Science.gov

Sample records for fuel consumption reduction

  1. 75 FR 66008 - Fossil Fuel-Generated Energy Consumption Reduction for New Federal Buildings and Major...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-27

    ... Parts 433 and 435 RIN 1904-AB96 Fossil Fuel-Generated Energy Consumption Reduction for New Federal... proposed rulemaking (NOPR) regarding the fossil fuel- generated energy consumption ] requirements for new... regarding the fossil fuel-generated energy consumption requirements for new Federal buildings and...

  2. 77 FR 14482 - Petroleum Reduction and Alternative Fuel Consumption Requirements for Federal Fleets

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-12

    ...; ] DEPARTMENT OF ENERGY 10 CFR Part 438 RIN 1904-AB98 Petroleum Reduction and Alternative Fuel Consumption... the term ``alternative fuel,'' as presented in section 301 of the Energy Policy Act of 1992. The... having the same energy content as a gallon of gasoline. \\b\\ FY 2005 alternative fuel consumption...

  3. Reduction of fuel consumption and exhaust pollutant using intelligent transport systems.

    PubMed

    Nasir, Mostofa Kamal; Md Noor, Rafidah; Kalam, M A; Masum, B M

    2014-01-01

    Greenhouse gas emitted by the transport sector around the world is a serious issue of concern. To minimize such emission the automobile engineers have been working relentlessly. Researchers have been trying hard to switch fossil fuel to alternative fuels and attempting to various driving strategies to make traffic flow smooth and to reduce traffic congestion and emission of greenhouse gas. Automobile emits a massive amount of pollutants such as Carbon Monoxide (CO), hydrocarbons (HC), carbon dioxide (CO2), particulate matter (PM), and oxides of nitrogen (NO x ). Intelligent transport system (ITS) technologies can be implemented to lower pollutant emissions and reduction of fuel consumption. This paper investigates the ITS techniques and technologies for the reduction of fuel consumption and minimization of the exhaust pollutant. It highlights the environmental impact of the ITS application to provide the state-of-art green solution. A case study also advocates that ITS technology reduces fuel consumption and exhaust pollutant in the urban environment.

  4. Reduction of Fuel Consumption and Exhaust Pollutant Using Intelligent Transport Systems

    PubMed Central

    Nasir, Mostofa Kamal; Md Noor, Rafidah; Kalam, M. A.; Masum, B. M.

    2014-01-01

    Greenhouse gas emitted by the transport sector around the world is a serious issue of concern. To minimize such emission the automobile engineers have been working relentlessly. Researchers have been trying hard to switch fossil fuel to alternative fuels and attempting to various driving strategies to make traffic flow smooth and to reduce traffic congestion and emission of greenhouse gas. Automobile emits a massive amount of pollutants such as Carbon Monoxide (CO), hydrocarbons (HC), carbon dioxide (CO2), particulate matter (PM), and oxides of nitrogen (NOx). Intelligent transport system (ITS) technologies can be implemented to lower pollutant emissions and reduction of fuel consumption. This paper investigates the ITS techniques and technologies for the reduction of fuel consumption and minimization of the exhaust pollutant. It highlights the environmental impact of the ITS application to provide the state-of-art green solution. A case study also advocates that ITS technology reduces fuel consumption and exhaust pollutant in the urban environment. PMID:25032239

  5. 77 FR 18718 - Petroleum Reduction and Alternative Fuel Consumption Requirements for Federal Fleets

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-28

    ...; ] DEPARTMENT OF ENERGY 10 CFR Part 438 RIN 1904-AB98 Petroleum Reduction and Alternative Fuel Consumption Requirements for Federal Fleets AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy. ACTION: Request for information. SUMMARY: On March 12, 2012, the Department of Energy (DOE) issued...

  6. Reduction of aerodynamic drag and fuel consumption for tractor-trailer vehicles

    NASA Technical Reports Server (NTRS)

    Muirhead, V. U.; Saltzman, E. J.

    1979-01-01

    Wind-tunnel tests were performed on a scale model of a cab-over-engine tractor-trailer vehicle and several modifications of the model. Results from two of the model configurations were compared with full-scale drag data obtained from similar configurations during coast-down tests. Reductions in fuel consumption derived from these tests are presented in terms of fuel quantity and dollar savings per vehicle year, based on an annual driving distance of 160,900 km (100,000 mi.). The projected savings varied from 13,001 (3435) to 25,848 (6829) liters (gallons) per year which translated to economic savings from $3435 to about $6829 per vehicle year for an operating speed of 88.5 km/h (55 mph) and wind speeds near the national average of 15.3 km/h (9.5 mph). The estimated cumulative fuel savings for the entire U.S. fleet of cab-over-engine tractor, van-type trailer combinations ranged from 4.18 million kl (26.3 million bbl) per year for a low-drag configuration to approximately twice that amount for a more advanced configuration.

  7. Amtrak fuel consumption study

    SciTech Connect

    Hitz, J.

    1981-02-01

    This report documents a study of fuel consumption on National Railroad Passenger Corporation (Amtrak) trains and is part of an effort to determine effective ways of conserving fuel on the Amtrak system. The study was performed by the Transportation Systems Center (TSC). A series of 26 test runs were conducted on Amtrak trains operating between Boston, Massachusetts, and New Haven, Connecticut, to measure fuel consumption, trip time and other fuel-use-related parameters. The test data were analyzed and compared with results of the TSC Train Performance Simulator replicating the same operations.

  8. Frigate Fuel Consumption Indicator

    DTIC Science & Technology

    2010-09-20

    Report DRDC-RDDC-2014- C50 Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the collection of information is...estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the...number. 1 . REPORT DATE 20 SEP 2010 2. REPORT TYPE 3. DATES COVERED 00-00-2010 to 00-00-2010 4. TITLE AND SUBTITLE Frigate Fuel Consumption

  9. A Cooperative Traffic Control of Vehicle–Intersection (CTCVI) for the Reduction of Traffic Delays and Fuel Consumption

    PubMed Central

    Li, Jinjian; Dridi, Mahjoub; El-Moudni, Abdellah

    2016-01-01

    The problem of reducing traffic delays and decreasing fuel consumption simultaneously in a network of intersections without traffic lights is solved by a cooperative traffic control algorithm, where the cooperation is executed based on the connection of Vehicle-to-Infrastructure (V2I). This resolution of the problem contains two main steps. The first step concerns the itinerary of which intersections are chosen by vehicles to arrive at their destination from their starting point. Based on the principle of minimal travel distance, each vehicle chooses its itinerary dynamically based on the traffic loads in the adjacent intersections. The second step is related to the following proposed cooperative procedures to allow vehicles to pass through each intersection rapidly and economically: on one hand, according to the real-time information sent by vehicles via V2I in the edge of the communication zone, each intersection applies Dynamic Programming (DP) to cooperatively optimize the vehicle passing sequence with minimal traffic delays so that the vehicles may rapidly pass the intersection under the relevant safety constraints; on the other hand, after receiving this sequence, each vehicle finds the optimal speed profiles with the minimal fuel consumption by an exhaustive search. The simulation results reveal that the proposed algorithm can significantly reduce both travel delays and fuel consumption compared with other papers under different traffic volumes. PMID:27999333

  10. A Cooperative Traffic Control of Vehicle-Intersection (CTCVI) for the Reduction of Traffic Delays and Fuel Consumption.

    PubMed

    Li, Jinjian; Dridi, Mahjoub; El-Moudni, Abdellah

    2016-12-17

    The problem of reducing traffic delays and decreasing fuel consumption simultaneously in a network of intersections without traffic lights is solved by a cooperative traffic control algorithm, where the cooperation is executed based on the connection of Vehicle-to-Infrastructure (V2I). This resolution of the problem contains two main steps. The first step concerns the itinerary of which intersections are chosen by vehicles to arrive at their destination from their starting point. Based on the principle of minimal travel distance, each vehicle chooses its itinerary dynamically based on the traffic loads in the adjacent intersections. The second step is related to the following proposed cooperative procedures to allow vehicles to pass through each intersection rapidly and economically: on one hand, according to the real-time information sent by vehicles via V2I in the edge of the communication zone, each intersection applies Dynamic Programming (DP) to cooperatively optimize the vehicle passing sequence with minimal traffic delays so that the vehicles may rapidly pass the intersection under the relevant safety constraints; on the other hand, after receiving this sequence, each vehicle finds the optimal speed profiles with the minimal fuel consumption by an exhaustive search. The simulation results reveal that the proposed algorithm can significantly reduce both travel delays and fuel consumption compared with other papers under different traffic volumes.

  11. Planning Strategies for Transportation Fuel Consumption Reduction: An Evaluation of the Hawaii Clean Energy Initiative’s Transportation Plan

    DTIC Science & Technology

    2014-04-01

    technologies to improve fleet efficiency goals, and evaluate switching to biodiesel for trucks and vehicles without other alternatives (HCEI 2011...standards and biodiesel usage levels 2020 Goal 50 MGY of renewable fuels 28 working with industry to increase EV market penetration, and...Strategy Reduction Potential Purchase more efficient vehicles 10-20% Promote hybrid technologies 10-20% Evaluate biodiesel switching (freight) TBD

  12. Predicting Ship Fuel Consumption: Update.

    DTIC Science & Technology

    1996-07-01

    ship propulsion fuel consumption as a function of ship speed for U.S. Navy combatant and auxiliary ships. Prediction is based on fitting an analytic function to published ship class speed-fuel use data using nonlinear regression. The form of the analytic function fitted is motivated by the literature on ship powering and resistance. The report discusses data sources and data issues, and the impact of ship propulsion plant configuration on fuel use. The regression coefficients of the exponential function fitted, tabular numerical comparison of

  13. Exploring the Reduction of Fuel Consumption for Ship-to-Shore Connectors of the Marine Expeditionary Brigade

    DTIC Science & Technology

    2013-12-01

    developing world. The Marine Corps must prepare itself to operate without the benefit of readily available fossil fuels and supplies shipped in by trucks ...itself to operate without the benefit of readily available fossil fuels and supplies shipped in by trucks or home-based supply lines. As demonstrated in...resulted in a MEB fighting force that is dependent upon extensive amounts of fossil fuels. Whether provided by truck , plane, or 3 ship, the

  14. 10 CFR 490.804 - Eligible reductions in petroleum consumption.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Eligible reductions in petroleum consumption. 490.804 Section 490.804 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM... person are applicable towards the petroleum fuel reduction required in § 490.803(a) of this subpart....

  15. CF6 jet engine performance improvement program. Short core exhaust nozzle performance improvement concept. [specific fuel consumption reduction

    NASA Technical Reports Server (NTRS)

    Fasching, W. A.

    1979-01-01

    The short core exhaust nozzle was evaluated in CF6-50 engine ground tests including performance, acoustic, and endurance tests. The test results verified the performance predictions from scale model tests. The short core exhaust nozzle provides an internal cruise sfc reduction of 0.9 percent without an increase in engine noise. The nozzle hardware successfully completed 1000 flight cycles of endurance testing without any signs of distress.

  16. Fuel consumption of freight trains hauled by diesel electric locomotives

    SciTech Connect

    Radford, R.W.

    1983-05-01

    The cost of railway diesel fuel has become an increasingly high proportion of railway operating expenses. The paper analyzes the generation and utilization of rail horsepower in freight train operations. The effects on fuel consumption of variations in several parameters including train consist, car weight, gradient, average speed, meet strategy, throttle control, locomotive axle arrangement, and train marshalling are examined. Estimates are made of the value, in terms of fuel cost, of weight reduction of freight cars and of selective train marshalling.

  17. Fuel Consumption Impacts of Auto Roof Racks

    SciTech Connect

    Chen, Yuche; Meier, Alan

    2016-05-01

    The after-market roof rack is one of the most common components attached to a vehicle for carrying over-sized items, such as bicycles and skis. It is important to understand these racks' fuel consumption impacts on both individual vehicles and the national fleet because they are widely used. We estimate the national fuel consumption impacts of roof racks using a bottom-up approach. Our model incorporates real-world data and vehicle stock information to enable assessing fuel consumption impacts for several categories of vehicles, rack configurations, and usage conditions. In addition, the model draws on two new data-gathering techniques, on-line forums and crowd-sourcing. The results show that nationwide, roof racks are responsible for 0.8% of light duty vehicle fuel consumption in 2015, corresponding to 100 million gallons of gasoline per year. Sensitivity analyses show that results are most sensitive to the fraction of vehicles with installed roof racks but carrying no equipment. The aerodynamic efficiency of typical roof racks can be greatly improved and reduce individual vehicle fuel consumption; however, government policies to minimize extensive driving with empty racks--if successful--could save more fuel nationally.

  18. Fuel consumption impacts of auto roof racks

    SciTech Connect

    Chen, Yuche; Meier, Alan

    2016-03-23

    The after-market roof rack is one of the most common components attached to a vehicle for carrying over-sized items, such as bicycles and skis. It is important to understand these racks' fuel consumption impacts on both individual vehicles and the national fleet because they are widely used. We estimate the national fuel consumption impacts of roof racks using a bottom-up approach. Our model incorporates real-world data and vehicle stock information to enable assessing fuel consumption impacts for several categories of vehicles, rack configurations, and usage conditions. In addition, the model draws on two new data-gathering techniques, on-line forums and crowd-sourcing. The results show that nationwide, roof racks are responsible for 0.8‰ of light duty vehicle fuel consumption in 2015, corresponding to 100 million gallons of gasoline per year. Sensitivity analyses show that results are most sensitive to the fraction of vehicles with installed roof racks but carrying no equipment. Here, the aerodynamic efficiency of typical roof racks can be greatly improved and reduce individual vehicle fuel consumption; however, government policies to minimize extensive driving with empty racks--if successful--could save more fuel nationally.

  19. Fuel consumption impacts of auto roof racks

    DOE PAGES

    Chen, Yuche; Meier, Alan

    2016-03-23

    The after-market roof rack is one of the most common components attached to a vehicle for carrying over-sized items, such as bicycles and skis. It is important to understand these racks' fuel consumption impacts on both individual vehicles and the national fleet because they are widely used. We estimate the national fuel consumption impacts of roof racks using a bottom-up approach. Our model incorporates real-world data and vehicle stock information to enable assessing fuel consumption impacts for several categories of vehicles, rack configurations, and usage conditions. In addition, the model draws on two new data-gathering techniques, on-line forums and crowd-sourcing.more » The results show that nationwide, roof racks are responsible for 0.8‰ of light duty vehicle fuel consumption in 2015, corresponding to 100 million gallons of gasoline per year. Sensitivity analyses show that results are most sensitive to the fraction of vehicles with installed roof racks but carrying no equipment. Here, the aerodynamic efficiency of typical roof racks can be greatly improved and reduce individual vehicle fuel consumption; however, government policies to minimize extensive driving with empty racks--if successful--could save more fuel nationally.« less

  20. Fuel Savings and Emission Reductions from Next-Generation Mobile Air Conditioning Technology in India: Preprint

    SciTech Connect

    Chaney, L.; Thundiyil, K.; Chidambaram, S.; Abbi, Y. P.; Anderson, S.

    2007-05-01

    This paper quantifies the mobile air-conditioning fuel consumption of the typical Indian vehicle, exploring potential fuel savings and emissions reductions these systems for the next generation of vehicles.

  1. TROPEC: Transformative Reductions in Operational Energy Consumption

    DTIC Science & Technology

    2012-05-01

    1 May 2012 1 TROPEC Transformative Reductions in Operational Energy Consumption Report Documentation Page Form ApprovedOMB No. 0704-0188...Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions...Headquarters Services, Directorate for Information Operations and Reports , 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents

  2. Reduced truck fuel consumption through aerodynamic design

    NASA Technical Reports Server (NTRS)

    Steers, L. L.; Saltzman, E. J.

    1977-01-01

    Full-scale fuel consumption and drag tests were performed on a conventional cab-over-engine tractor-trailer combination and a version of the same vehicle with significant forebody modifications. The modified configuration had greatly increased radii on all front corners and edges of the tractor and a smooth fairing of the modified tractor top and sides extending to the trailer. Concurrent highway testing of the two configurations showed that the modified design used 20% to 24% less fuel than the baseline configuration at 88.5 km/hr (55 mph) with near-calm wind conditions. Coastdown test results showed that the modified configuration reduced the drag coefficient by 0.43 from the baseline value of 1.17 at 88.5 km/hr (55 mph) in calm wind conditions.

  3. Fuel Savings and Aerodynamic Drag Reduction from Rail Car Covers

    NASA Technical Reports Server (NTRS)

    Storms, Bruce; Salari, Kambiz; Babb, Alex

    2008-01-01

    The potential for energy savings by reducing the aerodynamic drag of rail cars is significant. A previous study of aerodynamic drag of coal cars suggests that a 25% reduction in drag of empty cars would correspond to a 5% fuel savings for a round trip [1]. Rail statistics for the United States [2] report that approximately 5.7 billion liters of diesel fuel were consumed for coal transportation in 2002, so a 5% fuel savings would total 284 million liters. This corresponds to 2% of Class I railroad fuel consumption nationwide. As part of a DOE-sponsored study, the aerodynamic drag of scale rail cars was measured in a wind tunnel. The goal of the study was to measure the drag reduction of various rail-car cover designs. The cover designs tested yielded an average drag reduction of 43% relative to empty cars corresponding to an estimated round-trip fuel savings of 9%.

  4. 10 CFR 490.804 - Eligible reductions in petroleum consumption.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Eligible reductions in petroleum consumption. 490.804... Alternative Compliance § 490.804 Eligible reductions in petroleum consumption. (a) Motor vehicles. Demonstrated reductions in petroleum consumption during the model year for which a waiver is requested that...

  5. 10 CFR 490.804 - Eligible reductions in petroleum consumption.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Eligible reductions in petroleum consumption. 490.804... Alternative Compliance § 490.804 Eligible reductions in petroleum consumption. (a) Motor vehicles. Demonstrated reductions in petroleum consumption during the model year for which a waiver is requested that...

  6. 10 CFR 490.804 - Eligible reductions in petroleum consumption.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Eligible reductions in petroleum consumption. 490.804... Alternative Compliance § 490.804 Eligible reductions in petroleum consumption. (a) Motor vehicles. Demonstrated reductions in petroleum consumption during the model year for which a waiver is requested that...

  7. 10 CFR 490.804 - Eligible reductions in petroleum consumption.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Eligible reductions in petroleum consumption. 490.804... Alternative Compliance § 490.804 Eligible reductions in petroleum consumption. (a) Motor vehicles. Demonstrated reductions in petroleum consumption during the model year for which a waiver is requested that...

  8. Amtrak fuel consumption study. Final report May-Sep 80

    SciTech Connect

    Hitz, J.S.

    1981-02-01

    This report documents a study of fuel consumption on National Railroad Passenger Corporation (Amtrak) trains and is part of an effort to determine effective ways of conserving fuel on the Amtrak system. The study was performed by the Transportation Systems Center (TSC) under the sponsorship of the Federal Railroad Administration and in cooperation with Amtrak. A series of 26 test runs were conducted on Amtrak trains operating between Boston, Massachusetts, and New Haven, Connecticut, to measure fuel consumption, trip time and other fuel-use-related parameters. The test data were analyzed and compared with results of the TSC Train Performance Simulator replicating the same operations. Results of the tests showed that the average fuel consumption for the 157.7 mile trip was 368 gallons and that the average fuel use efficiency was 277 ton-miles per gallon. Fuel consumption and fuel use efficiency were found to increase consistently with increasing train tonnage. One locomotive was also found to consume about 12 percent more fuel than the other locomotive tested. The fuel consumption and trip time results for individual runs varied between +8.0 to -9.5 and +5.4 and -10.7 percent, respectively, of the Train Performance Simulator results. However, when averaged over the ten test runs analyzed, the fuel consumption and trip time results were within 1.04 and 0.03 percent, respectively, of the simulator. Throttle notch settings and train speed profiles also agreed well with simulated results.

  9. Process for Generating Engine Fuel Consumption Map: Ricardo Cooled EGR Boost 24-bar Standard Car Engine Tier 2 Fuel

    EPA Pesticide Factsheets

    This document summarizes the process followed to utilize the fuel consumption map of a Ricardo modeled engine and vehicle fuel consumption data to generate a full engine fuel consumption map which can be used by EPA's ALPHA vehicle simulations.

  10. Life Cycle Assessment of Vehicle Lightweighting: Novel Mathematical Methods to Estimate Use-Phase Fuel Consumption.

    PubMed

    Kim, Hyung Chul; Wallington, Timothy J; Sullivan, John L; Keoleian, Gregory A

    2015-08-18

    Lightweighting is a key strategy to improve vehicle fuel economy. Assessing the life-cycle benefits of lightweighting requires a quantitative description of the use-phase fuel consumption reduction associated with mass reduction. We present novel methods of estimating mass-induced fuel consumption (MIF) and fuel reduction values (FRVs) from fuel economy and dynamometer test data in the U.S. Environmental Protection Agency (EPA) database. In the past, FRVs have been measured using experimental testing. We demonstrate that FRVs can be mathematically derived from coast down coefficients in the EPA vehicle test database avoiding additional testing. MIF and FRVs calculated for 83 different 2013 MY vehicles are in the ranges 0.22-0.43 and 0.15-0.26 L/(100 km 100 kg), respectively, and increase to 0.27-0.53 L/(100 km 100 kg) with powertrain resizing to retain equivalent vehicle performance. We show how use-phase fuel consumption can be estimated using MIF and FRVs in life cycle assessments (LCAs) of vehicle lightweighting from total vehicle and vehicle component perspectives with, and without, powertrain resizing. The mass-induced fuel consumption model is illustrated by estimating lifecycle greenhouse gas (GHG) emission benefits from lightweighting a grille opening reinforcement component using magnesium or carbon fiber composite for 83 different vehicle models.

  11. Carbon emissions from fossil fuel consumption of Beijing in 2012

    NASA Astrophysics Data System (ADS)

    Shao, Ling; Guan, Dabo; Zhang, Ning; Shan, Yuli; Chen, G. Q.

    2016-11-01

    The present study analyzed the consumption-based carbon emissions from fossil fuel consumption of Beijing in 2012. The multi-scale input-output analysis method was applied. It is capable of tracing the carbon emissions embodied in imports based on a global multi-regional input-output analysis using Eora data. The results show that the consumption-based carbon emission of Beijing has increased by 18% since 2007, which is 2.57 times higher than the production-based carbon emission in 2012. Only approximately 1/10 of the total carbon emissions embodied in Beijing’s local final demand originated from local direct carbon emissions. Meanwhile, more than 4/5 were from domestically imported products. The carbon emission nexus between Beijing and other Chinese regions has become closer since 2007, while the imbalance as the carbon emission transfer from Beijing to other regions has been mitigated. Instead, Beijing has imported more carbon emissions from foreign countries. Some carbon emission reduction strategies for Beijing concerning different goals are presented on the basis of detailed discussion.

  12. Engine component improvement program: Performance improvement. [fuel consumption

    NASA Technical Reports Server (NTRS)

    Mcaulay, J. E.

    1979-01-01

    Fuel consumption of commercial aircraft is considered. Fuel saving and retention components for new production and retrofit of JT9D, JT8D, and CF6 engines are reviewed. The manner in which the performance improvement concepts were selected for development and a summary of the current status of each of the 16 selected concepts are discussed.

  13. Measured effect of wind generation on the fuel consumption of an isolated diesel power system

    NASA Astrophysics Data System (ADS)

    Stiller, P. H.; Scott, G. W.; Shaltens, R. K.

    1983-06-01

    The Block Island Power Company (BIPCO), on Block Island, Rhode Island, operates an isolated electric power system consisting of diesel generation and an experimental wind turbine. The 150-kW wind turbine, designated MOD-OA by the U.S. Department of Energy is typically operated in parallel with two diesel generators to serve an average winter load of 350 kW. Wind generation serves up to 60 percent of the system demand depending on wind speed and total system load. Results of diesel fuel consumption measurements are given for the diesel units operated in parallel with the wind turbine and again without the wind turbine. The fuel consumption data are used to calculate the amount of fuel displaced by wind energy. Results indicate that the wind turbine displaced 25,700 lbs. of the diesel fuel during the test period, representing a calculated reduction in fuel consumption of 6.7 percent while generating 11 percent of the total electric energy. The amount of displaced fuel depends on operating conditions and system load. It is also shown that diesel engine throttle activity resulting from wind gusts which rapidly change the wind turbine output do not significantly influence fuel consumption.

  14. Measured effect of wind generation on the fuel consumption of an isolated diesel power system

    NASA Technical Reports Server (NTRS)

    Stiller, P. H.; Scott, G. W.; Shaltens, R. K.

    1983-01-01

    The Block Island Power Company (BIPCO), on Block Island, Rhode Island, operates an isolated electric power system consisting of diesel generation and an experimental wind turbine. The 150-kW wind turbine, designated MOD-OA by the U.S. Department of Energy is typically operated in parallel with two diesel generators to serve an average winter load of 350 kW. Wind generation serves up to 60 percent of the system demand depending on wind speed and total system load. Results of diesel fuel consumption measurements are given for the diesel units operated in parallel with the wind turbine and again without the wind turbine. The fuel consumption data are used to calculate the amount of fuel displaced by wind energy. Results indicate that the wind turbine displaced 25,700 lbs. of the diesel fuel during the test period, representing a calculated reduction in fuel consumption of 6.7 percent while generating 11 percent of the total electric energy. The amount of displaced fuel depends on operating conditions and system load. It is also shown that diesel engine throttle activity resulting from wind gusts which rapidly change the wind turbine output do not significantly influence fuel consumption.

  15. Machining strategies exploring reduction in energy consumption

    NASA Astrophysics Data System (ADS)

    Mamun, Abdullah Al

    The main aim of this thesis is to explore machining strategies, analyzing energy consumption using Design of Experiments (DOE) at the material removal rate (MRR), compare to cutting geometrical trajectories according to CNC parameters such as spindle RPM, feed rate, depth of cut per pass and total depth of cut. Spindle RPM, depth of cut per pass, and feed rate are selected as the main three factors and each factor has two levels: low-level (-) and high-level (+). These experiments have been performed at an end-milling machine by using a concept of a constant volume of material removal processes in the circular and linear geometrical slots in pine wood blocks. Standard energy logger equipment has used to measure energy consumption during end-milling operation. Different statistical analysis, such as ANOVA, regression line, and cause & effect diagram have used to show different energy consumption results in the material removal process. At the end the of data analysis, it is found that a significant amount of electricity demand is associated with machining pre-cutting & post-cutting stage and this significant amount of electricity demand is defined as peripheral energy. This peripheral energy is not involved in the actual performance of material removal process in the end-milling process. In the [Figure 11] end-milling process has been involved with pine wood blocks at constant volume of material removal (2.8 cubic inch) process. Results can be varied using of hard material removal process, such as steel & aluminum metals.

  16. Jet transport energy management for minimum fuel consumption and noise impact in the terminal area

    NASA Technical Reports Server (NTRS)

    Bull, J. S.; Foster, J. D.

    1974-01-01

    Significant reductions in both noise and fuel consumption can be gained through careful tailoring of approach flightpath and airspeed profile, and the point at which the landing gear and flaps are lowered. For example, the noise problem has been successfully attacked in recent years with development of the 'two-segment' approach, which brings the aircraft in at a steeper angle initially, thereby achieving noise reduction through lower thrust settings and higher altitudes. A further reduction in noise and a significant reduction in fuel consumption can be achieved with the 'decelerating approach' concept. In this case, the approach is initiated at high airspeed and in a drag configuration that allows for low thrust. The landing flaps are then lowered at the appropriate time so that the airspeed slowly decelerates to V sub r at touchdown. The decelerating approach concept can be applied to constant glideslope flightpaths or segmented flightpaths such as the two-segment approach.

  17. Tracked-vehicle fuel consumption. Final report

    SciTech Connect

    Not Available

    1987-03-06

    This document describes test procedures for evaluating the fuel efficiency of tracked vehicles under controlled operating conditions. The test data are a major source for comparisons with similar vehicles, and can also serve to predict the operational range of these vehicles during tactical missions.

  18. New approach for reduction of diesel consumption by comparing different mining haulage configurations.

    PubMed

    Rodovalho, Edmo da Cunha; Lima, Hernani Mota; de Tomi, Giorgio

    2016-05-01

    The mining operations of loading and haulage have an energy source that is highly dependent on fossil fuels. In mining companies that select trucks for haulage, this input is the main component of mining costs. How can the impact of the operational aspects on the diesel consumption of haulage operations in surface mines be assessed? There are many studies relating the consumption of fuel trucks to several variables, but a methodology that prioritizes higher-impact variables under each specific condition is not available. Generic models may not apply to all operational settings presented in the mining industry. This study aims to create a method of analysis, identification, and prioritization of variables related to fuel consumption of haul trucks in open pit mines. For this purpose, statistical analysis techniques and mathematical modelling tools using multiple linear regressions will be applied. The model is shown to be suitable because the results generate a good description of the fuel consumption behaviour. In the practical application of the method, the reduction of diesel consumption reached 10%. The implementation requires no large-scale investments or very long deadlines and can be applied to mining haulage operations in other settings.

  19. Steam consumption reduction by eutectic freeze crystallization

    SciTech Connect

    Bichsel, S.E.; Cleary, M.; Barron, T.S.; Heist, J.A.

    1985-01-01

    Steam production in American beet sugar factories can be reduced by 600 pounds per ton of beets by using hydrate freeze crystallization in place of pan evaporators for sugar crystallization. This is a relatively constant number, regardless of current factory energy use. Further reduction is limited by the juice heating needs in the purification operations. Steam for juice heating is 20 to 30% on beets, or 400 to 600 pounds of steam per ton. In efficient factories this is about the steam flow to the evaporators when the pan crystallizers are replaced by freeze crystallization. An approach is described here for a rapid evaluation of effects on the steam balance of basic process changes. It provides a visual guide to restructuring the steam balance that simplifies optimization when such changes are made. The graphic approach is useful in illustrating methods of reducing energy use in a sugar factory, in addition to the current analysis of integration of the hydrate freeze process. For example, membrane and vapor recompression evaporators for juice concentration must be accompanied by major factory modifications to produce any net savings of steam. The reason is the needs for specific steam quantity and quality for the pan evaporators and juice heaters, supplied through the current evaporator trains. Reduction of the steam rate below 25 to 35% on beets will require changes to the conventional juice purification process.

  20. Nonresidential buildings energy consumption survey: 1979 consumption and expenditures. Part 2. Steam, fuel oil, LPG, and all fuels

    SciTech Connect

    Patinkin, L.

    1983-12-01

    This report presents data on square footage and on total energy consumption and expenditures for commercial buildings in the contiguous United States. Also included are detailed consumption and expenditures tables for fuel oil or kerosene, liquid petroleum gas (LPG), and purchased steam. Commercial buildings include all nonresidential buildings with the exception of those where industrial activities occupy more of the total square footage than any other type of activity. 7 figures, 23 tables.

  1. Decreasing fuel-oil consumption through feedback and social commendation.

    PubMed

    Seaver, W B; Patterson, A H

    1976-01-01

    The energy crisis of the winter of 1973-74 led to severe shortages of fuel oil for home heating and a government request for voluntary conservation by the oil consumer. This experiment tested two methods of facilitating fuel-oil conservation. Home fuel-oil consumers were randomly assigned to one of three experimental groups: feedback of information on rate of oil use, feedback plus commendation for reduced consumption, or a no-treatment control. The consumption rate for the feedback plus commendation group was significantly lower than that of either the informational feedback group or the control group. The informational feedback group did not differ from the control group. The results suggest that feedback alone may not result in oil conservation, but that feedback combined with commendation can produce socially significant savings.

  2. 49 CFR 1243.3 - Report of fuel cost, consumption, and surcharge revenue.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 9 2010-10-01 2010-10-01 false Report of fuel cost, consumption, and surcharge... QUARTERLY OPERATING REPORTS-RAILROADS § 1243.3 Report of fuel cost, consumption, and surcharge revenue... file quarterly a Report of Fuel Cost, Consumption, and Surcharge Revenue, in accordance with the...

  3. Cost-Optimal Pathways to 75% Fuel Reduction in Remote Alaskan Villages

    SciTech Connect

    Simpkins, Travis; Cutler, Dylan; Hirsch, Brian; Olis, Dan; Anderson, Kate

    2015-08-01

    There are thousands of isolated, diesel-powered microgrids that deliver energy to remote communities around the world at very high energy costs. The Remote Communities Renewable Energy program aims to help these communities reduce their fuel consumption and lower their energy costs through the use of high penetration renewable energy. As part of this program, the REopt modeling platform for energy system integration and optimization was used to analyze cost-optimal pathways toward achieving a combined 75% reduction in diesel fuel and fuel oil consumption in a select Alaskan village. In addition to the existing diesel generator and fuel oil heating technologies, the model was able to select from among wind, battery storage, and dispatchable electric heaters to meet the electrical and thermal loads. The model results indicate that while 75% fuel reduction appears to be technically feasible it may not be economically viable at this time. When the fuel reduction target was relaxed, the results indicate that by installing high-penetration renewable energy, the community could lower their energy costs by 21% while still reducing their fuel consumption by 54%.

  4. Cost-Optimal Pathways to 75% Fuel Reduction in Remote Alaskan Villages: Preprint

    SciTech Connect

    Simpkins, Travis; Cutler, Dylan; Hirsch, Brian; Olis, Dan; Anderson, Kate

    2015-10-28

    There are thousands of isolated, diesel-powered microgrids that deliver energy to remote communities around the world at very high energy costs. The Remote Communities Renewable Energy program aims to help these communities reduce their fuel consumption and lower their energy costs through the use of high penetration renewable energy. As part of this program, the REopt modeling platform for energy system integration and optimization was used to analyze cost-optimal pathways toward achieving a combined 75% reduction in diesel fuel and fuel oil consumption in a select Alaskan village. In addition to the existing diesel generator and fuel oil heating technologies, the model was able to select from among wind, battery storage, and dispatchable electric heaters to meet the electrical and thermal loads. The model results indicate that while 75% fuel reduction appears to be technically feasible it may not be economically viable at this time. When the fuel reduction target was relaxed, the results indicate that by installing high-penetration renewable energy, the community could lower their energy costs by 21% while still reducing their fuel consumption by 54%.

  5. Energy consumption evaluation of fuel bioethanol production from sweet potato.

    PubMed

    Ferrari, Mario Daniel; Guigou, Mairan; Lareo, Claudia

    2013-05-01

    The energy consumption for different operative conditions and configurations of the bioethanol production industrial process from an experimental variety of sweet potato (Ipomea batatas) K 9807.1 was evaluated. A process simulation model was developed using SuperPro Designer® software. The model was based on experimental data gathered from our laboratory experiments and technology and equipment suppliers. The effects of the dry matter ratio of sweet potato to water, the fermentation efficiency, and sweet potato sugar content, on the energy consumption (steam and electricity) were respectively evaluated. All factors were significant. The best ratio of dry matter to total water to work with fresh sweet potato was 0.2 kg dry sweet potato/kg water, as for greater ratios was not found a significant reduction in energy consumption. Also, the drying of the sweet potato previous its processing was studied. It presented an energy consumption greater than the energetic content of the bioethanol produced.

  6. RECENT TRENDS IN EMERGING TRANSPORTATION FUELS AND ENERGY CONSUMPTION

    SciTech Connect

    Bunting, Bruce G

    2012-01-01

    Abundance of energy can be improved both by developing new sources of fuel and by improving efficiency of energy utilization, although we really need to pursue both paths to improve energy accessibility in the future. Currently, 2.7 billion people or 38% of the world s population do not have access to modern cooking fuel and depend on wood or dung and 1.4 billion people or 20% do not have access to electricity. It is estimated that correcting these deficiencies will require an investment of $36 billion dollars annually through 2030. In growing economies, energy use and economic growth are strongly linked, but energy use generally grows at a lower rate due to increased access to modern fuels and adaptation of modern, more efficient technology. Reducing environmental impacts of increased energy consumption such as global warming or regional emissions will require improved technology, renewable fuels, and CO2 reuse or sequestration. The increase in energy utilization will probably result in increased transportation fuel diversity as fuels are shaped by availability of local resources, world trade, and governmental, environmental, and economic policies. The purpose of this paper is to outline some of the recently emerging trends, but not to suggest winners. This paper will focus on liquid transportation fuels, which provide the highest energy density and best match with existing vehicles and infrastructure. Data is taken from a variety of US, European, and other sources without an attempt to normalize or combine the various data sources. Liquid transportation fuels can be derived from conventional hydrocarbon resources (crude oil), unconventional hydrocarbon resources (oil sands or oil shale), and biological feedstocks through a variety of biochemical or thermo chemical processes, or by converting natural gas or coal to liquids.

  7. Effect Of Platooning on Fuel Consumption of Class 8 Vehicles Over a Range of Speeds, Following Distances, and Mass

    SciTech Connect

    Lammert, M. P.; Duran, A.; Diez, J.; Burton, K.; Nicholson, A.

    2014-10-01

    This research project evaluates fuel consumption results of two Class 8 tractor-trailer combinations platooned together compared to their standalone fuel consumption. A series of ten modified SAE Type II J1321 fuel consumption track tests were performed to document fuel consumption of two platooned vehicles and a control vehicle at varying steady-state speeds, following distances, and gross vehicle weights (GVWs). The steady-state speeds ranged from 55 mph to 70 mph, the following distances ranged from a 20-ft following distance to a 75-ft following distance, and the GVWs were 65K lbs and 80K lbs. All tractors involved had U.S. Environmental Protection Agency (EPA) SmartWay-compliant aerodynamics packages installed, and the trailers were equipped with side skirts. Effects of vehicle speed, following distance, and GVW on fuel consumption were observed and analyzed. The platooning demonstration system used in this study consisted of radar systems, Dedicated Short-Range Communication (DSRC) vehicle-to-vehicle (V2V) communications, vehicle braking and torque control interface, cameras and driver displays. The lead tractor consistently demonstrated an improvement in average fuel consumption reduction as following distance decreased, with results showing 2.7% to 5.3% fuel savings at a GVW of 65k. The trailing vehicle achieved fuel consumption savings ranging from 2.8% to 9.7%; tests during which the engine cooling fan did not operate achieved savings of 8.4% to 9.7%. 'Team' fuel savings, considering the platooned vehicles as one, ranged from 3.7% to 6.4%, with the best combined result being for 55 mph, 30-ft following distance, and 65k GVW.

  8. Issues of Fish Consumption for Cardiovascular Disease Risk Reduction

    PubMed Central

    Raatz, Susan K.; Silverstein, Jeffrey T.; Jahns, Lisa; Picklo, Matthew J.

    2013-01-01

    Increasing fish consumption is recommended for intake of omega-3 (n-3) fatty acids and to confer benefits for the risk reduction of cardiovascular disease (CVD). Most Americans are not achieving intake levels that comply with current recommendations. It is the goal of this review to provide an overview of the issues affecting this shortfall of intake. Herein we describe the relationship between fish intake and CVD risk reduction as well as the other nutritional contributions of fish to the diet. Currently recommended intake levels are described and estimates of fish consumption at a food disappearance and individual level are reported. Risk and benefit factors influencing the choice to consume fish are outlined. The multiple factors influencing fish availability from global capture and aquaculture are described as are other pertinent issues of fish nutrition, production, sustainability, and consumption patterns. This review highlights some of the work that needs to be carried out to meet the demand for fish and to positively affect intake levels to meet fish intake recommendations for CVD risk reduction. PMID:23538940

  9. Life cycle inventory energy consumption and emissions for biodiesel versus petroleum diesel fueled construction vehicles.

    PubMed

    Pang, Shih-Hao; Frey, H Christopher; Rasdorf, William J

    2009-08-15

    Substitution of soy-based biodiesel fuels for petroleum diesel will alter life cycle emissions for construction vehicles. A life cycle inventory was used to estimate fuel cycle energy consumption and emissions of selected pollutants and greenhouse gases. Real-world measurements using a portable emission measurement system (PEMS) were made forfive backhoes, four front-end loaders, and six motor graders on both fuels from which fuel consumption and tailpipe emission factors of CO, HC, NO(x), and PM were estimated. Life cycle fossil energy reductions are estimated it 9% for B20 and 42% for B100 versus petroleum diesel based on the current national energy mix. Fuel cycle emissions will contribute a larger share of total life cycle emissions as new engines enter the in-use fleet. The average differences in life cycle emissions for B20 versus diesel are: 3.5% higher for NO(x); 11.8% lower for PM, 1.6% higher for HC, and 4.1% lower for CO. Local urban tailpipe emissions are estimated to be 24% lower for HC, 20% lower for CO, 17% lower for PM, and 0.9% lower for NO(x). Thus, there are environmental trade-offs such as for rural vs urban areas. The key sources of uncertainty in the B20 LCI are vehicle emission factors.

  10. Carbon Dioxide Emissions From Fossil-Fuel Consumption in Indonesia

    NASA Astrophysics Data System (ADS)

    Gregg, J. S.; Robert, A. J.

    2005-05-01

    Applying monthly sales and consumption data of coal, petroleum and natural gas, a monthly time series of carbon dioxide emissions from fossil-fuel consumption is created for Indonesia. These are then modeled with an autoregressive function to produce a quantitative description of the seasonal distribution and long-term pattern of CO2 emissions. Currently, Indonesia holds the 21st ranked position in total anthropogenic CO2 emissions among countries of the world. The demand for energy in Indonesia has been growing rapidly in recent years as Indonesia attempts to modernize and upgrade the standard of living for its citizens. With such a large population (a quarter of a billion people), the recent increase observed in the per capita energy use equates to a large escalation in total CO2 emissions. However, the economy and political climate is rather turbulent and thus emissions tend to fluctuate wildly. For example, Indonesia's energy consumption dropped substantially during the Asian economic crisis in the late 1990s. It is likely that the recent tsunami will also significantly impact energy consumption as the hard-hit Aceh region is the largest fuel-producing region of Indonesia. Therefore, Indonesia is a country whose emissions are more unpredictable than most countries that emit comparable levels of CO2. Complicating matters further, data collection practices in Indonesia are less diligent than in other countries with more stable economies. Thus, though CO2 emissions from Indonesia are a particular challenge to model, they are an important component to understanding the total global carbon cycle.

  11. Fuel Savings and Emission Reductions from Next-Generation Mobile Air Conditioning Technology in India

    SciTech Connect

    Chaney, L.; Thundiyil, K.; Andersen, S.; Chidambaram, S.; Abbi, Y. P.

    2007-01-01

    Up to 19.4% of vehicle fuel consumption in India is devoted to air conditioning (A/C). Indian A/C fuel consumption is almost four times the fuel penalty in the United States and close to six times that in the European Union because India's temperature and humidity are higher and because road congestion forces vehicles to operate inefficiently. Car A/C efficiency in India is an issue worthy of national attention considering the rate of increase of A/C penetration into the new car market, India's hot climatic conditions and high fuel costs. Car A/C systems originally posed an ozone layer depletion concern. Now that industrialized and many developing countries have moved away from ozone-depleting substances per Montreal Protocol obligations, car A/C impact on climate has captured the attention of policy makers and corporate leaders. Car A/C systems have a climate impact from potent global warming potential gas emissions and from fuel used to power the car A/Cs. This paper focuses on car A/C fuel consumption in the context of the rapidly expanding Indian car market and how new technological improvements can result in significant fuel savings and consequently, emission reductions. A 19.4% fuel penalty is associated with A/C use in the typical Indian passenger car. Car A/C fuel use and associated tailpipe emissions are strong functions of vehicle design, vehicle use, and climate conditions. Several techniques: reducing thermal load, improving vehicle design, improving occupants thermal comfort design, improving equipment, educating consumers on impacts of driver behaviour on MAC fuel use, and others - can lead to reduced A/C fuel consumption.

  12. Influence of malfunctions of the maintenance activities on the urban buses fuel consumption

    NASA Astrophysics Data System (ADS)

    George, Crişan; Nicolae, Filip

    2014-06-01

    Optimization of activities with the aim to provide quality service in conditions of high profitability, is one of the main objectives chased by managers in transportation companies. As a consequence, directing the attention towards monitoring of maintenance activities of vehicles fleet, can achieve desired results. Two of the most important issues related to the maintenance activity, is the increase of reliability and reduction of fuel consumption of the vehicles fleet. Aforementioned actions represents a way forward for raising the quality and profitability of services offered. In this paper, the main ways of monitoring the fuel consumption, in order to reduce it and increase the reliability of transportation vehicles fleet, are presented. For the evaluation of the maintenance system and the degree of influence of malfunctions recorded on the fuel consumption, using the Pareto -ABC method, following case study on a fleet of buses for urban public transport has been conducted. Results obtained highlights the deficiencies of the maintenance process carried out and constitutes a solid base for the reorganization of the maintenance activity, involving preventive maintenance activities, in order to contribute decisively to the results targeted by the management of transport companies.

  13. Biomass burning fuel consumption rates: a field measurement database

    NASA Astrophysics Data System (ADS)

    van Leeuwen, T. T.; van der Werf, G. R.; Hoffmann, A. A.; Detmers, R. G.; Rücker, G.; French, N. H. F.; Archibald, S.; Carvalho, J. A., Jr.; Cook, G. D.; de Groot, W. J.; Hély, C.; Kasischke, E. S.; Kloster, S.; McCarty, J. L.; Pettinari, M. L.; Savadogo, P.; Alvarado, E. C.; Boschetti, L.; Manuri, S.; Meyer, C. P.; Siegert, F.; Trollope, L. A.; Trollope, W. S. W.

    2014-06-01

    Landscape fires show large variability in the amount of biomass or fuel consumed per unit area burned. These fuel consumption (FC) rates depend on the biomass available to burn and the fraction of the biomass that is actually combusted, and can be combined with estimates of area burned to assess emissions. While burned area can be detected from space and estimates are becoming more reliable due to improved algorithms and sensors, FC rates are either modeled or taken selectively from the literature. We compiled the peer-reviewed literature on FC rates for various biomes and fuel categories to better understand FC rates and variability, and to provide a~database that can be used to constrain biogeochemical models with fire modules. We compiled in total 76 studies covering 10 biomes including savanna (15 studies, average FC of 4.6 t DM (dry matter) ha-1), tropical forest (n = 19, FC = 126), temperate forest (n = 11, FC = 93), boreal forest (n = 16, FC = 39), pasture (n = 6, FC = 28), crop residue (n = 4, FC = 6.5), chaparral (n = 2, FC = 32), tropical peatland (n = 4, FC = 314), boreal peatland (n = 2, FC = 42), and tundra (n = 1, FC = 40). Within biomes the regional variability in the number of measurements was sometimes large, with e.g. only 3 measurement locations in boreal Russia and 35 sites in North America. Substantial regional differences were found within the defined biomes: for example FC rates of temperate pine forests in the USA were 38% higher than Australian forests dominated by eucalypt trees. Besides showing the differences between biomes, FC estimates were also grouped into different fuel classes. Our results highlight the large variability in FC rates, not only between biomes but also within biomes and fuel classes. This implies that care should be taken with using averaged values, and our comparison with FC rates from GFED3 indicates that also modeling studies have difficulty in representing the dynamics governing FC.

  14. Peak-Seeking Optimization of Trim for Reduced Fuel Consumption: Architecture and Performance Predictions

    NASA Technical Reports Server (NTRS)

    Schaefer, Jacob; Brown, Nelson A.

    2013-01-01

    A peak-seeking control approach for real-time trim configuration optimization for reduced fuel consumption has been developed by researchers at the National Aeronautics and Space Administration (NASA) Dryden Flight Research Center to address the goals of the NASA Environmentally Responsible Aviation project to reduce fuel burn and emissions. The peak-seeking control approach is based on a steepest-descent algorithm using a time-varying Kalman filter to estimate the gradient of a performance function of fuel flow versus control surface positions. In real-time operation, deflections of symmetric ailerons, trailing-edge flaps, and leading-edge flaps of an F/A-18 airplane (McDonnell Douglas, now The Boeing Company, Chicago, Illinois) are controlled for optimization of fuel flow. This paper presents the design and integration of this peak-seeking controller on a modified NASA F/A-18 airplane with research flight control computers. A research flight was performed to collect data to build a realistic model of the performance function and characterize measurement noise. This model was then implemented into a nonlinear six-degree-of-freedom F/A-18 simulation along with the peak-seeking control algorithm. With the goal of eventual flight tests, the algorithm was first evaluated in the improved simulation environment. Results from the simulation predict good convergence on minimum fuel flow with a 2.5-percent reduction in fuel flow relative to the baseline trim of the aircraft.

  15. Peak-Seeking Optimization of Trim for Reduced Fuel Consumption: Architecture and Performance Predictions

    NASA Technical Reports Server (NTRS)

    Schaefer, Jacob; Brown, Nelson

    2013-01-01

    A peak-seeking control approach for real-time trim configuration optimization for reduced fuel consumption has been developed by researchers at the National Aeronautics and Space Administration (NASA) Dryden Flight Research Center to address the goals of the NASA Environmentally Responsible Aviation project to reduce fuel burn and emissions. The peak-seeking control approach is based on a steepest-descent algorithm using a time-varying Kalman filter to estimate the gradient of a performance function of fuel flow versus control surface positions. In real-time operation, deflections of symmetric ailerons, trailing-edge flaps, and leading-edge flaps of an FA-18 airplane (McDonnell Douglas, now The Boeing Company, Chicago, Illinois) are controlled for optimization of fuel flow. This presentation presents the design and integration of this peak-seeking controller on a modified NASA FA-18 airplane with research flight control computers. A research flight was performed to collect data to build a realistic model of the performance function and characterize measurement noise. This model was then implemented into a nonlinear six-degree-of-freedom FA-18 simulation along with the peak-seeking control algorithm. With the goal of eventual flight tests, the algorithm was first evaluated in the improved simulation environment. Results from the simulation predict good convergence on minimum fuel flow with a 2.5-percent reduction in fuel flow relative to the baseline trim of the aircraft.

  16. The Influence on Exhaust Gas Components and Fuel Consumption of Injection of Concentrated NOx into Diesel Engine Intake

    NASA Astrophysics Data System (ADS)

    Yoshida, Keiichiro; Kuwahara, Takuya; Kuroki, Tomoyuki; Okubo, Masaaki

    The authors inject NO into a diesel engine intake and investigate the reduction of NOx generation at the combustion chamber at first. The result shows that 20 - 30% of the injected NO (0.225 ∼ 0.72 slm) is reduced. Discussion through the calculation of the extended Zeldovich mechanism suggests that the reduction is mainly attributed to the region where equivalence ratio ranges in 1.1 - 1.5 and that the reaction between NO and hydrocarbon species slightly contributes to the NO reduction. Moreover, another experimental result shows that the injection of NO slightly improves specific fuel consumption, e.g. 0.4% at NO injection of 0.72 slm for intake airflow of 285 slm. Calculation of reaction enthalpy of NO reduction and CO oxidation considerably meets the experimental results on the change in fuel consumption.

  17. Biomass burning fuel consumption dynamics in the tropics and subtropics assessed from satellite

    NASA Astrophysics Data System (ADS)

    Andela, Niels; van der Werf, Guido R.; Kaiser, Johannes W.; van Leeuwen, Thijs T.; Wooster, Martin J.; Lehmann, Caroline E. R.

    2016-06-01

    Landscape fires occur on a large scale in (sub)tropical savannas and grasslands, affecting ecosystem dynamics, regional air quality and concentrations of atmospheric trace gasses. Fuel consumption per unit of area burned is an important but poorly constrained parameter in fire emission modelling. We combined satellite-derived burned area with fire radiative power (FRP) data to derive fuel consumption estimates for land cover types with low tree cover in South America, Sub-Saharan Africa, and Australia. We developed a new approach to estimate fuel consumption, based on FRP data from the polar-orbiting Moderate Resolution Imaging Spectroradiometer (MODIS) and the geostationary Spinning Enhanced Visible and Infrared Imager (SEVIRI) in combination with MODIS burned-area estimates. The fuel consumption estimates based on the geostationary and polar-orbiting instruments showed good agreement in terms of spatial patterns. We used field measurements of fuel consumption to constrain our results, but the large variation in fuel consumption in both space and time complicated this comparison and absolute fuel consumption estimates remained more uncertain. Spatial patterns in fuel consumption could be partly explained by vegetation productivity and fire return periods. In South America, most fires occurred in savannas with relatively long fire return periods, resulting in comparatively high fuel consumption as opposed to the more frequently burning savannas in Sub-Saharan Africa. Strikingly, we found the infrequently burning interior of Australia to have higher fuel consumption than the more productive but frequently burning savannas in northern Australia. Vegetation type also played an important role in explaining the distribution of fuel consumption, by affecting both fuel build-up rates and fire return periods. Hummock grasslands, which were responsible for a large share of Australian biomass burning, showed larger fuel build-up rates than equally productive grasslands in

  18. Biomass burning fuel consumption rates: a field measurement database

    NASA Astrophysics Data System (ADS)

    van Leeuwen, T. T.; van der Werf, G. R.; Hoffmann, A. A.; Detmers, R. G.; Rücker, G.; French, N. H. F.; Archibald, S.; Carvalho, J. A., Jr.; Cook, G. D.; de Groot, W. J.; Hély, C.; Kasischke, E. S.; Kloster, S.; McCarty, J. L.; Pettinari, M. L.; Savadogo, P.; Alvarado, E. C.; Boschetti, L.; Manuri, S.; Meyer, C. P.; Siegert, F.; Trollope, L. A.; Trollope, W. S. W.

    2014-12-01

    Landscape fires show large variability in the amount of biomass or fuel consumed per unit area burned. Fuel consumption (FC) depends on the biomass available to burn and the fraction of the biomass that is actually combusted, and can be combined with estimates of area burned to assess emissions. While burned area can be detected from space and estimates are becoming more reliable due to improved algorithms and sensors, FC is usually modeled or taken selectively from the literature. We compiled the peer-reviewed literature on FC for various biomes and fuel categories to understand FC and its variability better, and to provide a database that can be used to constrain biogeochemical models with fire modules. We compiled in total 77 studies covering 11 biomes including savanna (15 studies, average FC of 4.6 t DM (dry matter) ha-1 with a standard deviation of 2.2), tropical forest (n = 19, FC = 126 ± 77), temperate forest (n = 12, FC = 58 ± 72), boreal forest (n = 16, FC = 35 ± 24), pasture (n = 4, FC = 28 ± 9.3), shifting cultivation (n = 2, FC = 23, with a range of 4.0-43), crop residue (n = 4, FC = 6.5 ± 9.0), chaparral (n = 3, FC = 27 ± 19), tropical peatland (n = 4, FC = 314 ± 196), boreal peatland (n = 2, FC = 42 [42-43]), and tundra (n = 1, FC = 40). Within biomes the regional variability in the number of measurements was sometimes large, with e.g. only three measurement locations in boreal Russia and 35 sites in North America. Substantial regional differences in FC were found within the defined biomes: for example, FC of temperate pine forests in the USA was 37% lower than Australian forests dominated by eucalypt trees. Besides showing the differences between biomes, FC estimates were also grouped into different fuel classes. Our results highlight the large variability in FC, not only between biomes but also within biomes and fuel classes. This implies that substantial uncertainties are associated with using biome-averaged values to represent FC for whole

  19. A High Fuel Consumption Efficiency Management Scheme for PHEVs Using an Adaptive Genetic Algorithm

    PubMed Central

    Lee, Wah Ching; Tsang, Kim Fung; Chi, Hao Ran; Hung, Faan Hei; Wu, Chung Kit; Chui, Kwok Tai; Lau, Wing Hong; Leung, Yat Wah

    2015-01-01

    A high fuel efficiency management scheme for plug-in hybrid electric vehicles (PHEVs) has been developed. In order to achieve fuel consumption reduction, an adaptive genetic algorithm scheme has been designed to adaptively manage the energy resource usage. The objective function of the genetic algorithm is implemented by designing a fuzzy logic controller which closely monitors and resembles the driving conditions and environment of PHEVs, thus trading off between petrol versus electricity for optimal driving efficiency. Comparison between calculated results and publicized data shows that the achieved efficiency of the fuzzified genetic algorithm is better by 10% than existing schemes. The developed scheme, if fully adopted, would help reduce over 600 tons of CO2 emissions worldwide every day. PMID:25587974

  20. Fuel Consumption of a Carburetor Engine at Various Speeds and Torques

    NASA Technical Reports Server (NTRS)

    Schey, Oscar W; Clark, J Denny

    1938-01-01

    An investigation was conducted to obtain fuel-consumption curves for a single-cylinder engine with a Wright 1820-G and Pratt & Whitney 1340-H cylinder at varying speeds, manifold pressures, and air-fuel ratios. The 1340- H cylinder was tested at speeds from 1,200 to 2,400 r.p.m. and at manifold pressures from 21 to 38 inches of mercury absolute. Less than extensive tests were made of the 1820-G cylinder. The results of the tests showed that the minimum brake fuel consumption was obtained when the engines were operating at high torques and at speeds from 60 to 70 percent of the rated speed. The fuel consumption increased at an increasing rate as the torque was reduced; and, at 45 percent of maximum torque, the fuel consumption was 20 percent higher than at maximum torque when the engines were operating at 70 percent of rated speed. Minimum specific fuel consumption was obtained at the same air-fuel ratio regardless of compression ratio. No improvement in fuel consumption was obtained when mixtures leaner than an air-fuel ratio of 15.5 were used. The leanest mixture ratio on which the engine with the 1340-H cylinder would operate smoothly was 18.5 and the spark advance for maximum power with this mixture ratio was 50 degrees B.T.C. A method is discussed for reducing the amount of testing necessary to obtain curves for minimum brake fuel consumption.

  1. DEVELOPMENT OF ELECTROCHEMICAL REDUCTION TECHNOLOGY FOR SPENT OXIDE FUELS

    SciTech Connect

    Hur, Jin-Mok; Seo, Chung-Seok; Kim, Ik-Soo; Hong, Sun-Seok; Kang, Dae-Seung; Park, Seong-Won

    2003-02-27

    The Advanced Spent Fuel Conditioning Process (ACP) has been under development at Korea Atomic Energy Research Institute (KAERI) since 1997. The concept is to convert spent oxide fuel into metallic form and to remove high heat-load fission products such as Cs and Sr from the spent fuel. The heat power, volume, and radioactivity of spent fuel can decrease by a factor of a quarter via this process. For the realization of ACP, a concept of electrochemical reduction of spent oxide fuel in Li2O-LiCl molten salt was proposed and several cold tests using fresh uranium oxides have been carried out. In this new electrochemical reduction process, electrolysis of Li2O and reduction of uranium oxide are taking place simultaneously at the cathode part of electrolysis cell. The conversion of uranium oxide to uranium metal can reach more than 99% ensuring the feasibility of this process.

  2. Transportation Energy Futures: Combining Strategies for Deep Reductions in Energy Consumption and GHG Emissions (Brochure)

    SciTech Connect

    Not Available

    2013-03-01

    This fact sheet summarizes actions in the areas of light-duty vehicle, non-light-duty vehicle, fuel, and transportation demand that show promise for deep reductions in energy use. Energy efficient transportation strategies have the potential to simultaneously reduce oil consumption and greenhouse gas (GHG) emissions. The Transportation Energy Futures (TEF) project examined how the combination of multiple strategies could achieve deep reductions in GHG emissions and petroleum use on the order of 80%. Led by NREL, in collaboration with Argonne National Laboratory, the project's primary goal was to help inform domestic decisions about transportation energy strategies, priorities, and investments, with an emphasis on underexplored opportunities. TEF findings reveal three strategies with the potential to displace most transportation-related petroleum use and GHG emissions: 1) Stabilizing energy use in the transportation sector through efficiency and demand-side approaches. 2) Using additional advanced biofuels. 3) Expanding electric drivetrain technologies.

  3. Dataset for analysing the relationships among economic growth, fossil fuel and non-fossil fuel consumption.

    PubMed

    Asafu-Adjaye, John; Byrne, Dominic; Alvarez, Maximiliano

    2017-02-01

    The data presented in this article are related to the research article entitled 'Economic Growth, Fossil Fuel and Non-Fossil Consumption: A Pooled Mean Group Analysis using Proxies for Capital' (J. Asafu-Adjaye, D. Byrne, M. Alvarez, 2016) [1]. This article describes data modified from three publicly available data sources: the World Bank׳s World Development Indicators (http://databank.worldbank.org/data/reports.aspx?source=world-development-indicators), the U.S. Energy Information Administration׳s International Energy Statistics (http://www.eia.gov/cfapps/ipdbproject/IEDIndex3.cfm?tid=44&pid=44&aid=2) and the Barro-Lee Educational Attainment Dataset (http://www.barrolee.com). These data can be used to examine the relationships between economic growth and different forms of energy consumption. The dataset is made publicly available to promote further analyses.

  4. Study of fuel consumption and cooling system in low heat rejection turbocharged diesel engines

    SciTech Connect

    Taymaz, I.; Gur, M.; Cally, I.; Mimaroglu, A.

    1998-07-01

    In a conventional internal combustion engine, approximately one-third of total fuel input energy is converted to useful work. Since the working gas in a practical engine cycle is not exhausted at ambient temperature, a major part of the energy is lost with the exhaust gases. In addition another major part of energy input is rejected in the form of heat via the cooling system. If the energy normally rejected to the coolant could be recovered instead on the crankshaft as useful work, then a substantial improvement in fuel economy would result. At the same time, the cooling water, antifreeze, thermostat, radiator, water pump, cooling fan, and associated hoses and clamps could be eliminated. A new trend in the field of internal combustion engines is to insulate the heat transfer surfaces such as the combustion chamber, cylinder wall, cylinder head, piston and valves by ceramic insulating materials for the improvement of engine performance and elimination of cooling system. In this study, the effect of insulated heat transfer surfaces on direct injected and turbocharged diesel engine fuel consumption and cooling system were investigated. The research engine was a four-stroke, direct injected, six cylinder, turbocharged and intercooled diesel engine. This engine was tested at different speeds and loads conditions without coating. Then, combustion chamber surfaces, cylinder head, valves and piston crown faces was coated with ceramic materials. Ceramic layers were made of CaZrO{sub 3} and MgZrO{sub 3} and plasma coated onto base of the NiCrAl bond coat. The ceramic coated research engine was tested at the same operation conditions as the standard (without coating) engine. The results indicate a reduction in fuel consumption and heat losses to engine cooling system of the ceramic coated engine.

  5. Fuel consumptions and exhaust emissions induced by cooperative adaptive cruise control strategies

    NASA Astrophysics Data System (ADS)

    Yu, Shaowei; Shi, Zhongke

    2015-04-01

    Many cooperative adaptive cruise control strategies have been presented to improve traffic efficiency as well as road traffic safety, but scholars have rarely explored the impacts of these strategies on cars' fuel consumptions and exhaust emissions. In this paper, we respectively select two-velocity difference model, multiple velocity difference model and the car-following model considering multiple preceding cars' accelerations to investigate each car's fuel consumptions, carbon monoxide (CO), hydrocarbons (HC) and nitrogen oxides (NOX) emissions and carry out comparative analysis. The comparisons of fuel consumptions and exhaust emissions in three different cruise control strategies show that cooperative cars simulated by the car-following model considering multiple preceding cars' accelerations can run with the minimal fuel consumptions, CO, HC and NOX emissions, thus, taking the car-following model considering multiple preceding cars' accelerations as the cooperative adaptive cruise control strategy can significantly improve cars' fuel efficiency and exhaust emissions.

  6. Black carbon emissions reductions from combustion of alternative jet fuels

    NASA Astrophysics Data System (ADS)

    Speth, Raymond L.; Rojo, Carolina; Malina, Robert; Barrett, Steven R. H.

    2015-03-01

    Recent measurement campaigns for alternative aviation fuels indicate that black carbon emissions from gas turbines are reduced significantly with the use of alternative jet fuels that are low in aromatic content. This could have significant climate and air quality-related benefits that are currently not accounted for in environmental assessments of alternative jet fuels. There is currently no predictive way of estimating aircraft black carbon emissions given an alternative jet fuel. We examine the results from available measurement campaigns and propose a first analytical approximation (termed 'ASAF') of the black carbon emissions reduction associated with the use of paraffinic alternative jet fuels. We establish a relationship between the reduction in black carbon emissions relative to conventional jet fuel for a given aircraft, thrust setting relative to maximum rated thrust, and the aromatic volume fraction of the (blended) alternative fuel. The proposed relationship is constrained to produce physically meaningful results, makes use of only one free parameter and is found to explain a majority of the variability in measurements across the engines and fuels that have been tested.

  7. Effects of signal light on the fuel consumption and emissions under car-following model

    NASA Astrophysics Data System (ADS)

    Tang, Tie-Qiao; Yi, Zhi-Yan; Lin, Qing-Feng

    2017-03-01

    In this paper, a car-following model is utilized to study the effects of signal light on each vehicle's fuel consumption, CO, HC and NOX. The numerical results show that each vehicle's fuel consumption and emissions are influenced by the signal light and that the effects are related to the green split of the signal light and the vehicle's time headway at the origin, which can help drivers adjust their micro driving behavior on the road with a signal light to reduce their fuel consumption and emissions.

  8. Molten carbonate fuel cell reduction of nickel deposits

    DOEpatents

    Smith, James L.; Zwick, Stanley A.

    1987-01-01

    A molten carbonate fuel cell with anode and cathode electrodes and an eleolyte formed with two tile sections, one of the tile sections being adjacent the anode and limiting leakage of fuel gas into the electrolyte with the second tile section being adjacent the cathode and having pores sized to permit the presence of oxygen gas in the electrolyte thereby limiting the formation of metal deposits caused by the reduction of metal compositions migrating into the electrolyte from the cathode.

  9. Optimization to reduce fuel consumption in charge depleting mode

    SciTech Connect

    Roos, Bryan Nathaniel; Martini, Ryan D.

    2014-08-26

    A powertrain includes an internal combustion engine, a motor utilizing electrical energy from an energy storage device, and a plug-in connection. A Method for controlling the powertrain includes monitoring a fuel cut mode, ceasing a fuel flow to the engine based upon the fuel cut mode, and through a period of operation including acceleration of the powertrain, providing an entirety of propelling torque to the powertrain with the electrical energy from the energy storage device based upon the fuel cut mode.

  10. Developing Singapore Driving Cycle for passenger cars to estimate fuel consumption and vehicular emissions

    NASA Astrophysics Data System (ADS)

    Ho, Sze-Hwee; Wong, Yiik-Diew; Chang, Victor Wei-Chung

    2014-11-01

    Singapore has pledged to attain 7-11% Business-As-Usual carbon emissions reduction by 2020. Road transport sector is a significant source of carbon emissions, estimated to be the third largest sector in Singapore. A current gap in environmental evaluation for road transport activities in Singapore is the lack of a representative driving cycle for passenger cars (64% of the total population of 974,170 vehicles). This Singapore Driving Cycle (SDC) is hence developed for Singapore roads and traffic conditions. A chase-car (instrumented vehicle) was used to collect on-road data along 12 designed routes, and circulation driving on highly utilized arterial roads (including those in Central Business District (CBD) and both inner and outer ring roads fringing the CBD area). The SDC was thus hence constructed, with consideration of road type proportions, time periods and desired distance, duration and peak-lull proportion. In essence, the SDC is a 2400-s speed-time profile to represent the driving pattern for passenger car in Singapore. Microscopic estimation model (CMEM) shows that, as compared to SDC, the New European Driving Cycle (NEDC) underestimates most of the vehicular emissions (fuel, CO2, HC and NOx by 5%, 5%, 22% and 47%, respectively) and overestimates CO by 8%. The SDC is thus more suitable than the NEDC that is currently in use in Singapore; the SDC can be used to generate more accurate fuel consumption and emissions ratings for various uses (for example, inventory of vehicular emissions and fuel economy labelling).

  11. Peak Seeking Control for Reduced Fuel Consumption with Preliminary Flight Test Results

    NASA Technical Reports Server (NTRS)

    Brown, Nelson

    2012-01-01

    The Environmentally Responsible Aviation project seeks to accomplish the simultaneous reduction of fuel burn, noise, and emissions. A project at NASA Dryden Flight Research Center is contributing to ERAs goals by exploring the practical application of real-time trim configuration optimization for enhanced performance and reduced fuel consumption. This peak-seeking control approach is based on Newton-Raphson algorithm using a time-varying Kalman filter to estimate the gradient of the performance function. In real-time operation, deflection of symmetric ailerons, trailing-edge flaps, and leading-edge flaps of a modified F-18 are directly optimized, and the horizontal stabilators and angle of attack are indirectly optimized. Preliminary results from three research flights are presented herein. The optimization system found a trim configuration that required approximately 3.5% less fuel flow than the baseline trim at the given flight condition. The algorithm consistently rediscovered the solution from several initial conditions. These preliminary results show the algorithm has good performance and is expected to show similar results at other flight conditions and aircraft configurations.

  12. Impact of methanol-gasoline fuel blend on the fuel consumption and exhaust emission of a SI engine

    NASA Astrophysics Data System (ADS)

    Rifal, Mohamad; Sinaga, Nazaruddin

    2016-04-01

    In this study, the effect of methanol-gasoline fuel blend (M15, M30 and M50) on the fuel consumption and exhaust emission of a spark ignition engine (SI) were investigated. In the experiment, an engine four-cylinder, four stroke injection system (engine of Toyota Kijang Innova 1TR-FE) was used. Test were did to know the relation of fuel consumption and exhaust emission (CO, CO2, HC) were analyzed under the idle throttle operating condition and variable engine speed ranging from 1000 to 4000 rpm. The experimental result showed that the fuel consumption decrease with the use of methanol. It was also shown that the CO and HC emission were reduced with the increase methanol content while CO2 were increased.

  13. Reduction in Energy Consumption & Variability in Steel Foundry Operations

    SciTech Connect

    Frank Peters

    2005-05-04

    This project worked to improve the efficiency of the steel casting industry by reducing the variability that occurs because of process and product variation. The project focused on the post shakeout operations since roughly half of the production costs are in this area. These improvements will reduce the amount of variability, making it easier to manage the operation and improve the competitiveness. The reduction in variability will also reduce the need for many rework operations, which will result in a direct reduction of energy usage, particularly by the reduction of repeated heat treatment operations. Further energy savings will be realized from the reduction of scrap and reduced handling. Field studies were conducted at ten steel foundries that represented the U.S. steel casting industry, for a total of over 100 weeks of production observation. These studies quantified the amount of variability, and looked toward determining the source. A focus of the data collected was the grinding operations since this is a major effort in the cleaning room, and it represents the overall casting quality. The grinding was divided into two categories, expected and unexpected. Expected grinding is that in which the location of the effort is known prior to making the casting, such as smoothing parting lines, gates, and riser contacts. Unexpected grinding, which was approximately 80% of the effort, was done to improve the surfaces at weld repair locations, to rectify burnt on sand, and other surface anomalies at random locations. Unexpected grinding represents about 80% of the grinding effort. By quantifying this effort, the project raised awareness within the industry and the industry is continuing to make improvements. The field studies showed that the amount of variation of grinding operations (normalized because of the diverse set of parts studied) was very consistent across the industry. The field studies identified several specific sources that individually contributed to

  14. Process for Generating Engine Fuel Consumption Map: Future Atkinson Engine with Cooled EGR and Cylinder Deactivation

    EPA Pesticide Factsheets

    This document summarizes the process followed to utilize GT-POWER modeled engine and laboratory engine dyno test data to generate a full engine fuel consumption map which can be used by EPA's ALPHA vehicle simulations.

  15. Vegetation structure and fire weather influence variation in burn severity and fuel consumption during peatland wildfires

    NASA Astrophysics Data System (ADS)

    Davies, G. M.; Domènech, R.; Gray, A.; Johnson, P. C. D.

    2015-09-01

    Temperate peatland wildfires are of significant environmental concern but information on their environmental effects is lacking. We assessed variation in burn severity and fuel consumption within and between wildfires that burnt British moorlands in 2011 and 2012. We adapted the Composite Burn Index (pCBI) to provide semi-quantitative estimates of burn severity. Pre- and post-fire surface (shrubs and graminoids) and ground (litter, moss, duff) fuel loads associated with large wildfires were assessed using destructive sampling and analysed using a Generalised Linear Mixed Model (GLMM). Consumption during wildfires was compared with published estimates of consumption during prescribed burns. Burn severity and fuel consumption were related to fire weather, assessed using the Canadian Fire Weather Index System (FWI System), and pre-fire fuel structure. pCBI varied 1.6 fold between, and up to 1.7 fold within, wildfires. pCBI was higher where moisture codes of the FWI System indicated drier fuels. Spatial variation in pre- and post-fire fuel load accounted for a substantial proportion of the variance in fuel loads. Average surface fuel consumption was a linear function of pre-fire fuel load. Average ground fuel combustion completeness could be predicted by the Buildup Index. Carbon release ranged between 0.36 and 1.00 kg C m-2. The flammability of ground fuel layers may explain the higher C release-rates seen for wildfires in comparison to prescribed burns. Drier moorland community types appear to be at greater risk of severe burns than blanket-bog communities.

  16. Uncertainties in fuel loading and fire consumption calculations and the Smoke and Emissions Model Intercomparison Project

    NASA Astrophysics Data System (ADS)

    Larkin, N.; Solomon, R.; Strand, T.; Raffuse, S. M.; Craig, K.

