Science.gov

Sample records for fuel consumption los

  1. Amtrak fuel consumption study

    SciTech Connect

    Hitz, J.

    1981-02-01

    This report documents a study of fuel consumption on National Railroad Passenger Corporation (Amtrak) trains and is part of an effort to determine effective ways of conserving fuel on the Amtrak system. The study was performed by the Transportation Systems Center (TSC). A series of 26 test runs were conducted on Amtrak trains operating between Boston, Massachusetts, and New Haven, Connecticut, to measure fuel consumption, trip time and other fuel-use-related parameters. The test data were analyzed and compared with results of the TSC Train Performance Simulator replicating the same operations.

  2. Frigate Fuel Consumption Indicator

    DTIC Science & Technology

    2010-09-20

    Report DRDC-RDDC-2014- C50 Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the collection of information is...estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the...number. 1 . REPORT DATE 20 SEP 2010 2. REPORT TYPE 3. DATES COVERED 00-00-2010 to 00-00-2010 4. TITLE AND SUBTITLE Frigate Fuel Consumption

  3. Predicting Ship Fuel Consumption: Update.

    DTIC Science & Technology

    1996-07-01

    ship propulsion fuel consumption as a function of ship speed for U.S. Navy combatant and auxiliary ships. Prediction is based on fitting an analytic function to published ship class speed-fuel use data using nonlinear regression. The form of the analytic function fitted is motivated by the literature on ship powering and resistance. The report discusses data sources and data issues, and the impact of ship propulsion plant configuration on fuel use. The regression coefficients of the exponential function fitted, tabular numerical comparison of

  4. Fuel Consumption Impacts of Auto Roof Racks

    SciTech Connect

    Chen, Yuche; Meier, Alan

    2016-05-01

    The after-market roof rack is one of the most common components attached to a vehicle for carrying over-sized items, such as bicycles and skis. It is important to understand these racks' fuel consumption impacts on both individual vehicles and the national fleet because they are widely used. We estimate the national fuel consumption impacts of roof racks using a bottom-up approach. Our model incorporates real-world data and vehicle stock information to enable assessing fuel consumption impacts for several categories of vehicles, rack configurations, and usage conditions. In addition, the model draws on two new data-gathering techniques, on-line forums and crowd-sourcing. The results show that nationwide, roof racks are responsible for 0.8% of light duty vehicle fuel consumption in 2015, corresponding to 100 million gallons of gasoline per year. Sensitivity analyses show that results are most sensitive to the fraction of vehicles with installed roof racks but carrying no equipment. The aerodynamic efficiency of typical roof racks can be greatly improved and reduce individual vehicle fuel consumption; however, government policies to minimize extensive driving with empty racks--if successful--could save more fuel nationally.

  5. Fuel consumption impacts of auto roof racks

    SciTech Connect

    Chen, Yuche; Meier, Alan

    2016-03-23

    The after-market roof rack is one of the most common components attached to a vehicle for carrying over-sized items, such as bicycles and skis. It is important to understand these racks' fuel consumption impacts on both individual vehicles and the national fleet because they are widely used. We estimate the national fuel consumption impacts of roof racks using a bottom-up approach. Our model incorporates real-world data and vehicle stock information to enable assessing fuel consumption impacts for several categories of vehicles, rack configurations, and usage conditions. In addition, the model draws on two new data-gathering techniques, on-line forums and crowd-sourcing. The results show that nationwide, roof racks are responsible for 0.8‰ of light duty vehicle fuel consumption in 2015, corresponding to 100 million gallons of gasoline per year. Sensitivity analyses show that results are most sensitive to the fraction of vehicles with installed roof racks but carrying no equipment. Here, the aerodynamic efficiency of typical roof racks can be greatly improved and reduce individual vehicle fuel consumption; however, government policies to minimize extensive driving with empty racks--if successful--could save more fuel nationally.

  6. Fuel consumption impacts of auto roof racks

    DOE PAGES

    Chen, Yuche; Meier, Alan

    2016-03-23

    The after-market roof rack is one of the most common components attached to a vehicle for carrying over-sized items, such as bicycles and skis. It is important to understand these racks' fuel consumption impacts on both individual vehicles and the national fleet because they are widely used. We estimate the national fuel consumption impacts of roof racks using a bottom-up approach. Our model incorporates real-world data and vehicle stock information to enable assessing fuel consumption impacts for several categories of vehicles, rack configurations, and usage conditions. In addition, the model draws on two new data-gathering techniques, on-line forums and crowd-sourcing.more » The results show that nationwide, roof racks are responsible for 0.8‰ of light duty vehicle fuel consumption in 2015, corresponding to 100 million gallons of gasoline per year. Sensitivity analyses show that results are most sensitive to the fraction of vehicles with installed roof racks but carrying no equipment. Here, the aerodynamic efficiency of typical roof racks can be greatly improved and reduce individual vehicle fuel consumption; however, government policies to minimize extensive driving with empty racks--if successful--could save more fuel nationally.« less

  7. Reduced truck fuel consumption through aerodynamic design

    NASA Technical Reports Server (NTRS)

    Steers, L. L.; Saltzman, E. J.

    1977-01-01

    Full-scale fuel consumption and drag tests were performed on a conventional cab-over-engine tractor-trailer combination and a version of the same vehicle with significant forebody modifications. The modified configuration had greatly increased radii on all front corners and edges of the tractor and a smooth fairing of the modified tractor top and sides extending to the trailer. Concurrent highway testing of the two configurations showed that the modified design used 20% to 24% less fuel than the baseline configuration at 88.5 km/hr (55 mph) with near-calm wind conditions. Coastdown test results showed that the modified configuration reduced the drag coefficient by 0.43 from the baseline value of 1.17 at 88.5 km/hr (55 mph) in calm wind conditions.

  8. Amtrak fuel consumption study. Final report May-Sep 80

    SciTech Connect

    Hitz, J.S.

    1981-02-01

    This report documents a study of fuel consumption on National Railroad Passenger Corporation (Amtrak) trains and is part of an effort to determine effective ways of conserving fuel on the Amtrak system. The study was performed by the Transportation Systems Center (TSC) under the sponsorship of the Federal Railroad Administration and in cooperation with Amtrak. A series of 26 test runs were conducted on Amtrak trains operating between Boston, Massachusetts, and New Haven, Connecticut, to measure fuel consumption, trip time and other fuel-use-related parameters. The test data were analyzed and compared with results of the TSC Train Performance Simulator replicating the same operations. Results of the tests showed that the average fuel consumption for the 157.7 mile trip was 368 gallons and that the average fuel use efficiency was 277 ton-miles per gallon. Fuel consumption and fuel use efficiency were found to increase consistently with increasing train tonnage. One locomotive was also found to consume about 12 percent more fuel than the other locomotive tested. The fuel consumption and trip time results for individual runs varied between +8.0 to -9.5 and +5.4 and -10.7 percent, respectively, of the Train Performance Simulator results. However, when averaged over the ten test runs analyzed, the fuel consumption and trip time results were within 1.04 and 0.03 percent, respectively, of the simulator. Throttle notch settings and train speed profiles also agreed well with simulated results.

  9. Process for Generating Engine Fuel Consumption Map: Ricardo Cooled EGR Boost 24-bar Standard Car Engine Tier 2 Fuel

    EPA Pesticide Factsheets

    This document summarizes the process followed to utilize the fuel consumption map of a Ricardo modeled engine and vehicle fuel consumption data to generate a full engine fuel consumption map which can be used by EPA's ALPHA vehicle simulations.

  10. Engine component improvement program: Performance improvement. [fuel consumption

    NASA Technical Reports Server (NTRS)

    Mcaulay, J. E.

    1979-01-01

    Fuel consumption of commercial aircraft is considered. Fuel saving and retention components for new production and retrofit of JT9D, JT8D, and CF6 engines are reviewed. The manner in which the performance improvement concepts were selected for development and a summary of the current status of each of the 16 selected concepts are discussed.

  11. Fuel consumption of freight trains hauled by diesel electric locomotives

    SciTech Connect

    Radford, R.W.

    1983-05-01

    The cost of railway diesel fuel has become an increasingly high proportion of railway operating expenses. The paper analyzes the generation and utilization of rail horsepower in freight train operations. The effects on fuel consumption of variations in several parameters including train consist, car weight, gradient, average speed, meet strategy, throttle control, locomotive axle arrangement, and train marshalling are examined. Estimates are made of the value, in terms of fuel cost, of weight reduction of freight cars and of selective train marshalling.

  12. Tracked-vehicle fuel consumption. Final report

    SciTech Connect

    Not Available

    1987-03-06

    This document describes test procedures for evaluating the fuel efficiency of tracked vehicles under controlled operating conditions. The test data are a major source for comparisons with similar vehicles, and can also serve to predict the operational range of these vehicles during tactical missions.

  13. Nonresidential buildings energy consumption survey: 1979 consumption and expenditures. Part 2. Steam, fuel oil, LPG, and all fuels

    SciTech Connect

    Patinkin, L.

    1983-12-01

    This report presents data on square footage and on total energy consumption and expenditures for commercial buildings in the contiguous United States. Also included are detailed consumption and expenditures tables for fuel oil or kerosene, liquid petroleum gas (LPG), and purchased steam. Commercial buildings include all nonresidential buildings with the exception of those where industrial activities occupy more of the total square footage than any other type of activity. 7 figures, 23 tables.

  14. Decreasing fuel-oil consumption through feedback and social commendation.

    PubMed

    Seaver, W B; Patterson, A H

    1976-01-01

    The energy crisis of the winter of 1973-74 led to severe shortages of fuel oil for home heating and a government request for voluntary conservation by the oil consumer. This experiment tested two methods of facilitating fuel-oil conservation. Home fuel-oil consumers were randomly assigned to one of three experimental groups: feedback of information on rate of oil use, feedback plus commendation for reduced consumption, or a no-treatment control. The consumption rate for the feedback plus commendation group was significantly lower than that of either the informational feedback group or the control group. The informational feedback group did not differ from the control group. The results suggest that feedback alone may not result in oil conservation, but that feedback combined with commendation can produce socially significant savings.

  15. 75 FR 66008 - Fossil Fuel-Generated Energy Consumption Reduction for New Federal Buildings and Major...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-27

    ... Parts 433 and 435 RIN 1904-AB96 Fossil Fuel-Generated Energy Consumption Reduction for New Federal... proposed rulemaking (NOPR) regarding the fossil fuel- generated energy consumption ] requirements for new... regarding the fossil fuel-generated energy consumption requirements for new Federal buildings and...

  16. 49 CFR 1243.3 - Report of fuel cost, consumption, and surcharge revenue.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 9 2010-10-01 2010-10-01 false Report of fuel cost, consumption, and surcharge... QUARTERLY OPERATING REPORTS-RAILROADS § 1243.3 Report of fuel cost, consumption, and surcharge revenue... file quarterly a Report of Fuel Cost, Consumption, and Surcharge Revenue, in accordance with the...

  17. RECENT TRENDS IN EMERGING TRANSPORTATION FUELS AND ENERGY CONSUMPTION

    SciTech Connect

    Bunting, Bruce G

    2012-01-01

    Abundance of energy can be improved both by developing new sources of fuel and by improving efficiency of energy utilization, although we really need to pursue both paths to improve energy accessibility in the future. Currently, 2.7 billion people or 38% of the world s population do not have access to modern cooking fuel and depend on wood or dung and 1.4 billion people or 20% do not have access to electricity. It is estimated that correcting these deficiencies will require an investment of $36 billion dollars annually through 2030. In growing economies, energy use and economic growth are strongly linked, but energy use generally grows at a lower rate due to increased access to modern fuels and adaptation of modern, more efficient technology. Reducing environmental impacts of increased energy consumption such as global warming or regional emissions will require improved technology, renewable fuels, and CO2 reuse or sequestration. The increase in energy utilization will probably result in increased transportation fuel diversity as fuels are shaped by availability of local resources, world trade, and governmental, environmental, and economic policies. The purpose of this paper is to outline some of the recently emerging trends, but not to suggest winners. This paper will focus on liquid transportation fuels, which provide the highest energy density and best match with existing vehicles and infrastructure. Data is taken from a variety of US, European, and other sources without an attempt to normalize or combine the various data sources. Liquid transportation fuels can be derived from conventional hydrocarbon resources (crude oil), unconventional hydrocarbon resources (oil sands or oil shale), and biological feedstocks through a variety of biochemical or thermo chemical processes, or by converting natural gas or coal to liquids.

  18. Carbon Dioxide Emissions From Fossil-Fuel Consumption in Indonesia

    NASA Astrophysics Data System (ADS)

    Gregg, J. S.; Robert, A. J.

    2005-05-01

    Applying monthly sales and consumption data of coal, petroleum and natural gas, a monthly time series of carbon dioxide emissions from fossil-fuel consumption is created for Indonesia. These are then modeled with an autoregressive function to produce a quantitative description of the seasonal distribution and long-term pattern of CO2 emissions. Currently, Indonesia holds the 21st ranked position in total anthropogenic CO2 emissions among countries of the world. The demand for energy in Indonesia has been growing rapidly in recent years as Indonesia attempts to modernize and upgrade the standard of living for its citizens. With such a large population (a quarter of a billion people), the recent increase observed in the per capita energy use equates to a large escalation in total CO2 emissions. However, the economy and political climate is rather turbulent and thus emissions tend to fluctuate wildly. For example, Indonesia's energy consumption dropped substantially during the Asian economic crisis in the late 1990s. It is likely that the recent tsunami will also significantly impact energy consumption as the hard-hit Aceh region is the largest fuel-producing region of Indonesia. Therefore, Indonesia is a country whose emissions are more unpredictable than most countries that emit comparable levels of CO2. Complicating matters further, data collection practices in Indonesia are less diligent than in other countries with more stable economies. Thus, though CO2 emissions from Indonesia are a particular challenge to model, they are an important component to understanding the total global carbon cycle.

  19. 77 FR 14482 - Petroleum Reduction and Alternative Fuel Consumption Requirements for Federal Fleets

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-12

    ...; ] DEPARTMENT OF ENERGY 10 CFR Part 438 RIN 1904-AB98 Petroleum Reduction and Alternative Fuel Consumption... the term ``alternative fuel,'' as presented in section 301 of the Energy Policy Act of 1992. The... having the same energy content as a gallon of gasoline. \\b\\ FY 2005 alternative fuel consumption...

  20. Biomass burning fuel consumption rates: a field measurement database

    NASA Astrophysics Data System (ADS)

    van Leeuwen, T. T.; van der Werf, G. R.; Hoffmann, A. A.; Detmers, R. G.; Rücker, G.; French, N. H. F.; Archibald, S.; Carvalho, J. A., Jr.; Cook, G. D.; de Groot, W. J.; Hély, C.; Kasischke, E. S.; Kloster, S.; McCarty, J. L.; Pettinari, M. L.; Savadogo, P.; Alvarado, E. C.; Boschetti, L.; Manuri, S.; Meyer, C. P.; Siegert, F.; Trollope, L. A.; Trollope, W. S. W.

    2014-06-01

    Landscape fires show large variability in the amount of biomass or fuel consumed per unit area burned. These fuel consumption (FC) rates depend on the biomass available to burn and the fraction of the biomass that is actually combusted, and can be combined with estimates of area burned to assess emissions. While burned area can be detected from space and estimates are becoming more reliable due to improved algorithms and sensors, FC rates are either modeled or taken selectively from the literature. We compiled the peer-reviewed literature on FC rates for various biomes and fuel categories to better understand FC rates and variability, and to provide a~database that can be used to constrain biogeochemical models with fire modules. We compiled in total 76 studies covering 10 biomes including savanna (15 studies, average FC of 4.6 t DM (dry matter) ha-1), tropical forest (n = 19, FC = 126), temperate forest (n = 11, FC = 93), boreal forest (n = 16, FC = 39), pasture (n = 6, FC = 28), crop residue (n = 4, FC = 6.5), chaparral (n = 2, FC = 32), tropical peatland (n = 4, FC = 314), boreal peatland (n = 2, FC = 42), and tundra (n = 1, FC = 40). Within biomes the regional variability in the number of measurements was sometimes large, with e.g. only 3 measurement locations in boreal Russia and 35 sites in North America. Substantial regional differences were found within the defined biomes: for example FC rates of temperate pine forests in the USA were 38% higher than Australian forests dominated by eucalypt trees. Besides showing the differences between biomes, FC estimates were also grouped into different fuel classes. Our results highlight the large variability in FC rates, not only between biomes but also within biomes and fuel classes. This implies that care should be taken with using averaged values, and our comparison with FC rates from GFED3 indicates that also modeling studies have difficulty in representing the dynamics governing FC.

  1. Biomass burning fuel consumption dynamics in the tropics and subtropics assessed from satellite

    NASA Astrophysics Data System (ADS)

    Andela, Niels; van der Werf, Guido R.; Kaiser, Johannes W.; van Leeuwen, Thijs T.; Wooster, Martin J.; Lehmann, Caroline E. R.

    2016-06-01

    Landscape fires occur on a large scale in (sub)tropical savannas and grasslands, affecting ecosystem dynamics, regional air quality and concentrations of atmospheric trace gasses. Fuel consumption per unit of area burned is an important but poorly constrained parameter in fire emission modelling. We combined satellite-derived burned area with fire radiative power (FRP) data to derive fuel consumption estimates for land cover types with low tree cover in South America, Sub-Saharan Africa, and Australia. We developed a new approach to estimate fuel consumption, based on FRP data from the polar-orbiting Moderate Resolution Imaging Spectroradiometer (MODIS) and the geostationary Spinning Enhanced Visible and Infrared Imager (SEVIRI) in combination with MODIS burned-area estimates. The fuel consumption estimates based on the geostationary and polar-orbiting instruments showed good agreement in terms of spatial patterns. We used field measurements of fuel consumption to constrain our results, but the large variation in fuel consumption in both space and time complicated this comparison and absolute fuel consumption estimates remained more uncertain. Spatial patterns in fuel consumption could be partly explained by vegetation productivity and fire return periods. In South America, most fires occurred in savannas with relatively long fire return periods, resulting in comparatively high fuel consumption as opposed to the more frequently burning savannas in Sub-Saharan Africa. Strikingly, we found the infrequently burning interior of Australia to have higher fuel consumption than the more productive but frequently burning savannas in northern Australia. Vegetation type also played an important role in explaining the distribution of fuel consumption, by affecting both fuel build-up rates and fire return periods. Hummock grasslands, which were responsible for a large share of Australian biomass burning, showed larger fuel build-up rates than equally productive grasslands in

  2. Carbon emissions from fossil fuel consumption of Beijing in 2012

    NASA Astrophysics Data System (ADS)

    Shao, Ling; Guan, Dabo; Zhang, Ning; Shan, Yuli; Chen, G. Q.

    2016-11-01

    The present study analyzed the consumption-based carbon emissions from fossil fuel consumption of Beijing in 2012. The multi-scale input-output analysis method was applied. It is capable of tracing the carbon emissions embodied in imports based on a global multi-regional input-output analysis using Eora data. The results show that the consumption-based carbon emission of Beijing has increased by 18% since 2007, which is 2.57 times higher than the production-based carbon emission in 2012. Only approximately 1/10 of the total carbon emissions embodied in Beijing’s local final demand originated from local direct carbon emissions. Meanwhile, more than 4/5 were from domestically imported products. The carbon emission nexus between Beijing and other Chinese regions has become closer since 2007, while the imbalance as the carbon emission transfer from Beijing to other regions has been mitigated. Instead, Beijing has imported more carbon emissions from foreign countries. Some carbon emission reduction strategies for Beijing concerning different goals are presented on the basis of detailed discussion.

  3. Biomass burning fuel consumption rates: a field measurement database

    NASA Astrophysics Data System (ADS)

    van Leeuwen, T. T.; van der Werf, G. R.; Hoffmann, A. A.; Detmers, R. G.; Rücker, G.; French, N. H. F.; Archibald, S.; Carvalho, J. A., Jr.; Cook, G. D.; de Groot, W. J.; Hély, C.; Kasischke, E. S.; Kloster, S.; McCarty, J. L.; Pettinari, M. L.; Savadogo, P.; Alvarado, E. C.; Boschetti, L.; Manuri, S.; Meyer, C. P.; Siegert, F.; Trollope, L. A.; Trollope, W. S. W.

    2014-12-01

    Landscape fires show large variability in the amount of biomass or fuel consumed per unit area burned. Fuel consumption (FC) depends on the biomass available to burn and the fraction of the biomass that is actually combusted, and can be combined with estimates of area burned to assess emissions. While burned area can be detected from space and estimates are becoming more reliable due to improved algorithms and sensors, FC is usually modeled or taken selectively from the literature. We compiled the peer-reviewed literature on FC for various biomes and fuel categories to understand FC and its variability better, and to provide a database that can be used to constrain biogeochemical models with fire modules. We compiled in total 77 studies covering 11 biomes including savanna (15 studies, average FC of 4.6 t DM (dry matter) ha-1 with a standard deviation of 2.2), tropical forest (n = 19, FC = 126 ± 77), temperate forest (n = 12, FC = 58 ± 72), boreal forest (n = 16, FC = 35 ± 24), pasture (n = 4, FC = 28 ± 9.3), shifting cultivation (n = 2, FC = 23, with a range of 4.0-43), crop residue (n = 4, FC = 6.5 ± 9.0), chaparral (n = 3, FC = 27 ± 19), tropical peatland (n = 4, FC = 314 ± 196), boreal peatland (n = 2, FC = 42 [42-43]), and tundra (n = 1, FC = 40). Within biomes the regional variability in the number of measurements was sometimes large, with e.g. only three measurement locations in boreal Russia and 35 sites in North America. Substantial regional differences in FC were found within the defined biomes: for example, FC of temperate pine forests in the USA was 37% lower than Australian forests dominated by eucalypt trees. Besides showing the differences between biomes, FC estimates were also grouped into different fuel classes. Our results highlight the large variability in FC, not only between biomes but also within biomes and fuel classes. This implies that substantial uncertainties are associated with using biome-averaged values to represent FC for whole

  4. Fuel Consumption of a Carburetor Engine at Various Speeds and Torques

    NASA Technical Reports Server (NTRS)

    Schey, Oscar W; Clark, J Denny

    1938-01-01

    An investigation was conducted to obtain fuel-consumption curves for a single-cylinder engine with a Wright 1820-G and Pratt & Whitney 1340-H cylinder at varying speeds, manifold pressures, and air-fuel ratios. The 1340- H cylinder was tested at speeds from 1,200 to 2,400 r.p.m. and at manifold pressures from 21 to 38 inches of mercury absolute. Less than extensive tests were made of the 1820-G cylinder. The results of the tests showed that the minimum brake fuel consumption was obtained when the engines were operating at high torques and at speeds from 60 to 70 percent of the rated speed. The fuel consumption increased at an increasing rate as the torque was reduced; and, at 45 percent of maximum torque, the fuel consumption was 20 percent higher than at maximum torque when the engines were operating at 70 percent of rated speed. Minimum specific fuel consumption was obtained at the same air-fuel ratio regardless of compression ratio. No improvement in fuel consumption was obtained when mixtures leaner than an air-fuel ratio of 15.5 were used. The leanest mixture ratio on which the engine with the 1340-H cylinder would operate smoothly was 18.5 and the spark advance for maximum power with this mixture ratio was 50 degrees B.T.C. A method is discussed for reducing the amount of testing necessary to obtain curves for minimum brake fuel consumption.

  5. Brief review of Rover fuel development at Los Alamos

    NASA Technical Reports Server (NTRS)

    Davidson, Keith V.

    1991-01-01

    A brief review of the graphite matrix uranium fuel development efforts at Los Alamos from 1955 through 1972 is presented. The uses of graphite flour carbon black, various binders, uranium dioxide, coated UC2 particles, and zirconium carbide in this development are described.

  6. Dataset for analysing the relationships among economic growth, fossil fuel and non-fossil fuel consumption.

    PubMed

    Asafu-Adjaye, John; Byrne, Dominic; Alvarez, Maximiliano

    2017-02-01

    The data presented in this article are related to the research article entitled 'Economic Growth, Fossil Fuel and Non-Fossil Consumption: A Pooled Mean Group Analysis using Proxies for Capital' (J. Asafu-Adjaye, D. Byrne, M. Alvarez, 2016) [1]. This article describes data modified from three publicly available data sources: the World Bank׳s World Development Indicators (http://databank.worldbank.org/data/reports.aspx?source=world-development-indicators), the U.S. Energy Information Administration׳s International Energy Statistics (http://www.eia.gov/cfapps/ipdbproject/IEDIndex3.cfm?tid=44&pid=44&aid=2) and the Barro-Lee Educational Attainment Dataset (http://www.barrolee.com). These data can be used to examine the relationships between economic growth and different forms of energy consumption. The dataset is made publicly available to promote further analyses.

  7. Fuel consumptions and exhaust emissions induced by cooperative adaptive cruise control strategies

    NASA Astrophysics Data System (ADS)

    Yu, Shaowei; Shi, Zhongke

    2015-04-01

    Many cooperative adaptive cruise control strategies have been presented to improve traffic efficiency as well as road traffic safety, but scholars have rarely explored the impacts of these strategies on cars' fuel consumptions and exhaust emissions. In this paper, we respectively select two-velocity difference model, multiple velocity difference model and the car-following model considering multiple preceding cars' accelerations to investigate each car's fuel consumptions, carbon monoxide (CO), hydrocarbons (HC) and nitrogen oxides (NOX) emissions and carry out comparative analysis. The comparisons of fuel consumptions and exhaust emissions in three different cruise control strategies show that cooperative cars simulated by the car-following model considering multiple preceding cars' accelerations can run with the minimal fuel consumptions, CO, HC and NOX emissions, thus, taking the car-following model considering multiple preceding cars' accelerations as the cooperative adaptive cruise control strategy can significantly improve cars' fuel efficiency and exhaust emissions.

  8. Fuels Inventories in the Los Alamos National Laboratory Region: 1997

    SciTech Connect

    Balice, R.G.; Oswald, B.P.; Martin, C.

    1999-03-01

    Fifty-four sites were surveyed for fuel levels, vegetational structures, and topographic characteristics. Most of the surveyed sites were on Los Alamos National Laboratory property, however, some surveys were also conducted on U.S. Forest Service property. The overall vegetation of these sites ranged from pinon-juniper woodlands to ponderosa pine forests to mixed conifer forests, and the topographic positions included canyons, mesas, and mountains. The results of these surveys indicate that the understory fuels are the greatest in mixed conifer forests and that overstory fuels are greatest in both mixed conifer forests and ponderosa pine forests on mesas. The geographic distribution of these fuels would suggest a most credible wildfire scenario for the Los Alamos region. Three major fires have occurred since 1954 and these fires behaved in a manner that is consistent with this scenario. The most credible wildfire scenario was also supported by the results of BEHAVE modeling that used the fuels inventory data as inputs. Output from the BEHAVE model suggested that catastrophic wildfires would continue to occur during any season with sufficiently dry, windy weather.

  9. Effects of signal light on the fuel consumption and emissions under car-following model

    NASA Astrophysics Data System (ADS)

    Tang, Tie-Qiao; Yi, Zhi-Yan; Lin, Qing-Feng

    2017-03-01

    In this paper, a car-following model is utilized to study the effects of signal light on each vehicle's fuel consumption, CO, HC and NOX. The numerical results show that each vehicle's fuel consumption and emissions are influenced by the signal light and that the effects are related to the green split of the signal light and the vehicle's time headway at the origin, which can help drivers adjust their micro driving behavior on the road with a signal light to reduce their fuel consumption and emissions.

  10. Optimization to reduce fuel consumption in charge depleting mode

    SciTech Connect

    Roos, Bryan Nathaniel; Martini, Ryan D.

    2014-08-26

    A powertrain includes an internal combustion engine, a motor utilizing electrical energy from an energy storage device, and a plug-in connection. A Method for controlling the powertrain includes monitoring a fuel cut mode, ceasing a fuel flow to the engine based upon the fuel cut mode, and through a period of operation including acceleration of the powertrain, providing an entirety of propelling torque to the powertrain with the electrical energy from the energy storage device based upon the fuel cut mode.

  11. Impact of methanol-gasoline fuel blend on the fuel consumption and exhaust emission of a SI engine

    NASA Astrophysics Data System (ADS)

    Rifal, Mohamad; Sinaga, Nazaruddin

    2016-04-01

    In this study, the effect of methanol-gasoline fuel blend (M15, M30 and M50) on the fuel consumption and exhaust emission of a spark ignition engine (SI) were investigated. In the experiment, an engine four-cylinder, four stroke injection system (engine of Toyota Kijang Innova 1TR-FE) was used. Test were did to know the relation of fuel consumption and exhaust emission (CO, CO2, HC) were analyzed under the idle throttle operating condition and variable engine speed ranging from 1000 to 4000 rpm. The experimental result showed that the fuel consumption decrease with the use of methanol. It was also shown that the CO and HC emission were reduced with the increase methanol content while CO2 were increased.

  12. Sustainable Hydrogen Fueling Station, California State University, Los Angeles

    SciTech Connect

    Blekhman, David

    2013-01-25

    The College of Engineering, Computer Science, & Technology at California State University, Los Angeles as part of its alternative and renewable energy leadership efforts has built a sustainable hydrogen station to teach and demonstrate the production and application of hydrogen as the next generation of fully renewable fuel for transportation. The requested funding was applied toward the acquisition of the core hydrogen station equipment: electrolyzer, compressors and hydrogen storage.

  13. Process for Generating Engine Fuel Consumption Map: Future Atkinson Engine with Cooled EGR and Cylinder Deactivation

    EPA Pesticide Factsheets

    This document summarizes the process followed to utilize GT-POWER modeled engine and laboratory engine dyno test data to generate a full engine fuel consumption map which can be used by EPA's ALPHA vehicle simulations.

  14. Reduction of fuel consumption and exhaust pollutant using intelligent transport systems.

    PubMed

    Nasir, Mostofa Kamal; Md Noor, Rafidah; Kalam, M A; Masum, B M

    2014-01-01

    Greenhouse gas emitted by the transport sector around the world is a serious issue of concern. To minimize such emission the automobile engineers have been working relentlessly. Researchers have been trying hard to switch fossil fuel to alternative fuels and attempting to various driving strategies to make traffic flow smooth and to reduce traffic congestion and emission of greenhouse gas. Automobile emits a massive amount of pollutants such as Carbon Monoxide (CO), hydrocarbons (HC), carbon dioxide (CO2), particulate matter (PM), and oxides of nitrogen (NO x ). Intelligent transport system (ITS) technologies can be implemented to lower pollutant emissions and reduction of fuel consumption. This paper investigates the ITS techniques and technologies for the reduction of fuel consumption and minimization of the exhaust pollutant. It highlights the environmental impact of the ITS application to provide the state-of-art green solution. A case study also advocates that ITS technology reduces fuel consumption and exhaust pollutant in the urban environment.

  15. Reduction of Fuel Consumption and Exhaust Pollutant Using Intelligent Transport Systems

    PubMed Central

    Nasir, Mostofa Kamal; Md Noor, Rafidah; Kalam, M. A.; Masum, B. M.

    2014-01-01

    Greenhouse gas emitted by the transport sector around the world is a serious issue of concern. To minimize such emission the automobile engineers have been working relentlessly. Researchers have been trying hard to switch fossil fuel to alternative fuels and attempting to various driving strategies to make traffic flow smooth and to reduce traffic congestion and emission of greenhouse gas. Automobile emits a massive amount of pollutants such as Carbon Monoxide (CO), hydrocarbons (HC), carbon dioxide (CO2), particulate matter (PM), and oxides of nitrogen (NOx). Intelligent transport system (ITS) technologies can be implemented to lower pollutant emissions and reduction of fuel consumption. This paper investigates the ITS techniques and technologies for the reduction of fuel consumption and minimization of the exhaust pollutant. It highlights the environmental impact of the ITS application to provide the state-of-art green solution. A case study also advocates that ITS technology reduces fuel consumption and exhaust pollutant in the urban environment. PMID:25032239

  16. Vegetation structure and fire weather influence variation in burn severity and fuel consumption during peatland wildfires

    NASA Astrophysics Data System (ADS)

    Davies, G. M.; Domènech, R.; Gray, A.; Johnson, P. C. D.

    2015-09-01

    Temperate peatland wildfires are of significant environmental concern but information on their environmental effects is lacking. We assessed variation in burn severity and fuel consumption within and between wildfires that burnt British moorlands in 2011 and 2012. We adapted the Composite Burn Index (pCBI) to provide semi-quantitative estimates of burn severity. Pre- and post-fire surface (shrubs and graminoids) and ground (litter, moss, duff) fuel loads associated with large wildfires were assessed using destructive sampling and analysed using a Generalised Linear Mixed Model (GLMM). Consumption during wildfires was compared with published estimates of consumption during prescribed burns. Burn severity and fuel consumption were related to fire weather, assessed using the Canadian Fire Weather Index System (FWI System), and pre-fire fuel structure. pCBI varied 1.6 fold between, and up to 1.7 fold within, wildfires. pCBI was higher where moisture codes of the FWI System indicated drier fuels. Spatial variation in pre- and post-fire fuel load accounted for a substantial proportion of the variance in fuel loads. Average surface fuel consumption was a linear function of pre-fire fuel load. Average ground fuel combustion completeness could be predicted by the Buildup Index. Carbon release ranged between 0.36 and 1.00 kg C m-2. The flammability of ground fuel layers may explain the higher C release-rates seen for wildfires in comparison to prescribed burns. Drier moorland community types appear to be at greater risk of severe burns than blanket-bog communities.

  17. Uncertainties in fuel loading and fire consumption calculations and the Smoke and Emissions Model Intercomparison Project

    NASA Astrophysics Data System (ADS)

    Larkin, N.; Solomon, R.; Strand, T.; Raffuse, S. M.; Craig, K.

    2009-12-01

    Fire and fuel managers often need to know how much fuel will be consumed by a fire, and how much smoke the fire will produce. Many factors influence the end result, including fuel type, loading, and moisture, quantity of live and dead fuels, terrain, and meteorology. A variety of fuel models and consumption models have been developed to help provide estimated quantities of fuel consumption and subsequent smoke production. We present results from this work, done as part of the Smoke and Emissions Model Intercomparison Project that show that the specific choice of model and model coupling can have a large effect on the final answer. We have used four different consumption models (CONSUME3, EPM, FEPS, and FOFEM) with three different fuel loading maps (NFDRS, Hardy, FCCS) to bracket the simulated results. A new web-based database viewer now allows both scientists and land and fire managers to directly compare various results by selecting a fuel loading map and consumption model. For model users interested in information for a specific fire these comparisons can be useful in understanding the uncertainties resulting from different model choices.

  18. Vegetation structure and fire weather influence variation in burn severity and fuel consumption during peatland wildfires

    NASA Astrophysics Data System (ADS)

    Davies, G. M.; Domènech, R.; Gray, A.; Johnson, P. C. D.

    2016-01-01

    Temperate peatland wildfires are of significant environmental concern but information on their environmental effects is lacking. We assessed variation in burn severity and fuel consumption within and between wildfires that burnt British moorlands in 2011 and 2012. We adapted the composite burn index (pCBI) to provide semi-quantitative estimates of burn severity. Pre- and post-fire surface (shrubs and graminoids) and ground (litter, moss, duff) fuel loads associated with large wildfires were assessed using destructive sampling and analysed using a generalised linear mixed model (GLMM). Consumption during wildfires was compared with published estimates of consumption during prescribed burns. Burn severity and fuel consumption were related to fire weather, assessed using the Canadian Fire Weather Index System (FWI System), and pre-fire vegetation type. pCBI varied 1.6 fold between, and up to 1.7 fold within, wildfires. pCBI was higher where moisture codes of the FWI System indicated drier fuels. Spatial variation in pre- and post-fire fuel load accounted for a substantial proportion of the variance in fuel loads. Average surface fuel consumption was a linear function of pre-fire fuel load. Average ground fuel combustion completeness could be predicted by the Buildup Index. Carbon release ranged between 0.36 and 1.00 kg C m-2. The flammability of ground fuel layers may explain the higher C release-rates seen for wildfires in comparison to prescribed burns. Drier moorland community types appear to be at greater risk of severe burns than blanket-bog communities.

  19. Short-Term Energy Outlook Model Documentation: Electricity Generation and Fuel Consumption Models

    EIA Publications

    2014-01-01

    The electricity generation and fuel consumption models of the Short-Term Energy Outlook (STEO) model provide forecasts of electricity generation from various types of energy sources and forecasts of the quantities of fossil fuels consumed for power generation. The structure of the electricity industry and the behavior of power generators varies between different areas of the United States. In order to capture these differences, the STEO electricity supply and fuel consumption models are designed to provide forecasts for the four primary Census regions.

  20. Energy consumption evaluation of fuel bioethanol production from sweet potato.

    PubMed

    Ferrari, Mario Daniel; Guigou, Mairan; Lareo, Claudia

    2013-05-01

    The energy consumption for different operative conditions and configurations of the bioethanol production industrial process from an experimental variety of sweet potato (Ipomea batatas) K 9807.1 was evaluated. A process simulation model was developed using SuperPro Designer® software. The model was based on experimental data gathered from our laboratory experiments and technology and equipment suppliers. The effects of the dry matter ratio of sweet potato to water, the fermentation efficiency, and sweet potato sugar content, on the energy consumption (steam and electricity) were respectively evaluated. All factors were significant. The best ratio of dry matter to total water to work with fresh sweet potato was 0.2 kg dry sweet potato/kg water, as for greater ratios was not found a significant reduction in energy consumption. Also, the drying of the sweet potato previous its processing was studied. It presented an energy consumption greater than the energetic content of the bioethanol produced.

  1. Characterizing SI Engine Transient Fuel Consumption in ALPHA

    EPA Science Inventory

    Examine typical transient engine operation encountered over the EPA's vehicle and engine testing drive cycles to characterize that transient fuel usage, and then describe the changes made to ALPHA to better model transient engine operation.

  2. Measured effect of wind generation on the fuel consumption of an isolated diesel power system

    NASA Astrophysics Data System (ADS)

    Stiller, P. H.; Scott, G. W.; Shaltens, R. K.

    1983-06-01

    The Block Island Power Company (BIPCO), on Block Island, Rhode Island, operates an isolated electric power system consisting of diesel generation and an experimental wind turbine. The 150-kW wind turbine, designated MOD-OA by the U.S. Department of Energy is typically operated in parallel with two diesel generators to serve an average winter load of 350 kW. Wind generation serves up to 60 percent of the system demand depending on wind speed and total system load. Results of diesel fuel consumption measurements are given for the diesel units operated in parallel with the wind turbine and again without the wind turbine. The fuel consumption data are used to calculate the amount of fuel displaced by wind energy. Results indicate that the wind turbine displaced 25,700 lbs. of the diesel fuel during the test period, representing a calculated reduction in fuel consumption of 6.7 percent while generating 11 percent of the total electric energy. The amount of displaced fuel depends on operating conditions and system load. It is also shown that diesel engine throttle activity resulting from wind gusts which rapidly change the wind turbine output do not significantly influence fuel consumption.

  3. Life Cycle Assessment of Vehicle Lightweighting: Novel Mathematical Methods to Estimate Use-Phase Fuel Consumption.

    PubMed

    Kim, Hyung Chul; Wallington, Timothy J; Sullivan, John L; Keoleian, Gregory A

    2015-08-18

    Lightweighting is a key strategy to improve vehicle fuel economy. Assessing the life-cycle benefits of lightweighting requires a quantitative description of the use-phase fuel consumption reduction associated with mass reduction. We present novel methods of estimating mass-induced fuel consumption (MIF) and fuel reduction values (FRVs) from fuel economy and dynamometer test data in the U.S. Environmental Protection Agency (EPA) database. In the past, FRVs have been measured using experimental testing. We demonstrate that FRVs can be mathematically derived from coast down coefficients in the EPA vehicle test database avoiding additional testing. MIF and FRVs calculated for 83 different 2013 MY vehicles are in the ranges 0.22-0.43 and 0.15-0.26 L/(100 km 100 kg), respectively, and increase to 0.27-0.53 L/(100 km 100 kg) with powertrain resizing to retain equivalent vehicle performance. We show how use-phase fuel consumption can be estimated using MIF and FRVs in life cycle assessments (LCAs) of vehicle lightweighting from total vehicle and vehicle component perspectives with, and without, powertrain resizing. The mass-induced fuel consumption model is illustrated by estimating lifecycle greenhouse gas (GHG) emission benefits from lightweighting a grille opening reinforcement component using magnesium or carbon fiber composite for 83 different vehicle models.

  4. Measured effect of wind generation on the fuel consumption of an isolated diesel power system

    NASA Technical Reports Server (NTRS)

    Stiller, P. H.; Scott, G. W.; Shaltens, R. K.

    1983-01-01

    The Block Island Power Company (BIPCO), on Block Island, Rhode Island, operates an isolated electric power system consisting of diesel generation and an experimental wind turbine. The 150-kW wind turbine, designated MOD-OA by the U.S. Department of Energy is typically operated in parallel with two diesel generators to serve an average winter load of 350 kW. Wind generation serves up to 60 percent of the system demand depending on wind speed and total system load. Results of diesel fuel consumption measurements are given for the diesel units operated in parallel with the wind turbine and again without the wind turbine. The fuel consumption data are used to calculate the amount of fuel displaced by wind energy. Results indicate that the wind turbine displaced 25,700 lbs. of the diesel fuel during the test period, representing a calculated reduction in fuel consumption of 6.7 percent while generating 11 percent of the total electric energy. The amount of displaced fuel depends on operating conditions and system load. It is also shown that diesel engine throttle activity resulting from wind gusts which rapidly change the wind turbine output do not significantly influence fuel consumption.

  5. Evaluations of 1997 Fuel Consumption Patterns of Heavy Duty Trucks

    SciTech Connect

    Santini, Danilo

    2001-08-05

    The proposed 21st Century Truck program selected three truck classes for focused analysis. On the basis of gross vehicle weight (GVW) classification, these were Class 8 (representing heavy), Class 6 (representing medium), and Class 2b (representing light). To develop and verify these selections, an evaluation of fuel use of commercial trucks was conducted, using data from the 1997 Vehicle Inventory and Use Survey (VIUS). Truck fuel use was analyzed by registered GVW class, and by body type.

  6. Water consumption footprint and land requirements of large-scale alternative diesel and jet fuel production.

    PubMed

    Staples, Mark D; Olcay, Hakan; Malina, Robert; Trivedi, Parthsarathi; Pearlson, Matthew N; Strzepek, Kenneth; Paltsev, Sergey V; Wollersheim, Christoph; Barrett, Steven R H

    2013-01-01

    Middle distillate (MD) transportation fuels, including diesel and jet fuel, make up almost 30% of liquid fuel consumption in the United States. Alternative drop-in MD and biodiesel could potentially reduce dependence on crude oil and the greenhouse gas intensity of transportation. However, the water and land resource requirements of these novel fuel production technologies must be better understood. This analysis quantifies the lifecycle green and blue water consumption footprints of producing: MD from conventional crude oil; Fischer-Tropsch MD from natural gas and coal; fermentation and advanced fermentation MD from biomass; and hydroprocessed esters and fatty acids MD and biodiesel from oilseed crops, throughout the contiguous United States. We find that FT MD and alternative MD derived from rainfed biomass have lifecycle blue water consumption footprints of 1.6 to 20.1 Lwater/LMD, comparable to conventional MD, which ranges between 4.1 and 7.4 Lwater/LMD. Alternative MD derived from irrigated biomass has a lifecycle blue water consumption footprint potentially several orders of magnitude larger, between 2.7 and 22 600 Lwater/LMD. Alternative MD derived from biomass has a lifecycle green water consumption footprint between 1.1 and 19 200 Lwater/LMD. Results are disaggregated to characterize the relationship between geo-spatial location and lifecycle water consumption footprint. We also quantify the trade-offs between blue water consumption footprint and areal MD productivity, which ranges from 490 to 4200 LMD/ha, under assumptions of rainfed and irrigated biomass cultivation. Finally, we show that if biomass cultivation for alternative MD is irrigated, the ratio of the increase in areal MD productivity to the increase in blue water consumption footprint is a function of geo-spatial location and feedstock-to-fuel production pathway.

  7. Regional analysis of renewable transportation fuels - production and consumption

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoshuai

    The transportation sector contributes more than a quarter of total U.S. greenhouse gas emissions. Replacing fossil fuels with renewable fuels can be a key solution to mitigate GHG emissions from the transportation sector. Particularly, we have focused on land-based production of renewable fuels from landfills and brownfield in the southeastern region of the United States. These so call marginal lands require no direct land-use change to avoid environmental impact and, furthermore, have rendered opportunities for carbon trading and low-carbon intensity business. The resources potential and production capacity were derived using federal and state energy databases with the aid of GIS techniques. To maximize fuels production and land-use efficiency, a scheme of co-location renewable transportation fuels for production on landfills was conducted as a case study. Results of economic modeling analysis indicate that solar panel installed on landfill sites could generate a positive return within the project duration, but the biofuel production within the landfill facility is relatively uncertain, requiring proper sizing of the onsite processing facility, economic scale of production and available tax credits. From the consumers' perspective, a life-cycle cost analysis has been conducted to determine the economic and environmental implications of different transportation choices by consumers. Without tax credits, only the hybrid electric vehicles have lifetime total costs equivalent to a conventional vehicles differing by about 1 to 7%. With tax credits, electric and hybrid electric vehicles could be affordable and attain similar lifetime total costs as compared to conventional vehicles. The dissertation research has provided policy-makers and consumers a pathway of prioritizing investment on sustainable transportation systems with a balance of environmental benefits and economic feasibility.

  8. Vehicular emissions and fuel consumption estimation in passer IV. Research report

    SciTech Connect

    Chaudhary, N.A.

    1995-04-01

    Gasoline consumed by vehicles traveling within urban signalized networks constitutes a large portion of the total fuel usage in the United States. In addition, pollutants emitted by these vehicles degrade urban air quality. It is well known that the optimal coordination of traffic signals on urban signalized arterials improves traffic flow and reduces gasoline consumption and vehicular emissions. The research performed in this project incorporated fuel consumption and emissions estimation procedures into PASSER IV, a program for optimizing bandwidth-based signal timings in traffic networks. The enhanced PASSER IV software will allow Traffic Engineers to better assess the impacts of alternate signal timing plans on fuel consumption and emissions of vehicles traveling in a signalized network.

  9. Decadal trends in fossil fuel energy consumption and related air pollutant emissions

    NASA Astrophysics Data System (ADS)

    Shekar Reddy, M.; Venkataraman, C.; Boucher, O.

    2003-04-01

    The economic liberalization in the early 1990s in India fuelled the industrial production, enabled the decadal annual average rate of 5.9% in the gross domestic product (GDP) during 1990-2000. This resulted in a steady increase of fossil fuels energy consumption throughout the decade. This paper investigates the trends in the GDP growth rate, sectoral fossil fuels consumption and resultant atmospheric air pollutant emissions during the above period. The fossil fuels energy consumption in the 1990 was 6875 PJ, and increased to 10801 PJ in 2000, with a decadal annual average growth rate of 5.7%. Share of the coal and petroleum fuels are 52% and 35%, respectively during 2000. The relative share contribution of power, industrial, transport, and domestic sectors are 40%, 48%, 5% and 7%, respectively. The contribution of various sectors to fossil fuels energy consumption, and the relative distribution of the different fuels within each sector will be discussed. The annual sulfur dioxide (SO_2) and aerosols (particulate matter, black carbon, organic carbon) emissions are estimated using sector and fuel specific average emission factors (mass of pollutant per unit mass of fuel burnt). The estimates take into account the changes in the fuel characteristics and technology during the study period. The estimated SO_2 emissions are 1.7 Tg S yr-1 in 1990 and increased to 2.5 Tg S yr-1 in 2000, with an annual average increase of 5%. Majority of the SO_2 emissions are from coal consumption accounting 62%, predominantly from the power plants. Trends in fuel and sectoral contributions to SO2 emissions over the decade will be presented. In the transportation sector, diesels contribute significantly to BC. Notably, in India, two-stroke engines account for 78% of total vehicle fleet, and contribute significantly to organic carbon emissions. An analysis of available SO_2 and aerosols concentration measurements will be made to explore the possible correlations between trends in the

  10. Issues in International Energy Consumption Analysis: Chinese Transportation Fuel Demand

    EIA Publications

    2014-01-01

    Since the 1990s, China has experienced tremendous growth in its transportation sector. By the end of 2010, China's road infrastructure had emerged as the second-largest transportation system in the world after the United States. Passenger vehicle sales are dramatically increasing from a little more than half a million in 2000, to 3.7 million in 2005, to 13.8 million in 2010. This represents a twenty-fold increase from 2000 to 2010. The unprecedented motorization development in China led to a significant increase in oil demand, which requires China to import progressively more petroleum from other countries, with its share of petroleum imports exceeding 50% of total petroleum demand since 2009. In response to growing oil import dependency, the Chinese government is adopting a broad range of policies, including promotion of fuel-efficient vehicles, fuel conservation, increasing investments in oil resources around the world, and many others.

  11. Monthly, global emissions of carbon dioxide from fossil fuel consumption

    SciTech Connect

    Andres, Robert Joseph; Gregg, JS; Losey, London M; Marland, Gregg; Boden, Thomas A

    2011-01-01

    This paper examines available data, develops a strategy and presents a monthly, global time series of fossil-fuel carbon dioxide emissions for the years 1950 2006. This monthly time series was constructed from detailed study of monthly data from the 21 countries that account for approximately 80% of global total emissions. These data were then used in a Monte Carlo approach to proxy for all remaining countries. The proportional-proxy methodology estimates by fuel group the fraction of annual emissions emitted in each country and month. Emissions from solid, liquid and gas fuels are explicitly modelled by the proportional-proxy method. The primary conclusion from this study is the global monthly time series is statistically significantly different from a uniform distribution throughout the year. Uncertainty analysis of the data presented show that the proportional-proxy method used faithfully reproduces monthly patterns in the data and the global monthly pattern of emissions is relatively insensitive to the exact proxy assignments used. The data and results presented here should lead to a better understanding of global and regional carbon cycles, especially when the mass data are combined with the stable carbon isotope data in atmospheric transport models.

  12. Estimate of Fuel Consumption and GHG Emission Impact on an Automated Mobility District: Preprint

    SciTech Connect

    Chen, Yuche; Young, Stanley; Gonder, Jeff; Qi, Xuewei

    2015-12-11

    This study estimates the range of fuel and emissions impact of an automated-vehicle (AV) based transit system that services campus-based developments, termed an automated mobility district (AMD). The study develops a framework to quantify the fuel consumption and greenhouse gas (GHG) emission impacts of a transit system comprised of AVs, taking into consideration average vehicle fleet composition, fuel consumption/GHG emission of vehicles within specific speed bins, and the average occupancy of passenger vehicles and transit vehicles. The framework is exercised using a previous mobility analysis of a personal rapid transit (PRT) system, a system which shares many attributes with envisioned AV-based transit systems. Total fuel consumption and GHG emissions with and without an AMD are estimated, providing a range of potential system impacts on sustainability. The results of a previous case study based of a proposed implementation of PRT on the Kansas State University (KSU) campus in Manhattan, Kansas, serves as the basis to estimate personal miles traveled supplanted by an AMD at varying levels of service. The results show that an AMD has the potential to reduce total system fuel consumption and GHG emissions, but the amount is largely dependent on operating and ridership assumptions. The study points to the need to better understand ride-sharing scenarios and calls for future research on sustainability benefits of an AMD system at both vehicle and system levels.

  13. Estimate of Fuel Consumption and GHG Emission Impact from an Automated Mobility District

    SciTech Connect

    Chen, Yuche; Young, Stanley; Qi, Xuewei; Gonder, Jeffrey

    2015-10-19

    This study estimates the range of fuel and emissions impact of an automated-vehicle (AV) based transit system that services campus-based developments, termed an automated mobility district (AMD). The study develops a framework to quantify the fuel consumption and greenhouse gas (GHG) emission impacts of a transit system comprised of AVs, taking into consideration average vehicle fleet composition, fuel consumption/GHG emission of vehicles within specific speed bins, and the average occupancy of passenger vehicles and transit vehicles. The framework is exercised using a previous mobility analysis of a personal rapid transit (PRT) system, a system which shares many attributes with envisioned AV-based transit systems. Total fuel consumption and GHG emissions with and without an AMD are estimated, providing a range of potential system impacts on sustainability. The results of a previous case study based of a proposed implementation of PRT on the Kansas State University (KSU) campus in Manhattan, Kansas, serves as the basis to estimate personal miles traveled supplanted by an AMD at varying levels of service. The results show that an AMD has the potential to reduce total system fuel consumption and GHG emissions, but the amount is largely dependent on operating and ridership assumptions. The study points to the need to better understand ride-sharing scenarios and calls for future research on sustainability benefits of an AMD system at both vehicle and system levels.

  14. Alcohol outlet density and alcohol consumption in Los Angeles county and southern Louisiana.

    PubMed

    Schonlau, Matthias; Scribner, Richard; Farley, Thomas A; Theall, Katherine; Bluthenthal, Ricky N; Scott, Molly; Cohen, Deborah A

    2008-11-01

    The objective of this study was to assess the relationship between alcohol availability, as measured by the density of off-premise alcohol outlets, and alcohol consumption in Los Angeles county and southern Louisiana, USA. Consumption information was collected through a telephone survey of 2,881 households in Los Angeles county and pre-Katrina southern Louisiana, nested within 220 census tracts. Respondents' addresses were geo-coded and both neighbourhood (census tracts and buffers of varying sizes) and individual (network distance to the closest alcohol outlet) estimates of off-sale alcohol outlet density were computed. Alcohol outlet density was not associated with the percentage of people who were drinkers in either site. Alcohol outlet density was associated with the quantity of consumption among drinkers in Louisiana but not in Los Angeles. Outlet density within a one-mile buffer of the respondent's home was more strongly associated with alcohol consumption than outlet density in the respondent's census tract. The conclusion is that the relationship between neighbourhood alcohol outlet density and alcohol consumption is complex and may vary due to differences in neighbourhood design and travel patterns.

  15. FUEL CONSUMPTION AND COST SAVINGS OF CLASS 8 HEAVY-DUTY TRUCKS POWERED BY NATURAL GAS

    SciTech Connect

    Gao, Zhiming; LaClair, Tim J; Daw, C Stuart; Smith, David E

    2013-01-01

    We compare the fuel consumption and greenhouse gas emissions of natural gas and diesel heavy-duty (HD) class 8 trucks under consistent simulated drive cycle conditions. Our study included both conventional and hybrid HD trucks operating with either natural gas or diesel engines, and we compare the resulting simulated fuel efficiencies, fuel costs, and payback periods. While trucks powered by natural gas engines have lower fuel economy, their CO2 emissions and costs are lower than comparable diesel trucks. Both diesel and natural gas powered hybrid trucks have significantly improved fuel economy, reasonable cost savings and payback time, and lower CO2 emissions under city driving conditions. However, under freeway-dominant driving conditions, the overall benefits of hybridization are considerably less. Based on payback period alone, non-hybrid natural gas trucks appear to be the most economic option for both urban and freeway driving environments.

  16. 78 FR 37883 - Information Collection Activities: Report of Fuel Cost, Consumption, and Surcharge Revenue

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-24

    ... Surcharge Revenue AGENCY: Surface Transportation Board. ACTION: 60-day notice of request for comments and... Management and Budget (OMB) an extension of approval for the collection of the Report of Fuel Cost, Consumption, and Surcharge Revenue. Comments are requested concerning: (1) The accuracy of the Board's...

  17. 77 FR 18718 - Petroleum Reduction and Alternative Fuel Consumption Requirements for Federal Fleets

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-28

    ...; ] DEPARTMENT OF ENERGY 10 CFR Part 438 RIN 1904-AB98 Petroleum Reduction and Alternative Fuel Consumption Requirements for Federal Fleets AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy. ACTION: Request for information. SUMMARY: On March 12, 2012, the Department of Energy (DOE) issued...

  18. 14 CFR 291.44 - BTS Schedule P-12(a), Fuel Consumption by Type of Service and Entity.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false BTS Schedule P-12(a), Fuel Consumption by... TRANSPORTATION Reporting Rules § 291.44 BTS Schedule P-12(a), Fuel Consumption by Type of Service and Entity. (a) For the purposes of BTS schedule P-12(a), type of service shall be either scheduled service...

