Sample records for fuel cycle potential

  1. Safeguards Considerations for Thorium Fuel Cycles

    DOE PAGES

    Worrall, Louise G.; Worrall, Andrew; Flanagan, George F.; ...

    2016-04-21

    We report that by around 2025, thorium-based fuel cycles are likely to be deployed internationally. States such as China and India are pursuing research, development, and deployment pathways toward a number of commercial-scale thorium fuel cycles, and they are already building test reactors and the associated fuel cycle infrastructure. In the future, the potential exists for these emerging programs to sell, export, and deploy thorium fuel cycle technology in other states. Without technically adequate international safeguards protocols and measures in place, any future potential clandestine misuse of these fuel cycles could go undetected, compromising the deterrent value of these protocolsmore » and measures. The development of safeguards approaches for thorium-based fuel cycles is therefore a matter of some urgency. Yet, the focus of the international safeguards community remains mainly on safeguarding conventional 235U- and 239Pu-based fuel cycles while the safeguards challenges of thorium-uranium fuel cycles remain largely uninvestigated. This raises the following question: Is the International Atomic Energy Agency and international safeguards system ready for thorium fuel cycles? Furthermore, is the safeguards technology of today sufficiently mature to meet the verification challenges posed by thorium-based fuel cycles? In defining these and other related research questions, the objectives of this paper are to identify key safeguards considerations for thorium-based fuel cycles and to call for an early dialogue between the international safeguards and the nuclear fuel cycle communities to prepare for the potential safeguards challenges associated with these fuel cycles. In this paper, it is concluded that directed research and development programs are required to meet the identified safeguards challenges and to take timely action in preparation for the international deployment of thorium fuel cycles.« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braase, Lori

    Develop advanced nuclear fuel cycle separation and waste management technologies that improve current fuel cycle performance and enable a sustainable fuel cycle, with minimal processing, waste generation, and potential for material diversion.

  3. Radiotoxicity Characterization of Multi-Recycled Thorium Fuel - 12394

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franceschini, F.; Wenner, M.; Fiorina, C.

    2012-07-01

    As described in companion papers, Westinghouse is proposing the implementation of a thorium based fuel cycle to burn the transuranic (TRU) contained in the used nuclear fuel. The potential of thorium as a TRU burner is described in another paper presented at this conference. This paper analyzes the long-term impact of thorium on the front-end and backend of the fuel cycle. This is accomplished by an assessment of the isotopic make-up of Th in a closed cycle and its impact on representative metrics, such as radiotoxicity, decay heat and gamma heat. The behavior in both thermal and fast neutron energymore » ranges has been investigated. Irradiation in a Th fuel PWR has been assumed as representative of the thermal range, while a Th fuel fast reactor (FR) has been employed to characterize the behavior in the high-energy range. A comparison with a U-fuel closed-cycle FR has been undertaken in an attempt of a more comprehensive evaluation of each cycle's long-term potential. As the Th fuel undergoes multiple cycles of irradiation, the isotopic composition of the recycled fuel changes. Minor Th isotopes are produced; U-232 and Pa-231 build up; the U vector gradually shifts towards increasing amounts of U-234, U-235 etc., eventually leading to the production of non negligible amounts of TRU isotopes, especially Pu-238. The impact of the recycled fuel isotopic makeup on the in-core behavior is mild, and for some aspects beneficial, i.e. the reactivity swing during irradiation is reduced as the fertile characteristics of the fuel increase. On the other hand, the front and the back-end of the fuel cycle are negatively affected due to the presence of Th-228 and U-232 and the build-up of higher actinides (Pu-238 etc.). The presence of U-232 can also be seen as advantageous as it represents an obstacle to potential proliferators. Notwithstanding the increase in the short-term radiotoxicity and decay heat in the multi-recycled fuel, the Th closed cycle has some potentially substantial advantages compared to the U cycle, such as the smaller actinide radiotoxicity and decay heat for up to 25,000 years after irradiation. In order for these benefits to materialize, the capability to reprocess and remotely manufacture industrial amounts of recycled fuel appears to be the key. Westinghouse is proposing the implementation of a thorium based fuel cycle to burn the TRU contained in the current UNF. The general approach and the potential of thorium as TRU burner is described in other papers presented at this conference. The focus of this paper is to analyze the long-term potential of thorium, once the legacy TRU has been exhausted and the thorium reactor system will become self-sufficient. Therefore, a comparison of Th closed cycle, in fast and thermal neutron energy ranges, vs. U closed cycle, in the fast energy range, has been undertaken. The results presented focus on selected backend and front-end metrics: isotopic actinide composition and potential implications on ingested radiotoxicity, decay heat and gamma heat. The evaluation confirms potential substantial improvements in the backend of the fuel cycle by transitioning to a thorium closed cycle. These benefits are the result of a much lower TRU content, in particular Pu-241, Am-241 and Pu-240, characterizing the Th vs. U actinide inventories, and the ensuing process waste to be disposed. On the other hand, the larger gamma activity of Th recycled fuel, consisting predominantly of hard gammas from U-232's decay products, is a significant challenge for fuel handling, transportation and manufacturing but can be claimed as beneficial for the proliferation resistance of the fuel. It is worth remembering that in our perspective the Th closed cycle and the U closed cycle will follow a transmutation phase which will likely take place over several decades and dictate the technologies required. These will likely include remote fuel manufacturing, regardless of the specific system adopted for the transmutation, which could then be inherited for the ensuing closed cycles. Finally, specific data related to the fuel manufacturing and separation technologies and their performance in the prospected industrial scale deployment, are key for further quantification of the potential merits of the options explored. Further studies in this direction should be warranted before making definitive conclusion. (authors)« less

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindley, Benjamin A.; Parks, Geoffrey T.; Franceschini, Fausto

    Multiple recycle of long-lived actinides has the potential to greatly reduce the required storage time for spent nuclear fuel or high level nuclear waste. This is generally thought to require fast reactors as most transuranic (TRU) isotopes have low fission probabilities in thermal reactors. Reduced-moderation LWRs are a potential alternative to fast reactors with reduced time to deployment as they are based on commercially mature LWR technology. Thorium (Th) fuel is neutronically advantageous for TRU multiple recycle in LWRs due to a large improvement in the void coefficient. If Th fuel is used in reduced-moderation LWRs, it appears neutronically feasiblemore » to achieve full actinide recycle while burning an external supply of TRU, with related potential improvements in waste management and fuel utilization. In this paper, the fuel cycle of TRU-bearing Th fuel is analysed for reduced-moderation PWRs and BWRs (RMPWRs and RBWRs). RMPWRs have the advantage of relatively rapid implementation and intrinsically low conversion ratios. However, it is challenging to simultaneously satisfy operational and fuel cycle constraints. An RBWR may potentially take longer to implement than an RMPWR due to more extensive changes from current BWR technology. However, the harder neutron spectrum can lead to favourable fuel cycle performance. A two-stage fuel cycle, where the first pass is Th-Pu MOX, is a technically reasonable implementation of either concept. The first stage of the fuel cycle can therefore be implemented at relatively low cost as a Pu disposal option, with a further policy option of full recycle in the medium term. (authors)« less

  5. Sinusoidal potential cycling operation of a direct ethanol fuel cell to improving carbon dioxide yields

    NASA Astrophysics Data System (ADS)

    Majidi, Pasha; Pickup, Peter G.

    2014-12-01

    A direct ethanol fuel cell has been operated under sinusoidal (AC) potential cycling conditions in order to increase the yield of carbon dioxide and thereby increase cell efficiency relative to operation at a fixed potential. At 80 °C, faradaic yields of CO2 as high as 25% have been achieved with a PtRu anode catalyst, while the maximum CO2 production at constant potential was 13%. The increased yields under cycling conditions have been attributed to periodic oxidative stripping of adsorbed CO. These results will be important in the optimization of operating conditions for direct ethanol fuel cells, where the benefits of potential cycling are projected to increase as catalysts that produce CO2 more efficiently are implemented.

  6. Fuel Cycle Performance of Thermal Spectrum Small Modular Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Worrall, Andrew; Todosow, Michael

    2016-01-01

    Small modular reactors may offer potential benefits, such as enhanced operational flexibility. However, it is vital to understand the holistic impact of small modular reactors on the nuclear fuel cycle and fuel cycle performance. The focus of this paper is on the fuel cycle impacts of light water small modular reactors in a once-through fuel cycle with low-enriched uranium fuel. A key objective of this paper is to describe preliminary reactor core physics and fuel cycle analyses conducted in support of the U.S. Department of Energy Office of Nuclear Energy Fuel Cycle Options Campaign. Challenges with small modular reactors include:more » increased neutron leakage, fewer assemblies in the core (and therefore fewer degrees of freedom in the core design), complex enrichment and burnable absorber loadings, full power operation with inserted control rods, the potential for frequent load-following operation, and shortened core height. Each of these will impact the achievable discharge burn-up in the reactor and the fuel cycle performance. This paper summarizes the results of an expert elicitation focused on developing a list of the factors relevant to small modular reactor fuel, core, and operation that will impact fuel cycle performance. Preliminary scoping analyses were performed using a regulatory-grade reactor core simulator. The hypothetical light water small modular reactor considered in these preliminary scoping studies is a cartridge type one-batch core with 4.9% enrichment. Some core parameters, such as the size of the reactor and general assembly layout, are similar to an example small modular reactor concept from industry. The high-level issues identified and preliminary scoping calculations in this paper are intended to inform on potential fuel cycle impacts of one-batch thermal spectrum SMRs. In particular, this paper highlights the impact of increased neutron leakage and reduced number of batches on the achievable burn-up of the reactor. Fuel cycle performance metrics for a small modular reactor are compared to a conventional three-batch light water reactor in the following areas: nuclear waste management, environmental impact, and resource utilization. Metrics performance for a small modular reactor are degraded for mass of spent nuclear fuel and high level waste disposed, mass of depleted uranium disposed, land use per energy generated, and carbon emission per energy generated« less

  7. Potential impacts of Brayton and Stirling cycle engines

    NASA Astrophysics Data System (ADS)

    Heft, R. C.

    1980-11-01

    Two engine technologies (Brayton cycle and Stirling cycle) are examined for their potential economic impact and fuel utilization. An economic analysis of the expected response of buyers to the attributes of the alternative engines was performed. Hedonic coefficients for vehicle fuel efficiency, performance and size were estimated for domestic cars based upon historical data. The marketplace value of the fuel efficiency enhancement provided by Brayton or Stirling engines was estimated. Under the assumptions of 10 years for plant conversions and 1990 and 1995 as the introduction data for turbine and Stirling engines respectively, the comparative fuel savings and present value of the future savings in fuel costs were estimated.

  8. Potential impacts of Brayton and Stirling cycle engines

    NASA Technical Reports Server (NTRS)

    Heft, R. C.

    1980-01-01

    Two engine technologies (Brayton cycle and Stirling cycle) are examined for their potential economic impact and fuel utilization. An economic analysis of the expected response of buyers to the attributes of the alternative engines was performed. Hedonic coefficients for vehicle fuel efficiency, performance and size were estimated for domestic cars based upon historical data. The marketplace value of the fuel efficiency enhancement provided by Brayton or Stirling engines was estimated. Under the assumptions of 10 years for plant conversions and 1990 and 1995 as the introduction data for turbine and Stirling engines respectively, the comparative fuel savings and present value of the future savings in fuel costs were estimated.

  9. Potential External (non-DOE) Constraints on U.S. Fuel Cycle Options

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steven J. Piet

    2012-07-01

    The DOE Fuel Cycle Technologies (FCT) Program will be conducting a screening of fuel cycle options in FY2013 to help focus fuel cycle R&D activities. As part of this screening, performance criteria and go/no-go criteria are being identified. To help ensure that these criteria are consistent with current policy, an effort was initiated to identify the status and basis of potentially relevant regulations, laws, and policies that have been established external to DOE. As such regulations, laws, and policies may be beyond DOE’s control to change, they may constrain the screening criteria and internally-developed policy. This report contains a historicalmore » survey and analysis of publically available domestic documents that could pertain to external constraints on advanced nuclear fuel cycles. “External” is defined as public documents outside DOE. This effort did not include survey and analysis of constraints established internal to DOE.« less

  10. Fuel cycle cost, reactor physics and fuel manufacturing considerations for Erbia-bearing PWR fuel with > 5 wt% U-235 content

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franceschini, F.; Lahoda, E. J.; Kucukboyaci, V. N.

    2012-07-01

    The efforts to reduce fuel cycle cost have driven LWR fuel close to the licensed limit in fuel fissile content, 5.0 wt% U-235 enrichment, and the acceptable duty on current Zr-based cladding. An increase in the fuel enrichment beyond the 5 wt% limit, while certainly possible, entails costly investment in infrastructure and licensing. As a possible way to offset some of these costs, the addition of small amounts of Erbia to the UO{sub 2} powder with >5 wt% U-235 has been proposed, so that its initial reactivity is reduced to that of licensed fuel and most modifications to the existingmore » facilities and equipment could be avoided. This paper discusses the potentialities of such a fuel on the US market from a vendor's perspective. An analysis of the in-core behavior and fuel cycle performance of a typical 4-loop PWR with 18 and 24-month operating cycles has been conducted, with the aim of quantifying the potential economic advantage and other operational benefits of this concept. Subsequently, the implications on fuel manufacturing and storage are discussed. While this concept has certainly good potential, a compelling case for its short-term introduction as PWR fuel for the US market could not be determined. (authors)« less

  11. Impact of thermal spectrum small modular reactors on performance of once-through nuclear fuel cycles with low-enriched uranium

    DOE PAGES

    Brown, Nicholas R.; Worrall, Andrew; Todosow, Michael

    2016-11-18

    Small modular reactors (SMRs) offer potential benefits, such as enhanced operational flexibility. However, it is vital to understand the holistic impact of SMRs on nuclear fuel cycle performance. The focus of this paper is the fuel cycle impacts of light water SMRs in a once-through fuel cycle with low-enriched uranium fuel. A key objective of this paper is to describe preliminary example reactor core physics and fuel cycle analyses conducted in support of the U.S. Department of Energy, Office of Nuclear Energy, Fuel Cycle Options Campaign. The hypothetical light water SMR example case considered in these preliminary scoping studies ismore » a cartridge type one-batch core with slightly less than 5.0% enrichment. Challenges associated with SMRs include increased neutron leakage, fewer assemblies in the core (and therefore fewer degrees of freedom in the core design), complex enrichment and burnable absorber loadings, full power operation with inserted control rods, the potential for frequent load-following operation, and shortened core height. Each of these will impact the achievable discharge burnup in the reactor and the fuel cycle performance. This paper summarizes a list of the factors relevant to SMR fuel, core, and operation that will impact fuel cycle performance. The high-level issues identified and preliminary scoping calculations in this paper are intended to inform on potential fuel cycle impacts of one-batch thermal spectrum SMRs. In particular, this paper highlights the impact of increased neutron leakage and reduced number of batches on the achievable burnup of the reactor. Fuel cycle performance metrics for a hypothetical example SMR are compared with those for a conventional three-batch light water reactor in the following areas: nuclear waste management, environmental impact, and resource utilization. The metrics performance for such an SMR is degraded for the mass of spent nuclear fuel and high-level waste disposed of, mass of depleted uranium disposed of, land use per energy generated, and carbon emissions per energy generated. Finally, it is noted that the features of some SMR designs impact three main aspects of fuel cycle performance: (1) small cores which means high leakage (there is a radial and axial component), (2) no boron which means heterogeneous core and extensive use of control rods and BPs, and (3) single batch cores. But not all of the SMR designs have all of these traits. As a result, the approach used in this study is therefore a bounding case and not all SMRs may be affected to the same extent.« less

  12. Promising Fuel Cycle Options for R&D – Results, Insights, and Future Directions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wigeland, Roald Arnold

    2015-05-01

    The Fuel Cycle Options (FCO) campaign in the U.S. DOE Fuel Cycle Research & Development Program conducted a detailed evaluation and screening of nuclear fuel cycles. The process for this study was described at the 2014 ICAPP meeting. This paper reports on detailed insights and questions from the results of the study. The comprehensive study identified continuous recycle in fast reactors as the most promising option, using either U/Pu or U/TRU recycle, and potentially in combination with thermal reactors, as reported at the ICAPP 2014 meeting. This paper describes the examination of the results in detail that indicated that theremore » was essentially no difference in benefit between U/Pu and U/TRU recycle, prompting questions about the desirability of pursuing the more complex U/TRU approach given that the estimated greater challenges for development and deployment. The results will be reported from the current effort that further explores what, if any, benefits of TRU recycle (minor actinides in addition to plutonium recycle) may be in order to inform decisions on future R&D directions. The study also identified continuous recycle using thorium-based fuel cycles as potentially promising, in either fast or thermal systems, but with lesser benefit. Detailed examination of these results indicated that the lesser benefit was confined to only a few of the evaluation metrics, identifying the conditions under which thorium-based fuel cycles would be promising to pursue. For the most promising fuel cycles, the FCO is also conducting analyses on the potential transition to such fuel cycles to identify the issues, challenges, and the timing for critical decisions that would need to be made to avoid unnecessary delay in deployment, including investigation of issues such as the effects of a temporary lack of plutonium fuel resources or supporting infrastructure. These studies are placed in the context of an overall analysis approach designed to provide comprehensive information to the decision-making process.« less

  13. 76 FR 34007 - Draft Regulatory Basis for a Potential Rulemaking on Spent Nuclear Fuel Reprocessing Facilities

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-10

    ... processes are more akin to fuel cycle processes. This framework was established in the 1970's to license the... nuclear power globally and close the nuclear fuel cycle through reprocessing spent fuel and deploying fast... Accounting;'' and a Nuclear Energy Institute white [[Page 34009

  14. Meta-analysis and Harmonization of Life Cycle Assessment Studies for Algae Biofuels.

    PubMed

    Tu, Qingshi; Eckelman, Matthew; Zimmerman, Julie

    2017-09-05

    Algae biodiesel (BioD) and renewable diesel (RD) have been recognized as potential solutions to mitigating fossil-fuel consumption and the associated environmental issues. Life cycle assessment (LCA) has been used by many researchers to evaluate the potential environmental impacts of these algae-derived fuels, yielding a wide range of results and, in some cases, even differing on indicating whether these fuels are preferred to petroleum-derived fuels or not. This meta-analysis reviews the methodological preferences and results for energy consumption, greenhouse gas emissions, and water consumption for 54 LCA studies that considered algae BioD and RD. The significant variation in reported results can be primarily attributed to the difference in scope, assumptions, and data sources. To minimize the variation in life cycle inventory calculations, a harmonized inventory data set including both nominal and uncertainty data is calculated for each stage of the algae-derived fuel life cycle.

  15. Transuranic Waste Burning Potential of Thorium Fuel in a Fast Reactor - 12423

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wenner, Michael; Franceschini, Fausto; Ferroni, Paolo

    Westinghouse Electric Company (referred to as 'Westinghouse' in the rest of this paper) is proposing a 'back-to-front' approach to overcome the stalemate on nuclear waste management in the US. In this approach, requirements to further the societal acceptance of nuclear waste are such that the ultimate health hazard resulting from the waste package is 'as low as reasonably achievable'. Societal acceptability of nuclear waste can be enhanced by reducing the long-term radiotoxicity of the waste, which is currently driven primarily by the protracted radiotoxicity of the transuranic (TRU) isotopes. Therefore, a transition to a more benign radioactive waste can bemore » accomplished by a fuel cycle capable of consuming the stockpile of TRU 'legacy' waste contained in the LWR Used Nuclear Fuel (UNF) while generating waste which is significantly less radio-toxic than that produced by the current open U-based fuel cycle (once through and variations thereof). Investigation of a fast reactor (FR) operating on a thorium-based fuel cycle, as opposed to the traditional uranium-based is performed. Due to a combination between its neutronic properties and its low position in the actinide chain, thorium not only burns the legacy TRU waste, but it does so with a minimal production of 'new' TRUs. The effectiveness of a thorium-based fast reactor to burn legacy TRU and its flexibility to incorporate various fuels and recycle schemes according to the evolving needs of the transmutation scenario have been investigated. Specifically, the potential for a high TRU burning rate, high U-233 generation rate if so desired and low concurrent production of TRU have been used as metrics for the examined cycles. Core physics simulations of a fast reactor core running on thorium-based fuels and burning an external TRU feed supply have been carried out over multiple cycles of irradiation, separation and reprocessing. The TRU burning capability as well as the core isotopic content have been characterized. Results will be presented showing the potential for thorium to reach a high TRU transmutation rate over a wide variety of fuel types (oxide, metal, nitride and carbide) and transmutation schemes (recycle or partition of in-bred U-233). In addition, a sustainable scheme has been devised to burn the TRU accumulated in the core inventory once the legacy TRU supply has been exhausted, thereby achieving long-term virtually TRU-free. A comprehensive 'back-to-front' approach to the fuel cycle has recently been proposed by Westinghouse which emphasizes achieving 'acceptable', low-radiotoxicity, high-level waste, with the intent not only to satisfy all technical constraints but also to improve public acceptance of nuclear energy. Following this approach, the thorium fuel cycle, due to its low radiotoxicity and high potential for TRU transmutation has been selected as a promising solution. Additional studies not shown here have shown significant reduction of decay heat. The TRU burning potential of the Th-based fuel cycle has been illustrated with a variety of fuel types, using the Toshiba ARR to perform the analysis, including scenarios with continued LWR operation of either uranium fueled or thorium fueled LWRs. These scenarios will afford overall reduction in actinide radiotoxicity, however when the TRU supply is exhausted, a continued U- 235 LWR operation must be assumed to provide TRU makeup feed. This scenario will never reach the characteristically low TRU content of a closed thorium fuel cycle with its associated potential benefits on waste radiotoxicity, as exemplified by the transition scenario studied. At present, the cases studied indicate ThC as a potential fuel for maximizing TRU burning, while ThN with nitrogen enriched to 95% N-15 shows the highest breeding potential. As a result, a transition scenario with ThN was developed to show that a sustainable, closed Th-cycle can be achieved starting from burning the legacy TRU stock and completing the transmutation of the residual TRU remaining in the core inventory after the legacy TRU external supply has been exhausted. The radiotoxicity of the actinide waste during the various phases has been characterized, showing the beneficial effect of the decreasing content of TRU in the recycled fuel as the transition to a closed Th-based fuel cycle is undertaken. Due to the back-to-front nature of the proposed methodology, detailed designs are not the first step taken when assessing a fuel cycle scenario potential. As a result, design refinement is still required and should be expected in future studies. Moreover, significant safety assessment, including determination of associated reactivity coefficients, fuel and reprocessing feasibility studies and economic assessments will still be needed for a more comprehensive and meaningful comparison against other potential solutions. With the above considerations in mind, the potential advantages of thorium fuelled reactors on HLW management optimization lead us to believe that thorium fuelled reactor systems can play a significant role in the future and deserve further consideration. (authors)« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Nicholas R.; Worrall, Andrew; Todosow, Michael

    Small modular reactors (SMRs) offer potential benefits, such as enhanced operational flexibility. However, it is vital to understand the holistic impact of SMRs on nuclear fuel cycle performance. The focus of this paper is the fuel cycle impacts of light water SMRs in a once-through fuel cycle with low-enriched uranium fuel. A key objective of this paper is to describe preliminary example reactor core physics and fuel cycle analyses conducted in support of the U.S. Department of Energy, Office of Nuclear Energy, Fuel Cycle Options Campaign. The hypothetical light water SMR example case considered in these preliminary scoping studies ismore » a cartridge type one-batch core with slightly less than 5.0% enrichment. Challenges associated with SMRs include increased neutron leakage, fewer assemblies in the core (and therefore fewer degrees of freedom in the core design), complex enrichment and burnable absorber loadings, full power operation with inserted control rods, the potential for frequent load-following operation, and shortened core height. Each of these will impact the achievable discharge burnup in the reactor and the fuel cycle performance. This paper summarizes a list of the factors relevant to SMR fuel, core, and operation that will impact fuel cycle performance. The high-level issues identified and preliminary scoping calculations in this paper are intended to inform on potential fuel cycle impacts of one-batch thermal spectrum SMRs. In particular, this paper highlights the impact of increased neutron leakage and reduced number of batches on the achievable burnup of the reactor. Fuel cycle performance metrics for a hypothetical example SMR are compared with those for a conventional three-batch light water reactor in the following areas: nuclear waste management, environmental impact, and resource utilization. The metrics performance for such an SMR is degraded for the mass of spent nuclear fuel and high-level waste disposed of, mass of depleted uranium disposed of, land use per energy generated, and carbon emissions per energy generated. Finally, it is noted that the features of some SMR designs impact three main aspects of fuel cycle performance: (1) small cores which means high leakage (there is a radial and axial component), (2) no boron which means heterogeneous core and extensive use of control rods and BPs, and (3) single batch cores. But not all of the SMR designs have all of these traits. As a result, the approach used in this study is therefore a bounding case and not all SMRs may be affected to the same extent.« less

  17. Identification and Analysis of Critical Gaps in Nuclear Fuel Cycle Codes Required by the SINEMA Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adrian Miron; Joshua Valentine; John Christenson

    2009-10-01

    The current state of the art in nuclear fuel cycle (NFC) modeling is an eclectic mixture of codes with various levels of applicability, flexibility, and availability. In support of the advanced fuel cycle systems analyses, especially those by the Advanced Fuel Cycle Initiative (AFCI), Unviery of Cincinnati in collaboration with Idaho State University carried out a detailed review of the existing codes describing various aspects of the nuclear fuel cycle and identified the research and development needs required for a comprehensive model of the global nuclear energy infrastructure and the associated nuclear fuel cycles. Relevant information obtained on the NFCmore » codes was compiled into a relational database that allows easy access to various codes' properties. Additionally, the research analyzed the gaps in the NFC computer codes with respect to their potential integration into programs that perform comprehensive NFC analysis.« less

  18. Potential Fuel Economy Improvements from the Implementation of cEGR and CDA on an Atkinson Cycle Engine

    EPA Science Inventory

    Present the implementation of cEGR and CDA on an Atkinson engine and use steady state fuel consumption maps to estimate the technologies’ potential fuel economy improvements over the FTP and Highway tests. In addition to use fuel weighted modes to determine possible fuel economy...

  19. Advanced reactors and associated fuel cycle facilities: safety and environmental impacts.

    PubMed

    Hill, R N; Nutt, W M; Laidler, J J

    2011-01-01

    The safety and environmental impacts of new technology and fuel cycle approaches being considered in current U.S. nuclear research programs are contrasted to conventional technology options in this paper. Two advanced reactor technologies, the sodium-cooled fast reactor (SFR) and the very high temperature gas-cooled reactor (VHTR), are being developed. In general, the new reactor technologies exploit inherent features for enhanced safety performance. A key distinction of advanced fuel cycles is spent fuel recycle facilities and new waste forms. In this paper, the performance of existing fuel cycle facilities and applicable regulatory limits are reviewed. Technology options to improve recycle efficiency, restrict emissions, and/or improve safety are identified. For a closed fuel cycle, potential benefits in waste management are significant, and key waste form technology alternatives are described. Copyright © 2010 Health Physics Society

  20. A preliminary study of the use of intercooling and reheat in conjunction with regeneration for aircraft turbine engines

    NASA Technical Reports Server (NTRS)

    Eisenberg, J. D.

    1977-01-01

    The effect on fuel consumption of turbofans with intercooled, regenerative cycles and with intercooled, regenerative, reheat cycles was studied. The technology level for both engine and aircraft was that projected for 1985. The simulated mission was a 5556 km flight carrying 200 passengers at Mach 0.8 at 11582 min. Results indicate that these relatively complex cycles offer little, if any, fuel savings potential relative to a conventional turbofan cycle of comparable advanced technology. The intercooled, regenerative cycle yields about the same fuel economy as a conventional cycle at close to the same overall pressure ratio.

  1. Performance evaluation of two-stage fuel cycle from SFR to PWR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fei, T.; Hoffman, E.A.; Kim, T.K.