    2009-12-01

    Fire and fuel managers often need to know how much fuel will be consumed by a fire, and how much smoke the fire will produce. Many factors influence the end result, including fuel type, loading, and moisture, quantity of live and dead fuels, terrain, and meteorology. A variety of fuel models and consumption models have been developed to help provide estimated quantities of fuel consumption and subsequent smoke production. We present results from this work, done as part of the Smoke and Emissions Model Intercomparison Project that show that the specific choice of model and model coupling can have a large effect on the final answer. We have used four different consumption models (CONSUME3, EPM, FEPS, and FOFEM) with three different fuel loading maps (NFDRS, Hardy, FCCS) to bracket the simulated results. A new web-based database viewer now allows both scientists and land and fire managers to directly compare various results by selecting a fuel loading map and consumption model. For model users interested in information for a specific fire these comparisons can be useful in understanding the uncertainties resulting from different model choices.

  17. Reductions in greenhouse gas (GHG) generation and energy consumption in wastewater treatment plants.

    PubMed

    Yerushalmi, L; Ashrafi, O; Haghighat, F

    2013-01-01

    Greenhouse gas (GHG) emission and energy consumption by on-site and off-site sources were estimated in two different wastewater treatment plants that used physical-chemical or biological processes for the removal of contaminants, and an anaerobic digester for sludge treatment. Physical-chemical treatment processes were used in the treatment plant of a locomotive repair factory that processed wastewater at 842 kg chemical oxygen demand per day. Approximately 80% of the total GHG emission was related to fossil fuel consumption for energy production. The emission of GHG was reduced by 14.5% with the recovery of biogas that was generated in the anaerobic digester and its further use as an energy source, replacing fossil fuels. The examined biological treatment system used three alternative process designs for the treatment of effluents from pulp and paper mills that processed wastewater at 2,000 kg biochemical oxygen demand per day. The three designs used aerobic, anaerobic, or hybrid aerobic/anaerobic biological processes for the removal of carbonaceous contaminants, and nitrification/denitrification processes for nitrogen removal. Without the recovery and use of biogas, the aerobic, anaerobic, and hybrid treatment systems generated 3,346, 6,554 and 7,056 kg CO(2)-equivalent/day, respectively, while the generated GHG was reduced to 3,152, 6,051, and 6,541 kg CO(2)-equivalent/day with biogas recovery. The recovery and use of biogas was shown to satisfy and exceed the energy needs of the three examined treatment plants. The reduction of operating temperature of the anaerobic digester and anaerobic reactor by 10°C reduced energy demands of the treatment plants by 35.1, 70.6 and 62.9% in the three examined treatment systems, respectively.

  18. Performance of Thorium-Based Mixed Oxide Fuels for the Consumption of Plutonium in Current and Advanced Reactors

    SciTech Connect

    Weaver, Kevan Dean; Herring, James Stephen

    2003-07-01

    A renewed interest in thorium-based fuels has arisen lately based on the need for proliferation resistance, longer fuel cycles, higher burnup, and improved waste form characteristics. Recent studies have been directed toward homogeneously mixed, heterogeneously mixed, and seed-and-blanket thorium-uranium oxide fuel cycles that rely on "in situ" use of the bred-in 233U. However, due to the higher initial enrichment required to achieve acceptable burnups, these fuels are encountering economic constraints. Thorium can nevertheless play a large role in the nuclear fuel cycle, particularly in the reduction of plutonium inventories. While uranium-based mixed-oxide (MOX) fuel will decrease the amount of plutonium in discharged fuel, the reduction is limited due to the breeding of more plutonium (and higher actinides) from the 238U. Here, we present calculational results and a comparison of the potential burnup of a thorium-based and uranium-based mixed-oxide fuel in a light water reactor. Although the uranium-based fuels outperformed the thorium-based fuels in achievable burnup, a depletion comparison of the initially charged plutonium (both reactor and weapons grade) showed that the thorium-based fuels outperformed the uranium-based fuels by more that a factor of 2, where >70% of the total plutonium in the thorium-based fuel is consumed during the cycle. This is significant considering that the achievable burnups of the thorium-based fuels were 1.4 to 4.6 times less than the uranium-based fuels for similar plutonium enrichments. For equal specific burnups of ~60 MWd/kg (i.e., using variable plutonium weight percentages to give the desired burnup), the thorium-based fuels still outperform the uranium-based fuels by more than a factor of 2, where the total plutonium consumption in a three-batch, 18-month cycle was 60 to 70%. This is fairly significant considering that 10 to 15% (by weight) more plutonium is needed in the thorium-based fuels as compared to the uranium

  19. Vegetation structure and fire weather influence variation in burn severity and fuel consumption during peatland wildfires

    NASA Astrophysics Data System (ADS)

    Davies, G. M.; Domènech, R.; Gray, A.; Johnson, P. C. D.

    2016-01-01

    Temperate peatland wildfires are of significant environmental concern but information on their environmental effects is lacking. We assessed variation in burn severity and fuel consumption within and between wildfires that burnt British moorlands in 2011 and 2012. We adapted the composite burn index (pCBI) to provide semi-quantitative estimates of burn severity. Pre- and post-fire surface (shrubs and graminoids) and ground (litter, moss, duff) fuel loads associated with large wildfires were assessed using destructive sampling and analysed using a generalised linear mixed model (GLMM). Consumption during wildfires was compared with published estimates of consumption during prescribed burns. Burn severity and fuel consumption were related to fire weather, assessed using the Canadian Fire Weather Index System (FWI System), and pre-fire vegetation type. pCBI varied 1.6 fold between, and up to 1.7 fold within, wildfires. pCBI was higher where moisture codes of the FWI System indicated drier fuels. Spatial variation in pre- and post-fire fuel load accounted for a substantial proportion of the variance in fuel loads. Average surface fuel consumption was a linear function of pre-fire fuel load. Average ground fuel combustion completeness could be predicted by the Buildup Index. Carbon release ranged between 0.36 and 1.00 kg C m-2. The flammability of ground fuel layers may explain the higher C release-rates seen for wildfires in comparison to prescribed burns. Drier moorland community types appear to be at greater risk of severe burns than blanket-bog communities.

  20. Short-Term Energy Outlook Model Documentation: Electricity Generation and Fuel Consumption Models

    EIA Publications

    2014-01-01

    The electricity generation and fuel consumption models of the Short-Term Energy Outlook (STEO) model provide forecasts of electricity generation from various types of energy sources and forecasts of the quantities of fossil fuels consumed for power generation. The structure of the electricity industry and the behavior of power generators varies between different areas of the United States. In order to capture these differences, the STEO electricity supply and fuel consumption models are designed to provide forecasts for the four primary Census regions.

  1. Impact of Solar Control PVB Glass on Vehicle Interior Temperatures, Air-Conditioning Capacity, Fuel Consumption, and Vehicle Range

    SciTech Connect

    Rugh, J.; Chaney, L.; Venson, T.; Ramroth, L.; Rose, M.

    2013-04-01

    The objective of the study was to assess the impact of Saflex1 S-series Solar Control PVB (polyvinyl butyral) configurations on conventional vehicle fuel economy and electric vehicle (EV) range. The approach included outdoor vehicle thermal soak testing, RadTherm cool-down analysis, and vehicle simulations. Thermal soak tests were conducted at the National Renewable Energy Laboratory's Vehicle Testing and Integration Facility in Golden, Colorado. The test results quantified interior temperature reductions and were used to generate initial conditions for the RadTherm cool-down analysis. The RadTherm model determined the potential reduction in air-conditioning (A/C) capacity, which was used to calculate the A/C load for the vehicle simulations. The vehicle simulation tool identified the potential reduction in fuel consumption or improvement in EV range between a baseline and modified configurations for the city and highway drive cycles. The thermal analysis determined a potential 4.0% reduction in A/C power for the Saflex Solar PVB solar control configuration. The reduction in A/C power improved the vehicle range of EVs and fuel economy of conventional vehicles and plug-in hybrid electric vehicles.

  2. Characterizing SI Engine Transient Fuel Consumption in ALPHA

    EPA Science Inventory

    Examine typical transient engine operation encountered over the EPA's vehicle and engine testing drive cycles to characterize that transient fuel usage, and then describe the changes made to ALPHA to better model transient engine operation.

  3. Evaluations of 1997 Fuel Consumption Patterns of Heavy Duty Trucks

    SciTech Connect

    Santini, Danilo

    2001-08-05

    The proposed 21st Century Truck program selected three truck classes for focused analysis. On the basis of gross vehicle weight (GVW) classification, these were Class 8 (representing heavy), Class 6 (representing medium), and Class 2b (representing light). To develop and verify these selections, an evaluation of fuel use of commercial trucks was conducted, using data from the 1997 Vehicle Inventory and Use Survey (VIUS). Truck fuel use was analyzed by registered GVW class, and by body type.

  4. Systems and methods to reduce reductant consumption in exhaust aftertreament systems

    DOEpatents

    Gupta, Aniket; Cunningham, Michael J.

    2017-02-14

    Systems, apparatus and methods are provided for reducing reductant consumption in an exhaust aftertreatment system that includes a first SCR device and a downstream second SCR device, a first reductant injector upstream of the first SCR device, and a second reductant injector between the first and second SCR devices. NOx conversion occurs with reductant injection by the first reductant injector to the first SCR device in a first temperature range and with reductant injection by the second reductant injector to the second SCR device when the temperature of the first SCR device is above a reductant oxidation conversion threshold.

  5. Toward full economic valuation of forest fuels-reduction treatments.

    PubMed

    Huang, Ching-Hsun; Finkral, Alex; Sorensen, Christopher; Kolb, Thomas

    2013-11-30

    Our goal was to move toward full economic valuation of fuels-reduction treatments applied to ponderosa pine (Pinus ponderosa) forests. For each of five fuels-reduction projects in northern Arizona, we calculated the economic value of carbon storage and carbon releases over one century produced by two fuels-reduction treatments of thinning following by prescribed burning every one (Rx10) or two (Rx20) decades and for no treatment followed by intense wildfire once in the first 50 years (HF50) or once in the first 100 years (HF100). Our estimates include two uses of harvested wood, the current use as pallets, and multiproduct use as paper, pallets, and construction materials. Additionally, we included the economic value of damage and loss from wildfire. Results indicate that treatments increase carbon stock in live trees over time; however, the inclusion of carbon emissions from treatments reduces net carbon storage and thereby carbon credits and revenue. The economic valuation shows that the highest net benefit of $5029.74 ha(-1) occurs for the Rx20 treatment with the HF50 baseline and the high estimated treatment benefits of avoided losses, regional economic benefits, and community value of fire risk reduction. The lowest net benefit of -$3458.02 ha(-1) occurs for the Rx10 treatment with the HF100 baseline and the low estimated treatment benefits. We conclude that current nonmarket values such as avoided wildfire damage should be included with values of traditional wood products and emerging values of carbon storage to more appropriately estimate long-term benefits and costs of forest fuels-reduction treatments.

  6. Water consumption footprint and land requirements of large-scale alternative diesel and jet fuel production.

    PubMed

    Staples, Mark D; Olcay, Hakan; Malina, Robert; Trivedi, Parthsarathi; Pearlson, Matthew N; Strzepek, Kenneth; Paltsev, Sergey V; Wollersheim, Christoph; Barrett, Steven R H

    2013-01-01

    Middle distillate (MD) transportation fuels, including diesel and jet fuel, make up almost 30% of liquid fuel consumption in the United States. Alternative drop-in MD and biodiesel could potentially reduce dependence on crude oil and the greenhouse gas intensity of transportation. However, the water and land resource requirements of these novel fuel production technologies must be better understood. This analysis quantifies the lifecycle green and blue water consumption footprints of producing: MD from conventional crude oil; Fischer-Tropsch MD from natural gas and coal; fermentation and advanced fermentation MD from biomass; and hydroprocessed esters and fatty acids MD and biodiesel from oilseed crops, throughout the contiguous United States. We find that FT MD and alternative MD derived from rainfed biomass have lifecycle blue water consumption footprints of 1.6 to 20.1 Lwater/LMD, comparable to conventional MD, which ranges between 4.1 and 7.4 Lwater/LMD. Alternative MD derived from irrigated biomass has a lifecycle blue water consumption footprint potentially several orders of magnitude larger, between 2.7 and 22 600 Lwater/LMD. Alternative MD derived from biomass has a lifecycle green water consumption footprint between 1.1 and 19 200 Lwater/LMD. Results are disaggregated to characterize the relationship between geo-spatial location and lifecycle water consumption footprint. We also quantify the trade-offs between blue water consumption footprint and areal MD productivity, which ranges from 490 to 4200 LMD/ha, under assumptions of rainfed and irrigated biomass cultivation. Finally, we show that if biomass cultivation for alternative MD is irrigated, the ratio of the increase in areal MD productivity to the increase in blue water consumption footprint is a function of geo-spatial location and feedstock-to-fuel production pathway.

  7. 14 CFR Appendix M to Part 25 - Fuel Tank System Flammability Reduction Means

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel Tank System Flammability Reduction... 25—Fuel Tank System Flammability Reduction Means M25.1Fuel tank flammability exposure requirements. (a) The Fleet Average Flammability Exposure of each fuel tank, as determined in accordance...

  8. Regional analysis of renewable transportation fuels - production and consumption

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoshuai

    The transportation sector contributes more than a quarter of total U.S. greenhouse gas emissions. Replacing fossil fuels with renewable fuels can be a key solution to mitigate GHG emissions from the transportation sector. Particularly, we have focused on land-based production of renewable fuels from landfills and brownfield in the southeastern region of the United States. These so call marginal lands require no direct land-use change to avoid environmental impact and, furthermore, have rendered opportunities for carbon trading and low-carbon intensity business. The resources potential and production capacity were derived using federal and state energy databases with the aid of GIS techniques. To maximize fuels production and land-use efficiency, a scheme of co-location renewable transportation fuels for production on landfills was conducted as a case study. Results of economic modeling analysis indicate that solar panel installed on landfill sites could generate a positive return within the project duration, but the biofuel production within the landfill facility is relatively uncertain, requiring proper sizing of the onsite processing facility, economic scale of production and available tax credits. From the consumers' perspective, a life-cycle cost analysis has been conducted to determine the economic and environmental implications of different transportation choices by consumers. Without tax credits, only the hybrid electric vehicles have lifetime total costs equivalent to a conventional vehicles differing by about 1 to 7%. With tax credits, electric and hybrid electric vehicles could be affordable and attain similar lifetime total costs as compared to conventional vehicles. The dissertation research has provided policy-makers and consumers a pathway of prioritizing investment on sustainable transportation systems with a balance of environmental benefits and economic feasibility.

  9. Vehicular emissions and fuel consumption estimation in passer IV. Research report

    SciTech Connect

    Chaudhary, N.A.

    1995-04-01

    Gasoline consumed by vehicles traveling within urban signalized networks constitutes a large portion of the total fuel usage in the United States. In addition, pollutants emitted by these vehicles degrade urban air quality. It is well known that the optimal coordination of traffic signals on urban signalized arterials improves traffic flow and reduces gasoline consumption and vehicular emissions. The research performed in this project incorporated fuel consumption and emissions estimation procedures into PASSER IV, a program for optimizing bandwidth-based signal timings in traffic networks. The enhanced PASSER IV software will allow Traffic Engineers to better assess the impacts of alternate signal timing plans on fuel consumption and emissions of vehicles traveling in a signalized network.

  10. Decadal trends in fossil fuel energy consumption and related air pollutant emissions

    NASA Astrophysics Data System (ADS)

    Shekar Reddy, M.; Venkataraman, C.; Boucher, O.

    2003-04-01

    The economic liberalization in the early 1990s in India fuelled the industrial production, enabled the decadal annual average rate of 5.9% in the gross domestic product (GDP) during 1990-2000. This resulted in a steady increase of fossil fuels energy consumption throughout the decade. This paper investigates the trends in the GDP growth rate, sectoral fossil fuels consumption and resultant atmospheric air pollutant emissions during the above period. The fossil fuels energy consumption in the 1990 was 6875 PJ, and increased to 10801 PJ in 2000, with a decadal annual average growth rate of 5.7%. Share of the coal and petroleum fuels are 52% and 35%, respectively during 2000. The relative share contribution of power, industrial, transport, and domestic sectors are 40%, 48%, 5% and 7%, respectively. The contribution of various sectors to fossil fuels energy consumption, and the relative distribution of the different fuels within each sector will be discussed. The annual sulfur dioxide (SO_2) and aerosols (particulate matter, black carbon, organic carbon) emissions are estimated using sector and fuel specific average emission factors (mass of pollutant per unit mass of fuel burnt). The estimates take into account the changes in the fuel characteristics and technology during the study period. The estimated SO_2 emissions are 1.7 Tg S yr-1 in 1990 and increased to 2.5 Tg S yr-1 in 2000, with an annual average increase of 5%. Majority of the SO_2 emissions are from coal consumption accounting 62%, predominantly from the power plants. Trends in fuel and sectoral contributions to SO2 emissions over the decade will be presented. In the transportation sector, diesels contribute significantly to BC. Notably, in India, two-stroke engines account for 78% of total vehicle fleet, and contribute significantly to organic carbon emissions. An analysis of available SO_2 and aerosols concentration measurements will be made to explore the possible correlations between trends in the

  11. Issues in International Energy Consumption Analysis: Chinese Transportation Fuel Demand

    EIA Publications

    2014-01-01

    Since the 1990s, China has experienced tremendous growth in its transportation sector. By the end of 2010, China's road infrastructure had emerged as the second-largest transportation system in the world after the United States. Passenger vehicle sales are dramatically increasing from a little more than half a million in 2000, to 3.7 million in 2005, to 13.8 million in 2010. This represents a twenty-fold increase from 2000 to 2010. The unprecedented motorization development in China led to a significant increase in oil demand, which requires China to import progressively more petroleum from other countries, with its share of petroleum imports exceeding 50% of total petroleum demand since 2009. In response to growing oil import dependency, the Chinese government is adopting a broad range of policies, including promotion of fuel-efficient vehicles, fuel conservation, increasing investments in oil resources around the world, and many others.

  12. Fuel savings and emissions reductions from light duty fuel cell vehicles

    NASA Astrophysics Data System (ADS)

    Mark, J.; Ohi, J. M.; Hudson, D. V., Jr.

    1994-04-01

    Fuel cell vehicles (FCV's) operate efficiently, emit few pollutants, and run on nonpetroleum fuels. Because of these characteristics, the large-scale deployment of FCV's has the potential to lessen U.S. dependence on foreign oil and improve air quality. This study characterizes the benefits of large-scale FCV deployment in the light duty vehicle market. Specifically, the study assesses the potential fuel savings and emissions reductions resulting from large-scale use of these FCV's and identifies the key parameters that affect the scope of the benefits from FCV use. The analysis scenario assumes that FCV's will compete with gasoline-powered light trucks and cars in the new vehicle market for replacement of retired vehicles and will compete for growth in the total market. Analysts concluded that the potential benefits from FCV's, measured in terms of consumer outlays for motor fuel and the value of reduced air emissions, are substantial.

  13. Fuel savings and emissions reductions from light duty fuel cell vehicles

    SciTech Connect

    Mark, J; Ohi, J M; Hudson, Jr, D V

    1994-04-01

    Fuel cell vehicles (FCVs) operate efficiently, emit few pollutants, and run on nonpetroleum fuels. Because of these characteristics, the large-scale deployment of FCVs has the potential to lessen US dependence on foreign oil and improve air quality. This study characterizes the benefits of large-scale FCV deployment in the light duty vehicle market. Specifically, the study assesses the potential fuel savings and emissions reductions resulting from large-scale use of these FCVs and identifies the key parameters that affect the scope of the benefits from FCV use. The analysis scenario assumes that FCVs will compete with gasoline-powered light trucks and cars in the new vehicle market for replacement of retired vehicles and will compete for growth in the total market. Analysts concluded that the potential benefits from FCVs, measured in terms of consumer outlays for motor fuel and the value of reduced air emissions, are substantial.

  14. Monthly, global emissions of carbon dioxide from fossil fuel consumption

    SciTech Connect

    Andres, Robert Joseph; Gregg, JS; Losey, London M; Marland, Gregg; Boden, Thomas A

    2011-01-01

    This paper examines available data, develops a strategy and presents a monthly, global time series of fossil-fuel carbon dioxide emissions for the years 1950 2006. This monthly time series was constructed from detailed study of monthly data from the 21 countries that account for approximately 80% of global total emissions. These data were then used in a Monte Carlo approach to proxy for all remaining countries. The proportional-proxy methodology estimates by fuel group the fraction of annual emissions emitted in each country and month. Emissions from solid, liquid and gas fuels are explicitly modelled by the proportional-proxy method. The primary conclusion from this study is the global monthly time series is statistically significantly different from a uniform distribution throughout the year. Uncertainty analysis of the data presented show that the proportional-proxy method used faithfully reproduces monthly patterns in the data and the global monthly pattern of emissions is relatively insensitive to the exact proxy assignments used. The data and results presented here should lead to a better understanding of global and regional carbon cycles, especially when the mass data are combined with the stable carbon isotope data in atmospheric transport models.

  15. Estimate of Fuel Consumption and GHG Emission Impact on an Automated Mobility District: Preprint

    SciTech Connect

    Chen, Yuche; Young, Stanley; Gonder, Jeff; Qi, Xuewei

    2015-12-11

    This study estimates the range of fuel and emissions impact of an automated-vehicle (AV) based transit system that services campus-based developments, termed an automated mobility district (AMD). The study develops a framework to quantify the fuel consumption and greenhouse gas (GHG) emission impacts of a transit system comprised of AVs, taking into consideration average vehicle fleet composition, fuel consumption/GHG emission of vehicles within specific speed bins, and the average occupancy of passenger vehicles and transit vehicles. The framework is exercised using a previous mobility analysis of a personal rapid transit (PRT) system, a system which shares many attributes with envisioned AV-based transit systems. Total fuel consumption and GHG emissions with and without an AMD are estimated, providing a range of potential system impacts on sustainability. The results of a previous case study based of a proposed implementation of PRT on the Kansas State University (KSU) campus in Manhattan, Kansas, serves as the basis to estimate personal miles traveled supplanted by an AMD at varying levels of service. The results show that an AMD has the potential to reduce total system fuel consumption and GHG emissions, but the amount is largely dependent on operating and ridership assumptions. The study points to the need to better understand ride-sharing scenarios and calls for future research on sustainability benefits of an AMD system at both vehicle and system levels.

  16. Estimate of Fuel Consumption and GHG Emission Impact from an Automated Mobility District

    SciTech Connect

    Chen, Yuche; Young, Stanley; Qi, Xuewei; Gonder, Jeffrey

    2015-10-19

    This study estimates the range of fuel and emissions impact of an automated-vehicle (AV) based transit system that services campus-based developments, termed an automated mobility district (AMD). The study develops a framework to quantify the fuel consumption and greenhouse gas (GHG) emission impacts of a transit system comprised of AVs, taking into consideration average vehicle fleet composition, fuel consumption/GHG emission of vehicles within specific speed bins, and the average occupancy of passenger vehicles and transit vehicles. The framework is exercised using a previous mobility analysis of a personal rapid transit (PRT) system, a system which shares many attributes with envisioned AV-based transit systems. Total fuel consumption and GHG emissions with and without an AMD are estimated, providing a range of potential system impacts on sustainability. The results of a previous case study based of a proposed implementation of PRT on the Kansas State University (KSU) campus in Manhattan, Kansas, serves as the basis to estimate personal miles traveled supplanted by an AMD at varying levels of service. The results show that an AMD has the potential to reduce total system fuel consumption and GHG emissions, but the amount is largely dependent on operating and ridership assumptions. The study points to the need to better understand ride-sharing scenarios and calls for future research on sustainability benefits of an AMD system at both vehicle and system levels.

  17. Emission Reduction of Fuel-Staged Aircraft Engine Combustor Using an Additional Premixed Fuel Nozzle.

    PubMed

    Yamamoto, Takeshi; Shimodaira, Kazuo; Yoshida, Seiji; Kurosawa, Yoji

    2013-03-01

    The Japan Aerospace Exploration Agency (JAXA) is conducting research and development on aircraft engine technologies to reduce environmental impact for the Technology Development Project for Clean Engines (TechCLEAN). As a part of the project, combustion technologies have been developed with an aggressive target that is an 80% reduction over the NOx threshold of the International Civil Aviation Organization (ICAO) Committee on Aviation Environmental Protection (CAEP)/4 standard. A staged fuel nozzle with a pilot mixer and a main mixer was developed and tested using a single-sector combustor under the target engine's landing and takeoff (LTO) cycle conditions with a rated output of 40 kN and an overall pressure ratio of 25.8. The test results showed a 77% reduction over the CAEP/4 NOx standard. However, the reduction in smoke at thrust conditions higher than the 30% MTO condition and of CO emission at thrust conditions lower than the 85% MTO condition are necessary. In the present study, an additional fuel burner was designed and tested with the staged fuel nozzle in a single-sector combustor to control emissions. The test results show that the combustor enables an 82% reduction in NOx emissions relative to the ICAO CAEP/4 standard and a drastic reduction in smoke and CO emissions.

  18. EMISSIONS REDUCTIONS USING HYDROGEN FROM PLASMATRON FUEL CONVERTERS

    SciTech Connect

    Bromberg, L

    2000-08-20

    Substantial progress in engine emission control is needed in order to meet present and proposed regulations for both spark ignition and diesel engines. Tightening regulations throughout the world reflect the ongoing concern with vehicle emissions. Recently developed compact plasmatron fuel converters have features that are suitable for onboard production of hydrogen for both fuel pretreatment and for exhaust aftertreatment applications. Systems that make use of these devices in conjunction with aftertreatment catalysts have the potential to improve significantly prospects for reduction of diesel engine emissions. Plasmatron fuel converters can provide a rapid response compact means to transform efficiently a wide range of hydrocarbon fuels into hydrogen rich gas. They have been used to reform natural gas [Bromberg1], gasoline [Green], diesel [Bromberg2] and hard-to-reform biofuels [Cohn1] into hydrogen rich gas (H2 + CO). The development of these devices has been pursued for the purpose of reducing engine exhaust pollutants by providing hydrogen rich gas for combustion in spark ignition and possibly diesel engines, as shown in Figure 1 [Cohn2]. Recent developments in compact plasmatron reformer design at MIT have resulted in substantial decreases in electrical power requirements. These new developments also increase the lifetime of the electrodes.

  19. Structural group analysis for soot reduction tendency of oxygenated fuels

    SciTech Connect

    Pepiot-Desjardins, P.; Pitsch, H.; Malhotra, R.; Kirby, S.R.; Boehman, A.L.

    2008-07-15

    Oxygenated additives are known to reduce soot formation in diesel engines. Numerous studies, both experimental and numerical, have reported that the reduction of particulate emissions depends on the molecular structure of the additives. In this paper, a structural group contribution approach is proposed to interpret experimental observations on the effect of oxygenated additives on the sooting propensities of hydrocarbon fuels. The statistically based method makes it possible to distinguish between chemical effects caused by the presence of oxygenated groups in the fuel mixture and mere dilution of the original fuel by the additive. The analysis was carried out on several experimental databases encompassing both premixed and nonpremixed configurations that include a new extensive set of smoke point measurements for mixtures of a given fuel with several oxygenated molecules. The current approach unifies the conclusions on the relative efficiency of the various oxygenated functionalities such as alcohols, esters, ethers, and carbonyl groups and provides a potential explanation for the seemingly contradictory trends exhibited by some raw experimental data. (author)

  20. Catalytic reduction of carbon dioxide with a hydrogen fuel cell

    SciTech Connect

    Ogura, K.; Migita, C.T.; Imura, H. )

    1990-06-01

    This paper reports the catalytic reduction of carbon dioxide to methanol achieved with a hydrogen fuel cell. This process involves a homogeneous and a heterogeneous catalysis. In the former, the catalyst consisting of a metal complex and methanol were applied, and in the latter Everitt's salt (K{sub 2}Fe{sup II}(Fe{sup II}(CN{sub 6}))) which functions as an electron relay was used. The initial {ital p}H of the catholyte was fixed at 2, and the {ital p}H of the anolyte was required to be higher than 1.75 for the hydrogen fuel cell with CO{sub 2} as oxidant to be feasible thermodynamically.

  1. Dose reduction improvements in storage basins of spent nuclear fuel

    SciTech Connect

    Huang, Fan-Hsiung F.

    1997-08-13

    Spent nuclear fuel in storage basins at the Hanford Site has corroded and contaminated basin water, which has leaked into the soil; the fuel also had deposited a layer of radioactive sludge on basin floors. The SNF is to be removed from the basins to protect the nearby Columbia River. Because the radiation level is high, measures have been taken to reduce the background dose rate to as low as reasonably achievable (ALARA) to prevent radiation doses from becoming the limiting factor for removal of the SW in the basins to long-term dry storage. All activities of the SNF Project require application of ALARA principles for the workers. On the basis of these principles dose reduction improvements have been made by first identifying radiological sources. Principal radiological sources in the basin are basin walls, basin water, recirculation piping and equipment. Dose reduction activities focus on cleaning and coating basin walls to permit raising the water level, hydrolasing piping, and placing lead plates. In addition, the transfer bay floor will be refinished to make decontamination easier and reduce worker exposures in the radiation field. The background dose rates in the basin will be estimated before each task commences and after it is completed; these dose reduction data will provide the basis for cost benefit analysis.

  2. FUEL CONSUMPTION AND COST SAVINGS OF CLASS 8 HEAVY-DUTY TRUCKS POWERED BY NATURAL GAS

    SciTech Connect

    Gao, Zhiming; LaClair, Tim J; Daw, C Stuart; Smith, David E

    2013-01-01

    We compare the fuel consumption and greenhouse gas emissions of natural gas and diesel heavy-duty (HD) class 8 trucks under consistent simulated drive cycle conditions. Our study included both conventional and hybrid HD trucks operating with either natural gas or diesel engines, and we compare the resulting simulated fuel efficiencies, fuel costs, and payback periods. While trucks powered by natural gas engines have lower fuel economy, their CO2 emissions and costs are lower than comparable diesel trucks. Both diesel and natural gas powered hybrid trucks have significantly improved fuel economy, reasonable cost savings and payback time, and lower CO2 emissions under city driving conditions. However, under freeway-dominant driving conditions, the overall benefits of hybridization are considerably less. Based on payback period alone, non-hybrid natural gas trucks appear to be the most economic option for both urban and freeway driving environments.

  3. 78 FR 37883 - Information Collection Activities: Report of Fuel Cost, Consumption, and Surcharge Revenue

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-24

    ... Surcharge Revenue AGENCY: Surface Transportation Board. ACTION: 60-day notice of request for comments and... Management and Budget (OMB) an extension of approval for the collection of the Report of Fuel Cost, Consumption, and Surcharge Revenue. Comments are requested concerning: (1) The accuracy of the Board's...

  4. 14 CFR 291.44 - BTS Schedule P-12(a), Fuel Consumption by Type of Service and Entity.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false BTS Schedule P-12(a), Fuel Consumption by... TRANSPORTATION Reporting Rules § 291.44 BTS Schedule P-12(a), Fuel Consumption by Type of Service and Entity. (a) For the purposes of BTS schedule P-12(a), type of service shall be either scheduled service...

  5. 14 CFR 291.44 - BTS Schedule P-12(a), Fuel Consumption by Type of Service and Entity.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false BTS Schedule P-12(a), Fuel Consumption by... TRANSPORTATION Reporting Rules § 291.44 BTS Schedule P-12(a), Fuel Consumption by Type of Service and Entity. (a) For the purposes of BTS schedule P-12(a), type of service shall be either scheduled service...

  6. How hybrid-electric vehicles are different from conventional vehicles: the effect of weight and power on fuel consumption

    NASA Astrophysics Data System (ADS)

    Reynolds, C.; Kandlikar, M.

    2007-01-01

    An increasingly diverse set of hybrid-electric vehicles (HEVs) is now available in North America. The recent generation of HEVs have higher fuel consumption, are heavier, and are significantly more powerful than the first generation of HEVs. We compare HEVs for sale in the United States in 2007 to equivalent conventional vehicles and determine how vehicle weight and system power affects fuel consumption within each vehicle set. We find that heavier and more powerful hybrid-electric vehicles are eroding the fuel consumption benefit of this technology. Nonetheless, the weight penalty for fuel consumption in HEVs is significantly lower than in equivalent conventional internal combustion engine vehicles (ICEVs). A 100 kg change in vehicle weight increases fuel consumption by 0.7 l/100 km in ICEVs compared with 0.4 l/100 km in HEVs. When the HEVs are compared with their ICEV counterparts in an equivalence model that differentiates between cars and sports-utility vehicles, the average fuel consumption benefit was 2.7 l/100 km. This analysis further reveals that a HEV which is 100 kg heavier than an identical ICEV would have a fuel consumption penalty of 0.15 l/100 km. Likewise, an increase in the HEV's power by 10 kW results in a fuel consumption penalty of 0.27 l/100 km.

  7. Using the Relationship between Vehicle Fuel Consumption and CO[subscript 2] Emissions to Illustrate Chemical Principles

    ERIC Educational Resources Information Center

    Oliver-Hoyo, Maria T.; Pinto, Gabriel

    2008-01-01

    This instructional resource utilizes consumer product information by which students compare theoretical stoichiometric calculations to CO[subscript 2] car emissions and fuel consumption data. Representing graphically the emission of CO[subscript 2] versus consumption of fuel provides a tangible way of connecting concepts studied in chemistry…

  8. High-Energy-Density Fuel Blending Strategies and Drop Dispersion for Fuel Cost Reduction and Soot Propensity Control

    NASA Technical Reports Server (NTRS)

    Bellan, J.; Harstad, K.

    1998-01-01

    The idea that low soot propensity of high-energy-density (HED) liquid sooting fuels and cost reduction of a multicomponent energetic fuel can be achieved by doping a less expensive, less sooting liquid fuel with HED is tested through numerical simulations.

  9. More efficiency in fuel consumption using gearbox optimization based on Taguchi method

    NASA Astrophysics Data System (ADS)

    Goharimanesh, Masoud; Akbari, Aliakbar; Akbarzadeh Tootoonchi, Alireza

    2014-05-01

    Automotive emission is becoming a critical threat to today's human health. Many researchers are studying engine designs leading to less fuel consumption. Gearbox selection plays a key role in an engine design. In this study, Taguchi quality engineering method is employed, and optimum gear ratios in a five speed gear box is obtained. A table of various gear ratios is suggested by design of experiment techniques. Fuel consumption is calculated through simulating the corresponding combustion dynamics model. Using a 95 % confidence level, optimal parameter combinations are determined using the Taguchi method. The level of importance of the parameters on the fuel efficiency is resolved using the analysis of signal-to-noise ratio as well as analysis of variance.

  10. Development of a Life Cycle Inventory of Water Consumption Associated with the Production of Transportation Fuels

    SciTech Connect

    Lampert, David J.; Cai, Hao; Wang, Zhichao; Keisman, Jennifer; Wu, May; Han, Jeongwoo; Dunn, Jennifer; Sullivan, John L.; Elgowainy, Amgad; Wang, Michael; Keisman, Jennifer

    2015-10-01

    The production of all forms of energy consumes water. To meet increased energy demands, it is essential to quantify the amount of water consumed in the production of different forms of energy. By analyzing the water consumed in different technologies, it is possible to identify areas for improvement in water conservation and reduce water stress in energy-producing regions. The transportation sector is a major consumer of energy in the United States. Because of the relationships between water and energy, the sustainability of transportation is tied to management of water resources. Assessment of water consumption throughout the life cycle of a fuel is necessary to understand its water resource implications. To perform a comparative life cycle assessment of transportation fuels, it is necessary first to develop an inventory of the water consumed in each process in each production supply chain. The Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model is an analytical tool that can used to estimate the full life-cycle environmental impacts of various transportation fuel pathways from wells to wheels. GREET is currently being expanded to include water consumption as a sustainability metric. The purpose of this report was to document data sources and methodologies to estimate water consumption factors (WCF) for the various transportation fuel pathways in GREET. WCFs reflect the quantity of freshwater directly consumed per unit production for various production processes in GREET. These factors do not include consumption of precipitation or low-quality water (e.g., seawater) and reflect only water that is consumed (i.e., not returned to the source from which it was withdrawn). The data in the report can be combined with GREET to compare the life cycle water consumption for different transportation fuels.

  11. Platinum monolayer electrocatalysts for oxygen reduction in fuel cells

    NASA Astrophysics Data System (ADS)

    Zhang, Junliang

    Fuel cells are expected to be one of the major clean energy sources in the near future. However, the slow kinetics of electrocatalytic oxygen reduction reaction (ORR) and the high loading of Pt for the cathode material are the urgent issues to be addressed since they determine the efficiency and the cost of this energy source. In this study, a new approach was developed for designing electrocatalysts for the ORR in fuel cells. These electrocatalysts consist of only one Pt monolayer, or mixed transition metal-Pt monolayer, on suitable carbon-supported metal, or alloy nanoparticles. The synthesis involved depositing a monolayer of Cu on a suitable transition metal or metal alloy surface at underpotentials, followed by galvanic displacement of the Cu monolayer with Pt or mixed metal-Pt. It was found that the electronic properties of Pt monolayer could be fine-tuned by the electronic and geometric effects introduced by the substrate metal (or alloy) and the lateral effects of the neighboring metal atoms. The role of substrates was found reflected in a "volcano" plot of the monolayer activity for the ORR as a function of their calculated d-band centers. The Pt mass-specific activity of the new Pt monolayer electrocatalysts was up to twenty times higher than the state-of-the-art commercial Pt/C catalysts. The enhancement of the activity is caused mainly by decreased formation of PtOH (the blocking species for ORR), and to a lesser degree by the electronic effects. Fuel cell tests showed a very good long term stability of the new electrocatalysts. Our results demonstrated a viable way to designing the electrocatalysts which could successfully alleviate two issues facing the commercialization of fuel cells---the costs of electrocatalysts and their efficiency.

  12. Overview of reductants utilized in nuclear fuel reprocessing/recycling

    SciTech Connect

    Patricia Paviet-Hartmann; Catherine Riddle; Keri Campbell; Edward Mausolf

    2013-10-01

    Most of the aqueous processes developed, or under consideration worldwide for the recycling of used nuclear fuel (UNF) utilize the oxido-reduction properties of actinides to separate them from other radionuclides. Generally, after acid dissolution of the UNF, (essentially in nitric acid solution), actinides are separated from the raffinate by liquid-liquid extraction using specific solvents, associated along the process, with a particular reductant that will allow the separation to occur. For example, the industrial PUREX process utilizes hydroxylamine as a plutonium reductant. Hydroxylamine has numerous advantages: not only does it have the proper attributes to reduce Pu(IV) to Pu(III), but it is also a non-metallic chemical that is readily decomposed to innocuous products by heating. However, it has been observed that the presence of high nitric acid concentrations or impurities (such as metal ions) in hydroxylamine solutions increase the likelihood of the initiation of an autocatalytic reaction. Recently there has been some interest in the application of simple hydrophilic hydroxamic ligands such as acetohydroxamic acid (AHA) for the stripping of tetravalent actinides in the UREX process flowsheet. This approach is based on the high coordinating ability of hydroxamic acids with tetravalent actinides (Np and Pu) compared with hexavalent uranium. Thus, the use of AHA offers a route for controlling neptunium and plutonium in the UREX process by complexant based stripping of Np(IV) and Pu(IV) from the TBP solvent phase, while U(VI) ions are not affected by AHA and remain solvated in the TBP phase. In the European GANEX process, AHA is also used to form hydrophilic complexes with actinides and strip them from the organic phase into nitric acid. However, AHA does not decompose completely when treated with nitric acid and hampers nitric acid recycling. In lieu of using AHA in the UREX + process, formohydroxamic acid (FHA), although not commercially available, hold

  13. Fuel Consumption Modeling of a Transport Category Aircraft Using Flight Operations Quality Assurance Data: A Literature Review

    NASA Technical Reports Server (NTRS)

    Stolzer, Alan J.

    2002-01-01

    Fuel is a major cost expense for air carriers. A typical airline spends 10% of its operating budget on the purchase of jet fuel, which even exceeds its expenditures on aircraft acquisitions. Thus, it is imperative that fuel consumption be managed as wisely as possible. The implementation of Flight Operations Quality Assurance (FOQA) programs at airlines may be able to assist in this management effort. The purpose of the study is to examine the literature regarding fuel consumption by air carriers, the literature related to air carrier fuel conservation efforts, and the literature related to the appropriate statistical methodologies to analyze the FOQA-derived data.

  14. Modelling fuel consumption in kerbside source segregated food waste collection: separate collection and co-collection.

    PubMed

    Chu, T W; Heaven, S; Gredmaier, L

    2015-01-01

    Source separated food waste is a valuable feedstock for renewable energy production through anaerobic digestion, and a variety of collection schemes for this material have recently been introduced. The aim of this study was to identify options that maximize collection efficiency and reduce fuel consumption as part of the overall energy balance. A mechanistic model was developed to calculate the fuel consumption of kerbside collection of source segregated food waste, co-mingled dry recyclables and residual waste. A hypothetical city of 20,000 households was considered and nine scenarios were tested with different combinations of collection frequencies, vehicle types and waste types. The results showed that the potential fuel savings from weekly and fortnightly co-collection of household waste range from 7.4% to 22.4% and 1.8% to 26.6%, respectively, when compared to separate collection. A compartmentalized vehicle split 30:70 always performed better than one with two compartments of equal size. Weekly food waste collection with alternate weekly collection of the recyclables and residual waste by two-compartment collection vehicles was the best option to reduce the overall fuel consumption.

  15. Overview of reductants utilized in nuclear fuel reprocessing/recycling

    SciTech Connect

    Paviet-Hartmann, P.; Riddle, C.; Campbell, K.; Mausolf, E.

    2013-07-01

    The most widely used reductant to partition plutonium from uranium in the Purex process was ferrous sulfamate, other alternates were proposed such as hydrazine-stabilized ferrous nitrate or uranous nitrate, platinum catalyzed hydrogen, and hydrazine, hydroxylamine salts. New candidates to replace hydrazine or hydroxylamine nitrate (HAN) are pursued worldwide. They may improve the performance of the industrial Purex process towards different operations such as de-extraction of plutonium and reduction of the amount of hydrazine which will limit the formation of hydrazoic acid. When looking at future recycling technologies using hydroxamic ligands, neither acetohydroxamic acid (AHA) nor formohydroxamic acid (FHA) seem promising because they hydrolyze to give hydroxylamine and the parent carboxylic acid. Hydroxyethylhydrazine, HOC{sub 2}H{sub 4}N{sub 2}H{sub 3} (HEH) is a promising non-salt-forming reductant of Np and Pu ions because it is selective to neptunium and plutonium ions at room temperature and at relatively low acidity, it could serve as a replacement of HAN or AHA for the development of a novel used nuclear fuel recycling process.

  16. Potential benefits of solar reflective car shells: cooler cabins, fuel savings and emission reductions

    SciTech Connect

    Levinson, Ronnen; Pan, Heng; Ban-Weiss, George; Rosado, Pablo; Paolini, Riccardo; Akbari, Hashem

    2011-05-11

    Abstract: Vehicle thermal loads and air conditioning ancillary loads are strongly influenced by the absorption of solar energy. The adoption of solar reflective coatings for opaque surfaces of the vehicle shell can decrease the ?soak? temperature of the air in the cabin of a vehicle parked in the sun, potentially reducing the vehicle?s ancillary load and improving its fuel economy by permitting the use of a smaller air conditioner. An experimental comparison of otherwise identical black and silver compact sedans indicated that increasing the solar reflectance (?) of the car?s shell by about 0.5 lowered the soak temperature of breath-level air by about 5?6?C. Thermal analysis predicts that the air conditioning capacity required to cool the cabin air in the silver car to 25?C within 30min is 13percent less than that required in the black car. Assuming that potential reductions in AC capacity and engine ancillary load scale linearly with increase in shell solar reflectance, ADVISOR simulations of the SC03 driving cycle indicate that substituting a typical cool-colored shell (?=0.35) for a black shell (?=0.05) would reduce fuel consumption by 0.12L per 100km (1.1percent), increasing fuel economy by 0.10kmL?1 [0.24mpg] (1.1percent). It would also decrease carbon dioxide (CO2) emissions by 2.7gkm?1 (1.1percent), nitrogen oxide (NOx) emissions by 5.4mgkm?1 (0.44percent), carbon monoxide (CO) emissions by 17mgkm?1 (0.43percent), and hydrocarbon (HC) emissions by 4.1mgkm?1 (0.37percent). Selecting a typical white or silver shell (?=0.60) instead of a black shell would lower fuel consumption by 0.21L per 100km (1.9percent), raising fuel economy by 0.19kmL?1 [0.44mpg] (2.0percent). It would also decrease CO2 emissions by 4.9gkm?1 (1.9percent), NOx emissions by 9.9mgkm?1 (0.80percent), CO emissions by 31mgkm?1 (0.79percent), and HC emissions by 7.4mgkm?1 (0.67percent). Our simulations may underestimate emission reductions because emissions in standardized driving cycles are

  17. Study of operational parameters impacting helicopter fuel consumption. [using computer techniques (computer programs)

    NASA Technical Reports Server (NTRS)

    Cross, J. L.; Stevens, D. D.

    1976-01-01

    A computerized study of operational parameters affecting helicopter fuel consumption was conducted as an integral part of the NASA Civil Helicopter Technology Program. The study utilized the Helicopter Sizing and Performance Computer Program (HESCOMP) developed by the Boeing-Vertol Company and NASA Ames Research Center. An introduction to HESCOMP is incorporated in this report. The results presented were calculated using the NASA CH-53 civil helicopter research aircraft specifications. Plots from which optimum flight conditions for minimum fuel use that can be obtained are presented for this aircraft. The results of the study are considered to be generally indicative of trends for all helicopters.

  18. Cold start fuel consumption of a diesel and a petrol car

    SciTech Connect

    Pearce, T.C.; Waters, M.H.L.

    1980-01-01

    Measurements have been made of the fuel consumption of a petrol and a diesel car when starting from cold. The cars were the 1.1 liter petrol VW Golf and the 1.5 liter diesel version, which have the same passenger accommodation and nearly identical road performance. It was found that the diesel car used less fuel in the warm-up period than the petrol, both when being driven at constant speed on a test track and with the engine idling and the car stationary. (Copyright (c) Crown Copyright 1980.)

  19. Assessment for fuel consumption and exhaust emissions of China's vehicles: future trends and policy implications.

    PubMed

    Wu, Yingying; Zhao, Peng; Zhang, Hongwei; Wang, Yuan; Mao, Guozhu

    2012-01-01

    In the recent years, China's auto industry develops rapidly, thus bringing a series of burdens to society and environment. This paper uses Logistic model to simulate the future trend of China's vehicle population and finds that China's auto industry would come into high speed development time during 2020-2050. Moreover, this paper predicts vehicles' fuel consumption and exhaust emissions (CO, HC, NO(x), and PM) and quantificationally evaluates related industry policies. It can be concluded that (1) by 2020, China should develop at least 47 million medium/heavy hybrid cars to prevent the growth of vehicle fuel consumption; (2) China should take the more stringent vehicle emission standard V over 2017-2021 to hold back the growth of exhaust emissions; (3) developing new energy vehicles is the most effective measure to ease the pressure brought by auto industry.

  20. The methodology of variable management of propellant fuel consumption by jet-propulsion engines of a spacecraft

    NASA Astrophysics Data System (ADS)

    Kovtun, V. S.

    2012-12-01

    Traditionally, management of propellant fuel consumption on board of a spacecraft is only associated with the operation of jet-propulsion engines (JPE) that are actuator devices of motion control systems (MCS). The efficiency of propellant fuel consumption depends not only on the operation of the MCS, but also, to one extent or another, on all systems functioning on board of a spacecraft, and on processes that occur in them and involve conversion of variable management of propellant fuel consumption by JPEs as a constituent part of the control of the complex process of spacecraft flight.

  1. Remote fabrication and irradiation test of recycled nuclear fuel prepared by the oxidation and reduction of spent oxide fuel

    NASA Astrophysics Data System (ADS)

    Jin Ryu, Ho; Chan Song, Kee; Il Park, Geun; Won Lee, Jung; Seung Yang, Myung

    2005-02-01

    A direct dry recycling process was developed in order to reuse spent pressurized light water reactor (LWR) nuclear fuel in CANDU reactors without the separation of sensitive nuclear materials such as plutonium. The benefits of the dry recycling process are the saving of uranium resources and the reduction of spent fuel accumulation as well as a higher proliferation resistance. In the process of direct dry recycling, fuel pellets separated from spent LWR fuel rods are oxidized from UO2 to U3O8 at 500 °C in an air atmosphere and reduced into UO2 at 700 °C in a hydrogen atmosphere, which is called OREOX (oxidation and reduction of oxide fuel). The pellets are pulverized during the oxidation and reduction processes due to the phase transformation between cubic UO2 and orthorhombic U3O8. Using the oxide powder prepared from the OREOX process, the compaction and sintering processes are performed in a remote manner in a shielded hot cell due to the high radioactivity of the spent fuel. Most of the fission gas and volatile fission products are removed during the OREOX and sintering processes. The mini-elements fabricated by the direct dry recycling process are irradiated in the HANARO research reactor for the performance evaluation of the recycled fuel pellets. Post-irradiation examination of the irradiated fuel showed that microstructural evolution and fission gas release behavior of the dry-recycled fuel were similar to high burnup UO2 fuel.

  2. JT9D-70/59 Improved High Pressure Turbine Active Clearance Control System. [for specific fuel consumption improvement

    NASA Technical Reports Server (NTRS)

    Gaffin, W. O.

    1979-01-01

    The JT9D-70/59 high pressure turbine active clearance control system was modified to provide reduction of blade tip clearance when the system is activated during cruise operation. The modification increased the flow capacity and air impingement effectiveness of the cooling air manifold to augment turbine case shrinkage capability, and increased responsiveness of the airseal clearance to case shrinkage. The simulated altitude engine testing indicated a significant improvement in specific fuel consumption with the modified system. A 1000 cycle engine endurance test showed no unusual wear or performance deterioration effects on the engine or the clearance control system. Rig tests indicated that the air impingement and seal support configurations used in the engine tests are near optimum.

  3. The Effect of Fuel Consumption on Cylinder Temperatures and Performance of a Cowled Wright J-5 Engine

    NASA Technical Reports Server (NTRS)

    Schey, Oscar W

    1929-01-01

    Given here are the results of tests made to determine the effect of fuel consumption on the cylinder temperatures and the performance of a cowled Wright J-5 engine. The results of these tests indicate that enriching the mixture by increasing the carburetor size results in a reduction in cylinder head and barrel temperatures. The cylinders shielded by the magnetos or the points on the cylinder that do not receive a free flow of cooling air increase most rapidly in temperature as the mixture is leaned. A free flow of air past the cylinders is essential for satisfactory operation on a lean mixture. The results of these tests show that the Wright J-5 engine can withstand severe temperatures for short periods of operation. The test results also show to what extent destructive temperatures may be avoided by enriching the mixture.

  4. [Meat consumption reduction policies: benefits for climate change mitigation and health].

    PubMed

    Michelozzi, Paola; Lapucci, Enrica; Farchi, Sara

    2015-08-01

    Agricultural food production substantially contributes to green house gas (GHG) emissions worldwide and 80% of the agricultural emissions arise from the livestock sector, in particular from ruminants. Meat consumption is generally above dietary recommendations in many countries, including Italy, and it is increasing in developing countries. Although meat is a source of essential nutrients, it provides large amounts of saturated fat, which is a known risk factor for obesity and for several diseases such as stroke, breast cancer and colon cancer. Dietary changes, with lower intake of red and processed meat, are likely to be beneficial for improving health and for the environment by reducing emissions of GHG. Data on meat consumption in Italy among adults, referred to the last ten years, shows heterogeneity among regions, with the highest consumption in the North-western regions and generally with higher consumption among males. We describe meat consumption distribution worldwide, in Europe and Italy. An assessment of the potential environmental and health co-benefits considering different reduction scenarios of red meat consumption in Italy is provided. Dietary changes can substantially lower GHG and coordinated actions are needed across public health and other sectors to promote healthy, low-emission diets.

  5. The Influence of Intersections on Fuel Consumption in Urban Arterial Road Traffic: A Single Vehicle Test in Harbin, China

    PubMed Central

    Wu, Lina; Ci, Yusheng; Chu, Jiangwei; Zhang, Hongsheng

    2015-01-01

    The calculating method for fuel consumption (FC) was put forward and calibrated and the characteristics of the fuel consumption on intersections were analyzed based on 18 groups of vehicular operating data which were acquired from the test experiment of a single vehicle along the urban arterial roads in Harbin, China. The results obtained show that 50.36% of the fuel consumption for the test vehicle was used at the area of intersections compared with 28.9% of the influencing distance and 68.5% of the running time; and 78.4% of them was burnt at the stages of acceleration and idling. Meanwhile, the type (c) of the vehicular operating status was illustrated to be the worst way of reducing fuel consumption, the causes were analyzed and four improvement strategies were put forward. PMID:26367012

  6. 77 FR 33158 - Plumas National Forest, California, Sugarloaf Hazardous Fuels Reduction Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-05

    ... proposed to establish defensible fuel profile zones (DFPZs), modify fire behavior, promote forest and.... Fire behavior needs to be modified in selected forest stands in order to reduce high fuel loading and... environmental impact statement (EIS) on the Sugarloaf Hazardous Fuels Reduction Project proposed to modify...

  7. Reductions in aircraft particulate emissions due to the use of Fischer-Tropsch fuels

    NASA Astrophysics Data System (ADS)

    Beyersdorf, A. J.; Timko, M. T.; Ziemba, L. D.; Bulzan, D.; Corporan, E.; Herndon, S. C.; Howard, R.; Miake-Lye, R.; Thornhill, K. L.; Winstead, E.; Wey, C.; Yu, Z.; Anderson, B. E.

    2013-06-01

    The use of alternative fuels for aviation is likely to increase due to concerns over fuel security, price stability and the sustainability of fuel sources. Concurrent reductions in particulate emissions from these alternative fuels are expected because of changes in fuel composition including reduced sulfur and aromatic content. The NASA Alternative Aviation Fuel Experiment (AAFEX) was conducted in January-February 2009 to investigate the effects of synthetic fuels on gas-phase and particulate emissions. Standard petroleum JP-8 fuel, pure synthetic fuels produced from natural gas and coal feedstocks using the Fischer-Tropsch (FT) process, and 50% blends of both fuels were tested in the CFM-56 engines on a DC-8 aircraft. To examine plume chemistry and particle evolution with time, samples were drawn from inlet probes positioned 1, 30, and 145 m downstream of the aircraft engines. No significant alteration to engine performance was measured when burning the alternative fuels. However, leaks in the aircraft fuel system were detected when operated with the pure FT fuels as a result of the absence of aromatic compounds in the fuel. Dramatic reductions in soot emissions were measured for both the pure FT fuels (reductions of 84% averaged over all powers) and blended fuels (64%) relative to the JP-8 baseline with the largest reductions at idle conditions. The alternative fuels also produced smaller soot (e.g. at 85% power, volume mean diameters were reduced from 78 nm for JP-8 to 51 nm for the FT fuel), which may reduce their ability to act as cloud condensation nuclei (CCN). The reductions in particulate emissions are expected for all alternative fuels with similar reductions in fuel sulfur and aromatic content regardless of the feedstock. As the plume cools downwind of the engine, nucleation-mode aerosols form. For the pure FT fuels, reductions (94% averaged over all powers) in downwind particle number emissions were similar to those measured at the exhaust plane (84

  8. Peak-Seeking Optimization of Trim for Reduced Fuel Consumption: Flight-Test Results

    NASA Technical Reports Server (NTRS)

    Brown, Nelson Andrew; Schaefer, Jacob Robert

    2013-01-01

    A peak-seeking control algorithm for real-time trim optimization for reduced fuel consumption has been developed by researchers at the National Aeronautics and Space Administration (NASA) Dryden Flight Research Center to address the goals of the NASA Environmentally Responsible Aviation project to reduce fuel burn and emissions. The peak-seeking control algorithm is based on a steepest-descent algorithm using a time-varying Kalman filter to estimate the gradient of a performance function of fuel flow versus control surface positions. In real-time operation, deflections of symmetric ailerons, trailing-edge flaps, and leading-edge flaps of an F/A-18 airplane (McDonnell Douglas, now The Boeing Company, Chicago, Illinois) are used for optimization of fuel flow. Results from six research flights are presented herein. The optimization algorithm found a trim configuration that required approximately 3 percent less fuel flow than the baseline trim at the same flight condition. The algorithm consistently rediscovered the solution from several initial conditions. These results show that the algorithm has good performance in a relevant environment.

  9. Peak-Seeking Optimization of Trim for Reduced Fuel Consumption: Flight-test Results

    NASA Technical Reports Server (NTRS)

    Brown, Nelson Andrew; Schaefer, Jacob Robert

    2013-01-01

    A peak-seeking control algorithm for real-time trim optimization for reduced fuel consumption has been developed by researchers at the National Aeronautics and Space Administration (NASA) Dryden Flight Research Center to address the goals of the NASA Environmentally Responsible Aviation project to reduce fuel burn and emissions. The peak-seeking control algorithm is based on a steepest-descent algorithm using a time-varying Kalman filter to estimate the gradient of a performance function of fuel flow versus control surface positions. In real-time operation, deflections of symmetric ailerons, trailing-edge flaps, and leading-edge flaps of an F/A-18 airplane (McDonnell Douglas, now The Boeing Company, Chicago, Illinois) are used for optimization of fuel flow. Results from six research flights are presented herein. The optimization algorithm found a trim configuration that required approximately 3 percent less fuel flow than the baseline trim at the same flight condition. The algorithm consistently rediscovered the solution from several initial conditions. These results show that the algorithm has good performance in a relevant environment.

  10. 76 FR 70955 - Helena Nation Forest: Dalton Mountain Forest Restoration & Fuels Reduction Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-16

    ... Forest Service Helena Nation Forest: Dalton Mountain Forest Restoration & Fuels Reduction Project AGENCY... restoration and fuel reduction in the Dalton Mountain area is needed to move toward the goals of the HNF... dominated by lodgepole pine. Tree mortality from a mountain pine beetle epidemic is extensive. This...

  11. Wood fuel consumption and mortality rates in Sub-Saharan Africa: Evidence from a dynamic panel study.

    PubMed

    Sulaiman, Chindo; Abdul-Rahim, A S; Chin, Lee; Mohd-Shahwahid, H O

    2017-06-01

    This study examined the impact of wood fuel consumption on health outcomes, specifically under-five and adult mortality in Sub-Saharan Africa, where wood usage for cooking and heating is on the increase. Generalized method of moment (GMM) estimators were used to estimate the impact of wood fuel consumption on under-five and adult mortality (and also male and female mortality) in the region. The findings revealed that wood fuel consumption had significant positive impact on under-five and adult mortality. It suggests that over the studied period, an increase in wood fuel consumption has increased the mortality of under-five and adult. Importantly, it indicated that the magnitude of the effect of wood fuel consumption was more on the under-five than the adults. Similarly, assessing the effect on a gender basis, it was revealed that the effect was more on female than male adults. This finding suggests that the resultant mortality from wood smoke related infections is more on under-five children than adults, and also are more on female adults than male adults. We, therefore, recommended that an alternative affordable, clean energy source for cooking and heating should be provided to reduce the wood fuel consumption.

  12. Cancer mortality in relation to national consumption of cigarettes, solid fuel, tea and coffee.

    PubMed

    Stocks, P

    1970-06-01

    Comparison between the age-adjusted death rates in 1964-65 from cancers of different sites and the annual consumption of cigarettes, solid fuel, tea and coffee as measured by trade statistics in 20 countries reveals the existence of significant correlations.Cigarette consumption per adult in the population is positively related with lung and bladder cancer in males and insignificantly with lung in females. Negative relations are indicated with the liver and biliary passages, prostate and uterus.Solid fuel is positively related with the intestine, lung and bladder in both sexes, with leukaemia in males and with breast in females. Nagative associations are indicated with the stomach.Tea is positively related with intestine except rectum in both sexes and with larynx, lung and breast in females. Negative associations are indicated with the stomach in both sexes and with uterus and leukaemia in females.Coffee is positively related with the pancreas, prostate and leukaemia in males and with ovary and leukaemia in females.Specially noteworthy were the contrasts between the intestine and stomach in their associations with solid fuel, cigarettes and tea for which a possible explanation has been suggested.

  13. Influence of driving cycles on exhaust emissions and fuel consumption of gasoline passenger car in Bangkok.

    PubMed

    Nutramon, Tamsanya; Supachart, Chungpaibulpatana

    2009-01-01

    The influence of different driving cycles on their exhaust emissions and fuel consumption rate of gasoline passenger car was investigated in Bangkok based on the actual measurements obtained from a test vehicle driving on a standard chassis dynamometer. A newly established Bangkok driving cycle (BDC) and the European driving cycle (EDC) which is presently adopted as the legislative cycle for testing automobiles registered in Thailand were used. The newly developed BDC is constructed using the driving characteristic data obtained from the real on-road driving tests along selected traffic routes. A method for selecting appropriate road routes for real driving tests is also introduced. Variations of keyed driving parameters of BDC with different driving cycles were discussed. The results showed that the HC and CO emission factors of BDC are almost two and four times greater than those of EDC, respectively. Although the difference in the NOx emission factor is small, the value from BDC is still greater than that of EDC by 10%. Under BDC, the test vehicle consumes fuel about 25% more than it does under EDC. All these differences are mainly attributed to the greater proportion of idle periods and higher fluctuations of vehicle speed in the BDC cycle. This result indicated that the exhausted emissions and fuel consumption of vehicles obtained from tests under the legislative modal-type driving cycle (EDC) are significantly different from those actually produced under real traffic conditions especially during peak periods.

  14. Dominance of sulfur-fueled iron oxide reduction in low-sulfate freshwater sediments

    PubMed Central

    Hansel, Colleen M; Lentini, Chris J; Tang, Yuanzhi; Johnston, David T; Wankel, Scott D; Jardine, Philip M

    2015-01-01

    A central tenant in microbial biogeochemistry is that microbial metabolisms follow a predictable sequence of terminal electron acceptors based on the energetic yield for the reaction. It is thereby oftentimes assumed that microbial respiration of ferric iron outcompetes sulfate in all but high-sulfate systems, and thus sulfide has little influence on freshwater or terrestrial iron cycling. Observations of sulfate reduction in low-sulfate environments have been attributed to the presumed presence of highly crystalline iron oxides allowing sulfate reduction to be more energetically favored. Here we identified the iron-reducing processes under low-sulfate conditions within columns containing freshwater sediments amended with structurally diverse iron oxides and fermentation products that fuel anaerobic respiration. We show that despite low sulfate concentrations and regardless of iron oxide substrate (ferrihydrite, Al-ferrihydrite, goethite, hematite), sulfidization was a dominant pathway in iron reduction. This process was mediated by (re)cycling of sulfur upon reaction of sulfide and iron oxides to support continued sulfur-based respiration—a cryptic sulfur cycle involving generation and consumption of sulfur intermediates. Although canonical iron respiration was not observed in the sediments amended with the more crystalline iron oxides, iron respiration did become dominant in the presence of ferrihydrite once sulfate was consumed. Thus, despite more favorable energetics, ferrihydrite reduction did not precede sulfate reduction and instead an inverse redox zonation was observed. These findings indicate that sulfur (re)cycling is a dominant force in iron cycling even in low-sulfate systems and in a manner difficult to predict using the classical thermodynamic ladder. PMID:25871933

  15. Power-law relationships for estimating mass, fuel consumption and costs of energy conversion equipments.

    PubMed

    Caduff, Marloes; Huijbregts, Mark A J; Althaus, Hans-Joerg; Hendriks, A Jan

    2011-01-15

    To perform life-cycle assessment studies, data on the production and use of the products is required. However, often only few data or measurements are available. Estimation of properties can be performed by applying scaling relationships. In many disciplines, they are used to either predict data or to search for underlying patterns, but they have not been considered in the context of product assessments hitherto. The goal of this study was to explore size scaling for commonly used energy conversion equipment, that is, boilers, engines, and generators. The variables mass M, fuel consumption Q, and costs C were related to power P. The established power-law relationships were M = 10(0.73.. 1.89)P(0.64.. 1.23) (R(2) ≥ 0.94), Q = 10(0.06.. 0.68)P(0.82.. 1.02) (R(2) ≥ 0.98) and C = 10(2.46.. 2.86)P(0.83.. 0.85) (R(2) ≥ 0.83). Mass versus power and costs versus power showed that none of the equipment types scaled isometrically, that is, with a slope of 1. Fuel consumption versus power scaled approximately isometrically for steam boilers, the other equipments scaled significantly lower than 1. This nonlinear scaling behavior induces a significant size effect. The power laws we established can be applied to scale the mass, fuel consumption and costs of energy conversion equipments up or down. Our findings suggest that empirical scaling laws can be used to estimate properties, particularly relevant in studies focusing on early product development for which generally only little information is available.

  16. Reduction of lighting energy consumption in office buildings through improved daylight design

    NASA Astrophysics Data System (ADS)

    Papadouri, Maria Violeta Prado

    This study aims to investigate the lighting energy consumption in office buildings and the options for its reduction. One way to reduce lighting energy consumption is by improving the daylight design. A better use of daylight in buildings might be an outcome from the effort made in different directions. Like the improvement of a building's fabric and layout, the materials, even the furniture in a space influences the daylight quality considerably. Also very important role in lighting energy consumption has the development of more efficient lighting technology like the electric lighting control systems, such as photo sensors and occupancy sensors. Both systems are responsible so that the electric light is not used without reason. As the focusing area of this study, is to find ways to improve the daylight use in buildings, a consequent question is which are the methods provided in order to achieve this The accuracy of the methodology used is also an important issue in order to achieve reliable results. The methodology applied in this study includes the analysis of a case study by taking field measurements and computer simulations. The first stage included gathering information about the lighting design of the building and monitoring the light levels, both from natural and from the electric lighting. The second stage involved testing with computer simulations, different parameters that were expected to improve the daylight exploitation of the specific area. The results of the field measurements showed that the main problems of the space were the low natural light levels and the poor daylight distribution. The annual electric lighting energy consumption, as it was calculated with the use of computer simulations, represented the annual energy consumption of a typical air-conditioned prestige office building (energy consumption guide 19, for energy use in offices, 2000). After several computer simulations, the results showed that initial design parameters of the building

  17. Cost and energy consumption estimates for the aluminum-air battery anode fuel cycle

    NASA Astrophysics Data System (ADS)

    1990-01-01

    At the request of DOE's Office of Energy Storage and Distribution (OESD), Pacific Northwest Laboratory (PNL) conducted a study to generate estimates of the energy use and costs associated with the aluminum anode fuel cycle of the aluminum-air (Al-air) battery. The results of this analysis indicate that the cost and energy consumption characteristics of the mechanically rechargeable Al-air battery system are not as attractive as some other electrically rechargeable electric vehicle battery systems being developed by OESD. However, there are distinct advantages to mechanically rechargeable batteries, which may make the Al-air battery (or other mechanically rechargeable batteries) attractive for other uses, such as stand-alone applications. Fuel cells, such as the proton exchange membrane (PEM), and advanced secondary batteries may be better suited to electric vehicle applications.

  18. Cost and energy consumption estimates for the aluminum-air battery anode fuel cycle

    SciTech Connect

    Humphreys, K.K.; Brown, D.R.

    1990-01-01

    At the request of DOE's Office of Energy Storage and Distribution (OESD), Pacific Northwest Laboratory (PNL) conducted a study to generate estimates of the energy use and costs associated with the aluminum anode fuel cycle of the aluminum-air (Al-air) battery. The results of this analysis indicate that the cost and energy consumption characteristics of the mechanically rechargeable Al-air battery system are not as attractive as some other electrically rechargeable electric vehicle battery systems being developed by OESD. However, there are distinct advantages to mechanically rechargeable batteries, which may make the Al-air battery (or other mechanically rechargeable batteries) attractive for other uses, such as stand-alone applications. Fuel cells, such as the proton exchange membrane (PEM), and advanced secondary batteries may be better suited to electric vehicle applications. 26 refs., 3 figs., 25 tabs.

  19. Opportunities and insights for reducing fossil fuel consumption by households and organizations

    NASA Astrophysics Data System (ADS)

    Stern, Paul C.; Janda, Kathryn B.; Brown, Marilyn A.; Steg, Linda; Vine, Edward L.; Lutzenhiser, Loren

    2016-05-01

    Realizing the ambitious commitments of the 2015 Paris Climate Conference (COP21) will require new ways of meeting human needs previously met by burning fossil fuels. Technological developments will be critical, but so will accelerated adoption of promising low-emission technologies and practices. National commitments will be more achievable if interventions take into account key psychological, social, cultural and organizational factors that influence energy choices, along with factors of an infrastructural, technical and economic nature. Broader engagement of social and behavioural science is needed to identify promising opportunities for reducing fossil fuel consumption. Here we discuss opportunities for change in households and organizations, primarily at short and intermediate timescales, and identify opportunities that have been underused in much of energy policy. Based on this survey, we suggest design principles for interventions by governments and other organizations, and identify areas of emphasis for future social science and interdisciplinary research.

  20. Impact of the electric compressor for automotive air conditioning system on fuel consumption and performance analysis

    NASA Astrophysics Data System (ADS)

    Zulkifli, A. A.; Dahlan, A. A.; Zulkifli, A. H.; Nasution, H.; Aziz, A. A.; Perang, M. R. M.; Jamil, H. M.; Misseri, M. N.

    2015-12-01

    Air conditioning system is the biggest auxiliary load in a vehicle where the compressor consumed the largest. Problem with conventional compressor is the cooling capacity cannot be control directly to fulfill the demand of thermal load inside vehicle cabin. This study is conducted experimentally to analyze the difference of fuel usage and air conditioning performance between conventional compressor and electric compressor of the air conditioning system in automobile. The electric compressor is powered by the car battery in non-electric vehicle which the alternator will recharge the battery. The car is setup on a roller dynamometer and the vehicle speed is varied at 0, 30, 60, 90 and 110 km/h at cabin temperature of 25°C and internal heat load of 100 and 400 Watt. The results shows electric compressor has better fuel consumption and coefficient of performance compared to the conventional compressor.

  1. Fire Emissions Estimates in Siberia: Evaluation of Uncertainties in Area Burned, Land Cover, and Fuel Consumption

    NASA Astrophysics Data System (ADS)

    Kukavskaya, E.; Soja, A. J.; Ivanova, G. A.; Petkov, A.; Ponomarev, E. I.; Conard, S. G.

    2012-12-01

    Wildfire is one of the main disturbance factors in the boreal zone of Russia. Fires in the Russian boreal forest range from low-severity surface fires to high-severity crown fires. Estimates of carbon emissions from fires in Russia vary substantially due to differences in ecosystem classification and mapping, burned area calculations, and estimates of fuel consumption. We examined uncertainties in different parameters used to estimate biomass burning emissions. Several fire datasets (Institute of Forest burned area product, MCD45, MCD64, MOD14/MYD14, official data) were compared to estimate uncertainties in area burned in Siberia. Area burned was found to differ significantly by data source, with satellite data being by an order of magnitude greater than ground-based data. Differences between mapped ecosystems were also compared and contrasted on the basis of five land cover maps (GLC-2000, Globcover-2009, MODIS Collection 4 and 5 Global Land Cover, and the Digitized Ecosystem map of the Former Soviet Union) to evaluate the potential for error resulting from disparate vegetation structure and fuel consumption estimates. The examination of land cover maps showed that estimates of relative proportion of fire by ecosystem type varied substantially for the same year from map to map. Fuel consumption remains one of the main uncertainties in estimates of biomass burning emissions in Siberia. Accurate fuel consumption estimates are obtained in the course of fire experiments with pre- and post-fire biomass measuring. Our large-scale experiments carried out in the course of the FIRE BEAR (Fire Effects in the Boreal Eurasia Region) Project provided quantitative and qualitative data on ecosystem state and carbon emissions due to fires of known behavior in major forest types of Siberia that could be used to verify large-scale carbon emissions estimates. Global climate change is expected to result in increase of fire hazard and area burned, leading to impacts on global air

  2. Seawater usable for production and consumption of hydrogen peroxide as a solar fuel

    PubMed Central

    Mase, Kentaro; Yoneda, Masaki; Yamada, Yusuke; Fukuzumi, Shunichi

    2016-01-01

    Hydrogen peroxide (H2O2) in water has been proposed as a promising solar fuel instead of gaseous hydrogen because of advantages on easy storage and high energy density, being used as a fuel of a one-compartment H2O2 fuel cell for producing electricity on demand with emitting only dioxygen (O2) and water. It is highly desired to utilize the most earth-abundant seawater instead of precious pure water for the practical use of H2O2 as a solar fuel. Here we have achieved efficient photocatalytic production of H2O2 from the most earth-abundant seawater instead of precious pure water and O2 in a two-compartment photoelectrochemical cell using WO3 as a photocatalyst for water oxidation and a cobalt complex supported on a glassy-carbon substrate for the selective two-electron reduction of O2. The concentration of H2O2 produced in seawater reached 48 mM, which was high enough to operate an H2O2 fuel cell. PMID:27142725

  3. Seawater usable for production and consumption of hydrogen peroxide as a solar fuel.

    PubMed

    Mase, Kentaro; Yoneda, Masaki; Yamada, Yusuke; Fukuzumi, Shunichi

    2016-05-04

    Hydrogen peroxide (H2O2) in water has been proposed as a promising solar fuel instead of gaseous hydrogen because of advantages on easy storage and high energy density, being used as a fuel of a one-compartment H2O2 fuel cell for producing electricity on demand with emitting only dioxygen (O2) and water. It is highly desired to utilize the most earth-abundant seawater instead of precious pure water for the practical use of H2O2 as a solar fuel. Here we have achieved efficient photocatalytic production of H2O2 from the most earth-abundant seawater instead of precious pure water and O2 in a two-compartment photoelectrochemical cell using WO3 as a photocatalyst for water oxidation and a cobalt complex supported on a glassy-carbon substrate for the selective two-electron reduction of O2. The concentration of H2O2 produced in seawater reached 48 mM, which was high enough to operate an H2O2 fuel cell.