  19. 14 CFR 291.44 - BTS Schedule P-12(a), Fuel Consumption by Type of Service and Entity.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false BTS Schedule P-12(a), Fuel Consumption by... TRANSPORTATION Reporting Rules § 291.44 BTS Schedule P-12(a), Fuel Consumption by Type of Service and Entity. (a) For the purposes of BTS schedule P-12(a), type of service shall be either scheduled service...

  20. How hybrid-electric vehicles are different from conventional vehicles: the effect of weight and power on fuel consumption

    NASA Astrophysics Data System (ADS)

    Reynolds, C.; Kandlikar, M.

    2007-01-01

    An increasingly diverse set of hybrid-electric vehicles (HEVs) is now available in North America. The recent generation of HEVs have higher fuel consumption, are heavier, and are significantly more powerful than the first generation of HEVs. We compare HEVs for sale in the United States in 2007 to equivalent conventional vehicles and determine how vehicle weight and system power affects fuel consumption within each vehicle set. We find that heavier and more powerful hybrid-electric vehicles are eroding the fuel consumption benefit of this technology. Nonetheless, the weight penalty for fuel consumption in HEVs is significantly lower than in equivalent conventional internal combustion engine vehicles (ICEVs). A 100 kg change in vehicle weight increases fuel consumption by 0.7 l/100 km in ICEVs compared with 0.4 l/100 km in HEVs. When the HEVs are compared with their ICEV counterparts in an equivalence model that differentiates between cars and sports-utility vehicles, the average fuel consumption benefit was 2.7 l/100 km. This analysis further reveals that a HEV which is 100 kg heavier than an identical ICEV would have a fuel consumption penalty of 0.15 l/100 km. Likewise, an increase in the HEV's power by 10 kW results in a fuel consumption penalty of 0.27 l/100 km.

  1. Using the Relationship between Vehicle Fuel Consumption and CO[subscript 2] Emissions to Illustrate Chemical Principles

    ERIC Educational Resources Information Center

    Oliver-Hoyo, Maria T.; Pinto, Gabriel

    2008-01-01

    This instructional resource utilizes consumer product information by which students compare theoretical stoichiometric calculations to CO[subscript 2] car emissions and fuel consumption data. Representing graphically the emission of CO[subscript 2] versus consumption of fuel provides a tangible way of connecting concepts studied in chemistry…

  2. More efficiency in fuel consumption using gearbox optimization based on Taguchi method

    NASA Astrophysics Data System (ADS)

    Goharimanesh, Masoud; Akbari, Aliakbar; Akbarzadeh Tootoonchi, Alireza

    2014-05-01

    Automotive emission is becoming a critical threat to today's human health. Many researchers are studying engine designs leading to less fuel consumption. Gearbox selection plays a key role in an engine design. In this study, Taguchi quality engineering method is employed, and optimum gear ratios in a five speed gear box is obtained. A table of various gear ratios is suggested by design of experiment techniques. Fuel consumption is calculated through simulating the corresponding combustion dynamics model. Using a 95 % confidence level, optimal parameter combinations are determined using the Taguchi method. The level of importance of the parameters on the fuel efficiency is resolved using the analysis of signal-to-noise ratio as well as analysis of variance.

  3. Development of a Life Cycle Inventory of Water Consumption Associated with the Production of Transportation Fuels

    SciTech Connect

    Lampert, David J.; Cai, Hao; Wang, Zhichao; Keisman, Jennifer; Wu, May; Han, Jeongwoo; Dunn, Jennifer; Sullivan, John L.; Elgowainy, Amgad; Wang, Michael; Keisman, Jennifer

    2015-10-01

    The production of all forms of energy consumes water. To meet increased energy demands, it is essential to quantify the amount of water consumed in the production of different forms of energy. By analyzing the water consumed in different technologies, it is possible to identify areas for improvement in water conservation and reduce water stress in energy-producing regions. The transportation sector is a major consumer of energy in the United States. Because of the relationships between water and energy, the sustainability of transportation is tied to management of water resources. Assessment of water consumption throughout the life cycle of a fuel is necessary to understand its water resource implications. To perform a comparative life cycle assessment of transportation fuels, it is necessary first to develop an inventory of the water consumed in each process in each production supply chain. The Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model is an analytical tool that can used to estimate the full life-cycle environmental impacts of various transportation fuel pathways from wells to wheels. GREET is currently being expanded to include water consumption as a sustainability metric. The purpose of this report was to document data sources and methodologies to estimate water consumption factors (WCF) for the various transportation fuel pathways in GREET. WCFs reflect the quantity of freshwater directly consumed per unit production for various production processes in GREET. These factors do not include consumption of precipitation or low-quality water (e.g., seawater) and reflect only water that is consumed (i.e., not returned to the source from which it was withdrawn). The data in the report can be combined with GREET to compare the life cycle water consumption for different transportation fuels.

  4. The Consumption Trend and Subscription Factors of Ethnic Newspaper: A Study of Asian-Americans in Los Angeles.

    ERIC Educational Resources Information Center

    Kim, Won Yong

    Focusing on the general consumption pattern of ethnic newspapers by Asian-Americans and the underlying attributes of that consumption, a study surveyed 406 randomly selected Asian-Americans (Koreans, Japanese, Chinese, and Filipinos) in the Los Angeles area. The data were analyzed in terms of developmental trends of consumption by years of…

  5. Fuel Consumption Modeling of a Transport Category Aircraft Using Flight Operations Quality Assurance Data: A Literature Review

    NASA Technical Reports Server (NTRS)

    Stolzer, Alan J.

    2002-01-01

    Fuel is a major cost expense for air carriers. A typical airline spends 10% of its operating budget on the purchase of jet fuel, which even exceeds its expenditures on aircraft acquisitions. Thus, it is imperative that fuel consumption be managed as wisely as possible. The implementation of Flight Operations Quality Assurance (FOQA) programs at airlines may be able to assist in this management effort. The purpose of the study is to examine the literature regarding fuel consumption by air carriers, the literature related to air carrier fuel conservation efforts, and the literature related to the appropriate statistical methodologies to analyze the FOQA-derived data.

  6. Modelling fuel consumption in kerbside source segregated food waste collection: separate collection and co-collection.

    PubMed

    Chu, T W; Heaven, S; Gredmaier, L

    2015-01-01

    Source separated food waste is a valuable feedstock for renewable energy production through anaerobic digestion, and a variety of collection schemes for this material have recently been introduced. The aim of this study was to identify options that maximize collection efficiency and reduce fuel consumption as part of the overall energy balance. A mechanistic model was developed to calculate the fuel consumption of kerbside collection of source segregated food waste, co-mingled dry recyclables and residual waste. A hypothetical city of 20,000 households was considered and nine scenarios were tested with different combinations of collection frequencies, vehicle types and waste types. The results showed that the potential fuel savings from weekly and fortnightly co-collection of household waste range from 7.4% to 22.4% and 1.8% to 26.6%, respectively, when compared to separate collection. A compartmentalized vehicle split 30:70 always performed better than one with two compartments of equal size. Weekly food waste collection with alternate weekly collection of the recyclables and residual waste by two-compartment collection vehicles was the best option to reduce the overall fuel consumption.

  7. The Fossil Fueled Metropolis: Los Angeles and the Emergence of Oil-Based Energy in North America, 1865--1930

    NASA Astrophysics Data System (ADS)

    Cooke, Jason Arthur

    Beginning with coal in the nineteenth century, the mass production and intensive consumption of fossil fuel energy fundamentally changed patterns of urban and industrial development in North America. Focusing on the metropolitan development of Los Angeles, this dissertation examines how the emergence of oil-based capitalism in the first three decades of the twentieth century was sustained and made increasingly resilient through the production of urban and industrial space. In a region where coal was scarce, the development of oil-based energy was predicated on long-term investments into conversion technologies, storage systems and distribution networks that facilitated the efficient and economical flow of liquefied fossil fuel. In this dissertation, I argue that the historical and geographical significance of the Southern California petroleum industry is derived from how its distinctive market expansion in the first three decades of the twentieth century helped establish the dominance of oil-based energy as the primary fuel for transportation in capitalist society. In North America, the origins of oil-based capitalism can be traced to the turn of the twentieth century when California was the largest oil-producing economy in the United States and Los Angeles was the fastest growing metropolitan region. This dissertation traces how Los Angeles became the first city in North America where oil became a formative element of urban and industrial development: not only as fuel for transportation, but also in the infrastructures, landscapes and networks that sustain a critical dependence on oil-based energy. With a distinctive metropolitan geography, decentralized and automobile-dependent, Los Angeles became the first oil-based city in North America and thus provides an ideal case study for examining the regional dynamics of energy transition, establishment and dependence. Interwoven with the production of urban and industrial space, oil remains the primary fuel that

  8. Water Use in Los Angeles, California: Consumption Patterns, Ecosystem Response and Impact on Regional Water Budgets

    NASA Astrophysics Data System (ADS)

    Hogue, T. S.

    2014-12-01

    The City of Los Angeles relies heavily on external water sources, primarily the Eastern Sierra, Northern California and the Colorado River, and approximately 90% of the City's water supply is snowpack dependent. In recent years, water conservation measures have been implemented in response to regional drought, which include a tiered pricing structure and watering restrictions. As a result of implemented conservation policies, Los Angeles reported the lowest water consumption per capita per day in 2011 among cities over 1 million people in the U.S. This presentation will highlight our ongoing work to better understand the coupling between humans, ecosystems and water across the City of Los Angeles, especially during the recent drought period. Our work is unique in that we integrate social, ecological, and hydrologic data, including ten years of residential water consumption data for the entire city of Los Angeles, extensive groundwater well data, socio-economic information and remote sensing to evaluate relationships as well as spatial and temporal patterns. Developed statistical models demonstrated that Single-Family Residential (SFR) water use across the City is primarily driven by household income, landscape greenness, water rates and water volume allocation,, with higher consumption rates in the northern, warmer and more affluent parts, and lower consumption rates in the less affluent neighborhoods near Downtown. Landscape use also varies greatly across the city, averaging 50% of total SFR. Our evaluation of conservation efforts shows that the combination of mandatory watering restrictions and price increase led to a water reduction of 23%, while voluntary restrictions led to only a 6% reduction in water use. Relationships of water use to ecosystems (greenness) and groundwater variability were also evaluated and will be highlighted. Our ultimate goal is to improve predictions of human-water interactions in order to drive policy change and guide future demand

  9. Life cycle inventory energy consumption and emissions for biodiesel versus petroleum diesel fueled construction vehicles.

    PubMed

    Pang, Shih-Hao; Frey, H Christopher; Rasdorf, William J

    2009-08-15

    Substitution of soy-based biodiesel fuels for petroleum diesel will alter life cycle emissions for construction vehicles. A life cycle inventory was used to estimate fuel cycle energy consumption and emissions of selected pollutants and greenhouse gases. Real-world measurements using a portable emission measurement system (PEMS) were made forfive backhoes, four front-end loaders, and six motor graders on both fuels from which fuel consumption and tailpipe emission factors of CO, HC, NO(x), and PM were estimated. Life cycle fossil energy reductions are estimated it 9% for B20 and 42% for B100 versus petroleum diesel based on the current national energy mix. Fuel cycle emissions will contribute a larger share of total life cycle emissions as new engines enter the in-use fleet. The average differences in life cycle emissions for B20 versus diesel are: 3.5% higher for NO(x); 11.8% lower for PM, 1.6% higher for HC, and 4.1% lower for CO. Local urban tailpipe emissions are estimated to be 24% lower for HC, 20% lower for CO, 17% lower for PM, and 0.9% lower for NO(x). Thus, there are environmental trade-offs such as for rural vs urban areas. The key sources of uncertainty in the B20 LCI are vehicle emission factors.

  10. Study of operational parameters impacting helicopter fuel consumption. [using computer techniques (computer programs)

    NASA Technical Reports Server (NTRS)

    Cross, J. L.; Stevens, D. D.

    1976-01-01

    A computerized study of operational parameters affecting helicopter fuel consumption was conducted as an integral part of the NASA Civil Helicopter Technology Program. The study utilized the Helicopter Sizing and Performance Computer Program (HESCOMP) developed by the Boeing-Vertol Company and NASA Ames Research Center. An introduction to HESCOMP is incorporated in this report. The results presented were calculated using the NASA CH-53 civil helicopter research aircraft specifications. Plots from which optimum flight conditions for minimum fuel use that can be obtained are presented for this aircraft. The results of the study are considered to be generally indicative of trends for all helicopters.

  11. Cold start fuel consumption of a diesel and a petrol car

    SciTech Connect

    Pearce, T.C.; Waters, M.H.L.

    1980-01-01

    Measurements have been made of the fuel consumption of a petrol and a diesel car when starting from cold. The cars were the 1.1 liter petrol VW Golf and the 1.5 liter diesel version, which have the same passenger accommodation and nearly identical road performance. It was found that the diesel car used less fuel in the warm-up period than the petrol, both when being driven at constant speed on a test track and with the engine idling and the car stationary. (Copyright (c) Crown Copyright 1980.)

  12. Assessment for fuel consumption and exhaust emissions of China's vehicles: future trends and policy implications.

    PubMed

    Wu, Yingying; Zhao, Peng; Zhang, Hongwei; Wang, Yuan; Mao, Guozhu

    2012-01-01

    In the recent years, China's auto industry develops rapidly, thus bringing a series of burdens to society and environment. This paper uses Logistic model to simulate the future trend of China's vehicle population and finds that China's auto industry would come into high speed development time during 2020-2050. Moreover, this paper predicts vehicles' fuel consumption and exhaust emissions (CO, HC, NO(x), and PM) and quantificationally evaluates related industry policies. It can be concluded that (1) by 2020, China should develop at least 47 million medium/heavy hybrid cars to prevent the growth of vehicle fuel consumption; (2) China should take the more stringent vehicle emission standard V over 2017-2021 to hold back the growth of exhaust emissions; (3) developing new energy vehicles is the most effective measure to ease the pressure brought by auto industry.

  13. Jet transport energy management for minimum fuel consumption and noise impact in the terminal area

    NASA Technical Reports Server (NTRS)

    Bull, J. S.; Foster, J. D.

    1974-01-01

    Significant reductions in both noise and fuel consumption can be gained through careful tailoring of approach flightpath and airspeed profile, and the point at which the landing gear and flaps are lowered. For example, the noise problem has been successfully attacked in recent years with development of the 'two-segment' approach, which brings the aircraft in at a steeper angle initially, thereby achieving noise reduction through lower thrust settings and higher altitudes. A further reduction in noise and a significant reduction in fuel consumption can be achieved with the 'decelerating approach' concept. In this case, the approach is initiated at high airspeed and in a drag configuration that allows for low thrust. The landing flaps are then lowered at the appropriate time so that the airspeed slowly decelerates to V sub r at touchdown. The decelerating approach concept can be applied to constant glideslope flightpaths or segmented flightpaths such as the two-segment approach.

  14. The methodology of variable management of propellant fuel consumption by jet-propulsion engines of a spacecraft

    NASA Astrophysics Data System (ADS)

    Kovtun, V. S.

    2012-12-01

    Traditionally, management of propellant fuel consumption on board of a spacecraft is only associated with the operation of jet-propulsion engines (JPE) that are actuator devices of motion control systems (MCS). The efficiency of propellant fuel consumption depends not only on the operation of the MCS, but also, to one extent or another, on all systems functioning on board of a spacecraft, and on processes that occur in them and involve conversion of variable management of propellant fuel consumption by JPEs as a constituent part of the control of the complex process of spacecraft flight.

  15. Influence of malfunctions of the maintenance activities on the urban buses fuel consumption

    NASA Astrophysics Data System (ADS)

    George, Crişan; Nicolae, Filip

    2014-06-01

    Optimization of activities with the aim to provide quality service in conditions of high profitability, is one of the main objectives chased by managers in transportation companies. As a consequence, directing the attention towards monitoring of maintenance activities of vehicles fleet, can achieve desired results. Two of the most important issues related to the maintenance activity, is the increase of reliability and reduction of fuel consumption of the vehicles fleet. Aforementioned actions represents a way forward for raising the quality and profitability of services offered. In this paper, the main ways of monitoring the fuel consumption, in order to reduce it and increase the reliability of transportation vehicles fleet, are presented. For the evaluation of the maintenance system and the degree of influence of malfunctions recorded on the fuel consumption, using the Pareto -ABC method, following case study on a fleet of buses for urban public transport has been conducted. Results obtained highlights the deficiencies of the maintenance process carried out and constitutes a solid base for the reorganization of the maintenance activity, involving preventive maintenance activities, in order to contribute decisively to the results targeted by the management of transport companies.

  16. Peak-Seeking Optimization of Trim for Reduced Fuel Consumption: Architecture and Performance Predictions

    NASA Technical Reports Server (NTRS)

    Schaefer, Jacob; Brown, Nelson A.

    2013-01-01

    A peak-seeking control approach for real-time trim configuration optimization for reduced fuel consumption has been developed by researchers at the National Aeronautics and Space Administration (NASA) Dryden Flight Research Center to address the goals of the NASA Environmentally Responsible Aviation project to reduce fuel burn and emissions. The peak-seeking control approach is based on a steepest-descent algorithm using a time-varying Kalman filter to estimate the gradient of a performance function of fuel flow versus control surface positions. In real-time operation, deflections of symmetric ailerons, trailing-edge flaps, and leading-edge flaps of an F/A-18 airplane (McDonnell Douglas, now The Boeing Company, Chicago, Illinois) are controlled for optimization of fuel flow. This paper presents the design and integration of this peak-seeking controller on a modified NASA F/A-18 airplane with research flight control computers. A research flight was performed to collect data to build a realistic model of the performance function and characterize measurement noise. This model was then implemented into a nonlinear six-degree-of-freedom F/A-18 simulation along with the peak-seeking control algorithm. With the goal of eventual flight tests, the algorithm was first evaluated in the improved simulation environment. Results from the simulation predict good convergence on minimum fuel flow with a 2.5-percent reduction in fuel flow relative to the baseline trim of the aircraft.

  17. Peak-Seeking Optimization of Trim for Reduced Fuel Consumption: Architecture and Performance Predictions

    NASA Technical Reports Server (NTRS)

    Schaefer, Jacob; Brown, Nelson

    2013-01-01

    A peak-seeking control approach for real-time trim configuration optimization for reduced fuel consumption has been developed by researchers at the National Aeronautics and Space Administration (NASA) Dryden Flight Research Center to address the goals of the NASA Environmentally Responsible Aviation project to reduce fuel burn and emissions. The peak-seeking control approach is based on a steepest-descent algorithm using a time-varying Kalman filter to estimate the gradient of a performance function of fuel flow versus control surface positions. In real-time operation, deflections of symmetric ailerons, trailing-edge flaps, and leading-edge flaps of an FA-18 airplane (McDonnell Douglas, now The Boeing Company, Chicago, Illinois) are controlled for optimization of fuel flow. This presentation presents the design and integration of this peak-seeking controller on a modified NASA FA-18 airplane with research flight control computers. A research flight was performed to collect data to build a realistic model of the performance function and characterize measurement noise. This model was then implemented into a nonlinear six-degree-of-freedom FA-18 simulation along with the peak-seeking control algorithm. With the goal of eventual flight tests, the algorithm was first evaluated in the improved simulation environment. Results from the simulation predict good convergence on minimum fuel flow with a 2.5-percent reduction in fuel flow relative to the baseline trim of the aircraft.

  18. The Influence of Intersections on Fuel Consumption in Urban Arterial Road Traffic: A Single Vehicle Test in Harbin, China

    PubMed Central

    Wu, Lina; Ci, Yusheng; Chu, Jiangwei; Zhang, Hongsheng

    2015-01-01

    The calculating method for fuel consumption (FC) was put forward and calibrated and the characteristics of the fuel consumption on intersections were analyzed based on 18 groups of vehicular operating data which were acquired from the test experiment of a single vehicle along the urban arterial roads in Harbin, China. The results obtained show that 50.36% of the fuel consumption for the test vehicle was used at the area of intersections compared with 28.9% of the influencing distance and 68.5% of the running time; and 78.4% of them was burnt at the stages of acceleration and idling. Meanwhile, the type (c) of the vehicular operating status was illustrated to be the worst way of reducing fuel consumption, the causes were analyzed and four improvement strategies were put forward. PMID:26367012

  19. Effect Of Platooning on Fuel Consumption of Class 8 Vehicles Over a Range of Speeds, Following Distances, and Mass

    SciTech Connect

    Lammert, M. P.; Duran, A.; Diez, J.; Burton, K.; Nicholson, A.

    2014-10-01

    This research project evaluates fuel consumption results of two Class 8 tractor-trailer combinations platooned together compared to their standalone fuel consumption. A series of ten modified SAE Type II J1321 fuel consumption track tests were performed to document fuel consumption of two platooned vehicles and a control vehicle at varying steady-state speeds, following distances, and gross vehicle weights (GVWs). The steady-state speeds ranged from 55 mph to 70 mph, the following distances ranged from a 20-ft following distance to a 75-ft following distance, and the GVWs were 65K lbs and 80K lbs. All tractors involved had U.S. Environmental Protection Agency (EPA) SmartWay-compliant aerodynamics packages installed, and the trailers were equipped with side skirts. Effects of vehicle speed, following distance, and GVW on fuel consumption were observed and analyzed. The platooning demonstration system used in this study consisted of radar systems, Dedicated Short-Range Communication (DSRC) vehicle-to-vehicle (V2V) communications, vehicle braking and torque control interface, cameras and driver displays. The lead tractor consistently demonstrated an improvement in average fuel consumption reduction as following distance decreased, with results showing 2.7% to 5.3% fuel savings at a GVW of 65k. The trailing vehicle achieved fuel consumption savings ranging from 2.8% to 9.7%; tests during which the engine cooling fan did not operate achieved savings of 8.4% to 9.7%. 'Team' fuel savings, considering the platooned vehicles as one, ranged from 3.7% to 6.4%, with the best combined result being for 55 mph, 30-ft following distance, and 65k GVW.

  20. Peak-Seeking Optimization of Trim for Reduced Fuel Consumption: Flight-Test Results

    NASA Technical Reports Server (NTRS)

    Brown, Nelson Andrew; Schaefer, Jacob Robert

    2013-01-01

    A peak-seeking control algorithm for real-time trim optimization for reduced fuel consumption has been developed by researchers at the National Aeronautics and Space Administration (NASA) Dryden Flight Research Center to address the goals of the NASA Environmentally Responsible Aviation project to reduce fuel burn and emissions. The peak-seeking control algorithm is based on a steepest-descent algorithm using a time-varying Kalman filter to estimate the gradient of a performance function of fuel flow versus control surface positions. In real-time operation, deflections of symmetric ailerons, trailing-edge flaps, and leading-edge flaps of an F/A-18 airplane (McDonnell Douglas, now The Boeing Company, Chicago, Illinois) are used for optimization of fuel flow. Results from six research flights are presented herein. The optimization algorithm found a trim configuration that required approximately 3 percent less fuel flow than the baseline trim at the same flight condition. The algorithm consistently rediscovered the solution from several initial conditions. These results show that the algorithm has good performance in a relevant environment.

  1. Peak-Seeking Optimization of Trim for Reduced Fuel Consumption: Flight-test Results

    NASA Technical Reports Server (NTRS)

    Brown, Nelson Andrew; Schaefer, Jacob Robert

    2013-01-01

    A peak-seeking control algorithm for real-time trim optimization for reduced fuel consumption has been developed by researchers at the National Aeronautics and Space Administration (NASA) Dryden Flight Research Center to address the goals of the NASA Environmentally Responsible Aviation project to reduce fuel burn and emissions. The peak-seeking control algorithm is based on a steepest-descent algorithm using a time-varying Kalman filter to estimate the gradient of a performance function of fuel flow versus control surface positions. In real-time operation, deflections of symmetric ailerons, trailing-edge flaps, and leading-edge flaps of an F/A-18 airplane (McDonnell Douglas, now The Boeing Company, Chicago, Illinois) are used for optimization of fuel flow. Results from six research flights are presented herein. The optimization algorithm found a trim configuration that required approximately 3 percent less fuel flow than the baseline trim at the same flight condition. The algorithm consistently rediscovered the solution from several initial conditions. These results show that the algorithm has good performance in a relevant environment.

  2. Wood fuel consumption and mortality rates in Sub-Saharan Africa: Evidence from a dynamic panel study.

    PubMed

    Sulaiman, Chindo; Abdul-Rahim, A S; Chin, Lee; Mohd-Shahwahid, H O

    2017-06-01

    This study examined the impact of wood fuel consumption on health outcomes, specifically under-five and adult mortality in Sub-Saharan Africa, where wood usage for cooking and heating is on the increase. Generalized method of moment (GMM) estimators were used to estimate the impact of wood fuel consumption on under-five and adult mortality (and also male and female mortality) in the region. The findings revealed that wood fuel consumption had significant positive impact on under-five and adult mortality. It suggests that over the studied period, an increase in wood fuel consumption has increased the mortality of under-five and adult. Importantly, it indicated that the magnitude of the effect of wood fuel consumption was more on the under-five than the adults. Similarly, assessing the effect on a gender basis, it was revealed that the effect was more on female than male adults. This finding suggests that the resultant mortality from wood smoke related infections is more on under-five children than adults, and also are more on female adults than male adults. We, therefore, recommended that an alternative affordable, clean energy source for cooking and heating should be provided to reduce the wood fuel consumption.

  3. Cancer mortality in relation to national consumption of cigarettes, solid fuel, tea and coffee.

    PubMed

    Stocks, P

    1970-06-01

    Comparison between the age-adjusted death rates in 1964-65 from cancers of different sites and the annual consumption of cigarettes, solid fuel, tea and coffee as measured by trade statistics in 20 countries reveals the existence of significant correlations.Cigarette consumption per adult in the population is positively related with lung and bladder cancer in males and insignificantly with lung in females. Negative relations are indicated with the liver and biliary passages, prostate and uterus.Solid fuel is positively related with the intestine, lung and bladder in both sexes, with leukaemia in males and with breast in females. Nagative associations are indicated with the stomach.Tea is positively related with intestine except rectum in both sexes and with larynx, lung and breast in females. Negative associations are indicated with the stomach in both sexes and with uterus and leukaemia in females.Coffee is positively related with the pancreas, prostate and leukaemia in males and with ovary and leukaemia in females.Specially noteworthy were the contrasts between the intestine and stomach in their associations with solid fuel, cigarettes and tea for which a possible explanation has been suggested.

  4. Influence of driving cycles on exhaust emissions and fuel consumption of gasoline passenger car in Bangkok.

    PubMed

    Nutramon, Tamsanya; Supachart, Chungpaibulpatana

    2009-01-01

    The influence of different driving cycles on their exhaust emissions and fuel consumption rate of gasoline passenger car was investigated in Bangkok based on the actual measurements obtained from a test vehicle driving on a standard chassis dynamometer. A newly established Bangkok driving cycle (BDC) and the European driving cycle (EDC) which is presently adopted as the legislative cycle for testing automobiles registered in Thailand were used. The newly developed BDC is constructed using the driving characteristic data obtained from the real on-road driving tests along selected traffic routes. A method for selecting appropriate road routes for real driving tests is also introduced. Variations of keyed driving parameters of BDC with different driving cycles were discussed. The results showed that the HC and CO emission factors of BDC are almost two and four times greater than those of EDC, respectively. Although the difference in the NOx emission factor is small, the value from BDC is still greater than that of EDC by 10%. Under BDC, the test vehicle consumes fuel about 25% more than it does under EDC. All these differences are mainly attributed to the greater proportion of idle periods and higher fluctuations of vehicle speed in the BDC cycle. This result indicated that the exhausted emissions and fuel consumption of vehicles obtained from tests under the legislative modal-type driving cycle (EDC) are significantly different from those actually produced under real traffic conditions especially during peak periods.

  5. Power-law relationships for estimating mass, fuel consumption and costs of energy conversion equipments.

    PubMed

    Caduff, Marloes; Huijbregts, Mark A J; Althaus, Hans-Joerg; Hendriks, A Jan

    2011-01-15

    To perform life-cycle assessment studies, data on the production and use of the products is required. However, often only few data or measurements are available. Estimation of properties can be performed by applying scaling relationships. In many disciplines, they are used to either predict data or to search for underlying patterns, but they have not been considered in the context of product assessments hitherto. The goal of this study was to explore size scaling for commonly used energy conversion equipment, that is, boilers, engines, and generators. The variables mass M, fuel consumption Q, and costs C were related to power P. The established power-law relationships were M = 10(0.73.. 1.89)P(0.64.. 1.23) (R(2) ≥ 0.94), Q = 10(0.06.. 0.68)P(0.82.. 1.02) (R(2) ≥ 0.98) and C = 10(2.46.. 2.86)P(0.83.. 0.85) (R(2) ≥ 0.83). Mass versus power and costs versus power showed that none of the equipment types scaled isometrically, that is, with a slope of 1. Fuel consumption versus power scaled approximately isometrically for steam boilers, the other equipments scaled significantly lower than 1. This nonlinear scaling behavior induces a significant size effect. The power laws we established can be applied to scale the mass, fuel consumption and costs of energy conversion equipments up or down. Our findings suggest that empirical scaling laws can be used to estimate properties, particularly relevant in studies focusing on early product development for which generally only little information is available.

  6. Cost and energy consumption estimates for the aluminum-air battery anode fuel cycle

    NASA Astrophysics Data System (ADS)

    1990-01-01

    At the request of DOE's Office of Energy Storage and Distribution (OESD), Pacific Northwest Laboratory (PNL) conducted a study to generate estimates of the energy use and costs associated with the aluminum anode fuel cycle of the aluminum-air (Al-air) battery. The results of this analysis indicate that the cost and energy consumption characteristics of the mechanically rechargeable Al-air battery system are not as attractive as some other electrically rechargeable electric vehicle battery systems being developed by OESD. However, there are distinct advantages to mechanically rechargeable batteries, which may make the Al-air battery (or other mechanically rechargeable batteries) attractive for other uses, such as stand-alone applications. Fuel cells, such as the proton exchange membrane (PEM), and advanced secondary batteries may be better suited to electric vehicle applications.

  7. Cost and energy consumption estimates for the aluminum-air battery anode fuel cycle

    SciTech Connect

    Humphreys, K.K.; Brown, D.R.

    1990-01-01

    At the request of DOE's Office of Energy Storage and Distribution (OESD), Pacific Northwest Laboratory (PNL) conducted a study to generate estimates of the energy use and costs associated with the aluminum anode fuel cycle of the aluminum-air (Al-air) battery. The results of this analysis indicate that the cost and energy consumption characteristics of the mechanically rechargeable Al-air battery system are not as attractive as some other electrically rechargeable electric vehicle battery systems being developed by OESD. However, there are distinct advantages to mechanically rechargeable batteries, which may make the Al-air battery (or other mechanically rechargeable batteries) attractive for other uses, such as stand-alone applications. Fuel cells, such as the proton exchange membrane (PEM), and advanced secondary batteries may be better suited to electric vehicle applications. 26 refs., 3 figs., 25 tabs.

  8. Opportunities and insights for reducing fossil fuel consumption by households and organizations

    NASA Astrophysics Data System (ADS)

    Stern, Paul C.; Janda, Kathryn B.; Brown, Marilyn A.; Steg, Linda; Vine, Edward L.; Lutzenhiser, Loren

    2016-05-01

    Realizing the ambitious commitments of the 2015 Paris Climate Conference (COP21) will require new ways of meeting human needs previously met by burning fossil fuels. Technological developments will be critical, but so will accelerated adoption of promising low-emission technologies and practices. National commitments will be more achievable if interventions take into account key psychological, social, cultural and organizational factors that influence energy choices, along with factors of an infrastructural, technical and economic nature. Broader engagement of social and behavioural science is needed to identify promising opportunities for reducing fossil fuel consumption. Here we discuss opportunities for change in households and organizations, primarily at short and intermediate timescales, and identify opportunities that have been underused in much of energy policy. Based on this survey, we suggest design principles for interventions by governments and other organizations, and identify areas of emphasis for future social science and interdisciplinary research.

  9. Impact of the electric compressor for automotive air conditioning system on fuel consumption and performance analysis

    NASA Astrophysics Data System (ADS)

    Zulkifli, A. A.; Dahlan, A. A.; Zulkifli, A. H.; Nasution, H.; Aziz, A. A.; Perang, M. R. M.; Jamil, H. M.; Misseri, M. N.

    2015-12-01

    Air conditioning system is the biggest auxiliary load in a vehicle where the compressor consumed the largest. Problem with conventional compressor is the cooling capacity cannot be control directly to fulfill the demand of thermal load inside vehicle cabin. This study is conducted experimentally to analyze the difference of fuel usage and air conditioning performance between conventional compressor and electric compressor of the air conditioning system in automobile. The electric compressor is powered by the car battery in non-electric vehicle which the alternator will recharge the battery. The car is setup on a roller dynamometer and the vehicle speed is varied at 0, 30, 60, 90 and 110 km/h at cabin temperature of 25°C and internal heat load of 100 and 400 Watt. The results shows electric compressor has better fuel consumption and coefficient of performance compared to the conventional compressor.

  10. A High Fuel Consumption Efficiency Management Scheme for PHEVs Using an Adaptive Genetic Algorithm

    PubMed Central

    Lee, Wah Ching; Tsang, Kim Fung; Chi, Hao Ran; Hung, Faan Hei; Wu, Chung Kit; Chui, Kwok Tai; Lau, Wing Hong; Leung, Yat Wah

    2015-01-01

    A high fuel efficiency management scheme for plug-in hybrid electric vehicles (PHEVs) has been developed. In order to achieve fuel consumption reduction, an adaptive genetic algorithm scheme has been designed to adaptively manage the energy resource usage. The objective function of the genetic algorithm is implemented by designing a fuzzy logic controller which closely monitors and resembles the driving conditions and environment of PHEVs, thus trading off between petrol versus electricity for optimal driving efficiency. Comparison between calculated results and publicized data shows that the achieved efficiency of the fuzzified genetic algorithm is better by 10% than existing schemes. The developed scheme, if fully adopted, would help reduce over 600 tons of CO2 emissions worldwide every day. PMID:25587974

  11. Fire Emissions Estimates in Siberia: Evaluation of Uncertainties in Area Burned, Land Cover, and Fuel Consumption

    NASA Astrophysics Data System (ADS)

    Kukavskaya, E.; Soja, A. J.; Ivanova, G. A.; Petkov, A.; Ponomarev, E. I.; Conard, S. G.

    2012-12-01

    Wildfire is one of the main disturbance factors in the boreal zone of Russia. Fires in the Russian boreal forest range from low-severity surface fires to high-severity crown fires. Estimates of carbon emissions from fires in Russia vary substantially due to differences in ecosystem classification and mapping, burned area calculations, and estimates of fuel consumption. We examined uncertainties in different parameters used to estimate biomass burning emissions. Several fire datasets (Institute of Forest burned area product, MCD45, MCD64, MOD14/MYD14, official data) were compared to estimate uncertainties in area burned in Siberia. Area burned was found to differ significantly by data source, with satellite data being by an order of magnitude greater than ground-based data. Differences between mapped ecosystems were also compared and contrasted on the basis of five land cover maps (GLC-2000, Globcover-2009, MODIS Collection 4 and 5 Global Land Cover, and the Digitized Ecosystem map of the Former Soviet Union) to evaluate the potential for error resulting from disparate vegetation structure and fuel consumption estimates. The examination of land cover maps showed that estimates of relative proportion of fire by ecosystem type varied substantially for the same year from map to map. Fuel consumption remains one of the main uncertainties in estimates of biomass burning emissions in Siberia. Accurate fuel consumption estimates are obtained in the course of fire experiments with pre- and post-fire biomass measuring. Our large-scale experiments carried out in the course of the FIRE BEAR (Fire Effects in the Boreal Eurasia Region) Project provided quantitative and qualitative data on ecosystem state and carbon emissions due to fires of known behavior in major forest types of Siberia that could be used to verify large-scale carbon emissions estimates. Global climate change is expected to result in increase of fire hazard and area burned, leading to impacts on global air

  12. Study of fuel consumption and cooling system in low heat rejection turbocharged diesel engines

    SciTech Connect

    Taymaz, I.; Gur, M.; Cally, I.; Mimaroglu, A.

    1998-07-01

    In a conventional internal combustion engine, approximately one-third of total fuel input energy is converted to useful work. Since the working gas in a practical engine cycle is not exhausted at ambient temperature, a major part of the energy is lost with the exhaust gases. In addition another major part of energy input is rejected in the form of heat via the cooling system. If the energy normally rejected to the coolant could be recovered instead on the crankshaft as useful work, then a substantial improvement in fuel economy would result. At the same time, the cooling water, antifreeze, thermostat, radiator, water pump, cooling fan, and associated hoses and clamps could be eliminated. A new trend in the field of internal combustion engines is to insulate the heat transfer surfaces such as the combustion chamber, cylinder wall, cylinder head, piston and valves by ceramic insulating materials for the improvement of engine performance and elimination of cooling system. In this study, the effect of insulated heat transfer surfaces on direct injected and turbocharged diesel engine fuel consumption and cooling system were investigated. The research engine was a four-stroke, direct injected, six cylinder, turbocharged and intercooled diesel engine. This engine was tested at different speeds and loads conditions without coating. Then, combustion chamber surfaces, cylinder head, valves and piston crown faces was coated with ceramic materials. Ceramic layers were made of CaZrO{sub 3} and MgZrO{sub 3} and plasma coated onto base of the NiCrAl bond coat. The ceramic coated research engine was tested at the same operation conditions as the standard (without coating) engine. The results indicate a reduction in fuel consumption and heat losses to engine cooling system of the ceramic coated engine.

  13. Reduction of aerodynamic drag and fuel consumption for tractor-trailer vehicles

    NASA Technical Reports Server (NTRS)

    Muirhead, V. U.; Saltzman, E. J.

    1979-01-01

    Wind-tunnel tests were performed on a scale model of a cab-over-engine tractor-trailer vehicle and several modifications of the model. Results from two of the model configurations were compared with full-scale drag data obtained from similar configurations during coast-down tests. Reductions in fuel consumption derived from these tests are presented in terms of fuel quantity and dollar savings per vehicle year, based on an annual driving distance of 160,900 km (100,000 mi.). The projected savings varied from 13,001 (3435) to 25,848 (6829) liters (gallons) per year which translated to economic savings from $3435 to about $6829 per vehicle year for an operating speed of 88.5 km/h (55 mph) and wind speeds near the national average of 15.3 km/h (9.5 mph). The estimated cumulative fuel savings for the entire U.S. fleet of cab-over-engine tractor, van-type trailer combinations ranged from 4.18 million kl (26.3 million bbl) per year for a low-drag configuration to approximately twice that amount for a more advanced configuration.

  14. Developing Singapore Driving Cycle for passenger cars to estimate fuel consumption and vehicular emissions

    NASA Astrophysics Data System (ADS)

    Ho, Sze-Hwee; Wong, Yiik-Diew; Chang, Victor Wei-Chung

    2014-11-01

    Singapore has pledged to attain 7-11% Business-As-Usual carbon emissions reduction by 2020. Road transport sector is a significant source of carbon emissions, estimated to be the third largest sector in Singapore. A current gap in environmental evaluation for road transport activities in Singapore is the lack of a representative driving cycle for passenger cars (64% of the total population of 974,170 vehicles). This Singapore Driving Cycle (SDC) is hence developed for Singapore roads and traffic conditions. A chase-car (instrumented vehicle) was used to collect on-road data along 12 designed routes, and circulation driving on highly utilized arterial roads (including those in Central Business District (CBD) and both inner and outer ring roads fringing the CBD area). The SDC was thus hence constructed, with consideration of road type proportions, time periods and desired distance, duration and peak-lull proportion. In essence, the SDC is a 2400-s speed-time profile to represent the driving pattern for passenger car in Singapore. Microscopic estimation model (CMEM) shows that, as compared to SDC, the New European Driving Cycle (NEDC) underestimates most of the vehicular emissions (fuel, CO2, HC and NOx by 5%, 5%, 22% and 47%, respectively) and overestimates CO by 8%. The SDC is thus more suitable than the NEDC that is currently in use in Singapore; the SDC can be used to generate more accurate fuel consumption and emissions ratings for various uses (for example, inventory of vehicular emissions and fuel economy labelling).

  15. Peak Seeking Control for Reduced Fuel Consumption with Preliminary Flight Test Results

    NASA Technical Reports Server (NTRS)

    Brown, Nelson

    2012-01-01

    The Environmentally Responsible Aviation project seeks to accomplish the simultaneous reduction of fuel burn, noise, and emissions. A project at NASA Dryden Flight Research Center is contributing to ERAs goals by exploring the practical application of real-time trim configuration optimization for enhanced performance and reduced fuel consumption. This peak-seeking control approach is based on Newton-Raphson algorithm using a time-varying Kalman filter to estimate the gradient of the performance function. In real-time operation, deflection of symmetric ailerons, trailing-edge flaps, and leading-edge flaps of a modified F-18 are directly optimized, and the horizontal stabilators and angle of attack are indirectly optimized. Preliminary results from three research flights are presented herein. The optimization system found a trim configuration that required approximately 3.5% less fuel flow than the baseline trim at the given flight condition. The algorithm consistently rediscovered the solution from several initial conditions. These preliminary results show the algorithm has good performance and is expected to show similar results at other flight conditions and aircraft configurations.

  16. Method for reporting in-use vehicle fuel consumption and carbon dioxide emissions from a fast-pass transient inspection.

    PubMed

    Stewart, Steve

    2004-05-01

    A method has been developed that allows reporting of the fuel consumption and carbon dioxide (CO2) emissions for in-use vehicles from a fast-pass transient (IM240) inspection. The major technical obstacle to reporting CO2 emission rate and fuel consumption is that inspection and maintenance tests do not all use a standardized test duration or test method. The method is able to project full-duration fuel consumption from IM240 tests that actually fast-passed as early as just 30 sec from starting the test. It is based on basic considerations of the work done in driving the inspection cycle, with additional empirical adjustments. The initial application examined the differences between passing and failing inspections, and this did confirm that there are significant differences.

  17. Evaluation of fuel consumption potential of medium and heavy duty vehicles through modeling and simulation.

    SciTech Connect

    Delorme, A.; Karbowski, D.; Sharer, P.; Energy Systems

    2010-03-31

    The main objective of this report is to provide quantitative data to support the Committee in its task of establishing a report to support rulemaking on medium- and heavy-duty fuel efficiency improvement. In particular, it is of paramount importance for the Committee to base or illustrate their conclusions on established models and actual state-of-the art data. The simulations studies presented in the report have been defined and requested by the members of the National Academy committee to provide quantitative inputs to support their recommendations. As such, various technologies and usage scenarios were considered for several applications. One of the objective is to provide the results along with their associated assumptions (both vehicle and drive cycles), information generally missing from public discussions on literature search. Finally, the advantages and limitations of using simulation will be summarized. The study addresses several of the committee tasks, including: (1) Discussion of the implication of metric selection; (2) Assessing the impact of existing technologies on fuel consumption through energy balance analysis (both steady-state and standard cycles) as well as real world drive cycles; and (3) Impact of future technologies, both individually and collectively.

  18. Contactless electric igniter for vehicle to lower exhaust emission and fuel consumption.

    PubMed

    Shen, Chih-Lung; Su, Jye-Chau

    2014-01-01

    An electric igniter for engine/hybrid vehicles is presented. The igniter comprises a flyback converter, a voltage-stacked capacitor, a PIC-based controller, a differential voltage detector, and an ignition coil, of which structure is non-contact type. Since the electric igniter adopts a capacitor to accumulate energy for engine ignition instead of traditional contacttype approach, it enhances the igniting performance of a spark plug effectively. As a result, combustion efficiency is promoted, fuel consumption is saved, and exhaust emission is reduced. The igniter not only is good for fuel efficiency but also can reduce HC and CO emission significantly, which therefore is an environmentally friendly product. The control core of the igniter is implemented on a single chip, which lowers discrete component count, reduces system volume, and increases reliability. In addition, the ignition timing can be programmed so that a timing regulator can be removed from the proposed system, simplifying its structure. To verify the feasibility and functionality of the igniter, key waveforms are measured and real-car experiments are performed as well.

  19. Quantitative Effects of Vehicle Parameters on Fuel Consumption for Heavy-Duty Vehicle

    SciTech Connect

    Wang, Lijuan; Kelly, Kenneth; Walkowicz, Kevin; Duran, Adam

    2015-10-16

    The National Renewable Energy Laboratory's (NREL's) Fleet Test and Evaluations team recently conducted chassis dynamometer tests of a class 8 conventional regional delivery truck over the Heavy Heavy-Duty Diesel Truck (HHDDT), West Virginia University City (WVU City), and Composite International Truck Local and Commuter Cycle (CILCC) drive cycles. A quantitative study was conducted by analyzing the impacts of various factors on fuel consumption (FC) and fuel economy (FE) by modeling and simulating the truck using NREL's Future Automotive Systems Technology Simulator (FASTSim). Factors used in this study included vehicle weight, and the coefficients of rolling resistance and aerodynamic drag. The simulation results from a single parametric study revealed that FC was approximately a linear function of the weight, coefficient of aerodynamic drag, and rolling resistance over various drive cycles. Among these parameters, the truck weight had the largest effect on FC. The study of the impact of two technologies on FE suggested that, depending on the circumstances, it may be more cost effective to reduce one parameter (such as coefficient of aerodynamic drag) to increase fuel economy, or it may be more beneficial to reduce another (such as the coefficient of rolling resistance). It also provided a convenient way to estimate FE by interpolating within the parameter values and extrapolating outside of them. The simulation results indicated that the FC could be reduced from 38.70 L/100 km, 50.72 L/100 km, and 38.42 L/100 km in the baseline truck to 26.78 L/100 km, 43.14 L/100 km and 29.84 L/100 km over the HHDDT, WVU City and CILCC drive cycles, respectively, when the U.S. Department of Energy's three targeted new technologies were applied simultaneously.

  20. 14 CFR 291.44 - BTS Schedule P-12(a), Fuel Consumption by Type of Service and Entity.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false BTS Schedule P-12(a), Fuel Consumption by Type of Service and Entity. 291.44 Section 291.44 Aeronautics and Space OFFICE OF THE SECRETARY... possession; (3) International operations are flight stages with one or both terminals outside the 50...

  1. HYDROGEN AND FUEL CELL EDUCATION AT CALIFORNIA STATE UNIVERSITY, LOS ANGELES

    SciTech Connect

    Blekhman, David

    2011-09-30

    California State University, Los Angeles, has partnered with the Department of Energy in addressing the workforce preparation and public education needs of the fuel cell industry and the US economy through a comprehensive set of curriculum development and training activities: * Developing and offering several courses in fuel cell technologies, hydrogen and alternative fuels production, alternative and renewable energy technologies as means of zero emissions hydrogen economy, and sustainable environment. * Establishing a zero emissions PEM fuel cell and hydrogen laboratory supporting curriculum and graduate students teaching and research experiences. * Providing engaging capstone projects for multi-disciplinary teams of senior undergraduate students. * Fostering partnerships with automotive OEMs and energy providers. * Organizing and participating in synergistic projects and activities that grow the program and assure its sustainability.

  2. On-road pollutant emission and fuel consumption characteristics of buses in Beijing.

    PubMed

    Wang, Aijuan; Ge, Yunshan; Tan, Jianwei; Fu, Mingliang; Shah, Asad Naeem; Ding, Yan; Zhao, Hong; Liang, Bin

    2011-01-01

    On-road emission and fuel consumption (FC) levels for Euro III and IV buses fueled on diesel and compressed natural gas (CNG) were compared, and emission and FC characteristics of buses were analyzed based on approximately 28,700 groups of instantaneous data obtained in Beijing using a portable emissions measurement system (PEMS). The experimental results revealed that NOx and PM emissions from CNG buses were decreased by 72.0% and 82.3% respectively, compared with Euro IV diesel buses. Similarly, these emissions were reduced by 75.2% and 96.3% respectively, compared with Euro III diesel buses. In addition, CO2, CO, HC, NOx, PM emissions and FC of Euro IV diesel buses were reduced by 26.4%, 75.2%, 73.6%, 11.4%, 79.1%, and 26.0%, respectively, relative to Euro III diesel buses. The CO2, CO, HC, NOx, PM emissions and FC factors all decreased with bus speed increased, while increased as bus acceleration increased. At the same time, the emission/FC rates as well as the emission/FC factors exhibited a strong positive correlation with the vehicle specific power (VSP). They all were the lowest when VSP < 0, and then rapidly increased as VSP increased. Furthermore, both the emission/FC rates and emission/FC factors were the highest at accelerations, higher at cruise speeds, and the lowest at decelerations for non-idling buses. These results can provide a base reference to further estimate bus emission and FC inventories in Beijing.

  3. Development of urban water consumption models for the City of Los Angeles

    NASA Astrophysics Data System (ADS)

    Mini, C.; Hogue, T. S.; Pincetl, S.

    2011-12-01

    Population growth and rapid urbanization coupled with uncertain climate change are causing new challenges for meeting urban water needs. In arid and semi-arid regions, increasing drought periods and decreasing precipitation have led to water supply shortages and cities are struggling with trade-offs between the water needs of growing urban populations and the well-being of urban ecosystems. The goal of the current research is to build models that can represent urban water use patterns in semi-arid cities by identifying the determinants that control both total and outdoor residential water use over the Los Angeles urban domain. The initial database contains monthly water use records aggregated to the zip code level collected from the Los Angeles Department of Water and Power (LADWP) from 2000 to 2010. Residential water use was normalized per capita and was correlated with socio-demographic, economic, climatic and vegetation characteristics across the City for the 2000-2010 period. Results show that ethnicity, per capita income, and the average number of persons per household are linearly related to total water use per capita. Inter-annual differences in precipitation and implementation of conservation measures affect water use levels across the City. The high variability in water use patterns across the City also appears strongly influenced by income and education levels. The temporal analysis of vegetation indices in the studied neighborhoods shows little correlation between precipitation patterns and vegetation greenness. Urban vegetation appears well-watered, presenting the same greenness activity over the study period despite an overall decrease in water use across the City. We hypothesize that over-watering is occurring and that outdoor water use represents a significant part of the residential water budget in various regions of the City. A multiple regression model has been developed that integrates these fundamental controlling factors to simulate residential

  4. Performance of Thorium-Based Mixed Oxide Fuels for the Consumption of Plutonium in Current and Advanced Reactors

    SciTech Connect

    Weaver, Kevan Dean; Herring, James Stephen

    2003-07-01

    A renewed interest in thorium-based fuels has arisen lately based on the need for proliferation resistance, longer fuel cycles, higher burnup, and improved waste form characteristics. Recent studies have been directed toward homogeneously mixed, heterogeneously mixed, and seed-and-blanket thorium-uranium oxide fuel cycles that rely on "in situ" use of the bred-in 233U. However, due to the higher initial enrichment required to achieve acceptable burnups, these fuels are encountering economic constraints. Thorium can nevertheless play a large role in the nuclear fuel cycle, particularly in the reduction of plutonium inventories. While uranium-based mixed-oxide (MOX) fuel will decrease the amount of plutonium in discharged fuel, the reduction is limited due to the breeding of more plutonium (and higher actinides) from the 238U. Here, we present calculational results and a comparison of the potential burnup of a thorium-based and uranium-based mixed-oxide fuel in a light water reactor. Although the uranium-based fuels outperformed the thorium-based fuels in achievable burnup, a depletion comparison of the initially charged plutonium (both reactor and weapons grade) showed that the thorium-based fuels outperformed the uranium-based fuels by more that a factor of 2, where >70% of the total plutonium in the thorium-based fuel is consumed during the cycle. This is significant considering that the achievable burnups of the thorium-based fuels were 1.4 to 4.6 times less than the uranium-based fuels for similar plutonium enrichments. For equal specific burnups of ~60 MWd/kg (i.e., using variable plutonium weight percentages to give the desired burnup), the thorium-based fuels still outperform the uranium-based fuels by more than a factor of 2, where the total plutonium consumption in a three-batch, 18-month cycle was 60 to 70%. This is fairly significant considering that 10 to 15% (by weight) more plutonium is needed in the thorium-based fuels as compared to the uranium

  5. The Influence on Exhaust Gas Components and Fuel Consumption of Injection of Concentrated NOx into Diesel Engine Intake

    NASA Astrophysics Data System (ADS)

    Yoshida, Keiichiro; Kuwahara, Takuya; Kuroki, Tomoyuki; Okubo, Masaaki

    The authors inject NO into a diesel engine intake and investigate the reduction of NOx generation at the combustion chamber at first. The result shows that 20 - 30% of the injected NO (0.225 ∼ 0.72 slm) is reduced. Discussion through the calculation of the extended Zeldovich mechanism suggests that the reduction is mainly attributed to the region where equivalence ratio ranges in 1.1 - 1.5 and that the reaction between NO and hydrocarbon species slightly contributes to the NO reduction. Moreover, another experimental result shows that the injection of NO slightly improves specific fuel consumption, e.g. 0.4% at NO injection of 0.72 slm for intake airflow of 285 slm. Calculation of reaction enthalpy of NO reduction and CO oxidation considerably meets the experimental results on the change in fuel consumption.

  6. A Cooperative Traffic Control of Vehicle–Intersection (CTCVI) for the Reduction of Traffic Delays and Fuel Consumption

    PubMed Central

    Li, Jinjian; Dridi, Mahjoub; El-Moudni, Abdellah

    2016-01-01

    The problem of reducing traffic delays and decreasing fuel consumption simultaneously in a network of intersections without traffic lights is solved by a cooperative traffic control algorithm, where the cooperation is executed based on the connection of Vehicle-to-Infrastructure (V2I). This resolution of the problem contains two main steps. The first step concerns the itinerary of which intersections are chosen by vehicles to arrive at their destination from their starting point. Based on the principle of minimal travel distance, each vehicle chooses its itinerary dynamically based on the traffic loads in the adjacent intersections. The second step is related to the following proposed cooperative procedures to allow vehicles to pass through each intersection rapidly and economically: on one hand, according to the real-time information sent by vehicles via V2I in the edge of the communication zone, each intersection applies Dynamic Programming (DP) to cooperatively optimize the vehicle passing sequence with minimal traffic delays so that the vehicles may rapidly pass the intersection under the relevant safety constraints; on the other hand, after receiving this sequence, each vehicle finds the optimal speed profiles with the minimal fuel consumption by an exhaustive search. The simulation results reveal that the proposed algorithm can significantly reduce both travel delays and fuel consumption compared with other papers under different traffic volumes. PMID:27999333

  7. A Cooperative Traffic Control of Vehicle-Intersection (CTCVI) for the Reduction of Traffic Delays and Fuel Consumption.

    PubMed

    Li, Jinjian; Dridi, Mahjoub; El-Moudni, Abdellah

    2016-12-17

    The problem of reducing traffic delays and decreasing fuel consumption simultaneously in a network of intersections without traffic lights is solved by a cooperative traffic control algorithm, where the cooperation is executed based on the connection of Vehicle-to-Infrastructure (V2I). This resolution of the problem contains two main steps. The first step concerns the itinerary of which intersections are chosen by vehicles to arrive at their destination from their starting point. Based on the principle of minimal travel distance, each vehicle chooses its itinerary dynamically based on the traffic loads in the adjacent intersections. The second step is related to the following proposed cooperative procedures to allow vehicles to pass through each intersection rapidly and economically: on one hand, according to the real-time information sent by vehicles via V2I in the edge of the communication zone, each intersection applies Dynamic Programming (DP) to cooperatively optimize the vehicle passing sequence with minimal traffic delays so that the vehicles may rapidly pass the intersection under the relevant safety constraints; on the other hand, after receiving this sequence, each vehicle finds the optimal speed profiles with the minimal fuel consumption by an exhaustive search. The simulation results reveal that the proposed algorithm can significantly reduce both travel delays and fuel consumption compared with other papers under different traffic volumes.

