scope. 490.1 Section 490.1 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM General Provisions § 490.1 Purpose and Scope. (a) The provisions of this part implement the alternative fuel transportation program...

  14. 10 CFR 490.1 - Purpose and Scope.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Purpose and Scope. 490.1 Section 490.1 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM General Provisions § 490.1 Purpose and Scope. (a) The provisions of this part implement the alternative fuel transportation program...

  15. 10 CFR 490.1 - Purpose and Scope.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Purpose and Scope. 490.1 Section 490.1 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM General Provisions § 490.1 Purpose and Scope. (a) The provisions of this part implement the alternative fuel transportation program...

  16. 10 CFR 490.202 - Acquisitions satisfying the mandate.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Acquisitions satisfying the mandate. 490.202 Section 490.202 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Mandatory... (regardless of the model year of manufacture), capable of operating on alternative fuels that was not...

  17. 10 CFR 490.202 - Acquisitions satisfying the mandate.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Acquisitions satisfying the mandate. 490.202 Section 490.202 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Mandatory... (regardless of the model year of manufacture), capable of operating on alternative fuels that was not...

  18. 10 CFR 490.1 - Purpose and Scope.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Purpose and Scope. 490.1 Section 490.1 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM General Provisions § 490.1 Purpose and Scope. (a) The provisions of this part implement the alternative fuel transportation program...

  19. 10 CFR 490.307 - Option for Electric Utilities.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Option for Electric Utilities. 490.307 Section 490.307 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fuel... motor vehicles, the following percentages of new light duty motor vehicles acquired shall be alternative...

  20. 10 CFR 490.202 - Acquisitions satisfying the mandate.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Acquisitions satisfying the mandate. 490.202 Section 490.202 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Mandatory... (regardless of the model year of manufacture), capable of operating on alternative fuels that was not...

  1. 10 CFR 490.708 - Violations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Violations. 490.708 Section 490.708 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Biodiesel Fuel Use Credit § 490.708 Violations. Violations of this subpart are subject to investigation and enforcement under subpart G of this...

  2. 10 CFR 490.708 - Violations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Violations. 490.708 Section 490.708 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Biodiesel Fuel Use Credit § 490.708 Violations. Violations of this subpart are subject to investigation and enforcement under subpart G of this...

  3. 10 CFR 490.708 - Violations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Violations. 490.708 Section 490.708 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Biodiesel Fuel Use Credit § 490.708 Violations. Violations of this subpart are subject to investigation and enforcement under subpart G of this...

  4. 10 CFR 490.708 - Violations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Violations. 490.708 Section 490.708 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Biodiesel Fuel Use Credit § 490.708 Violations. Violations of this subpart are subject to investigation and enforcement under subpart G of this...

  5. 10 CFR 490.708 - Violations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Violations. 490.708 Section 490.708 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Biodiesel Fuel Use Credit § 490.708 Violations. Violations of this subpart are subject to investigation and enforcement under subpart G of this...

  6. THE EFFECT OF AUTOMOTIVE FUEL CONSERVATION MEASURES ON AIR POLLUTION

    EPA Science Inventory

    A number of policies have been designed to reduce gasoline consumption by automobiles, including: gasoline rationing; increases in the federal excise tax on gasoline; excise taxes on new cars, in inverse proportion to their fuel economy; and regulations to set minimum levels on a...

  7. 10 CFR 455.63 - Cost-effectiveness testing.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...) The simple payback period of each energy conservation measure (except measures to shift demand, or...), by the estimated annual cost savings accruing from the measure (adjusted for demand charges), as... non-renewable fuels displaced less the annual cost of the renewable fuel, if any, and the annual cost...

  8. 10 CFR 455.63 - Cost-effectiveness testing.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) The simple payback period of each energy conservation measure (except measures to shift demand, or...), by the estimated annual cost savings accruing from the measure (adjusted for demand charges), as... non-renewable fuels displaced less the annual cost of the renewable fuel, if any, and the annual cost...

  9. Fishing-vessel fuel-conservation project. Final report, 25 June 1986-31 December 1987

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1987-01-01

    The Sea Grant Extension Program (SGEP) is the University of California's statewide education link with the commercial-fishing industry. SGEP's seven county-based marine advisors and three statewide specialists use applied research, demonstrations, workshops, publications, mass media, and individual consultations to help the industry put research-based information to work. SGEP has worked with the fishing industry for fifteen years. Two major ongoing long-term problems of the fishing industry have been chronically low-income levels and full- or over-exploitation of fish stocks. These problems were especially severe during the first half of the 1980s. With most fish resources fully utilized, one of the onlymore » means of improving the situation is improved economic efficiency, especially through fuel conservation. Fuel costs represent a large portion of most fishermen's variable costs.« less

  10. Method for calculating the duration of vacuum drying of a metal-concrete container for spent nuclear fuel

    NASA Astrophysics Data System (ADS)

    Karyakin, Yu. E.; Nekhozhin, M. A.; Pletnev, A. A.

    2013-07-01

    A method for calculating the quantity of moisture in a metal-concrete container in the process of its charging with spent nuclear fuel is proposed. A computing method and results obtained by it for conservative estimation of the time of vacuum drying of a container charged with spent nuclear fuel by technologies with quantization and without quantization of the lower fuel element cluster are presented. It has been shown that the absence of quantization in loading spent fuel increases several times the time of vacuum drying of the metal-concrete container.

  11. Ames Energy: A Consumer's Guide to Energy Conservation.

    ERIC Educational Resources Information Center

    Women's Support Network, Inc., Santa Rosa, CA.

    Presented is an annotated bibliography of energy-related materials for the consumer. Materials (which include books, videotape recordings, magazines, pamphlets, and other media) are arranged by subject area. These area include: (1) earth sheltered buildings; (2) fuels; (3) general (including general energy conservation and insulation); (4) heat…

  12. How conservation agriculture can mitigate greenhouse gas emissions and enhance soil carbon storage in croplands

    USDA-ARS?s Scientific Manuscript database

    Conservation agriculture can mitigate greenhouse gas (GHG) emissions from agriculture by enhancing soil carbon sequestration, improving soil quality, N-use efficiency and water use efficiencies, and reducing fuel consumption. Management practices that increase carbon inputs and while reducing carbo...

  13. 18 CFR 281.302 - Applicability.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Applicability. 281.302 Section 281.302 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT... than a diesel engine or turbine designed to use distillate fuels as the only alternative to natural gas...

  14. 18 CFR 281.302 - Applicability.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Applicability. 281.302 Section 281.302 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT... than a diesel engine or turbine designed to use distillate fuels as the only alternative to natural gas...

  15. 18 CFR 281.302 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Applicability. 281.302 Section 281.302 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT... than a diesel engine or turbine designed to use distillate fuels as the only alternative to natural gas...

  16. 18 CFR 281.302 - Applicability.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Applicability. 281.302 Section 281.302 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT... than a diesel engine or turbine designed to use distillate fuels as the only alternative to natural gas...

  17. 18 CFR 281.302 - Applicability.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Applicability. 281.302 Section 281.302 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT... than a diesel engine or turbine designed to use distillate fuels as the only alternative to natural gas...

  18. 10 CFR 490.204 - Process for granting exemptions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Process for granting exemptions. 490.204 Section 490.204 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Mandatory State...) Alternative fuels that meet the normal requirements and practices of the principal business of the State fleet...

  19. 10 CFR 490.309 - Annual reporting requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Annual reporting requirements. 490.309 Section 490.309 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fuel... shall file an annual report under this section, on a form obtainable from DOE, with the Office of Energy...

  20. 10 CFR 490.308 - Process for granting exemptions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Process for granting exemptions. 490.308 Section 490.308 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fuel... exemption to the Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy, EE-33, 1000...

  1. 10 CFR 490.7 - Relationship to other law.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Relationship to other law. 490.7 Section 490.7 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM General Provisions § 490.7... conversion to, light duty alternative fueled motor vehicles in violation of applicable regulations of any...

  2. 10 CFR 490.803 - Waiver requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Waiver requirements. 490.803 Section 490.803 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Compliance § 490... as specified in § 490.804 of this subpart, equal to the amount of alternative fuel used if the...

  3. 10 CFR 490.204 - Process for granting exemptions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Process for granting exemptions. 490.204 Section 490.204 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Mandatory State...) Alternative fuels that meet the normal requirements and practices of the principal business of the State fleet...

  4. 10 CFR 490.308 - Process for granting exemptions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Process for granting exemptions. 490.308 Section 490.308 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fuel... exemption to the Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy, EE-33, 1000...

  5. 10 CFR 490.803 - Waiver requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Waiver requirements. 490.803 Section 490.803 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Compliance § 490... as specified in § 490.804 of this subpart, equal to the amount of alternative fuel used if the...

  6. 10 CFR 490.309 - Annual reporting requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Annual reporting requirements. 490.309 Section 490.309 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fuel... shall file an annual report under this section, on a form obtainable from DOE, with the Office of Energy...

  7. 10 CFR 490.308 - Process for granting exemptions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Process for granting exemptions. 490.308 Section 490.308 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fuel... exemption to the Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy, EE-33, 1000...

  8. 10 CFR 490.7 - Relationship to other law.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Relationship to other law. 490.7 Section 490.7 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM General Provisions § 490.7... conversion to, light duty alternative fueled motor vehicles in violation of applicable regulations of any...

  9. 10 CFR 490.204 - Process for granting exemptions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Process for granting exemptions. 490.204 Section 490.204 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Mandatory State...) Alternative fuels that meet the normal requirements and practices of the principal business of the State fleet...

  10. 10 CFR 490.309 - Annual reporting requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Annual reporting requirements. 490.309 Section 490.309 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fuel... shall file an annual report under this section, on a form obtainable from DOE, with the Office of Energy...

  11. 10 CFR 490.7 - Relationship to other law.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Relationship to other law. 490.7 Section 490.7 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM General Provisions § 490.7... conversion to, light duty alternative fueled motor vehicles in violation of applicable regulations of any...

  12. 10 CFR 490.204 - Process for granting exemptions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Process for granting exemptions. 490.204 Section 490.204 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Mandatory State...) Alternative fuels that meet the normal requirements and practices of the principal business of the State fleet...

  13. 10 CFR 490.7 - Relationship to other law.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Relationship to other law. 490.7 Section 490.7 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM General Provisions § 490.7... conversion to, light duty alternative fueled motor vehicles in violation of applicable regulations of any...

  14. 10 CFR 490.803 - Waiver requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Waiver requirements. 490.803 Section 490.803 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Compliance § 490... as specified in § 490.804 of this subpart, equal to the amount of alternative fuel used if the...

  15. 10 CFR 490.803 - Waiver requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Waiver requirements. 490.803 Section 490.803 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Compliance § 490... as specified in § 490.804 of this subpart, equal to the amount of alternative fuel used if the...

  16. 10 CFR 490.309 - Annual reporting requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Annual reporting requirements. 490.309 Section 490.309 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fuel... shall file an annual report under this section, on a form obtainable from DOE, with the Office of Energy...

  17. 10 CFR 490.803 - Waiver requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Waiver requirements. 490.803 Section 490.803 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Compliance § 490... as specified in § 490.804 of this subpart, equal to the amount of alternative fuel used if the...

  18. 10 CFR 490.308 - Process for granting exemptions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Process for granting exemptions. 490.308 Section 490.308 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fuel... exemption to the Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy, EE-33, 1000...

  19. 10 CFR 490.309 - Annual reporting requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Annual reporting requirements. 490.309 Section 490.309 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fuel... shall file an annual report under this section, on a form obtainable from DOE, with the Office of Energy...

  20. Effects of elevated carbon dioxide concentrations on broiler chicken performance from 28 to 49 days

    USDA-ARS?s Scientific Manuscript database

    Improvements in modern broiler housing have substantially reduced air leakage, making proper operation of ventilation systems critical to maintaining a suitable environment. Fuel prices have increased in recent years, leading to reduced minimum ventilation in order to conserve fuel which increases ...

  1. 18 CFR 281.303 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Definitions. 281.303... Definitions. For purposes of this subpart— (a) Ability to use a particular alternative fuel means that an..., as defined in the standard specification for fuel oils published by the American Society for Testing...

  2. Alternative Fuels Data Center: Federal Legislation Supports and Advances

    Science.gov Websites

    the Act addressed mobile source pollution and set forth limitations intended to reduce emissions. The Energy Policy and Conservation Act of 1975 further regulated mobile sources through the implementation of and alternative fuel infrastructure. For additional information about these and other relevant federal

  3. Spending for Savings: Energy Awareness at Lincoln Land.

    ERIC Educational Resources Information Center

    Croteau, Suzanne

    1980-01-01

    Describes the development and implementation of Lincoln Land Community College's energy awareness program, focusing on: (1) resource management to reduce the consumption of fossil fuels on campus; (2) programs encouraging energy conservation and the production of alcohol fuels; (3) leadership in the field; and (4) planning energy-related…

  4. 77 FR 43723 - Energy Efficiency and Conservation Loan Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-26

    ... communities by investing in energy efficiency, and (5) encouraging the use of renewable energy fuels for both... contracts. Impacts The new Subpart H. for the Energy Efficiency and Conservation Loan Program can have several economic impacts. The benefits include: (1) The value of purchased energy saved; (2) the value of...

  5. This Time, Let's Put Energy Conservation on the Blueprint for New Schools.

    ERIC Educational Resources Information Center

    Hansen, Shirley J.

    1985-01-01

    With a new round of school construction on the horizon, planners must consider such energy conservation measures as placing energy consumption limitations in design specifications, retaining experienced engineers, using staff expertise, considering boilers offering fuel options, seeking outside assistance, resisting use of existing plans, and…

  6. 3 CFR 8988 - Proclamation 8988 of May 31, 2013. Great Outdoors Month, 2013

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... natural surroundings animate the American spirit, fuel discovery and innovation, and offer unparalleled... today's conservation challenges. Alongside leaders in government and the private sector, we are taking... Conservation Service Corps, young men and women will get hands-on experience restoring our public lands and...

  7. Internal combustion engine fuel controls. December 1970-December 1989 (Citations from the US Patent data base). Report for December 1970-December 1989

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-01-01

    This bibliography contains citations of selected patents concerning fuel control devices, and methods used to regulate speed and load in internal combustion engines. Techniques utilized to control air-fuel ratios by sensing pressure, temperature, and exhaust composition, and the employment of electronic and feedback devices are discussed. Methods used for engine protection and optimum fuel conservation are considered. (This updated bibliography contains 327 citations, 160 of which are new entries to the previous edition.)

  8. Reducing energy costs in nursing homes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The handbook presents ideas and techniques for energy conservation in nursing homes. Case studies were developed of nursing homes located in different parts of the US. The typical nursing home assessed was proprietary, of intermediate-care level, medicaid-certified, and had less than 200 beds. Specific energy conservation measures were analyzed to determine the energy and dollar savings that could be realized. These include reducing heat loss through the building shell; reducing hot water costs; recovering the heat generated by dryers; reducing lighting costs; reducing heating and cooling costs, and analyzing fuels and fuel rates. A case for converting electric clothes dryersmore » to gas was analyzed. (MCW)« less

  9. Fission Product Appearance Rate Coefficients in Design Basis Source Term Determinations - Past and Present

    NASA Astrophysics Data System (ADS)

    Perez, Pedro B.; Hamawi, John N.

    2017-09-01

    Nuclear power plant radiation protection design features are based on radionuclide source terms derived from conservative assumptions that envelope expected operating experience. Two parameters that significantly affect the radionuclide concentrations in the source term are failed fuel fraction and effective fission product appearance rate coefficients. Failed fuel fraction may be a regulatory based assumption such as in the U.S. Appearance rate coefficients are not specified in regulatory requirements, but have been referenced to experimental data that is over 50 years old. No doubt the source terms are conservative as demonstrated by operating experience that has included failed fuel, but it may be too conservative leading to over-designed shielding for normal operations as an example. Design basis source term methodologies for normal operations had not advanced until EPRI published in 2015 an updated ANSI/ANS 18.1 source term basis document. Our paper revisits the fission product appearance rate coefficients as applied in the derivation source terms following the original U.S. NRC NUREG-0017 methodology. New coefficients have been calculated based on recent EPRI results which demonstrate the conservatism in nuclear power plant shielding design.

  10. U.S. Energy: Aviation Perspective,

    DTIC Science & Technology

    1983-11-01

    U.S. will continue to meet most of its needs. Taxes and regulations of various kinds are the strongest deterrents to increased U.S. production...34 When these higher prices caused a sharp increase of oil company profits, Congress imposed the "Windfall Profits Tax " on domestic crude oil. "This is...until at least year 2000, can easily increase fuel prices by 100% 17. Key Words 18. Distribution Statement Aviation fuel Fuel conservation This

  11. Comparative thermodynamic performance of some Rankine/Brayton cycle configurations for a low-temperature energy application

    NASA Technical Reports Server (NTRS)

    Lansing, F. L.