  4. Seawater usable for production and consumption of hydrogen peroxide as a solar fuel

    NASA Astrophysics Data System (ADS)

    Mase, Kentaro; Yoneda, Masaki; Yamada, Yusuke; Fukuzumi, Shunichi

    2016-05-01

    Hydrogen peroxide (H2O2) in water has been proposed as a promising solar fuel instead of gaseous hydrogen because of advantages on easy storage and high energy density, being used as a fuel of a one-compartment H2O2 fuel cell for producing electricity on demand with emitting only dioxygen (O2) and water. It is highly desired to utilize the most earth-abundant seawater instead of precious pure water for the practical use of H2O2 as a solar fuel. Here we have achieved efficient photocatalytic production of H2O2 from the most earth-abundant seawater instead of precious pure water and O2 in a two-compartment photoelectrochemical cell using WO3 as a photocatalyst for water oxidation and a cobalt complex supported on a glassy-carbon substrate for the selective two-electron reduction of O2. The concentration of H2O2 produced in seawater reached 48 mM, which was high enough to operate an H2O2 fuel cell.

  5. Electrolytic Reduction of Spent Nuclear Oxide Fuel -- Effects of Fuel Form and Cathode Containment Materials on Bench-Scale Operations

    SciTech Connect

    S. D. Herrmann

    2007-09-01

    A collaborative effort between the Idaho National Laboratory (INL) and Korea Atomic Energy Research Institute (KAERI) is underway per an International Nuclear Energy Research Initiative to advance the development of a pyrochemical process for the treatment of spent nuclear oxide fuel. To assess the effects of specific process parameters that differ between oxide reduction operations at INL and KAERI, a series of 4 electrolytic reduction runs will be performed with a single salt loading of LiCl-Li2O at 650 °C using a test apparatus located inside of a hot cell at INL. The spent oxide fuel for the tests will be irradiated UO2 that has been subjected to a voloxidation process to form U3O8. The primary variables in the 4 electrolytic reduction runs will be fuel basket containment material and Li2O concentration in the LiCl salt. All 4 runs will be performed with comparable fuel loadings (approximately 50 g) and fuel compositions and will utilize a platinum anode and a Ni/NiO reference electrode. The first 2 runs will elucidate the effect of fuel form on the electrolytic reduction process by comparison of the above test results with U3O8 versus results from previous tests with UO2. The first 3 runs will investigate the impact that the cathode containment material has on the electrolytic reduction of spent oxide fuel. The 3rd and 4th runs will investigate the effect of Li2O concentration on the reduction process with a porous MgO cathode containment.

  6. Quantification of emission reduction potentials of primary air pollutants from residential solid fuel combustion by adopting cleaner fuels in China.

    PubMed

    Shen, Guofeng

    2015-11-01

    Residential low efficient fuel burning is a major source of many air pollutants produced during incomplete combustions, and household air pollution has been identified as one of the top environmental risk factors. Here we compiled literature-reported emission factors of pollutants including carbon monoxide (CO), total suspended particles (TSPs), PM2.5, organic carbon (OC), elemental carbon (EC) and polycyclic aromatic hydrocarbons (PAHs) for different household energy sources, and quantified the potential for emission reduction by clean fuel adoption. The burning of crop straws, firewood and coal chunks in residential stoves had high emissions per unit fuel mass but lower thermal efficiencies, resulting in high levels of pollution emissions per unit of useful energy, whereas pelletized biofuels and coal briquettes had lower pollutant emissions and higher thermal efficiencies. Briquetting coal may lead to 82%-88% CO, 74%-99% TSP, 73%-76% PM2.5, 64%-98% OC, 92%-99% EC and 80%-83% PAH reductions compared to raw chunk coal. Biomass pelletizing technology would achieve 88%-97% CO, 73%-87% TSP, 79%-88% PM2.5, 94%-96% OC, 91%-99% EC and 63%-96% PAH reduction compared to biomass burning. The adoption of gas fuels (i.e., liquid petroleum gas, natural gas) would achieve significant pollutant reduction, nearly 96% for targeted pollutants. The reduction is related not only to fuel change, but also to the usage of high efficiency stoves.

  7. Anticipation Driving Behavior and Related Reduction of Energy Consumption in Traffic Flow

    NASA Astrophysics Data System (ADS)

    Shi, Wei; Wei, Yan-Fang; Song, Tao; Dai, Shi-Qiang; Dong, Li-Yun

    In view that drivers would pay attention to the variation of headway on roads, an extended optimal velocity model is proposed by considering anticipation driving behavior. A stability criterion is given through linear stability analysis of traffic flows. The mKdV equation is derived with the reductive perturbation method for headway evolution which could be used to describe the stop-and-go traffic phenomenon. The results show a good effect of anticipation driving behavior on the stabilization of car flows and the anticipation driving behavior can improve the numerical stability of the model as well. In addition, the fluctuation of kinetic energy and the consumption of average energy in congested traffic flows are systematically analyzed. The results show that the reasonable level of anticipation driving behavior can save energy consumption in deceleration process effectively and lead to an associated relation like a "bow-tie" between the energy-saving and the value of anticipation factor.

  8. The national Fire and Fire Surrogate study: Effects of fuel reduction methods on forest vegetation structure and fuels

    USGS Publications Warehouse

    Schwilk, D.W.; Keeley, J.E.; Knapp, E.E.; Mciver, J.; Bailey, J.D.; Fettig, C.J.; Fiedler, C.E.; Harrod, R.J.; Moghaddas, J.J.; Outcalt, K.W.; Skinner, C.N.; Stephens, S.L.; Waldrop, T.A.; Yaussy, D.A.; Youngblood, A.

    2009-01-01

    Changes in vegetation and fuels were evaluated from measurements taken before and after fuel reduction treatments (prescribed fire, mechanical treatments, and the combination of the two) at 12 Fire and Fire Surrogate (FFS) sites located in forests with a surface fire regime across the conterminous United States. To test the relative effectiveness of fuel reduction treatments and their effect on ecological parameters we used an informationtheoretic approach on a suite of 12 variables representing the overstory (basal area and live tree, sapling, and snag density), the understory (seedling density, shrub cover, and native and alien herbaceous species richness), and the most relevant fuel parameters for wildfire damage (height to live crown, total fuel bed mass, forest floor mass, and woody fuel mass). In the short term (one year after treatment), mechanical treatments were more effective at reducing overstory tree density and basal area and at increasing quadratic mean tree diameter. Prescribed fire treatments were more effective at creating snags, killing seedlings, elevating height to live crown, and reducing surface woody fuels. Overall, the response to fuel reduction treatments of the ecological variables presented in this paper was generally maximized by the combined mechanical plus burning treatment. If the management goal is to quickly produce stands with fewer and larger diameter trees, less surface fuel mass, and greater herbaceous species richness, the combined treatment gave the most desirable results. However, because mechanical plus burning treatments also favored alien species invasion at some sites, monitoring and control need to be part of the prescription when using this treatment. ?? 2009 by the Ecological Society of America.

  9. Delayed conifer mortality after fuel reduction treatments: interactive effects of fuel, fire intensity, and bark beetles.

    PubMed

    Youngblood, Andrew; Grace, James B; McIver, James D

    2009-03-01

    Many low-elevation dry forests of the western United States contain more small trees and fewer large trees, more down woody debris, and less diverse and vigorous understory plant communities compared to conditions under historical fire regimes. These altered structural conditions may contribute to increased probability of unnaturally severe wildfires, susceptibility to uncharacteristic insect outbreaks, and drought-related mortality. Broad-scale fuel reduction and restoration treatments are proposed to promote stand development on trajectories toward more sustainable structures. Little research to date, however, has quantified the effects of these treatments on the ecosystem, especially delayed and latent tree mortality resulting directly or indirectly from treatments. In this paper, we explore complex hypotheses relating to the cascade of effects that influence ponderosa pine (Pinus ponderosa) and Douglas-fir (Pseudotsuga menziesii) mortality using structural equation modeling (SEM). We used annual census and plot data through six growing seasons after thinning and four growing seasons after burning from a replicated, operational-scale, completely randomized experiment conducted in northeastern Oregon, USA, as part of the national Fire and Fire Surrogate study. Treatments included thin, burn, thin followed by burn (thin + burn), and control. Burn and thin + burn treatments increased the proportion of dead trees while the proportion of dead trees declined or remained constant in thin and control units, although the density of dead trees was essentially unchanged with treatment. Most of the new mortality (96%) occurred within two years of treatment and was attributed to bark beetles. Bark beetle-caused tree mortality, while low overall, was greatest in thin + burn treatments. SEM results indicate that the probability of mortality of large-diameter ponderosa pine from bark beetles and wood borers was directly related to surface fire severity and bole charring, which

  10. Potential for energy cost reductions in 'Hamilton Class' cutters through fuel modification. Final report

    SciTech Connect

    Plank, G.; Weidner, F.

    1981-09-01

    A review of all pertinent and available literature on the use of blended fuel and water-in-fuel emulsions in marine power plants was accomplished with special attention paid to the use of this technique with gas turbines. Telephone contact was made with the engineering officers on all of the available (in-port) 'Hamilton Class' cutters and 'Polar Class' icebreakers to determine the operating schedules of the gas turbines on these vessels as well as fuel consumption and maintenance history. The opinions of the engineering officers were solicited with respect to any special problems which may exist, either with the hardware or operations of the vessels that would act to prevent or impede the use of a water-in-fuel emulsion. A cost/benefit analysis was performed for the case of a blended fuel for the diesels and a water-in-blended fuel emulsion for the gas turbines.

  11. Reduction potentials of total energy consumption and GHG emissions in Xiamen

    NASA Astrophysics Data System (ADS)

    Bin, C.; Cui, S.

    2009-12-01

    Urban areas contain 40% of the population and contribute 75% of the Chinese national economy. The 35 largest cities in China, which contain 18% of the population, contribute 40% of China’s energy uses and CO2 emissions. Therefore, an insight into energy consumption and quantification of emissions from urban areas are extremely important for identifying effects of energy-saving policies and finding solution to GHG emissions in urban centers. This paper applies the Long-range Energy Alternatives Planning (LEAP) system for modeling the total energy consumption and associated emissions from Xiamen city. Energy consumption under different sets of policy and technology options are analyzed for a time span of 2007-2020 and GHG emissions are estimated. Two scenarios have been designed to describe the future strategies relating to the development of Xiamen city. The ‘Business as Usual’ scenario is used as a baseline reference scenario, in which the government is assumed to do nothing to influence the long-term trends of urban energy demand. The ‘Integrated’ scenario is considered to be the most optimized case where a series of available reduction measures such as clean energy substitution, industrial energy conservation, combined heat and power generation, energy conservation in building, motor vehicle control and new and renewable energy development and utilization are assumed to be implemented. Energy demand and GHG emissions in Xiamen up to 2020 are estimated in these two scenarios. The total reduction potentials in the ‘Integrated’ scenario and the relative contribution rate of reduction potentials of each measure have been estimated.

  12. Discussions on switching mechanism for ultimate reduction in energy consumption for STT-MRAM

    NASA Astrophysics Data System (ADS)

    Yoda, H.; Shimomura, N.

    2016-10-01

    Critical switching current, ICsw, of STT (Spin Transfer Torque)-MRAM has been reduced by several orders with PMA (Perpendicular Magnetic Anisotropy)-MTJs and the state-of-the-art writing-charge, Qw, becomes the order of 100fC. With the small Qw, MRAM starts to save energy consumption even for mobile applications. The key to the Qw reduction is a development of MTJs having higher writing-efficiency. Especially coherent switching of storage-layer magnetization was found to be the root key to the high efficiency.

  13. Utah juniper and two-needle piñon reduction alters fuel

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Juniper (Juniperus spp.)-piñon (Pinus spp.) trees have encroached millions of hectares of sagebrush (Artemisia spp.)-bunchgrass communities. Juniper-piñon trees are treated to reduce canopy fuel loads and crown fire potential. We measured the effects of juniper-piñon infilling and fuel-reduction tre...

  14. Method for reporting in-use vehicle fuel consumption and carbon dioxide emissions from a fast-pass transient inspection.

    PubMed

    Stewart, Steve

    2004-05-01

    A method has been developed that allows reporting of the fuel consumption and carbon dioxide (CO2) emissions for in-use vehicles from a fast-pass transient (IM240) inspection. The major technical obstacle to reporting CO2 emission rate and fuel consumption is that inspection and maintenance tests do not all use a standardized test duration or test method. The method is able to project full-duration fuel consumption from IM240 tests that actually fast-passed as early as just 30 sec from starting the test. It is based on basic considerations of the work done in driving the inspection cycle, with additional empirical adjustments. The initial application examined the differences between passing and failing inspections, and this did confirm that there are significant differences.

  15. Coordinated EV adoption: double-digit reductions in emissions and fuel use for $40/vehicle-year.

    PubMed

    Choi, Dong Gu; Kreikebaum, Frank; Thomas, Valerie M; Divan, Deepak

    2013-09-17

    Adoption of electric vehicles (EVs) would affect the costs and sources of electricity and the United States efficiency requirements for conventional vehicles (CVs). We model EV adoption scenarios in each of six regions of the Eastern Interconnection, containing 70% of the United States population. We develop electricity system optimization models at the multidecade, day-ahead, and hour-ahead time scales, incorporating spatial wind energy modeling, endogenous modeling of CV efficiencies, projections for EV efficiencies, and projected CV and EV costs. We find two means to reduce total consumer expenditure (TCE): (i) controlling charge timing and (ii) unlinking the fuel economy regulations for CVs from EVs. Although EVs provide minimal direct GHG reductions, controlled charging provides load flexibility, lowering the cost of renewable electricity. Without EVs, a 33% renewable electricity standard (RES) would cost $193/vehicle-year more than the reference case (10% RES). Combining a 33% RES, EVs with controlled charging and unlinking would reduce combined electric- and vehicle-sector CO2 emissions by 27% and reduce gasoline consumption by 59% for $40/vehicle-year more than the reference case. Coordinating EV adoption with adoption of controlled charging, unlinked fuel economy regulations, and renewable electricity standards would provide low-cost reductions in emissions and fuel usage.

  16. Delayed conifer mortality after fuel reduction treatments: Interactive effects of fuel, fire intensity, and bark beetles

    USGS Publications Warehouse

    Youngblood, A.; Grace, J.B.; Mciver, J.D.

    2009-01-01

    Many low-elevation dry forests of the western United States contain more small trees and fewer large trees, more down woody debris, and less diverse and vigorous understory plant communities compared to conditions under historical fire regimes. These altered structural conditions may contribute to increased probability of unnaturally severe wildfires, susceptibility to uncharacteristic insect outbreaks, and drought-related mortality. Broad-scale fuel reduction and restoration treatments are proposed to promote stand development on trajectories toward more sustainable structures. Little research to date, however, has quantified the effects of these treatments on the ecosystem, especially delayed and latent tree mortality resulting directly or indirectly from treatments. In this paper, we explore complex hypotheses relating to the cascade of effects that influence ponderosa pine (Pinus ponderosa) and Douglas-fir (Pseudotsuga menziesii) mortality using structural equation modeling (SEM). We used annual census and plot data through six growing seasons after thinning and four growing seasons after burning from a replicated, operational-scale, completely randomized experiment conducted in northeastern Oregon, USA, as part of the national Fire and Fire Surrogate study. Treatments included thin, burn, thin followed by burn (thin+burn), and control. Burn and thin+burn treatments increased the proportion of dead trees while the proportion of dead trees declined or remained constant in thin and control units, although the density of dead trees was essentially unchanged with treatment. Most of the new mortality (96%) occurred within two years of treatment and was attributed to bark beetles. Bark beetle-caused tree mortality, while low overall, was greatest in thin + burn treatments. SEM results indicate that the probability of mortality of large-diameter ponderosa pine from bark beetles and wood borers was directly related to surface fire severity and bole charring, which in

  17. Electrolytic Reduction of Spent Oxide Fuel – Bench-Scale Test Results

    SciTech Connect

    S. D. Herrmann; S. X. Li; M. F. Simpson

    2005-10-01

    A series of tests were performed to demonstrate the electrolytic reduction of spent light water reactor fuel at bench-scale in a hot cell at the Idaho National Laboratory Materials and Fuels Complex (formerly Argonne National Laboratory - West). The process involves the conversion of oxide fuel to metal by electrolytic means, which would then enable subsequent separation and recovery of actinides via existing electrometallurgical technologies, i.e., electrorefining. Four electrolytic reduction runs were performed at bench scale using ~500 ml of molten LiCl -- 1 wt% Li2O electrolyte at 650 ºC. In each run, ~50 g of crushed spent oxide fuel was loaded into a permeable stainless steel basket and immersed into the electrolyte as the cathode. A spiral wound platinum wire was immersed into the electrolyte as the anode. When a controlled electric current was conducted through the anode and cathode, the oxide fuel was reduced to metal in the basket and oxygen gas was evolved at the anode. Salt samples were extracted before and after each electrolytic reduction run and analyzed for fuel and fission product constituents. The fuel baskets following each run were sectioned and sampled, revealing an extent of uranium oxide reduction in excess of 98%.

  18. INCREASED CIGARETTE TAX IS ASSOCIATED WITH REDUCTIONS IN ALCOHOL CONSUMPTION IN A LONGITUDINAL U.S. SAMPLE

    PubMed Central

    Young-Wolff, Kelly C.; Kasza, Karin A.; Hyland, Andrew J.; McKee, Sherry A.

    2013-01-01

    Background Cigarette taxation has been recognized as one of the most significant policy instruments to reduce smoking. Smoking and drinking are highly comorbid behaviors, and the public health benefits of cigarette taxation may extend beyond smoking-related outcomes to impact alcohol consumption. The current study is the first to test whether increases in cigarette taxes are associated with reductions in alcohol consumption among smokers using a large, prospective U.S. sample. Method Our sample included 21,473 alcohol consumers from the National Epidemiological Survey on Alcohol and Related Conditions (NESARC). Multiple linear regression analyses were conducted to evaluate whether increases in cigarette taxes between Waves I (2001–2002) and II (2004–2005) were associated with reductions in quantity and frequency of alcohol consumption, adjusting for demographics, baseline alcohol consumption, and alcohol price. Stratified analyses were conducted by sex, hazardous drinking status, and age and income group. Results Increases in cigarette taxes were associated with modest reductions in typical quantity of alcohol consumption and frequency of binge drinking among smokers. Cigarette taxation was not associated with changes in alcohol consumption among non-smokers. In analyses stratified by sex, the inverse associations of cigarette taxes with typical quantity and binge drinking frequency were found only for male smokers. Further, the inverse association of cigarette taxation and alcohol consumption was stronger among hazardous drinkers (translating into approximately 1/2 a drink less alcohol consumption per episode), young adult smokers, and smokers in the lowest income category. Conclusions Findings from this longitudinal, epidemiological study suggest increases in cigarette taxes are associated with modest to moderate reductions in alcohol consumption among vulnerable groups. Additional research is needed to further quantify the public health benefits of cigarette

  19. Evaluation of fuel consumption potential of medium and heavy duty vehicles through modeling and simulation.

    SciTech Connect

    Delorme, A.; Karbowski, D.; Sharer, P.; Energy Systems

    2010-03-31

    The main objective of this report is to provide quantitative data to support the Committee in its task of establishing a report to support rulemaking on medium- and heavy-duty fuel efficiency improvement. In particular, it is of paramount importance for the Committee to base or illustrate their conclusions on established models and actual state-of-the art data. The simulations studies presented in the report have been defined and requested by the members of the National Academy committee to provide quantitative inputs to support their recommendations. As such, various technologies and usage scenarios were considered for several applications. One of the objective is to provide the results along with their associated assumptions (both vehicle and drive cycles), information generally missing from public discussions on literature search. Finally, the advantages and limitations of using simulation will be summarized. The study addresses several of the committee tasks, including: (1) Discussion of the implication of metric selection; (2) Assessing the impact of existing technologies on fuel consumption through energy balance analysis (both steady-state and standard cycles) as well as real world drive cycles; and (3) Impact of future technologies, both individually and collectively.

  20. Contactless electric igniter for vehicle to lower exhaust emission and fuel consumption.

    PubMed

    Shen, Chih-Lung; Su, Jye-Chau

    2014-01-01

    An electric igniter for engine/hybrid vehicles is presented. The igniter comprises a flyback converter, a voltage-stacked capacitor, a PIC-based controller, a differential voltage detector, and an ignition coil, of which structure is non-contact type. Since the electric igniter adopts a capacitor to accumulate energy for engine ignition instead of traditional contacttype approach, it enhances the igniting performance of a spark plug effectively. As a result, combustion efficiency is promoted, fuel consumption is saved, and exhaust emission is reduced. The igniter not only is good for fuel efficiency but also can reduce HC and CO emission significantly, which therefore is an environmentally friendly product. The control core of the igniter is implemented on a single chip, which lowers discrete component count, reduces system volume, and increases reliability. In addition, the ignition timing can be programmed so that a timing regulator can be removed from the proposed system, simplifying its structure. To verify the feasibility and functionality of the igniter, key waveforms are measured and real-car experiments are performed as well.

  1. Quantitative Effects of Vehicle Parameters on Fuel Consumption for Heavy-Duty Vehicle

    SciTech Connect

    Wang, Lijuan; Kelly, Kenneth; Walkowicz, Kevin; Duran, Adam

    2015-10-16

    The National Renewable Energy Laboratory's (NREL's) Fleet Test and Evaluations team recently conducted chassis dynamometer tests of a class 8 conventional regional delivery truck over the Heavy Heavy-Duty Diesel Truck (HHDDT), West Virginia University City (WVU City), and Composite International Truck Local and Commuter Cycle (CILCC) drive cycles. A quantitative study was conducted by analyzing the impacts of various factors on fuel consumption (FC) and fuel economy (FE) by modeling and simulating the truck using NREL's Future Automotive Systems Technology Simulator (FASTSim). Factors used in this study included vehicle weight, and the coefficients of rolling resistance and aerodynamic drag. The simulation results from a single parametric study revealed that FC was approximately a linear function of the weight, coefficient of aerodynamic drag, and rolling resistance over various drive cycles. Among these parameters, the truck weight had the largest effect on FC. The study of the impact of two technologies on FE suggested that, depending on the circumstances, it may be more cost effective to reduce one parameter (such as coefficient of aerodynamic drag) to increase fuel economy, or it may be more beneficial to reduce another (such as the coefficient of rolling resistance). It also provided a convenient way to estimate FE by interpolating within the parameter values and extrapolating outside of them. The simulation results indicated that the FC could be reduced from 38.70 L/100 km, 50.72 L/100 km, and 38.42 L/100 km in the baseline truck to 26.78 L/100 km, 43.14 L/100 km and 29.84 L/100 km over the HHDDT, WVU City and CILCC drive cycles, respectively, when the U.S. Department of Energy's three targeted new technologies were applied simultaneously.

  2. Reductions in aircraft particulate emissions due to the use of Fischer-Tropsch fuels

    NASA Astrophysics Data System (ADS)

    Beyersdorf, A. J.; Timko, M. T.; Ziemba, L. D.; Bulzan, D.; Corporan, E.; Herndon, S. C.; Howard, R.; Miake-Lye, R.; Thornhill, K. L.; Winstead, E.; Wey, C.; Yu, Z.; Anderson, B. E.

    2014-01-01

    The use of alternative fuels for aviation is likely to increase due to concerns over fuel security, price stability, and the sustainability of fuel sources. Concurrent reductions in particulate emissions from these alternative fuels are expected because of changes in fuel composition including reduced sulfur and aromatic content. The NASA Alternative Aviation Fuel Experiment (AAFEX) was conducted in January-February 2009 to investigate the effects of synthetic fuels on gas-phase and particulate emissions. Standard petroleum JP-8 fuel, pure synthetic fuels produced from natural gas and coal feedstocks using the Fischer-Tropsch (FT) process, and 50% blends of both fuels were tested in the CFM-56 engines on a DC-8 aircraft. To examine plume chemistry and particle evolution with time, samples were drawn from inlet probes positioned 1, 30, and 145 m downstream of the aircraft engines. No significant alteration to engine performance was measured when burning the alternative fuels. However, leaks in the aircraft fuel system were detected when operated with the pure FT fuels as a result of the absence of aromatic compounds in the fuel. Dramatic reductions in soot emissions were measured for both the pure FT fuels (reductions in mass of 86% averaged over all powers) and blended fuels (66%) relative to the JP-8 baseline with the largest reductions at idle conditions. At 7% power, this corresponds to a reduction from 7.6 mg kg-1 for JP-8 to 1.2 mg kg-1 for the natural gas FT fuel. At full power, soot emissions were reduced from 103 to 24 mg kg-1 (JP-8 and natural gas FT, respectively). The alternative fuels also produced smaller soot (e.g., at 85% power, volume mean diameters were reduced from 78 nm for JP-8 to 51 nm for the natural gas FT fuel), which may reduce their ability to act as cloud condensation nuclei (CCN). The reductions in particulate emissions are expected for all alternative fuels with similar reductions in fuel sulfur and aromatic content regardless of the

  3. Coal fueled ported kiln direct reduction process in Norway

    SciTech Connect

    Rierson, D.W.

    1994-12-31

    Allis Mineral Systems (AMS), formerly the minerals processing group at Allis-Chalmers Corporation, developed a ported kiln process in the 1960`s specifically for the direct reduction of iron ore. The process is called ACCAR. This ported kiln technology has more recently been coupled with AMS` GRATE-KILN System for iron oxide pelletizing into the GRATE-CAR Process, for minerals reduction. The GRATE-CAR Process can handle a fine grained ore concentrate through the steps of agglomeration, induration and reduction in a single production line.

  4. 14 CFR 291.44 - BTS Schedule P-12(a), Fuel Consumption by Type of Service and Entity.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false BTS Schedule P-12(a), Fuel Consumption by Type of Service and Entity. 291.44 Section 291.44 Aeronautics and Space OFFICE OF THE SECRETARY... possession; (3) International operations are flight stages with one or both terminals outside the 50...

  5. Using oily wastewater emulsified fuel in boiler: energy saving and reduction of air pollutant emissions.

    PubMed

    Chen, Chun-Chi; Lee, Wen-Jhy

    2008-01-01

    The limited data for using emulsified oil have demonstrated its effectiveness in reducing flue gas pollutant emissions. The presence of a high concentration of toxic organic compounds in industrial wastewaters always presents significant problems. Therefore, this study was undertaken by using wastewater with COD of 9600 mg/L and total petroleum hydrocarbons-gasoline 440 mg/L for making an emulsified oil (wastewater content 20% with 0.1% surfactant) to evaluate the extent of reductions in both criteria pollutants and polycyclic aromatic hydrocarbons. For comparison, two other systems (heavy oil fuel and water-emulsified oil) were also conducted. The wastewater-emulsified oil fuel results in significant reductions in particulate matter (PM), NO(x), SO2, and CO as compared to heavy oil fuel and similar to those from water/oil emulsified fuel; for PM, it is better in wastewater-emulsified oil. The reductions of total PAH flue gas emissions are 38 and 30% for wastewater- and water-emulsified fuel, respectively; they are 63 and 44% for total BaP(eq), respectively. In addition to reducing flue gas pollutant emissions, the results also demonstrate that the use of wastewater-emulsified fuel in boiler operation provides several advantages: (1) safe disposal of industrial wastewater; and (2) energy savings of about 13%. Thus, wastewater/oil-emulsified fuel is highly suitable for use in boilers.

  6. Fuel reduction management practices in riparian areas of the Western USA.

    PubMed

    Stone, Katharine R; Pilliod, David S; Dwire, Kathleen A; Rhoades, Charles C; Wollrab, Sherry P; Young, Michael K

    2010-07-01

    Two decades of uncharacteristically severe wildfires have caused government and private land managers to actively reduce hazardous fuels to lessen wildfire severity in western forests, including riparian areas. Because riparian fuel treatments are a fairly new management strategy, we set out to document their frequency and extent on federal lands in the western U.S. Seventy-four USDA Forest Service Fire Management Officers (FMOs) in 11 states were interviewed to collect information on the number and characteristics of riparian fuel reduction treatments in their management district. Just under half of the FMOs surveyed (43%) indicated that they were conducting fuel reduction treatments in riparian areas. The primary management objective listed for these projects was either fuel reduction (81%) or ecological restoration and habitat improvement (41%), though multiple management goals were common (56%). Most projects were of small extent (93% < 300 acres), occurred in the wildland-urban interface (75%), and were conducted in ways to minimize negative impacts on species and habitats. The results of this survey suggest that managers are proceeding cautiously with treatments. To facilitate project planning and implementation, managers recommended early coordination with resource specialists, such as hydrologists and fish and wildlife biologists. Well-designed monitoring of the consequences of riparian fuel treatments on fuel loads, fire risk, and ecological effects is needed to provide a scientifically-defensible basis for the continued and growing implementation of these treatments.

  7. Reduction of poloidal magnetic flux consumption during plasma current ramp-up in DEMO relevant plasma regimes

    NASA Astrophysics Data System (ADS)

    Wakatsuki, T.; Suzuki, T.; Hayashi, N.; Shiraishi, J.; Sakamoto, Y.; Ide, S.; Kubo, H.; Kamada, Y.

    2017-01-01

    The method for reducing a poloidal magnetic flux consumption of external coils is investigated to reduce the size of the central solenoid (CS) in the DEMO reactor. The reduction of the poloidal magnetic flux consumption during a plasma current ramp-up phase by electron cyclotron (EC) heating is investigated using an integrated modeling code suite, TOPICS. A strongly reversed shear q profile tends to be produced if intense off-axis EC heating is applied to obtain a large reduction of the flux consumption. In order to overcome this tendency, we find a method to obtain the optimum temperature profile which minimizes the poloidal flux consumption for a wide range of the q profile. We try to reproduce the optimum temperature profile for a weakly reversed shear q profile using six EC rays of 20 MW. As a result, the resistive flux consumption during the current ramp-up can be reduced by 63% from the estimation using the Ejima constant of 0.45 and the total flux consumption can be reduced by 20% from the conventional estimation. In addition, we find that the resistive flux consumption is closely related to the volume averaged electron temperature and not to the profile shape. Using this relation, the required heating power is estimated to be 31 MW based on a well established global confinement scaling, ITER L-89P. As a result, it is clarified that the poloidal magnetic flux consumption can be reduced by 20% using 20-31 MW of EC heating for a weakly reversed shear q profile. This reduction of the flux consumption accounts for 10% reduction of the CS radius.

  8. Long-lasting reduction in hippocampal neurogenesis by alcohol consumption in adolescent nonhuman primates.

    PubMed

    Taffe, Michael A; Kotzebue, Roxanne W; Crean, Rebecca D; Crawford, Elena F; Edwards, Scott; Mandyam, Chitra D

    2010-06-15

    Binge alcohol consumption in adolescents is increasing, and studies in animal models show that adolescence is a period of high vulnerability to brain insults. The purpose of the present study was to determine the deleterious effects of binge alcohol on hippocampal neurogenesis in adolescent nonhuman primates. Heavy binge alcohol consumption over 11 mo dramatically and persistently decreased hippocampal proliferation and neurogenesis. Combinatorial analysis revealed distinct, actively dividing hippocampal neural progenitor cell types in the subgranular zone of the dentate gyrus that were in transition from stem-like radial glia-like cells (type 1) to immature transiently amplifying neuroblasts (type 2a, type 2b, and type 3), suggesting the evolutionary conservation of milestones of neuronal development in macaque monkeys. Alcohol significantly decreased the number of actively dividing type 1, 2a, and 2b cell types without significantly altering the early neuronal type 3 cells, suggesting that alcohol interferes with the division and migration of hippocampal preneuronal progenitors. Furthermore, the lasting alcohol-induced reduction in hippocampal neurogenesis paralleled an increase in neural degeneration mediated by nonapoptotic pathways. Altogether, these results demonstrate that the hippocampal neurogenic niche during adolescence is highly vulnerable to alcohol and that alcohol decreases neuronal turnover in adolescent nonhuman primate hippocampus by altering the ongoing process of neuronal development. This lasting effect, observed 2 mo after alcohol discontinuation, may underlie the deficits in hippocampus-associated cognitive tasks that are observed in alcoholics.

  9. Spent nuclear fuel recycling with plasma reduction and etching

    DOEpatents

    Kim, Yong Ho

    2012-06-05

    A method of extracting uranium from spent nuclear fuel (SNF) particles is disclosed. Spent nuclear fuel (SNF) (containing oxides of uranium, oxides of fission products (FP) and oxides of transuranic (TRU) elements (including plutonium)) are subjected to a hydrogen plasma and a fluorine plasma. The hydrogen plasma reduces the uranium and plutonium oxides from their oxide state. The fluorine plasma etches the SNF metals to form UF6 and PuF4. During subjection of the SNF particles to the fluorine plasma, the temperature is maintained in the range of 1200-2000 deg K to: a) allow any PuF6 (gas) that is formed to decompose back to PuF4 (solid), and b) to maintain stability of the UF6. Uranium (in the form of gaseous UF6) is easily extracted and separated from the plutonium (in the form of solid PuF4). The use of plasmas instead of high temperature reactors or flames mitigates the high temperature corrosive atmosphere and the production of PuF6 (as a final product). Use of plasmas provide faster reaction rates, greater control over the individual electron and ion temperatures, and allow the use of CF4 or NF3 as the fluorine sources instead of F2 or HF.

  10. Modeling the Pyrochemical Reduction of Spent UO2 Fuel in a Pilot-Scale Reactor

    SciTech Connect

    Steven D. Herrmann; Michael F. Simpson

    2006-08-01

    A kinetic model has been derived for the reduction of oxide spent nuclear fuel in a radial flow reactor. In this reaction, lithium dissolved in molten LiCl reacts with UO2 and fission product oxides to form a porous, metallic product. As the reaction proceeds, the depth of the porous layer around the exterior of each fuel particle increases. The observed rate of reaction has been found to be only dependent upon the rate of diffusion of lithium across this layer, consistent with a classic shrinking core kinetic model. This shrinking core model has been extended to predict the behavior of a hypothetical, pilot-scale reactor for oxide reduction. The design of the pilot-scale reactor includes forced flow through baskets that contain the fuel particles. The results of the modeling indicate that this is an essential feature in order to minimize the time needed to achieve full conversion of the fuel.

  11. Graphene-Based Photocatalysts for CO2 Reduction to Solar Fuel.

    PubMed

    Low, Jingxiang; Yu, Jiaguo; Ho, Wingkei

    2015-11-05

    Recently, photocatalytic CO2 reduction for solar fuel production has attracted much attention because of its potential for simultaneously solving energy and global warming problems. Many studies have been conducted to prepare novel and efficient photocatalysts for CO2 reduction. Graphene, a two-dimensional material, has been increasingly used in photocatalytic CO2 reduction. In theory, graphene shows several remarkable properties, including excellent electronic conductivity, good optical transmittance, large specific surface area, and superior chemical stability. Attributing to these advantages, fabrication of graphene-based materials has been known as one of the most feasible strategies to improve the CO2 reduction performance of photocatalysts. This Perspective mainly focuses on the recent important advances in the fabrication and application of graphene-based photocatalysts for CO2 reduction to solar fuels. The existing challenges and difficulties of graphene-based photocatalysts are also discussed for future application.

  12. On-road pollutant emission and fuel consumption characteristics of buses in Beijing.

    PubMed

    Wang, Aijuan; Ge, Yunshan; Tan, Jianwei; Fu, Mingliang; Shah, Asad Naeem; Ding, Yan; Zhao, Hong; Liang, Bin

    2011-01-01

    On-road emission and fuel consumption (FC) levels for Euro III and IV buses fueled on diesel and compressed natural gas (CNG) were compared, and emission and FC characteristics of buses were analyzed based on approximately 28,700 groups of instantaneous data obtained in Beijing using a portable emissions measurement system (PEMS). The experimental results revealed that NOx and PM emissions from CNG buses were decreased by 72.0% and 82.3% respectively, compared with Euro IV diesel buses. Similarly, these emissions were reduced by 75.2% and 96.3% respectively, compared with Euro III diesel buses. In addition, CO2, CO, HC, NOx, PM emissions and FC of Euro IV diesel buses were reduced by 26.4%, 75.2%, 73.6%, 11.4%, 79.1%, and 26.0%, respectively, relative to Euro III diesel buses. The CO2, CO, HC, NOx, PM emissions and FC factors all decreased with bus speed increased, while increased as bus acceleration increased. At the same time, the emission/FC rates as well as the emission/FC factors exhibited a strong positive correlation with the vehicle specific power (VSP). They all were the lowest when VSP < 0, and then rapidly increased as VSP increased. Furthermore, both the emission/FC rates and emission/FC factors were the highest at accelerations, higher at cruise speeds, and the lowest at decelerations for non-idling buses. These results can provide a base reference to further estimate bus emission and FC inventories in Beijing.

  13. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells.

    PubMed

    Qu, Liangti; Liu, Yong; Baek, Jong-Beom; Dai, Liming

    2010-03-23

    Nitrogen-doped graphene (N-graphene) was synthesized by chemical vapor deposition of methane in the presence of ammonia. The resultant N-graphene was demonstrated to act as a metal-free electrode with a much better electrocatalytic activity, long-term operation stability, and tolerance to crossover effect than platinum for oxygen reduction via a four-electron pathway in alkaline fuel cells. To the best of our knowledge, this is the first report on the use of graphene and its derivatives as metal-free catalysts for oxygen reduction. The important role of N-doping to oxygen reduction reaction (ORR) can be applied to various carbon materials for the development of other metal-free efficient ORR catalysts for fuel cell applications, even new catalytic materials for applications beyond fuel cells.

  14. Pilot-scale equipment development for lithium-based reduction of spent oxide fuel.

    SciTech Connect

    Herrmann, S. D.

    1998-04-24

    An integral function of the electrometallurgical conditioning of DOE spent nuclear fuel is the standardization of waste forms. Argonne National Laboratory (ANL) has developed and is presently demonstrating the electrometallurgical conditioning of sodium-bonded metal fuel from Experimental Breeder Reactor II, resulting in uranium, ceramic waste, and metal waste forms. Engineering studies are underway at ANL in support of pilot-scale equipment development, which would precondition irradiated oxide fuel and likewise demonstrate the application of electrometallurgical conditioning to such non-metallic fuels. This paper highlights the integration of proposed spent oxide fuel conditioning with existing electrometallurgical processes. Additionally, technical bases for engineering activities to support a scale up of an oxide reduction process are described.

  15. Aerodynamic Improvements of an Empty Timber Truck can Have the Potential of Significantly Reducing Fuel Consumption

    NASA Astrophysics Data System (ADS)

    Andersson, Magnus; Marashi, Seyedeh Sepideh; Karlsson, Matts

    2012-11-01

    In the present study, aerodynamic drag (AD) has been estimated for an empty and a fully loaded conceptual timber truck (TT) using Computational Fluid Dynamics (CFD). The increasing fuel prices have challenged heavy duty vehicle (HDV) manufactures to strive for better fuel economy, by e.g. utilizing drag reducing external devices. Despite this knowledge, the TT fleets seem to be left in the dark. Like HDV aerodynamics, similarities can be observed as a large low pressure wake is formed behind the tractor (unloaded) and downstream of the trailer (full load) thus generating AD. As TTs travel half the time without any cargo, focus on drag reduction is important. The full scaled TTs where simulated using the realizable k-epsilon model with grid adaption techniques for mesh independence. Our results indicate that a loaded TT reduces the AD significantly as both wake size and turbulence kinetic energy are lowered. In contrast to HDV the unloaded TTs have a much larger design space available for possible drag reducing devices, e.g. plastic wrapping and/or flaps. This conceptual CFD study has given an indication of the large AD difference between the unloaded and fully loaded TT, showing the potential for significant AD improvements.

  16. Chemical reduction of biomass polysaccharides to liquid hydrocarbon fuels

    SciTech Connect

    Robinson, J.M.; Alaniz, N.J.; Beech, D.J.

    1996-12-31

    Biomass is fractionated into the principle components cellulose (1), hemicellulose (2), and lignin (3). The two polysaccharide fractions 1 & 2 are converted into polyols by catalytic hydrogenation. Sorbitol, resulting from 1 for example, is treated sequentially with a redox coupled mixture of hydriodic acid and phosphorous acid and then with alcoholic base to afford a mixture of hydrocarbons including hexene. Step 2 of the process is highly tunable and can directly produce about 80% hydrocarbon oligomers, C{sub 12}H{sub 22} and C{sub 18}H{sub 32} and only about 20% of the intermediate 2-iodohexane. Recent results in the development of this new process will be presented. Oxygenate fuel additives, hexanols and hexyl ethers are also available by further reactions of hexene. These are presented in the accompanying paper.

  17. POTENTIAL OF GREENHOUSE GASES REDUCTION BY FUEL CROP CULTIVATION UTILIZING SEWAGE SLUDGE IN JAPAN

    NASA Astrophysics Data System (ADS)

    Honda, Ryo; Fukushi, Kensuke

    Potential of greenhouse gases (GHG) reduction was estimated and compared in six scenarios of fuel crop cultivation by utilizing sewage sludge in Japan. Bioethanol from corn and biodiesel fuel from soybean was selected as biofuel produced. When all the sludge discharged from sewage treatment plants in 18 major cities was utilized for soybean cultivation and subsequent biodiesel fuel production, produced biofuel corresponded to 4.0% of GHG emitted from sewage treatment in Japan. On the other hand, cultivation area for fuel crop cultivation was found to be the regulating factor. When fuel crop was cultivated only in abandoned agricultural fields, produced biofuel corresponded to 0.60% and 0.62%, respectively, in the case that corn and soybean was cultivated. Production of biodiesel fuel from soybean was estimated to have more net reduction potential than bioehanol production from corn when sludge production is limited, because required sewage sludge compost was 2.5-times larger in corn although reduction potential per crop area was 2-times larger in bioethanol production from corn.

  18. Analytical Dimensional Reduction of a Fuel Optimal Powered Descent Subproblem

    NASA Technical Reports Server (NTRS)

    Rea, Jeremy R.; Bishop, Robert H.

    2010-01-01

    Current renewed interest in exploration of the moon, Mars, and other planetary objects is driving technology development in many fields of space system design. In particular, there is a desire to land both robotic and human missions on the moon and elsewhere. The landing guidance system must be able to deliver the vehicle to a desired soft landing while meeting several constraints necessary for the safety of the vehicle. Due to performance limitations of current launch vehicles, it is desired to minimize the amount of fuel used. In addition, the landing site may change in real-time in order to avoid previously undetected hazards which become apparent during the landing maneuver. This complicated maneuver can be broken into simpler subproblems that bound the full problem. One such subproblem is to find a minimum-fuel landing solution that meets constraints on the initial state, final state, and bounded thrust acceleration magnitude. With the assumptions of constant gravity and negligible atmosphere, the form of the optimal steering law is known, and the equations of motion can be integrated analytically, resulting in a system of five equations in five unknowns. It is shown that this system of equations can be reduced analytically to two equations in two unknowns. With an additional assumption of constant thrust acceleration magnitude, this system can be reduced further to one equation in one unknown. It is shown that these unknowns can be bounded analytically. An algorithm is developed to quickly and reliably solve the resulting one-dimensional bounded search, and it is used as a real-time guidance applied to a lunar landing test case.

  19. Reduction in Post-Marathon Peak Oxygen Consumption: Sign of Cardiac Fatigue in Amateur Runners?

    PubMed Central

    Sierra, Ana Paula Rennó; da Silveira, Anderson Donelli; Francisco, Ricardo Contesini; Barretto, Rodrigo Bellios de Mattos; Sierra, Carlos Anibal; Meneghelo, Romeu Sergio; Kiss, Maria Augusta Peduti Dal Molin; Ghorayeb, Nabil; Stein, Ricardo

    2016-01-01

    Background Prolonged aerobic exercise, such as running a marathon, produces supraphysiological stress that can affect the athlete's homeostasis. Some degree of transient myocardial dysfunction ("cardiac fatigue") can be observed for several days after the race. Objective To verify if there are changes in the cardiopulmonary capacity, and cardiac inotropy and lusitropy in amateur marathoners after running a marathon. Methods The sample comprised 6 male amateur runners. All of them underwent cardiopulmonary exercise testing (CPET) one week before the São Paulo Marathon, and 3 to 4 days after that race. They underwent echocardiography 24 hours prior to and immediately after the marathon. All subjects were instructed not to exercise, to maintain their regular diet, ingest the same usual amount of liquids, and rest at least 8 hours a day in the period preceding the CPET. Results The athletes completed the marathon in 221.5 (207; 250) minutes. In the post-marathon CPET, there was a significant reduction in peak oxygen consumption and peak oxygen pulse compared to the results obtained before the race (50.75 and 46.35 mL.kg-1 .min-1; 19.4 and 18.1 mL.btm, respectively). The echocardiography showed a significant reduction in the s' wave (inotropic marker), but no significant change in the E/e' ratio (lusitropic marker). Conclusions In amateur runners, the marathon seems to promote changes in the cardiopulmonary capacity identified within 4 days after the race, with a reduction in the cardiac contractility. Such changes suggest that some degree of "cardiac fatigue" can occur. PMID:26760783

  20. Hydrologic Impacts of Fuel-Reduction Treatments in the Hat and Burney Creek Basin

    NASA Astrophysics Data System (ADS)

    Gaffney, R.; Tyler, S. W.; Wheelock, S.; Grant, G.; Nadler, C.; Sladek, C.; Young, D.; Adkins, P.

    2014-12-01

    Fuel-reduction treatments are commonly employed throughout the western United States to improve forest health and/or decrease the risk of wildland fires. Periods of prolonged drought and high temperatures increase both the risk of wildland fires and the stress on water resources. Forest managers may mitigate the risk of wildland fires by increasing fuel-reduction treatments but the subsequent effect on forest hydrology and water resources is not well understood. Of particularly interest to water resources is the effect on snow pack accumulation and melt timing, which is impacted by forest cover. As part of a Comprehensive Forest Landscape Restoration Program (CFLRP), four sites were selected in the Hat Creek Basin of Lassen National Forest to study the hydrologic effects of two common fuel-reduction strategies, forest thinning and group selection. During the 2013/2014 winter, California experienced a significant drought, including a near-absence of continuous snow cover. Therefore, the effect on snow accumulation and melt timing during the 13/14 winter was not directly measured. However, significant deviations in solar radiation, wind speed, and solar moisture were observed in the data, suggesting fuel reduction treatments will have a tangible effect of snow pack and forest hydrology. Further work to examine the relationship between forest cover, fuel-treatments, and basin hydrology includes the analysis of historic stream flow data and the development of a hydro-ecological model for the basin.

  1. Reduction of CO2 to C1 products and fuel

    USGS Publications Warehouse

    Mill, T.; Ross, D.

    2002-01-01

    Photochemical semiconductor processes readily reduced CO2 to a broad range of C1 products. However the intrinsic and solar efficiencies for the processes were low. Improved quantum efficiencies could be realized utilizing quantum-sized particles, but at the expense of using less of the visible solar spectrum. Conversely, semiconductors with small bandgaps used more of the visible solar spectrum at the expense of quantum efficiency. Thermal reduction of CO2 with Fe(II) was thermodynamically favored for forming many kinds of organic compounds and occurred readily with olivine and other Fe(II) minerals above 200??C to form higher alkanes and alkenes. No added hydrogen was required.

  2. Reduction of energy consumption in low rise residential space conditioning by retrofitting with evaporative condenser

    NASA Astrophysics Data System (ADS)

    Ndukaife, Theodore Aganachi

    This work presents an experimental investigation of the application of direct evaporative cooling to reduce energy consumption in a residential sized split Air Conditioning system. Direct evaporative cooling is employed at the air-cooled condenser of a split air-conditioning system to pre-cool the ambient air flowing over the condenser coils. Different ambient conditions of air were simulated using a heater to mimic typical high temperature environments. Rigid cellulose pads with thickness ranging from 2-6inches (5.1cm-15.2cm) served as the heat exchange medium for air-water interaction, and were tested to determine the influence of the pad thickness in pre-cooling the ambient air before it flows over the condenser coils to extract heat from the refrigerant in the condenser. It was observed that a 1°C drop in ambient air temperature causes the condensing temperature of the refrigerant to drop by 0.6°C. This drop in condensing temperature of the refrigerant causes a decrease in power consumption of the unit, accompanied by an increase in Coefficient of Performance (COP). Results obtained shows that up to 44% increase in COP, and a 20% decrease in power consumption can be achieved by employing evaporative cooling. Additionally, the COP was found to increase by 4% for every 1°C drop in refrigerant condensing temperature. The water consumption pattern of the hybrid system is monitored to provide a realistic estimate of the operating cost, and profitability of the hybrid system. It was observed that 0.34liters of water is consumed for every percent increase in COP. To provide a realistic estimate of the daily water consumption of the hybrid system, the operation time was increased from 1-4hours, in step increments of 1hour. The volume of water consumed was found to increase by a factor of 1.8, 2.5, and 3.2, for 2hrs, 3hrs and 4hrs of operation respectively. This shows that as the operating hours of the hybrid system in a day increases, the volume of water consumed

  3. R&D on fuel cells in Japan and possible contributions of fuel cells to the Global Reduction of CO{sub 2} emissions

    SciTech Connect

    Takenaka, Hiroyasu

    1993-12-31

    Fuel cells can generate electricity equivalent to 40-60% of the energy contained In the fuel consumed, and an overall efficiency as high as 80% is not impossible to achieve through utilization of the exhaust heat. In addition, emissions of pollutants such as NOx and SOx from fuel cells are low. Since various reformed gases derived from natural gas, methanol and coal can be used as fuel for fuel cells, the wide range of applications for fuel cells is expected to contribute to the reduction of petroleum dependence in Japan.

  4. Mechanism reduction for multicomponent surrogates: A case study using toluene reference fuels

    DOE PAGES

    Niemeyer, Kyle E.; Sung, Chih-Jen

    2014-11-01

    Strategies and recommendations for performing skeletal reductions of multicomponent surrogate fuels are presented, through the generation and validation of skeletal mechanisms for a three-component toluene reference fuel. Using the directed relation graph with error propagation and sensitivity analysis method followed by a further unimportant reaction elimination stage, skeletal mechanisms valid over comprehensive and high-temperature ranges of conditions were developed at varying levels of detail. These skeletal mechanisms were generated based on autoignition simulations, and validation using ignition delay predictions showed good agreement with the detailed mechanism in the target range of conditions. When validated using phenomena other than autoignition, suchmore » as perfectly stirred reactor and laminar flame propagation, tight error control or more restrictions on the reduction during the sensitivity analysis stage were needed to ensure good agreement. In addition, tight error limits were needed for close prediction of ignition delay when varying the mixture composition away from that used for the reduction. In homogeneous compression-ignition engine simulations, the skeletal mechanisms closely matched the point of ignition and accurately predicted species profiles for lean to stoichiometric conditions. Furthermore, the efficacy of generating a multicomponent skeletal mechanism was compared to combining skeletal mechanisms produced separately for neat fuel components; using the same error limits, the latter resulted in a larger skeletal mechanism size that also lacked important cross reactions between fuel components. Based on the present results, general guidelines for reducing detailed mechanisms for multicomponent fuels are discussed.« less

  5. Mechanism reduction for multicomponent surrogates: A case study using toluene reference fuels

    SciTech Connect

    Niemeyer, Kyle E.; Sung, Chih-Jen

    2014-11-01

    Strategies and recommendations for performing skeletal reductions of multicomponent surrogate fuels are presented, through the generation and validation of skeletal mechanisms for a three-component toluene reference fuel. Using the directed relation graph with error propagation and sensitivity analysis method followed by a further unimportant reaction elimination stage, skeletal mechanisms valid over comprehensive and high-temperature ranges of conditions were developed at varying levels of detail. These skeletal mechanisms were generated based on autoignition simulations, and validation using ignition delay predictions showed good agreement with the detailed mechanism in the target range of conditions. When validated using phenomena other than autoignition, such as perfectly stirred reactor and laminar flame propagation, tight error control or more restrictions on the reduction during the sensitivity analysis stage were needed to ensure good agreement. In addition, tight error limits were needed for close prediction of ignition delay when varying the mixture composition away from that used for the reduction. In homogeneous compression-ignition engine simulations, the skeletal mechanisms closely matched the point of ignition and accurately predicted species profiles for lean to stoichiometric conditions. Furthermore, the efficacy of generating a multicomponent skeletal mechanism was compared to combining skeletal mechanisms produced separately for neat fuel components; using the same error limits, the latter resulted in a larger skeletal mechanism size that also lacked important cross reactions between fuel components. Based on the present results, general guidelines for reducing detailed mechanisms for multicomponent fuels are discussed.

  6. Evaluation of tire-derived fuel for use in nitrogen oxide reduction by reburning.

    PubMed

    Miller, C A; Lemieux, P M; Touati, A

    1998-08-01

    Tire-derived fuel (TDF) was tested in a small-scale (44 kW or 150,000 Btu/hr) combustor to determine its feasibility as a fuel for use in reburning for control of nitrogen oxide (NO). TDF was gravity-fed into upward flowing combustion gases from a primary natural gas flame doped with ammonia to simulate a high NO combustion process. Emissions of NO, oxygen, carbon dioxide, carbon monoxide, and particulate matter were measured. The tests varied the nominal primary NO level from 600 to 1,200 ppm and the primary stoichiometry from 1.1 to 1.2, and used both natural gas and TDF as reburn fuels. The reburn injection rate was varied to achieve 8-20% of the total heat input from the reburn fuel. NO emissions reductions ranged between 20 and 63% when using TDF, depending upon the rate of TDF injection, primary NO, and primary stoichiometry. NO emission reductions when using natural gas as the reburn fuel were consistently higher than those when using TDF. While additional work remains to optimize the process and evaluate costs, TDF has been shown to have the potential to be a technically viable reburning fuel.

  7. 75 FR 64243 - Umatilla National Forest, Walla Walla Ranger District; Oregon Tollgate Fuels Reduction Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-19

    ... November 18, 2010. The Draft EIS is expected to be filed with the Environmental Protection Agency (EPA) and... environmental impact statement. SUMMARY: The Forest Service proposes fuels reduction on approximately 4,400... Community Wildfire Protection Plan (CWPP) as amended. This project was planned and will be implemented...

  8. 14 CFR Appendix M to Part 25 - Fuel Tank System Flammability Reduction Means

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel Tank System Flammability Reduction Means M Appendix M to Part 25 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Pt. 25, App. M Appendix M to...

  9. Modifying Alcohol Consumption among High School Students: An Efficacy Trial of an Alcohol Risk Reduction Program (PRIME for Life)

    ERIC Educational Resources Information Center

    Hallgren, Mats A.; Sjolund, Torbjorn; Kallmen, Hakan; Andreasson, Sven

    2011-01-01

    Purpose: PRIME for Life is an alcohol risk reduction program that has been used and refined in the USA for over 20 years. A Swedish version of the program has recently been adapted for use among Swedish high-school students (age 18-19). The objective of the study is to evaluate the effects of the program on youth alcohol consumption (including…

  10. Projected Impact of a Sodium Consumption Reduction Initiative in Argentina: An Analysis from the CVD Policy Model – Argentina

    PubMed Central

    Konfino, Jonatan; Mekonnen, Tekeshe A.; Coxson, Pamela G.; Ferrante, Daniel; Bibbins-Domingo, Kirsten

    2013-01-01

    Background Cardiovascular disease (CVD) is the leading cause of death in adults in Argentina. Sodium reduction policies targeting processed foods were implemented in 2011 in Argentina, but the impact has not been evaluated. The aims of this study are to use Argentina-specific data on sodium excretion and project the impact of Argentina’s sodium reduction policies under two scenarios - the 2-year intervention currently being undertaken or a more persistent 10 year sodium reduction strategy. Methods We used Argentina-specific data on sodium excretion by sex and projected the impact of the current strategy on sodium consumption and blood pressure decrease. We assessed the projected impact of sodium reduction policies on CVD using the Cardiovascular Disease (CVD) Policy Model, adapted to Argentina, modeling two alternative policy scenarios over the next decade. Results Our study finds that the initiative to reduce sodium consumption currently in place in Argentina will have substantial impact on CVD over the next 10 years. Under the current proposed policy of 2-year sodium reduction, the mean sodium consumption is projected to decrease by 319–387 mg/day. This decrease is expected to translate into an absolute reduction of systolic blood pressure from 0.93 mmHg to 1.81 mmHg. This would avert about 19,000 all-cause mortality, 13,000 total myocardial infarctions, and 10,000 total strokes over the next decade. A more persistent sodium reduction strategy would yield even greater CVD benefits. Conclusion The impact of the Argentinean initiative would be effective in substantially reducing mortality and morbidity from CVD. This paper provides evidence-based support to continue implementing strategies to reduce sodium consumption at a population level. PMID:24040085

  11. Modeling Heavy/Medium-Duty Fuel Consumption Based on Drive Cycle Properties

    SciTech Connect

    Wang, Lijuan; Duran, Adam; Gonder, Jeffrey; Kelly, Kenneth

    2015-10-13

    This paper presents multiple methods for predicting heavy/medium-duty vehicle fuel consumption based on driving cycle information. A polynomial model, a black box artificial neural net model, a polynomial neural network model, and a multivariate adaptive regression splines (MARS) model were developed and verified using data collected from chassis testing performed on a parcel delivery diesel truck operating over the Heavy Heavy-Duty Diesel Truck (HHDDT), City Suburban Heavy Vehicle Cycle (CSHVC), New York Composite Cycle (NYCC), and hydraulic hybrid vehicle (HHV) drive cycles. Each model was trained using one of four drive cycles as a training cycle and the other three as testing cycles. By comparing the training and testing results, a representative training cycle was chosen and used to further tune each method. HHDDT as the training cycle gave the best predictive results, because HHDDT contains a variety of drive characteristics, such as high speed, acceleration, idling, and deceleration. Among the four model approaches, MARS gave the best predictive performance, with an average absolute percent error of -1.84% over the four chassis dynamometer drive cycles. To further evaluate the accuracy of the predictive models, the approaches were first applied to real-world data. MARS outperformed the other three approaches, providing an average absolute percent error of -2.2% of four real-world road segments. The MARS model performance was then compared to HHDDT, CSHVC, NYCC, and HHV drive cycles with the performance from Future Automotive System Technology Simulator (FASTSim). The results indicated that the MARS method achieved a comparative predictive performance with FASTSim.

  12. The effect of exhaust-to-coolant heat transfer on warm-up time and fuel consumption of two automobile engines

    SciTech Connect

    Goettler, H.J.; Vidger, L.J.; Majkrzak

    1986-01-01

    A 1977 Buick V-6 engine and a 1981 Ford Granada automobile were equipped with heat exchangers to transfer energy from the exhaust gases to the cooling water after cold starts in order to shorten engine warm-up periods and improve fuel economy. A parallel concern was the time required to reach satisfactory heat delivery to the passenger compartment. The Buick engine was investigated in the laboratory. The Ford automobile was tested during driving over a 12.4 km length of freeway and over an 8.6 km test route including both in-town and highway segments. Prior to each test run the engines were exposed to ambient air for at least 8 hours at temperatures ranging from -26/sup 0/C to +2/sup 0/C. The use of the heat exchangers resulted in average reductions of fuel consumption of 2.8% during a 7 minute warm-up period for the engine, and of 2.2% for the automobile when tested on the above test routes. The corresponding times for the coolant in the automobile compartment heater to reach maximum temperature were reduced by 16% and 7%. While fuel savings were achieved, their economic value is questionable, particularly in light of a possible retrofit of an existing automobile with an exhaust-to-coolant heat exchanger and the necessary control equipment.

  13. Alternative Fuel Vehicle Adoption Increases Fleet Gasoline Consumption and Greenhouse Gas Emissions under United States Corporate Average Fuel Economy Policy and Greenhouse Gas Emissions Standards.

    PubMed

    Jenn, Alan; Azevedo, Inês M L; Michalek, Jeremy J

    2016-03-01

    The United States Corporate Average Fuel Economy (CAFE) standards and Greenhouse Gas (GHG) Emission standards are designed to reduce petroleum consumption and GHG emissions from light-duty passenger vehicles. They do so by requiring automakers to meet aggregate criteria for fleet fuel efficiency and carbon dioxide (CO2) emission rates. Several incentives for manufacturers to sell alternative fuel vehicles (AFVs) have been introduced in recent updates of CAFE/GHG policy for vehicles sold from 2012 through 2025 to help encourage a fleet technology transition. These incentives allow automakers that sell AFVs to meet less-stringent fleet efficiency targets, resulting in increased fleet-wide gasoline consumption and emissions. We derive a closed-form expression to quantify these effects. We find that each time an AFV is sold in place of a conventional vehicle, fleet emissions increase by 0 to 60 t of CO2 and gasoline consumption increases by 0 to 7000 gallons (26,000 L), depending on the AFV and year of sale. Using projections for vehicles sold from 2012 to 2025 from the Energy Information Administration, we estimate that the CAFE/GHG AFV incentives lead to a cumulative increase of 30 to 70 million metric tons of CO2 and 3 to 8 billion gallons (11 to 30 billion liters) of gasoline consumed over the vehicles' lifetimes - the largest share of which is due to legacy GHG flex-fuel vehicle credits that expire in 2016. These effects may be 30-40% larger in practice than we estimate here due to optimistic laboratory vehicle efficiency tests used in policy compliance calculations.

  14. Projections of motor vehicle growth, fuel consumption and CO{sub 2} emissions for the next thirty years in China.

    SciTech Connect

    He, D.; Wang, M.

    2000-12-12

    Since the early 1990s, China's motor vehicles have entered a period of fast growth resultant from the rapid economic expansion. As the largest developing country, the fast growth of China's motor vehicles will have tremendous effects on the world's automotive and fuel market and on global CO{sub 2} emissions. In this study, we projected Chinese vehicle stocks for different vehicle types on the provincial level. First, we reviewed the historical data of China's vehicle growth in the past 10 years and the correlations between vehicle growth and economic growth in China. Second, we investigated historical vehicle growth trends in selected developed countries over the past 50 or so years. Third, we established a vehicle growth scenario based on the historical trends in several developed nations. Fourth, we estimated fuel economy, annual mileage and other vehicle usage parameters for Chinese vehicles. Finally, we projected vehicle stocks and estimated motor fuel use and CO{sub 2} emissions in each Chinese province from 2000 to 2030. Our results show that China will continue the rapid vehicle growth, increase gasoline and diesel consumption and increased CO{sub 2} emissions in the next 30 years. We estimated that by year 2030, Chinese motor vehicle fuel consumption and CO{sub 2} emissions could reach the current US levels.

  15. Fuel reduction and coarse woody debris dynamics with early season and late season prescribed fire in a Sierra Nevada mixed conifer forest

    USGS Publications Warehouse

    Knapp, E.E.; Keeley, J.E.; Ballenger, E.A.; Brennan, T.J.

    2005-01-01

    Fire exclusion has led to an unnatural accumulation and greater spatial continuity of organic material on the ground in many forests. This material serves both as potential fuel for forest fires and habitat for a large array of forest species. Managers must balance fuel reduction to reduce wildfire hazard with fuel retention targets to maintain other forest functions. This study reports fuel consumption and changes to coarse woody debris attributes with prescribed burns ignited under different fuel moisture conditions. Replicated early season burn, late season burn, and unburned control plots were established in old-growth mixed conifer forest in Sequoia National Park that had not experienced fire for more than 120 years. Early season burns were ignited during June 2002 when fuels were relatively moist, and late season burns were ignited during September/October 2001 when fuels were dry. Fuel loading and coarse woody debris abundance, cover, volume, and mass were evaluated prior to and after the burns. While both types of burns reduced fuel loading, early season burns consumed significantly less of the total dead and down organic matter than late season burns (67% versus 88%). This difference in fuel consumption between burning treatments was significant for most all woody fuel components evaluated, plus the litter and duff layers. Many logs were not entirely consumed - therefore the number of logs was not significantly changed by fire - but burning did reduce log length, cover, volume, and mass. Log cover, volume, and mass were reduced to a lesser extent by early season burns than late season burns, as a result of higher wood moisture levels. Early season burns also spread over less of the ground surface within the burn perimeter (73%) than late season burns (88%), and were significantly patchier. Organic material remaining after a fire can dam sediments and reduce erosion, while unburned patches may help mitigate the impact of fire on fire-sensitive species by

  16. Noise and Fuel Burn Reduction Potential of an Innovative Subsonic Transport Configuration

    NASA Technical Reports Server (NTRS)

    Guo, Yueping; Nickol, Craig L.; Thomas, Russell H.

    2014-01-01

    A study is presented for the noise and fuel burn reduction potential of an innovative double deck concept aircraft with two three-shaft direct-drive turbofan engines. The engines are mounted from the fuselage so that the engine inlet is over the main wing. It is shown that such an aircraft can achieve a cumulative Effective Perceived Noise Level (EPNL) about 28 dB below the current aircraft noise regulations of Stage 4. The combination of high bypass ratio engines and advanced wing design with laminar flow control technologies provide fuel burn reduction and low noise levels simultaneously. For example, the fuselage mounted engine position provides more than 4 EPNLdB of noise reduction by shielding the inlet radiated noise. To identify the potential effect of noise reduction technologies on this concept, parametric studies are presented to reveal the system level benefits of various emerging noise reduction concepts, for both engine and airframe noise reduction. These concepts are discussed both individually to show their respective incremental noise reduction potential and collectively to assess their aggregate effects on the total noise. Through these concepts approximately about 8 dB of additional noise reduction is possible, bringing the cumulative noise level of this aircraft to 36 EPNLdB below Stage 4, if the entire suite of noise reduction technologies would mature to practical application. In a final step, an estimate is made for this same aircraft concept but with higher bypass ratio, geared, turbofan engines. With this geared turbofan propulsion system, the noise is estimated to reach as low as 40-42 dB below Stage 4 with a fuel burn reduction of 43-47% below the 2005 best-in-class aircraft baseline. While just short of the NASA N+2 goals of 42 dB and 50% fuel burn reduction, for a 2025 in service timeframe, this assessment shows that this innovative concept warrants refined study. Furthermore, this design appears to be a viable potential future passenger

  17. FINAL REPORT: Reduction in Energy Consumption and Variability in Steel Foundry Operations

    SciTech Connect

    F. Peters

    2005-05-24

    This project worked to improve the efficiency of the steel casting industry by reducing the variability that occurs because of process and product variation. The project focused on the post shakeout operations since roughly half of the production costs are in this area. These improvements will reduce the amount of variability, making it easier to manage the operation and improve the competitiveness. The reduction in variability will also reduce the need for many rework operations, which will result in a direct reduction of energy usage, particularly by the reduction of repeated heat treatment operations. Further energy savings will be realized from the reduction of scrap and reduced handling. Field studies were conducted at ten steel foundries that represented the U.S. steel casting industry, for a total of over 100 weeks of production observation. These studies quantified the amount of variability, and looked toward determining the source. A focus of the data collected was the grinding operations since this is a major effort in the cleaning room, and it represents the overall casting quality. The grinding was divided into two categories, expected and unexpected. Expected grinding is that in which the location of the effort is known prior to making the casting, such as smoothing parting lines, gates, and riser contacts. Unexpected grinding, which was approximately 80% of the effort, was done to improve the surfaces at weld repair locations, to rectify burnt on sand, and other surface anomalies at random locations. Unexpected grinding represents about 80% of the grinding effort. By quantifying this effort, the project raised awareness within the industry and the industry is continuing to make improvements. The field studies showed that the amount of variation of grinding operations (normalized because of the diverse set of parts studied) was very consistent across the industry. The field studies identified several specific sources that individually contributed to

  18. African crop yield reductions due to increasingly unbalanced Nitrogen and Phosphorus consumption.

    PubMed

    van der Velde, Marijn; Folberth, Christian; Balkovič, Juraj; Ciais, Philippe; Fritz, Steffen; Janssens, Ivan A; Obersteiner, Michael; See, Linda; Skalský, Rastislav; Xiong, Wei; Peñuelas, Josep

    2014-04-01

    The impact of soil nutrient depletion on crop production has been known for decades, but robust assessments of the impact of increasingly unbalanced nitrogen (N) and phosphorus (P) application rates on crop production are lacking. Here, we use crop response functions based on 741 FAO maize crop trials and EPIC crop modeling across Africa to examine maize yield deficits resulting from unbalanced N : P applications under low, medium, and high input scenarios, for past (1975), current, and future N : P mass ratios of respectively, 1 : 0.29, 1 : 0.15, and 1 : 0.05. At low N inputs (10 kg ha(-1)), current yield deficits amount to 10% but will increase up to 27% under the assumed future N : P ratio, while at medium N inputs (50 kg N ha(-1)), future yield losses could amount to over 40%. The EPIC crop model was then used to simulate maize yields across Africa. The model results showed relative median future yield reductions at low N inputs of 40%, and 50% at medium and high inputs, albeit with large spatial variability. Dominant low-quality soils such as Ferralsols, which are strongly adsorbing P, and Arenosols with a low nutrient retention capacity, are associated with a strong yield decline, although Arenosols show very variable crop yield losses at low inputs. Optimal N : P ratios, i.e. those where the lowest amount of applied P produces the highest yield (given N input) where calculated with EPIC to be as low as 1 : 0.5. Finally, we estimated the additional P required given current N inputs, and given N inputs that would allow Africa to close yield gaps (ca. 70%). At current N inputs, P consumption would have to increase 2.3-fold to be optimal, and to increase 11.7-fold to close yield gaps. The P demand to overcome these yield deficits would provide a significant additional pressure on current global extraction of P resources.

  19. Real-world emissions and fuel consumption of diesel buses and trucks in Macao: From on-road measurement to policy implications

    NASA Astrophysics Data System (ADS)

    Wu, Xiaomeng; Zhang, Shaojun; Wu, Ye; Li, Zhenhua; Zhou, Yu; Fu, Lixin; Hao, Jiming

    2015-11-01

    A total of 13 diesel buses and 12 diesel trucks in Macao were tested using portable emission measurement systems (PEMS) including a SEMTECH-DS for gaseous emissions and a SEMTECH-PPMD for PM2.5. The average emission rates of gaseous pollutants and CO2 are developed with the operating mode defined by the instantaneous vehicle specific power (VSP) and vehicle speed. Both distance-based and fuel mass-based emission factors for gaseous pollutants (e.g., CO, THC and NOX) are further estimated under typical driving conditions. The average distance-based NOX emission of heavy-duty buses (HDBs) is higher than 13 g km-1. Considering the unfavorable conditions for selective reductions catalyst (SCR) systems, such as low-speed driving conditions, more effective technology options (e.g., dedicated natural gas buses and electric buses) should be considered by policy makers in Macao. We identified strong effects of the vehicle size, engine displacement and driving conditions on real-world CO2 emission factors and fuel consumption for diesel vehicles. Therefore, detailed profiles regarding vehicle specifications can reduce the uncertainty in their fleet-average on-road fuel consumption. In addition, strong correlations between relative emission factors and driving conditions indicated by the average speed of generated micro-trips are identified based on a micro-trip method. For example, distance-based emission factors of HDBs will increase by 39% for CO, 29% for THC, 43% for NOX and 26% for CO2 when the average speed decreases from 30 km h-1 to 20 km h-1. The mitigation of on-road emissions from diesel buses and trucks by improving traffic conditions through effective traffic and economic management measures is therefore required. This study demonstrates the important role of PEMS in understanding vehicle emissions and mitigation strategies from science to policy perspectives.

  20. Direct reduction of hydrogen peroxides into hydroxyl ions in peroxide-based fuel cells

    NASA Astrophysics Data System (ADS)

    Luo, Nie; Miley, George; Noid, Don; Chubb, Scott

    2004-03-01

    The physics of catalytic electrochemical reduction of hydrogen peroxide (H2O2 + 2 e = 2 OH-) at the electrolyte/cathode interface of peroxide fuel cells is under study. This reaction is ideally suited for high efficiency fuel cell operation, but is nevertheless in competition with wasteful processes such as the direct decomposition of H2O2 to water and oxygen gas. The reaction kinetics of these competing processes are calculated with thermodynamic and electrochemical data of relevant materials, resulting in a qualitative guide to the selection of effective catalyst and cathode compositions. The experimental research includes cyclic voltammetry, used to probe the surface electrochemistry of the catalytic process, and to shed light on how a correct theoretical understanding is restricted experimentally. A fuel cell based on direct hydrogen peroxide cathode has the following distinct advantages: i) Very high volumetric power density (several times higher than conventional H2/O2 fuel cells) due to direct utilization of a liquid phase oxidant at the cathode; (ii) The potential for a very high efficiency (over 60%) because the use of H2O2 overcomes the oxygen over-potential problem (slow O2 reduction kinetics) inherent to a H2/O2 fuel cell designs, which require simultaneous transfer of four electrons; (iii) Safe, and long time stable storage of the energetic materials for fuel cells in special environment (space, underwater, etc.). The measurement on open cell voltage, short-circuit current density shows an improved performance compared to a typical H2/O2 fuel cell, indicating a higher efficiency at similar discharge conditions.