  8. Modeling Heavy/Medium-Duty Fuel Consumption Based on Drive Cycle Properties

    SciTech Connect

    Wang, Lijuan; Duran, Adam; Gonder, Jeffrey; Kelly, Kenneth

    2015-10-13

    This paper presents multiple methods for predicting heavy/medium-duty vehicle fuel consumption based on driving cycle information. A polynomial model, a black box artificial neural net model, a polynomial neural network model, and a multivariate adaptive regression splines (MARS) model were developed and verified using data collected from chassis testing performed on a parcel delivery diesel truck operating over the Heavy Heavy-Duty Diesel Truck (HHDDT), City Suburban Heavy Vehicle Cycle (CSHVC), New York Composite Cycle (NYCC), and hydraulic hybrid vehicle (HHV) drive cycles. Each model was trained using one of four drive cycles as a training cycle and the other three as testing cycles. By comparing the training and testing results, a representative training cycle was chosen and used to further tune each method. HHDDT as the training cycle gave the best predictive results, because HHDDT contains a variety of drive characteristics, such as high speed, acceleration, idling, and deceleration. Among the four model approaches, MARS gave the best predictive performance, with an average absolute percent error of -1.84% over the four chassis dynamometer drive cycles. To further evaluate the accuracy of the predictive models, the approaches were first applied to real-world data. MARS outperformed the other three approaches, providing an average absolute percent error of -2.2% of four real-world road segments. The MARS model performance was then compared to HHDDT, CSHVC, NYCC, and HHV drive cycles with the performance from Future Automotive System Technology Simulator (FASTSim). The results indicated that the MARS method achieved a comparative predictive performance with FASTSim.

  9. Alternative Fuel Vehicle Adoption Increases Fleet Gasoline Consumption and Greenhouse Gas Emissions under United States Corporate Average Fuel Economy Policy and Greenhouse Gas Emissions Standards.

    PubMed

    Jenn, Alan; Azevedo, Inês M L; Michalek, Jeremy J

    2016-03-01

    The United States Corporate Average Fuel Economy (CAFE) standards and Greenhouse Gas (GHG) Emission standards are designed to reduce petroleum consumption and GHG emissions from light-duty passenger vehicles. They do so by requiring automakers to meet aggregate criteria for fleet fuel efficiency and carbon dioxide (CO2) emission rates. Several incentives for manufacturers to sell alternative fuel vehicles (AFVs) have been introduced in recent updates of CAFE/GHG policy for vehicles sold from 2012 through 2025 to help encourage a fleet technology transition. These incentives allow automakers that sell AFVs to meet less-stringent fleet efficiency targets, resulting in increased fleet-wide gasoline consumption and emissions. We derive a closed-form expression to quantify these effects. We find that each time an AFV is sold in place of a conventional vehicle, fleet emissions increase by 0 to 60 t of CO2 and gasoline consumption increases by 0 to 7000 gallons (26,000 L), depending on the AFV and year of sale. Using projections for vehicles sold from 2012 to 2025 from the Energy Information Administration, we estimate that the CAFE/GHG AFV incentives lead to a cumulative increase of 30 to 70 million metric tons of CO2 and 3 to 8 billion gallons (11 to 30 billion liters) of gasoline consumed over the vehicles' lifetimes - the largest share of which is due to legacy GHG flex-fuel vehicle credits that expire in 2016. These effects may be 30-40% larger in practice than we estimate here due to optimistic laboratory vehicle efficiency tests used in policy compliance calculations.

  10. Projections of motor vehicle growth, fuel consumption and CO{sub 2} emissions for the next thirty years in China.

    SciTech Connect

    He, D.; Wang, M.

    2000-12-12

    Since the early 1990s, China's motor vehicles have entered a period of fast growth resultant from the rapid economic expansion. As the largest developing country, the fast growth of China's motor vehicles will have tremendous effects on the world's automotive and fuel market and on global CO{sub 2} emissions. In this study, we projected Chinese vehicle stocks for different vehicle types on the provincial level. First, we reviewed the historical data of China's vehicle growth in the past 10 years and the correlations between vehicle growth and economic growth in China. Second, we investigated historical vehicle growth trends in selected developed countries over the past 50 or so years. Third, we established a vehicle growth scenario based on the historical trends in several developed nations. Fourth, we estimated fuel economy, annual mileage and other vehicle usage parameters for Chinese vehicles. Finally, we projected vehicle stocks and estimated motor fuel use and CO{sub 2} emissions in each Chinese province from 2000 to 2030. Our results show that China will continue the rapid vehicle growth, increase gasoline and diesel consumption and increased CO{sub 2} emissions in the next 30 years. We estimated that by year 2030, Chinese motor vehicle fuel consumption and CO{sub 2} emissions could reach the current US levels.

  11. Quantitative Estimate of the Relation Between Rolling Resistance on Fuel Consumption of Class 8 Tractor Trailers Using Both New and Retreaded Tires (SAE Paper 2014-01-2425)

    EPA Science Inventory

    Road tests of class 8 tractor trailers were conducted by the US Environmental Protection Agency on new and retreaded tires of varying rolling resistance in order to provide estimates of the quantitative relationship between rolling resistance and fuel consumption.

  12. Recent advances in direct methanol fuel cells at Los Alamos National Laboratory

    NASA Astrophysics Data System (ADS)

    Ren, Xiaoming; Zelenay, Piotr; Thomas, Sharon; Davey, John; Gottesfeld, Shimshon

    This paper describes recent advances in the science and technology of direct methanol fuel cells (DMFCs) made at Los Alamos National Laboratory (LANL). The effort on DMFCs at LANL includes work devoted to portable power applications, funded by the Defense Advanced Research Project Agency (DARPA), and work devoted to potential transport applications, funded by the US DOE. We describe recent results with a new type of DMFC stack hardware that allows to lower the pitch per cell to 2 mm while allowing low air flow and air pressure drops. Such stack technology lends itself to both portable power and potential transport applications. Power densities of 300 W/l and 1 kW/l seem achievable under conditions applicable to portable power and transport applications, respectively. DMFC power system analysis based on the performance of this stack, under conditions applying to transport applications (joint effort with U.C. Davis), has shown that, in terms of overall system efficiency and system packaging requirements, a power source for a passenger vehicle based on a DMFC could compete favorably with a hydrogen-fueled fuel cell system, as well as with fuel cell systems based on fuel processing on board. As part of more fundamental studies performed, we describe optimization of anode catalyst layers in terms of PtRu catalyst nature, loading and catalyst layer composition and structure. We specifically show that, optimized content of recast ionic conductor added to the catalyst layer is a sensitive function of the nature of the catalyst. Other elements of membrane/electrode assembly (MEA) optimization efforts are also described, highlighting our ability to resolve, to a large degree, a well-documented problem of polymer electrolyte DMFCs, namely "methanol crossover". This was achieved by appropriate cell design, enabling fuel utilization as high as 90% in highly performing DMFCs.

  13. Review of Rover fuel element protective coating development at Los Alamos

    NASA Technical Reports Server (NTRS)

    Wallace, Terry C.

    1991-01-01

    The Los Alamos Scientific Laboratory (LASL) entered the nuclear propulsion field in 1955 and began work on all aspects of a nuclear propulsion program with a target exhaust temperature of about 2750 K. A very extensive chemical vapor deposition coating technology for preventing catastrophic corrosion of reactor core components by the high temperature, high pressure hydrogen propellant gas was developed. Over the 17-year term of the program, more than 50,000 fuel elements were coated and evaluated. Advances in performance were achieved only through closely coupled interaction between the developing fuel element fabrication and protective coating technologies. The endurance of fuel elements in high temperature, high pressure hydrogen environment increased from several minutes at 2000 K exit gas temperature to 2 hours at 2440 K exit gas temperature in a reactor test and 10 hours at 2350 K exit gas temperature in a hot gas test. The purpose of this paper is to highlight the rationale for selection of coating materials used (NbC and ZrC), identify critical fuel element-coat interactions that had to be modified to increase system performance, and review the evolution of protective coating technology.

  14. A STUDY OF THE DISCREPANCY BETWEEN FEDERAL AND STATE MEASUREMENTS OF ON-HIGHWAY FUEL CONSUMPTION

    SciTech Connect

    Hwang, HL

    2003-08-11

    Annual highway fuel taxes are collected by the Treasury Department and placed in the Highway Trust Fund (HTF). There is, however, no direct connection between the taxes collected by the Treasury Department and the gallons of on-highway fuel use, which can lead to a discrepancy between these totals. This study was conducted to determine how much of a discrepancy exists between the total fuel usages estimated based on highway revenue funds as reported by the Treasury Department and the total fuel usages used in the apportionment of the HTF to the States. The analysis was conducted using data from Highway Statistics Tables MF-27 and FE-9 for the years 1991-2001. It was found that the overall discrepancy is relatively small, mostly within 5% difference. The amount of the discrepancy varies from year to year and varies among the three fuel types (gasoline, gasohol, special fuels). Several potential explanations for these discrepancies were identified, including issues on data, tax measurement, gallon measurement, HTF receipts, and timing. Data anomalies caused by outside forces, such as deferment of tax payments from one fiscal year to the next, can skew fuel tax data. Fuel tax evasion can lead to differences between actual fuel use and fuel taxes collected. Furthermore, differences in data collection and reporting among States can impact fuel use data. Refunds, credits, and transfers from the HTF can impact the total fuel tax receipt data. Timing issues, such as calendar year vs. fiscal year, can also cause some discrepancy between the two data sources.

  15. Hybrid-Electric Passenger Car Carbon Dioxide and Fuel Consumption Benefits Based on Real-World Driving.

    PubMed

    Holmén, Britt A; Sentoff, Karen M

    2015-08-18

    Hybrid-electric vehicles (HEVs) have lower fuel consumption and carbon dioxide (CO2) emissions than conventional vehicles (CVs), on average, based on laboratory tests, but there is a paucity of real-world, on-road HEV emissions and performance data needed to assess energy use and emissions associated with real-world driving, including the effects of road grade. This need is especially great as the electrification of the passenger vehicle fleet (from HEVs to PHEVs to BEVs) increases in response to climate and energy concerns. We compared tailpipe CO2 emissions and fuel consumption of an HEV passenger car to a CV of the same make and model during real-world, on-the-road network driving to quantify the in-use benefit of one popular full HEV technology. Using vehicle specific power (VSP) assignments that account for measured road grade, the mean CV/HEV ratios of CO2 tailpipe emissions or fuel consumption defined the corresponding HEV "benefit" factor for each VSP class (1 kW/ton resolution). Averaging over all VSP classes for driving in all seasons, including temperatures from -13 to +35 °C in relatively steep (-13.2 to +11.5% grade), hilly terrain, mean (±SD) CO2 emission benefit factors were 4.5 ± 3.6, 2.5 ± 1.7, and 1.4 ± 0.5 for city, exurban/suburban arterial and highway driving, respectively. Benefit factor magnitude corresponded to the frequency of electric-drive-only (EDO) operation, which was modeled as a logarithmic function of VSP. A combined model explained 95% of the variance in HEV benefit for city, 75% for arterial and 57% for highway driving. Benefit factors consistently exceeded 2 for VSP classes with greater than 50% EDO (i.e., only city and arterial driving). The reported HEV benefits account for real-world road grade that is often neglected in regulatory emissions and fuel economy tests. Fuel use HEV benefit factors were 1.3 and 2 for the regulatory highway (HWFET) and city (FTP) cycles, respectively, 18% and 31% higher than the EPA adjusted

  16. The growth pattern and fuel life cycle analysis of the electricity consumption of Hong Kong.

    PubMed

    To, W M; Lai, T M; Lo, W C; Lam, K H; Chung, W L

    2012-06-01

    As the consumption of electricity increases, air pollutants from power generation increase. In metropolitans such as Hong Kong and other Asian cities, the surge of electricity consumption has been phenomenal over the past decades. This paper presents a historical review about electricity consumption, population, and change in economic structure in Hong Kong. It is hypothesized that the growth of electricity consumption and change in gross domestic product can be modeled by 4-parameter logistic functions. The accuracy of the functions was assessed by Pearson's correlation coefficient, mean absolute percent error, and root mean squared percent error. The paper also applies the life cycle approach to determine carbon dioxide, methane, nitrous oxide, sulfur dioxide, and nitrogen oxide emissions for the electricity consumption of Hong Kong. Monte Carlo simulations were applied to determine the confidence intervals of pollutant emissions. The implications of importing more nuclear power are discussed.

  17. Chassis dynamometer study of the effects of AGO detergent and ignition improver on vehicle fuel consumption

    SciTech Connect

    Reading, K.; Evans, T.M.

    1994-10-01

    The benefits of diesel fuel additives have been demonstrated in a broad range of performance and operational areas from the refinary, through storage and distribution to fuel dispensing and vehicle operation. The object of this study is to devise a method to measure the effects of individual additives on fuel economy, at conditions representative of urban driving conditions, and to make preliminary measurements of the effects of a detergent and ignition improver. In this study a vehicle was prepared and run on a chasis dynamometer under steady-state urban cruise conditions according to a specially designed procedure. The results show that benefits in fuel economy can be gained both by using detergents in avoiding the build-up of excessive nozzle fouling and maintaining fuel injection equipment close to its design conditions - and also by using ignition improver. Changes in emissions consistent with previous studies were noted in both cases. 12 refs., 7 figs., 2 tabs.

  18. Fuel Consumption and Fire Emissions Estimates in Siberia: Impact of Vegetation Types, Meteorological Conditions, Forestry Practices and Fire Regimes

    NASA Astrophysics Data System (ADS)

    Kukavskaya, Elena; Conard, Susan; Ivanova, Galina; Buryak, Ludmila; Soja, Amber; Zhila, Sergey

    2015-04-01

    Boreal forests play a crucial role in carbon budgets with Siberian carbon fluxes and pools making a major contribution to the regional and global carbon cycle. Wildfire is the main ecological disturbance in Siberia that leads to changes in forest species composition and structure and in carbon storage, as well as direct emissions of greenhouse gases and aerosols to the atmosphere. At present, the global scientific community is highly interested in quantitative and accurate estimates of fire emissions. Little research on wildland fuel consumption and carbon emission estimates has been carried out in Russia until recently. From 2000 to 2007 we conducted a series of experimental fires of varying fireline intensity in light-coniferous forest of central Siberia to obtain quantitative and qualitative data on fire behavior and carbon emissions due to fires of known behavior. From 2009 to 2013 we examined a number of burned logged areas to assess the potential impact of forest practices on fire emissions. In 2013-2014 burned areas in dark-coniferous and deciduous forests were examined to determine fuel consumption and carbon emissions. We have combined and analyzed the scarce data available in the literature with data obtained in the course of our long-term research to determine the impact of various factors on fuel consumption and to develop models of carbon emissions for different ecosystems of Siberia. Carbon emissions varied drastically (from 0.5 to 40.9 tC/ha) as a function of vegetation type, weather conditions, anthropogenic effects and fire behavior characteristics and periodicity. Our study provides a basis for better understanding of the feedbacks between wildland fire emissions and changing anthropogenic disturbance patterns and climate. The data obtained could be used by air quality agencies to calculate local emissions and by managers to develop strategies to mitigate negative smoke impacts on the environmentand human health.

  19. Fuel consumption and fire emissions estimates using Fire Radiative Power, burned area and statistical modelling on the fire event scale

    NASA Astrophysics Data System (ADS)

    Ruecker, Gernot; Leimbach, David; Guenther, Felix; Barradas, Carol; Hoffmann, Anja

    2016-04-01

    Fire Radiative Power (FRP) retrieved by infrared sensors, such as flown on several polar orbiting and geostationary satellites, has been shown to be proportional to fuel consumption rates in vegetation fires, and hence the total radiative energy released by a fire (Fire Radiative Energy, FRE) is proportional to the total amount of biomass burned. However, due to the sparse temporal coverage of polar orbiting and the coarse spatial resolution of geostationary sensors, it is difficult to estimate fuel consumption for single fire events. Here we explore an approach for estimating FRE through temporal integration of MODIS FRP retrievals over MODIS-derived burned areas. Temporal integration is aided by statistical modelling to estimate missing observations using a generalized additive model (GAM) and taking advantage of additional information such as land cover and a global dataset of the Canadian Fire Weather Index (FWI), as well as diurnal and annual FRP fluctuation patterns. Based on results from study areas located in savannah regions of Southern and Eastern Africa and Brazil, we compare this method to estimates based on simple temporal integration of FRP retrievals over the fire lifetime, and estimate the potential variability of FRP integration results across a range of fire sizes. We compare FRE-based fuel consumption against a database of field experiments in similar landscapes. Results show that for larger fires, this method yields realistic estimates and is more robust when only a small number of observations is available than the simple temporal integration. Finally, we offer an outlook on the integration of data from other satellites, specifically FireBird, S-NPP VIIRS and Sentinel-3, as well as on using higher resolution burned area data sets derived from Landsat and similar sensors.

  20. Effects on Fuel Consumption and Diesel Engine Deposits from Nano-Particle Oil Additive

    DTIC Science & Technology

    2010-07-01

    Products HTBCT High Temperature Benchtop Corrosion Test HwFET Highway Fuel Economy Test IF Inorganic Fullerene JP-8 A kerosene based jet fuel lbs...engine crankcase lubricants at the request of TARDEC. This additive contains inorganic fullerene -like (IF) nano- particles of WS2 which were claimed...volume and hardness change are shown in Table 4 with MIL-PRF-46167D specified limits. Table 4: Seal Compatibility Test Results Material Property

  1. Factors affecting fuel break effectiveness in the control of large fires on the Los Padres National Forest, California

    USGS Publications Warehouse

    Syphard, Alexandra D.; Keeley, Jon E.; Brennan, Teresa J.

    2011-01-01

    As wildfires have increased in frequency and extent, so have the number of homes developed in the wildland-urban interface. In California, the predominant approach to mitigating fire risk is construction of fuel breaks, but there has been little empirical study of their role in controlling large fires.We constructed a spatial database of fuel breaks on the Los Padres National Forest in southern California to better understand characteristics of fuel breaks that affect the behaviour of large fires and to map where fires and fuel breaks most commonly intersect. We evaluated whether fires stopped or crossed over fuel breaks over a 28-year period and compared the outcomes with physical characteristics of the sites, weather and firefighting activities during the fire event. Many fuel breaks never intersected fires, but others intersected several, primarily in historically fire-prone areas. Fires stopped at fuel breaks 46% of the time, almost invariably owing to fire suppression activities. Firefighter access to treatments, smaller fires and longer fuel breaks were significant direct influences, and younger vegetation and fuel break maintenance indirectly improved the outcome by facilitating firefighter access. This study illustrates the importance of strategic location of fuel breaks because they have been most effective where they provided access for firefighting activities.

  2. Roadmap for Development of Natural Gas Vehicle Fueling Infrastructructure and Analysis of Vehicular Natural Gas Consumption by Niche Sector

    SciTech Connect

    Stephen C. Yborra

    2007-04-30

    Vehicular natural gas consumption is on the rise, totaling nearly 200 million GGEs in 2005, despite declines in total NGV inventory in recent years. This may be attributed to greater deployment of higher fuel use medium- and heavy-duty NGVs as compared to the low fuel use of the natural gas-powered LDVs that exited the market through attrition, many of which were bi-fuel. Natural gas station counts are down to about 1100 from their peak of about 1300. Many of the stations that closed were under-utilized or not used at all while most new stations were developed with greater attention to critical business fundamentals such as site selection, projected customer counts, peak and off-peak fueling capacity needs and total station throughput. Essentially, the nation's NGV fueling infrastructure has been--and will continue--going through a 'market correction'. While current economic fundamentals have shortened payback and improved life-cycle savings for investment in NGVs and fueling infrastructure, a combination of grants and other financial incentives will still be needed to overcome general fleet market inertia to maintain status quo. Also imperative to the market's adoption of NGVs and other alternative fueled vehicle and fueling technologies is a clear statement of long-term federal government commitment to diversifying our nation's transportation fuel use portfolio and, more specifically, the role of natural gas in that policy. Based on the current NGV market there, and the continued promulgation of clean air and transportation policies, the Western Region is--and will continue to be--the dominant region for vehicular natural gas use and growth. In other regions, especially the Northeast, Mid-Atlantic states and Texas, increased awareness and attention to air quality and energy security concerns by the public and - more important, elected officials--are spurring policies and programs that facilitate deployment of NGVs and fueling infrastructure. Because of their high

  3. Seawater usable for production and consumption of hydrogen peroxide as a solar fuel

    PubMed Central

    Mase, Kentaro; Yoneda, Masaki; Yamada, Yusuke; Fukuzumi, Shunichi

    2016-01-01

    Hydrogen peroxide (H2O2) in water has been proposed as a promising solar fuel instead of gaseous hydrogen because of advantages on easy storage and high energy density, being used as a fuel of a one-compartment H2O2 fuel cell for producing electricity on demand with emitting only dioxygen (O2) and water. It is highly desired to utilize the most earth-abundant seawater instead of precious pure water for the practical use of H2O2 as a solar fuel. Here we have achieved efficient photocatalytic production of H2O2 from the most earth-abundant seawater instead of precious pure water and O2 in a two-compartment photoelectrochemical cell using WO3 as a photocatalyst for water oxidation and a cobalt complex supported on a glassy-carbon substrate for the selective two-electron reduction of O2. The concentration of H2O2 produced in seawater reached 48 mM, which was high enough to operate an H2O2 fuel cell. PMID:27142725

  4. Seawater usable for production and consumption of hydrogen peroxide as a solar fuel.

    PubMed

    Mase, Kentaro; Yoneda, Masaki; Yamada, Yusuke; Fukuzumi, Shunichi

    2016-05-04

    Hydrogen peroxide (H2O2) in water has been proposed as a promising solar fuel instead of gaseous hydrogen because of advantages on easy storage and high energy density, being used as a fuel of a one-compartment H2O2 fuel cell for producing electricity on demand with emitting only dioxygen (O2) and water. It is highly desired to utilize the most earth-abundant seawater instead of precious pure water for the practical use of H2O2 as a solar fuel. Here we have achieved efficient photocatalytic production of H2O2 from the most earth-abundant seawater instead of precious pure water and O2 in a two-compartment photoelectrochemical cell using WO3 as a photocatalyst for water oxidation and a cobalt complex supported on a glassy-carbon substrate for the selective two-electron reduction of O2. The concentration of H2O2 produced in seawater reached 48 mM, which was high enough to operate an H2O2 fuel cell.

  5. Seawater usable for production and consumption of hydrogen peroxide as a solar fuel

    NASA Astrophysics Data System (ADS)

    Mase, Kentaro; Yoneda, Masaki; Yamada, Yusuke; Fukuzumi, Shunichi

    2016-05-01

    Hydrogen peroxide (H2O2) in water has been proposed as a promising solar fuel instead of gaseous hydrogen because of advantages on easy storage and high energy density, being used as a fuel of a one-compartment H2O2 fuel cell for producing electricity on demand with emitting only dioxygen (O2) and water. It is highly desired to utilize the most earth-abundant seawater instead of precious pure water for the practical use of H2O2 as a solar fuel. Here we have achieved efficient photocatalytic production of H2O2 from the most earth-abundant seawater instead of precious pure water and O2 in a two-compartment photoelectrochemical cell using WO3 as a photocatalyst for water oxidation and a cobalt complex supported on a glassy-carbon substrate for the selective two-electron reduction of O2. The concentration of H2O2 produced in seawater reached 48 mM, which was high enough to operate an H2O2 fuel cell.

  6. Database of in-situ field measurements for estimates of fuel consumption and fire emissions in Siberia

    NASA Astrophysics Data System (ADS)

    Kukavskaya, Elena; Conard, Susan; Buryak, Ludmila; Ivanova, Galina; Soja, Amber; Kalenskaya, Olga; Zhila, Sergey; Zarubin, Denis; Groisman, Pavel

    2016-04-01

    Wildfires show great variability in the amount of fuel consumed and carbon emitted to the atmosphere. Various types of models are used to calculate global or large scale regional fire emissions. However, in the databases used to estimate fuel consumptions, data for Russia are typically under-represented. Meanwhile, the differences in vegetation and fire regimes in the boreal forests in North America and Eurasia argue strongly for the need of regional ecosystem-specific data. For about 15 years we have been collecting field data on fuel loads and consumption in different ecosystem types of Siberia. We conducted a series of experimental burnings of varying fireline intensity in Scots pine and larch forests of central Siberia to obtain quantitative and qualitative data on fire behavior and carbon emissions. In addition, we examined wildfire behavior and effects in different vegetation types including Scots pine, Siberian pine, fir, birch, poplar, and larch-dominated forests; evergreen coniferous shrubs; grasslands, and peats. We investigated various ecosystem zones of Siberia (central and southern taiga, forest-steppe, steppe, mountains) in the different subjects of the Russian Federation (Krasnoyarsk Kray, Republic of Khakassia, Republic of Buryatia, Tuva Republic, Zabaikalsky Kray). To evaluate the impact of forest practices on fire emissions, burned and unburned logged sites and forest plantations were examined. We found large variations of fuel consumption and fire emission rates among different vegetation types depending on growing conditions, fire behavior characteristics and anthropogenic factors. Changes in the climate system result in an increase in fire frequency, area burned, the number of extreme fires, fire season length, fire season severity, and the number of ignitions from lightning. This leads to an increase of fire-related emissions of carbon to the atmosphere. The field measurement database we compiled is required for improving accuracy of existing

  7. Impact of Solar Control PVB Glass on Vehicle Interior Temperatures, Air-Conditioning Capacity, Fuel Consumption, and Vehicle Range

    SciTech Connect

    Rugh, J.; Chaney, L.; Venson, T.; Ramroth, L.; Rose, M.

    2013-04-01

    The objective of the study was to assess the impact of Saflex1 S-series Solar Control PVB (polyvinyl butyral) configurations on conventional vehicle fuel economy and electric vehicle (EV) range. The approach included outdoor vehicle thermal soak testing, RadTherm cool-down analysis, and vehicle simulations. Thermal soak tests were conducted at the National Renewable Energy Laboratory's Vehicle Testing and Integration Facility in Golden, Colorado. The test results quantified interior temperature reductions and were used to generate initial conditions for the RadTherm cool-down analysis. The RadTherm model determined the potential reduction in air-conditioning (A/C) capacity, which was used to calculate the A/C load for the vehicle simulations. The vehicle simulation tool identified the potential reduction in fuel consumption or improvement in EV range between a baseline and modified configurations for the city and highway drive cycles. The thermal analysis determined a potential 4.0% reduction in A/C power for the Saflex Solar PVB solar control configuration. The reduction in A/C power improved the vehicle range of EVs and fuel economy of conventional vehicles and plug-in hybrid electric vehicles.

  8. Analysis of Technology Options to Reduce the Fuel Consumption of Idling Trucks

    SciTech Connect

    F. Stodolsky; L. Gaines; A. Vyas

    2000-06-01

    Long-haul trucks idling overnight consume more than 838 million gallons (20 million barrels) of fuel annually. Idling also emits pollutants. Truck drivers idle their engines primarily to (1) heat or cool the cab and/or sleeper, (2) keep the fuel warm in winter, and (3) keep the engine warm in the winter so that the engine is easier to start. Alternatives to overnight idling could save much of this fuel, reduce emissions, and cut operating costs. Several fuel-efficient alternatives to idling are available to provide heating and cooling: (1) direct-fired heater for cab/sleeper heating, with or without storage cooling; (2) auxiliary power units; and (3) truck stop electrification. Many of these technologies have drawbacks that limit market acceptance. Options that supply electricity are economically viable for trucks that are idled for 1,000-3,000 or more hours a year, while heater units could be used across the board. Payback times for fleets, which would receive quantity discounts on the prices, would be somewhat shorter.

  9. Analysis of technology options to reduce the fuel consumption of idling trucks

    SciTech Connect

    Stodolsky, F.; Gaines, L.; Vyas, A.

    2000-08-22

    Long-haul trucks idling overnight consume more than 838 million gallons (20 million barrels) of fuel annually. Idling also emits pollutants. Truck drivers idle their engines primarily to (1) heat or cool the cab and/or sleeper, (2) keep the fuel warm in winter, and (3) keep the engine warm in the winter so that the engine is easier to start. Alternatives to overnight idling could save much of this fuel, reduce emissions, and cut operating costs. Several fuel-efficient alternatives to idling are available to provide heating and cooling: (1) direct-fired heater for cab/sleeper heating, with or without storage cooling; (2) auxiliary power units; and (3) truck stop electrification. Many of these technologies have drawbacks that limit market acceptance. Options that supply electricity are economically viable for trucks that are idled for 1,000--3,000 or more hours a year, while heater units could be used across the board. Payback times for fleets, which would receive quantity discounts on the prices, would be somewhat shorter.

  10. Tracked-vehicle fuel consumption. Final report on international test operations procedure

    SciTech Connect

    Not Available

    1987-05-18

    This document describes procedures for evaluating the fuel efficiency of tracked vehicles under controlled operating conditions. The test data are a major source for comparisons with similar vehicles, and can also serve to predict the operational range of these vehicles during tactical missions.

  11. Drive Cycle Analysis, Measurement of Emissions and Fuel Consumption of a PHEV School Bus: Preprint

    SciTech Connect

    Barnitt, R.; Gonder, J.

    2011-04-01

    The National Renewable Energy Laboratory (NREL) collected and analyzed real-world school bus drive cycle data and selected similar standard drive cycles for testing on a chassis dynamometer. NREL tested a first-generation plug-in hybrid electric vehicle (PHEV) school bus equipped with a 6.4L engine and an Enova PHEV drive system comprising a 25-kW/80 kW (continuous/peak) motor and a 370-volt lithium ion battery pack. A Bluebird 7.2L conventional school bus was also tested. Both vehicles were tested over three different drive cycles to capture a range of driving activity. PHEV fuel savings in charge-depleting (CD) mode ranged from slightly more than 30% to a little over 50%. However, the larger fuel savings lasted over a shorter driving distance, as the fully charged PHEV school bus would initially operate in CD mode for some distance, then in a transitional mode, and finally in a charge-sustaining (CS) mode for continued driving. The test results indicate that a PHEV school bus can achieve significant fuel savings during CD operation relative to a conventional bus. In CS mode, the tested bus showed small fuel savings and somewhat higher nitrogen oxide (NOx) emissions than the baseline comparison bus.

  12. Effects of Village Power Quality on Fuel Consumption and Operating Expenses

    SciTech Connect

    Richard Wies; Ron Johnson

    2008-12-31

    Alaska's rural village electric utilities are isolated from the Alaska railbelt electrical grid intertie and from each other. Different strategies have been developed for providing power to meet demand in each of these rural communities. Many of these communities rely on diesel electric generators (DEGs) for power. Some villages have also installed renewable power sources and automated generation systems for controlling the DEGs and other sources of power. For example, Lime Village has installed a diesel battery photovoltaic hybrid system, Kotzebue and Wales have wind-diesel hybrid systems, and McGrath has installed a highly automated system for controlling diesel generators. Poor power quality and diesel engine efficiency in village power systems increases the cost of meeting the load. Power quality problems may consist of poor power factor (PF) or waveform disturbances, while diesel engine efficiency depends primarily on loading, the fuel type, the engine temperature, and the use of waste heat for nearby buildings. These costs take the form of increased fuel use, increased generator maintenance, and decreased reliability. With the cost of bulk fuel in some villages approaching $1.32/liter ($5.00/gallon) a modest 5% decrease in fuel use can result in substantial savings with short payback periods depending on the village's load profile and the cost of corrective measures. This project over its five year history has investigated approaches to improving power quality and implementing fuel savings measures through the use of performance assessment software tools developed in MATLAB{reg_sign} Simulink{reg_sign} and the implementation of remote monitoring, automated generation control, and the addition of renewable energy sources in select villages. The results have shown how many of these communities would benefit from the use of automated generation control by implementing a simple economic dispatch scheme and the integration of renewable energy sources such as wind

  13. The influence of number and values of ratios in stepped gearbox on mileage fuel consumption in NEDC test and real traffic

    NASA Astrophysics Data System (ADS)

    Bera, P.; Wędrychowicz, D.

    2016-09-01

    The article presents the influence of number and values of ratios in stepped gearbox on mileage fuel consumption in a city passenger car. The simulations were conducted for a particular vehicle characterized by its mass, body shape, size of tires and equipped with a combustion engine for which the characteristic of fuel consumption in dynamic states was already designated on the basis of engine test bed measurements. Several designs of transmission with different number of gears and their ratios were used in virtual simulations of road traffic, particularly in the NEDC test, to calculate mileage fuel consumption. This allows for a quantitative assessment of transmission parameters in terms of both vehicle economy and dynamic properties. Also, based on obtained results, recommendations for the selection of a particular vehicle for a specific type of exploitation have been formulated.

  14. The impact of anti-congestion policies on fuel consumption, carbon dioxide emissions and urban sprawl: Application of RELU-TRAN2, a CGE model

    NASA Astrophysics Data System (ADS)

    Hiramatsu, Tomoru

    RELU-TRAN (Regional Economy and Land Use and Transportation) is a numerically solvable general equilibrium model (Anas and Liu, 2007), which treats in a unified manner the regional economy, urban land use and urban personal transportation sectors. In this dissertation, the model is extended by adding the consumer-workers' choice of private vehicle type according to the vehicle's fuel economy, by treating congestion on local roads as well as on major roads and by introducing car fuel consumption as a function of congested vehicle speed. By making the extensions, the model becomes more suitable to analyze the fuel consumption and CO2 emission consequences of urban development. The model is calibrated and simulated for the Chicago metropolitan area. By adjusting the model to the longer time span gradually, the shortand long-run price elasticities of fuel consumption are examined. As the time span becomes longer, fuel consumption becomes more elastic with respect to gasoline price, but when technological improvements in car fuel economy over comparable time spans are introduced exogenously, then the elasticity of fuel with respect to gasoline price becomes similar to that estimated in the econometric literature. Comparative statics exercises show that, if travel by auto becomes relatively more attractive in terms of travel time or travel cost than travel by public transit, then the Chicago MSA becomes more sprawled in total developed land area, whereas if public transit travel becomes relatively more attractive, then the Chicago MSA becomes more centralized. To mitigate fuel consumption and CO2 emissions, relative effectiveness of quasi-Pigouvian congestion tolls, a fuel tax on gasoline, a cordon toll around the downtown and a downtown parking fee are tested. All of these policies successfully reduce the aggregate fuel consumption and CO2. The urban growth boundary (UGB) is an alternative policy tested by the model. The UGB directly makes the Chicago MSA more

  15. Thermal modeling in an engine cooling system to control coolant flow for fuel consumption improvement

    NASA Astrophysics Data System (ADS)

    Park, Sangki; Woo, Seungchul; Kim, Minho; Lee, Kihyung

    2016-09-01

    The design and evaluation of engine cooling and lubrication systems is generally based on real vehicle tests. Our goal here was to establish an engine heat balance model based on mathematical and interpretive analysis of each element of a passenger diesel engine cooling system using a 1-D numerical model. The purpose of this model is to determine ways of optimizing the cooling and lubrication components of an engine and then to apply these methods to actual cooling and lubrication systems of engines that will be developed in the future. Our model was operated under the New European Driving Cycle (NEDC) mode conditions, which represent the fuel economy evaluation mode in Europe. The flow rate of the cooling system was controlled using a control valve. Our results showed that the fuel efficiency was improved by as much as 1.23 %, cooling loss by 1.35 %, and friction loss by 2.21 % throughout NEDC modes by modification of control conditions.

  16. Reducing Fuel Consumption through Semi-Automated Platooning with Class 8 Tractor Trailer Combinations (Poster)

    SciTech Connect

    Lammert, M.; Gonder, J.

    2014-07-01

    This poster describes the National Renewable Energy Laboratory's evaluation of the fuel savings potential of semi-automated truck platooning. Platooning involves reducing aerodynamic drag by grouping vehicles together and decreasing the distance between them through the use of electronic coupling, which allows multiple vehicles to accelerate or brake simultaneously. The NREL study addressed the need for data on American style line-haul sleeper cabs with modern aerodynamics and over a range of trucking speeds common in the United States.

  17. JT9D-70/59 Improved High Pressure Turbine Active Clearance Control System. [for specific fuel consumption improvement

    NASA Technical Reports Server (NTRS)

    Gaffin, W. O.

    1979-01-01

    The JT9D-70/59 high pressure turbine active clearance control system was modified to provide reduction of blade tip clearance when the system is activated during cruise operation. The modification increased the flow capacity and air impingement effectiveness of the cooling air manifold to augment turbine case shrinkage capability, and increased responsiveness of the airseal clearance to case shrinkage. The simulated altitude engine testing indicated a significant improvement in specific fuel consumption with the modified system. A 1000 cycle engine endurance test showed no unusual wear or performance deterioration effects on the engine or the clearance control system. Rig tests indicated that the air impingement and seal support configurations used in the engine tests are near optimum.

  18. The Effect of Fuel Consumption on Cylinder Temperatures and Performance of a Cowled Wright J-5 Engine

    NASA Technical Reports Server (NTRS)

    Schey, Oscar W

    1929-01-01

    Given here are the results of tests made to determine the effect of fuel consumption on the cylinder temperatures and the performance of a cowled Wright J-5 engine. The results of these tests indicate that enriching the mixture by increasing the carburetor size results in a reduction in cylinder head and barrel temperatures. The cylinders shielded by the magnetos or the points on the cylinder that do not receive a free flow of cooling air increase most rapidly in temperature as the mixture is leaned. A free flow of air past the cylinders is essential for satisfactory operation on a lean mixture. The results of these tests show that the Wright J-5 engine can withstand severe temperatures for short periods of operation. The test results also show to what extent destructive temperatures may be avoided by enriching the mixture.

  19. Trajectory Optimization Using Adjoint Method and Chebyshev Polynomial Approximation for Minimizing Fuel Consumption During Climb

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.; Hornby, Gregory; Ishihara, Abe

    2013-01-01

    This paper describes two methods of trajectory optimization to obtain an optimal trajectory of minimum-fuel- to-climb for an aircraft. The first method is based on the adjoint method, and the second method is based on a direct trajectory optimization method using a Chebyshev polynomial approximation and cubic spine approximation. The approximate optimal trajectory will be compared with the adjoint-based optimal trajectory which is considered as the true optimal solution of the trajectory optimization problem. The adjoint-based optimization problem leads to a singular optimal control solution which results in a bang-singular-bang optimal control.

  20. Urban airshed modeling of air quality impacts of alternative transportation fuel use in Los Angeles and Atlanta

    SciTech Connect

    1997-12-01

    The main objective of NREL in supporting this study is to determine the relative air quality impact of the use of compressed natural gas (CNG) as an alternative transportation fuel when compared to low Reid vapor pressure (RVP) gasoline and reformulated gasoline (RFG). A table lists the criteria, air toxic, and greenhouse gas pollutants for which emissions were estimated for the alternative fuel scenarios. Air quality impacts were then estimated by performing photochemical modeling of the alternative fuel scenarios using the Urban Airshed Model Version 6.21 and the Carbon Bond Mechanism Version IV (CBM-IV) (Geary et al., 1988) Using this model, the authors examined the formation and transport of ozone under alternative fuel strategies for motor vehicle transportation sources for the year 2007. Photochemical modeling was performed for modeling domains in Los Angeles, California, and Atlanta, Georgia.

  1. Do biofuel blending mandates reduce gasoline consumption? Implications of state-level renewable fuel standards for energy security

    NASA Astrophysics Data System (ADS)

    Lim, Shinling

    In an effort to keep America's addiction to oil under control, federal and state governments have implemented a variety of policy measures including those that determine the composition of motor gasoline sold at the pump. Biofuel blending mandates known as Renewable Fuel Standards (RFS) are designed to reduce the amount of foreign crude oil needed to be imported as well as to boost the local ethanol and corn industry. Yet beyond looking at changes in gasoline prices associated with increased ethanol production, there have been no empirical studies that examine effects of state-level RFS implementation on gasoline consumption. I estimate a Generalized Least Squares model for the gasoline demand for the 1993 to 2010 period with state and time fixed effects controlling for RFS. States with active RFS are Minnesota, Hawaii, Missouri, Florida, Washington, and Oregon. I find that, despite the onset of federal biofuel mandates across states in 2007 and the lower energy content of blended gasoline, being in a state that has implemented RFS is associated with 1.5% decrease in gasoline consumption (including blended gasoline). This is encouraging evidence for efforts to lessen dependence on gasoline and has positive implications for energy security.

  2. Development of an energy consumption and cost data base for fuel cell total energy systems and conventional building energy systems

    SciTech Connect

    Pine, G.D.; Christian, J.E.; Mixon, W.R.; Jackson, W.L.

    1980-07-01

    This report describes the procedures and data sources used to develop an energy-consumption and system-cost data base for use in predicting the market penetration of phosphoric acid fuel cell total-energy systems in the nonindustrial building market. A computer program was used to simulate the hourly energy requirements of six types of buildings - office buildings, retail stores, hotels and motels, schools, hospitals, and multifamily residences. The simulations were done by using hourly weather tapes for one city in each of the ten Department of Energy administrative regions. Two types of building construction were considered, one for existing buildings and one for new buildings. A fuel cell system combined with electrically driven heat pumps and one combined with a gas boiler and an electrically driven chiller were compared with similar conventional systems. The methods of system simulation, component sizing, and system cost estimation are described for each system. The systems were simulated for a single building size for each building type. Methods were developed to extrapolate the system cost and performance data to other building sizes.

  3. Aerodynamic Improvements of an Empty Timber Truck can Have the Potential of Significantly Reducing Fuel Consumption

    NASA Astrophysics Data System (ADS)

    Andersson, Magnus; Marashi, Seyedeh Sepideh; Karlsson, Matts

    2012-11-01

    In the present study, aerodynamic drag (AD) has been estimated for an empty and a fully loaded conceptual timber truck (TT) using Computational Fluid Dynamics (CFD). The increasing fuel prices have challenged heavy duty vehicle (HDV) manufactures to strive for better fuel economy, by e.g. utilizing drag reducing external devices. Despite this knowledge, the TT fleets seem to be left in the dark. Like HDV aerodynamics, similarities can be observed as a large low pressure wake is formed behind the tractor (unloaded) and downstream of the trailer (full load) thus generating AD. As TTs travel half the time without any cargo, focus on drag reduction is important. The full scaled TTs where simulated using the realizable k-epsilon model with grid adaption techniques for mesh independence. Our results indicate that a loaded TT reduces the AD significantly as both wake size and turbulence kinetic energy are lowered. In contrast to HDV the unloaded TTs have a much larger design space available for possible drag reducing devices, e.g. plastic wrapping and/or flaps. This conceptual CFD study has given an indication of the large AD difference between the unloaded and fully loaded TT, showing the potential for significant AD improvements.

  4. LXRα fuels fatty acid-stimulated oxygen consumption in white adipocytes[S

    PubMed Central

    Dib, Lea; Bugge, Anne; Collins, Sheila

    2014-01-01

    Liver X receptors (LXRs) are transcription factors known for their role in hepatic cholesterol and lipid metabolism. Though highly expressed in fat, the role of LXR in this tissue is not well characterized. We generated adipose tissue LXRα knockout (ATaKO) mice and showed that these mice gain more weight and fat mass on a high-fat diet compared with wild-type controls. White adipose tissue (WAT) accretion in ATaKO mice results from both a decrease in WAT lipolytic and oxidative capacities. This was demonstrated by decreased expression of the β2- and β3-adrenergic receptors, reduced level of phosphorylated hormone-sensitive lipase, and lower oxygen consumption rates (OCRs) in WAT of ATaKO mice. Furthermore, LXR activation in vivo and in vitro led to decreased adipocyte size in WAT and increased glycerol release from primary adipocytes, respectively, with a concomitant increase in OCR in both models. Our findings show that absence of LXRα in adipose tissue results in elevated adiposity through a decrease in WAT oxidation, secondary to attenuated FA availability. PMID:24259533

  5. Trends in the size distribution, highway use, and consumption of gasoline and diesel fuels of the U.S. Commercial Truck Fleet, 1977-2002.

    SciTech Connect

    Bertram, K. M.; Santini, D. J.; Anderson, J. L.; Vyas, A. D.

    2008-01-01

    This paper focuses on various major long-range (1977-2002, 1982-2002) U.S. commercial trucking trends by using U.S. Department of Commerce, Bureau of the Census Vehicle/Truck Inventory and Use Survey (VIUS/TIUS) data from this period, as well as selected 1977-2002 data from the U.S. Department of Energy's (DOE's) Energy Information Administration (EIA) and the U.S. Department of Transportation, Federal Highway Administration's (FHWA's) Highway Statistics. Analyses are made of (1) overall passenger vehicle versus truck consumption patterns of gasoline and diesel fuel and (2) the population growth and fuels used by all commercial truck classes and selected truck types (single unit and combination). Selected vehicle miles traveled, gallons per vehicle miles traveled, and gallons per cargo ton-miles traveled trends, as well as the effect of cargo tons per truck on fuel consumption, are also assessed. In addition, long-range trends of related factors (such as long-haul mileages driven by heavy trucks) and their impacts on both reducing fuel consumption per cargo-ton-mile and the relative shares of total commercial fuel use among truck classes were examined. Results of these trends on U.S. petroleum consumption are identified. The effects of basic engineering design and performance, national Interstate highway construction legislation, national demographic trends (such as suburbanization), and changes in U.S. corporate operational requirements are discussed. Their impacts on both the long-distance hauling and shorter-distance urban and suburban delivery markets of the commercial trucking industry are highlighted.

  6. Minimum Specific Fuel Consumption of a Liquid-Cooled Multicylinder Aircraft Engine as Affected by Compression Ratio and Engine Operating Conditions

    NASA Technical Reports Server (NTRS)

    Brun, Rinaldo J.; Feder, Melvin S.; Harries, Myron L.

    1947-01-01

    An investigation was conducted on a 12-cylinder V-type liquid-cooled aircraft engine of 1710-cubic-inch displacement to determine the minimum specific fuel consumption at constant cruising engine speed and compression ratios of 6.65, 7.93, and 9.68. At each compression ratio, the effect.of the following variables was investigated at manifold pressures of 28, 34, 40, and 50 inches of mercury absolute: temperature of the inlet-air to the auxiliary-stage supercharger, fuel-air ratio, and spark advance. Standard sea-level atmospheric pressure was maintained at the auxiliary-stage supercharger inlet and the exhaust pressure was atmospheric. Advancing the spark timing from 34 deg and 28 deg B.T.C. (exhaust and intake, respectively) to 42 deg and 36 deg B.T.C. at a compression ratio of 6.65 resulted in a decrease of approximately 3 percent in brake specific fuel consumption. Further decreases in brake specific fuel consumption of 10.5 to 14.1 percent (depending on power level) were observed as the compression ratio was increased from 6.65 to 9.68, maintaining at each compression ratio the spark advance required for maximum torque at a fuel-air ratio of 0.06. This increase in compression ratio with a power output of 0.585 horsepower per cubic inch required a change from . a fuel- lend of 6-percent triptane with 94-percent 68--R fuel at a compression ratio of 6.65 to a fuel blend of 58-percent, triptane with 42-percent 28-R fuel at a compression ratio of 9.68 to provide for knock-free engine operation. As an aid in the evaluation of engine mechanical endurance, peak cylinder pressures were measured on a single-cylinder engine at several operating conditions. Peak cylinder pressures of 1900 pounds per square inch can be expected at a compression ratio of 9.68 and an indicated mean effective pressure of 320 pounds per square inch. The engine durability was considerably reduced at these conditions.

  7. Analysis of the CO2, NOx emission and fuel consumption from a heavy-duty vehicle designed for carriage of timber

    NASA Astrophysics Data System (ADS)

    Fuc, P.; Lijewski, P.; Ziolkowski, A.

    2016-09-01

    The paper presents the results of measurements of the CO2 and NOx emission and fuel consumption recorded under actual operating conditions of a heavy-duty vehicle designed for loading and carriage of timber. The tests were performed on a specially designed test route that reflected the arrival of the vehicle to the felling site in the forest, the loading process and return to the lumberyard. The route ran through paved (asphalt) and unpaved (forest) portions. Its total length was 8.6 km. An advanced PEMS (Portable Emission Measurement System) device was used for the measurement of the exhaust emissions - SEMTECH DS by Sensors Inc. The paper analyses the CO2 and NOx emission and fuel consumption on all portions of the test route and presents a comparison between the forest and asphalt roads.

  8. Oxygen consumption and filtering rate of Daphnia Pulex after exposure to water-soluble fractions of naphthalene, phenanthrene, No. 2 fuel oil, and coal-tar creosote

    SciTech Connect

    Geiger, J.G.; Buikema, A.L.

    1981-12-01

    The effects of short-term exposure to water-soluble fractions (WSF) of naphthalene, phenanthrene, No. 2 fuel oil, and coal-tar creosote upon oxygen consumption and filtering rates of Daphnia pulex are examined. Approximately 60 young Daphnia were exposed to test solutions of LC20 and LC30 concentrations of WSF for at least three molt cycles. Oxygen consumption was determined by the azide modification of the Winkler Method (American Public Health Association et al. 1975). Algal counts were made for experimental and control bottles using an Electrozone electronic particle counter interfaced with a PDP-11 minicomputer. Filtering rates were computed and expressed as ml/Daphnia/day. Results indicate no significant differences in oxygen consumption rates. However, changes in filtering rates may be a sensitive indicator of sublethal stress. 3 tables (JMT)

  9. The relationship between air pollution, fossil fuel energy consumption, and water resources in the panel of selected Asia-Pacific countries.

    PubMed

    Rafindadi, Abdulkadir Abdulrashid; Yusof, Zarinah; Zaman, Khalid; Kyophilavong, Phouphet; Akhmat, Ghulam

    2014-10-01

    The objective of the study is to examine the relationship between air pollution, fossil fuel energy consumption, water resources, and natural resource rents in the panel of selected Asia-Pacific countries, over a period of 1975-2012. The study includes number of variables in the model for robust analysis. The results of cross-sectional analysis show that there is a significant relationship between air pollution, energy consumption, and water productivity in the individual countries of Asia-Pacific. However, the results of each country vary according to the time invariant shocks. For this purpose, the study employed the panel least square technique which includes the panel least square regression, panel fixed effect regression, and panel two-stage least square regression. In general, all the panel tests indicate that there is a significant and positive relationship between air pollution, energy consumption, and water resources in the region. The fossil fuel energy consumption has a major dominating impact on the changes in the air pollution in the region.

  10. Isotopic measurements of atmospheric methane in Los Angeles, California, USA: Influence of “fugitive” fossil fuel emissions

    NASA Astrophysics Data System (ADS)

    Townsend-Small, Amy; Tyler, Stanley C.; Pataki, Diane E.; Xu, Xiaomei; Christensen, Lance E.

    2012-04-01

    Recent studies have suggested that CH4 emissions in Los Angeles and other large cities may be underestimated. We utilized stable isotopes (13C and D) and radiocarbon (14C) to investigate sources of CH4 in Los Angeles, California. First, we made measurements of δ13C and δD of various CH4 sources in urban areas. Fossil fuel CH4 sources (oil refineries, power plants, traffic, and oil drilling fields) had δ13C values between -45 and -30‰ and dD values between -275 and -100‰, whereas biological CH4 (cows, biofuels, landfills, sewage treatment plants, and cattle feedlots) had δ13C values between -65 and -45‰ and δD values between -350 and -275‰. We made high-altitude observations of CH4 concentration using continuous tunable laser spectroscopy measurements combined with isotope analyses (13C, 14C, and D) of discrete samples to constrain urban CH4 sources. Our data indicate that the dominant source of CH4 in Los Angeles has a δ13C value of approximately -41.5‰ and a δD value between -229 and -208‰. Δ14C of CH4 in urban air samples ranged from +262 to +344‰ (127.1 to 134.9 pMC), depleted with respect to average global background CH4. We conclude that the major source of CH4 in Los Angeles is leakage of fossil fuels, such as from geologic formations, natural gas pipelines, oil refining, and/or power plants. More research is needed to constrain fluxes of CH4 from natural gas distribution and refining, as this flux may increase with greater reliance on natural gas and biogas for energy needs.

  11. Peak-Seeking Control For Reduced Fuel Consumption: Flight-Test Results For The Full-Scale Advanced Systems Testbed FA-18 Airplane

    NASA Technical Reports Server (NTRS)

    Brown, Nelson

    2013-01-01

    A peak-seeking control algorithm for real-time trim optimization for reduced fuel consumption has been developed by researchers at the National Aeronautics and Space Administration (NASA) Dryden Flight Research Center to address the goals of the NASA Environmentally Responsible Aviation project to reduce fuel burn and emissions. The peak-seeking control algorithm is based on a steepest-descent algorithm using a time-varying Kalman filter to estimate the gradient of a performance function of fuel flow versus control surface positions. In real-time operation, deflections of symmetric ailerons, trailing-edge flaps, and leading-edge flaps of an F/A-18 airplane are used for optimization of fuel flow. Results from six research flights are presented herein. The optimization algorithm found a trim configuration that required approximately 3 percent less fuel flow than the baseline trim at the same flight condition. This presentation also focuses on the design of the flight experiment and the practical challenges of conducting the experiment.

  12. Exploring the Reduction of Fuel Consumption for Ship-to-Shore Connectors of the Marine Expeditionary Brigade

    DTIC Science & Technology

    2013-12-01

    developing world. The Marine Corps must prepare itself to operate without the benefit of readily available fossil fuels and supplies shipped in by trucks ...itself to operate without the benefit of readily available fossil fuels and supplies shipped in by trucks or home-based supply lines. As demonstrated in...resulted in a MEB fighting force that is dependent upon extensive amounts of fossil fuels. Whether provided by truck , plane, or 3 ship, the

  13. 14 CFR 291.44 - BTS Schedule P-12(a), Fuel Consumption by Type of Service and Entity.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS CARGO OPERATIONS IN INTERSTATE AIR...) Each air carrier shall maintain records for each station showing the computation of fuel inventories... other than Jet A fuel, a footnote shall be added indicating the number of gallons and applicable...

  14. Do biomass fuel use and consumption of unsafe water mediate educational inequalities in stillbirth risk? An analysis of the 2007 Ghana Maternal Health Survey

    PubMed Central

    Näyhä, Simo; Jaakkola, Jouni J K

    2017-01-01

    Background Numerous studies have explored the association between educational inequalities and stillbirth but most have failed to elaborate how low educational attainment leads to an increased risk of stillbirth. We hypothesised that use of biomass fuels and consumption of unsafe water related to low educational attainment could explain the stillbirth burden in Ghana attributable to socioeconomic disadvantage. Methods Data from the 2007 Ghana Maternal Health Survey, a nationally representative population-based survey were analysed for this study. Of the10 370 women aged 15–49 years interviewed via structured questionnaires for the survey, 7183 primiparous and multiparous women qualified for inclusion in the present study. Results In a logistic regression analysis that adjusted for age, area of residence, marital status and ethnicity of women, lower maternal primary education was associated with a 62% (OR=1.62; 95% CI 1.04 to 2.52) increased lifetime risk of stillbirth. Biomass fuel use and consumption of unsafe water mediated 18% and 8% of the observed effects, respectively. Jointly these two exposures explained 24% of the observed effects. The generalised additive modelling revealed a very flat inverted spoon-shaped smoothed curve which peaked at low levels of schooling (2–3 years) and confirms the findings from the logistic regression analysis. Conclusions Our results show that biomass fuel use and unsafe water consumption could be important pathways through which low maternal educational attainment leads to stillbirths in Ghana and similar developing countries. Addressing educational inequalities in developing countries is thus essential for ensuring household choices that curtail environmental exposures and help improve pregnancy outcomes. PMID:28174221

  15. Computer program for prediction of fuel consumption statistical data for an upper stage three-axes stabilized on-off control system

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A FORTRAN coded computer program and method to predict the reaction control fuel consumption statistics for a three axis stabilized rocket vehicle upper stage is described. A Monte Carlo approach is used which is more efficient by using closed form estimates of impulses. The effects of rocket motor thrust misalignment, static unbalance, aerodynamic disturbances, and deviations in trajectory, mass properties and control system characteristics are included. This routine can be applied to many types of on-off reaction controlled vehicles. The pseudorandom number generation and statistical analyses subroutines including the output histograms can be used for other Monte Carlo analyses problems.

  16. The potential effect of future energy-efficiency and emissions-improving technologies on fuel consumption of heavy trucks.

    SciTech Connect

    Vyas, A.; Saricks, C.; Stodolsky, F.

    2003-03-14

    Researchers at Argonne National Laboratory analyzed heavy-duty truck technologies to support the Energy Information Administration's long-term energy use projections. Researchers conducted an analysis of several technology options that have potential to improve heavy truck fuel economy and emissions characteristics. The technologies are grouped as fuel-economy-enhancing and emissions-improving. Each technology's potential impact on heavy truck fuel economy has been estimated, as has the cost of implementation. The extent of technology penetration is estimated on the basis of truck data analyses and technical judgment.