    2013-07-01

    One potential fuel cycle option being considered is a two-stage fuel cycle system involving the continuous recycle of transuranics in a fast reactor and the use of bred plutonium in a thermal reactor. The first stage is a Sodium-cooled Fast Reactor (SFR) fuel cycle with metallic U-TRU-Zr fuel. The SFRs need to have a breeding ratio greater than 1.0 in order to produce fissile material for use in the second stage. The second stage is a PWR fuel cycle with uranium and plutonium mixed oxide fuel based on the design and performance of the current state-of-the-art commercial PWRs with anmore » average discharge burnup of 50 MWd/kgHM. This paper evaluates the possibility of this fuel cycle option and discusses its fuel cycle performance characteristics. The study focuses on an equilibrium stage of the fuel cycle. Results indicate that, in order to avoid a positive coolant void reactivity feedback in the stage-2 PWR, the reactor requires high quality of plutonium from the first stage and minor actinides in the discharge fuel of the PWR needs to be separated and sent back to the stage-1 SFR. The electricity-sharing ratio between the 2 stages is 87.0% (SFR) to 13.0% (PWR) for a TRU inventory ratio (the mass of TRU in the discharge fuel divided by the mass of TRU in the fresh fuel) of 1.06. A sensitivity study indicated that by increasing the TRU inventory ratio to 1.13, The electricity generation fraction of stage-2 PWR is increased to 28.9%. The two-stage fuel cycle system considered in this study was found to provide a high uranium utilization (>80%). (authors)« less

  2. A Characteristics-Based Approach to Radioactive Waste Classification in Advanced Nuclear Fuel Cycles

    NASA Astrophysics Data System (ADS)

    Djokic, Denia

    The radioactive waste classification system currently used in the United States primarily relies on a source-based framework. This has lead to numerous issues, such as wastes that are not categorized by their intrinsic risk, or wastes that do not fall under a category within the framework and therefore are without a legal imperative for responsible management. Furthermore, in the possible case that advanced fuel cycles were to be deployed in the United States, the shortcomings of the source-based classification system would be exacerbated: advanced fuel cycles implement processes such as the separation of used nuclear fuel, which introduce new waste streams of varying characteristics. To be able to manage and dispose of these potential new wastes properly, development of a classification system that would assign appropriate level of management to each type of waste based on its physical properties is imperative. This dissertation explores how characteristics from wastes generated from potential future nuclear fuel cycles could be coupled with a characteristics-based classification framework. A static mass flow model developed under the Department of Energy's Fuel Cycle Research & Development program, called the Fuel-cycle Integration and Tradeoffs (FIT) model, was used to calculate the composition of waste streams resulting from different nuclear fuel cycle choices: two modified open fuel cycle cases (recycle in MOX reactor) and two different continuous-recycle fast reactor recycle cases (oxide and metal fuel fast reactors). This analysis focuses on the impact of waste heat load on waste classification practices, although future work could involve coupling waste heat load with metrics of radiotoxicity and longevity. The value of separation of heat-generating fission products and actinides in different fuel cycles and how it could inform long- and short-term disposal management is discussed. It is shown that the benefits of reducing the short-term fission-product heat load of waste destined for geologic disposal are neglected under the current source-based radioactive waste classification system, and that it is useful to classify waste streams based on how favorable the impact of interim storage is on increasing repository capacity. The need for a more diverse set of waste classes is discussed, and it is shown that the characteristics-based IAEA classification guidelines could accommodate wastes created from advanced fuel cycles more comprehensively than the U.S. classification framework.

  3. Hydrocarbon bio-jet fuel from bioconversion of poplar biomass: life cycle assessment.

    PubMed

    Budsberg, Erik; Crawford, Jordan T; Morgan, Hannah; Chin, Wei Shan; Bura, Renata; Gustafson, Rick

    2016-01-01

    Bio-jet fuels compatible with current aviation infrastructure are needed as an alternative to petroleum-based jet fuel to lower greenhouse gas emissions and reduce dependence on fossil fuels. Cradle to grave life cycle analysis is used to investigate the global warming potential and fossil fuel use of converting poplar biomass to drop-in bio-jet fuel via a novel bioconversion platform. Unique to the biorefinery designs in this research is an acetogen fermentation step. Following dilute acid pretreatment and enzymatic hydrolysis, poplar biomass is fermented to acetic acid and then distilled, hydroprocessed, and oligomerized to jet fuel. Natural gas steam reforming and lignin gasification are proposed to meet hydrogen demands at the biorefineries. Separate well to wake simulations are performed using the hydrogen production processes to obtain life cycle data. Both biorefinery designs are assessed using natural gas and hog fuel to meet excess heat demands. Global warming potential of the natural gas steam reforming and lignin gasification bio-jet fuel scenarios range from CO2 equivalences of 60 to 66 and 32 to 73 g MJ(-1), respectively. Fossil fuel usage of the natural gas steam reforming and lignin gasification bio-jet fuel scenarios range from 0.78 to 0.84 and 0.71 to 1.0 MJ MJ(-1), respectively. Lower values for each impact category result from using hog fuel to meet excess heat/steam demands. Higher values result from using natural gas to meet the excess heat demands. Bio-jet fuels produced from the bioconversion of poplar biomass reduce the global warming potential and fossil fuel use compared with petroleum-based jet fuel. Production of hydrogen is identified as a major source of greenhouse gas emissions and fossil fuel use in both the natural gas steam reforming and lignin gasification bio-jet simulations. Using hog fuel instead of natural gas to meet heat demands can help lower the global warming potential and fossil fuel use at the biorefineries.

  4. Policy implications of uncertainty in modeled life-cycle greenhouse gas emissions of biofuels.

    PubMed

    Mullins, Kimberley A; Griffin, W Michael; Matthews, H Scott

    2011-01-01

    Biofuels have received legislative support recently in California's Low-Carbon Fuel Standard and the Federal Energy Independence and Security Act. Both present new fuel types, but neither provides methodological guidelines for dealing with the inherent uncertainty in evaluating their potential life-cycle greenhouse gas emissions. Emissions reductions are based on point estimates only. This work demonstrates the use of Monte Carlo simulation to estimate life-cycle emissions distributions from ethanol and butanol from corn or switchgrass. Life-cycle emissions distributions for each feedstock and fuel pairing modeled span an order of magnitude or more. Using a streamlined life-cycle assessment, corn ethanol emissions range from 50 to 250 g CO(2)e/MJ, for example, and each feedstock-fuel pathway studied shows some probability of greater emissions than a distribution for gasoline. Potential GHG emissions reductions from displacing fossil fuels with biofuels are difficult to forecast given this high degree of uncertainty in life-cycle emissions. This uncertainty is driven by the importance and uncertainty of indirect land use change emissions. Incorporating uncertainty in the decision making process can illuminate the risks of policy failure (e.g., increased emissions), and a calculated risk of failure due to uncertainty can be used to inform more appropriate reduction targets in future biofuel policies.

  5. Fuel economy of hybrid fuel-cell vehicles

    NASA Astrophysics Data System (ADS)

    Ahluwalia, Rajesh K.; Wang, X.; Rousseau, A.

    The potential improvement in fuel economy of a mid-size fuel-cell vehicle by combining it with an energy storage system has been assessed. An energy management strategy is developed and used to operate the direct hydrogen, pressurized fuel-cell system in a load-following mode and the energy storage system in a charge-sustaining mode. The strategy places highest priority on maintaining the energy storage system in a state where it can supply unanticipated boost power when the fuel-cell system alone cannot meet the power demand. It is found that downsizing a fuel-cell system decreases its efficiency on a drive cycle which is compensated by partial regenerative capture of braking energy. On a highway cycle with limited braking energy the increase in fuel economy with hybridization is small but on the stop-and-go urban cycle the fuel economy can improve by 27%. On the combined highway and urban drive cycles the fuel economy of the fuel-cell vehicle is estimated to increase by up to 15% by hybridizing it with an energy storage system.

  6. Stochastic Optimization for Nuclear Facility Deployment Scenarios

    NASA Astrophysics Data System (ADS)

    Hays, Ross Daniel

    Single-use, low-enriched uranium oxide fuel, consumed through several cycles in a light-water reactor (LWR) before being disposed, has become the dominant source of commercial-scale nuclear electric generation in the United States and throughout the world. However, it is not without its drawbacks and is not the only potential nuclear fuel cycle available. Numerous alternative fuel cycles have been proposed at various times which, through the use of different reactor and recycling technologies, offer to counteract many of the perceived shortcomings with regards to waste management, resource utilization, and proliferation resistance. However, due to the varying maturity levels of these technologies, the complicated material flow feedback interactions their use would require, and the large capital investments in the current technology, one should not deploy these advanced designs without first investigating the potential costs and benefits of so doing. As the interactions among these systems can be complicated, and the ways in which they may be deployed are many, the application of automated numerical optimization to the simulation of the fuel cycle could potentially be of great benefit to researchers and interested policy planners. To investigate the potential of these methods, a computational program has been developed that applies a parallel, multi-objective simulated annealing algorithm to a computational optimization problem defined by a library of relevant objective functions applied to the Ver ifiable Fuel Cycle Simulati on Model (VISION, developed at the Idaho National Laboratory). The VISION model, when given a specified fuel cycle deployment scenario, computes the numbers and types of, and construction, operation, and utilization schedules for, the nuclear facilities required to meet a predetermined electric power demand function. Additionally, it calculates the location and composition of the nuclear fuels within the fuel cycle, from initial mining through to eventual disposal. By varying the specifications of the deployment scenario, the simulated annealing algorithm will seek to either minimize the value of a single objective function, or enumerate the trade-off surface between multiple competing objective functions. The available objective functions represent key stakeholder values, minimizing such important factors as high-level waste disposal burden, required uranium ore supply, relative proliferation potential, and economic cost and uncertainty. The optimization program itself is designed to be modular, allowing for continued expansion and exploration as research needs and curiosity indicate. The utility and functionality of this optimization program are demonstrated through its application to one potential fuel cycle scenario of interest. In this scenario, an existing legacy LWR fleet is assumed at the year 2000. The electric power demand grows exponentially at a rate of 1.8% per year through the year 2100. Initially, new demand is met by the construction of 1-GW(e) LWRs. However, beginning in the year 2040, 600-MW(e) sodium-cooled, fast-spectrum reactors operating in a transuranic burning regime with full recycling of spent fuel become available to meet demand. By varying the fraction of new capacity allocated to each reactor type, the optimization program is able to explicitly show the relationships that exist between uranium utilization, long-term heat for geologic disposal, and cost-of-electricity objective functions. The trends associated with these trade-off surfaces tend to confirm many common expectations about the use of nuclear power, namely that while overall it is quite insensitive to variations in the cost of uranium ore, it is quite sensitive to changes in the capital costs of facilities. The optimization algorithm has shown itself to be robust and extensible, with possible extensions to many further fuel cycle optimization problems of interest.

  7. Thermally regenerative hydrogen/oxygen fuel cell power cycles

    NASA Technical Reports Server (NTRS)

    Morehouse, J. H.

    1986-01-01

    Two innovative thermodynamic power cycles are analytically examined for future engineering feasibility. The power cycles use a hydrogen-oxygen fuel cell for electrical energy production and use the thermal dissociation of water for regeneration of the hydrogen and oxygen. The TDS (thermal dissociation system) uses a thermal energy input at over 2000 K to thermally dissociate the water. The other cycle, the HTE (high temperature electrolyzer) system, dissociates the water using an electrolyzer operating at high temperature (1300 K) which receives its electrical energy from the fuel cell. The primary advantages of these cycles is that they are basically a no moving parts system, thus having the potential for long life and high reliability, and they have the potential for high thermal efficiency. Both cycles are shown to be classical heat engines with ideal efficiency close to Carnot cycle efficiency. The feasibility of constructing actual cycles is investigated by examining process irreversibilities and device efficiencies for the two types of cycles. The results show that while the processes and devices of the 2000 K TDS exceed current technology limits, the high temperature electrolyzer system appears to be a state-of-the-art technology development. The requirements for very high electrolyzer and fuel cell efficiencies are seen as determining the feasbility of the HTE system, and these high efficiency devices are currently being developed. It is concluded that a proof-of-concept HTE system experiment can and should be conducted.

  8. Consideration of black carbon and primary organic carbon emissions in life-cycle analysis of Greenhouse gas emissions of vehicle systems and fuels.

    PubMed

    Cai, Hao; Wang, Michael Q

    2014-10-21

    The climate impact assessment of vehicle/fuel systems may be incomplete without considering short-lived climate forcers of black carbon (BC) and primary organic carbon (POC). We quantified life-cycle BC and POC emissions of a large variety of vehicle/fuel systems with an expanded Greenhouse gases, Regulated Emissions, and Energy use in Transportation model developed at Argonne National Laboratory. Life-cycle BC and POC emissions have small impacts on life-cycle greenhouse gas (GHG) emissions of gasoline, diesel, and other fuel vehicles, but would add 34, 16, and 16 g CO2 equivalent (CO2e)/mile, or 125, 56, and 56 g CO2e/mile with the 100 or 20 year Global Warming Potentials of BC and POC emissions, respectively, for vehicles fueled with corn stover-, willow tree-, and Brazilian sugarcane-derived ethanol, mostly due to BC- and POC-intensive biomass-fired boilers in cellulosic and sugarcane ethanol plants for steam and electricity production, biomass open burning in sugarcane fields, and diesel-powered agricultural equipment for biomass feedstock production/harvest. As a result, life-cycle GHG emission reduction potentials of these ethanol types, though still significant, are reduced from those without considering BC and POC emissions. These findings, together with a newly expanded GREET version, help quantify the previously unknown impacts of BC and POC emissions on life-cycle GHG emissions of U.S. vehicle/fuel systems.

  9. Thermodynamic Cycle and CFD Analyses for Hydrogen Fueled Air-breathing Pulse Detonation Engines

    NASA Technical Reports Server (NTRS)

    Povinelli, Louis A.; Yungster, Shaye

    2002-01-01

    This paper presents the results of a thermodynamic cycle analysis of a pulse detonation engine (PDE) using a hydrogen-air mixture at static conditions. The cycle performance results, namely the specific thrust, fuel consumption and impulse are compared to a single cycle CFD analysis for a detonation tube which considers finite rate chemistry. The differences in the impulse values were indicative of the additional performance potential attainable in a PDE.

  10. Benefits of solar/fossil hybrid gas turbine systems

    NASA Technical Reports Server (NTRS)

    Bloomfield, H. S.

    1978-01-01

    The potential benefits of solar/fossil hybrid gas turbine power systems were assessed. Both retrofit and new systems were considered from the aspects of; cost of electricity, fuel conservation, operational mode, technology requirements, and fuels flexibility. Hybrid retrofit (repowering) of existing combustion (simple Brayton cycle) turbines can provide near-term fuel savings and solar experience, while new and advanced recuperated or combined cycle systems may be an attractive fuel saving and economically competitive vehicle to transition from today's gas and oil-fired powerplants to other more abundant fuels.

  11. Benefits of solar/fossil hybrid gas turbine systems

    NASA Technical Reports Server (NTRS)

    Bloomfield, H. S.

    1979-01-01

    The potential benefits of solar/fossil hybrid gas turbine power systems were assessed. Both retrofit and new systems were considered from the aspects of cost of electricity, fuel conservation, operational mode, technology requirements, and fuels flexibility. Hybrid retrofit (repowering) of existing combustion (simple Brayton cycle) turbines can provide near-term fuel savings and solar experience, while new and advanced recuperated or combined cycle systems may be an attractive fuel saving and economically competitive vehicle to transition from today's gas and oil-fired powerplants to other more abundant fuels.

  12. Accelerator Reactor Coupling for Energy Production in Advanced Nuclear Fuel Cycles

    DOE PAGES

    Brown, Nicholas R.; Heidet, Florent; Haj Tahar, Malek

    2016-01-01

    This article is a review of several accelerator–reactor interface issues and nuclear fuel cycle applications of acceleratordriven subcritical systems. The systems considered here have the primary goal of energy production, but that goal is accomplished via a specific application in various proposed nuclear fuel cycles, such as breed-and-burn of fertile material or burning of transuranic material. Several basic principles are reviewed, starting from the proton beam window including the target, blanket, reactor core, and up to the fuel cycle. We focus on issues of interest, such as the impact of the energy required to run the accelerator and associated systemsmore » on the potential electricity delivered to the grid. Accelerator-driven systems feature many of the constraints and issues associated with critical reactors, with the added challenges of subcritical operation and coupling to an accelerator. Reliable accelerator operation and avoidance of beam trips are critically important. One interesting challenge is measurement of blanket subcriticality level during operation. We also review the potential benefits of accelerator-driven systems in various nuclear fuel cycle applications. Ultimately, accelerator-driven subcritical systems with the goal of transmutation of transuranic material have lower 100,000-year radioactivity than a critical fast reactor with recycling of uranium and plutonium.« less

  13. Accelerator–Reactor Coupling for Energy Production in Advanced Nuclear Fuel Cycles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heidet, Florent; Brown, Nicholas R.; Haj Tahar, Malek

    2015-01-01

    This article is a review of several accelerator-reactor interface issues and nuclear fuel cycle applications of accelerator-driven subcritical systems. The systems considered here have the primary goal of energy production, but that goal is accomplished via a specific application in various proposed nuclear fuel cycles, such as breed-and-burn of fertile material or burning of transuranic material. Several basic principles are reviewed, starting from the proton beam window including the target, blanket, reactor core, and up to the fuel cycle. We focused on issues of interest, e.g. the impact of the energy required to run the accelerator and associated systems onmore » the potential electricity delivered to the grid. Accelerator-driven systems feature many of the constraints and issues associated with critical reactors, with the added challenges of subcritical operation and coupling to an accelerator. Reliable accelerator operation and avoidance of beam trips are a critically important. One interesting challenge is measurement of blanket subcriticality level during operation. We also reviewed the potential benefits of accelerator-driven systems in various nuclear fuel cycle applications. Ultimately, accelerator-driven subcritical systems with the goal of transmutation of transuranic material have lower 100,000-year radioactivity versus a critical fast reactor with recycle of uranium and plutonium.« less

  14. Accelerator-Reactor Coupling for Energy Production in Advanced Nuclear Fuel Cycles

    NASA Astrophysics Data System (ADS)

    Heidet, Florent; Brown, Nicholas R.; Haj Tahar, Malek

    This article is a review of several accelerator-reactor interface issues and nuclear fuel cycle applications of accelerator-driven subcritical systems. The systems considered here have the primary goal of energy production, but that goal is accomplished via a specific application in various proposed nuclear fuel cycles, such as breed-and-burn of fertile material or burning of transuranic material. Several basic principles are reviewed, starting from the proton beam window including the target, blanket, reactor core, and up to the fuel cycle. We focus on issues of interest, such as the impact of the energy required to run the accelerator and associated systems on the potential electricity delivered to the grid. Accelerator-driven systems feature many of the constraints and issues associated with critical reactors, with the added challenges of subcritical operation and coupling to an accelerator. Reliable accelerator operation and avoidance of beam trips are critically important. One interesting challenge is measurement of blanket subcriticality level during operation. We also review the potential benefits of accelerator-driven systems in various nuclear fuel cycle applications. Ultimately, accelerator-driven subcritical systems with the goal of transmutation of transuranic material have lower 100,000-year radioactivity than a critical fast reactor with recycling of uranium and plutonium.

  15. Simulation on reactor TRIGA Puspati core kinetics fueled with thorium (Th) based fuel element

    NASA Astrophysics Data System (ADS)

    Mohammed, Abdul Aziz; Pauzi, Anas Muhamad; Rahman, Shaik Mohmmed Haikhal Abdul; Zin, Muhamad Rawi Muhammad; Jamro, Rafhayudi; Idris, Faridah Mohamad

    2016-01-01

    In confronting global energy requirement and the search for better technologies, there is a real case for widening the range of potential variations in the design of nuclear power plants. Smaller and simpler reactors are attractive, provided they can meet safety and security standards and non-proliferation issues. On fuel cycle aspect, thorium fuel cycles produce much less plutonium and other radioactive transuranic elements than uranium fuel cycles. Although not fissile itself, Th-232 will absorb slow neutrons to produce uranium-233 (233U), which is fissile. By introducing Thorium, the numbers of highly enriched uranium fuel element can be reduced while maintaining the core neutronic performance. This paper describes the core kinetic of a small research reactor core like TRIGA fueled with a Th filled fuel element matrix using a general purpose Monte Carlo N-Particle (MCNP) code.

  16. Simulation on reactor TRIGA Puspati core kinetics fueled with thorium (Th) based fuel element

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohammed, Abdul Aziz, E-mail: azizM@uniten.edu.my; Rahman, Shaik Mohmmed Haikhal Abdul; Pauzi, Anas Muhamad, E-mail: anas@uniten.edu.my

    2016-01-22

    In confronting global energy requirement and the search for better technologies, there is a real case for widening the range of potential variations in the design of nuclear power plants. Smaller and simpler reactors are attractive, provided they can meet safety and security standards and non-proliferation issues. On fuel cycle aspect, thorium fuel cycles produce much less plutonium and other radioactive transuranic elements than uranium fuel cycles. Although not fissile itself, Th-232 will absorb slow neutrons to produce uranium-233 ({sup 233}U), which is fissile. By introducing Thorium, the numbers of highly enriched uranium fuel element can be reduced while maintainingmore » the core neutronic performance. This paper describes the core kinetic of a small research reactor core like TRIGA fueled with a Th filled fuel element matrix using a general purpose Monte Carlo N-Particle (MCNP) code.« less

  17. Comparative evaluation of three alternative power cycles for waste heat recovery from the exhaust of adiabatic diesel engines

    NASA Technical Reports Server (NTRS)

    Bailey, M. M.

    1985-01-01

    Three alternative power cycles were compared in application as an exhaust-gas heat-recovery system for use with advanced adiabatic diesel engines. The power cycle alternatives considered were steam Rankine, organic Rankine with RC-1 as the working fluid, and variations of an air Brayton cycle. The comparison was made in terms of fuel economy and economic payback potential for heavy-duty trucks operating in line-haul service. The results indicate that, in terms of engine rated specific fuel consumption, a diesel/alternative-power-cycle engine offers a significant improvement over the turbocompound diesel used as the baseline for comparison. The maximum imporvement resulted from the use of a Rankine cycle heat-recovery system in series with turbocompounding. The air Brayton cycle alternatives studied, which included both simple-cycle and compression-intercooled configurations, were less effective and provided about half the fuel consumption improvement of the Rankine cycle alternatives under the same conditions. Capital and maintenance cost estimates were also developed for each of the heat-recovery power cycle systems. These costs were integrated with the fuel savings to identify the time required for net annual savings to pay back the initial capital investment. The sensitivity of capital payback time to arbitrary increases in fuel price, not accompanied by corresponding hardware cost inflation, was also examined. The results indicate that a fuel price increase is required for the alternative power cycles to pay back capital within an acceptable time period.

  18. Hybrid fusion-fission reactor with a thorium blanket: Its potential in the fuel cycle of nuclear reactors

    NASA Astrophysics Data System (ADS)

    Shmelev, A. N.; Kulikov, G. G.; Kurnaev, V. A.; Salahutdinov, G. H.; Kulikov, E. G.; Apse, V. A.

    2015-12-01

    Discussions are currently going on as to whether it is suitable to employ thorium in the nuclear fuel cycle. This work demonstrates that the 231Pa-232U-233U-Th composition to be produced in the thorium blanket of a hybrid thermonuclear reactor (HTR) as a fuel for light-water reactors opens up the possibility of achieving high, up to 30% of heavy metals (HM), or even ultrahigh fuel burnup. This is because the above fuel composition is able to stabilize its neutron-multiplying properties in the process of high fuel burnup. In addition, it allows the nuclear fuel cycle (NFC) to be better protected against unauthorized proliferation of fissile materials owing to an unprecedentedly large fraction of 232U (several percent!) in the uranium bred from the Th blanket, which will substantially hamper the use of fissile materials in a closed NFC for purposes other than power production.

  19. Corrigendum to "Sinusoidal potential cycling operation of a direct ethanol fuel cell to improving carbon dioxide yields" [J. Power Sources 268 (5 December 2014) 439-442

    NASA Astrophysics Data System (ADS)

    Majidi, Pasha; Pickup, Peter G.

    2016-09-01

    The authors regret that Equation (5) is incorrect and has resulted in errors in Fig. 4 and the efficiencies stated on p. 442. The corrected equation, figure and text are presented below. In addition, the title should be 'Sinusoidal potential cycling operation of a direct ethanol fuel cell to improve carbon dioxide yields', and the reversible cell potential quoted on p. 441 should be 1.14 V. The authors would like to apologise for any inconvenience caused.

  20. Comparison of the Environment, Health, And Safety Characteristics of Advanced Thorium- Uranium and Uranium-Plutonium Fuel Cycles

    NASA Astrophysics Data System (ADS)

    Ault, Timothy M.

    The environment, health, and safety properties of thorium-uranium-based (''thorium'') fuel cycles are estimated and compared to those of analogous uranium-plutonium-based (''uranium'') fuel cycle options. A structured assessment methodology for assessing and comparing fuel cycle is refined and applied to several reference fuel cycle options. Resource recovery as a measure of environmental sustainability for thorium is explored in depth in terms of resource availability, chemical processing requirements, and radiological impacts. A review of available experience and recent practices indicates that near-term thorium recovery will occur as a by-product of mining for other commodities, particularly titanium. The characterization of actively-mined global titanium, uranium, rare earth element, and iron deposits reveals that by-product thorium recovery would be sufficient to satisfy even the most intensive nuclear demand for thorium at least six times over. Chemical flowsheet analysis indicates that the consumption of strong acids and bases associated with thorium resource recovery is 3-4 times larger than for uranium recovery, with the comparison of other chemical types being less distinct. Radiologically, thorium recovery imparts about one order of magnitude larger of a collective occupational dose than uranium recovery. Moving to the entire fuel cycle, four fuel cycle options are compared: a limited-recycle (''modified-open'') uranium fuel cycle, a modified-open thorium fuel cycle, a full-recycle (''closed'') uranium fuel cycle, and a closed thorium fuel cycle. A combination of existing data and calculations using SCALE are used to develop material balances for the four fuel cycle options. The fuel cycle options are compared on the bases of resource sustainability, waste management (both low- and high-level waste, including used nuclear fuel), and occupational radiological impacts. At steady-state, occupational doses somewhat favor the closed thorium option while low-level waste volumes slightly favor the closed uranium option, although uncertainties are significant in both cases. The high-level waste properties (radioactivity, decay heat, and ingestion radiotoxicity) all significantly favor the closed fuel cycle options (especially the closed thorium option), but an alternative measure of key fission product inventories that drive risk in a repository slightly favors the uranium fuel cycles due to lower production of iodine-129. Resource requirements are much lower for the closed fuel cycle options and are relatively similar between thorium and uranium. In additional to the steady-state results, a variety of potential transition pathways are considered for both uranium and thorium fuel cycle end-states. For dose, low-level waste, and fission products contributing to repository risk, the differences among transition impacts largely reflected the steady-state differences. However, the HLW properties arrived at a distinctly opposite result in transition (strongly favoring uranium, whereas thorium was strongly favored at steady-state), because used present-day fuel is disposed without being recycled given that uranium-233, rather than plutonium, is the primarily fissile nuclide at the closed thorium fuel cycle's steady-state. Resource consumption was the only metric was strongly influenced by the specific transition pathway selected, favoring those pathways that more quickly arrived at steady-state through higher breeding ratio assumptions regardless of whether thorium or uranium was used.