  1. Quantitative Estimate of the Relation Between Rolling Resistance on Fuel Consumption of Class 8 Tractor Trailers Using Both New and Retreaded Tires (SAE Paper 2014-01-2425)

    EPA Science Inventory

    Road tests of class 8 tractor trailers were conducted by the US Environmental Protection Agency on new and retreaded tires of varying rolling resistance in order to provide estimates of the quantitative relationship between rolling resistance and fuel consumption.

  2. Is harm reduction profitable? An analytical framework for corporate social responsibility based on an epidemic model of addictive consumption.

    PubMed

    Massin, Sophie

    2012-06-01

    This article aims to help resolve the apparent paradox of producers of addictive goods who claim to be socially responsible while marketing a product clearly identified as harmful. It advances that reputation effects are crucial in this issue and that determining whether harm reduction practices are costly or profitable for the producers can help to assess the sincerity of their discourse. An analytical framework based on an epidemic model of addictive consumption that includes a deterrent effect of heavy use on initiation is developed. This framework enables us to establish a clear distinction between a simple responsible discourse and genuine harm reduction practices and, among harm reduction practices, between use reduction practices and micro harm reduction practices. Using simulations based on tobacco sales in France from 1950 to 2008, we explore the impact of three corresponding types of actions: communication on damage, restraining selling practices and development of safer products on total sales and on the social cost. We notably find that restraining selling practices toward light users, that is, preventing light users from escalating to heavy use, can be profitable for the producer, especially at early stages of the epidemic, but that such practices also contribute to increase the social cost. These results suggest that the existence of a deterrent effect of heavy use on the initiation of the consumption of an addictive good can shed new light on important issues, such as the motivations for corporate social responsibility and the definition of responsible actions in the particular case of harm reduction.

  3. A STUDY OF THE DISCREPANCY BETWEEN FEDERAL AND STATE MEASUREMENTS OF ON-HIGHWAY FUEL CONSUMPTION

    SciTech Connect

    Hwang, HL

    2003-08-11

    Annual highway fuel taxes are collected by the Treasury Department and placed in the Highway Trust Fund (HTF). There is, however, no direct connection between the taxes collected by the Treasury Department and the gallons of on-highway fuel use, which can lead to a discrepancy between these totals. This study was conducted to determine how much of a discrepancy exists between the total fuel usages estimated based on highway revenue funds as reported by the Treasury Department and the total fuel usages used in the apportionment of the HTF to the States. The analysis was conducted using data from Highway Statistics Tables MF-27 and FE-9 for the years 1991-2001. It was found that the overall discrepancy is relatively small, mostly within 5% difference. The amount of the discrepancy varies from year to year and varies among the three fuel types (gasoline, gasohol, special fuels). Several potential explanations for these discrepancies were identified, including issues on data, tax measurement, gallon measurement, HTF receipts, and timing. Data anomalies caused by outside forces, such as deferment of tax payments from one fiscal year to the next, can skew fuel tax data. Fuel tax evasion can lead to differences between actual fuel use and fuel taxes collected. Furthermore, differences in data collection and reporting among States can impact fuel use data. Refunds, credits, and transfers from the HTF can impact the total fuel tax receipt data. Timing issues, such as calendar year vs. fiscal year, can also cause some discrepancy between the two data sources.

  4. Photoassisted Oxygen Reduction Reaction in H2 -O2 Fuel Cells.

    PubMed

    Zhang, Bingqing; Wang, Shengyang; Fan, Wenjun; Ma, Weiguang; Liang, Zhenxing; Shi, Jingying; Liao, Shijun; Li, Can

    2016-11-14

    The oxygen reduction reaction (ORR) is a key step in H2 -O2 fuel cells, which, however, suffers from slow kinetics even for state-of-the-art catalysts. In this work, by making use of photocatalysis, the ORR was significantly accelerated with a polymer semiconductor (polyterthiophene). The onset potential underwent a positive shift from 0.66 to 1.34 V, and the current was enhanced by a factor of 44 at 0.6 V. The improvement was further confirmed in a proof-of-concept light-driven H2 -O2 fuel cell, in which the open circuit voltage (Voc ) increased from 0.64 to 1.18 V, and the short circuit current (Jsc ) was doubled. This novel tandem structure combining a polymer solar cell and a fuel cell enables the simultaneous utilization of photo- and electrochemical energy, showing promising potential for applications in energy conversion and storage.

  5. Hybrid-Electric Passenger Car Carbon Dioxide and Fuel Consumption Benefits Based on Real-World Driving.

    PubMed

    Holmén, Britt A; Sentoff, Karen M

    2015-08-18

    Hybrid-electric vehicles (HEVs) have lower fuel consumption and carbon dioxide (CO2) emissions than conventional vehicles (CVs), on average, based on laboratory tests, but there is a paucity of real-world, on-road HEV emissions and performance data needed to assess energy use and emissions associated with real-world driving, including the effects of road grade. This need is especially great as the electrification of the passenger vehicle fleet (from HEVs to PHEVs to BEVs) increases in response to climate and energy concerns. We compared tailpipe CO2 emissions and fuel consumption of an HEV passenger car to a CV of the same make and model during real-world, on-the-road network driving to quantify the in-use benefit of one popular full HEV technology. Using vehicle specific power (VSP) assignments that account for measured road grade, the mean CV/HEV ratios of CO2 tailpipe emissions or fuel consumption defined the corresponding HEV "benefit" factor for each VSP class (1 kW/ton resolution). Averaging over all VSP classes for driving in all seasons, including temperatures from -13 to +35 °C in relatively steep (-13.2 to +11.5% grade), hilly terrain, mean (±SD) CO2 emission benefit factors were 4.5 ± 3.6, 2.5 ± 1.7, and 1.4 ± 0.5 for city, exurban/suburban arterial and highway driving, respectively. Benefit factor magnitude corresponded to the frequency of electric-drive-only (EDO) operation, which was modeled as a logarithmic function of VSP. A combined model explained 95% of the variance in HEV benefit for city, 75% for arterial and 57% for highway driving. Benefit factors consistently exceeded 2 for VSP classes with greater than 50% EDO (i.e., only city and arterial driving). The reported HEV benefits account for real-world road grade that is often neglected in regulatory emissions and fuel economy tests. Fuel use HEV benefit factors were 1.3 and 2 for the regulatory highway (HWFET) and city (FTP) cycles, respectively, 18% and 31% higher than the EPA adjusted

  6. Photochemical reduction of CO{sub 2} to fuels and chemicals

    SciTech Connect

    DuBois, D.; Eisenberg, R.; Fujita, E.

    1996-09-01

    Photochemical reduction of CO{sub 2} represents a potentially useful approach to developing a sustainable source of carbon-based chemicals, fuels, and materials. In this report the present status of photochemical CO{sub 2} reduction is assessed, areas that need to be better understood for advancement are identified, and approaches to overcoming barriers are suggested. Because of the interdisciplinary nature of this field, assessments of three closely interrelated areas are given including integrated photochemical systems for catalytic CO{sub 2} reduction, thermal catalytic CO{sub 2} reactions, and electrochemical CO{sub 2} reduction. The report concludes with a summary and assessment of potential impacts of this area on chemical and energy technologies.

  7. Selective catalytic reduction operation with heavy fuel oil: NOx, NH3, and particle emissions.

    PubMed

    Lehtoranta, Kati; Vesala, Hannu; Koponen, Päivi; Korhonen, Satu

    2015-04-07

    To meet stringent NOx emission limits, selective catalytic reduction (SCR) is increasingly utilized in ships, likely also in combination with low-priced higher sulfur level fuels. In this study, the performance of SCR was studied by utilizing NOx, NH3, and particle measurements. Urea decomposition was studied with ammonia and isocyanic acid measurements and was found to be more effective with heavy fuel oil (HFO) than with light fuel oil. This is suggested to be explained by the metals found in HFO contributing to metal oxide particles catalyzing the hydrolysis reaction prior to SCR. At the exhaust temperature of 340 °C NOx reduction was 85-90%, while at lower temperatures the efficiency decreased. By increasing the catalyst loading, the low temperature behavior of the SCR was enhanced. The drawback of this, however, was the tendency of particle emissions (sulfate) to increase at higher temperatures with higher loaded catalysts. The particle size distribution results showed high amounts of nanoparticles (in 25-30 nm size), the formation of which SCR either increased or decreased. The findings of this work provide a better understanding of the usage of SCR in combination with a higher sulfur level fuel and also of ship particle emissions, which are a growing concern.

  8. Universal fuel basket for use with an improved oxide reduction vessel and electrorefiner vessel

    DOEpatents

    Herrmann, Steven D.; Mariani, Robert D.

    2002-01-01

    A basket, for use in the reduction of UO.sub.2 to uranium metal and in the electrorefining of uranium metal, having a continuous annulus between inner and outer perforated cylindrical walls, with a screen adjacent to each wall. A substantially solid bottom and top plate enclose the continuous annulus defining a fuel bed. A plurality of scrapers are mounted adjacent to the outer wall extending longitudinally thereof, and there is a mechanism enabling the basket to be transported remotely.

  9. The growth pattern and fuel life cycle analysis of the electricity consumption of Hong Kong.

    PubMed

    To, W M; Lai, T M; Lo, W C; Lam, K H; Chung, W L

    2012-06-01

    As the consumption of electricity increases, air pollutants from power generation increase. In metropolitans such as Hong Kong and other Asian cities, the surge of electricity consumption has been phenomenal over the past decades. This paper presents a historical review about electricity consumption, population, and change in economic structure in Hong Kong. It is hypothesized that the growth of electricity consumption and change in gross domestic product can be modeled by 4-parameter logistic functions. The accuracy of the functions was assessed by Pearson's correlation coefficient, mean absolute percent error, and root mean squared percent error. The paper also applies the life cycle approach to determine carbon dioxide, methane, nitrous oxide, sulfur dioxide, and nitrogen oxide emissions for the electricity consumption of Hong Kong. Monte Carlo simulations were applied to determine the confidence intervals of pollutant emissions. The implications of importing more nuclear power are discussed.

  10. Development of retrofitting modifications of textile-loom picking and lay mechanisms for reduction of energy consumption. Final report

    SciTech Connect

    Not Available

    1983-02-01

    A retrofitting shuttle loom picking mechanism was designed, fabricated, installed and operated at a speed of 200 picks per minute. A detailed account of design criteria and research measurements is given. A reliable techniques for measuring the dynamic loads is described and the load of an air jet loom is compared with the loads of conventional shuttle loom. The reduction of energy consumption in a typical four bar linkage system was studied. (MHR)

  11. Chassis dynamometer study of the effects of AGO detergent and ignition improver on vehicle fuel consumption

    SciTech Connect

    Reading, K.; Evans, T.M.

    1994-10-01

    The benefits of diesel fuel additives have been demonstrated in a broad range of performance and operational areas from the refinary, through storage and distribution to fuel dispensing and vehicle operation. The object of this study is to devise a method to measure the effects of individual additives on fuel economy, at conditions representative of urban driving conditions, and to make preliminary measurements of the effects of a detergent and ignition improver. In this study a vehicle was prepared and run on a chasis dynamometer under steady-state urban cruise conditions according to a specially designed procedure. The results show that benefits in fuel economy can be gained both by using detergents in avoiding the build-up of excessive nozzle fouling and maintaining fuel injection equipment close to its design conditions - and also by using ignition improver. Changes in emissions consistent with previous studies were noted in both cases. 12 refs., 7 figs., 2 tabs.

  12. Global Threat Reduction Initiative Fuel Thermo-Physical Characterization Project: Sample Management Plan

    SciTech Connect

    Casella, Amanda J.; Pereira, Mario M.; Steen, Franciska H.

    2013-01-01

    This sample management plan provides guidelines for sectioning, preparation, acceptance criteria, analytical path, and end-of-life disposal for the fuel element segments utilized in the Global Threat Reduction Initiative (GTRI), Fuel Thermo-Physical Characterization Project. The Fuel Thermo-Physical Characterization Project is tasked with analysis of irradiated Low Enriched Uranium (LEU) Molybdenum (U-Mo) fuel element samples to support the GTRI conversion program. Sample analysis may include optical microscopy (OM), scanning electron microscopy (SEM) fuel-surface interface analysis, gas pycnometry (density) measurements, laser flash analysis (LFA), differential scanning calorimetry (DSC), thermogravimetry and differential thermal analysis with mass spectroscopy (TG /DTA-MS), Inductively Coupled Plasma Spectrophotometry (ICP), alpha spectroscopy, and Thermal Ionization Mass Spectroscopy (TIMS). The project will utilize existing Radiochemical Processing Laboratory (RPL) operating, technical, and administrative procedures for sample receipt, processing, and analyses. Test instructions (TIs), which are documents used to provide specific details regarding the implementation of an existing RPL approved technical or operational procedure, will also be used to communicate to staff project specific parameters requested by the Principal Investigator (PI). TIs will be developed, reviewed, and issued in accordance with the latest revision of the RPL-PLN-700, RPL Operations Plan. Additionally, the PI must approve all project test instructions and red-line changes to test instructions.

  13. Quantifying the fuel use and greenhouse gas reduction potential of electric and hybrid vehicles.

    SciTech Connect

    Singh, M.; Wang, M.; Hazard, N.; Lewis, G.; Energy Systems; Northeast Sustainable Energy Association; Univ. of Michigan

    2000-01-01

    Since 1989, the Northeast Sustainable Energy Association (NESEA) has organized the American Tour de Sol in which a wide variety of participants operate electric vehicles (EVs) and hybrid electric vehicles (HEVs) for several hundred miles under various roadway conditions (e.g., city center and highway). The event offers a unique opportunity to collect on-the-road energy efficiency data for these EVs and HEVs as well as comparable gasoline-fueled conventional vehicles (CVs) that are driven under the same conditions. NESEA and Argonne National Laboratory (ANL) collaborated on collecting and analyzing vehicle efficiency data during the 1998 and 1999 NESEA American Tour de Sols. Using a transportation fuel-cycle model developed at ANL with data collected on vehicle fuel economy from the two events as well as electric generation mix data from the utilities that provided the electricity to charge the EVs on the two Tours, we estimated full fuel-cycle energy use and GHG emissions of EVs and CVs. This paper presents the data, methodology, and results of this study, including the full fuel-cycle energy use and GHG emission reduction potential of the EVs operating on the Tour.

  14. Global Threat Reduction Initiative Fuel-Thermo-Physical Characterization Project Quality Assurance Plan

    SciTech Connect

    Pereira, Mario M.; Slonecker, Bruce D.

    2012-06-01

    The charter of the Fuel Thermo-Physical Characterization Project is to ready Pacific Northwest National Laboratory (PNNL) facilities and processes for the receipt of unirradiated and irradiated low enriched uranium (LEU) molybdenum (U-Mo) fuel element samples, and to perform analysis to support the Global Threat Reduction Initiative conversion program. PNNL’s support for the program will include the establishment of post-irradiation examination processes, including thermo-physical properties, unique to the U.S. Department of Energy laboratories. These processes will ultimately support the submission of the base fuel qualification (BFQ) to the U.S. Nuclear Regulatory Commission (NRC) and revisions to High Performance Research Reactor Safety Analysis Reports to enable conversion from highly enriched uranium to LEU fuel. This quality assurance plan (QAP) provides the quality assurance requirements and processes that support the NRC BFQ. This QAP is designed to be used by project staff, and prescribes the required management control elements that are to be met and how they are implemented. Additional controls are captured in Fuel Thermo-Physical Characterization Project plans, existing procedures, and procedures to be developed that provide supplemental information on how work is conducted on the project.

  15. Reductions in particulate and NO(x) emissions by diesel engine parameter adjustments with HVO fuel.

    PubMed

    Happonen, Matti; Heikkilä, Juha; Murtonen, Timo; Lehto, Kalle; Sarjovaara, Teemu; Larmi, Martti; Keskinen, Jorma; Virtanen, Annele

    2012-06-05

    Hydrotreated vegetable oil (HVO) diesel fuel is a promising biofuel candidate that can complement or substitute traditional diesel fuel in engines. It has been already reported that by changing the fuel from conventional EN590 diesel to HVO decreases exhaust emissions. However, as the fuels have certain chemical and physical differences, it is clear that the full advantage of HVO cannot be realized unless the engine is optimized for the new fuel. In this article, we studied how much exhaust emissions can be reduced by adjusting engine parameters for HVO. The results indicate that, with all the studied loads (50%, 75%, and 100%), particulate mass and NO(x) can both be reduced over 25% by engine parameter adjustments. Further, the emission reduction was even higher when the target for adjusting engine parameters was to exclusively reduce either particulates or NO(x). In addition to particulate mass, different indicators of particulate emissions were also compared. These indicators included filter smoke number (FSN), total particle number, total particle surface area, and geometric mean diameter of the emitted particle size distribution. As a result of this comparison, a linear correlation between FSN and total particulate surface area at low FSN region was found.

  16. Direct reduction of hydrogen peroxides into hydroxyl ions in peroxide-based fuel cell

    NASA Astrophysics Data System (ADS)

    Luo, Nie; Miley, George H.; Noid, D. W.

    2004-03-01

    We study the catalytic electrochemical reduction of hydrogen peroxide (H_2O2 + 2 e = 2 OH^-) at the electrolyte/cathode interface of peroxide fuel cells. This is the desired reaction for high efficiency fuel cell operation, but is nevertheless in competition with wasteful processes such as the direct decomposition of H_2O2 to water and oxygen gas. The reaction kinetics of these competing processes is calculated with thermodynamic and electrochemical data of relevant materials, resulting in a qualitative guide on the selection of effective catalyst and cathode compositions. The experimental research includes cyclic voltammetry, used to probe the surface electrochemistry of the catalytic process, and shed light on how proper theories are restricted experimentally. The fuel cell based on direct hydrogen peroxide cathode has the following distinct advantages: i) Very high volumetric power density (several times higher than ordinary H_2O2 fuel cells) through direct utilization of a liquid phase oxidant at the cathode; (ii) The potential for high efficiency (over 60%): use of H_2O2 eliminates the oxygen over-potential problem inherent to ordinary H_2O2 fuel cell designs, which require transfer of four electrons simultaneously; (iii) Safe, and stable storage of the energetic materials.

  17. Fuel Consumption and Fire Emissions Estimates in Siberia: Impact of Vegetation Types, Meteorological Conditions, Forestry Practices and Fire Regimes

    NASA Astrophysics Data System (ADS)

    Kukavskaya, Elena; Conard, Susan; Ivanova, Galina; Buryak, Ludmila; Soja, Amber; Zhila, Sergey

    2015-04-01

    Boreal forests play a crucial role in carbon budgets with Siberian carbon fluxes and pools making a major contribution to the regional and global carbon cycle. Wildfire is the main ecological disturbance in Siberia that leads to changes in forest species composition and structure and in carbon storage, as well as direct emissions of greenhouse gases and aerosols to the atmosphere. At present, the global scientific community is highly interested in quantitative and accurate estimates of fire emissions. Little research on wildland fuel consumption and carbon emission estimates has been carried out in Russia until recently. From 2000 to 2007 we conducted a series of experimental fires of varying fireline intensity in light-coniferous forest of central Siberia to obtain quantitative and qualitative data on fire behavior and carbon emissions due to fires of known behavior. From 2009 to 2013 we examined a number of burned logged areas to assess the potential impact of forest practices on fire emissions. In 2013-2014 burned areas in dark-coniferous and deciduous forests were examined to determine fuel consumption and carbon emissions. We have combined and analyzed the scarce data available in the literature with data obtained in the course of our long-term research to determine the impact of various factors on fuel consumption and to develop models of carbon emissions for different ecosystems of Siberia. Carbon emissions varied drastically (from 0.5 to 40.9 tC/ha) as a function of vegetation type, weather conditions, anthropogenic effects and fire behavior characteristics and periodicity. Our study provides a basis for better understanding of the feedbacks between wildland fire emissions and changing anthropogenic disturbance patterns and climate. The data obtained could be used by air quality agencies to calculate local emissions and by managers to develop strategies to mitigate negative smoke impacts on the environmentand human health.

  18. Fuel consumption and fire emissions estimates using Fire Radiative Power, burned area and statistical modelling on the fire event scale

    NASA Astrophysics Data System (ADS)

    Ruecker, Gernot; Leimbach, David; Guenther, Felix; Barradas, Carol; Hoffmann, Anja

    2016-04-01

    Fire Radiative Power (FRP) retrieved by infrared sensors, such as flown on several polar orbiting and geostationary satellites, has been shown to be proportional to fuel consumption rates in vegetation fires, and hence the total radiative energy released by a fire (Fire Radiative Energy, FRE) is proportional to the total amount of biomass burned. However, due to the sparse temporal coverage of polar orbiting and the coarse spatial resolution of geostationary sensors, it is difficult to estimate fuel consumption for single fire events. Here we explore an approach for estimating FRE through temporal integration of MODIS FRP retrievals over MODIS-derived burned areas. Temporal integration is aided by statistical modelling to estimate missing observations using a generalized additive model (GAM) and taking advantage of additional information such as land cover and a global dataset of the Canadian Fire Weather Index (FWI), as well as diurnal and annual FRP fluctuation patterns. Based on results from study areas located in savannah regions of Southern and Eastern Africa and Brazil, we compare this method to estimates based on simple temporal integration of FRP retrievals over the fire lifetime, and estimate the potential variability of FRP integration results across a range of fire sizes. We compare FRE-based fuel consumption against a database of field experiments in similar landscapes. Results show that for larger fires, this method yields realistic estimates and is more robust when only a small number of observations is available than the simple temporal integration. Finally, we offer an outlook on the integration of data from other satellites, specifically FireBird, S-NPP VIIRS and Sentinel-3, as well as on using higher resolution burned area data sets derived from Landsat and similar sensors.

  19. Life Cycle Assessment of Vehicle Lightweighting: A Physics-Based Model To Estimate Use-Phase Fuel Consumption of Electrified Vehicles.

    PubMed

    Kim, Hyung Chul; Wallington, Timothy J

    2016-10-18

    Assessing the life-cycle benefits of vehicle lightweighting requires a quantitative description of mass-induced fuel consumption (MIF) and fuel reduction values (FRVs). We have extended our physics-based model of MIF and FRVs for internal combustion engine vehicles (ICEVs) to electrified vehicles (EVs) including hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and battery electric vehicles (BEVs). We illustrate the utility of the model by calculating MIFs and FRVs for 37 EVs and 13 ICEVs. BEVs have much smaller MIF and FRVs, both in the range 0.04-0.07 Le/(100 km 100 kg), than those for ICEVs which are in the ranges 0.19-0.32 and 0.16-0.22 L/(100 km 100 kg), respectively. The MIF and FRVs for HEVs and PHEVs mostly lie between those for ICEVs and BEVs. Powertrain resizing increases the FRVs for ICEVs, HEVs and PHEVs. Lightweighting EVs is less effective in reducing greenhouse gas emissions than lightweighting ICEVs, however the benefits differ substantially for different vehicle models. The physics-based approach outlined here enables model specific assessments for ICEVs, HEVs, PHEVs, and BEVs required to determine the optimal strategy for maximizing the life-cycle benefits of lightweighting the light-duty vehicle fleet.

  20. Effects on Fuel Consumption and Diesel Engine Deposits from Nano-Particle Oil Additive

    DTIC Science & Technology

    2010-07-01

    Products HTBCT High Temperature Benchtop Corrosion Test HwFET Highway Fuel Economy Test IF Inorganic Fullerene JP-8 A kerosene based jet fuel lbs...engine crankcase lubricants at the request of TARDEC. This additive contains inorganic fullerene -like (IF) nano- particles of WS2 which were claimed...volume and hardness change are shown in Table 4 with MIL-PRF-46167D specified limits. Table 4: Seal Compatibility Test Results Material Property

  1. Molecular approaches to the photocatalytic reduction of carbon dioxide for solar fuels.

    PubMed

    Morris, Amanda J; Meyer, Gerald J; Fujita, Etsuko

    2009-12-21

    The scientific community now agrees that the rise in atmospheric CO(2), the most abundant green house gas, comes from anthropogenic sources such as the burning of fossil fuels. This atmospheric rise in CO(2) results in global climate change. Therefore methods for photochemically transforming CO(2) into a source of fuel could offer an attractive way to decrease atmospheric concentrations. One way to accomplish this conversion is through the light-driven reduction of carbon dioxide to methane (CH(4(g))) or methanol (CH(3)OH((l))) with electrons and protons derived from water. Existing infrastructure already supports the delivery of natural gas and liquid fuels, which makes these possible CO(2) reduction products particularly appealing. This Account focuses on molecular approaches to photochemical CO(2) reduction in homogeneous solution. The reduction of CO(2) by one electron to form CO(2)(*-) is highly unfavorable, having a formal reduction potential of -2.14 V vs SCE. Rapid reduction requires an overpotential of up to 0.6 V, due at least in part to the kinetic restrictions imposed by the structural difference between linear CO(2) and bent CO(2)(*-). An alternative and more favorable pathway is to reduce CO(2) though proton-assisted multiple-electron transfer. The development of catalysts, redox mediators, or both that efficiently drive these reactions remains an important and active area of research. We divide these reactions into two class types. In Type I photocatalysis, a molecular light absorber and a transition metal catalyst work in concert. We also consider a special case of Type 1 photocatalysis, where a saturated hydrocarbon links the catalyst and the light absorber in a supramolecular compound. In Type II photocatalysis, the light absorber and the catalyst are the same molecule. In these reactions, transition-metal coordination compounds often serve as catalysts because they can absorb a significant portion of the solar spectrum and can promote activation

  2. Effect of acclimatization on hexavalent chromium reduction in a biocathode microbial fuel cell.

    PubMed

    Wu, Xiayuan; Zhu, Xujun; Song, Tianshun; Zhang, Lixiong; Jia, Honghua; Wei, Ping

    2015-03-01

    A simple acclimatization method for the reduction of hexavalent chromium (Cr(VI)) at a biocathode by first enriching an exoelectrogenic biofilm on a microbial fuel cell (MFC) anode, followed by direct inversion of the anode to function as the biocathode, has been established. This novel method significantly enhanced the Cr(VI) reduction efficiency of the MFC, which was mainly attributed to the higher microbial density and less resistive Cr(III) precipitates on the cathode when compared with a common biocathode acclimatization method (control). The biocathode acclimatization period was shortened by 19days and the Cr(VI) reduction rate was increased by a factor of 2.9. Microbial community analyses of biocathodes acclimatized using different methods further verified the feasibility of this electrode inversion method, indicating similar dominant bacteria species in biofilms, which mainly consist of Gamma-proteobacteria and Bacteria.

  3. Analysis of oxygen reduction and microbial community of air-diffusion biocathode in microbial fuel cells.

    PubMed

    Wang, Zejie; Zheng, Yue; Xiao, Yong; Wu, Song; Wu, Yicheng; Yang, Zhaohui; Zhao, Feng

    2013-09-01

    Microbes play irreplaceable role in oxygen reduction reaction of biocathode in microbial fuel cells (MFCs). In this study, air-diffusion biocathode MFCs were set up for accelerating oxygen reduction and microbial community analysis. Linear sweep voltammetry and Tafel curve confirmed the function of cathode biofilm to catalyze oxygen reduction. Microbial community analysis revealed higher diversity and richness of community in plankton than in biofilm. Proteobacteria was the shared predominant phylum in both biofilm and plankton (39.9% and 49.8%) followed by Planctomycetes (29.9%) and Bacteroidetes (13.3%) in biofilm, while Bacteroidetes (28.2%) in plankton. Minor fraction (534, 16.4%) of the total operational taxonomic units (3252) was overlapped demonstrating the disproportionation of bacterial distribution in biofilm and plankton. Pseudomonadales, Rhizobiales and Sphingobacteriales were exoelectrogenic orders in the present study. The research obtained deep insight of microbial community and provided more comprehensive information on uncultured rare bacteria.

  4. Dry additives-reduction catalysts for flue waste gases originating from the combustion of solid fuels

    SciTech Connect

    1995-12-31

    Hard coal is the basic energy generating raw material in Poland. In 1990, 60% of electricity and thermal energy was totally obtained from it. It means that 100 million tons of coal were burned. The second position is held by lignite - generating 38% of electricity and heat (67.3 million tons). It is to be underlined that coal combustion is particularly noxious to the environment. The coal composition appreciably influences the volume of pollution emitted in the air. The contents of incombustible mineral parts - ashes - oscillates from 2 to 30%; only 0.02 comes from plants that had once originated coal and cannot be separated in any way. All the rest, viz. the so-called external mineral substance enters the fuel while being won. The most indesirable hard coal ingredient is sulfur whose level depends on coal sorts and its origin. The worse the fuel quality, the more sulfur it contains. In the utilization process of this fuel, its combustible part is burnt: therefore, sulfur dioxide is produced. At the present coal consumption, the SO{sub 2} emission reaches the level of 3.2 million per year. The intensifies the pressure on working out new coal utilization technologies, improving old and developing of pollution limiting methods. Research is also directed towards such an adaptation of technologies in order that individual users may also make use thereof (household furnaces) as their share in the pollution emission is considerable.

  5. 75 FR 63404 - Fossil Fuel-Generated Energy Consumption Reduction for New Federal Buildings and Major...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-15

    ...The U.S. Department of Energy (DOE) is publishing this notice of proposed rulemaking to implement provisions of the Energy Conservation and Production Act, as amended by the Energy Independence and Security Act of 2007 that require DOE to establish revised performance standards for the construction of all new Federal buildings, including commercial buildings, multi-family high-rise residential......

  6. Copper-substituted perovskite compositions for solid oxide fuel cell cathodes and oxygen reduction electrodes in other electrochemical devices

    DOEpatents

    Rieke, Peter C.; Coffey, Gregory W.; Pederson, Larry R.; Marina, Olga A.; Hardy, John S.; Singh, Prabhaker; Thomsen, Edwin C.

    2010-07-20

    The present invention provides novel compositions that find advantageous use in making electrodes for electrochemical cells. Also provided are electrochemical devices that include active oxygen reduction electrodes, such as solid oxide fuel cells, sensors, pumps and the like. The compositions comprises a copper-substituted ferrite perovskite material. The invention also provides novel methods for making and using the electrode compositions and solid oxide fuel cells and solid oxide fuel cell assemblies having cathodes comprising the compositions.

  7. [Synergistic emission reduction of chief air pollutants and greenhouse gases-based on scenario simulations of energy consumptions in Beijing].

    PubMed

    Xie, Yuan-bo; Li, Wei

    2013-05-01

    It is one of the common targets and important tasks for energy management and environmental control of Beijing to improve urban air quality while reducing the emissions of greenhouse gases (GHG). Here, based on the interim and long term developmental planning and energy structure of the city, three energy consumption scenarios in low, moderate and high restrictions were designed by taking the potential energy saving policies and environmental targets into account. The long-range energy alternatives planning (LEAP) model was employed to predict and evaluate reduction effects of the chief air pollutants and GHG during 2010 to 2020 under the three given scenarios. The results showed that if urban energy consumption system was optimized or adjusted by exercising energy saving and emission reduction and pollution control measures, the predicted energy uses will be reduced by 10 to 30 million tons of coal equivalents by 2020. Under the two energy scenarios with moderate and high restrictions, the anticipated emissions of SO2, NOx, PM10, PM2.5, VOC and GHG will be respectively reduced to 71 to 100.2, 159.2 to 218.7, 89.8 to 133.8, 51.4 to 96.0, 56.4 to 74.8 and 148 200 to 164 700 thousand tons. Correspondingly, when compared with the low-restriction scenario, the reducing rate will be 53% to 67% , 50% to 64% , 33% to 55% , 25% to 60% , 41% to 55% and 26% to 34% respectively. Furthermore, based on a study of synergistic emission reduction of the air pollutants and GHG, it was proposed that the adjustment and control of energy consumptions shall be intensively developed in the three sectors of industry, transportation and services. In this way the synergistic reduction of the emissions of chief air pollutants and GHG will be achieved; meanwhile the pressures of energy demands may be deliberately relieved.

  8. Thermodynamic and achievable efficiencies for solar-driven electrochemical reduction of carbon dioxide to transportation fuels

    NASA Astrophysics Data System (ADS)

    Singh, Meenesh R.; Clark, Ezra L.; Bell, Alexis T.

    2015-11-01

    Thermodynamic, achievable, and realistic efficiency limits of solar-driven electrochemical conversion of water and carbon dioxide to fuels are investigated as functions of light-absorber composition and configuration, and catalyst composition. The maximum thermodynamic efficiency at 1-sun illumination for adiabatic electrochemical synthesis of various solar fuels is in the range of 32-42%. Single-, double-, and triple-junction light absorbers are found to be optimal for electrochemical load ranges of 0-0.9 V, 0.9-1.95 V, and 1.95-3.5 V, respectively. Achievable solar-to-fuel (STF) efficiencies are determined using ideal double- and triple-junction light absorbers and the electrochemical load curves for CO2 reduction on silver and copper cathodes, and water oxidation kinetics over iridium oxide. The maximum achievable STF efficiencies for synthesis gas (H2 and CO) and Hythane (H2 and CH4) are 18.4% and 20.3%, respectively. Whereas the realistic STF efficiency of photoelectrochemical cells (PECs) can be as low as 0.8%, tandem PECs and photovoltaic (PV)-electrolyzers can operate at 7.2% under identical operating conditions. We show that the composition and energy content of solar fuels can also be adjusted by tuning the band-gaps of triple-junction light absorbers and/or the ratio of catalyst-to-PV area, and that the synthesis of liquid products and C2H4 have high profitability indices.

  9. Emission reduction from a diesel engine fueled by pine oil biofuel using SCR and catalytic converter

    NASA Astrophysics Data System (ADS)

    Vallinayagam, R.; Vedharaj, S.; Yang, W. M.; Saravanan, C. G.; Lee, P. S.; Chua, K. J. E.; Chou, S. K.

    2013-12-01

    In this work, we propose pine oil biofuel, a renewable fuel obtained from the resins of pine tree, as a potential substitute fuel for a diesel engine. Pine oil is endowed with enhanced physical and thermal properties such as lower viscosity and boiling point, which enhances the atomization and fuel/air mixing process. However, the lower cetane number of the pine oil hinders its direct use in diesel engine and hence, it is blended in suitable proportions with diesel so that the ignition assistance could be provided by higher cetane diesel. Since lower cetane fuels are prone to more NOX formation, SCR (selective catalyst reduction), using urea as reducing agent, along with a CC (catalytic converter) has been implemented in the exhaust pipe. From the experimental study, the BTE (brake thermal efficiency) was observed to be increased as the composition of pine oil increases in the blend, with B50 (50% pine oil and 50% diesel) showing 7.5% increase over diesel at full load condition. The major emissions such as smoke, CO, HC and NOX were reduced by 70.1%, 67.5%, 58.6% and 15.2%, respectively, than diesel. Further, the average emissions of B50 with SCR and CC assembly were observed to be reduced, signifying the positive impact of pine oil biofuel on atmospheric environment. In the combustion characteristics front, peak heat release rate and maximum in-cylinder pressure were observed to be higher with longer ignition delay.

  10. Thermodynamic and achievable efficiencies for solar-driven electrochemical reduction of carbon dioxide to transportation fuels.

    PubMed

    Singh, Meenesh R; Clark, Ezra L; Bell, Alexis T

    2015-11-10

    Thermodynamic, achievable, and realistic efficiency limits of solar-driven electrochemical conversion of water and carbon dioxide to fuels are investigated as functions of light-absorber composition and configuration, and catalyst composition. The maximum thermodynamic efficiency at 1-sun illumination for adiabatic electrochemical synthesis of various solar fuels is in the range of 32-42%. Single-, double-, and triple-junction light absorbers are found to be optimal for electrochemical load ranges of 0-0.9 V, 0.9-1.95 V, and 1.95-3.5 V, respectively. Achievable solar-to-fuel (STF) efficiencies are determined using ideal double- and triple-junction light absorbers and the electrochemical load curves for CO2 reduction on silver and copper cathodes, and water oxidation kinetics over iridium oxide. The maximum achievable STF efficiencies for synthesis gas (H2 and CO) and Hythane (H2 and CH4) are 18.4% and 20.3%, respectively. Whereas the realistic STF efficiency of photoelectrochemical cells (PECs) can be as low as 0.8%, tandem PECs and photovoltaic (PV)-electrolyzers can operate at 7.2% under identical operating conditions. We show that the composition and energy content of solar fuels can also be adjusted by tuning the band-gaps of triple-junction light absorbers and/or the ratio of catalyst-to-PV area, and that the synthesis of liquid products and C2H4 have high profitability indices.

  11. Thermodynamic and achievable efficiencies for solar-driven electrochemical reduction of carbon dioxide to transportation fuels

    PubMed Central

    Singh, Meenesh R.; Clark, Ezra L.; Bell, Alexis T.

    2015-01-01

    Thermodynamic, achievable, and realistic efficiency limits of solar-driven electrochemical conversion of water and carbon dioxide to fuels are investigated as functions of light-absorber composition and configuration, and catalyst composition. The maximum thermodynamic efficiency at 1-sun illumination for adiabatic electrochemical synthesis of various solar fuels is in the range of 32–42%. Single-, double-, and triple-junction light absorbers are found to be optimal for electrochemical load ranges of 0–0.9 V, 0.9–1.95 V, and 1.95–3.5 V, respectively. Achievable solar-to-fuel (STF) efficiencies are determined using ideal double- and triple-junction light absorbers and the electrochemical load curves for CO2 reduction on silver and copper cathodes, and water oxidation kinetics over iridium oxide. The maximum achievable STF efficiencies for synthesis gas (H2 and CO) and Hythane (H2 and CH4) are 18.4% and 20.3%, respectively. Whereas the realistic STF efficiency of photoelectrochemical cells (PECs) can be as low as 0.8%, tandem PECs and photovoltaic (PV)-electrolyzers can operate at 7.2% under identical operating conditions. We show that the composition and energy content of solar fuels can also be adjusted by tuning the band-gaps of triple-junction light absorbers and/or the ratio of catalyst-to-PV area, and that the synthesis of liquid products and C2H4 have high profitability indices. PMID:26504215

  12. Roadmap for Development of Natural Gas Vehicle Fueling Infrastructructure and Analysis of Vehicular Natural Gas Consumption by Niche Sector

    SciTech Connect

    Stephen C. Yborra

    2007-04-30

    Vehicular natural gas consumption is on the rise, totaling nearly 200 million GGEs in 2005, despite declines in total NGV inventory in recent years. This may be attributed to greater deployment of higher fuel use medium- and heavy-duty NGVs as compared to the low fuel use of the natural gas-powered LDVs that exited the market through attrition, many of which were bi-fuel. Natural gas station counts are down to about 1100 from their peak of about 1300. Many of the stations that closed were under-utilized or not used at all while most new stations were developed with greater attention to critical business fundamentals such as site selection, projected customer counts, peak and off-peak fueling capacity needs and total station throughput. Essentially, the nation's NGV fueling infrastructure has been--and will continue--going through a 'market correction'. While current economic fundamentals have shortened payback and improved life-cycle savings for investment in NGVs and fueling infrastructure, a combination of grants and other financial incentives will still be needed to overcome general fleet market inertia to maintain status quo. Also imperative to the market's adoption of NGVs and other alternative fueled vehicle and fueling technologies is a clear statement of long-term federal government commitment to diversifying our nation's transportation fuel use portfolio and, more specifically, the role of natural gas in that policy. Based on the current NGV market there, and the continued promulgation of clean air and transportation policies, the Western Region is--and will continue to be--the dominant region for vehicular natural gas use and growth. In other regions, especially the Northeast, Mid-Atlantic states and Texas, increased awareness and attention to air quality and energy security concerns by the public and - more important, elected officials--are spurring policies and programs that facilitate deployment of NGVs and fueling infrastructure. Because of their high

  13. Database of in-situ field measurements for estimates of fuel consumption and fire emissions in Siberia

    NASA Astrophysics Data System (ADS)

    Kukavskaya, Elena; Conard, Susan; Buryak, Ludmila; Ivanova, Galina; Soja, Amber; Kalenskaya, Olga; Zhila, Sergey; Zarubin, Denis; Groisman, Pavel

    2016-04-01

    Wildfires show great variability in the amount of fuel consumed and carbon emitted to the atmosphere. Various types of models are used to calculate global or large scale regional fire emissions. However, in the databases used to estimate fuel consumptions, data for Russia are typically under-represented. Meanwhile, the differences in vegetation and fire regimes in the boreal forests in North America and Eurasia argue strongly for the need of regional ecosystem-specific data. For about 15 years we have been collecting field data on fuel loads and consumption in different ecosystem types of Siberia. We conducted a series of experimental burnings of varying fireline intensity in Scots pine and larch forests of central Siberia to obtain quantitative and qualitative data on fire behavior and carbon emissions. In addition, we examined wildfire behavior and effects in different vegetation types including Scots pine, Siberian pine, fir, birch, poplar, and larch-dominated forests; evergreen coniferous shrubs; grasslands, and peats. We investigated various ecosystem zones of Siberia (central and southern taiga, forest-steppe, steppe, mountains) in the different subjects of the Russian Federation (Krasnoyarsk Kray, Republic of Khakassia, Republic of Buryatia, Tuva Republic, Zabaikalsky Kray). To evaluate the impact of forest practices on fire emissions, burned and unburned logged sites and forest plantations were examined. We found large variations of fuel consumption and fire emission rates among different vegetation types depending on growing conditions, fire behavior characteristics and anthropogenic factors. Changes in the climate system result in an increase in fire frequency, area burned, the number of extreme fires, fire season length, fire season severity, and the number of ignitions from lightning. This leads to an increase of fire-related emissions of carbon to the atmosphere. The field measurement database we compiled is required for improving accuracy of existing

  14. Enhanced oxygen reduction activity and solid oxide fuel cell performance with a nanoparticles-loaded cathode.

    PubMed

    Zhang, Xiaomin; Liu, Li; Zhao, Zhe; Tu, Baofeng; Ou, Dingrong; Cui, Daan; Wei, Xuming; Chen, Xiaobo; Cheng, Mojie

    2015-03-11

    Reluctant oxygen-reduction-reaction (ORR) activity has been a long-standing challenge limiting cell performance for solid oxide fuel cells (SOFCs) in both centralized and distributed power applications. We report here that this challenge has been tackled with coloading of (La,Sr)MnO3 (LSM) and Y2O3 stabilized zirconia (YSZ) nanoparticles within a porous YSZ framework. This design dramatically improves ORR activity, enhances fuel cell output (200-300% power improvement), and enables superior stability (no observed degradation within 500 h of operation) from 600 to 800 °C. The improved performance is attributed to the intimate contacts between nanoparticulate YSZ and LSM particles in the three-phase boundaries in the cathode.

  15. Investigation of Fire-Vulnerability-Reduction Effectiveness of Fire-Resistant Diesel Fuel in Armored Vehicular Fuel Tanks

    DTIC Science & Technology

    1980-09-30

    Page 1 Six Generations of Fire-Resistant Fuel Formulations Investigated by the U.S. Army.................................. 2 Referee-Grade-Base-Fuel...A. Background Information Six generations of fire-resistant fuel have ,een investigated by the Army, and these are summarized in Table 1. (2,3) The...8217. . ’ , I TABLE I. SIX GENERATIONS OF FIRE-RESISTANT FUEL FORMULATIONS INVESTIGATED BY THE U.S. ARMY 1. Fuel gellation just prior to hazard

  16. Biological chromium(VI) reduction in the cathode of a microbial fuel cell.

    PubMed

    Tandukar, Madan; Huber, Samuel J; Onodera, Takashi; Pavlostathis, Spyros G

    2009-11-01

    The biocathode of a microbial fuel cell (MFC) offers a promising potential for the reductive treatment of oxidized pollutants. In this study, we demonstrated biological Cr(VI) reduction in the cathode of a MFC and identified putative Cr(VI) reducing microorganisms. The MFC was continuously monitored for Cr(VI) reduction and power generation. Acetate was provided to the anode compartment as substrate and bicarbonate was added to the cathode compartment as the sole external carbon source. The contribution of biomass decay and abiotic processes on Cr(VI) reduction was minimal, confirming that most of the Cr(VI) reduction was assisted by microbial activity in the cathode, which utilizes electrons and protons generated from the oxidation of acetate in the anode compartment. Relatively fast Cr(VI) reduction was observed at initial Cr(VI) concentrations below 80 mg/L. However, at 80 mg Cr(VI)/L, Cr(VI) reduction was extremely slow. A maximum Cr(VI) reduction rate of 0.46 mg Cr(VI)/g VSS.h was achieved, which resulted in a current and power density of 123.4 mA/m(2) and 55.5 mW/m(2), respectively. The reduced chromium was nondetectable in the supernatant of the catholyte which indicated complete removal of chromium as Cr(OH)(3) precipitate. Analysis of the 16S rRNA gene based clone library revealed that the cathode biomass was largely dominated by phylotypes closely related to Trichococcus pasteurii and Pseudomonas aeruginosa, the putative Cr(VI) reducers.

  17. Modeling of rotary cement kilns: Applications to reduction in energy consumption

    SciTech Connect

    Mujumdar, K.S.; Arora, A.; Ranade, V.V.

    2006-03-29

    We discuss and evaluate possible ways of reducing energy consumption in rotary cement kilns. A comprehensive one-dimensional model was developed to simulate complex processes occurring in rotary cement kilns. A modeling strategy comprising three submodels, viz. a model for simulating the variation of bed height in the kiln, a model for simulating reactions and heat transfer in the bed region, and a model for simulating coal combustion and heat transfer in the freeboard region, was developed. Melting and formation of coating within the kiln were accounted for. Combustion of coal in the freeboard region was modeled by accounting for devolatilization, finite-rate gas-phase combustion, and char reaction. The simulated results were validated with the available data from three industrial kilns. The model was then used to understand the influence of various design and operating parameters on kiln performance. Several ways of reducing energy consumption in kilns were then computationally investigated. The model was also used to propose and to evaluate a practical solution of using a secondary shell to reduce energy consumption in rotary cement kilns. Simulation results indicate that varying kiln operating variables, viz. solid flow rate or RPM, can result only in small changes in kiln energetics. Use of a secondary shell over the kiln and energy recovery by passing air through the annular gap between the two appears to be a promising way to achieve significant energy savings. The developed model and the presented results will be useful for enhancing the performance of rotary cement kilns.

  18. Integration of a Cryocooler into a SQUID Magnetospinography System for Reduction of Liquid Helium Consumption

    NASA Astrophysics Data System (ADS)

    Adachi, Yoshiaki; Oyama, Daisuke; Kawai, Jun; Ogata, Hisanao; Uehara, Gen

    We are currently developing a magnetospinography (MSG) system for noninvasive functional imaging of the spinal cord. The MSG system is a device for observing a weak magnetic field accompanied by the neural activity of the spinal cord by using an array of low-temperature superconducting quantum interference device (SQUID) magnetic flux sensors. As in the case of other biomagnetic measurement systems such as the magnetoencephalography (MEG) system, the running cost of the MSG system is mainly dependent on the liquid helium (LHe) consumption of a dewar vessel. We integrated a cryocooler into the MSG system to reduce LHe consumption. A pulse tube cryocooler with a cooling power of 0.5Wat 4 K was placed adjacent to a magnetically shielded room and was directly connected to the thermal radiation shield of the dewar by an electrically isolated transfer tube. Cold helium gas was circulated between the cryocooler and the radiation shield. Consequently, the temperature of the radiation shield decreased below 40 K. Previous studies have shown that the detection of a weak magnetic field is often hindered by severe low-frequency band noise from the cryocooler. However, the band of the MSG signals is much higher than that of the cryocooler noise. Therefore, the noise can be filtered out and has a less detrimental effect on MSG measurement than on other biomagnetic field measurements such as MEG measurement. As a result, LHe consumption was reduced by 46%, with no increase in the noise floor.

  19. Does increased cigarette consumption nullify any reduction in lung cancer risk associated with low-tar filter cigarettes?

    PubMed

    Lee, Peter N; Sanders, Edward

    2004-12-01

    Epidemiological data suggest that smoking filter and lower tar cigarettes is associated with less lung cancer risk than is smoking plain and higher tar cigarettes. A recent National Cancer Institute monograph claimed these apparent benefits of lower delivery products may be illusory if relative risks are adjusted for daily consumption, and switching leads to "compensation" for reduced nicotine intake by increasing numbers of cigarettes smoked. To investigate this, we compared relative risks unadjusted and adjusted for daily cigarette consumption. Overall estimates of the filter/plain relative risk, using random-effects meta-analysis, were 0.61 (95%confidence interval 0.54 to 0.70) for unadjusted data and 0.66 (0.58 to 0.76) for adjusted data. The lower tar/higher tar relative risk was estimated as 0.60 (0.45 to 0.81) for unadjusted data and 0.73 (0.64 to 0.83) for adjusted data. The risk reductions were clearly seen regardless of gender, study location, period, or design, and when only studies providing both unadjusted and adjusted estimates were considered. Whether or not relative risk estimates are adjusted for cigarette consumption is not crucial to the conclusion of a clear advantage to filter cigarettes and tar reduction. Data on "compensation" for amount smoked were reviewed and any increase following switching to reduced-tar-yield cigarettes was shown to be quite small. Other biases in the epidemiology are also discussed, and we conclude that the apparent advantage to reduced-tar-delivery products is real and likely to be a marked underestimate of the reduction in lung cancer risk from lifetime smoking of low-tar cigarettes.

  20. Impact of fuel quality regulation and speed reductions on shipping emissions: implications for climate and air quality.

    PubMed

    Lack, Daniel A; Cappa, Christopher D; Langridge, Justin; Bahreini, Roya; Buffaloe, Gina; Brock, Charles; Cerully, Kate; Coffman, Derek; Hayden, Katherine; Holloway, John; Lerner, Brian; Massoli, Paola; Li, Shao-Meng; McLaren, Robert; Middlebrook, Ann M; Moore, Richard; Nenes, Athanasios; Nuaaman, Ibraheem; Onasch, Timothy B; Peischl, Jeff; Perring, Anne; Quinn, Patricia K; Ryerson, Tom; Schwartz, Joshua P; Spackman, Ryan; Wofsy, Steven C; Worsnop, Doug; Xiang, Bin; Williams, Eric

    2011-10-15

    Atmospheric emissions of gas and particulate matter from a large ocean-going container vessel were sampled as it slowed and switched from high-sulfur to low-sulfur fuel as it transited into regulated coastal waters of California. Reduction in emission factors (EFs) of sulfur dioxide (SO₂), particulate matter, particulate sulfate and cloud condensation nuclei were substantial (≥ 90%). EFs for particulate organic matter decreased by 70%. Black carbon (BC) EFs were reduced by 41%. When the measured emission reductions, brought about by compliance with the California fuel quality regulation and participation in the vessel speed reduction (VSR) program, are placed in a broader context, warming from reductions in the indirect effect of SO₄ would dominate any radiative changes due to the emissions changes. Within regulated waters absolute emission reductions exceed 88% for almost all measured gas and particle phase species. The analysis presented provides direct estimations of the emissions reductions that can be realized by California fuel quality regulation and VSR program, in addition to providing new information relevant to potential health and climate impact of reduced fuel sulfur content, fuel quality and vessel speed reductions.

  1. Analysis of Technology Options to Reduce the Fuel Consumption of Idling Trucks

    SciTech Connect

    F. Stodolsky; L. Gaines; A. Vyas

    2000-06-01

    Long-haul trucks idling overnight consume more than 838 million gallons (20 million barrels) of fuel annually. Idling also emits pollutants. Truck drivers idle their engines primarily to (1) heat or cool the cab and/or sleeper, (2) keep the fuel warm in winter, and (3) keep the engine warm in the winter so that the engine is easier to start. Alternatives to overnight idling could save much of this fuel, reduce emissions, and cut operating costs. Several fuel-efficient alternatives to idling are available to provide heating and cooling: (1) direct-fired heater for cab/sleeper heating, with or without storage cooling; (2) auxiliary power units; and (3) truck stop electrification. Many of these technologies have drawbacks that limit market acceptance. Options that supply electricity are economically viable for trucks that are idled for 1,000-3,000 or more hours a year, while heater units could be used across the board. Payback times for fleets, which would receive quantity discounts on the prices, would be somewhat shorter.

  2. Analysis of technology options to reduce the fuel consumption of idling trucks

    SciTech Connect

    Stodolsky, F.; Gaines, L.; Vyas, A.

    2000-08-22

    Long-haul trucks idling overnight consume more than 838 million gallons (20 million barrels) of fuel annually. Idling also emits pollutants. Truck drivers idle their engines primarily to (1) heat or cool the cab and/or sleeper, (2) keep the fuel warm in winter, and (3) keep the engine warm in the winter so that the engine is easier to start. Alternatives to overnight idling could save much of this fuel, reduce emissions, and cut operating costs. Several fuel-efficient alternatives to idling are available to provide heating and cooling: (1) direct-fired heater for cab/sleeper heating, with or without storage cooling; (2) auxiliary power units; and (3) truck stop electrification. Many of these technologies have drawbacks that limit market acceptance. Options that supply electricity are economically viable for trucks that are idled for 1,000--3,000 or more hours a year, while heater units could be used across the board. Payback times for fleets, which would receive quantity discounts on the prices, would be somewhat shorter.

  3. Tracked-vehicle fuel consumption. Final report on international test operations procedure

    SciTech Connect

    Not Available

    1987-05-18

    This document describes procedures for evaluating the fuel efficiency of tracked vehicles under controlled operating conditions. The test data are a major source for comparisons with similar vehicles, and can also serve to predict the operational range of these vehicles during tactical missions.

  4. Drive Cycle Analysis, Measurement of Emissions and Fuel Consumption of a PHEV School Bus: Preprint

    SciTech Connect

    Barnitt, R.; Gonder, J.

    2011-04-01

    The National Renewable Energy Laboratory (NREL) collected and analyzed real-world school bus drive cycle data and selected similar standard drive cycles for testing on a chassis dynamometer. NREL tested a first-generation plug-in hybrid electric vehicle (PHEV) school bus equipped with a 6.4L engine and an Enova PHEV drive system comprising a 25-kW/80 kW (continuous/peak) motor and a 370-volt lithium ion battery pack. A Bluebird 7.2L conventional school bus was also tested. Both vehicles were tested over three different drive cycles to capture a range of driving activity. PHEV fuel savings in charge-depleting (CD) mode ranged from slightly more than 30% to a little over 50%. However, the larger fuel savings lasted over a shorter driving distance, as the fully charged PHEV school bus would initially operate in CD mode for some distance, then in a transitional mode, and finally in a charge-sustaining (CS) mode for continued driving. The test results indicate that a PHEV school bus can achieve significant fuel savings during CD operation relative to a conventional bus. In CS mode, the tested bus showed small fuel savings and somewhat higher nitrogen oxide (NOx) emissions than the baseline comparison bus.

  5. Effects of Village Power Quality on Fuel Consumption and Operating Expenses

    SciTech Connect

    Richard Wies; Ron Johnson

    2008-12-31

    Alaska's rural village electric utilities are isolated from the Alaska railbelt electrical grid intertie and from each other. Different strategies have been developed for providing power to meet demand in each of these rural communities. Many of these communities rely on diesel electric generators (DEGs) for power. Some villages have also installed renewable power sources and automated generation systems for controlling the DEGs and other sources of power. For example, Lime Village has installed a diesel battery photovoltaic hybrid system, Kotzebue and Wales have wind-diesel hybrid systems, and McGrath has installed a highly automated system for controlling diesel generators. Poor power quality and diesel engine efficiency in village power systems increases the cost of meeting the load. Power quality problems may consist of poor power factor (PF) or waveform disturbances, while diesel engine efficiency depends primarily on loading, the fuel type, the engine temperature, and the use of waste heat for nearby buildings. These costs take the form of increased fuel use, increased generator maintenance, and decreased reliability. With the cost of bulk fuel in some villages approaching $1.32/liter ($5.00/gallon) a modest 5% decrease in fuel use can result in substantial savings with short payback periods depending on the village's load profile and the cost of corrective measures. This project over its five year history has investigated approaches to improving power quality and implementing fuel savings measures through the use of performance assessment software tools developed in MATLAB{reg_sign} Simulink{reg_sign} and the implementation of remote monitoring, automated generation control, and the addition of renewable energy sources in select villages. The results have shown how many of these communities would benefit from the use of automated generation control by implementing a simple economic dispatch scheme and the integration of renewable energy sources such as wind

  6. The Production, Value, and Reduction Responsibility of Carbon Emissions through Electricity Consumption of Manufacturing Industries in South Korea and Thailand

    NASA Astrophysics Data System (ADS)

    Kitikun, Medhawin

    This dissertation provides a new method of measuring efforts by manufacturing industries to reduce their emissions by curtailing electricity consumption. Employing comprehensive firm-level data from the National Manufacture Annual Surveys of South Korea and Thailand, I construct the measure from estimates of revenue functions by industry. The data consists of firms from more than 20 industries in each year from 1982 to 2005 for Korea and from 2001 to 2008 for Thailand. With a total of more than two million observations, I estimate revenue functions for each industry and year. Here, I use three inputs: number of employees(L), fixed asset stock(K), and electricity consumption(E) and two types of functional forms to represent each industry's revenue function. Second, under market competitive condition, I find that profit maximizing firms deviated their level of electricity usage in production from the profit-maximizing level during the time period for both countries, and I develop a theoretical framework to explain this behavior. Then, I tested the theory using my empirical models. Results support the notion of a hidden environmental value expressed by firms in the form of voluntary deviations from profit-maximizing levels of input demand. The measure used is the gap between the marginal revenue product of electricity and its price. This gap should increase with income, consistent with the Environmental Kuznets Curve literature. My current model provides considerable support for this proposition. Estimates indicate, in most industries, a negative relationship between per-capita income and emissions. In the final section of the dissertation, I consider the equitable distribution of emissions reduction burden under an international agreement such as the reduction effort, Kyoto Protocol. Both developed and developing countries have to cut their emissions to a specific reduction percentage target. Domestically, I present two extreme scenarios. In the first scenario

  7. The influence of number and values of ratios in stepped gearbox on mileage fuel consumption in NEDC test and real traffic

    NASA Astrophysics Data System (ADS)

    Bera, P.; Wędrychowicz, D.

    2016-09-01

    The article presents the influence of number and values of ratios in stepped gearbox on mileage fuel consumption in a city passenger car. The simulations were conducted for a particular vehicle characterized by its mass, body shape, size of tires and equipped with a combustion engine for which the characteristic of fuel consumption in dynamic states was already designated on the basis of engine test bed measurements. Several designs of transmission with different number of gears and their ratios were used in virtual simulations of road traffic, particularly in the NEDC test, to calculate mileage fuel consumption. This allows for a quantitative assessment of transmission parameters in terms of both vehicle economy and dynamic properties. Also, based on obtained results, recommendations for the selection of a particular vehicle for a specific type of exploitation have been formulated.

  8. Simultaneous microbial and electrochemical reductions of vanadium (V) with bioelectricity generation in microbial fuel cells.

    PubMed

    Zhang, Baogang; Tian, Caixing; Liu, Ying; Hao, Liting; Liu, Ye; Feng, Chuanping; Liu, Yuqian; Wang, Zhongli

    2015-03-01

    Simultaneous microbial and electrochemical reductions of vanadium (V) with bioelectricity generation were realized in microbial fuel cells (MFCs). With initial V(V) concentrations of 75 mg/l and 150 mg/l in anolyte and catholyte, respectively, stable power output of 419±11 mW/m(2) was achieved. After 12h operation, V(V) concentration in the catholyte decreased to the value similar to that of the initial one in the anolyte, meanwhile it was nearly reduced completely in the anolyte. V(IV) was the main reduction product, which subsequently precipitated, acquiring total vanadium removal efficiencies of 76.8±2.9%. Microbial community analysis revealed the emergence of the new species of Deltaproteobacteria and Bacteroidetes as well as the enhanced Spirochaetes mainly functioned in the anode. This study opens new pathways to successful remediation of vanadium contamination.

  9. The impact of anti-congestion policies on fuel consumption, carbon dioxide emissions and urban sprawl: Application of RELU-TRAN2, a CGE model

    NASA Astrophysics Data System (ADS)

    Hiramatsu, Tomoru

    RELU-TRAN (Regional Economy and Land Use and Transportation) is a numerically solvable general equilibrium model (Anas and Liu, 2007), which treats in a unified manner the regional economy, urban land use and urban personal transportation sectors. In this dissertation, the model is extended by adding the consumer-workers' choice of private vehicle type according to the vehicle's fuel economy, by treating congestion on local roads as well as on major roads and by introducing car fuel consumption as a function of congested vehicle speed. By making the extensions, the model becomes more suitable to analyze the fuel consumption and CO2 emission consequences of urban development. The model is calibrated and simulated for the Chicago metropolitan area. By adjusting the model to the longer time span gradually, the shortand long-run price elasticities of fuel consumption are examined. As the time span becomes longer, fuel consumption becomes more elastic with respect to gasoline price, but when technological improvements in car fuel economy over comparable time spans are introduced exogenously, then the elasticity of fuel with respect to gasoline price becomes similar to that estimated in the econometric literature. Comparative statics exercises show that, if travel by auto becomes relatively more attractive in terms of travel time or travel cost than travel by public transit, then the Chicago MSA becomes more sprawled in total developed land area, whereas if public transit travel becomes relatively more attractive, then the Chicago MSA becomes more centralized. To mitigate fuel consumption and CO2 emissions, relative effectiveness of quasi-Pigouvian congestion tolls, a fuel tax on gasoline, a cordon toll around the downtown and a downtown parking fee are tested. All of these policies successfully reduce the aggregate fuel consumption and CO2. The urban growth boundary (UGB) is an alternative policy tested by the model. The UGB directly makes the Chicago MSA more

  10. Analysis of Fuel Cell Markets in Japan and the US: Experience Curve Development and Cost Reduction Disaggregation

    SciTech Connect

    Wei, Max; Smith, Sarah J.; Sohn, Michael D.

    2016-07-15

    Fuel cells are both a longstanding and emerging technology for stationary and transportation applications, and their future use will likely be critical for the deep decarbonization of global energy systems. As we look into future applications, a key challenge for policy-makers and technology market forecasters who seek to track and/or accelerate their market adoption is the ability to forecast market costs of the fuel cells as technology innovations are incorporated into market products. Specifically, there is a need to estimate technology learning rates, which are rates of cost reduction versus production volume. Unfortunately, no literature exists for forecasting future learning rates for fuel cells. In this paper, we look retrospectively to estimate learning rates for two fuel cell deployment programs: (1) the micro-combined heat and power (CHP) program in Japan, and (2) the Self-Generation Incentive Program (SGIP) in California. These two examples have a relatively broad set of historical market data and thus provide an informative and international comparison of distinct fuel cell technologies and government deployment programs. We develop a generalized procedure for disaggregating experience-curve cost-reductions in order to disaggregate the Japanese fuel cell micro-CHP market into its constituent components, and we derive and present a range of learning rates that may explain observed market trends. Finally, we explore the differences in the technology development ecosystem and market conditions that may have contributed to the observed differences in cost reduction and draw policy observations for the market adoption of future fuel cell technologies. The scientific and policy contributions of this paper are the first comparative experience curve analysis of past fuel cell technologies in two distinct markets, and the first quantitative comparison of a detailed cost model of fuel cell systems with actual market data. The resulting approach is applicable to

  11. Thermal modeling in an engine cooling system to control coolant flow for fuel consumption improvement

    NASA Astrophysics Data System (ADS)

    Park, Sangki; Woo, Seungchul; Kim, Minho; Lee, Kihyung

    2016-09-01

    The design and evaluation of engine cooling and lubrication systems is generally based on real vehicle tests. Our goal here was to establish an engine heat balance model based on mathematical and interpretive analysis of each element of a passenger diesel engine cooling system using a 1-D numerical model. The purpose of this model is to determine ways of optimizing the cooling and lubrication components of an engine and then to apply these methods to actual cooling and lubrication systems of engines that will be developed in the future. Our model was operated under the New European Driving Cycle (NEDC) mode conditions, which represent the fuel economy evaluation mode in Europe. The flow rate of the cooling system was controlled using a control valve. Our results showed that the fuel efficiency was improved by as much as 1.23 %, cooling loss by 1.35 %, and friction loss by 2.21 % throughout NEDC modes by modification of control conditions.

  12. Environmentally Responsible Aviation: Propulsion Research to Enable Fuel Burn, Noise and Emissions Reduction

    NASA Technical Reports Server (NTRS)

    Van Zante, Dale E.; Suder, Kenneth L.

    2015-01-01

    The NASA Environmentally Responsible Aviation (ERA) program is maturing technologies to enable simultaneous reduction of fuel burn, noise and emissions from an aircraft engine system. Three engine related Integrated Technology Demonstrations (ITDs) have been completed at Glenn Research Center in collaboration with Pratt Whitney, General Electric and the Federal Aviation Administration. The engine technologies being matured are a low NOx, fuel flexible combustor in partnership with Pratt Whitney, an ultra-high bypass, ducted propulsor system in partnership with Pratt Whitney FAA and high pressure ratio, front-stage core compressor technology in partnership with General Electric. The technical rationale, test configurations and overall results from the test series in each ITD are described. ERA is using system analysis to project the benefits of the ITD technologies on potential aircraft systems in the 2025 timeframe. Data from the ITD experiments were used to guide the system analysis assumptions. Results from the current assessments for fuel burn, noise and oxides of nitrogen emissions are presented.

  13. Environmentally Responsible Aviation: Propulsion Research to Enable Fuel Burn, Noise and Emissions Reduction

    NASA Technical Reports Server (NTRS)

    Van Zante, Dale; Suder, Kenneth

    2015-01-01

    The NASA Environmentally Responsible Aviation (ERA) program is maturing technologies to enable simultaneous reduction of fuel burn, noise and emissions from an aircraft engine system. Three engine related Integrated Technology Demonstrations (ITDs) have been completed at Glenn Research Center in collaboration with Pratt Whitney, General Electric and the Federal Aviation Administration. The engine technologies being matured are: a low NOx, fuel flexible combustor in partnership with Pratt Whitney; an ultra-high bypass, ducted propulsor system in partnership with Pratt Whitney and FAA; and high pressure ratio, front-stage core compressor technology in partnership with General Electric. The technical rationale, test configurations and overall results from the test series in each ITD are described. ERA is using system analysis to project the benefits of the ITD technologies on potential aircraft systems in the 2025 timeframe. Data from the ITD experiments were used to guide the system analysis assumptions. Results from the current assessments for fuel burn, noise and oxides of nitrogen emissions are presented.

  14. N-doped carbon nanomaterials are durable catalysts for oxygen reduction reaction in acidic fuel cells

    PubMed Central

    Shui, Jianglan; Wang, Min; Du, Feng; Dai, Liming

    2015-01-01

    The availability of low-cost, efficient, and durable catalysts for oxygen reduction reaction (ORR) is a prerequisite for commercialization of the fuel cell technology. Along with intensive research efforts of more than half a century in developing nonprecious metal catalysts (NPMCs) to replace the expensive and scarce platinum-based catalysts, a new class of carbon-based, low-cost, metal-free ORR catalysts was demonstrated to show superior ORR performance to commercial platinum catalysts, particularly in alkaline electrolytes. However, their large-scale practical application in more popular acidic polymer electrolyte membrane (PEM) fuel cells remained elusive because they are often found to be less effective in acidic electrolytes, and no attempt has been made for a single PEM cell test. We demonstrated that rationally designed, metal-free, nitrogen-doped carbon nanotubes and their graphene composites exhibited significantly better long-term operational stabilities and comparable gravimetric power densities with respect to the best NPMC in acidic PEM cells. This work represents a major breakthrough in removing the bottlenecks to translate low-cost, metal-free, carbon-based ORR catalysts to commercial reality, and opens avenues for clean energy generation from affordable and durable fuel cells. PMID:26601132

  15. N-doped carbon nanomaterials are durable catalysts for oxygen reduction reaction in acidic fuel cells.

    PubMed

    Shui, Jianglan; Wang, Min; Du, Feng; Dai, Liming

    2015-02-01

    The availability of low-cost, efficient, and durable catalysts for oxygen reduction reaction (ORR) is a prerequisite for commercialization of the fuel cell technology. Along with intensive research efforts of more than half a century in developing nonprecious metal catalysts (NPMCs) to replace the expensive and scarce platinum-based catalysts, a new class of carbon-based, low-cost, metal-free ORR catalysts was demonstrated to show superior ORR performance to commercial platinum catalysts, particularly in alkaline electrolytes. However, their large-scale practical application in more popular acidic polymer electrolyte membrane (PEM) fuel cells remained elusive because they are often found to be less effective in acidic electrolytes, and no attempt has been made for a single PEM cell test. We demonstrated that rationally designed, metal-free, nitrogen-doped carbon nanotubes and their graphene composites exhibited significantly better long-term operational stabilities and comparable gravimetric power densities with respect to the best NPMC in acidic PEM cells. This work represents a major breakthrough in removing the bottlenecks to translate low-cost, metal-free, carbon-based ORR catalysts to commercial reality, and opens avenues for clean energy generation from affordable and durable fuel cells.

  16. GENERIC VERIFICATION PROTOCOL FOR DETERMINATION OF EMISSIONS REDUCTIONS OBTAINED BY USE OF ALTERNATIVE OR REFORMULATED LIQUID FUELS, FUEL ADDITIVES, FUEL EMULSIONS AND LUBRICANTS FOR HIGHWAY AND NONROAD USE DISEL ENGINES AND LIGHT DUTY GASOLINE ENGINES AND VEHICLES

    EPA Science Inventory

    This report sets standards by which the emissions reduction provided by fuel and lubricant technologies can be tested and be tested in a comparable way. It is a generic protocol under the Environmental Technology Verification program.

  17. Reducing Fuel Consumption through Semi-Automated Platooning with Class 8 Tractor Trailer Combinations (Poster)

    SciTech Connect

    Lammert, M.; Gonder, J.

    2014-07-01

    This poster describes the National Renewable Energy Laboratory's evaluation of the fuel savings potential of semi-automated truck platooning. Platooning involves reducing aerodynamic drag by grouping vehicles together and decreasing the distance between them through the use of electronic coupling, which allows multiple vehicles to accelerate or brake simultaneously. The NREL study addressed the need for data on American style line-haul sleeper cabs with modern aerodynamics and over a range of trucking speeds common in the United States.

  18. Water withdrawal and consumption reduction analysis for electrical energy generation system

    NASA Astrophysics Data System (ADS)

    Nouri, Narjes

    There is an increasing concern over shrinking water resources. Water use in the energy sector primarily occurs in electricity generation. Anticipating scarcer supplies, the value of water is undoubtedly on the rise and design, implementation, and utilization of water saving mechanisms in energy generation systems are becoming inevitable. Most power plants generate power by boiling water to produce steam to spin electricity-generating turbines. Large quantities of water are often used to cool the steam in these plants. As a consequence, most fossil-based power plants in addition to consuming water, impact the water resources by raising the temperature of water withdrawn for cooling. A comprehensive study is conducted in this thesis to analyze and quantify water withdrawals and consumption of various electricity generation sources such as coal, natural gas, renewable sources, etc. Electricity generation for the state of California is studied and presented as California is facing a serious drought problem affecting more than 30 million people. Integrated planning for the interleaved energy and water sectors is essential for both water and energy savings. A linear model is developed to minimize the water consumption while considering several limitations and restrictions. California has planned to shut down some of its hydro and nuclear plants due to environmental concerns. Studies have been performed for various electricity generation and water saving scenarios including no-hydro and no-nuclear plant and the results are presented. Modifications to proposed different scenarios have been applied and discussed to meet the practical and reliability constraints.

  19. Limits to understory plant restoration following fuel-reduction treatments in a piñon-juniper woodland.

    PubMed

    Redmond, Miranda D; Zelikova, Tamara J; Barger, Nichole N

    2014-11-01

    National fuel-reduction programs aim to reduce the risk of wildland fires to human communities and to restore forest and rangeland ecosystems to resemble their historical structure, function, and diversity. There are a number of factors, such as seed bank dynamics, post-treatment climate, and herbivory, which determine whether this latter goal may be achieved. Here, we examine the short-term (2 years) vegetation response to fuel-reduction treatments (mechanical mastication, broadcast burn, and pile burn) and seeding of native grasses on understory vegetation in an upland piñon-juniper woodland in southeast Utah. We also examine how wildlife herbivory affects the success of fuel-reduction treatments. Herbaceous cover increased in response to fuel-reduction treatments in all seeded treatments, with the broadcast burn and mastication having greater increases (234 and 160 %, respectively) in herbaceous cover than the pile burn (32 %). In the absence of seeding, herbaceous cover only increased in the broadcast burn (32 %). Notably, fuel-reduction treatments, but not seeding, strongly affected herbaceous plant composition. All fuel-reduction treatments increased the relative density of invasive species, especially in the broadcast burn, which shifted the plant community composition from one dominated by perennial graminoids to one dominated by annual forbs. Herbivory by wildlife reduced understory plant cover by over 40 % and altered plant community composition. If the primary management goal is to enhance understory cover while promoting native species abundance, our study suggests that mastication may be the most effective treatment strategy in these upland piñon-juniper woodlands. Seed applications and wildlife exclosures further enhanced herbaceous cover following fuel-reduction treatments.