  17. Carbon dioxide emissions from fossil fuel consumption and cement manufacture, 1751-1991; and an estimate of their isotopic composition and latitudinal distribution

    SciTech Connect

    Andres, R.J.; Marland, G.; Boden, T.; Bischof, S.

    1994-10-01

    This work briefly discusses four of the current research emphases at Oak Ridge National Laboratory regarding the emission of carbon dioxide (CO{sub 2}) from fossil fuel consumption, natural gas flaring and cement manufacture. These emphases include: (1) updating the 1950 to present time series of CO{sub 2} emissions from fossil fuel consumption and cement manufacture, (2) extending this time series back to 1751, (3) gridding the data at 1{sup 0} by 1{sup 0} resolution, and (4) estimating the isotopic signature of these emissions. In 1991, global emissions of CO{sub 2} from fossil fuel and cement increased 1.5% over 1990 levels to 6188 {times} 10{sup 6} metric tonnes C. The Kuwaiti oil fires can account for all of the increase. Recently published energy data (Etemad et al., 1991) allow extension of the CO emissions time series back to 1751. Preliminary examination shows good agreement with two other, but shorter, energy time series. A latitudinal distribution of carbon emissions is being completed. A southward shift in the major mass of CO{sub 2} emissions is occurring from European-North American latitudes towards central-southeast Asian latitudes, reflecting the growth of population and industrialization at these lower latitudes. The carbon isotopic signature of these emissions has been re-examined. The emissions of the last two decades are approximately 1{per_thousand} lighter than previously reported (Tans, 1981). This lightening of the emissions signature is due to fossil fuel gases and liquids, including a revision of their {delta}{sup 13}C isotopic signature and an increased production rate.

  18. A comparison of spent fuel assembly control instruments: The Cadarache PYTHON and the Los Alamos Fork

    SciTech Connect

    Bignan, G.; Capsie, J.; Romeyer-Dherbey, J. . Direction des Reacteurs Nucleaires); Rinard, P. )

    1991-01-01

    Devices to monitor spent fuel assemblies while stored under water with nondestructive assay methods, have been developed in France and in the United States. Both devices are designed to verify operator's declared values of exposures and cooling-time but the applications and thus the designs of the systems differ. A study, whose results are presented in this paper, has been conducted to compare the features and the performances of the two instruments. 4 refs., 9 figs.

  19. Influence of mobile air-conditioning on vehicle emissions and fuel consumption: a model approach for modern gasoline cars used in Europe.

    PubMed

    Weilenmann, Martin F; Vasic, Ana-Marija; Stettler, Peter; Novak, Philippe

    2005-12-15

    The influence of air-conditioning activity on the emissions and fuel consumption of passenger cars is an important issue, since fleet penetration and use of these systems have reached a high level. Apart from the MOBILE6 study in the United States, little data is available on the impact of air-conditioning devices (A/Cs). Since weather conditions and A/C technologies both differ from those in the U. S., a test series was designed for the European setting. A fleet of six modern gasoline passenger cars was tested in different weather conditions. Separate test series were carried out for the initial cooldown and for the stationary situation of keeping the interior of the vehicle cool. As assumed, CO2 emissions and fuel consumption rise with the thermal load. This also causes a notable rise in CO and hydrocarbons (HCs). Moreover, A/Cs do not stop automatically at low ambient temperatures; if necessary, they produce dry air to demist the windscreen. A model is proposed that shows a constant load for lower temperatures and a linear trend for higher temperatures. The initial cooldown tests highlight significant differences among cars but show that A/C operation for the initial cooling of an overheated passenger compartment does not result in any extra emissions for the fleet as a whole.

  20. The Evaluation of the Impact of New Technologies for Different Powertrain Medium-Duty Trucks on Fuel Consumption

    SciTech Connect

    Wang, Lijuan; Duran, Adam; Kelly, Kenneth; Konan, Arnaud; Lammert, Michael; Prohaska, Robert

    2016-09-27

    In this paper, researchers at the National Renewable Energy Laboratory present the results of simulation studies to evaluate potential fuel savings as a result of improvements to vehicle rolling resistance, coefficient of drag, and vehicle weight as well as hybridization for four powertrains for medium-duty parcel delivery vehicles. The vehicles will be modeled and simulated over 1,290 real-world driving trips to determine the fuel savings potential based on improvements to each technology and to identify best use cases for each platform. The results of impacts of new technologies on fuel saving will be presented, and the most favorable driving routes on which to adopt them will be explored.

  1. The Evaluation of the Impact of New Technologies for Medium-Duty Parcel Delivery Trucks on Fuel Consumption

    SciTech Connect

    Wang, Lijuan; Duran, Adam; Kelly, Kenneth; Konan, Arnaud; Lammert, Michael; Prohaska, Robert

    2016-10-06

    In this paper, researchers at the National Renewable Energy Laboratory present the results of simulation studies to evaluate potential fuel savings as a result of improvements to vehicle rolling resistance, coefficient of drag, and vehicle weight as well as hybridization for four power trains for medium-duty parcel delivery vehicles. The vehicles will be modeled and simulated over 1,290 real-world driving trips to determine the fuel savings potential based on improvements to each technology and to identify best use cases for each platform. The results of impacts of new technologies on fuel saving will be presented, and the most favorable driving routes on which to adopt them will be explored.

  2. History of fuel consumption inferred from polycyclic aromatic hydrocarbons in sediments from the south Lianhuan Lake, northeast China.

    PubMed

    Sun, Li; Zang, Shuying

    2012-06-01

    Polycyclic aromatic hydrocarbons (PAHs) are a group of persistent organic pollutants of global concern. The current study uses differences in PAH profiles in 1 cm core sediment samples from south Lianhuan Lake, Heilongjiang Province, China to evaluate historical changes in fuel sources. Individual core segments were dated using (137)Cs techniques and concentrations of 16 priority PAHs were measured. Principal components analysis with multivariate linear regression and PAH profiles of specific combustion sources were used to identify historical fuel use. During the early 1940s to the early 1970s, PAHs concentrations increases with the increased combustion of coal, and relatively high petroleum source could be linked to the establishment of the Daqing Oil Field. The source apportionment suggested that coal combustion replaced wood burning and became the dominant fuel since the 1940s and petroleum source increased. These results were coincidence with the rapid economic growth occurring in China.

  3. Real-world emissions and fuel consumption of diesel buses and trucks in Macao: From on-road measurement to policy implications

    NASA Astrophysics Data System (ADS)

    Wu, Xiaomeng; Zhang, Shaojun; Wu, Ye; Li, Zhenhua; Zhou, Yu; Fu, Lixin; Hao, Jiming

    2015-11-01

    A total of 13 diesel buses and 12 diesel trucks in Macao were tested using portable emission measurement systems (PEMS) including a SEMTECH-DS for gaseous emissions and a SEMTECH-PPMD for PM2.5. The average emission rates of gaseous pollutants and CO2 are developed with the operating mode defined by the instantaneous vehicle specific power (VSP) and vehicle speed. Both distance-based and fuel mass-based emission factors for gaseous pollutants (e.g., CO, THC and NOX) are further estimated under typical driving conditions. The average distance-based NOX emission of heavy-duty buses (HDBs) is higher than 13 g km-1. Considering the unfavorable conditions for selective reductions catalyst (SCR) systems, such as low-speed driving conditions, more effective technology options (e.g., dedicated natural gas buses and electric buses) should be considered by policy makers in Macao. We identified strong effects of the vehicle size, engine displacement and driving conditions on real-world CO2 emission factors and fuel consumption for diesel vehicles. Therefore, detailed profiles regarding vehicle specifications can reduce the uncertainty in their fleet-average on-road fuel consumption. In addition, strong correlations between relative emission factors and driving conditions indicated by the average speed of generated micro-trips are identified based on a micro-trip method. For example, distance-based emission factors of HDBs will increase by 39% for CO, 29% for THC, 43% for NOX and 26% for CO2 when the average speed decreases from 30 km h-1 to 20 km h-1. The mitigation of on-road emissions from diesel buses and trucks by improving traffic conditions through effective traffic and economic management measures is therefore required. This study demonstrates the important role of PEMS in understanding vehicle emissions and mitigation strategies from science to policy perspectives.

  4. The effect of exhaust-to-coolant heat transfer on warm-up time and fuel consumption of two automobile engines

    SciTech Connect

    Goettler, H.J.; Vidger, L.J.; Majkrzak

    1986-01-01

    A 1977 Buick V-6 engine and a 1981 Ford Granada automobile were equipped with heat exchangers to transfer energy from the exhaust gases to the cooling water after cold starts in order to shorten engine warm-up periods and improve fuel economy. A parallel concern was the time required to reach satisfactory heat delivery to the passenger compartment. The Buick engine was investigated in the laboratory. The Ford automobile was tested during driving over a 12.4 km length of freeway and over an 8.6 km test route including both in-town and highway segments. Prior to each test run the engines were exposed to ambient air for at least 8 hours at temperatures ranging from -26/sup 0/C to +2/sup 0/C. The use of the heat exchangers resulted in average reductions of fuel consumption of 2.8% during a 7 minute warm-up period for the engine, and of 2.2% for the automobile when tested on the above test routes. The corresponding times for the coolant in the automobile compartment heater to reach maximum temperature were reduced by 16% and 7%. While fuel savings were achieved, their economic value is questionable, particularly in light of a possible retrofit of an existing automobile with an exhaust-to-coolant heat exchanger and the necessary control equipment.

  5. Planning Strategies for Transportation Fuel Consumption Reduction: An Evaluation of the Hawaii Clean Energy Initiative’s Transportation Plan

    DTIC Science & Technology

    2014-04-01

    technologies to improve fleet efficiency goals, and evaluate switching to biodiesel for trucks and vehicles without other alternatives (HCEI 2011...standards and biodiesel usage levels 2020 Goal 50 MGY of renewable fuels 28 working with industry to increase EV market penetration, and...Strategy Reduction Potential Purchase more efficient vehicles 10-20% Promote hybrid technologies 10-20% Evaluate biodiesel switching (freight) TBD

  6. Implications from the Use of Non-timber Forest Products on the Consumption of Wood as a Fuel Source in Human-Dominated Semiarid Landscapes

    NASA Astrophysics Data System (ADS)

    Cavalcanti, Maria Clara B. T.; Ramos, Marcelo Alves; Araújo, Elcida L.; Albuquerque, Ulysses P.

    2015-08-01

    Little is known about what possible effects on wood resources might be caused by non-timber forest products (NTFPs). Here, we assessed the patterns of fuelwood consumption related to an NTFP ( Caryocar coriaceum) oil extraction and how this non-domestic activity can indirectly increase the use pressure on fuelwood species in a protected area, semiarid of Brazil. We conducted semi-structured interviews, in situ inventories, phytosociological surveys, and analyses of wood quality to identify the set of woody plants used in oil production. Householders use large volumes of dry wood and a set of woody species, which are highly exploited. Additionally, many preferred species have low fuel potential and suffer much use pressure. The best fuelwood species are underused, what requires management strategies to improve their potential as a source of energy. As a result, we suggest some conservation and management actions of fuelwood resources related to the use of NTFPs.

  7. Future Fuels

    DTIC Science & Technology

    2005-10-04

    tactical ground mobility and increasing operational reach • Identify, review, and assess – Technologies for reducing fuel consumption, including...T I O N S A C T I O N S TOR Focus - Tactical ground mobility - Operational reach - Not A/C, Ships, or troops Hybrid Electric Vehicle Fuel Management...Fuel Management During Combat Operations Energy Fundamentals • Energy Density • Tactical Mobility • Petroleum Use • Fuel Usage (TWV) • TWV OP TEMPO TOR

  8. Sectoral CO 2, CH 4, N 2O and SO 2 emissions from fossil fuel consumption in Nagpur City of Central India

    NASA Astrophysics Data System (ADS)

    Majumdar, Deepanjan; Gajghate, D. G.

    2011-08-01

    Emission inventory of CO 2, CH 4, N 2O and SO 2 has been prepared for Nagpur city in Central India for the year 2004. Data on fossil fuel (coal, light diesel oil, high speed diesel, petrol/gasoline, low sulphur heavy stock, furnace oil and kerosene) consumption in thermal power, industrial, transport and domestic sectors were collected. Thermal power sector had the maximum coal consumption followed by the industrial and domestic sectors, whereas kerosene, liquefied petroleum gas (LPG), diesel and gasoline were used only in any single sector. Total annual CO 2, CH 4, N 2O and SO 2 emissions from these fuels in Nagpur city for the year 2004 was found to be 14792418 MT (14.8 Tg), 4649 (4.6 Tg), 1529 (1.5 Tg) and 69093 (6.9 Tg), respectively, in which thermal power and domestic sector had the maximum share. Coal was found to be the major contributor to Green House Gas (GHG) and SO 2 emissions in all the sectors barring transport and domestic sectors. Carbon dioxide was the predominant GHG emitted by the selected sectors in terms of absolute emissions and also global warming contribution (GWC), though the share in the latter was lesser in magnitude due to higher global warming potential (GWP) of CH 4 and N 2O than CO 2. Thermal power sector had a share of 51% in total CO 2 emissions from all the sectors, followed by domestic, industrial and transport sectors having 27, 12 and 10% contributions, respectively. Share of thermal power sector in total SO 2 emissions was 61%, followed by 24% from industrial, 10% from domestic and 5% from transport sector.

  9. Life Cycle Assessment of Vehicle Lightweighting: A Physics-Based Model To Estimate Use-Phase Fuel Consumption of Electrified Vehicles.

    PubMed

    Kim, Hyung Chul; Wallington, Timothy J

    2016-10-18

    Assessing the life-cycle benefits of vehicle lightweighting requires a quantitative description of mass-induced fuel consumption (MIF) and fuel reduction values (FRVs). We have extended our physics-based model of MIF and FRVs for internal combustion engine vehicles (ICEVs) to electrified vehicles (EVs) including hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and battery electric vehicles (BEVs). We illustrate the utility of the model by calculating MIFs and FRVs for 37 EVs and 13 ICEVs. BEVs have much smaller MIF and FRVs, both in the range 0.04-0.07 Le/(100 km 100 kg), than those for ICEVs which are in the ranges 0.19-0.32 and 0.16-0.22 L/(100 km 100 kg), respectively. The MIF and FRVs for HEVs and PHEVs mostly lie between those for ICEVs and BEVs. Powertrain resizing increases the FRVs for ICEVs, HEVs and PHEVs. Lightweighting EVs is less effective in reducing greenhouse gas emissions than lightweighting ICEVs, however the benefits differ substantially for different vehicle models. The physics-based approach outlined here enables model specific assessments for ICEVs, HEVs, PHEVs, and BEVs required to determine the optimal strategy for maximizing the life-cycle benefits of lightweighting the light-duty vehicle fleet.

  10. Changes of Dietary Pattern, Food Choice, Food Consumption, Nutrient Intake and Body Mass Index of Korean American College Students with Different Length of Residence in the Los Angeles Areas

    ERIC Educational Resources Information Center

    Kim, Nam; Tam, Chick F.; Poon, George; Lew, Polong; Kim, Samuel Saychang; Kim, James C.; Kim, Rachel Byungsook

    2010-01-01

    This study was to investigate how dietary pattern, food choice, food consumption, nutrient intake and body mass index (BMI) vary with length of residence for Korean American college students. The respondents were 60 Korean American residents living in the Los Angeles Area. They were divided into two groups based on the length of stay in the U.S.:…

  11. Fuel consumption and CO2/pollutant emissions of mobile air conditioning at fleet level - new data and model comparison.

    PubMed

    Weilenmann, Martin F; Alvarez, Robert; Keller, Mario

    2010-07-01

    Mobile air conditioning (MAC) systems are the second-largest energy consumers in cars after driving itself. While different measurement series are available to illustrate their behavior in hot ambient conditions, little data are available for lower temperatures. There are also no data available on diesel vehicles, despite these being quite common in Europe (up to 70% of the fleet in some countries). In the present study, six representative modern diesel passenger cars were tested. In combination with data from previous measurements on gasoline cars, a new model was developed - EEMAC = Empa Emission model for Mobile Air Conditioning systems - to predict emissions from air conditioning. The measurements obtained show that A/C activity still occurs at temperatures below the desired interior temperature. The EEMAC model was applied to the average meteorological year of a central European region and compared with the US EPA MOBILE6 model. As temperatures in central Europe are often below 20 degrees C (the point below which the two models differ), the overall results differ clearly. The estimated average annual CO(2) output according to EEMAC is six times higher than that of MOBILE6. EEMAC also indicates that around two-thirds of the fuel used for air conditioning could be saved by switching the MAC system off below 18 degrees C.

  12. Estimated performance of an adaptive trailing-edge device aimed at reducing fuel consumption on a medium-size aircraft

    NASA Astrophysics Data System (ADS)

    Diodati, Gianluca; Concilio, Antonio; Ricci, Sergio; De Gaspari, Alessandro; Huvelin, Fabien; Dumont, Antoine; Godard, Jean-Luc

    2013-03-01

    This paper deals with the estimation of the performance of a medium-size aircraft (3-hour flight range) equipped with an adaptive trailing edge device (ATED) that runs span-wise from the wing root in the flap zone and extends chord-wise for a limited percentage of the MAC. Computations are calculated referring to the full wing and do not refer to the complete aircraft configuration. Aerodynamic computations, taking into account ideal shapes, have been performed by using both Euler and Navier- Stokes method in order to extract the wing polars for the reference and the optimal wing, implementing an ATED, deflected upwards and downwards. A comparison of the achieved results is discussed. Considering the shape domain, a suitable interpolation procedure has been set up to obtain the wing polar envelop of the adaptive wing, intended as the set of "best" values, picked by each different polar. At the end, the performances of the complete reference and adaptive wing are computed and compared for a symmetric, centered, leveled and steady cruise flight for a medium size aircraft. A significant fuel burn reduction estimate or, alternatively, an increased range capability is demonstrated, with margins of further improvements. The research leading to these results has gratefully received funding from the European Union Seventh Framework Programme (FP7/2007- 2013) under Grant Agreement n° 284562.

  13. China: Emissions pattern of the world leader in CO2 emissions from fossil fuel consumption and cement production

    NASA Astrophysics Data System (ADS)

    Gregg, Jay S.; Andres, Robert J.; Marland, Gregg

    2008-04-01

    Release of carbon dioxide (CO2) from fossil fuel combustion and cement manufacture is the primary anthropogenic driver of climate change. Our best estimate is that China became the largest national source of CO2 emissions during 2006. Previously, the United States (US) had occupied that position. However, the annual emission rate in the US has remained relatively stable between 2001-2006 while the emission rate in China has more than doubled, apparently eclipsing that of the US in late 2006. Here we present the seasonal and spatial pattern of CO2 emissions in China, as well as the sectoral breakdown of emissions. Though our best point estimate places China in the lead position in terms of CO2 emissions, we qualify this statement in a discussion of the uncertainty in the underlying data (3-5% for the US; 15-20% for China). Finally, we comment briefly on the implications of China's new position with respect to international agreements to mitigate climate change.

  14. Alternative fuels

    NASA Technical Reports Server (NTRS)

    Grobman, J. S.; Butze, H. F.; Friedman, R.; Antoine, A. C.; Reynolds, T. W.

    1977-01-01

    Potential problems related to the use of alternative aviation turbine fuels are discussed and both ongoing and required research into these fuels is described. This discussion is limited to aviation turbine fuels composed of liquid hydrocarbons. The advantages and disadvantages of the various solutions to the problems are summarized. The first solution is to continue to develop the necessary technology at the refinery to produce specification jet fuels regardless of the crude source. The second solution is to minimize energy consumption at the refinery and keep fuel costs down by relaxing specifications.

  15. Developing a high-resolution vehicular emission inventory by integrating an emission model and a traffic model: Part 1--Modeling fuel consumption and emissions based on speed and vehicle-specific power.

    PubMed

    Wang, Haikun; Fu, Lixin

    2010-12-01

    To improve the accuracy and applicability of vehicular emission models, this study proposes a speed and vehicle-specific power (VSP) modeling method to estimate vehicular emissions and fuel consumption using data gathered by a portable emissions monitoring system (PEMS). The PEMS data were categorized into discrete speed-VSP bins on the basis of the characteristics of vehicle driving conditions and emissions in Chinese cities. Speed-VSP modal average rates of emissions (or fuel consumption) and the time spent in the corresponding speed-VSP bins were then used to calculate the total trip emissions (or fuel consumption) and emission factors (or fuel economy) under specific average link speeds. The model approach was validated by comparing it against measured data with prediction errors within 20% for trip emissions and link-speed-based emission factors. This analysis is based on the data of light-duty gasoline vehicles in China; however, this research approach could be generalized to other vehicle fleets in other countries. This modeling method could also be coupled with traffic demand models to establish high-resolution emissions inventories and evaluate the impacts of traffic-related emission control measures.

  16. Preliminary Evaluation of a Turbine/Rotary Combustion Compound Engine for a Subsonic Transport. [fuel consumption and engine tests of turbofan engines

    NASA Technical Reports Server (NTRS)

    Civinskas, K. C.; Kraft, G. A.

    1976-01-01

    The fuel consumption of a modern compound engine with that of an advanced high pressure ratio turbofan was compared. The compound engine was derived from a turbofan engine by replacing the combustor with a rotary combustion (RC) engine. A number of boost pressure ratios and compression ratios were examined. Cooling of the RC engine was accomplished by heat exchanging to the fan duct. Performance was estimated with an Otto-cycle for two levels of energy lost to cooling. The effects of added complexity on cost and maintainability were not examined and the comparison was solely in terms of cruise performance and weight. Assuming a 25 percent Otto-cycle cooling loss (representative of current experience), the best compound engine gave a 1.2 percent improvement in cruise. Engine weight increased by 23 percent. For a 10 percent Otto-cycle cooling loss (representing advanced insulation/high temperature materials technology), a compound engine with a boost PR of 10 and a compression ratio of 10 gave an 8.1 percent lower cruise than the reference turbofan.

  17. [Fire behavior of Quercus mongolica leaf litter fuelbed under zero-slope and no-wind conditions. II. Analysis and modelling of fireline intensity, fuel consumption, and combustion efficiency].

    PubMed

    Zhang, Ji-Li; Liu, Bo-Fei; Di, Xue-Ying; Chu, Teng-Fei; Jin, Sen

    2013-12-01

    Mongolian oak (Quercus mongolica) is an important constructive and accompanying species in mixed broadleaf-conifer forest in Northeast China, In this paper, a laboratory burning experiment was conducted under zero-slope and no-wind conditions to study the effects of fuel moisture content, loading, and thickness on the fireline intensity, fuel consumption, and combustion efficiency of the Mongolian oak leaf litter fuelbed. The fuel moisture content, loading, and thickness all had significant effects on the three fire behavior indices, and there existed interactions between these three affecting factors. Among the known models, the Byram model could be suitable for the prediction of local leaf litter fire intensity only after re-parameterization. The re-estimated alpha and beta parameters of the re-parameterized Byram model were 98.009 and 1.099, with an adjusted determination coefficient of 0.745, the rooted mean square error (RMSE) of 8.676 kW x m(-1), and the mean relative error (MRE) of 21%, respectively (R2 = 0.745). The re-estimated a and b by the burning efficiency method proposed by Albini were 0.069 and 0.169, and the re-estimated values were all higher than 93%, being mostly overestimated. The Consume model had a stronger suitability for the fuel. The R2 of the general linear models established for fireline intensity, fuel consumption, and burning efficiency was 0.82, 0.73 and 0.53, and the RMSE was 8.266 kW x m(-1) 0.081 kg x m(-2), and 0.203, respectively. In low intensity surface fires, the fine fuels could not be completely consumed, and thus, to consider the leaf litter and fine fuel in some forest ecosystems being completely consumed would overestimate the carbon release from forest fires.

  18. Technical documentation for the nonresidential-buildings energy-consumption survey, 1979 - 1980, building characteristics, energy end use and fuel oil tank data, public use data tapes: Users' guide

    NASA Astrophysics Data System (ADS)

    1982-02-01

    Basic information and technical specifications necessary for using machine readable magnetic tapes containing the building characteristics, energy end use and fuel oil tank data Nonresidential Buildings Energy Consumption Survey (NBECS) are provided. Included in this document are a brief overview of the NBECS, technical specifications for reading the tapes and descriptions of the contents of each of the files contained on the tape. The remaining sections are devoted to technical topics of special interest to users of the data. Appended to this document are copies of the questionnaire used in the survey, a listing of the contents of the SPSS labels file, COBOL file description and TPL codebook.

  19. Alternative Fuels Data Center

    SciTech Connect

    2013-06-01

    Fact sheet describes the Alternative Fuels Data Center, which provides information, data, and tools to help fleets and other transportation decision makers find ways to reduce petroleum consumption through the use of alternative and renewable fuels, advanced vehicles, and other fuel-saving measures.

  20. Fuel gas from biodigestion

    NASA Technical Reports Server (NTRS)

    Mcdonald, R. C.; Wolverton, B. C.

    1979-01-01

    Biodigestion apparatus produces fuel gas (primarily methane) for domestic consumption, by anaerobic bacterial digestion of organic matter such as aquatic vegetation. System includes 3,786-1 cylindrical container, mechanical agitator, and simple safe gas collector for short term storage.

  1. The combined effect of reduced fossil fuel consumption and increasing biomass combustion on Athens' air quality, as inferred from long term CO measurements.

    PubMed

    Gratsea, Myrto; Liakakou, Eleni; Mihalopoulos, Nikos; Adamopoulos, Anastasios; Tsilibari, Eirini; Gerasopoulos, Evangelos

    2017-03-14

    To evaluate the role of biomass burning emissions, and in particular of residential wood heating, as a result of the economic recession in Greece, carbon monoxide (CO) atmospheric concentrations from five (5) stations of the National Air Pollution Monitoring Network in Athens, spanning the period 2000-2015, in conjunction with black carbon (BC) concentrations from the NOA (National Observatory of Athens) station at Thissio were analysed. The contribution of the different sources to the diurnal cycle of these two pollutants is clear, resulting to a morning peak, mainly due to traffic, and a late evening peak attributed both to fossil fuel (traffic plus central heating) and biomass combustion. Calculated morning and evening integrals of CO peaks, for the investigated period, show consistent seasonal modulations, characterised by low summer and high winter values. The summer and winter morning CO peak integrals demonstrate an almost constant decreasing trend of CO concentrations over time (by almost 50% since 2000), attributed to the renewal of passenger car fleet and to reduced anthropogenic activities during the last years. On the other hand, an increase of 23%-78% (depending on the monitoring site) in the winter evening integrals since 2012, provides evidence of the significant contribution of biomass combustion, which has prevailed over fossil fuel for domestic heating. CO emitted by wood burning was found to contribute almost 50% to the total CO emissions during night time (16:00-5:00), suggesting that emissions from biomass combustion have gained an increasing role in atmospheric pollution levels in Athens.

  2. Fuel flexible fuel injector

    DOEpatents

    Tuthill, Richard S; Davis, Dustin W; Dai, Zhongtao

    2015-02-03

    A disclosed fuel injector provides mixing of fuel with airflow by surrounding a swirled fuel flow with first and second swirled airflows that ensures mixing prior to or upon entering the combustion chamber. Fuel tubes produce a central fuel flow along with a central airflow through a plurality of openings to generate the high velocity fuel/air mixture along the axis of the fuel injector in addition to the swirled fuel/air mixture.

  3. Outlook for alternative transportation fuels

    SciTech Connect

    Gushee, D.E.

    1996-12-31

    This presentation provides a brief review of regulatory issues and Federal programs regarding alternative fuel use in automobiles. A number of U.S. DOE initiatives and studies aimed at increasing alternative fuels are outlined, and tax incentives in effect at the state and Federal levels are discussed. Data on alternative fuel consumption and alternative fuel vehicle use are also presented. Despite mandates, tax incentives, and programs, it is concluded alternative fuels will have minimal market penetration. 7 refs., 5 tabs.

  4. Alternative aircraft fuels

    NASA Technical Reports Server (NTRS)

    Longwell, J. P.; Grobman, J. S.

    1977-01-01

    The efficient utilization of fossil fuels by future jet aircraft may necessitate the broadening of current aviation turbine fuel specifications. The most significant changes in specifications would be an increased aromatics content and a higher final boiling point in order to minimize refinery energy consumption and costs. These changes would increase the freezing point and might lower the thermal stability of the fuel, and could cause increased pollutant emissions, increased combustor liner temperatures, and poorer ignition characteristics. The effects that broadened specification fuels may have on present-day jet aircraft and engine components and the technology required to use fuels with broadened specifications are discussed.

  5. Alternative aviation turbine fuels

    NASA Technical Reports Server (NTRS)

    Grobman, J.

    1977-01-01

    The efficient utilization of fossil fuels by future jet aircraft may necessitate the broadening of current aviation turbine fuel specifications. The most significant changes in specifications would be an increased aromatics content and a higher final boiling point in order to minimize refinery energy consumption and costs. These changes would increase the freezing point and might lower the thermal stability of the fuel and could cause increased pollutant emissions, increased smoke and carbon formation, increased combustor liner temperatures, and poorer ignition characteristics. This paper discusses the effects that broadened specification fuels may have on present-day jet aircraft and engine components and the technology required to use fuels with broadened specifications.

  6. Preliminary test results of a flight management algorithm for fuel conservative descents in a time based metered traffic environment. [flight tests of an algorithm to minimize fuel consumption of aircraft based on flight time

    NASA Technical Reports Server (NTRS)

    Knox, C. E.; Cannon, D. G.

    1979-01-01

    A flight management algorithm designed to improve the accuracy of delivering the airplane fuel efficiently to a metering fix at a time designated by air traffic control is discussed. The algorithm provides a 3-D path with time control (4-D) for a test B 737 airplane to make an idle thrust, clean configured descent to arrive at the metering fix at a predetermined time, altitude, and airspeed. The descent path is calculated for a constant Mach/airspeed schedule from linear approximations of airplane performance with considerations given for gross weight, wind, and nonstandard pressure and temperature effects. The flight management descent algorithms and the results of the flight tests are discussed.

  7. Fuel conservation for fishing vessels. Final report

    SciTech Connect

    Not Available

    1983-08-01

    The fuel monitoring system provided information that was sufficiently precise and generally reliable enough to be of use in making operational decisions. The curve of fuel consumption versus speed for a vessel will vary with changes in draft, trim, and bottom cleanliness. Therefore, although generalized fuel consumption/speed curves would be of value to an operator, maximum fuel savings can only be effected by applying the actual present fuel consumption, as supplied by a fuel monitor, and true ground speed, as derived by a LORAN C system, to the decision making process. The dividing line between maximum profits and minimum fuel consumption may be a fine line requiring information from a fuel monitor to assist the operator in making the proper decision. This study also addressed the relationship of engine maintenance and fuel monitoring systems.

  8. A global emission inventory of carbonaceous aerosol from historic records of fossil fuel and biofuel consumption for the period 1860-1997

    NASA Astrophysics Data System (ADS)

    Junker, C.; Liousse, C.

    2008-03-01

    Country by country emission inventories for carbonaceous aerosol for the period 1860 to 1997 have been constructed on the basis of historic fuel production, use and trade data sets published by the United Nation's Statistical Division UNSTAT (1997), Etemad et al. (1991) and Mitchell (1992, 1993, 1995). The inventories use emission factors variable over time, which have been determined according to changes in technological development. The results indicate that the industrialisation period since 1860 was accompanied by a steady increase in black carbon (BC) and primary organic carbon (POC) emissions up to 1910. The calculations show a moderate decrease of carbonaceous aerosol emissions between 1920 and 1930, followed by an increase up to 1990, the year when emissions began to decrease again. Changes in BC and POC emissions prior to the year 1950 are essentially driven by the USA, Germany and the UK. The USSR, China and India become substantial contributors to carbonaceous aerosol emissions after 1950. Emission maps have been generated with a 1°×1° resolution based on the relative population density in each country. They will provide a helpful tool for assessing the effect of carbonaceous aerosol emissions on observed climate changes of the past.

  9. Fuel-conservative engine technology

    NASA Technical Reports Server (NTRS)

    Dugan, J. F., Jr.; Mcaulay, J. E.; Reynolds, T. W.; Strack, W. C.

    1975-01-01

    Aircraft fuel consumption is discussed in terms of its efficient use, and the conversion of energy from sources other than petroleum. Topics discussed include: fuel from coal and oil shale, hydrogen deficiency of alternate sources, alternate fuels evaluation program, and future engines.

  10. Lean consumption.

    PubMed

    Womack, James P; Jones, Daniel T

    2005-03-01

    During the past 20 years, the real price of most consumer goods has fallen worldwide, the variety of goods and the range of sales channels offering them have continued to grow, and product quality has steadily improved. So why is consumption often so frustrating? It doesn't have to be--and shouldn't be--the authors say. They argue that it's time to apply lean thinking to the processes of consumption--to give consumers the full value they want from goods and services with the greatest efficiency and the least pain. Companies may think they save time and money by off-loading work to the consumer but, in fact, the opposite is true. By streamlining their systems for providing goods and services, and by making it easier for customers to buy and use those products and services, a growing number of companies are actually lowering costs while saving everyone time. In the process, these businesses are learning more about their customers, strengthening consumer loyalty, and attracting new customers who are defecting from less user-friendly competitors. The challenge lies with the retailers, service providers, manufacturers, and suppliers that are not used to looking at total cost from the standpoint of the consumer and even less accustomed to working with customers to optimize the consumption process. Lean consumption requires a fundamental shift in the way companies think about the relationship between provision and consumption, and the role their customers play in these processes. It also requires consumers to change the nature of their relationships with the companies they patronize. Lean production has clearly triumphed over similar obstacles in recent years to become the dominant global manufacturing model. Lean consumption, its logical companion, can't be far behind.

  11. Long-term analysis of diesel fuel consumption in a co-culture of Acinetobacter venetianus, Pseudomonas putida and Alcaligenes faecalis.

    PubMed

    Pepi, Milva; Minacci, Andrea; Di Cello, Francescopaolo; Baldi, Franco; Fani, Renato

    2003-01-01

    The dynamics of a microbial population isolated from superficial waters of Venice Lagoon and the ability to utilise diesel fuel (n-alkanes mixture C12-C28) as the sole carbon and energy source were studied in a long-term reconstruction experiment. The reconstructed microbial population consisted of three bacterial strains belonging to the species Acinetobacter venetianus, Pseudomonas putida, and Alcaligenes faecalis, which were able to oxidise n-alkanes to alkanoates, n-alkanols to alkanoates, or only n-alkanoates, respectively. Three different approaches: plate counting, cell counting by epifluorescence microscopy with DAPI staining, and by fluorescence in situ hybridisation (FISH) by using a probe conjugate with fluoresceine isothiocyanate specifically targeted towards the 16S rRNA of bacteria belonging to the genus Acinetobacter were used to monitor the growth of the bacterial population. The growth of A. venetianus was stimulated by the presence of other strains, suggesting a beneficial interaction. After the first week of growth A. venetianus cells formed aggregates, as confirmed by confocal microscopy (CLSM), which allowed them to be distinguished from free cells. A relationship between cell number and measured areas (microm2) per aggregate was found. Each cell presented an average surface of 1.21 microm2. Each aggregate was formed by a cellular monolayer biofilm consisting of up to several thousands of cells. The A. venetianus aggregates increased in number and size over time, but after two weeks fragmentation events, which had a beneficial effect on the growth of P. putida and A. faecalis, occurred.

  12. 40 CFR 92.107 - Fuel flow measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... measurement. (a) Fuel flow measurement for locomotive and engine testing. The rate of fuel consumption by the... performed for at least 10 flow rates evenly distributed over the entire range of fuel flow rates used...

  13. Alternative Fuels Infrastructure Development

    SciTech Connect

    Bloyd, Cary N.; Stork, Kevin

    2011-02-01

    This summary reviews the status of alternate transportation fuels development and utilization in Thailand. Thailand has continued to work to promote increased consumption of gasohol especially for highethanol content fuels like E85. The government has confirmed its effort to draw up incentives for auto makers to invest in manufacturing E85-compatible vehicles in the country. An understanding of the issues and experiences associated with the introduction of alternative fuels in other countries can help the US in anticipation potential problems as it introduces new automotive fuels.

  14. Air transportation energy consumption - Yesterday, today, and tomorrow

    NASA Technical Reports Server (NTRS)

    Mascy, A. C.; Williams, L. J.

    1975-01-01

    The energy consumption by aviation is reviewed and projections of its growth are discussed. Forecasts of domestic passenger demand are presented, and the effect of restricted fuel supply and increased fuel prices is considered. The most promising sources for aircraft fuels, their availability and cost, and possible alternative fuels are reviewed. The energy consumption by various air and surface transportation modes is identified and compared on typical portal-to-portal trips. A measure of the indirect energy consumed by ground and air modes is defined. Historical trends in aircraft energy intensities are presented and the potential fuel savings with new technologies are discussed.

  15. Aerodynamic design lowers truck fuel consumption

    NASA Technical Reports Server (NTRS)

    Steers, L.

    1978-01-01

    Energy-saving concepts in truck design are emerging from developing new shapes with improved aerodynamic flow properties that can reduce air-drag coefficient of conventional tractor-trailers without requiring severe design changes or compromising load-carrying capability. Improvements are expected to decrease somewhat with increased wind velocities and would be affected by factors such as terrain, driving techniques, and mechanical condition.

  16. 10 CFR Appendix P to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Pool Heaters

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... power consumption during the off mode, PW,OFF = 0, and the fossil fuel energy consumed during the off... 62301 (Second Edition) (incorporated by reference; see § 430.3), and the fossil fuel energy consumption... in Btu. 5.2 Average annual fossil fuel energy for pool heaters. The average annual fuel energy...

  17. Peanut, soybean and cottonseed oil as diesel fuels

    SciTech Connect

    Mazed, M.A.; Summers, J.D.; Batchelder, D.G.

    1985-09-01

    Two single cylinder diesel engines burning three vegetable oils, and their blends with diesel fuel, were evaluated and compared to engines burning a reference diesel fuel (Phillips No. 2). Tests were conducted determining power output, fuel consumption, thermal efficiency and exhaust smoke. Using the three vegetable oils and their blends with No. 2 diesel fuel, maximum changes of 5%, 14%, 10%, and 40% were observed in power, fuel consumption by mass, thermal efficiency, and exhaust smoke, respectively. 41 references.

  18. Household energy consumption and expenditures 1993

    SciTech Connect

    1995-10-05

    This presents information about household end-use consumption of energy and expenditures for that energy. These data were collected in the 1993 Residential Energy Consumption Survey; more than 7,000 households were surveyed for information on their housing units, energy consumption and expenditures, stock of energy-consuming appliances, and energy-related behavior. The information represents all households nationwide (97 million). Key findings: National residential energy consumption was 10.0 quadrillion Btu in 1993, a 9% increase over 1990. Weather has a significant effect on energy consumption. Consumption of electricity for appliances is increasing. Houses that use electricity for space heating have lower overall energy expenditures than households that heat with other fuels. RECS collected data for the 4 most populous states: CA, FL, NY, TX.

  19. Alternative Fuels Data Center (Fact Sheet)

    SciTech Connect

    Not Available

    2013-07-01

    Fact sheet describes the Alternative Fuels Data Center, which provides information, data, and tools to help fleets and other transportation decision makers find ways to reduce petroleum consumption through the use of alternative and renewable fuels, advanced vehicles, and other fuel-saving measures.

  20. Fossil fuels -- future fuels

    SciTech Connect

    1998-03-01

    Fossil fuels -- coal, oil, and natural gas -- built America`s historic economic strength. Today, coal supplies more than 55% of the electricity, oil more than 97% of the transportation needs, and natural gas 24% of the primary energy used in the US. Even taking into account increased use of renewable fuels and vastly improved powerplant efficiencies, 90% of national energy needs will still be met by fossil fuels in 2020. If advanced technologies that boost efficiency and environmental performance can be successfully developed and deployed, the US can continue to depend upon its rich resources of fossil fuels.

  1. Short-Term Energy Outlook Model Documentation: Motor Gasoline Consumption Model

    EIA Publications

    2011-01-01

    The motor gasoline consumption module of the Short-Term Energy Outlook (STEO) model is designed to provide forecasts of total U.S. consumption of motor gasolien based on estimates of vehicle miles traveled and average vehicle fuel economy.

  2. Hydrogen fuel - Universal energy

    NASA Astrophysics Data System (ADS)

    Prince, A. G.; Burg, J. A.

    The technology for the production, storage, transmission, and consumption of hydrogen as a fuel is surveyed, with the physical and chemical properties of hydrogen examined as they affect its use as a fuel. Sources of hydrogen production are described including synthesis from coal or natural gas, biomass conversion, thermochemical decomposition of water, and electrolysis of water, of these only electrolysis is considered economicially and technologically feasible in the near future. Methods of production of the large quantities of electricity required for the electrolysis of sea water are explored: fossil fuels, hydroelectric plants, nuclear fission, solar energy, wind power, geothermal energy, tidal power, wave motion, electrochemical concentration cells, and finally ocean thermal energy conversion (OTEC). The wind power and OTEC are considered in detail as the most feasible approaches. Techniques for transmission (by railcar or pipeline), storage (as liquid in underwater or underground tanks, as granular metal hydride, or as cryogenic liquid), and consumption (in fuel cells in conventional power plants, for home usage, for industrial furnaces, and for cars and aircraft) are analyzed. The safety problems of hydrogen as a universal fuel are discussed, noting that they are no greater than those for conventional fuels.

  3. Engine performance with a hydrogenated safety fuel

    NASA Technical Reports Server (NTRS)

    Schey, Oscar W; Young, Alfred W

    1933-01-01

    This report presents the results of an investigation to determine the engine performance obtained with a hydrogenated safety fuel developed to eliminate fire hazard. The tests were made on a single-cylinder universal test engine at compression ratios of 5.0, 5.5, and 6.0. Most of the tests were made with a fuel-injection system, although one set of runs was made with a carburetor when using gasoline to establish comparative performance. The tests show that the b.m.e.p. obtained with safety fuel when using a fuel-injection system is slightly higher than that obtained with gasoline when using a carburetor, although the fuel consumption with safety fuel is higher. When the fuel-injection system is used with each fuel and with normal engine temperatures the b.m.e.p. with safety fuel is from 2 to 4 percent lower than with gasoline and the fuel consumption about 25 to 30 percent higher. However, a few tests at an engine coolant temperature of 250 F have shown a specific fuel consumption approximating that obtained with gasoline with only a slight reduction in power. The idling of the test engine was satisfactory with the safety fuel. Starting was difficult with a cold engine but could be readily accomplished when the jacket water was hot. It is believed that the use of the safety fuel would practically eliminate crash fires.

  4. Fuel Burn Estimation Using Real Track Data

    NASA Technical Reports Server (NTRS)

    Chatterji, Gano B.

    2011-01-01

    A procedure for estimating fuel burned based on actual flight track data, and drag and fuel-flow models is described. The procedure consists of estimating aircraft and wind states, lift, drag and thrust. Fuel-flow for jet aircraft is determined in terms of thrust, true airspeed and altitude as prescribed by the Base of Aircraft Data fuel-flow model. This paper provides a theoretical foundation for computing fuel-flow with most of the information derived from actual flight data. The procedure does not require an explicit model of thrust and calibrated airspeed/Mach profile which are typically needed for trajectory synthesis. To validate the fuel computation method, flight test data provided by the Federal Aviation Administration were processed. Results from this method show that fuel consumed can be estimated within 1% of the actual fuel consumed in the flight test. Next, fuel consumption was estimated with simplified lift and thrust models. Results show negligible difference with respect to the full model without simplifications. An iterative takeoff weight estimation procedure is described for estimating fuel consumption, when takeoff weight is unavailable, and for establishing fuel consumption uncertainty bounds. Finally, the suitability of using radar-based position information for fuel estimation is examined. It is shown that fuel usage could be estimated within 5.4% of the actual value using positions reported in the Airline Situation Display to Industry data with simplified models and iterative takeoff weight computation.

  5. Efficient determination of vehicle emission factors by fuel use category using on-road measurements: downward trends on Los Angeles freight corridor I-710

    NASA Astrophysics Data System (ADS)

    Hudda, N.; Fruin, S.; Delfino, R. J.; Sioutas, C.

    2013-01-01

    To evaluate the success of vehicle emissions regulations, trends in both fleet-wide average emissions as well as high-emitter emissions are needed, but it is challenging to capture the full spread of vehicle emission factors (EFs) with chassis dynamometer or tunnel studies, and remote sensing studies cannot evaluate particulate compounds. We developed an alternative method that links real-time on-road pollutant measurements from a mobile platform with real-time traffic data, and allows efficient calculation of both the average and the spread of EFs for light-duty gasoline-powered vehicles (LDG) and heavy-duty diesel-powered vehicles (HDD). This is the first study in California to report EFs under a full range of real-world driving conditions on multiple freeways. Fleet average LDG EFs were in agreement with most recent studies and an order of magnitude lower than observed HDD EFs. HDD EFs reflected the relatively rapid decreases in diesel emissions that have recently occurred in Los Angeles/California, and on I-710, a primary route used for goods movement and a focus of additional truck fleet turnover incentives, HDD EFs were often lower than on other freeways. When freeway emission rates (ER) were quantified as the product of EF and vehicle miles traveled (VMT) per time per mile of freeway, despite a two- to three-fold difference in HDD fractions between freeways, ERs were found to be generally similar in magnitude. Higher LDG VMT on low HDD fraction freeways largely offset the difference. Therefore, the conventional assumption that freeways with the highest HDD fractions are significantly worse sources of total emissions in Los Angeles may no longer be~true.

  6. Efficient determination of vehicle emission factors by fuel use category using on-road measurements: downward trends on Los Angeles freight corridor I-710

    PubMed Central

    Hudda, N.; Fruin, S.; Delfino, R. J.; Sioutas, C.

    2013-01-01

    To evaluate the success of vehicle emissions regulations, trends in both fleet-wide average emissions as well as high-emitter emissions are needed, but it is challenging to capture the full spread of vehicle emission factors (EFs) with chassis dynamometer or tunnel studies, and remote sensing studies cannot evaluate particulate compounds. We developed an alternative method that links real-time on-road pollutant measurements from a mobile platform with real-time traffic data, and allows efficient calculation of both the average and the spread of EFs for light-duty gasoline-powered vehicles (LDG) and heavy-duty diesel-powered vehicles (HDD). This is the first study in California to report EFs under a full range of real-world driving conditions on multiple freeways. Fleet average LDG EFs were in agreement with most recent studies and an order of magnitude lower than observed HDD EFs. HDD EFs reflected the relatively rapid decreases in diesel emissions that have recently occurred in Los Angeles/California, and on I-710, a primary route used for goods movement and a focus of additional truck fleet turnover incentives, HDD EFs were often lower than on other freeways. When freeway emission rates (ER) were quantified as the product of EF and vehicle miles traveled (VMT) per time per mile of freeway, despite a twoto three-fold difference in HDD fractions between freeways, ERs were found to be generally similar in magnitude. Higher LDG VMT on low HDD fraction freeways largely offset the difference. Therefore, the conventional assumption that free ways with the highest HDD fractions are significantly worse sources of total emissions in Los Angeles may no longer be true. PMID:24244208

  7. Alternative Fuel and Advanced Vehicle Tools (AFAVT), AFDC (Fact Sheet)

    SciTech Connect

    Not Available

    2010-01-01

    The Alternative Fuels and Advanced Vehicles Web site offers a collection of calculators, interactive maps, and informational tools to assist fleets, fuel providers, and others looking to reduce petroleum consumption in the transportation sector.

  8. The Use of Synthetic JP-8 Fuels in Military Engines

    DTIC Science & Technology

    2010-01-01

    constant, the higher fuel density caused DF-2 to have a higher quantity mass of fuel injected for the same command period. Thus, DF-2 had a higher fuel...mixing and evaporation of the fuels which becomes more evident later in the heat release analysis. Table 7 summarizes the fuel consumption for the...Busch, H., Keppeler, S., Schaberg, P., and Schnell , M., 200 , “Potential of Synthetic Fuels in Future Combustion Systems for HSDI Diesel E g

  9. Liquid Hydrogen Consumption During Space Shuttle Program

    NASA Technical Reports Server (NTRS)

    Partridge, Jonathan K.

    2011-01-01

    This slide presentation reviews the issue of liquid hydrogen consumption and the points of its loss in prior to the shuttle launch. It traces the movement of the fuel from the purchase to the on-board quantity and the loss that results in 54.6 of the purchased quantity being on board the Shuttle.

  10. Household vehicles energy consumption 1991

    SciTech Connect

    Not Available

    1993-12-09

    The purpose of this report is to provide information on the use of energy in residential vehicles in the 50 States and the District of Columbia. Included are data about: the number and type of vehicles in the residential sector, the characteristics of those vehicles, the total annual Vehicle Miles Traveled (VMT), the per household and per vehicle VMT, the vehicle fuel consumption and expenditures, and vehicle fuel efficiencies. The data for this report are based on the household telephone interviews from the 1991 RTECS, conducted during 1991 and early 1992. The 1991 RTECS represents 94.6 million households, of which 84.6 million own or have access to 151.2 million household motor vehicles in the 50 States and the District of Columbia.

  11. 40 CFR 92.107 - Fuel flow measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Fuel flow measurement. 92.107 Section...) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures § 92.107 Fuel flow measurement. (a) Fuel flow measurement for locomotive and engine testing. The rate of fuel consumption by...

  12. 40 CFR 92.107 - Fuel flow measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Fuel flow measurement. 92.107 Section...) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures § 92.107 Fuel flow measurement. (a) Fuel flow measurement for locomotive and engine testing. The rate of fuel consumption by...

  13. 40 CFR 92.107 - Fuel flow measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Fuel flow measurement. 92.107 Section...) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures § 92.107 Fuel flow measurement. (a) Fuel flow measurement for locomotive and engine testing. The rate of fuel consumption by...

  14. 40 CFR 92.107 - Fuel flow measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Fuel flow measurement. 92.107 Section...) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures § 92.107 Fuel flow measurement. (a) Fuel flow measurement for locomotive and engine testing. The rate of fuel consumption by...

  15. Fuel cell cogeneration

    SciTech Connect

    Wimer, J.G.; Archer, D.

    1995-08-01

    The U.S. Department of Energy`s Morgantown Energy Technology Center (METC) sponsors the research and development of engineered systems which utilize domestic fuel supplies while achieving high standards of efficiency, economy, and environmental performance. Fuel cell systems are among the promising electric power generation systems that METC is currently developing. Buildings account for 36 percent of U.S. primary energy consumption. Cogeneration systems for commercial buildings represent an early market opportunity for fuel cells. Seventeen percent of all commercial buildings are office buildings, and large office buildings are projected to be one of the biggest, fastest-growing sectors in the commercial building cogeneration market. The main objective of this study is to explore the early market opportunity for fuel cells in large office buildings and determine the conditions in which they can compete with alternative systems. Some preliminary results and conclusions are presented, although the study is still in progress.

  16. Impact of future fuel properties on aircraft engines and fuel systems

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.; Grobman, J. S.

    1978-01-01

    The effect of modifications in hydrocarbon jet fuels specifications on engine performance, component durability and maintenance, and aircraft fuel system performance is discussed. Specific topics covered include: specific fuel consumption; ignition at relight limits; exhaust emissions; combustor liner temperatures; carbon deposition; gum formation in fuel nozzles, erosion and corrosion of turbine blades and vanes; deposits in fuel system heat exchangers; and pumpability and flowability of the fuel. Data that evaluate the ability of current technology aircraft to accept fuel specification changes are presented, and selected technological advances that can reduce the severity of the problems are described and discussed.

  17. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT, JCH FUEL SOLUTIONS, INC., JCH ENVIRO AUTOMATED FUEL CLEANING AND MAINTENANCE SYSTEM

    EPA Science Inventory

    The verification testing was conducted at the Cl facility in North Las Vegas, NV, on July 17 and 18, 2001. During this period, engine emissions, fuel consumption, and fuel quality were evaluated with contaminated and cleaned fuel.

    To facilitate this verification, JCH repre...

  18. 10 CFR Appendix P to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Pool Heaters

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... shall be in Btu. 4.2Average annual fossil fuel energy for pool heaters. The average annual fuel energy... reference; see § 430.3) and the fossil fuel energy consumption during the standby test, Qp, in Btu. Ambient... switch, the average electric power consumption during the off mode, PW,OFF = 0, and the fossil...

  19. 10 CFR 490.804 - Eligible reductions in petroleum consumption.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Eligible reductions in petroleum consumption. 490.804 Section 490.804 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM... person are applicable towards the petroleum fuel reduction required in § 490.803(a) of this subpart....

  20. Alternative Fuels

    EPA Pesticide Factsheets

    Alternative fuels include gaseous fuels such as hydrogen, natural gas, and propane; alcohols such as ethanol, methanol, and butanol; vegetable and waste-derived oils; and electricity. Overview of alternative fuels is here.

  1. Fuel pin

    DOEpatents

    Christiansen, David W.; Karnesky, Richard A.; Leggett, Robert D.; Baker, Ronald B.

    1989-01-01

    A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

  2. Fuel pin

    DOEpatents

    Christiansen, D.W.; Karnesky, R.A.; Leggett, R.D.; Baker, R.B.

    1987-11-24

    A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

  3. Fuel pin

    DOEpatents

    Christiansen, David W.; Karnesky, Richard A.; Leggett, Robert D.; Baker, Ronald B.

    1989-10-03

    A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

  4. The Quantum Energy Saver design and Fuel-saving application

    NASA Astrophysics Data System (ADS)

    Fang, Xiong; Mao, Wenwu; Shen, Xisheng; LI, Jianyu; Huang, Wenchao; Chen, Zhixin

    2016-11-01

    In order to reduce the high fuel consumption of the shipping industry, a new type of quantum energy saver device is studied and developed. According to a period of time to use the energy saving device and the users’ feedback, by recording the fuel consumption of diesel engine usage, and comparing the changes in fuel consumption before and after the installation of quantum economizer in the same ship, it can reflected the ability of the fuel consumption. After analyzing the data, it shows that the installation of quantum economizer can significantly reduce the fuel consumption of a diesel engine ship. The analysis and application of this paper can play an important role in saving energy and reducing consumption, and provide a reference for other related research.

  5. Fuel saving device

    SciTech Connect

    Imbert, J. C.

    1984-01-10

    The present invention relates to a fuel saving device adaptable to all types of carburetors, petrol engines and domestic or industrial burners, constituted by a solenoid generating a magnetic field which has an influence on the air-fuel mixture. Said solenoid has a red copper coil, has its axis oriented in parallel to the axis of the engine, and, periodically, in a first pre-determined direction, during the moon phase which goes from the full moon to the new moon, and in a second, opposite, direction, during the moon phase going from the new moon to the full moon. The invention finds an application in motor engine of low consumption.

  6. Fuel pump

    SciTech Connect

    Bellis, P.D.; Nesselrode, F.

    1991-04-16

    This patent describes a fuel pump. It includes: a fuel reservoir member, the fuel reservoir member being formed with fuel chambers, the chambers comprising an inlet chamber and an outlet chamber, means to supply fuel to the inlet chamber, means to deliver fuel from the outlet chamber to a point of use, the fuel reservoir member chambers also including a bypass chamber, means interconnecting the bypass chamber with the outlet chamber; the fuel pump also comprising pump means interconnecting the inlet chamber and the outlet chamber and adapted to suck fuel from the fuel supply means into the inlet chamber, through the pump means, out the outlet chamber, and to the fuel delivery means; the bypass chamber and the pump means providing two substantially separate paths of fuel flow in the fuel reservoir member, bypass plunger means normally closing off the flow of fuel through the bypass chamber one of the substantially separate paths including the fuel supply means and the fuel delivery means when the bypass plunger means is closed, the second of the substantially separate paths including the bypass chamber when the bypass plunger means is open, and all of the chambers and the interconnecting means therebetween being configured so as to create turbulence in the flow of any fuel supplied to the outlet chamber by the pump means and bypassed through the bypass chamber and the interconnecting means.