    1977-01-01

    Various configurations combining solar-Rankine and fuel-Brayton cycles were analyzed in order to find the arrangement which has the highest thermal efficiency and the smallest fuel share. A numerical example is given to evaluate both the thermodynamic performance and the economic feasibility of each configuration. The solar-assisted regenerative Rankine cycle was found to be leading the candidates from both points of energy utilization and fuel conservation.

  12. Fuel Consumption Modeling of a Transport Category Aircraft Using Flight Operations Quality Assurance Data: A Literature Review

    NASA Technical Reports Server (NTRS)

    Stolzer, Alan J.

    2002-01-01

    Fuel is a major cost expense for air carriers. A typical airline spends 10% of its operating budget on the purchase of jet fuel, which even exceeds its expenditures on aircraft acquisitions. Thus, it is imperative that fuel consumption be managed as wisely as possible. The implementation of Flight Operations Quality Assurance (FOQA) programs at airlines may be able to assist in this management effort. The purpose of the study is to examine the literature regarding fuel consumption by air carriers, the literature related to air carrier fuel conservation efforts, and the literature related to the appropriate statistical methodologies to analyze the FOQA-derived data.

  13. 10 CFR 490.304 - Which new light duty motor vehicles are covered.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Which new light duty motor vehicles are covered. 490.304 Section 490.304 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fuel Provider Vehicle Acquisition Mandate § 490.304 Which new light duty motor vehicles are...

  14. 10 CFR 490.304 - Which new light duty motor vehicles are covered.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Which new light duty motor vehicles are covered. 490.304 Section 490.304 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fuel Provider Vehicle Acquisition Mandate § 490.304 Which new light duty motor vehicles are...

  15. 10 CFR 490.304 - Which new light duty motor vehicles are covered.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Which new light duty motor vehicles are covered. 490.304 Section 490.304 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fuel Provider Vehicle Acquisition Mandate § 490.304 Which new light duty motor vehicles are...

  16. 10 CFR 490.304 - Which new light duty motor vehicles are covered.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Which new light duty motor vehicles are covered. 490.304 Section 490.304 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fuel Provider Vehicle Acquisition Mandate § 490.304 Which new light duty motor vehicles are...

  17. 10 CFR 490.304 - Which new light duty motor vehicles are covered.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Which new light duty motor vehicles are covered. 490.304 Section 490.304 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fuel Provider Vehicle Acquisition Mandate § 490.304 Which new light duty motor vehicles are...

  18. 10 CFR 436.105 - Emergency conservation plan.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... plan, for assuaging the impact of a sudden disruption in the supply of oil-based fuels, natural gas or... emergencies is to address both buildings and general operations. Provisions shall be made for testing... year in gasoline, other oil-based fuels, natural gas, or electricity for periods of up to 12 months. In...

  19. 10 CFR 436.105 - Emergency conservation plan.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... plan, for assuaging the impact of a sudden disruption in the supply of oil-based fuels, natural gas or... emergencies is to address both buildings and general operations. Provisions shall be made for testing... year in gasoline, other oil-based fuels, natural gas, or electricity for periods of up to 12 months. In...

  20. Potential for production of perennial biofuel feedstocks in conservation buffers on the Coastal Plain of Georgia, USA

    USDA-ARS?s Scientific Manuscript database

    With global increases in the production of cellulosic biomass for fuel, or “biofuel”, concerns over potential negative effects of using land for biofuel production have promoted attention to concepts of agricultural landscape design that sustainably balance tradeoffs between food, fuel, fiber and co...

  1. Landscape considerations of perennial biofuel feedstock production in conservation buffers of the Georgia Coastal Plain, USA

    USDA-ARS?s Scientific Manuscript database

    With global increases in the production of cellulosic biomass for fuel, or “biofuel,” concerns over potential negative effects of using land for biofuel production have promoted attention to concepts of agricultural landscape design that sustainably balance tradeoffs between food, fuel, fiber, and c...

  2. . . . While Others Conserve Cash by Converting from Gasoline to Propane.

    ERIC Educational Resources Information Center

    Rasmussen, Scott A.

    1988-01-01

    Since 1983, when the David Douglas Public Schools (Portland, Oregon) converted 30 buses to propane fuel, the district has saved $75,000 in fuel and maintenance costs. Propane is priced consistently lower than gasoline and burns cleaner. Since propane engines do not require a carburetor, there are fewer maintenance problems. (MLH)

  3. 75 FR 17075 - Energy Conservation Program for Consumer Products: Test Procedures for Residential Furnaces and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-05

    ... different in mathematical form, is conceptually the same as the integrated AFUE for fossil fueled furnaces... that gas-fired and oil-fried furnaces and boilers consume both fossil fuel and electricity, while electric furnaces and boilers only consume electricity. The current test procedure accounts for all fossil...

  4. 18 CFR 367.1520 - Account 152, Fuel stock expenses undistributed.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Account 152, Fuel stock... REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE PUBLIC UTILITY HOLDING COMPANY ACT OF 2005... TO THE PROVISIONS OF THE PUBLIC UTILITY HOLDING COMPANY ACT OF 2005, FEDERAL POWER ACT AND NATURAL...

  5. 77 FR 49701 - Energy Conservation Program for Consumer Products and Certain Commercial and Industrial Equipment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-17

    ... Amendment Regarding Full-Fuel-Cycle Analyses AGENCY: Office of Energy Efficiency and Renewable Energy... Energy (DOE) announced its intention to use full-fuel-cycle (FFC) measures of energy use and greenhouse... Cycle Analyses, EERE-2011-BT- NOA-0028, 1000 Independence Avenue SW., Washington, DC 20585- 0121. Phone...

  6. Mobile Source Emissions Regulatory Compliance Data

    EPA Pesticide Factsheets

    The Engine and Vehicle Compliance Certification and Fuel Economy Inventory contains measured emissions and fuel economy compliance information for all types of vehicles (mobile sources of air pollution) excluding snowmobile, marine (diesel), and heavy duty engines whichsummary data is updated on an annual basis. Data is collected by EPA to certify compliance with the applicable fuel economy provisions of the Clean Air Act, Energy Policy and Conservation Act (EPCA) and the Energy Independent Security Act (EISA) of 2007.

  7. Fundamental modeling of pulverized coal and coal-water slurry combustion in a gas turbine combustor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatwani, A.; Turan, A.; Hals, F.

    1988-01-01

    This work describes the essential features of a coal combustion model which is incorporated into a three-dimensional, steady-state, two-phase, turbulent, reactive flow code. The code is a modified and advanced version of INTERN code originally developed at Imperial College which has gone through many stages of development and validation. Swithenbank et al have reported spray combustion model results for an experimental can combustor. The code has since then been modified by and made public under a US Army program. A number of code modifications and improvements have been made at ARL. The earlier version of code was written for amore » small CDC machine which relied on frequent disk/memory transfer and overlay features to carry the computations resulting in loss of computational speed. These limitations have now been removed. For spray applications, the fuel droplet vaporization generates gaseous fuel of uniform composition; hence the earlier formulation relied upon the use of conserved scalar approximation to reduce the number of species equations to be solved. In applications related to coal fuel, coal pyrolysis leads to the formation of at least two different gaseous fuels and a solid fuel of different composition. The authors have therefore removed the conserved scalar formulation for the sake of generality and easy adaptability to complex fuel situations.« less

  8. Modeling a failure criterion for U-Mo/Al dispersion fuel

    NASA Astrophysics Data System (ADS)

    Oh, Jae-Yong; Kim, Yeon Soo; Tahk, Young-Wook; Kim, Hyun-Jung; Kong, Eui-Hyun; Yim, Jeong-Sik

    2016-05-01

    The breakaway swelling in U-Mo/Al dispersion fuel is known to be caused by large pore formation enhanced by interaction layer (IL) growth between fuel particles and Al matrix. In this study, a critical IL thickness was defined as a criterion for the formation of a large pore in U-Mo/Al dispersion fuel. Specifically, the critical IL thickness is given when two neighboring fuel particles come into contact with each other in the developed IL. The model was verified using the irradiation data from the RERTR tests and KOMO-4 test. The model application to full-sized sample irradiations such as IRISs, FUTURE, E-FUTURE, and AFIP-1 tests resulted in conservative predictions. The parametric study revealed that the fuel particle size and the homogeneity of the fuel particle distribution are influential for fuel performance.

  9. Evaluation of advanced lift concepts and fuel conservative short-haul aircraft, volume 1

    NASA Technical Reports Server (NTRS)

    Renshaw, J. H.; Bowden, M. K.; Narucki, C. W.; Bennett, J. A.; Smith, P. R.; Ferrill, R. S.; Randall, C. C.; Tibbetts, J. G.; Patterson, R. W.; Meyer, R. T.

    1974-01-01

    The performance and economics of a twin-engine augmentor wing airplane were evaluated in two phases. Design aspects of the over-the-wing/internally blown flap hybrid, augmentor wing, and mechanical flap aircraft were investigated for 910 m. field length with parametric extension to other field lengths. Fuel savings achievable by application of advanced lift concepts to short-haul aircraft were evaluated and the effect of different field lengths, cruise requirements, and noise levels on fuel consumption and airplane economics at higher fuel prices were determined. Conclusions and recommendations are presented.

  10. Heat Pipes Reduce Engine-Exhaust Emissions

    NASA Technical Reports Server (NTRS)

    Schultz, D. F.

    1986-01-01

    Increased fuel vaporization raises engine efficiency. Heat-pipe technology increased efficiency of heat transfer beyond that obtained by metallic conduction. Resulted in both improved engine operation and reduction in fuel consumption. Raw material conservation through reduced dependence on strategic materials also benefit from this type of heat-pipe technology. Applications result in improved engine performance and cleaner environment.

  11. 75 FR 24873 - Notice of Funding Availability (NOFA) for Repowering Assistance Payments to Eligible Biorefineries

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-06

    ... eligible biorefineries to encourage the use of renewable biomass as a replacement fuel source for fossil... agreements. All of the forms, information, certifications, and agreements required to apply for this program..., Conservation, and Energy Act of 2008 (the 2008 Farm Bill) (Pub. L. 110-246), to replace the use of fossil fuels...

  12. Alternative Fuels Data Center: Rightsizing Your Vehicle Fleet to Conserve

    Science.gov Websites

    reducing fuel use. When rightsizing, fleet managers should evaluate how important each vehicle is to the rentals when needed? Case Study The City of Detroit generated $1 million in revenue working with the Clean should consider soliciting input from drivers when conducting a rightsizing review, as they can be very

  13. Fuel conservative aircraft engine technology

    NASA Technical Reports Server (NTRS)

    Nored, D. L.

    1978-01-01

    Technology developments for more fuel-efficiency subsonic transport aircraft are reported. Three major propulsion projects were considered: (1) engine component improvement - directed at current engines; (2) energy efficient engine - directed at new turbofan engines; and (3) advanced turboprops - directed at technology for advanced turboprop-powered aircraft. Each project is reviewed and some of the technologies and recent accomplishments are described.

  14. Altitude engine test of a turbofan exhaust gas mixer to conserve fuel

    NASA Technical Reports Server (NTRS)

    Cullom, R. R.; Johnsen, R. L.

    1977-01-01

    A comparison of the specific fuel consumption was made with and without an internal mixer installed in a low bypass ratio, confluent flow turbofan engine. Tests were conducted at several Mach numbers and altitudes for core to fan stream total temperature ratios of 2.0 and 2.5 and mixing lengths of L/D = 0.95 and 1.74. For these test conditions, the specific fuel consumption improvement varied from 2.5 to 4.0 percent.

  15. Fuel conservation merits of advanced turboprop transport aircraft

    NASA Technical Reports Server (NTRS)

    Revell, J. D.; Tullis, R. H.

    1977-01-01

    The advantages of a propfan powered aircraft for the commercial air transportation system were assessed by the comparison with an equivalent turbofan transport. Comparisons were accomplished on the basis of fuel utilization and operating costs, as well as aircraft weight and size. Advantages of the propfan aircraft, concerning fuel utilization and operating costs, were accomplished by considering: (1) incorporation of propfan performance and acoustic data; (2) revised mission profiles (longer design range and reduction in; and cruise speed) (3) utilization of alternate and advanced technology engines.

  16. Fuel conservation through active control of rotor clearances

    NASA Technical Reports Server (NTRS)

    Beitler, R. S.; Saunders, A. A.; Wanger, R. P.

    1980-01-01

    Under the NASA-sponsored Energy Efficient Engine (EEE) Project, technology is being developed which will significantly reduce the fuel consumption of turbofan engines for subsonic transport aircraft. One technology concept being pursued is active control of rotor tip clearances. Attention is given to rotor tip clearance considerations and an overview of preliminary study results as well as the General Electric EEE clearance control approach is presented. Finally, potential fuel savings with active control of rotor clearances for a typical EEE mission are predicted.

  17. Potential improvements in turbofan engine fuel economy

    NASA Technical Reports Server (NTRS)

    Hines, R. W.; Gaffin, W. O.

    1976-01-01

    The method developed for initial evaluation of possible performance improvements in the NASA Aircraft Energy Efficiency Program, directed toward improving the fuel economy of turbofan engines, is outlined, and results of the evaluation of 100 candidate engine modifications are presented. The study indicates that fuel consumption improvements of as much as 5% may be possible in current JT3D, JT8D, and JT9D turbofan engines. Aerodynamic, thermodynamic, material, and structural advances are expected to yield fuel consumption improvements on the order of 10 to 15% in advanced turbofan engines, with the greatest improvement stemming from significantly higher cycle pressure ratios. Higher turbine temperature and fan bypass ratios are also expected to contribute to fuel conservation.

  18. 76 FR 51281 - Energy Conservation Program for Consumer Products and Certain Commercial and Industrial Equipment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-18

    ... savings are based on DOE estimates of the energy costs (derived from retail energy prices) paid directly... DEPARTMENT OF ENERGY 10 CFR Part 431 [Docket No. EERE-2010-BT-NOA-0028] RIN 1904-AC24 Energy... for Adopting Full-Fuel-Cycle Analyses Into Energy Conservation Standards Program AGENCY: Office of...

  19. Landscape control of nitrous oxide emissions during the transition from conservation reserve program to perennial grasses for bioenergy

    USDA-ARS?s Scientific Manuscript database

    Future liquid fuel demand from renewable sources may, in part, be met by converting the seasonally wet portions of the landscape currently managed for soil and water conservation to perennial energy crops. However, this shift may increase nitrous oxide (N2O) emissions, thus limiting the carbon benef...

  20. Using occupancy and population models to assess habitat conservation opportunities for an isolated carnivore population

    Treesearch

    Wayne Spencer; Heather Rustigian-Romsos; James Strittholt; Robert Scheller; William Zielinski; Richard Truex

    2011-01-01

    An isolated population of the fisher (Martes pennanti) in the southern Sierra Nevada, California, is threatened by small size and habitat alteration from wildfires, fuels management, and other factors. We assessed the population’s status and conservation options for its habitat using a spatially explicit population model coupled with a...

  1. Living Lightly: Energy Conservation in Housing.

    ERIC Educational Resources Information Center

    Bender, Tom

    This publication contains a series of papers which promote the concepts of energy conservation and offer safe and convenient ways of handling all aspects of our lives affected by energy without having to depend in any way on fossil fuels or nuclear power. These changes, which can be brought about in homes and in energy flows affected by the…

  2. Modeling a failure criterion for U–Mo/Al dispersion fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oh, Jae-Yong; Kim, Yeon Soo; Tahk, Young-Wook

    2016-05-01

    The breakaway swelling in U-Mo/Al dispersion fuel is known to be caused by large pore formation enhanced by interaction layer (IL) growth between fuel particles and Al matrix. In this study, a critical IL thickness was defined as a criterion for the formation of a large pore in U-Mo/Al dispersion fuel. Specifically, the critical IL thickness is given when two neighboring fuel particles come into contact with each other in the developed IL. The model was verified using the irradiation data from the RERTR tests and KOMO- 4 test. The model application to full-sized sample irradiations such as IRISs, FUTURE,more » E-FUTURE, and AFIP-1 tests resulted in conservative predictions. The parametric study revealed that the fuel particle size and the homogeneity of the fuel particle distribution are influential for fuel performance.« less

  3. Impact investigation of reactor fuel operating parameters on reactivity for use in burnup credit applications

    NASA Astrophysics Data System (ADS)

    Sloma, Tanya Noel

    When representing the behavior of commercial spent nuclear fuel (SNF), credit is sought for the reduced reactivity associated with the net depletion of fissile isotopes and the creation of neutron-absorbing isotopes, a process that begins when a commercial nuclear reactor is first operated at power. Burnup credit accounts for the reduced reactivity potential of a fuel assembly and varies with the fuel burnup, cooling time, and the initial enrichment of fissile material in the fuel. With regard to long-term SNF disposal and transportation, tremendous benefits, such as increased capacity, flexibility of design and system operations, and reduced overall costs, provide an incentive to seek burnup credit for criticality safety evaluations. The Nuclear Regulatory Commission issued Interim Staff Guidance 8, Revision 2 in 2002, endorsing burnup credit of actinide composition changes only; credit due to actinides encompasses approximately 30% of exiting pressurized water reactor SNF inventory and could potentially be increased to 90% if fission product credit were accepted. However, one significant issue for utilizing full burnup credit, compensating for actinide and fission product composition changes, is establishing a set of depletion parameters that produce an adequately conservative representation of the fuel's isotopic inventory. Depletion parameters can have a significant effect on the isotopic inventory of the fuel, and thus the residual reactivity. This research seeks to quantify the reactivity impact on a system from dominant depletion parameters (i.e., fuel temperature, moderator density, burnable poison rod, burnable poison rod history, and soluble boron concentration). Bounding depletion parameters were developed by statistical evaluation of a database containing reactor operating histories. The database was generated from summary reports of commercial reactor criticality data. Through depletion calculations, utilizing the SCALE 6 code package, several light water reactor assembly designs and in-core locations are analyzed in establishing a combination of depletion parameters that conservatively represent the fuel's isotopic inventory as an initiative to take credit for fuel burnup in criticality safety evaluations for transportation and storage of SNF.