  20. THE WASTE REDUCTION (WAR) ALGORITHM: ENVIRONMENTAL IMPACTS, ENERGY CONSUMPTION, AND ENGINEERING ECONOMICS

    EPA Science Inventory

    A general theory known as the Waste Reduction (WAR) Algorithm has been developed to describe the flow and the generation of potential environmental impact through a chemical process. The theory defines indexes that characterize the generation and the output of potential environm...

  1. THE WASTE REDUCTION (WAR) ALGORITHM: ENVIRONMENTAL IMPACTS, ENERGY CONSUMPTION, AND ENGINEERING ECONOMICS

    EPA Science Inventory

    A general theory known as the WAste Reduction (WAR) algorithm has been developed to describe the flow and the generation of potential environmental impact through a chemical process. This theory defines potential environmental impact indexes that characterize the generation and t...

  2. The O2 reduction at the IFC modified O2 fuel cell electrode

    NASA Technical Reports Server (NTRS)

    Fielder, William L.; Singer, Joseph; Baldwin, Richard S.; Johnson, Richard E.

    1992-01-01

    The International Fuel Corporation (IFC) state of the art (SOA) O2 electrode (Au-10 percent Pt electrocatalyst by weight) is currently being used in the alkaline H2-O2 fuel cell in the NASA Space Shuttle. Recently, IFC modified O2 electrode, as a possible replacement for the SOA electrode. In the present study, O2 reduction data were obtained for the modified electrode at temperatures between 23.3 and 91.7 C. BET measurements gave an electrode BET surface area of about 2070 sq. cm/sq. cm of geometric surface area. The Tafel data could be fitted to two straight line regions. The slope for the lower region, designated as the 0.04 V/decade region, was temperature dependent, and the transfer coefficient was about 1.5. The 'apparent' energy of activation for this region was about 19 kcal/mol. An O2 reduction mechanism for this 0.04 region is presented. In the upper region, designated as the 0.08 V/decade region, diffusion may be the controlling process. Tafel data are presented to illustrate the increase in performance with increasing temperature.

  3. Oxygen reduction kinetics on graphite cathodes in sediment microbial fuel cells.

    PubMed

    Renslow, Ryan; Donovan, Conrad; Shim, Matthew; Babauta, Jerome; Nannapaneni, Srilekha; Schenk, James; Beyenal, Haluk

    2011-12-28

    Sediment microbial fuel cells (SMFCs) have been used as renewable power sources for sensors in fresh and ocean waters. Organic compounds at the anode drive anodic reactions, while oxygen drives cathodic reactions. An understanding of oxygen reduction kinetics and the factors that determine graphite cathode performance is needed to predict cathodic current and potential losses, and eventually to estimate the power production of SMFCs. Our goals were to (1) experimentally quantify the dependence of oxygen reduction kinetics on temperature, electrode potential, and dissolved oxygen concentration for the graphite cathodes of SMFCs and (2) develop a mechanistic model. To accomplish this, we monitored current on polarized cathodes in river and ocean SMFCs. We found that (1) after oxygen reduction is initiated, the current density is linearly dependent on polarization potential for both SMFC types; (2) current density magnitude increases linearly with temperature in river SMFCs but remains constant with temperature in ocean SMFCs; (3) the standard heterogeneous rate constant controls the current density temperature dependence; (4) river and ocean SMFC graphite cathodes have large potential losses, estimated by the model to be 470 mV and 614 mV, respectively; and (5) the electrochemical potential available at the cathode is the primary factor controlling reduction kinetic rates. The mechanistic model based on thermodynamic and electrochemical principles successfully fit and predicted the data. The data, experimental system, and model can be used in future studies to guide SMFC design and deployment, assess SMFC current production, test cathode material performance, and predict cathode contamination.

  4. Accelerated creep in solid oxide fuel cell anode supports during reduction

    NASA Astrophysics Data System (ADS)

    Frandsen, H. L.; Makowska, M.; Greco, F.; Chatzichristodoulou, C.; Ni, D. W.; Curran, D. J.; Strobl, M.; Kuhn, L. T.; Hendriksen, P. V.

    2016-08-01

    To evaluate the reliability of solid oxide fuel cell (SOFC) stacks during operation, the stress field in the stack must be known. During operation the stress field will depend on time as creep processes relax stresses. The creep of reduced Ni-YSZ anode support at operating conditions has been studied previously. In this work a newly discovered creep phenomenon taking place during the reduction is reported. This relaxes stresses at a much higher rate (∼×104) than creep during operation. The phenomenon was studied both in three-point bending and uniaxial tension. Differences between the two measurements could be explained by newly observed stress promoted reduction. Finally, samples exposed to a small tensile stress (∼0.004 MPa) were observed to expand during reduction, which is in contradiction to previous literature. These observations suggest that release of internal residual stresses between the NiO and the YSZ phases occurs during reduction. The accelerated creep should practically eliminate any residual stress in the anode support in an SOFC stack, as has previously been indirectly observed. This phenomenon has to be taken into account both in the production of stacks and in the simulation of the stress field in a stack based on anode supported SOFCs.

  5. Enhancement of hexavalent chromium reduction and electricity production from a biocathode microbial fuel cell.

    PubMed

    Huang, Liping; Chen, Jingwen; Quan, Xie; Yang, Fenglin

    2010-10-01

    Enhancement of Cr (VI) reduction rate and power production from biocathode microbial fuel cells (MFCs) was achieved using indigenous bacteria from Cr (VI)-contaminated site as inoculum and MFC architecture with a relatively large cathode-specific surface area of 340-900 m2 m(-3). A specific Cr (VI) reduction rate of 2.4 ± 0.2 mg g(-1)VSS h(-1) and a power production of 2.4 ± 0.1 W m(-3) at a current density of 6.9 A m(-3) were simultaneously achieved at an initial Cr (VI) concentration of 39.2 mg L(-1). Initial Cr (VI) concentration and solution conductivity affected Cr (VI) reduction rate, power production and coulombic efficiency. These findings demonstrate the importance of inoculation and MFC architecture in the enhancement of Cr (VI) reduction rate and power production. This study is a beneficial attempt to improve the efficiency of biocathode MFCs and provide a good candidate of bioremediation process for Cr (VI)-contaminated sites.

  6. Electrochemical and fuel cell evaluation of Co based catalyst for oxygen reduction in anion exchange polymer membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Mamlouk, M.; Kumar, S. M. Senthil; Gouerec, Pascal; Scott, Keith

    Co based catalyst were evaluated for oxygen reduction (ORR) in liquid KOH and alkaline anion exchange membrane fuel cells (AAEMFCs). In liquid KOH solution the catalyst exhibited good performance with an onset potential 120 mV more negative than platinum and a Tafel slope of ca. 120 mV dec -1. The hydrogen peroxide generated, increased from 5 to 50% as the electrode potential decreased from 175 to -300 mV vs. SHE. In an AAEMFC environment, one catalyst (GP2) showed promising performance for ORR, i.e. at 50 mA cm -2 the differences in cell potential between the stable performance for platinum (more positive) and cobalt cathodes with air and oxygen, were only 45 and 67 mV respectively. The second catalyst (GP4) achieved the same stable power density as with platinum, of 200 and 145 mW cm -2, with air at 1 bar (gauge) pressure and air (atm) cathode feed (60 °C), respectively. However the efficiency was lower (i.e. cell voltage was lower) i.e. 40% in comparison to platinum 47.5%.

  7. Graphite anode surface modification with controlled reduction of specific aryl diazonium salts for improved microbial fuel cells power output.

    PubMed

    Picot, Matthieu; Lapinsonnière, Laure; Rothballer, Michael; Barrière, Frédéric

    2011-10-15

    Graphite electrodes were modified with reduction of aryl diazonium salts and implemented as anodes in microbial fuel cells. First, reduction of 4-aminophenyl diazonium is considered using increased coulombic charge density from 16.5 to 200 mC/cm(2). This procedure introduced aryl amine functionalities at the surface which are neutral at neutral pH. These electrodes were implemented as anodes in "H" type microbial fuel cells inoculated with waste water, acetate as the substrate and using ferricyanide reduction at the cathode and a 1000 Ω external resistance. When the microbial anode had developed, the performances of the microbial fuel cells were measured under acetate saturation conditions and compared with those of control microbial fuel cells having an unmodified graphite anode. We found that the maximum power density of microbial fuel cell first increased as a function of the extent of modification, reaching an optimum after which it decreased for higher degree of surface modification, becoming even less performing than the control microbial fuel cell. Then, the effect of the introduction of charged groups at the surface was investigated at a low degree of surface modification. It was found that negatively charged groups at the surface (carboxylate) decreased microbial fuel cell power output while the introduction of positively charged groups doubled the power output. Scanning electron microscopy revealed that the microbial anode modified with positively charged groups was covered by a dense and homogeneous biofilm. Fluorescence in situ hybridization analyses showed that this biofilm consisted to a large extent of bacteria from the known electroactive Geobacter genus. In summary, the extent of modification of the anode was found to be critical for the microbial fuel cell performance. The nature of the chemical group introduced at the electrode surface was also found to significantly affect the performance of the microbial fuel cells. The method used for

  8. Trajectory Optimization Using Adjoint Method and Chebyshev Polynomial Approximation for Minimizing Fuel Consumption During Climb

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.; Hornby, Gregory; Ishihara, Abe

    2013-01-01

    This paper describes two methods of trajectory optimization to obtain an optimal trajectory of minimum-fuel- to-climb for an aircraft. The first method is based on the adjoint method, and the second method is based on a direct trajectory optimization method using a Chebyshev polynomial approximation and cubic spine approximation. The approximate optimal trajectory will be compared with the adjoint-based optimal trajectory which is considered as the true optimal solution of the trajectory optimization problem. The adjoint-based optimization problem leads to a singular optimal control solution which results in a bang-singular-bang optimal control.

  9. Do biofuel blending mandates reduce gasoline consumption? Implications of state-level renewable fuel standards for energy security

    NASA Astrophysics Data System (ADS)

    Lim, Shinling

    In an effort to keep America's addiction to oil under control, federal and state governments have implemented a variety of policy measures including those that determine the composition of motor gasoline sold at the pump. Biofuel blending mandates known as Renewable Fuel Standards (RFS) are designed to reduce the amount of foreign crude oil needed to be imported as well as to boost the local ethanol and corn industry. Yet beyond looking at changes in gasoline prices associated with increased ethanol production, there have been no empirical studies that examine effects of state-level RFS implementation on gasoline consumption. I estimate a Generalized Least Squares model for the gasoline demand for the 1993 to 2010 period with state and time fixed effects controlling for RFS. States with active RFS are Minnesota, Hawaii, Missouri, Florida, Washington, and Oregon. I find that, despite the onset of federal biofuel mandates across states in 2007 and the lower energy content of blended gasoline, being in a state that has implemented RFS is associated with 1.5% decrease in gasoline consumption (including blended gasoline). This is encouraging evidence for efforts to lessen dependence on gasoline and has positive implications for energy security.

  10. Development of an energy consumption and cost data base for fuel cell total energy systems and conventional building energy systems

    SciTech Connect

    Pine, G.D.; Christian, J.E.; Mixon, W.R.; Jackson, W.L.

    1980-07-01

    This report describes the procedures and data sources used to develop an energy-consumption and system-cost data base for use in predicting the market penetration of phosphoric acid fuel cell total-energy systems in the nonindustrial building market. A computer program was used to simulate the hourly energy requirements of six types of buildings - office buildings, retail stores, hotels and motels, schools, hospitals, and multifamily residences. The simulations were done by using hourly weather tapes for one city in each of the ten Department of Energy administrative regions. Two types of building construction were considered, one for existing buildings and one for new buildings. A fuel cell system combined with electrically driven heat pumps and one combined with a gas boiler and an electrically driven chiller were compared with similar conventional systems. The methods of system simulation, component sizing, and system cost estimation are described for each system. The systems were simulated for a single building size for each building type. Methods were developed to extrapolate the system cost and performance data to other building sizes.

  11. Retrieval Success from a 1950's UK Fuel Storage Pond: Blazing a Trail for Early Hazard Reduction

    SciTech Connect

    Bruce, S.

    2006-07-01

    Work has begun to tackle one of the biggest challenges in the UK nuclear cleanup program: the retrieval of spent nuclear fuel from the First Generation Magnox Fuel Storage Pond at Sellafield. The UK Government regulatory body, Nuclear Installations Inspectorate (NII) considers this pond to be the country's highest priority in terms of Hazard Reduction, a view supported by the facility owner, UK Government's Nuclear Decommissioning Authority (NDA). Remotely operated submersible vehicles (ROV's) were used by British Nuclear Group to assess the condition of stored fuel in First Generation Magnox Storage Ponds (1945-60's build). The ROV survey showed fuel condition was better than expected, and engineers were able to prototype retrieval on a selected skip (container) of fuel. The retrieval and subsequent export to the Fuel Handling Plant (FHP) was executed in November 2005 and was completely successful. The next stage is to reprocess the fuel using the Magnox Reprocessing Plant. If this is successful the prototype retrieval will have demonstrated that: - British Nuclear Group can safely retrieve fuel from its legacy ponds; - British Nuclear Group can safely transport retrieved legacy fuel between facilities; - British Nuclear Group can eliminate the hazard presented by this legacy fuel by use of existing on-site reprocessing facilities. This in turn enables the option to commence larger-scale fuel retrievals from these legacy ponds years ahead of the current plan which assumes new plants to be available to handle all arisings from the legacy ponds in 2015. This hazard reduction could commence as early as 2008. (authors)

  12. Advection of surface-derived organic carbon fuels microbial reduction in Bangladesh groundwater

    NASA Astrophysics Data System (ADS)

    Mailloux, Brian J.; Trembath-Reichert, Elizabeth; Cheung, Jennifer; Watson, Marlena; Stute, Martin; Freyer, Greg A.; Ferguson, Andrew S.; Matin Ahmed, Kazi; Jahangir Alam, Md.; Buchholz, Bruce A.; Thomas, James; Layton, Alice C.; Zheng, Yan; Bostick, Benjamin C.; van Geen, Alexander

    2013-04-01

    Chronic exposure to arsenic (As) by drinking shallow groundwater causes widespread disease in Bangladesh and neighboring countries. The release of As naturally present in sediment to groundwater has been linked to the reductive dissolution of iron oxides coupled to the microbial respiration of organic carbon (OC). The source of OC driving this microbial reduction-carbon deposited with the sediments or exogenous carbon transported by groundwater-is still debated despite its importance in regulating aquifer redox status and groundwater As levels. Here, we used the radiocarbon (14C) signature of microbial DNA isolated from groundwater samples to determine the relative importance of surface and sediment-derived OC. Three DNA samples collected from the shallow, high-As aquifer and one sample from the underlying, low-As aquifer were consistently younger than the total sediment carbon, by as much as several thousand years. This difference and the dominance of heterotrophic microorganisms implies that younger, surface-derived OC is advected within the aquifer, albeit more slowly than groundwater, and represents a critical pool of OC for aquifer microbial communities. The vertical profile shows that downward transport of dissolved OC is occurring on anthropogenic timescales, but bomb 14C-labeled dissolved OC has not yet accumulated in DNA and is not fueling reduction. These results indicate that advected OC controls aquifer redox status and confirm that As release is a natural process that predates human perturbations to groundwater flow. Anthropogenic perturbations, however, could affect groundwater redox conditions and As levels in the future.

  13. A combinatorial study of platinum-based oxygen reduction electrocatalysts for hydrogen fuel cells

    NASA Astrophysics Data System (ADS)

    Bonakdarpour, Arman

    This thesis presents measurements of the stability and activities of Pt-based oxygen reduction reaction (ORR) electrocatalysts for proton exchange membrane fuel cells (PEMFC). Because more than 70% of electrochemical losses originate from the cathodic reduction of oxygen, research on ORR catalysts remains very active. Numerous combinatorial libraries of Pt1-xMx (M = Fe, Ni, Mn; 0 ≤ x ≤ 1) and Pt1-x-yMxMy ' (M, M' = Co, Ni, Mn, Fe) were prepared by magnetron sputtering using high surface area nano-structured thin film (NSTF) supports as substrates. The libraries were studied for the corrosion stability of the transition metal elements by acid leaching experiments. The results show that after exposing these libraries to 0.5M H2SO4 (or HClO4) at 80°C for several days, significant amounts of transition metals leach off. When the transition metal content was about 60% or less mostly surface leaching occurred and for more than 60% surface and bulk leaching were observed. The composition of these libraries after acid treatment was very close to the electrocatalysts tested in hydrogen fuel cells, thus showing that acid treatment can mimic the fuel cell environment very well. Alloys of Pt-Ta, on the other hand, showed no dissolution of Ta. However, the presence of more than 10% Ta in the alloy, significantly reduces the ORR activity. The rotating ring-disk electrode technique was used to measure the ORR activity of sputtered Pt1-xCox (0 < x < 0.5) films. After heat treatment a 1.7x gain in the specific current densities were observed. There are claims in the literature that very high activities (about 10x) can be achieved by Pt alloys such as Pt-Co with similar preparation methods. Poor experimental setups are most likely the sources of these observations. High surface area Pt and Pt-Co-Mn catalysts, sputtered onto NSTF supports were studied using the RRDE technique. The Pt-Co-Mn alloy showed a kinetic gain of about 20 mV over Pt for ORR. This is in agreement with the

  14. Geomicrobiological linkages between short-chain alkane consumption and sulfate reduction rates in seep sediments

    PubMed Central

    Bose, Arpita; Rogers, Daniel R.; Adams, Melissa M.; Joye, Samantha B.; Girguis, Peter R.

    2013-01-01

    Marine hydrocarbon seeps are ecosystems that are rich in methane, and, in some cases, short-chain (C2–C5) and longer alkanes. C2–C4 alkanes such as ethane, propane, and butane can be significant components of seeping fluids. Some sulfate-reducing microbes oxidize short-chain alkanes anaerobically, and may play an important role in both the competition for sulfate and the local carbon budget. To better understand the anaerobic oxidation of short-chain n-alkanes coupled with sulfate-reduction, hydrocarbon-rich sediments from the Gulf of Mexico (GoM) were amended with artificial, sulfate-replete seawater and one of four n-alkanes (C1–C4) then incubated under strict anaerobic conditions. Measured rates of alkane oxidation and sulfate reduction closely follow stoichiometric predictions that assume the complete oxidation of alkanes to CO2 (though other sinks for alkane carbon likely exist). Changes in the δ13C of all the alkanes in the reactors show enrichment over the course of the incubation, with the C3 and C4 incubations showing the greatest enrichment (4.4 and 4.5‰, respectively). The concurrent depletion in the δ13C of dissolved inorganic carbon (DIC) implies a transfer of carbon from the alkane to the DIC pool (−3.5 and −6.7‰ for C3 and C4 incubations, respectively). Microbial community analyses reveal that certain members of the class Deltaproteobacteria are selectively enriched as the incubations degrade C1–C4 alkanes. Phylogenetic analyses indicate that distinct phylotypes are enriched in the ethane reactors, while phylotypes in the propane and butane reactors align with previously identified C3–C4 alkane-oxidizing sulfate-reducers. These data further constrain the potential influence of alkane oxidation on sulfate reduction rates (SRRs) in cold hydrocarbon-rich sediments, provide insight into their contribution to local carbon cycling, and illustrate the extent to which short-chain alkanes can serve as electron donors and govern microbial

  15. Geomicrobiological linkages between short-chain alkane consumption and sulfate reduction rates in seep sediments.

    PubMed

    Bose, Arpita; Rogers, Daniel R; Adams, Melissa M; Joye, Samantha B; Girguis, Peter R

    2013-01-01

    Marine hydrocarbon seeps are ecosystems that are rich in methane, and, in some cases, short-chain (C2-C5) and longer alkanes. C2-C4 alkanes such as ethane, propane, and butane can be significant components of seeping fluids. Some sulfate-reducing microbes oxidize short-chain alkanes anaerobically, and may play an important role in both the competition for sulfate and the local carbon budget. To better understand the anaerobic oxidation of short-chain n-alkanes coupled with sulfate-reduction, hydrocarbon-rich sediments from the Gulf of Mexico (GoM) were amended with artificial, sulfate-replete seawater and one of four n-alkanes (C1-C4) then incubated under strict anaerobic conditions. Measured rates of alkane oxidation and sulfate reduction closely follow stoichiometric predictions that assume the complete oxidation of alkanes to CO2 (though other sinks for alkane carbon likely exist). Changes in the δ(13)C of all the alkanes in the reactors show enrichment over the course of the incubation, with the C3 and C4 incubations showing the greatest enrichment (4.4 and 4.5‰, respectively). The concurrent depletion in the δ(13)C of dissolved inorganic carbon (DIC) implies a transfer of carbon from the alkane to the DIC pool (-3.5 and -6.7‰ for C3 and C4 incubations, respectively). Microbial community analyses reveal that certain members of the class Deltaproteobacteria are selectively enriched as the incubations degrade C1-C4 alkanes. Phylogenetic analyses indicate that distinct phylotypes are enriched in the ethane reactors, while phylotypes in the propane and butane reactors align with previously identified C3-C4 alkane-oxidizing sulfate-reducers. These data further constrain the potential influence of alkane oxidation on sulfate reduction rates (SRRs) in cold hydrocarbon-rich sediments, provide insight into their contribution to local carbon cycling, and illustrate the extent to which short-chain alkanes can serve as electron donors and govern microbial community

  16. Adolescent oxytocin exposure causes persistent reductions in anxiety and alcohol consumption and enhances sociability in rats.

    PubMed

    Bowen, Michael T; Carson, Dean S; Spiro, Adena; Arnold, Jonathon C; McGregor, Iain S

    2011-01-01

    Previous studies have suggested that administration of oxytocin (OT) can have modulatory effects on social and anxiety-like behavior in mammals that may endure beyond the time of acute OT administration. The current study examined whether repeated administration of OT to male Wistar rats (n = 48) during a key developmental epoch (early adolescence) altered their physiology and behavior in later-life. Group housed rats were given intraperitoneal injections of either 1 mg/kg OT or vehicle during early adolescence (post natal-days [PND] 33-42). OT treatment caused a transient inhibition of body weight gain that recovered quickly after the cessation of treatment. At PND 50, the rats pre-treated with OT displayed less anxiety-like behavior on the emergence test, while at PND 55 they showed greater levels of social interaction. A subgroup of OT pre-treated rats examined at PND 63 showed a strong trend towards increased plasma OT levels, and also displayed significantly increased OT receptor mRNA in the hypothalamus. Rats pre-treated with OT and their controls showed similar induction of beer intake in daily 70 min test sessions (PND 63 onwards) in which the alcohol concentration of beer was gradually increased across days from 0.44% to 4.44%. However, when given ad libitum access to beer in their home cages from PND 72 onwards (early adulthood), consumption of beer but not water was significantly less in the OT pre-treated rats. A "booster" shot of OT (1 mg/kg) given after 25 days of ad libitum access to beer had a strong acute inhibitory effect on beer intake without affecting water intake. Overall these results suggest that exogenous OT administered during adolescence can have subtle yet enduring effects on anxiety, sociability and the motivation to consume alcohol. Such effects may reflect the inherent neuroplasticity of brain OT systems and a feed-forward effect whereby exogenous OT upregulates endogenous OT systems.

  17. Sewage sludge biochar as an efficient catalyst for oxygen reduction reaction in an microbial fuel cell.

    PubMed

    Yuan, Yong; Yuan, Tian; Wang, Dingmei; Tang, Jiahuan; Zhou, Shungui

    2013-09-01

    Sewage sludge (SS) biochars have been prepared under an inert atmosphere at different temperatures. Morphologic and chemical analyses reveal that the surface of the biochar carbonized at 900°C (SS900) has more abundant micropores, and higher nitrogen and iron contents as compared to those carbonized at 500 (SS500) and 700°C (SS700). The electrochemical analyses display that the prepared biochars are active for catalyzing oxygen reduction reaction (ORR). However, more positive peak potential and larger peak current of ORR are found using the SS900 as compared to the SS500 and SS700. In MFCs, the maximum power density of 500±17 mW m(-2) was obtained from the SS900 cathode, which is comparable to the Pt cathode. The proposed cathode exhibited good stability and great tolerance to methanol. Given these results, it is expected that the SS-derived biochar cathode can find application in fuel cell systems.

  18. Pressure-vessel-damage fluence reduction by low-leakage fuel management. [PWR

    SciTech Connect

    Cokinos, D.; Aronson, A.L.; Carew, J.F.; Kohut, P.; Todosow, M.; Lois, L.

    1983-01-01

    As a result of neutron-induced radiation damage to the pressure vessel and of an increased concern that in a PWR transient the pressure vessel may be subjected to pressurized thermal shock (PTS), detailed analyses have been undertaken to determine the levels of neutron fluence accumulation at the pressure vessels of selected PWR's. In addition, various methods intended to limit vessel damage by reducing the vessel fluence have been investigated. This paper presents results of the fluence analysis and the evaluation of the low-leakage fuel management fluence reduction method. The calculations were performed with DOT-3.5 in an octant of the core/shield/vessel configuration using a 120 x 43 (r, theta) mesh structure.

  19. Cathodic reduction of hexavalent chromium [Cr(VI)] coupled with electricity generation in microbial fuel cells.

    PubMed

    Wang, Gang; Huang, Liping; Zhang, Yifeng

    2008-11-01

    A novel approach to Cr(VI)-contaminated wastewater treatment was investigated using microbial fuel cell technologies in fed-batch mode. By using synthetic Cr(VI)-containing wastewater as catholyte and anaerobic microorganisms as anodic biocatalyst, Cr(VI) at 100 mg/l was completely removed during 150 h (initial pH 2). The maximum power density of 150 mW/m(2) (0.04 mA/cm(2)) and the maximum open circuit voltage of 0.91 V were generated with Cr(VI) at 200 mg/l as electron acceptor. This work verifies the possibility of simultaneous electricity production and cathodic Cr(VI) reduction.

  20. Laser surfacing of high density polyethylene for reduction in fuel permeability

    SciTech Connect

    Duley, W.W. ); Ogmen, M.; Steel, T. ); Mihailov, S. )

    1992-01-01

    This paper reports that the increasing use of plastics by the automobile industry has resulted in new manufacturing technology. For example, high density polyethylene (HDPE) fuel tanks can now be blow-molded to fit available vehicle space. Such HDPE tanks offer several advantages over conventional metal tanks. Some of these advantages are: lower production cost; ease of fabrication and fitting to vehicle; reduced explosion hazard; 40 - 50 % reduction in weight; impact resistance; and lack of corrosion. The effect of UV and CO[sub 2] laser radiation on the surface of HDPE gas tank material in relation to the permeability of the surface to unleaded gasoline has been investigated. It is found that while excimer (UV) laser radiation has no effect on permeability, CO[sub 2] laser radiation at low intensity modifies the surface so as to reduce permeability over timescales of 1 - 2 days. A possible origin for this modification is suggested.

  1. An investigation of Pt alloy oxygen reduction catalysts in phosphoric acid doped PBI fuel cells

    NASA Astrophysics Data System (ADS)

    Mamlouk, M.; Scott, K.

    A study of a phosphoric acid doped polybenzimidazole (PBI) membrane fuel cell using commercial carbon supported, Pt alloy oxygen reduction catalysts is reported. The cathodes were made from PTFE bonded carbon supported Pt alloys without PBI but with phopshoric acid added to the electrode for ionic conductivity. Polarisation data for fuel cells with cathodes made with alloys of Pt with Ni, Co, Ru and Fe are compared with those with Pt alone as cathode at temperatures between 120 and 175 °C. With the same loading of Pt enhancement in cell performance was achieved with all alloys except Pt-Ru, in the low current density activation kinetics region of operation. The extent of enhancement depended upon the operating temperature and also the catalyst loading. In particular a Pt-Co alloy produced performance significantly better than Pt alone, e.g. a peak power, with low pressure air, of 0.25 W cm -2 with 0.2 mg Pt cm -2 of a 20 wt% Pt-Co catalyst.

  2. Effect of microstructure of nitrogen-doped graphene on oxygen reduction activity in fuel cells.

    PubMed

    Zhang, Lipeng; Niu, Jianbing; Dai, Liming; Xia, Zhenhai

    2012-05-15

    The development of fuel cells as clean-energy technologies is largely limited by the prohibitive cost of the noble-metal catalysts needed for catalyzing the oxygen reduction reaction (ORR) in fuel cells. A fundamental understanding of catalyst design principle that links material structures to the catalytic activity can accelerate the search for highly active and abundant nonmetal catalysts to replace platinum. Here, we present a first-principles study of ORR on nitrogen-doped graphene in acidic environment. We demonstrate that the ORR activity primarily correlates to charge and spin densities of the graphene. The nitrogen doping and defects introduce high positive spin and/or charge densities that facilitate the ORR on graphene surface. The identified active sites are closely related to doping cluster size and dopant-defect interactions. Generally speaking, a large doping cluster size (number of N atoms >2) reduces the number of catalytic active sites per N atom. In combination with N clustering, Stone-Wales defects can strongly promote ORR. For four-electron transfer, the effective reversible potential ranges from 1.04 to 1.15 V/SHE, depending on the defects and cluster size. The catalytic properties of graphene could be optimized by introducing small N clusters in combination with material defects.

  3. Oxygen reduction reaction on Cu-doped Ag cluster for fuel-cell cathode.

    PubMed

    Ma, Wenqiang; Chen, Fuyi; Zhang, Nan; Wu, Xiaoqiang

    2014-10-01

    The development of fuel cells as clean-energy technologies is largely limited by the prohibitive cost of the noble-metal catalysts needed for catalyzing the oxygen reduction reaction (ORR) in fuel cells. A fundamental understanding of catalyst design principle that links material structures to the catalytic activity can accelerate the search for highly active and abundant bimetallic catalysts to replace platinum. Here, we present a first-principles study of ORR on Ag12Cu cluster in alkaline environment. The adsorptions of O2, OOH, and OH on Cu-doped Ag13 are stronger than on Ag13. The d-band centers of adsorption sites show the Cu-doping makes d-electrons transferred to higher energy state, and improves O2 dissociation. ORR processes on Ag12Cu and Ag13 indicate Cu-doping can strongly promote ORR, and ORR process can be better preformed on Ag12Cu than on Ag13. For four-electron transfer, the effective reversible potential is 0.401 V/RHE on Ag12Cu in alkaline medium.

  4. "Just Advil": Harm reduction and identity construction in the consumption of over-the-counter medication for chronic pain.

    PubMed

    Eaves, Emery R

    2015-12-01

    Direct-to-consumer marketing has sparked ongoing debate concerning whether ads empower consumers to be agents of their own care or shift greater control to the pharmaceutical industry. Ads for over-the-counter (OTC) medications in particular portend to offer simple, harmless solutions for meeting the demands of social life. Rather than join the longstanding debate between consumer agency and social control in pharmaceutical advertising, I approach self-medication with over-the-counter (OTC) analgesics using Harm Reduction as a framework. From this perspective, consumption of OTC analgesics by chronic pain sufferers is a means of seeking some level of relief while also avoiding the stigma associated with prescription pain medication. Qualitative methods are used to analyze data from two sources: (1) semi-structured qualitative interviews with 95 participants in a trial examining the effectiveness of Traditional Chinese Medicine for Temporomandibular Disorders (TMD) from 2006 to 2011 in Tucson, AZ and Portland, OR; and (2) print, online, and television advertisements for three major brands of OTC pain medication. Participants described their use of OTC medications as minimal, responsible, and justified by the severity of their pain. OTC medication advertising, while ostensibly ambiguous and targeting all forms of pain, effectively lends support to the consumption of these medications as part of the self-projects of chronic pain sufferers, allowing them to reconcile conflicting demands for pain relief while being stoic and maintaining a positive moral identity. Describing OTC medication as "just over-the-counter" or "not real pain medication," sufferers engage in ideological harm reduction, distinguishing themselves from "those people who like taking pain medication" while still seeking relief. Justifying one's use of OTC medication as minimal and "normal," regardless of intake, avoids association with the addictive potential of prescription pain medications and

  5. Reduction of Helicopter BVI Noise, Vibration, and Power Consumption Through Individual Blade Control

    NASA Technical Reports Server (NTRS)

    Jacklin, Stephen A.; Blaas, Achim; Teves, Dietrich; Kube, Roland; Warmbrodt, William (Technical Monitor)

    1994-01-01

    A wind tunnel test was conducted with a full-scale BO 105 helicopter rotor to evaluate the potential of open-loop individual blade control (IBC) to improve rotor performance, to reduce blade vortex interaction (BVI) noise, and to alleviate helicopter vibrations. The wind tunnel test was an international collaborative effort between NASA/U.S. Army AFDD, ZF Luftfahrttechnik, Eurocopter Deutschland, and the German Aerospace Laboratory (DLR) and was conducted under the auspices of the U.S./German MOU on Rotorcraft Aeromechanics. In this test the normal blade pitch links of the rotor were replaced by servo-actuators so that the pitch of each blade could be controlled independently of the other blades. The specially designed servoactuators and IBC control system were designed and manufactured by ZF Luftfahrttechnik, GmbH. The wind tunnel test was conducted in the 40- by 80-Foot Wind Tunnel at the NASA Ames Research Center. An extensive amount of measurement information was acquired for each IBC data point. These data include rotor performance, static and dynamic hub forces and moments, rotor loads, control loads, inboard and outboard blade pitch motion, and BVI noise data. The data indicated very significant (80 percent) simultaneous reductions in both BVI noise and hub vibrations could be obtained using multi-harmonic input at the critical descent (terminal approach) condition. The data also showed that performance improvements of up to 7 percent could be obtained using 2P input at high-speed forward flight conditions.

  6. LXRα fuels fatty acid-stimulated oxygen consumption in white adipocytes[S

    PubMed Central

    Dib, Lea; Bugge, Anne; Collins, Sheila

    2014-01-01

    Liver X receptors (LXRs) are transcription factors known for their role in hepatic cholesterol and lipid metabolism. Though highly expressed in fat, the role of LXR in this tissue is not well characterized. We generated adipose tissue LXRα knockout (ATaKO) mice and showed that these mice gain more weight and fat mass on a high-fat diet compared with wild-type controls. White adipose tissue (WAT) accretion in ATaKO mice results from both a decrease in WAT lipolytic and oxidative capacities. This was demonstrated by decreased expression of the β2- and β3-adrenergic receptors, reduced level of phosphorylated hormone-sensitive lipase, and lower oxygen consumption rates (OCRs) in WAT of ATaKO mice. Furthermore, LXR activation in vivo and in vitro led to decreased adipocyte size in WAT and increased glycerol release from primary adipocytes, respectively, with a concomitant increase in OCR in both models. Our findings show that absence of LXRα in adipose tissue results in elevated adiposity through a decrease in WAT oxidation, secondary to attenuated FA availability. PMID:24259533

  7. Dependency of simultaneous Cr(VI), Cu(II) and Cd(II) reduction on the cathodes of microbial electrolysis cells self-driven by microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Yu, Lihua; Wu, Dan; Huang, Liping; Zhou, Peng; Quan, Xie; Chen, Guohua

    2015-01-01

    Microbial fuel cells (MFCs) using either Cr(VI) (MFCsCr) or Cu(II) (MFCsCu) as a final electron acceptor, are stacked to self-drive microbial electrolysis cells (MECs) using Cd(II) (MECsCd) as an electron acceptor for simultaneous reduction of Cr(VI) in MFCsCr, Cu(II) in MFCsCu and Cd(II) in MECsCd with no external energy consumption. Titanium sheet (TS) and carbon rod (CR) as the cathodes of MECsCd are assessed for efficient system performance. MFCsCr and MFCsCu in series is superior to the parallel configuration, and higher Cd(II) reduction along with simultaneous Cr(VI) and Cu(II) reduction supports TS function as a good cathode material. Conversely, CR can not entirely proceed Cd(II) reduction in MECsCd despite of more Cr(VI) and Cu(II) reduction in the same serial configuration than either system alone. While a decrease in cathode volume in both MFCsCr and MFCsCu with serial connection benefits to reduction of Cr(VI) in MFCsCr and Cu(II) in MFCsCu, Cd(II) reduction in MECsCd is substantially enhanced under a decrease in cathode volume in individual MFCsCr and serially connected with volume-unchanged MFCsCu. This study demonstrates simultaneous Cr(VI), Cu(II) and Cd(II) recovery from MFCsCr-MFCsCu-MECsCd self-driven system is feasible, and TS as the cathodes of MECsCd is critical for efficient system performance.

  8. Estimating the climate and air quality benefits of aviation fuel and emissions reductions

    NASA Astrophysics Data System (ADS)

    Dorbian, Christopher S.; Wolfe, Philip J.; Waitz, Ian A.

    2011-05-01

    In this study we consider the implications of our current understanding of aviation climate impacts as it relates to the ratio of non-CO 2 to CO 2 effects from aviation. We take as inputs recent estimates from the literature of the magnitude of the component aviation impacts and associated uncertainties. We then employ a simplified probabilistic impulse response function model for the climate and a range of damage functions to estimate the ratio of non-CO 2 to CO 2 impacts of aviation for a range of different metrics, scientific assumptions, future background emissions scenarios, economic growth scenarios, and discount rates. We take cost-benefit analysis as our primary context and thus focus on integral metrics that can be related to damages: the global warming potential, the time-integrated change in surface temperature, and the net present value of damages. We also present results based on an endpoint metric, the global temperature change potential. These latter results would be more appropriate for use in a cost-effectiveness framework (e.g., with a well-defined policy target for the anthropogenic change in surface temperature at a specified time in the future). We find that the parameter that most influences the ratio of non-CO 2 to CO 2 impacts of aviation is the discount rate, or analogously the time window used for physical metrics; both are expressions of the relative importance of long-lived versus short-lived impacts. Second to this is the influence of the radiative forcing values that are assumed for aviation-induced cloudiness effects. Given the large uncertainties in short-lived effects from aviation, and the dominating influence of discounting or time-windowing, we find that the choice of metric is relatively less influential. We express the ratios of non-CO 2 to CO 2 impacts on a per unit fuel burn basis so that they can be multiplied by a social cost of carbon to estimate the additional benefits of fuel burn reductions from aviation beyond those

  9. A new alternative fuel for reduction of polycyclic aromatic hydrocarbon and particulate matter emissions from diesel engines.

    PubMed

    Yuan, Chung-Shin; Lin, Hsun-Yu; Lee, Wen-Jhy; Lin, Yuan-Chung; Wu, Tser-Son; Chen, Kung-Fu

    2007-04-01

    This study investigated the emissions of polycyclic aromatic hydrocarbons (PAHs), carcinogenic potential of PAH and particulate matter (PM), brake-specific fuel consumption (BSFC), and power from diesel engines under transient cycle testing of six test fuels: premium diesel fuel (PDF), B100 (100% palm biodiesel), B20 (20% palm biodiesel + 80% PDF), BP9505 (95% paraffinic fuel + 5% palm biodiesel), BP8020 (80% paraffinic fuel + 20% palm biodiesel), and BP100 (100% paraffinic fuel; Table 1). Experimental results indicated that B100, BP9505, BP8020, and BP100 were much safer when stored than PDF. However, we must use additives so that B100 and BP100 will not gel as quickly in a cold zone. Using B100, BP9505, and BP8020 instead of PDF reduced PM, THC, and CO emissions dramatically but increased CO2 slightly because of more complete combustion. The CO2-increased fraction of BP9505 was the lowest among test blends. Furthermore, using B100, B20, BP9505, and BP8020 as alternative fuels reduced total PAHs and total benzo[a]pyrene equivalent concentration (total BaPeq) emissions significantly. BP9505 had the lowest decreased fractions of power and torque and increased fraction of BSFC. These experimental results implied that BP9505 is feasible for traveling diesel vehicles. Moreover, paraffinic fuel will likely be a new alternative fuel in the future. Using BP9505 instead of PDF decreased PM (22.8%), THC (13.4%), CO (25.3%), total PAHs (88.9%), and total BaPeq (88.1%) emissions significantly.

  10. Improved oxygen reduction reaction catalyzed by Pt/Clay/Nafion nanocomposite for PEM fuel cells.

    PubMed

    Narayanamoorthy, B; Datta, K K R; Eswaramoorthy, M; Balaji, S

    2012-07-25

    A novel Pt nanoparticle (Pt NP) embedded aminoclay/Nafion (Pt/AC/N) nanocomposite catalyst film was prepared for oxygen reduction reaction by sol-gel method. The prepared nanocomposite films were surface characterized using XRD and TEM and thermal stability was studied by TGA. The prepared film has firmly bound Pt NP and could exhibit an improved electro-reduction activity compared to vulcan carbon/Nafion supported Pt NP (Pt/VC/N). Moreover, the Pt/AC/N film possessed good stability in the acidic environment. The limiting current density of the Pt/AC/N film with 35.4 μg/cm(2) of Pt loading was found to be 4.2 mA/cm(2), which is 30% higher than that of the Pt/VC/N. The maximum H2O2 intermediate formation was found to be ∼1.6% and the reaction found to follow a four electron transfer mechanism. Accelerated durability test for 2000 potential cycles showed that ca. 78% of initial limiting current was retained. The results are encouraging for possible use of the Pt/AC/N as the free-standing electrocatalyst layer for polymer electrolyte membrane fuel cells.

  11. Enhanced microbial reduction of vanadium (V) in groundwater with bioelectricity from microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Hao, Liting; Zhang, Baogang; Tian, Caixing; Liu, Ye; Shi, Chunhong; Cheng, Ming; Feng, Chuanping

    2015-08-01

    Bioelectricity generated from the microbial fuel cell (MFC) is applied to the bioelectrical reactor (BER) directly to enhance microbial reduction of vanadium (V) (V(V)) in groundwater. With the maximum power density of 543.4 mW m-2 from the MFC, V(V) removal is accelerated with efficiency of 93.6% during 12 h operation. Higher applied voltage can facilitate this process. V(V) removals decrease with the increase of initial V(V) concentration, while extra addition of chemical oxygen demand (COD) has little effect on performance improvement. Microbial V(V) reduction is enhanced and then suppressed with the increase of conductivity. High-throughput 16S rRNA gene pyrosequencing analysis implies the accumulated Enterobacter and Lactococcus reduce V(V) with products from fermentative microorganisms such as Macellibacteroides. The presentation of electrochemically active bacteria as Enterobacter promotes electron transfers. This study indicates that application of bioelectricity from MFCs is a promising strategy to improve the efficiency of in-situ bioremediation of V(V) polluted groundwater.

  12. Hexavalent chromium reduction and energy recovery by using dual-chambered microbial fuel cell.

    PubMed

    Gangadharan, Praveena; Nambi, Indumathi M

    2015-01-01

    Microbial fuel cell (MFC) technology is utilized to treat hexavalent chromium (Cr(VI)) from wastewater and to generate electricity simultaneously. The Cr(VI) is bioelectrochemically reduced to non-toxic Cr(III) form in the presence of an organic electron donor in a dual-chambered MFC. The Cr(VI) as catholyte and artificial wastewater inoculated with anaerobic sludge as anolyte, Cr(VI) at 100 mg/L was completely removed within 48 h (initial pH value 2.0). The total amount of Cr recovered was 99.87% by the precipitation of Cr(III) on the surface of the cathode. In addition to that 78.4% of total organic carbon reduction was achieved at the anode chamber within 13 days of operation. Furthermore, the maximum power density of 767.01 mW/m² (2.08 mA/m²) was achieved by MFCs at ambient conditions. The present work has successfully demonstrated the feasibility of using MFCs for simultaneous energy production from wastewater and reduction of toxic Cr(VI) to non-toxic Cr(III).

  13. Agricultural Bio-Fueled Generation of Electricity and Development of Durable and Efficent NOx Reduction

    SciTech Connect

    Boyd, Rodney

    2007-08-08

    The objective of this project was to define the scope and cost of a technology research and development program that will demonstrate the feasibility of using an off-the-shelf, unmodified, large bore diesel powered generator in a grid-connected application, utilizing various blends of BioDiesel as fuel. Furthermore, the objective of project was to develop an emissions control device that uses a catalytic process and BioDiesel (without the presence of Ammonia or Urea)to reduce NOx and other pollutants present in a reciprocating engine exhaust stream with the goal of redefining the highest emission reduction efficiencies possible for a diesel reciprocating generator. Process: Caterpillar Power Generation adapted an off-the-shelf Diesel Generator to run on BioDiesel and various Petroleum Diesel/BioDiesel blends. EmeraChem developed and installed an exhaust gas cleanup system to reduce NOx, SOx, volatile organics, and particulates. The system design and function was optimized for emissions reduction with results in the 90-95% range;

  14. Reduction in colon cancer risk by consumption of kava or kava fractions in carcinogen-treated rats.

    PubMed

    Triolet, Julie; Shaik, Ahmad Ali; Gallaher, Daniel D; O'Sullivan, Michael G; Xing, Chengguo

    2012-08-01

    Epidemiological studies suggest that kava reduces colon cancer risk. However, no experimental studies of the chemopreventive properties of kava toward colon cancer have been reported. Further, there are concerns regarding hepatotoxicity of kava. The goal of this study was to determine whether kava consumption reduces markers of colon cancer in an animal model and to study the safety of kava. An ethanolic extract and polar and nonpolar fractions of the kava extract were fed to rats for 12 days prior to, during, and after administration of dimethylhydrazine, a colon-specific carcinogen. After 14 wk, rats fed the nonpolar extract had a significant reduction in precancerous lesions [aberrant crypt (AC) foci (ACF)] as well as large (≥ 4 AC/ACF) sialomucin-only expressing foci, an indicator of greater tumorigenic potential, compared to the control group. Groups fed the ethanolic extract and polar kava fraction trended toward reductions in ACF and large sialomucin-only expressing foci. The combined kava groups had significantly fewer total AC, ACF, large ACF, and large sialomucin-only expressing foci compared to the control group. Histological examination found no hepatic lesions in animals consuming the kava diets, suggesting that kava is safe to consume. Our results support that kava may reduce colon cancer risk.

  15. Trends in the size distribution, highway use, and consumption of gasoline and diesel fuels of the U.S. Commercial Truck Fleet, 1977-2002.

    SciTech Connect

    Bertram, K. M.; Santini, D. J.; Anderson, J. L.; Vyas, A. D.

    2008-01-01

    This paper focuses on various major long-range (1977-2002, 1982-2002) U.S. commercial trucking trends by using U.S. Department of Commerce, Bureau of the Census Vehicle/Truck Inventory and Use Survey (VIUS/TIUS) data from this period, as well as selected 1977-2002 data from the U.S. Department of Energy's (DOE's) Energy Information Administration (EIA) and the U.S. Department of Transportation, Federal Highway Administration's (FHWA's) Highway Statistics. Analyses are made of (1) overall passenger vehicle versus truck consumption patterns of gasoline and diesel fuel and (2) the population growth and fuels used by all commercial truck classes and selected truck types (single unit and combination). Selected vehicle miles traveled, gallons per vehicle miles traveled, and gallons per cargo ton-miles traveled trends, as well as the effect of cargo tons per truck on fuel consumption, are also assessed. In addition, long-range trends of related factors (such as long-haul mileages driven by heavy trucks) and their impacts on both reducing fuel consumption per cargo-ton-mile and the relative shares of total commercial fuel use among truck classes were examined. Results of these trends on U.S. petroleum consumption are identified. The effects of basic engineering design and performance, national Interstate highway construction legislation, national demographic trends (such as suburbanization), and changes in U.S. corporate operational requirements are discussed. Their impacts on both the long-distance hauling and shorter-distance urban and suburban delivery markets of the commercial trucking industry are highlighted.

  16. Wildfire, Fuels Reduction, and Herpetofaunas across Diverse Landscape Mosaics in Northwestern Forests

    USGS Publications Warehouse

    Bury, R. Bruce

    2004-01-01

    The herpetofauna (amphibians and reptiles) of northwestern forests (U.S.A.) is diverse, and many species are locally abundant. Most forest amphibians west of the Cascade Mountain crest are associated with cool, cascading streams or coarse woody material on the forest floor, which are characteristics of mature forests. Extensive loss and fragmentation of habitat resulted from logging across approximately 50% of old-growth forests in northern California and approximately 80% of stands in Oregon and Washington. There is a complex landscape mosaic and overlap of northern and southern biotic elements in the Klamath-Siskiyou Region along the Oregon and California border, creating a biodiversity hotspot. The region experiences many low-severity fires annually, punctuated by periodic major fires, including the Biscuit fire, the largest in North America in 2002. In the fire's northern portion, severe fire occurred on >50% of stands of young, managed trees but on only about 25a??33% of old-growth stands. This suggests that the legacy of timber harvest may produce fire-prone stands. Calls for prescribed fire and thinning to reduce fuel loads will remove large amounts of coarse woody material from forests, which reduces cover for amphibians and alters nutrient inputs to streams. Our preliminary evidence suggests no negative effects of wildfire on terrestrial amphibians, but stream amphibians decrease following wildfire. Most reptiles are adapted to open terrain, so fire usually improves their habitat. Today, the challenge is to maintain biodiversity in western forests in the face of intense political pressures designed to 'prevent' catastrophic fires. We need a dedicated research effort to understanding how fire affects biota and to proactively investigate outcomes of fuel-reduction management on wildlife in western forests.

  17. Emission reduction potential of using ethanol-biodiesel-diesel fuel blend on a heavy-duty diesel engine

    NASA Astrophysics Data System (ADS)

    Shi, Xiaoyan; Pang, Xiaobing; Mu, Yujing; He, Hong; Shuai, Shijin; Wang, Jianxin; Chen, Hu; Li, Rulong

    Oxygenated diesel fuel blends have a potential to reduce the emission of particulate matter (PM) and to be an alternative to diesel fuel. This paper describes the emission characteristics of a three compounds oxygenated diesel fuel blend (BE-diesel), on a Cummins-4B diesel engine. BE-diesel is a new form of oxygenated diesel fuel blends consisted of ethanol, methyl soyate and petroleum diesel fuel. The blend ratio used in this study was 5:20:75 (ethanol: methyl soyate: diesel fuel) by volume. The results from the operation of diesel engine with BE-diesel showed a significant reduction in PM emissions and 2%-14% increase of NO x emissions. The change of CO emission was not conclusive and depended on operating conditions. Total hydrocarbon (THC) from BE-diesel was lower than that from diesel fuel under most tested conditions. Formaldehyde, acetaldehyde, propionaldehyde and acetone in the exhaust were measured, and the results indicated that use of BE-diesel led to a slight increase of acetaldehyde, propionaldehyde and acetone emissions. A small amount of ethanol was also detected in the exhaust from burning BE-diesel.

  18. Oxidation and reduction behaviors of a prototypic MgO-PuO2-x inert matrix fuel

    NASA Astrophysics Data System (ADS)

    Miwa, Shuhei; Osaka, Masahiko

    2017-04-01

    Oxidation and reduction behaviors of prototypic MgO-based inert matrix fuels (IMFs) containing PuO2-x were experimentally investigated by means of thermogravimetry. The oxidation and reduction kinetics of the MgO-PuO2-x specimen were determined. The oxidation and reduction rates of the MgO-PuO2-x were found to be low compared with those of PuO2-x. It is note that the changes in O/Pu ratios of MgO-PuO2-x from stoichiometry were smaller than those of PuO2-x at high oxygen partial pressure.

  19. Advection of surface-derived organic carbon fuels microbial reduction in Bangladesh groundwater

    PubMed Central

    Mailloux, Brian J.; Trembath-Reichert, Elizabeth; Cheung, Jennifer; Watson, Marlena; Stute, Martin; Freyer, Greg A.; Ferguson, Andrew S.; Ahmed, Kazi Matin; Alam, Md. Jahangir; Buchholz, Bruce A.; Thomas, James; Layton, Alice C.; Zheng, Yan; Bostick, Benjamin C.; van Geen, Alexander

    2013-01-01

    Chronic exposure to arsenic (As) by drinking shallow groundwater causes widespread disease in Bangladesh and neighboring countries. The release of As naturally present in sediment to groundwater has been linked to the reductive dissolution of iron oxides coupled to the microbial respiration of organic carbon (OC). The source of OC driving this microbial reduction—carbon deposited with the sediments or exogenous carbon transported by groundwater—is still debated despite its importance in regulating aquifer redox status and groundwater As levels. Here, we used the radiocarbon (14C) signature of microbial DNA isolated from groundwater samples to determine the relative importance of surface and sediment-derived OC. Three DNA samples collected from the shallow, high-As aquifer and one sample from the underlying, low-As aquifer were consistently younger than the total sediment carbon, by as much as several thousand years. This difference and the dominance of heterotrophic microorganisms implies that younger, surface-derived OC is advected within the aquifer, albeit more slowly than groundwater, and represents a critical pool of OC for aquifer microbial communities. The vertical profile shows that downward transport of dissolved OC is occurring on anthropogenic timescales, but bomb 14C-labeled dissolved OC has not yet accumulated in DNA and is not fueling reduction. These results indicate that advected OC controls aquifer redox status and confirm that As release is a natural process that predates human perturbations to groundwater flow. Anthropogenic perturbations, however, could affect groundwater redox conditions and As levels in the future. PMID:23487743

  20. Reduction in environmental impact of sulfuric acid hydrolysis of bamboo for production of fuel ethanol.

    PubMed

    Sun, Zhao-Yong; Tang, Yue-Qin; Morimura, Shigeru; Kida, Kenji

    2013-01-01

    Fuel ethanol can be produced from bamboo by concentrated sulfuric acid hydrolysis followed by continuous ethanol fermentation. To reduce the environmental impact of this process, treatment of the stillage, reuse of the sulfuric acid and reduction of the process water used were studied. The total organic carbon (TOC) concentration of stillage decreased from 29,688 to 269 mg/l by thermophilic methane fermentation followed by aerobic treatment. Washing the solid residue from acid hydrolysis with effluent from the biological treatment increased the sugar recovery from 69.3% to 79.3%. Sulfuric acid recovered during the acid-sugar separation process was condensed and reused for hydrolysis, resulting in a sugar recovery efficiency of 76.8%, compared to 80.1% when fresh sulfuric acid was used. After acetate removal, the condensate could be reused as elution water in the acid-sugar separation process. As much as 86.3% of the process water and 77.6% of the sulfuric acid could be recycled.

  1. Porous Carbon Nanosheets Codoped with Nitrogen and Sulfur for Oxygen Reduction Reaction in Microbial Fuel Cells.

    PubMed

    Yuan, Heyang; Hou, Yang; Wen, Zhenhai; Guo, Xiaoru; Chen, Junhong; He, Zhen

    2015-08-26

    In this work, a simple synthesis strategy has been developed for the preparation of nitrogen- and sulfur-codoped porous carbon nanosheets (N/S-CNS) as a cathode catalyst for microbial fuel cells (MFCs). The as-prepared N/S-CNS showed favorable features for electrochemical energy conversion such as high surface area (1004 m(2) g(-1)), defect structure, and abundant exposure of active sites that arose primarily from porous nanosheet morphology. Benefiting from the unique nanostructure, the resulting nanosheets exhibited effective electrocatalytic activity toward oxygen reduction reaction (ORR). The onset potential of the N/S-CNS in linear-sweep voltammetry was approximately -0.05 V vs Ag/AgCl in neutral phosphate buffer saline. Electrochemical impedance spectroscopy showed that the ohmic and charge-transfer resistance of the codoped catalyst were 1.5 and 14.8 Ω, respectively, both of which were lower than that of platinum/carbon (Pt/C). Furthermore, the electron-transfer number of the N/S-CNS was calculated to be ∼3.5, suggesting that ORR on the catalyst proceeds predominantly through the favorable four-electron pathway. The MFC with N/S-CNS as a cathode catalyst generated current density (6.6 A m(-2)) comparable to that with Pt/C (7.3 A m(-2)). The high durability and low price indicate that N/S-CNS can be a competitive catalyst for applications of MFCs.

  2. Minimum Specific Fuel Consumption of a Liquid-Cooled Multicylinder Aircraft Engine as Affected by Compression Ratio and Engine Operating Conditions

    NASA Technical Reports Server (NTRS)

    Brun, Rinaldo J.; Feder, Melvin S.; Harries, Myron L.

    1947-01-01

    An investigation was conducted on a 12-cylinder V-type liquid-cooled aircraft engine of 1710-cubic-inch displacement to determine the minimum specific fuel consumption at constant cruising engine speed and compression ratios of 6.65, 7.93, and 9.68. At each compression ratio, the effect.of the following variables was investigated at manifold pressures of 28, 34, 40, and 50 inches of mercury absolute: temperature of the inlet-air to the auxiliary-stage supercharger, fuel-air ratio, and spark advance. Standard sea-level atmospheric pressure was maintained at the auxiliary-stage supercharger inlet and the exhaust pressure was atmospheric. Advancing the spark timing from 34 deg and 28 deg B.T.C. (exhaust and intake, respectively) to 42 deg and 36 deg B.T.C. at a compression ratio of 6.65 resulted in a decrease of approximately 3 percent in brake specific fuel consumption. Further decreases in brake specific fuel consumption of 10.5 to 14.1 percent (depending on power level) were observed as the compression ratio was increased from 6.65 to 9.68, maintaining at each compression ratio the spark advance required for maximum torque at a fuel-air ratio of 0.06. This increase in compression ratio with a power output of 0.585 horsepower per cubic inch required a change from . a fuel- lend of 6-percent triptane with 94-percent 68--R fuel at a compression ratio of 6.65 to a fuel blend of 58-percent, triptane with 42-percent 28-R fuel at a compression ratio of 9.68 to provide for knock-free engine operation. As an aid in the evaluation of engine mechanical endurance, peak cylinder pressures were measured on a single-cylinder engine at several operating conditions. Peak cylinder pressures of 1900 pounds per square inch can be expected at a compression ratio of 9.68 and an indicated mean effective pressure of 320 pounds per square inch. The engine durability was considerably reduced at these conditions.

  3. A repeated cross-sectional study of socio-economic inequities in dietary sodium consumption among Canadian adults: implications for national sodium reduction strategies

    PubMed Central

    2014-01-01

    Introduction In many countries including Canada, excess consumption of dietary sodium is common, and this has adverse implications for population health. Socio-economic inequities in sodium consumption seem likely, but research is limited. Knowledge of socio-economic inequities in sodium consumption is important for informing population-level sodium reduction strategies, to ensure that they are both impactful and equitable. Methods We examined the association between socio-economic indicators (income and education) and sodium, using two outcome variables: 1) sodium consumption in mg/day, and 2) reported use of table salt, in two national surveys: the 1970/72 Nutrition Canada Survey and the 2004 Canadian Community Health Survey, Cycle 2.2. This permitted us to explore whether there were any changes in socio-economic patterning in dietary sodium during a time period characterized by modest, information-based national sodium reduction efforts, as well as to provide baseline information against which to examine the impact (equitable or not) of future sodium reduction strategies in Canada. Results There was no evidence of a socio-economic inequity in sodium consumption (mg/day) in 2004. In fact findings pointed to a positive association in women, whereby women of higher education consumed more sodium than women of lower education in 2004. For men, income was positively associated with reported use of table salt in 1970/72, but negatively associated in 2004. Conclusions An emerging inequity in reported use of table salt among men could reflect the modest, information-based sodium reduction efforts that were implemented during the time frame considered. However, for sodium consumption in mg/day, we found no evidence of a contemporary inequity, and in fact observed the opposite effect among women. Our findings could reflect data limitations, or they could signal that sodium differs from some other nutrients in terms of its socio-economic patterning, perhaps reflecting very

  4. Analysis of the CO2, NOx emission and fuel consumption from a heavy-duty vehicle designed for carriage of timber

    NASA Astrophysics Data System (ADS)

    Fuc, P.; Lijewski, P.; Ziolkowski, A.

    2016-09-01

    The paper presents the results of measurements of the CO2 and NOx emission and fuel consumption recorded under actual operating conditions of a heavy-duty vehicle designed for loading and carriage of timber. The tests were performed on a specially designed test route that reflected the arrival of the vehicle to the felling site in the forest, the loading process and return to the lumberyard. The route ran through paved (asphalt) and unpaved (forest) portions. Its total length was 8.6 km. An advanced PEMS (Portable Emission Measurement System) device was used for the measurement of the exhaust emissions - SEMTECH DS by Sensors Inc. The paper analyses the CO2 and NOx emission and fuel consumption on all portions of the test route and presents a comparison between the forest and asphalt roads.

  5. OPTIMIZED FUEL INJECTOR DESIGN FOR MAXIMUM IN-FURNACE NOx REDUCTION AND MINIMUM UNBURNED CARBON

    SciTech Connect

    SAROFIM, A F; LISAUSKAS, R; RILEY, D; EDDINGS, E G; BROUWER, J; KLEWICKI, J P; DAVIS, K A; BOCKELIE, M J; HEAP, M P; PERSHING, D

    1998-01-01

    Reaction Engineering International (REI) has established a project team of experts to develop a technology for combustion systems which will minimize NO x emissions and minimize carbon in the fly ash. This much need technology will allow users to meet environmental compliance and produce a saleable by-product. This study is concerned with the NO x control technology of choice for pulverized coal fired boilers,"in-furnace NOx control," which includes: staged low-NOx burners, reburning, selective non-catalytic reduction (SNCR) and hybrid approaches (e.g., reburning with SNCR). The program has two primary objectives: 1) To improve the performance of "in-furnace" NOx control, processes. 2) To devise new, or improve existing, approaches for maximum "in-furnace" NOx control and minimum unburned carbon. The program involves: 1) fundamental studies at laboratory- and bench-scale to define NO reduction mechanisms in flames and reburning jets; 2) laboratory experiments and computer modeling to improve our two-phase mixing predictive capability; 3) evaluation of commercial low-NOx burner fuel injectors to develop improved designs, and 4) demonstration of coal injectors for reburning and low-NOx burners at commercial scale. The specific objectives of the two-phase program are to: 1 Conduct research to better understand the interaction of heterogeneous chemistry and two phase mixing on NO reduction processes in pulverized coal combustion. 2 Improve our ability to predict combusting coal jets by verifying two phase mixing models under conditions that simulate the near field of low-NOx burners. 3 Determine the limits on NO control by in-furnace NOx control technologies as a function of furnace design and coal type. 5 Develop and demonstrate improved coal injector designs for commercial low-NOx burners and coal reburning systems. 6 Modify the char burnout model in REI's coal

  6. Phosphorus-doped carbon nanotubes supported low Pt loading catalyst for the oxygen reduction reaction in acidic fuel cells

    NASA Astrophysics Data System (ADS)

    Liu, Ziwu; Shi, Qianqian; Zhang, Rufan; Wang, Quande; Kang, Guojun; Peng, Feng

    2014-12-01

    To develop low-cost and efficient cathode electrocatalysts for fuel cells in acidic media, phosphorus-doped carbon nanotubes (P-CNTs) supported low Pt loading catalyst (0.85% Pt) is designed. The as-prepared Pt/P-CNTs exhibit significantly enhanced electrocatalytic oxygen reduction reaction (ORR) activity and long-term stability due to the stronger interaction between Pt and P-CNTs, which is proven by X-ray photoelectron spectroscopic analysis and density functional theory calculations. Moreover, the as-prepared Pt/P-CNTs also display much better tolerance to methanol crossover effects, showing a good potential application for future proton exchange membrane fuel cell devices.

  7. Forest fuel reduction alters fire severity and long-term carbon storage in three Pacific Northwest ecosystems.

    PubMed

    Mitchell, Stephen R; Harmon, Mark E; O'Connell, Kari E B

    2009-04-01

    Two forest management objectives being debated in the context of federally managed landscapes in the U.S. Pacific Northwest involve a perceived trade-off between fire restoration and carbon sequestration. The former strategy would reduce fuel (and therefore C) that has accumulated through a century of fire suppression and exclusion which has led to extreme fire risk in some areas. The latter strategy would manage forests for enhanced C sequestration as a method of reducing atmospheric CO2 and associated threats from global climate change. We explored the trade-off between these two strategies by employing a forest ecosystem simulation model, STANDCARB, to examine the effects of fuel reduction on fire severity and the resulting long-term C dynamics among three Pacific Northwest ecosystems: the east Cascades ponderosa pine forests, the west Cascades western hemlock-Douglas-fir forests, and the Coast Range western hemlock-Sitka spruce forests. Our simulations indicate that fuel reduction treatments in these ecosystems consistently reduced fire severity. However, reducing the fraction by which C is lost in a wildfire requires the removal of a much greater amount of C, since most of the C stored in forest biomass (stem wood, branches, coarse woody debris) remains unconsumed even by high-severity wildfires. For this reason, all of the fuel reduction treatments simulated for the west Cascades and Coast Range ecosystems as well as most of the treatments simulated for the east Cascades resulted in a reduced mean stand C storage. One suggested method of compensating for such losses in C storage is to utilize C harvested in fuel reduction treatments as biofuels. Our analysis indicates that this will not be an effective strategy in the west Cascades and Coast Range over the next 100 years. We suggest that forest management plans aimed solely at ameliorating increases in atmospheric CO2 should forgo fuel reduction treatments in these ecosystems, with the possible exception of

  8. Greenhouse Gas and Criteria Air Pollutant Emission Reductions from Forest Fuel Treatment Projects in Placer County, California

    NASA Astrophysics Data System (ADS)

    Saah, D. S.; Moritz, M.; Ganz, D. J.; Stine, P. A.; Moody, T.

    2010-12-01

    Years of successful fire suppression activities have left forests unnaturally dense, overstocked, and with high hazardous fuel loads. Wildfires, particularly those of high severity, may dramatically reduce carbon stocks and convert forested lands from carbon sinks to decades-long carbon sources . Forest resource managers are currently pursuing fuels reduction and mitigation strategies to reduce wildfire risk and maintain carbon stocks. These projects include selective thinning and removal of trees and brush to return forest ecosystems to more natural stocking levels, resulting in a more fire-resilient forest that in theory would retain higher carry capacity for standing above ground carbon. Resource managers are exploring the possibility of supporting these local forest management projects by offering greenhouse gas (GHG) offsets to project developers that require GHG emissions mitigation. Using robust field data, this research project modeled three types of carbon benefits that could be realized from forest management: 1. Fuels treatments in the study area were shown to reduce the GHG and Criteria Air Pollutant emissions from wildfires by decreasing the probability, extent, and severity of fires and the corresponding loss in forest carbon stocks; 2. Biomass utilization from fuel treatment was shown to reduce GHG and Criteria Air Pollutant emissions over the duration of the fuels treatment project compared to fossil fuel energy. 3. Management and thinning of forests in order to stimulate growth, resulting in more rapid uptake of atmospheric carbon and approaching a carbon carrying capacity stored in a forest ecosystem under prevailing environmental conditions and natural disturbance regimes.

  9. Oxygen consumption and filtering rate of Daphnia Pulex after exposure to water-soluble fractions of naphthalene, phenanthrene, No. 2 fuel oil, and coal-tar creosote

    SciTech Connect

    Geiger, J.G.; Buikema, A.L.

    1981-12-01

    The effects of short-term exposure to water-soluble fractions (WSF) of naphthalene, phenanthrene, No. 2 fuel oil, and coal-tar creosote upon oxygen consumption and filtering rates of Daphnia pulex are examined. Approximately 60 young Daphnia were exposed to test solutions of LC20 and LC30 concentrations of WSF for at least three molt cycles. Oxygen consumption was determined by the azide modification of the Winkler Method (American Public Health Association et al. 1975). Algal counts were made for experimental and control bottles using an Electrozone electronic particle counter interfaced with a PDP-11 minicomputer. Filtering rates were computed and expressed as ml/Daphnia/day. Results indicate no significant differences in oxygen consumption rates. However, changes in filtering rates may be a sensitive indicator of sublethal stress. 3 tables (JMT)

  10. The relationship between air pollution, fossil fuel energy consumption, and water resources in the panel of selected Asia-Pacific countries.

    PubMed

    Rafindadi, Abdulkadir Abdulrashid; Yusof, Zarinah; Zaman, Khalid; Kyophilavong, Phouphet; Akhmat, Ghulam

    2014-10-01

    The objective of the study is to examine the relationship between air pollution, fossil fuel energy consumption, water resources, and natural resource rents in the panel of selected Asia-Pacific countries, over a period of 1975-2012. The study includes number of variables in the model for robust analysis. The results of cross-sectional analysis show that there is a significant relationship between air pollution, energy consumption, and water productivity in the individual countries of Asia-Pacific. However, the results of each country vary according to the time invariant shocks. For this purpose, the study employed the panel least square technique which includes the panel least square regression, panel fixed effect regression, and panel two-stage least square regression. In general, all the panel tests indicate that there is a significant and positive relationship between air pollution, energy consumption, and water resources in the region. The fossil fuel energy consumption has a major dominating impact on the changes in the air pollution in the region.

  11. Estimated performance of an adaptive trailing-edge device aimed at reducing fuel consumption on a medium-size aircraft

    NASA Astrophysics Data System (ADS)

    Diodati, Gianluca; Concilio, Antonio; Ricci, Sergio; De Gaspari, Alessandro; Huvelin, Fabien; Dumont, Antoine; Godard, Jean-Luc

    2013-03-01

    This paper deals with the estimation of the performance of a medium-size aircraft (3-hour flight range) equipped with an adaptive trailing edge device (ATED) that runs span-wise from the wing root in the flap zone and extends chord-wise for a limited percentage of the MAC. Computations are calculated referring to the full wing and do not refer to the complete aircraft configuration. Aerodynamic computations, taking into account ideal shapes, have been performed by using both Euler and Navier- Stokes method in order to extract the wing polars for the reference and the optimal wing, implementing an ATED, deflected upwards and downwards. A comparison of the achieved results is discussed. Considering the shape domain, a suitable interpolation procedure has been set up to obtain the wing polar envelop of the adaptive wing, intended as the set of "best" values, picked by each different polar. At the end, the performances of the complete reference and adaptive wing are computed and compared for a symmetric, centered, leveled and steady cruise flight for a medium size aircraft. A significant fuel burn reduction estimate or, alternatively, an increased range capability is demonstrated, with margins of further improvements. The research leading to these results has gratefully received funding from the European Union Seventh Framework Programme (FP7/2007- 2013) under Grant Agreement n° 284562.

  12. A study of NO{sub x} reduction by fuel injection recirculation. Topical report, January 1995--May 1995

    SciTech Connect

    Turns, S.R.; Feese, J.J.; Frenklach, M.Y.

    1995-07-01

    Flue-gas recirculation (FGR) is a well-known method used to control oxides of nitrogen (NO{sub x}) in industrial burner applications. Recent small- and large-scale experiments by Carnot (Tustin, CA) have shown that introducing the recirculated flue gases with the fuel results in a much greater reduction in NO{sub x}, per unit mass of gas recirculated, in comparison to introducing the flue gases with the combustion air. That fuel injection recirculation (FIR) is more effective than windbox FGR is quite remarkable. At present, however, there is no definitive understanding of why FIR is more effective than conventional FGR. One speculation is that introducing the diluent gases on the fuel side of the flame affects the prompt-NO mechanism causing the greater effectiveness. The objective of our research is to ascertain whether or not chemical and/or molecular transport effects alone can explain the differences in NO{sub x} reduction observed between FIR and FGR. This knowledge will aid in the rational application and optimization of FIR in a wide variety of industrial applications. A combined modeling and experimental program is in progress to achieve the research objectives. This report discusses computer modeling studies of counterflow diffusion flames employing detailed chemical kinetics for fuel (hydrogen or methane) combustion and NO{sub x} formation. These simulations allow the calculation of NO{sub x} emission indices for a wide range of conditions. Parametric studies were conducted in which the diluent was added either on the fuel or air side of the flame for a wide range of flow conditions. Preliminary results from these simulation studies indicate that a major factor in FIR effectiveness is the differential effect on flame zone residence times associated with fuel-side versus air-side dilution.

  13. A micro-nano porous oxide hybrid for efficient oxygen reduction in reduced-temperature solid oxide fuel cells.

    PubMed

    Da Han; Liu, Xuejiao; Zeng, Fanrong; Qian, Jiqin; Wu, Tianzhi; Zhan, Zhongliang

    2012-01-01

    Tremendous efforts to develop high-efficiency reduced-temperature (≤ 600°C) solid oxide fuel cells are motivated by their potentials for reduced materials cost, less engineering challenge, and better performance durability. A key obstacle to such fuel cells arises from sluggish oxygen reduction reaction kinetics on the cathodes. Here we reported that an oxide hybrid, featuring a nanoporous Sm(0.5)Sr(0.5)CoO(3-δ) (SSC) catalyst coating bonded onto the internal surface of a high-porosity La(0.9)Sr(0.1)Ga(0.8)Mg(0.2)O(3-δ) (LSGM) backbone, exhibited superior catalytic activity for oxygen reduction reactions and thereby yielded low interfacial resistances in air, e.g., 0.021 Ω cm(2) at 650°C and 0.043 Ω cm(2) at 600°C. We further demonstrated that such a micro-nano porous hybrid, adopted as the cathode in a thin LSGM electrolyte fuel cell, produced impressive power densities of 2.02 W cm(-2) at 650°C and 1.46 W cm(-2) at 600°C when operated on humidified hydrogen fuel and air oxidant.