  7. State energy data report 1996: Consumption estimates

    SciTech Connect

    1999-02-01

    The State Energy Data Report (SEDR) provides annual time series estimates of State-level energy consumption by major economic sectors. The estimates are developed in the Combined State Energy Data System (CSEDS), which is maintained and operated by the Energy Information Administration (EIA). The goal in maintaining CSEDS is to create historical time series of energy consumption by State that are defined as consistently as possible over time and across sectors. CSEDS exists for two principal reasons: (1) to provide State energy consumption estimates to Members of Congress, Federal and State agencies, and the general public and (2) to provide the historical series necessary for EIA`s energy models. To the degree possible, energy consumption has been assigned to five sectors: residential, commercial, industrial, transportation, and electric utility sectors. Fuels covered are coal, natural gas, petroleum, nuclear electric power, hydroelectric power, biomass, and other, defined as electric power generated from geothermal, wind, photovoltaic, and solar thermal energy. 322 tabs.

  8. LADWP FUEL CELL DEMONSTRATION PROJECT

    SciTech Connect

    Thai Ta

    2003-09-12

    Los Angeles Department of Water and Power (LADWP) is currently one of the most active power utility companies in researching fuel cell technology. Fuel cells offer many benefits and are now used as an alternative to traditional internal combustion engines in power generation. In continuing it's role as the leader in fuel cell research, LADWP has installed a pre-commercial molten carbonate fuel cell on August 2001 at its headquarter, the John Ferraro Building (JFB). The goal of this project is to learn more about the actual behavior of the fuel cell running under real world conditions. The fuel cell ran smoothly through the first year of operation with very high efficiency, but with some minor setbacks. The JFB fuel cell project is funded by the City of Los Angeles Department of Water and Power with partial grant funding from the Department of Defense's Climate Change Fuel Cell Buydown Program. The technical evaluation and the benefit-cost evaluation of the JFB fuel cell are both examined in this report.

  9. 75 FR 81952 - Greenhouse Gas Emissions Standards and Fuel Efficiency Standards for Medium- and Heavy-Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-29

    ... incorrect fuel consumption values in NHTSA-specific tables in the preamble that resulted from using an incorrect conversion factor for determining CO 2 emissions to equivalent fuel consumption for gasoline fuel... document corrects the rounding errors by adopting a uniform rounding approach for all fuel...

  10. 10 CFR Appendix P to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Pool Heaters

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...-1994. The expression of fuel consumption for oil-fired pool heaters shall be in Btu. 4.2Average annual fossil fuel energy for pool heaters. The average annual fuel energy for pool heater, EF, is defined as... of pool operating hours=4464 h QIN=rated fuel energy input as defined according to 2.9.1 or 2.9.2...

  11. 10 CFR Appendix P to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Pool Heaters

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...-1994. The expression of fuel consumption for oil-fired pool heaters shall be in Btu. 4.2Average annual fossil fuel energy for pool heaters. The average annual fuel energy for pool heater, EF, is defined as... of pool operating hours=4464 h QIN=rated fuel energy input as defined according to 2.9.1 or 2.9.2...

  12. Alternative fuels and vehicles choice model

    SciTech Connect

    Greene, D.L.

    1994-10-01

    This report describes the theory and implementation of a model of alternative fuel and vehicle choice (AFVC), designed for use with the US Department of Energy`s Alternative Fuels Trade Model (AFTM). The AFTM is a static equilibrium model of the world supply and demand for liquid fuels, encompassing resource production, conversion processes, transportation, and consumption. The AFTM also includes fuel-switching behavior by incorporating multinomial logit-type equations for choice of alternative fuel vehicles and alternative fuels. This allows the model to solve for market shares of vehicles and fuels, as well as for fuel prices and quantities. The AFVC model includes fuel-flexible, bi-fuel, and dedicated fuel vehicles. For multi-fuel vehicles, the choice of fuel is subsumed within the vehicle choice framework, resulting in a nested multinomial logit design. The nesting is shown to be required by the different price elasticities of fuel and vehicle choice. A unique feature of the AFVC is that its parameters are derived directly from the characteristics of alternative fuels and vehicle technologies, together with a few key assumptions about consumer behavior. This not only establishes a direct link between assumptions and model predictions, but facilitates sensitivity testing, as well. The implementation of the AFVC model as a spreadsheet is also described.

  13. Method of combustion for dual fuel engine

    DOEpatents

    Hsu, Bertrand D.; Confer, Gregory L.; Shen, Zujing; Hapeman, Martin J.; Flynn, Paul L.

    1993-12-21

    Apparatus and a method of introducing a primary fuel, which may be a coal water slutty, and a high combustion auxiliary fuel, which may be a conventional diesel oil, into an internal combustion diesel engine comprises detecting the load conditions of the engine, determining the amount of time prior to the top dead center position of the piston to inject the main fuel into the combustion chamber, and determining the relationship of the timing of the injection of the auxiliary fuel into the combustion chamber to achieve a predetermined specific fuel consumption, a predetermined combustion efficiency, and a predetermined peak cylinder firing pressure.

  14. Method of combustion for dual fuel engine

    DOEpatents

    Hsu, B.D.; Confer, G.L.; Zujing Shen; Hapeman, M.J.; Flynn, P.L.

    1993-12-21

    Apparatus and a method of introducing a primary fuel, which may be a coal water slurry, and a high combustion auxiliary fuel, which may be a conventional diesel oil, into an internal combustion diesel engine comprises detecting the load conditions of the engine, determining the amount of time prior to the top dead center position of the piston to inject the main fuel into the combustion chamber, and determining the relationship of the timing of the injection of the auxiliary fuel into the combustion chamber to achieve a predetermined specific fuel consumption, a predetermined combustion efficiency, and a predetermined peak cylinder firing pressure. 19 figures.

  15. Alternative transportation fuels

    SciTech Connect

    Askew, W. S.; McNamara, T. M.; Maxfield, D. P.

    1980-01-01

    The commercialization of alternative fuels is analyzed. Following a synopsis of US energy use, the concept of commercialization, the impacts of supply shortages and demand inelasticity upon commercialization, and the status of alternative fuels commercialization to date in the US are discussed. The US energy market is viewed as essentially numerous submarkets. The interrelationship among these submarkets precludes the need to commercialize for a specific fuel/use. However, the level of consumption, the projected growth in demand, and the inordinate dependence upon foreign fuels dictate that additional fuel supplies in general be brought to the US energy marketplace. Commercialization efforts encompass a range of measures designed to accelerate the arrival of technologies or products in the marketplace. As discussed in this paper, such a union of willing buyers and willing sellers requires that three general conditions be met: product quality comparable to existing products; price competitiveness; and adequate availability of supply. Product comparability presently appears to be the least problematic of these three requirements. Ethanol/gasoline and methanol/gasoline blends, for example, demonstrate the fact that alternative fuel technologies exist. Yet price and availability (i.e., production capacity) remain major obstacles. Given inelasticity (with respect to price) in the US and abroad, supply shortages - actual or contrived - generate upward price pressure and should make once-unattractive alternative fuels more price competitive. It is noted, however, that actual price competitiveness has been slow to occur and that even with price competitiveness, the lengthy time frame needed to achieve significant production capacity limits the near-term impact of alternative fuels.

  16. Cost/benefit tradeoffs for reducing the energy consumption of the commercial air transportation system

    NASA Technical Reports Server (NTRS)

    Kraus, E. F.; Vanabkoude, J. C.

    1976-01-01

    The fuel saving potential and cost effectiveness of numerous operational and technical options proposed for reducing the fuel consumption of the U.S. commercial airline fleet was examined and compared. The impact of the most promising fuel conserving options on fuel consumption, passenger demand, operating costs and airline profits when implemented in the U.S. domestic and international airline fleets was determined. A forecast estimate was made of the potential fuel savings achievable in the U.S. scheduled air transportation system. Specifically, the means for reducing the jet fuel consumption of the U.S. scheduled airlines in domestic and international passenger operations were investigated. A design analysis was made of two turboprop aircraft as possible fuel conserving derivatives of the DC-9-30.

  17. Kerosene Base Fuels in Small Gasoline Engines

    DTIC Science & Technology

    1991-01-01

    DIA. 4330 .354IA GAG 4. .235 DIA. INCONEL 601 SHEATHED ELEMENT DW 3AwL CTCCKYPE NO. !2 GWk I / 5-12- 82 CHAMPION SPARK PLUG COMPANY ’ 2-20-84 T OLEDO...1982) that emissions and specific fuel consumption certain piston designs in a CFR (Cooperative Fuel at part-load; 3600 RI, 3.5 bar SEP. Research

  18. Synthetic Fuel

    ScienceCinema

    Idaho National Laboratory - Steve Herring, Jim O'Brien, Carl Stoots

    2016-07-12

    Two global energy priorities today are finding environmentally friendly alternatives to fossil fuels, and reducing greenhouse gass Two global energy priorities today are finding environmentally friendly alternatives to fossil fuels, and reducing greenhous

  19. Synthetic Fuel

    SciTech Connect

    Idaho National Laboratory - Steve Herring, Jim O'Brien, Carl Stoots

    2008-03-26

    Two global energy priorities today are finding environmentally friendly alternatives to fossil fuels, and reducing greenhouse gass Two global energy priorities today are finding environmentally friendly alternatives to fossil fuels, and reducing greenhous

  20. Fuel cells

    NASA Astrophysics Data System (ADS)

    1984-12-01

    The US Department of Energy (DOE), Office of Fossil Energy, has supported and managed a fuel cell research and development (R and D) program since 1976. Responsibility for implementing DOE's fuel cell program, which includes activities related to both fuel cells and fuel cell systems, has been assigned to the Morgantown Energy Technology Center (METC) in Morgantown, West Virginia. The total United States effort of the private and public sectors in developing fuel cell technology is referred to as the National Fuel Cell Program (NFCP). The goal of the NFCP is to develop fuel cell power plants for base-load and dispersed electric utility systems, industrial cogeneration, and on-site applications. To achieve this goal, the fuel cell developers, electric and gas utilities, research institutes, and Government agencies are working together. Four organized groups are coordinating the diversified activities of the NFCP. The status of the overall program is reviewed in detail.

  1. Figuring on energy: fuel-switch mirage

    SciTech Connect

    Schaffer, P.

    1984-06-25

    DOE's Petroleum Supply Annual: 1983 does not support the idea that the 1981-83 drop in natural gas consumption was due to industrial users switching to oil. A consumption breakdown shows a pattern of reduced oil use during the same period. The American Gas Association estimates that gas utilities lost 0.325 quads in 1982 because of dual-fuel switching, but gas consumption continued to decline even after the fuel-switching trend reversed. The author traces the problem to state rate regulators whose policies subsidize residential users at the expense of industry rather than to interfuel competition.

  2. 40 CFR 610.42 - Fuel economy measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 30 2011-07-01 2011-07-01 false Fuel economy measurement. 610.42... ECONOMY RETROFIT DEVICES Test Procedures and Evaluation Criteria General Vehicle Test Procedures § 610.42 Fuel economy measurement. (a) Fuel consumption will be measured by: (1) The carbon balance method,...

  3. 40 CFR 610.42 - Fuel economy measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 31 2012-07-01 2012-07-01 false Fuel economy measurement. 610.42... ECONOMY RETROFIT DEVICES Test Procedures and Evaluation Criteria General Vehicle Test Procedures § 610.42 Fuel economy measurement. (a) Fuel consumption will be measured by: (1) The carbon balance method,...

  4. 40 CFR 610.42 - Fuel economy measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 31 2013-07-01 2013-07-01 false Fuel economy measurement. 610.42... ECONOMY RETROFIT DEVICES Test Procedures and Evaluation Criteria General Vehicle Test Procedures § 610.42 Fuel economy measurement. (a) Fuel consumption will be measured by: (1) The carbon balance method,...

  5. 40 CFR 610.42 - Fuel economy measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 30 2014-07-01 2014-07-01 false Fuel economy measurement. 610.42... ECONOMY RETROFIT DEVICES Test Procedures and Evaluation Criteria General Vehicle Test Procedures § 610.42 Fuel economy measurement. (a) Fuel consumption will be measured by: (1) The carbon balance method,...

  6. 10 CFR 490.8 - Replacement fuel production goal.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Replacement fuel production goal. 490.8 Section 490.8 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM General... sufficient to replace, on an energy equivalent basis, at least 30 percent of motor fuel consumption in...

  7. 10 CFR 490.8 - Replacement fuel production goal.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Replacement fuel production goal. 490.8 Section 490.8 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM General... sufficient to replace, on an energy equivalent basis, at least 30 percent of motor fuel consumption in...

  8. 10 CFR 490.8 - Replacement fuel production goal.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Replacement fuel production goal. 490.8 Section 490.8 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM General... sufficient to replace, on an energy equivalent basis, at least 30 percent of motor fuel consumption in...

  9. 10 CFR 490.8 - Replacement fuel production goal.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Replacement fuel production goal. 490.8 Section 490.8 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM General... sufficient to replace, on an energy equivalent basis, at least 30 percent of motor fuel consumption in...

  10. 10 CFR 490.8 - Replacement fuel production goal.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Replacement fuel production goal. 490.8 Section 490.8 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM General... sufficient to replace, on an energy equivalent basis, at least 30 percent of motor fuel consumption in...

  11. 40 CFR 610.42 - Fuel economy measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Fuel economy measurement. 610.42... ECONOMY RETROFIT DEVICES Test Procedures and Evaluation Criteria General Vehicle Test Procedures § 610.42 Fuel economy measurement. (a) Fuel consumption will be measured by: (1) The carbon balance method,...

  12. Fossil Fuels.

    ERIC Educational Resources Information Center

    Crank, Ron

    This instructional unit is one of 10 developed by students on various energy-related areas that deals specifically with fossil fuels. Some topics covered are historic facts, development of fuels, history of oil production, current and future trends of the oil industry, refining fossil fuels, and environmental problems. Material in each unit may…

  13. Overview of Alcohol Consumption

    MedlinePlus

    ... Work Our Funding Our Staff Jobs & Training Our Location Contact Us You are here Home » Alcohol & Your Health » Overview of Alcohol Consumption In this Section Alcohol Facts & Statistics What Is A Standard Drink? Drinking Levels Defined Overview of Alcohol Consumption ...

  14. Development of a lightweight fuel cell vehicle

    NASA Astrophysics Data System (ADS)

    Hwang, J. J.; Wang, D. Y.; Shih, N. C.

    This paper described the development of a fuel cell system and its integration into the lightweight vehicle known as the Mingdao hydrogen vehicle (MHV). The fuel cell system consists of a 5-kW proton exchange membrane fuel cell (PEMFC), a microcontroller and other supported components like a compressed hydrogen cylinder, blower, solenoid valve, pressure regulator, water pump, heat exchanger and sensors. The fuel cell not only propels the vehicle but also powers the supporting components. The MHV performs satisfactorily over a hundred-kilometer drive thus validating the concept of a fuel cell powered zero-emission vehicle. Measurements further show that the fuel cell system has an efficiency of over 30% at the power consumption for vehicle cruise, which is higher than that of a typical internal combustion engine. Tests to improve performance such as speed enhancement, acceleration and fuel efficiency will be conducted in the future work. Such tests will consist of hybridizing with a battery pack.

  15. Comparison of predictive control methods for high consumption industrial furnace.

    PubMed

    Stojanovski, Goran; Stankovski, Mile

    2013-01-01

    We describe several predictive control approaches for high consumption industrial furnace control. These furnaces are major consumers in production industries, and reducing their fuel consumption and optimizing the quality of the products is one of the most important engineer tasks. In order to demonstrate the benefits from implementation of the advanced predictive control algorithms, we have compared several major criteria for furnace control. On the basis of the analysis, some important conclusions have been drawn.

  16. Fuel Savings and Emission Reductions from Next-Generation Mobile Air Conditioning Technology in India: Preprint

    SciTech Connect

    Chaney, L.; Thundiyil, K.; Chidambaram, S.; Abbi, Y. P.; Anderson, S.

    2007-05-01

    This paper quantifies the mobile air-conditioning fuel consumption of the typical Indian vehicle, exploring potential fuel savings and emissions reductions these systems for the next generation of vehicles.

  17. Study of unconventional aircraft engines designed for low energy consumption

    NASA Technical Reports Server (NTRS)

    Gray, D. E.

    1976-01-01

    Declining U.S. oil reserves and escalating energy costs underline the need for reducing fuel consumption in aircraft engines. The most promising unconventional aircraft engines based on their potential for fuel savings and improved economics are identified. The engines installed in both a long-range and medium-range aircraft were evaluated. Projected technology advances are identified and evaluated for their state-of-readiness for application to a commercial transport. Programs are recommended for developing the necessary technology.

  18. Modelling Accident Tolerant Fuel Concepts

    SciTech Connect

    Hales, Jason Dean; Gamble, Kyle Allan Lawrence

    2016-05-01

    The catastrophic events that occurred at the Fukushima-Daiichi nuclear power plant in 2011 have led to widespread interest in research of alternative fuels and claddings that are proposed to be accident tolerant. The United States Department of Energy (DOE) through its Nuclear Energy Advanced Modeling and Simulation (NEAMS) program has funded an Accident Tolerant Fuel (ATF) High Impact Problem (HIP). The ATF HIP is a three-year project to perform research on two accident tolerant concepts. The final outcome of the ATF HIP will be an in-depth report to the DOE Advanced Fuels Campaign (AFC) giving a recommendation on whether either of the two concepts should be included in their lead test assembly scheduled for placement into a commercial reactor in 2022. The two ATF concepts under investigation in the HIP are uranium silicide fuel and iron-chromium-aluminum (FeCrAl) alloy cladding. Utilizing the expertise of three national laboratory participants (Idaho National Laboratory, Los Alamos National Laboratory, and Argonne National Laboratory), a comprehensive multiscale approach to modeling is being used that includes atomistic modeling, molecular dynamics, rate theory, phase-field, and fuel performance simulations. Model development and fuel performance analysis are critical since a full suite of experimental studies will not be complete before AFC must prioritize concepts for focused development. In this paper, we present simulations of the two proposed accident tolerance fuel systems: U3Si2 fuel with Zircaloy-4 cladding, and UO2 fuel with FeCrAl cladding. Sensitivity analyses are completed using Sandia National Laboratories’ Dakota software to determine which input parameters (e.g., fuel specific heat) have the greatest influence on the output metrics of interest (e.g., fuel centerline temperature). We also outline the multiscale modelling approach being employed. Considerable additional work is required prior to preparing the recommendation report for the Advanced

  19. Bat consumption in Thailand

    PubMed Central

    Suwannarong, Kanokwan; Schuler, Sidney

    2016-01-01

    Background Human consumption of bats poses an increasing public health threat globally. Communities in which bat guano is mined from caves have extensive exposure to bat excreta, often harvest bats for consumption, and are at risk for bat-borne diseases. Methods This rapid ethnographic study was conducted in four provinces of Thailand (Ratchaburi, Sakaeo, Nakorn Sawan, and Phitsanulok), where bat guano was mined and sold during the period April–August 2014. The aim of this study was to understand behaviors and risk perceptions associated with bat conservation, exposure to bats and their excreta, and bat consumption. Sixty-seven respondents playing various roles in bat guano mining, packaging, sale, and use as fertilizer participated in the study. Data were collected through interviews and/or focus group discussions. Results In spite of a bat conservation program dating back to the 1980s, the benefits of conserving bats and the risks associated with bat consumption were not clear and infrequently articulated by study respondents. Discussion Since bat consumption continues, albeit covertly, the risk of bat-borne diseases remains high. There is an opportunity to reduce the risk of bat-borne diseases in guano-mining communities by strengthening bat conservation efforts and raising awareness of the health risks of bat consumption. Further research is suggested to test behavior change strategies for reducing bat consumption. PMID:26806167

  20. Energy-consumption modelling

    SciTech Connect

    Reiter, E.R.

    1980-01-01

    A highly sophisticated and accurate approach is described to compute on an hourly or daily basis the energy consumption for space heating by individual buildings, urban sectors, and whole cities. The need for models and specifically weather-sensitive models, composite models, and space-heating models are discussed. Development of the Colorado State University Model, based on heat-transfer equations and on a heuristic, adaptive, self-organizing computation learning approach, is described. Results of modeling energy consumption by the city of Minneapolis and Cheyenne are given. Some data on energy consumption in individual buildings are included.

  1. Fuel compositions

    SciTech Connect

    Zaweski, E.F.; Niebylski, L.M.

    1986-08-05

    This patent describes distillate fuel for indirect injection compression ignition engines containing, in an amount sufficient to minimize coking, especially throttling nozzle coking in the prechambers or swirl chambers of indirect injection compression ignition engines operated on such fuel, at least the combination of (i) organic nitrate ignition accelerator and (ii) an esterified cycle dehydration product of sorbitol which, when added to the fuel in combination with the organic nitrate ignition accelerator minimizes the coking.

  2. Minimum fuel mode evaluation

    NASA Technical Reports Server (NTRS)

    Orme, John S.; Nobbs, Steven G.

    1995-01-01

    The minimum fuel mode of the NASA F-15 research aircraft is designed to minimize fuel flow while maintaining constant net propulsive force (FNP), effectively reducing thrust specific fuel consumption (TSFC), during cruise flight conditions. The test maneuvers were at stabilized flight conditions. The aircraft test engine was allowed to stabilize at the cruise conditions before data collection initiated; data were then recorded with performance seeking control (PSC) not-engaged, then data were recorded with the PSC system engaged. The maneuvers were flown back-to-back to allow for direct comparisons by minimizing the effects of variations in the test day conditions. The minimum fuel mode was evaluated at subsonic and supersonic Mach numbers and focused on three altitudes: 15,000; 30,000; and 45,000 feet. Flight data were collected for part, military, partial, and maximum afterburning power conditions. The TSFC savings at supersonic Mach numbers, ranging from approximately 4% to nearly 10%, are in general much larger than at subsonic Mach numbers because of PSC trims to the afterburner.

  3. Fuel cells 101

    SciTech Connect

    Hirschenhofer, J.H.

    1999-07-01

    This paper discusses the various types of fuel cells, the importance of cell voltage, fuel processing for natural gas, cell stacking, fuel cell plant description, advantages and disadvantages of the types of fuel cells, and applications. The types covered include: polymer electrolyte fuel cell, alkaline fuel cell, phosphoric acid fuel cell; molten carbonate fuel cell, and solid oxide fuel cell.

  4. Fuel dehazers

    SciTech Connect

    Lyons, W.R.

    1986-03-01

    Hazy fuels can be caused by the emulsification of water into the fuel during refining, blending, or transportation operations. Detergent additive packages used in gasoline tend to emulsify water into the fuel. Fuels containing water haze can cause corrosion and contamination, and support microbiological growth. This results in problems. As the result of these problems, refiners, marketers, and product pipeline companies customarily have haze specifications. The haze specification may be a specific maximum water content or simply ''bright and clear'' at a specified temperature.

  5. Motor fuel

    SciTech Connect

    Burns, L.D.

    1982-07-13

    Liquid hydrocarbon fuel compositions are provided containing antiknock quantities of ashless antiknock agents comprising selected furyl compounds including furfuryl alcohol, furfuryl amine, furfuryl esters, and alkyl furoates.

  6. Alternative fuels

    SciTech Connect

    Not Available

    1991-07-01

    This paper presents the preliminary results of a review, of the experiences of Brazil, Canada, and New Zealand, which have implemented programs to encourage the use of alternative motor fuels. It will also discuss the results of a separate completed review of the Department of Energy's (DOE) progress in implementing the Alternative Motor Fuels Act of 1988. The act calls for, among other things, the federal government to use alternative-fueled vehicles in its fleet. The Persian Gulf War, environmental concerns, and the administration's National Energy Strategy have greatly heightened interest in the use of alternative fuels in this country.

  7. Alternatives to traditional transportation fuels 1993

    SciTech Connect

    Not Available

    1995-01-01

    In recent years, gasoline and diesel fuel have accounted for about 80 percent of total transportation fuel and nearly all of the fuel used in on-road vehicles. Growing concerns about the environmental effects of fossil fuel use and the Nation`s high level of dependence on foreign oil are providing impetus for the development of replacements or alternatives for these traditional transportation fuels. (The Energy Policy Act of 1992 definitions of {open_quotes}replacement{close_quotes} and {open_quotes}alternative{close_quotes} fuels are presented in the following box.) The Alternative Motor Fuels Act of 1988, the Clean Air Act Amendments of 1990 (CAAA90) and the Energy Policy Act of 1992 (EPACT) are significant legislative forces behind the growth of replacement fuel use. Alternatives to Traditional Transportation Fuels 1993 provides the number of on-road alternative fueled vehicles in use in the United States, alternative and replacement fuel consumption, and information on greenhouse gas emissions resulting from the production, delivery, and use of replacement fuels for 1992, 1993, and 1995.

  8. Rituals enhance consumption.

    PubMed

    Vohs, Kathleen D; Wang, Yajin; Gino, Francesca; Norton, Michael I

    2013-09-01

    Four experiments tested the novel hypothesis that ritualistic behavior potentiates and enhances ensuing consumption--an effect found for chocolates, lemonade, and even carrots. Experiment 1 showed that participants who engaged in ritualized behavior, compared with those who did not, evaluated chocolate as more flavorful, valuable, and deserving of behavioral savoring. Experiment 2 demonstrated that random gestures do not boost consumption as much as ritualistic gestures do. It further showed that a delay between a ritual and the opportunity to consume heightens enjoyment, which attests to the idea that ritual behavior stimulates goal-directed action (to consume). Experiment 3 found that performing a ritual oneself enhances consumption more than watching someone else perform the same ritual, suggesting that personal involvement is crucial for the benefits of rituals to emerge. Finally, Experiment 4 provided direct evidence of the underlying process: Rituals enhance the enjoyment of consumption because of the greater involvement in the experience that they prompt.

  9. Human Biomass Consumption

    NASA Video Gallery

    Humans are using an increasing amount of Earth’s annual production of plants. Research shows that, from 1995 to 2005, consumption rose from 20 to 25 percent of the planet's annual production. Wha...

  10. Fuel injector

    DOEpatents

    Lambeth, Malcolm David Dick

    2001-02-27

    A fuel injector comprises first and second housing parts, the first housing part being located within a bore or recess formed in the second housing part, the housing parts defining therebetween an inlet chamber, a delivery chamber axially spaced from the inlet chamber, and a filtration flow path interconnecting the inlet and delivery chambers to remove particulate contaminants from the flow of fuel therebetween.

  11. High Octane Fuel: Terminal Backgrounder

    SciTech Connect

    Moriarty, Kristi

    2016-02-11

    The Bioenergy Technologies Office of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy sponsored a scoping study to assess the potential of ethanol-based high octane fuel (HOF) to reduce energy consumption and greenhouse gas emissions. When the HOF blend is made with 25%-40% ethanol by volume, this energy efficiency improvement is potentially sufficient to offset the reduced vehicle range often associated with the decreased volumetric energy density of ethanol. The purpose of this study is to assess the ability of the fuel supply chain to accommodate more ethanol at fuel terminals. Fuel terminals are midstream in the transportation fuel supply chain and serve to store and distribute fuels to end users. While there are no technical issues to storing more ethanol at fuel terminals, there are several factors that could impact the ability to deploy more ethanol. The most significant of these issues include the availability of land to add more infrastructure and accommodate more truck traffic for ethanol deliveries as well as a lengthy permitting process to erect more tanks.

  12. Optimally Controlled Flexible Fuel Powertrain System

    SciTech Connect

    Duncan Sheppard; Bruce Woodrow; Paul Kilmurray; Simon Thwaite

    2011-06-30

    A multi phase program was undertaken with the stated goal of using advanced design and development tools to create a unique combination of existing technologies to create a powertrain system specification that allowed minimal increase of volumetric fuel consumption when operating on E85 relative to gasoline. Although on an energy basis gasoline / ethanol blends typically return similar fuel economy to straight gasoline, because of its lower energy density (gasoline ~ 31.8MJ/l and ethanol ~ 21.1MJ/l) the volume based fuel economy of gasoline / ethanol blends are typically considerably worse. This project was able to define an initial engine specification envelope, develop specific hardware for the application, and test that hardware in both single and multi-cylinder test engines to verify the ability of the specified powertrain to deliver reduced E85 fuel consumption. Finally, the results from the engine testing were used in a vehicle drive cycle analysis tool to define a final vehicle level fuel economy result. During the course of the project, it was identified that the technologies utilized to improve fuel economy on E85 also enabled improved fuel economy when operating on gasoline. However, the E85 fueled powertrain provided improved vehicle performance when compared to the gasoline fueled powertrain due to the improved high load performance of the E85 fuel. Relative to the baseline comparator engine and considering current market fuels, the volumetric fuel consumption penalty when running on E85 with the fully optimized project powertrain specification was reduced significantly. This result shows that alternative fuels can be utilized in high percentages while maintaining or improving vehicle performance and with minimal or positive impact on total cost of ownership to the end consumer. The justification for this project was two-fold. In order to reduce the US dependence on crude oil, much of which is imported, the US Environmental Protection Agency (EPA

  13. Materials advances required to reduce energy consumption through the application of heavy duty diesel engines

    SciTech Connect

    Patten, J.W.

    1984-09-01

    Several key materials advances are required to reduce energy consumption through application of heavy duty diesel engines. Heavy duty diesel engines are viewed as effecting energy use both directly through fuel consumption, and indirectly through their durability with large energy expenditures required to replace worn-out engines. Materials advances that would improve fuel consumption include materials related to hot gas-path insulation, and materials related to design advances (other than insulation). Most design advances that are focused on fuel consumption or other performance factors also directly influence durability through materials properties. Several major engine components and many conventional (and advanced) materials are examined. If materials development is integrated with design and manufacturing advances, then fuel economy higher than 0.28 BSFC (50 pct thermal efficiency), and durability beyond 750,000 miles may be achievable.

  14. Fuel cell-fuel cell hybrid system

    DOEpatents

    Geisbrecht, Rodney A.; Williams, Mark C.

    2003-09-23

    A device for converting chemical energy to electricity is provided, the device comprising a high temperature fuel cell with the ability for partially oxidizing and completely reforming fuel, and a low temperature fuel cell juxtaposed to said high temperature fuel cell so as to utilize remaining reformed fuel from the high temperature fuel cell. Also provided is a method for producing electricity comprising directing fuel to a first fuel cell, completely oxidizing a first portion of the fuel and partially oxidizing a second portion of the fuel, directing the second fuel portion to a second fuel cell, allowing the first fuel cell to utilize the first portion of the fuel to produce electricity; and allowing the second fuel cell to utilize the second portion of the fuel to produce electricity.

  15. Plutonium Consumption Program, CANDU Reactor Project final report

    SciTech Connect

    Not Available

    1994-07-31

    DOE is investigating methods for long term dispositioning of weapons grade plutonium. One such method would be to utilize the plutonium in Mixed OXide (MOX) fuel assemblies in existing CANDU reactors. CANDU (Canadian Deuterium Uranium) reactors are designed, licensed, built, and supported by Atomic Energy of Canada Limited (AECL), and currently use natural uranium oxide as fuel. The MOX spent fuel assemblies removed from the reactor would be similar to the spent fuel currently produced using natural uranium fuel, thus rendering the plutonium as unattractive as that in the stockpiles of commercial spent fuel. This report presents the results of a study sponsored by the DOE for dispositioning the plutonium using CANDU technology. Ontario Hydro`s Bruce A was used as reference. The fuel design study defined the optimum parameters to disposition 50 tons of Pu in 25 years (or 100 tons). Two alternate fuel designs were studied. Safeguards, security, environment, safety, health, economics, etc. were considered. Options for complete destruction of the Pu were also studied briefly; CANDU has a superior ability for this. Alternative deployment options were explored and the potential impact on Pu dispositioning in the former Soviet Union was studied. An integrated system can be ready to begin Pu consumption in 4 years, with no changes required to the reactors other than for safe, secure storage of new fuel.

  16. Alternatives to traditional transportation fuels 1995

    SciTech Connect

    1996-12-01

    This report provides information on transportation fuels other than gasoline and diesel, and the vehicles that use these fuels. The Energy Information Administration (EIA) provides this information to support the U.S. Department of Energy`s reporting obligations under Section 503 of the Energy Policy Act of 1992 (EPACT). The principal information contained in this report includes historical and year-ahead estimates of the following: (1) the number and type of alterative-fueled vehicles (AFV`s) in use; (2) the consumption of alternative transportation fuels and {open_quotes}replacement fuels{close_quotes}; and (3) the number and type of alterative-fueled vehicles made available in the current and following years. In addition, the report contains some material on special topics. The appendices include a discussion of the methodology used to develop the estimates (Appendix A), a map defining geographic regions used, and a list of AFV suppliers.

  17. Technical analysis of alternative fueled vehicles

    NASA Astrophysics Data System (ADS)

    1993-03-01

    The current status of alternative fueled vehicles, such as methanol fueled, compressed natural gas (CNG) fueled, and electric vehicles, that have feasibility to take the place of oil fueled ones is analyzed from the viewpoints of environmental pollution control, energy resources conservation, and economic performances. As for environmental pollution control, these three vehicles are compared by such items as nitrogen oxides, photochemical reactivity, adaptability to future regulations, earth warming substances, and toxicity. As for practical applicability, the following items are compared: power density (torque, power, acceleration performance), energy density, range, energy consumption, vehicle initial costs, energy costs, freight transportation energy costs (yen/ton/km), and energy supply suitability. Conclusions include: methanol vehicles have the problem of fueling stations to be arranged; since CNG vehicles are considered to be loaded with CNG fuel tanks on the top of vehicles, safety must be ensured; electric vehicles still have many problems in spite of their many advantages.

  18. Fuel cells - Fundamentals and types: Unique features

    NASA Astrophysics Data System (ADS)

    Selman, J. R.

    An overview of the working principles, thermodynamic efficiencies, types, and engineering aspects of fuel cells is presented. It is noted that fuel cells are distinguished from other direct energy conversion devices by the existence of charge separation at the electrodes involving ions in an electrolyte. The electrical energy produced by a fuel cell is shown to be equal to the change in the free energy of the reactants, and thermodynamic balances of reactions in different fuel cells are provided. The production of electricity in the discharge mode involves a spontaneous reaction of overproduction of electrons at the anode and consumption of the electrons at the cathode, with the total ionic current being equal to the electronic current in the external circuit. Attention is given to the operations and problems of acid, alkaline, molten carbonate, and solid oxide fuel cells, in addition to applications of electro-organic fuel cells.

  19. Fuel cell on-site integrated energy system parametric analysis of a residential complex

    NASA Technical Reports Server (NTRS)

    Simons, S. N.

    1977-01-01

    A parametric energy-use analysis was performed for a large apartment complex served by a fuel cell on-site integrated energy system (OS/IES). The variables parameterized include operating characteristics for four phosphoric acid fuel cells, eight OS/IES energy recovery systems, and four climatic locations. The annual fuel consumption for selected parametric combinations are presented and a breakeven economic analysis is presented for one parametric combination. The results show fuel cell electrical efficiency and system component choice have the greatest effect on annual fuel consumption; fuel cell thermal efficiency and geographic location have less of an effect.

  20. Fuels research: Fuel thermal stability overview

    NASA Technical Reports Server (NTRS)

    Cohen, S. M.

    1980-01-01

    Alternative fuels or crude supplies are examined with respect to satisfying aviation fuel needs for the next 50 years. The thermal stability of potential future fuels is discussed and the effects of these characteristics on aircraft fuel systems are examined. Advanced fuel system technology and design guidelines for future fuels with lower thermal stability are reported.

  1. Antimisting Kerosene: Base Fuel Effects; Blending and Quality Control Techniques.

    DTIC Science & Technology

    1984-01-01

    carried out to match as closely as practical to the various specification limits . At this point, additives may be introduced, e.g. antioxidants, metal...contained in refer- ences 5 and 6. In order to select representative base fuel samples a limited survey of local (Los Angeles) jet fuel suppliers was done...that the fuel must meet the ASTM D 1655 specification requirements for commercial fuels. This prescribes test limits that must be met by the refiner who

  2. Estimation of food consumption

    SciTech Connect

    Callaway, J.M. Jr.

    1992-04-01

    The research reported in this document was conducted as a part of the Hanford Environmental Dose Reconstruction (HEDR) Project. The objective of the HEDR Project is to estimate the radiation doses that people could have received from operations at the Hanford Site. Information required to estimate these doses includes estimates of the amounts of potentially contaminated foods that individuals in the region consumed during the study period. In that general framework, the objective of the Food Consumption Task was to develop a capability to provide information about the parameters of the distribution(s) of daily food consumption for representative groups in the population for selected years during the study period. This report describes the methods and data used to estimate food consumption and presents the results developed for Phase I of the HEDR Project.

  3. Reducing theatre energy consumption.

    PubMed

    Pierce, Tom; Morris, Gemma; Parker, Beena

    2014-03-01

    As little has been written to describe the electrical energy required to deliver anaesthesia, we undertook to measure the total electrical energy consumption for a day's clinical anaesthesia. Daily energy consumption related to anaesthesia was measured with commercially available 'plug-in' power and energy meters, and additional in-use energy estimates were based on direct observation made in theatre and from measuring the power consumption of anaesthetic gas scavenging system (AGSS) pumps. Total energy use for anaesthesia per day was 28 kWh, and cost the modest sum of around pound 2.24 per day. Disproportionately large amounts of energy were required to run the anaesthetic gas scavenging pumps and the overhead radiant heaters. Energy saving can be safely obtained by switching off AGSS out of hours, and placing radiant heaters on timing or thermostatic controls.

  4. Fuel ethanol

    SciTech Connect

    Not Available

    1989-02-01

    This report discusses the Omnibus Trade and Competitiveness Act of 1988 which requires GAO to examine fuel ethanol imports from Central America and the Caribbean and their impact on the U.S. fuel ethanol industry. Ethanol is the alcohol in beverages, such as beer, wine, and whiskey. It can also be used as a fuel by blending with gasoline. It can be made from renewable resources, such as corn, wheat, grapes, and sugarcane, through a process of fermentation. This report finds that, given current sugar and gasoline prices, it is not economically feasible for Caribbean ethanol producers to meet the current local feedstock requirement.

  5. Modeling of hybrid vehicle fuel economy and fuel engine efficiency

    NASA Astrophysics Data System (ADS)

    Wu, Wei

    "Near-CV" (i.e., near-conventional vehicle) hybrid vehicles, with an internal combustion engine, and a supplementary storage with low-weight, low-energy but high-power capacity, are analyzed. This design avoids the shortcoming of the "near-EV" and the "dual-mode" hybrid vehicles that need a large energy storage system (in terms of energy capacity and weight). The small storage is used to optimize engine energy management and can provide power when needed. The energy advantage of the "near-CV" design is to reduce reliance on the engine at low power, to enable regenerative braking, and to provide good performance with a small engine. The fuel consumption of internal combustion engines, which might be applied to hybrid vehicles, is analyzed by building simple analytical models that reflect the engines' energy loss characteristics. Both diesel and gasoline engines are modeled. The simple analytical models describe engine fuel consumption at any speed and load point by describing the engine's indicated efficiency and friction. The engine's indicated efficiency and heat loss are described in terms of several easy-to-obtain engine parameters, e.g., compression ratio, displacement, bore and stroke. Engine friction is described in terms of parameters obtained by fitting available fuel measurements on several diesel and spark-ignition engines. The engine models developed are shown to conform closely to experimental fuel consumption and motored friction data. A model of the energy use of "near-CV" hybrid vehicles with different storage mechanism is created, based on simple algebraic description of the components. With powertrain downsizing and hybridization, a "near-CV" hybrid vehicle can obtain a factor of approximately two in overall fuel efficiency (mpg) improvement, without considering reductions in the vehicle load.

  6. Potential improvements in turbofan engine fuel economy

    NASA Technical Reports Server (NTRS)

    Hines, R. W.; Gaffin, W. O.

    1976-01-01

    The method developed for initial evaluation of possible performance improvements in the NASA Aircraft Energy Efficiency Program, directed toward improving the fuel economy of turbofan engines, is outlined, and results of the evaluation of 100 candidate engine modifications are presented. The study indicates that fuel consumption improvements of as much as 5% may be possible in current JT3D, JT8D, and JT9D turbofan engines. Aerodynamic, thermodynamic, material, and structural advances are expected to yield fuel consumption improvements on the order of 10 to 15% in advanced turbofan engines, with the greatest improvement stemming from significantly higher cycle pressure ratios. Higher turbine temperature and fan bypass ratios are also expected to contribute to fuel conservation.

  7. Aircraft fuel conservation technology. Task force report, September 10, 1975

    NASA Technical Reports Server (NTRS)

    1975-01-01

    An advanced technology program is described for reduced fuel consumption in air transport. Cost benefits and estimates are given for improved engine design and components, turboprop propulsion systems, active control systems, laminar flow control, and composite primary structures.

  8. Combustion engine for solid and liquid fuels

    NASA Technical Reports Server (NTRS)

    Pabst, W.

    1986-01-01

    A combustion engine having no piston, a single cylinder, and a dual-action, that is applicable for solid and liquid fuels and propellants, and that functions according to the principle of annealing point ignition is presented. The invention uses environmentally benign amounts of fuel and propellants to produce gas and steam pressure, and to use a simple assembly with the lowest possible consumption and constant readiness for mixing and burning. The advantage over conventional combustion engines lies in lower consumption of high quality igniting fluid in the most cost effective manner.

  9. On the flexibility of high temperature reactor cores for high-and low-enriched fuel

    SciTech Connect

    Bzandes, S.; Lonhert, G.

    1982-07-01

    The operational flexibility of a high temperature reactor (HTR) is not restricted to either a low- or a high-enriched fuel cycle. Both fuel cycles are possible for the same core design. The fuel cycle cost is, however, penalized for low-enriched fuel; in addition, higher uranium consumption is required. Hence, an HTR is most economical to operate in the high-enriched thorium-uranium fuel cycle.

  10. Low-Emissions Burner Technology using Biomass-Derived Liquid Fuels

    SciTech Connect

    2010-07-01

    The University of Alabama will develop fuel-flexible, low-emissions burner technology for the metal processing industry that is capable of using biomass-derived liquid fuels, such as glycerin or fatty acids, as a substitute for natural gas. By replacing a fossil fuel with biomass fuels, this new burner will enable a reduction in energy consumption and greenhouse gas emissions and an increase in fuel flexibility.

  11. Potential Fuel Economy Improvements from the Implementation of cEGR and CDA on an Atkinson Cycle Engine

    EPA Science Inventory

    Present the implementation of cEGR and CDA on an Atkinson engine and use steady state fuel consumption maps to estimate the technologies’ potential fuel economy improvements over the FTP and Highway tests. In addition to use fuel weighted modes to determine possible fuel economy...

  12. Alternative jet aircraft fuels

    NASA Technical Reports Server (NTRS)

    Grobman, J.

    1979-01-01

    Potential changes in jet aircraft fuel specifications due to shifts in supply and quality of refinery feedstocks are discussed with emphasis on the effects these changes would have on the performance and durability of aircraft engines and fuel systems. Combustion characteristics, fuel thermal stability, and fuel pumpability at low temperature are among the factors considered. Combustor and fuel system technology needs for broad specification fuels are reviewed including prevention of fuel system fouling and fuel system technology for fuels with higher freezing points.

  13. Global maize production, utilization, and consumption.

    PubMed

    Ranum, Peter; Peña-Rosas, Juan Pablo; Garcia-Casal, Maria Nieves

    2014-04-01

    Maize (Zea mays), also called corn, is believed to have originated in central Mexico 7000 years ago from a wild grass, and Native Americans transformed maize into a better source of food. Maize contains approximately 72% starch, 10% protein, and 4% fat, supplying an energy density of 365 Kcal/100 g and is grown throughout the world, with the United States, China, and Brazil being the top three maize-producing countries in the world, producing approximately 563 of the 717 million metric tons/year. Maize can be processed into a variety of food and industrial products, including starch, sweeteners, oil, beverages, glue, industrial alcohol, and fuel ethanol. In the last 10 years, the use of maize for fuel production significantly increased, accounting for approximately 40% of the maize production in the United States. As the ethanol industry absorbs a larger share of the maize crop, higher prices for maize will intensify demand competition and could affect maize prices for animal and human consumption. Low production costs, along with the high consumption of maize flour and cornmeal, especially where micronutrient deficiencies are common public health problems, make this food staple an ideal food vehicle for fortification.

  14. Transportation Fuels Markets, PADD 1 and PADD 3

    EIA Publications

    2016-01-01

    This study examines supply, consumption, and distribution of transportation fuels in Petroleum Administration for Defense Districts (PADDs) 1 and 3, or the U.S. East Coast and the Gulf Coast, respectively. The East Coast region includes states from Maine to Florida along the U.S. Atlantic Coast. The Gulf Coast region comprises states between New Mexico in the west to Alabama in the east along the Gulf of Mexico. For this study, transportation fuels include gasoline, diesel fuel and jet fuel. Residual fuel oil supply is also analyzed where applicable.

  15. A GUIDE TO FUEL PERFORMANCE

    SciTech Connect

    LITZKE,W.

    2004-08-01

    Heating oil, as its name implies, is intended for end use heating consumption as its primary application. But its identity in reference name and actual chemical properties may vary based on a number of factors. By name, heating oil is sometimes referred to as gas oil, diesel, No. 2 distillate (middle distillate), or light heating oil. Kerosene, also used as a burner fuel, is a No. 1 distillate. Due to the higher heat content and competitive price in most markets, No. 2 heating oil is primarily used in modern, pressure-atomized burners. Using No. 1 oil for heating has the advantages of better cold-flow properties, lower emissions, and better storage properties. Because it is not nearly as abundant in supply, it is often markedly more expensive than No. 2 heating oil. Given the advanced, low-firing rate burners in use today, the objective is for the fuel to be compatible and achieve combustion performance at the highest achievable efficiency of the heating systems--with minimal service requirements. Among the Oil heat industry's top priorities are improving reliability and reducing service costs associated with fuel performance. Poor fuel quality, fuel degradation, and contamination can cause burner shut-downs resulting in ''no-heat'' calls. Many of these unscheduled service calls are preventable with routine inspection of the fuel and the tank. This manual focuses on No. 2 heating oil--its performance, properties, sampling and testing. Its purpose is to provide the marketer, service manager and technician with the proper guidelines for inspecting the product, maintaining good fuel quality, and the best practices for proper storage. Up-to-date information is also provided on commercially available fuel additives, their appropriate use and limitations.

  16. 19 CFR 10.62b - Aircraft turbine fuel.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... consumption, with duty deposited, as required under the applicable regulations (see part 144 of this chapter... withdrawal for consumption shall be filed and duties shall be deposited for the excess of fuel so withdrawn over that used on aircraft so qualifying. Such withdrawal shall be filed and such duties shall...

  17. Assessment of bio-fuel options for solid oxide fuel cell applications

    NASA Astrophysics Data System (ADS)

    Lin, Jiefeng

    Rising concerns of inadequate petroleum supply, volatile crude oil price, and adverse environmental impacts from using fossil fuels have spurred the United States to promote bio-fuel domestic production and develop advanced energy systems such as fuel cells. The present dissertation analyzed the bio-fuel applications in a solid oxide fuel cell-based auxiliary power unit from environmental, economic, and technological perspectives. Life cycle assessment integrated with thermodynamics was applied to evaluate the environmental impacts (e.g., greenhouse gas emission, fossil energy consumption) of producing bio-fuels from waste biomass. Landfill gas from municipal solid wastes and biodiesel from waste cooking oil are both suggested as the promising bio-fuel options. A nonlinear optimization model was developed with a multi-objective optimization technique to analyze the economic aspect of biodiesel-ethanol-diesel ternary blends used in transportation sectors and capture the dynamic variables affecting bio-fuel productions and applications (e.g., market disturbances, bio-fuel tax credit, policy changes, fuel specification, and technological innovation). A single-tube catalytic reformer with rhodium/ceria-zirconia catalyst was used for autothermal reformation of various heavy hydrocarbon fuels (e.g., diesel, biodiesel, biodiesel-diesel, and biodiesel-ethanol-diesel) to produce a hydrogen-rich stream reformates suitable for use in solid oxide fuel cell systems. A customized mixing chamber was designed and integrated with the reformer to overcome the technical challenges of heavy hydrocarbon reformation. A thermodynamic analysis, based on total Gibbs free energy minimization, was implemented to optimize the operating environment for the reformations of various fuels. This was complimented by experimental investigations of fuel autothermal reformation. 25% biodiesel blended with 10% ethanol and 65% diesel was determined to be viable fuel for use on a truck travelling with

  18. New Methodology for Estimating Fuel Economy by Vehicle Class

    SciTech Connect

    Chin, Shih-Miao; Dabbs, Kathryn; Hwang, Ho-Ling

    2011-01-01

    Office of Highway Policy Information to develop a new methodology to generate annual estimates of average fuel efficiency and number of motor vehicles registered by vehicle class for Table VM-1 of the Highway Statistics annual publication. This paper describes the new methodology developed under this effort and compares the results of the existing manual method and the new systematic approach. The methodology developed under this study takes a two-step approach. First, the preliminary fuel efficiency rates are estimated based on vehicle stock models for different classes of vehicles. Then, a reconciliation model is used to adjust the initial fuel consumption rates from the vehicle stock models and match the VMT information for each vehicle class and the reported total fuel consumption. This reconciliation model utilizes a systematic approach that produces documentable and reproducible results. The basic framework utilizes a mathematical programming formulation to minimize the deviations between the fuel economy estimates published in the previous year s Highway Statistics and the results from the vehicle stock models, subject to the constraint that fuel consumptions for different vehicle classes must sum to the total fuel consumption estimate published in Table MF-21 of the current year Highway Statistics. The results generated from this new approach provide a smoother time series for the fuel economies by vehicle class. It also utilizes the most up-to-date and best available data with sound econometric models to generate MPG estimates by vehicle class.

  19. Alternative-engine-fuels demonstration and materials test

    SciTech Connect

    Thimsen, D.

    1981-01-01

    A portable demonstration was constructed to measure peak power and specific fuel consumption of a gasoline engine burning gasoline and ethanol, and a diesel engine burning No. 2 diesel and sunflower oil. The demonstrations were given at farm field days. Several metals were subjected to wet ethanol fuels to measure corrosion.

  20. Liquid Fuels and Natural Gas in the Americas

    EIA Publications

    2014-01-01

    The Energy Information Administration's (EIA) Liquid Fuels and Natural Gas in the Americas report, published today, is a Congressionally-requested study examining the energy trends and developments in the Americas over the past decade. The report focuses on liquid fuels and natural gas—particularly reserves and resources, production, consumption, trade, and investment—given their scale and significance to the region.

  1. Reforming of fuel inside fuel cell generator

    DOEpatents

    Grimble, R.E.

    1988-03-08

    Disclosed is an improved method of reforming a gaseous reformable fuel within a solid oxide fuel cell generator, wherein the solid oxide fuel cell generator has a plurality of individual fuel cells in a refractory container, the fuel cells generating a partially spent fuel stream and a partially spent oxidant stream. The partially spent fuel stream is divided into two streams, spent fuel stream 1 and spent fuel stream 2. Spent fuel stream 1 is burned with the partially spent oxidant stream inside the refractory container to produce an exhaust stream. The exhaust stream is divided into two streams, exhaust stream 1 and exhaust stream 2, and exhaust stream 1 is vented. Exhaust stream 2 is mixed with spent fuel stream 2 to form a recycle stream. The recycle stream is mixed with the gaseous reformable fuel within the refractory container to form a fuel stream which is supplied to the fuel cells. Also disclosed is an improved apparatus which permits the reforming of a reformable gaseous fuel within such a solid oxide fuel cell generator. The apparatus comprises a mixing chamber within the refractory container, means for diverting a portion of the partially spent fuel stream to the mixing chamber, means for diverting a portion of exhaust gas to the mixing chamber where it is mixed with the portion of the partially spent fuel stream to form a recycle stream, means for injecting the reformable gaseous fuel into the recycle stream, and means for circulating the recycle stream back to the fuel cells. 1 fig.

  2. Reforming of fuel inside fuel cell generator

    DOEpatents

    Grimble, Ralph E.

    1988-01-01

    Disclosed is an improved method of reforming a gaseous reformable fuel within a solid oxide fuel cell generator, wherein the solid oxide fuel cell generator has a plurality of individual fuel cells in a refractory container, the fuel cells generating a partially spent fuel stream and a partially spent oxidant stream. The partially spent fuel stream is divided into two streams, spent fuel stream I and spent fuel stream II. Spent fuel stream I is burned with the partially spent oxidant stream inside the refractory container to produce an exhaust stream. The exhaust stream is divided into two streams, exhaust stream I and exhaust stream II, and exhaust stream I is vented. Exhaust stream II is mixed with spent fuel stream II to form a recycle stream. The recycle stream is mixed with the gaseous reformable fuel within the refractory container to form a fuel stream which is supplied to the fuel cells. Also disclosed is an improved apparatus which permits the reforming of a reformable gaseous fuel within such a solid oxide fuel cell generator. The apparatus comprises a mixing chamber within the refractory container, means for diverting a portion of the partially spent fuel stream to the mixing chamber, means for diverting a portion of exhaust gas to the mixing chamber where it is mixed with the portion of the partially spent fuel stream to form a recycle stream, means for injecting the reformable gaseous fuel into the recycle stream, and means for circulating the recycle stream back to the fuel cells.

  3. Household Energy Consumption: Community Context and the Fuelwood Transition*

    PubMed Central

    Link, Cynthia F.; Axinn, William G.; Ghimire, Dirgha J.

    2012-01-01

    We examine the influence of community context on change over time in households’ use of non-wood fuels. Our theoretical framework builds on sociological concepts in order to study energy consumption at the micro-level. The framework emphasizes the importance of nonfamily organizations and services in the local community as determinants of the transition from use of fuelwood to use of alternative fuels. We use multilevel longitudinal data on household fuel choice and community context from rural Nepal to provide empirical tests of our theoretical model. Results reveal that increased exposure to nonfamily organizations in the local community increases the use of alternative fuels. The findings illustrate key features of human impacts on the local environment and motivate greater incorporation of social organization into research on environmental change. PMID:23017795

  4. FUEL ELEMENT

    DOEpatents

    Fortescue, P.; Zumwalt, L.R.

    1961-11-28

    A fuel element was developed for a gas cooled nuclear reactor. The element is constructed in the form of a compacted fuel slug including carbides of fissionable material in some cases with a breeder material carbide and a moderator which slug is disposed in a canning jacket of relatively impermeable moderator material. Such canned fuel slugs are disposed in an elongated shell of moderator having greater gas permeability than the canning material wherefore application of reduced pressure to the space therebetween causes gas diffusing through the exterior shell to sweep fission products from the system. Integral fission product traps and/or exterior traps as well as a fission product monitoring system may be employed therewith. (AEC)

  5. Fuel bundle

    SciTech Connect

    Lui, C.K.

    1989-04-04

    This patent describes a method of forming a fuel bundle of a nuclear reactor. The method consists of positioning the fuel rods in the bottom plate, positioning the tie rod in the bottom plate with the key passed through the receptacle to the underside of the bottom plate and, after the tie rod is so positioned, turning the tie rod so that the key is in engagement with the underside of the bottom plate. Thereafter mounting the top plate is mounted in engagement with the fuel rods with the upper end of the tie rod extending through the opening in the top plate and extending above the top plate, and the tie rod is secured to the upper side of sid top plate thus simultaneously securing the key to the underside of the bottom plate.

  6. Cutting fuel costs: alternatives for commercial fishermen

    SciTech Connect

    Hollin, D.; Windh, S.R.

    1984-01-01

    The shrimp industry, in conjunction with the National Marine Fisheries Service, initiated three energy-related studies in 1981 to help shrimpers adjust to high fuel costs. One project, a joint effort of the Mississippi/Alabama Sea Grant Consortium and the Gulf and South Atlantic Fisheries Development Foundation, studied fuel use by shrimp vessels. Meant to provide information that could help suggest alternatives to decrease fuel consumption, the project looked at total fuel consumption; running, fishing and searching times; duration of average drag; and catch rate. A second project, conducted by the Society of Naval Architects and Marine Engineers, looked at fishing vessel fuel use in the U.S. fleet compared to the state of the art of fuel efficiency. The third study, funded through the National Shrimp Congress, was to gather energy conservation information that might help fishermen make decisions about ways to conserve fuel on both a short-term and long-term basis. This report is a summary of the findings of that study.