  4. HYDRA-II: A hydrothermal analysis computer code: Volume 2, User's manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCann, R.A.; Lowery, P.S.; Lessor, D.L.

    1987-09-01

    HYDRA-II is a hydrothermal computer code capable of three-dimensional analysis of coupled conduction, convection, and thermal radiation problems. This code is especially appropriate for simulating the steady-state performance of spent fuel storage systems. The code has been evaluated for this application for the US Department of Energy's Commercial Spent Fuel Management Program. HYDRA-II provides a finite-difference solution in cartesian coordinates to the equations governing the conservation of mass, momentum, and energy. A cylindrical coordinate system may also be used to enclose the cartesian coordinate system. This exterior coordinate system is useful for modeling cylindrical cask bodies. The difference equations formore » conservation of momentum incorporate directional porosities and permeabilities that are available to model solid structures whose dimensions may be smaller than the computational mesh. The equation for conservation of energy permits modeling of orthotropic physical properties and film resistances. Several automated methods are available to model radiation transfer within enclosures and from fuel rod to fuel rod. The documentation of HYDRA-II is presented in three separate volumes. Volume 1 - Equations and Numerics describes the basic differential equations, illustrates how the difference equations are formulated, and gives the solution procedures employed. This volume, Volume 2 - User's Manual, contains code flow charts, discusses the code structure, provides detailed instructions for preparing an input file, and illustrates the operation of the code by means of a sample problem. The final volume, Volume 3 - Verification/Validation Assessments, provides a comparison between the analytical solution and the numerical simulation for problems with a known solution. 6 refs.« less

  5. 77 FR 24539 - Virginia Electric and Power Company; Surry Power Station Units 1 and 2; Independent Spent Fuel...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-24

    ... bounding thermal analysis using ANSYS finite element software to evaluate the misloading events. The ANSYS analysis consists of a half-symmetric, three-dimensional model of a 32PTH DSC with a number of conservative... the maximum fuel cladding temperature presented in the UFSAR analysis dated October 2, 2009, with the...

  6. An analysis of natural ventilation techniques to achieve indoor comfort in Wal-Mart express

    NASA Astrophysics Data System (ADS)

    O'Dea, Shona

    Despite global efforts to reduce world fossil fuel dependency the world still obtains 81% of its energy from fossil fuels (IEA,2009). Modern renewable alternatives have been around since the mid twentieth century these alternatives have not been integrated into electrical grid systems at the exponential rate required to eradicate fossil fuels dependency. The problem, world energy demand, is too large to be satisfied by anything other than the energy-dense fossil fuels used today. We must change our energy intensive processes in order to conserve energy and hence reduce the demands that alternatives must satisfy. This research aims to identify sustainable design opportunities through the application of innovative technologies for the largest retailer in the US with the view that a viable conservative design measure could be applied to the store model, which is replicated across the country, causing a cumulative and hence larger impact on the company energy consumption as a whole. This paper will present the literature available on the 'big box' industry and Wal-Mart, comfort, natural ventilation and building simulation software and then perform an analysis into the viability of naturally ventilating the Wal-Mart Express sales zone using Monodraught natural ventilation windcatcher products

  7. Numerical Simulations of Thermobaric Explosions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuhl, A L; Bell, J B; Beckner, V E

    2007-05-04

    A Model of the energy evolution in thermobaric explosions is presented. It is based on the two-phase formulation: conservation laws for the gas and particle phases along with inter-phase interaction terms. It incorporates a Combustion Model based on the mass conservation laws for fuel, air and products; source/sink terms are treated in the fast-chemistry limit appropriate for such gas dynamic fields. The Model takes into account both the afterburning of the detonation products of the booster with air, and the combustion of the fuel (Al or TNT detonation products) with air. Numerical simulations were performed for 1.5-g thermobaric explosions inmore » five different chambers (volumes ranging from 6.6 to 40 liters and length-to-diameter ratios from 1 to 12.5). Computed pressure waveforms were very similar to measured waveforms in all cases - thereby proving that the Model correctly predicts the energy evolution in such explosions. The computed global fuel consumption {mu}(t) behaved as an exponential life function. Its derivative {dot {mu}}(t) represents the global rate of fuel consumption. It depends on the rate of turbulent mixing which controls the rate of energy release in thermobaric explosions.« less

  8. Reducing greenhouse gas emissions for climate stabilization: framing regional options.

    PubMed

    Olabisi, Laura Schmitt; Reich, Peter B; Johnson, Kris A; Kapuscinski, Anne R; Su, Sangwon H; Wilson, Elizabeth J

    2009-03-15

    The Intergovernmental Panel on Climate Change (IPCC) has stated that stabilizing atmospheric CO2 concentrations will require reduction of global greenhouse gas (GHG) emissions by as much as 80% by 2050. Subnational efforts to cut emissions will inform policy development nationally and globally. We projected GHG mitigation strategies for Minnesota, which has adopted a strategic goal of 80% emissions reduction by 2050. A portfolio of conservation strategies, including electricity conservation, increased vehicle fleet fuel efficiency, and reduced vehicle miles traveled, is likely the most cost-effective option for Minnesota and could reduce emissions by 18% below 2005 levels. An 80% GHG reduction would require complete decarbonization of the electricity and transportation sectors, combined with carbon capture and sequestration at power plants, or deep cuts in other relatively more intransigent GHG-emitting sectors. In order to achieve ambitious GHG reduction goals, policymakers should promote aggressive conservation efforts, which would probably have negative net costs, while phasing in alternative fuels to replace coal and motor gasoline over the long-term.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schipper, L.; Hollander, J.M.; Milukas, M.

    A study was carried out of the flows of commercial energy in the economy of Kenya. Indications were sought of the extent to which energy conservation, (i.e., increase in efficiency of energy use) has reduced the ratio of energy inputs to economic outputs, in the post-1973 years. An assessment was made of the potential for energy conservation to reduce the growth of Kenyan energy use in the future and of significant barriers to increasing energy efficiency. Consideration was given to the role of government policy and of international assistance in fostering energy conservation in Kenya and other developing countries. Themore » study was performed by analyzing available energy data and statistics from the largest oil companies, the Kenyan electric utility, and the government. These sources were supplemented by conducting personal interviews with personnel of nearly 50 commercial firms in Kenya. Direct consumption of fuel accounts for 94% of the commercial energy use in Kenya, while electricity accounts for 6%. The sectoral division of fuel use is: transportation 53%, industry 21%, energy production 11%, agriculture 9%, buildings and residences 5%, and construction 1%. For electricity the division is: buildings and residences 48%, industry 45%, energy production 4%, agriculture 2%, and construction 1%. Recent progress in conservation is reported.« less

  10. Risks to global biodiversity from fossil-fuel production exceed those from biofuel production

    DOE PAGES

    Dale, Virginia H.; Parish, Esther S.; Kline, Keith L.

    2014-12-02

    Potential global biodiversity impacts from near-term gasoline production are compared to biofuel, a renewable liquid transportation fuel expected to substitute for gasoline in the near term (i.e., from now until c. 2030). Petroleum exploration activities are projected to extend across more than 5.8 billion ha of land and ocean worldwide (of which 3.1 billion is on land), much of which is in remote, fragile terrestrial ecosystems or off-shore oil fields that would remain relatively undisturbed if not for interest in fossil fuel production. Future biomass production for biofuels is projected to fall within 2.0 billion ha of land, most ofmore » which is located in areas already impacted by human activities. A comparison of likely fuel-source areas to the geospatial distribution of species reveals that both energy sources overlap with areas with high species richness and large numbers of threatened species. At the global scale, future petroleum production areas intersect more than double the area and higher total number of threatened species than future biofuel production. Energy options should be developed to optimize provisioning of ecosystem services while minimizing negative effects, which requires information about potential impacts on critical resources. Furthermore, energy conservation and identifying and effectively protecting habitats with high-conservation value are critical first steps toward protecting biodiversity under any fuel production scenario.« less

  11. Risks to global biodiversity from fossil-fuel production exceed those from biofuel production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dale, Virginia H.; Parish, Esther S.; Kline, Keith L.

    Potential global biodiversity impacts from near-term gasoline production are compared to biofuel, a renewable liquid transportation fuel expected to substitute for gasoline in the near term (i.e., from now until c. 2030). Petroleum exploration activities are projected to extend across more than 5.8 billion ha of land and ocean worldwide (of which 3.1 billion is on land), much of which is in remote, fragile terrestrial ecosystems or off-shore oil fields that would remain relatively undisturbed if not for interest in fossil fuel production. Future biomass production for biofuels is projected to fall within 2.0 billion ha of land, most ofmore » which is located in areas already impacted by human activities. A comparison of likely fuel-source areas to the geospatial distribution of species reveals that both energy sources overlap with areas with high species richness and large numbers of threatened species. At the global scale, future petroleum production areas intersect more than double the area and higher total number of threatened species than future biofuel production. Energy options should be developed to optimize provisioning of ecosystem services while minimizing negative effects, which requires information about potential impacts on critical resources. Furthermore, energy conservation and identifying and effectively protecting habitats with high-conservation value are critical first steps toward protecting biodiversity under any fuel production scenario.« less

  12. Electric load management and energy conservation

    NASA Technical Reports Server (NTRS)

    Kheir, N. A.

    1976-01-01

    Electric load management and energy conservation relate heavily to the major problems facing power industry at present. The three basic modes of energy conservation are identified as demand reduction, increased efficiency and substitution for scarce fuels. Direct and indirect load management objectives are to reduce peak loads and have future growth in electricity requirements in such a manner to cause more of it to fall off the system's peak. In this paper, an overview of proposed and implemented load management options is presented. Research opportunities exist for the evaluation of socio-economic impacts of energy conservation and load management schemes specially on the electric power industry itself.

  13. Fuel conservation merits of advanced turboprop transport aircraft. Final report, January--August 1977

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Revell, J.D.; Tullis, R.H.

    1977-08-01

    The advantages of a propfan powered aircraft for the commercial air transportation system were assessed by the comparison with an equivalent turbofan transport. Comparisons were accomplished on the basis of fuel utilization and operating costs, as well as aircraft weight and size. Advantages of the propfan aircraft, concerning fuel utilization and operating costs, were accomplished by considering: (1) incorporation of propfan performance and acoustic data; (2) revised mission profiles (longer design range and reduction in; and cruise speed) (3) utilization of alternate and advanced technology engines.

  14. Improving aircraft energy efficiency

    NASA Technical Reports Server (NTRS)

    Povinelli, F. P.; Klineberg, J. M.; Kramer, J. J.

    1976-01-01

    Investigations conducted by a NASA task force concerning the development of aeronautical fuel-conservation technology are considered. The task force estimated the fuel savings potential, prospects for implementation in the civil air-transport fleet, and the impact of the technology on air-transport fuel use. Propulsion advances are related to existing engines in the fleet, to new production of current engine types, and to new engine designs. Studies aimed at the evolutionary improvement of aerodynamic design and a laminar flow control program are discussed and possibilities concerning the use of composite structural materials are examined.

  15. Electrorheology for energy production and conservation

    NASA Astrophysics Data System (ADS)

    Huang, Ke

    Recently, based on the physics of viscosity, we developed a new technology, which utilizes electric or magnetic fields to change the rheology of complex fluids to reduce the viscosity, while keeping the temperature unchanged. The method is universal and applicable to all complex fluids with suspended particles of nano-meter, submicrometer, or micrometer size. Completely different from the traditional viscosity reduction method, raising the temperature, this technology is energy-efficient, as it only requires small amount of energy to aggregate the suspended particles. In this thesis, we will first discuss this new technology in detail, both in theory and practice. Then, we will report applications of our technology to energy science research. Presently, 80% of all energy sources are liquid fuels. The viscosity of liquid fuels plays an important role in energy production and energy conservation. With an electric field, we can reduce the viscosity of asphalt-based crude oil. This is important and useful for heavy crude oil and off-shore crude oil production and transportation. Especially, since there is no practical way to raise the temperature of crude oil inside the deepwater pipelines, our technology may play a key role in future off-shore crude oil production. Electrorehology can also be used to reduce the viscosity of refinery fuels, such as diesel fuel and gasoline. When we apply this technology to fuel injection, the fuel droplets in the fuel atomization become smaller, leading to faster combustion in the engine chambers. As the fuel efficiency of internal combustion engines depends on the combustion speed and timing, the fast combustion produces much higher fuel efficiency. Therefore, adding our technology on existing engines improves the engine efficiency significantly. A theoretical model for the engine combustion, which explains how fast combustion improves the engine efficiency, is also presented in the thesis. As energy is the key to our national security, we believe that our technology is important and will have a strong impact on energy production and conversation in the future.

  16. Status of native fishes in the western United States and issues for fire and fuels management

    Treesearch

    Bruce Rieman; Danny Lee; Dave Burns; Robert Gresswell; Michael Young; Rick Stowell; John Rinne; Philip Howell

    2003-01-01

    Conservation of native fishes and changing patterns in wildfire and fuels are defining challenges for managers of forested landscapes in the western United States. Many species and populations of native fishes have declined in recorded history and some now occur as isolated remnants of what once were larger more complex systems. Land management activities have been...

  17. HYDRA-II: A hydrothermal analysis computer code: Volume 3, Verification/validation assessments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCann, R.A.; Lowery, P.S.

    1987-10-01

    HYDRA-II is a hydrothermal computer code capable of three-dimensional analysis of coupled conduction, convection, and thermal radiation problems. This code is especially appropriate for simulating the steady-state performance of spent fuel storage systems. The code has been evaluated for this application for the US Department of Energy's Commercial Spent Fuel Management Program. HYDRA-II provides a finite difference solution in cartesian coordinates to the equations governing the conservation of mass, momentum, and energy. A cylindrical coordinate system may also be used to enclose the cartesian coordinate system. This exterior coordinate system is useful for modeling cylindrical cask bodies. The difference equationsmore » for conservation of momentum are enhanced by the incorporation of directional porosities and permeabilities that aid in modeling solid structures whose dimensions may be smaller than the computational mesh. The equation for conservation of energy permits modeling of orthotropic physical properties and film resistances. Several automated procedures are available to model radiation transfer within enclosures and from fuel rod to fuel rod. The documentation of HYDRA-II is presented in three separate volumes. Volume I - Equations and Numerics describes the basic differential equations, illustrates how the difference equations are formulated, and gives the solution procedures employed. Volume II - User's Manual contains code flow charts, discusses the code structure, provides detailed instructions for preparing an input file, and illustrates the operation of the code by means of a model problem. This volume, Volume III - Verification/Validation Assessments, provides a comparison between the analytical solution and the numerical simulation for problems with a known solution. This volume also documents comparisons between the results of simulations of single- and multiassembly storage systems and actual experimental data. 11 refs., 55 figs., 13 tabs.« less

  18. Fuel conservation possibilities for terminal area compatible aircraft

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Design features and operational procedures are identified, which would reduce fuel consumption of future transport aircraft. The fuel-saving potential can be realized during the last decade of this century only if the necessary research and technology programs are implemented in the areas of composite primary structure, airfoil/wing design, and stability augmentation systems. The necessary individual R and T programs are defined. The sensitivity to fuel usage of several design parameters (wing geometry, cruise speed, propulsion) is investigated, and the results applied to a candidate 18, 140-kg (40,000-lb) payload, 5556-km (3000-nmi) transport design. Technical and economic comparisons are made with current commercial aircraft and other advanced designs.

  19. Our national energy future - The role of remote sensing

    NASA Technical Reports Server (NTRS)

    Schmitt, H. H.

    1975-01-01

    An overview of problems and opportunities in remote sensing of resources. The need for independence from foreign and precarious energy sources, availability of fossil fuel materials for other purposes (petrochemicals, fertilizer), environmental conservation, and new energy sources are singled out as the main topics. Phases of response include: (1) crisis, with reduced use of petroleum and tapping of on-shore and off-shore resources combined; (2) a transition phase involving a shift from petroleum to coal and oil shale; and (3) exploitation of renewable (inexhaustible and clean) energy. Opportunities for remote sensing in fuel production and energy conservation are discussed along with problems in identifying the spectral signatures of productive and unproductive regions. Mapping of water resources, waste heat, byproducts, and wastes is considered in addition to opportunities for international collaboration.