  14. A micro-nano porous oxide hybrid for efficient oxygen reduction in reduced-temperature solid oxide fuel cells

    PubMed Central

    Da Han; Liu, Xuejiao; Zeng, Fanrong; Qian, Jiqin; Wu, Tianzhi; Zhan, Zhongliang

    2012-01-01

    Tremendous efforts to develop high-efficiency reduced-temperature (≤ 600°C) solid oxide fuel cells are motivated by their potentials for reduced materials cost, less engineering challenge, and better performance durability. A key obstacle to such fuel cells arises from sluggish oxygen reduction reaction kinetics on the cathodes. Here we reported that an oxide hybrid, featuring a nanoporous Sm0.5Sr0.5CoO3−δ (SSC) catalyst coating bonded onto the internal surface of a high-porosity La0.9Sr0.1Ga0.8Mg0.2O3−δ (LSGM) backbone, exhibited superior catalytic activity for oxygen reduction reactions and thereby yielded low interfacial resistances in air, e.g., 0.021 Ω cm2 at 650°C and 0.043 Ω cm2 at 600°C. We further demonstrated that such a micro-nano porous hybrid, adopted as the cathode in a thin LSGM electrolyte fuel cell, produced impressive power densities of 2.02 W cm−2 at 650°C and 1.46 W cm−2 at 600°C when operated on humidified hydrogen fuel and air oxidant. PMID:22708057

  15. Isolation and bioelectrochemical characterization of novel fungal sources with oxidasic activity applied in situ for the cathodic oxygen reduction in microbial fuel cells.

    PubMed

    Morant, Kyriale Vasconcelos; da Silva, Paulo Henrique; de Campos-Takaki, Galba Maria; Hernández, Camilo Enrique La Rotta

    2014-11-01

    Brazilian filamentous fungi Rhizopus sp. (SIS-31), Aspergillus sp. (SIS-18) and Penicillium sp. (SIS-21), sources of oxidases were isolated from Caatinga's soils and applied during the in situ cathodic oxygen reduction in fuel cells. All strains were cultivated in submerged cultures using an optimized saline medium enriched with 10 g L(-1) of glucose, 3.0 g L(-1) of peptone and 0.0005 g L(-1) of CuSO4 as enzyme inducer. Parameters of oxidase activity, glucose consumption and microbial growth were evaluated. In-cell experiments evaluated by chronoamperometry were performed and two different electrode compositions were also compared. Maximum current densities of 125.7, 98.7 and 11.5 μA cm(-2) were observed before 24 h and coulombic efficiencies of 56.5, 46.5 and 23.8% were obtained for SIS-31, SIS-21 and SIS-18, respectively. Conversely, maximum power outputs of 328.73, 288.80 and 197.77 mW m(-3) were observed for SIS-18, SIS-21 and SIS-31, respectively. This work provides the primary experimental evidences that fungi isolated from the Caatinga region in Brazil can serve as efficient biocatalysts during the oxygen reduction in air-cathodes to improve electricity generation in MFCs.

  16. Engine performance with a hydrogenated safety fuel

    NASA Technical Reports Server (NTRS)

    Schey, Oscar W; Young, Alfred W

    1933-01-01

    This report presents the results of an investigation to determine the engine performance obtained with a hydrogenated safety fuel developed to eliminate fire hazard. The tests were made on a single-cylinder universal test engine at compression ratios of 5.0, 5.5, and 6.0. Most of the tests were made with a fuel-injection system, although one set of runs was made with a carburetor when using gasoline to establish comparative performance. The tests show that the b.m.e.p. obtained with safety fuel when using a fuel-injection system is slightly higher than that obtained with gasoline when using a carburetor, although the fuel consumption with safety fuel is higher. When the fuel-injection system is used with each fuel and with normal engine temperatures the b.m.e.p. with safety fuel is from 2 to 4 percent lower than with gasoline and the fuel consumption about 25 to 30 percent higher. However, a few tests at an engine coolant temperature of 250 F have shown a specific fuel consumption approximating that obtained with gasoline with only a slight reduction in power. The idling of the test engine was satisfactory with the safety fuel. Starting was difficult with a cold engine but could be readily accomplished when the jacket water was hot. It is believed that the use of the safety fuel would practically eliminate crash fires.

  17. Nonproliferation and safeguards aspects of fuel cycle programs in reduction of excess separated plutonium and high-enriched uranium

    SciTech Connect

    Persiani, P.J.

    1995-06-01

    The purpose of this preliminary investigation is to explore alternatives and strategies aimed at the gradual reduction of the excess inventories of separated plutonium and high-enriched uranium (HEU) in the civilian nuclear power industry. The study attempts to establish a technical and economic basis to assist in the formation of alternative approaches consistent with nonproliferation and safeguards concerns. Reference annual mass flows and inventories for a representative 1,400 Mwe Pressurized Water Reactor (PWR) fuel cycle have been investigated for three cases: the 100 percent uranium oxide UO{sub 2} fuel loading once through cycle, and the 33 percent mixed oxide MOX loading configuration for a first and second plutonium recycle. The analysis addresses fuel cycle developments; plutonium and uranium inventory and flow balances; nuclear fuel processing operations; UO{sub 2} once-through and MOX first and second recycles; and the economic incentives to draw-down the excess separated plutonium stores. The preliminary analysis explores several options in reducing the excess separated plutonium arisings and HEU, and the consequences of the interacting synergistic effects between fuel cycle processes and isotopic signatures of nuclear materials on nonproliferation and safeguards policy assessments.

  18. EVALUATION OF TIRE-DERIVED FUEL FOR USE IN NITROGEN OXIDE REDUCTION BY REBURNING

    EPA Science Inventory

    Tire-derived fuel (TDF) was tested in a small-scale (44 kW or 150,000 Btu/hr) combustor to determine its feasibility as a fuel for use in reburning for control of nitrogen oxide (NO). TDF was gravity-fed into upward flowing combustion gases from a primary natural gas flame doped ...

  19. ERBS fuel addendum: Pollution reduction technology program small jet aircraft engines, phase 3

    NASA Technical Reports Server (NTRS)

    Bruce, T. W.; Davis, F. G.; Kuhn, T. E.; Mongia, H. C.

    1982-01-01

    A Model TFE731-2 engine with a low emission, variable geometry combustion system was tested to compare the effects of operating the engine on Commercial Jet-A aviation turbine fuel and experimental referee broad specification (ERBS) fuels. Low power emission levels were essentially identical while the high power NOx emission indexes were approximately 15% lower with the EBRS fuel. The exhaust smoke number was approximately 50% higher with ERBS at the takeoff thrust setting; however, both values were still below the EPA limit of 40 for the Model TFE731 engine. Primary zone liner wall temperature ran an average of 25 K higher with ERBS fuel than with Jet-A. The possible adoption of broadened proprties fuels for gas turbine applications is suggested.

  20. Peak-Seeking Control For Reduced Fuel Consumption: Flight-Test Results For The Full-Scale Advanced Systems Testbed FA-18 Airplane

    NASA Technical Reports Server (NTRS)

    Brown, Nelson

    2013-01-01

    A peak-seeking control algorithm for real-time trim optimization for reduced fuel consumption has been developed by researchers at the National Aeronautics and Space Administration (NASA) Dryden Flight Research Center to address the goals of the NASA Environmentally Responsible Aviation project to reduce fuel burn and emissions. The peak-seeking control algorithm is based on a steepest-descent algorithm using a time-varying Kalman filter to estimate the gradient of a performance function of fuel flow versus control surface positions. In real-time operation, deflections of symmetric ailerons, trailing-edge flaps, and leading-edge flaps of an F/A-18 airplane are used for optimization of fuel flow. Results from six research flights are presented herein. The optimization algorithm found a trim configuration that required approximately 3 percent less fuel flow than the baseline trim at the same flight condition. This presentation also focuses on the design of the flight experiment and the practical challenges of conducting the experiment.

  1. Reduction of fuel side costs due to biomass co-combustion.

    PubMed

    Wils, Andrea; Calmano, Wolfgang; Dettmann, Peter; Kaltschmitt, Martin; Ecke, Holger

    2012-03-15

    The feasibility and influence of co-combustion of woody biomass on the fuel side costs is discussed for three hard coal power plants located in Berlin, Germany. Fuel side costs are defined as the costs resulting from flue gas cleaning and by-products. To have reliable data, co-firing tests were conducted in two power plants (i.e., slag tap furnace and circulating fluidising bed combustion). The amount of wood which was co-fired varied at levels below 11% of the fuel heat input. Wood chips originating from landscape management were used. The analyses show that co-combustion of woody biomass can lower the fuel side costs and that the co-combustion at a level below 10% of the thermal capacity is technically feasible without major problems. Furthermore, a flexible spreadsheet tool was developed for the calculation of fuel side costs and suggestions for operational improvements were made. For example, the adaptation of the Ca/S ratio (mass ratio of calcium in limestone to sulphur in the fuel) in one plant could reduce the fuel side costs up to 135 k€ yr(-1) (0.09 €M Wh(-1)).

  2. 14 CFR 291.44 - BTS Schedule P-12(a), Fuel Consumption by Type of Service and Entity.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS CARGO OPERATIONS IN INTERSTATE AIR...) Each air carrier shall maintain records for each station showing the computation of fuel inventories... other than Jet A fuel, a footnote shall be added indicating the number of gallons and applicable...

  3. A salt reduction of 50% in bread does not decrease bread consumption or increase sodium intake by the choice of sandwich fillings.

    PubMed

    Bolhuis, Dieuwerke P; Temme, Elisabeth H M; Koeman, Fari T; Noort, Martijn W J; Kremer, Stefanie; Janssen, Anke M

    2011-12-01

    Bread is a major contributor to sodium intake in many countries. Reducing the salt (NaCl) content in bread might be an effective way to reduce overall sodium intake. The objectives of this study were to examine the effects of gradually lowering the salt content in brown bread, with and without flavor compensation (KCl and yeast extract), on bread consumption and sodium intake compensation by choice of sandwich fillings. A total of 116 participants (age: 21 ± 3 y; BMI: 22 ± 2 kg/m²) consumed a buffet-style breakfast on weekdays for 4 wk. Participants received either regular bread (control group: n = 39), bread whose salt content was gradually lowered each week by 0, 31, 52, and 67% (reduced group: n = 38), or bread whose salt content was also gradually lowered each week but which was also flavor compensated (compensated group: n = 39). A reduction of up to 52% of salt in bread did not lead to lower consumption of bread compared to the control (P = 0.57), whereas less bread was consumed when salt was reduced by 67% (P = 0.006). When bread was flavor compensated, however, a reduction of 67% did not lead to lower consumption (P = 0.69). Salt reduction in bread (with and without flavor compensation) did not induce sodium intake compensation (P = 0.31). In conclusion, a salt reduction of up to 52% in bread or even up to 67% in flavor-compensated bread neither affected bread consumption nor choice of sandwich fillings.

  4. Low-Emissions Burner Technology using Biomass-Derived Liquid Fuels

    SciTech Connect

    2010-07-01

    The University of Alabama will develop fuel-flexible, low-emissions burner technology for the metal processing industry that is capable of using biomass-derived liquid fuels, such as glycerin or fatty acids, as a substitute for natural gas. By replacing a fossil fuel with biomass fuels, this new burner will enable a reduction in energy consumption and greenhouse gas emissions and an increase in fuel flexibility.

  5. Highly efficient visible light photocatalytic reduction of CO2 to hydrocarbon fuels by Cu-nanoparticle decorated graphene oxide.

    PubMed

    Shown, Indrajit; Hsu, Hsin-Cheng; Chang, Yu-Chung; Lin, Chang-Hui; Roy, Pradip Kumar; Ganguly, Abhijit; Wang, Chen-Hao; Chang, Jan-Kai; Wu, Chih-I; Chen, Li-Chyong; Chen, Kuei-Hsien

    2014-11-12

    The production of renewable solar fuel through CO2 photoreduction, namely artificial photosynthesis, has gained tremendous attention in recent times due to the limited availability of fossil-fuel resources and global climate change caused by rising anthropogenic CO2 in the atmosphere. In this study, graphene oxide (GO) decorated with copper nanoparticles (Cu-NPs), hereafter referred to as Cu/GO, has been used to enhance photocatalytic CO2 reduction under visible-light. A rapid one-pot microwave process was used to prepare the Cu/GO hybrids with various Cu contents. The attributes of metallic copper nanoparticles (∼4-5 nm in size) in the GO hybrid are shown to significantly enhance the photocatalytic activity of GO, primarily through the suppression of electron-hole pair recombination, further reduction of GO's bandgap, and modification of its work function. X-ray photoemission spectroscopy studies indicate a charge transfer from GO to Cu. A strong interaction is observed between the metal content of the Cu/GO hybrids and the rates of formation and selectivity of the products. A factor of greater than 60 times enhancement in CO2 to fuel catalytic efficiency has been demonstrated using Cu/GO-2 (10 wt % Cu) compared with that using pristine GO.

  6. Nicotinic acetylcholine receptors containing the α4 subunit are critical for the nicotine-induced reduction of acute voluntary ethanol consumption.

    PubMed

    Hendrickson, Linzy M; Gardner, Paul; Tapper, Andrew R

    2011-01-01

    Recently, we investigated the molecular mechanisms of the smoking cessation drug varenicline, a nicotinic acetylcholine receptor (nAChR) partial agonist, in its ability to decrease voluntary ethanol intake in mice. Previous to our study, other labs had shown that this drug can decrease ethanol consumption and seeking in rat models of ethanol intake. Although varenicline was designed to be a high affinity partial agonist of nAChRs containing the α4 and β2 subunits (designated as α4β2*), at higher concentrations it can also act upon α3β2*, α6*, α3β4* and α7 nAChRs. Therefore, to further elucidate the nAChR subtype responsible for varenicline-induced reduction of ethanol consumption, we utilized a pharmacological approach in combination with two complimentary nAChR genetic mouse models, a knock-out line that does not express the α4 subunit (α4 KO) and another line that expresses α4* nAChRs hypersensitive to agonist (the Leu9'Ala line). We found that activation of α4* nAChRs was necessary and sufficient for varenicline-induced reduction of alcohol consumption. Consistent with this result, here we show that a more efficacious nAChR agonist, nicotine, also decreased voluntary ethanol intake, and that α4* nAChRs are critical for this reduction.

  7. Phosphoric acid impurities in phosphoric acid fuel cell electrolytes. 2: Effects on the oxygen reduction reaction at platinum electrodes

    SciTech Connect

    Sugishima, Noboru; Hinatsu, J.T.; Foulkes, F.R. . Dept. of Chemical Engineering and Applied Chemistry)

    1994-12-01

    The effects of phosphorus acid additions on the oxygen reduction reaction at platinum electrodes in concentrated phosphoric acid were studied. The oxygen reduction currents decreased, and the Tafel slopes became more negative upon the addition of small concentrations of phosphorus acid. In addition,the phosphorus acid oxidation current tended to complete with the oxygen reduction current. These effects became more pronounced at higher phosphorus acid concentrations and at higher temperatures. Upon the addition of phosphorus acid the number of electrons involved in the oxygen reduction reaction decreased from a value close to four to a value approaching two, suggesting promotion of a two-electron reduction to peroxide. Therefore, in studies of the electrochemical reduction of oxygen in hot concentrated phosphoric acid or in fuel cell systems using hot concentrated phosphoric acid as electrolyte, it is recommended that precautions be taken against the inadvertent formation of the phosphorus acid. The removal of phosphorus acid from concentrated phosphoric acid by repeated potential cycling at 100 mV/s between + 0.5 and +1.50 V (vs. dynamic hydrogen electrode) was demonstrated.

  8. Do biomass fuel use and consumption of unsafe water mediate educational inequalities in stillbirth risk? An analysis of the 2007 Ghana Maternal Health Survey

    PubMed Central

    Näyhä, Simo; Jaakkola, Jouni J K

    2017-01-01

    Background Numerous studies have explored the association between educational inequalities and stillbirth but most have failed to elaborate how low educational attainment leads to an increased risk of stillbirth. We hypothesised that use of biomass fuels and consumption of unsafe water related to low educational attainment could explain the stillbirth burden in Ghana attributable to socioeconomic disadvantage. Methods Data from the 2007 Ghana Maternal Health Survey, a nationally representative population-based survey were analysed for this study. Of the10 370 women aged 15–49 years interviewed via structured questionnaires for the survey, 7183 primiparous and multiparous women qualified for inclusion in the present study. Results In a logistic regression analysis that adjusted for age, area of residence, marital status and ethnicity of women, lower maternal primary education was associated with a 62% (OR=1.62; 95% CI 1.04 to 2.52) increased lifetime risk of stillbirth. Biomass fuel use and consumption of unsafe water mediated 18% and 8% of the observed effects, respectively. Jointly these two exposures explained 24% of the observed effects. The generalised additive modelling revealed a very flat inverted spoon-shaped smoothed curve which peaked at low levels of schooling (2–3 years) and confirms the findings from the logistic regression analysis. Conclusions Our results show that biomass fuel use and unsafe water consumption could be important pathways through which low maternal educational attainment leads to stillbirths in Ghana and similar developing countries. Addressing educational inequalities in developing countries is thus essential for ensuring household choices that curtail environmental exposures and help improve pregnancy outcomes. PMID:28174221

  9. Computer program for prediction of fuel consumption statistical data for an upper stage three-axes stabilized on-off control system

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A FORTRAN coded computer program and method to predict the reaction control fuel consumption statistics for a three axis stabilized rocket vehicle upper stage is described. A Monte Carlo approach is used which is more efficient by using closed form estimates of impulses. The effects of rocket motor thrust misalignment, static unbalance, aerodynamic disturbances, and deviations in trajectory, mass properties and control system characteristics are included. This routine can be applied to many types of on-off reaction controlled vehicles. The pseudorandom number generation and statistical analyses subroutines including the output histograms can be used for other Monte Carlo analyses problems.

  10. The potential effect of future energy-efficiency and emissions-improving technologies on fuel consumption of heavy trucks.

    SciTech Connect

    Vyas, A.; Saricks, C.; Stodolsky, F.

    2003-03-14

    Researchers at Argonne National Laboratory analyzed heavy-duty truck technologies to support the Energy Information Administration's long-term energy use projections. Researchers conducted an analysis of several technology options that have potential to improve heavy truck fuel economy and emissions characteristics. The technologies are grouped as fuel-economy-enhancing and emissions-improving. Each technology's potential impact on heavy truck fuel economy has been estimated, as has the cost of implementation. The extent of technology penetration is estimated on the basis of truck data analyses and technical judgment.

  11. Carbon dioxide emissions from fossil fuel consumption and cement manufacture, 1751-1991; and an estimate of their isotopic composition and latitudinal distribution

    SciTech Connect

    Andres, R.J.; Marland, G.; Boden, T.; Bischof, S.

    1994-10-01

    This work briefly discusses four of the current research emphases at Oak Ridge National Laboratory regarding the emission of carbon dioxide (CO{sub 2}) from fossil fuel consumption, natural gas flaring and cement manufacture. These emphases include: (1) updating the 1950 to present time series of CO{sub 2} emissions from fossil fuel consumption and cement manufacture, (2) extending this time series back to 1751, (3) gridding the data at 1{sup 0} by 1{sup 0} resolution, and (4) estimating the isotopic signature of these emissions. In 1991, global emissions of CO{sub 2} from fossil fuel and cement increased 1.5% over 1990 levels to 6188 {times} 10{sup 6} metric tonnes C. The Kuwaiti oil fires can account for all of the increase. Recently published energy data (Etemad et al., 1991) allow extension of the CO emissions time series back to 1751. Preliminary examination shows good agreement with two other, but shorter, energy time series. A latitudinal distribution of carbon emissions is being completed. A southward shift in the major mass of CO{sub 2} emissions is occurring from European-North American latitudes towards central-southeast Asian latitudes, reflecting the growth of population and industrialization at these lower latitudes. The carbon isotopic signature of these emissions has been re-examined. The emissions of the last two decades are approximately 1{per_thousand} lighter than previously reported (Tans, 1981). This lightening of the emissions signature is due to fossil fuel gases and liquids, including a revision of their {delta}{sup 13}C isotopic signature and an increased production rate.

  12. NOx reduction in diesel fuel flames by additions of water and CO{sub 2}

    SciTech Connect

    Li, S.C.

    1997-12-31

    Natural gas has the highest heating value per unit mass (50.1 MJ/kg, LHV) of any of the hydrocarbon fuels (e.g., butane, liquid diesel fuel, gasoline, etc.). Since it has the lowest carbon content per unit mass, combustion of natural gas produces much less carbon dioxide, soot particles, and oxide of nitrogen than combustion of liquid diesel fuel. In view of anticipated strengthening of regulations on pollutant emissions from diesel engines, alternative fuels, such as compressed natural gas (CNG) and liquefied natural gas (LNG) have been experimentally introduced to replace the traditional diesel fuels in heavy-duty trucks, transit buses, off-road vehicles, locomotives, and stationary engines. To help in applying natural gas in Diesel engines and increasing combustion efficiency, the emphasis of the present paper is placed on the detailed flame chemistry of methane-air combustion. The present work is the continued effort in finding better methods to reduce NO{sub x}. The goal is to identify a reliable chemical reaction mechanism for natural gas in both premixed and diffusion flames and to establish a systematic reduced mechanism which may be useful for large-scale numerical modeling of combustion behavior in natural gas engines.

  13. Can the envisaged reductions of fossil fuel CO2 emissions be detected by atmospheric observations?

    PubMed

    Levin, Ingeborg; Rödenbeck, Christian

    2008-03-01

    The lower troposphere is an excellent receptacle, which integrates anthropogenic greenhouse gases emissions over large areas. Therefore, atmospheric concentration observations over populated regions would provide the ultimate proof if sustained emissions changes have occurred. The most important anthropogenic greenhouse gas, carbon dioxide (CO(2)), also shows large natural concentration variations, which need to be disentangled from anthropogenic signals to assess changes in associated emissions. This is in principle possible for the fossil fuel CO(2) component (FFCO(2)) by high-precision radiocarbon ((14)C) analyses because FFCO(2) is free of radiocarbon. Long-term observations of (14)CO(2) conducted at two sites in south-western Germany do not yet reveal any significant trends in the regional fossil fuel CO(2) component. We rather observe strong inter-annual variations, which are largely imprinted by changes of atmospheric transport as supported by dedicated transport model simulations of fossil fuel CO(2). In this paper, we show that, depending on the remoteness of the site, changes of about 7-26% in fossil fuel emissions in respective catchment areas could be detected with confidence by high-precision atmospheric (14)CO(2) measurements when comparing 5-year averages if these inter-annual variations were taken into account. This perspective constitutes the urgently needed tool for validation of fossil fuel CO(2) emissions changes in the framework of the Kyoto protocol and successive climate initiatives.

  14. H2O2 detection analysis of oxygen reduction reaction on cathode and anode catalysts for polymer electrolyte fuel cells

    NASA Astrophysics Data System (ADS)

    Kishi, Akira; Shironita, Sayoko; Umeda, Minoru

    2012-01-01

    The generation percentage of H2O2 during oxygen reduction reaction (ORR) at practical powder electrocatalysts was evaluated using a scanning electrochemical microscope (SECM). We employed a porous microelectrode that contains electrocatalysts, namely, Pt/C, Pt-Co/C, and Pt-Ru/C as the oxygen reduction electrode of the SECM, and the Pt microelectrode was used as the H2O2 detector. First, the H2O2 generation amount at Pt/Cs was measured by changing the Pt loading amount. A Pt/C with a higher Pt loading has a higher ORR activity and generates a larger amount of H2O2. However, the percentage of H2O2 generated with respect to the ORR is the same regardless of the Pt loading amount. Next, H2O2 generation is markedly suppressed at the Pt-Co/C and Pt-Ru/C in the potential ranges of practical fuel cell cathode and anode, respectively. This explains that the Pt-Co/C is effective when used as a cathode, and the anode Pt-Ru/C enables the reduction of the H2O2 generation even if O2 crossleak occurs in the practical polymer electrolyte fuel cell.

  15. Emission reduction potential of using gas-to-liquid and dimethyl ether fuels on a turbocharged diesel engine.

    PubMed

    Xinling, Li; Zhen, Huang

    2009-03-15

    A study of engine performance characteristics and both of regulated (CO, HC, NO(x), and smoke) and unregulated (ultrafine particle number, mass concentrations and size distribution) emissions for a turbocharged diesel engine fueled with conventional diesel, gas-to-liquid (GTL) and dimethyl ether (DME) fuels respectively at different engine loads and speeds have been carried out. The results indicated that fuel components significantly affected the engine performance and regulated/unregulated emissions. GTL exhibited almost the same power and torque output as diesel, while improved fuel economy. GTL significantly reduced regulated emissions with average reductions of 21.2% in CO, 15.7% in HC, 15.6% in NO(x) and 22.1% in smoke in comparison to diesel, as well as average reductions in unregulated emissions of total ultrafine particle number (N(tot)) and mass (M(tot)) emissions by 85.3% and 43.9%. DME can significantly increase torque and power, compared with the original diesel engine, as well as significantly reduced regulated emissions of 40.1% in HC, 48.2% in NO(x) and smoke free throughout all the engine conditions. However, N(tot) for DME is close to that for diesel. The reason is that the accumulation mode particle number emissions for DME are very low due to the characteristics of oxygen content and no C-C bond, which promotes the processes of nucleation and condensation of the semi-volatile compounds in the exhaust gas, as a result, a lot of nucleation mode particles produce.

  16. Cost-effectiveness of controlling emissions for various alternative-fuel vehicle types, with vehicle and fuel price subsidies estimated on the basis of monetary values of emission reductions

    SciTech Connect

    Wang, M.Q.

    1993-12-31

    Emission-control cost-effectiveness is estimated for ten alternative-fuel vehicle (AFV) types (i.e., vehicles fueled with reformulated gasoline, M85 flexible-fuel vehicles [FFVs], M100 FFVs, dedicated M85 vehicles, dedicated M100 vehicles, E85 FFVS, dual-fuel liquefied petroleum gas vehicles, dual-fuel compressed natural gas vehicles [CNGVs], dedicated CNGVs, and electric vehicles [EVs]). Given the assumptions made, CNGVs are found to be most cost-effective in controlling emissions and E85 FFVs to be least cost-effective, with the other vehicle types falling between these two. AFV cost-effectiveness is further calculated for various cases representing changes in costs of vehicles and fuels, AFV emission reductions, and baseline gasoline vehicle emissions, among other factors. Changes in these parameters can change cost-effectiveness dramatically. However, the rank of the ten AFV types according to their cost-effectiveness remains essentially unchanged. Based on assumed dollars-per-ton emission values and estimated AFV emission reductions, the per-vehicle monetary value of emission reductions is calculated for each AFV type. Calculated emission reduction values ranged from as little as $500 to as much as $40,000 per vehicle, depending on AFV type, dollar-per-ton emission values, and baseline gasoline vehicle emissions. Among the ten vehicle types, vehicles fueled with reformulated gasoline have the lowest per-vehicle value, while EVs have the highest per-vehicle value, reflecting the magnitude of emission reductions by these vehicle types. To translate the calculated per-vehicle emission reduction values to individual AFV users, AFV fuel or vehicle price subsidies are designed to be equal to AFV emission reduction values. The subsidies designed in this way are substantial. In fact, providing the subsidies to AFVs would change most AFV types from net cost increases to net cost decreases, relative to conventional gasoline vehicles.

  17. Duration of fuels reduction following prescribed fire in coniferous forests of U.S. national parks in California and the Colorado Plateau

    USGS Publications Warehouse

    van Mantgem, Phillip J.; Lalemand, Laura; Keifer, MaryBeth; Kane, Jeffrey M.

    2016-01-01

    Prescribed fire is a widely used forest management tool, yet the long-term effectiveness of prescribed fire in reducing fuels and fire hazards in many vegetation types is not well documented. We assessed the magnitude and duration of reductions in surface fuels and modeled fire hazards in coniferous forests across nine U.S. national parks in California and the Colorado Plateau. We used observations from a prescribed fire effects monitoring program that feature standard forest and surface fuels inventories conducted pre-fire, immediately following an initial (first-entry) prescribed fire and at varying intervals up to >20 years post-fire. A subset of these plots was subjected to prescribed fire again (second-entry) with continued monitoring. Prescribed fire effects were highly variable among plots, but we found on average first-entry fires resulted in a significant post-fire reduction in surface fuels, with litter and duff fuels not returning to pre-fire levels over the length of our observations. Fine and coarse woody fuels often took a decade or longer to return to pre-fire levels. For second-entry fires we found continued fuels reductions, without strong evidence of fuel loads returning to levels observed immediately prior to second-entry fire. Following both first- and second-entry fire there were increases in estimated canopy base heights, along with reductions in estimated canopy bulk density and modeled flame lengths. We did not find evidence of return to pre-fire conditions during our observation intervals for these measures of fire hazard. Our results show that prescribed fire can be a valuable tool to reduce fire hazards and, depending on forest conditions and the measurement used, reductions in fire hazard can last for decades. Second-entry prescribed fire appeared to reinforce the reduction in fuels and fire hazard from first-entry fires.

  18. Alcohol consumption in the Arab region: What do we know, why does it matter, and what are the policy implications for youth harm reduction?

    PubMed

    Ghandour, Lilian; Chalak, Ali; El-Aily, Aida; Yassin, Nasser; Nakkash, Rima; Tauk, Mitra; El Salibi, Noura; Heffron, Meghan; Afifi, Rima

    2016-02-01

    Alcohol is a recognized global risk factor for many diseases and injury types and a major contributor to disability and death. While cost-effective interventions do exist, many countries lack a comprehensive national alcohol harm reduction policy. The Arab world includes 22 diverse countries stretching from North Africa to Western Asia having varying dispositions with regards to alcohol sale and consumption. Epidemiological data is scattered and the picture on alcohol consumption remains blurry. This paper presents the findings of an extensive review conducted on all 22 Arab countries, specifically describing: (1) the density and methodology of alcohol-related peer-reviewed publications over the last two decades (1993-2013); (2) the epidemiology of alcohol consumption given all available data; and (3) the current status of policies in the region. Our search revealed a strikingly low number of alcohol-related peer-reviewed published studies - a total of 81 publications across 22 countries and two decades. Most studies are based on clinical or student samples. Where data is available, age of onset is low and drinking is frequent, in the absence of any available or enforced harm reduction policies. We submit that countries in the Arab region can be divided into four categories by alcohol ban and published data. One category includes countries where alcohol is not banned but data is absent, suggesting an ostrich-like response to a controversial behavior, or reflecting a weak research infrastructure and/or policy landscape. Evidence-informed recommendations and future directions for policy and research are discussed and tailored to countries' current stance on alcohol legislation and consumption. Given the particular vulnerability of youth to uptake of alcohol as well as the resulting short and long term consequences, the paper concludes by focusing on the implications of the findings for youth alcohol harm reduction.

  19. Forest Fuel Reduction and Wildfire Effects on Runoff and Evapotranspiration in Sierra Nevada Mixed-Conifer Forest

    NASA Astrophysics Data System (ADS)

    Saksa, P. C.; Bales, R. C.; Conklin, M. H.

    2015-12-01

    Large, high-intensity wildfire risk in the western United States is growing, fueled by increasing vegetation density from a century of fire suppression and climatic shifts resulting in extended dry seasons. Strategically Placed Landscape Treatments (SPLATs) are a fuel reduction method designed to reduce fire risk on the entire landscape by treating only a fraction of the area. During 2011 and 2012, SPLATs were implemented in the mixed-conifer zone of the Tahoe (Last Chance study area, American River Basin) and Sierra (Sugar Pine study area, Merced River Basin) National Forests. Wildfire events were then simulated for both treated and untreated conditions. We integrated the vegetation changes with the Regional Hydro-Ecological Simulation System (RHESSys) to project impacts of fuel treatments and wildfire on runoff and evapotranspiration for the period of observed data, water years 2010-2013. Results from the model simulations show that vegetation treatments in the Last Chance study area, which removed 8.0% of the total biomass by treating 25% of the area, increased mean annual runoff by 12.0% and decreased mean annual evapotranspiration by 4.1%. Vegetation treatments in the Sugar Pine study area, which removed 7.5% of the total biomass by treating 33% of the area, increased runoff by 2.7% and decreased ET by 0.5%. Compared to pre-treatment conditions, wildfire simulations in Last Chance reduced total biomass by 38-50% when fuel treatments were not applied, resulting in a 55-67% runoff increase and a 19-23% evapotranspiration decrease. In Sugar Pine, fire simulation reduced biomass 39-43%, increasing runoff and decreasing ET by 13-15% and 1.8-2.7% respectively. Applying the same magnitude of biomass reductions equally over the entire watershed, in contrast to the localized areas of vegetation reductions due to treatment or fire, resulted in smaller impacts on runoff and evapotranspiration rates. Vegetation effects on hydrologic fluxes are greater in Last Chance than

  20. Microchannel Distillation of JP-8 Jet Fuel for Sulfur Content Reduction

    SciTech Connect

    Zheng, Feng; Stenkamp, Victoria S.; TeGrotenhuis, Ward E.; Huang, Xiwen; King, David L.

    2006-09-16

    In microchannel based distillation processes, thin vapor and liquid films are contacted in small channels where mass transfer is diffusion-limited. The microchannel architecture enables improvements in distillation processes. A shorter height equivalent of a theoretical plate (HETP) and therefore a more compact distillation unit can be achieved. A microchannel distillation unit was used to produce a light fraction of JP-8 fuel with reduced sulfur content for use as feed to produce fuel-cell grade hydrogen. The HETP of the microchannel unit is discussed, as well as the effects of process conditions such as feed temperature, flow rate, and reflux ratio.

  1. Solid Oxide Fuel Cell Cathodes. Unraveling the Relationship Between Structure, Surface Chemistry and Oxygen Reduction

    SciTech Connect

    Gopalan, Srikanth

    2013-03-31

    In this work we have considered oxygen reduction reaction on LSM and LSCF cathode materials. In particular we have used various spectroscopic techniques to explore the surface composition, transition metal oxidation state, and the bonding environment of oxygen to understand the changes that occur to the surface during the oxygen reduction process. In a parallel study we have employed patterned cathodes of both LSM and LSCF cathodes to extract transport and kinetic parameters associated with the oxygen reduction process.

  2. COPROCESSING OF FOSSIL FUELS AND BIOMASS FOR CO2 EMISSION REDUCTION IN THE TRANSPORTATION SECTOR

    EPA Science Inventory

    The paper discusses an evaluation of the Hydrocarb process for conversion of carbonaceous raw material to clean carbon and methanol products. As fuel, methanol and carbon can be used economically, either independently or in slurry form, in efficient heat engines (turbines and int...

  3. Quantifying and predicting fuels and the effects of reduction treatments along successional and invasion gradients in sagebrush habitats

    USGS Publications Warehouse

    Shinneman, Douglas; Pilliod, David; Arkle, Robert; Glenn, Nancy F.

    2015-01-01

    -sampling, experimental treatments, and remotely sensed data to address the following questions: (1) How do fuel loads change along gradients of succession and invasion in sagebrush ecological sites? (2) How do fuel reduction treatments influence fuels in invaded areas formerly dominated by sagebrush? (3) How do fuel loads vary across landscapes and which remote sensing techniques are effective for characterizing them?

  4. Influence of mobile air-conditioning on vehicle emissions and fuel consumption: a model approach for modern gasoline cars used in Europe.

    PubMed

    Weilenmann, Martin F; Vasic, Ana-Marija; Stettler, Peter; Novak, Philippe

    2005-12-15

    The influence of air-conditioning activity on the emissions and fuel consumption of passenger cars is an important issue, since fleet penetration and use of these systems have reached a high level. Apart from the MOBILE6 study in the United States, little data is available on the impact of air-conditioning devices (A/Cs). Since weather conditions and A/C technologies both differ from those in the U. S., a test series was designed for the European setting. A fleet of six modern gasoline passenger cars was tested in different weather conditions. Separate test series were carried out for the initial cooldown and for the stationary situation of keeping the interior of the vehicle cool. As assumed, CO2 emissions and fuel consumption rise with the thermal load. This also causes a notable rise in CO and hydrocarbons (HCs). Moreover, A/Cs do not stop automatically at low ambient temperatures; if necessary, they produce dry air to demist the windscreen. A model is proposed that shows a constant load for lower temperatures and a linear trend for higher temperatures. The initial cooldown tests highlight significant differences among cars but show that A/C operation for the initial cooling of an overheated passenger compartment does not result in any extra emissions for the fleet as a whole.

  5. Fuel Efficient Strategies for Reducing Contrail Formations in United States Air Space

    NASA Technical Reports Server (NTRS)

    Sridhar, Banavar; Chen, Neil Y.; Ng, Hok K.

    2010-01-01

    This paper describes a class of strategies for reducing persistent contrail formation in the United States airspace. The primary objective is to minimize potential contrail formation regions by altering the aircraft's cruising altitude in a fuel-efficient way. The results show that the contrail formations can be reduced significantly without extra fuel consumption and without adversely affecting congestion in the airspace. The contrail formations can be further reduced by using extra fuel. For the day tested, the maximal reduction strategy has a 53% contrail reduction rate. The most fuel-efficient strategy has an 8% reduction rate with 2.86% less fuel-burnt compared to the maximal reduction strategy. Using a cost function which penalizes extra fuel consumed while maximizing the amount of contrail reduction provides a flexible way to trade off between contrail reduction and fuel consumption. It can achieve a 35% contrail reduction rate with only 0.23% extra fuel consumption. The proposed fuel-efficient contrail reduction strategy provides a solution to reduce aviation-induced environmental impact on a daily basis.

  6. The Evaluation of the Impact of New Technologies for Different Powertrain Medium-Duty Trucks on Fuel Consumption

    SciTech Connect

    Wang, Lijuan; Duran, Adam; Kelly, Kenneth; Konan, Arnaud; Lammert, Michael; Prohaska, Robert

    2016-09-27

    In this paper, researchers at the National Renewable Energy Laboratory present the results of simulation studies to evaluate potential fuel savings as a result of improvements to vehicle rolling resistance, coefficient of drag, and vehicle weight as well as hybridization for four powertrains for medium-duty parcel delivery vehicles. The vehicles will be modeled and simulated over 1,290 real-world driving trips to determine the fuel savings potential based on improvements to each technology and to identify best use cases for each platform. The results of impacts of new technologies on fuel saving will be presented, and the most favorable driving routes on which to adopt them will be explored.

  7. The Evaluation of the Impact of New Technologies for Medium-Duty Parcel Delivery Trucks on Fuel Consumption

    SciTech Connect

    Wang, Lijuan; Duran, Adam; Kelly, Kenneth; Konan, Arnaud; Lammert, Michael; Prohaska, Robert

    2016-10-06

    In this paper, researchers at the National Renewable Energy Laboratory present the results of simulation studies to evaluate potential fuel savings as a result of improvements to vehicle rolling resistance, coefficient of drag, and vehicle weight as well as hybridization for four power trains for medium-duty parcel delivery vehicles. The vehicles will be modeled and simulated over 1,290 real-world driving trips to determine the fuel savings potential based on improvements to each technology and to identify best use cases for each platform. The results of impacts of new technologies on fuel saving will be presented, and the most favorable driving routes on which to adopt them will be explored.

  8. History of fuel consumption inferred from polycyclic aromatic hydrocarbons in sediments from the south Lianhuan Lake, northeast China.

    PubMed

    Sun, Li; Zang, Shuying

    2012-06-01

    Polycyclic aromatic hydrocarbons (PAHs) are a group of persistent organic pollutants of global concern. The current study uses differences in PAH profiles in 1 cm core sediment samples from south Lianhuan Lake, Heilongjiang Province, China to evaluate historical changes in fuel sources. Individual core segments were dated using (137)Cs techniques and concentrations of 16 priority PAHs were measured. Principal components analysis with multivariate linear regression and PAH profiles of specific combustion sources were used to identify historical fuel use. During the early 1940s to the early 1970s, PAHs concentrations increases with the increased combustion of coal, and relatively high petroleum source could be linked to the establishment of the Daqing Oil Field. The source apportionment suggested that coal combustion replaced wood burning and became the dominant fuel since the 1940s and petroleum source increased. These results were coincidence with the rapid economic growth occurring in China.

  9. Worsening of Health and a Cessation or Reduction in Alcohol Consumption to Special Occasion Drinking Across Three Decades of the Life Course

    PubMed Central

    Ng Fat, Linda; Cable, Noriko; Shelton, Nicola

    2015-01-01

    Background Ex-drinkers suffer from worse health than drinkers; however, whether a worsening of health is associated with a change in drinking status from early adulthood has not been previously investigated. We assess whether a worsening of health is associated with a cessation in consumption or reduction to special occasion drinking from early adulthood to middle age. Methods Multinomial logistic regression assessing whether a change in self-reported limiting longstanding illness (LLI) was associated with ceasing alcohol consumption, or a reduction to special occasion drinking compared with being a persistent drinker from age 23 in separate models at ages 33, 42, and 50. All models adjusted for sex, poor psychosocial health, education, marital status, and children in the household. Sample included participants from Great Britain followed longitudinally in the National Child Development Study from ages 23 to 33 (N = 5,529), 42 (N = 4,787), and 50 (N = 4,476). Results Developing an LLI from the previous wave was associated with ceasing alcohol consumption at ages 33 (odds ratio [ORs] = 2.71, 95% confidence interval [CI] = 1.16–4.93), 42 (OR = 2.44, 95%CI = 1.24–4.81), and 50 (OR = 3.33, 95%CI = 1.56–7.12) and a reduction to special occasion drinking at ages 42 (OR = 2.04, 95%CI = 1.40–2.99) and 50 (OR = 2.04, 95%CI = 1.18–3.53). Having a persistent LLI across 2 waves increased the odds of ceasing consumption at ages 42 (OR = 3.22, 95%CI = 1.06–9.77) and 50 (OR = 4.03, 95%CI = 1.72–9.44) and reducing consumption to special occasion drinking at ages 33 (OR = 3.27, 95%CI = 1.34–8.01) and 42 (OR = 2.25, 95%CI = 1.23–4.50). Persistent drinkers at older ages had the best overall health suffering less from previous poor health compared with those who reduced or ceased consumption at an earlier time point. Conclusions Developing an LLI was associated with a cessation in alcohol consumption and a reduction in

  10. Liquid Fuel From Microbial Communities: Electroalcoholgenesis: Bioelectrochemical Reduction of CO2 to Butanol

    SciTech Connect

    2010-07-01

    Electrofuels Project: MUSC is developing an engineered system to create liquid fuels from communities of interdependent microorganisms. MUSC is first pumping carbon dioxide (CO2) and renewable sources of electricity into a battery-like cell. A community of microorganisms uses the electricity to convert the CO2 into hydrogen. That hydrogen is then consumed by another community of microorganisms living in the same system. These new microorganisms convert the hydrogen into acetate, which in turn feed yet another community of microorganisms. This last community of microorganisms uses the acetate to produce a liquid biofuel called butanol. Similar interdependent microbial communities can be found in some natural environments, but they’ve never been coupled together in an engineered cell to produce liquid fuels. MUSC is working to triple the amount of butanol that can be produced in its system and to reduce the overall cost of the process.

  11. Evaluation of fuel additives for reduction of material imcompatibilities in methanol-gasoline blends

    NASA Technical Reports Server (NTRS)

    Rodriguez, C. F.; Barbee, J. G.; Knutson, W. K.; Cuellar, J. P., Jr.

    1983-01-01

    Screening tests determined the efficacy of six commercially available additives as modifiers of methanol's corrosivity toward metals and its weakening of tensile properties of nonmetals in automotive fuel systems. From the screening phase, three additives which seemed to protect some of the metals were tested in higher concentrations and binary combinations in search of optimal application conditions. Results indicate that two of the additives have protective properties and combining them increases the protection of the metals corroded by methanol-gasoline blends. Half of the metals in the tests were not corroded. Testing at recommended concentrations and then at higher concentrations and in combinations shows that the additives would have no protective or harmful effects on the nonmetals. Two additives emerged as candidates for application to the protection of metals in automotive methanol-gasoline fuel systems. The additives tested were assigned letter codes to protect their proprietary nature.

  12. Reduction of gaseous pollutant emissions from gas turbine combustors using hydrogen-enriched jet fuel

    NASA Technical Reports Server (NTRS)

    Clayton, R. M.

    1976-01-01

    Recent progress in an evaluation of the applicability of the hydrogen enrichment concept to achieve ultralow gaseous pollutant emission from gas turbine combustion systems is described. The target emission indexes for the program are 1.0 for oxides of nitrogen and carbon monoxide, and 0.5 for unburned hydrocarbons. The basic concept utilizes premixed molecular hydrogen, conventional jet fuel, and air to depress the lean flammability limit of the mixed fuel. This is shown to permit very lean combustion with its low NOx production while simulataneously providing an increased flame stability margin with which to maintain low CO and HC emission. Experimental emission characteristics and selected analytical results are presented for a cylindrical research combustor designed for operation with inlet-air state conditions typical for a 30:1 compression ratio, high bypass ratio, turbofan commercial engine.

  13. A study of NO{sub x} reduction by fuel injection recirculation. Topical report, June--December, 1995

    SciTech Connect

    Turns, S.R.; Feese, J.J.

    1996-01-01

    Flue-gas recirculation (FGR) is a well-known method used to control oxides of nitrogen (NO{sub x}) in industrial burner applications. Recent small- and large-scale experiments have shown that introducing the recirculated flue gases with the fuel results in a much greater reduction in NO{sub x}, per unit mass of gas recirculated, in comparison to introducing the flue gases with the combustion air. That fuel injection recirculation (FIR) is more effective than windbox FGR is quite remarkable. At present, however, there is no definitive understanding of why FIR is more effective than conventional FGR. The objective of this research is to ascertain whether or not chemical and/or molecular transport effects alone can explain the differences in NO{sub x} reduction observed between FIR and FGR. This knowledge will aid in the rational application and optimization of FIR in a wide variety of industrial applications. A combined modeling and experimental program is in progress to achieve the research objectives. This report discusses, first, computer modeling studies of counterflow diffusion flames employing detailed chemical kinetics for methane combustion and NO{sub x} formation, and, second, experimental studies of laminar, CH{sub 4}-air, jet flames.

  14. Fuel Consumption Reduction for Diesel Power Generator Sets through the Application of an Advanced Turbocharger Operating at Constant Speed.

    DTIC Science & Technology

    1982-10-01

    an overhung rotor supported by two ball bearings located near the cool enviroment at the compressor inlet, and a self-contained lubrication system...development of a 11 turbo- charger which features variable area turbine nozzles (VATN), all bear- ing supported rotor , a4a.,ejcontained lubric tion system. e...controller for the VATN. The controller is simply a spring acting on a piston which is balancing the spring force against the pressure difference across the

  15. Oxygen reduction and transportation mechanisms in solid oxide fuel cell cathodes

    NASA Astrophysics Data System (ADS)

    Li, Yihong; Gemmen, Randall; Liu, Xingbo

    In recent years, various models have been developed for describing the reaction mechanisms in solid oxide fuel cell (SOFC) especially for the cathode electrode. However, many fundamental issues regarding the transport of oxygen and electrode kinetics have not been fully understood. This review tried to summarize the present status of the SOFC cathode modeling efforts, and associated experimental approaches on this topic. In addition, unsolved problems and possible future research directions for SOFC cathode kinetics had been discussed.

  16. Diesel Emission Reduction By On-Board Fuel Reformulation. Final Report

    SciTech Connect

    D. L. Jassby; A. Rabinovich; L. Bromberg; N. Domingo

    2000-03-01

    In this Phase 1 proposal, four tasks were investigated: plasma reforming in the mode of energy neutral reforming, testing in a diesel engine with hydrogen injection (port-injection), analysis of the data, and system analysis. It was demonstrated that it is feasible using a compact microplasmatron fuel converter to obtain near energy neutral reforming. Hydrogen addition was used in a compression ignition engine and a factor of 10 decrease in the particulate size concentration and mass was achieved.

  17. Oxygen reduction and transportation mechanisms in solid oxide fuel cell cathodes

    SciTech Connect

    Li YH, Gemmen R, Liu XB

    2010-06-01

    In recent years, various models have been developed for describing the reaction mechanisms in solid oxide fuel cell (SOFC) especially for the cathode electrode. However, many fundamental issues regarding the transport of oxygen and electrode kinetics have not been fully understood. This review tried to summarize the present status of the SOFC cathode modeling efforts, and associated experimental approaches on this topic. In addition, unsolved problems and possible future research directions for SOFC cathode kinetics had been discussed

  18. Reduction of CO2 Emissions from Mobile Sources by Alternative Fuels Derived from Biomass.

    DTIC Science & Technology

    1993-11-01

    those goals with alcohol fuels derived from biomass produced as short-rotation woody crops. Emphasis is on the Hydrocarb process , now under evaluation...that a process such as Hydrocarb, that can leverage biomass with natural gas, should maximize petroleum displacement at least cost. Because of these...on the Hydrocarb process , now under evaluation by the EPA for production of methanol from biomass and natural gas. Factors considered in this

  19. Electricity generation and bivalent copper reduction as a function of operation time and cathode electrode material in microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Wu, Dan; Huang, Liping; Quan, Xie; Li Puma, Gianluca

    2016-03-01

    The performance of carbon rod (CR), titanium sheet (TS), stainless steel woven mesh (SSM) and copper sheet (CS) cathode materials are investigated in microbial fuel cells (MFCs) for simultaneous electricity generation and Cu(II) reduction, in multiple batch cycle operations. After 12 cycles, the MFC with CR exhibits 55% reduction in the maximum power density and 76% increase in Cu(II) removal. In contrast, the TS and SSM cathodes at cycle 12 show maximum power densities of 1.7 (TS) and 3.4 (SSM) times, and Cu(II) removal of 1.2 (TS) and 1.3 (SSM) times higher than those observed during the first cycle. Diffusional resistance in the TS and SSM cathodes is found to appreciably decrease over time due to the copper deposition. In contrast to CR, TS and SSM, the cathode made with CS is heavily corroded in the first cycle, exhibiting significant reduction in both the maximum power density and Cu(II) removal at cycle 2, after which the performance stabilizes. These results demonstrate that the initial deposition of copper on the cathodes of MFCs is crucial for efficient and continuous Cu(II) reduction and electricity generation over prolonged time. This effect is closely associated with the nature of the cathode material. Among the materials examined, the SSM is the most effective and inexpensive cathode for practical use in MFCs.

  20. Demonstration of improved vehicle fuel efficiency through innovative tire design, materials, and weight reduction technologies

    SciTech Connect

    Donley, Tim

    2014-12-31

    Cooper completed an investigation into new tire technology using a novel approach to develop and demonstrate a new class of fuel efficient tires using innovative materials technology and tire design concepts. The objective of this work was to develop a new class of fuel efficient tires, focused on the “replacement market” that would improve overall passenger vehicle fuel efficiency by 3% while lowering the overall tire weight by 20%. A further goal of this project was to accomplish the objectives while maintaining the traction and wear performance of the control tire. This program was designed to build on what has already been accomplished in the tire industry for rolling resistance based on the knowledge and general principles developed over the past decades. Cooper’s CS4 (Figure #1) premium broadline tire was chosen as the control tire for this program. For Cooper to achieve the goals of this project, the development of multiple technologies was necessary. Six technologies were chosen that are not currently being used in the tire industry at any significant level, but that showed excellent prospects in preliminary research. This development was divided into two phases. Phase I investigated six different technologies as individual components. Phase II then took a holistic approach by combining all the technologies that showed positive results during phase one development.

  1. Emission Characteristics and Egr Application of Blended Fuels with Bdf and Oxygenate (dmm) in a Diesel Engine

    NASA Astrophysics Data System (ADS)

    Choi, Seung-Hun; Oh, Young-Taig

    In this study, the possibility of biodiesel fuel and oxygenated fuel (dimethoxy methane ; DMM) was investigated as an alternative fuel for a naturally aspirated direct injection diesel engine. The smoke emission of blending fuel (biodiesel fuel 90vol-% + DMM 10vol-%) was reduced approximately 70% at 2500rpm, full load in comparison with the diesel fuel. But, engine power and brake specific energy consumption showed no significant differences. But, NOx emission of biodiesel fuel and DMM blended fuel increased compared with commercial diesel fuel due to the oxygen component in the fuel. It was needed a NOx reduction counter plan that EGR method was used as a countermeasure for NOx reduction. It was found that simultaneous reduction of smoke and NOx emission was achieved with BDF (95 vol-%) and DMM (5 vol-%) blended fuel and cooled EGR method (15%).

  2. Reduction in the Electric Power Consumption of a Thermoelectric Refrigerator by Experimental Optimization of the Temperature Controller

    NASA Astrophysics Data System (ADS)

    Martínez, A.; Astrain, D.; Rodríguez, A.; Pérez, G.

    2013-07-01

    Most thermoelectric refrigerators used for food conservation are operated by on/off temperature controllers, because of their simplicity and low cost. This type of controller poses a major problem: when the inner temperature reaches the lower setpoint and the thermoelectric modules are switched off, a great amount of the heat stored in the heat exchanger at the hot end of the modules goes back into the refrigerator, by heat conduction through the modules and the heat extender. This effect significantly increases the electric power consumption of the refrigerator. This work studies experimentally the influence of different temperature control systems on the electric power consumption and coefficient of performance of a thermoelectric refrigerator: an on/off controller, a proportional-integral-derivative controller, and a novel operating system based on idling voltages. The latter provides voltage to the modules once the inner temperature reaches the lower setpoint, instead of switching them off, preventing heat from going back. A prototype has been constructed to compare these operating systems. Results prove that the controller based on idling voltages reduces the electric power consumption of the refrigerator by 32% and increases the coefficient of performance by 64%, compared with the on/off controller.

  3. Reduction of body fat and improved lipid profile associated with daily consumption of a Puer tea extract in a hyperlipidemic population: a randomized placebo-controlled trial

    PubMed Central

    Jensen, Gitte S; Beaman, Joni L; He, Yi; Guo, Zhixin; Sun, Henry

    2016-01-01

    Objective The goal for this study was to evaluate the effects of daily consumption of Puer tea extract (PTE) on body weight, body-fat composition, and lipid profile in a non-Asian population in the absence of dietary restrictions. Materials and methods A randomized, double-blind, placebo-controlled study design was used. A total of 59 overweight or mildly obese subjects were enrolled upon screening to confirm fasting cholesterol level at or above 220 mg/dL (5.7 mmol/dL). After giving informed consent, subjects were randomized to consume PTE (3 g/day) or placebo for 20 weeks. At baseline and at 4-week intervals, blood lipids, C-reactive protein, and fasting blood glucose were evaluated. A dual-energy X-ray absorptiometry scan was performed at baseline and at study exit to evaluate changes to body composition. Appetite and physical and mental energy were scored at each visit using visual analog scales (0–100). Results Consumption of PTE was associated with statistically significant weight loss when compared to placebo (P<0.05). Fat loss was seen for arms, legs, and the gynoid region (hip/belly), as well as for total fat mass. The fat reduction reached significance on within-group analysis, but did not reach between-group significance. Consumption of PTE was associated with improvements to lipid profile, including a mild reduction in cholesterol and the cholesterol:high-density lipoprotein ratio after only 4 weeks, as well as a reduction in triglycerides and very small-density lipoproteins, where average blood levels reached normal range at 8 weeks and remained within normal range for the duration of the study (P<0.08). No significant changes between the PTE group and the placebo group were seen for fasting glucose or C-reactive protein. A transient reduction in appetite was seen in the PTE group when compared to placebo (P<0.1). Conclusion The results from this clinical study showed that the daily consumption of PTE was associated with significant weight loss

  4. Reduction of lunar landing fuel requirements by utilizing lunar ballistic capture.

    PubMed

    Johnson, Michael D; Belbruno, Edward A

    2005-12-01

    Ballistic lunar capture trajectories have been successfully utilized for lunar orbital missions since 1991. Recent interest in lunar landing trajectories has occurred due to a directive from President Bush to return humans to the Moon by 2015. NASA requirements for humans to return to the lunar surface include separation of crew and cargo missions, all lunar surface access, and anytime-abort to return to Earth. Such requirements are very demanding from a propellant standpoint. The subject of this paper is the application of lunar ballistic capture for the reduction of lunar landing propellant requirements. Preliminary studies of the application of weak stability boundary (WSB) trajectories and ballistic capture have shown that considerable savings in low Earth orbit (LEO) mission mass may be realized, on the order of 36% less than conventional Hohmann transfer orbit missions. Other advantages, such as reduction in launch window constraints and reduction of lunar orbit maintenance propellant requirements, have also surfaced from this study.

  5. Photocatalytic reduction of CO2 into hydrocarbon solar fuels over g-C3N4-Pt nanocomposite photocatalysts.

    PubMed

    Yu, Jiaguo; Wang, Ke; Xiao, Wei; Cheng, Bei

    2014-06-21

    Photocatalytic reduction of CO2 into renewable hydrocarbon fuels is an alternative way to develop reproducible energy, which is also a promising way to solve the problem of the greenhouse effect. In this work, graphitic carbon nitride (g-C3N4) was synthesized by directly heating thiourea at 550 °C and then a certain amount of Pt was deposited on it to form g-C3N4-Pt nanocomposites used as catalysts for photocatalytic reduction of CO2 under simulated solar irradiation. The main products of photocatalysis were CH4, CH3OH and HCHO. The deposited Pt acted as an effective cocatalyst, which not only influenced the selectivity of the product generation, but also affected the activity of the reaction. The yield of CH4 first increased upon increasing the amount of Pt deposited on the g-C3N4 from 0 to 1 wt%, then decreased at 2 wt% Pt loading. The production rates of CH3OH and HCHO also increased with the content of Pt increasing from 0 to 0.75 wt% and the maximum yield was observed at 0.75 wt%. The Pt nanoparticles (NPs) could facilitate the transfer and enrichment of photogenerated electrons from g-C3N4 to its surface for photocatalytic reduction of CO2. At the same time, Pt was also used a catalyst to promote the oxidation of products. The transient photocurrent response further confirmed the proposed photocatalytic reduction mechanism of CO2. This work indicates that the deposition of Pt is a good strategy to improve the photoactivity and selectivity of g-C3N4 for CO2 reduction.

  6. Soil factors of ecosystems' disturbance risk reduction under the impact of rocket fuel

    NASA Astrophysics Data System (ADS)

    Krechetov, Pavel; Koroleva, Tatyana; Sharapova, Anna; Chernitsova, Olga

    2016-04-01

    Environmental impacts occur at all stages of space rocket launch. One of the most dangerous consequences of a missile launch is pollution by components of rocket fuels ((unsymmetrical dimethylhydrazine (UDMH)). The areas subjected to falls of the used stages of carrier rockets launched from the Baikonur cosmodrome occupy thousands of square kilometers of different natural landscapes: from dry steppes of Kazakhstan to the taiga of West Siberia and mountains of the Altai-Sayany region. The study aims at assessing the environmental risk of adverse effects of rocket fuel on the soil. Experimental studies have been performed on soil and rock samples with specified parameters of the material composition. The effect of organic matter, acid-base properties, particle size distribution, and mineralogy on the decrease in the concentration of UDMH in equilibrium solutions has been studied. It has been found that the soil factors are arranged in the following series according to the effect on UDMH mobility: acid-base properties > organic matter content >clay fraction mineralogy > particle size distribution. The estimation of the rate of self-purification of contaminated soil is carried out. Experimental study of the behavior of UDMH in soil allowed to define a model for calculating critical loads of UDMH in terrestrial ecosystems.

  7. Bioventing results in significant reduction of diesel fuel contamination after one year

    SciTech Connect

    Baker, J.N.; Nickerson, D.A.; Guest, P.R.

    1994-12-31

    A bioventing system was designed and installed to enhance the natural biodegradation of residual diesel fuel contaminated soils at an underground storage tank (UST) facility in Seattle, Washington. This system was designed to operate in conjunction with an existing total fluids recovery system to expose more heavily contaminated soils at the capillary fringe to injected air. A pilot study conducted at the facility indicated that an initial biodegradation rate of 2,200 milligrams of total petroleum hydrocarbons (TPH) per kiligram of soil per year could be achieved, making bioventing a feasible remedial alternative to accelerate site cleanup. Remediation costs were reduced by installing horizontal piping arrangements at the bottom of two separate tank pit excavations during the scheduled fueling system closures. Unlike single point injection wells, this innovative system design results in a wider area of influence by creating two aerated beds through which air is dispersed into the surrounding formation. As a result, less pressure is required to distribute air in the variably permeable site soils, minimizing subsurface vapor migration. The areas of greatest contamination in the capillary fringe are directly impacted by placing impermeable caps over the aerated beds.

  8. Influence of chemical and physical properties of activated carbon powders on oxygen reduction and microbial fuel cell performance.

    PubMed

    Watson, Valerie J; Nieto Delgado, Cesar; Logan, Bruce E

    2013-06-18

    Commercially available activated carbon (AC) powders made from different precursor materials (coal, peat, coconut shell, hardwood, and phenolic resin) were electrochemically evaluated as oxygen reduction catalysts and tested as cathode catalysts in microbial fuel cells (MFCs). AC powders were characterized in terms of surface chemistry and porosity, and their kinetic activities were compared to carbon black and platinum catalysts in rotating disk electrode (RDE) tests. Cathodes using the coal-derived AC had the highest power densities in MFCs (1620 ± 10 mW m(-2)). Peat-based AC performed similarly in MFC tests (1610 ± 100 mW m(-2)) and had the best catalyst performance, with an onset potential of E(onset) = 0.17 V, and n = 3.6 electrons used for oxygen reduction. Hardwood based AC had the highest number of acidic surface functional groups and the poorest performance in MFC and catalysis tests (630 ± 10 mW m(-2), E(onset) = -0.01 V, n = 2.1). There was an inverse relationship between onset potential and quantity of strong acid (pKa < 8) functional groups, and a larger fraction of microporosity was negatively correlated with power production in MFCs. Surface area alone was a poor predictor of catalyst performance, and a high quantity of acidic surface functional groups was determined to be detrimental to oxygen reduction and cathode performance.

  9. Enhanced reductive degradation of methyl orange in a microbial fuel cell through cathode modification with redox mediators.

    PubMed

    Liu, Rong-Hua; Sheng, Guo-Ping; Sun, Min; Zang, Guo-Long; Li, Wen-Wei; Tong, Zhong-Hua; Dong, Fang; Lam, Michael Hon-Wah; Yu, Han-Qing

    2011-01-01

    A model azo dye, methyl orange (MO), was reduced through in situ utilization of the electrons derived from the anaerobic conversion of organics in a microbial fuel cell (MFC). The MO reduction process could be described by a pseudo first-order kinetic model with a rate constant of 1.29 day(-1). Electrochemical impedance spectroscopic analysis shows that the cathode had a high polarization resistance, which could decrease the reaction rate and limit the electron transfer. To improve the MO reduction efficiency, the cathode was modified with redox mediators to enhance the electron transfer. After modification with thionine, the polarization resistance significantly decreased by over 50%. As a consequence, the MO decolorization rate increased by over 20%, and the power density was enhanced by over three times. Compared with thionine, anthraquinone-2, 6-disulfonate modified cathode has less positive effect on the MFC performance. These results indicate that the electrode modification with thionine is a useful approach to accelerate the electrochemical reactions. This work provides useful information about the key factors limiting the azo dye reduction in the MFC and how to improve such a process.

  10. Oxygen reduction reaction on highly-durable Pt/nanographene fuel cell catalyst synthesized employing in-liquid plasma

    NASA Astrophysics Data System (ADS)

    Amano, Tomoki; Kondo, Hiroki; Takeda, Keigo; Ishikawa, Kenji; Kano, Hiroyuki; Hiramatsu, Mineo; Sekine, Makoto; Hori, Masaru

    2016-09-01

    We recently have established ultrahigh-speed synthesis method of nanographene materials employing in-liquid plasma, and reported high durability of Pt/nanographene composites as a fuel cell catalyst. Crystallinity and domain size of nanographene materials were essential to their durability. However, their mechanism is not clarified yet. In this study, we investigated the oxygen reduction reaction using three-types of nanographene materials with different crystallinity and domain sizes, which were synthesized using ethanol, 1-propanol and 1-butanol, respectively. According to our previous studies, the nanographene material synthesized using the lower molecular weight alcohol has the higher crystallinity and larger domain size. Pt nanoparticles were supported on the nanographene surfaces by reducing 8 wt% H2PtCl6 diluted with H2O. Oxygen reduction current densities at a potential of 0.2 V vs. RHE were 5.43, 5.19 and 3.69 mA/cm2 for the samples synthesized using ethanol, 1-propanol and 1-butanol, respectively. This means that the higher crystallinity nanographene showed the larger oxygen reduction current density. The controls of crystallinity and domain size of nanographene materials are essential to not only their durability but also highly efficiency as catalyst electrodes.

  11. Graphene/biofilm composites for enhancement of hexavalent chromium reduction and electricity production in a biocathode microbial fuel cell.

    PubMed

    Song, Tian-Shun; Jin, Yuejuan; Bao, Jingjing; Kang, Dongzhou; Xie, Jingjing

    2016-11-05

    In this study, a simple method of biocathode fabrication in a Cr(VI)-reducing microbial fuel cell (MFC) is demonstrated. A self-assembling graphene was decorated onto the biocathode microbially, constructing a graphene/biofilm, in situ. The maximum power density of the MFC with a graphene biocathode is 5.7 times that of the MFC with a graphite felt biocathode. Cr(VI) reduction was also enhanced, resulting in 100% removal of Cr(VI) within 48h, at 40mg/L Cr(VI), compared with only 58.3% removal of Cr(VI) in the MFC with a graphite felt biocathode. Cyclic voltammogram analyses showed that the graphene biocathode had faster electron transfer kinetics than the graphite felt version. Energy dispersive spectrometer (EDS) and X-ray photoelectron spectra (XPS) analysis revealed a possible adsorption-reduction mechanism for Cr(VI) reduction via the graphene biocathode. This study attempts to improve the efficiency of the biocathode in the Cr(VI)-reducing MFC, and provides a useful candidate method for the treatment of Cr(VI) contaminated wastewater, under neutral conditions.

  12. A bipolar membrane combined with ferric iron reduction as an efficient cathode system in microbial fuel cells.

    PubMed

    Ter Heijne, Annemiek; Hamelers, Hubertus V M; De Wilde, Vinnie; Rozendal, René A; Buisman, Cees J N

    2006-09-01

    There is a need for alternative catalysts for oxygen reduction in the cathodic compartment of a microbial fuel cell (MFC). In this study, we show that a bipolar membrane combined with ferric iron reduction on a graphite electrode is an efficient cathode system in MFCs. A flat plate MFC with graphite felt electrodes, a volume of 1.2 L and a projected surface area of 290 cm2 was operated in continuous mode. Ferric iron was reduced to ferrous iron in the cathodic compartment according to Fe(3+) + e(-) --> Fe2+ (E0 = +0.77 V vs NHE, normal hydrogen electrode). This reversible electron transfer reaction considerably reduced the cathode overpotential. The low catholyte pH required to keep ferric iron soluble was maintained by using a bipolar membrane instead of the commonly used cation exchange membrane. For the MFC with cathodic ferric iron reduction, the maximum power density was 0.86 W/m2 at a current density of 4.5 A/m2. The Coulombic efficiency and energy recovery were 80-95% and 18-29% respectively.

  13. Increased O2 consumption and positive inotropy caused by cyclic GMP reduction are not altered after L-type calcium channel blockade.

    PubMed

    Leone, R J; Naim, K L; Scholz, P M; Weiss, H R

    1998-01-01

    We tested the hypothesis that increased O2 consumption and inotropy after reduction of myocardial cyclic guanosine monophosphate (cGMP) are mediated through L-type calcium channels. Anesthetized, open-chest New Zealand white rabbits were divided into four groups. Hearts were exposed to control vehicle (n = 8); LY83583 (LY, 10(-3) mol/l, guanylate cyclase inhibitor, (n = 9); nifedipine (nif, 10(-4) mol/l, L-type calcium channel blocker, n = 8), or nif+LY (n = 6). Vehicle or compound was applied topically to the epicardium for 15 min. Subepicardial (EPI) blood flow increased (from 213 +/- 22 to 323 +/- 24 ml/ min/100 g) in the presence of LY, as did subendocardial (ENDO) blood flow (from 238 +/- 20 to 333 +/- 38 ml/min/ 100 g). O2 consumption increased in the presence of LY:18.0 +/- 1.0 (EPI) and 17.0 +/- 0.6 (ENDO) ml O2/min/100 g as compared with 9.5 +/- 2.0 (EPI) and 10.6 +/- 2.5 (ENDO) in the control group. The increase in O2 consumption with LY was undiminished in the presence of nif (nif+LY group 21.0 +/- 3.0 ml O2/min/100 g EPI and 22.1 +/- 3.8 ENDO). Nif alone decreased left ventricular dP/dtmax from (2,762 +/- 197 to 2,413 +/- 316 mm Hg/s) and maximal rate of change in wall thickness (dW/dtmax from 13.5 +/- 2.0 to 9.5 +/- 0.8 mm/s), while percent change of wall thickness (from 21.3 +/- 3.3 to 31.3 +/- 7.2) and dW/dtmax (from 13.3 +/- 3.0 to 15.3 +/- 2.3 mm/s) increased in the nif+LY group. Thus, the positive O2 consumption and inotropic effects of decreasing cGMP were undiminished by nif. These results suggest that the cGMP reduction induced increases in O2 consumption and that inotropy may not be mediated through L-type calcium channels.

  14. Reductions in Artemisinin-Based Combination Therapy Consumption after the Nationwide Scale up of Routine Malaria Rapid Diagnostic Testing in Zambia

    PubMed Central

    Yukich, Joshua O.; Bennett, Adam; Albertini, Audrey; Incardona, Sandra; Moonga, Hawela; Chisha, Zunda; Hamainza, Busiku; Miller, John M.; Keating, Joseph; Eisele, Thomas P.; Bell, David

    2012-01-01

    The National Malaria Control Center of Zambia introduced rapid diagnostic tests (RDTs) to detect Plasmodium falciparum as a pilot in some districts in 2005 and 2006; scale up at a national level was achieved in 2009. Data on RDT use, drug consumption, and diagnostic results were collected in three Zambian health districts to determine the impact RDTs had on malaria case management over the period 2004–2009. Reductions were seen in malaria diagnosis and antimalarial drug prescription (66.1 treatments per facility-month (95% confidence interval [CI] = 44.7–87.4) versus 26.6 treatments per facility-month (95% CI = 11.8–41.4)) pre- and post-RDT introduction. Results varied between districts, with significant reductions in low transmission areas but none in high areas. Rapid diagnostic tests may contribute to rationalization of treatment of febrile illness and reduce antimalarial drug consumption in Africa; however, their impact may be greater in lower transmission areas. National scale data will be necessary to confirm these findings. PMID:22848096

  15. Implications from the Use of Non-timber Forest Products on the Consumption of Wood as a Fuel Source in Human-Dominated Semiarid Landscapes

    NASA Astrophysics Data System (ADS)

    Cavalcanti, Maria Clara B. T.; Ramos, Marcelo Alves; Araújo, Elcida L.; Albuquerque, Ulysses P.

    2015-08-01

    Little is known about what possible effects on wood resources might be caused by non-timber forest products (NTFPs). Here, we assessed the patterns of fuelwood consumption related to an NTFP ( Caryocar coriaceum) oil extraction and how this non-domestic activity can indirectly increase the use pressure on fuelwood species in a protected area, semiarid of Brazil. We conducted semi-structured interviews, in situ inventories, phytosociological surveys, and analyses of wood quality to identify the set of woody plants used in oil production. Householders use large volumes of dry wood and a set of woody species, which are highly exploited. Additionally, many preferred species have low fuel potential and suffer much use pressure. The best fuelwood species are underused, what requires management strategies to improve their potential as a source of energy. As a result, we suggest some conservation and management actions of fuelwood resources related to the use of NTFPs.

  16. Performance of a scaled-up Microbial Fuel Cell with iron reduction as the cathode reaction

    NASA Astrophysics Data System (ADS)

    Ter Heijne, Annemiek; Liu, Fei; van Rijnsoever, Lucas S.; Saakes, Michel; Hamelers, Hubertus V. M.; Buisman, Cees J. N.

    Scale-up studies of Microbial Fuel Cells are required before practical application comes into sight. We studied an MFC with a surface area of 0.5 m 2 and a volume of 5 L. Ferric iron (Fe 3+) was used as the electron acceptor to improve cathode performance. MFC performance increased in time as a combined result of microbial growth at the bio-anode, increase in iron concentration from 1 g L -1 to 6 g L -1, and increased activity of the iron oxidizers to regenerate ferric iron. Finally, a power density of 2.0 W m -2 (200 W m -3) was obtained. Analysis of internal resistances showed that anode resistance decreased from 109 to 7 mΩ m 2, while cathode resistance decreased from 939 to 85 mΩ m 2. The cathode was the main limiting factor, contributing to 58% of the total internal resistance. Maximum energy efficiency of the MFC was 41%.