  1. Hybrid life-cycle assessment of natural gas based fuel chains for transportation.

    PubMed

    Strømman, Anders Hammer; Solli, Christian; Hertwich, Edgar G

    2006-04-15

    This research compares the use of natural gas, methanol, and hydrogen as transportation fuels. These three fuel chains start with the extraction and processing of natural gas in the Norwegian North Sea and end with final use in Central Europe. The end use is passenger transportation with a sub-compact car that has an internal combustion engine for the natural gas case and a fuel cell for the methanol and hydrogen cases. The life cycle assessment is performed by combining a process based life-cycle inventory with economic input-output data. The analysis shows that the potential climate impacts are lowest for the hydrogen fuel scenario with CO2 deposition. The hydrogen fuel chain scenario has no significant environmental disadvantage compared to the other fuel chains. Detailed analysis shows that the construction of the car contributes significantly to most impact categories. Finally, it is shown how the application of a hybrid inventory model ensures a more complete inventory description compared to standard process-based life-cycle assessment. This is particularly significant for car construction which would have been significantly underestimated in this study using standard process life-cycle assessment alone.

  2. Variable cycle engines for advanced supersonic transports

    NASA Technical Reports Server (NTRS)

    Howlett, R. A.; Kozlowski, H.

    1975-01-01

    Variable Cycle Engines being studied for advanced commercial supersonic transports show potential for significant environmental and economic improvements relative to 1st generation SST engines. The two most promising concepts are: a Variable Stream Control Engine and a Variable Cycle Engine with a rear flow-control valve. Each concept utilizes variable components and separate burners to provide independent temperature and velocity control for two coannular flow streams. Unique fuel control techniques are combined with cycle characteristics that provide low fuel consumption, similar to a turbojet engine, for supersonic operation. This is accomplished while retaining the good subsonic performance features of a turbofan engine. A two-stream coannular nozzle shows potential to reduce jet noise to below FAR Part 36 without suppressors. Advanced burner concepts have the potential for significant reductions in exhaust emissions. In total, these unique engine concepts have the potential for significant overall improvements to the environmental and economic characteristics of advanced supersonic transports.

  3. Estimating the potential of energy saving and carbon emission mitigation of cassava-based fuel ethanol using life cycle assessment coupled with a biogeochemical process model.

    PubMed

    Jiang, Dong; Hao, Mengmeng; Fu, Jingying; Tian, Guangjin; Ding, Fangyu

    2017-09-14

    Global warming and increasing concentration of atmospheric greenhouse gas (GHG) have prompted considerable interest in the potential role of energy plant biomass. Cassava-based fuel ethanol is one of the most important bioenergy and has attracted much attention in both developed and developing countries. However, the development of cassava-based fuel ethanol is still faced with many uncertainties, including raw material supply, net energy potential, and carbon emission mitigation potential. Thus, an accurate estimation of these issues is urgently needed. This study provides an approach to estimate energy saving and carbon emission mitigation potentials of cassava-based fuel ethanol through LCA (life cycle assessment) coupled with a biogeochemical process model-GEPIC (GIS-based environmental policy integrated climate) model. The results indicate that the total potential of cassava yield on marginal land in China is 52.51 million t; the energy ratio value varies from 0.07 to 1.44, and the net energy surplus of cassava-based fuel ethanol in China is 92,920.58 million MJ. The total carbon emission mitigation from cassava-based fuel ethanol in China is 4593.89 million kgC. Guangxi, Guangdong, and Fujian are identified as target regions for large-scale development of cassava-based fuel ethanol industry. These results can provide an operational approach and fundamental data for scientific research and energy planning.

  4. Estimating the potential of energy saving and carbon emission mitigation of cassava-based fuel ethanol using life cycle assessment coupled with a biogeochemical process model

    NASA Astrophysics Data System (ADS)

    Jiang, Dong; Hao, Mengmeng; Fu, Jingying; Tian, Guangjin; Ding, Fangyu

    2017-09-01

    Global warming and increasing concentration of atmospheric greenhouse gas (GHG) have prompted considerable interest in the potential role of energy plant biomass. Cassava-based fuel ethanol is one of the most important bioenergy and has attracted much attention in both developed and developing countries. However, the development of cassava-based fuel ethanol is still faced with many uncertainties, including raw material supply, net energy potential, and carbon emission mitigation potential. Thus, an accurate estimation of these issues is urgently needed. This study provides an approach to estimate energy saving and carbon emission mitigation potentials of cassava-based fuel ethanol through LCA (life cycle assessment) coupled with a biogeochemical process model—GEPIC (GIS-based environmental policy integrated climate) model. The results indicate that the total potential of cassava yield on marginal land in China is 52.51 million t; the energy ratio value varies from 0.07 to 1.44, and the net energy surplus of cassava-based fuel ethanol in China is 92,920.58 million MJ. The total carbon emission mitigation from cassava-based fuel ethanol in China is 4593.89 million kgC. Guangxi, Guangdong, and Fujian are identified as target regions for large-scale development of cassava-based fuel ethanol industry. These results can provide an operational approach and fundamental data for scientific research and energy planning.

  5. Evaluation of a staged fuel combustor for turboprop engines

    NASA Technical Reports Server (NTRS)

    Verdouw, A. J.

    1976-01-01

    Proposed EPA emission regulations require emission reduction by 1979 for various gas turbine engine classes. Extensive combustion technology advancements are required to meet the proposed regulations. The T56 turboprop engine requires CO, UHC, and smoke reduction. A staged fuel combustor design was tested on a combustion rig to evaluate emission reduction potential in turboprop engines from fuel zoning. The can-type combustor has separately fueled-pilot and main combustion zones in series. The main zone fueling system was arranged for potential incorporation into the T56 with minor or no modifications to the basic engine. Three combustor variable geometry systems were incorporated to evaluate various airflow distributions. Emission results with fixed geometry operation met all proposed EPA regulations over the EPA LTO cycle. CO reduction was 82 percent, UHC reduction was 96 percent, and smoke reduction was 84 percent. NOx increased 14 percent over the LTO cycle. At high power, NOx reduction was 40 to 55 percent. This NOx reduction has potential application to stationary gas turbine powerplants which have different EPA regulations.

  6. Impact of aviation non-CO₂ combustion effects on the environmental feasibility of alternative jet fuels.

    PubMed

    Stratton, Russell W; Wolfe, Philip J; Hileman, James I

    2011-12-15

    Alternative fuels represent a potential option for reducing the climate impacts of the aviation sector. The climate impacts of alternatives fuel are traditionally considered as a ratio of life cycle greenhouse gas (GHG) emissions to those of the displaced petroleum product; however, this ignores the climate impacts of the non-CO(2) combustion effects from aircraft in the upper atmosphere. The results of this study show that including non-CO(2) combustion emissions and effects in the life cycle of a Synthetic Paraffinic Kerosene (SPK) fuel can lead to a decrease in the relative merit of the SPK fuel relative to conventional jet fuel. For example, an SPK fuel option with zero life cycle GHG emissions would offer a 100% reduction in GHG emissions but only a 48% reduction in actual climate impact using a 100-year time window and the nominal climate modeling assumption set outlined herein. Therefore, climate change mitigation policies for aviation that rely exclusively on relative well-to-wake life cycle GHG emissions as a proxy for aviation climate impact may overestimate the benefit of alternative fuel use on the global climate system.

  7. Characterizing model uncertainties in the life cycle of lignocellulose-based ethanol fuels.

    PubMed

    Spatari, Sabrina; MacLean, Heather L

    2010-11-15

    Renewable and low carbon fuel standards being developed at federal and state levels require an estimation of the life cycle carbon intensity (LCCI) of candidate fuels that can substitute for gasoline, such as second generation bioethanol. Estimating the LCCI of such fuels with a high degree of confidence requires the use of probabilistic methods to account for known sources of uncertainty. We construct life cycle models for the bioconversion of agricultural residue (corn stover) and energy crops (switchgrass) and explicitly examine uncertainty using Monte Carlo simulation. Using statistical methods to identify significant model variables from public data sets and Aspen Plus chemical process models,we estimate stochastic life cycle greenhouse gas (GHG) emissions for the two feedstocks combined with two promising fuel conversion technologies. The approach can be generalized to other biofuel systems. Our results show potentially high and uncertain GHG emissions for switchgrass-ethanol due to uncertain CO₂ flux from land use change and N₂O flux from N fertilizer. However, corn stover-ethanol,with its low-in-magnitude, tight-in-spread LCCI distribution, shows considerable promise for reducing life cycle GHG emissions relative to gasoline and corn-ethanol. Coproducts are important for reducing the LCCI of all ethanol fuels we examine.

  8. Impacts of Wind and Solar on Fossil-Fueled Generators: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lew, D.; Brinkman, G.; Kumar, N.

    2012-08-01

    High penetrations of wind and solar power will impact the operations of the remaining generators on the power system. Regional integration studies have shown that wind and solar may cause fossil-fueled generators to cycle on and off and ramp down to part load more frequently and potentially more rapidly. Increased cycling, deeper load following, and rapid ramping may result in wear-and-tear impacts on fossil-fueled generators that lead to increased capital and maintenance costs, increased equivalent forced outage rates, and degraded performance over time. Heat rates and emissions from fossil-fueled generators may be higher during cycling and ramping than during steady-statemore » operation. Many wind and solar integration studies have not taken these increased cost and emissions impacts into account because data have not been available. This analysis considers the cost and emissions impacts of cycling and ramping of fossil-fueled generation to refine assessments of wind and solar impacts on the power system.« less

  9. Hybrid fusion–fission reactor with a thorium blanket: Its potential in the fuel cycle of nuclear reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shmelev, A. N., E-mail: shmelan@mail.ru; Kulikov, G. G., E-mail: ggkulikov@mephi.ru; Kurnaev, V. A., E-mail: kurnaev@yandex.ru

    2015-12-15

    Discussions are currently going on as to whether it is suitable to employ thorium in the nuclear fuel cycle. This work demonstrates that the {sup 231}Pa–{sup 232}U–{sup 233}U–Th composition to be produced in the thorium blanket of a hybrid thermonuclear reactor (HTR) as a fuel for light-water reactors opens up the possibility of achieving high, up to 30% of heavy metals (HM), or even ultrahigh fuel burnup. This is because the above fuel composition is able to stabilize its neutron-multiplying properties in the process of high fuel burnup. In addition, it allows the nuclear fuel cycle (NFC) to be bettermore » protected against unauthorized proliferation of fissile materials owing to an unprecedentedly large fraction of {sup 232}U (several percent!) in the uranium bred from the Th blanket, which will substantially hamper the use of fissile materials in a closed NFC for purposes other than power production.« less

  10. Predicting the ultimate potential of natural gas SOFC power cycles with CO2 capture - Part A: Methodology and reference cases

    NASA Astrophysics Data System (ADS)

    Campanari, Stefano; Mastropasqua, Luca; Gazzani, Matteo; Chiesa, Paolo; Romano, Matteo C.

    2016-08-01

    Driven by the search for the highest theoretical efficiency, in the latest years several studies investigated the integration of high temperature fuel cells in natural gas fired power plants, where fuel cells are integrated with simple or modified Brayton cycles and/or with additional bottoming cycles, and CO2 can be separated via chemical or physical separation, oxy-combustion and cryogenic methods. Focusing on Solid Oxide Fuel Cells (SOFC) and following a comprehensive review and analysis of possible plant configurations, this work investigates their theoretical potential efficiency and proposes two ultra-high efficiency plant configurations based on advanced intermediate-temperature SOFCs integrated with a steam turbine or gas turbine cycle. The SOFC works at atmospheric or pressurized conditions and the resulting power plant exceeds 78% LHV efficiency without CO2 capture (as discussed in part A of the work) and 70% LHV efficiency with substantial CO2 capture (part B). The power plants are simulated at the 100 MW scale with a complete set of realistic assumptions about fuel cell (FC) performance, plant components and auxiliaries, presenting detailed energy and material balances together with a second law analysis.

  11. A Novel Fuel/Reactor Cycle to Implement the 300 Years Nuclear Waste Policy Approach - 12377

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carelli, M.D.; Franceschini, F.; Lahoda, E.J.

    2012-07-01

    A thorium-based fuel cycle system can effectively burn the currently accumulated commercial used nuclear fuel and move to a sustainable equilibrium where the actinide levels in the high level waste are low enough to yield a radiotoxicity after 300 years lower than that of the equivalent uranium ore. The second step of the Westinghouse approach to solving the waste 'problem' has been completed. The thorium fuel cycle has indeed the potential of burning the legacy TRU and achieve the waste objective proposed. Initial evaluations have been started for the third step, development and selection of appropriate reactors. Indications are thatmore » the probability of show-stoppers is rather remote. It is, therefore, believed that development of the thorium cycle and associated technologies will provide a permanent solution to the waste management. Westinghouse is open to the widest collaboration to make this a reality. (authors)« less

  12. The emerging role and targetability of the TCA cycle in cancer metabolism.

    PubMed

    Anderson, Nicole M; Mucka, Patrick; Kern, Joseph G; Feng, Hui

    2018-02-01

    The tricarboxylic acid (TCA) cycle is a central route for oxidative phosphorylation in cells, and fulfills their bioenergetic, biosynthetic, and redox balance requirements. Despite early dogma that cancer cells bypass the TCA cycle and primarily utilize aerobic glycolysis, emerging evidence demonstrates that certain cancer cells, especially those with deregulated oncogene and tumor suppressor expression, rely heavily on the TCA cycle for energy production and macromolecule synthesis. As the field progresses, the importance of aberrant TCA cycle function in tumorigenesis and the potentials of applying small molecule inhibitors to perturb the enhanced cycle function for cancer treatment start to evolve. In this review, we summarize current knowledge about the fuels feeding the cycle, effects of oncogenes and tumor suppressors on fuel and cycle usage, common genetic alterations and deregulation of cycle enzymes, and potential therapeutic opportunities for targeting the TCA cycle in cancer cells. With the application of advanced technology and in vivo model organism studies, it is our hope that studies of this previously overlooked biochemical hub will provide fresh insights into cancer metabolism and tumorigenesis, subsequently revealing vulnerabilities for therapeutic interventions in various cancer types.

  13. Photovoltaic energy technologies: Health and environmental effects document

    NASA Astrophysics Data System (ADS)

    Moskowitz, P. D.; Hamilton, L. D.; Morris, S. C.; Rowe, M. D.

    1980-09-01

    The potential health and environmental consequences of producing electricity by photovoltaic energy systems was analyzed. Potential health and environmental risks are identified in representative fuel and material supply cycles including extraction, processing, refining, fabrication, installation, operation, and isposal for four photovoltaic energy systems (silicon N/P single crystal, silicon metal/insulator/semiconductor (MIS) cell, cadmium sulfide/copper sulfide backwall cell, and gallium arsenide heterojunction cell) delivering equal amounts of useful energy. Each step of the fuel and material supply cycles, materials demands, byproducts, public health, occupational health, and environmental hazards is identified.

  14. Emissions from U.S. waste collection vehicles.

    PubMed

    Maimoun, Mousa A; Reinhart, Debra R; Gammoh, Fatina T; McCauley Bush, Pamela

    2013-05-01

    This research is an in-depth environmental analysis of potential alternative fuel technologies for waste collection vehicles. Life-cycle emissions, cost, fuel and energy consumption were evaluated for a wide range of fossil and bio-fuel technologies. Emission factors were calculated for a typical waste collection driving cycle as well as constant speed. In brief, natural gas waste collection vehicles (compressed and liquid) fueled with North-American natural gas had 6-10% higher well-to-wheel (WTW) greenhouse gas (GHG) emissions relative to diesel-fueled vehicles; however the pump-to-wheel (PTW) GHG emissions of natural gas waste collection vehicles averaged 6% less than diesel-fueled vehicles. Landfill gas had about 80% lower WTW GHG emissions relative to diesel. Biodiesel waste collection vehicles had between 12% and 75% lower WTW GHG emissions relative to diesel depending on the fuel source and the blend. In 2011, natural gas waste collection vehicles had the lowest fuel cost per collection vehicle kilometer travel. Finally, the actual driving cycle of waste collection vehicles consists of repetitive stops and starts during waste collection; this generates more emissions than constant speed driving. Published by Elsevier Ltd.

  15. Exploring Fuel-Saving Potential of Long-Haul Truck Hybridization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Zhiming; LaClair, Tim J.; Smith, David E.

    We report our comparisons on the simulated fuel economy for parallel, series, and dual-mode hybrid electric long-haul trucks, in addition to a conventional powertrain configuration, powered by a commercial 2010-compliant 15-L diesel engine over a freeway-dominated heavy-duty truck driving cycle. The driving cycle was obtained by measurement during normal driving conditions. The results indicated that both parallel and dual-mode hybrid powertrains were capable of improving fuel economy by 7% to 8%. But there was no significant fuel economy benefit for the series hybrid truck because of internal inefficiencies in energy exchange. When reduced aerodynamic drag and tire rolling resistance weremore » combined with hybridization, there was a synergistic fuel economy benefit for appropriate hybrids that increased the fuel economy benefit to more than 15%. Long-haul hybrid trucks with reduced aerodynamic drag and rolling resistance offered lower peak engine loads, better kinetic energy recovery, and reduced average engine power demand. Therefore, it is expected that hybridization with load reduction technologies offers important potential fuel energy savings for future long-haul trucks.« less

  16. Exploring Fuel-Saving Potential of Long-Haul Truck Hybridization

    DOE PAGES

    Gao, Zhiming; LaClair, Tim J.; Smith, David E.; ...

    2015-10-01

    We report our comparisons on the simulated fuel economy for parallel, series, and dual-mode hybrid electric long-haul trucks, in addition to a conventional powertrain configuration, powered by a commercial 2010-compliant 15-L diesel engine over a freeway-dominated heavy-duty truck driving cycle. The driving cycle was obtained by measurement during normal driving conditions. The results indicated that both parallel and dual-mode hybrid powertrains were capable of improving fuel economy by 7% to 8%. But there was no significant fuel economy benefit for the series hybrid truck because of internal inefficiencies in energy exchange. When reduced aerodynamic drag and tire rolling resistance weremore » combined with hybridization, there was a synergistic fuel economy benefit for appropriate hybrids that increased the fuel economy benefit to more than 15%. Long-haul hybrid trucks with reduced aerodynamic drag and rolling resistance offered lower peak engine loads, better kinetic energy recovery, and reduced average engine power demand. Therefore, it is expected that hybridization with load reduction technologies offers important potential fuel energy savings for future long-haul trucks.« less

  17. Standardized verification of fuel cycle modeling

    DOE PAGES

    Feng, B.; Dixon, B.; Sunny, E.; ...

    2016-04-05

    A nuclear fuel cycle systems modeling and code-to-code comparison effort was coordinated across multiple national laboratories to verify the tools needed to perform fuel cycle analyses of the transition from a once-through nuclear fuel cycle to a sustainable potential future fuel cycle. For this verification study, a simplified example transition scenario was developed to serve as a test case for the four systems codes involved (DYMOND, VISION, ORION, and MARKAL), each used by a different laboratory participant. In addition, all participants produced spreadsheet solutions for the test case to check all the mass flows and reactor/facility profiles on a year-by-yearmore » basis throughout the simulation period. The test case specifications describe a transition from the current US fleet of light water reactors to a future fleet of sodium-cooled fast reactors that continuously recycle transuranic elements as fuel. After several initial coordinated modeling and calculation attempts, it was revealed that most of the differences in code results were not due to different code algorithms or calculation approaches, but due to different interpretations of the input specifications among the analysts. Therefore, the specifications for the test case itself were iteratively updated to remove ambiguity and to help calibrate interpretations. In addition, a few corrections and modifications were made to the codes as well, which led to excellent agreement between all codes and spreadsheets for this test case. Although no fuel cycle transition analysis codes matched the spreadsheet results exactly, all remaining differences in the results were due to fundamental differences in code structure and/or were thoroughly explained. As a result, the specifications and example results are provided so that they can be used to verify additional codes in the future for such fuel cycle transition scenarios.« less

  18. Closed fuel cycle with increased fuel burn-up and economy applying of thorium resources

    NASA Astrophysics Data System (ADS)

    Kulikov, G. G.; Apse, V. A.

    2017-01-01

    The possible role of existing thorium reserves in the Russian Federation on engaging thorium in being currently closed (U-Pu)-fuel cycle of nuclear power of the country is considered. The application efficiency of thermonuclear neutron sources with thorium blanket for the economical use of existing thorium reserves is demonstrated. The aim of the work is to find solutions of such major tasks as the reduction of both front-end and back-end of nuclear fuel cycle and an enhancing its protection against the uncontrolled proliferation of fissile materials by means of the smallest changes in the fuel cycle. During implementation of the work we analyzed the results obtained earlier by the authors, brought new information on the number of thorium available in the Russian Federation and made further assessments. On the basis of proposal on the inclusion of hybrid reactors with Th-blanket into the future nuclear power for the production of light uranium fraction 232+233+234U, and 231Pa, we obtained the following results: 1. The fuel cycle will shift from fissile 235U to 233U which is more attractive for thermal power reactors. 2. The light uranium fraction is the most "protected" in the uranium component of fuel and mixed with regenerated uranium will in addition become a low enriched uranium fuel, that will weaken the problem of uncontrolled proliferation of fissile materials. 3. 231Pa doping into the fuel stabilizes its multiplying properties that will allow us to implement long-term fuel residence time and eventually to increase the export potential of all nuclear power technologies. 4. The thorium reserves being near city Krasnoufimsk (Russia) are large enough for operation of large-scale nuclear power of the Russian Federation of 70 GWe capacity during more than a quarter century under assumption that thorium is loaded into blankets of hybrid TNS only. The general conclusion: the inclusion of a small number of hybrid reactors with Th-blanket into the future nuclear power will allow us substantially to solve its problems, as well as to increase its export potential.

  19. Reactivity-controlled compression ignition drive cycle emissions and fuel economy estimations using vehicle system simulations

    DOE PAGES

    Curran, Scott J.; Gao, Zhiming; Wagner, Robert M.

    2014-12-22

    In-cylinder blending of gasoline and diesel to achieve reactivity-controlled compression ignition has been shown to reduce NO X and soot emissions while maintaining or improving brake thermal efficiency as compared with conventional diesel combustion. The reactivity-controlled compression ignition concept has an advantage over many advanced combustion strategies in that the fuel reactivity can be tailored to the engine speed and load, allowing stable low-temperature combustion to be extended over more of the light-duty drive cycle load range. In this paper, a multi-mode reactivity-controlled compression ignition strategy is employed where the engine switches from reactivity-controlled compression ignition to conventional diesel combustionmore » when speed and load demand are outside of the experimentally determined reactivity-controlled compression ignition range. The potential for reactivity-controlled compression ignition to reduce drive cycle fuel economy and emissions is not clearly understood and is explored here by simulating the fuel economy and emissions for a multi-mode reactivity-controlled compression ignition–enabled vehicle operating over a variety of US drive cycles using experimental engine maps for multi-mode reactivity-controlled compression ignition, conventional diesel combustion, and a 2009 port-fuel injected gasoline engine. Drive cycle simulations are completed assuming a conventional mid-size passenger vehicle with an automatic transmission. Multi-mode reactivity-controlled compression ignition fuel economy simulation results are compared with the same vehicle powered by a representative 2009 port-fuel injected gasoline engine over multiple drive cycles. Finally, engine-out drive cycle emissions are compared with conventional diesel combustion, and observations regarding relative gasoline and diesel tank sizes needed for the various drive cycles are also summarized.« less

  20. ORIGEN-based Nuclear Fuel Inventory Module for Fuel Cycle Assessment: Final Project Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skutnik, Steven E.

    The goal of this project, “ORIGEN-based Nuclear Fuel Depletion Module for Fuel Cycle Assessment" is to create a physics-based reactor depletion and decay module for the Cyclus nuclear fuel cycle simulator in order to assess nuclear fuel inventories over a broad space of reactor operating conditions. The overall goal of this approach is to facilitate evaluations of nuclear fuel inventories for a broad space of scenarios, including extended used nuclear fuel storage and cascading impacts on fuel cycle options such as actinide recovery in used nuclear fuel, particularly for multiple recycle scenarios. The advantages of a physics-based approach (compared tomore » a recipe-based approach which has been typically employed for fuel cycle simulators) is in its inherent flexibility; such an approach can more readily accommodate the broad space of potential isotopic vectors that may be encountered under advanced fuel cycle options. In order to develop this flexible reactor analysis capability, we are leveraging the Origen nuclear fuel depletion and decay module from SCALE to produce a standalone “depletion engine” which will serve as the kernel of a Cyclus-based reactor analysis module. The ORIGEN depletion module is a rigorously benchmarked and extensively validated tool for nuclear fuel analysis and thus its incorporation into the Cyclus framework can bring these capabilities to bear on the problem of evaluating long-term impacts of fuel cycle option choices on relevant metrics of interest, including materials inventories and availability (for multiple recycle scenarios), long-term waste management and repository impacts, etc. Developing this Origen-based analysis capability for Cyclus requires the refinement of the Origen analysis sequence to the point where it can reasonably be compiled as a standalone sequence outside of SCALE; i.e., wherein all of the computational aspects of Origen (including reactor cross-section library processing and interpolation, input and output processing, and depletion/decay solvers) can be self-contained into a single executable sequence. Further, to embed this capability into other software environments (such as the Cyclus fuel cycle simulator) requires that Origen’s capabilities be encapsulated into a portable, self-contained library which other codes can then call directly through function calls, thereby directly accessing the solver and data processing capabilities of Origen. Additional components relevant to this work include modernization of the reactor data libraries used by Origen for conducting nuclear fuel depletion calculations. This work has included the development of new fuel assembly lattices not previously available (such as for CANDU heavy-water reactor assemblies) as well as validation of updated lattices for light-water reactors updated to employ modern nuclear data evaluations. The CyBORG reactor analysis module as-developed under this workscope is fully capable of dynamic calculation of depleted fuel compositions from all commercial U.S. reactor assembly types as well as a number of international fuel types, including MOX, VVER, MAGNOX, and PHWR CANDU fuel assemblies. In addition, the Origen-based depletion engine allows for CyBORG to evaluate novel fuel assembly and reactor design types via creation of Origen reactor data libraries via SCALE. The establishment of this new modeling capability affords fuel cycle modelers a substantially improved ability to model dynamically-changing fuel cycle and reactor conditions, including recycled fuel compositions from fuel cycle scenarios involving material recycle into thermal-spectrum systems.« less

  1. An investigation on the fuel savings potential of hybrid hydraulic refuse collection vehicles.

    PubMed

    Bender, Frank A; Bosse, Thomas; Sawodny, Oliver

    2014-09-01

    Refuse trucks play an important role in the waste collection process. Due to their typical driving cycle, these vehicles are characterized by large fuel consumption, which strongly affects the overall waste disposal costs. Hybrid hydraulic refuse vehicles offer an interesting alternative to conventional diesel trucks, because they are able to recuperate, store and reuse braking energy. However, the expected fuel savings can vary strongly depending on the driving cycle and the operational mode. Therefore, in order to assess the possible fuel savings, a typical driving cycle was measured in a conventional vehicle run by the waste authority of the City of Stuttgart, and a dynamical model of the considered vehicle was built up. Based on the measured driving cycle and the vehicle model including the hybrid powertrain components, simulations for both the conventional and the hybrid vehicle were performed. Fuel consumption results that indicate savings of about 20% are presented and analyzed in order to evaluate the benefit of hybrid hydraulic vehicles used for refuse collection. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Research on Power Loss of Continuously Variable Transmission Based on Driving Cycles

    NASA Astrophysics Data System (ADS)

    Fu, Bing; Zhou, Yunshan; Cao, Chenglong; Li, Quan; Zhang, Feitie

    2018-01-01

    In order to further enhance the fuel economy of vehicles with continuously variable transmission (CVT), a CVT power loss model under dynamic condition is established based on the power loss model of each transmission component and the vehicle dynamic model. With driving cycles 10-15, NEDC and US06 as input, the distribution of CVT power loss and the influence of the main losses to vehicle fuel economy are analysed. The results show that the variation loss, oil pump loss and torque converter loss are the main losses of CVT power loss under driving cycles, and the metal belt and oil pump have relatively larger fuel saving potential. At low speed reducing the pump loss is more effective to fuel saving, while at high speed reducing the variation loss is more effective.