  20. Initial verification and validation of RAZORBACK - A research reactor transient analysis code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Talley, Darren G.

    2015-09-01

    This report describes the work and results of the initial verification and validation (V&V) of the beta release of the Razorback code. Razorback is a computer code designed to simulate the operation of a research reactor (such as the Annular Core Research Reactor (ACRR)) by a coupled numerical solution of the point reactor kinetics equations, the energy conservation equation for fuel element heat transfer, and the mass, momentum, and energy conservation equations for the water cooling of the fuel elements. This initial V&V effort was intended to confirm that the code work to-date shows good agreement between simulation and actualmore » ACRR operations, indicating that the subsequent V&V effort for the official release of the code will be successful.« less

  1. Future Fuel Scenarios and Their Potential Impact to Aviation

    NASA Technical Reports Server (NTRS)

    Hendricks, Robert C.; Lowery, Nathan; Daggett, David L.; Anast, Peter

    2007-01-01

    In recent years fuel prices have been growing at a rapid pace. Current conservative projections predict that this is only a function of the natural volatility of oil prices, similar to the oil price spikes experienced in the 1970s. However, there is growing concern among analysts that the current price increases may not only be permanent, but that prices may continue to increase into the future before settling down at a much higher level than today. At high enough fuel prices, the aircraft industry would become very sensitive to fuel price. In this paper, the likelihood of fuel price increase is considered in three different price increase scenarios: "low," "medium," and "high." The impact of these scenarios on the aviation industry and alternatives are also addressed.

  2. Alternative Fuels. Hearing before the Subcommittee on Energy and Power of the Committee on Energy and Commerce, House of Representatives, One Hundred Third Congress, First Session, October 7, 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-01-01

    The 1990 Clean Air Act Amendments, in requiring the States to reduce air pollution, resulted in new regulations on gasoline composition, on automobile emissions and mandates on the use of alternative fuels. The 1992 Energy Policy Act includes provisions aiming to reduce energy dependence by increasing the use of alternative, non-oil fuels in certain vehicle fleets. This hearing focus on where development of alternative fuels stands today. Testimony is presented by the following: T. Jorling, NY State Dept. of Environmental Conservation; R.L. Klimisch, American Automobile Manufactures ASS., D. Smith, Chevron USA Products Co., and P. Wuebben, clean fuels officer, Southmore » Coast Air quality Management District.« less

  3. Future Fuel Scenarios and Their Potential Impact to Aviation

    NASA Technical Reports Server (NTRS)

    Hendricks, Robert C.; Daggett, David L.; Anast, Peter; Lowery, Nathan

    2011-01-01

    In recent years fuel prices have been growing at a rapid pace. Current conservative projections predict that this is only a function of the natural volatility of oil prices, similar to the oil price spikes experienced in the 1970s. However, there is growing concern among analysts that the current price increases may not only be permanent, but that prices may continue to increase into the future before settling down at a much higher level than today. At high enough fuel prices, the aircraft industry would become very sensitive to fuel price. In this paper, the likelihood of fuel price increase is considered in three different price increase scenarios: "low," "medium," and "high." The impact of these scenarios on the aviation industry and alternatives are also addressed.

  4. 77 FR 64051 - 2017 and Later Model Year Light-Duty Vehicle Greenhouse Gas Emissions and Corporate Average Fuel...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-18

    ...This document contains corrections to the final rule regulation which was published in the Federal Register of Monday, October 15, 2012 (77 FR 62624). The final rule established fuel economy standards for light-duty vehicles under the Energy Policy and Conservation Act (EPCA), as amended by the Energy Independence and Security Act (EISA), 49 U.S.C. 32901 et seq.

  5. Logistics and operations implications of manual control of spacecraft docking maneuvers

    NASA Technical Reports Server (NTRS)

    Brody, Adam R.; Ellis, Stephen R.

    1991-01-01

    The implications of logistics and operations on the manual control of spacecraft docking are discussed. The results of simulation studies to investigate fuel and time cost tradeoffs are reviewed and discussed. Comparisons of acceleration control and pulse control are presented to evaluate the effects of astronauts being instructed to use pulse mode for fuel conservation. The applications of the findings to moon and Mars missions are addressed.

  6. Fuel Efficiency Assessment with DEA

    DTIC Science & Technology

    2010-03-01

    weighted with regard to their relative importance. The weights are subjectively de - fined by subject experts, which makes the FEI vulnerable to...Energy Information Administration, Imports, Exports and Movements. The US government consumes only a small amount of fuel/energy of the US de - mand...it takes every measure to conserve energy and this is stated in their mission statement. Gen. Arthur J. Lichte stated AMC’s new five focus areas as

  7. Application of automobile emission control technology to light piston aircraft engines

    NASA Technical Reports Server (NTRS)

    Tripp, D.; Kittredge, G.

    1976-01-01

    The possibility was evaluated for achieving the EPA Standards for HC and CO emissions through the use of air-fuel ratio enleanment at selected power modes combined with improved air-fuel mixture preparation, and in some cases improved cooling. Air injection was also an effective approach for the reduction of HC and CO, particularly when combined with exhaust heat conservation techniques such as exhaust port liners.

  8. 40 CFR Appendix E to Part 75 - Optional NOX Emissions Estimation Protocol for Gas-Fired Peaking Units and Oil-Fired Peaking Units

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the boiler at a normal or conservatively high excess oxygen level in conjunction with these tests....2Substitute 1.25 times the highest NOX emission rate from the baseline correlation tests for the fuel (or fuel... potential NOX emission rate (MER) (as defined in § 72.2 of this chapter) for each unit operating hour...

  9. 40 CFR Appendix E to Part 75 - Optional NOX Emissions Estimation Protocol for Gas-Fired Peaking Units and Oil-Fired Peaking Units

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... the boiler at a normal or conservatively high excess oxygen level in conjunction with these tests....2Substitute 1.25 times the highest NOX emission rate from the baseline correlation tests for the fuel (or fuel... potential NOX emission rate (MER) (as defined in § 72.2 of this chapter) for each unit operating hour...

  10. Report of Ad Hoc Committee on Energy Efficiency in Transportation to the Interdepartmental Fuel and Energy Committee of the State of New York. Interim Report.

    ERIC Educational Resources Information Center

    New York State Interdepartmental Fuel and Energy Committee, Albany.

    After presenting the background of the availability of fuel for transportation and the increasing per capita energy consumption, the report examines the State's role in energy conservation. Five proposals are outlined: (1) a coordinated education program designed to increase public awareness of the current energy situation; (2) a pilot program of…

  11. Study of cost/benefit tradeoffs for reducing the energy consumption of the commercial air transportation system

    NASA Technical Reports Server (NTRS)

    Coykendall, R. E.; Curry, J. K.; Domke, A. E.; Madsen, S. E.

    1976-01-01

    Economic studies were conducted for three general fuel conserving options: (1) improving fuel consumption characteristics of existing aircraft via retrofit modifications; (2) introducing fuel efficient derivations of existing production aircraft and/or introducing fuel efficient, current state-of-the-art new aircraft; and (3) introducing an advanced state-of-the-art turboprop airplane. These studies were designed to produce an optimum airline fleet mix for the years 1980, 1985 and 1990. The fleet selected accommodated a normal growth market by introducing somewhat larger aircraft while solving for maximum departure frequencies and a minimum load factor corresponding to a 15% investment hurdle rate. Fuel burnt per available-seat-mile flown would drop 22% from 1980 to 1990 due to the use of more fuel efficient aircraft designs, larger average aircraft size, and increased seating density. An inflight survey was taken to determine air traveler attitudes towards a new generation of advanced turboprops.

  12. Landscape control of nitrous oxide emissions during the transition from conservation reserve program to perennial grasses for bioenergy

    Treesearch

    Debasish Saha; Benjamin M. Rau; Jason P. Kaye; Felipe Montes; Paul R. Adler; Armen R. Kemanian

    2016-01-01

    Future liquid fuel demand from renewable sources may, in part, be met by converting the seasonally wet portions of the landscape currently managed for soil and water conservation to perennial energy crops. However, this shift may increase nitrous oxide (N2O) emissions, thus limiting the carbon (C) benefits of energy crops. Particularly high emissions may occur during...

  13. CAFE Standards (released in AEO2010)

    EIA Publications

    2010-01-01

    Pursuant to the Presidents announcement of a National Fuel Efficiency Policy, the National Highway Traffic Safety Administration (NHTSA) and the EPA have promulgated nationally coordinated standards for tailpipe Carbon Dioxide (CO2)-equivalent emissions and fuel economy for light-duty vehicles (LDVs), which includes both passenger cars and light-duty trucks. In the joint rulemaking, the Environmental Protection Agency is enacting CO2-equivalent emissions standards under the Clean Air Act (CAA), and NHTSA is enacting companion Corporate Average Fuel Economy standards under the Energy Policy and Conservation Act, as amended by the Energy Independence and Security Act of 2007.

  14. Evaluation of advanced lift concepts and potential fuel conservation for short-haul aircraft

    NASA Technical Reports Server (NTRS)

    Sweet, H. S.; Renshaw, J. H.; Bowden, M. K.

    1975-01-01

    The effect of different field lengths, cruise requirements, noise level, and engine cycle characteristics on minimizing fuel consumption and minimizing operating cost at high fuel prices were evaluated for some advanced short-haul aircraft. The conceptual aircraft were designed for 148 passengers using the upper surface-internally blown jet flap, the augmentor wing, and the mechanical flap lift systems. Advanced conceptual STOL engines were evaluated as well as a near-term turbofan and turboprop engine. Emphasis was given to designs meeting noise levels equivalent to 95-100 EPNdB at 152 m (500 ft) sideline.

  15. Comparing volume of fluid and level set methods for evaporating liquid-gas flows

    NASA Astrophysics Data System (ADS)

    Palmore, John; Desjardins, Olivier

    2016-11-01

    This presentation demonstrates three numerical strategies for simulating liquid-gas flows undergoing evaporation. The practical aim of this work is to choose a framework capable of simulating the combustion of liquid fuels in an internal combustion engine. Each framework is analyzed with respect to its accuracy and computational cost. All simulations are performed using a conservative, finite volume code for simulating reacting, multiphase flows under the low-Mach assumption. The strategies used in this study correspond to different methods for tracking the liquid-gas interface and handling the transport of the discontinuous momentum and vapor mass fractions fields. The first two strategies are based on conservative, geometric volume of fluid schemes using directionally split and un-split advection, respectively. The third strategy is the accurate conservative level set method. For all strategies, special attention is given to ensuring the consistency between the fluxes of mass, momentum, and vapor fractions. The study performs three-dimensional simulations of an isolated droplet of a single component fuel evaporating into air. Evaporation rates and vapor mass fractions are compared to analytical results.

  16. Residential energy efficiency: Progress since 1973 and future potential

    NASA Astrophysics Data System (ADS)

    Rosenfeld, Arthur H.

    1985-11-01

    Today's 85 million U.S. homes use 100 billion of fuel and electricity (1150/home). If their energy intensity (resource energy/ft2) were still frozen at 1973 levels, they would use 18% more. With well-insulated houses, need for space heat is vanishing. Superinsulated Saskatchewan homes spend annually only 270 for space heat, 150 for water heat, and 400 for appliances, yet they cost only 2000±1000 more than conventional new homes. The concept of Cost of Conserved Energy (CCE) is used to rank conservation technologies for existing and new homes and appliances, and to develop supply curves of conserved energy and a least cost scenario. Calculations are calibrated with the BECA and other data bases. By limiting investments in efficiency to those whose CCE is less than current fuel and electricity prices, the potential residential plus commercial energy use in 2000 AD drops to half of that estimated by DOE, and the number of power plants needed drops by 200. For the whole buildings sector, potential savings by 2000 are 8 Mbod (worth 50B/year), at an average CCE of 10/barrel.

  17. Buildings and community systems technology transfer support: Task 8, No. 1088

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Information on items prepared for delivery by the contractor for the Industrial Energy Conservation Program are presented in this document. The information in the following brochures: Integrated Community Energy Systems (ICES); Energy Savings Through Automatic Thermostat Controls; Energy-Conserving Systems in Restaurants; Waste Heat Recovery: More Power from Fuels; and Fuel Cells: A New Kind of Power Plant is included. The Energy Efficiency Logo and 2 photographs are presented. A memo concerning ERDA energy data collection, dated November 4, 1976 and a letter about Goldmark Communications, Inc., dated August 16, 1976 are included. The Energy Efficiency Research pamphlet (EER) is reprinted.more » The following are also included: Working draft - Technology Transfer Section of Buildings Conservation Pad; Environmental Concerns/Industrial Growth - Speech to Industrial Council Workshop, Urban Land Institute, 1976 Fall Meeting, October 5, 1976; discussion on Liquid Nitrogen Freezing for Process Foods; and paper on Buildings and Community Systems Program Strategy. Information on high temperature recuperator systems; microwave/vacuum grain drying; Annual Cycle Energy Systems (ACES); Sambo's; Energy Outreach Program; and thermally activated heat pumps is also included. (MCW)« less

  18. Bus Propulsion Alternatives Overview

    DOT National Transportation Integrated Search

    1982-04-01

    The Urban Mass Transportation Administration (UMTA) is currently investigating propulsion alternatives which would conserve petroleum-based fuels and would be practical for use by U.S. transit operators. A discussion of these alternatives (electric p...

  19. Diffusion Of Mass In Evaporating Multicomponent Drops

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Harstad, Kenneth G.

    1992-01-01

    Report summarizes study of diffusion of mass and related phenomena occurring in evaporation of dense and dilute clusters of drops of multicomponent liquids intended to represent fuels as oil, kerosene, and gasoline. Cluster represented by simplified mathematical model, including global conservation equations for entire cluster and conditions on boundary between cluster and ambient gas. Differential equations of model integrated numerically. One of series of reports by same authors discussing evaporation and combustion of sprayed liquid fuels.

  20. Environmental Assessment for the AFIT Master Plan, Wright-Patterson Air Force Base, Ohio, 88th Air Base Wing

    DTIC Science & Technology

    2011-05-20

    management. Wastes generated at WPAFB include waste flammable solvents, contaminated fuels and lubricants, paint /coating, stripping chemicals, waste...Comprehensive Environmental Response, Compensation, and Liability Act CFR Code of Federal Regulations CO carbon monoxide CWA Clean Water Act CY calendar...Restoration Program IT International Technology Corporation JP-8 Jet Fuel-8 LBP lead-based paint g/m3 micrograms per cubic meter MCD Miami Conservancy

  1. Range Ecosystems

    USDA-ARS?s Scientific Manuscript database

    After 200 years, livestock grazing remains California’s most extensive land use. Contemporary rangelands are managed for multiple outcomes, including livestock production, biodiversity conservation, fuels management, and soil, water, and air quality protection. The requirements of grazing management...

  2. 14 CFR 152.601 - Purpose.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... section 403 of the Powerplant and Industrial Fuel Use Act of 1978 (92 Stat. 3318; Pub. L. 95-620) in order to encourage conservation of petroleum and natural gas by recipients of Federal financial assistance. ...

  3. Net energy analysis: Powerful tool for selecting electric power options

    NASA Astrophysics Data System (ADS)

    Baron, S.

    A number of net energy analysis studies have been conducted in recent years for electric power production from coal, oil and uranium fuels; synthetic fuels from coal and oil shale; and heat and electric power from solar energy. This technique is an excellent indicator of investment costs, environmental impact and potential economic competitiveness of alternative electric power systems for energy planners from the Eastern European countries considering future options. Energy conservation is also important to energy planners and the net energy analysis technique is an excellent accounting system on the extent of energy resource conservation. The author proposes to discuss the technique and to present the results of his studies and others in the field. The information supplied to the attendees will serve as a powerful tool to the energy planners considering their electric power options in the future.

  4. Test results of flight guidance for fuel conservative descents in a time-based metered air traffic environment. [terminal configured vehicle

    NASA Technical Reports Server (NTRS)

    Knox, C. E.; Person, L. H., Jr.

    1981-01-01

    The NASA developed, implemented, and flight tested a flight management algorithm designed to improve the accuracy of delivering an airplane in a fuel-conservative manner to a metering fix at a time designated by air traffic control. This algorithm provides a 3D path with time control (4D) for the TCV B-737 airplane to make an idle-thrust, clean configured (landing gear up, flaps zero, and speed brakes retracted) descent to arrive at the metering fix at a predetermined time, altitude, and airspeed. The descent path is calculated for a constant Mach/airspeed schedule from linear approximations of airplane performance with considerations given for gross weight, wind, and nonstandard pressure and temperature effects. The flight management descent algorithms are described and flight test results are presented.