  17. Future Fuels

    DTIC Science & Technology

    2005-10-04

    tactical ground mobility and increasing operational reach • Identify, review, and assess – Technologies for reducing fuel consumption, including...T I O N S A C T I O N S TOR Focus - Tactical ground mobility - Operational reach - Not A/C, Ships, or troops Hybrid Electric Vehicle Fuel Management...Fuel Management During Combat Operations Energy Fundamentals • Energy Density • Tactical Mobility • Petroleum Use • Fuel Usage (TWV) • TWV OP TEMPO TOR

  18. Sectoral CO 2, CH 4, N 2O and SO 2 emissions from fossil fuel consumption in Nagpur City of Central India

    NASA Astrophysics Data System (ADS)

    Majumdar, Deepanjan; Gajghate, D. G.

    2011-08-01

    Emission inventory of CO 2, CH 4, N 2O and SO 2 has been prepared for Nagpur city in Central India for the year 2004. Data on fossil fuel (coal, light diesel oil, high speed diesel, petrol/gasoline, low sulphur heavy stock, furnace oil and kerosene) consumption in thermal power, industrial, transport and domestic sectors were collected. Thermal power sector had the maximum coal consumption followed by the industrial and domestic sectors, whereas kerosene, liquefied petroleum gas (LPG), diesel and gasoline were used only in any single sector. Total annual CO 2, CH 4, N 2O and SO 2 emissions from these fuels in Nagpur city for the year 2004 was found to be 14792418 MT (14.8 Tg), 4649 (4.6 Tg), 1529 (1.5 Tg) and 69093 (6.9 Tg), respectively, in which thermal power and domestic sector had the maximum share. Coal was found to be the major contributor to Green House Gas (GHG) and SO 2 emissions in all the sectors barring transport and domestic sectors. Carbon dioxide was the predominant GHG emitted by the selected sectors in terms of absolute emissions and also global warming contribution (GWC), though the share in the latter was lesser in magnitude due to higher global warming potential (GWP) of CH 4 and N 2O than CO 2. Thermal power sector had a share of 51% in total CO 2 emissions from all the sectors, followed by domestic, industrial and transport sectors having 27, 12 and 10% contributions, respectively. Share of thermal power sector in total SO 2 emissions was 61%, followed by 24% from industrial, 10% from domestic and 5% from transport sector.

  19. Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries

    NASA Astrophysics Data System (ADS)

    Suntivich, Jin; Gasteiger, Hubert A.; Yabuuchi, Naoaki; Nakanishi, Haruyuki; Goodenough, John B.; Shao-Horn, Yang

    2011-07-01

    The prohibitive cost and scarcity of the noble-metal catalysts needed for catalysing the oxygen reduction reaction (ORR) in fuel cells and metal-air batteries limit the commercialization of these clean-energy technologies. Identifying a catalyst design principle that links material properties to the catalytic activity can accelerate the search for highly active and abundant transition-metal-oxide catalysts to replace platinum. Here, we demonstrate that the ORR activity for oxide catalysts primarily correlates to σ*-orbital (eg) occupation and the extent of B-site transition-metal-oxygen covalency, which serves as a secondary activity descriptor. Our findings reflect the critical influences of the σ* orbital and metal-oxygen covalency on the competition between O22-/OH- displacement and OH- regeneration on surface transition-metal ions as the rate-limiting steps of the ORR, and thus highlight the importance of electronic structure in controlling oxide catalytic activity.

  20. The enhancement of ammonium removal from ethanolamine wastewater using air-cathode microbial fuel cells coupled to ferric reduction.

    PubMed

    Shin, Ja-Won; Seo, Seok-Ju; Maitlo, Hubdar Ali; Park, Joo-Yang

    2015-08-01

    A microbial fuel cell (MFC) with biological Fe(III) reduction was implemented for simultaneous ethanolamine (ETA) degradation and electrical energy generation. In the feasibility experiment using acetate as a substrate in a single-chamber MFC with goethite and ammonium at a ratio of 3.0(mol/mol), up to 96.1% of the ammonium was removed through the novel process related to Fe(III). In addition, the highest voltage output (0.53V) and maximum power density (0.49Wm(-2)) were obtained. However, the ammonium removal and electrical performance decreased as acetate was replaced with ETA. In the long-term experiment, the electrical performance markedly decreased where the voltage loss increased due to Fe deposition on the membranes.

  1. The Stability Challenge on the Pathway to Low and Ultra‐Low Platinum Loading for Oxygen Reduction in Fuel Cells

    PubMed Central

    Cherevko, Serhiy

    2015-01-01

    Abstract We report the influence of catalyst loading on rates of platinum degradation in acidic electrolyte at room temperature. A piezoelectric printer is used to deposit spotted arrays of a commercially available catalyst comprised of Pt nanoparticles on a porous carbon support. The kinetically controlled oxygen reduction reaction (ORR) activity at different loadings is measured using an electrochemical scanning flow cell (SFC), and found to be quite stable over the range of loadings studied. This behaviour, however, contrasts sharply with rates of both transient and quasi‐steady‐state platinum dissolution. These are shown using downstream inductively coupled plasma mass spectrometry (ICP‐MS) analytics, to increase as loading becomes lower. This dichotomy between activity and stability has direct implications for the development of improved catalyst materials, as well as for the achievement of current targets for reduced loadings of noble metals for fuel cells and other energy storage devices. PMID:27525211

  2. The Stability Challenge on the Pathway to Low and Ultra-Low Platinum Loading for Oxygen Reduction in Fuel Cells.

    PubMed

    Keeley, Gareth P; Cherevko, Serhiy; Mayrhofer, Karl J J

    2016-01-01

    We report the influence of catalyst loading on rates of platinum degradation in acidic electrolyte at room temperature. A piezoelectric printer is used to deposit spotted arrays of a commercially available catalyst comprised of Pt nanoparticles on a porous carbon support. The kinetically controlled oxygen reduction reaction (ORR) activity at different loadings is measured using an electrochemical scanning flow cell (SFC), and found to be quite stable over the range of loadings studied. This behaviour, however, contrasts sharply with rates of both transient and quasi-steady-state platinum dissolution. These are shown using downstream inductively coupled plasma mass spectrometry (ICP-MS) analytics, to increase as loading becomes lower. This dichotomy between activity and stability has direct implications for the development of improved catalyst materials, as well as for the achievement of current targets for reduced loadings of noble metals for fuel cells and other energy storage devices.

  3. Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries.

    PubMed

    Suntivich, Jin; Gasteiger, Hubert A; Yabuuchi, Naoaki; Nakanishi, Haruyuki; Goodenough, John B; Shao-Horn, Yang

    2011-06-12

    The prohibitive cost and scarcity of the noble-metal catalysts needed for catalysing the oxygen reduction reaction (ORR) in fuel cells and metal-air batteries limit the commercialization of these clean-energy technologies. Identifying a catalyst design principle that links material properties to the catalytic activity can accelerate the search for highly active and abundant transition-metal-oxide catalysts to replace platinum. Here, we demonstrate that the ORR activity for oxide catalysts primarily correlates to σ-orbital (e(g)) occupation and the extent of B-site transition-metal-oxygen covalency, which serves as a secondary activity descriptor. Our findings reflect the critical influences of the σ orbital and metal-oxygen covalency on the competition between O(2)(2-)/OH(-) displacement and OH(-) regeneration on surface transition-metal ions as the rate-limiting steps of the ORR, and thus highlight the importance of electronic structure in controlling oxide catalytic activity.

  4. Effects of surface chemistry and microstructure of electrolyte on oxygen reduction kinetics of solid oxide fuel cells

    SciTech Connect

    Park, Joong Sun; An, Jihwan; Lee, Min Hwan; Prinz, Friedrich B.; Lee, Wonyoung

    2015-11-01

    In this study, we report systematic investigation of the surface properties of yttria-stabilized zirconia (YSZ) electrolytes with the control of the grain boundary (GB) density at the surface, and its effects on electrochemical activities. The GB density of thin surface layers deposited on single crystal YSZ substrates is controlled by changing the annealing temperature (750-1450 °C). Higher oxygen reduction reactions (ORR) kinetics is observed in samples annealed at lower temperatures. The higher ORR activity is ascribed to the higher GB density at the YSZ surface where 'mobile' oxide ion vacancies are more populated. Meanwhile, oxide ion vacancies concurrently created with yttrium segregation at the surface at the higher annealing temperature are considered inactive to oxygen incorporation reactions. Our results provide additional insight into the interplay between the surface chemistry, microstructures, and electrochemical activity. They potentially provide important guidelines for engineering the electrolyte electrode interfaces of solid oxide fuel cells for higher electrochemical performance.

  5. Experimental evidence of oxygen thermo-migration in PWR UO2 fuels during power ramps using in-situ oxido-reduction indicators

    NASA Astrophysics Data System (ADS)

    Riglet-Martial, Ch.; Sercombe, J.; Lamontagne, J.; Noirot, J.; Roure, I.; Blay, T.; Desgranges, L.

    2016-11-01

    The present study describes the in-situ electrochemical modifications which affect irradiated PWR UO2 fuels in the course of a power ramp, by means of in-situ oxido-reduction indicators such as chromium or neo-formed chemical phases. It is shown that irradiated fuels (of nominal stoichiometry close to 2.000) under temperature gradient such as that occurring during high power transients are submitted to strong oxido-reduction perturbations, owing to radial migration of oxygen from the hot center to the cold periphery of the pellet. The oxygen redistribution, similar to that encountered in Sodium Fast Reactors fuels, induces a massive reduction/precipitation of the fission products Mo, Ru, Tc and Cr (if present) in the high temperature pellet section and the formation of highly oxidized neo-formed grey phases of U4O9 type in its cold section, of lower temperature. The parameters governing the oxidation states of UO2 fuels under power ramps are finally debated from a cross-analysis of our results and other published information. The potential chemical benefits brought by oxido-reductive additives in UO2 fuel such as chromium oxide, in connection with their oxygen buffering properties, are discussed.

  6. Studies on plutonium-zirconium co-precipitation and carbothermal reduction in the internal gelation process for nitride fuel preparation

    NASA Astrophysics Data System (ADS)

    Hedberg, Marcus; Ekberg, Christian

    2016-10-01

    Sol-gel based techniques are one way to lower the handling of highly radioactive powders when producing transuranium-containing fuel. In this work inert matrix (Zr0.6,Pu0.4)N fuel has been produced by internal gelation followed by carbothermal reduction. No co-gelation was observed during internal gelation and a two phase material could be detected by scanning electron microscopy in the nitrided microspheres. Sintering has been performed in both Ar and N2. X-ray diffraction revealed that sintering in N2 produced a solid solution, while sintering in Ar did not. The final metal composition in the microspheres was determined by ICP-MS to be about 41% Pu and 59% Zr. Vegard's law was applied to estimate the nitride purity in the solid solution pellet to be Zr0.6Pu0.4N0.87C0.13 making the final material more of a carbonitride than a pure nitride.

  7. A study of NO{sub x} reduction by fuel injection recirculation. Final report, January 1995--June 1996

    SciTech Connect

    Feese, J.J.; Turns, S.R.

    1996-08-01

    Flue-gas recirculation (FGR) is a well-known method used to control oxides of nitrogen (NO{sub x}) in industrial burner applications. Recent small- and large-scale experiments in natural-gas fired boilers have shown that introducing the recirculated flue gases with the fuel results in a much greater reduction in NO{sub x}, per unit mass of gas recirculated, in comparison to introducing the flue gases with the combustion air. That fuel injection recirculation (FIR) is more effective than windbox FGR is quite remarkable. At present, however, there is no definitive understanding of why FIR is more effective than conventional FGR. The objective of the present investigation is to ascertain whether or not chemical and/or molecular transport effects alone can explain the differences in NO{sub x} reduction observed between FIR and FGR by studying laminar diffusion flames. The purpose of studying laminar flames is to isolate chemical effects from the effects of turbulent mixing and heat transfer, which are inherent in practical boilers. The results of both the numerical simulations and the experiments suggest that, although molecular transport and chemical kinetic phenomena are affected by the location of diluent addition depending on flow conditions, the greater effectiveness of FIR over FGR in practical applications may result from differences in turbulent mixing and heat transfer. Further research is required to understand how differences in diluent-addition location affect NO{sub x} production in turbulent flames. The present study, however, provides an underlying basis for understanding how flow conditions can affect flame chemistry. 51 figs., 7 tabs.

  8. Acetylene fuels TCE reductive dechlorination by defined Dehalococcoides/Pelobacter consortia

    USGS Publications Warehouse

    Mao, Xinwei; Oremland, Ronald S.; Liu, Tong; Landers, Abigail A; Baesman, Shaun; Alvarez-Cohen, Lisa

    2017-01-01

    Acetylene (C2H2) can be generated in contaminated groundwater sites as a consequence of chemical degradation of trichloroethene (TCE) by in situ minerals, and C2H2 is known to inhibit bacterial dechlorination. In this study, we show that while high C2H2 (1.3 mM) concentrations reversibly inhibit reductive dechlorination of TCE by Dehalococcoides mccartyi isolates as well as enrichment cultures containing D. mccartyi sp., low C2H2 (0.4 mM) concentrations do not inhibit growth or metabolism of D. mccartyi. Cocultures of Pelobacter SFB93, a C2H2-fermenting bacterium, with D. mccartyi strain 195 or with D. mccartyi strain BAV1 were actively sustained by providing acetylene as the electron donor and carbon source while TCE or cis-DCE served as the electron acceptor. Inhibition by acetylene of reductive dechlorination and methanogenesis in the enrichment culture ANAS was observed, and the inhibition was removed by adding Pelobacter SFB93 into the consortium. Transcriptomic analysis of D. mccartyi strain 195 showed genes encoding for reductive dehalogenases (e.g., tceA) were not affected during the C2H2-inhibition, while genes encoding for ATP synthase, biosynthesis, and Hym hydrogenase were down-regulated during C2H2 inhibition, consistent with the physiological observation of lower cell yields and reduced dechlorination rates in strain 195. These results will help facilitate the optimization of TCE-bioremediation at contaminated sites containing both TCE and C2H2.

  9. Soda-fuel metallurgy: Metal ions for carbon neutral CO2 and H2O reduction

    NASA Astrophysics Data System (ADS)

    Neelameggham, Neale R.

    2009-04-01

    The role of minerals in biomass formation is understood only to a limited extent. When the term “photosynthesis—CO2 and H2O reduction of sugars, using solar energy”—is used, one normally thinks of chlorophyll as a compound containing magnesium. Alkali and alkaline earth metals present in leaf cells in the form of ions are equally essential in this solar energy bioconversion coupled with nitrogen fixation. Application of some of these principles can lead to artificial carbon-neutral processes on an industrial scale close to the concentrated CO2 emission sources.

  10. The GABA B agonist baclofen reduces cigarette consumption in a preliminary double-blind placebo-controlled smoking reduction study.

    PubMed

    Franklin, Teresa R; Harper, Derek; Kampman, Kyle; Kildea-McCrea, Susan; Jens, Will; Lynch, Kevin G; O'Brien, Charles P; Childress, Anna Rose

    2009-07-01

    The surge in dopamine in ventral striatal regions in response to drugs of abuse and drug-associated stimuli is a final common pathway of addiction processes. GABA B agonists exert their effects indirectly, by quieting dopaminergic afferents. The ability of the GABA B agonist, baclofen to ameliorate nicotine and drug motivated behavior is established within the animal literature, however its potential to do so in humans is understudied, particularly with respect to its possible utility as a smoking cessation agent. We conducted a nine-week double-blind placebo-controlled pilot trial of baclofen for smoking reduction (N=30/group) in smokers contemplating, but not quite ready to quit. Baclofen was titrated upwards to 20mg q.i.d. over a period of twelve days. The primary outcome measure was the number of cigarettes smoked per day (CPD). A significant group by time effect of medication was observed. Baclofen was superior to placebo in reducing CPD (beta=0.01, t=1.97, p<0.05). The most common side effect reported during baclofen treatment is transient drowsiness, however there were no differences between groups in mild, moderate, or severe sedation. Craving was significantly lowered at end of treatment in all smokers (p<0.02). Retention did not differ between groups. In line with a multitude of preclinical studies examining the effects of baclofen on drug-motivated behavior, baclofen reduced CPD. In agreement with other studies examining craving and drug use, reductions in CPD were accompanied by a reduction in craving, a major motivator underlying continued smoking and relapse. These preliminary results demonstrate provisional evidence of the utility of baclofen to aid in smoking cessation and indicate further investigation.

  11. The GABA B agonist baclofen reduces cigarette consumption in a preliminary double-blind placebo-controlled smoking reduction study

    PubMed Central

    Franklin, Teresa R.; Harper, Derek; Kampman, Kyle; Kildea, Susan; Jens, Will; Lynch, Kevin; O’Brien, Charles P.; Childress, Anna Rose

    2009-01-01

    The surge in dopamine in ventral striatal regions in response to drugs of abuse and drug-associated stimuli is a final common pathway of addiction processes. GABA B agonists exert their effects indirectly, by quieting dopaminergic afferents. The ability of the GABA B agonist, baclofen to ameliorate nicotine and drug motivated behavior is established within the animal literature, however its potential to do so in humans is understudied, particularly with respect to its possible utility as a smoking cessation agent. We conducted a nine-week double-blind placebo-controlled pilot trial of baclofen for smoking reduction (N=30/group) in smokers contemplating, but not quite ready to quit. Baclofen was titrated upwards to 20 mg q.i.d. over a period of twelve days. The primary outcome measure was the number of cigarettes smoked per day (CPD). A significant group by time effect of medication was observed. Baclofen was superior to placebo in reducing CPD (β=0.01, t=1.97, p<0.05). The most common side effect reported during baclofen treatment is transient drowsiness, however there were no differences between groups in mild, moderate, or severe sedation. Craving was significantly lowered at end of treatment in all smokers (p<0.02). Retention did not differ between groups. In line with a multitude of preclinical studies examining the effects of baclofen on drug-motivated behavior, baclofen reduced CPD. In agreement with other studies examining craving and drug use, reductions in CPD were accompanied by a reduction in craving, a major motivator underlying continued smoking and relapse. These preliminary results demonstrate provisional evidence of the utility of baclofen to aid in smoking cessation and indicate further investigation. PMID:19398283

  12. Effect of set potential on hexavalent chromium reduction and electricity generation from biocathode microbial fuel cells.

    PubMed

    Huang, Liping; Chai, Xiaolei; Chen, Guohua; Logan, Bruce E

    2011-06-01

    Setting a biocathode potential at -300 mV improved the subsequent performance of an MFC for Cr(VI) reduction compared to a control (no set potential). With this set potential, the startup time was reduced to 19 days, the reduction of Cr(VI) was improved to 19.7 mg/L d, and the maximum power density was increased to 6.4 W/m(3) compared to the control (26 days, 14.0 mg/L d and 4.1 W/m(3)). Set potentials of -150 mV and -300 mV also improved system performance and led to similarly higher utilization of metabolic energy gained (PMEG) than set potentials of +200 mV and -450 mV. We observed putative pili at -150 and -300 mV potentials, and aggregated precipitates on bacterial surfaces in both poised and nonpoised controls. These tests show that there are optimal potentials that can be set for developing a Cr(VI) biocathode.

  13. Iridium-decorated palladium-platinum core-shell catalysts for oxygen reduction reaction in proton exchange membrane fuel cell.

    PubMed

    Wang, Chen-Hao; Hsu, Hsin-Cheng; Wang, Kai-Ching

    2014-08-01

    Carbon-supported Pt, Pd, Pd-Pt core-shell (Pt(shell)-Pd(core)/C) and Ir-decorated Pd-Pt core-shell (Ir-decorated Pt(shell)-Pd(core)/C) catalysts were synthesized, and their physical properties, electrochemical behaviors, oxygen reduction reaction (ORR) characteristics and proton exchange membrane fuel cell (PEMFC) performances were investigated herein. From the XRD patterns and TEM images, Ir-decorated Pt(shell)-Pd(core)/C has been confirmed that Pt was deposited on the Pd nanoparticle which had the core-shell structure. Ir-decorated Pt(shell)-Pd(core)/C has more positive OH reduction peak than Pt/C, which is beneficial to weaken the binding energy of Pt-OH during the ORR. Thus, Ir-decorated Pt(shell)-Pd(core)/C has higher ORR activity than Pt/C. The maximum power density of H2-O2 PEMFC using Ir-decorated Pt(shell)-Pd(core)/C is 792.2 mW cm(-2) at 70°C, which is 24% higher than that using Pt/C. The single-cell accelerated degradation test of PEMFC using Ir-decorated Pt(shell)-Pd(core)/C shows good durability by the potential cycling of 40,000 cycles. This study concludes that Ir-decorated Pt(shell)-Pd(core)/C has the low Pt content, but it can facilitate the low-cost and high-efficient PEMFC.

  14. Comparison of electrode reduction activities of Geobacter sulfurreducens and an enriched consortium in an air-cathode microbial fuel cell.

    PubMed

    Ishii, Shun'ichi; Watanabe, Kazuya; Yabuki, Soichi; Logan, Bruce E; Sekiguchi, Yuji

    2008-12-01

    An electricity-generating bacterium, Geobacter sulfurreducens PCA, was inoculated into a single-chamber, air-cathode microbial fuel cell (MFC) in order to determine the maximum electron transfer rate from bacteria to the anode. To create anodic reaction-limiting conditions, where electron transfer from bacteria to the anode is the rate-limiting step, anodes with electrogenic biofilms were reduced in size and tests were conducted using anodes of six different sizes. The smallest anode (7 cm(2), or 1.5 times larger than the cathode) achieved an anodic reaction-limiting condition as a result of a limited mass of bacteria on the electrode. Under these conditions, the limiting current density reached a maximum of 1,530 mA/m(2), and power density reached a maximum of 461 mW/m(2). Per-biomass efficiency of the electron transfer rate was constant at 32 fmol cell(-1) day(-1) (178 micromol g of protein(-1) min(-1)), a rate comparable to that with solid iron as the electron acceptor but lower than rates achieved with fumarate or soluble iron. In comparison, an enriched electricity-generating consortium reached 374 micromol g of protein(-1) min(-1) under the same conditions, suggesting that the consortium had a much greater capacity for electrode reduction. These results demonstrate that per-biomass electrode reduction rates (calculated by current density and biomass density on the anode) can be used to help make better comparisons of electrogenic activity in MFCs.

  15. Self-sustained reduction of multiple metals in a microbial fuel cell-microbial electrolysis cell hybrid system.

    PubMed

    Li, Yan; Wu, Yining; Liu, Bingchuan; Luan, Hongwei; Vadas, Timothy; Guo, Wanqian; Ding, Jie; Li, Baikun

    2015-09-01

    A self-sustained hybrid bioelectrochemical system consisting of microbial fuel cell (MFC) and microbial electrolysis cell (MEC) was developed to reduce multiple metals simultaneously by utilizing different reaction potentials. Three heavy metals representing spontaneous reaction (chromium, Cr) and unspontaneous reaction (lead, Pb and nickel, Ni) were selected in this batch-mode study. The maximum power density of the MFC achieved 189.4 mW m(-2), and the energy recovery relative to the energy storage circuit (ESC) was ∼ 450%. At the initial concentration of 100 mg L(-1), the average reduction rate of Cr(VI) was 30.0 mg L(-1) d(-1), Pb(II) 32.7 mg L(-1) d(-1), and Ni(II) 8.9 mg L(-1) d(-1). An electrochemical model was developed to predict the change of metal concentration over time. The power output of the MFC was sufficient to meet the requirement of the ESC and MEC, and the "self-sustained metal reduction" was achieved in this hybrid system.

  16. Nitrogen oxides reduction by carbonaceous materials and carbon dioxide separation using regenerative metal oxides from fossil fuel based flue gas

    NASA Astrophysics Data System (ADS)

    Gupta, Himanshu

    The ever-growing energy demands due to rising global population and continuing lifestyle improvements has placed indispensable emphasis on fossil fuels. Combustion of fossil fuels leads to the emission of harmful gaseous pollutants such as oxides of sulfur (SOx) and nitrogen (NOx), carbon dioxide (CO2), mercury, particulate matter, etc. Documented evidence has proved that this air pollution leads to adverse environmental health. This dissertation focuses on the development of technologies for the control of NOx and CO2 emissions. The first part of the thesis (Chapters 2--6) deals with the development of carbon based post combustion NOx reduction technology called CARBONOX process. High temperature combustion oxidizes both atmospheric nitrogen and organic nitrogen in coal to nitric oxide (NO). The reaction rate between graphite and NO is slow and requires high temperature (>900°C). The presence of metallic species in coal char catalyzes the reaction. The reaction temperature is lowered in the presence of oxygen to about 600--850°C. Chemical impregnation, specifically sodium compounds, further lowers the reaction temperature to 350--600°C. Activated high sodium lignite char (HSLC) provided the best performance for NO reduction. The requirement of char for NOx reduction is about 8--12 g carbon/g NO reduced in the presence of 2% oxygen in the inlet gas. The second part of this dissertation (chapter 7--8) focuses on the development of a reaction-based process for the separation of CO2 from combustion flue gas. Certain metal oxides react with CO2 forming metal carbonates under flue gas conditions. They can be calcined separately to yield CO2. Calcium oxide (CaO) has been identified as a viable metal oxide for the carbonation-calcination reaction (CCR) scheme. CaO synthesized from naturally occurring precursors (limestone and dolomite) attained 45--55% of their stoichiometric conversion due to the susceptibility of their microporous structure. High surface area

  17. Iron Supplementation Reverses the Reduction of Hydroxymethylcytosine in Hepatic DNA Associated With Chronic Alcohol Consumption in Rats

    PubMed Central

    Tammen, Stephanie A.; Park, Jung Eun; Shin, Phil Kyung; Friso, Simonetta; Chung, Jayong; Choi, Sang-Woon

    2016-01-01

    Background Alcohol is known to affect two epigenetic phenomena, DNA methylation and DNA hydroxymethylation, and iron is a cofactor of ten-eleven translocation (TET) enzymes that catalyze the conversion from methylcytosine to hydroxymethylcytosine. In the present study we aimed to determine the effects of alcohol on DNA hydroxymethylation and further effects of iron on alcohol associated epigenetic changes. Methods Twenty-four male Sprague-Dawley rats were fed either Lieber-DeCarli alcohol diet (36% calories from ethanol) or Lieber-DeCarli control diet along with or without iron supplementation (0.6% carbonyl iron) for 8 weeks. Hepatic non-heme iron concentrations were measured by colorimetric assays. Protein levels of hepatic ferritin and transferrin receptor were determined by Western blotting. Methylcytosine, hydroxymethylcytosine and unmodified cytosine in DNA were simultaneously measured by liquid chromatography/mass spectrometry method. Results Iron supplementation significantly increased hepatic non-heme iron contents (P < 0.05) but alcohol alone did not. However, both alcohol and iron significantly increased hepatic ferritin levels and decreased hepatic transferrin receptor levels (P < 0.05). Alcohol reduced hepatic DNA hydroxymethylation (0.21% ± 0.04% vs. 0.33% ± 0.04%, P = 0.01) compared to control, while iron supplementation to alcohol diet did not change DNA hydroxymethylation. There was no significant difference in methylcytosine levels, while unmodified cytosine levels were significantly increased in alcohol-fed groups compared to control (95.61% ± 0.08% vs. 95.26% ± 0.12%, P = 0.03), suggesting that alcohol further increases the conversion from hydroxymethylcytosine to unmodified cytosine. Conclusions Chronic alcohol consumption alters global DNA hydroxymethylation in the liver but iron supplementation reverses the epigenetic effect of alcohol. PMID:28053961

  18. Silver/iron oxide/graphitic carbon composites as bacteriostatic catalysts for enhancing oxygen reduction in microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Ma, Ming; You, Shijie; Gong, Xiaobo; Dai, Ying; Zou, Jinlong; Fu, Honggang

    2015-06-01

    Biofilms from anode heterotrophic bacteria are inevitably formed over cathodic catalytic sites, limiting the performances of single-chamber microbial fuel cells (MFCs). Graphitic carbon (GC) - based nano silver/iron oxide (AgNPs/Fe3O4/GC) composites are prepared from waste pomelo skin and used as antibacterial oxygen reduction catalysts for MFCs. AgNPs and Fe3O4 are introduced in situ into the composites by one-step carbothermal reduction, enhancing their conductivity and catalytic activity. To investigate the effects of Fe species on the antibacterial and catalytic properties, AgNPs/Fe3O4/GC is washed with sulfuric acid (1 mol L-1) for 0.5 h, 1 h, and 5 h and marked as AgNPs/Fe3O4/GC-x (x = 0.5 h, 1 h and 5 h, respectively). A maximum power density of 1712 ± 35 mW m-2 is obtained by AgNPs/Fe3O4/GC-1 h, which declines by 4.12% after 17 cycles. Under catalysis of all AgNP-containing catalysts, oxygen reduction reaction (ORR) proceeds via the 4e- pathway, and no toxic effects to anode microorganisms result from inhibiting the cathodic biofilm overgrowth. With the exception of AgNPs/Fe3O4/GC-5 h, the AgNPs-containing composites exhibit remarkable power output and coulombic efficiency through lowering proton transfer resistance and air-cathode biofouling. This study provides a perspective for the practical application of MFCs using these efficient antibacterial ORR catalysts.

  19. Replacing foods high in saturated fat by low-saturated fat alternatives: a computer simulation of the potential effects on reduction of saturated fat consumption.

    PubMed

    Schickenberg, Bilbo; van Assema, Patricia; Brug, Johannes; Verkaik-Kloosterman, Janneke; Ocké, Marga C; de Vries, Nanne K

    2009-08-01

    This simulation study aimed to assess the change in saturated fat intake achieved by replacing one to three of the products contributing most to individual saturated fat intake by alternative products low in saturated fat. Food consumption data of 750 participants (aged 19-30 years) from a recent Dutch food consumption survey were used. For each participant, the three products (from different product groups) that contributed most to their saturated fat intake were ranked in order of diminishing contribution. These products were sequentially replaced by lower saturated fat alternatives that were available in Dutch supermarkets. Mean percentage energy (en%) from saturated fat and energy intake in kJ per d were calculated before and after each of the three replacements. Dutch cheese, meat (for dinner) and milk were the main contributors to saturated fat intake for most participants. Starting at a mean en% from saturated fat of 12.4, the three replacements together resulted in a mean reduction of 4.9 en% from saturated fat. The percentage of participants meeting the recommendation for saturated fat ( < 10 en%) increased from 23.3 % to 86.0 %. We conclude that the replacement of relatively few important high-saturated fat products by available lower-saturated fat alternatives can significantly reduce saturated fat intake and increase the proportion of individuals complying with recommended intake levels.

  20. Acetylene fuels reductive dechlorination of TCE by Dehalococcoides/Pelobacter-containing microbial consortia

    NASA Astrophysics Data System (ADS)

    Oremland, R. S.; Mao, X.; Mahandra, C.; Baesman, S. M.; Gushgari, S.; Alvarez-Cohen, L.; Liu, T.

    2015-12-01

    Groundwater contamination by trichloroethene (TCE) poses a threat to health and leads to the generation of vinyl chloride (VC), a carcinogen. Dehalococcoides mccartyi is the only bacterium that can completely dechlorinate TCE to ethene (C2H4). Acetylene (C2H2) occurs in TCE-contaminated sites as a consequence of chemical degradation of TCE. Yet acetylene inhibits a variety of microbial processes including methanogesis and reductive dechlorination. Pelobacter acetylenicus and related species can metabolize acetylene via acetylene hydratase and acetaldehyde dismutatse thereby generating acetate and H2 as endproducts, which could serve as electron donor and carbon source for growth of D. mccartyi. We found that 1mM acetylene (aqueous) inhibits growth of D. mccartyi strain 195 on 0.3 mM TCE, but that the inhibition was removed after 12 days with the addition of an acetylene-utilizing isolate from San Francisco Bay, Pelobacter strain SFB93. TCE did not inhibit the growth of this Pelobacter at the concentrations tested (0.1-0.5 mM) and TCE was not consumed by strain SFB93. Co-cultures of strain 195 with strain SFB93 at 5% inoculation were established in 120 mL serum bottles containing 40 mL defined medium. TCE was supplied at a liquid concentration of 0.1 mM, with 0.1 mM acetylene and N2/CO2 (90:10 v/v) headspace at 34 °C. Co-cultures were subsequently transferred (5% vol/vol inoculation) to generate subcultures after 20 μmol TCE was reduced to VC and 36 μmol acetylene was depleted. Aqueous H2 ranged from 114 to 217 nM during TCE-dechlorination, and the cell yield of strain 195 was 3.7 ±0.3 × 107 cells μmol-1 Cl- released. In a D. mccartyi-containing enrichment culture (ANAS) under the same conditions as above, it was found that inhibition of dechlorination by acetylene was reversed after 19 days by adding SFB93. Thus we showed that a co-culture of Pelobacter SFB93 and D. mccartyi 195 could be maintained with C2H2 as the electron donor and carbon source while TCE

  1. “Just Advil”: Harm reduction and identity construction in the consumption of Over-The-Counter medication for chronic pain Social Science & Medicine

    PubMed Central

    2015-01-01

    Direct-to-consumer marketing has sparked ongoing debate concerning whether ads empower consumers to be agents of their own care or shift greater control to the pharmaceutical industry. Ads for over-the-counter (OTC) medications in particular portend to offer simple, harmless solutions for meeting the demands of social life. Rather than join the longstanding debate between consumer agency and social control in pharmaceutical advertising, I approach self-medication with over-the-counter (OTC) analgesics using Harm Reduction as a framework. From this perspective, consumption of OTC analgesics by chronic pain sufferers is a means of seeking some level of relief while also avoiding the stigma associated with prescription pain medication. Qualitative methods are used to analyze data from two sources: (1) semi-structured qualitative interviews with 95 participants in a trial examining the effectiveness of Traditional Chinese Medicine for Temporomandibular Disorders (TMD) from 2006 to 2011 in Tucson, AZ and Portland, OR; and (2) print, online, and television advertisements for three major brands of OTC pain medication. Participants described their use of OTC medications as minimal, responsible, and justified by the severity of their pain. OTC medication advertising, while ostensibly ambiguous and targeting all forms of pain, effectively lends support to the consumption of these medication as part of the self-projects of chronic pain sufferers, allowing them to reconcile conflicting demands for pain relief while being stoic and maintaining a positive moral identity. Describing OTC medication as “just over-the-counter” or “not real pain medication,” sufferers engage in ideological harm reduction, distinguishing themselves from “those people who like taking pain medication” while still seeking relief. Justifying one’s use of OTC medication as minimal and “normal,” regardless of intake, avoids association with the addictive potential of prescription pain

  2. Oxygen reduction reaction on palladium-cobalt alloy catalysts for polymer electrolyte fuel cells

    NASA Astrophysics Data System (ADS)

    Oishi, Kentaro

    The Oxygen Reduction Reaction (ORR) activity in acid medium on Pd-Co was studied in this work. The catalysts were synthesized by two techniques; physical vapor deposition technique and ultrasonic spray reaction technique. The last technique was developed for the first time in our laboratory for the supported electro catalyst preparation and direct deposition onto the carbon paper or gas diffusion electrode the for PEMFC applications. The electrochemical properties such as the amount of hydrogen adsorption/desorption, the oxide formation/reduction of Pd-Co alloy catalyst have not been sufficiently studied before. Therefore these electrochemical properties were investigated by using the Pd-Co thin films prepared by sputtering method. A thin film catalyst cannot be directly used as an electrode of working PEMFCs, however the sputtering method is very useful since the chemical composition of alloy and surface area of the electrode can be controlled easily. Thus the fundamental electrochemical properties such as the amount of hydrogen adsorption/desorption, oxide formation/reduction and oxide reduction peak position on thin films of Pd-Co alloy, Pd and Pt catalysts were determined and their correlations to ORR catalytic activities in acid medium were studied. Enhancements of the catalytic activities for ORR by Pd-Co binary alloys were found to be in agreement with results obtained in previous studies. Ultrasonic spray reaction method was developed for the first time in our laboratory for carbon supported nano-scale catalyst for PEMFC application. Fine catalyst particles supported on high surface area carbon powder are required to apply the catalyst as the PEMFC cathode materials for the commercialization, but none of the studies done before were able to successfully obtain the Pd-Co fine particles which are comparable with the existing carbon supported platinum catalyst (ϕ2-4nm). Therefore the establishment of the catalyst synthesis method for Pd-Co fine particles are

  3. Fuel consumption and CO2/pollutant emissions of mobile air conditioning at fleet level - new data and model comparison.

    PubMed

    Weilenmann, Martin F; Alvarez, Robert; Keller, Mario

    2010-07-01

    Mobile air conditioning (MAC) systems are the second-largest energy consumers in cars after driving itself. While different measurement series are available to illustrate their behavior in hot ambient conditions, little data are available for lower temperatures. There are also no data available on diesel vehicles, despite these being quite common in Europe (up to 70% of the fleet in some countries). In the present study, six representative modern diesel passenger cars were tested. In combination with data from previous measurements on gasoline cars, a new model was developed - EEMAC = Empa Emission model for Mobile Air Conditioning systems - to predict emissions from air conditioning. The measurements obtained show that A/C activity still occurs at temperatures below the desired interior temperature. The EEMAC model was applied to the average meteorological year of a central European region and compared with the US EPA MOBILE6 model. As temperatures in central Europe are often below 20 degrees C (the point below which the two models differ), the overall results differ clearly. The estimated average annual CO(2) output according to EEMAC is six times higher than that of MOBILE6. EEMAC also indicates that around two-thirds of the fuel used for air conditioning could be saved by switching the MAC system off below 18 degrees C.

  4. China: Emissions pattern of the world leader in CO2 emissions from fossil fuel consumption and cement production

    NASA Astrophysics Data System (ADS)

    Gregg, Jay S.; Andres, Robert J.; Marland, Gregg

    2008-04-01

    Release of carbon dioxide (CO2) from fossil fuel combustion and cement manufacture is the primary anthropogenic driver of climate change. Our best estimate is that China became the largest national source of CO2 emissions during 2006. Previously, the United States (US) had occupied that position. However, the annual emission rate in the US has remained relatively stable between 2001-2006 while the emission rate in China has more than doubled, apparently eclipsing that of the US in late 2006. Here we present the seasonal and spatial pattern of CO2 emissions in China, as well as the sectoral breakdown of emissions. Though our best point estimate places China in the lead position in terms of CO2 emissions, we qualify this statement in a discussion of the uncertainty in the underlying data (3-5% for the US; 15-20% for China). Finally, we comment briefly on the implications of China's new position with respect to international agreements to mitigate climate change.

  5. CO{sub 2}-mitigation measures through reduction of fossil fuel burning in power utilities. Which road to go?

    SciTech Connect

    Kaupp, A.

    1996-12-31

    Five conditions, at minimum, should be examined in the comparative analysis of CO{sub 2}-mitigation options for the power sector. Under the continuing constraint of scarce financial resources for any private or public investment in the power sector, the following combination of requirements characterise a successful CO{sub 2}-mitigation project: (1) Financial attractiveness for private or public investors. (2) Low, or even negative, long range marginal costs per ton of `CO{sub 2} saved`. (3) High impact on CO{sub 2}-mitigation, which indicates a large market potential for the measure. (4) The number of individual investments required to achieve the impact is relatively small. In other words, logistical difficulties in project implementation are minimised. (5) The projects are `socially fair` and have minimal negative impact on any segment of the society. This paper deals with options to reduce carbonaceous fuel burning in the power sector. Part I explains how projects should be selected and classified. Part II describes the technical options. Since reduction of carbonaceous fuel burning may be achieved through Demand Side Management (DSM) and Supply Side Management (SSM) both are treated. Within the context of this paper SSM does not mean to expand power supply as demand grows. It means to economically generate and distribute power as efficiently as possible. In too many instances DSM has degenerated into efficient lighting programs and utility managed incentives and rebate programs. To what extent this is a desirable situation for utilities in Developing Countries that face totally different problems as their counterparts in highly industrialised countries remains to be seen. Which road to go is the topic of this paper.

  6. Promotion of Oxygen Reduction by Exsolved Silver Nanoparticles on a Perovskite Scaffold for Low-Temperature Solid Oxide Fuel Cells.

    PubMed

    Zhu, Yinlong; Zhou, Wei; Ran, Ran; Chen, Yubo; Shao, Zongping; Liu, Meilin

    2016-01-13

    Solid oxide fuel cells (SOFCs) have potential to be the cleanest and most efficient electrochemical energy conversion devices with excellent fuel flexibility. To make SOFC systems more durable and economically competitive, however, the operation temperature must be significantly reduced, which depends sensitively on the development of highly active electrocatalysts for oxygen reduction reaction (ORR) at low temperatures. Here we report a novel silver nanoparticle-decorated perovskite oxide, prepared via a facile exsolution process from a Sr0.95Ag0.05Nb0.1Co0.9O3-δ (SANC) perovskite precursor, as a highly active and robust ORR electrocatalyst for low-temperature SOFCs. The exsolved Sr0.95Ag0.05Nb0.1Co0.9O3-δ (denoted as e-SANC) electrode is very active for ORR, achieving a very low area specific resistance (∼0.214 Ω cm(2) at 500 °C). An anode-supported cell with the new heterostructured cathode demonstrates very high peak power density (1116 mW cm(-2) at 500 °C) and stable operation for 140 h at a current density of 625 mA cm(-2). The superior ORR activity and stability are attributed to the fast oxygen surface exchange kinetics and the firm adhesion of the Ag nanoparticles to the Sr0.95Nb0.1Co0.9O3-δ (SNC0.95) support. Moreover, the e-SANC cathode displays improved tolerance to CO2. These unique features make the new heterostructured material a highly promising cathode for low-temperature SOFCs.

  7. Interpretation of high-resolution imagery for detecting vegetation cover composition change after fuels reduction treatments in woodlands

    USGS Publications Warehouse

    Karl, Jason W.; Gillan, Jeffrey K.; Barger, Nichole N.; Herrick, Jeffrey E.; Duniway, Michael C.

    2014-01-01

    discriminating fine vegetation and litter in imagery. Our results show that image interpretation to detect vegetation changes has utility for monitoring fuels reduction treatments in terms of woody vegetation and no-vegetation classes. The benefits of this technique are that it provides objective and repeatable measurements of site conditions that could be implemented relatively inexpensively and easily without the need for highly specialized software or technical expertise. Perhaps the biggest limitations of image interpretation to monitoring fuels treatments are challenges in estimating litter and herbaceous vegetation cover and the sensitivity of herbaceous cover estimates to image quality and shadowing.

  8. Feedback on the use of the MX6 Mox Fuel transport cask: reduction of the dose uptake during operations

    SciTech Connect

    Blachet, L.; Lallemant, Th.

    2007-07-01

    In the framework of the quality, safety and environment policy of AREVA, TN International has implemented a global management system according to ISO 9001, OHSAS 18001 and ISO 14001 requirements with certification obtained from third part organization (1). The design of the MX6 cask is an example of the implementation of this system in order to guarantee safety and the health of everyone involved and the protection of the environment. The MX6 design has allowed ALARA dose rates for the workers during all the phases of use of the cask, to be significantly reduced compared to previous design. The MX6 cask was developed by TN International for the transport of either BWR or PWR fresh MOX fuel assemblies. Replacing the previous SIEMENS type III and SIEMENS BWR packaging, the MX6 has been firstly used in the German Nuclear Power Plants. Complying with the TS-R-1 (IAEA 1996) regulations, the MX6 cask is based on innovative solutions implemented at each step of the design and the manufacturing. Its design includes an efficient neutron shielding for high Plutonium content and an easy use content restraining system. The large payload of the MX6 cask, 6 PWR MOX fuel assemblies or 16 BWR MOX fuel assemblies, minimizes the doses uptake during its unloading at the NPP. Moreover, new sequences of loading and unloading operations were proposed for testing and implementation in each Nuclear Facility. Concurrently, total dose uptakes by the operators were assessed in order to prove the efficiency of the packaging and the proposed sequences. In this paper, the main contributors to the transports to Germany with the MX6 cask will present their involvement and feedback for the reduction of the dose uptakes by the operators during the loading and unloading operations. Presently in use at GUNDREMMINGEN and ISAR Nuclear Power Plants (NPPs), the MX6 cask use will be extended to other German and Swiss NPPs from 2006 onwards. (1) AFAQ-AFNOR Certification for ISO 9001, OHSAS 18001 and ISO

  9. High pressure pyrolyzed non-precious metal oxygen reduction catalysts for alkaline polymer electrolyte membrane fuel cells.

    PubMed

    Sanetuntikul, Jakkid; Shanmugam, Sangaraju

    2015-05-07

    Non-precious metal catalysts, such as metal-coordinated to nitrogen doped-carbon, have shown reasonable oxygen reduction reaction (ORR) performances in alkaline fuel cells. In this report, we present the development of a highly active, stable and low-cost non-precious metal ORR catalyst by direct synthesis under autogenic-pressure conditions. Transmission electron microscopy studies show highly porous Fe-N-C and Co-N-C structures, which were further confirmed by Brunauer-Emmett-Teller surface area measurements. The surface areas of the Fe-N-C and Co-N-C catalysts were found to be 377.5 and 369.3 m(2) g(-1), respectively. XPS results show the possible existence of N-C and M-Nx structures, which are generally proposed to be the active sites in non-precious metal catalysts. The Fe-N-C electrocatalyst exhibits an ORR half-wave potential 20 mV higher than the reference Pt/C catalyst. The cycling durability test for Fe-N-C over 5000 cycles shows that the half-wave potential lost only 4 mV, whereas the half-wave potential of the Pt/C catalyst lost about 50 mV. The Fe-N-C catalyst exhibited an improved activity and stability compared to the reference Pt/C catalyst and it possesses a direct 4-electron transfer pathway for the ORR process. Further, the Fe-N-C catalyst produces extremely low HO2(-) content, as confirmed by the rotating ring-disk electrode measurements. In the alkaline fuel single cell tests, maximum power densities of 75 and 80 mW cm(-2) were observed for the Fe-N-C and Pt/C cathodes, respectively. Durability studies (100 h) showed that decay of the fuel cell current was more prominent for the Pt/C cathode catalyst compared to the Fe-N-C cathode catalyst. Therefore, the Fe-N-C catalyst appears to be a promising new class of non-precious metal catalysts prepared by an autogenic synthetic method.

  10. Organic reactions for the electrochemical and photochemical production of chemical fuels from CO2--The reduction chemistry of carboxylic acids and derivatives as bent CO2 surrogates.

    PubMed

    Luca, Oana R; Fenwick, Aidan Q

    2015-11-01

    The present review covers organic transformations involved in the reduction of CO2 to chemical fuels. In particular, we focus on reactions of CO2 with organic molecules to yield carboxylic acid derivatives as a first step in CO2 reduction reaction sequences. These biomimetic initial steps create opportunities for tandem electrochemical/chemical reductions. We draw parallels between long-standing knowledge of CO2 reactivity from organic chemistry, organocatalysis, surface science and electrocatalysis. We point out some possible non-faradaic chemical reactions that may contribute to product distributions in the production of solar fuels from CO2. These reactions may be accelerated by thermal effects such as resistive heating and illumination.

  11. Alternative fuels

    NASA Technical Reports Server (NTRS)

    Grobman, J. S.; Butze, H. F.; Friedman, R.; Antoine, A. C.; Reynolds, T. W.

    1977-01-01

    Potential problems related to the use of alternative aviation turbine fuels are discussed and both ongoing and required research into these fuels is described. This discussion is limited to aviation turbine fuels composed of liquid hydrocarbons. The advantages and disadvantages of the various solutions to the problems are summarized. The first solution is to continue to develop the necessary technology at the refinery to produce specification jet fuels regardless of the crude source. The second solution is to minimize energy consumption at the refinery and keep fuel costs down by relaxing specifications.

  12. Pt@Pd(x)Cu(y)/C core-shell electrocatalysts for oxygen reduction reaction in fuel cells.

    PubMed

    Cochell, T; Manthiram, A

    2012-01-17

    A series of carbon-supported core-shell nanoparticles with Pd(x)Cu(y)-rich cores and Pt-rich shells (Pt@Pd(x)Cu(y)/C) has been synthesized by a polyol reduction of the precursors followed by heat treatment to obtain the Pd(x)Cu(y)/C (1 ≤ x ≤ 3 and 0 ≤ y ≤ 5) cores and the galvanic displacement of Pd(x)Cu(y) with [PtCl(4)](2-) to form the Pt shell. The nanoparticles have also been investigated with respect to the oxygen reduction reaction (ORR) in proton-exchange-membrane fuel cells (PEMFCs). X-ray diffraction (XRD) analysis suggests that the cores are highly alloyed and that the galvanic displacement results in a certain amount of alloying between Pt and the underlying Pd(x)Cu(y) alloy core. Transmission electron microscopy (TEM) images show that the Pt@Pd(x)Cu(y)/C catalysts (where y > 0) have mean particle sizes of <8 nm. Compositional analysis by energy-dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) clearly shows Pt enrichment in the near-surface region of the nanoparticles. Cyclic voltammograms show a positive shift of as much as 40 mV for the onset of Pt-OH formation in the Pt@Pd(x)Cu(y)/C electrocatalysts compared to that in Pt/C. Rotating disk electrode (RDE) measurements of Pt@PdCu(5)/C show an increase in the Pt mass activity by 3.5-fold and noble metal activity by 2.5-fold compared to that of Pt/C. The activity enhancements in RDE and PEMFC measurements are believed to be a result of the delay in the onset of Pt-OH formation.

  13. High pressure pyrolyzed non-precious metal oxygen reduction catalysts for alkaline polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Sanetuntikul, Jakkid; Shanmugam, Sangaraju

    2015-04-01

    Non-precious metal catalysts, such as metal-coordinated to nitrogen doped-carbon, have shown reasonable oxygen reduction reaction (ORR) performances in alkaline fuel cells. In this report, we present the development of a highly active, stable and low-cost non-precious metal ORR catalyst by direct synthesis under autogenic-pressure conditions. Transmission electron microscopy studies show highly porous Fe-N-C and Co-N-C structures, which were further confirmed by Brunauer-Emmett-Teller surface area measurements. The surface areas of the Fe-N-C and Co-N-C catalysts were found to be 377.5 and 369.3 m2 g-1, respectively. XPS results show the possible existence of N-C and M-Nx structures, which are generally proposed to be the active sites in non-precious metal catalysts. The Fe-N-C electrocatalyst exhibits an ORR half-wave potential 20 mV higher than the reference Pt/C catalyst. The cycling durability test for Fe-N-C over 5000 cycles shows that the half-wave potential lost only 4 mV, whereas the half-wave potential of the Pt/C catalyst lost about 50 mV. The Fe-N-C catalyst exhibited an improved activity and stability compared to the reference Pt/C catalyst and it possesses a direct 4-electron transfer pathway for the ORR process. Further, the Fe-N-C catalyst produces extremely low HO2- content, as confirmed by the rotating ring-disk electrode measurements. In the alkaline fuel single cell tests, maximum power densities of 75 and 80 mW cm-2 were observed for the Fe-N-C and Pt/C cathodes, respectively. Durability studies (100 h) showed that decay of the fuel cell current was more prominent for the Pt/C cathode catalyst compared to the Fe-N-C cathode catalyst. Therefore, the Fe-N-C catalyst appears to be a promising new class of non-precious metal catalysts prepared by an autogenic synthetic method.Non-precious metal catalysts, such as metal-coordinated to nitrogen doped-carbon, have shown reasonable oxygen reduction reaction (ORR) performances in alkaline fuel cells. In

  14. Application of fuel cells with heat recovery for integrated utility systems

    NASA Technical Reports Server (NTRS)

    Shields, V.; King, J. M., Jr.

    1975-01-01

    This paper presents the results of a study of fuel cell powerplants with heat recovery for use in an integrated utility system. Such a design provides for a low pollution, noise-free, highly efficient integrated utility. Use of the waste heat from the fuel cell powerplant in an integrated utility system for the village center complex of a new community results in a reduction in resource consumption of 42 percent compared to conventional methods. In addition, the system has the potential of operating on fuels produced from waste materials (pyrolysis and digester gases); this would provide further reduction in energy consumption.

  15. Metal-Free Carbon-Based Materials: Promising Electrocatalysts for Oxygen Reduction Reaction in Microbial Fuel Cells

    PubMed Central

    Sawant, Sandesh Y.; Han, Thi Hiep; Cho, Moo Hwan

    2016-01-01

    Microbial fuel cells (MFCs) are a promising green approach for wastewater treatment with the simultaneous advantage of energy production. Among the various limiting factors, the cathodic limitation, with respect to performance and cost, is one of the main obstacles to the practical applications of MFCs. Despite the high performance of platinum and other metal-based cathodes, their practical use is limited by their high cost, low stability, and environmental toxicity. Oxygen is the most favorable electron acceptor in the case of MFCs, which reduces to water through a complicated oxygen reduction reaction (ORR). Carbon-based ORR catalysts possessing high surface area and good electrical conductivity improve the ORR kinetics by lowering the cathodic overpotential. Recently, a range of carbon-based materials have attracted attention for their exceptional ORR catalytic activity and high stability. Doping the carbon texture with a heteroatom improved their ORR activity remarkably through the favorable adsorption of oxygen and weaker molecular bonding. This review provides better insight into ORR catalysis for MFCs and the properties, performance, and applicability of various metal-free carbon-based electrocatalysts in MFCs to find the most appropriate cathodic catalyst for the practical applications. The approaches for improvement, key challenges, and future opportunities in this field are also explored. PMID:28029116

  16. Barium carbonate nanoparticle to enhance oxygen reduction activity of strontium doped lanthanum ferrite for solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Hong, Tao; Chen, Fanglin; Xia, Changrong

    2015-03-01

    BaCO3 nanoparticles are demonstrated as outstanding catalysts for high-temperature oxygen reduction reaction (ORR) on the La0.8Sr0.2FeO3-δ (LSF) cathode for solid oxide fuel cells (SOFCs) based on ytrria-stabilized zirconia (YSZ) electrolytes. Thermal gravitational and X-ray diffraction measurements show that BaCO3 is stable and chemically compatible with LSF under the fabrication and operation conditions of intermediate-temperature SOFCs. The BaCO3 nanoparticles can greatly reduce the interfacial polarization resistance; from 2.96 to 0.84 Ω cm2 at 700 °C when 12.9wt% BaCO3 is infiltrated to the porous LSF electrode on the YSZ electrolyte. Electrochemical impedance spectroscopy shows that there is about one order of magnitude decrease in the low-frequency resistance, indicating that BaCO3 nanoparticles can greatly enhance the surface steps for ORR. Electrical conductivity relaxation investigation indicates about one order of magnitude increase in the chemical oxygen surface exchange coefficient when BaCO3 is applied, directly demonstrating significant increase in the kinetics for ORR. In addition, LSF cathodes with infiltrated BaCO3 nanoparticles have shown excellent stability and substantially enhanced cell performance as demonstrated with single cells, suggesting BaCO3 nanoparticles are very effective in enhancing ORR on LSF.

  17. Potential of porous Co3O4 nanorods as cathode catalyst for oxygen reduction reaction in microbial fuel cells.

    PubMed

    Kumar, Ravinder; Singh, Lakhveer; Zularisam, A W; Hai, Faisal I

    2016-11-01

    This study aims to investigate the potential of porous Co3O4 nanorods as the cathode catalyst for oxygen reduction reaction (ORR) in aqueous air cathode microbial fuel cells (MFCs). The porous Co3O4 nanorods were synthesized by a facile and cost-effective hydrothermal method. Three different concentrations (0.5mg/cm(2), 1mg/cm(2), and 2mg/cm(2)) of Co3O4 nanorods coated on graphite electrodes were used to test its performance in MFCs. The results showed that the addition of porous Co3O4 nanorods enhanced the electrocatalytic activity and ORR kinetics significantly and the overall resistance of the system was greatly reduced. Moreover, the MFC with a higher concentration of the catalyst achieved a maximum power density of 503±16mW/m(2), which was approximately five times higher than the bare graphite electrode. The improved catalytic activity of the cathodes could be due to the porous properties of Co3O4 nanorods that provided the higher number of active sites for oxygen.

  18. Is There a Future for Nuclear Power? Wind and Emission Reduction Targets in Fossil-Fuel Alberta

    PubMed Central

    Duan, Jun; Lynch, Rachel

    2016-01-01

    This paper explores the viability of relying on wind power to replace upwards of 60% of electricity generation in Alberta that would be lost if coal-fired generation is phased out. Using hourly wind data from 17 locations across Alberta, we are able to simulate the potential wind power output available to the Alberta grid when modern, 3.5 MW-capacity wind turbines are spread across the province. Using wind regimes for the years 2006 through 2015, we find that available wind power is less than 60% of installed capacity 98% of the time, and below 30% of capacity 74% of the time. There is only a small amount of correlation between wind speeds at different locations, but yet it remains necessary to rely on fossil fuel generation. Then, based on the results from a grid allocation model, we find that CO2 emissions can be reduced by about 30%, but only through a combination of investment in wind energy and reliance on purchases of hydropower from British Columbia. Only if nuclear energy is permitted into the generation mix would Alberta be able to meet its CO2-emissions reduction target in the electricity sector. With nuclear power, emissions can be reduced by upwards of 85%. PMID:27902712

  19. Effects of surface chemistry and microstructure of electrolyte on oxygen reduction kinetics of solid oxide fuel cells

    DOE PAGES

    Park, Joong Sun; An, Jihwan; Lee, Min Hwan; ...

    2015-11-01

    In this study, we report systematic investigation of the surface properties of yttria-stabilized zirconia (YSZ) electrolytes with the control of the grain boundary (GB) density at the surface, and its effects on electrochemical activities. The GB density of thin surface layers deposited on single crystal YSZ substrates is controlled by changing the annealing temperature (750-1450 °C). Higher oxygen reduction reactions (ORR) kinetics is observed in samples annealed at lower temperatures. The higher ORR activity is ascribed to the higher GB density at the YSZ surface where 'mobile' oxide ion vacancies are more populated. Meanwhile, oxide ion vacancies concurrently created withmore » yttrium segregation at the surface at the higher annealing temperature are considered inactive to oxygen incorporation reactions. Our results provide additional insight into the interplay between the surface chemistry, microstructures, and electrochemical activity. They potentially provide important guidelines for engineering the electrolyte electrode interfaces of solid oxide fuel cells for higher electrochemical performance.« less

  20. Metal-Free Carbon-Based Materials: Promising Electrocatalysts for Oxygen Reduction Reaction in Microbial Fuel Cells.

    PubMed

    Sawant, Sandesh Y; Han, Thi Hiep; Cho, Moo Hwan

    2016-12-24

    Microbial fuel cells (MFCs) are a promising green approach for wastewater treatment with the simultaneous advantage of energy production. Among the various limiting factors, the cathodic limitation, with respect to performance and cost, is one of the main obstacles to the practical applications of MFCs. Despite the high performance of platinum and other metal-based cathodes, their practical use is limited by their high cost, low stability, and environmental toxicity. Oxygen is the most favorable electron acceptor in the case of MFCs, which reduces to water through a complicated oxygen reduction reaction (ORR). Carbon-based ORR catalysts possessing high surface area and good electrical conductivity improve the ORR kinetics by lowering the cathodic overpotential. Recently, a range of carbon-based materials have attracted attention for their exceptional ORR catalytic activity and high stability. Doping the carbon texture with a heteroatom improved their ORR activity remarkably through the favorable adsorption of oxygen and weaker molecular bonding. This review provides better insight into ORR catalysis for MFCs and the properties, performance, and applicability of various metal-free carbon-based electrocatalysts in MFCs to find the most appropriate cathodic catalyst for the practical applications. The approaches for improvement, key challenges, and future opportunities in this field are also explored.

  1. Carbon supported cobalt oxide nanoparticles-iron phthalocyanine as alternative cathode catalyst for oxygen reduction in microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Ahmed, Jalal; Yuan, Yong; Zhou, Lihua; Kim, Sunghyun

    2012-06-01

    The high cost and limited resources of precious metals as oxygen reduction catalysts (ORR) hindered the widespread use of microbial fuel cells (MFCs) in practice. Here, the feasibility of metal oxide assisted metal macrocyclic complex was investigated as a catalyst for ORR in an air-cathode MFC. Electrochemical results revealed that cobalt oxide (CoOx) incorporation increased the ORR activity of iron phthalocyanine (FePc). In MFCs, the maximum power density of 654 ± 32 mW m-2 was achieved from the C-CoOx-FePc cathode, which was 37% higher than the power density of carbon supported FePc (C-FePc). The voltage output of the MFC only decreased to 85% of its initial voltage after 50 cycles, suggesting that the synthesized catalyst showed acceptable long-term stability. The voltage drop partially resulted from the covering of biofilm on the catalyst layer. This work provided a potential alternative to Pt in MFCs for sustainable energy generation.

  2. Is There a Future for Nuclear Power? Wind and Emission Reduction Targets in Fossil-Fuel Alberta.

    PubMed

    van Kooten, G Cornelis; Duan, Jun; Lynch, Rachel

    2016-01-01

    This paper explores the viability of relying on wind power to replace upwards of 60% of electricity generation in Alberta that would be lost if coal-fired generation is phased out. Using hourly wind data from 17 locations across Alberta, we are able to simulate the potential wind power output available to the Alberta grid when modern, 3.5 MW-capacity wind turbines are spread across the province. Using wind regimes for the years 2006 through 2015, we find that available wind power is less than 60% of installed capacity 98% of the time, and below 30% of capacity 74% of the time. There is only a small amount of correlation between wind speeds at different locations, but yet it remains necessary to rely on fossil fuel generation. Then, based on the results from a grid allocation model, we find that CO2 emissions can be reduced by about 30%, but only through a combination of investment in wind energy and reliance on purchases of hydropower from British Columbia. Only if nuclear energy is permitted into the generation mix would Alberta be able to meet its CO2-emissions reduction target in the electricity sector. With nuclear power, emissions can be reduced by upwards of 85%.

  3. Developing a high-resolution vehicular emission inventory by integrating an emission model and a traffic model: Part 1--Modeling fuel consumption and emissions based on speed and vehicle-specific power.

    PubMed

    Wang, Haikun; Fu, Lixin

    2010-12-01

    To improve the accuracy and applicability of vehicular emission models, this study proposes a speed and vehicle-specific power (VSP) modeling method to estimate vehicular emissions and fuel consumption using data gathered by a portable emissions monitoring system (PEMS). The PEMS data were categorized into discrete speed-VSP bins on the basis of the characteristics of vehicle driving conditions and emissions in Chinese cities. Speed-VSP modal average rates of emissions (or fuel consumption) and the time spent in the corresponding speed-VSP bins were then used to calculate the total trip emissions (or fuel consumption) and emission factors (or fuel economy) under specific average link speeds. The model approach was validated by comparing it against measured data with prediction errors within 20% for trip emissions and link-speed-based emission factors. This analysis is based on the data of light-duty gasoline vehicles in China; however, this research approach could be generalized to other vehicle fleets in other countries. This modeling method could also be coupled with traffic demand models to establish high-resolution emissions inventories and evaluate the impacts of traffic-related emission control measures.

  4. Are fuel poverty reduction schemes associated with decreased excess winter mortality in elders? A case study from London, U.K.

    PubMed

    El Ansari, Walid; El-Silimy, Sally

    2008-12-01

    The London Borough of Newham, London piloted the Warm Zone, a government-led fuel poverty reduction scheme. Fuel poverty is often cited as a factor in excess winter mortality (EWM) in the U.K. This study reported in this paper assessed whether EWM decreased for people aged > or =65 years in Newham as compared to all London, employing data from before and throughout the duration of the Warm Zone project. The paper also discusses the difficulties surrounding the measurement and interpretation of health impact relating to fuel poverty. We calculated and compared the yearly EWM indices for people aged > or =65 years for all of London, and for Newham over 12 years (1993-2005). The yearly EWM ratio for Newham in relation to all London was then calculated and compared. No definitive evidence to support the effect of the War Zone on EMW were noted. Relationships between EWM and fewer poverty reduction schemes are difficult to interpret, as many factors are entangled. These include cold strain and biological, genetic, gender, physiological, thermoregulation, environmental, meteorological, socio-economic, healthcare provision/expenditure, lifestyle and co-morbidity aspects, besides the challenges of sample sizes and whether other fuel poverty reduction schemes were simultaneously in operation. Those in privately owned housing might be ;masked' (underestimated) in their vulnerability to fuel poverty. Redefining the specific criteria for eligibility for fuel poverty grants and tackling heat inefficiency in privately owned homes not eligible for home heating improvement despite fulfilling other criteria for vulnerability requires attention. The implications are discussed.

  5. Preliminary Evaluation of a Turbine/Rotary Combustion Compound Engine for a Subsonic Transport. [fuel consumption and engine tests of turbofan engines

    NASA Technical Reports Server (NTRS)

    Civinskas, K. C.; Kraft, G. A.

    1976-01-01

    The fuel consumption of a modern compound engine with that of an advanced high pressure ratio turbofan was compared. The compound engine was derived from a turbofan engine by replacing the combustor with a rotary combustion (RC) engine. A number of boost pressure ratios and compression ratios were examined. Cooling of the RC engine was accomplished by heat exchanging to the fan duct. Performance was estimated with an Otto-cycle for two levels of energy lost to cooling. The effects of added complexity on cost and maintainability were not examined and the comparison was solely in terms of cruise performance and weight. Assuming a 25 percent Otto-cycle cooling loss (representative of current experience), the best compound engine gave a 1.2 percent improvement in cruise. Engine weight increased by 23 percent. For a 10 percent Otto-cycle cooling loss (representing advanced insulation/high temperature materials technology), a compound engine with a boost PR of 10 and a compression ratio of 10 gave an 8.1 percent lower cruise than the reference turbofan.

  6. Consumption of a healthy dietary pattern results in significant reductions in C-reactive protein levels in adults: a meta-analysis.

    PubMed

    Neale, E P; Batterham, M J; Tapsell, L C

    2016-05-01

    Consumption of healthy dietary patterns has been associated with reduced risk of cardiovascular disease and metabolic syndrome. Dietary intervention targets disease prevention, so studies increasingly use biomarkers of underlying inflammation and metabolic syndrome progression to examine the diet-health relationship. The extent to which these biomarkers contribute to the body of evidence on healthy dietary patterns is unknown. The aim of this meta-analysis was to determine the effect of healthy dietary patterns on biomarkers associated with adiposity, insulin resistance, and inflammation in adults. A systematic search of Scopus, PubMed, Web of Science, and Cochrane Central Register of Controlled Trials (all years to April 2015) was conducted. Inclusion criteria were randomized controlled trials; effects of dietary patterns assessed on C-reactive protein (CRP), total adiponectin, high-molecular-weight adiponectin, tumor necrosis factor-α, adiponectin:leptin, resistin, or retinol binding protein 4. Random effects meta-analyses were conducted to assess the weighted mean differences in change or final mean values for each outcome. Seventeen studies were included in the review. These reflected research on dietary patterns associated with the Mediterranean diet, Nordic diet, Tibetan diet, and the Dietary Approaches to Stop Hypertension diet. Consumption of a healthy dietary pattern was associated with significant reductions in CRP (weighted mean difference, -0.75 [-1.16, -0.35]; P = .0003). Non-significant changes were found for all other biomarkers. This analysis found evidence for favorable effects of healthy dietary patterns on CRP, with limited evidence for other biomarkers. Future research should include additional randomized controlled trials incorporating a greater range of dietary patterns and biomarkers.

  7. Even partial reduction of biomass fuel use may improve the respiratory health of rural women in Central India.

    PubMed

    Sukhsohale, N D; Narlawar, U W; Ughade, S N; Kulkarni, H

    2012-01-01

    Routine use of biomass fuels in cooking adversely affects respiratory health, but whether partial abolition of the biomass use is also detrimental is unknown. We conducted a cross-sectional study of 760 women in rural central India: 283 used non-biomass fuels (Group A), 225 biomass and other fuels (Group B), while 252 exclusively used biomass fuels (Group C). Robust multivariate analyses adjusted for age, daily cooking time, cooking experience, marital status, overcrowding and education showed that only Group C, and not Group B, had poor respiratory health. Our results indicate that even partial abolition of biomass use may be beneficial.

  8. [Fire behavior of Quercus mongolica leaf litter fuelbed under zero-slope and no-wind conditions. II. Analysis and modelling of fireline intensity, fuel consumption, and combustion efficiency].

    PubMed

    Zhang, Ji-Li; Liu, Bo-Fei; Di, Xue-Ying; Chu, Teng-Fei; Jin, Sen

    2013-12-01

    Mongolian oak (Quercus mongolica) is an important constructive and accompanying species in mixed broadleaf-conifer forest in Northeast China, In this paper, a laboratory burning experiment was conducted under zero-slope and no-wind conditions to study the effects of fuel moisture content, loading, and thickness on the fireline intensity, fuel consumption, and combustion efficiency of the Mongolian oak leaf litter fuelbed. The fuel moisture content, loading, and thickness all had significant effects on the three fire behavior indices, and there existed interactions between these three affecting factors. Among the known models, the Byram model could be suitable for the prediction of local leaf litter fire intensity only after re-parameterization. The re-estimated alpha and beta parameters of the re-parameterized Byram model were 98.009 and 1.099, with an adjusted determination coefficient of 0.745, the rooted mean square error (RMSE) of 8.676 kW x m(-1), and the mean relative error (MRE) of 21%, respectively (R2 = 0.745). The re-estimated a and b by the burning efficiency method proposed by Albini were 0.069 and 0.169, and the re-estimated values were all higher than 93%, being mostly overestimated. The Consume model had a stronger suitability for the fuel. The R2 of the general linear models established for fireline intensity, fuel consumption, and burning efficiency was 0.82, 0.73 and 0.53, and the RMSE was 8.266 kW x m(-1) 0.081 kg x m(-2), and 0.203, respectively. In low intensity surface fires, the fine fuels could not be completely consumed, and thus, to consider the leaf litter and fine fuel in some forest ecosystems being completely consumed would overestimate the carbon release from forest fires.

  9. Bifunctional Ag/Fe/N/C Catalysts for Enhancing Oxygen Reduction via Cathodic Biofilm Inhibition in Microbial Fuel Cells.

    PubMed

    Dai, Ying; Chan, Yingzi; Jiang, Baojiang; Wang, Lei; Zou, Jinlong; Pan, Kai; Fu, Honggang

    2016-03-23

    Limitation of the oxygen reduction reaction (ORR) in single-chamber microbial fuel cells (SC-MFCs) is considered an important hurdle in achieving their practical application. The cathodic catalysts faced with a liquid phase are easily primed with the electrolyte, which provides more surface area for bacterial overgrowth, resulting in the difficulty in transporting protons to active sites. Ag/Fe/N/C composites prepared from Ag and Fe-chelated melamine are used as antibacterial ORR catalysts for SC-MFCs. The structure-activity correlations for Ag/Fe/N/C are investigated by tuning the carbonization temperature (600-900 °C) to clarify how the active-constituents of Ag/Fe and N-species influence the antibacterial and ORR activities. A maximum power density of 1791 mW m(-2) is obtained by Ag/Fe/N/C (630 °C), which is far higher than that of Pt/C (1192 mW m(-2)), only having a decline of 16.14% after 90 days of running. The Fe-bonded N and the cooperation of pyridinic N and pyrrolic N in Ag/Fe/N/C contribute equally to the highly catalytic activity toward ORR. The ·OH or O2(-) species originating from the catalysis of O2 can suppress the biofilm growth on Ag/Fe/N/C cathodes. The synergistic effects between the Ag/Fe heterojunction and N-species substantially contribute to the high power output and Coulombic efficiency of Ag/Fe/N/C catalysts. These new antibacterial ORR catalysts show promise for application in MFCs.

  10. Enhanced oxygen reduction reaction activity of iron-containing nitrogen-doped carbon nanotubes for alkaline direct methanol fuel cell application

    NASA Astrophysics Data System (ADS)

    Ratso, Sander; Kruusenberg, Ivar; Sarapuu, Ave; Rauwel, Protima; Saar, Rando; Joost, Urmas; Aruväli, Jaan; Kanninen, Petri; Kallio, Tanja; Tammeveski, Kaido

    2016-11-01

    Non-precious metal catalysts for electrochemical oxygen reduction reaction are synthesised by pyrolysis of multi-walled carbon nanotubes in the presence of nitrogen and iron precursors. For the physico-chemical characterisation of the catalysts transmission electron microscopy, scanning electron microscopy, X-ray photoelectron spectroscopy and X-ray diffraction are used. The electrocatalytic activity of the catalysts for oxygen reduction is studied in 0.1 M KOH solution using the rotating disk electrode method. The Fe-containing nitrogen-doped carbon nanotubes exhibit an enhanced electrocatalytic performance as compared to metal-free counterparts and their electrocatalytic activity is comparable to that of commercial Pt/C catalyst. Alkaline direct methanol fuel cell tests also show performance close to Pt/C. Thus, these materials can be considered as promising cathode catalysts for application in alkaline fuel cells.