  7. Fuel Cross Leak of Direct Di-methyl-ether Fuel Cell

    NASA Astrophysics Data System (ADS)

    Tsutsumi, Yasuyuki; Nakano, Yasuhiro; Haraguchi, Tadao

    Fuel cross leak through a polymer electrolyte membrane of the direct dimethyl ether fuel cell (DDFC) was investigated and was found to be approximately one-tenth that of the direct methanol fuel cell (DMFC). Three phenomena known to appear in the DMFC were also observed in the DDFC. These were (1) fuel cross leak due to the diffusion which increases with the fuel concentration on an open circuit condition, (2) electro-osmotic cross leak, which increases with the current density and fuel concentration, and (3) decrease of fuel cross leak with the increase of the current density due to fuel consumption at low fuel concentration. The decreased fuel cross leak realized by using Nafion ®117 as a membrane and the low fuel concentration of 11% resulted in an increase of the Farady efficiency of the DDFC of up to 90% at a current density of 80mA/cm2. The CO2 quantity at the anode outlet of the operating DDFC was slightly less than 2 mol per 12 protons, as estimated from an electrochemical reaction on the anode. The CO2 quantity at the cathode outlet was also investigated. The CO2 cross leak increased with current density at every CO2 concentration and the diffusion appeared to be the dominant phenomenon of the CO2 cross leak.

  8. Study of Naval Air Station Operations to Reduce Fuel Consumption

    DTIC Science & Technology

    2014-06-01

    Klabjan, Johnson, Nemhouser, Gelman , and Ramaswamy solve the airline problem by adding plane count constraints sequentially to allow a feasible routing to...be attained (Klabjan, Johnson, Nemhouser, Gelman , & Ramaswamy, 2002). Dunbar et al. introduce a slack variable to the problem and change the...J. S., & Sturrock, D. T. (2013). Simio and simulation. New York: Springer Verlag. Klabjan, D., Johnson E.L., Nemhouser G.L., Gelman E., & Ramaswamy

  9. FUEL ELEMENT

    DOEpatents

    Howard, R.C.; Bokros, J.C.

    1962-03-01

    A fueled matrlx eontnwinlng uncomblned carbon is deslgned for use in graphlte-moderated gas-cooled reactors designed for operatlon at temperatures (about 1500 deg F) at which conventional metallic cladding would ordlnarily undergo undesired carburization or physical degeneratlon. - The invention comprlses, broadly a fuel body containlng uncombined earbon, clad with a nickel alloy contalning over about 28 percent by' weight copper in the preferred embodlment. Thls element ls supporirted in the passageways in close tolerance with the walls of unclad graphite moderator materlal. (AEC)

  10. Additive for otto cycle engines and fuel mixture so obtained

    SciTech Connect

    Scifoni, M.

    1985-02-12

    The additive for Otto cycle engines according to the present invention consists of a mixture of water, ethanol, methanol and butanol to which is added a determined quantity of a liquid obtained by pressing prickly pear leaves. Added in a small percentage to the fuel, gasoline, LP or methane, this additive prevents the oxidation associated with the use of water and/or alcohols in Otto cycle engines, lowers fuel consumption and allows the use of low octane fuel.

  11. Water Consumption in the Production of Ethanol and Petroleum Gasoline

    NASA Astrophysics Data System (ADS)

    Wu, May; Mintz, Marianne; Wang, Michael; Arora, Salil

    2009-11-01

    We assessed current water consumption during liquid fuel production, evaluating major steps of fuel lifecycle for five fuel pathways: bioethanol from corn, bioethanol from cellulosic feedstocks, gasoline from U.S. conventional crude obtained from onshore wells, gasoline from Saudi Arabian crude, and gasoline from Canadian oil sands. Our analysis revealed that the amount of irrigation water used to grow biofuel feedstocks varies significantly from one region to another and that water consumption for biofuel production varies with processing technology. In oil exploration and production, water consumption depends on the source and location of crude, the recovery technology, and the amount of produced water re-injected for oil recovery. Our results also indicate that crop irrigation is the most important factor determining water consumption in the production of corn ethanol. Nearly 70% of U.S. corn used for ethanol is produced in regions where 10-17 liters of water are consumed to produce one liter of ethanol. Ethanol production plants are less water intensive and there is a downward trend in water consumption. Water requirements for switchgrass ethanol production vary from 1.9 to 9.8 liters for each liter of ethanol produced. We found that water is consumed at a rate of 2.8-6.6 liters for each liter of gasoline produced for more than 90% of crude oil obtained from conventional onshore sources in the U.S. and more than half of crude oil imported from Saudi Arabia. For more than 55% of crude oil from Canadian oil sands, about 5.2 liters of water are consumed for each liter of gasoline produced. Our analysis highlighted the vital importance of water management during the feedstock production and conversion stage of the fuel lifecycle.

  12. Water consumption in the production of ethanol and petroleum gasoline.

    PubMed

    Wu, May; Mintz, Marianne; Wang, Michael; Arora, Salil

    2009-11-01

    We assessed current water consumption during liquid fuel production, evaluating major steps of fuel lifecycle for five fuel pathways: bioethanol from corn, bioethanol from cellulosic feedstocks, gasoline from U.S. conventional crude obtained from onshore wells, gasoline from Saudi Arabian crude, and gasoline from Canadian oil sands. Our analysis revealed that the amount of irrigation water used to grow biofuel feedstocks varies significantly from one region to another and that water consumption for biofuel production varies with processing technology. In oil exploration and production, water consumption depends on the source and location of crude, the recovery technology, and the amount of produced water re-injected for oil recovery. Our results also indicate that crop irrigation is the most important factor determining water consumption in the production of corn ethanol. Nearly 70% of U.S. corn used for ethanol is produced in regions where 10-17 liters of water are consumed to produce one liter of ethanol. Ethanol production plants are less water intensive and there is a downward trend in water consumption. Water requirements for switchgrass ethanol production vary from 1.9 to 9.8 liters for each liter of ethanol produced. We found that water is consumed at a rate of 2.8-6.6 liters for each liter of gasoline produced for more than 90% of crude oil obtained from conventional onshore sources in the U.S. and more than half of crude oil imported from Saudi Arabia. For more than 55% of crude oil from Canadian oil sands, about 5.2 liters of water are consumed for each liter of gasoline produced. Our analysis highlighted the vital importance of water management during the feedstock production and conversion stage of the fuel lifecycle.

  13. Sustainability of Fossil Fuels

    NASA Astrophysics Data System (ADS)

    Lackner, K. S.

    2002-05-01

    For a sustainable world economy, energy is a bottleneck. Energy is at the basis of a modern, technological society, but unlike materials it cannot be recycled. Energy or more precisely "negentropy" (the opposite of entropy) is always consumed. Thus, one either accepts the use of large but finite resources or must stay within the limits imposed by dilute but self-renewing resources like sunlight. The challenge of sustainable energy is exacerbated by likely growth in world energy demand due to increased population and increased wealth. Most of the world still has to undergo the transition to a wealthy, stable society with the near zero population growth that characterizes a modern industrial society. This represents a huge unmet demand. If ten billion people were to consume energy like North Americans do today, world energy demand would be ten times higher. In addition, technological advances while often improving energy efficiency tend to raise energy demand by offering more opportunity for consumption. Energy consumption still increases at close to the 2.3% per year that would lead to a tenfold increase over the course of the next century. Meeting future energy demands while phasing out fossil fuels appears extremely difficult. Instead, the world needs sustainable or nearly sustainable fossil fuels. I propose the following definition of sustainable under which fossil fuels would well qualify: The use of a technology or resource is sustainable if the intended and unintended consequences will not force its abandonment within a reasonable planning horizon. Of course sustainable technologies must not be limited by resource depletion but this is only one of many concerns. Environmental impacts, excessive land use, and other constraints can equally limit the use of a technology and thus render it unsustainable. In the foreseeable future, fossil fuels are not limited by resource depletion. However, environmental concerns based on climate change and other environmental

  14. Multicylinder Diesel Engine Tests with Unstabilized Water-in-Fuel Emulsions.

    DTIC Science & Technology

    1981-06-01

    diesel engines representative of the four -stroke cycle and two-stroke cycle main propulsion units installed in U.S. Coast Guard WPB class cutters were...performance. The test results for the four -stroke cycle engine indicated that an average diesel fuel saving of about 2.5 percent could be obtained at the...CONSUMPTION, DETROIT DIESEL ENGINE, 1000 RPM ................. 39 3-5 FUEL CONSUMPTION, DETROIT DIESEL ENGINE, FOUR SPEEDS .............. 40 3-6 FUEL INJECTION

  15. Spent Fuel Background Report Volume I

    SciTech Connect

    Abbott, D.

    1994-03-01

    This report is an overview of current spent nuclear fuel management in the DOE complex. Sources of information include published literature, internal DOE documents, interviews with site personnel, and information provided by individual sites. Much of the specific information on facilities and fuels was provided by the DOE sites in response to the questionnaire for data for spent fuels and facilities data bases. This information is as accurate as is currently available, but is subject to revision pending results of further data calls. Spent fuel is broadly classified into three categories: (a) production fuels, (b) special fuels, and (c) naval fuels. Production fuels, comprising about 80% of the total inventory, are those used at Hanford and Savannah River to produce nuclear materials for defense. Special fuels are those used in a wide variety of research, development, and testing activities. Special fuels include fuel from DOE and commercial reactors used in research activities at DOE sites. Naval fuels are those developed and used for nuclear-powered naval vessels and for related research and development. Given the recent DOE decision to curtail reprocessing, the topic of main concern in the management of spent fuel is its storage. Of the DOE sites that have spent nuclear fuel, the vast majority is located at three sites-Hanford, INEL, and Savannah River. Other sites with spent fuel include Oak Ridge, West Valley, Brookhaven, Argonne, Los Alamos, and Sandia. B&W NESI Lynchburg Technology Center and General Atomics are commercial facilities with DOE fuel. DOE may also receive fuel from foreign research reactors, university reactors, and other commercial and government research reactors. Most DOE spent fuel is stored in water-filled pools at the reactor facilities. Currently an engineering study is being performed to determine the feasibility of using dry storage for DOE-owned spent fuel currently stored at various facilities. Delays in opening the deep geologic

  16. Energy modeling for aviation fuel efficiency

    SciTech Connect

    Collins, B.P.

    1981-01-01

    The fuel consumption and path profile description of an aircraft can be related by an energy balanced concept. Application of this concept has produced an equation set that can be utilized to analyze the energy efficiency of propeller and turbojet aircraft during various operating conditions. Analytical methods, results and aircraft specific constants are presented and discussed along with proposed extensions. 10 refs.

  17. Nuclear Fuels.

    ERIC Educational Resources Information Center

    Nash, J. Thomas

    1983-01-01

    Trends in and factors related to the nuclear industry and nuclear fuel production are discussed. Topics addressed include nuclear reactors, survival of the U.S. uranium industry, production costs, budget cuts by the Department of Energy and U.S. Geological survey for resource studies, mining, and research/development activities. (JN)

  18. Fuel Cells

    ERIC Educational Resources Information Center

    Hawkins, M. D.

    1973-01-01

    Discusses the theories, construction, operation, types, and advantages of fuel cells developed by the American space programs. Indicates that the cell is an ideal small-scale power source characterized by its compactness, high efficiency, reliability, and freedom from polluting fumes. (CC)

  19. Future Fuel.

    ERIC Educational Resources Information Center

    Stover, Del

    1991-01-01

    Tough new environmental laws, coupled with fluctuating oil prices, are likely to prompt hundreds of school systems to examine alternative fuels. Literature reviews and interviews with 45 government, education, and industry officials provided data for a comparative analysis of gasoline, diesel, natural gas, methanol, and propane. (MLF)

  20. Alternative Fuels

    DTIC Science & Technology

    2009-06-11

    Swedish Biofuels AB • Cellulosic and algal feedstocks that are non-competitive with food material $ P r o d u c t P r o d u c t Traditional fuels...JP-8 BACK-UP SLIDES Unclassified 19 What Are Biofuels ? Cellulose “first generation”“second generation” C18:0 C16:1 Triglycerides (fats, oils

  1. Influence of solid fuel on the carbon-monoxide and nitrogen-oxide emissions on sintering

    SciTech Connect

    M.F. Vitushchenko; N.L. Tatarkin; A.I. Kuznetsov; A.E. Vilkov

    2007-07-01

    Laboratory and industrial research now underway at the sintering plant of AO Mittal Steel Temirtau is focusing on the preparation of fuel of optimal granulometric composition, the replacement of coke fines, and the adaptation of fuel-input technology so as to reduce fuel consumption and toxic emissions without loss of sinter quality.

  2. Building Energy Consumption Analysis

    SciTech Connect

    2005-03-02

    DOE2.1E-121SUNOS is a set of modules for energy analysis in buildings. Modules are included to calculate the heating and cooling loads for each space in a building for each hour of a year (LOADS), to simulate the operation and response of the equipment and systems that control temperature and humidity and distribute heating, cooling and ventilation to the building (SYSTEMS), to model energy conversion equipment that uses fuel or electricity to provide the required heating, cooling and electricity (PLANT), and to compute the cost of energy and building operation based on utility rate schedule and economic parameters (ECONOMICS).

  3. Energy intensity, electricity consumption, and advanced manufacturing-technology usage

    SciTech Connect

    Doms, M.E.; Dunne, T.

    1995-07-01

    This article reports on the relationship between the usage of advanced manufacturing technologies (AMTs) and energy consumption patterns in manufacturing plants. Using data from the Survey of Manufacturing Technology and the 1987 Census of Manufactures, we model the energy intensity and the electricity intensity of plants as functions of AMT usage and plant age. The main findings are that plants that utilize AMTs are less-energy intensive than plants not using AMTs, but consume proportionately more electricity as a fuel source. Additionally, older plants are generally more energy intensive and rely on fossil fuels to a greater extent than younger plants. 25 refs., 3 tabs.

  4. Effects of ambient conditions on fuel cell vehicle performance

    NASA Astrophysics Data System (ADS)

    Haraldsson, K.; Alvfors, P.

    Ambient conditions have considerable impact on the performance of fuel cell hybrid vehicles. Here, the vehicle fuel consumption, the air compressor power demand, the water management system and the heat loads of a fuel cell hybrid sport utility vehicle (SUV) were studied. The simulation results show that the vehicle fuel consumption increases with 10% when the altitude increases from 0 m up to 3000 m to 4.1 L gasoline equivalents/100 km over the New European Drive Cycle (NEDC). The increase is 19% on the more power demanding highway US06 cycle. The air compressor is the major contributor to this fuel consumption increase. Its load-following strategy makes its power demand increase with increasing altitude. Almost 40% of the net power output of the fuel cell system is consumed by the air compressor at the altitude of 3000 m with this load-following strategy and is thus more apparent in the high-power US06 cycle. Changes in ambient air temperature and relative humidity effect on the fuel cell system performance in terms of the water management rather in vehicle fuel consumption. Ambient air temperature and relative humidity have some impact on the vehicle performance mostly seen in the heat and water management of the fuel cell system. While the heat loads of the fuel cell system components vary significantly with increasing ambient temperature, the relative humidity did not have a great impact on the water balance. Overall, dimensioning the compressor and other system components to meet the fuel cell system requirements at the minimum and maximum expected ambient temperatures, in this case 5 and 40 °C, and high altitude, while simultaneously choosing a correct control strategy are important parameters for efficient vehicle power train management.

  5. Winter fuels report

    SciTech Connect

    Not Available

    1990-10-04

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and state and local governments on the following topics: distillate fuel oil net production, imports and stocks for all PADD's and product supplied on a US level; propane net production, imports and stocks for Petroleum Administration for Defense Districts (PADD) I, II, and III; natural gas supply and disposition, underground storage, and consumption for all PADD's; residential and wholesale pricing data for propane and heating oil for those states participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil price comparisons for the United States and selected cities; and US total heating degree-days by city. This report will be published weekly by the EIA starting the first week in October 1990 and will continue until the first week in April 1991. The data will also be available electronically after 5:00 p.m. on Thursday during the heating season through the EIA Electronic Publication System (EPUB). 12 tabs.

  6. Population growth and consumption.

    PubMed

    Chalkley, K

    1997-04-01

    The relationship between population growth, resource consumption, and environmental degradation is complex. The rise in "greenhouse gases" that will cause climatic change is clearly due to human activity, and pollutants are often concentrated in densely populated areas. However, even an area with a negative population growth, such as Russia, can experience severe environmental degradation due to poor management. Consumption patterns have the most effect on ozone depletion, while population growth threatens biodiversity of and within species through the destruction of ecosystems. Migration joins population growth and social factors, such as land inequality, as major causes of deforestation, and global demand for water is expected to increase faster than the rate of population growth. Coastal development and over-fishing threaten to deplete the oceans, while soil quality is threatened by inappropriate land use. Estimates of the earth's carrying capacity range from less than 3 billion to more than 44 billion people, indicating how difficult it is to assess this figure. Development efforts throughout the world may lead to human gains that will ultimately be negated by environmental losses. These factors have led to growing support for environmentally sustainable development.

  7. Patterns of chocolate consumption.

    PubMed

    Seligson, F H; Krummel, D A; Apgar, J L

    1994-12-01

    Although consumed in some form since at least 460 AD, cacao (Theobroma cacao) was not used in confectionery until the 19th century when the cocoa press was invented. Per capita consumption of chocolate confectionery in the United States is moderate (approximately 4.6-4.8 kg/y) compared with that of many northern European countries (approximately 7-10 kg/y). Eleven percent of the US population reported consuming chocolate candy on > or = 1 of the 3 d of recorded food intake in the US Department of Agriculture Nationwide Food Consumption Survey 1987-1988; < 1.0% consumed chocolate every day. The Western region of the United States contained the highest proportion of chocolate consumers. More whites than other racial groups were consumers. Chocolate was consumed by more people in the winter than in other seasons and more was consumed at snacks than at meals. The mean amount of chocolate consumed was approximately 30-90 g/d, depending on sex and age group. Chocolate candy was only a minor contributor (0.7-3.4%) to the overall dietary intake of total energy, fat, saturated fatty acids, and stearic acid.

  8. Electrochemical oxidation of carbon-containing fuels and their dynamics in low-temperature fuel cells.

    PubMed

    Krewer, Ulrike; Vidakovic-Koch, Tanja; Rihko-Struckmann, Liisa

    2011-10-04

    Fuel cells can convert the energy that is chemically stored in a compound into electrical energy with high efficiency. Hydrogen could be the first choice for chemical energy storage, but its utilization is limited due to storage and transport difficulties. Carbon-containing fuels store chemical energy with significantly higher energy density, which makes them excellent energy carriers. The electro-oxidation of carbon-containing fuels without prior reforming is a more challenging and complex process than anodic hydrogen oxidation. The current understanding of the direct electro-oxidation of carbon-containing fuels in low-temperature fuel cells is reviewed. Furthermore, this review covers various aspects of electro-oxidation for carbon-containing fuels in non-steady-state reaction conditions. Such dynamic investigations open possibilities to elucidate detailed reaction kinetics, to sense fuel concentration, or to diagnose the fuel-cell state during operation. Motivated by the challenge to decrease the consumption of fossil fuel, the production routes of the fuels from renewable resources also are reviewed.

  9. Manufacturing fuel-switching capability, 1988

    SciTech Connect

    Not Available

    1991-09-01

    Historically, about one-third of all energy consumed in the United States has been used by manufacturers. About one-quarter of manufacturing energy is used as feedstocks and raw material inputs that are converted into nonenergy products; the remainder is used for its energy content. During 1988, the most recent year for which data are available, manufacturers consumed 15.5 quadrillion British thermal units (Btu) of energy to produce heat and power and to generate electricity. The manufacturing sector also has widespread capabilities to switch from one fuel to another for either economic or emergency reasons. There are numerous ways to define fuel switching. For the purposes of the Manufacturing Energy Consumption Survey (MECS), fuel switching is defined as the capability to substitute one energy source for another within 30 days with no significant modifications to the fuel-consuming equipment, while keeping production constant. Fuel-switching capability allows manufacturers substantial flexibility in choosing their mix of energy sources. The consumption of a given energy source can be maximized if all possible switching into that energy source takes place. The estimates in this report are based on data collected on the 1988 Manufacturing Energy Consumption Survey (MECS), Forms 846 (A through C). The EIA conducts this national sample survey of manufacturing energy consumption on a triennial basis. The MECS is the only comprehensive source of national-level data on energy-related information for the manufacturing industries. The MECS was first conducted in 1986 to collect data for 1985. This report presents information on the fuel-switching capabilities of manufacturers in 1988. This report is the second of a series based on the 1988 MECS. 8 figs., 31 tabs.

  10. Gaseous-fuel safety assessment. Status report

    SciTech Connect

    Krupka, M.C.; Edeskuty, F.J.; Bartlit, J.R.; Williamson, K.D. Jr.

    1982-01-01

    The Los Alamos National Laboratory, in support of studies sponsored by the Office of Vehicle and Engine Research and Development in the US Department of Energy, has undertaken a safety assessment of selected gaseous fuels for use in light automotive transportation. The purpose is to put into perspective the hazards of these fuels relative to present day fuels and delineated criteria for their safe handling. Fuels include compressed and liquified natural gas (CNG and LNG), liquefied petroleum gas (LPG), and for reference gasoline and diesel. This paper is a program status report. To date, physicochemical property data and general petroleum and transportation information were compiled; basic hazards defined; alternative fuels were safety-ranked based on technical properties alone; safety data and vehicle accident statistics reviewed; and accident scenarios selected for further analysis. Methodology for such analysis is presently under consideration.

  11. Cost/benefit tradeoffs for reducing the energy consumption of the commercial air transportation system. Volume 2: Market and economic analyses

    NASA Technical Reports Server (NTRS)

    Vanabkoude, J. C.

    1976-01-01

    The impact of the most promising fuel conserving options on fuel consumption, passenger demand, operating costs, and airline profits when implemented into the U.S. domestic and international airline fleets is assessed. The potential fuel savings achievable in the U.S. scheduled air transportation system over the forecast period, 1973-1990, are estimated.

  12. Fuel cell

    SciTech Connect

    Struthers, R.C.

    1983-06-28

    An improved fuel cell comprising an anode section including an anode terminal, an anode fuel, and an anolyte electrolyte, a cathode section including a cathode terminal, an electron distributor and a catholyte electrolyte, an ion exchange section between the anode and cathode sections and including an ionolyte electrolyte, ion transfer membranes separating the ionolyte from the anolyte and the catholyte and an electric circuit connected with and between the terminals conducting free electrons from the anode section and delivering free electrons to the cathode section, said ionolyte receives ions of one polarity moving from the anolyte through the membrane related thereto preventing chemical equilibrium in the anode section and sustaining chemical reaction and the generating of free electrons therein, said ions received by the ionolyte from the anolyte release different ions from the ionolyte which move through the membrane between the ionolyte and catholyte and which add to the catholyte.

  13. Air toxics from heavy oil production and consumption

    SciTech Connect

    Lipfert, F.W.; DePhillips, M.P.; Moskowitz, P.D.

    1992-12-22

    This report assesses the potential impact of recent Federal and state regulations for airborne toxic substances on the production and consumption of heavy fuel oils. Emissions of nickel from heavy oil production in California are considered in some detail, in conjunction with California state regulations for toxic emissions. Although the use of thermal energy from heavy crude oils could in theory be impacted by toxic air pollution regulations, recent trends towards the use of natural gas for the required extraction energy appear to provide substantial relief, in addition to reducing emissions of criteria air pollutants. However, the consumption of residual fuel oils containing toxic metals could result in higher population exposures to these substances and their attendant risks may be worthy of more detailed analysis.

  14. Fuel additives

    SciTech Connect

    Gheysens, J.L.G.

    1990-11-27

    This patent describes a composition for the improvement of hydrocarbon fuels exhibiting a boiling range of gasoline being suitable for use in spark ignition-type engines. It comprises an aromatic amine; a polyaminated detergent; a catalyst comprising a colloidal suspension or amine salt of transition/alkali/alkaline earth metal organic coordinations having at least one metal oxidehydroxide linked to an alkyl chain via a carboxyl group; and a solvent comprising an alkanol-aliphatic ether oxygenated hydrocarbon.

  15. Future Fuels

    DTIC Science & Technology

    2006-04-01

    Storage Devices, Fuel Management, Gasification, Fischer-Tropsch, Syngas , Hubberts’s Peak UNCLAS UNCLAS UNCLAS UU 80 Dr. Sujata Millick (703) 696...traction power – mission payloads – mobile electric power • Improved survivability • Inherent modularity improves maintainability & upgradability ...threatened the output of the Ploesti oil fields and refineries. In the FT process, so-called syngas (a mixture of molecular hydrogen and carbon monoxide

  16. Fuel conditioner

    SciTech Connect

    Nelson, M.L.; Nelson, O.L. Jr.

    1988-06-28

    A fuel conditioner is described comprising 10 to 80% of a polar oxygenated hydrocarbon having an average molecular weight from about 250 to about 500, an acid acid number from about 25 to about 125, and a saponification number from about 30 to about 250; and 5 to 50% of an oxygenated compatibilizing agent having a solubility parameter of from about 8.8 to about 11.5 and moderate to strong hydrogen-bonding capacity.

  17. Alcohol fuels

    SciTech Connect

    Not Available

    1990-07-01

    Ethanol is an alcohol made from grain that can be blended with gasoline to extend petroleum supplies and to increase gasoline octane levels. Congressional proposals to encourage greater use of alternative fuels could increase the demand for ethanol. This report evaluates the growth potential of the ethanol industry to meet future demand increases and the impacts increased production would have on American agriculture and the federal budget. It is found that ethanol production could double or triple in the next eight years, and that American farmers could provide the corn for this production increase. While corn growers would benefit, other agricultural segments would not; soybean producers, for example could suffer for increased corn oil production (an ethanol byproduct) and cattle ranchers would be faced with higher feed costs because of higher corn prices. Poultry farmers might benefit from lower priced feed. Overall, net farm cash income should increase, and consumers would see slightly higher food prices. Federal budget impacts would include a reduction in federal farm program outlays by an annual average of between $930 million (for double current production of ethanol) to $1.421 billion (for triple production) during the eight-year growth period. However, due to an partial tax exemption for ethanol blended fuels, federal fuel tax revenues could decrease by between $442 million and $813 million.

  18. Landing on empty: estimating the benefits from reducing fuel uplift in US Civil Aviation

    NASA Astrophysics Data System (ADS)

    Ryerson, Megan S.; Hansen, Mark; Hao, Lu; Seelhorst, Michael

    2015-09-01

    Airlines and Air Navigation Service Providers are united in their goal to reduce fuel consumption. While changes to flight operations and technology investments are the focus of a number of studies, our study is among the first to investigate an untapped source of aviation fuel consumption: excess contingency fuel loading. Given the downside risk of fuel exhaustion of diverting to an alternate airport, airline dispatchers may load excess fuel onto an aircraft. Such conservatism comes at a cost of consuming excess fuel, as fuel consumed is a function of, among other factors, aircraft weight. The aim of this paper is to quantify, on a per-flight basis, the fuel burned due to carrying fuel beyond what is needed for foreseeable contingencies, and thereby motivate research, federal guidance, and investments that allow airline dispatchers to reduce fuel uplift while maintaining near zero risks of fuel exhaustion. We merge large publicly available aviation and weather databases with a detailed dataset from a major US airline. Upon estimating factors that capture the quantity fuel consumed due to carrying a pound of weight for a range of aircraft types, we calculate the cost and greenhouse gas emissions from carrying unused fuel on arrival and additional contingency fuel above a conservative buffer for foreseeable contingencies. We establish that the major US carrier does indeed load fuel conservatively. We find that 4.48% of the fuel consumed by an average flight is due to carrying unused fuel and 1.04% of the fuel consumed by an average flight is due to carrying additional contingency fuel above a reasonable buffer. We find that simple changes in flight dispatching that maintain a statistically minimal risk of fuel exhaustion could result in yearly savings of 338 million lbs of CO2, the equivalent to the fuel consumed from 4760 flights on midsized commercial aircraft. Moreover, policy changes regarding maximum fuel loads or investments that reduce uncertainty or increase

  19. Stationary Liquid Fuel Fast Reactor

    SciTech Connect

    Yang, Won Sik; Grandy, Andrew; Boroski, Andrew; Krajtl, Lubomir; Johnson, Terry

    2015-09-30

    container is penetrated by twelve hexagonal control assembly (CA) guide tubes, each of which has 3.0 mm thickness and 69.4 mm flat-to-flat outer distance. The distance between two neighboring CA guide tube is selected to be 26 cm to provide an adequate space for CA driving systems. The fuel container has 18181 penetrating coolant tubes of 6.0 mm inner diameter and 2.0 mm thickness. The coolant tubes are arranged in a triangular lattice with a lattice pitch of 1.21 cm. The fuel, structure, and coolant volume fractions inside the fuel container are 0.386, 0.383, and 0.231, respectively. Separate steel reflectors and B4C shields are used outside of the fuel container. Six gas expansion modules (GEMs) of 5.0 cm thickness are introduced in the radial reflector region. Between the radial reflector and the fuel container is a 2.5 cm sodium gap. The TRU inventory at the beginning of equilibrium cycle (BOEC) is 5081 kg, whereas the TRU inventory at the beginning of life (BOL) was 3541 kg. This is because the equilibrium cycle fuel contains a significantly smaller fissile fraction than the LWR TRU feed. The fuel inventory at BOEC is composed of 34.0 a/o TRU, 41.4 a/o Ce, 23.6 a/o Co, and 1.03 a/o solid fission products. Since uranium-free fuel is used, a theoretical maximum TRU consumption rate of 1.011 kg/day is achieved. The semi-continuous fuel cycle based on the 300-batch, 1- day cycle approximation yields a burnup reactivity loss of 26 pcm/day, and requires a daily reprocessing of 32.5 kg of SLFFR fuel. This yields a daily TRU charge rate of 17.45 kg, including a makeup TRU feed of 1.011 kg recovered from the LWR used fuel. The charged TRU-Ce-Co fuel is composed of 34.4 a/o TRU, 40.6 a/o Ce, and 25.0 a/o Co.

  20. Analysis of a fuel cell on-site integrated energy system for a residential complex

    NASA Technical Reports Server (NTRS)

    Simons, S. N.; Maag, W. L.

    1979-01-01

    The energy use and costs of the on-site integrated energy system (OS/IES) which provides electric power from an on-site power plant and recovers heat that would normally be rejected to the environment is compared to a conventional system purchasing electricity from a utility and a phosphoric acid fuel cell powered system. The analysis showed that for a 500-unit apartment complex a fuel OS/IES would be about 10% more energy conservative in terms of total coal consumption than a diesel OS/IES system or a conventional system. The fuel cell OS/IES capital costs could be 30 to 55% greater than the diesel OS/IES capital costs for the same life cycle costs. The life cycle cost of a fuel cell OS/IES would be lower than that for a conventional system as long as the cost of electricity is greater than $0.05 to $0.065/kWh. An analysis of several parametric combinations of fuel cell power plant and state-of-art energy recovery systems and annual fuel requirement calculations for four locations were made. It was shown that OS/IES component choices are a major factor in fuel consumption, with the least efficient system using 25% more fuel than the most efficient. Central air conditioning and heat pumps result in minimum fuel consumption while individual air conditioning units increase it, and in general the fuel cell of highest electrical efficiency has the lowest fuel consumption.

  1. Do alternative energy sources displace fossil fuels?

    NASA Astrophysics Data System (ADS)

    York, Richard

    2012-06-01

    A fundamental, generally implicit, assumption of the Intergovernmental Panel on Climate Change reports and many energy analysts is that each unit of energy supplied by non-fossil-fuel sources takes the place of a unit of energy supplied by fossil-fuel sources. However, owing to the complexity of economic systems and human behaviour, it is often the case that changes aimed at reducing one type of resource consumption, either through improvements in efficiency of use or by developing substitutes, do not lead to the intended outcome when net effects are considered. Here, I show that the average pattern across most nations of the world over the past fifty years is one where each unit of total national energy use from non-fossil-fuel sources displaced less than one-quarter of a unit of fossil-fuel energy use and, focusing specifically on electricity, each unit of electricity generated by non-fossil-fuel sources displaced less than one-tenth of a unit of fossil-fuel-generated electricity. These results challenge conventional thinking in that they indicate that suppressing the use of fossil fuel will require changes other than simply technical ones such as expanding non-fossil-fuel energy production.

  2. Building Energy Consumption Analysis

    SciTech Connect

    2005-01-24

    DOE2.1E-121 is a set of modules for energy analysis in buildings. Modules are included to calculate the heating and cooling loads for each space in a building for each hour of a year (LOADS), to simulate the operation and response of the equipment and systems that control temperature and humidity and distribute heating, cooling and ventilation to the building (SYSTEMS), to model energy conversion equipment that uses fuel or electricity to provide the required heating, cooling and electricity (PLANT), and to compute the cost of energy and building operation based on utility rate schedule and economic parameters (ECONOMICS). DOE2.1E-121 contains modifications to DOE2.1E which allows 1000 zones to be modeled.

  3. A natural-gas fuel processor for a residential fuel cell system

    NASA Astrophysics Data System (ADS)

    Adachi, H.; Ahmed, S.; Lee, S. H. D.; Papadias, D.; Ahluwalia, R. K.; Bendert, J. C.; Kanner, S. A.; Yamazaki, Y.

    A system model was used to develop an autothermal reforming fuel processor to meet the targets of 80% efficiency (higher heating value) and start-up energy consumption of less than 500 kJ when operated as part of a 1-kWe natural-gas fueled fuel cell system for cogeneration of heat and power. The key catalytic reactors of the fuel processor - namely the autothermal reformer, a two-stage water gas shift reactor and a preferential oxidation reactor - were configured and tested in a breadboard apparatus. Experimental results demonstrated a reformate containing ∼48% hydrogen (on a dry basis and with pure methane as fuel) and less than 5 ppm CO. The effects of steam-to-carbon and part load operations were explored.

  4. Market penetration scenarios for fuel cell vehicles

    SciTech Connect

    Thomas, C.E.; James, B.D.; Lomax, F.D. Jr.

    1997-12-31

    Fuel cell vehicles may create the first mass market for hydrogen as an energy carrier. Directed Technologies, Inc., working with the US Department of Energy hydrogen systems analysis team, has developed a time-dependent computer market penetration model. This model estimates the number of fuel cell vehicles that would be purchased over time as a function of their cost and the cost of hydrogen relative to the costs of competing vehicles and fuels. The model then calculates the return on investment for fuel cell vehicle manufacturers and hydrogen fuel suppliers. The model also projects the benefit/cost ratio for government--the ratio of societal benefits such as reduced oil consumption, reduced urban air pollution and reduced greenhouse gas emissions to the government cost for assisting the development of hydrogen energy and fuel cell vehicle technologies. The purpose of this model is to assist industry and government in choosing the best investment strategies to achieve significant return on investment and to maximize benefit/cost ratios. The model can illustrate trends and highlight the sensitivity of market penetration to various parameters such as fuel cell efficiency, cost, weight, and hydrogen cost. It can also illustrate the potential benefits of successful R and D and early demonstration projects. Results will be shown comparing the market penetration and return on investment estimates for direct hydrogen fuel cell vehicles compared to fuel cell vehicles with onboard fuel processors including methanol steam reformers and gasoline partial oxidation systems. Other alternative fueled vehicles including natural gas hybrids, direct injection diesels and hydrogen-powered internal combustion hybrid vehicles will also be analyzed.

  5. Life cycle assessment integrated with thermodynamic analysis of bio-fuel options for solid oxide fuel cells.

    PubMed

    Lin, Jiefeng; Babbitt, Callie W; Trabold, Thomas A

    2013-01-01

    A methodology that integrates life cycle assessment (LCA) with thermodynamic analysis is developed and applied to evaluate the environmental impacts of producing biofuels from waste biomass, including biodiesel from waste cooking oil, ethanol from corn stover, and compressed natural gas from municipal solid wastes. Solid oxide fuel cell-based auxiliary power units using bio-fuel as the hydrogen precursor enable generation of auxiliary electricity for idling heavy-duty trucks. Thermodynamic analysis is applied to evaluate the fuel conversion efficiency and determine the amount of fuel feedstock needed to generate a unit of electrical power. These inputs feed into an LCA that compares energy consumption and greenhouse gas emissions of different fuel pathways. Results show that compressed natural gas from municipal solid wastes is an optimal bio-fuel option for SOFC-APU applications in New York State. However, this methodology can be regionalized within the U.S. or internationally to account for different fuel feedstock options.

  6. Improvement of fuel injection system of locomotive diesel engine.

    PubMed

    Li, Minghai; Cui, Hongjiang; Wang, Juan; Guan, Ying

    2009-01-01

    The traditional locomotive diesels are usually designed for the performance of rated condition and much fuel will be consumed. A new plunger piston matching parts of fuel injection pump and injector nozzle matching parts were designed. The experimental results of fuel injection pump test and diesel engine show that the fuel consumption rate can be decreased a lot in the most of the working conditions. The forced lubrication is adopted for the new injector nozzle matching parts, which can reduce failure rate and increase service life. The design has been patented by Chinese State Patent Office.

  7. Fuel Cost Estimation for Sumatra Grid System

    NASA Astrophysics Data System (ADS)

    Liun, Edwaren

    2010-06-01

    Sumatra has a high growth rate electricity energy demand from the first decade in this century. At the medium of this decade the growth is 11% per annum. On the other side capability of Government of Indonesia cq. PLN authority is limited, while many and most old existing power plants will be retired. The electricity demand growth of Sumatra is increasing the fuel consumption for several next decades. Based on several cases by vary growth scenarios and economic parameters, it shown that some kinds of fossil fuel keep to be required until next several decades. Although Sumatra has abundant coal resource, however, the other fuel types such as fuel oil, diesel, gas and nuclear are needed. On the Base Scenario and discount rate of 10%, the Sumatra System will require 11.6 million tones of coal until 2030 producing 866 TWh with cost of US10558 million. Nuclear plants produce about 501 TWh or 32% by cost of US3.1 billion. On the High Scenario and discount rate 10%, the coal consumption becomes 486.6 million tones by fuel cost of US12.7 billion producing 1033 TWh electricity energy. Nuclear fuel cost required in this scenario is US7.06 billion. The other fuel in large amount consumed is natural gas for combined cycle plants by cost of US1.38 billion producing 11.7 TWh of electricity energy on the Base Scenario and discount rate of 10%. In the High Scenario and discount rate 10% coal plants take role in power generation in Sumatra producing about 866 TWh or 54% of electricity energy. Coal consumption will be the highest on the Base Scenario with discount rate of 12% producing 756 TWh and required cost of US17.1 billion. Nuclear plants will not applicable in this scenario due to its un-competitiveness. The fuel cost will depend on nuclear power role in Sumatra system. Fuel cost will increase correspond to the increasing of coal consumption on the case where nuclear power plants not appear.

  8. Extended Platinum Nanotubes as Fuel Cell Catalysts

    SciTech Connect

    Alia, S.; Pivovar, B. S.; Yan, Y.

    2012-01-01

    Energy consumption has relied principally on fossil fuels as an energy source; fuel cells, however, can provide a clean and sustainable alternative, an answer to the depletion and climate change concerns of fossil fuels. Within proton exchange membrane fuel cells, high catalyst cost and poor durability limit the commercial viability of the device. Recently, platinum nanotubes (PtNTs) were studied as durable, active catalysts, providing a platform to meet US Department of Energy vehicular activity targets.[1] Porous PtNTs were developed to increase nanotube surface area, improving mass activity for oxygen reduction without sacrificing durability.[2] Subsurface platinum was then replaced with palladium, forming platinum-coated palladium nanotubes.[3] By forming a core shell structure, platinum utilization was increased, reducing catalyst cost. Alternative substrates have also been examined, modifying platinum surface facets and increasing oxygen reduction specific activity. Through modification of the PtNT platform, catalyst limitations can be reduced, ensuring a commercially viable device.

  9. Technological growth of fuel efficiency in european automobile market 1975–2015

    SciTech Connect

    Hu, Kejia; Chen, Yuche

    2016-08-29

    This paper looks at the technological growth of new car fleet fuel efficiency in the European Union between 1975 and 2015. According to the analysis results, from1975 to 2006 the fuel efficiency technology improvements were largely offset by vehicles' increased weight, engine size, and consumer amenities such as acceleration capacity. After 2006, downsizing in weight and engine capacity was observed in new car fleet, while fuel consumption decreased by 32% between 2006 and 2015. We adopt a statistical method and find that from 1975 to 2015, a 1% increase in weight would result in 0.3 to 0.5% increments in fuel consumption per 100 km, and a 1% reduction in 0-100 km/h acceleration time would increase fuel consumption by about 0.3%. Impacts of other attributes on fuel consumption are also assessed. To meet the European Union's 2021 fuel consumption target, downsizing of cars, as well as at least maintaining fuel efficiency technology growth trend observed between 2005 and 2015, are needed. Lastly, government policies on controlling improvement in acceleration performance or promoting alternative fuel vehicles are also important to achieve European Union 2021 target.

  10. Nuclear Fuels: Promise and Limitations

    SciTech Connect

    Harold F. McFarlane

    2012-03-01

    From 1950 through 1980, scientists, engineers and national leaders confidently predicted an early twenty-first century where fast breeder reactors and commercial nuclear fuel reprocessing were commonplace. Such a scenario seemed necessary for a world with the more than 1000 GWe of nuclear energy needed to meet such an ever-increasing thirst for energy. Thirty years later uranium reserves are increasing on pace with consumption, the growth of nuclear power has been slowed, commercial breeder reactors have yet to enter the marketplace, and less than a handful of commercial reprocessing plants operate. As Nobel Laureate Niels Bohr famously said, “Prediction is very difficult, especially if it’s about the future.” The programme for IChemE’s 2012 conference on the nuclear fuel cycle features a graphic of an idealized nuclear fuel cycle that symbolizes the quest for a closed nuclear fuel cycle featuring careful husbanding of precious resources while minimizing the waste footprint. Progress toward achieving this ideal has been disrupted by technology innovations in the mining and petrochemical industries, as well as within the nuclear industry.

  11. What happens inside a fuel cell? Developing an experimental functional map of fuel cell performance.

    PubMed

    Brett, Daniel J L; Kucernak, Anthony R; Aguiar, Patricia; Atkins, Stephen C; Brandon, Nigel P; Clague, Ralph; Cohen, Lesley F; Hinds, Gareth; Kalyvas, Christos; Offer, Gregory J; Ladewig, Bradley; Maher, Robert; Marquis, Andrew; Shearing, Paul; Vasileiadis, Nikos; Vesovic, Velisa

    2010-09-10

    Fuel cell performance is determined by the complex interplay of mass transport, energy transfer and electrochemical processes. The convolution of these processes leads to spatial heterogeneity in the way that fuel cells perform, particularly due to reactant consumption, water management and the design of fluid-flow plates. It is therefore unlikely that any bulk measurement made on a fuel cell will accurately represent performance at all parts of the cell. The ability to make spatially resolved measurements in a fuel cell provides one of the most useful ways in which to monitor and optimise performance. This Minireview explores a range of in situ techniques being used to study fuel cells and describes the use of novel experimental techniques that the authors have used to develop an 'experimental functional map' of fuel cell performance. These techniques include the mapping of current density, electrochemical impedance, electrolyte conductivity, contact resistance and CO poisoning distribution within working PEFCs, as well as mapping the flow of reactant in gas channels using laser Doppler anemometry (LDA). For the high-temperature solid oxide fuel cell (SOFC), temperature mapping, reference electrode placement and the use of Raman spectroscopy are described along with methods to map the microstructural features of electrodes. The combination of these techniques, applied across a range of fuel cell operating conditions, allows a unique picture of the internal workings of fuel cells to be obtained and have been used to validate both numerical and analytical models.

  12. Fuel for the Future: Development of New Fuels, e.g. Biofuels

    NASA Astrophysics Data System (ADS)

    Sørensen, Gitte; Sørensen, Ketil Bernt; Hansen, Hans Ove; Nygaard, Sune D.

    Whether we like it or not, climate change is to some extent affiliated with the emission of green house gasses, and specifically CO2 emissions, which are rising due to the global increased use of fossil fuels. As a result, political enthusiasm is high when it comes to implementing new initiatives aimed at better protection of the global environment. However, environmental concerns are just one aspect of the issues associated with the use of fossil fuels, since fossil fuels are a natural reserve and, therefore, a limited resource. Prognoses vary, but within the next decades the fossil fuel reserves will be exhausted leading to reduced oil production, rising oil prices, and the risk of international bellicose conflicts caused by adverse national interests. Additionally, fossil fuel as a natural reserve is unevenly distributed, meaning that a few countries possess the main energy reserve of the entire world. The incorporation of alternatives to fossil fuel into the existing fuel infrastructure is currently under intense development in the Western world, both to cut the oil dependency and to counter the depletion of oil reserves. This political enthusiasm to decrease the use of fossil fuel is emphasised by the fact that according to the International Energy Agency (IEA) more than 80% of the global primary energy consumption in 2007 accounts from fossil fuels and half of this is oil. More than 60% of the oil is used in the transport sector.

  13. Impact of future fuel properties on aircraft engines and fuel systems

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.; Grobman, J. S.

    1978-01-01

    From current projections of the availability of high-quality petroleum crude oils, it is becoming increasingly apparent that the specifications for hydrocarbon jet fuels may have to be modified. The problems that are most likely to be encountered as a result of these modifications relate to engine performance, component durability and maintenance, and aircraft fuel-system performance. The effect on engine performance will be associated with changes in specific fuel consumption, ignition at relight limits, at exhaust emissions. Durability and maintenance will be affected by increases in combustor liner temperatures, carbon deposition, gum formation in fuel nozzles, and erosion and corrosion of turbine blades and vanes. Aircraft fuel-system performance will be affected by increased deposits in fuel-system heat exchangers and changes in the pumpability and flowability of the fuel. The severity of the potential problems is described in terms of the fuel characteristics most likely to change in the future. Recent data that evaluate the ability of current-technology aircraft to accept fuel specification changes are presented, and selected technological advances that can reduce the severity of the problems are described and discussed.

  14. Resource demand growth and sustainability due to increased world consumption

    DOE PAGES

    Balatsky, Alexander V.; Balatsky, Galina I.; Borysov, Stanislav S.

    2015-03-20

    The paper aims at continuing the discussion on sustainability and attempts to forecast the impossibility of the expanding consumption worldwide due to the planet’s limited resources. As the population of China, India and other developing countries continue to increase, they would also require more natural and financial resources to sustain their growth. We coarsely estimate the volumes of these resources (energy, food, freshwater) and the gross domestic product (GDP) that would need to be achieved to bring the population of India and China to the current levels of consumption in the United States. We also provide estimations for potentially neededmore » immediate growth of the world resource consumption to meet this equality requirement. Given the tight historical correlation between GDP and energy consumption, the needed increase of GDP per capita in the developing world to the levels of the U.S. would deplete explored fossil fuel reserves in less than two decades. These estimates predict that the world economy would need to find a development model where growth would be achieved without heavy dependence on fossil fuels.« less

  15. Resource demand growth and sustainability due to increased world consumption

    SciTech Connect

    Balatsky, Alexander V.; Balatsky, Galina I.; Borysov, Stanislav S.

    2015-03-20

    The paper aims at continuing the discussion on sustainability and attempts to forecast the impossibility of the expanding consumption worldwide due to the planet’s limited resources. As the population of China, India and other developing countries continue to increase, they would also require more natural and financial resources to sustain their growth. We coarsely estimate the volumes of these resources (energy, food, freshwater) and the gross domestic product (GDP) that would need to be achieved to bring the population of India and China to the current levels of consumption in the United States. We also provide estimations for potentially needed immediate growth of the world resource consumption to meet this equality requirement. Given the tight historical correlation between GDP and energy consumption, the needed increase of GDP per capita in the developing world to the levels of the U.S. would deplete explored fossil fuel reserves in less than two decades. These estimates predict that the world economy would need to find a development model where growth would be achieved without heavy dependence on fossil fuels.

  16. Baseline projections of transportation energy consumption by mode: 1981 update

    SciTech Connect

    Millar, M; Bunch, J; Vyas, A; Kaplan, M; Knorr, R; Mendiratta, V; Saricks, C

    1982-04-01

    A comprehensive set of activity and energy-demand projections for each of the major transportation modes and submodes is presented. Projections are developed for a business-as-usual scenario, which provides a benchmark for assessing the effects of potential conservation strategies. This baseline scenario assumes a continuation of present trends, including fuel-efficiency improvements likely to result from current efforts of vehicle manufacturers. Because of anticipated changes in fuel efficiency, fuel price, modal shifts, and a lower-than-historic rate of economic growth, projected growth rates in transportation activity and energy consumption depart from historic patterns. The text discusses the factors responsible for this departure, documents the assumptions and methodologies used to develop the modal projections, and compares the projections with other efforts.

  17. Fuel Burn Estimation Model

    NASA Technical Reports Server (NTRS)

    Chatterji, Gano

    2011-01-01

    Conclusions: Validated the fuel estimation procedure using flight test data. A good fuel model can be created if weight and fuel data are available. Error in assumed takeoff weight results in similar amount of error in the fuel estimate. Fuel estimation error bounds can be determined.

  18. Aviation fuels outlook

    NASA Technical Reports Server (NTRS)

    Momenthy, A. M.

    1980-01-01

    Options for satisfying the future demand for commercial jet fuels are analyzed. It is concluded that the most effective means to this end are to attract more refiners to the jet fuel market and encourage development of processes to convert oil shale and coal to transportation fuels. Furthermore, changing the U.S. refineries fuel specification would not significantly alter jet fuel availability.

  19. Performance of Pentaborane, Pentaborane - JP-4 Fuel Mixtures, and Trimethylborate Azeotrope Fuel in a Full-scale Turbojet Engine

    NASA Technical Reports Server (NTRS)

    Breitwiesser, Roland; Useller, James W.

    1956-01-01

    This report summarizes the full-scale engine tests of pentaborane, pentaborane - JP-4 fuel mixtures, and trimethylborate azeotrope fuel. The tests were conducted in a full-scale turbojet engine at a simulated altitude of 50,000 feet and Mach number of 0.08. Engine speeds were 90 to 100 percent of rated speed. Pentaborane reduced the the specific fuel consumption to two-thirds that of JP-4 fuel. However, because boron oxide collected in the engine, the performance deteriorated with continued operation of pentaborane in each of the short-duration tests reported.

  20. Motor vehicle fuel economy, the forgotten HC control stragegy?

    SciTech Connect

    Deluchi, M.; Wang, Quanlu; Greene, D.L.

    1992-06-01

    Emissions of hydrocarbons from motor vehicles are recognized as major contributors to ozone pollution in urban areas. Petroleum-based motor fuels contain volatile organic compounds (VOC) which, together with oxides of nitrogen, promote the formation of ozone in the troposphere via complex photochemical reactions. VOC emissions from the tailpipe and evaporation from the fuel and engine systems of highway vehicles are believed to account for about 40% of total VOC emissions in any region. But motor fuels also generate emissions throughout the fuel cycle, from crude oil production to refining, storage, transportation, and handling, that can make significant contributions to the total inventory of VOC emissions. Many of these sources of emissions are directly related to the quantity of fuel produced and handled throughout the fuel cycle. It is, therefore, reasonable to expect that a reduction in total fuel throughput might result in a reduction of VOC emissions. In particular, reducing vehicle fuel consumption by increasing vehicle fuel economy should reduce total fuel throughput, thereby cutting total emissions of VOCS. In this report we identify the sources of VOC emissions throughout the motor fuel cycle, quantify them to the extent possible, and describe their dependence on automobile and light truck fuel economy.

  1. 146. FUEL LINE TO SKID 2 (FUEL LOADER) IN FUEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    146. FUEL LINE TO SKID 2 (FUEL LOADER) IN FUEL CONTROL ROOM (215), LSB (BLDG. 751). LIQUID NITROGEN/HELIUM HEAT EXCHANGER ON RIGHT. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  2. Analysis and Optimization of Building Energy Consumption

    NASA Astrophysics Data System (ADS)

    Chuah, Jun Wei

    Energy is one of the most important resources required by modern human society. In 2010, energy expenditures represented 10% of global gross domestic product (GDP). By 2035, global energy consumption is expected to increase by more than 50% from current levels. The increased pace of global energy consumption leads to significant environmental and socioeconomic issues: (i) carbon emissions, from the burning of fossil fuels for energy, contribute to global warming, and (ii) increased energy expenditures lead to reduced standard of living. Efficient use of energy, through energy conservation measures, is an important step toward mitigating these effects. Residential and commercial buildings represent a prime target for energy conservation, comprising 21% of global energy consumption and 40% of the total energy consumption in the United States. This thesis describes techniques for the analysis and optimization of building energy consumption. The thesis focuses on building retrofits and building energy simulation as key areas in building energy optimization and analysis. The thesis first discusses and evaluates building-level renewable energy generation as a solution toward building energy optimization. The thesis next describes a novel heating system, called localized heating. Under localized heating, building occupants are heated individually by directed radiant heaters, resulting in a considerably reduced heated space and significant heating energy savings. To support localized heating, a minimally-intrusive indoor occupant positioning system is described. The thesis then discusses occupant-level sensing (OLS) as the next frontier in building energy optimization. OLS captures the exact environmental conditions faced by each building occupant, using sensors that are carried by all building occupants. The information provided by OLS enables fine-grained optimization for unprecedented levels of energy efficiency and occupant comfort. The thesis also describes a retrofit

  3. Regenerative fuel cell engineering - FY99

    SciTech Connect

    Michael A. Inbody; Rodney L. Borup; James C. Hedstrom; Jose Tafoya; Byron Morton; Lois Zook; Nicholas E. Vanderborgh

    2000-01-01

    The authors report the work conducted by the ESA-EPE Fuel Cell Engineering Team at Los Alamos National Laboratory during FY99 on regenerative fuel cell system engineering. The work was focused on the evaluation of regenerative fuel cell system components obtained through the RAFCO program. These components included a 5 kW PEM electrolyzer, a two-cell regenerative fuel cell stack, and samples of the electrolyzer membrane, anode, and cathode. The samples of the electrolyzer membrane, anode, and cathode were analyzed to determine their structure and operating characteristics. Tests were conducted on the two-cell regenerative fuel cell stack to characterize its operation as an electrolyzer and as a fuel cell. The 5 kW PEM electrolyzer was tested in the Regenerative Fuel Cell System Test Facility. These tests served to characterize the operation of the electrolyzer and, also, to verify the operation of the newly completed test facility. Future directions for this work in regenerative fuel cell systems are discussed.

  4. Influence of test fuel properties and composition on UNECE R101 CO2 and fuel economy valuation

    NASA Astrophysics Data System (ADS)

    Parker, A.

    2015-12-01

    CO2 emission and fuel consumption of passenger cars is now assessed by using a simplistic procedure measuring the emission during a test performed without any control of the fuel properties and computing the fuel consumption through an unsophisticated formula. As pump gasoline and diesel fuels are refinery products mixture of many different hydrocarbons, and in case of gasoline may also contain a significant amount of oxygenates, the fuel properties, including the density, carbon and energy content may strongly vary from one pump fuel to the other. Being the specific test fuels carefully selected by the car manufacturers and everything but randomly chosen pump fuels, the claimed CO2 emission and fuel economy figures may differ largely from the certification values. I show from the analysis of the 2014 UK government data for 2358 diesel and 2103 petrol vehicles how same volumes of only theoretically same pump fuels used during the certification test by the cars manufacturers unfortunately do not produce the same carbon dioxide emission, and very likely do not have the same energy content. The CO2 emission per liter of diesel fuel is shown to oscillate froma maximum of 3049 g to a minimum of 2125 g, with an average of 2625 g, froma +16.13% to a -19.06% of the average. TheCO2 emission per liter of petrol fuel is shown to oscillate even more from a maximum of 3735 g to a minimum of 1767 g with an average of 2327 g, from a +60.48% to a -24.05% of the average. The proposed solution is to center the assessment on the energy demand by measuring with accuracy the mass of fuel consumed and the fuel properties of the test fuel starting from the lower heating. The corrected fuel consumption and the corrected carbon dioxide emission to mention from the test are then computed by using pure hydrocarbon reference fuels for diesel and petrol having a given lower heating value and a given hydrocarbon composition. Alternatively, exactly the same test fuel should be used by all the

  5. Fuel extender

    SciTech Connect

    Dorn, G.K.; Gilbert, H.A.