  5. Proposed energy conservation contingency plan: emergency restrictions on illuminated advertising and certain gas lighting. Economic impact analysis. Environmental impact assessment. Contingency plan No. 5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    In the event of a severe energy supply disruption or in order to fulfill obligations of the U.S. under the International Energy Program, the President may implement one or more energy conservation contingency plans provided for in the Energy Policy and Conservation Act (EPCA) of 1975. This report describes the economic impact of restrictions on the use of illuminated advertising and certain gas lighting. The proposed plan would reduce demand for electricity and natural gas. The reduced demand for electricity would result in reduced demand for oil, natural gas, and other fuels used to generate electricity. Since oil and naturalmore » gas would be in short supply, the reduced use of these fuels in the generation of electricity could make supplies available to other industries. By contrast, the coal supply would not be affected by these conditions. However, the substitutability of coal for fuels in short supply (especially oil for electric generation) would tend to offset the impact of reduced demand for coal to generate electricity. Advertising expenditures would shift. Expenditures for illuminated outdoor signs would fall and expenditures for advertising in other media (e.g., radio, newspapers) would rise. No significant effect upon aggregate retail sales is anticipated. In summary, microeconomic effects of the measure are negligible and all effects are minor and/or beneficial. These effects are almost lost in the projected economic effects that would result from any severe supply interruption.« less

  6. Forest conservation in Nepal: encouraging women's participation.

    PubMed

    Molnar, A

    1987-01-01

    The deforestation in Nepal is upsetting the delicate ecological balance and effecting the lives of many of the people, especially the hill women, who use these resources in their household. The deforestation increases erosion, causing landslides, and raises the silt in rivers, changing their course and flooding the southern plains. The majority of Nepal's population is rural and they depend on agriculture for their livelihood. It is estimated that 95% of the wood taken in deforestation is used for fuel primarily used in cooking. The farmers developed a complicated system of land preparation and terracing, but this has not stopped erosion on the steeper slopes. Since women are the ones who get the wood for fuel and other products they must become an integral part of any conservation plan. With the Nationalization Act of 1957, the forest land became the property of the government and therefore managed under the Ministry of Forests through the department officers. Later legislation involved the communities in replanting and longterm care and transfer of tracts for protection and management. In addition nurseries were created for seedlings and the improved wood burning stoves were distributed. Women were not initially involved in these programs because of their traditional role, but through training programs involving local communities, the importance of women in forestry conservation was recognized. Women were first employed in nursery labor and then as supervisors and now more are involved in project activities and forestry staff. They have been most helpful in training others in using the new fuel-efficient stoves.

  7. Patterns of rural household energy use: a study in the White Nile province - the Sudan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdu, A.S.E.

    1985-01-01

    The study investigates rural household domestic energy consumption patterns in a semiarid area of the Sudan. It describes the socioeconomic and evironmental context of energy use, provides an estimation of local woody biomass production and evaluates ecological impacts of increased energy demand on the local resource base. It is based on findings derived from field surveys, a systematic questionnaire and participant observations. Findings indicate that households procure traditional fuels by self-collection and purchases. Household members spent on average 20% of their working time gathering fuels. Generally per caput and total annual expenditure and consumption of domestic fuels are determined bymore » household size, physical availability, storage, prices, income, conservation, substitution and competition among fuel resource uses. Households spend on average 16% of their annual income on traditional fuels. Aggregation of fuels on heat equivalent basis and calculation of their contribution shows that on average firewood provides 63%, charcoal 20.7%, dung 10.4%, crop residues 3.4% and kerosene/diesel 2.5% of the total demand for domestic purposes. Estimated total household woodfuel demand exceeds woody biomass available from the local forests. This demand is presently satisfied by a net depletion of the local forests and purchases from other areas. Degradation of the resource base is further exacerbated by development of irrigation along the White Nile River, increasing livestock numbers (overgrazing) and forest clearance for rainfed cultivation. The most promising relevant and appropriate strategies to alleviate rural household domestic energy problems include: conservation of the existing forest, augmentation through village woodlots and community forestry programmes and improvements in end-use (stoves) and conversion (wood to charcoal) technologies.« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holzemer, Michael J.; Hart, Edward

    Hazardous Waste Management Act/Resource Conservation and Recovery Act Storage and Treatment Permit Reapplication for the Idaho National Laboratory Materials and Fuels Complex Hazardous Waste Management Act/Resource Conservation and Recovery Act Partial Permit, PER-116. This Permit Reapplication is required by the PER-116 Permit Conditions I.G. and I.H., and must be submitted to the Idaho Department of Environmental Quality in accordance with IDAPA 58.01.05.012 [40 CFR §§ 270.10 and 270.13 through 270.29].

  9. ECAS Phase I fuel cell results. [Energy Conservation Alternatives Study

    NASA Technical Reports Server (NTRS)

    Warshay, M.

    1978-01-01

    This paper summarizes and discusses the fuel cell system results of Phase I of the Energy Conversion Alternatives Study (ECAS). Ten advanced electric powerplant systems for central-station baseload generation using coal were studied by NASA in ECAS. Three types of low-temperature fuel cells (solid polymer electrolyte, SPE, aqueous alkaline, and phosphoric acid) and two types of high-temperature fuel cells (molten carbonate, MC, and zirconia solid electrolyte, SE) were studied. The results indicate that (1) overall efficiency increases with fuel cell temperature, and (2) scale-up in powerplant size can produce a significant reduction in cost of electricity (COE) only when it is accompanied by utilization of waste fuel cell heat through a steam bottoming cycle and/or integration with a gasifier. For low-temperature fuel cell systems, the use of hydrogen results in the highest efficiency and lowest COE. In spite of higher efficiencies, because of higher fuel cell replacement costs integrated SE systems have higher projected COEs than do integrated MC systems. Present data indicate that life can be projected to over 30,000 hr for MC fuel cells, but data are not yet sufficient for similarly projecting SE fuel cell life expectancy.

  10. Energy Conservation--A Big Payoff.

    ERIC Educational Resources Information Center

    Weinerman, Robert A.

    1979-01-01

    The author explains how, by investing $250,000 in a five-year program of insulation and heating system improvement, Loomis Chaffee School has reduced its yearly fuel consumption from 16,000 to 9,000 barrels of oil. (SJL)

  11. 10 CFR 474.4 - Test procedures.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... ENERGY ENERGY CONSERVATION ELECTRIC AND HYBRID VEHICLE RESEARCH, DEVELOPMENT, AND DEMONSTRATION PROGRAM; PETROLEUM-EQUIVALENT FUEL ECONOMY CALCULATION § 474.4 Test procedures. (a) The electric vehicle energy... required for testing the energy consumption of electric vehicles. ...

  12. 10 CFR 474.4 - Test procedures.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... ENERGY ENERGY CONSERVATION ELECTRIC AND HYBRID VEHICLE RESEARCH, DEVELOPMENT, AND DEMONSTRATION PROGRAM; PETROLEUM-EQUIVALENT FUEL ECONOMY CALCULATION § 474.4 Test procedures. (a) The electric vehicle energy... required for testing the energy consumption of electric vehicles. ...

  13. 10 CFR 474.4 - Test procedures.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... ENERGY ENERGY CONSERVATION ELECTRIC AND HYBRID VEHICLE RESEARCH, DEVELOPMENT, AND DEMONSTRATION PROGRAM; PETROLEUM-EQUIVALENT FUEL ECONOMY CALCULATION § 474.4 Test procedures. (a) The electric vehicle energy... required for testing the energy consumption of electric vehicles. ...

  14. 10 CFR 474.4 - Test procedures.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... ENERGY ENERGY CONSERVATION ELECTRIC AND HYBRID VEHICLE RESEARCH, DEVELOPMENT, AND DEMONSTRATION PROGRAM; PETROLEUM-EQUIVALENT FUEL ECONOMY CALCULATION § 474.4 Test procedures. (a) The electric vehicle energy... required for testing the energy consumption of electric vehicles. ...

  15. The Japanese utilities` expectations for subchannel analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toba, Akio; Omoto, Akira

    1995-12-01

    Boiling water reactor (BWR) utilities in Japan began to consider the development of a mechanistic model to describe the critical heat transfer conditions in the BWR fuel subchannel. Such a mechanistic model will not only decrease the necessity of tests, but will also help by removing some overly conservative safety margins in thermal hydraulics. With the use of a postdryout heat transfer correlation, new acceptance criteria may be applicable to evaluate the fuel integrity. Mechanistic subchannel analysis models will certainly back up this approach. This model will also be applicable to the analysis of large-size fuel bundles and examination ofmore » corrosion behavior.« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mannstrom, B.

    In the fifties, the price of electrical energy and fuels was already very high in Finland and Sweden - this was an early incentive for the Scandinavian pulp and paper industry to minimize their process costs. Three companies are taken as examples to illustrate the combustion of fuels such as spent cooking liquors, wood wastes and peat for process heat and the processing of whole-tree thinnings. Further discussion follows on energy conservation in the pulping and papermaking processes and the application of energy management systems.

  17. Application of wildfire simulation models for risk analysis

    NASA Astrophysics Data System (ADS)

    Ager, A.; Finney, M.

    2009-04-01

    Wildfire simulation models are being widely used by fire and fuels specialists in the U.S. to support tactical and strategic decisions related to the mitigation of wildfire risk. Much of this application has resulted from the development of a minimum travel time (MTT) fire spread algorithm (M. Finney) that makes it computationally feasible to simulate thousands of fires and generate burn probability and intensity maps over large areas (10,000 - 2,000,000 ha). The MTT algorithm is parallelized for multi-threaded processing and is imbedded in a number of research and applied fire modeling applications. High performance computers (e.g., 32-way 64 bit SMP) are typically used for MTT simulations, although the algorithm is also implemented in the 32 bit desktop FlamMap3 program (www.fire.org). Extensive testing has shown that this algorithm can replicate large fire boundaries in the heterogeneous landscapes that typify much of the wildlands in the western U.S. In this paper, we describe the application of the MTT algorithm to understand spatial patterns of burn probability (BP), and to analyze wildfire risk to key human and ecological values. The work is focused on a federally-managed 2,000,000 ha landscape in the central interior region of Oregon State, USA. The fire-prone study area encompasses a wide array of topography and fuel types and a number of highly valued resources that are susceptible to fire. We quantitatively defined risk as the product of the probability of a fire and the resulting consequence. Burn probabilities at specific intensity classes were estimated for each 100 x 100 m pixel by simulating 100,000 wildfires under burn conditions that replicated recent severe wildfire events that occurred under conditions where fire suppression was generally ineffective (97th percentile, August weather). We repeated the simulation under milder weather (70th percentile, August weather) to replicate a "wildland fire use scenario" where suppression is minimized to manage fires for fuel reduction. The average BP was calculated for these scenarios to examine variation within and among a number of key designated management units, including forest-urban interface, conservation areas, protected species habitat, municipal watersheds, recreation areas, and others. To quantify risk, we developed a number of loss-benefit functions using fire effects models that relate fire intensity to tree mortality and biomass consumption. We used these relationships to measure the change in highly-valued old forest, designated wildlife conservation areas, aboveground carbon, surface fuels, and other wildland values. The loss-benefit functions were then coupled with BP's for different intensity classes to estimate expected value change (risk) for each pixel. For a subset of the study area we also measured the change in risk from fuels management for selected resources. Estimates of BP, excluding non burnable fuels (water, rock), fro the simulations ranged from 0.00001 to 0.026 within the study area, with a mean value of 0.007. In comparison, the annual burn probability estimated from fire occurrence data within the study area (1910 - 2003) was 0.0022. The estimate from simulations represents the average probability of a random pixel burning from a single large fire that escapes suppression, hence some difference is expected. Variation in BP among designated conservation and fire protection units was relatively large and illustrated spatial differences in wildfire likelihood among highly values resources. For instance, among the 130 different forest-urban interface areas, average BP varied from 0.0001 to 0.02. Average BP for nesting sites used by the endangered Northern spotted owl averaged 0.04 and varied from 0.001 to 0.01. The marginal BP's for high fire intensities was higher for many of the conservation areas compared the surrounding managed forest. Conservation areas that were located on the lee side of non-burnable fuels such as lava flows and lakes showed markedly reduced BP. When wildfire probabilities were combined with habitat loss functions for the Northern spotted owl, we observed expected loss from a random wildfire event ranging from 0.0 to 9.4% with a mean value of 1.5%. Expected loss was strongly correlated with BP for owl habitat, apparently because fires at very low intensities caused understory mortality and reduced stand canopy closure below minimum levels. The effect of simulating strategic fuel treatments on a subunit of the area resulted in significant decrease in expected loss of owl habitat. The effect of changing weather from a severe to mild (97th to 70th) percentile weather resulted in a dramatic 8-fold drop in BP and reduced the average wildfire size. However, the reduction was not uniform with the departures well correlated with specific fuel models. In total, this work demonstrated the application of wildfire spread models to quantitative risk assessment for fuels management on federally-managed lands in the U.S. The analyses revealed spatial variation in BP that is useful in prioritizing fuels treatments and guiding other wildfire mitigation activities. The work also illuminated the conflict between biodiversity conservation efforts on federally-managed lands and the high wildfire risk on fire-prone landscapes.

  18. Strata-based forest fuel classification for wild fire hazard assessment using terrestrial LiDAR

    NASA Astrophysics Data System (ADS)

    Chen, Yang; Zhu, Xuan; Yebra, Marta; Harris, Sarah; Tapper, Nigel

    2016-10-01

    Fuel structural characteristics affect fire behavior including fire intensity, spread rate, flame structure, and duration, therefore, quantifying forest fuel structure has significance in understanding fire behavior as well as providing information for fire management activities (e.g., planned burns, suppression, fuel hazard assessment, and fuel treatment). This paper presents a method of forest fuel strata classification with an integration between terrestrial light detection and ranging (LiDAR) data and geographic information system for automatically assessing forest fuel structural characteristics (e.g., fuel horizontal continuity and vertical arrangement). The accuracy of fuel description derived from terrestrial LiDAR scanning (TLS) data was assessed by field measured surface fuel depth and fuel percentage covers at distinct vertical layers. The comparison of TLS-derived depth and percentage cover at surface fuel layer with the field measurements produced root mean square error values of 1.1 cm and 5.4%, respectively. TLS-derived percentage cover explained 92% of the variation in percentage cover at all fuel layers of the entire dataset. The outcome indicated TLS-derived fuel characteristics are strongly consistent with field measured values. TLS can be used to efficiently and consistently classify forest vertical layers to provide more precise information for forest fuel hazard assessment and surface fuel load estimation in order to assist forest fuels management and fire-related operational activities. It can also be beneficial for mapping forest habitat, wildlife conservation, and ecosystem management.

  19. Expanding the biomass resource: sustainable oil production via fast pyrolysis of low input high diversity biomass and the potential integration of thermochemical and biological conversion routes.

    PubMed

    Corton, J; Donnison, I S; Patel, M; Bühle, L; Hodgson, E; Wachendorf, M; Bridgwater, A; Allison, G; Fraser, M D

    2016-09-01

    Waste biomass is generated during the conservation management of semi-natural habitats, and represents an unused resource and potential bioenergy feedstock that does not compete with food production. Thermogravimetric analysis was used to characterise a representative range of biomass generated during conservation management in Wales. Of the biomass types assessed, those dominated by rush ( Juncus effuses ) and bracken ( Pteridium aquilinum ) exhibited the highest and lowest volatile compositions respectively and were selected for bench scale conversion via fast pyrolysis. Each biomass type was ensiled and a sub-sample of silage was washed and pressed. Demineralization of conservation biomass through washing and pressing was associated with higher oil yields following fast pyrolysis. The oil yields were within the published range established for the dedicated energy crops miscanthus and willow. In order to examine the potential a multiple output energy system was developed with gross power production estimates following valorisation of the press fluid, char and oil. If used in multi fuel industrial burners the char and oil alone would displace 3.9 × 10 5  tonnes per year of No. 2 light oil using Welsh biomass from conservation management. Bioenergy and product development using these feedstocks could simultaneously support biodiversity management and displace fossil fuels, thereby reducing GHG emissions. Gross power generation predictions show good potential.

  20. Study of cost/benefit tradeoffs for reducing the energy consumption of the commercial air transportation system. [Advanced turboprop introduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coykendall, R.E.; Curry, J.K.; Domke, A.E.