  11. Reduction in Current Consumption of Small DC Motor with Rare-Earth Flexible Bonded Magnets Prepared by Powder Compacting Press and Hot Rolling

    NASA Astrophysics Data System (ADS)

    Yamashita, Fumitoshi; Watanabe, Akihiko; Fukunaga, Hirotoshi

    The usage of high-performance rare-earth magnets is one of the key technologies in the development of efficient small motors. Ring-shaped melt-spun Nd-Fe-B bonded magnets, prepared using a powder compacting press and/or injection molding, are generally used in typical applications to small efficient motors. For exploiting the maximum characteristics according to the variety of magnetic powder, however, the preparation method of the magnet, the magnet form, and the motor design needs to be changed for high-productivity as well as for improving total performance, including the magnetic properties of bonded magnets. This paper reports recent achievements in new preparation processes for rare-earth bonded magnets and small motors using new materials other than Nd-Fe-B melt-spun powder. This paper especially focuses on the method for maximally exploiting certain rare-earth magnetic powders . Furthermore, reduction in the current consumption of the small DC motor using the developed technique is reported.

  12. Self-doped Ti(3+)-TiO2 as a photocatalyst for the reduction of CO2 into a hydrocarbon fuel under visible light irradiation.

    PubMed

    Sasan, Koroush; Zuo, Fan; Wang, Yuan; Feng, Pingyun

    2015-08-28

    Self-doped TiO2 shows visible light photocatalytic activity, while commercial TiO2 (P25) is only UV responsive. The incorporation of Ti(3+) into TiO2 structures narrows the band gap (2.90 eV), leading to significantly increased photocatalytic activity for the reduction of CO2 into a renewable hydrocarbon fuel (CH4) in the presence of water vapour under visible light irradiation.

  13. Extended Platinum Nanotubes as Fuel Cell Catalysts

    SciTech Connect

    Alia, S.; Pivovar, B. S.; Yan, Y.

    2012-01-01

    Energy consumption has relied principally on fossil fuels as an energy source; fuel cells, however, can provide a clean and sustainable alternative, an answer to the depletion and climate change concerns of fossil fuels. Within proton exchange membrane fuel cells, high catalyst cost and poor durability limit the commercial viability of the device. Recently, platinum nanotubes (PtNTs) were studied as durable, active catalysts, providing a platform to meet US Department of Energy vehicular activity targets.[1] Porous PtNTs were developed to increase nanotube surface area, improving mass activity for oxygen reduction without sacrificing durability.[2] Subsurface platinum was then replaced with palladium, forming platinum-coated palladium nanotubes.[3] By forming a core shell structure, platinum utilization was increased, reducing catalyst cost. Alternative substrates have also been examined, modifying platinum surface facets and increasing oxygen reduction specific activity. Through modification of the PtNT platform, catalyst limitations can be reduced, ensuring a commercially viable device.

  14. Response of white-footed mice (Peromyscus leucopus) to fire and fire surrogate fuel reduction treatments in a southern Appalachian hardwood forest

    USGS Publications Warehouse

    Greenberg, C.H.; Otis, D.L.; Waldrop, T.A.

    2006-01-01

    An experiment conducted as part of the multidisciplinary National Fire and Fire Surrogate Study was designed to determine effects of three fuel reduction techniques on small mammals and habitat structure in the southern Appalachian mountains. Four experimental units, each >14-ha were contained within each of three replicate blocks at the Green River Game Land, Polk County, NC. Treatments were (1) prescribed burning (B); (2) mechanical felling of shrubs and small trees (M); (3) mechanical felling + burning (MB); (4) controls (C). Mechanical understory felling treatments were conducted in winter 2001-2002, and prescribed burning was conducted in March 2003. After treatment, there were fewer live trees, more snags, and greater canopy openness in MB than in other treatments. Leaf litter depth was reduced by burning in both B and MB treatments, and tall shrub cover was reduced in all fuel reduction treatments compared to C. Coarse woody debris pieces and percent cover were similar among treatments and controls. We captured 990 individuals of eight rodent species a total of 2823 times. Because white-footed mice composed >79% of all captures, we focused on this species. Populations in experimental units increased 228% on average between 2001 and 2002, but there was no evidence of an effect of the mechanical treatment. From 2002 to 2003, all units again showed an average increase in relative population size, but increases were greater in MB than in the other treatments. Age structure and male to female ratio were not affected by the fuel reduction treatment. Average adult body weight declined from 2001 to 2002, but less so in M than in units that remained C in both years. The proportion of mice captured near coarse woody debris was similar to the proportion captured in open areas for all treatments, indicating that white-footed mice did not use coarse woody debris preferentially or change their use patterns in response to fuel reduction treatments. Land managers should

  15. Correlation between circuital current, Cu(II) reduction and cellular electron transfer in EAB isolated from Cu(II)-reduced biocathodes of microbial fuel cells.

    PubMed

    Shen, Jingya; Huang, Liping; Zhou, Peng; Quan, Xie; Puma, Gianluca Li

    2017-04-01

    The performance of four indigenous electrochemically active bacteria (EAB) (Stenotrophomonas maltophilia JY1, Citrobacter sp. JY3, Pseudomonas aeruginosa JY5 and Stenotrophomonas sp. JY6) was evaluated for Cu(II) reduction on the cathodes of microbial fuel cells (MFCs). These EAB were isolated from well adapted mixed cultures on the MFC cathodes operated for Cu(II) reduction. The relationship between circuital current, Cu(II) reduction rate, and cellular electron transfer processes was investigated from a mechanistic point of view using X-ray photoelectron spectroscopy, scanning electronic microscopy coupled with energy dispersive X-ray spectrometry, linear sweep voltammetry and cyclic voltammetry. JY1 and JY5 exhibited a weak correlation between circuital current and Cu(II) reduction. A much stronger correlation was observed for JY3 followed by JY6, demonstrating the relationship between circuital current and Cu(II) reduction for these species. In the presence of electron transfer inhibitors (2,4-dinitrophenol or rotenone), significant inhibition on JY6 activity and a weak effect on JY1, JY3 and JY5 was observed, confirming a strong correlation between cellular electron transfer processes and either Cu(II) reduction or circuital current. This study provides evidence of the diverse functions played by these EAB, and adds to a deeper understanding of the capabilities exerted by diverse EAB associated with Cu(II) reduction.

  16. Motor vehicle fuel economy, the forgotten HC control stragegy?

    SciTech Connect

    Deluchi, M.; Wang, Quanlu; Greene, D.L.

    1992-06-01

    Emissions of hydrocarbons from motor vehicles are recognized as major contributors to ozone pollution in urban areas. Petroleum-based motor fuels contain volatile organic compounds (VOC) which, together with oxides of nitrogen, promote the formation of ozone in the troposphere via complex photochemical reactions. VOC emissions from the tailpipe and evaporation from the fuel and engine systems of highway vehicles are believed to account for about 40% of total VOC emissions in any region. But motor fuels also generate emissions throughout the fuel cycle, from crude oil production to refining, storage, transportation, and handling, that can make significant contributions to the total inventory of VOC emissions. Many of these sources of emissions are directly related to the quantity of fuel produced and handled throughout the fuel cycle. It is, therefore, reasonable to expect that a reduction in total fuel throughput might result in a reduction of VOC emissions. In particular, reducing vehicle fuel consumption by increasing vehicle fuel economy should reduce total fuel throughput, thereby cutting total emissions of VOCS. In this report we identify the sources of VOC emissions throughout the motor fuel cycle, quantify them to the extent possible, and describe their dependence on automobile and light truck fuel economy.

  17. Technological growth of fuel efficiency in european automobile market 1975–2015

    SciTech Connect

    Hu, Kejia; Chen, Yuche

    2016-08-29

    This paper looks at the technological growth of new car fleet fuel efficiency in the European Union between 1975 and 2015. According to the analysis results, from1975 to 2006 the fuel efficiency technology improvements were largely offset by vehicles' increased weight, engine size, and consumer amenities such as acceleration capacity. After 2006, downsizing in weight and engine capacity was observed in new car fleet, while fuel consumption decreased by 32% between 2006 and 2015. We adopt a statistical method and find that from 1975 to 2015, a 1% increase in weight would result in 0.3 to 0.5% increments in fuel consumption per 100 km, and a 1% reduction in 0-100 km/h acceleration time would increase fuel consumption by about 0.3%. Impacts of other attributes on fuel consumption are also assessed. To meet the European Union's 2021 fuel consumption target, downsizing of cars, as well as at least maintaining fuel efficiency technology growth trend observed between 2005 and 2015, are needed. Lastly, government policies on controlling improvement in acceleration performance or promoting alternative fuel vehicles are also important to achieve European Union 2021 target.

  18. Impact of Fe(III) as an effective electron-shuttle mediator for enhanced Cr(VI) reduction in microbial fuel cells: Reduction of diffusional resistances and cathode overpotentials.

    PubMed

    Wang, Qiang; Huang, Liping; Pan, Yuzhen; Quan, Xie; Li Puma, Gianluca

    2017-01-05

    The role of Fe(III) was investigated as an electron-shuttle mediator to enhance the reduction rate of the toxic heavy metal hexavalent chromium (Cr(VI)) in wastewaters, using microbial fuel cells (MFCs). The direct reduction of chromate (CrO4(-)) and dichromate (Cr2O7(2-)) anions in MFCs was hampered by the electrical repulsion between the negatively charged cathode and Cr(VI) functional groups. In contrast, in the presence of Fe(III), the conversion of Cr(VI) and the cathodic coulombic efficiency in the MFCs were 65.6% and 81.7%, respectively, 1.6 times and 1.4 folds as those recorded in the absence of Fe(III). Multiple analytical approaches, including linear sweep voltammetry, Tafel plot, cyclic voltammetry, electrochemical impedance spectroscopy and kinetic calculations demonstrated that the complete reduction of Cr(VI) occurred through an indirect mechanism mediated by Fe(III). The direct reduction of Cr(VI) with cathode electrons in the presence of Fe(III) was insignificant. Fe(III) played a critical role in decreasing both the diffusional resistance of Cr(VI) species and the overpotential for Cr(VI) reduction. This study demonstrated that the reduction of Cr(VI) in MFCs was effective in the presence of Fe(III), providing an alternative and environmentally benign approach for efficient remediation of Cr(VI) contaminated sites with simultaneous production of renewable energy.

  19. Pt nanoparticle-dispersed graphene-wrapped MWNT composites as oxygen reduction reaction electrocatalyst in proton exchange membrane fuel cell.

    PubMed

    Aravind, S S Jyothirmayee; Ramaprabhu, Sundara

    2012-08-01

    Chemical and electrical synergies between graphite oxide and multiwalled carbon nanotube (MWNT) for processing graphene wrapped-MWNT hybrids has been realized by chemical vapor deposition without any chemical functionalization. Potential of the hybrid composites have been demonstrated by employing them as electrocatalyst supports in proton exchange membrane fuel cells. The defects present in the polyelectrolyte, which have been wrapped over highly dispersed MWNT, act as anchoring sites for the homogeneous deposition of platinum nanoparticles. Single-cell proton exchange membrane fuel cells show that the power density of the hybrid composite-based fuel cells is higher compared to the pure catalyst-support-based fuel cells, because of enhanced electrochemical reactivity and good surface area of the nanocomposites.

  20. Metal-free and Oxygen-free Graphene as Oxygen Reduction Catalysts for Highly Efficient Fuel Cells

    DTIC Science & Technology

    2013-06-30

    electrocatalysts for ORR in fuel cells and other applications, including dye-sensitized solar cells (DSSCs). Introduction Instead of burning...fuel cells and other applications, including dye-sensitized solar cells (DSSCs). 15. SUBJECT TERMS nano materials, nano science and technology...dye sensitized solar cells (DSSCs) have attracted much attention since Oregan and Grätzel’s seminal report in 1991. A typical DSSC device consists

  1. Graphene supported Co-g-C3N4 as a novel metal-macrocyclic electrocatalyst for the oxygen reduction reaction in fuel cells.

    PubMed

    Liu, Qiao; Zhang, Junyan

    2013-03-19

    Graphitic carbon nitride (g-C3N4) polymer was doped with cobalt species and supported on a similar sp(2) structure graphene, to form a novel nitrogen-metal macrocyclic catalyst for the oxygen reduction reaction (ORR) in alkaline fuel cells. The structural characterizations confirmed the formation of Co-N bonds and the close electron coupling between Co-g-C3N4 and graphene sheets. The electrocatalytic measurements demonstrated Co-g-C3N4-catalyzed reduction of oxygen mainly in a four electron pathway. The improvement of ORR activity is closely related to the abundant accessible Co-Nx active sites and fast charge transfer at the interfaces of Co-g-C3N4/graphene. Also, Co-g-C3N4@graphene exhibited comparable ORR activity, better durability, and methanol tolerance ability in comparison to Pt/C, and bodes well for a promising non-noble cathode catalyst for the application of direct methanol fuel cells. The chemical doping strategy in this work would be helpful to improve other present catalysts for fuel cell applications.

  2. 08FFL-0020Influence of High Fuel Rail Pressure and Urea Selective Catalytic Reduction on PM Formation in an Off-Highway Heavy-Duty Diesel Engine

    SciTech Connect

    Kass, Michael D; Domingo, Norberto; Storey, John Morse; Lewis Sr, Samuel Arthur

    2008-01-01

    The influence of fuel rail pressure (FRP) and urea-selective catalytic reduction (SCR) on particulate matter (PM) formation is investigated in this paper along with notes regarding the NOx and other emissions. Increasing FRP was shown to reduce the overall soot and total PM mass for four operating conditions. These conditions included two high speed conditions (2400 rpm at 540 and 270 Nm of torque) and two moderated speed conditions (1400 rpm at 488 and 325 Nm). The concentrations of CO2 and NOx increased with fuel rail pressure and this is attributed to improved fuel-air mixing. Interestingly, the level of unburned hydrocarbons remained constant (or increased slightly) with increased FRP. PM concentration was measured using an AVL smoke meter and scanning mobility particle sizer (SMPS); and total PM was collected using standard gravimetric techniques. These results showed that the smoke number and particulate concentrations decrease with increasing FRP. However the decrease becomes more gradual as very high rail pressures. Additionally, the total PM decreased with increasing FRP; however, the soluble organic fraction (SOF) reaches a maximum after which it declines with higher rail pressure. The total PM was collected for the two 1400 rpm conditions downstream of the engine, diesel oxidation catalyst, and a urea-SCR catalyst. The results show that significant PM reduction occurs in the SCR catalyst even during high rates of urea dosage. Analysis of the PM indicates that residual SOF is burned up in the SCR catalyst.

  3. Kinetics of oxygen reduction in perovskite cathodes for solid oxide fuel cells: A combined modeling and experimental approach

    NASA Astrophysics Data System (ADS)

    Miara, Lincoln James

    Solid oxide fuel cells (SOFCs) have the potential to replace conventional stationary power generation technologies; however, there are major obstacles to commercialization, the most problematic of which is poor cathode performance. Commercialization of SOFCs will follow when the mechanisms occurring at the cathode are more thoroughly understood and adapted for market use. The catalytic reduction of oxygen occurring in SOFC cathodes consists of many elementary steps such as gas phase diffusion, chemical and/or electrochemical reactions which lead to the adsorption and dissociation of molecular oxygen onto the cathode surface, mass transport of oxygen species along the surface and/or through the bulk of the cathode, and full reduction and incorporation of the oxygen at the cathode/electrolyte two or three phase boundary. Electrochemical impedance spectroscopy (EIS) is the main technique used to identify the occurrence of these different processes, but when this technique is used without an explicit model describing the kinetics it is difficult to unravel the interdependence of each of these processes. The purpose of this dissertation is to identify the heterogeneous reactions occurring at the cathode of an SOFC by combining experimental EIS results with mathematical models describing the time dependent behavior of the system. This analysis is performed on two different systems. In the first case, experimental EIS results from patterned half cells composed of Ca-doped lanthanum manganite (LCM)| yttria-doped ZrO2 (YSZ) are modeled to investigate the temperature and partial pressure of oxygen, pO2, dependence of oxygen adsorption/dissociation onto the LCM surface, surface diffusion of atomic oxygen, and electrochemical reduction and incorporation of the oxygen into the electrolyte in the vicinity of the triple phase boundary (TPB). This model determines the time-independent state-space equations from which the Faradaic admittance transfer function is obtained. The

  4. Optimally Controlled Flexible Fuel Powertrain System

    SciTech Connect

    Duncan Sheppard; Bruce Woodrow; Paul Kilmurray; Simon Thwaite

    2011-06-30

    A multi phase program was undertaken with the stated goal of using advanced design and development tools to create a unique combination of existing technologies to create a powertrain system specification that allowed minimal increase of volumetric fuel consumption when operating on E85 relative to gasoline. Although on an energy basis gasoline / ethanol blends typically return similar fuel economy to straight gasoline, because of its lower energy density (gasoline ~ 31.8MJ/l and ethanol ~ 21.1MJ/l) the volume based fuel economy of gasoline / ethanol blends are typically considerably worse. This project was able to define an initial engine specification envelope, develop specific hardware for the application, and test that hardware in both single and multi-cylinder test engines to verify the ability of the specified powertrain to deliver reduced E85 fuel consumption. Finally, the results from the engine testing were used in a vehicle drive cycle analysis tool to define a final vehicle level fuel economy result. During the course of the project, it was identified that the technologies utilized to improve fuel economy on E85 also enabled improved fuel economy when operating on gasoline. However, the E85 fueled powertrain provided improved vehicle performance when compared to the gasoline fueled powertrain due to the improved high load performance of the E85 fuel. Relative to the baseline comparator engine and considering current market fuels, the volumetric fuel consumption penalty when running on E85 with the fully optimized project powertrain specification was reduced significantly. This result shows that alternative fuels can be utilized in high percentages while maintaining or improving vehicle performance and with minimal or positive impact on total cost of ownership to the end consumer. The justification for this project was two-fold. In order to reduce the US dependence on crude oil, much of which is imported, the US Environmental Protection Agency (EPA

  5. ULTRA-LOW SULFUR REDUCTION EMISSION CONTROL DEVICE/DEVELOPMENT OF AN ON-BOARD FUEL SULFUR TRAP

    SciTech Connect

    Ron Rohrbach; Gary Zulauf; Tim Gavin

    2003-04-01

    Honeywell is actively working on a 3-year program to develop and demonstrate proof-of-concept for an ''on-vehicle'' desulfurization fuel filter for heavy-duty diesel engines. Integration of the filter into the vehicle fuel system will reduce the adverse effects sulfur has on post combustion emission control devices such as NO{sub x} adsorbers. The NO{sub x} adsorber may be required to meet the proposed new EPA Tier II and ''2007-Rule'' emission standards. The proposed filter concept is based on Honeywell's reactive filtration technology and experience in liquids handling and conditioning. A regeneration and recycling plan for the spent filters will also be examined. We have chosen to develop and demonstrate this technology based on criteria set forth for a heavy duty CIDI engine system because it represents a more challenging set of conditions of service intervals and overall fuel usage over light duty systems. It is anticipated that the technology developed for heavy-duty applications will be applicable to light-duty as well. Further, technology developed under this proposal would also have application for the use of liquid based fuels for fuel cell power generation. The program consists of four phases. Phase I will focus on developing a concept design and analysis and resolution of technical barriers concerning removal of sulfur-containing species in low sulfur fuels. In Phase II we will concentrate on prototype filter design and preparation followed by qualification testing of this component in a fuel line application. Phase III will study life cycle and regeneration options for the spent filter. Phase IV will focus on efficacy and life testing and component integration. The project team will include a number of partners, with Honeywell International as the prime contractor. The partners include an emission control technology developer (Honeywell International), a fuel technology developer (Marathon Ashland Petroleum), a catalyst technology developer (Johnson

  6. Ultra-low Sulfur Reduction Emission Control Device/Development of an On-board Fuel Sulfur Trap

    SciTech Connect

    Rohrbach, Ron; Barron, Ann

    2008-07-31

    Honeywell has completed working on a multiyear program to develop and demonstrate proof-of-concept for an 'on-vehicle' desulfurization fuel filter for both light duty and heavy-duty diesel engines. Integration of the filter into the vehicle fuel system will reduce the adverse effects sulfur has on post combustion emission control devices such as NOx adsorbers. The NOx adsorber may be required to meet the proposed new EPA Tier II and '2007-Rule' emission standards. The proposed filter concept is based on Honeywell's reactive filtration technology and experience in liquids handling and conditioning. A regeneration and recycling plan for the spent filters was also examined. We have chosen to develop and demonstrate this technology based on criteria set forth for a heavy duty CIDI engine system because it represents a more challenging set of conditions of service intervals and overall fuel usage over light duty systems. In the second phase of the program a light duty diesel engine test was also demonstrated. Further, technology developed under this proposal would also have application for the use of liquid based fuels for fuel cell power generation. The program consisted of four phases. Phase I focused on developing a concept design and analysis and resolution of technical barriers concerning removal of sulfur-containing species in low sulfur fuels. In Phase II concentrated on prototype filter design and preparation followed by qualification testing of this component in a fuel line application. Phase III studied life cycle and regeneration options for the spent filter. Phase IV focused on efficacy and benefits in the desulfation steps of a NOx adsorber on both a heavy and light duty engine. The project team included a number of partners, with Honeywell International as the prime contractor. The partners include an emission control technology developer (Honeywell International), a fuel technology developer (Marathon Ashland Petroleum), a catalyst technology developer

  7. Oxygen Reduction Kinetics of La2-xSrxNiO 4+delta Electrodes for Solid Oxide Fuel Cells

    NASA Astrophysics Data System (ADS)

    Guan, Bo

    In the development of intermediate temperature solid oxide fuel cell (IT-SOFC), mixed ionic-electronic conductors (MIEC) have drawn big interests due to their both ionic and electronic species transport which can enlarge the 3-dimension of the cathode network. This thesis presents an investigation of MIEC of Ruddlesden-popper (RP) phases like K2NiF4 type La2NiO4+delta (LNO)-based oxides which have interesting transport, catalytic properties and suitable thermal expansion coefficients. The motivation of this present work is to further understand the fundamental of the effect of Sr doing on the oxygen reduction reaction (ORR) kinetics of LNO cathode. Porous symmetrical cells of La2-xSrxNiO4+delta (0≤x≤0.4) were fabricated and characterized by electrochemical impedance spectroscopy (EIS) in different PO2 from temperature range of 600˜800°C. The spectra were analyzed based on the impedance model introduced by Adler et al. The rate determining steps (RDS) for ORR were proposed and the responsible reasons were discussed. The overall polarization resistances of doped samples increase with Sr level. Surface oxygen exchange and bulk ionic diffusion co-control the ORR kinetics. With high Sr content (x=0.3, 0.4), oxygen ion transfer resistance between nickelate/electrolyte is observed. However for porous symmetrical cells it is hard to associate the resistance from EIS directly to each ORR elementary processes because of the difficulty in describing the microstructure of the porous electrode. The dense electrode configuration was adopted in this thesis. By using the dense electrode, the surface area, the thickness of electrode, the interface between electrode and electrolyte and lastly the 3PB are theoretically well-defined. Through this method, there is a good chance to distinguish the contribution of surface exchange from other processes. Dense and thin electrode layers in thickness of ˜40 mum are fabricated by using a novel spray modified pressing method. Negligible

  8. Technological growth of fuel efficiency in european automobile market 1975–2015

    DOE PAGES

    Hu, Kejia; Chen, Yuche

    2016-08-29

    This paper looks at the technological growth of new car fleet fuel efficiency in the European Union between 1975 and 2015. According to the analysis results, from1975 to 2006 the fuel efficiency technology improvements were largely offset by vehicles' increased weight, engine size, and consumer amenities such as acceleration capacity. After 2006, downsizing in weight and engine capacity was observed in new car fleet, while fuel consumption decreased by 32% between 2006 and 2015. We adopt a statistical method and find that from 1975 to 2015, a 1% increase in weight would result in 0.3 to 0.5% increments in fuelmore » consumption per 100 km, and a 1% reduction in 0-100 km/h acceleration time would increase fuel consumption by about 0.3%. Impacts of other attributes on fuel consumption are also assessed. To meet the European Union's 2021 fuel consumption target, downsizing of cars, as well as at least maintaining fuel efficiency technology growth trend observed between 2005 and 2015, are needed. Lastly, government policies on controlling improvement in acceleration performance or promoting alternative fuel vehicles are also important to achieve European Union 2021 target.« less

  9. Electrocatalytic reduction of O 2 and H 2O 2 by adsorbed cobalt tetramethoxyphenyl porphyrin and its application for fuel cell cathodes

    NASA Astrophysics Data System (ADS)

    Liu, Hansan; Zhang, Lei; Zhang, Jiujun; Ghosh, Dave; Jung, Joey; Downing, Bruce W.; Whittemore, Earl

    In this paper, the mechanism and kinetics of oxygen and hydrogen peroxide electrochemical reduction that is catalyzed by an adsorbed cobalt tetramethoxyphenyl porphyrin (CoTMPP) on a graphite electrode were investigated using cyclic voltammetry (CV) and the rotating disk electrode (RDE) technique. The temperature and anion effects on O 2 and H 2O 2 electroreduction processes were also studied. The pH dependencies of cobalt redox centers, and oxygen and hydrogen peroxide reductions were measured for the purpose of exploring the reaction mechanism. In neutral solutions, the oxygen reduction reaction was observed to be a two-electron process, producing H 2O 2 in the low potential polarization range. In the high potential polarization range, an overall four-electron reduction of O 2 to H 2O was found to be the dominating process. The kinetic parameters obtained from the RDE experiments indicate that in a neutral solution, the reduction rate at the step from H 2O 2 to H 2O is faster than that seen from O 2 to H 2O 2. Carbon particle-based air cathodes catalyzed by CoTMPP were fabricated for metal-air fuel cell application. The obtained non-noble catalyst content cathodes show considerably improved performance and stability.

  10. Technical documentation for the nonresidential-buildings energy-consumption survey, 1979 - 1980, building characteristics, energy end use and fuel oil tank data, public use data tapes: Users' guide

    NASA Astrophysics Data System (ADS)

    1982-02-01

    Basic information and technical specifications necessary for using machine readable magnetic tapes containing the building characteristics, energy end use and fuel oil tank data Nonresidential Buildings Energy Consumption Survey (NBECS) are provided. Included in this document are a brief overview of the NBECS, technical specifications for reading the tapes and descriptions of the contents of each of the files contained on the tape. The remaining sections are devoted to technical topics of special interest to users of the data. Appended to this document are copies of the questionnaire used in the survey, a listing of the contents of the SPSS labels file, COBOL file description and TPL codebook.

  11. A role of hydrocarbon reaction for NO{sub x} formation and reduction in fuel-rich pulverized coal combustion

    SciTech Connect

    Taniguchi, Masayuki; Kamikawa, Yuki; Okazaki, Teruyuki; Yamamoto, Kenji; Orita, Hisayuki

    2010-08-15

    We have investigated an index for modeling a NO{sub x} reaction mechanism of pulverized coal combustion. The reaction mechanism of coal nitrogen was examined by drop-tube furnace experiments under various burning conditions. We proposed the gas phase stoichiometric ratio (SRgas) as a key index to evaluate NO{sub x} concentration in fuel-rich flames. The SRgas was defined as: SRgas {identical_to} amount of fuel required for stoichiometry combustion/amount of gasified fuel where, the amount of gasified fuel was defined as the amount of fuel which had been released to the gas phase by pyrolysis, oxidation and gasification reactions. When SRgas < 1.0, NO{sub x} concentration was strongly influenced by the value of SRgas. In this condition, the NO{sub x} concentration was hardly influenced by coal type, particle diameter, or reaction time. We developed a model to analyze NO{sub x} and XN(HCN, NH{sub 3}) concentrations for pulverized coal/air combustion and coal/CO{sub 2}/O{sub 2} combustion, based on the index. NO{sub x} and XN concentrations did not reproduce the experimental results without considering reactions between hydrocarbons and NO{sub x}. The hydrocarbon reaction was important for both NO{sub x} and XN, especially for air combustion. In the present model, an empirical formula was used to estimate the total concentration of hydrocarbons in coal flame. The reaction of heavy hydrocarbons which had plural aromatic rings was very important to analyze the reaction mechanism of hydrocarbons for coal combustion in detail. When burning temperature and SRgas were the same, total hydrocarbon concentration in a coal flame was larger than that of a light gaseous hydrocarbon flame. Total hydrocarbon concentration in oxy-fuel combustion was lower than that in air combustion. We verified the proposed model by experimental results obtained for a drop-tube furnace and a laboratory-scale furnace that had an installed low-NO{sub x} burner. (author)

  12. High-Potential Electrocatalytic O2 Reduction with Nitroxyl / NOx Mediators: Implications for Fuel Cells and Aerobic Oxidation Catalysis

    SciTech Connect

    Gerken, James B.; Stahl, Shannon S.

    2015-07-15

    Efficient reduction of O2 to water is a central challenge in energy conversion and aerobic oxidation catalysis. In the present study, we investigate the electrochemical reduction of O2 with soluble organic nitroxyl and nitrogen oxide (NOx) mediators. When used alone, neither organic nitroxyls, such as TEMPO (2,2,6,6-tetramethyl-1-piperidinyl-N-oxyl), nor NOx species, such as sodium nitrite, are effective mediators of electrochemical O2 reduction. The combination of nitroxyl/NOx species, however, mediates sustained O2 reduction at electrochemical potentials of 0.19–0.33 V (vs. Fc/Fc+) in acetonitrile containing trifluoroacetic acid. Mechanistic analysis of the coupled redox reactions supports a process in which the nitrogen oxide catalyst drives aerobic oxidation of a nitroxyl mediator to an oxoammonium species, which then is reduced back to the nitroxyl at the cathode. The electrolysis potential is dictated by the oxoammonium/nitroxyl reduction potential. The high potentials observed with this ORR system benefit from the mechanism-based specificity for four-electron reduction of oxygen to water mediated by NOx species, together with kinetically efficient reduction of oxidized NOx species by TEMPO and other organic nitroxyls. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center, funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences.

  13. Investigation of the technology development status of alternate fuel vehicles

    NASA Astrophysics Data System (ADS)

    1993-03-01

    The main purpose of the introduction of alternate fuel vehicles is to contribute to the reduction of pollution, the alternate energy for petroleum, and the energy savings. This report describes the development status of methanol, natural gas, and electric vehicles, which have high potential as alternate fuel vehicles. Characteristics of alternate fuel vehicles are compared by using the same factors on the basis of technological data. Outlines of individual alternate fuel vehicles are illustrated. Then, practicabilities of the alternate fuel vehicles are compared with each other, as for the output and energy densities, maximum output and torque of motors, power performance, specific consumption of energy, driving distance, initial cost, running cost and life cycle cost, convenience of fuel and energy supply, low pollution, and health effects.

  14. LWR spent fuel reduction by the removal of U and the compact storage of Pu with FP for long-term nuclear sustainability

    SciTech Connect

    Fukasawa, T.; Hoshino, K.; Takano, M.; Sato, S.; Shimazu, Y.

    2013-07-01

    Fast breeder reactors (FBR) nuclear fuel cycle is needed for long-term nuclear sustainability while preventing global warming and maximum utilizing the limited uranium (U) resources. The 'Framework for Nuclear Energy Policy' by the Japanese government on October 2005 stated that commercial FBR deployment will start around 2050 under its suitable conditions by the successive replacement of light water reactors (LWR) to FBR. Even after Fukushima Daiichi Nuclear Power Plant accident which made Japanese tendency slow down the nuclear power generation activities, Japan should have various options for energy resources including nuclear, and also consider the delay of FBR deployment and increase of LWR spent fuel (LWR-SF) storage amounts. As plutonium (Pu) for FBR deployment will be supplied from LWR-SF reprocessing and Japan will not possess surplus Pu, the authors have developed the flexible fuel cycle initiative (FFCI) for the transition from LWR to FBR. The FFCI system is based on the possibility to stored recycled materials (U, Pu)temporarily for a suitable period according to the FBR deployment rate to control the Pu demand/supply balance. This FFCI system is also effective after the Fukushima accident for the reduction of LWR-SF and future LWR-to-FBR transition. (authors)

  15. Resolving Past Liabilities for Future Reduction in Greenhouse Gases; Nuclear Energy and the Outstanding Federal Liability of Spent Nuclear Fuel

    NASA Astrophysics Data System (ADS)

    Donohue, Jay

    This thesis will: (1) examine the current state of nuclear power in the U.S.; (2) provide a comparison of nuclear power to both existing alternative/renewable sources of energy as well as fossil fuels; (3) dissect Standard Contracts created pursuant to the National Waste Policy Act (NWPA), Congress' attempt to find a solution for Spent Nuclear Fuel (SNF), and the designation of Yucca Mountain as a repository; (4) the anticipated failure of Yucca Mountain; (5) explore WIPP as well as attempts to build a facility on Native American land in Utah; (6) examine reprocessing as a solution for SNF used by France and Japan; and, finally, (7) propose a solution to reduce GHG's by developing new nuclear energy plants with financial support from the U.S. government and a solution to build a storage facility for SNF through the sitting of a repository based on a "bottom-up" cooperative federalism approach.

  16. Facile one-pot synthesis of platinum nanoparticles decorated nitrogen-graphene with high electrocatalytic performance for oxygen reduction and anodic fuels oxidation

    NASA Astrophysics Data System (ADS)

    Navaee, Aso; Salimi, Abdollah; Soltanian, Saeid; Servati, Peyman

    2015-03-01

    Due to exceptional electronic properties of graphene (Gr) and nitrogen doped graphene (N-Gr), they are considered as superior supporting platforms for novel metal nanoparticle decorations. Here, we report, a novel one-step electrochemical method for synthesis of Nitrogen-doped graphene sheets uniformly decorated with platinum nanoparticles (Pt/N-Gr). A graphite rod and platinum wire are respectively used for graphene and platinum nanoparticles production. The potential is cycled from -3V to +3V in acetonitrile solution as a nitrogen dopant source. By increasing the number of cycles the nitrogen-doped graphene/platinum nanoparticles composite is generated. After heat-treating the composite is characterized with various techniques such as FTIR, Raman, XPS, SEM and TEM. The electrocatalytic activity of the prepared composite toward the reduction of O2 and the oxidation of usual anodic fuels such as methanol, ethanol, hydrazine and formic acid is investigated using cyclic voltammetry technique. In comparison to commercial platinum/carbon, the onset potentials and the current densities for both O2 reduction and fuels oxidation are remarkably improved. Furthermore, the modified electrode by this composite shows good long-term stability and poisoning tolerance.

  17. Self-doped Ti3+-TiO2 as a photocatalyst for the reduction of CO2 into a hydrocarbon fuel under visible light irradiation

    NASA Astrophysics Data System (ADS)

    Sasan, Koroush; Zuo, Fan; Wang, Yuan; Feng, Pingyun

    2015-08-01

    Self-doped TiO2 shows visible light photocatalytic activity, while commercial TiO2 (P25) is only UV responsive. The incorporation of Ti3+ into TiO2 structures narrows the band gap (2.90 eV), leading to significantly increased photocatalytic activity for the reduction of CO2 into a renewable hydrocarbon fuel (CH4) in the presence of water vapour under visible light irradiation.Self-doped TiO2 shows visible light photocatalytic activity, while commercial TiO2 (P25) is only UV responsive. The incorporation of Ti3+ into TiO2 structures narrows the band gap (2.90 eV), leading to significantly increased photocatalytic activity for the reduction of CO2 into a renewable hydrocarbon fuel (CH4) in the presence of water vapour under visible light irradiation. Electronic supplementary information (ESI) available: Experimental details, XPS, XRD and SEM images. See DOI: 10.1039/c5nr02974k

  18. Effect of cationic molecules on the oxygen reduction reaction on fuel cell grade Pt/C (20 wt%) catalyst in potassium hydroxide (aq, 1 mol dm(-3)).

    PubMed

    Ong, Ai Lien; Inglis, Kenneth K; Whelligan, Daniel K; Murphy, Sam; Varcoe, John R

    2015-05-14

    This study investigates the effect of 1 mmol dm(-3) concentrations of a selection of small cationic molecules on the performance of a fuel cell grade oxygen reduction reaction (ORR) catalyst (Johnson Matthey HiSPEC 3000, 20 mass% Pt/C) in aqueous KOH (1 mol dm(-3)). The cationic molecules studied include quaternary ammonium (including those based on bicyclic systems) and imidazolium types as well as a phosphonium example: these serve as fully solubilised models for the commonly encountered head-groups in alkaline anion-exchange membranes (AAEM) and anion-exchange ionomers (AEI) that are being developed for application in alkaline polymer electrolyte fuel cells (APEFCs), batteries and electrolysers. Both cyclic and hydrodynamic linear sweep rotating disk electrode voltammetry techniques were used. The resulting voltammograms and subsequently derived data (e.g. apparent electrochemical active surface areas, Tafel plots, and number of [reduction] electrons transferred per O2) were compared. The results show that the imidazolium examples produced the highest level of interference towards the ORR on the Pt/C catalyst under the experimental conditions used.

  19. Nitrogen-modified carbon-based catalysts for oxygen reduction reaction in polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Subramanian, Nalini P.; Li, Xuguang; Nallathambi, Vijayadurda; Kumaraguru, Swaminatha P.; Colon-Mercado, Hector; Wu, Gang; Lee, Jong-Won; Popov, Branko N.

    Nitrogen-modified carbon-based catalysts for oxygen reduction were synthesized by modifying carbon black with nitrogen-containing organic precursors. The electrocatalytic properties of catalysts were studied as a function of surface pre-treatments, nitrogen and oxygen concentrations, and heat-treatment temperatures. On the optimum catalyst, the onset potential for oxygen reduction is approximately 0.76 V (NHE) and the amount of hydrogen peroxide produced at 0.5 V (NHE) is approximately 3% under our experimental conditions. The characterization studies indicated that pyridinic and graphitic (quaternary) nitrogens may act as active sites of catalysts for oxygen reduction reaction. In particular, pyridinic nitrogen, which possesses one lone pair of electrons in addition to the one electron donated to the conjugated π bond, facilitates the reductive oxygen adsorption.

  20. Highway fuel economy study. Final report Sep 79-Mar 81

    SciTech Connect

    Mason, R.L.; Zub, R.W.

    1981-06-01

    In 1979, the National Highway Traffic Safety Administration (NHTSA) with support from the Federal Highway Administration (FHWA), convened a Task Force to develop a base of information on the effects of the 55 MPH speed limit. This report addresses the fuel consumption changes attributable to speed reduction and compliance with the 55 MPH speed limit. It also discusses the effects of vehicle size and type, and driver-controllable functions on vehicle fuel economy at highway speeds. Most of the analytical work in this report is related to passenger cars and light trucks. However, medium and heavy trucks, primarily commercial in application, have been included in the highway fuel economy analyses.

  1. Alternative Fuels Data Center

    SciTech Connect

    2013-06-01

    Fact sheet describes the Alternative Fuels Data Center, which provides information, data, and tools to help fleets and other transportation decision makers find ways to reduce petroleum consumption through the use of alternative and renewable fuels, advanced vehicles, and other fuel-saving measures.

  2. High-Potential Electrocatalytic O2 Reduction with Nitroxyl/NOx Mediators: Implications for Fuel Cells and Aerobic Oxidation Catalysis

    PubMed Central

    2015-01-01

    Efficient reduction of O2 to water is a central challenge in energy conversion and many aerobic oxidation reactions. Here, we show that the electrochemical oxygen reduction reaction (ORR) can be achieved at high potentials by using soluble organic nitroxyl and nitrogen oxide (NOx) mediators. When used alone, neither organic nitroxyls, such as 2,2,6,6-tetramethyl-1-piperidinyl-N-oxyl (TEMPO), nor NOx species, such as sodium nitrite, are effective ORR mediators. The combination of nitroxyl/NOx species, however, mediates sustained O2 reduction with overpotentials as low as 300 mV in acetonitrile containing trifluoroacetic acid. Mechanistic analysis of the coupled redox reactions supports a process in which the nitrogen oxide catalyst drives aerobic oxidation of a nitroxyl mediator to an oxoammonium species, which then is reduced back to the nitroxyl at the cathode. The electrolysis potential is dictated by the oxoammonium/nitroxyl reduction potential. The overpotentials accessible with this ORR system are significantly lower than widely studied molecular metal-macrocycle ORR catalysts and benefit from the mechanism-based specificity for four-electron reduction of oxygen to water mediated by NOx species, together with kinetically efficient reduction of oxidized NOx species by TEMPO and other organic nitroxyls. PMID:27162977

  3. Reduction of carbon dioxide gas formation at the anode of a direct methanol fuel cell using chemically enhanced solubility

    NASA Astrophysics Data System (ADS)

    Lundin, Michael D.; McCready, Mark J.

    The production of CO 2 gas at the DMFC anode leads to dramatic increases in pumping power requirements and reduced power output because of mass transfer limitations as bubble trains form in the channels of larger stacks. Experimental observations taken in a 5 cm 2 DMFC test cell operated at 60 °C, 1 atm, and with a methanol/water fuel flow rates of 5-10 cm 3 min -1 indicate that the rate of bubble formation can be reduced by increasing the fuel flow because more liquid is available for the CO 2 to dissolve in. Further observations indicate that KOH and LiOH added to the fuel eliminates CO 2 gas formation in situ at low concentrations because of the greatly increased solubility that results. A mathematical model for the volumetric rate of CO 2 gas production that includes effects of temperature and solubility is developed and extended to include the effects of hydroxide ions in solution. The model is used to predict the onset location of gas formation in the flow field as well as the void fraction at any point in the flow field. Predictions from the model agree very well with our experiments. Model predictions explain differences in the initial location of bubble formation for fuel solutions pre-saturated with CO 2 as opposed to CO 2-free solutions. Experiments with KOH and LiOH added to fuel solutions confirm the validity of the model extension that includes solubility that is enhanced by chemical reaction. Experiments with LiOH, KOH, and ammonium hydroxide show that the long-term durability of standard Pt-Ru/Nafion ®/Pt membrane electrode assemblies is compromised because of the presence of lithium, potassium, and ammonium cations that interact with the Nafion ® membrane and result in increasing the ohmic limitations of the polymer electrolyte membrane. Experiments with Ca(OH) 2, while reducing gas formation, precipitate the product CaCO 3 out of solution too rapidly for downstream filtering, blocking channels in the flow field.

  4. Modeling of hybrid vehicle fuel economy and fuel engine efficiency

    NASA Astrophysics Data System (ADS)

    Wu, Wei

    "Near-CV" (i.e., near-conventional vehicle) hybrid vehicles, with an internal combustion engine, and a supplementary storage with low-weight, low-energy but high-power capacity, are analyzed. This design avoids the shortcoming of the "near-EV" and the "dual-mode" hybrid vehicles that need a large energy storage system (in terms of energy capacity and weight). The small storage is used to optimize engine energy management and can provide power when needed. The energy advantage of the "near-CV" design is to reduce reliance on the engine at low power, to enable regenerative braking, and to provide good performance with a small engine. The fuel consumption of internal combustion engines, which might be applied to hybrid vehicles, is analyzed by building simple analytical models that reflect the engines' energy loss characteristics. Both diesel and gasoline engines are modeled. The simple analytical models describe engine fuel consumption at any speed and load point by describing the engine's indicated efficiency and friction. The engine's indicated efficiency and heat loss are described in terms of several easy-to-obtain engine parameters, e.g., compression ratio, displacement, bore and stroke. Engine friction is described in terms of parameters obtained by fitting available fuel measurements on several diesel and spark-ignition engines. The engine models developed are shown to conform closely to experimental fuel consumption and motored friction data. A model of the energy use of "near-CV" hybrid vehicles with different storage mechanism is created, based on simple algebraic description of the components. With powertrain downsizing and hybridization, a "near-CV" hybrid vehicle can obtain a factor of approximately two in overall fuel efficiency (mpg) improvement, without considering reductions in the vehicle load.

  5. Building Eco-Informatics: Examining the Dynamics of Eco-Feedback Design and Peer Networks to Achieve Sustainable Reductions in Energy Consumption

    ERIC Educational Resources Information Center

    Jain, Rishee K.

    2013-01-01

    The built environment accounts for a substantial portion of energy consumption in the United States and in many parts of the world. Due to concerns over rising energy costs and climate change, researchers and practitioners have started exploring the area of eco-informatics to link information from the human, natural and built environments.…

  6. Exploratory fuel-cell research: I. Direct-hydrocarbon polymer-electrolyte fuel cell. II. Mathematical modeling of fuel-cell cathodes

    SciTech Connect

    Perry, Michael L.

    1996-12-01

    A strong need exists today for more efficient energy-conversion systems. Our reliance on limited fuel resources, such as petroleum for the majority of our energy needs makes it imperative that we utilize these resources as efficiently as possible. Higher-efficiency energy conversion also means less pollution, since less fuel is consumed and less exhaust created for the same energy output. Additionally, for many industrialized nations, such as the United States which must rely on petroleum imports, it is also imperative from a national-security standpoint to reduce the consumption of these precious resources. A substantial reduction of U.S. oil imports would result in a significant reduction of our trade deficit, as well as costly military spending to protect overseas petroleum resources. Therefore, energy-conversion devices which may utilize alternative fuels are also in strong demand. This paper describes research on fuel cells for transportation.

  7. Lean mixture engine testing and evaluation program. [for automobile engine pollution and fuel performances

    NASA Technical Reports Server (NTRS)

    Dowdy, M. W.; Hoehn, F. W.; Griffin, D. C.

    1975-01-01

    Experimental results for fuel consumption and emissions are presented for a 350 CID (5.7 liter) Chevrolet V-8 engine modified for lean operation with gasoline. The lean burn engine achieved peak thermal efficiency at an equivalence ratio of 0.75 and a spark advance of 60 deg BTDC. At this condition the lean burn engine demonstrated a 10% reduction in brake specific fuel consumption compared with the stock engine; however, NOx and hydrocarbon emissions were higher. With the use of spark retard and/or slightly lower equivalence ratios, the NOx emissions performance of the stock engine was matched while showing a 6% reduction in brake specific fuel consumption. Hydrocarbon emissions exceeded the stock values in all cases. Diagnostic data indicate that lean performance in the engine configuration tested is limited by ignition delay, cycle-to-cycle pressure variations, and cylinder-to-cylinder distribution.

  8. Modeling and control of tubular solid-oxide fuel cell systems. I: Physical models and linear model reduction

    NASA Astrophysics Data System (ADS)

    Colclasure, Andrew M.; Sanandaji, Borhan M.; Vincent, Tyrone L.; Kee, Robert J.

    This paper describes the development of a transient model of an anode-supported, tubular solid-oxide fuel cell (SOFC). Physically based conservation equations predict the coupled effects of fuel channel flow, porous-media transport, heat transfer, thermal chemistry, and electrochemistry on cell performance. The model outputs include spatial and temporal profiles of chemical composition, temperature, velocity, and current density. Mathematically the model forms a system of differential-algebraic equations (DAEs), which is solved computationally. The model is designed with process-control applications in mind, although it can certainly be applied more widely. Although the physical model is computationally efficient, it is still too costly for incorporation directly into real-time process control. Therefore, system-identification techniques are used to develop reduced-order, locally linear models that can be incorporated directly into advanced control methodologies, such as model predictive control (MPC). The paper illustrates the physical model and the reduced-order linear state-space model with examples.

  9. Improvement of activated carbons as oxygen reduction catalysts in neutral solutions by ammonia gas treatment and their performance in microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Watson, Valerie J.; Nieto Delgado, Cesar; Logan, Bruce E.

    2013-11-01

    Commercially available activated carbon (AC) powders from different precursor materials (peat, coconut shell, coal, and hardwood) were treated with ammonia gas at 700 °C to improve their performance as oxygen reduction catalysts in neutral pH solutions used in microbial fuel cells (MFCs). The ammonia treated ACs exhibited better catalytic performance in rotating ring-disk electrode tests than their untreated precursors, with the bituminous based AC most improved, with an onset potential of Eonset = 0.12 V (untreated, Eonset = 0.08 V) and n = 3.9 electrons transferred in oxygen reduction (untreated, n = 3.6), and the hardwood based AC (treated, Eonset = 0.03 V, n = 3.3; untreated, Eonset = -0.04 V, n = 3.0). Ammonia treatment decreased oxygen content by 29-58%, increased nitrogen content to 1.8 atomic %, and increased the basicity of the bituminous, peat, and hardwood ACs. The treated coal based AC cathodes had higher maximum power densities in MFCs (2450 ± 40 mW m-2) than the other AC cathodes or a Pt/C cathode (2100 ± 1 mW m-2). These results show that reduced oxygen abundance and increased nitrogen functionalities on the AC surface can increase catalytic performance for oxygen reduction in neutral media.

  10. Unveiling N-protonation and anion-binding effects on Fe/N/C-catalysts for O2 reduction in PEM fuel cells

    PubMed Central

    Herranz, Juan; Jaouen, Frédéric; Lefèvre, Michel; Kramm, Ulrike I.; Proietti, Eric; Dodelet, Jean-Pol; Bogdanoff, Peter; Fiechter, Sebastian; Abs-Wurmbach, Irmgard; Bertrand, Patrick; Arruda, Thomas M.; Mukerjee, Sanjeev

    2013-01-01

    The high cost of proton-exchange-membrane fuel cells would be considerably reduced if platinumbased catalysts were replaced by iron-based substitutes, which have recently demonstrated comparable activity for oxygen reduction, but whose cause of activity decay in acidic medium has been elusive. Here, we reveal that the activity of Fe/N/C-catalysts prepared through a pyrolysis in NH3 is mostly imparted by acid-resistant FeN4-sites whose turnover frequency for the O2 reduction can be regulated by fine chemical changes of the catalyst surface. We show that surface N-groups protonate at pH 1 and subsequently bind anions. This results in decreased activity for the O2 reduction. The anions can be removed chemically or thermally, which restores the activity of acid-resistant FeN4-sites. These results are interpreted as an increased turnover frequency of FeN4-sites when specific surface N-groups protonate. These unprecedented findings provide new perspective for stabilizing the most active Fe/N/C-catalysts known to date. PMID:24179561

  11. Effects of various organic carbon sources on simultaneous V(V) reduction and bioelectricity generation in single chamber microbial fuel cells.

    PubMed

    Hao, Liting; Zhang, Baogang; Cheng, Ming; Feng, Chuanping

    2016-02-01

    Four ordinary carbon sources affecting V(V) reduction and bioelectricity generation in single chamber microbial fuel cells (MFCs) were investigated. Acetate supported highest maximum power density of 589.1mW/m(2), with highest V(V) removal efficiency of 77.6% during 12h operation, compared with glucose, citrate and soluble starch. Exorbitant initial V(V) concentration led to lower V(V) removal efficiencies and power outputs. Extra addition of organics had little effect on the improvement of MFCs performance. V(V) reduction and bioelectricity generation were enhanced and then suppressed by the increase of conductivity. The larger the external resistance, the higher the V(V) removal efficiencies and voltage outputs. High-throughput 16S rRNA gene pyrosequencing analysis implied the accumulation of Enterobacter which had the capabilities of V(V) reduction, electrochemical activity and fermentation, accompanied with other functional species as Pseudomonas, Spirochaeta, Sedimentibacter and Dysgonomonas. This study steps forward to remediate V(V) contaminated environment based on MFC technology.

  12. N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels

    NASA Astrophysics Data System (ADS)

    Crutzen, P. J.; Mosier, A. R.; Smith, K. A.; Winiwarter, W.

    2008-01-01

    The relationship, on a global basis, between the amount of N fixed by chemical, biological or atmospheric processes entering the terrestrial biosphere, and the total emission of nitrous oxide (N2O), has been re-examined, using known global atmospheric removal rates and concentration growth of N2O as a proxy for overall emissions. For both the pre-industrial period and in recent times, after taking into account the large-scale changes in synthetic N fertiliser production, we find an overall conversion factor of 3-5% from newly fixed N to N2O-N. We assume the same factor to be valid for biofuel production systems. It is covered only in part by the default conversion factor for "direct" emissions from agricultural crop lands (1%) estimated by IPCC (2006), and the default factors for the "indirect" emissions (following volatilization/deposition and leaching/runoff of N: 0.35-0.45%) cited therein. However, as we show in the paper, when additional emissions included in the IPCC methodology, e.g. those from livestock production, are included, the total may not be inconsistent with that given by our "top-down" method. When the extra N2O emission from biofuel production is calculated in "CO2-equivalent" global warming terms, and compared with the quasi-cooling effect of "saving" emissions of fossil fuel derived CO2, the outcome is that the production of commonly used biofuels, such as biodiesel from rapeseed and bioethanol from corn (maize), depending on N fertilizer uptake efficiency by the plants, can contribute as much or more to global warming by N2O emissions than cooling by fossil fuel savings. Crops with less N demand, such as grasses and woody coppice species, have more favourable climate impacts. This analysis only considers the conversion of biomass to biofuel. It does not take into account the use of fossil fuel on the farms and for fertilizer and pesticide production, but it also neglects the production of useful co-products. Both factors partially compensate

  13. Control over fuel cell performance through modulation of pore accessibility: investigation and modeling of carbon nanotubes effects on oxygen reduction at N-graphene-based nanocomposite

    NASA Astrophysics Data System (ADS)

    Qazzazie, Dureid; Halhouli, Mohammad; Yurchenko, Olena; Urban, Gerald

    2016-11-01

    The lack of performance of graphene-based electrocatalysts for oxygen reduction (ORR) is a major concern for fuel cells which can be mastered using nanocomposites. This work is highlighted by the optimization of nitrogen(N)-doped graphene/carbon nanotubes (CNTs) nanocomposite’s ORR performance examined by galvanostatic measurements in realistically approached glucose half-cells. Obtained results mark an essential step for the development of nanocarbon-based cathodes, as we specifically evaluate the electrode performance under real fuel cell conditions. The 2D simulations exclusively represent an important approach for understanding the catalytic efficiency of the nanocomposite with unique structure. The kinetics features extracted from simulations are consistent with the experimentally determined kinetics. The morphology analysis reveals a 3D porous structure. The results demonstrate that the incorporation of CNTs implements mesoscale channels for improved mass transport and leads to efficient 4-electron transfer and enhanced overall catalytic activity in pH-neutral media. The nanocomposite shows increased specific surface area of 142 m2 g-1, positively shifted ORR onset potential of 67 mV and higher open circuit potential of 268 mV versus Ag/AgCl compared to N-graphene (11 m2 g-1, -17, 220 mV). The findings are supported by 2D simulations giving qualitative evidence to the significant role of CNTs for achieving better accessibility of pores, i.e. enabling improved transfer of oxygen and OH-, and providing more reaction sites in the nanocomposite. The nanocomposite demonstrates better ORR performance than constituent components regarding potential application in miniaturized single-compartment glucose-based fuel cells.

  14. New Method for Super Hydrophobic Treatment of Gas Diffusion Layers for Proton Exchange Membrane Fuel Cells Using Electrochemical Reduction of Diazonium Salts.

    PubMed

    Thomas, Yohann R J; Benayad, Anass; Schroder, Maxime; Morin, Arnaud; Pauchet, Joël

    2015-07-15

    The purpose of this article is to report a new method for the surface functionalization of commercially available gas diffusion layers (GDLs) by the electrochemical reduction of diazonium salt containing hydrophobic functional groups. The method results in superhydrophobic GDLs, over a large area, without pore blocking. An X-ray photoelectron spectroscopy study based on core level spectra and chemical mapping has demonstrated the successful grafting route, resulting in a homogeneous distribution of the covalently bonded hydrophobic molecules on the surface of the GDL fibers. The result was corroborated by contact angle measurement, showing similar hydrophobicity between the grafted and PTFE-modified GDLs. The electrochemically modified GDLs were tested in proton exchange membrane fuel cells under automotive, wet, and dry conditions and demonstrated improved performance over traditional GDLs.

  15. Porous nitrogen-doped carbon nanosheet on graphene as metal-free catalyst for oxygen reduction reaction in air-cathode microbial fuel cells.

    PubMed

    Wen, Qing; Wang, Shaoyun; Yan, Jun; Cong, Lijie; Chen, Ye; Xi, Hongyuan

    2014-02-01

    Porous nitrogen-doped carbon nanosheet on graphene (PNCN) was used as an alternative cathode catalyst for oxygen reduction reaction (ORR) in air-cathode microbial fuel cells (MFCs). Here we report a novel, low-cost, scalable, synthetic method for preparation of PNCN via the carbonization of graphite oxide-polyaniline hybrid (GO-PANI), subsequently followed by KOH activation treatment. Due to its high concentration of nitrogen and high specific surface area, PNCN exhibited an excellent catalytic activity for ORR. As a result, the maximum power density of 1159.34mWm(-2) obtained with PNCN catalyst was higher than that of Pt/C catalyst (858.49mWm(-2)) in a MFC. Therefore, porous nitrogen-doped carbon nanosheet could be a good alternative to Pt catalyst in MFCs.

  16. A novel stainless steel mesh/cobalt oxide hybrid electrode for efficient catalysis of oxygen reduction in a microbial fuel cell.

    PubMed

    Gong, Xiao-Bo; You, Shi-Jie; Wang, Xiu-Heng; Zhang, Jin-Na; Gan, Yang; Ren, Nan-Qi

    2014-05-15

    To explore efficient and cost-effective cathode material for microbial fuel cells (MFCs), the present study fabricates a new type of binder-free gas diffusion electrode made of cobalt oxide (Co3O4) micro-particles directly grown on stainless steel mesh (SSM) by using an ammonia-evaporation-induced method. In various electrochemical analyses and evaluations in batch-fed dual-chamber MFCs, the SSM/Co3O4 hybrid electrode demonstrates improved performances in terms of electrocatalytic activity, selectivity, durability and economics toward oxygen reduction reaction (ORR) in pH-neutral solution, in comparison with conventional carbon supported platinum catalyst. This study suggests a new strategy to fabricate a more effective electrode for ORR in MFCs, making it more technically and economically viable to produce electrical energy from organic materials for practical applications.

  17. A new Pt-Rh carbon nitride electrocatalyst for the oxygen reduction reaction in polymer electrolyte membrane fuel cells: Synthesis, characterization and single-cell performance

    NASA Astrophysics Data System (ADS)

    Di Noto, Vito; Negro, Enrico

    In this paper the preparation of a new bimetal electrocatalyst for the oxygen reduction reaction (ORR), which is one of the most important bottlenecks in the operation of polymer electrolyte membrane fuel cells (PEMFCs), is described. This material was synthesized through a pyrolysis process of a zeolitic inorganic-organic polymer electrolyte (Z-IOPE-like) precursor, followed by suitable washing and activation procedures of the product. The electrocatalyst, whose active sites consist of platinum and rhodium, was: (a) extensively characterized from the chemical, structural, morphological and electrochemical points of view and (b) used to prepare a membrane-electrode assembly (MEA) which was tested under operative conditions in a single-cell configuration. It was observed that, with respect to a reference material based on supported platinum, rhodium did not compromise the performance of the electrocatalyst in the ORR. This behaviour was interpreted in the framework of a general model concerning the enhancement of ORR performance in bimetal systems supported on carbon nitrides. Finally, the material shows a slightly better tolerance toward a few common contaminants for the ORR such as methanol and chloride anions, typical of direct methanol fuel cells (DMFCs) and vehicular applications, respectively.

  18. Nitrogen- and boron-co-doped core-shell carbon nanoparticles as efficient metal-free catalysts for oxygen reduction reactions in microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Zhong, Shengkui; Zhou, Lihua; Wu, Ling; Tang, Lianfeng; He, Qiyi; Ahmed, Jalal

    2014-12-01

    The most severe bottleneck hindering the widespread application of fuel cell technologies is the difficulty in obtaining an inexpensive and abundant oxygen reduction reaction (ORR) catalyst. The concept of a heteroatom-doped carbon-based metal-free catalyst has recently attracted interest. In this study, a metal-free carbon nanoparticles-based catalyst hybridized with dual nitrogen and boron components was synthesized to catalyze the ORR in microbial fuel cells (MFCs). Multiple physical and chemical characterizations confirmed that the synthetic method enabled the incorporation of both nitrogen and boron dopants. The electrochemical measurements indicated that the co-existence of nitrogen and boron could enhance the ORR kinetics by reducing the overpotential and increasing the current density. The results from the kinetic studies indicated that the nitrogen and boron induced an oxygen adsorption mechanism and a four-electron-dominated reaction pathway for the as-prepared catalyst that was very similar to those induced by Pt/C. The MFC results showed that a maximum power density of ∼642 mW m-2 was obtained using the as-prepared catalyst, which is comparable to that obtained using expensive Pt catalyst. The prepared nitrogen- and boron-co-doped carbon nanoparticles might be an alternative cathode catalyst for MFC applications if large-scale applications and price are considered.

  19. The carbon reduction research of teaching staff commuting aided by Google Earth: taking Guangzhou University as an example

    NASA Astrophysics Data System (ADS)

    Xie, Hongyu; Wang, Xixiang; Zhao, Meichan; Zhao, Huaqing; Lin, Zhien

    2008-10-01

    In this paper, taking Guangzhou University as an example, carbon reduction of teaching staff commuting was researched. Firstly, considering carbon emission of teaching staff commuting is come from the fuel consumption of vehicle used to trip, the routes, schedule, vehicle type, fuel type and fuel consumption per 100 km of service express bus, public bus and private car were investigated from relevant department and web questionnaire in office automation system. Secondly, the routes of service express bus, public bus and private car were drawn in Google earth browser to measure distance. Thirdly, combined the bus schedule, school calendar, curriculum timetable of teacher and fuel consumption per 100 km of all kinds of vehicle, the fuel consumption of service express bus, public bus and private car were computed. Fourthly, carbon emission was calculated according to net calorific factor and calorie carbon emission factors of fuel. Finally, the measures of carbon reduction were discussed. The research results show that teaching staff commuting emitted 455.433 tons carbon in 2005-2006 academic year. And reducing usage rate of private car and adding new service express bus line are efficient measure of carbon reduction. Former measure can reduce 33.6891 tons carbon and about 7.4% of original emission. The latter can reduce 7.6317 tons and about 1.68% of original emission.

  20. Motor vehicle fuel economy, the forgotten HC control stragegy. [Hydrocarbon (HC)

    SciTech Connect

    Deluchi, M.; Wang, Quanlu; Greene, D.L.

    1992-06-01

    Emissions of hydrocarbons from motor vehicles are recognized as major contributors to ozone pollution in urban areas. Petroleum-based motor fuels contain volatile organic compounds (VOC) which, together with oxides of nitrogen, promote the formation of ozone in the troposphere via complex photochemical reactions. VOC emissions from the tailpipe and evaporation from the fuel and engine systems of highway vehicles are believed to account for about 40% of total VOC emissions in any region. But motor fuels also generate emissions throughout the fuel cycle, from crude oil production to refining, storage, transportation, and handling, that can make significant contributions to the total inventory of VOC emissions. Many of these sources of emissions are directly related to the quantity of fuel produced and handled throughout the fuel cycle. It is, therefore, reasonable to expect that a reduction in total fuel throughput might result in a reduction of VOC emissions. In particular, reducing vehicle fuel consumption by increasing vehicle fuel economy should reduce total fuel throughput, thereby cutting total emissions of VOCS. In this report we identify the sources of VOC emissions throughout the motor fuel cycle, quantify them to the extent possible, and describe their dependence on automobile and light truck fuel economy.

  1. Assessment for advanced fuel cycle options in CANDU

    SciTech Connect

    Morreale, A.C.; Luxat, J.C.; Friedlander, Y.

    2013-07-01

    The possible options for advanced fuel cycles in CANDU reactors including actinide burning options and thorium cycles were explored and are feasible options to increase the efficiency of uranium utilization and help close the fuel cycle. The actinide burning TRUMOX approach uses a mixed oxide fuel of reprocessed transuranic actinides from PWR spent fuel blended with natural uranium in the CANDU-900 reactor. This system reduced actinide content by 35% and decreased natural uranium consumption by 24% over a PWR once through cycle. The thorium cycles evaluated used two CANDU-900 units, a generator and a burner unit along with a driver fuel feedstock. The driver fuels included plutonium reprocessed from PWR, from CANDU and low enriched uranium (LEU). All three cycles were effective options and reduced natural uranium consumption over a PWR once through cycle. The LEU driven system saw the largest reduction with a 94% savings while the plutonium driven cycles achieved 75% savings for PWR and 87% for CANDU. The high neutron economy, online fuelling and flexible compact fuel make the CANDU system an ideal reactor platform for many advanced fuel cycles.

  2. Materials Approach to Fuel Efficient Tires

    SciTech Connect

    Votruba-Drzal, Peter; Kornish, Brian

    2015-06-30

    The objective of this project was to design, develop, and demonstrate fuel efficient and safety regulation compliant tire filler and barrier coating technologies that will improve overall fuel efficiency by at least 2%. The program developed and validated two complementary approaches to improving fuel efficiency through tire improvements. The first technology was a modified silica-based product that is 15% lower in cost and/or enables a 10% improvement in tread wear while maintaining the already demonstrated minimum of 2% improvement in average fuel efficiency. The second technology was a barrier coating with reduced oxygen transmission rate compared to the state-of-the-art halobutyl rubber inner liners that will provide extended placarded tire pressure retention at significantly reduced material usage. A lower-permeance, thinner inner liner coating which retains tire pressure was expected to deliver the additional 2% reduction in fleet fuel consumption. From the 2006 Transportation Research Board Report1, a 10 percent reduction in rolling resistance can reduce consumer fuel expenditures by 1 to 2 percent for typical vehicles. This savings is equivalent to 6 to 12 gallons per year. A 1 psi drop in inflation pressure increases the tire's rolling resistance by about 1.4 percent.

  3. [Carbon balance analysis of corn fuel ethanol life cycle].

    PubMed

    Zhang, Zhi-shan; Yuan, Xi-gang

    2006-04-01

    The quantity of greenhouse gas emissions (net carbon emissions) of corn-based fuel ethanol, which is known as an alternative for fossil fuel is an important criteria for evaluating its sustainability. The methodology of carbon balance analysis for fuel ethanol from corn was developed based on principles of life cycle analysis. For the production state of fuel ethanol from summer corn in China, carbon budgets in overall life cycle of the ethanol were evaluated and its main influence factors were identified. It presents that corn-based fuel ethanol has no obvious reduction of carbon emissions than gasoline, and potential improvement in carbon emission of the life cycle of corn ethanol could be achieved by reducing the nitrogen fertilizer and irrigation electricity used in the corn farming and energy consumption in the ethanol conversion process.

  4. Reductions in Emissions of Carbonaceous Particulate Matter and Polycyclic Aromatic Hydrocarbons from Combustion of Biomass Pellets in Comparisonwith Raw Fuel Burning

    PubMed Central

    SHEN, Guofeng; TAO, Shu; WEI, Siye; ZHANG, Yanyan; WANG, Rong; WANG, Bin; LI, Wei; SHEN, Huizhong; HUANG, Ye; CHEN, Yuanchen; CHEN, Han; YANG, Yifeng; WANG, Wei; WEI, Wen; WANG, Xilong; LIU, Wenxing; WANG, Xuejun; SIMONICH, Staci L. Massey

    2012-01-01

    Biomass pellets are emerging as a cleaner alternative to traditional biomass fuels. The potential benefits of using biomass pellets include improving energy utilization efficiency and reducing emissions of air pollutants. To assess the environmental, climate, and health significance of replacing traditional fuels with biomass pellets, it is critical to measure the emission factors (EFs) of various pollutants from pellet burning. However, only a few field measurements have been conducted on the emissions of carbon monoxide (CO), particulate matter (PM), and polycyclic aromatic hydrocarbons (PAHs) from the combustion of pellets. In this study, pine wood and corn straw pellets were burned in a pellet burner (2.6 kW) and the EFs of CO, organic carbon, elemental carbon, PM, and PAHs (EFCO, EFOC, EFEC, EFPM, and EFPAH) were determined. The average EFCO, EFOC, EFEC, and EFPM were 1520±1170, 8.68±11.4, 11.2±8.7, and 188±87 mg/MJ for corn straw pellets, and 266±137, 5.74±7.17, 2.02±1.57, and 71.0±54.0 mg/MJ for pine wood pellets, respectively. Total carbonaceous carbon constituted 8 to 14% of the PM mass emitted. The measured values of EFPAH for the two pellets were 1.02±0.64 and 0.506±0.360 mg/MJ, respectively. The secondary side air supply in the pellet burner did not change the EFs of most pollutants significantly (p > 0.05). The only exceptions were EFOC and EFPM for pine wood pellets because of reduced combustion temperatures with the increased air supply. In comparison with EFs for the raw pine wood and corn straw, EFCO, EFOC, EFEC, and EFPM for pellets were significantly lower than those for raw fuels (p < 0.05). However, the differences in EFPAH were not significant (p > 0.05). Based on the measured EFs and thermal efficiencies, it was estimated that 95, 98, 98, 88, and 71% reductions in the total emissions of CO, OC, EC, PM, and PAHs could be achieved by replacing the raw biomass fuels combusted in traditional cooking stoves with pellets burned in modern

  5. Reductions in emissions of carbonaceous particulate matter and polycyclic aromatic hydrocarbons from combustion of biomass pellets in comparison with raw fuel burning.

    PubMed

    Shen, Guofeng; Tao, Shu; Wei, Siye; Zhang, Yanyan; Wang, Rong; Wang, Bin; Li, Wei; Shen, Huizhong; Huang, Ye; Chen, Yuanchen; Chen, Han; Yang, Yifeng; Wang, Wei; Wei, Wen; Wang, Xilong; Liu, Wenxing; Wang, Xuejun; Masse Simonich, Staci L y

    2012-06-05

    Biomass pellets are emerging as a cleaner alternative to traditional biomass fuels. The potential benefits of using biomass pellets include improving energy utilization efficiency and reducing emissions of air pollutants. To assess the environmental, climate, and health significance of replacing traditional fuels with biomass pellets, it is critical to measure the emission factors (EFs) of various pollutants from pellet burning. However, only a few field measurements have been conducted on the emissions of carbon monoxide (CO), particulate matter (PM), and polycyclic aromatic hydrocarbons (PAHs) from the combustion of pellets. In this study, pine wood and corn straw pellets were burned in a pellet burner (2.6 kW), and the EFs of CO, organic carbon, elemental carbon, PM, and PAHs (EF(CO), EF(OC), EF(EC), EF(PM), and EF(PAH)) were determined. The average EF(CO), EF(OC), EF(EC), and EF(PM) were 1520 ± 1170, 8.68 ± 11.4, 11.2 ± 8.7, and 188 ± 87 mg/MJ for corn straw pellets and 266 ± 137, 5.74 ± 7.17, 2.02 ± 1.57, and 71.0 ± 54.0 mg/MJ for pine wood pellets, respectively. Total carbonaceous carbon constituted 8 to 14% of the PM mass emitted. The measured values of EF(PAH) for the two pellets were 1.02 ± 0.64 and 0.506 ± 0.360 mg/MJ, respectively. The secondary side air supply in the pellet burner did not change the EFs of most pollutants significantly (p > 0.05). The only exceptions were EF(OC) and EF(PM) for pine wood pellets because of reduced combustion temperatures with the increased air supply. In comparison with EFs for the raw pine wood and corn straw, EF(CO), EF(OC), EF(EC), and EF(PM) for pellets were significantly lower than those for raw fuels (p < 0.05). However, the differences in EF(PAH) were not significant (p > 0.05). Based on the measured EFs and thermal efficiencies, it was estimated that 95, 98, 98, 88, and 71% reductions in the total emissions of CO, OC, EC, PM, and PAHs could be achieved by replacing the raw biomass fuels combusted in

  6. Modeling and control of tubular solid-oxide fuel cell systems: II. Nonlinear model reduction and model predictive control

    NASA Astrophysics Data System (ADS)

    Sanandaji, Borhan M.; Vincent, Tyrone L.; Colclasure, Andrew M.; Kee, Robert J.

    This paper describes a systematic method for developing model-based controllers for solid-oxide fuel cell (SOFC) systems. To enhance the system efficiency and to avoid possible damages, the system must be controlled within specific operating conditions, while satisfying a load requirement. Model predictive control (MPC) is a natural choice for control implementation. However, to implement MPC, a low-order model is needed that captures the dominant dynamic behavior over the operating range. A linear parameter varying (LPV) model structure is developed and applied to obtain a control-oriented dynamic model of the SOFC stack. This approach effectively reduces a detailed physical model to a form that is compatible with MPC. The LPV structure includes nonlinear scheduling functions that blend the dynamics of locally linear models to represent nonlinear dynamic behavior over large operating ranges. Alternative scheduling variables are evaluated, with cell current being shown to be an appropriate choice. Using the reduced-order model, an MPC controller is designed that can respond to the load requirement over a wide range of operation changes while maintaining input-output variables within specified constraints. To validate the approach, the LPV-based MPC controller is applied to the high-order physical model.

  7. Electrochemical studies on the oxygen reduction and NiO(Li) dissolution in molten carbonate fuel cells

    NASA Astrophysics Data System (ADS)

    Makkus, Robert Christiaan

    A study