  3. On the role of fusion neutron source with thorium blanket in forming the nuclide composition of the nuclear fuel cycle of the Russian Federation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shmelev, A. N.; Kulikov, G. G., E-mail: ggkulikov@mephi.ru

    The possible role of available thorium resources of the Russian Federation in utilization of thorium in the closed (U–Pu)-fuel cycle of nuclear power is considered. The efficiency of application of fusion neutron sources with thorium blanket for economical use of available thorium resources is demonstrated. The objective of this study is the search for a solution of such major tasks of nuclear power as reduction of the amount of front-end operations in the nuclear fuel cycle and enhancement of its protection against uncontrolled proliferation of fissile materials with the smallest possible alterations in the fuel cycle. The earlier results aremore » analyzed, new information on the amount of thorium resources of the Russian Federation is used, and additional estimates are made. The following basic results obtained on the basis of the assumption of involving fusion reactors with Th-blanket in future nuclear power for generation of the light uranium fraction {sup 232+233+234}U and {sup 231}Pa are formulated. (1) The fuel cycle would shift from fissile {sup 235}U to {sup 233}U, which is more attractive for thermal power reactors. (2) The light uranium fraction is the most “protected” in the uranium fuel component, and being mixed with regenerated uranium, it would become reduced-enrichment uranium fuel, which would relieve the problem of nonproliferation of the fissile material. (3) The addition of {sup 231}Pa into the fuel would stabilize its neutron-multiplying properties, thus making it possible to implement a long fuel residence time and, as a consequence, increase the export potential of the whole nuclear power technology. (4) The available thorium resource in the vicinity of Krasnoufimsk is sufficient for operation of the large-scale nuclear power industry of the Russian Federation with an electric power of 70 GW for more than one quarter of a century. The general conclusion is that involvement of a small number of fusion reactors with Th-blanket in the future nuclear power industry of the Russian Federation would to a large extent solve its problems and increase its export potential.« less

  4. On the role of fusion neutron source with thorium blanket in forming the nuclide composition of the nuclear fuel cycle of the Russian Federation

    NASA Astrophysics Data System (ADS)

    Shmelev, A. N.; Kulikov, G. G.

    2016-12-01

    The possible role of available thorium resources of the Russian Federation in utilization of thorium in the closed (U-Pu)-fuel cycle of nuclear power is considered. The efficiency of application of fusion neutron sources with thorium blanket for economical use of available thorium resources is demonstrated. The objective of this study is the search for a solution of such major tasks of nuclear power as reduction of the amount of front-end operations in the nuclear fuel cycle and enhancement of its protection against uncontrolled proliferation of fissile materials with the smallest possible alterations in the fuel cycle. The earlier results are analyzed, new information on the amount of thorium resources of the Russian Federation is used, and additional estimates are made. The following basic results obtained on the basis of the assumption of involving fusion reactors with Th-blanket in future nuclear power for generation of the light uranium fraction 232+233+234U and 231Pa are formulated. (1) The fuel cycle would shift from fissile 235U to 233U, which is more attractive for thermal power reactors. (2) The light uranium fraction is the most "protected" in the uranium fuel component, and being mixed with regenerated uranium, it would become reduced-enrichment uranium fuel, which would relieve the problem of nonproliferation of the fissile material. (3) The addition of 231Pa into the fuel would stabilize its neutron-multiplying properties, thus making it possible to implement a long fuel residence time and, as a consequence, increase the export potential of the whole nuclear power technology. (4) The available thorium resource in the vicinity of Krasnoufimsk is sufficient for operation of the large-scale nuclear power industry of the Russian Federation with an electric power of 70 GW for more than one quarter of a century. The general conclusion is that involvement of a small number of fusion reactors with Th-blanket in the future nuclear power industry of the Russian Federation would to a large extent solve its problems and increase its export potential.

  5. Survey of advanced nuclear technologies for potential applications of sonoprocessing.

    PubMed

    Rubio, Floren; Blandford, Edward D; Bond, Leonard J

    2016-09-01

    Ultrasonics has been used in many industrial applications for both sensing at low power and processing at higher power. Generally, the high power applications fall within the categories of liquid stream degassing, impurity separation, and sonochemical enhancement of chemical processes. Examples of such industrial applications include metal production, food processing, chemical production, and pharmaceutical production. There are many nuclear process streams that have similar physical and chemical processes to those applications listed above. These nuclear processes could potentially benefit from the use of high-power ultrasonics. There are also potential benefits to applying these techniques in advanced nuclear fuel cycle processes, and these benefits have not been fully investigated. Currently the dominant use of ultrasonic technology in the nuclear industry has been using low power ultrasonics for non-destructive testing/evaluation (NDT/NDE), where it is primarily used for inspections and for characterizing material degradation. Because there has been very little consideration given to how sonoprocessing can potentially improve efficiency and add value to important process streams throughout the nuclear fuel cycle, there are numerous opportunities for improvement in current and future nuclear technologies. In this paper, the relevant fundamental theory underlying sonoprocessing is highlighted, and some potential applications to advanced nuclear technologies throughout the nuclear fuel cycle are discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Physics Features of TRU-Fueled VHTRs

    DOE PAGES

    Lewis, Tom G.; Tsvetkov, Pavel V.

    2009-01-01

    The current waste management strategy for spent nuclear fuel (SNF) mandated by the US Congress is the disposal of high-level waste (HLW) in a geological repository at Yucca Mountain. Ongoing efforts on closed-fuel cycle options and difficulties in opening and safeguarding such a repository have led to investigations of alternative waste management strategies. One potential strategy for the US fuel cycle would be to make use of fuel loadings containing high concentrations of transuranic (TRU) nuclides in the next-generation reactors. The use of such fuels would not only increase fuel supply but could also potentially facilitate prolonged operation modes (viamore » fertile additives) on a single fuel loading. The idea is to approach autonomous operation on a single fuel loading that would allow marketing power units as nuclear batteries for worldwide deployment. Studies have already shown that high-temperature gas-cooled reactors (HTGRs) and their Generation IV (GEN IV) extensions, very-high-temperature reactors (VHTRs), have encouraging performance characteristics. This paper is focused on possible physics features of TRU-fueled VHTRs. One of the objectives of a 3-year U.S. DOE NERI project was to show that TRU-fueled VHTRs have the possibility of prolonged operation on a single fuel loading. A 3D temperature distribution was developed based on conceivable operation conditions of the 600 MWth VHTR design. Results of extensive criticality and depletion calculations with varying fuel loadings showed that VHTRs are capable for autonomous operation and HLW waste reduction when loaded with TRU fuel.« less

  7. The role of accelerators in the nuclear fuel cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, Hiroshi.

    1990-01-01

    The use of neutrons produced by the medium energy proton accelerator (1 GeV--3 GeV) has considerable potential in reconstructing the nuclear fuel cycle. About 1.5 {approximately} 2.5 ton of fissile material can be produced annually by injecting a 450 MW proton beam directly into fertile materials. A source of neutrons, produced by a proton beam, to supply subcritical reactors could alleviate many of the safety problems associated with critical assemblies, such as positive reactivity coefficients due to coolant voiding. The transient power of the target can be swiftly controlled by controlling the power of the proton beam. Also, the usemore » of a proton beam would allow more flexibility in the choice of fuel and structural materials which otherwise might reduce the reactivity of reactors. This paper discusses the rate of accelerators in the transmutation of radioactive wastes of the nuclear fuel cycles. 34 refs., 17 figs., 9 tabs.« less

  8. Overview of waste heat utilization systems

    NASA Technical Reports Server (NTRS)

    Bailey, M. M.

    1984-01-01

    The heavy truck diesel engine rejects a significant fraction of its fuel energy in the form of waste heat. Historically, the Department of Energy has supported technology efforts for utilization of the diesel exhaust heat. Specifically, the Turbocompound and the Organic Rankine Cycle System (ORCS) have demonstrated that meaningful improvements in highway fuel economy can be realized through waste heat utilization. For heat recovery from the high temperature exhaust of future adiabatic diesel engines, the DOE/NASA are investigating a variety of alternatives based on the Rankine, Brayton, and Stirling power cycles. Initial screening results indicate that systems of this type offer a fuel savings advantage over the turbocompound system. Capital and maintenance cost projections, however, indicate that the alternative power cycles are not competitive on an economic payback basis. Plans call for continued analysis in an attempt to identify a cost effective configuration with adequate fuel savings potential.

  9. Effects of fire and fuels management on water quality in eastern North America

    Treesearch

    R. K. Kolka

    2012-01-01

    Fuels management, especially prescribed fire, can have direct impacts on aquatic resources through deposition of ash to surface waters. On the terrestrial side, fuels management leads to changes in vegetative structure and potentially soil properties that affect ecosystem cycling of water and inorganic and organic constituents. Because surface water systems (streams,...

  10. THE ECONOMICS OF REPROCESSING vs DIRECT DISPOSAL OF SPENT NUCLEAR FUEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthew Bunn; Steve Fetter; John P. Holdren

    This report assesses the economics of reprocessing versus direct disposal of spent nuclear fuel. The breakeven uranium price at which reprocessing spent nuclear fuel from existing light-water reactors (LWRs) and recycling the resulting plutonium and uranium in LWRs would become economic is assessed, using central estimates of the costs of different elements of the nuclear fuel cycle (and other fuel cycle input parameters), for a wide range of range of potential reprocessing prices. Sensitivity analysis is performed, showing that the conclusions reached are robust across a wide range of input parameters. The contribution of direct disposal or reprocessing and recyclingmore » to electricity cost is also assessed. The choice of particular central estimates and ranges for the input parameters of the fuel cycle model is justified through a review of the relevant literature. The impact of different fuel cycle approaches on the volume needed for geologic repositories is briefly discussed, as are the issues surrounding the possibility of performing separations and transmutation on spent nuclear fuel to reduce the need for additional repositories. A similar analysis is then performed of the breakeven uranium price at which deploying fast neutron breeder reactors would become competitive compared with a once-through fuel cycle in LWRs, for a range of possible differences in capital cost between LWRs and fast neutron reactors. Sensitivity analysis is again provided, as are an analysis of the contribution to electricity cost, and a justification of the choices of central estimates and ranges for the input parameters. The equations used in the economic model are derived and explained in an appendix. Another appendix assesses the quantities of uranium likely to be recoverable worldwide in the future at a range of different possible future prices.« less

  11. Indirect-fired gas turbine dual fuel cell power cycle

    DOEpatents

    Micheli, Paul L.; Williams, Mark C.; Sudhoff, Frederick A.

    1996-01-01

    A fuel cell and gas turbine combined cycle system which includes dual fuel cell cycles combined with a gas turbine cycle wherein a solid oxide fuel cell cycle operated at a pressure of between 6 to 15 atms tops the turbine cycle and is used to produce CO.sub.2 for a molten carbonate fuel cell cycle which bottoms the turbine and is operated at essentially atmospheric pressure. A high pressure combustor is used to combust the excess fuel from the topping fuel cell cycle to further heat the pressurized gas driving the turbine. A low pressure combustor is used to combust the excess fuel from the bottoming fuel cell to reheat the gas stream passing out of the turbine which is used to preheat the pressurized air stream entering the topping fuel cell before passing into the bottoming fuel cell cathode. The CO.sub.2 generated in the solid oxide fuel cell cycle cascades through the system to the molten carbonate fuel cell cycle cathode.

  12. Biofuels via Fast Pyrolysis of Perennial Grasses: A Life Cycle Evaluation of Energy Consumption and Greenhouse Gas Emissions.

    PubMed

    Zaimes, George G; Soratana, Kullapa; Harden, Cheyenne L; Landis, Amy E; Khanna, Vikas

    2015-08-18

    A well-to-wheel (WTW) life cycle assessment (LCA) model is developed to evaluate the environmental profile of producing liquid transportation fuels via fast pyrolysis of perennial grasses: switchgrass and miscanthus. The framework established in this study consists of (1) an agricultural model used to determine biomass growth rates, agrochemical application rates, and other key parameters in the production of miscanthus and switchgrass biofeedstock; (2) an ASPEN model utilized to simulate thermochemical conversion via fast pyrolysis and catalytic upgrading of bio-oil to renewable transportation fuel. Monte Carlo analysis is performed to determine statistical bounds for key sustainability and performance measures including life cycle greenhouse gas (GHG) emissions and Energy Return on Investment (EROI). The results of this work reveal that the EROI and GHG emissions (gCO2e/MJ-fuel) for fast pyrolysis derived fuels range from 1.52 to 2.56 and 22.5 to 61.0 respectively, over the host of scenarios evaluated. Further analysis reveals that the energetic performance and GHG reduction potential of fast pyrolysis-derived fuels are highly sensitive to the choice of coproduct scenario and LCA allocation scheme, and in select cases can change the life cycle carbon balance from meeting to exceeding the renewable fuel standard emissions reduction threshold for cellulosic biofuels.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    R. Wigeland; T. Taiwo; M. Todosow

    The recently completed comprehensive evaluation and screening of nuclear fuel cycle options identified a number of potentially promising fuel cycles for R&D that offer what could be considered by decision-makers as having the potential for significant improvement compared to the current U.S. fuel cycle. The fuel cycles that consistently performed the best were recycle fuel cycles that used self-sustaining fast reactors operating with either U/Pu or U/TRU recycle fuel and also included options where the fast reactors provided fissile materials to support operation of thermal reactors. However, based on the evaluation criteria and metrics used in the study, there wasmore » no difference in benefit between recycle of U/Pu and U/TRU (where TRU is plutonium and the minor actinides) while there were differences in the challenges for developing and deploying such fuel cycles, with U/TRU recycle being more challenging. This observation prompted the question as to the desirability of pursuing R&D on U/TRU recycle given that there may not be an increase in benefit. As a result, activities have been pursued to further investigate the performance differences between U/Pu and U/TRU recycle based on considering issues beyond those used in the evaluation and screening study to identify, if possible, areas where there are significant benefits of U/TRU recycle compared to U/Pu recycle. These new considerations focused on several areas, but especially on the impact on disposal of the HLW, which in the case of U/Pu recycle contains all of the minor actinides along with fission products, while in the case of U/TRU recycle only contains the losses of minor actinides from the reprocessing and recycle fuel fabrication operations. This difference in content has several implications. One impact is on the time dependent decay heat which can affect handling and the use of space in a geologic repository. Another impact concerns the HLW form and volume, since presence of minor actinides may adversely affect the ability to reduce HLW volume. The short-term radioactivity and long-term radiotoxicity of the HLW is also affected, which may be of more or less importance depending on the specific geologic disposal environment. To study these potential effects, a range of waste forms and disposal environments were used in the analysis, documenting to what extent the recycle of minor actinides in addition to plutonium may offer further benefit. Another area of investigation concerned the recycle fuel, for the fast reactor and for the thermal reactors they may support. Information to date indicates that U/Pu fuel may be simpler to fabricate and has a much more extensive database than U/TRU fuel, one of the reasons for the increased challenge for developing and deploying a U/TRU fuel cycle, and also indicates that heterogeneous recycle of the minor actinides may be even more difficult as compared to homogeneous recycle. This information was reviewed and updated to reflect the most recent studies for the purpose of informing on all aspects of the differences between U/Pu and U/TRU recycle. The results of all of these investigations will be presented to provide information on the findings concerning the value of U/TRU recycle.« less

  14. Ramgen Power Systems-Supersonic Component Technology for Military Engine Applications

    DTIC Science & Technology

    2006-11-01

    turbine efficiency power (kW) LHV efficiency HHV efficiency notes **Current Design Point 0.45 1700 1013 84.4% 220.1 35.4% 31.8% - Rampressor...tor (such as a standalone power-only mode device), or to a fuel cell in a hybrid configuration. This paper presents the development of the RPS gas...turbine technology and potential applications to the two specific engine cycle configurations, i.e., an indirect fuel cell / RPS turbine hybrid-cycle

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panasyuk,A.; Rosenthal,M.; Efremov, G. V.

    Multilateral mechanisms for the fuel cycle are seen as a potentially important way to create an industrial infrastructure that will support a renaissance and at the same time not contribute to the risk of nuclear proliferation. In this way, international nuclear fuel cycle centers for enrichment can help to provide an assurance of supply of nuclear fuel that will reduce the likelihood that individual states will pursue this sensitive technology, which can be used to produce nuclear material directly usable nuclear weapons. Multinational participation in such mechanisms can also potentially promote transparency, build confidence, and make the implementation of IAEAmore » safeguards more effective or more efficient. At the same time, it is important to ensure that there is no dissemination of sensitive technology. The Russian Federation has taken a lead role in this area by establishing an International Uranium Enrichment Center (IUEC) for the provision of enrichment services at its uranium enrichment plant located at the Angarsk Electrolysis Chemical Complex (AECC). This paper describes how the IUEe is organized, who its members are, and the steps that it has taken both to provide an assured supply of nuclear fuel and to ensure protection of sensitive technology. It also describes the relationship between the IUEC and the IAEA and steps that remain to be taken to enhance its assurance of supply. Using the IUEC as a starting point for discussion, the paper also explores more generally the ways in which features of such fuel cycle centers with multinational participation can have an impact on safeguards arrangements, transparency, and confidence-building. Issues include possible lAEA safeguards arrangements or other links to the IAEA that might be established at such fuel cycle centers, impact of location in a nuclear weapon state, and the transition by the IAEA to State Level safeguards approaches.« less

  16. Information basis for developing comprehensive waste management system-US-Japan joint nuclear energy action plan waste management working group phase I report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nutt, M.; Nuclear Engineering Division

    2010-05-25

    The activity of Phase I of the Waste Management Working Group under the United States - Japan Joint Nuclear Energy Action Plan started in 2007. The US-Japan JNEAP is a bilateral collaborative framework to support the global implementation of safe, secure, and sustainable, nuclear fuel cycles (referred to in this document as fuel cycles). The Waste Management Working Group was established by strong interest of both parties, which arise from the recognition that development and optimization of waste management and disposal system(s) are central issues of the present and future nuclear fuel cycles. This report summarizes the activity of themore » Waste Management Working Group that focused on consolidation of the existing technical basis between the U.S. and Japan and the joint development of a plan for future collaborative activities. Firstly, the political/regulatory frameworks related to nuclear fuel cycles in both countries were reviewed. The various advanced fuel cycle scenarios that have been considered in both countries were then surveyed and summarized. The working group established the working reference scenario for the future cooperative activity that corresponds to a fuel cycle scenario being considered both in Japan and the U.S. This working scenario involves transitioning from a once-through fuel cycle utilizing light water reactors to a one-pass uranium-plutonium fuel recycle in light water reactors to a combination of light water reactors and fast reactors with plutonium, uranium, and minor actinide recycle, ultimately concluding with multiple recycle passes primarily using fast reactors. Considering the scenario, current and future expected waste streams, treatment and inventory were discussed, and the relevant information was summarized. Second, the waste management/disposal system optimization was discussed. Repository system concepts were reviewed, repository design concepts for the various classifications of nuclear waste were summarized, and the factors to consider in repository design and optimization were then discussed. Japan is considering various alternatives and options for the geologic disposal facility and the framework for future analysis of repository concepts was discussed. Regarding the advanced waste and storage form development, waste form technologies developed in both countries were surveyed and compared. Potential collaboration areas and activities were next identified. Disposal system optimization processes and techniques were reviewed, and factors to consider in future repository design optimization activities were also discussed. Then the potential collaboration areas and activities related to the optimization problem were extracted.« less

  17. Th/U-233 multi-recycle in pressurized water reactors : feasibility study of multiple homogeneous and heterogeneous assembly designs.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yun, D.; Taiwo, T. A.; Kim, T. K.

    2010-10-01

    The use of thorium in current or advanced light water reactors (LWRs) has been of interest in recent years. These interests have been associated with the need to increase nuclear fuel resources and the perceived non-proliferation advantages of the utilization of thorium in the fuel cycle. Various options have been considered for the use of thorium in the LWR fuel cycle. The possibility for thorium utilization in a multi-recycle system has also been considered in past literature, primarily because of the potential for near breeders with Th/U-233 in the thermal energy range. The objective of this study is to evaluatemore » the potential of Th/U-233 fuel multi-recycle in current LWRs, focusing on pressurized water reactors (PWRs). Approaches for sustainable multi-recycle without the need for external fissile material makeup have been investigated. The intent is to obtain a design that allows existing PWRs to be used with minimal modifications.« less

  18. 40 CFR 86.1513 - Fuel specifications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test Procedures...

  19. The TMI Regenerative Solid Oxide Fuel Cell

    NASA Technical Reports Server (NTRS)

    Cable, Thomas L.; Ruhl, Robert C.; Petrik, Michael

    1996-01-01

    Energy storage and production in space requires rugged, reliable hardware which minimizes weight, volume, and maintenance while maximizing power output and usable energy storage. Systems generally consist of photovoltaic solar arrays which operate (during sunlight cycles) to provide system power and regenerate fuel (hydrogen) via water electrolysis and (during dark cycles) fuel cells convert hydrogen into electricity. Common configurations use two separate systems (fuel cell and electrolyzer) in conjunction with photovoltaic cells. Reliability, power to weight and power to volume ratios could be greatly improved if both power production (fuel cells) and power storage (electrolysis) functions can be integrated into a single unit. The solid oxide fuel cell (SOFC) based design integrates fuel cell and electrolyzer functions and potentially simplifies system requirements. The integrated fuel cell/electrolyzer design also utilizes innovative gas storage concepts and operates like a rechargeable 'hydrogen-oxygen battery'. Preliminary research has been completed on improved H2/H20 electrode (SOFC anode/electrolyzer cathode) materials for regenerative fuel cells. Tests have shown improved cell performance in both fuel and electrolysis modes in reversible fuel cell tests. Regenerative fuel cell efficiencies, ratio of power out (fuel cell mode) to power in (electrolyzer mode), improved from 50 percent using conventional electrode materials to over 80 percent. The new materials will allow a single SOFC system to operate as both the electolyzer and fuel cell. Preliminary system designs have also been developed to show the technical feasibility of using the design for space applications requiring high energy storage efficiencies and high specific energy. Small space systems also have potential for dual-use, terrestrial applications.

  20. A Non-Proliferating Fuel Cycle: No Enrichment, Reprocessing or Accessible Spent Fuel - 12375

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, Frank L.

    2012-07-01

    Current fuel cycles offer a number of opportunities for access to plutonium, opportunities to create highly enriched uranium and access highly radioactive wastes to create nuclear weapons and 'dirty' bombs. The non-proliferating fuel cycle however eliminates or reduces such opportunities and access by eliminating the mining, milling and enrichment of uranium. The non-proliferating fuel cycle also reduces the production of plutonium per unit of energy created, eliminates reprocessing and the separation of plutonium from the spent fuel and the creation of a stream of high-level waste. It further simplifies the search for land based deep geologic repositories and interim storagemore » sites for spent fuel in the USA by disposing of the spent fuel in deep sub-seabed sediments after storing the spent fuel at U.S. Navy Nuclear Shipyards that have the space and all of the necessary equipment and security already in place. The non-proliferating fuel cycle also reduces transportation risks by utilizing barges for the collection of spent fuel and transport to the Navy shipyards and specially designed ships to take the spent fuel to designated disposal sites at sea and to dispose of them there in deep sub-seabed sediments. Disposal in the sub-seabed sediments practically eliminates human intrusion. Potential disposal sites include Great Meteor East and Southern Nares Abyssal Plain. Such sites then could easily become international disposal sites since they occur in the open ocean. It also reduces the level of human exposure in case of failure because of the large physical and chemical dilution and the elimination of a major pathway to man-seawater is not potable. Of course, the recovery of uranium from sea water and the disposal of spent fuel in sub-seabed sediments must be proven on an industrial scale. All other technologies are already operating on an industrial scale. If externalities, such as reduced terrorist threats, environmental damage (including embedded emissions), long term care, reduced access to 'dirty' bomb materials, the social and political costs of siting new facilities and the psychological impact of no solution to the nuclear waste problem, were taken into account, the costs would be far lower than those of the present fuel cycle. (authors)« less

  1. The benefits of an advanced fast reactor fuel cycle for plutonium management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hannum, W.H.; McFarlane, H.F.; Wade, D.C.

    1996-12-31

    The United States has no program to investigate advanced nuclear fuel cycles for the large-scale consumption of plutonium from military and civilian sources. The official U.S. position has been to focus on means to bury spent nuclear fuel from civilian reactors and to achieve the spent fuel standard for excess separated plutonium, which is considered by policy makers to be an urgent international priority. Recently, the National Research Council published a long awaited report on its study of potential separation and transmutation technologies (STATS), which concluded that in the nuclear energy phase-out scenario that they evaluated, transmutation of plutonium andmore » long-lived radioisotopes would not be worth the cost. However, at the American Nuclear Society Annual Meeting in June, 1996, the STATS panelists endorsed further study of partitioning to achieve superior waste forms for burial, and suggested that any further consideration of transmutation should be in the context of energy production, not of waste management. 2048 The U.S. Department of Energy (DOE) has an active program for the short-term disposition of excess fissile material and a `focus area` for safe, secure stabilization, storage and disposition of plutonium, but has no current programs for fast reactor development. Nevertheless, sufficient data exist to identify the potential advantages of an advanced fast reactor metallic fuel cycle for the long-term management of plutonium. Advantages are discussed.« less

  2. Acylcarnitines as markers of exercise-associated fuel partitioning, xenometabolism, and potential signals to muscle afferent neurons

    USDA-ARS?s Scientific Manuscript database

    With insulin-resistance or type 2 diabetes mellitus, mismatches between mitochondrial fatty acid fuel delivery and oxidative phosphorylation/tricarboxylic acid cycle activity may contribute to inordinate accumulation of short- or medium-chain acylcarnitine fatty acid derivatives (markers of incomple...

  3. A Highly Efficient Six-Stroke Internal Combustion Engine Cycle with Water Injection for In-Cylinder Exhaust Heat Recovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conklin, Jim; Szybist, James P

    2010-01-01

    A concept is presented here that adds two additional strokes to the four-stroke Otto or Diesel cycle that has the potential to increase fuel efficiency of the basic cycle. The engine cycle can be thought of as a 4 stroke Otto or Diesel cycle followed by a 2-stroke heat recovery steam cycle. Early exhaust valve closing during the exhaust stroke coupled with water injection are employed to add an additional power stroke at the end of the conventional four-stroke Otto or Diesel cycle. An ideal thermodynamics model of the exhaust gas compression, water injection at top center, and expansion wasmore » used to investigate this modification that effectively recovers waste heat from both the engine coolant and combustion exhaust gas. Thus, this concept recovers energy from two waste heat sources of current engine designs and converts heat normally discarded to useable power and work. This concept has the potential of a substantial increase in fuel efficiency over existing conventional internal combustion engines, and under appropriate injected water conditions, increase the fuel efficiency without incurring a decrease in power density. By changing the exhaust valve closing angle during the exhaust stroke, the ideal amount of exhaust can be recompressed for the amount of water injected, thereby minimizing the work input and maximizing the mean effective pressure of the steam expansion stroke (MEPsteam). The value of this exhaust valve closing for maximum MEPsteam depends on the limiting conditions of either one bar or the dew point temperature of the expansion gas/moisture mixture when the exhaust valve opens to discard the spent gas mixture in the sixth stroke. The range of MEPsteam calculated for the geometry of a conventional gasoline spark-ignited internal combustion engine and for plausible water injection parameters is from 0.75 to 2.5 bars. Typical combustion mean effective pressures (MEPcombustion) of naturally aspirated gasoline engines are up to 10 bar, thus this concept has the potential to significantly increase the engine efficiency and fuel economy while not resulting in a decrease in power density.« less

  4. Background qualitative analysis of the European Reference Life Cycle Database (ELCD) energy datasets - part I: fuel datasets.

    PubMed

    Garraín, Daniel; Fazio, Simone; de la Rúa, Cristina; Recchioni, Marco; Lechón, Yolanda; Mathieux, Fabrice

    2015-01-01

    The aim of this study is to identify areas of potential improvement of the European Reference Life Cycle Database (ELCD) fuel datasets. The revision is based on the data quality indicators described by the ILCD Handbook, applied on sectorial basis. These indicators evaluate the technological, geographical and time-related representativeness of the dataset and the appropriateness in terms of completeness, precision and methodology. Results show that ELCD fuel datasets have a very good quality in general terms, nevertheless some findings and recommendations in order to improve the quality of Life-Cycle Inventories have been derived. Moreover, these results ensure the quality of the fuel-related datasets to any LCA practitioner, and provide insights related to the limitations and assumptions underlying in the datasets modelling. Giving this information, the LCA practitioner will be able to decide whether the use of the ELCD fuel datasets is appropriate based on the goal and scope of the analysis to be conducted. The methodological approach would be also useful for dataset developers and reviewers, in order to improve the overall DQR of databases.