    1989-02-21

    An efficient and cost competitive fuel extender liquid is described for blending with lead-free gasoline as an additive thereto in a maximum amount of up to about 35% thereof with 65% by volume of the gasoline in a blended mixture wherein. The content of the extender in the resultant fuel as proportioned on the basis of its thus representative maximum content consists essentially of: naphtha X as represented by C/sub 4/, C/sub 5/ and C/sub 6/ hydrocarbons having a Reid vapor pressure of about 8.5 to 9.6 per ASTM, D323 test procedure and an initial distillation point of about 101/sup 0/F. and an end point of about 280/sup 0/F. within a range of about 10 to 25% by volume, about 3.8 to 6.0% by volume of anhydrous ethanol, a stabilizing amount of a water repellent of the class consisting of ethyl acetate and methyl isotubyl ketone; and about 4 to 10.5% by volume of aromatics benzene and toluene, of benzene and xylene or of benzene with toluene and xylene; the extender having a specific gravity substantially comparable with that of the lead-free gasoline to which it is to be added and having phase stability in the presence of water when mixed with the gasoline.

  6. Multiple recycle of REMIX fuel based on reprocessed uranium and plutonium mixture in thermal reactors

    SciTech Connect

    Fedorov, Y.S.; Bibichev, B.A.; Zilberman, B.Y.; Baryshnikov, M.V.; Kryukov, O.V.; Khaperskaya, A.V.

    2013-07-01

    REMIX fuel consumption in WWER-1000 is considered. REMIX fuel is fabricated from non-separated mixture of uranium and plutonium obtained during NPP spent fuel reprocessing with further makeup by enriched natural uranium. It makes possible to recycle several times the total amount of uranium and plutonium obtained from spent fuel with 100% loading of the WWER-1000 core. The stored SNF could be also involved in REMIX fuel cycle by enrichment of regenerated uranium. The same approach could be applied to closing the fuel cycle of CANDU reactors. (authors)

  7. The impact of fuels on aircraft technology through the year 2000

    NASA Technical Reports Server (NTRS)

    Grobman, J.; Reck, G. M.

    1980-01-01

    In the future, it may be necessary to use jet fuels with a broader range of properties in order to insure a more flexible and reliable supply and to minimize energy consumption and processing costs at the refinery. This paper describes research being conducted to (1) determine the potential range of properties for future jet fuels, (2) establish a data base of fuel property effects on propulsion system components, (3) evolve and evaluate advanced component technology that would permit the use of broader property fuels and (4) identify technical and economic trade-offs within the overall fuel production-air transportation system associated with variations in fuel properties.

  8. JSC Case Study: Fleet Experience with E-85 Fuel

    NASA Technical Reports Server (NTRS)

    Hummel, Kirck

    2009-01-01

    JSC has used E-85 as part of an overall strategy to comply with Presidential Executive Order 13423 and the Energy Policy Act. As a Federal fleet, we are required to reduce our petroleum consumption by 2 percent per year, and increase the use of alternative fuels in our vehicles. With the opening of our onsite dispenser in October 2004, JSC became the second federal fleet in Texas and the fifth NASA center to add E-85 fueling capability. JSC has a relatively small number of GSA Flex Fuel fleet vehicles at the present time (we don't include personal vehicles, or other contractor's non-GSA fleet), and there were no reasonably available retail E-85 fuel stations within a 15-minute drive or within five miles (one way). So we decided to install a small 1000 gallon onsite tank and dispenser. It was difficult to obtain a supplier due to our low monthly fuel consumption, and our fuel supplier contract has changed three times in less than five years. We experiences a couple of fuel contamination and quality control issues. JSC obtained good information on E-85 from the National Ethanol Vehicle Coalition (NEVC). We also spoke with Defense Energy Support Center, (DESC), Lawrence Berkeley Laboratory, and US Army Fort Leonard Wood. E-85 is a liquid fuel that is dispensed into our Flexible Fuel Vehicles identically to regular gasoline, so it was easy for our vehicle drivers to make the transition.

  9. Sustainable Consumption and Life Satisfaction

    ERIC Educational Resources Information Center

    Xiao, Jing Jian; Li, Haifeng

    2011-01-01

    The purpose of this study was to examine the association between sustainable consumption and life satisfaction. One aspect of sustainable consumption focused on in this study is the environment friendly purchase or green purchase. Using data collected from consumers in 14 cities in China, we found that consumers who reported green purchase…

  10. Intergenerational Linkages in Consumption Behavior

    ERIC Educational Resources Information Center

    Waldkirch, Andreas; Ng, Serena; Cox, Donald

    2004-01-01

    We investigate familial relationships in consumption patterns using a sample of parents and their children from the Panel Study of Income Dynamics. We find a positive and statistically significant parent-specific effect on children's consumption even after controlling for the effect of parental income. This correlation is found in different…

  11. Fuel cells: A survey

    NASA Technical Reports Server (NTRS)

    Crowe, B. J.

    1973-01-01

    A survey of fuel cell technology and applications is presented. The operating principles, performance capabilities, and limitations of fuel cells are discussed. Diagrams of fuel cell construction and operating characteristics are provided. Photographs of typical installations are included.

  12. Renewable Fuel Standard Program

    EPA Pesticide Factsheets

    Information about regulations, developed by EPA, in collaboration with refiners, renewable fuel producers, and many other stakeholders, that ensure that transportation fuel sold in the United States contains a minimum volume of renewable fuel.

  13. Back end of an enduring fuel cycle

    SciTech Connect

    Pillay, K.K.S.

    1998-03-01

    An enduring nuclear fuel cycle is an essential part of sustainable consumption, the process whereby world`s riches are consumed in a responsible manner so that future generations can continue to enjoy at least some of them. In many countries, the goal of sustainable development has focused attention on the benefits of nuclear technologies. However, sustenance of the nuclear fuel cycle is dependent on sensible management of all the resources of the fuel cycle, including energy, spent fuels, and all of its side streams. The nuclear fuel cycle for energy production has suffered many traumas since the mid seventies. The common basis of technologies producing nuclear explosives and consumable nuclear energy has been a preoccupation for some, predicament for others, and a perception problem for many. It is essential to reestablish a reliable back end of the nuclear fuel cycle that can sustain the resource requirements of an enduring full cycle. This paper identifies some pragmatic steps necessary to reverse the trend and to maintain a necessary fuel cycle option for the future.

  14. A consumption value-gap analysis for sustainable consumption.

    PubMed

    Biswas, Aindrila

    2017-01-26

    Recent studies on consumption behavior have depicted environmental apprehension resulting from across wide consumer segments. However, this has not been widely reflected upon the growth in the market shares for green or environment-friendly products mostly because gaps exist between consumers' expectations and perceptions for those products. Previous studies have highlighted the impact of perceived value on potential demand, consumer satisfaction and behavioral intentions. The necessity to understand the effects of gaps in expected and perceived values on consumers' behavioral intention and potential demand for green products cannot be undermined as it shapes the consumers' inclination to repeated purchase and consumption and thus foster potential market demand. Pertaining to this reason, the study aims to adopt a consumption value-gap model based on the theory of consumption values to assess their impact on sustainable consumption behavior and market demand of green products. Consumption value refers to the level of fulfillment of consumer needs by assessment of net utility derived after effective comparison between the benefits (financial or emotional) and the gives (money, time, or energy). The larger the gaps the higher will be the adversarial impact on behavioral intentions. A structural equation modeling was applied to assess data collected through questionnaire survey. The results indicate that functional value-gap and environmental value-gap has the most adversarial impact on sustainable consumption behavior and market demand for green products.

  15. Future aviation fuels overview

    NASA Technical Reports Server (NTRS)

    Reck, G. M.

    1980-01-01

    The outlook for aviation fuels through the turn of the century is briefly discussed and the general objectives of the NASA Lewis Alternative Aviation Fuels Research Project are outlined. The NASA program involves the evaluation of potential characteristics of future jet aircraft fuels, the determination of the effects of those fuels on engine and fuel system components, and the development of a component technology to use those fuels.

  16. Energy Storage Fuel Cell Vehicle Analysis

    SciTech Connect

    Pesaran, A; Markel, T; Zolot, M; Sprik, S; Tataria, H; Duong, T

    2005-08-01

    In recent years, hydrogen fuel cell (FC) vehicle technology has received considerable attention as a strategy to decrease oil consumption and reduce harmful emissions. However, the cost, transient response, and cold performance of FC systems may present significant challenges to widespread adoption of the technology for transportation in the next 15 years. The objectives of this effort were to perform energy storage modeling with fuel cell vehicle simulations to quantify the benefits of hybridization and to identify a process for setting the requirements of ES for hydrogen-powered FC vehicles for U.S. Department of Energy's Energy Storage Program.

  17. Fuels from biomass. Technology and feasibility

    SciTech Connect

    Robinson, J.S. .

    1980-01-01

    This book for engineers, research workers and managers is concerned with decreasing conventional fuel consumption and increasing the use of synthetic fuels. There are 10 chapters: Sources of biomass - wastes and residues (including forestry residues); Sources of biomass - energy farms (including silviculture and aquaculture); Thermal conversion methods; Primary biochemical conversions (production of methane and glucose); Secondary conversion processes (methanol, hydrocarbons, ammonia, ethanol etc.); Case studies and economics - describing pyrolysis methods, production of methane by anaerobic fermentation, and biomass sources (3 chapters); Market penetration analysis; and Environmental impacts. Extensive illustrative data is a list of sourand a listes.

  18. Effect of hydrocarbon fuel type on fuel

    NASA Technical Reports Server (NTRS)

    Wong, E. L.; Bittker, D. A.

    1982-01-01

    A modified jet fuel thermal oxidation tester (JFTOT) procedure was used to evaluate deposit and sediment formation for four pure hydrocarbon fuels over the temperature range 150 to 450 C in 316-stainless-steel heater tubes. Fuel types were a normal alkane, an alkene, a naphthene, and an aromatic. Each fuel exhibited certain distinctive deposit and sediment formation characteristics. The effect of aluminum and 316-stainless-steel heater tube surfaces on deposit formation for the fuel n-decane over the same temperature range was investigated. Results showed that an aluminum surface had lower deposit formation rates at all temperatures investigated. By using a modified JFTOT procedure the thermal stability of four pure hydrocarbon fuels and two practical fuels (Jet A and home heating oil no. 2) was rated on the basis of their breakpoint temperatures. Results indicate that this method could be used to rate thermal stability for a series of fuels.

  19. Fuel cell technology: A sweeter fuel

    NASA Astrophysics Data System (ADS)

    Kendall, Kevin

    2002-12-01

    Eating sugar gives us a boost when we feel tired because our cells use it as fuel to produce energy. Likewise, sugar can now be used to produce power in artificial biological fuel cells that function in a physiological environment.

  20. Fuel processor for fuel cell power system

    DOEpatents

    Vanderborgh, Nicholas E.; Springer, Thomas E.; Huff, James R.

    1987-01-01

    A catalytic organic fuel processing apparatus, which can be used in a fuel cell power system, contains within a housing a catalyst chamber, a variable speed fan, and a combustion chamber. Vaporized organic fuel is circulated by the fan past the combustion chamber with which it is in indirect heat exchange relationship. The heated vaporized organic fuel enters a catalyst bed where it is converted into a desired product such as hydrogen needed to power the fuel cell. During periods of high demand, air is injected upstream of the combustion chamber and organic fuel injection means to burn with some of the organic fuel on the outside of the combustion chamber, and thus be in direct heat exchange relation with the organic fuel going into the catalyst bed.

  1. Fuel Reformer Nozzle Development

    NASA Technical Reports Server (NTRS)

    Lai, Ming-Chia D.

    2003-01-01

    The fellowship work this summer will be in support of the development of a fuel mixer for a liquid fuel reformer that is upstream of a fuel cell. Tasks for the summer shall consist of design of a fuel mixer, setup of the laser diagnostics for determining the degree of fuel mixing, and testing of the fuel mixer. The fuel mixer shall be a venturi section with fuel injected at or near the throat, and an air swirler upstream of the venturi. Data to determine the performance of the mixer shall be taken using a Phase Doppler Particle Analyzer (PDPA).

  2. New approach for reduction of diesel consumption by comparing different mining haulage configurations.

    PubMed

    Rodovalho, Edmo da Cunha; Lima, Hernani Mota; de Tomi, Giorgio

    2016-05-01

    The mining operations of loading and haulage have an energy source that is highly dependent on fossil fuels. In mining companies that select trucks for haulage, this input is the main component of mining costs. How can the impact of the operational aspects on the diesel consumption of haulage operations in surface mines be assessed? There are many studies relating the consumption of fuel trucks to several variables, but a methodology that prioritizes higher-impact variables under each specific condition is not available. Generic models may not apply to all operational settings presented in the mining industry. This study aims to create a method of analysis, identification, and prioritization of variables related to fuel consumption of haul trucks in open pit mines. For this purpose, statistical analysis techniques and mathematical modelling tools using multiple linear regressions will be applied. The model is shown to be suitable because the results generate a good description of the fuel consumption behaviour. In the practical application of the method, the reduction of diesel consumption reached 10%. The implementation requires no large-scale investments or very long deadlines and can be applied to mining haulage operations in other settings.

  3. 75 FR 80430 - Passenger Car and Light Truck Average Fuel Economy Standards Request for Product Plan Information...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-22

    ... other fuels (or chemical battery energy). 39. Electrical System Voltage--measured in volts, e.g., 12... conditioner compressor. F. Energy Consumption \\8\\--of total fuel energy (higher heating value) consumed over... order to account for a given vehicle model's fuel economy as partitioned into nine energy...

  4. Well-to-Wheels Water Consumption: Tracking the Virtual Flow of Water into Transportation

    NASA Astrophysics Data System (ADS)

    Lampert, D. J.; Elgowainy, A.; Hao, C.

    2015-12-01

    Water and energy resources are fundamental to life on Earth and essential for the production of consumer goods and services in the economy. Energy and water resources are heavily interdependent—energy production consumes water, while water treatment and distribution consume energy. One example of this so-called energy-water nexus is the consumption of water associated with the production of transportation fuels. The Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model is an analytical tool that can be used to compare the environmental impacts of different transportation fuels on a consistent basis. In this presentation, the expansion of GREET to perform life cycle water accounting or the "virtual flow" of water into transportation and other energy sectors and the associated implications will be discussed. The results indicate that increased usage of alternative fuels may increase freshwater resource consumption. The increased water consumption must be weighed against the benefits of decreased greenhouse gas and fossil energy consumption. Our analysis highlights the importance of regionality, co-product allocation, and consistent system boundaries when comparing the water intensity of alternative transportation fuel production pathways such as ethanol, biodiesel, compressed natural gas, hydrogen, and electricity with conventional petroleum-based fuels such as diesel and gasoline.

  5. Internal reforming fuel cell assembly with simplified fuel feed

    DOEpatents

    Farooque, Mohammad; Novacco, Lawrence J.; Allen, Jeffrey P.

    2001-01-01

    A fuel cell assembly in which fuel cells adapted to internally reform fuel and fuel reformers for reforming fuel are arranged in a fuel cell stack. The fuel inlet ports of the fuel cells and the fuel inlet ports and reformed fuel outlet ports of the fuel reformers are arranged on one face of the fuel cell stack. A manifold sealing encloses this face of the stack and a reformer fuel delivery system is arranged entirely within the region between the manifold and the one face of the stack. The fuel reformer has a foil wrapping and a cover member forming with the foil wrapping an enclosed structure.

  6. Analysis of fuel shares in the residential sector: 1960 to 1995

    SciTech Connect

    Reilly, J.M.; Shankle, S.A.; Pomykala, J.S.

    1986-08-01

    Historical and future energy use by fuel type in the residential sector of the United States are examined. Of interest is the likely relative demand for fuels as they affect national policy issues such as the potential shortfall of electric generating capacity in the mid to late 1990's and the ability of the residential sector to switch rapdily among fuels in response to fuel shortages, price increases and other factors. Factors affecting the share of a fuel used rather than the aggregate level of energy use are studied. However, the share of a fuel used is not independent of the level of energy consumption. In the analysis, the level of consumption of each fuel is computed as an intermediate result and is reported for completeness.

  7. NUCLEAR REACTOR FUEL-BREEDER FUEL ELEMENT

    DOEpatents

    Currier, E.L. Jr.; Nicklas, J.H.

    1962-08-14

    A fuel-breeder fuel element was developed for a nuclear reactor wherein discrete particles of fissionable material are dispersed in a matrix of fertile breeder material. The fuel element combines the advantages of a dispersion type and a breeder-type. (AEC)

  8. Technological growth of fuel efficiency in european automobile market 1975–2015

    DOE PAGES

    Hu, Kejia; Chen, Yuche

    2016-08-29

    This paper looks at the technological growth of new car fleet fuel efficiency in the European Union between 1975 and 2015. According to the analysis results, from1975 to 2006 the fuel efficiency technology improvements were largely offset by vehicles' increased weight, engine size, and consumer amenities such as acceleration capacity. After 2006, downsizing in weight and engine capacity was observed in new car fleet, while fuel consumption decreased by 32% between 2006 and 2015. We adopt a statistical method and find that from 1975 to 2015, a 1% increase in weight would result in 0.3 to 0.5% increments in fuelmore » consumption per 100 km, and a 1% reduction in 0-100 km/h acceleration time would increase fuel consumption by about 0.3%. Impacts of other attributes on fuel consumption are also assessed. To meet the European Union's 2021 fuel consumption target, downsizing of cars, as well as at least maintaining fuel efficiency technology growth trend observed between 2005 and 2015, are needed. Lastly, government policies on controlling improvement in acceleration performance or promoting alternative fuel vehicles are also important to achieve European Union 2021 target.« less

  9. Fuel loads, fire regimes, and post-fire fuel dynamics in Florida Keys pine forests

    USGS Publications Warehouse

    Sah, J.P.; Ross, M.S.; Snyder, J.R.; Koptur, S.; Cooley, H.C.

    2006-01-01

    In forests, the effects of different life forms on fire behavior may vary depending on their contributions to total fuel loads. We examined the distribution of fuel components before fire, their effects on fire behavior, and the effects of fire on subsequent fuel recovery in pine forests within the National Key Deer Refuge in the Florida Keys. We conducted a burning experiment in six blocks, within each of which we assigned 1-ha plots to three treatments: control, summer, and winter burn. Owing to logistical constraints, we burned only 11 plots, three in winter and eight in summer, over a 4-year period from 1998 to 2001. We used path analysis to model the effects of fuel type and char height, an indicator of fire intensity, on fuel consumption. Fire intensity increased with surface fuel loads, but was negatively related to the quantity of hardwood shrub fuels, probably because these fuels are associated with a moist microenvironment within hardwood patches, and therefore tend to resist fire. Winter fires were milder than summer fires, and were less effective at inhibiting shrub encroachment. A mixed seasonal approach is suggested for fire management, with burns applied opportunistically under a range of winter and summer conditions, but more frequently than that prevalent in the recent past. ?? IAWF 2006.

  10. Alcohol consumption and plasma homocysteine.

    PubMed

    Sakuta, Hidenari; Suzuki, Takashi

    2005-10-01

    A few reports show that consumption of spirits and of wine correlate with elevated plasma total homocysteine (tHcy), which is associated with the risk of cardiovascular disease. We analyzed the relation between tHcy and current daily ethanol consumption cross-sectionally in middle-aged Japanese men (n = 974, age 51-59 years). Plasma tHcy was positively associated with consumption of whiskey but not with consumption of shochu (Japanese spirits), sake, beer, or wine. Odds ratios of an increase in daily intake of 30 ml ethanol (approximately 1 standard deviation) for hyperhomocysteinemia (>14.0 micromol/l) were 2.58 (95% confidence interval, 1.29-5.14) for whiskey, 1.08 (0.78-1.50) for shochu, 0.99 (0.59-1.66) for sake, 0.98 (0.58-1.63) for beer, and 1.70 (0.31-9.50) for wine in a multivariate logistic regression analysis adjusted for the daily number of cigarettes smoked, physical activity, vegetable consumption, and serum creatinine levels. After inclusion of plasma folate and vitamin B12 in the multivariate analysis model, the association between whiskey ethanol consumption and hyperhomocysteinemia remained significant with odds ratio of 2.79 (1.36-5.72). These results suggest that whiskey consumption correlates with hyperhomocysteinemia independently of plasma folate or vitamin B12 or lifestyle factors in the population studied.

  11. Los Alamos Novel Rocket Design Flight Tested

    ScienceCinema

    Tappan, Bryce

    2016-07-12

    Los Alamos National Laboratory scientists recently flight tested a new rocket design that includes a high-energy fuel and a motor design that also delivers a high degree of safety. Researchers will now work to scale-up the design, as well as explore miniaturization of the system, in order to exploit all potential applications that would require high-energy, high-velocity, and correspondingly high safety margins.

  12. Los Alamos Novel Rocket Design Flight Tested

    SciTech Connect

    Tappan, Bryce

    2014-10-23

    Los Alamos National Laboratory scientists recently flight tested a new rocket design that includes a high-energy fuel and a motor design that also delivers a high degree of safety. Researchers will now work to scale-up the design, as well as explore miniaturization of the system, in order to exploit all potential applications that would require high-energy, high-velocity, and correspondingly high safety margins.

  13. Investigation of the technology development status of alternate fuel vehicles

    NASA Astrophysics Data System (ADS)

    1993-03-01

    The main purpose of the introduction of alternate fuel vehicles is to contribute to the reduction of pollution, the alternate energy for petroleum, and the energy savings. This report describes the development status of methanol, natural gas, and electric vehicles, which have high potential as alternate fuel vehicles. Characteristics of alternate fuel vehicles are compared by using the same factors on the basis of technological data. Outlines of individual alternate fuel vehicles are illustrated. Then, practicabilities of the alternate fuel vehicles are compared with each other, as for the output and energy densities, maximum output and torque of motors, power performance, specific consumption of energy, driving distance, initial cost, running cost and life cycle cost, convenience of fuel and energy supply, low pollution, and health effects.

  14. Acid fuel cell technologies for vehicular power plants

    SciTech Connect

    Huff, J.R.; Srinivasan, S.

    1982-08-01

    Fuel cells offer a number of significant advantages as vehicular power sources. These include high efficiency, virtually no pollution, and the ability to use nonpetroleum fuel. To date, most fuel cell systems have been designed for either utility or space applications, which have substantially different requirements than vehicular applications. Several fuel cell technologies were assessed specifically for vehicular applications. The results of these assessments were used to calculate the performance and fuel consumption of a fuel cell powered GM X car. Results indicate that the phosphoric acid technology, which has the most development experience, can power a vehicle with reasonable performance, with a range of over 350 miles on 20 gallons of methanol and with high energy efficiency. Solid polymer electrolyte technology, which is second in development experience, can provide performance approaching that of an ICE vehicle and an energy efficiency 149% higher than the ICE-powered version.

  15. End use energy consumption data base: transportation sector

    SciTech Connect

    Hooker, J.N.; Rose, A.B.; Greene, D.L.

    1980-02-01

    The transportation fuel and energy use estimates developed a Oak Ridge National Laboratory (ORNL) for the End Use Energy Consumption Data Base are documented. The total data base contains estimates of energy use in the United States broken down into many categories within all sectors of the economy: agriculture, mining, construction, manufacturing, commerce, the household, electric utilities, and transportation. The transportation data provided by ORNL generally cover each of the 10 years from 1967 through 1976 (occasionally 1977 and 1978), with omissions in some models. The estimtes are broken down by mode of transport, fuel, region and State, sector of the economy providing transportation, and by the use to which it is put, and, in the case of automobile and bus travel, by the income of the traveler. Fuel types include natural gas, motor and aviation gasoline, residual and diesel oil, liuqefied propane, liquefied butane, and naphtha- and kerosene-type jet engine fuels. Electricity use is also estimated. The mode, fuel, sector, and use categories themselves subsume one, two, or three levels of subcategories, resulting in a very detailed categorization and definitive accounting.

  16. Emission Characteristics and Egr Application of Blended Fuels with Bdf and Oxygenate (dmm) in a Diesel Engine

    NASA Astrophysics Data System (ADS)

    Choi, Seung-Hun; Oh, Young-Taig

    In this study, the possibility of biodiesel fuel and oxygenated fuel (dimethoxy methane ; DMM) was investigated as an alternative fuel for a naturally aspirated direct injection diesel engine. The smoke emission of blending fuel (biodiesel fuel 90vol-% + DMM 10vol-%) was reduced approximately 70% at 2500rpm, full load in comparison with the diesel fuel. But, engine power and brake specific energy consumption showed no significant differences. But, NOx emission of biodiesel fuel and DMM blended fuel increased compared with commercial diesel fuel due to the oxygen component in the fuel. It was needed a NOx reduction counter plan that EGR method was used as a countermeasure for NOx reduction. It was found that simultaneous reduction of smoke and NOx emission was achieved with BDF (95 vol-%) and DMM (5 vol-%) blended fuel and cooled EGR method (15%).

  17. Fuel dissipater for pressurized fuel cell generators

    DOEpatents

    Basel, Richard A.; King, John E.

    2003-11-04

    An apparatus and method are disclosed for eliminating the chemical energy of fuel remaining in a pressurized fuel cell generator (10) when the electrical power output of the fuel cell generator is terminated during transient operation, such as a shutdown; where, two electrically resistive elements (two of 28, 53, 54, 55) at least one of which is connected in parallel, in association with contactors (26, 57, 58, 59), a multi-point settable sensor relay (23) and a circuit breaker (24), are automatically connected across the fuel cell generator terminals (21, 22) at two or more contact points, in order to draw current, thereby depleting the fuel inventory in the generator.

  18. Consumption-based accounting of CO2 emissions

    PubMed Central

    Davis, Steven J.; Caldeira, Ken

    2010-01-01

    CO2 emissions from the burning of fossil fuels are the primary cause of global warming. Much attention has been focused on the CO2 directly emitted by each country, but relatively little attention has been paid to the amount of emissions associated with the consumption of goods and services in each country. Consumption-based accounting of CO2 emissions differs from traditional, production-based inventories because of imports and exports of goods and services that, either directly or indirectly, involve CO2 emissions. Here, using the latest available data, we present a global consumption-based CO2 emissions inventory and calculations of associated consumption-based energy and carbon intensities. We find that, in 2004, 23% of global CO2 emissions, or 6.2 gigatonnes CO2, were traded internationally, primarily as exports from China and other emerging markets to consumers in developed countries. In some wealthy countries, including Switzerland, Sweden, Austria, the United Kingdom, and France, >30% of consumption-based emissions were imported, with net imports to many Europeans of >4 tons CO2 per person in 2004. Net import of emissions to the United States in the same year was somewhat less: 10.8% of total consumption-based emissions and 2.4 tons CO2 per person. In contrast, 22.5% of the emissions produced in China in 2004 were exported, on net, to consumers elsewhere. Consumption-based accounting of CO2 emissions demonstrates the potential for international carbon leakage. Sharing responsibility for emissions among producers and consumers could facilitate international agreement on global climate policy that is now hindered by concerns over the regional and historical inequity of emissions. PMID:20212122

  19. Consumption-based accounting of CO2 emissions.

    PubMed

    Davis, Steven J; Caldeira, Ken

    2010-03-23

    CO(2) emissions from the burning of fossil fuels are the primary cause of global warming. Much attention has been focused on the CO(2) directly emitted by each country, but relatively little attention has been paid to the amount of emissions associated with the consumption of goods and services in each country. Consumption-based accounting of CO(2) emissions differs from traditional, production-based inventories because of imports and exports of goods and services that, either directly or indirectly, involve CO(2) emissions. Here, using the latest available data, we present a global consumption-based CO(2) emissions inventory and calculations of associated consumption-based energy and carbon intensities. We find that, in 2004, 23% of global CO(2) emissions, or 6.2 gigatonnes CO(2), were traded internationally, primarily as exports from China and other emerging markets to consumers in developed countries. In some wealthy countries, including Switzerland, Sweden, Austria, the United Kingdom, and France, >30% of consumption-based emissions were imported, with net imports to many Europeans of >4 tons CO(2) per person in 2004. Net import of emissions to the United States in the same year was somewhat less: 10.8% of total consumption-based emissions and 2.4 tons CO(2) per person. In contrast, 22.5% of the emissions produced in China in 2004 were exported, on net, to consumers elsewhere. Consumption-based accounting of CO(2) emissions demonstrates the potential for international carbon leakage. Sharing responsibility for emissions among producers and consumers could facilitate international agreement on global climate policy that is now hindered by concerns over the regional and historical inequity of emissions.

  20. 40 CFR 80.8 - Sampling methods for gasoline, diesel fuel, fuel additives, and renewable fuels.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... fuel, fuel additives, and renewable fuels. 80.8 Section 80.8 Protection of Environment ENVIRONMENTAL... Provisions § 80.8 Sampling methods for gasoline, diesel fuel, fuel additives, and renewable fuels. The..., blendstocks, fuel additives and renewable fuels for purposes of determining compliance with the...

  1. Techno-economic comparison of series hybrid, plug-in hybrid, fuel cell and regular cars

    NASA Astrophysics Data System (ADS)

    van Vliet, Oscar P. R.; Kruithof, Thomas; Turkenburg, Wim C.; Faaij, André P. C.

    We examine the competitiveness of series hybrid compared to fuel cell, parallel hybrid, and regular cars. We use public domain data to determine efficiency, fuel consumption, total costs of ownership and greenhouse gas emissions resulting from drivetrain choices. The series hybrid drivetrain can be seen both as an alternative to petrol, diesel and parallel hybrid cars, as well as an intermediate stage towards fully electric or fuel cell cars. We calculate the fuel consumption and costs of four diesel-fuelled series hybrid, four plug-in hybrid and four fuel cell car configurations, and compared these to three reference cars. We find that series hybrid cars may reduce fuel consumption by 34-47%, but cost €5000-12,000 more. Well-to-wheel greenhouse gas emissions may be reduced to 89-103 g CO 2 km -1 compared to reference petrol (163 g km -1) and diesel cars (156 g km -1). Series hybrid cars with wheel motors have lower weight and 7-21% lower fuel consumption than those with central electric motors. The fuel cell car remains uncompetitive even if production costs of fuel cells come down by 90%. Plug-in hybrid cars are competitive when driving large distances on electricity, and/or if cost of batteries come down substantially. Well-to-wheel greenhouse gas emissions may be reduced to 60-69 g CO 2 km -1.

  2. Assessment for advanced fuel cycle options in CANDU

    SciTech Connect

    Morreale, A.C.; Luxat, J.C.; Friedlander, Y.

    2013-07-01

    The possible options for advanced fuel cycles in CANDU reactors including actinide burning options and thorium cycles were explored and are feasible options to increase the efficiency of uranium utilization and help close the fuel cycle. The actinide burning TRUMOX approach uses a mixed oxide fuel of reprocessed transuranic actinides from PWR spent fuel blended with natural uranium in the CANDU-900 reactor. This system reduced actinide content by 35% and decreased natural uranium consumption by 24% over a PWR once through cycle. The thorium cycles evaluated used two CANDU-900 units, a generator and a burner unit along with a driver fuel feedstock. The driver fuels included plutonium reprocessed from PWR, from CANDU and low enriched uranium (LEU). All three cycles were effective options and reduced natural uranium consumption over a PWR once through cycle. The LEU driven system saw the largest reduction with a 94% savings while the plutonium driven cycles achieved 75% savings for PWR and 87% for CANDU. The high neutron economy, online fuelling and flexible compact fuel make the CANDU system an ideal reactor platform for many advanced fuel cycles.

  3. FUEL ROD CLUSTERS

    DOEpatents

    Schultz, A.B.

    1959-08-01

    A cluster of nuclear fuel rods and a tubular casing therefor through which a coolant flows in heat-exchange contact with the fuel rods is described. The fuel rcds are held in the casing by virtue of the compressive force exerted between longitudinal ribs of the fuel rcds and internal ribs of the casing or the internal surfaces thereof.

  4. Reducing DoD Fossil-Fuel Dependence

    DTIC Science & Technology

    2006-09-01

    Wheels Analysis of Vehicle/Fuel Systems 20Jul06: (VTC) Robert Roche and Peter Melik [Army, AMSAA]: Fuel Consumption Modeling and Support Insights In...grains DDGS Distiller’s dried grains with solubles 91 DICI Direct Injection Compression Ignition (engine) DME Dimethyl ether. Surrogate for diesel...and do not own the transmission lines. Joule The ( kinetic ) energy acquired by a mass of one kilogram moving at a speed of one meter per second kJ

  5. Reducing DoD Fossil-Fuel Dependence

    DTIC Science & Technology

    2006-09-01

    Analysis of Vehicle/Fuel Systems 20Ju106: (VTC) Robert Roche and Peter Melik [Army, AMSAA]: Fuel Consumption Modeling and Support Insights In addition...with solubles 90 DICI Direct Injection Compression Ignition (engine) DME Dimethyl ether. Surrogate for diesel. DOE Department of Energy. The federal...wholesale to the power market. IPPs own and operate their stations as non-utilities and do not own the transmission lines. Joule The ( kinetic ) energy acquired

  6. Alcohol consumption on pancreatic diseases.

    PubMed

    Herreros-Villanueva, Marta; Hijona, Elizabeth; Bañales, Jesus Maria; Cosme, Angel; Bujanda, Luis

    2013-02-07

    Although the association between alcohol and pancreatic diseases has been recognized for a long time, the impact of alcohol consumption on pancreatitis and pancreatic cancer (PC) remains poorly defined. Nowadays there is not consensus about the epidemiology and the beverage type, dose and duration of alcohol consumption causing these diseases. The objective of this study was to review the epidemiology described in the literature for pancreatic diseases as a consequence of alcoholic behavior trying to understand the association between dose, type and frequency of alcohol consumption and risk of pancreatitis and PC. The majority of the studies conclude that high alcohol intake was associated with a higher risk of pancreatitis (around 2.5%-3% between heavy drinkers and 1.3% between non drinkers). About 70% of pancreatitis are due to chronic heavy alcohol consumption. Although this incidence rate differs between countries, it is clear that the risk of developing pancreatitis increases with increasing doses of alcohol and the average of alcohol consumption vary since 80 to 150 g/d for 10-15 years. With regard to PC, the role of alcohol consumption remains less clear, and low to moderate alcohol consumption do not appear to be associated with PC risk, and only chronic heavy drinking increase the risk compared with lightly drinkers. In a population of 10%-15% of heavy drinkers, 2%-5% of all PC cases could be attributed to alcohol consumption. However, as only a minority (less than 10% for pancreatitis and 5% for PC) of heavily drinkers develops these pancreatic diseases, there are other predisposing factors besides alcohol involved. Genetic variability and environmental exposures such as smoking and diet modify the risk and should be considered for further investigations.

  7. Caffeine consumption in young children.

    PubMed

    Warzak, William J; Evans, Shelby; Floress, Margaret T; Gross, Amy C; Stoolman, Sharon

    2011-03-01

    Two hundred twenty-eight surveyed parents reported that their 5 to 7 year old children drank approximately 52 mg of caffeine daily and their 8 to 12 year old children drank 109 mg daily. Caffeine consumption and hours slept were significantly negatively correlated, but caffeine consumption and enuresis were not significantly correlated. Spanish-speaking parents reported fewer bedwetting events than their English-speaking peers.

  8. Manufacturing consumption of energy 1991

    SciTech Connect

    Not Available

    1994-12-01

    This report provides estimates on energy consumption in the manufacturing sector of the US economy. These estimates are based on data from the 1991 Manufacturing Energy Consumption Survey (MECS). This survey--administered by the Energy End Use and Integrated Statistics Division, Office of Energy Markets and End Use, Energy Information Administration (EIA)--is the most comprehensive source of national-level data on energy-related information for the manufacturing industries.

  9. Support vector machine to predict diesel engine performance and emission parameters fueled with nano-particles additive to diesel fuel

    NASA Astrophysics Data System (ADS)

    Ghanbari, M.; Najafi, G.; Ghobadian, B.; Mamat, R.; Noor, M. M.; Moosavian, A.

    2015-12-01

    This paper studies the use of adaptive Support Vector Machine (SVM) to predict the performance parameters and exhaust emissions of a diesel engine operating on nanodiesel blended fuels. In order to predict the engine parameters, the whole experimental data were randomly divided into training and testing data. For SVM modelling, different values for radial basis function (RBF) kernel width and penalty parameters (C) were considered and the optimum values were then found. The results demonstrate that SVM is capable of predicting the diesel engine performance and emissions. In the experimental step, Carbon nano tubes (CNT) (40, 80 and 120 ppm) and nano silver particles (40, 80 and 120 ppm) with nanostructure were prepared and added as additive to the diesel fuel. Six cylinders, four-stroke diesel engine was fuelled with these new blended fuels and operated at different engine speeds. Experimental test results indicated the fact that adding nano particles to diesel fuel, increased diesel engine power and torque output. For nano-diesel it was found that the brake specific fuel consumption (bsfc) was decreased compared to the net diesel fuel. The results proved that with increase of nano particles concentrations (from 40 ppm to 120 ppm) in diesel fuel, CO2 emission increased. CO emission in diesel fuel with nano-particles was lower significantly compared to pure diesel fuel. UHC emission with silver nano-diesel blended fuel decreased while with fuels that contains CNT nano particles increased. The trend of NOx emission was inverse compared to the UHC emission. With adding nano particles to the blended fuels, NOx increased compared to the net diesel fuel. The tests revealed that silver & CNT nano particles can be used as additive in diesel fuel to improve complete combustion of the fuel and reduce the exhaust emissions significantly.

  10. Concentric layer ramjet fuel

    SciTech Connect

    Burdette, G.W.; Francis, J.P.

    1988-03-08

    This patent describes a solid fuel ramjet grain comprising concentric layers of solid ramjet fuel having a perforation therethrough along the center axis of the grain. The performation is connected to a combustion after-chamber. The solid ramjet fuel layers comprises a pure hydroxyl-terminated polybutadiene hydrocarbon fuel or a mixture of a hydroxyl-terminated polybutadiene hydrocarbon fuel and from about 5 to about 60 percent by weight of an additive to increase the fuel regression rate selected from the group consisting of magnesium, boron carbide, aluminum, and zirconium such that, when buried in the operation of the ramjet, each fuel layer produces a different level of thrust.

  11. Daily practices, consumption and citizenship.

    PubMed

    Mazzarino, Jane M; Morigi, Valdir J; Kaufmann, Cristine; Farias, Alessandra M B; Fernandes, Diefersom A

    2011-12-01

    This paper promotes a reflection on the relationship between daily practices and consumption. Understanding how conflicts, resistance and consensus are generated from daily consumption practices opens up possibilities for reflecting on the construction of sustainability in the context of diversity, one of the landmarks of the globalized world. Within this socio-cultural context, the central issue is: can consumption generate citizenship practices? The concepts of subject and agent help one think about collective action and subjectivation processes and their interferences on the collective consuming behavior. Based on empirical data from a research carried out in the municipality of Estrela in 2007, in the Taquari Valley - Rio Grande do Sul (Southern Brazil) on local reality consumption practices, it was possible to conclude that various reasoning mechanisms and values underlie the daily consumption practices. Citizenship construction, based on consumption practices, depends on the subject's reflection capacity on his/her daily practices or on what goes through the circulation of environmental information based on sociability spaces.

  12. Alcohol Consumption in Demographic Subpopulations

    PubMed Central

    Delker, Erin; Brown, Qiana; Hasin, Deborah S.

    2016-01-01

    Alcohol consumption is common across subpopulations in the United States. However, the health burden associated with alcohol consumption varies across groups, including those defined by demographic characteristics such as age, race/ethnicity, and gender. Large national surveys, such as the National Epidemiologic Survey on Alcohol and Related Conditions and the National Survey on Drug Use and Health, found that young adults ages 18–25 were at particularly high risk of alcohol use disorder and unintentional injury caused by drinking. These surveys furthermore identified significant variability in alcohol consumption and its consequences among racial/ethnic groups. White respondents reported the highest prevalence of current alcohol consumption, whereas alcohol abuse and dependence were most prevalent among Native Americans. Native Americans and Blacks also were most vulnerable to alcohol-related health consequences. Even within ethnic groups, there was variability between and among different subpopulations. With respect to gender, men reported more alcohol consumption and binge drinking than women, especially in older cohorts. Men also were at greater risk of alcohol abuse and dependence, liver cirrhosis, homicide after alcohol consumption, and drinking and driving. Systematic identification and measurement of the variability across demographics will guide prevention and intervention efforts, as well as future research. PMID:27159807

  13. An investigation of the fuel-optimal periodic trajectories of a hypersonic vehicle

    NASA Technical Reports Server (NTRS)

    Dewell, Larry D.; Speyer, Jason L.

    1993-01-01

    Periodic trajectories were found to minimize the range-averaged fuel consumption. For a realistic hypersonic aircraft modeled as a point mass over a nonrotating, spherical Earth, the periodic orbit yielded a 15 percent improvement in fuel consumption over static cruise. Moreover, vehicle dynamic loading was contained within a realistic survivability envelope of 8 g's. The resulting periodic orbit is composed of very distinct flight regimes (Keplerian arc, atmospheric glide and powered climb), which may offer mission advantages over the static path.

  14. Fuel transfer system

    DOEpatents

    Townsend, H.E.; Barbanti, G.

    1994-03-01

    A nuclear fuel bundle fuel transfer system includes a transfer pool containing water at a level above a reactor core. A fuel transfer machine therein includes a carriage disposed in the transfer pool and under the water for transporting fuel bundles. The carriage is selectively movable through the water in the transfer pool and individual fuel bundles are carried vertically in the carriage. In a preferred embodiment, a first movable bridge is disposed over an upper pool containing the reactor core, and a second movable bridge is disposed over a fuel storage pool, with the transfer pool being disposed therebetween. A fuel bundle may be moved by the first bridge from the reactor core and loaded into the carriage which transports the fuel bundle to the second bridge which picks up the fuel bundle and carries it to the fuel storage pool. 6 figures.

  15. Fuel transfer system

    DOEpatents

    Townsend, Harold E.; Barbanti, Giancarlo

    1994-01-01

    A nuclear fuel bundle fuel transfer system includes a transfer pool containing water at a level above a reactor core. A fuel transfer machine therein includes a carriage disposed in the transfer pool and under the water for transporting fuel bundles. The carriage is selectively movable through the water in the transfer pool and individual fuel bundles are carried vertically in the carriage. In a preferred embodiment, a first movable bridge is disposed over an upper pool containing the reactor core, and a second movable bridge is disposed over a fuel storage pool, with the transfer pool being disposed therebetween. A fuel bundle may be moved by the first bridge from the reactor core and loaded into the carriage which transports the fuel bundle to the second bridge which picks up the fuel bundle and carries it to the fuel storage pool.

  16. Fuel cells seminar

    SciTech Connect

    1996-12-01

    This year`s meeting highlights the fact that fuel cells for both stationary and transportation applications have reached the dawn of commercialization. Sales of stationary fuel cells have grown steadily over the past 2 years. Phosphoric acid fuel cell buses have been demonstrated in urban areas. Proton-exchange membrane fuel cells are on the verge of revolutionizing the transportation industry. These activities and many more are discussed during this seminar, which provides a forum for people from the international fuel cell community engaged in a wide spectrum of fuel cell activities. Discussions addressing R&D of fuel cell technologies, manufacturing and marketing of fuel cells, and experiences of fuel cell users took place through oral and poster presentations. For the first time, the seminar included commercial exhibits, further evidence that commercial fuel cell technology has arrived. A total of 205 papers is included in this volume.

  17. Coal liquefaction process wherein jet fuel, diesel fuel and/or ASTM No. 2 fuel oil is recovered

    DOEpatents

    Bauman, Richard F.; Ryan, Daniel F.

    1982-01-01

    An improved process for the liquefaction of coal and similar solid carbonaceous materials wherein a hydrogen donor solvent or diluent derived from the solid carbonaceous material is used to form a slurry of the solid carbonaceous material and wherein the naphthenic components from the solvent or diluent fraction are separated and used as jet fuel components. The extraction increases the relative concentration of hydroaromatic (hydrogen donor) components and as a result reduces the gas yield during liquefaction and decreases hydrogen consumption during said liquefaction. The hydrogenation severity can be controlled to increase the yield of naphthenic components and hence the yield of jet fuel and in a preferred embodiment jet fuel yield is maximized while at the same time maintaining solvent balance.

  18. Materials Approach to Fuel Efficient Tires

    SciTech Connect

    Votruba-Drzal, Peter; Kornish, Brian

    2015-06-30

    The objective of this project was to design, develop, and demonstrate fuel efficient and safety regulation compliant tire filler and barrier coating technologies that will improve overall fuel efficiency by at least 2%. The program developed and validated two complementary approaches to improving fuel efficiency through tire improvements. The first technology was a modified silica-based product that is 15% lower in cost and/or enables a 10% improvement in tread wear while maintaining the already demonstrated minimum of 2% improvement in average fuel efficiency. The second technology was a barrier coating with reduced oxygen transmission rate compared to the state-of-the-art halobutyl rubber inner liners that will provide extended placarded tire pressure retention at significantly reduced material usage. A lower-permeance, thinner inner liner coating which retains tire pressure was expected to deliver the additional 2% reduction in fleet fuel consumption. From the 2006 Transportation Research Board Report1, a 10 percent reduction in rolling resistance can reduce consumer fuel expenditures by 1 to 2 percent for typical vehicles. This savings is equivalent to 6 to 12 gallons per year. A 1 psi drop in inflation pressure increases the tire's rolling resistance by about 1.4 percent.

  19. Details of the Construction and Production of Fuel Pumps and Fuel Nozzles for the Airplane Diesel Engine

    NASA Technical Reports Server (NTRS)

    Lubenetsky, W S

    1936-01-01

    This report presents investigations into the design and construction of fuel pumps for diesel engines. The results of the pump tests on the engines showed that, with a good cut-off, accurate injection, assured by the proper adjustment of the pump elements, there is a decrease in the consumption of fuel and hence an increase in the rated power of the engine. Some of the aspects investigated include: cam profile, coefficient of discharge, and characteristics of the injection system.

  20. Fuel cell transit bus development & commercialization programs at Gerogetown University

    SciTech Connect

    Wimmer, R.; Larkins, J.; Romano, S.

    1996-12-31

    Fourteen years ago, Georgetown University (GU) perceived the need for a clean, efficient power systems for transportation that could operate on non-petroleum based fuels. The transit bus application was selected to begin system development. GU recognized the range and recharge constraints of a pure battery powered transit bus. A Fuel Cell power system would circumvent these limitations and, with an on board reformer, accommodate liquid fuel for rapid refueling. Feasibility studies for Fuel Cell power systems for transit buses were conducted with the Los Alamos National Laboratory in 1983. Successful results of this investigation resulted in the DOT/DOE Fuel Cell transit bus development program. The first task was to prove that small Fuel Cell power plants were possible. This was achieved with the Phase I development of two 25 kW Phosphoric Acid Fuel Cell (PAFC) brassboard systems. A liquid cooled version was selected for the Phase II activity in which three 30-foot Fuel Cell powered Test Bed Buses (TBBs) were fabricated. The first of these TBBs was delivered in the spring of 1994. All three of these development vehicles are now in Phase III of the program to conduct testing and evaluation, is conducting operational testing of the buses. The test will involve two fuel cell-operated buses; one with a proton exchange fuel cell and the other with a phosphoric acid fuel cell.

  1. Proton exchange membrane fuel cell technology for transportation applications

    SciTech Connect

    Swathirajan, S.

    1996-04-01

    Proton Exchange Membrane (PEM) fuel cells are extremely promising as future power plants in the transportation sector to achieve an increase in energy efficiency and eliminate environmental pollution due to vehicles. GM is currently involved in a multiphase program with the US Department of Energy for developing a proof-of-concept hybrid vehicle based on a PEM fuel cell power plant and a methanol fuel processor. Other participants in the program are Los Alamos National Labs, Dow Chemical Co., Ballard Power Systems and DuPont Co., In the just completed phase 1 of the program, a 10 kW PEM fuel cell power plant was built and tested to demonstrate the feasibility of integrating a methanol fuel processor with a PEM fuel cell stack. However, the fuel cell power plant must overcome stiff technical and economic challenges before it can be commercialized for light duty vehicle applications. Progress achieved in phase I on the use of monolithic catalyst reactors in the fuel processor, managing CO impurity in the fuel cell stack, low-cost electrode-membrane assembles, and on the integration of the fuel processor with a Ballard PEM fuel cell stack will be presented.

  2. Assessment of Housing Energy Consumption in Turkey

    NASA Astrophysics Data System (ADS)

    Yerel Kandemir, Suheyla; Erdem Çerçevik, Ali; Ankara, Huseyin; Ozgur Yayli, M.

    2016-10-01

    In this study, we analyze housing energy consumption in Turkey. The energy consumption is evaluated by using the multivariate techniques such as cluster analysis and multidimensional scaling (MDS) analysis. The number of clusters for housing energy consumption was selected as five years. Finally, cluster and MDS analysis results show that the 2009 and 2010 was the most similar consumption years in housing energy consumption. Finally, this paper present that the usefulness of cluster and MDS analysis for assessment in the energy consumption.

  3. Forecast of future aviation fuels: The model

    NASA Technical Reports Server (NTRS)

    Ayati, M. B.; Liu, C. Y.; English, J. M.

    1981-01-01

    A conceptual models of the commercial air transportation industry is developed which can be used to predict trends in economics, demand, and consumption. The methodology is based on digraph theory, which considers the interaction of variables and propagation of changes. Air transportation economics are treated by examination of major variables, their relationships, historic trends, and calculation of regression coefficients. A description of the modeling technique and a compilation of historic airline industry statistics used to determine interaction coefficients are included. Results of model validations show negligible difference between actual and projected values over the twenty-eight year period of 1959 to 1976. A limited application of the method presents forecasts of air tranportation industry demand, growth, revenue, costs, and fuel consumption to 2020 for two scenarios of future economic growth and energy consumption.

  4. Energy consumption and exhaust emissions in mechanized timber harvesting operations in Sweden.

    PubMed

    Athanassiadis, D

    2000-06-08

    The study presents an estimation of the energy input and the amount of emissions to air due to fuel, chainsaw and hydraulic oil consumption by heavy duty diesel engine vehicles operating in forest logging operations in Sweden. Exhaust concentrations are given for carbon dioxide, carbon monoxide, nitrogen oxides, hydrocarbons and particulate matter. Three fuel types (rapeseed methyl ester, environmental class 1 and environmental class 3 diesel fuels) and two types of lubricating base oil (mineral- and vegetable-based) were examined. Energy input per unit of timber production (m3ub) was 82 MJ, 11% of which was due to energy consumption during the production phase of the fuel. Emissions during the whole life cycle of the fuels and the base oils are included in the study. The highest CO2 and NOx emissions occurred when rapeseed methyl ester was used as fuel together with rapeseed as base oil for chainsaw and hydraulic oil. The highest HC and CO emissions occurred when environmental class 3 diesel fuel was used.

  5. Diatoms: a fossil fuel of the future.

    PubMed

    Levitan, Orly; Dinamarca, Jorge; Hochman, Gal; Falkowski, Paul G

    2014-03-01

    Long-term global climate change, caused by burning petroleum and other fossil fuels, has motivated an urgent need to develop renewable, carbon-neutral, economically viable alternatives to displace petroleum using existing infrastructure. Algal feedstocks are promising candidate replacements as a 'drop-in' fuel. Here, we focus on a specific algal taxon, diatoms, to become the fossil fuel of the future. We summarize past attempts to obtain suitable diatom strains, propose future directions for their genetic manipulation, and offer biotechnological pathways to improve yield. We calculate that the yields obtained by using diatoms as a production platform are theoretically sufficient to satisfy the total oil consumption of the US, using between 3 and 5% of its land area.

  6. In Brief: President proposes new fuel standards

    NASA Astrophysics Data System (ADS)

    Zielinski, Sarah

    2007-05-01

    U.S. President George W. Bush in a 14 May speech proposed several steps meant to decrease U.S. gasoline consumption by 20% over the next 10 years. Proposed legislation the administration sent to the U.S. Congress would increase the supply of renewable and alternative fuels to 35 billion gallons by 2017, which would displace about 15% of projected fuel use, and would set tighter fuel standards for cars. In addition, in response to the April U.S. Supreme Court ruling against the U.S. Environmental Protection Agency on regulating greenhouse gas emissions, the president instructed federal agencies to coordinate their activities when developing regulations that may affect greenhouse gas emissions from motor vehicles.

  7. Rapeseed and safflower oils as diesel fuels

    SciTech Connect

    Peterson, C.L.; Haines, H.; Chase, C.

    1993-12-31

    During the past decade the US has become increasingly dependent upon imported oil to meet our energy demands. Nearly 50 percent of our US consumption of petroleum is imported. Research has shown that agricultural crops can be used to reduce this dependence. Vegetable oil as an alternative fuel has been under study at the Univ. of Idaho since 1979. Since then the Idaho research team has pioneered the use of rapeseed oil as a diesel fuel substitute. Idaho`s interdisciplinary team includes plant breeding, plant modification, process development and scale-up, engine testing, and economics. Researchers in Montana have studied safflower oil as a potential diesel fuel replacement since 1983. This project, aimed for use of safflower oil in railroad engines, involves genetics, agronomics, economics and contract engine testing.

  8. Transportation Fuels and the Hydrogen Economy

    NASA Astrophysics Data System (ADS)

    Gabbard, Alex

    2004-11-01

    An energy analysis of transportation fuels is performed for comparing automobiles and fuels currently in the marketplace as real world benchmarks projected as "hydrogen economy" requirements. Comparisons are made for ideal case average energy values at Standard Temperature and Pressure (STP) at 20°C, 1 atmosphere with no loses. "Real world" benchmarks currently in the marketplace illuminate the challenges to be met if an equivalent "hydrogen economy" is to become reality. The idea of a "hydrogen economy" is that, at some time in the future, world energy needs will be supplied in part or totally from hydrogen; in part as compared to the current "petroleum economy" that is the source of most of the world's transportation fuels and only a portion of total energy use, or hydrogen as the source of all energy consumption.

  9. Environmental benefits of transport and stationary fuel cells

    NASA Astrophysics Data System (ADS)

    Hart, David; Hörmandinger, Günter

    The potential environmental benefits of using fuel cells in cars, buses and stationary combined heat and power (CHP) plants of different sizes have not been well-researched. This environmental analysis was conducted for the UK on a `full fuel cycle' basis, encompassing all greenhouse gas and regulated pollutant emissions for the supply chain and end-use technology under consideration. Solid polymer fuel cells (SPFCs) with methanol or natural gas reformers were analysed for cars, SPFCs and phosphoric acid fuel cells (PAFCs) with on-board hydrogen for buses. CHP plants were PAFCs or solid oxide fuel cells (SOFCs). Each option was compared with one or more conventional technologies. In all cases fuel cell technologies have substantially reduced emissions in comparison with conventional technologies. Regulated emissions are lowest, by up to two orders of magnitude, and those that do occur are primarily in the fuel supply chain. The fuel cell technologies are more efficient in all cases, and carbon dioxide (CO2) emissions are reduced broadly in line with energy savings. Methane emissions increase due to fuel switching, e.g. from petrol to natural gas powered buses, but from a very low base. The study pinpoints some areas in which alternative approaches could be made - the methods for generating and transporting hydrogen have a significant bearing on energy consumption and emissions. However, it is clear that from an overall emissions perspective the use of fuel cells in transport and power generation is highly beneficial.

  10. Production of bio-jet fuel from microalgae

    NASA Astrophysics Data System (ADS)

    Elmoraghy, Marian

    The increase in petroleum-based aviation fuel consumption, the decrease in petroleum resources, the fluctuation of the crude oil price, the increase in greenhouse gas emission and the need for energy security are motivating the development of an alternate jet fuel. Bio-jet fuel has to be a drop in fuel, technically and economically feasible, environmentally friendly, greener than jet fuel, produced locally and low gallon per Btu. Bic jet fuel has been produced by blending petro-based jet fuel with microalgae biodiesel (Fatty Acid Methyl Ester, or simply FAME). Indoor microalgae growth, lipids extraction and transetrification to biodiesel are energy and fresh water intensive and time consuming. In addition, the quality of the biodiesel product and the physical properties of the bio-jet fuel blends are unknown. This work addressed these challenges. Minimizing the energy requirements and making microalgae growth process greener were accomplished by replacing fluorescent lights with light emitting diodes (LEDs). Reducing fresh water footprint in algae growth was accomplished by waste water use. Microalgae biodiesel production time was reduced using the one-step (in-situ transestrification) process. Yields up to 56.82 mg FAME/g dry algae were obtained. Predicted physical properties of in-situ FAME satisfied European and American standards confirming its quality. Lipid triggering by nitrogen deprivation was accomplished in order to increase the FAME production. Bio-jet fuel freezing points and heating values were measured for different jet fuel to biodiesel blend ratios.