    1976-06-01

    Economic studies were conducted for three general fuel-conserving options: (1) improving fuel-consumption characteristics of existing aircraft via retrofit modifications; (2) introducing fuel-efficient derivations of existing production aircraft and/or introducing fuel efficient, current state-of-the-art new aircraft; and (3) introducing an advanced state-of-the-art turboprop airplane. These studies were designed to produce an optimum airline fleet mix for the years 1980, 1985 and 1990. The fleet selected accommodated a normal growth market by introducing somewhat larger aircraft while solving for maximum departure frequencies and a minimum load factor corresponding to a 15% investment hurdle rate. Fuel burnt per available-seat-mile flown would drop 22%more » from 1980 to 1990 due to the use of more fuel efficient aircraft designs, larger average aircraft size, and increased seating density. An inflight survey was taken to determine air traveler attitudes towards a new generation of advanced turboprops. (Author) (GRA)« less

  1. Fuel use control in the fishing industry. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Billington, G.

    1985-08-01

    The project undertook fuel flow monitoring of a random sample of fishing vessels in the New Zealand fishing industry. The object of the project was to determine the value of fuel flow measurement on a range of vessels of differing size and fishing method, and to investigate the effect on fuel consumption of hull fouling and propeller repitching where this appeared to be required. Eight vessels in the port of Tauranga were included in the trials. Three of these are company-owned and operated and the remainder are owner-operated. One purse seiner, two longliners and five trawlers (pair and single) weremore » involved. Fuel flow measurements were carried out, with before-and-after tests on one vessel to determine the value of removing hull fouling. In two cases propeller repitching was undertaken. The tests demonstrated that five of the eight vessels could, through minor operational changes, make significant fuel conservation gains with minimal loss of performance.« less

  2. Effects of alternate fuels. Report No. 2. Analysis of basic refractories degraded by residual oil combustion products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, G. C.; Tennery, V. J.

    1978-02-01

    Industrial conversion in the U.S. to alternate fuels from natural gas is presently under way and will accelerate rapidly as a result of gas curtailments and National policy considerations. Currently the prime alternate fuels are distillate and residual oils and coal. Conversion to residual oils or coal for high-temperature process heat applications is anticipated to result in accelerated refractory and insulation corrosion and degradation due to reactions between fuel impurities and the ceramic linings of high-temperature equipment. Understanding the nature of such reactions and identification of means for preventing or retarding them will be of considerable assistance to both refractorymore » manufacturers and users as well as a significant contribution to energy conservation.« less

  3. High-Fidelity Simulations of Electrically-Charged Atomizing Diesel-Type Jets

    NASA Astrophysics Data System (ADS)

    Gaillard, Benoit; Owkes, Mark; van Poppel, Bret

    2015-11-01

    Combustion of liquid fuels accounts for over a third of the energy usage today. Improving efficiency of combustion systems is critical to meet the energy needs while limiting environmental impacts. Additionally, a shift away from traditional fossil fuels to bio-derived alternatives requires fuel injection systems that can atomize fuels with a wide range of properties. In this work, the potential benefits of electrically-charged atomization is investigated using numerical simulations. Particularly, the electrostatic forces on the hydrodynamic jet are quantified and the impact of the forces is analyzed by comparing simulations of Diesel-type jets at realistic flow conditions. The simulations are performed using a state-of-the-art numerical framework that globally conserves mass, momentum, and the electric charge density even at the gas-liquid interface where discontinuities exist.

  4. 77 FR 44289 - Notice of Permit Application Received Under the Antarctic Conservation Act of 1978

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-27

    ... small amount of waste created by the expedition team will be removed, including all fuel bottles, batteries, plastics, and non-combustible wastes, including perishable and nonperishable food wastes. The...

  5. Waste: A Hot Item These Days!

    ERIC Educational Resources Information Center

    Josephson, Julian

    1978-01-01

    Describes technologies used to conserve energy by using process wastes in the following situations: (1) incineration at a photographic company, (2) wet oxidation at a paper mill, and (3) sewage skimmings fuel at a municipal waste water plant. (MA)

  6. Freight Transportation Petroleum Conservation - Viability Evaluation

    DOT National Transportation Integrated Search

    1979-03-01

    This report develops a comprehensive perspective of current and near-term future energy demand in U.S. freight transportation. Synthesis of studies of many agencies indicate that the annual petroleum fuel demand for freight transportation in 1985 wil...

  7. Energy Conservation Designed into HDR's New Building

    ERIC Educational Resources Information Center

    Jenkins, Larry

    1974-01-01

    A new building has been engineered by its engineer-owner tenants with provisions for two gas-oil hot water generators and for an electric boiler, so that operating personnel could switch to whatever fuel is available. (Author/MLF)

  8. 75 FR 29584 - Notice of Lodging of Consent Decree Under the Resource Conservation and Recovery Act

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-26

    ...(a); and applicable Arkansas Pollution Control and Ecology Commission regulations in connection with Rineco's fuel blending facility located in Benton, Arkansas. The Consent Decree requires Rineco to apply...

  9. Waste heat recovery on multiple low-speed reciprocating engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayhew, R.E.

    1982-09-01

    With rising fuel costs, energy conservation has taken on added significance. Installation of Waste Heat Recovery Units (WHRU) on gas turbines is one method used in the past to reduce gas plant fuel consumption. More recently, waste heat recovery on multiple reciprocating compressor engines has also been identified as having energy conservation potential. This paper reviews the development and implementation of a Waste Heat Recovery Unit (WHRU) for multiple low speed engines at the Katy Gas Plant. WHRU's for these engines should be differentiated from high speed engines and gas turbines in that low speed engines produce low frequency, highmore » amplitude pulsating exhaust. The design of a waste heat system must take this potentially destructive pulsation into account. At Katy, the pulsation forces were measured at high amplitude frequencies and then used to design structural stiffness into the various components of the WHRU to minimize vibration and improve system reliability.« less

  10. Waste heat recovery on multiple low-speed reciprocating engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayhew, R.E.

    1984-09-01

    With rising fuel costs, energy conservation has taken on added significance. Installation of waste heat recovery units (WHRU's) on gas turbines is one method used in the past to reduce gas plant fuel consumption. More recently, waste heat recovery on multiple reciprocating compressor engines also has been identified as having energy conservation potential. This paper reviews the development and implementation of a WHRU for multiple low-speed engines at the Katy (TX) gas plant. WHRU's for these engines should be differentiated from high-speed engines and gas turbines in that low-speed engines produce low-frequency, high-amplitude pulsating exhaust. The design of a WHRUmore » system must take this potentially destructive pulsation into account. At Katy, the pulsation forces were measured at high-amplitude frequencies and then used to design a pulsation filter and structural stiffness into the various components of the WHRU to minimize vibration and improve system reliability.« less

  11. Wind power for the electric-utility industry: Policy incentives for fuel conservation

    NASA Astrophysics Data System (ADS)

    March, F.; Dlott, E. H.; Korn, D. H.; Madio, F. R.; McArthur, R. C.; Vachon, W. A.

    1982-06-01

    A systematic method for evaluating the economics of solar-electric/conservation technologies as fuel-savings investments for electric utilities in the presence of changing federal incentive policies is presented. The focus is on wind energy conversion systems (WECS) as the solar technology closest to near-term large scale implementation. Commercially available large WECS are described, along with computer models to calculate the economic impact of the inclusion of WECS as 10% of the base-load generating capacity on a grid. A guide to legal structures and relationships which impinge on large-scale WECS utilization is developed, together with a quantitative examination of the installation of 1000 MWe of WECS capacity by a utility in the northeast states. Engineering and financial analyses were performed, with results indicating government policy changes necessary to encourage the entrance of utilities into the field of windpower utilization.

  12. Study on dynamic performance of SOFC

    NASA Astrophysics Data System (ADS)

    Zhan, Haiyang; Liang, Qianchao; Wen, Qiang; Zhu, Runkai

    2017-05-01

    In order to solve the problem of real-time matching of load and fuel cell power, it is urgent to study the dynamic response process of SOFC in the case of load mutation. The mathematical model of SOFC is constructed, and its performance is simulated. The model consider the influence factors such as polarization effect, ohmic loss. It also takes the diffusion effect, thermal effect, energy exchange, mass conservation, momentum conservation. One dimensional dynamic mathematical model of SOFC is constructed by using distributed lumped parameter method. The simulation results show that the I-V characteristic curves are in good agreement with the experimental data, and the accuracy of the model is verified. The voltage response curve, power response curve and the efficiency curve are obtained by this way. It lays a solid foundation for the research of dynamic performance and optimal control in power generation system of high power fuel cell stack.

  13. Development and test results of a flight management algorithm for fuel conservative descents in a time-based metered traffic environment

    NASA Technical Reports Server (NTRS)

    Knox, C. E.; Cannon, D. G.

    1980-01-01

    A simple flight management descent algorithm designed to improve the accuracy of delivering an airplane in a fuel-conservative manner to a metering fix at a time designated by air traffic control was developed and flight tested. This algorithm provides a three dimensional path with terminal area time constraints (four dimensional) for an airplane to make an idle thrust, clean configured (landing gear up, flaps zero, and speed brakes retracted) descent to arrive at the metering fix at a predetermined time, altitude, and airspeed. The descent path was calculated for a constant Mach/airspeed schedule from linear approximations of airplane performance with considerations given for gross weight, wind, and nonstandard pressure and temperature effects. The flight management descent algorithm is described. The results of the flight tests flown with the Terminal Configured Vehicle airplane are presented.

  14. Utilisation of Used Palm Oil as an Alternative Fuel in Thailand

    NASA Astrophysics Data System (ADS)

    Permchart, W.; Tanatvanit, S.

    2007-10-01

    This paper summarises the overview of the current situation of alternative energies in Thailand. The utilisation of bio-diesel as an alternative energy in two economic sectors (i.e. transport and industrial sectors), which have the largest energy consumption in the country, is mainly presented because it has seemed to be the most promising project among various energy conservation projects of the Thai government. Actually, there is another bio-fuel project, namely, the ethanol project for blending with gasoline to produce gasohol (E10) used in gasoline engines, which has been developed and already become to an important policy for energy conservation of the country. Due to much more large number of diesel has been utilised, the bio-diesel project has been the first priority one to solve the petroleum crisis problems. However, it is remarked that the utilisation of bio-diesel as an alternative fuel seems to be unsatisfactory because of various reasons. Some issues in terms of both government policies and technical problems have not been clearly addressed. Therefore, this paper not only presents the utilisation of bio-diesel in these two sectors but also discusses the production processes, characterisations and some experimental testing results of bio-diesel.

  15. A 2017 Horizon Scan of Emerging Issues for Global Conservation and Biological Diversity.

    PubMed

    Sutherland, William J; Barnard, Phoebe; Broad, Steven; Clout, Mick; Connor, Ben; Côté, Isabelle M; Dicks, Lynn V; Doran, Helen; Entwistle, Abigail C; Fleishman, Erica; Fox, Marie; Gaston, Kevin J; Gibbons, David W; Jiang, Zhigang; Keim, Brandon; Lickorish, Fiona A; Markillie, Paul; Monk, Kathryn A; Pearce-Higgins, James W; Peck, Lloyd S; Pretty, Jules; Spalding, Mark D; Tonneijck, Femke H; Wintle, Bonnie C; Ockendon, Nancy

    2017-01-01

    We present the results of our eighth annual horizon scan of emerging issues likely to affect global biological diversity, the environment, and conservation efforts in the future. The potential effects of these novel issues might not yet be fully recognized or understood by the global conservation community, and the issues can be regarded as both opportunities and risks. A diverse international team with collective expertise in horizon scanning, science communication, and conservation research, practice, and policy reviewed 100 potential issues and identified 15 that qualified as emerging, with potential substantial global effects. These issues include new developments in energy storage and fuel production, sand extraction, potential solutions to combat coral bleaching and invasive marine species, and blockchain technology. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Energy: An annotated selected bibliography

    NASA Technical Reports Server (NTRS)

    Blow, S. J. (Compiler); Peacock, R. W. (Compiler); Sholy, J. J. (Compiler)

    1979-01-01

    This updated bibliography contains approximately 7,000 selected references on energy and energy related topics from bibliographic and other data sources from June 1977. Under each subject heading the entries are arranged by the data, with the latest works first. Subject headings include: resources supply/demand, and forecasting; policy, legislation, and regulation; environment; consumption, conservation, and economics; analysis, systems, and modeling, and information sources and documentation. Fossil fuels, hydrogen and other fuels, liquid/solid wastes and biomass, waste heat utilization, and nuclear power sources are also included.

  17. Destruction of PCB Contaminated Fuel Oil in an Aluminum Melting Furnace

    NASA Astrophysics Data System (ADS)

    Sonksen, M. K.; Busch, Stephen P.

    1985-02-01

    Since the 1979 discovery that Alcoa Davenport Works' auxiliary fuel oil supply was contaminated with PCB's, facilities have been provided, and proven, to permit continued use of the oil in a production facility in an environmentally safe manner. This process has several significant benefits. These include energy conservation, with an overall savings of 2.3 × 1011 BTUs and the environmental benefit of destruction of the PCB. The process also eliminates the hazards of transport over long distances.

  18. KSC-04pd0954

    NASA Image and Video Library

    2004-04-21

    KENNEDY SPACE CENTER, FLA. - A KSC employee stops to look at a car equipped to use natural gas as fuel. Several cars using alternative fuel technology were part of an exhibit during KSC’s annual Environmental and Energy Awareness Week, held April 20-22. The slogan for this year’s event was “Today's Conservation Defines Tomorrow's Future.” Presentations included Chemistry Safety, Cost-Effective Solar Applications, Non-Native Invasive Plant Identification and Control, Energy Efficient Lighting Systems, and Historical Changes in KSC’s Ecosystems.

  19. Summaries of reports from the Congressional office of technology assessment

    NASA Astrophysics Data System (ADS)

    1985-11-01

    A summary of reports from the Congressional office of technology assessment on the following topics is presented. (1) Residential Energy Conservation, 1979 (2) Energy Efficiency of Buildings in Cities, 1982 (3)Industrial Energy Use, 1983 (4)Increased Automobiles fuel efficiency and synthetic fuels, 1982. (5)U.S. Vulnerability to an oil import curtailment: The oil Replacement Capability, 1984. (6)Oil and Gas Technologies for the Arctic and Deep water, 1985. (7)Acid Rain and Transport Air pollutants: Implications for Public Policy. (AIP)

  20. Residential energy conservation measures: a penny saved is a penny earned

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finklea, E.A.; Treiber, M.P.

    The authors are not suggesting that conservation alone will end our dependence on foreign oil. The focus is on basic household energy-conservation measures because they are technically simple, inexpensive, and available compared to more advanced energy-efficiency technologies (e.g., architectural designs and passive solar devices), or to alternative production technologies (e.g., photovoltaics and synthetic fuels). The social, institutional, and economic obstacles to implementing these basic measures are analyzed, and suggestions offered for overcoming these obstacles. During the Carter Administration, Congress enacted four laws to encourage the installation of household energy conservation measures. The laws provide: (1) tax credits for energy conservationmore » expenditures; (2) conservation investment subsidies for low income homeowners; and require: (3) natural gas and electric utilities to implement residential energy conservation programs for their customers; and (4) the federal government to provide loan subsidies for household energy-conservation investments through a conservation bank. The potential effectiveness of these federal programs are analyzed. President Reagan's advisers have indicated that the new administration will place greater emphasis on energy production and less emphasis on conservation. Consequently, the effectiveness of these programs may depend on the priority given them by the Reagan administration.« less

  1. Transcriptomic Analyses Elucidate Adaptive Differences of Closely Related Strains of Pseudomonas aeruginosa in Fuel

    PubMed Central

    Gunasekera, Thusitha S.; Bowen, Loryn L.; Zhou, Carol E.; Howard-Byerly, Susan C.; Foley, William S.; Striebich, Richard C.; Dugan, Larry C.

    2017-01-01

    ABSTRACT Pseudomonas aeruginosa can utilize hydrocarbons, but different strains have various degrees of adaptation despite their highly conserved genome. P. aeruginosa ATCC 33988 is highly adapted to hydrocarbons, while P. aeruginosa strain PAO1, a human pathogen, is less adapted and degrades jet fuel at a lower rate than does ATCC 33988. We investigated fuel-specific transcriptomic differences between these strains in order to ascertain the underlying mechanisms utilized by the adapted strain to proliferate in fuel. During growth in fuel, the genes related to alkane degradation, heat shock response, membrane proteins, efflux pumps, and several novel genes were upregulated in ATCC 33988. Overexpression of alk genes in PAO1 provided some improvement in growth, but it was not as robust as that of ATCC 33988, suggesting the role of other genes in adaptation. Expression of the function unknown gene PA5359 from ATCC 33988 in PAO1 increased the growth in fuel. Bioinformatic analysis revealed that PA5359 is a predicted lipoprotein with a conserved Yx(FWY)xxD motif, which is shared among bacterial adhesins. Overexpression of the putative resistance-nodulation-division (RND) efflux pump PA3521 to PA3523 increased the growth of the ATCC 33988 strain, suggesting a possible role in fuel tolerance. Interestingly, the PAO1 strain cannot utilize n-C8 and n-C10. The expression of green fluorescent protein (GFP) under the control of alkB promoters confirmed that alk gene promoter polymorphism affects the expression of alk genes. Promoter fusion assays further confirmed that the regulation of alk genes was different in the two strains. Protein sequence analysis showed low amino acid differences for many of the upregulated genes, further supporting transcriptional control as the main mechanism for enhanced adaptation. IMPORTANCE These results support that specific signal transduction, gene regulation, and coordination of multiple biological responses are required to improve the survival, growth, and metabolism of fuel in adapted strains. This study provides new insight into the mechanistic differences between strains and helpful information that may be applied in the improvement of bacterial strains for resistance to biotic and abiotic factors encountered during bioremediation and industrial biotechnological processes. PMID:28314727

  2. 78 FR 79643 - Energy Conservation Program for Consumer Products: Landmark Legal Foundation; Petition for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-31

    ... Group'' or ``IWG'') was formed to allow agencies to incorporate the monetized social benefits of... that all fossil-fueled power plants should be replaced with nuclear power plants and DOE should be...