  5. Life cycle assessment of the production of hydrogen and transportation fuels from corn stover via fast pyrolysis

    NASA Astrophysics Data System (ADS)

    Zhang, Yanan; Hu, Guiping; Brown, Robert C.

    2013-06-01

    This life cycle assessment evaluates and quantifies the environmental impacts of the production of hydrogen and transportation fuels from the fast pyrolysis and upgrading of corn stover. Input data for this analysis come from Aspen Plus modeling, a GREET (Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation) model database and a US Life Cycle Inventory Database. SimaPro 7.3 software is employed to estimate the environmental impacts. The results indicate that the net fossil energy input is 0.25 MJ and 0.23 MJ per km traveled for a light-duty vehicle fueled by gasoline and diesel fuel, respectively. Bio-oil production requires the largest fossil energy input. The net global warming potential (GWP) is 0.037 kg CO2eq and 0.015 kg CO2eq per km traveled for a vehicle fueled by gasoline and diesel fuel, respectively. Vehicle operations contribute up to 33% of the total positive GWP, which is the largest greenhouse gas footprint of all the unit processes. The net GWPs in this study are 88% and 94% lower than for petroleum-based gasoline and diesel fuel (2005 baseline), respectively. Biomass transportation has the largest impact on ozone depletion among all of the unit processes. Sensitivity analysis shows that fuel economy, transportation fuel yield, bio-oil yield, and electricity consumption are the key factors that influence greenhouse gas emissions.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myers, C.W.; Giraud, K.M.

    Newcomer countries expected to develop new nuclear power programs by 2030 are being encouraged by the International Atomic Energy Agency to explore the use of shared facilities for spent fuel storage and geologic disposal. Multinational underground nuclear parks (M-UNPs) are an option for sharing such facilities. Newcomer countries with suitable bedrock conditions could volunteer to host M-UNPs. M-UNPs would include back-end fuel cycle facilities, in open or closed fuel cycle configurations, with sufficient capacity to enable M-UNP host countries to provide for-fee waste management services to partner countries, and to manage waste from the M-UNP power reactors. M-UNP potential advantagesmore » include: the option for decades of spent fuel storage; fuel-cycle policy flexibility; increased proliferation resistance; high margin of physical security against attack; and high margin of containment capability in the event of beyond-design-basis accidents, thereby reducing the risk of Fukushima-like radiological contamination of surface lands. A hypothetical M-UNP in crystalline rock with facilities for small modular reactors, spent fuel storage, reprocessing, and geologic disposal is described using a room-and-pillar reference-design cavern. Underground construction cost is judged tractable through use of modern excavation technology and careful site selection. (authors)« less

  7. 40 CFR 86.1514 - Analytical gases.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test Procedures...

  8. 40 CFR 86.1519 - CVS calibration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test Procedures...

  9. 40 CFR 86.1542 - Information required.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test Procedures...

  10. 40 CFR 86.1501 - Scope; applicability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test Procedures...

  11. Molten salt reactor neutronics and fuel cycle modeling and simulation with SCALE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Betzler, Benjamin R.; Powers, Jeffrey J.; Worrall, Andrew

    Current interest in advanced nuclear energy and molten salt reactor (MSR) concepts has enhanced interest in building the tools necessary to analyze these systems. A Python script known as ChemTriton has been developed to simulate equilibrium MSR fuel cycle performance by modeling the changing isotopic composition of an irradiated fuel salt using SCALE for neutron transport and depletion calculations. Some capabilities in ChemTriton that have improved, include a generic geometry capable of modeling multi-zone and multi-fluid systems, enhanced time-dependent feed and separations, and a critical concentration search. Although more generally applicable, the capabilities developed to date are illustrated in thismore » paper in three applied problems: (1) simulating the startup of a thorium-based MSR fuel cycle (a likely scenario requires the first of these MSRs to be started without available 233U); (2) determining the effect of the removal of different fission products on MSR operations; and (3) obtaining the equilibrium concentration of a mixed-oxide light-water reactor fuel in a two-stage fuel cycle with a sodium fast reactor. Moreover, the third problem is chosen to demonstrate versatility in an application to analyze the fuel cycle of a non-MSR system. During the first application, the initial fuel salt compositions fueled with different sources of fissile material are made feasible after (1) removing the associated nonfissile actinides after much of the initial fissile isotopes have burned and (2) optimizing the thorium concentration to maintain a critical configuration without significantly reducing breeding capability. In the second application, noble metal, volatile gas, and rare earth element fission products are shown to have a strong negative effect on criticality in a uranium-fueled thermal-spectrum MSR; their removal significantly increases core lifetime (by 30%) and fuel utilization. In the third application, the fuel of a mixed-oxide light-water reactor approaches an equilibrium composition after 20 depletion steps, demonstrating the potential for the longer time scales required to achieve equilibrium for solid-fueled systems over liquid fuel systems. This time to equilibrium can be reduced by starting with an initial fuel composition closer to that of the equilibrium fuel, reducing the need to handle time-dependent fuel compositions.« less

  12. Molten salt reactor neutronics and fuel cycle modeling and simulation with SCALE

    DOE PAGES

    Betzler, Benjamin R.; Powers, Jeffrey J.; Worrall, Andrew

    2017-03-01

    Current interest in advanced nuclear energy and molten salt reactor (MSR) concepts has enhanced interest in building the tools necessary to analyze these systems. A Python script known as ChemTriton has been developed to simulate equilibrium MSR fuel cycle performance by modeling the changing isotopic composition of an irradiated fuel salt using SCALE for neutron transport and depletion calculations. Some capabilities in ChemTriton that have improved, include a generic geometry capable of modeling multi-zone and multi-fluid systems, enhanced time-dependent feed and separations, and a critical concentration search. Although more generally applicable, the capabilities developed to date are illustrated in thismore » paper in three applied problems: (1) simulating the startup of a thorium-based MSR fuel cycle (a likely scenario requires the first of these MSRs to be started without available 233U); (2) determining the effect of the removal of different fission products on MSR operations; and (3) obtaining the equilibrium concentration of a mixed-oxide light-water reactor fuel in a two-stage fuel cycle with a sodium fast reactor. Moreover, the third problem is chosen to demonstrate versatility in an application to analyze the fuel cycle of a non-MSR system. During the first application, the initial fuel salt compositions fueled with different sources of fissile material are made feasible after (1) removing the associated nonfissile actinides after much of the initial fissile isotopes have burned and (2) optimizing the thorium concentration to maintain a critical configuration without significantly reducing breeding capability. In the second application, noble metal, volatile gas, and rare earth element fission products are shown to have a strong negative effect on criticality in a uranium-fueled thermal-spectrum MSR; their removal significantly increases core lifetime (by 30%) and fuel utilization. In the third application, the fuel of a mixed-oxide light-water reactor approaches an equilibrium composition after 20 depletion steps, demonstrating the potential for the longer time scales required to achieve equilibrium for solid-fueled systems over liquid fuel systems. This time to equilibrium can be reduced by starting with an initial fuel composition closer to that of the equilibrium fuel, reducing the need to handle time-dependent fuel compositions.« less

  13. Nuclear Fuel Cycle Options Catalog: FY16 Improvements and Additions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Price, Laura L.; Barela, Amanda Crystal; Schetnan, Richard Reed

    2016-08-31

    The United States Department of Energy, Office of Nuclear Energy, Fuel Cycle Technology Program sponsors nuclear fuel cycle research and development. As part of its Fuel Cycle Options campaign, the DOE has established the Nuclear Fuel Cycle Options Catalog. The catalog is intended for use by the Fuel Cycle Technologies Program in planning its research and development activities and disseminating information regarding nuclear energy to interested parties. The purpose of this report is to document the improvements and additions that have been made to the Nuclear Fuel Cycle Options Catalog in the 2016 fiscal year.

  14. Compound cycle engine for helicopter application

    NASA Technical Reports Server (NTRS)

    Castor, Jere; Martin, John; Bradley, Curtiss

    1987-01-01

    The compound cycle engine (CCE) is a highly turbocharged, power-compounded, ultra-high-power-density, lightweight diesel engine. The turbomachinery is similar to a moderate-pressure-ratio, free-power-turbine gas turbine engine and the diesel core is high speed and a low compression ratio. This engine is considered a potential candidate for future military helicopter applications. Cycle thermodynamic specific fuel consumption (SFC) and engine weight analyses performed to establish general engine operating parameters and configurations are presented. An extensive performance and weight analysis based on a typical 2-hour helicopter (+30 minute reserve) mission determined final conceptual engine design. With this mission, CCE performance was compared to that of a contemporary gas turbine engine. The CCE had a 31 percent lower-fuel consumption and resulted in a 16 percent reduction in engine plus fuel and fuel tank weight. Design SFC of the CCE is 0.33 lb/hp-hr and installed wet weight is 0.43 lb/hp. The major technology development areas required for the CCE are identified and briefly discussed.

  15. 40 CFR 86.1509 - Exhaust gas sampling system.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test Procedures...

  16. Life-cycle assessment of electricity generation systems and applications for climate change policy analysis

    NASA Astrophysics Data System (ADS)

    Meier, Paul Joseph

    This research uses Life-Cycle Assessment (LCA) to better understand the energy and environmental performance for two electricity generation systems, a 620 MW combined-cycle natural gas plant, and an 8kW building-integrated photovoltaic system. The results of the LCA are used to provide an effective and accurate means for evaluating greenhouse gas emission reduction strategies for U.S. electricity generation. The modern combined-cycle plant considered in this thesis is nominally 48% thermally efficient, but it is only 43% energy efficient when evaluated across its entire life-cycle, due primarily to energy losses during the natural gas fuel cycle. The emission rate for the combined-cycle natural gas plant life-cycle (469 tonnes CO2-equivalent per GWeh), was 23% higher than the emission rate from plant operation alone (382 tonnes CO2-equivalent per GWeh). Uncertainty in the rate of fuel-cycle methane releases results in a potential range of emission rates between 457 to 534 tonnes CO 2-equivalent per GWeh for the studied plant. The photovoltaic system modules have a sunlight to DC electricity conversion efficiency of 5.7%. However, the system's sunlight to AC electricity conversion efficiency is 4.3%, when accounting for life-cycle energy inputs, as well as losses due to system wiring, AC inversion, and module degradation. The LCA illustrates that the PV system has a low, but not zero, life-cycle greenhouse gas emission rate of 39 Tonnes CO2-equivalent per GWeh. A ternary method of evaluation is used to evaluate three greenhouse gas mitigation alternatives: (1) fuel-switching from coal to natural gas for Kyoto-based compliance, (2) fuel-switching from coal to nuclear/renewable for Kyoto based compliance, and (3) fuel-switching to meet the White House House's Global Climate Change Initiative. In a moderate growth scenario, fuel-switching from coal to natural gas fails to meet a Kyoto-based emission target, while fuel-switching to nuclear/renewable meets the emission objective by reducing coal generated electricity 32% below 2000 levels. The Global Climate Change Initiative allows annual greenhouse gas emissions to increase to levels that are 54% higher than the proposed U.S. commitment under the Kyoto Protocol.

  17. NASA Numerical and Experimental Evaluation of UTRC Low Emissions Injector

    NASA Technical Reports Server (NTRS)

    Hicks, Yolanda R.; Tedder, Sarah A.; Anderson, Robert C.; Iannetti, Anthony C.; Smith, Lance L.; Dai, Zhongtao

    2014-01-01

    Computational and experimental analyses of a PICS-Pilot-In-Can-Swirler technology injector, developed by United Technologies Research Center (UTRC) are presented. NASA has defined technology targets for near term (called "N+1", circa 2015), midterm ("N+2", circa 2020) and far term ("N+3", circa 2030) that specify realistic emissions and fuel efficiency goals for commercial aircraft. This injector has potential for application in an engine to meet the Pratt & Whitney N+3 supersonic cycle goals, or the subsonic N+2 engine cycle goals. Experimental methods were employed to investigate supersonic cruise points as well as select points of the subsonic cycle engine; cruise, approach, and idle with a slightly elevated inlet pressure. Experiments at NASA employed gas analysis and a suite of laser-based measurement techniques to characterize the combustor flow downstream from the PICS dump plane. Optical diagnostics employed for this work included Planar Laser-Induced Fluorescence of fuel for injector spray pattern and Spontaneous Raman Spectroscopy for relative species concentration of fuel and CO2. The work reported here used unheated (liquid) Jet-A fuel for all fuel circuits and cycle conditions. The initial tests performed by UTRC used vaporized Jet-A to simulate the expected supersonic cruise condition, which anticipated using fuel as a heat sink. Using the National Combustion Code a PICS-based combustor was modeled with liquid fuel at the supersonic cruise condition. All CFD models used a cubic non-linear k-epsilon turbulence wall functions model, and a semi-detailed Jet-A kinetic mechanism based on a surrogate fuel mixture. Two initial spray droplet size distribution and spray cone conditions were used: 1) an initial condition (Lefebvre) with an assumed Rosin-Rammler distribution, and 7 degree Solid Spray Cone; and 2) the Boundary Layer Stripping (BLS) primary atomization model giving the spray size distribution and directional properties. Contour and line plots are shown in comparison with experimental data (where this data is available) for flow velocities, fuel, and temperature distribution. The CFD results are consistent with experimental observations for fuel distribution and vaporization. Analysis of gas sample results, using a previously-developed NASA NOx correlation, indicates that for sea-level takeoff, the PICS configuration is predicted to deliver an EINOx value of about 3 for the targeted supersonic aircraft. Emissions results at supersonic cruise conditions show potential for meeting the NASA goals with liquid fuel.

  18. NASA Numerical and Experimental Evaluation of UTRC Low Emissions Injector

    NASA Technical Reports Server (NTRS)

    Hicks, Yolanda R.; Tedder, Sarah A.; Anderson, Robert C.; Iannetti, Anthony C.; Smith, Lance L.; Dai, Zhongtao

    2014-01-01

    Computational and experimental analyses of a PICS-Pilot-In-Can-Swirler technology injector, developed by United Technologies Research Center (UTRC) are presented. NASA has defined technology targets for near term (called "N+1", circa 2015), midterm ("N+2", circa 2020) and far term ("N+3", circa 2030) that specify realistic emissions and fuel efficiency goals for commercial aircraft. This injector has potential for application in an engine to meet the Pratt & Whitney N+3 supersonic cycle goals, or the subsonic N+2 engine cycle goals. Experimental methods were employed to investigate supersonic cruise points as well as select points of the subsonic cycle engine; cruise, approach, and idle with a slightly elevated inlet pressure. Experiments at NASA employed gas analysis and a suite of laser-based measurement techniques to characterize the combustor flow downstream from the PICS dump plane. Optical diagnostics employed for this work included Planar Laser-Induced Fluorescence of fuel for injector spray pattern and Spontaneous Raman Spectroscopy for relative species concentration of fuel and CO2. The work reported here used unheated (liquid) Jet-A fuel for all fuel circuits and cycle conditions. The initial tests performed by UTRC used vaporized Jet-A to simulate the expected supersonic cruise condition, which anticipated using fuel as a heat sink. Using the National Combustion Code a PICS-based combustor was modeled with liquid fuel at the supersonic cruise condition. All CFD models used a cubic non-linear k-epsilon turbulence wall functions model, and a semi-detailed Jet-A kinetic mechanism based on a surrogate fuel mixture. Two initial spray droplet size distribution and spray cone conditions were used: (1) an initial condition (Lefebvre) with an assumed Rosin-Rammler distribution, and 7 degree Solid Spray Cone; and (2) the Boundary Layer Stripping (BLS) primary atomization model giving the spray size distribution and directional properties. Contour and line plots are shown in comparison with experimental data (where this data is available) for flow velocities, fuel, and temperature distribution. The CFD results are consistent with experimental observations for fuel distribution and vaporization. Analysis of gas sample results, using a previously-developed NASA NOx correlation, indicates that for sea-level takeoff, the PICS configuration is predicted to deliver an EINOx value of about three for the targeted supersonic aircraft. Emissions results at supersonic cruise conditions show potential for meeting the NASA goals with liquid fuel.

  19. Hydrogen-Oxygen PEM Regenerative Fuel Cell at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Bents, David J.

    2004-01-01

    The NASA Glenn Research Center has constructed a closed-cycle hydrogen-oxygen PEM regenerative fuel cell (RFC) to explore its potential use as an energy storage device for a high altitude solar electric aircraft. Built up over the last 2 years from specialized hardware and off the shelf components the Glenn RFC is a complete "brassboard" energy storage system which includes all the equipment required to (1) absorb electrical power from an outside source and store it as pressurized hydrogen and oxygen and (2) make electrical power from the stored gases, saving the product water for re-use during the next cycle. It consists of a dedicated hydrogen-oxygen fuel cell stack and an electrolyzer stack, the interconnecting plumbing and valves, cooling pumps, water transfer pumps, gas recirculation pumps, phase separators, storage tanks for oxygen (O2) and hydrogen (H2), heat exchangers, isolation valves, pressure regulators, nitrogen purge provisions, instrumentation, and other components. It specific developmental functions include: (1) Test fuel cells and fuel cell components under repeated closed-cycle operation (nothing escapes; everything is used over and over again). (2) Simulate diurnal charge-discharge cycles (3) Observe long-term system performance and identify degradation and loss mechanisms. (4) Develop safe and convenient operation and control strategies leading to the successful development of mission-capable, flight-weight RFC's.

  20. Nuclear energy and security

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BLEJWAS,THOMAS E.; SANDERS,THOMAS L.; EAGAN,ROBERT J.

    2000-01-01

    Nuclear power is an important and, the authors believe, essential component of a secure nuclear future. Although nuclear fuel cycles create materials that have some potential for use in nuclear weapons, with appropriate fuel cycles, nuclear power could reduce rather than increase real proliferation risk worldwide. Future fuel cycles could be designed to avoid plutonium production, generate minimal amounts of plutonium in proliferation-resistant amounts or configurations, and/or transparently and efficiently consume plutonium already created. Furthermore, a strong and viable US nuclear infrastructure, of which nuclear power is a large element, is essential if the US is to maintain a leadershipmore » or even participatory role in defining the global nuclear infrastructure and controlling the proliferation of nuclear weapons. By focusing on new fuel cycles and new reactor technologies, it is possible to advantageously burn and reduce nuclear materials that could be used for nuclear weapons rather than increase and/or dispose of these materials. Thus, the authors suggest that planners for a secure nuclear future use technology to design an ideal future. In this future, nuclear power creates large amounts of virtually atmospherically clean energy while significantly lowering the threat of proliferation through the thoughtful use, physical security, and agreed-upon transparency of nuclear materials. The authors must develop options for policy makers that bring them as close as practical to this ideal. Just as Atoms for Peace became the ideal for the first nuclear century, they see a potential nuclear future that contributes significantly to power for peace and prosperity.« less

  1. 40 CFR 86.1516 - Calibration; frequency and overview.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test...

  2. 40 CFR 86.1509 - Exhaust gas sampling system.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test...

  3. 40 CFR 86.1544 - Calculation; idle exhaust emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) Emission Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle...

  4. 40 CFR 86.1544 - Calculation; idle exhaust emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) Emission Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle...

  5. 40 CFR 86.1509 - Exhaust gas sampling system.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test...

  6. 40 CFR 86.1516 - Calibration; frequency and overview.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) Emission Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle...

  7. 40 CFR 86.1516 - Calibration; frequency and overview.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) Emission Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle...

  8. 40 CFR 86.1516 - Calibration; frequency and overview.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) Emission Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle...

  9. 40 CFR 86.1544 - Calculation; idle exhaust emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) Emission Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle...

  10. 40 CFR 86.1544 - Calculation; idle exhaust emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test...

  11. 40 CFR 86.1522 - Carbon monoxide analyzer calibration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) Emission Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle...

  12. 40 CFR 86.1516 - Calibration; frequency and overview.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) Emission Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle...

  13. 40 CFR 86.1524 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) Emission Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle...

  14. 40 CFR 86.1506 - Equipment required and specifications; overview.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) Emission Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle...

  15. 40 CFR 86.1540 - Idle exhaust sample analysis.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test...

  16. 40 CFR 86.1530 - Test sequence; general requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) Emission Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle...

  17. 40 CFR 86.1544 - Calculation; idle exhaust emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) Emission Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle...

  18. 40 CFR 86.1526 - Calibration of other equipment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test...

  19. 40 CFR 86.1527 - Idle test procedure; overview.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test...

  20. 40 CFR 86.1511 - Exhaust gas analysis system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test...

  1. 40 CFR 86.1509 - Exhaust gas sampling system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test...

  2. 40 CFR 86.1505 - Introduction; structure of subpart.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test...

  3. Life-cycle analysis of camelina biodiesel and jet-fuel

    NASA Astrophysics Data System (ADS)

    Dangol, Namrata

    Camelina sativa (Camelina) could be a potential feedstock to help meet the goal of 36 billion gallons of biofuel production in the United States by 2022, as set forth by EISA of 2007. This research is focused on assessing the energy balance and greenhouse gas (GHG) emissions from camelina biodiesel grown and produced in the Pacific Northwest (PNW) region of the USA. Data were collected from a camelina farm in the region and compared to literature values. Energy used in camelina crushing and transesterification were measured at the University of Idaho. Life cycle analysis showed that use of camelina biodiesel reduces GHG emissions by 72% compared to 2005 baseline diesel fuel. Camelina biodiesel at B100 level, however, did not meet the ASTM D6751 specification for oxidative stability without any additives but could be corrected with proper additive. Camelina had a smaller seed size compared to canola and consequently required 23% more energy for crushing. Despite higher energy use for crushing, the net energy ratio for camelina biodiesel was found to be 3.68. From the agronomic standpoint, camelina can be incorporated as a rotational crop into low rainfall areas of the PNW. Wheat areas of PNW with annual rainfall from 19 to 38 cm (7.5--15") and currently incorporating fallow into their rotations were considered as potential areas for camelina. There were 846,500 hectares (2.1 million acres) of land available in the region that could potentially produce 443.0 million L of biodiesel (117.1 million gal) and 1.2 billion kg of meal per year. This meal quantity is about 12.1% of the potential camelina meal that could be used as livestock feed in the PNW. Therefore, it was concluded that the meal has adequate market to be consumed locally as livestock feed. This research also conducted the life cycle analysis of camelina jet fuel produced in the laboratory scale facility. The jet fuel was produced via deoxygenation of the camelina oil in an inert environment, in the presence of Pd/Al2O3 catalyst. The jet fuel fraction was separated with fractional distillation. The produced jet fuel was tested for ASTM D-7566-13 specifications for aviation fuel. The produced jet fuel did not meet the specifications for freezing point by 2°C at its neat form with no additives. The energy balance and GHG emission analysis of the produced fuel was performed. The NER of the fuel was found to be 1.36, and the GHG emission reduction was 57% compared to the conventional jet fuel.

  4. Operation of marine diesel engines on biogenic fuels: modification of emissions and resulting climate effects.

    PubMed

    Petzold, Andreas; Lauer, Peter; Fritsche, Uwe; Hasselbach, Jan; Lichtenstern, Michael; Schlager, Hans; Fleischer, Fritz

    2011-12-15

    The modification of emissions of climate-sensitive exhaust compounds such as CO(2), NO(x), hydrocarbons, and particulate matter from medium-speed marine diesel engines was studied for a set of fossil and biogenic fuels. Applied fossil fuels were the reference heavy fuel oil (HFO) and the low-sulfur marine gas oil (MGO); biogenic fuels were palm oil, soybean oil, sunflower oil, and animal fat. Greenhouse gas (GHG) emissions related to the production of biogenic fuels were treated by means of a fuel life cycle analysis which included land use changes associated with the growth of energy plants. Emissions of CO(2) and NO(x) per kWh were found to be similar for fossil fuels and biogenic fuels. PM mass emission was reduced to 10-15% of HFO emissions for all low-sulfur fuels including MGO as a fossil fuel. Black carbon emissions were reduced significantly to 13-30% of HFO. Changes in emissions were predominantly related to particulate sulfate, while differences between low-sulfur fossil fuels and low-sulfur biogenic fuels were of minor significance. GHG emissions from the biogenic fuel life cycle (FLC) depend crucially on energy plant production conditions and have the potential of shifting the overall GHG budget from positive to negative compared to fossil fuels.

  5. A summary of the ECAS performance and cost results for MHD systems

    NASA Technical Reports Server (NTRS)

    Seikel, G. R.; Sovie, R. J.; Burns, R. K.; Barna, G. J.; Burkhart, J. A.; Nainiger, J. J.; Smith, J. M.

    1976-01-01

    The potential is examined of various advanced power plant concepts using coal and coal-derived fuel. The results indicate that open cycle coal fired direct preheat MHD systems have potentially one of the highest coal-pile-to-bus-bar efficiencies and also one of the lowest costs of electricity (COE) of the systems studied. Closed cycle MHD systems may have the potential to approach the efficiency and COE of open cycle MHD. The 1200-1500 F liquid metal MHD systems studied do not appear to have the potential of exceeding the efficiency or competing with the COE of advanced steam plants.

  6. Life cycle assessment of the use of alternative fuels in cement kilns: A case study.

    PubMed

    Georgiopoulou, Martha; Lyberatos, Gerasimos

    2018-06-15

    The benefits of using alternative fuels (AFs) in the cement industry include reduction of the use of non-renewable fossil fuels and lower emissions of greenhouse gases, since fossil fuels are replaced with materials that would otherwise be degraded or incinerated with corresponding emissions and final residues. Furthermore, the use of alternative fuels maximizes the recovery of energy. Seven different scenaria were developed for the production of 1 ton of clinker in a rotary cement kiln. Each of these scenaria includes the use of alternative fuels such as RDF (Refuse derived fuel), TDF (Tire derived fuel) and BS (Biological sludge) or a mixture of them, in partial replacement of conventional fuels such as coal and pet coke. The purpose of this study is to evaluate the environmental impacts of the use of alternative fuels in relation to conventional fuels in the kiln operation. The Life Cycle Assessment (LCA) methodology is used to quantify the potential environmental impacts in each scenario. The interpretation of the results provides the conclusion that the most environmentally friendly prospect is the scenario based on RDF while the less preferable scenario is the scenario based on BS. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. An assessment of advanced technology for industrial cogeneration

    NASA Technical Reports Server (NTRS)

    Moore, N.

    1983-01-01

    The potential of advanced fuel utilization and energy conversion technologies to enhance the outlook for the increased use of industrial cogeneration was assessed. The attributes of advanced cogeneration systems that served as the basis for the assessment included their fuel flexibility and potential for low emissions, efficiency of fuel or energy utilization, capital equipment and operating costs, and state of technological development. Over thirty advanced cogeneration systems were evaluated. These cogeneration system options were based on Rankine cycle, gas turbine engine, reciprocating engine, Stirling engine, and fuel cell energy conversion systems. The alternatives for fuel utilization included atmospheric and pressurized fluidized bed combustors, gasifiers, conventional combustion systems, alternative energy sources, and waste heat recovery. Two advanced cogeneration systems with mid-term (3 to 5 year) potential were found to offer low emissions, multi-fuel capability, and a low cost of producing electricity. Both advanced cogeneration systems are based on conventional gas turbine engine/exhaust heat recovery technology; however, they incorporate advanced fuel utilization systems.

  8. Identification of fuel cycle simulator functionalities for analysis of transition to a new fuel cycle

    DOE PAGES

    Brown, Nicholas R.; Carlsen, Brett W.; Dixon, Brent W.; ...