  11. Inconsistent Investment and Consumption Problems

    SciTech Connect

    Kronborg, Morten Tolver; Steffensen, Mogens

    2015-06-15

    In a traditional Black–Scholes market we develop a verification theorem for a general class of investment and consumption problems where the standard dynamic programming principle does not hold. The theorem is an extension of the standard Hamilton–Jacobi–Bellman equation in the form of a system of non-linear differential equations. We derive the optimal investment and consumption strategy for a mean-variance investor without pre-commitment endowed with labor income. In the case of constant risk aversion it turns out that the optimal amount of money to invest in stocks is independent of wealth. The optimal consumption strategy is given as a deterministic bang-bang strategy. In order to have a more realistic model we allow the risk aversion to be time and state dependent. Of special interest is the case were the risk aversion is inversely proportional to present wealth plus the financial value of future labor income net of consumption. Using the verification theorem we give a detailed analysis of this problem. It turns out that the optimal amount of money to invest in stocks is given by a linear function of wealth plus the financial value of future labor income net of consumption. The optimal consumption strategy is again given as a deterministic bang-bang strategy. We also calculate, for a general time and state dependent risk aversion function, the optimal investment and consumption strategy for a mean-standard deviation investor without pre-commitment. In that case, it turns out that it is optimal to take no risk at all.

  12. Fuel economy and emissions evaluation of BMW hydrogen 7 mono-fuel demonstration vehicles.

    SciTech Connect

    Wallner, T.; Lohse-Busch, H.; Gurski, S.; Duoba, M.; Thiel, W.; Martin, D.; Korn, T.; Energy Systems; BMW Group Munich Germany; BMW Group Oxnard USA

    2008-12-01

    This article summarizes the testing of two BMW Hydrogen 7 Mono-Fuel demonstration vehicles at Argonne National Laboratory's Advanced Powertrain Research Facility (APRF). The BMW Hydrogen 7 Mono-Fuel demonstration vehicles are derived from the BMW Hydrogen 7 bi-fuel vehicles and based on a BMW 760iL. The mono-fuel as well as the bi-fuel vehicle(s) is equipped with cryogenic hydrogen on-board storage and a gaseous hydrogen port fuel injection system. The BMW Hydrogen 7 Mono-Fuel demonstration vehicles were tested for fuel economy as well as emissions on the Federal Test Procedure FTP-75 cold-start test as well as the highway test. The results show that these vehicles achieve emissions levels that are only a fraction of the Super Ultra Low Emissions Vehicle (SULEV) standard for nitric oxide (NO{sub x}) and carbon monoxide (CO) emissions. For non-methane hydrocarbon (NMHC) emissions the cycle-averaged emissions are actually 0 g/mile, which require the car to actively reduce emissions compared to the ambient concentration. The fuel economy numbers on the FTP-75 test were 3.7 kg of hydrogen per 100 km, which, on an energy basis, is equivalent to a gasoline fuel consumption of 17 miles per gallon (mpg). Fuel economy numbers for the highway cycle were determined to be 2.1 kg of hydrogen per 100 km or 30 miles per gallon of gasoline equivalent (GGE). In addition to cycle-averaged emissions and fuel economy numbers, time-resolved (modal) emissions as well as air/fuel ratio data is analyzed to further investigate the root causes of the remaining emissions traces. The BMW Hydrogen 7 vehicles employ a switching strategy with lean engine operation at low engine loads and stoichiometric operation at high engine loads that avoids the NO{sub x} emissions critical operating regime with relative air/fuel ratios between 1 < {lambda} < 2. The switching between these operating modes was found to be a major source of the remaining NO{sub x} emissions. The emissions results collected

  13. Forest surveys and wildfire assessment in the Los Alamos Region; 1998-1999

    SciTech Connect

    Randy G. Balice; Jay D. Miller; Brian P. Oswald; Carl Edminster; Stephen R. Yool

    2000-06-01

    To better understand the structural characteristics of vegetation in the Los Alamos region, the authors conducted two years of field surveys and associated analyses. This report introduces field methods, lists the summarized field data, and discusses the results of preliminary spatial analyses. During 1998 and 1999, seventy-six terrestrial plant communities were sampled for topographic characteristics, soil surface features, and vegetational conditions. A nested, randomized design was used to select the plot locations and to guide the sampling of the plot. The samples included a variety of fuel types, including surface fuels and ground fuels, shrubby and small tree fuels, and overstory fuels. Species composition data were also collected. The fuels data were summarized by vegetation type and evaluated for the topographic and spatial relationships of major field categories. The results of these analyses indicate that many of the fuels categories depend on topographic factors in a linear and curvilinear fashion. In particular, middle elevations within the Los Alamos region tend to support more surface fuels and ground fuels, whereas large-diameter trees are most dense at higher elevations and are specific to community types at these elevations. Small-diameter trees occur in more dense stands at lower and middle elevations and on specific soil and topographic conditions. Areas that burned in 1954 were found to be relatively free of fuels. The implications are that the western portions of the Los Alamos region are at risk from wildfire during dry, summer periods.

  14. Alternative aircraft fuels

    NASA Technical Reports Server (NTRS)

    Longwell, J. P.; Grobman, J.

    1978-01-01

    In connection with the anticipated impossibility to provide on a long-term basis liquid fuels derived from petroleum, an investigation has been conducted with the objective to assess the suitability of jet fuels made from oil shale and coal and to develop a data base which will allow optimization of future fuel characteristics, taking energy efficiency of manufacture and the tradeoffs in aircraft and engine design into account. The properties of future aviation fuels are examined and proposed solutions to problems of alternative fuels are discussed. Attention is given to the refining of jet fuel to current specifications, the control of fuel thermal stability, and combustor technology for use of broad specification fuels. The first solution is to continue to develop the necessary technology at the refinery to produce specification jet fuels regardless of the crude source.

  15. Fuel injector system

    DOEpatents

    Hsu, Bertrand D.; Leonard, Gary L.

    1988-01-01

    A fuel injection system particularly adapted for injecting coal slurry fuels at high pressures includes an accumulator-type fuel injector which utilizes high-pressure pilot fuel as a purging fluid to prevent hard particles in the fuel from impeding the opening and closing movement of a needle valve, and as a hydraulic medium to hold the needle valve in its closed position. A fluid passage in the injector delivers an appropriately small amount of the ignition-aiding pilot fuel to an appropriate region of a chamber in the injector's nozzle so that at the beginning of each injection interval the first stratum of fuel to be discharged consists essentially of pilot fuel and thereafter mostly slurry fuel is injected.

  16. Dual Tank Fuel System

    DOEpatents

    Wagner, Richard William; Burkhard, James Frank; Dauer, Kenneth John

    1999-11-16

    A dual tank fuel system has primary and secondary fuel tanks, with the primary tank including a filler pipe to receive fuel and a discharge line to deliver fuel to an engine, and with a balance pipe interconnecting the primary tank and the secondary tank. The balance pipe opens close to the bottom of each tank to direct fuel from the primary tank to the secondary tank as the primary tank is filled, and to direct fuel from the secondary tank to the primary tank as fuel is discharged from the primary tank through the discharge line. A vent line has branches connected to each tank to direct fuel vapor from the tanks as the tanks are filled, and to admit air to the tanks as fuel is delivered to the engine.

  17. Meat Consumption Culture in Ethiopia

    PubMed Central

    Jo, Cheorun

    2014-01-01

    The consumption of animal flesh food in Ethiopia has associated with cultural practices. Meat plays pivotal and vital parts in special occasions and its cultural symbolic weight is markedly greater than that accorded to most other food. Processing and cooking of poultry is a gender based duty and has socio-cultural roles. Ethiopians are dependent on limited types of animals for meats due to the taboo associated culturally. Moreover, the consumption of meat and meat products has a very tidy association with religious beliefs, and are influenced by religions. The main religions of Ethiopia have their own peculiar doctrines of setting the feeding habits and customs of their followers. They influence meat products consumption through dictating the source animals that should be used or not be used for food, and scheduling the days of the years in periodical permeation and restriction of consumptions which in turn influences the pattern of meat consumption in the country. In Ethiopia, a cow or an ox is commonly butchered for the sole purpose of selling within the community. In special occasions, people have a cultural ceremony of slaughtering cow or ox and sharing among the group, called Kircha, which is a very common option of the people in rural area where access of meat is challenging frequently. PMID:26760739

  18. DIESEL FUEL LUBRICATION

    SciTech Connect

    Qu, Jun

    2012-01-01

    The diesel fuel injector and pump systems contain many sliding interfaces that rely for lubrication upon the fuels. The combination of the poor fuel lubricity and extremely tight geometric clearance between the plunger and bore makes the diesel fuel injector vulnerable to scuffing damage that severely limits the engine life. In order to meet the upcoming stricter diesel emission regulations and higher engine efficiency requirements, further fuel refinements that will result in even lower fuel lubricity due to the removal of essential lubricating compounds, more stringent operation conditions, and tighter geometric clearances are needed. These are expected to increase the scuffing and wear vulnerability of the diesel fuel injection and pump systems. In this chapter, two approaches are discussed to address this issue: (1) increasing fuel lubricity by introducing effective lubricity additives or alternative fuels, such as biodiesel, and (2) improving the fuel injector scuffing-resistance by using advanced materials and/or surface engineering processes. The developing status of the fuel modification approach is reviewed to cover topics including fuel lubricity origins, lubricity improvers, alternative fuels, and standard fuel lubricity tests. The discussion of the materials approach is focused on the methodology development for detection of the onset of scuffing and evaluation of the material scuffing characteristics.

  19. Potential production of energy cane for fuel in the Caribbean

    SciTech Connect

    Samuels, G.

    1984-08-01

    Sugarcane grown as energy cane presents a new potential to the Caribbean countries to provide their own energy needs and to reduce or eliminate fuel oil imports. The use of proper agronomic techniques can convert conventional sugarcane growing to a crop capable of giving energy feedstocks in the form of fiber for boiler fuel for electricity and fermentable solids for alcohol for motor fuel. Sugarcane can still be obtained from the energy cane for domestic consumption and export if desired. The aerable land now devoted to sugarcane can utilized for energy-cane production without causing any serious imbalance in food crop production.

  20. Fuel economy measurement road test procedure. SAE standard

    SciTech Connect

    1995-06-01

    This SAE Standard incorporates driving cycles that produce fuel consumption data relating to urban, suburban, and interstate driving patterns and is intended to be used to determine the relative fuel economy among vehicles and driving patterns under warmed-up conditions on test tracks, suitable roads, or chassis dynamometers. The cycle forms the basis of a cold-start test procedure described in SAE J1256. This document provides uniform testing procedures for measuring the fuel economy of light duty vehicles (motor vehicles designed primarily for transportation of persons or property and rated at 4,500 kg (10,000 lb) or less) on suitable roads.

  1. Hydrogen Fueling Station in Honolulu, Hawaii Feasibility Analysis

    SciTech Connect

    Porter Hill; Michael Penev

    2014-08-01

    The Department of Energy Hydrogen & Fuel Cells Program Plan (September 2011) identifies the use of hydrogen for government and fleet electric vehicles as a key step for achieving “reduced greenhouse gas emissions; reduced oil consumption; expanded use of renewable power …; highly efficient energy conversion; fuel flexibility …; reduced air pollution; and highly reliable grid-support.” This report synthesizes several pieces of existing information that can inform a decision regarding the viability of deploying a hydrogen (H2) fueling station at the Fort Armstrong site in Honolulu, Hawaii.

  2. Highway fuel economy study. Final report Sep 79-Mar 81

    SciTech Connect

    Mason, R.L.; Zub, R.W.

    1981-06-01

    In 1979, the National Highway Traffic Safety Administration (NHTSA) with support from the Federal Highway Administration (FHWA), convened a Task Force to develop a base of information on the effects of the 55 MPH speed limit. This report addresses the fuel consumption changes attributable to speed reduction and compliance with the 55 MPH speed limit. It also discusses the effects of vehicle size and type, and driver-controllable functions on vehicle fuel economy at highway speeds. Most of the analytical work in this report is related to passenger cars and light trucks. However, medium and heavy trucks, primarily commercial in application, have been included in the highway fuel economy analyses.

  3. Fuel economy of hybrid fuel cell vehicles.

    SciTech Connect

    Ahluwalia, R.; Wang, X.; Rousseau, A.; Nuclear Engineering Division

    2004-01-01

    The potential improvement in fuel economy of a mid-size fuel-cell vehicle by combining it with an energy storage system has been assessed. An energy management strategy is developed and used to operate the direct hydrogen, pressurized fuel-cell system in a load-following mode and the energy storage system in a charge-sustaining mode. The strategy places highest priority on maintaining the energy storage system in a state where it can supply unanticipated boost power when the fuel-cell system alone cannot meet the power demand. It is found that downsizing a fuel-cell system decreases its efficiency on a drive cycle which is compensated by partial regenerative capture of braking energy. On a highway cycle with limited braking energy the increase in fuel economy with hybridization is small but on the stop-and-go urban cycle the fuel economy can improve by 27%. On the combined highway and urban drive cycles the fuel economy of the fuel-cell vehicle is estimated to increase by up to 15% by hybridizing it with an energy storage system.

  4. Fuel cycle for a fusion neutron source

    NASA Astrophysics Data System (ADS)

    Ananyev, S. S.; Spitsyn, A. V.; Kuteev, B. V.

    2015-12-01

    The concept of a tokamak-based stationary fusion neutron source (FNS) for scientific research (neutron diffraction, etc.), tests of structural materials for future fusion reactors, nuclear waste transmutation, fission reactor fuel production, and control of subcritical nuclear systems (fusion-fission hybrid reactor) is being developed in Russia. The fuel cycle system is one of the most important systems of FNS that provides circulation and reprocessing of the deuterium-tritium fuel mixture in all fusion reactor systems: the vacuum chamber, neutral injection system, cryogenic pumps, tritium purification system, separation system, storage system, and tritium-breeding blanket. The existing technologies need to be significantly upgraded since the engineering solutions adopted in the ITER project can be only partially used in the FNS (considering the capacity factor higher than 0.3, tritium flow up to 200 m3Pa/s, and temperature of reactor elements up to 650°C). The deuterium-tritium fuel cycle of the stationary FNS is considered. The TC-FNS computer code developed for estimating the tritium distribution in the systems of FNS is described. The code calculates tritium flows and inventory in tokamak systems (vacuum chamber, cryogenic pumps, neutral injection system, fuel mixture purification system, isotope separation system, tritium storage system) and takes into account tritium loss in the fuel cycle due to thermonuclear burnup and β decay. For the two facility versions considered, FNS-ST and DEMO-FNS, the amount of fuel mixture needed for uninterrupted operation of all fuel cycle systems is 0.9 and 1.4 kg, consequently, and the tritium consumption is 0.3 and 1.8 kg per year, including 35 and 55 g/yr, respectively, due to tritium decay.

  5. Fuel cycle for a fusion neutron source

    SciTech Connect

    Ananyev, S. S. Spitsyn, A. V. Kuteev, B. V.

    2015-12-15

    The concept of a tokamak-based stationary fusion neutron source (FNS) for scientific research (neutron diffraction, etc.), tests of structural materials for future fusion reactors, nuclear waste transmutation, fission reactor fuel production, and control of subcritical nuclear systems (fusion–fission hybrid reactor) is being developed in Russia. The fuel cycle system is one of the most important systems of FNS that provides circulation and reprocessing of the deuterium–tritium fuel mixture in all fusion reactor systems: the vacuum chamber, neutral injection system, cryogenic pumps, tritium purification system, separation system, storage system, and tritium-breeding blanket. The existing technologies need to be significantly upgraded since the engineering solutions adopted in the ITER project can be only partially used in the FNS (considering the capacity factor higher than 0.3, tritium flow up to 200 m{sup 3}Pa/s, and temperature of reactor elements up to 650°C). The deuterium–tritium fuel cycle of the stationary FNS is considered. The TC-FNS computer code developed for estimating the tritium distribution in the systems of FNS is described. The code calculates tritium flows and inventory in tokamak systems (vacuum chamber, cryogenic pumps, neutral injection system, fuel mixture purification system, isotope separation system, tritium storage system) and takes into account tritium loss in the fuel cycle due to thermonuclear burnup and β decay. For the two facility versions considered, FNS-ST and DEMO-FNS, the amount of fuel mixture needed for uninterrupted operation of all fuel cycle systems is 0.9 and 1.4 kg, consequently, and the tritium consumption is 0.3 and 1.8 kg per year, including 35 and 55 g/yr, respectively, due to tritium decay.

  6. Ecological consequences of elevated total dissolved solids associated with fossil fuel extraction in the United States

    EPA Science Inventory

    Fossil fuel burning is considered a major contributor to global climate change. The outlook for production and consumption of fossil fuels int he US indicates continued growth to support growing energy demands. For example, coal-generated electricity is projected ot increase from...

  7. Development of a Space-Rated Proton Exchange Membrane Fuel Cell

    NASA Technical Reports Server (NTRS)

    Hoffman, William C., III; Vasquez, Arturo; Lazaroff, Scott M.; Downey, Michael G.

    1999-01-01

    Power systems for human spacecraft have historically included fuel cells due to the superior energy density they offer over battery systems depending on mission length and power consumption. As space exploration focuses on the evolution of reusable spacecraft and also considers planetary exploration power system requirements, fuel cells continue to be a factor in the potential system solutions.

  8. 40 CFR 600.311-12 - Determination of values for fuel economy labels.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... separate values for combined fuel economy for vehicle operation before and after the vehicle's battery is... as follows: (i) Calculate the fuel consumption rate based on engine operation after the battery is... rate during operation before the battery is fully discharged in kW-hours per 100 miles as described...

  9. 40 CFR 600.311-12 - Determination of values for fuel economy labels.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... separate values for combined fuel economy for vehicle operation before and after the vehicle's battery is...) Calculate the fuel consumption rate based on engine operation after the battery is fully discharged as... before the battery is fully discharged in kW-hours per 100 miles as described in SAE J1711...

  10. 40 CFR 600.311-12 - Determination of values for fuel economy labels.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... separate values for combined fuel economy for vehicle operation before and after the vehicle's battery is... as follows: (i) Calculate the fuel consumption rate based on engine operation after the battery is... rate during operation before the battery is fully discharged in kW-hours per 100 miles as described...

  11. Fossil Fuels. A Supplement to the "Science 100, 101" Curriculum Guide. Curriculum Support Series.

    ERIC Educational Resources Information Center

    Soprovich, William, Comp.

    When the fossil fuels unit was first designed for Science 101 (the currently approved provincial guide for grade 10 science in Manitoba), Canadian support materials were very limited. Since students are asked to interpret data concerning energy consumption and sources for certain fossil fuels, the need for appropriate Canadian data became obvious.…

  12. A study of ethanol low grade as an alternative fuel for small engine

    NASA Astrophysics Data System (ADS)

    Sugiarto, Bambang; Darsono, Dody; Nurhuda, M.; Wardhana, Ing

    2012-06-01

    The availability of non renewable petroleum fuels insists people to make use of alternative energy sources. Currently petroleum dominates the main source of fuel for combustion. Renewable energy is a solution to deal with this issue. One source of renewable energy is bio ethanol. The previous study conducted distillator compact design by utilizing exhaust gases from motor fuels as a primary means of ethanol processing. The goal is to produce viable products into fuel ethanol of which levels above 90%. In this study, it is conducted at the evaporator temperature control with a load of 300 Watt which this conclusions obtained in previous studies on the load 300 Watts has maximum results obtained to be able of consumption needs of fuel on the genset. At 90°C temperature-controlled at the evaporator produces maximum that is able to meet the fuel consumption for the genset. At 85°C temperature-controlled at the evaporator produces high concentric of alcohol but did not meet of fuel consumption. At temperatures of 90°C can be concluded get the most out due to meet the fuel consumption and also has high concentric of alcohol. Gas have low levels of CO (± 1.2% Vol.), low HC (± 150 ppm Vol.).

  13. Minimizing water consumption when producing hydropower

    NASA Astrophysics Data System (ADS)

    Leon, A. S.

    2015-12-01

    In 2007, hydropower accounted for only 16% of the world electricity production, with other renewable sources totaling 3%. Thus, it is not surprising that when alternatives are evaluated for new energy developments, there is strong impulse for fossil fuel or nuclear energy as opposed to renewable sources. However, as hydropower schemes are often part of a multipurpose water resources development project, they can often help to finance other components of the project. In addition, hydropower systems and their associated dams and reservoirs provide human well-being benefits, such as flood control and irrigation, and societal benefits such as increased recreational activities and improved navigation. Furthermore, hydropower due to its associated reservoir storage, can provide flexibility and reliability for energy production in integrated energy systems. The storage capability of hydropower systems act as a regulating mechanism by which other intermittent and variable renewable energy sources (wind, wave, solar) can play a larger role in providing electricity of commercial quality. Minimizing water consumption for producing hydropower is critical given that overuse of water for energy production may result in a shortage of water for other purposes such as irrigation, navigation or fish passage. This paper presents a dimensional analysis for finding optimal flow discharge and optimal penstock diameter when designing impulse and reaction water turbines for hydropower systems. The objective of this analysis is to provide general insights for minimizing water consumption when producing hydropower. This analysis is based on the geometric and hydraulic characteristics of the penstock, the total hydraulic head and the desired power production. As part of this analysis, various dimensionless relationships between power production, flow discharge and head losses were derived. These relationships were used to withdraw general insights on determining optimal flow discharge and

  14. Mapping water consumption for energy production around the Pacific Rim

    NASA Astrophysics Data System (ADS)

    Tidwell, Vincent; Moreland, Barbie

    2016-09-01

    World energy demand is projected to increase by more than a third by 2035 and with it the use of water to extract and process fuels and generate electricity. Management of this energy-water nexus requires a clear understanding of the inter-related demands of these resources as well as their regional distribution. Toward this need the fresh water consumed for energy production was mapped for almost 12 000 watersheds distributed across the 21-economies comprising the Asia-Pacific Economic Cooperation. Fresh water consumption was estimated for ten different sectors including thermoelectric and hydroelectric power; energy extraction including coal, oil, natural gas, uranium and unconventional oil/gas; energy processing including oil and biofuels; and biofuel feedstock irrigation. These measures of water consumption were put in context by drawing comparison with published measures of water risk. In total 791 watersheds (32%) of the 2511 watersheds where energy related water consumption occurred were also characterized by high to extreme water risk, these watersheds were designated as being at energy-water risk. For six economies watersheds at energy-water risk represented half or more of all basins where energy related water consumption occurred, while four additional economies exceeded 30%.

  15. Mapping water consumption for energy production around the Pacific Rim

    DOE PAGES

    Tidwell, Vincent; Moreland, Barbie

    2016-09-07

    World energy demand is projected to increase by more than a third by 2035 and with it the use of water to extract and process fuels and generate electricity. Management of this energy-water nexus requires a clear understanding of the inter-related demands of these resources as well as their regional distribution. Toward this need the fresh water consumed for energy production was mapped for almost 12 000 watersheds distributed across the 21-economies comprising the Asia-Pacific Economic Cooperation. Fresh water consumption was estimated for ten different sectors including thermoelectric and hydroelectric power; energy extraction including coal, oil, natural gas, uranium andmore » unconventional oil/gas; energy processing including oil and biofuels; and biofuel feedstock irrigation. These measures of water consumption were put in context by drawing comparison with published measures of water risk. In total 791 watersheds (32%) of the 2511 watersheds where energy related water consumption occurred were also characterized by high to extreme water risk, these watersheds were designated as being at energy-water risk. Furthermore, for six economies watersheds at energy-water risk represented half or more of all basins where energy related water consumption occurred, while four additional economies exceeded 30%.« less

  16. Mapping water consumption for energy production around the Pacific Rim

    SciTech Connect

    Tidwell, Vincent; Moreland, Barbie

    2016-09-07

    World energy demand is projected to increase by more than a third by 2035 and with it the use of water to extract and process fuels and generate electricity. Management of this energy-water nexus requires a clear understanding of the inter-related demands of these resources as well as their regional distribution. Toward this need the fresh water consumed for energy production was mapped for almost 12 000 watersheds distributed across the 21-economies comprising the Asia-Pacific Economic Cooperation. Fresh water consumption was estimated for ten different sectors including thermoelectric and hydroelectric power; energy extraction including coal, oil, natural gas, uranium and unconventional oil/gas; energy processing including oil and biofuels; and biofuel feedstock irrigation. These measures of water consumption were put in context by drawing comparison with published measures of water risk. In total 791 watersheds (32%) of the 2511 watersheds where energy related water consumption occurred were also characterized by high to extreme water risk, these watersheds were designated as being at energy-water risk. Furthermore, for six economies watersheds at energy-water risk represented half or more of all basins where energy related water consumption occurred, while four additional economies exceeded 30%.

  17. Moral Violations Reduce Oral Consumption

    PubMed Central

    Chan, Cindy; Van Boven, Leaf; Andrade, Eduardo B.; Ariely, Dan

    2014-01-01

    Consumers frequently encounter moral violations in everyday life. They watch movies and television shows about crime and deception, hear news reports of corporate fraud and tax evasion, and hear gossip about cheaters and thieves. How does exposure to moral violations influence consumption? Because moral violations arouse disgust and because disgust is an evolutionarily important signal of contamination that should provoke a multi-modal response, we hypothesize that moral violations affect a key behavioral response to disgust: reduced oral consumption. In three experiments, compared with those in control conditions, people drank less water and chocolate milk while (a) watching a film portraying the moral violations of incest, (b) writing about moral violations of cheating or theft, and (c) listening to a report about fraud and manipulation. These findings imply that “moral disgust” influences consumption in ways similar to core disgust, and thus provide evidence for the associations between moral violations, emotions, and consumer behavior. PMID:25125931

  18. Moral Violations Reduce Oral Consumption.

    PubMed

    Chan, Cindy; Van Boven, Leaf; Andrade, Eduardo B; Ariely, Dan

    2014-07-01

    Consumers frequently encounter moral violations in everyday life. They watch movies and television shows about crime and deception, hear news reports of corporate fraud and tax evasion, and hear gossip about cheaters and thieves. How does exposure to moral violations influence consumption? Because moral violations arouse disgust and because disgust is an evolutionarily important signal of contamination that should provoke a multi-modal response, we hypothesize that moral violations affect a key behavioral response to disgust: reduced oral consumption. In three experiments, compared with those in control conditions, people drank less water and chocolate milk while (a) watching a film portraying the moral violations of incest, (b) writing about moral violations of cheating or theft, and (c) listening to a report about fraud and manipulation. These findings imply that "moral disgust" influences consumption in ways similar to core disgust, and thus provide evidence for the associations between moral violations, emotions, and consumer behavior.

  19. Impact of electric cars on national energy consumption

    NASA Astrophysics Data System (ADS)

    Agarwal, P. D.

    1980-02-01

    Energy utilization of electric vehicles is discussed in terms of energy efficiency in comparison to internal combustion engine automobiles, starting from oil or coal as the prime energy source. It is found that although an electric car does not save primary energy resources, it can transfer some of the transportation fuel needs from petroleum to coal, nuclear, or hydropower. With reference to the impact of electric vehicles on reduction of petroleum consumption, it is shown that the dependence of the United States on foreign oil can be reduced much more quickly and at much lower cost by converting electric utility boilers from oil to coal.

  20. US energy consumption and supply

    NASA Astrophysics Data System (ADS)

    Vanatta, C. M.

    1981-01-01

    Energy consumption and cost in 1978 and 1979 are discussed with emphasis on the effect of imported oil on the economy of the United States. Some of the international aspects of energy supply are described, and actions to meet the probability of a cutoff of oil imports from the Persian Gulf area are suggested. Short and long range strategies for ensuring energy self sufficiency are discussed. A rationale for major, long range dependence on fission and fusion power is given, and the possible advantages of a nearly all electric energy system are mentioned. Projection of energy consumption and supply to the year 2020 based upon economic and demographic models is discussed.

  1. Fuel Savings and Aerodynamic Drag Reduction from Rail Car Covers

    NASA Technical Reports Server (NTRS)

    Storms, Bruce; Salari, Kambiz; Babb, Alex

    2008-01-01

    The potential for energy savings by reducing the aerodynamic drag of rail cars is significant. A previous study of aerodynamic drag of coal cars suggests that a 25% reduction in drag of empty cars would correspond to a 5% fuel savings for a round trip [1]. Rail statistics for the United States [2] report that approximately 5.7 billion liters of diesel fuel were consumed for coal transportation in 2002, so a 5% fuel savings would total 284 million liters. This corresponds to 2% of Class I railroad fuel consumption nationwide. As part of a DOE-sponsored study, the aerodynamic drag of scale rail cars was measured in a wind tunnel. The goal of the study was to measure the drag reduction of various rail-car cover designs. The cover designs tested yielded an average drag reduction of 43% relative to empty cars corresponding to an estimated round-trip fuel savings of 9%.

  2. [Carbon balance analysis of corn fuel ethanol life cycle].

    PubMed

    Zhang, Zhi-shan; Yuan, Xi-gang

    2006-04-01

    The quantity of greenhouse gas emissions (net carbon emissions) of corn-based fuel ethanol, which is known as an alternative for fossil fuel is an important criteria for evaluating its sustainability. The methodology of carbon balance analysis for fuel ethanol from corn was developed based on principles of life cycle analysis. For the production state of fuel ethanol from summer corn in China, carbon budgets in overall life cycle of the ethanol were evaluated and its main influence factors were identified. It presents that corn-based fuel ethanol has no obvious reduction of carbon emissions than gasoline, and potential improvement in carbon emission of the life cycle of corn ethanol could be achieved by reducing the nitrogen fertilizer and irrigation electricity used in the corn farming and energy consumption in the ethanol conversion process.

  3. Investigation of vehicle and driver aggressivity and relation to fuel economy testing

    NASA Astrophysics Data System (ADS)

    Stichter, Jonathan Seth

    As vehicle technologies continue to improve it is becoming more evident one of the last major factors impacting fuel economy left today is the driver. In this study the driver is defined as the operator of a vehicle and the difference between driving styles of the driver and vehicle is defined as aggressivity. Driver aggressivity is proven to have a substantial impact on fuel economy in many studies. Many fuel economy tests have been created, all to measure the fuel efficiency of today's vehicles and their related technologies. These tests typically require that the drivers be trained or experienced in fuel economy testing unless the impact of the driver on fuel economy is the variable being tested. It is also recommended, for certain tests, that the driver stay with the same vehicle for the tests entirety. Although these are the requirements, having the same trained drivers for the entirety of a fuel economy test may not always be a viable option. This leads to the question of, what impact can a set of drivers, who are asked to drive the same, have on fuel consumption during a fuel consumption test? The SAE J1321 Type II Fuel Consumption Test Procedure was followed on two identical trucks with two drivers that were untrained in fuel economy testing in order to answer this question. It was found in this particular study that the driver variability can impose up to a 10% fuel economy difference on shorter distance routes where the driver is kept the same. By increasing the distance of the route and swapping drivers variability in fuel economy reduced to 5%. It was shown by this particular test that the impact of the driver when asked to drive the same is minimal compared to real world results of up to 30%. A larger data set and more testing is still necessary to completely understand and validate the impact of the driver on fuel economy testing.

  4. Fuel injection nozzle

    SciTech Connect

    Kato, M.; Tojo, S.; Arai, K.

    1986-07-22

    A fuel injection nozzle is described connected to a fuel injection pump to inject fuel into a combustion chamber of an internal combustion engine consisting of: a nozzle housing defining therein a fuel sump chamber, an injection hole communicating with the sump chamber and opened at the outer surface of the nozzle housing, a stepped cylinder bore having a smaller diameter bore section and a larger diameter bore section and a fuel passage communicating at one end with the sump chamber and at the other end with the smaller diameter bore section of the stepped cylinder bore; a stepped plunger fitted in the stepped cylinder bore and having a smaller diameter plunger section fitted into the smaller diameter bore section and a larger diameter plunger section fitted into the larger diameter bore section in which the smaller diameter bore section together with the end face of the smaller diameter plunger section defines a pump chamber communicating with the fuel passage and the larger diameter bore section together with the end face of the larger diameter plunger section defines a main fuel chamber into which a main fuel is supplied from the fuel injection pump; auxiliary fuel supply means for supplying an auxiliary fuel into the sump chamber and pump chamber through the fuel passage; valve means for opening and closing an injection hole; communication means for permitting the main fuel chamber to communicate with the fuel passage when the main fuel is supplied from the injection pump into the main fuel chamber to cause the stepped plunger to be moved a predetermined distance in a direction in which the auxiliary fuel in the pump chamber is pressurized.

  5. A Survey of Alternate Fuels and Their Suitability for Use by the U.S. Navy

    DTIC Science & Technology

    2007-09-30

    the United States . Adapted from National Biodiesel Board, 2007. 36 5 Schematic of pyrolysis to produce liquid fuels from biomass . 44 6 Schematic of...consumption of petroleum fuel in the United States annually by the year 2010. The types of alternative fuel vehicles (U.S. Navy and Marine Corps AFV...produced by pyrolysis of woody material to make syngas, a process equivalent to that described for coal, with catalytic reformation into methanol

  6. Robust fuel- and time-optimal control of uncertain flexible space structures

    NASA Technical Reports Server (NTRS)

    Wie, Bong; Sinha, Ravi; Sunkel, John; Cox, Ken

    1993-01-01

    The problem of computing open-loop, fuel- and time-optimal control inputs for flexible space structures in the face of modeling uncertainty is investigated. Robustified, fuel- and time-optimal pulse sequences are obtained by solving a constrained optimization problem subject to robustness constraints. It is shown that 'bang-off-bang' pulse sequences with a finite number of switchings provide a practical tradeoff among the maneuvering time, fuel consumption, and performance robustness of uncertain flexible space structures.

  7. Evaluation of the Effects of a Pipeline Flow Improver on Aircraft Fuel Systems

    DTIC Science & Technology

    1993-01-01

    number of revolutions, thrust, exhaust temperature, specific fuel consumption and endoscopic test showed no significant influence of the PDR on the...cut up into 2-inch segments. Each segment was rinsed with heptane, dried in a vacuum oven at 100 °C for 1 hour, and analyzed for carbon using a Leco RC... vacuum oven at 212 ’F for at least 30 minutes. The sections were then analysed using the Leco RC-412 Carbon Analyzer. FUEL ANALYSIS Selected fuel samples

  8. Fuel injection system

    SciTech Connect

    Miyaki, M.; Iwanaga, T.; Fujisawa, H.

    1988-10-18

    This patent describes a fuel injection system for a diesel engine comprising: condition detection means for detecting operating conditions of the diesel engine including a rotational position thereof; low pressure fuel supply means for supplying fuel at a low pressure at an output port thereof; high pressure fuel pump means, having a pump chamber communicating with the output port of the low pressure fuel supply means, and plunger means reciprocable within the pump chamber for introducing fuel from the output port of the low pressure fuel supply means into the pump chamber during a movement in a predetermined direction of the plunger means and for pressurizing the introduced fuel during a movement of the plunger means in the opposite direction so that pressurized fuel is delivered from the high pressure fuel pump means at an output port thereof; common rail fuel storage means, connected to the output port of the high pressure fuel pump means, for storing pressurized fuel delivered from the high pressure pump therein at a substantially continuous pressure.

  9. Fuel injection pump

    SciTech Connect

    Miyaki, M.

    1986-01-07

    This patent describes a fuel injection pump for delivering fuel to the cylinders of an internal combustion engine consisting of: a pump housing with a fuel chamber therein to which fuel is supplied from a fuel tank; means for compressing fuel in the pump chamber and delivering the compressed fuel to the engine cylinders with such means including a pump plunger adapted to be reciprocated so as to introduce fuel into the pump chamber and to pressurize the introduced fuel; spill means for spilling to a low-pressure side on a fuel tank side the compressed fuel which was pressurized in the pump chamber to be delivered from the pump chamber to the engine cylinders, the spill mechanism including a spill passage communicating with the pump chamber and including a solenoid valve located in the spill passage for opening and closing the spill passage with predetermined timing; escape for allowing the compressed fuel pressurized in the pump chamber to escape to the low-pressure side of the fuel tank side.

  10. Residential energy consumption across different population groups: Comparative analysis for Latino and non-Latino households in U.S.A.

    SciTech Connect

    Poyer, D.A.; Teotia, A.P.S.; Henderson, L.

    1998-05-01

    Residential energy cost, an important part of the household budget, varies significantly across different population groups. In the United States, researchers have conducted many studies of household fuel consumption by fuel type -- electricity, natural gas, fuel oil, and liquefied petroleum gas (LPG) -- and by geographic areas. The results of past research have also demonstrated significant variation in residential energy use across various population groups, including white, black, and Latino. However, research shows that residential energy demand by fuel type for Latinos, the fastest-growing population group in the United States, has not been explained by economic and noneconomic factors in any available statistical model. This paper presents a discussion of energy demand and expenditure patterns for Latino and non-Latino households in the United States. The statistical model developed to explain fuel consumption and expenditures for Latino households is based on Stone and Geary`s linear expenditure system model. For comparison, the authors also developed models for energy consumption in non-Latino, black, and nonblack households. These models estimate consumption of and expenditures for electricity, natural gas, fuel oil, and LPG by various households at the national level. The study revealed significant variations in the patterns of fuel consumption for Latinos and non-Latinos. The model methodology and results of this research should be useful to energy policymakers in government and industry, researchers, and academicians who are concerned with economic and energy issues related to various population groups.

  11. Natural gas production and consumption 1979

    SciTech Connect

    Not Available

    1981-01-01

    Total marketed production of natural gas in the United States during 1979 was 20,471 billion cubic feet, an increase of approximately 497 billion cubic feet, or 2.5 percent over 1978. Texas and Louisiana, the two leading producing states, accounted for 70.5 percent of total 1979 marketed production. In 1979, deliveries of natural gas to residential, commercial, industrial, electric utilities, and other consumers totaled 18,141 billion cubic feet. Total consumption, which includes lease, plant, and pipeline fuel in addition to deliveries to consumers, was 20,241 billion cubic feet in 1979 compared to 19,627 billion cubic feet in 1978, an increase of 3.1 percent. Movements of natural gas into and out of each state are presented. Louisiana accounted for the largest quantity of net deliveries, 5,107 billion cubic feet, followed by Texas and Oklahoma with net deliveries of 2,772 billion cubic feet and 914 billion cubic feet, respectively. Imports of natural gas by pipeline from Canada and as liquefied natural gas (LNG) from Algeria totaled 1,253 billion cubic feet in 1979. Total imports increased 288 billion cubic feet, or 29.8 percent, from 1978 levels. Exports of LNG to Japan and pipeline shipments to Canada and Mexico increased 6.0 percent from 52.5 billion cubic feet in 1978 to 55.7 billion cubic feet in 1979. LNG shipments to Japan accounted for 92.1 percent of total exports in 1979.

  12. Fuel cells and fuel cell catalysts

    DOEpatents

    Masel, Richard I.; Rice, Cynthia A.; Waszczuk, Piotr; Wieckowski, Andrzej

    2006-11-07

    A direct organic fuel cell includes a formic acid fuel solution having between about 10% and about 95% formic acid. The formic acid is oxidized at an anode. The anode may include a Pt/Pd catalyst that promotes the direct oxidation of the formic acid via a direct reaction path that does not include formation of a CO intermediate.

  13. 14 CFR 121.639 - Fuel supply: All domestic operations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... has enough fuel— (a) To fly to the airport to which it is dispatched; (b) Thereafter, to fly to and...) Thereafter, to fly for 45 minutes at normal cruising fuel consumption or, for certificate holders who are... nontransport category airplanes type certificated after December 31, 1964, to fly for 30 minutes at...

  14. 14 CFR 121.639 - Fuel supply: All domestic operations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... has enough fuel— (a) To fly to the airport to which it is dispatched; (b) Thereafter, to fly to and...) Thereafter, to fly for 45 minutes at normal cruising fuel consumption or, for certificate holders who are... nontransport category airplanes type certificated after December 31, 1964, to fly for 30 minutes at...

  15. 14 CFR 121.639 - Fuel supply: All domestic operations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... has enough fuel— (a) To fly to the airport to which it is dispatched; (b) Thereafter, to fly to and...) Thereafter, to fly for 45 minutes at normal cruising fuel consumption or, for certificate holders who are... nontransport category airplanes type certificated after December 31, 1964, to fly for 30 minutes at...

  16. 14 CFR 121.639 - Fuel supply: All domestic operations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... has enough fuel— (a) To fly to the airport to which it is dispatched; (b) Thereafter, to fly to and...) Thereafter, to fly for 45 minutes at normal cruising fuel consumption or, for certificate holders who are... nontransport category airplanes type certificated after December 31, 1964, to fly for 30 minutes at...

  17. 14 CFR 121.639 - Fuel supply: All domestic operations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... has enough fuel— (a) To fly to the airport to which it is dispatched; (b) Thereafter, to fly to and...) Thereafter, to fly for 45 minutes at normal cruising fuel consumption or, for certificate holders who are... nontransport category airplanes type certificated after December 31, 1964, to fly for 30 minutes at...

  18. Are We There Yet? Alternative Fuels for School Buses

    ERIC Educational Resources Information Center

    Lea, Dennis; Carter, Deborah

    2009-01-01

    America's annual oil consumption continues to increase and is projected to continue the upward spiral into the foreseeable future. Alternative-fuel options are available that are not only cheaper in some cases on an energy-equivalent basis but are also more environmentally friendly. Education leaders need to be concerned with both these facts.…

  19. Microscale Fuel Cells

    SciTech Connect

    Holladay, Jamie D.; Viswanathan, Vish V.

    2005-11-03

    Perhaprs some of the most innovative work on fuel cells has been the research dedicated to applying silicon fabrication techniques to fuel cells technology creating low power microscale fuel cells applicable to microelectro mechanical systems (MEMS), microsensors, cell phones, PDA’s, and other low power (0.001 to 5 We) applications. In this small power range, fuel cells offer the decoupling of the energy converter from the energy storage which may enable longer operating times and instant or near instant charging. To date, most of the microscale fuel cells being developed have been based on proton exchange membrane fuel cell technology (PEMFC) or direct methanol fuel cell (DMFC) technology. This section will discuss requirements and considerations that need to be addressed in the development of microscale fuel cells, as well as some proposed designs and fabrication strategies.

  20. FUEL CELL ELECTRODE MATERIALS

    DTIC Science & Technology

    FUEL CELL ELECTRODE MATERIALS. RAW MATERIAL SELECTION INFLUENCES POLARIZATION BUT IS NOT A SINGLE CONTROLLING FACTOR. AVAILABLE...DATA INDICATES THAT AN INTERRELATIONSHIP OF POROSITY, AVERAGE PORE VOLUME, AND PERMEABILITY CONTRIBUTES TO ELECTRODE FUEL CELL BEHAVIOR.

  1. Integrated fuel management system

    SciTech Connect

    Barbeau, D.E.

    1987-09-29

    An aircraft fuel management system to regulate fuel from an airframe reservoir is described. The system comprises: an aircraft turbine engine having a combustor providing propulsion for the aircraft; a fuel pump receiving fuel from the reservoir and supplying fuel to the turbine engine; a motor controlling the pump so as to provide fuel to the turbine engine; means for sensing at least one engine condition; means responsive to the sensing means for controlling fuel flow to the turbine engine, and wherein the pump and the motor are of the constant speed type and further comprising valve means for controlling the fuel flow rate to the turbine engine and wherein the controlling means modulates the position of the valve means.

  2. Alternative aircraft fuels technology

    NASA Technical Reports Server (NTRS)

    Grobman, J.

    1976-01-01

    NASA is studying the characteristics of future aircraft fuels produced from either petroleum or nonpetroleum sources such as oil shale or coal. These future hydrocarbon based fuels may have chemical and physical properties that are different from present aviation turbine fuels. This research is aimed at determining what those characteristics may be, how present aircraft and engine components and materials would be affected by fuel specification changes, and what changes in both aircraft and engine design would be required to utilize these future fuels without sacrificing performance, reliability, or safety. This fuels technology program was organized to include both in-house and contract research on the synthesis and characterization of fuels, component evaluations of combustors, turbines, and fuel systems, and, eventually, full-scale engine demonstrations. A review of the various elements of the program and significant results obtained so far are presented.

  3. Fuel quality combustion analysis

    NASA Technical Reports Server (NTRS)

    Naegeli, D. W.; Moses, C. A.

    1979-01-01

    A high pressure research combustor operating over a wide range of burner inlet conditions was used to determine the effects of fuel molecular structure on soot formation. Six test fuels with equal hydrogen content (12.8%) were blended to stress different molecular components and final boiling points. The fuels containing high concentrations (20%) of polycyclic aromatics and partially saturated polycyclic structures such as tetralin, produced more soot than would be expected from a hydrogen content correlation for typical petroleum based fuels. Fuels containing naphthenes such as decalin agreed with the hydrogen content correlation. The contribution of polycyclic aromatics to soot formation was equivalent to a reduction in fuel hydrogen content of about one percent. The fuel sensitivity to soot formation due to the polycyclic aromatic contribution decreased as burner inlet pressure and fuel/air ratio increased.

  4. Nuclear fuel element

    DOEpatents

    Zocher, Roy W.

    1991-01-01

    A nuclear fuel element and a method of manufacturing the element. The fuel element is comprised of a metal primary container and a fuel pellet which is located inside it and which is often fragmented. The primary container is subjected to elevated pressure and temperature to deform the container such that the container conforms to the fuel pellet, that is, such that the container is in substantial contact with the surface of the pellet. This conformance eliminates clearances which permit rubbing together of fuel pellet fragments and rubbing of fuel pellet fragments against the container, thus reducing the amount of dust inside the fuel container and the amount of dust which may escape in the event of container breach. Also, as a result of the inventive method, fuel pellet fragments tend to adhere to one another to form a coherent non-fragmented mass; this reduces the tendency of a fragment to pierce the container in the event of impact.

  5. Reformulated diesel fuel

    DOEpatents

    McAdams, Hiramie T [Carrollton, IL; Crawford, Robert W [Tucson, AZ; Hadder, Gerald R [Oak Ridge, TN; McNutt, Barry D [Arlington, VA

    2006-03-28

    Reformulated diesel fuels for automotive diesel engines which meet the requirements of ASTM 975-02 and provide significantly reduced emissions of nitrogen oxides (NO.sub.x) and particulate matter (PM) relative to commercially available diesel fuels.

  6. A fuel cell city bus with three drivetrain configurations

    NASA Astrophysics Data System (ADS)

    Wang, Junping; Chen, Yong; Chen, Quanshi

    Three fuel cell city buses of the energy hybrid- and power hybrid-type were re-engineered with three types of drivetrain configuration to optimize the structure and improve the performance. The energy distribution, hydrogen consumption, state of charge (SOC) and the power variation rate were analyzed when different drivetrain configurations and parameters were used. When powered only by a fuel cell, the bus cannot recover the energy through regenerative braking. The variation of the fuel cell power is large and frequent, which is not good for the fuel cell. When the fuel cell is linked to a battery pack in parallel, the bus can recover the energy through regenerative braking. The energy distribution is determined by the parameters of the fuel cell and the battery pack in the design stage to reduce the power variation rate of the fuel cell. When the fuel cell and DC/DC converter connected in series links the battery pack in parallel, energy can be recovered and the energy distribution can be adjusted online. The power variation rate of both the fuel cell and the battery pack are reduced.

  7. A Nonlinear Model for Fuel Atomization in Spray Combustion

    NASA Technical Reports Server (NTRS)

    Liu, Nan-Suey (Technical Monitor); Ibrahim, Essam A.; Sree, Dave

    2003-01-01

    Most gas turbine combustion codes rely on ad-hoc statistical assumptions regarding the outcome of fuel atomization processes. The modeling effort proposed in this project is aimed at developing a realistic model to produce accurate predictions of fuel atomization parameters. The model involves application of the nonlinear stability theory to analyze the instability and subsequent disintegration of the liquid fuel sheet that is produced by fuel injection nozzles in gas turbine combustors. The fuel sheet is atomized into a multiplicity of small drops of large surface area to volume ratio to enhance the evaporation rate and combustion performance. The proposed model will effect predictions of fuel sheet atomization parameters such as drop size, velocity, and orientation as well as sheet penetration depth, breakup time and thickness. These parameters are essential for combustion simulation codes to perform a controlled and optimized design of gas turbine fuel injectors. Optimizing fuel injection processes is crucial to improving combustion efficiency and hence reducing fuel consumption and pollutants emissions.

  8. Fuel Efficient Strategies for Reducing Contrail Formations in United States Air Space

    NASA Technical Reports Server (NTRS)

    Sridhar, Banavar; Chen, Neil Y.; Ng, Hok K.

    2010-01-01

    This paper describes a class of strategies for reducing persistent contrail formation in the United States airspace. The primary objective is to minimize potential contrail formation regions by altering the aircraft's cruising altitude in a fuel-efficient way. The results show that the contrail formations can be reduced significantly without extra fuel consumption and without adversely affecting congestion in the airspace. The contrail formations can be further reduced by using extra fuel. For the day tested, the maximal reduction strategy has a 53% contrail reduction rate. The most fuel-efficient strategy has an 8% reduction rate with 2.86% less fuel-burnt compared to the maximal reduction strategy. Using a cost function which penalizes extra fuel consumed while maximizing the amount of contrail reduction provides a flexible way to trade off between contrail reduction and fuel consumption. It can achieve a 35% contrail reduction rate with only 0.23% extra fuel consumption. The proposed fuel-efficient contrail reduction strategy provides a solution to reduce aviation-induced environmental impact on a daily basis.

  9. Food consumption trends and drivers

    PubMed Central

    Kearney, John

    2010-01-01

    A picture of food consumption (availability) trends and projections to 2050, both globally and for different regions of the world, along with the drivers largely responsible for these observed consumption trends are the subject of this review. Throughout the world, major shifts in dietary patterns are occurring, even in the consumption of basic staples towards more diversified diets. Accompanying these changes in food consumption at a global and regional level have been considerable health consequences. Populations in those countries undergoing rapid transition are experiencing nutritional transition. The diverse nature of this transition may be the result of differences in socio-demographic factors and other consumer characteristics. Among other factors including urbanization and food industry marketing, the policies of trade liberalization over the past two decades have implications for health by virtue of being a factor in facilitating the ‘nutrition transition’ that is associated with rising rates of obesity and chronic diseases such as cardiovascular disease and cancer. Future food policies must consider both agricultural and health sectors, thereby enabling the development of coherent and sustainable policies that will ultimately benefit agriculture, human health and the environment. PMID:20713385

  10. Energy Consumption vs. Energy Requirement

    ERIC Educational Resources Information Center

    Fan, L. T.; Zhang, Tengyan; Schlup, John R.

    2006-01-01

    Energy is necessary for any phenomenon to occur or any process to proceed. Nevertheless, energy is never consumed; instead, it is conserved. What is consumed is available energy, or exergy, accompanied by an increase in entropy. Obviously, the terminology, "energy consumption" is indeed a misnomer although it is ubiquitous in the…

  11. Sales promotions and food consumption.

    PubMed

    Hawkes, Corinna

    2009-06-01

    Sales promotions are widely used to market food to adults, children, and youth. Yet, in contrast to advertising, practically no attention has been paid to their impacts on dietary behaviors, or to how they may be used more effectively to promote healthy eating. This review explores the available literature on the subject. The objective is to identify if and what literature exists, examine the nature of this literature, and analyze what can be learned from it about the effects of sales promotions on food consumption. The review finds that while sales promotions lead to significant sales increases over the short-term, this does not necessarily lead to changes in food-consumption patterns. Nevertheless, there is evidence from econometric modeling studies indicating that sales promotions can influence consumption patterns by influencing the purchasing choices of consumers and encouraging them to eat more. These effects depend on the characteristics of the food product, sales promotion, and consumer. The complexity of the effects means that sales promotions aiming to encourage consumption of nutritious foods need to be carefully designed. These conclusions are based on studies that use mainly sales data as a proxy for dietary intake. The nutrition (and economics) research communities should add to this existing body of research to provide evidence on the impact of sales promotions on dietary intake and related behaviors. This would help support the development of a sales promotion environment conducive to healthy eating.

  12. Caffeine Consumption by College Undergraduates.

    ERIC Educational Resources Information Center

    Loke, Wing Hong

    1988-01-01

    Surveyed 542 undergraduates concerning their caffeine consumption. Found that subjects consumed less caffeine than average caffeine-drinking population. Coffee was main beverage used. Subjects reported drinking more caffeine when preparing for examinations. Suggests that caffeine may have some beneficial effects on learning. (Author/NB)

  13. Shifting Preferences in Pornography Consumption.

    ERIC Educational Resources Information Center

    Zillmann, Dolf; Bryant, Jennings

    1986-01-01

    Concludes that subjects with considerable prior exposure to common, nonviolent pornography preferred to watch uncommon pornography. Male nonstudents preferred it almost exclusively, as did male students to a lesser extent. Females also exhibited this consumption preference, though it was far less pronounced, especially in female students. (JD)

  14. Gender Commitment and Alcohol Consumption.

    ERIC Educational Resources Information Center

    Rabow, Jerome; And Others

    1992-01-01

    Categorized 179 college students as masculine, feminine, androgynous, or undifferentiated. Found gender orientations related to overall quantity-frequency index of alcohol consumption and beverage type. Androgynous respondents consumed less total alcohol than other groups; undifferentiated subjects drank more than feminine or androgynous subjects;…

  15. Fuel collecting and recycling system

    SciTech Connect

    Cole, E.F.

    1980-06-10

    This system serves to collect and recycle fuel leftover in the fuel manifold and fuel distribution system of a gas turbine power plant when it is shutdown and operates in conjunction with the power plant's existing fuel control.

  16. COMPOSITE FUEL ELEMENT

    DOEpatents

    Hurford, W.J.; Gordon, R.B.; Johnson, W.A.

    1962-12-25

    A sandwich-type fuel element for a reactor is described. This fuel element has the shape of an elongated flat plate and includes a filler plate having a plurality of compartments therein in which the fuel material is located. The filler plate is clad on both sides with a thin cladding material which is secured to the filler plate only to completely enclose the fuel material in each compartment. (AEC)

  17. Direct hydrocarbon fuel cells

    DOEpatents

    Barnett, Scott A.; Lai, Tammy; Liu, Jiang

    2010-05-04

    The direct electrochemical oxidation of hydrocarbons in solid oxide fuel cells, to generate greater power densities at lower temperatures without carbon deposition. The performance obtained is comparable to that of fuel cells used for hydrogen, and is achieved by using novel anode composites at low operating temperatures. Such solid oxide fuel cells, regardless of fuel source or operation, can be configured advantageously using the structural geometries of this invention.

  18. Navy Fuel Specification Standardization

    DTIC Science & Technology

    1992-04-01

    surfaced periodically to convert further to a single-fuel operation, i.e., one fuel for both aircraft and ship propulsion /power systems. This study...lead to the development of a single distillate fuel for ship propulsion , resulting eventually in the MIL-F-16884 Naval Distillate Fuel (NDF) used today...for both aircraft and ship propulsion /power systems. This report summarizes a study to consider this problem in light of current systems and

  19. Fakir fuel pump

    NASA Technical Reports Server (NTRS)

    1922-01-01

    In designing the Fakir fuel pump, the fundamental idea was to obtain a simple and reliable method of conveying the fuel from a low tank to the carburetor, with the avoidance of the faults of all former methods and the simultaneous warming of the fuel by means of the heat of compression generated. The principle of the Fakir fuel pump rests on the well-known principle of the diaphragm pump, which must be suitably adapted to the present purpose.

  20. Miniature ceramic fuel cell

    DOEpatents

    Lessing, Paul A.; Zuppero, Anthony C.

    1997-06-24

    A miniature power source assembly capable of providing portable electricity is provided. A preferred embodiment of the power source assembly employing a fuel tank, fuel pump and control, air pump, heat management system, power chamber, power conditioning and power storage. The power chamber utilizes a ceramic fuel cell to produce the electricity. Incoming hydro carbon fuel is automatically reformed within the power chamber. Electrochemical combustion of hydrogen then produces electricity.