  3. Quantifying and Disaggregating Consumer Purchasing Behavior for Energy Systems Modeling

    EPA Science Inventory

    Consumer behaviors such as energy conservation, adoption of more efficient technologies, and fuel switching represent significant potential for greenhouse gas mitigation. Current efforts to model future energy outcomes have tended to use simplified economic assumptions ...

  4. Aerial thermography for energy conservation

    NASA Technical Reports Server (NTRS)

    Jack, J. R.

    1978-01-01

    Thermal infrared scanning from an aircraft is a convenient and commercially available means for determining relative rates of energy loss from building roofs. The need to conserve energy as fuel costs makes the mass survey capability of aerial thermography an attractive adjunct to community energy awareness programs. Background information on principles of aerial thermography is presented. Thermal infrared scanning systems, flight and environmental requirements for data acquisition, preparation of thermographs for display, major users and suppliers of thermography, and suggested specifications for obtaining aerial scanning services were reviewed.

  5. Evaluation of friction heating in cavitating high pressure Diesel injector nozzles

    NASA Astrophysics Data System (ADS)

    Salemi, R.; Koukouvinis, P.; Strotos, G.; McDavid, R.; Wang, Lifeng; Li, Jason; Marengo, M.; Gavaises, M.

    2015-12-01

    Variation of fuel properties occurring during extreme fuel pressurisation in Diesel fuel injectors relative to those under atmospheric pressure and room temperature conditions may affect significantly fuel delivery, fuel injection temperature, injector durability and thus engine performance. Indicative results of flow simulations during the full injection event of a Diesel injector are presented. In addition to the Navier-Stokes equations, the enthalpy conservation equation is considered for predicting the fuel temperature. Cavitation is simulated using an Eulerian-Lagrangian cavitation model fully coupled with the flow equations. Compressible bubble dynamics based on the R-P equation also consider thermal effects. Variable fuel properties function of the local pressure and temperature are taken from literature and correspond to a reference so-called summer Diesel fuel. Fuel pressurisation up to 3000bar pressure is considered while various wall temperature boundary conditions are tested in order to compare their effect relative to those of the fuel heating caused during the depressurisation of the fuel as it passes through the injection orifices. The results indicate formation of strong temperature gradients inside the fuel injector while heating resulting from the extreme friction may result to local temperatures above the fuel's boiling point. Predictions indicate bulk fuel temperature increase of more than 100°C during the opening phase of the needle valve. Overall, it is concluded that such effects are significant for the injector performance and should be considered in relevant simulation tools.

  6. Delayed flap approach procedures for noise abatement and fuel conservation

    NASA Technical Reports Server (NTRS)

    Edwards, F. G.; Bull, J. S.; Foster, J. D.; Hegarty, D. M.; Drinkwater, F. J., III

    1976-01-01

    The NASA/Ames Research Center is currently investigating the delayed flap approach during which pilot actions are determined and prescribed by an onboard digital computer. The onboard digital computer determines the proper timing for the deployment of the landing gear and flaps based on the existing winds and airplane gross weight. Advisory commands are displayed to the pilot. The approach is flown along the conventional ILS glide slope but is initiated at a higher airspeed and in a clean aircraft configuration that allows for low thrust and results in reduced noise and fuel consumption. Topics discussed include operational procedures, pilot acceptability of these procedures, and fuel/noise benefits resulting from flight tests and simulation.

  7. A mathematical model of the maximum power density attainable in an alkaline hydrogen/oxygen fuel cell

    NASA Technical Reports Server (NTRS)

    Kimble, Michael C.; White, Ralph E.

    1991-01-01

    A mathematical model of a hydrogen/oxygen alkaline fuel cell is presented that can be used to predict the polarization behavior under various power loads. The major limitations to achieving high power densities are indicated and methods to increase the maximum attainable power density are suggested. The alkaline fuel cell model describes the phenomena occurring in the solid, liquid, and gaseous phases of the anode, separator, and cathode regions based on porous electrode theory applied to three phases. Fundamental equations of chemical engineering that describe conservation of mass and charge, species transport, and kinetic phenomena are used to develop the model by treating all phases as a homogeneous continuum.

  8. [Conservation tillage systems in North America and their significance for China].

    PubMed

    Yang, Xueming; Zhang, Xiaoping; Fang, Huajun; Liang, Aizhen; Qi, Xiaoning; Wang, Yang

    2004-02-01

    Soil degradation through erosion and desertification reduces soil productivity, and is a serious problem in agricultural production of China. To avert our arable land from further degradation, soil management must be shifted from degrading tillage to conservation practices. Over viewing the technology used in the 20th century for controlling soil degradation from erosion, conservation tillage developed in the United States and adopted in South America and Africa is one of the most successful measures to overcome soil degradation problems. This paper reviewed the historical development and the current situation of conservation tillage systems used in North and South America, with special reference to their effects on soil erosion control and soil quality. The increasing adoption of conservation tillage systems in North and South America and Africa followed an enhanced awareness of the increasing risk of soil erosion and the high cost of fuel associated with conventional tillage. Many crucial points for successfully adopting conservation tillage systems were emphasized, such as equipment/tool development and chemical weed control. Adopting conservation tillage could provide China with low-priced means of reducing soil degradation and improving soil and water quality.

  9. Conceptual design of reduced energy transports

    NASA Technical Reports Server (NTRS)

    Ardema, M. D.; Harper, M.; Smith, C. L.; Waters, M. H.; Williams, L. J.

    1975-01-01

    This paper reports the results of a conceptual design study of new, near-term fuel-conservative aircraft. A parametric study was made to determine the effects of cruise Mach number and fuel cost on the 'optimum' configuration characteristics and on economic performance. Supercritical wing technology and advanced engine cycles were assumed. For each design, the wing geometry was optimized to give maximum return on investment at a particular fuel cost. Based on the results of the parametric study, a reduced energy configuration was selected. Compared with existing transport designs, the reduced energy design has a higher aspect ratio wing with lower sweep, and cruises at a lower Mach number. It yields about 30% more seat-miles/gal than current wide-body aircraft. At the higher fuel costs anticipated in the future, the reduced energy design has about the same economic performance as existing designs.

  10. Energy Conservation in Operation and Maintenance of Facilities.

    ERIC Educational Resources Information Center

    Crittenden, Christopher; Burnau, Teresa

    1981-01-01

    Colleges and universities will need to maintain economic stability in the face of decreasing energy supplies, periodic fuel shortages, increasing prices, and tighter budgets. The necessary physical plant measures and the commitment required of the entire campus community are discussed. (MLW)

  11. Air-to-air heat recovery devices for small buildings : interim report

    DOT National Transportation Integrated Search

    1981-01-01

    With the escalation of fuel costs, many people are turning to tighter, better insulated buildings as a means of achieving energy conservation. This is especially true in northern climates, where heating seasons are long and severe. Installing efficie...

  12. Landing-Time-Controlled Management Of Air Traffic

    NASA Technical Reports Server (NTRS)

    Erzberger, Heinz; Tobias, Leonard

    1988-01-01

    Conceptual system controls aircraft with old and new guidance equipment. Report begins with overview of concept, then reviews controller-interactive simulations. Describes fuel-conservative-trajectory algorithm, based on equations of motion for controlling landing time. Finally, presents results of piloted simulations.

  13. 10 CFR 474.2 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... ENERGY ENERGY CONSERVATION ELECTRIC AND HYBRID VEHICLE RESEARCH, DEVELOPMENT, AND DEMONSTRATION PROGRAM... storage batteries or other portable electrical energy storage devices, provided that: (1) Recharge energy... electrical energy required for an electric vehicle to travel one mile of the Highway Fuel Economy Driving...

  14. Computational Analysis of Spray Jet Flames

    NASA Astrophysics Data System (ADS)

    Jain, Utsav

    There is a boost in the utilization of renewable sources of energy but because of high energy density applications, combustion will never be obsolete. Spray combustion is a type of multiphase combustion which has tremendous engineering applications in different fields, varying from energy conversion devices to rocket propulsion system. Developing accurate computational models for turbulent spray combustion is vital for improving the design of combustors and making them energy efficient. Flamelet models have been extensively used for gas phase combustion because of their relatively low computational cost to model the turbulence-chemistry interaction using a low dimensional manifold approach. This framework is designed for gas phase non-premixed combustion and its implementation is not very straight forward for multiphase and multi-regime combustion such as spray combustion. This is because of the use of a conserved scalar and various flamelet related assumptions. Mixture fraction has been popularly employed as a conserved scalar and hence used to parameterize the characteristics of gaseous flamelets. However, for spray combustion, the mixture fraction is not monotonic and does not give a unique mapping in order to parameterize the structure of spray flames. In order to develop a flamelet type model for spray flames, a new variable called the mixing variable is introduced which acts as an ideal conserved scalar and takes into account the convection and evaporation of fuel droplets. In addition to the conserved scalar, it has been observed that though gaseous flamelets can be characterized by the conserved scalar and its dissipation, this might not be true for spray flamelets. Droplet dynamics has a significant influence on the spray flamelet and because of effects such as flame penetration of droplets and oscillation of droplets across the stagnation plane, it becomes important to accommodate their influence in the flamelet formulation. In order to recognize the droplet parameters needed, a rigorous parametric study is conducted for five different parameters in both physical as well as mixing variable space. The parametric study is conducted for a counterflow setup with n-heptane and inert nitrogen on the fuel side and oxygen with inert nitrogen on the oxidizer side. The computational setup (the temperature and velocity field) is validated against the experimental data from the Yale heptane counterflow flame. The five parameters that are investigated are: aerodynamic strain rate, initial droplet diameter, number of fuel droplets, droplet velocity slip ratio and pre-vaporization ratio. It is not the first time such a study has been accomplished but not a lot of research has been done for heavier fuels such as n-heptane (a very crucial reference fuel for the octane ratings in various applications). Also parameters such as droplet slip ratio and pre-vaporization ratio have not been prudently studied in the past. It is observed that though the slip ratio is not very significant in spray flamelet characterization, the pre-vaporization ratio is important to study and has an interesting influence on spray flamelet structure. In future, based on the current parametric study, the laminar spray flamelet library can be generated which will eventually be integrated to predict turbulent spray flames.

  15. Looking to nature for solutions

    NASA Astrophysics Data System (ADS)

    Turner, Will R.

    2018-01-01

    Completely stopping fossil fuel use may not be enough to avoid dangerous climate change. Recent research on the mitigation potential of conservation, restoration, and improved land management demonstrates that natural solutions can reduce emissions and remove atmospheric CO2 while safeguarding food security and biodiversity.

  16. 10 CFR 490.206 - Violations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Violations. 490.206 Section 490.206 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Mandatory State Fleet Program § 490.206 Violations. Violations of this subpart are subject to investigation and enforcement under subpart...

  17. 10 CFR 490.206 - Violations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Violations. 490.206 Section 490.206 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Mandatory State Fleet Program § 490.206 Violations. Violations of this subpart are subject to investigation and enforcement under subpart...

  18. 10 CFR 490.607 - Appeals.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Appeals. 490.607 Section 490.607 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Investigations and Enforcement § 490... the Office of Hearings and Appeals, U.S. Department of Energy, 1000 Independence Avenue, SW...

  19. 10 CFR 490.206 - Violations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Violations. 490.206 Section 490.206 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Mandatory State Fleet Program § 490.206 Violations. Violations of this subpart are subject to investigation and enforcement under subpart...

  20. 10 CFR 490.607 - Appeals.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Appeals. 490.607 Section 490.607 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Investigations and Enforcement § 490... the Office of Hearings and Appeals, U.S. Department of Energy, 1000 Independence Avenue, SW...

  1. 10 CFR 490.206 - Violations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Violations. 490.206 Section 490.206 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Mandatory State Fleet Program § 490.206 Violations. Violations of this subpart are subject to investigation and enforcement under subpart...

  2. 10 CFR 490.607 - Appeals.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Appeals. 490.607 Section 490.607 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Investigations and Enforcement § 490... the Office of Hearings and Appeals, U.S. Department of Energy, 1000 Independence Avenue, SW...

  3. 10 CFR 490.607 - Appeals.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Appeals. 490.607 Section 490.607 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Investigations and Enforcement § 490... the Office of Hearings and Appeals, U.S. Department of Energy, 1000 Independence Avenue, SW...

  4. 10 CFR 490.607 - Appeals.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Appeals. 490.607 Section 490.607 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Investigations and Enforcement § 490... the Office of Hearings and Appeals, U.S. Department of Energy, 1000 Independence Avenue, SW...

  5. 10 CFR 490.206 - Violations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Violations. 490.206 Section 490.206 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Mandatory State Fleet Program § 490.206 Violations. Violations of this subpart are subject to investigation and enforcement under subpart...

  6. How research is fueling the RAS boom

    USDA-ARS?s Scientific Manuscript database

    The Conservation Fund’s Freshwater Institute has been researching water recirculating aquaculture system (RAS) technologies and practices for salmonids for nearly 30 years using strong funding support from the U.S. Department of Agriculture’s Agricultural Research Service. These early efforts to pio...

  7. Thinking Copernican Thoughts

    ERIC Educational Resources Information Center

    Lamm, Richard D.

    1977-01-01

    The governor of Colorado explores two views related to causes of energy shortage: inadequate supply and excessive demand. Supports both increased supply and decreased demand, but offers reasons for conservation and adjustment in habits and thinking. The synthetic fuels program of Colorado is mentioned as an example. (CS)

  8. 10 CFR 503.13 - Environmental impact analysis.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Environmental impact analysis. 503.13 Section 503.13 Energy DEPARTMENT OF ENERGY (CONTINUED) ALTERNATE FUELS NEW FACILITIES General Requirements for... Zone Management Act, Safe Drinking Water Act, Resource Conservation and Recovery Act; and (2...

  9. 10 CFR 503.13 - Environmental impact analysis.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Environmental impact analysis. 503.13 Section 503.13 Energy DEPARTMENT OF ENERGY (CONTINUED) ALTERNATE FUELS NEW FACILITIES General Requirements for... Zone Management Act, Safe Drinking Water Act, Resource Conservation and Recovery Act; and (2...

  10. 10 CFR 503.13 - Environmental impact analysis.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Environmental impact analysis. 503.13 Section 503.13 Energy DEPARTMENT OF ENERGY (CONTINUED) ALTERNATE FUELS NEW FACILITIES General Requirements for... Zone Management Act, Safe Drinking Water Act, Resource Conservation and Recovery Act; and (2...

  11. 10 CFR 503.13 - Environmental impact analysis.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Environmental impact analysis. 503.13 Section 503.13 Energy DEPARTMENT OF ENERGY (CONTINUED) ALTERNATE FUELS NEW FACILITIES General Requirements for... Zone Management Act, Safe Drinking Water Act, Resource Conservation and Recovery Act; and (2...

  12. 10 CFR 503.13 - Environmental impact analysis.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Environmental impact analysis. 503.13 Section 503.13 Energy DEPARTMENT OF ENERGY (CONTINUED) ALTERNATE FUELS NEW FACILITIES General Requirements for... Zone Management Act, Safe Drinking Water Act, Resource Conservation and Recovery Act; and (2...

  13. Recycling of asphalt concrete : Oregon's first hot mix project : interim report.

    DOT National Transportation Integrated Search

    1977-11-01

    The need to reduce fuel consumption and conserve natural resources have been items of ever-increasing importance during recent years. This report discusses a project in which almost 50,000 tons of asphalt concrete placed to carry detour traffic durin...

  14. Analysis of a fuel cell on-site integrated energy system for a residential complex

    NASA Technical Reports Server (NTRS)

    Simons, S. N.; Maag, W. L.

    1979-01-01

    The energy use and costs of the on-site integrated energy system (OS/IES) which provides electric power from an on-site power plant and recovers heat that would normally be rejected to the environment is compared to a conventional system purchasing electricity from a utility and a phosphoric acid fuel cell powered system. The analysis showed that for a 500-unit apartment complex a fuel OS/IES would be about 10% more energy conservative in terms of total coal consumption than a diesel OS/IES system or a conventional system. The fuel cell OS/IES capital costs could be 30 to 55% greater than the diesel OS/IES capital costs for the same life cycle costs. The life cycle cost of a fuel cell OS/IES would be lower than that for a conventional system as long as the cost of electricity is greater than $0.05 to $0.065/kWh. An analysis of several parametric combinations of fuel cell power plant and state-of-art energy recovery systems and annual fuel requirement calculations for four locations were made. It was shown that OS/IES component choices are a major factor in fuel consumption, with the least efficient system using 25% more fuel than the most efficient. Central air conditioning and heat pumps result in minimum fuel consumption while individual air conditioning units increase it, and in general the fuel cell of highest electrical efficiency has the lowest fuel consumption.