    2016-06-09

    Dynamic fuel cycle simulation tools are intended to model holistic transient nuclear fuel cycle scenarios. As with all simulation tools, fuel cycle simulators require verification through unit tests, benchmark cases, and integral tests. Model validation is a vital aspect as well. Although compara-tive studies have been performed, there is no comprehensive unit test and benchmark library for fuel cycle simulator tools. The objective of this paper is to identify the must test functionalities of a fuel cycle simulator tool within the context of specific problems of interest to the Fuel Cycle Options Campaign within the U.S. Department of Energy smore » Office of Nuclear Energy. The approach in this paper identifies the features needed to cover the range of promising fuel cycle options identified in the DOE-NE Fuel Cycle Evaluation and Screening (E&S) and categorizes these features to facilitate prioritization. Features were categorized as essential functions, integrating features, and exemplary capabilities. One objective of this paper is to propose a library of unit tests applicable to each of the essential functions. Another underlying motivation for this paper is to encourage an international dialog on the functionalities and standard test methods for fuel cycle simulator tools.« less

  9. Assessment for advanced fuel cycle options in CANDU

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morreale, A.C.; Luxat, J.C.; Friedlander, Y.

    2013-07-01

    The possible options for advanced fuel cycles in CANDU reactors including actinide burning options and thorium cycles were explored and are feasible options to increase the efficiency of uranium utilization and help close the fuel cycle. The actinide burning TRUMOX approach uses a mixed oxide fuel of reprocessed transuranic actinides from PWR spent fuel blended with natural uranium in the CANDU-900 reactor. This system reduced actinide content by 35% and decreased natural uranium consumption by 24% over a PWR once through cycle. The thorium cycles evaluated used two CANDU-900 units, a generator and a burner unit along with a drivermore » fuel feedstock. The driver fuels included plutonium reprocessed from PWR, from CANDU and low enriched uranium (LEU). All three cycles were effective options and reduced natural uranium consumption over a PWR once through cycle. The LEU driven system saw the largest reduction with a 94% savings while the plutonium driven cycles achieved 75% savings for PWR and 87% for CANDU. The high neutron economy, online fuelling and flexible compact fuel make the CANDU system an ideal reactor platform for many advanced fuel cycles.« less

  10. Durability of foam insulation for LH2 fuel tanks of future subsonic transports

    NASA Technical Reports Server (NTRS)

    Sharpe, E. L.; Helenbrook, R. G.

    1978-01-01

    In connection with the potential short-supply of petroleum based fuels, NASA has initiated investigations concerning the feasibility of aircraft using as fuel hydrogen which is to be stored in liquid form. One of the problems to be solved for an operation of such aircraft is related to the possibility of a suitable storage of the liquid hydrogen. A description is presented of an experimental study regarding the suitability of commercially available organic foams as cryogenic insulation for liquid hydrogen tanks under extensive thermal cycling typical of subsonic airline type operation. Fourteen commercially available organic foam insulations were tested. The thermal performance of all insulations was found to deteriorate with increased simulated flight cycles. Two unreinforced polyurethane foams survived over 4200 thermal cycles (representative of approximately 15 years of airline service) without evidence of structural deterioration. The polyurethane foam insulations also exhibited excellent thermal performance.

  11. Managing the nitrogen cycle to reduce greenhouse gas emissions from crop production and biofuel expansion

    USDA-ARS?s Scientific Manuscript database

    The United States Renewable Fuel Standards (RFS2) established under the Energy Independence and Security Act of 2007 requires greenhouse gas (GHG) emissions to be lower for biofuels relative to fossil fuel combustion. However, there is an extensive debate in the literature about the potential to red...

  12. Arrow 227: Air transport system design simulation

    NASA Technical Reports Server (NTRS)

    Bontempi, Michael; Bose, Dave; Brophy, Georgeann; Cashin, Timothy; Kanarios, Michael; Ryan, Steve; Peterson, Timothy

    1992-01-01

    The Arrow 227 is a student-designed commercial transport for use in a overnight package delivery network. The major goal of the concept was to provide the delivery service with the greatest potential return on investment. The design objectives of the Arrow 227 were based on three parameters; production cost, payload weight, and aerodynamic efficiency. Low production cost helps to reduce initial investment. Increased payload weight allows for a decrease in flight cycles and, therefore, less fuel consumption than an aircraft carrying less payload weight and requiring more flight cycles. In addition, fewer flight cycles will allow a fleet to last longer. Finally, increased aerodynamic efficiency in the form of high L/D will decrease fuel consumption.

  13. Green-house gas mitigation capacity of a small scale rural biogas plant calculations for Bangladesh through a general life cycle assessment.

    PubMed

    Rahman, Khondokar M; Melville, Lynsey; Fulford, David; Huq, Sm Imamul

    2017-10-01

    Calculations towards determining the greenhouse gas mitigation capacity of a small-scale biogas plant (3.2 m 3 plant) using cow dung in Bangladesh are presented. A general life cycle assessment was used, evaluating key parameters (biogas, methane, construction materials and feedstock demands) to determine the net environmental impact. The global warming potential saving through the use of biogas as a cooking fuel is reduced from 0.40 kg CO 2 equivalent to 0.064 kg CO 2 equivalent per kilogram of dung. Biomethane used for cooking can contribute towards mitigation of global warming. Prior to utilisation of the global warming potential of methane (from 3.2 m 3 biogas plant), the global warming potential is 13 t of carbon dioxide equivalent. This reduced to 2 t as a result of complete combustion of methane. The global warming potential saving of a bioenergy plant across a 20-year life cycle is 217 t of carbon dioxide equivalent, which is 11 t per year. The global warming potential of the resultant digestate is zero and from construction materials is less than 1% of total global warming potential. When the biogas is used as a fuel for cooking, the global warming potential will reduce by 83% compare with the traditional wood biomass cooking system. The total 80 MJ of energy that can be produced from a 3.2 m 3 anaerobic digestion plant would replace 1.9 t of fuel wood or 632 kg of kerosene currently used annually in Bangladesh. The digestate can also be used as a nutrient rich fertiliser substituting more costly inorganic fertilisers, with no global warming potential impact.

  14. Towards Robust Energy Systems Modeling: Examinging Uncertainty in Fossil Fuel-Based Life Cycle Assessment Approaches

    NASA Astrophysics Data System (ADS)

    Venkatesh, Aranya

    Increasing concerns about the environmental impacts of fossil fuels used in the U.S. transportation and electricity sectors have spurred interest in alternate energy sources, such as natural gas and biofuels. Life cycle assessment (LCA) methods can be used to estimate the environmental impacts of incumbent energy sources and potential impact reductions achievable through the use of alternate energy sources. Some recent U.S. climate policies have used the results of LCAs to encourage the use of low carbon fuels to meet future energy demands in the U.S. However, the LCA methods used to estimate potential reductions in environmental impact have some drawbacks. First, the LCAs are predominantly based on deterministic approaches that do not account for any uncertainty inherent in life cycle data and methods. Such methods overstate the accuracy of the point estimate results, which could in turn lead to incorrect and (consequent) expensive decision-making. Second, system boundaries considered by most LCA studies tend to be limited (considered a manifestation of uncertainty in LCA). Although LCAs can estimate the benefits of transitioning to energy systems of lower environmental impact, they may not be able to characterize real world systems perfectly. Improved modeling of energy systems mechanisms can provide more accurate representations of reality and define more likely limits on potential environmental impact reductions. This dissertation quantitatively and qualitatively examines the limitations in LCA studies outlined previously. The first three research chapters address the uncertainty in life cycle greenhouse gas (GHG) emissions associated with petroleum-based fuels, natural gas and coal consumed in the U.S. The uncertainty in life cycle GHG emissions from fossil fuels was found to range between 13 and 18% of their respective mean values. For instance, the 90% confidence interval of the life cycle GHG emissions of average natural gas consumed in the U.S was found to range between -8 to 9% (17%) of the mean value of 66 g CO2e/MJ. Results indicate that uncertainty affects the conclusions of comparative life cycle assessments, especially when differences in average environmental impacts between two competing fuels/products are small. In the final two research chapters of this thesis, system boundary limitations in LCA are addressed. Simplified economic dispatch models for are developed to examine changes in regional power plant dispatch that occur when coal power plants are retired and when natural gas prices drop. These models better reflect reality by estimating the order in which existing power plants are dispatched to meet electricity demand based on short-run marginal costs. Results indicate that the reduction in air emissions are lower than suggested by LCA studies, since they generally do not include the complexity of regional electricity grids, predominantly driven by comparative fuel prices. For instance, comparison, this study estimates 7-15% reductions in emissions with low natural gas prices. Although this is a significant reduction in itself, it is still lower than the benefits reported in traditional life cycle comparisons of coal and natural gas-based power (close to 50%), mainly due to the effects of plant dispatch.

  15. Advanced fuel cell concepts for future NASA missions

    NASA Technical Reports Server (NTRS)

    Stedman, J. K.

    1987-01-01

    Studies of primary fuel cells for advanced all electric shuttle type vehicles show an all fuel cell power system with peak power capability of 100's of kW to be potentially lighter and have lower life cycle costs than a hybrid system using advanced H2O2 APU's for peak power and fuel cells for low power on orbit. Fuel cell specific weights of 1 to 3 lb/kW, a factor of 10 improvement over the orbiter power plant, are projected for the early 1990's. For satellite applications, a study to identify high performance regenerative hydrogen oxygen fuel cell concepts for geosynchronous orbit was completed. Emphasis was placed on concepts with the potential for high energy density (Wh/lb) and passive means for water and heat management to maximize system reliability. Both alkaline electrolyte and polymer membrane fuel cells were considered.

  16. Drive cycle analysis of butanol/diesel blends in a light-duty vehicle.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miers, S. A.; Carlson, R. W.; McConnell, S. S.

    2008-10-01

    The potential exists to displace a portion of the petroleum diesel demand with butanol and positively impact engine-out particulate matter. As a preliminary investigation, 20% and 40% by volume blends of butanol with ultra low sulfur diesel fuel were operated in a 1999 Mercedes Benz C220 turbo diesel vehicle (Euro III compliant). Cold and hot start urban as well as highway drive cycle tests were performed for the two blends of butanol and compared to diesel fuel. In addition, 35 MPH and 55 MPH steady-state tests were conducted under varying road loads for the two fuel blends. Exhaust gas emissions,more » fuel consumption, and intake and exhaust temperatures were acquired for each test condition. Filter smoke numbers were also acquired during the steady-state tests.« less

  17. Life cycle models of conventional and alternative-fueled automobiles

    NASA Astrophysics Data System (ADS)

    Maclean, Heather Louise

    This thesis reports life cycle inventories of internal combustion engine automobiles with feasible near term fuel/engine combinations. These combinations include unleaded gasoline, California Phase 2 Reformulated Gasoline, alcohol and gasoline blends (85 percent methanol or ethanol combined with 15 percent gasoline), and compressed natural gas in spark ignition direct and indirect injection engines. Additionally, I consider neat methanol and neat ethanol in spark ignition direct injection engines and diesel fuel in compression ignition direct and indirect injection engines. I investigate the potential of the above options to have a lower environmental impact than conventional gasoline-fueled automobiles, while still retaining comparable pricing and consumer benefits. More broadly, the objective is to assess whether the use of any of the alternative systems will help to lead to the goal of a more sustainable personal transportation system. The principal tool is the Economic Input-Output Life Cycle Analysis model which includes inventories of economic data, environmental discharges, and resource use. I develop a life cycle assessment framework to assemble the array of data generated by the model into three aggregate assessment parameters; economics, externalities, and vehicle attributes. The first step is to develop a set of 'comparable cars' with the alternative fuel/engine combinations, based on characteristics of a conventional 1998 gasoline-fueled Ford Taurus sedan, the baseline vehicle for the analyses. I calculate the assessment parameters assuming that these comparable cars can attain the potential thermal efficiencies estimated by experts for each fuel/engine combination. To a first approximation, there are no significant differences in the assessment parameters for the vehicle manufacture, service, fixed costs, and the end-of-life for any of the options. However, there are differences in the vehicle operation life cycle components and the state of technology development for the combinations. Overall, none of the alternatives emerges as a clear winner, lowering the externalities and improving sustainability, while considering technology issues and vehicle attributes. The majority of the alternatives are not likely to displace the baseline automobile. However, the attractiveness of the alternatives depends on the focus of future regulations, government priorities, and technology development. If long-term global sustainability is the principal concern, then improvements in fuel economy alone will not provide the level of reduction in impact required. A switch to renewable fuels (e.g., alcohols or diesel produced from biomass) to power the vehicles will likely be necessary. (Abstract shortened by UMI.)

  18. International nuclear fuel cycle fact book. Revision 6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harmon, K.M.; Lakey, L.T.; Leigh, I.W.

    1986-01-01

    The International Fuel Cycle Fact Book has been compiled in an effort to provide (1) an overview of worldwide nuclear power and fuel cycle programs and (2) current data concerning fuel cycle and waste management facilities, R and D programs and key personnel. Additional information on each country's program is available in the International Source Book: Nuclear Fuel Cycle Research and Development, PNL-2478, Rev. 2.

  19. Diesel fuel blending components from mixture of waste animal fat and light cycle oil from fluid catalytic cracking.

    PubMed

    Hancsók, Jenő; Sági, Dániel; Valyon, József

    2018-06-11

    Sustainable production of renewable fuels has become an imperative goal but also remains a huge challenge faced by the chemical industry. A variety of low-value, renewable sources of carbon such as wastes and by-products must be evaluated for their potential as feedstock to achieve this goal. Hydrogenation of blends comprising waste animal fat (≤70 wt%) and low-value fluid catalytic cracking light cycle oil (≥30 wt%), with a total aromatic content of 87.2 wt%, was studied on a commercial sulfided NiMo/Al 2 O 3 catalyst. The fuel fraction in the diesel boiling range was separated by fractional distillation from the organic liquid product obtained from the catalytic conversion of the blend of 70 wt% waste animal fat and 30 wt% light cycle oil. Diesel fuel of the best quality was obtained under the following reaction conditions: T = 615-635 K, P = 6 MPa, LHSV = 1.0 h -1 , H 2 /feedstock ratio = 600 Nm 3 /m 3 . The presence of fat in the feedstock was found to promote the conversion of light cycle oil to a paraffinic blending component for diesel fuel. Thus, a value-added alternative fuel with high biocontent can be obtained from low-value refinery stream and waste animal fat. The resultant disposal of waste animal fat, and the use of fuel containing less fossil carbon for combustion helps reduce the emission of pollutants. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Life-cycle analysis of fuels from post-use non-recycled plastics

    DOE PAGES

    Benavides, Pahola Thathiana; Sun, Pingping; Han, Jeongwoo; ...

    2017-04-27

    Plastic-to-fuel (PTF) technology uses pyrolysis to convert plastic waste—especially non-recycled plastics (NRP)—into ultra-low sulfur diesel (ULSD) fuel. To assess the potential energy and environmental benefits associated with PTF technology, we calculated the energy, water consumption, and greenhouse gas emissions of NRP-derived ULSD and compared the results to those metrics for conventional ULSD fuel. For these analyses, we used the Greenhouse gases, Regulated Emissions and Energy use in Transportation (GREET®) model. Five companies provided pyrolysis process product yields and material and energy consumption data. Co-products of the process included char and fuel gas. Char can be landfilled, which, per the companymore » responses, is the most common practice for this co-product, or it may be sold as an energy product. Fuel gas can be combusted to internally generate process heat and electricity. Sensitivity analyses investigated the influence of co-product handling methodology, product yield, electric grid composition, and assumed efficiency of char combustion technology on life-cycle greenhouse gas emissions. The sensitivity analysis indicates that the GHG emissions would likely be reduced up to 14% when it is compared to conventional ULSD, depending on the co-product treatment method used. NRP-derived ULSD fuel could therefore be considered at a minimum carbon neutral with the potential to offer a modest GHG reduction. Moreover, this waste-derived fuel had 58% lower water consumption and up to 96% lower fossil fuel consumption than conventional ULSD fuel in the base case. In addition to the comparison of PTF fuels with conventional transportation fuels, we also compare the results with alternative scenarios for managing NRP including power generation and landfilling in the United States.« less

  1. Life-cycle analysis of fuels from post-use non-recycled plastics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benavides, Pahola Thathiana; Sun, Pingping; Han, Jeongwoo

    Plastic-to-fuel (PTF) technology uses pyrolysis to convert plastic waste—especially non-recycled plastics (NRP)—into ultra-low sulfur diesel (ULSD) fuel. To assess the potential energy and environmental benefits associated with PTF technology, we calculated the energy, water consumption, and greenhouse gas emissions of NRP-derived ULSD and compared the results to those metrics for conventional ULSD fuel. For these analyses, we used the Greenhouse gases, Regulated Emissions and Energy use in Transportation (GREET®) model. Five companies provided pyrolysis process product yields and material and energy consumption data. Co-products of the process included char and fuel gas. Char can be landfilled, which, per the companymore » responses, is the most common practice for this co-product, or it may be sold as an energy product. Fuel gas can be combusted to internally generate process heat and electricity. Sensitivity analyses investigated the influence of co-product handling methodology, product yield, electric grid composition, and assumed efficiency of char combustion technology on life-cycle greenhouse gas emissions. The sensitivity analysis indicates that the GHG emissions would likely be reduced up to 14% when it is compared to conventional ULSD, depending on the co-product treatment method used. NRP-derived ULSD fuel could therefore be considered at a minimum carbon neutral with the potential to offer a modest GHG reduction. Moreover, this waste-derived fuel had 58% lower water consumption and up to 96% lower fossil fuel consumption than conventional ULSD fuel in the base case. In addition to the comparison of PTF fuels with conventional transportation fuels, we also compare the results with alternative scenarios for managing NRP including power generation and landfilling in the United States.« less

  2. A summary of the ECAS MHD power plant results

    NASA Technical Reports Server (NTRS)

    Seikel, G. R.; Harris, L. P.

    1976-01-01

    The performance and the cost of electricity (COE) for MHD systems utilizing coal or coal derived fuels are summarized along with a conceptual open cycle MHD plant design. The results show that open cycle coal fired recuperatively preheated MHD systems have potentially one of the highest coal-pile-to-bus bar efficiencies (48.3%) and also one of the lowest COE of the systems studied. Closed cycle, inert gas systems do not appear to have the potential of exceeding the efficiency of or competing with the COE of advanced steam plants.

  3. Comparative study of fuel cell, battery and hybrid buses for renewable energy constrained areas

    NASA Astrophysics Data System (ADS)

    Stempien, J. P.; Chan, S. H.

    2017-02-01

    Fuel cell- and battery-based public bus technologies are reviewed and compared for application in tropical urban areas. This paper scrutinizes the reported literature on fuel cell bus, fuel cell electric bus, battery electric bus, hybrid electric bus, internal combustion diesel bus and compressed natural gas bus. The comparison includes the capital and operating costs, fuel consumption and fuel cycle emissions. To the best of authors knowledge, this is the first study to holistically compare hydrogen and battery powered buses, which is the original contribution of this paper. Moreover, this is the first study to focus on supplying hydrogen and electricity from fossil resources, while including the associated emissions. The study shows that compressed natural gas and hybrid electric buses appear to be the cheapest options in terms of total cost of ownership, but they are unable to meet the EURO VI emissions' standard requirement. Only fuel cell based buses have the potential to achieve the emissions' standard when the fuel cycle based on fossil energy was considered. Fuel cell electric buses are identified as a technology allowing for the largest CO2 emission reduction, making ∼61% decrease in annual emissions possible.

  4. Fuel cycle cost reduction through Westinghouse fuel design and core management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frank, F.J.; Scherpereel, L.R.

    1985-11-01

    This paper describes advances in Westinghouse nuclear fuel and their impact on fuel cycle cost. Recent fabrication development has been aimed at maintaining high integrity, increased operating flexibility, longer operating cycles, and improved core margins. Development efforts at Westinghouse toward meeting these directions have culminated in VANTAGE 5 fuel. The current trend toward longer operating cycles provides a further driving force to minimize the resulting inherent increase in fuel cycle costs by further increases in region discharge burnup. Westinghouse studies indicate the capability of currently offered products to meet cycle lengths up to 24 months.

  5. Uncertainty in life cycle greenhouse gas emissions from United States natural gas end-uses and its effects on policy.

    PubMed

    Venkatesh, Aranya; Jaramillo, Paulina; Griffin, W Michael; Matthews, H Scott

    2011-10-01

    Increasing concerns about greenhouse gas (GHG) emissions in the United States have spurred interest in alternate low carbon fuel sources, such as natural gas. Life cycle assessment (LCA) methods can be used to estimate potential emissions reductions through the use of such fuels. Some recent policies have used the results of LCAs to encourage the use of low carbon fuels to meet future energy demands in the U.S., without, however, acknowledging and addressing the uncertainty and variability prevalent in LCA. Natural gas is a particularly interesting fuel since it can be used to meet various energy demands, for example, as a transportation fuel or in power generation. Estimating the magnitudes and likelihoods of achieving emissions reductions from competing end-uses of natural gas using LCA offers one way to examine optimal strategies of natural gas resource allocation, given that its availability is likely to be limited in the future. In this study, the uncertainty in life cycle GHG emissions of natural gas (domestic and imported) consumed in the U.S. was estimated using probabilistic modeling methods. Monte Carlo simulations are performed to obtain sample distributions representing life cycle GHG emissions from the use of 1 MJ of domestic natural gas and imported LNG. Life cycle GHG emissions per energy unit of average natural gas consumed in the U.S were found to range between -8 and 9% of the mean value of 66 g CO(2)e/MJ. The probabilities of achieving emissions reductions by using natural gas for transportation and power generation, as a substitute for incumbent fuels such as gasoline, diesel, and coal were estimated. The use of natural gas for power generation instead of coal was found to have the highest and most likely emissions reductions (almost a 100% probability of achieving reductions of 60 g CO(2)e/MJ of natural gas used), while there is a 10-35% probability of the emissions from natural gas being higher than the incumbent if it were used as a transportation fuel. This likelihood of an increase in GHG emissions is indicative of the potential failure of a climate policy targeting reductions in GHG emissions.

  6. Linking morphology with activity through the lifetime of pretreated PtNi nanostructured thin film catalysts

    DOE PAGES

    Cullen, David A.; Lopez-Haro, Miguel; Bayle-Guillemaud, Pascale; ...

    2015-04-10

    In this study, the nanoscale morphology of highly active Pt 3Ni 7 nanostructured thin film fuel cell catalysts is linked with catalyst surface area and activity following catalyst pretreatments, conditioning and potential cycling. The significant role of fuel cell conditioning on the structure and composition of these extended surface catalysts is demonstrated by high resolution imaging, elemental mapping and tomography. The dissolution of Ni during fuel cell conditioning leads to highly complex, porous structures which were visualized in 3D by electron tomography. Quantification of the rendered surfaces following catalyst pretreatment, conditioning, and cycling shows the important role pore structure playsmore » in surface area, activity, and durability.« less

  7. Variants of closing the nuclear fuel cycle

    NASA Astrophysics Data System (ADS)

    Andrianova, E. A.; Davidenko, V. D.; Tsibulskiy, V. F.; Tsibulskiy, S. V.

    2015-12-01

    Influence of the nuclear energy structure, the conditions of fuel burnup, and accumulation of new fissile isotopes from the raw isotopes on the main parameters of a closed fuel cycle is considered. The effects of the breeding ratio, the cooling time of the spent fuel in the external fuel cycle, and the separation of the breeding area and the fissile isotope burning area on the parameters of the fuel cycle are analyzed.

  8. Mass tracking and material accounting in the integral fast reactor (IFR)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orechwa, Y.; Adams, C.H.; White, A.M.

    1991-01-01

    This paper reports on the Integral Fast Reactor (IFR) which is a generic advanced liquid metal cooled reactor concept being developed at Argonne National Laboratory. There are a number of technical features of the IFR which contribute to its potential as a next-generation reactor. These are associated with large safety margins with regard to off-normal events involving the heat transport system, and the use of metallic fuel which makes possible the utilization of innovative fuel cycle processes. The latter feature permits fuel cycle closure with compact, low-cost reprocessing facilities, collocated with the reactor plant. These primary features are being demonstratedmore » in the facilities at ANL-West, utilizing Experimental Breeder Reactor II and the associated Fuel Cycle Facility (FCF) as an IFR prototype. The demonstration of this IFR prototype includes the design and implementation of the Mass-tracking System (MTG). In this system, data from the operations of the FCF, including weights and batch-process parameters, are collected and maintained by the MTG running on distributed workstations.« less

  9. Life cycle assessment of microalgae-based aviation fuel: Influence of lipid content with specific productivity and nitrogen nutrient effects.

    PubMed

    Guo, Fang; Zhao, Jing; A, Lusi; Yang, Xiaoyi

    2016-12-01

    The aim of this work is to compare the life cycle assessments of low-N and normal culture conditions for a balance between the lipid content and specific productivity. In order to achieve the potential contribution of lipid content to the life cycle assessment, this study established relationships between lipid content (nitrogen effect) and specific productivity based on three microalgae strains including Chlorella, Isochrysis and Nannochloropsis. For microalgae-based aviation fuel, the effects of the lipid content on fossil fuel consumption and greenhouse gas (GHG) emissions are similar. The fossil fuel consumption (0.32-0.68MJ·MJ -1 MBAF) and GHG emissions (17.23-51.04gCO 2 e·MJ -1 MBAF) increase (59.70-192.22%) with the increased lipid content. The total energy input decreases (2.13-3.08MJ·MJ -1 MBAF, 14.91-27.95%) with the increased lipid content. The LCA indicators increased (0-47.10%) with the decreased nitrogen recovery efficiency (75-50%). Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Burning high-level TRU waste in fusion fission reactors

    NASA Astrophysics Data System (ADS)

    Shen, Yaosong

    2016-09-01

    Recently, the concept of actinide burning instead of a once-through fuel cycle for disposing spent nuclear fuel seems to get much more attention. A new method of burning high-level transuranic (TRU) waste combined with Thorium-Uranium (Th-U) fuel in the subcritical reactors driven by external fusion neutron sources is proposed in this paper. The thorium-based TRU fuel burns all of the long-lived actinides via a hard neutron spectrum while outputting power. A one-dimensional model of the reactor concept was built by means of the ONESN_BURN code with new data libraries. The numerical results included actinide radioactivity, biological hazard potential, and much higher burnup rate of high-level transuranic waste. The comparison of the fusion-fission reactor with the thermal reactor shows that the harder neutron spectrum is more efficient than the soft. The Th-U cycle produces less TRU, less radiotoxicity and fewer long-lived actinides. The Th-U cycle provides breeding of 233U with a long operation time (>20 years), hence significantly reducing the reactivity swing while improving safety and burnup.

  11. Hydrogen-Oxygen PEM Regenerative Fuel Cell Development at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Bents, David J.; Scullin, Vincent J.; Chang, B. J.; Johnson, Donald W.; Garcia, Christopher P.; Jakupca, Ian J.

    2006-01-01

    The closed-cycle hydrogen-oxygen PEM regenerative fuel cell (RFC) at NASA Glenn Research Center has demonstrated multiple back to back contiguous cycles at rated power, and round trip efficiencies up to 52 percent. It is the first fully closed cycle regenerative fuel cell ever demonstrated (entire system is sealed: nothing enters or escapes the system other than electrical power and heat). During FY2006 the system has undergone numerous modifications and internal improvements aimed at reducing parasitic power, heat loss and noise signature, increasing its functionality as an unattended automated energy storage device, and in-service reliability. It also serves as testbed towards development of a 600 W-hr/kg flight configuration, through the successful demonstration of lightweight fuel cell and electrolyser stacks and supporting components. The RFC has demonstrated its potential as an energy storage device for aerospace solar power systems such as solar electric aircraft, lunar and planetary surface installations; any airless environment where minimum system weight is critical. Its development process continues on a path of risk reduction for the flight system NASA will eventually need for the manned lunar outpost.