  15. Aircraft Energy Efficiency (ACEE) status report

    NASA Technical Reports Server (NTRS)

    Nored, D. L.; Dugan, J. F., Jr.; Saunders, N. T.; Ziemianski, J. A.

    1979-01-01

    Fuel efficiency in aeronautics, for fuel conservation in general as well as for its effect on commercial aircraft operating economics is considered. Projects of the Aircraft Energy Efficiency Program related to propulsion are emphasized. These include: (1) engine component improvement, directed at performance improvement and engine diagnostics for prolonged service life; (2) energy efficient engine, directed at proving the technology base for the next generation of turbofan engines; and (3) advanced turboprop, directed at advancing the technology of turboprop powered aircraft to a point suitable for commercial airline service. Progress in these technology areas is reported.

  16. Fusion Breeding for Sustainable, Mid Century, Carbon Free Power

    NASA Astrophysics Data System (ADS)

    Manheimer, Wallace

    2015-11-01

    If ITER achieves Q ~10, it is still very far from useful fusion. The fusion power, and the driver power will allow only a small amount of power to be delivered, <~50MW for an ITER scale tokamak. It is unlikely, considering ``conservative design rules'' that tokamaks can ever be economical pure fusion power producers. Considering the status of other magnetic fusion concepts, it is also very unlikely that any alternate concept will either. Laser fusion does not seem to be constrained by any conservative design rules, but considering the failure of NIF to achhieve ignition, at this point it has many more obstacles to overcome than magnetic fusion. One way out of this dilemma is to use an ITER size tokamak, or a NIF size laser, as a fuel breeder for searate nuclear reactors. Hence ITER and NIF become ends in themselves, instead of steps to who knows what DEMO decades later. Such a tokamak can easily live within the consrtaints of conservative design rules. This has led the author to propose ``The Energy Park'' a sustainable, carbon free, economical, and environmently viable power source without prolifertion risk. It is one fusion breeder fuels 5 conventional nuclear reactors, and one fast neutron reactor burns the actinide wastes.

  17. Mitochondrial oxidative phosphorylation efficiency is upregulated during fasting in two major oxidative tissues of ducklings.

    PubMed

    Monternier, Pierre-Axel; Teulier, Loïc; Drai, Jocelyne; Bourguignon, Aurore; Collin-Chavagnac, Delphine; Hervant, Frédéric; Rouanet, Jean-Louis; Roussel, Damien

    2017-10-01

    Fasted endothermic vertebrates must develop physiological responses to maximize energy conservation and survival. The aim of this study was to determine the effect of 1-wk. fasting in 5-wk. old ducklings (Cairina moschata) from whole-body resting metabolic rate and body temperature to metabolic phenotype of tissues and mitochondrial coupling efficiency. At the level of whole organism, the mass-specific metabolic rate of ducklings was decreased by 40% after 1-wk. of fasting, which was associated with nocturnal Tb declines and shallow diurnal hypothermia during fasting. At the cellular level, fasting induced a large reduction in liver, gastrocnemius (oxidative) and pectoralis (glycolytic) muscle masses together with a fuel selection towards lipid oxidation and ketone body production in liver and a lower glycolytic phenotype in skeletal muscles. At the level of mitochondria, fasting induced a reduction of oxidative phosphorylation activities and an up-regulation of coupling efficiency (+30% on average) in liver and skeletal muscles. The present integrative study shows that energy conservation in fasted ducklings is mainly achieved by an overall reduction in mitochondrial activity and an increase in mitochondrial coupling efficiency, which would, in association with shallow hypothermia, increase the conservation of endogenous fuel stores during fasting. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. The 100 kW space station. [regenerative fuel cells and nickel hydrogen and nickel cadmium batteries for solar arrays

    NASA Technical Reports Server (NTRS)

    Mckhann, G.

    1977-01-01

    Solar array power systems for the space construction base are discussed. Nickel cadmium and nickel hydrogen batteries are equally attractive relative to regenerative fuel cell systems at 5 years life. Further evaluation of energy storage system life (low orbit conditions) is required. Shuttle and solid polymer electrolyte fuel cell technology appears adequate; large units (approximately four times shuttle) are most appropriate and should be studied for a 100 KWe SCB system. A conservative NiH2 battery DOD (18.6%) was elected due to lack of test data and offers considerable improvement potential. Multiorbit load averaging and reserve capacity requirements limit nominal DOD to 30% to 50% maximum, independent of life considerations.

  19. Review and evaluation of automotive fuel conservation technologies. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siegel, H.M.; Schwarz, R.; Andon, J.

    1981-12-01

    To support the Office of Research and Development of the National Highway Traffic Safety Administration with focused studies in areas affecting automotive fuel economy and related safety issues, a series of in-depth studies were carried out: Fuel Consumption Estimates of Stratified Charge Rotary Engines Installed in Five Vehicles; Oldsmobile Omega X Body Baseline Weight Data; GM X Body Material Substitution Weight Reduction/Cost Effectiveness Study; Calspan RSV Restraint System Cost Study; FMVSS No. 208 Extension to Light Trucks, Vans, and MPV's - Cost Lead Time Study; Multipiece Rims for Trucks, Buses, and Trailers; Identifying Design Changes, Cost Impacts and Manufacturing Leadmore » Times to Upgrade FMVSS 114 for Passenger Cars, Trucks, and MPV's; Ford Escort GL Baseline Weight Data.« less

  20. Fuel conservation evaluation of US Army helicopters. Part 5. Ah-1S flight testing. Final report, 31 July-21 September 1982

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Todd, L.L.; Savage, R.T.; Vincent, R.L.

    1983-01-01

    The United States Army Aviation Engineering Flight Activity conducted level flight performance tests of the AH-1S (Prod) helicopter to provide data to determine the most fuel efficient operating conditions. Hot and cold weather test sites were used to extend the range of the advancing tip Mach number data to supplement existing AH-1S performance data. Preliminary analysis of non-dimensional data identifies the effects of compressibility on performance and shows a power penalty of as much as 6% at a high NR/theta. The power required characteristics determined by these tests can be combined with engine performance to determine the most fuel efficientmore » operating conditions.« less

  1. Take a Closer Look:Biofuels Can Support Environmental, Economic and Social Goals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dale, Bruce E.; Anderson, James; Brown, Dr. Robert C.

    The US Congress passed the Renewable Fuels Standard (RFS) seven years ago. Since then, biofuels have gone from darling to scapegoat for many environmentalists, policy makers, and the general public. The reasons for this shift are complex and include concerns about environmental degradation, uncertainties about impact on food security, new access to fossil fuels, and overly optimistic timetables. As a result, many people have written off biofuels. However, numerous studies indicate that biofuels, if managed sustainably, can help solve pressing environmental, social and economic problems (Figure 1). The scientific and policy communities should take a closer look by reviewing themore » key assumptions underlying opposition to biofuels and carefully consider the probable alternatives. Liquid fuels based on fossil raw materials are likely to come at increasing environmental cost. Sustainable futures require energy conservation, increased efficiency, and alternatives to fossil fuels, including biofuels.« less

  2. Proposal for conversion of end use equipment and service from AC to DC for enhanced benefits from photovoltaics and fuel cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wicks, F.

    1998-07-01

    The need to produce electricity either more fuel efficiently or without need for consuming fuel is well recognized. Fuel cells are typically suggested for higher efficiency and photovoltaics can produce electricity directly from the sun. However, both of these devices produce direct current which is not compatible with the existing ac power system. The typical options of installing AC to DC inverters and the dedication of this DC generation to DC loads and storage are costly and inefficient. Thus, the author suggests it would be better in terms of energy conservation and public policy to convert end use service tomore » DC for direct compatibility with this DC generation, as a first step toward conversion to a new and better type of electric power system that can be described as a solid state power electronics based multiple voltage DC power system.« less

  3. Statistical analysis of QC data and estimation of fuel rod behaviour

    NASA Astrophysics Data System (ADS)

    Heins, L.; Groβ, H.; Nissen, K.; Wunderlich, F.

    1991-02-01

    The behaviour of fuel rods while in reactor is influenced by many parameters. As far as fabrication is concerned, fuel pellet diameter and density, and inner cladding diameter are important examples. Statistical analyses of quality control data show a scatter of these parameters within the specified tolerances. At present it is common practice to use a combination of superimposed unfavorable tolerance limits (worst case dataset) in fuel rod design calculations. Distributions are not considered. The results obtained in this way are very conservative but the degree of conservatism is difficult to quantify. Probabilistic calculations based on distributions allow the replacement of the worst case dataset by a dataset leading to results with known, defined conservatism. This is achieved by response surface methods and Monte Carlo calculations on the basis of statistical distributions of the important input parameters. The procedure is illustrated by means of two examples.

  4. Thermal analysis of a conceptual design for a 250 We GPHS/FPSE space power system

    NASA Technical Reports Server (NTRS)

    Mccomas, Thomas J.; Dugan, Edward T.

    1991-01-01

    A thermal analysis has been performed for a 250-We space nuclear power system which combines the US Department of Energy's general purpose heat source (GPHS) modules with a state-of-the-art free-piston Stirling engine (FPSE). The focus of the analysis is on the temperature of the indium fuel clad within the GPHS modules. The thermal analysis results indicate fuel clad temperatures slightly higher than the design goal temperature of 1573 K. The results are considered favorable due to numerous conservative assumptions used. To demonstrate the effects of the conservatism, a brief sensitivity analysis is performed in which a few of the key system parameters are varied to determine their effect on the fuel clad temperatures. It is shown that thermal analysis of a more detailed thermal mode should yield fuel clad temperatures below 1573 K.

  5. Energy plan, 1981

    NASA Astrophysics Data System (ADS)

    1981-12-01

    The planning procedures for the energy program and policy guidelines for energy planning are presented. Future changes in marginal costs and directions indicated for economically efficient pricing are assessed. The aim of the conservation program is to close the gap between the amounts of conservation which is rationally cost effective and that projected to occur anyway through normal market forces. An overview of energy demand and proposed plans for energy supply are given. Liquid fuels have priority although work on coal receives new emphasis. A better program on energy demand and management is suggested.

  6. Fuel Economy Label and CAFE Data Inventory

    EPA Pesticide Factsheets

    The Fuel Economy Label and CAFE Data asset contains measured summary fuel economy estimates and test data for light-duty vehicle manufacturers by model for certification as required under the Energy Policy and Conservation Act of 1975 (EPCA) and The Energy Independent Security Act of 2007 (EISA) to collect vehicle fuel economy estimates for the creation of Economy Labels and for the calculation of Corporate Average Fuel Economy (CAFE). Manufacturers submit data on an annual basis, or as needed to document vehicle model changes.The EPA performs targeted fuel economy confirmatory tests on approximately 15% of vehicles submitted for validation. Confirmatory data on vehicles is associated with its corresponding submission data to verify the accuracy of manufacturer submissions beyond standard business rules. Submitted data comes in XML format or as documents, with the majority of submissions being sent in XML, and includes descriptive information on the vehicle itself, fuel economy information, and the manufacturer's testing approach. This data may contain proprietary information (CBI) such as information on estimated sales or other data elements indicated by the submitter as confidential. CBI data is not publically available; however, within the EPA data can accessed under the restrictions of the Office of Transportation and Air Quality (OTAQ) CBI policy [RCS Link]. Datasets are segmented by vehicle model/manufacturer and/or year with corresponding fuel economy, te

  7. Spent Fuel Ratio Estimates from Numerical Models in ALE3D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Margraf, J. D.; Dunn, T. A.

    Potential threat of intentional sabotage of spent nuclear fuel storage facilities is of significant importance to national security. Paramount is the study of focused energy attacks on these materials and the potential release of aerosolized hazardous particulates into the environment. Depleted uranium oxide (DUO 2) is often chosen as a surrogate material for testing due to the unreasonable cost and safety demands for conducting full-scale tests with real spent nuclear fuel. To account for differences in mechanical response resulting in changes to particle distribution it is necessary to scale the DUO 2 results to get a proper measure for spentmore » fuel. This is accomplished with the spent fuel ratio (SFR), the ratio of respirable aerosol mass released due to identical damage conditions between a spent fuel and a surrogate material like depleted uranium oxide (DUO 2). A very limited number of full-scale experiments have been carried out to capture this data, and the oft-questioned validity of the results typically leads to overly-conservative risk estimates. In the present work, the ALE3D hydrocode is used to simulate DUO 2 and spent nuclear fuel pellets impacted by metal jets. The results demonstrate an alternative approach to estimate the respirable release fraction of fragmented nuclear fuel.« less

  8. A Theoretical Solid Oxide Fuel Cell Model for System Controls and Stability Design

    NASA Technical Reports Server (NTRS)

    Kopasakis, George; Brinson, Thomas; Credle, Sydni; Xu, Ming

    2006-01-01

    As the aviation industry moves towards higher efficiency electrical power generation, all electric aircraft, or zero emissions and more quiet aircraft, fuel cells are sought as the technology that can deliver on these high expectations. The Hybrid Solid Oxide Fuel Cell system combines the fuel cell with a microturbine to obtain up to 70 percent cycle efficiency, and then distributes the electrical power to the loads via a power distribution system. The challenge is to understand the dynamics of this complex multi-discipline system, and design distributed controls that take the system through its operating conditions in a stable and safe manner while maintaining the system performance. This particular system is a power generation and distribution system and the fuel cell and microturbine model fidelity should be compatible with the dynamics of the power distribution system in order to allow proper stability and distributed controls design. A novel modeling approach is proposed for the fuel cell that will allow the fuel cell and the power system to be integrated and designed for stability, distributed controls, and other interface specifications. This investigation shows that for the fuel cell, the voltage characteristic should be modeled, but in addition, conservation equation dynamics, ion diffusion, charge transfer kinetics, and the electron flow inherent impedance should also be included.

  9. Resources for Teaching about Energy in the Social Studies Classroom.

    ERIC Educational Resources Information Center

    Sherman, Robin; Stone, Kim

    1992-01-01

    Lists instructional resources for use by social studies teachers in teaching about energy. Includes curriculum materials, videotapes, organizations, government agencies, and industry trade associations that can provide information. Suggests items on energy conservation, global warming, ecology, nuclear power, fossil fuels, oil spills, and…

  10. 10 CFR 490.804 - Eligible reductions in petroleum consumption.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Eligible reductions in petroleum consumption. 490.804 Section 490.804 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Compliance § 490.804 Eligible reductions in petroleum consumption. (a) Motor vehicles...

  11. 10 CFR 490.807 - Reporting requirement.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Reporting requirement. 490.807 Section 490.807 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Compliance § 490.807 Reporting requirement. (a) By December 31 following a model year for which an alternative...

  12. 10 CFR 490.807 - Reporting requirement.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Reporting requirement. 490.807 Section 490.807 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Compliance § 490.807 Reporting requirement. (a) By December 31 following a model year for which an alternative...

  13. 10 CFR 490.804 - Eligible reductions in petroleum consumption.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Eligible reductions in petroleum consumption. 490.804 Section 490.804 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Compliance § 490.804 Eligible reductions in petroleum consumption. (a) Motor vehicles...

  14. 10 CFR 490.807 - Reporting requirement.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Reporting requirement. 490.807 Section 490.807 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Compliance § 490.807 Reporting requirement. (a) By December 31 following a model year for which an alternative...

  15. 10 CFR 490.804 - Eligible reductions in petroleum consumption.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Eligible reductions in petroleum consumption. 490.804 Section 490.804 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Compliance § 490.804 Eligible reductions in petroleum consumption. (a) Motor vehicles...

  16. 10 CFR 490.807 - Reporting requirement.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Reporting requirement. 490.807 Section 490.807 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Compliance § 490.807 Reporting requirement. (a) By December 31 following a model year for which an alternative...

  17. 10 CFR 490.807 - Reporting requirement.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Reporting requirement. 490.807 Section 490.807 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Compliance § 490.807 Reporting requirement. (a) By December 31 following a model year for which an alternative...

  18. 10 CFR 490.804 - Eligible reductions in petroleum consumption.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Eligible reductions in petroleum consumption. 490.804 Section 490.804 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Compliance § 490.804 Eligible reductions in petroleum consumption. (a) Motor vehicles...

  19. 10 CFR 490.804 - Eligible reductions in petroleum consumption.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Eligible reductions in petroleum consumption. 490.804 Section 490.804 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Compliance § 490.804 Eligible reductions in petroleum consumption. (a) Motor vehicles...

  20. 10 CFR 452.2 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Definitions. 452.2 Section 452.2 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION PRODUCTION INCENTIVES FOR CELLULOSIC BIOFUELS § 452.2 Definitions. As used in this part: Cellulosic biofuel means any liquid fuel produced from cellulosic feedstocks. Cellulosic...

Top