  12. ADVANCED NUCLEAR FUEL CYCLE EFFECTS ON THE TREATMENT OF UNCERTAINTY IN THE LONG-TERM ASSESSMENT OF GEOLOGIC DISPOSAL SYSTEMS - EBS INPUT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sutton, M; Blink, J A; Greenberg, H R

    2012-04-25

    The Used Fuel Disposition (UFD) Campaign within the Department of Energy's Office of Nuclear Energy (DOE-NE) Fuel Cycle Technology (FCT) program has been tasked with investigating the disposal of the nation's spent nuclear fuel (SNF) and high-level nuclear waste (HLW) for a range of potential waste forms and geologic environments. The planning, construction, and operation of a nuclear disposal facility is a long-term process that involves engineered barriers that are tailored to both the geologic environment and the waste forms being emplaced. The UFD Campaign is considering a range of fuel cycles that in turn produce a range of wastemore » forms. The UFD Campaign is also considering a range of geologic media. These ranges could be thought of as adding uncertainty to what the disposal facility design will ultimately be; however, it may be preferable to thinking about the ranges as adding flexibility to design of a disposal facility. For example, as the overall DOE-NE program and industrial actions result in the fuel cycles that will produce waste to be disposed, and the characteristics of those wastes become clear, the disposal program retains flexibility in both the choice of geologic environment and the specific repository design. Of course, other factors also play a major role, including local and State-level acceptance of the specific site that provides the geologic environment. In contrast, the Yucca Mountain Project (YMP) repository license application (LA) is based on waste forms from an open fuel cycle (PWR and BWR assemblies from an open fuel cycle). These waste forms were about 90% of the total waste, and they were the determining waste form in developing the engineered barrier system (EBS) design for the Yucca Mountain Repository design. About 10% of the repository capacity was reserved for waste from a full recycle fuel cycle in which some actinides were extracted for weapons use, and the remaining fission products and some minor actinides were encapsulated in borosilicate glass. Because the heat load of the glass was much less than the PWR and BWR assemblies, the glass waste form was able to be co-disposed with the open cycle waste, by interspersing glass waste packages among the spent fuel assembly waste packages. In addition, the Yucca Mountain repository was designed to include some research reactor spent fuel and naval reactor spent fuel, within the envelope that was set using the commercial reactor assemblies as the design basis waste form. This milestone report supports Sandia National Laboratory milestone M2FT-12SN0814052, and is intended to be a chapter in that milestone report. The independent technical review of this LLNL milestone was performed at LLNL and is documented in the electronic Information Management (IM) system at LLNL. The objective of this work is to investigate what aspects of quantifying, characterizing, and representing the uncertainty associated with the engineered barrier are affected by implementing different advanced nuclear fuel cycles (e.g., partitioning and transmutation scenarios) together with corresponding designs and thermal constraints.« less

  13. The TMI regenerable solid oxide fuel cell

    NASA Technical Reports Server (NTRS)

    Cable, Thomas L.

    1995-01-01

    Energy storage and production in space requires rugged, reliable hardware which minimizes weight, volume, and maintenance while maximizing power output and usable energy storage. These systems generally consist of photovoltaic solar arrays which operate during sunlight cycles to provide system power and regenerate fuel (hydrogen) via water electrolysis; during dark cycles, hydrogen is converted by the fuel cell into system. The currently preferred configuration uses two separate systems (fuel cell and electrolyzer) in conjunction with photovoltaic cells. Fuel cell/electrolyzer system simplicity, reliability, and power-to-weight and power-to-volume ratios could be greatly improved if both power production (fuel cell) and power storage (electrolysis) functions can be integrated into a single unit. The Technology Management, Inc. (TMI), solid oxide fuel cell-based system offers the opportunity to both integrate fuel cell and electrolyzer functions into one unit and potentially simplify system requirements. Based an the TMI solid oxide fuel cell (SOPC) technology, the TMI integrated fuel cell/electrolyzer utilizes innovative gas storage and operational concepts and operates like a rechargeable 'hydrogen-oxygen battery'. Preliminary research has been completed on improved H2/H2O electrode (SOFC anode/electrolyzer cathode) materials for solid oxide, regenerative fuel cells. Improved H2/H2O electrode materials showed improved cell performance in both fuel cell and electrolysis modes in reversible cell tests. ln reversible fuel cell/electrolyzer mode, regenerative fuel cell efficiencies (ratio of power out (fuel cell mode) to power in (electrolyzer model)) improved from 50 percent (using conventional electrode materials) to over 80 percent. The new materials will allow the TMI SOFC system to operate as both the electrolyzer and fuel cell in a single unit. Preliminary system designs have also been developed which indicate the technical feasibility of using the TMI SOFC technology for space applications with high energy storage efficiencies and high specific energy. Development of small space systems would also have potential dual-use, terrestrial applications.

  14. The TMI regenerable solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Cable, Thomas L.

    1995-04-01

    Energy storage and production in space requires rugged, reliable hardware which minimizes weight, volume, and maintenance while maximizing power output and usable energy storage. These systems generally consist of photovoltaic solar arrays which operate during sunlight cycles to provide system power and regenerate fuel (hydrogen) via water electrolysis; during dark cycles, hydrogen is converted by the fuel cell into system. The currently preferred configuration uses two separate systems (fuel cell and electrolyzer) in conjunction with photovoltaic cells. Fuel cell/electrolyzer system simplicity, reliability, and power-to-weight and power-to-volume ratios could be greatly improved if both power production (fuel cell) and power storage (electrolysis) functions can be integrated into a single unit. The Technology Management, Inc. (TMI), solid oxide fuel cell-based system offers the opportunity to both integrate fuel cell and electrolyzer functions into one unit and potentially simplify system requirements. Based an the TMI solid oxide fuel cell (SOPC) technology, the TMI integrated fuel cell/electrolyzer utilizes innovative gas storage and operational concepts and operates like a rechargeable 'hydrogen-oxygen battery'. Preliminary research has been completed on improved H2/H2O electrode (SOFC anode/electrolyzer cathode) materials for solid oxide, regenerative fuel cells. Improved H2/H2O electrode materials showed improved cell performance in both fuel cell and electrolysis modes in reversible cell tests. ln reversible fuel cell/electrolyzer mode, regenerative fuel cell efficiencies (ratio of power out (fuel cell mode) to power in (electrolyzer model)) improved from 50 percent (using conventional electrode materials) to over 80 percent. The new materials will allow the TMI SOFC system to operate as both the electrolyzer and fuel cell in a single unit. Preliminary system designs have also been developed which indicate the technical feasibility of using the TMI SOFC technology for space applications with high energy storage efficiencies and high specific energy. Development of small space systems would also have potential dual-use, terrestrial applications.

  15. OECD/NEA Ongoing activities related to the nuclear fuel cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cornet, S.M.; McCarthy, K.; Chauvin, N.

    2013-07-01

    As part of its role in encouraging international collaboration, the OECD Nuclear Energy Agency is coordinating a series of projects related to the Nuclear Fuel Cycle. The Nuclear Science Committee (NSC) Working Party on Scientific Issues of the Nuclear Fuel Cycle (WPFC) comprises five different expert groups covering all aspects of the fuel cycle from front to back-end. Activities related to fuels, materials, physics, separation chemistry, and fuel cycles scenarios are being undertaken. By publishing state-of-the-art reports and organizing workshops, the groups are able to disseminate recent research advancements to the international community. Current activities mainly focus on advanced nuclearmore » systems, and experts are working on analyzing results and establishing challenges associated to the adoption of new materials and fuels. By comparing different codes, the Expert Group on Advanced Fuel Cycle Scenarios is aiming at gaining further understanding of the scientific issues and specific national needs associated with the implementation of advanced fuel cycles. At the back end of the fuel cycle, separation technologies (aqueous and pyrochemical processing) are being assessed. Current and future activities comprise studies on minor actinides separation and post Fukushima studies. Regular workshops are also organized to discuss recent developments on Partitioning and Transmutation. In addition, the Nuclear Development Committee (NDC) focuses on the analysis of the economics of nuclear power across the fuel cycle in the context of changes of electricity markets, social acceptance and technological advances and assesses the availability of the nuclear fuel and infrastructure required for the deployment of existing and future nuclear power. The Expert Group on the Economics of the Back End of the Nuclear Fuel Cycle (EBENFC), in particular, is looking at assessing economic and financial issues related to the long term management of spent nuclear fuel. (authors)« less

  16. Thorium Fuel Options for Sustained Transuranic Burning in Pressurized Water Reactors - 12381

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rahman, Fariz Abdul; Lee, John C.; Franceschini, Fausto

    2012-07-01

    As described in companion papers, Westinghouse is proposing the adoption of a thorium-based fuel cycle to burn the transuranics (TRU) contained in the current Used Nuclear Fuel (UNF) and transition towards a less radio-toxic high level waste. A combination of both light water reactors (LWR) and fast reactors (FR) is envisaged for the task, with the emphasis initially posed on their TRU burning capability and eventually to their self-sufficiency. Given the many technical challenges and development times related to the deployment of TRU burners fast reactors, an interim solution making best use of the current resources to initiate burning themore » legacy TRU inventory while developing and testing some technologies of later use is desirable. In this perspective, a portion of the LWR fleet can be used to start burning the legacy TRUs using Th-based fuels compatible with the current plants and operational features. This analysis focuses on a typical 4-loop PWR, with 17x17 fuel assembly design and TRUs (or Pu) admixed with Th (similar to U-MOX fuel, but with Th instead of U). Global calculations of the core were represented with unit assembly simulations using the Linear Reactivity Model (LRM). Several assembly configurations have been developed to offer two options that can be attractive during the TRU transmutation campaign: maximization of the TRU transmutation rate and capability for TRU multi-recycling, to extend the option of TRU recycling in LWR until the FR is available. Homogeneous as well as heterogeneous assembly configurations have been developed with various recycling schemes (Pu recycle, TRU recycle, TRU and in-bred U recycle etc.). Oxide as well as nitride fuels have been examined. This enabled an assessment of the potential for burning and multi-recycling TRU in a Th-based fuel PWR to compare against other more typical alternatives (U-MOX and variations thereof). Results will be shown indicating that Th-based PWR fuel is a promising option to multi-recycle and burn TRU in a thermal spectrum, while satisfying top-level operational and safety constraints. Various assembly designs have been proposed to assess the TRU burning potential of Th-based fuel in PWRs. In addition to typical homogeneous loading patterns, heterogeneous configurations exploiting the breeding potential of thorium to enable multiple cycles of TRU irradiation and burning have been devised. The homogeneous assembly design, with all pins featuring TRU in Th, has the benefit of a simple loading pattern and the highest rate of TRU transmutation, but it can be used only for a few cycles due to the rapid rise in the TRU content of the recycled fuel, which challenges reactivity control, safety coefficients and fuel handling. Due to its simple loading pattern, such assembly design can be used as the first step of Th implementation, achieving up to 3 times larger TRU transmutation rate than conventional U-MOX, assuming same fraction of MOX assemblies in the core. As the next step in thorium implementation, heterogeneous assemblies featuring a mixed array of Th-U and Th-U-TRU pins, where the U is in-bred from Th, have been proposed. These designs have the potential to enable burning an external supply of TRU through multiple cycles of irradiation, recovery (via reprocessing) and recycling of the residual actinides at the end of each irradiation cycle. This is achieved thanks to a larger breeding of U from Th in the heterogeneous assemblies, which reduces the TRU supply and thus mitigates the increase in the TRU core inventory for the multi-recycled fuel. While on an individual cycle basis the amount of TRU burned in the heterogeneous assembly is reduced with respect to the homogeneous design, TRU burning rates higher than single-pass U-MOX fuel can still be achieved, with the additional benefits of a multi-cycle transmutation campaign recycling all TRU isotopes. Nitride fuel, due its higher density and U breeding potential, together with its better thermal properties, ideally suits the objectives and constraints of the heterogeneous assemblies. However, significant technological advancements must be made before nitride fuels can be employed in an LWR: its water resistance needs to be improved and a viable technology to enrich N in N-15 must be devised. Moreover, for the nitride heterogeneous configurations examined in this study, the enhancement in TRU burning performance is achieved not only by replacing oxide with nitride fuel, but also by increasing the fuel rod size. This latter modification, allowed by the high thermal conductivity of nitride fuel, leads however to a very tight lattice, which may challenge reactor coolant pumps and assembly hold-down mechanisms, the former through an increase in core pressure drop and the latter through an increase in assembly lift-off forces. To alleviate these issues, while still achieving the large fuel-to-moderator ratios resulting from using tight lattices, wire wraps could be used in place of grid spacers. For tight lattices, typical grid spacers are hard to manufacture and their replacement with wire wraps is known to allow for a pressure drop reduction by at least 2 times. The studies, while certainly very preliminary, provide a starting point to devise an optimum strategy for TRU transmutation in Th-based PWR fuel. The viability of the scheme proposed depends on the timely phasing in of the associated technologies, with proper lead time and to solve the many challenges. These challenges are certainly substantial, and make the current once-through U-based scheme pursued in the US by far a more practical (and cheaper) option. However, when compared to other transmutation schemes, the proposed one has arguably similar challenges and unknowns with potentially bigger rewards. (authors)« less

  17. O-GlcNAc in cancer: An Oncometabolism-fueled vicious cycle.

    PubMed

    Hanover, John A; Chen, Weiping; Bond, Michelle R

    2018-06-01

    Cancer cells exhibit unregulated growth, altered metabolism, enhanced metastatic potential and altered cell surface glycans. Fueled by oncometabolism and elevated uptake of glucose and glutamine, the hexosamine biosynthetic pathway (HBP) sustains glycosylation in the endomembrane system. In addition, the elevated pools of UDP-GlcNAc drives the O-GlcNAc modification of key targets in the cytoplasm, nucleus and mitochondrion. These targets include transcription factors, kinases, key cytoplasmic enzymes of intermediary metabolism, and electron transport chain complexes. O-GlcNAcylation can thereby alter epigenetics, transcription, signaling, proteostasis, and bioenergetics, key 'hallmarks of cancer'. In this review, we summarize accumulating evidence that many cancer hallmarks are linked to dysregulation of O-GlcNAc cycling on cancer-relevant targets. We argue that onconutrient and oncometabolite-fueled elevation increases HBP flux and triggers O-GlcNAcylation of key regulatory enzymes in glycolysis, Kreb's cycle, pentose-phosphate pathway, and the HBP itself. The resulting rerouting of glucose metabolites leads to elevated O-GlcNAcylation of oncogenes and tumor suppressors further escalating elevation in HBP flux creating a 'vicious cycle'. Downstream, elevated O-GlcNAcylation alters DNA repair and cellular stress pathways which influence oncogenesis. The elevated steady-state levels of O-GlcNAcylated targets found in many cancers may also provide these cells with a selective advantage for sustained growth, enhanced metastatic potential, and immune evasion in the tumor microenvironment.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Nicholas R.; Carlsen, Brett W.; Dixon, Brent W.

    Dynamic fuel cycle simulation tools are intended to model holistic transient nuclear fuel cycle scenarios. As with all simulation tools, fuel cycle simulators require verification through unit tests, benchmark cases, and integral tests. Model validation is a vital aspect as well. Although compara-tive studies have been performed, there is no comprehensive unit test and benchmark library for fuel cycle simulator tools. The objective of this paper is to identify the must test functionalities of a fuel cycle simulator tool within the context of specific problems of interest to the Fuel Cycle Options Campaign within the U.S. Department of Energy smore » Office of Nuclear Energy. The approach in this paper identifies the features needed to cover the range of promising fuel cycle options identified in the DOE-NE Fuel Cycle Evaluation and Screening (E&S) and categorizes these features to facilitate prioritization. Features were categorized as essential functions, integrating features, and exemplary capabilities. One objective of this paper is to propose a library of unit tests applicable to each of the essential functions. Another underlying motivation for this paper is to encourage an international dialog on the functionalities and standard test methods for fuel cycle simulator tools.« less

  19. 40 CFR 86.1501 - Scope; applicability.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural...

  20. 40 CFR 86.1519 - CVS calibration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural...

  1. 40 CFR 86.1514 - Analytical gases.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural...

  2. 40 CFR 600.207-08 - Calculation and use of vehicle-specific 5-cycle-based fuel economy values for vehicle...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... (i) Calculate the 5-cycle city and highway fuel economy values from the tests performed using gasoline or diesel test fuel. (ii)(A) Calculate the 5-cycle city and highway fuel economy values from the tests performed using alcohol or natural gas test fuel, if 5-cycle testing has been performed. Otherwise...

  3. 40 CFR 86.1401 - Scope; applicability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for New Gasoline-Fueled Otto-Cycle Light-Duty Vehicles and New Gasoline-Fueled Otto-Cycle Light-Duty... procedures for gasoline-fueled Otto-cycle light-duty vehicles, and for gasoline-fueled Otto-cycle light-duty...

  4. 77 FR 19278 - Informational Meeting on Nuclear Fuel Cycle Options

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-30

    ... DEPARTMENT OF ENERGY Informational Meeting on Nuclear Fuel Cycle Options AGENCY: Office of Fuel Cycle Technologies, Office of Nuclear Energy, Department of Energy. ACTION: Notice of meeting. SUMMARY: The Office of Fuel Cycle Technologies will be hosting a one- day informational meeting at the Argonne...

  5. 78 FR 45983 - Acceptability of Corrective Action Programs for Fuel Cycle Facilities

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-30

    ... Programs for Fuel Cycle Facilities AGENCY: Nuclear Regulatory Commission. ACTION: Draft NUREG; withdrawal... withdrawing draft NUREG-2154, ``Acceptability of Corrective Action Programs for Fuel Cycle Facilities,'' based... determine whether a submittal for a Corrective Action Program (CAP), voluntarily submitted by fuel cycle...

  6. 77 FR 823 - Guidance for Fuel Cycle Facility Change Processes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-06

    ... NUCLEAR REGULATORY COMMISSION [NRC-2009-0262] Guidance for Fuel Cycle Facility Change Processes... Fuel Cycle Facility Change Processes.'' This regulatory guide describes the types of changes for which fuel cycle facility licensees should seek prior approval from the NRC and discusses how licensees can...

  7. 40 CFR 86.1527 - Idle test procedure; overview.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled...

  8. 40 CFR 86.1505 - Introduction; structure of subpart.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled...

  9. 40 CFR 86.1540 - Idle exhaust sample analysis.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled...

  10. 40 CFR 86.1526 - Calibration of other equipment.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled...

  11. Proceedings of GLOBAL 2013: International Nuclear Fuel Cycle Conference - Nuclear Energy at a Crossroads

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2013-07-01

    The Global conference is a forum for the discussion of the scientific, technical, social and regulatory aspects of the nuclear fuel cycle. Relevant topics include global utilization of nuclear energy, current fuel cycle technologies, advanced reactors, advanced fuel cycles, nuclear nonproliferation and public acceptance.

  12. 76 FR 67765 - Notice of Availability of Uranium Enrichment Fuel Cycle Facility's Inspection Reports Regarding...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-02

    ... Uranium Enrichment Fuel Cycle Facility's Inspection Reports Regarding Louisiana Energy Services, National..., Uranium Enrichment Branch, Division of Fuel Cycle Safety and Safeguards, Office of Nuclear Material Safety... Commission. Brian W. Smith, Chief, Uranium Enrichment Branch, Division of Fuel Cycle Safety and Safeguards...

  13. 75 FR 45678 - Notice of Availability of Interim Staff Guidance Document for Fuel Cycle Facilities

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-03

    ... Document for Fuel Cycle Facilities AGENCY: Nuclear Regulatory Commission. ACTION: Notice of availability..., Division of Fuel Cycle Safety and Safeguards, Office of Nuclear Material Safety and Safeguards, U.S... Commission (NRC) prepares and issues Interim Staff Guidance (ISG) documents for fuel cycle facilities. These...

  14. 76 FR 44049 - Guidance for Fuel Cycle Facility Change Processes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-22

    ... NUCLEAR REGULATORY COMMISSION [NRC-2009-0262] Guidance for Fuel Cycle Facility Change Processes...-issued Draft Regulatory Guide, DG- 3037, ``Guidance for Fuel Cycle Facility Change Processes'' in the...-3037 from August 12, 2011 to September 16, 2011. DG-3037 describes the types of changes for fuel cycle...

  15. 75 FR 44817 - Notice of Availability of Uranium Enrichment Fuel Cycle Facility Inspection Reports Regarding...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-29

    ... Uranium Enrichment Fuel Cycle Facility Inspection Reports Regarding Louisiana Energy Services, National... Enrichment Branch, Division of Fuel Cycle Safety and Safeguards, Office of Nuclear Material Safety and... Enrichment Branch, Division of Fuel Cycle Safety and Safeguards, Office of Nuclear Material Safety and...

  16. Fuel inspection and reconstitution experience at Surry Power Station

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brookmire, T.A.

    Surry Power Station, located on the James River near Williamsburg, Virginia, has two Westinghouse pressurized water reactors. Unit 2 consistently sets a high standard of fuel performance (no indication of fuel failures in recent cycles), while unit 1, since cycle 6, has been plagued with numerous fuel failures. Both Surry units operate with Westinghouse standard 15 x 15 fuel. Virginia Power management set goals to reduce the coolant activity, thus reducing person-rem exposure and the associated costs of high coolant activity. To achieve this goal, extensive fuel examination campaigns were undertaken that included high-magnification video inspectionsa, debris cleaning, wet andmore » vacuum fuel sipping, fuel rod ultrasonic testing, and eddy current examination. In the summer of 1985, during cycle 8 operation, Kraftwerk Union reconstituted (repaired) the damage, once-burned assemblies from cycles 6 and 7 by replacing failed fuel rods with solid Zircaloy-4 rods. Currently, cycle 9 has operated for 5 months without any indication of fuel failure (the cycle 9 core has two reconstituted assemblies).« less

  17. 40 CFR 86.1537 - Idle test run.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and...

  18. Experimental evaluation of hybrid vehicle fuel economy and pollutant emissions over real-world simulation driving cycles

    NASA Astrophysics Data System (ADS)

    Fontaras, Georgios; Pistikopoulos, Panayotis; Samaras, Zissis

    2008-06-01

    The reduction of transport-generated CO2 emissions is currently a problem of global interest. Hybrid electric vehicles (HEVs) are considered as one promising technological solution for limiting transport-generated greenhouse gas emissions. Currently, the number of HEVs in the market remains limited, but this picture will change in the years to come as HEVs are expected to pave the way for cleaner technologies in transport. In this paper, results are presented regarding fuel economy and pollutant emissions measurements of two hybrid electric production vehicles. The measurements were conducted on a Prius II and a Honda Civic IMA using both the European legislated driving cycle (New European Driving Cycle, NEDC) and real-world simulation driving cycles (Artemis). In addition to the emissions measurements, other vehicle-operating parameters were studied in an effort to better quantify the maximum CO2 reduction potential. Data from real-world operation of a Prius II vehicle were also used in the evaluation. Results indicate that in most cases both vehicles present improved energy efficiency and pollutant emissions compared to conventional cars. The fuel economy benefit of the two HEVs peaked under urban driving conditions where reductions of 60% and 40% were observed, respectively. Over higher speeds the difference in fuel economy was lower, reaching that of conventional diesel at 95 km h-1. The effect of ambient temperature on fuel consumption was also quantified. It is concluded that urban operation benefits the most of hybrid technology, leading to important fuel savings and urban air quality improvement.

  19. Sensitivity Analysis and Optimization of the Nuclear Fuel Cycle: A Systematic Approach

    NASA Astrophysics Data System (ADS)

    Passerini, Stefano

    For decades, nuclear energy development was based on the expectation that recycling of the fissionable materials in the used fuel from today's light water reactors into advanced (fast) reactors would be implemented as soon as technically feasible in order to extend the nuclear fuel resources. More recently, arguments have been made for deployment of fast reactors in order to reduce the amount of higher actinides, hence the longevity of radioactivity, in the materials destined to a geologic repository. The cost of the fast reactors, together with concerns about the proliferation of the technology of extraction of plutonium from used LWR fuel as well as the large investments in construction of reprocessing facilities have been the basis for arguments to defer the introduction of recycling technologies in many countries including the US. In this thesis, the impacts of alternative reactor technologies on the fuel cycle are assessed. Additionally, metrics to characterize the fuel cycles and systematic approaches to using them to optimize the fuel cycle are presented. The fuel cycle options of the 2010 MIT fuel cycle study are re-examined in light of the expected slower rate of growth in nuclear energy today, using the CAFCA (Code for Advanced Fuel Cycle Analysis). The Once Through Cycle (OTC) is considered as the base-line case, while advanced technologies with fuel recycling characterize the alternative fuel cycle options available in the future. The options include limited recycling in L WRs and full recycling in fast reactors and in high conversion LWRs. Fast reactor technologies studied include both oxide and metal fueled reactors. Additional fuel cycle scenarios presented for the first time in this work assume the deployment of innovative recycling reactor technologies such as the Reduced Moderation Boiling Water Reactors and Uranium-235 initiated Fast Reactors. A sensitivity study focused on system and technology parameters of interest has been conducted to test the robustness of the conclusions presented in the MIT Fuel Cycle Study. These conclusions are found to still hold, even when considering alternative technologies and different sets of simulation assumptions. Additionally, a first of a kind optimization scheme for the nuclear fuel cycle analysis is proposed and the applications of such an optimization are discussed. Optimization metrics of interest for different stakeholders in the fuel cycle (economics, fuel resource utilization, high level waste, transuranics/proliferation management, and environmental impact) are utilized for two different optimization techniques: a linear one and a stochastic one. Stakeholder elicitation provided sets of relative weights for the identified metrics appropriate to each stakeholder group, which were then successfully used to arrive at optimum fuel cycle configurations for recycling technologies. The stochastic optimization tool, based on a genetic algorithm, was used to identify non-inferior solutions according to Pareto's dominance approach to optimization. The main tradeoff for fuel cycle optimization was found to be between economics and most of the other identified metrics. (Copies available exclusively from MIT Libraries, libraries.mit.edu/docs - docs mit.edu)

  20. 75 FR 51025 - Blue Ribbon Commission on America's Nuclear Future, Reactor and Fuel Cycle Technology Subcommittee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-18

    ... DEPARTMENT OF ENERGY Blue Ribbon Commission on America's Nuclear Future, Reactor and Fuel Cycle... meeting. SUMMARY: This notice announces an open meeting of the Reactor and Fuel Cycle Technology (RFCT... back end of the nuclear fuel cycle. The Commission will provide advice and make recommendations on...

  1. 77 FR 73060 - Standard Review Plan for Review of Fuel Cycle Facility License Applications

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-07

    ... NUCLEAR REGULATORY COMMISSION [NRC-2012-0220] Standard Review Plan for Review of Fuel Cycle... 1, ``Standard Review Plan (SRP) for the Review of a License Application for a Fuel Cycle Facility... for a fuel cycle facility (NUREG-1520) provides NRC staff guidance for reviewing and evaluating the...

  2. 77 FR 75676 - Standard Review Plan for Review of Fuel Cycle Facility License Applications

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-21

    ... NUCLEAR REGULATORY COMMISSION [NRC-2012-0220] Standard Review Plan for Review of Fuel Cycle... Review of a License Application for a Fuel Cycle Facility.'' The NRC is extending the public comment... of Fuel Cycle Safety and Safeguards, Office of Nuclear Material Safety and Safeguards. [FR Doc. 2012...

  3. Impact of minor actinide recycling on sustainable fuel cycle options

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heidet, F.; Kim, T. K.; Taiwo, T. A.

    The recent Evaluation and Screening study chartered by the U.S. Department of Energy, Office of Nuclear Energy, has identified four fuel cycle options as being the most promising. Among these four options, the two single-stage fuel cycles rely on a fast reactor and are differing in the fact that in one case only uranium and plutonium are recycled while in the other case minor actinides are also recycled. The two other fuel cycles are two-stage and rely on both fast and thermal reactors. They also differ in the fact that in one case only uranium and plutonium are recycled whilemore » in the other case minor actinides are also recycled. The current study assesses the impact of recycling minor actinides on the reactor core design, its performance characteristics, and the characteristics of the recycled material and waste material. The recycling of minor actinides is found not to affect the reactor core performance, as long as the same cycle length, core layout and specific power are being used. One notable difference is that the required transuranics (TRU) content is slightly increased when minor actinides are recycled. The mass flows are mostly unchanged given a same specific power and cycle length. Although the material mass flows and reactor performance characteristics are hardly affected by recycling minor actinides, some differences are observed in the waste characteristics between the two fuel cycles considered. The absence of minor actinides in the waste results in a different buildup of decay products, and in somewhat different behaviors depending on the characteristic and time frame considered. Recycling of minor actinides is found to result in a reduction of the waste characteristics ranging from 10% to 90%. These results are consistent with previous studies in this domain and depending on the time frame considered, packaging conditions, repository site, repository strategy, the differences observed in the waste characteristics could be beneficial and help improve the repository performance. On the other hand, recycling minor actinides also results in an increase of the recycled fuel characteristics and therefore of the charged fuel. The radioactivity is slightly increased while the decay heat and radiotoxicities are very significantly increased. Despite these differences, the characteristics of the fuel at time of discharge remain similar whether minor actinides are recycled or not, with the exception of the inhalation radiotoxicity which is significantly larger with minor actinide recycling. After some cooling the characteristics of the discharged fuel become larger when minor actinides are recycled, potentially affecting the reprocessing plant requirements. Recycling minor actinides has a negative impact on the characteristics of the fresh fuel and will make it more challenging to fabricate fuel containing minor actinides.« less

  4. Application of Framework for Integrating Safety, Security and Safeguards (3Ss) into the Design Of Used Nuclear Fuel Storage Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Badwan, Faris M.; Demuth, Scott F

    Department of Energy’s Office of Nuclear Energy, Fuel Cycle Research and Development develops options to the current commercial fuel cycle management strategy to enable the safe, secure, economic, and sustainable expansion of nuclear energy while minimizing proliferation risks by conducting research and development focused on used nuclear fuel recycling and waste management to meet U.S. needs. Used nuclear fuel is currently stored onsite in either wet pools or in dry storage systems, with disposal envisioned in interim storage facility and, ultimately, in a deep-mined geologic repository. The safe management and disposition of used nuclear fuel and/or nuclear waste is amore » fundamental aspect of any nuclear fuel cycle. Integrating safety, security, and safeguards (3Ss) fully in the early stages of the design process for a new nuclear facility has the potential to effectively minimize safety, proliferation, and security risks. The 3Ss integration framework could become the new national and international norm and the standard process for designing future nuclear facilities. The purpose of this report is to develop a framework for integrating the safety, security and safeguards concept into the design of Used Nuclear Fuel Storage Facility (UNFSF). The primary focus is on integration of safeguards and security into the UNFSF based on the existing Nuclear Regulatory Commission (NRC) approach to addressing the safety/security interface (10 CFR 73.58 and Regulatory Guide 5.73) for nuclear power plants. The methodology used for adaptation of the NRC safety/security interface will be used as the basis for development of the safeguards /security interface and later will be used as the basis for development of safety and safeguards interface. Then this will complete the integration cycle of safety, security, and safeguards. The overall methodology for integration of 3Ss will be proposed, but only the integration of safeguards and security will be applied to the design of the UNFSF. The framework for integration of safeguards and security into the UNFSF will include 1) identification of applicable regulatory requirements, 2) selection of a common system that share dual safeguard and security functions, 3) development of functional design criteria and design requirements for the selected system, 4) identification and integration of the dual safeguards and security design requirements, and 5) assessment of the integration and potential benefit.« less

  5. An Approach for Assessing Development and Deployment Risks in the DOE Fuel Cycle Options Evaluation and Screening Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gehin, Jess C; Oakley, Brian; Worrall, Andrew

    2015-01-01

    Abstract One of the key objectives of the U.S. Department of Energy (DOE) Nuclear Energy R&D Roadmap is the development of sustainable nuclear fuel cycles that can improve natural resource utilization and provide solutions to the management of nuclear wastes. Recently, an evaluation and screening (E&S) of fuel cycle systems has been conducted to identify those options that provide the best opportunities for obtaining such improvements and also to identify the required research and development activities that can support the development of advanced fuel cycle options. In order to evaluate and screen the E&S study included nine criteria including Developmentmore » and Deployment Risk (D&DR). More specifically, this criterion was represented by the following metrics: Development time, development cost, deployment cost from prototypic validation to first-of-a-kind commercial, compatibility with the existing infrastructure, existence of regulations for the fuel cycle and familiarity with licensing, and existence of market incentives and/or barriers to commercial implementation of fuel cycle processes. Given the comprehensive nature of the study, a systematic approach was needed to determine metric data for the D&DR criterion, and is presented here. As would be expected, the Evaluation Group representing the once-through use of uranium in thermal reactors is always the highest ranked fuel cycle Evaluation Group for this D&DR criterion. Evaluation Groups that consist of once-through fuel cycles that use existing reactor types are consistently ranked very high. The highest ranked limited and continuous recycle fuel cycle Evaluation Groups are those that recycle Pu in thermal reactors. The lowest ranked fuel cycles are predominately continuous recycle single stage and multi-stage fuel cycles that involve TRU and/or U-233 recycle.« less

  6. Performance and operational economics estimates for a coal gasification combined-cycle cogeneration powerplant

    NASA Technical Reports Server (NTRS)

    Nainiger, J. J.; Burns, R. K.; Easley, A. J.

    1982-01-01

    A performance and operational economics analysis is presented for an integrated-gasifier, combined-cycle (IGCC) system to meet the steam and baseload electrical requirements. The effect of time variations in steam and electrial requirements is included. The amount and timing of electricity purchases from sales to the electric utility are determined. The resulting expenses for purchased electricity and revenues from electricity sales are estimated by using an assumed utility rate structure model. Cogeneration results for a range of potential IGCC cogeneration system sizes are compared with the fuel consumption and costs of natural gas and electricity to meet requirements without cogeneration. The results indicate that an IGCC cogeneration system could save about 10 percent of the total fuel energy presently required to supply steam and electrical requirements without cogeneration. Also for the assumed future fuel and electricity prices, an annual operating cost savings of 21 percent to 26 percent could be achieved with such a cogeneration system. An analysis of the effects of electricity price, fuel price, and system availability indicates that the IGCC cogeneration system has a good potential for economical operation over a wide range in these assumptions.

  7. Comparison of PM emissions from a commercial jet engine burning conventional, biomass, and Fischer-Tropsch fuels.

    PubMed

    Lobo, Prem; Hagen, Donald E; Whitefield, Philip D

    2011-12-15

    Rising fuel costs, an increasing desire to enhance security of energy supply, and potential environmental benefits have driven research into alternative renewable fuels for commercial aviation applications. This paper reports the results of the first measurements of particulate matter (PM) emissions from a CFM56-7B commercial jet engine burning conventional and alternative biomass- and, Fischer-Tropsch (F-T)-based fuels. PM emissions reductions are observed with all fuels and blends when compared to the emissions from a reference conventional fuel, Jet A1, and are attributed to fuel properties associated with the fuels and blends studied. Although the alternative fuel candidates studied in this campaign offer the potential for large PM emissions reductions, with the exception of the 50% blend of F-T fuel, they do not meet current standards for aviation fuel and thus cannot be considered as certified replacement fuels. Over the ICAO Landing Takeoff Cycle, which is intended to simulate aircraft engine operations that affect local air quality, the overall PM number-based emissions for the 50% blend of F-T fuel were reduced by 34 ± 7%, and the mass-based emissions were reduced by 39 ± 7%.

  8. Mexican forest inventory expands continental carbon monitoring

    Treesearch

    Alberto Sandoval Uribe; Sean. P. Healey; Gretchen G. Moisen; Rigoberto Palafox Rivas; Enrique Gonzalez Aguilar; Carmen Lourdes Meneses Tovar; Ernesto S. Diaz Ponce Davalos; Vanessa Silva Mascorro

    2008-01-01

    The terrestrial ecosystems of the North American continent represent a large reservoir of carbon and a potential sink within the global carbon cycle. The recent State of the Carbon Cycle Report [U.S. Climate Change Science Program (CCSP), 2007] identified the critical role these systems may play in mitigating effects of greenhouse gases emitted from fossil fuel...

  9. Life-cycle assessment of corn-based butanol as a potential transportation fuel.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, M.; Wang, M.; Liu, J.

    2007-12-31

    Butanol produced from bio-sources (such as corn) could have attractive properties as a transportation fuel. Production of butanol through a fermentation process called acetone-butanol-ethanol (ABE) has been the focus of increasing research and development efforts. Advances in ABE process development in recent years have led to drastic increases in ABE productivity and yields, making butanol production worthy of evaluation for use in motor vehicles. Consequently, chemical/fuel industries have announced their intention to produce butanol from bio-based materials. The purpose of this study is to estimate the potential life-cycle energy and emission effects associated with using bio-butanol as a transportation fuel.more » The study employs a well-to-wheels analysis tool--the Greenhouse Gases, Regulated Emissions and Energy Use in Transportation (GREET) model developed at Argonne National Laboratory--and the Aspen Plus{reg_sign} model developed by AspenTech. The study describes the butanol production from corn, including grain processing, fermentation, gas stripping, distillation, and adsorption for products separation. The Aspen{reg_sign} results that we obtained for the corn-to-butanol production process provide the basis for GREET modeling to estimate life-cycle energy use and greenhouse gas emissions. The GREET model was expanded to simulate the bio-butanol life cycle, from agricultural chemical production to butanol use in motor vehicles. We then compared the results for bio-butanol with those of conventional gasoline. We also analyzed the bio-acetone that is coproduced with bio-butanol as an alternative to petroleum-based acetone. Our study shows that, while the use of corn-based butanol achieves energy benefits and reduces greenhouse gas emissions, the results are affected by the methods used to treat the acetone that is co-produced in butanol plants.« less

  10. Compound cycle engine for helicopter application

    NASA Technical Reports Server (NTRS)

    Castor, Jere G.

    1986-01-01

    The Compound Cycle Engine (CCE) is a highly turbocharged, power compounded, ultra-high power density, light-weight diesel engine. The turbomachinery is similar to a moderate pressure ratio, free power turbine engine and the diesel core is high speed and a low compression ratio. This engine is considered a potential candidate for future military light helicopter applications. This executive summary presents cycle thermodynamic (SFC) and engine weight analyses performed to establish general engine operating parameters and configuration. An extensive performance and weight analysis based on a typical two hour helicopter (+30 minute reserve) mission determined final conceptual engine design. With this mission, CCE performance was compared to that of a T-800 class gas turbine engine. The CCE had a 31% lower-fuel consumption and resulted in a 16% reduction in engine plus fuel and fuel tank weight. Design SFC of the CCE is 0.33 lb-HP-HR and installed wet weight is 0.43 lbs/HP. The major technology development areas required for the CCE are identified and briefly discussed.

  11. Tripropellant engine study

    NASA Technical Reports Server (NTRS)

    Wheeler, D. B.; Kirby, F. M.

    1978-01-01

    The potential for converting the space shuttle main engine (SSME) to a dual-fuel, dual-mode engine using LOX/hydrocarbon propellants in mode 1 and LOX/H2 in mode 2 was examined. Various engine system concepts were formulated that included staged combustion and gas generator turbine power cycles, and LOX/RP-1, LOX/CH4, and LOX/C3H8 mode 1 propellants. Both oxidizer and fuel regenerative cooling were considered. All of the SSME major components were examined to determine their adaptability to the candidate dual-fuel engines.

  12. Improving carbon dioxide yields and cell efficiencies for ethanol oxidation by potential scanning

    NASA Astrophysics Data System (ADS)

    Majidi, Pasha; Pickup, Peter G.

    2014-12-01

    An ethanol electrolysis cell with aqueous ethanol supplied to the anode and nitrogen at the cathode has been operated under potential cycling conditions in order to increase the yield of carbon dioxide and thereby increase cell efficiency relative to operation at a fixed potential. At ambient temperature, faradaic yields of CO2 as high as 26% have been achieved, while only transient CO2 production was observed at constant potential. Yields increased substantially at higher temperatures, with maximum values at Pt anodes reaching 45% at constant potential and 65% under potential cycling conditions. Use of a PtRu anode increased the cell efficiency by decreasing the anode potential, but this was offset by decreased CO2 yields. Nonetheless, cycling increased the efficiency relative to constant potential. The maximum yields at PtRu and 80 °C were 13% at constant potential and 32% under potential cycling. The increased yields under cycling conditions have been attributed to periodic oxidative stripping of adsorbed CO, which occurs at lower potentials on PtRu than on Pt. These results will be important in the optimization of operating conditions for direct ethanol fuel cells and for the electrolysis of ethanol to produce clean hydrogen.

  13. Benefits of barrier fuel on fuel cycle economics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crowther, R.L.; Kunz, C.L.

    1988-01-01

    Barrier fuel rod cladding was developed to eliminate fuel rod failures from pellet/cladding stress/corrosion interaction and to eliminate the associated need to restrict the rate at which fuel rod power can be increased. The performance of barrier cladding has been demonstrated through extensive testing and through production application to many boiling water reactors (BWRs). Power reactor data have shown that barrier fuel rod cladding has a significant beneficial effect on plant capacity factor and plant operating costs and significantly increases fuel reliability. Independent of the fuel reliability benefit, it is less obvious that barrier fuel has a beneficial effect ofmore » fuel cycle costs, since barrier cladding is more costly to fabricate. Evaluations, measurements, and development activities, however, have shown that the fuel cycle cost benefits of barrier fuel are large. This paper is a summary of development activities that have shown that application of barrier fuel significantly reduces BWR fuel cycle costs.« less

  14. Reactor Physics Scoping and Characterization Study on Implementation of TRIGA Fuel in the Advanced Test Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jennifer Lyons; Wade R. Marcum; Mark D. DeHart

    2014-01-01

    The Advanced Test Reactor (ATR), under the Reduced Enrichment for Research and Test Reactors (RERTR) Program and the Global Threat Reduction Initiative (GTRI), is conducting feasibility studies for the conversion of its fuel from a highly enriched uranium (HEU) composition to a low enriched uranium (LEU) composition. These studies have considered a wide variety of LEU plate-type fuels to replace the current HEU fuel. Continuing to investigate potential alternatives to the present HEU fuel form, this study presents a preliminary analysis of TRIGA® fuel within the current ATR fuel envelopes and compares it to the functional requirements delineated by themore » Naval Reactors Program, which includes: greater than 4.8E+14 fissions/s/g of 235U, a fast to thermal neutron flux ratio that is less than 5% deviation of its current value, a constant cycle power within the corner lobes, and an operational cycle length of 56 days at 120 MW. Other parameters outside those put forth by the Naval Reactors Program which are investigated herein include axial and radial power profiles, effective delayed neutron fraction, and mean neutron generation time.« less

  15. 40 CFR 86.335-79 - Gasoline-fueled engine test cycle.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Gasoline-fueled engine test cycle. 86... Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.335-79 Gasoline-fueled engine test cycle. (a) The following test sequence shall be followed in...

  16. 40 CFR 86.335-79 - Gasoline-fueled engine test cycle.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 19 2013-07-01 2013-07-01 false Gasoline-fueled engine test cycle. 86... Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.335-79 Gasoline-fueled engine test cycle. (a) The following test sequence shall be followed in...

  17. 40 CFR 86.335-79 - Gasoline-fueled engine test cycle.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 19 2012-07-01 2012-07-01 false Gasoline-fueled engine test cycle. 86... Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.335-79 Gasoline-fueled engine test cycle. (a) The following test sequence shall be followed in...

  18. Emission Performance of Low Cetane Naphtha as Drop-In Fuel on a Multi-Cylinder Heavy-Duty Diesel Engine and Aftertreatment System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LeePhD, John; TzanetakisPhD, Tom; Travers, Michael

    With higher volatility and longer ignition delay characteristics than typical diesel fuel, low cetane naphtha fuel has been shown to promote partially premixed combustion and produce lower soot for improved fuel economy. In this study, emission performance of low cetane, low octane naphtha (CN 35, RON 60) as a drop-in fuel was examined on a MY13 Cummins ISX15 6-cylinder heavy-duty on-highway truck engine and aftertreatment system. Using the production hardware and development calibrations, both the engine-out and tailpipe emissions of naphtha and ultra-low sulfur diesel (ULSD) fuels were examined during the EPA s heavy-duty emission testing cycles. Without any modificationmore » to the calibrations, the tailpipe emissions were comparable when using naphtha or ULSD on the heavy duty Federal Test Procedure (FTP) and ramped modal cycle (RMC) test cycles. Overall lower CO2 emissions and fuel consumption were also measured for naphtha due in part to its higher heating value and higher hydrogen to carbon ratio. Engine-out and tailpipe NOx emissions were lower for naphtha fuel at the same catalyst conversion levels and measured particulate matter (PM) emissions were also lower when using naphtha due to its higher volatility and lower aromatic content compared to ULSD. To help assess the potential impact on diesel particulate filter design and operation, engine-out PM samples were collected and characterized at the B50 operating point. A significant reduction in elemental carbon (EC) within the particulate emissions was found when using naphtha compared to ULSD.« less

  19. Review of alternate automotive engine fuel economy. Final report January-October 78

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cole, D.; Bolt, J.A.; Huber, P.

    This study assessed the potential of alternate automotive engines to meet the fuel economy goals and emission levels of the 1980-1990 period. As part of NHTSA's continuing research in support of the Department of Transportation fuel economy activities, this study reviewed those developments offering viable substitutes for the current spark ignition engine systems. Categories assessed included stratified charge, diesels, turbo charging, rotary/Wankel engines, and the developmental gas turbine and Stirling cycle engines. Results of past and on-going research through 1978 were reviewed along with the development and production status of various alternate engine technologies proposed for automobiles and light trucksmore » through the 1980s. Assessment was then made of the potential fuel economy improvement as a percentage of 1978 baseline data.« less

  20. Identifying improvement potentials in cement production with life cycle assessment.

    PubMed

    Boesch, Michael Elias; Hellweg, Stefanie

    2010-12-01

    Cement production is an environmentally relevant process responsible for 5% of total anthropogenic carbon dioxide emissions and 7% of industrial fuel use. In this study, life cycle assessment is used to evaluate improvement potentials in the cement production process in Europe and the USA. With a current fuel substitution rate of 18% in Europe and 11% in the USA, both regions have a substantial potential to reduce greenhouse gas emissions and save virgin resources by further increasing the coprocessing of waste fuels. Upgrading production technology would be particularly effective in the USA where many kiln systems with very low energy efficiency are still in operation. Using best available technology and a thermal substitution rate of 50% for fuels, greenhouse gas emissions could be reduced by 9% for Europe and 18% for the USA per tonne of cement. Since clinker production is the dominant pollution producing step in cement production, the substitution of clinker with mineral components such as ground granulated blast furnace slag or fly ash is an efficient measure to reduce the environmental impact. Blended cements exhibit substantially lower environmental footprints than Portland cement, even if the substitutes feature lower grindability and require additional drying and large transport distances. The highest savings in CO(2) emissions and resource consumption are achieved with a combination of measures in clinker production and cement blending.

  1. Fundamental Studies of Irradiation-Induced Defect Formation and Fission Product Dynamics in Oxide Fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stubbins, James

    2012-12-19

    The objective of this research program is to address major nuclear fuels performance issues for the design and use of oxide-type fuels in the current and advanced nuclear reactor applications. Fuel performance is a major issue for extending fuel burn-up which has the added advantage of reducing the used fuel waste stream. It will also be a significant issue with respect to developing advanced fuel cycle processes where it may be possible to incorporate minor actinides in various fuel forms so that they can be 'burned' rather than join the used fuel waste stream. The potential to fission or transmutemore » minor actinides and certain long-lived fission product isotopes would transform the high level waste storage strategy by removing the need to consider fuel storage on the millennium time scale.« less

  2. Analysis of fuel cycle strategies and U.S. transition scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wigeland, Roald; Taiwo, Temitope A.

    2016-10-17

    The nuclear fuel cycle Evaluation and Screening (E&S) study that was completed in October 2014 [1] enabled the identification of four fuel cycle groups that are considered most promising based on a set of nine evaluation criteria: (a) six benefit criteria of Nuclear Waste Management, Proliferation Risk, Nuclear Material Security Risk, Safety, Environmental Impact, Resource Utilization, and (b) three challenge criteria of Development and Deployment Risk, Institutional Issues, Financial Risk and Economics. The E&S study was conducted at a level of analysis that is "technology- neutral," that is, without consideration of specific technologies, but using the fundamental physics characteristics ofmore » each part of the fuel cycle. The study focused on the fuel cycle performance benefits at the fuel cycle equilibrium state, with only limited consideration of transition and deployment impacts. Common characteristics of the four most promising fuel cycle options include continuous recycle of all U/Pu or U/TRU, the use of fast-spectrum reactors, and no use of uranium enrichment once fuel cycle equilibrium has been established. The high-level wastes are mainly from processing of irradiated fuel, and there would be no disposal of any spent fuel. Building on the findings of the E&S study, additional studies have been conducted in the last two years following the information exchange meeting, the 13th IEMPT, which was held in Seoul, the Republic of Korea in 2014. Insights are presented from the recent studies on the benefits and challenges of recycling minor actinides, and transition considerations to some of the most promising fuel cycle options.« less

  3. Screening of advanced cladding materials and UN-U3Si5 fuel

    NASA Astrophysics Data System (ADS)

    Brown, Nicholas R.; Todosow, Michael; Cuadra, Arantxa

    2015-07-01

    In the aftermath of Fukushima, a focus of the DOE-NE Advanced Fuels Campaign has been the development of advanced nuclear fuel and cladding options with the potential for improved performance in an accident. Uranium dioxide (UO2) fuels with various advanced cladding materials were analyzed to provide a reference for cladding performance impacts. For advanced cladding options with UO2 fuel, most of the cladding materials have some reactivity and discharge burn-up penalty (in GWd/t). Silicon carbide is one exception in that the reactor physics performance is predicted to be very similar to zirconium alloy cladding. Most candidate claddings performed similar to UO2-Zr fuel-cladding in terms of safety coefficients. The clear exception is that Mo-based materials were identified as potentially challenging from a reactor physics perspective due to high resonance absorption. This paper also includes evaluation of UN-U3Si5 fuels with Kanthal AF or APMT cladding. The objective of the U3Si5 phase in the UN-U3Si5 fuel concept is to shield the nitride phase from water. It was shown that UN-U3Si5 fuels with Kanthal AF or APMT cladding have similar reactor physics and fuel management performance over a wide parameter space of phase fractions when compared to UO2-Zr fuel-cladding. There will be a marginal penalty in discharge burn-up (in GWd/t) and the sensitivity to 14N content in UN ceramic composites is high. Analysis of the rim effect due to self-shielding in the fuel shows that the UN-based ceramic fuels are not expected to have significantly different relative burn-up distributions at discharge relative to the UO2 reference fuel. However, the overall harder spectrum in the UN ceramic composite fuels increases transuranic build-up, which will increase long-term activity in a once-thru fuel cycle but is expected to be a significant advantage in a fuel cycle with continuous recycling of transuranic material. It is recognized that the fuel and cladding properties assumed in these assessments are preliminary, and that additional data are necessary for these materials, most significantly under irradiation.

  4. Modeling the reaction kinetics of a hydrogen generator onboard a fuel cell -- Electric hybrid motorcycle

    NASA Astrophysics Data System (ADS)

    Ganesh, Karthik

    Owing to the perceived decline of the fossil fuel reserves in the world and environmental issues like pollution, conventional fuels may be replaced by cleaner alternative fuels. The potential of hydrogen as a fuel in vehicular applications is being explored. Hydrogen as an energy carrier potentially finds applications in internal combustion engines and fuel cells because it is considered a clean fuel and has high specific energy. However, at 6 to 8 per kilogram, not only is hydrogen produced from conventional methods like steam reforming expensive, but also there are storage and handling issues, safety concerns and lack of hydrogen refilling stations across the country. The purpose of this research is to suggest a cheap and viable system that generates hydrogen on demand through a chemical reaction between an aluminum-water slurry and an aqueous sodium hydroxide solution to power a 2 kW fuel cell on a fuel cell hybrid motorcycle. This reaction is essentially an aluminum-water reaction where sodium hydroxide acts as a reaction promoter or catalyst. The Horizon 2000 fuel cell used for this purpose has a maximum hydrogen intake rate of 28 lpm. The study focuses on studying the exothermic reaction between the reactants and proposes a rate law that best describes the rate of generation of hydrogen in connection to the surface area of aluminum available for the certain reaction and the concentration of the sodium hydroxide solution. Further, the proposed rate law is used in the simulation model of the chemical reactor onboard the hybrid motorcycle to determine the hydrogen flow rate to the fuel cell with time. Based on the simulated rate of production of hydrogen from the chemical system, its feasibility of use on different drive cycles is analyzed. The rate of production of hydrogen with a higher concentration of sodium hydroxide and smaller aluminum powder size was found to enable the installation of the chemical reactor on urban cycles with frequent stops and starts. However, by extrapolating the necessary rate of concentration of sodium hydroxide required to produce hydrogen rates that would enable use of the system on highway drive cycles, it was deemed unsafe due to the caustic nature of the solution used.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Price, Laura L.; Barela, Amanda Crystal; Walkow, Walter M.

    An Evaluation and Screening team supporting the Fuel Cycle Technologies Program Office of the United States Department of Energy, Office of Nuclear Energy is conducting an evaluation and screening of a comprehensive set of fuel cycle options. These options have been assigned to one of 40 evaluation groups, each of which has a representative fuel cycle option [Todosow 2013]. A Fuel Cycle Data Package System Datasheet has been prepared for each representative fuel cycle option to ensure that the technical information used in the evaluation is high-quality and traceable [Kim, et al., 2013]. The information contained in the Fuel Cyclemore » Data Packages has been entered into the Nuclear Fuel Cycle Options Catalog at Sandia National Laboratories so that it is accessible by the evaluation and screening team and other interested parties. In addition, an independent team at Savannah River National Laboratory has verified that the information has been entered into the catalog correctly. This report documents that the 40 representative fuel cycle options have been entered into the Catalog, and that the data entered into the catalog for the 40 representative options has been entered correctly.« less

  6. Co-Optimization of Internal Combustion Engines and Biofuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCormick, Robert L.

    2016-03-08

    The development of advanced engines has significant potential advantages in reduced aftertreatment costs for air pollutant emission control, and just as importantly for efficiency improvements and associated greenhouse gas emission reductions. There are significant opportunities to leverage fuel properties to create more optimal engine designs for both advanced spark-ignition and compression-ignition combustion strategies. The fact that biofuel blendstocks offer a potentially low-carbon approach to fuel production, leads to the idea of optimizing the entire fuel production-utilization value chain as a system from the standpoint of life cycle greenhouse gas emissions. This is a difficult challenge that has yet to bemore » realized. This presentation will discuss the relationship between chemical structure and critical fuel properties for more efficient combustion, survey the properties of a range of biofuels that may be produced in the future, and describe the ongoing challenges of fuel-engine co-optimization.« less

  7. Applications of Endothermic Reaction Technology to the High Speed Civil Transport

    NASA Technical Reports Server (NTRS)

    Glickstein, Marvin R.; Spadaccini, Louis J.

    1998-01-01

    The success of strategies for controlling emissions and enhancing performance in High Speed Research applications may be Increased by more effective utilization of the heat sink afforded by the fuel in the vehicle thermal management system. This study quantifies the potential benefits associated with the use of supercritical preheating and endothermic cracking of let fuel prior to combustion to enhance the thermal management capabilities of the propulsion systems in the High Speed Civil Transport (HSCT). A fuel-cooled thermal management system, consisting of plate-fin heat exchangers and a small auxiliary compressor, is defined for the HSCT, Integrated with the engine, and an assessment of the effect on engine performance, weight, and operating cost is performed. The analysis indicates significant savings due a projected improvement in fuel economy, and the potential for additional benefit if the cycle is modified to take full advantage of all the heat sink available in the fuel.

  8. Closed-cycle hydrogen-fueled engine

    NASA Technical Reports Server (NTRS)

    Laumann, E. A.; Reynolds, R. K.

    1977-01-01

    Innovation avoids pollution by retaining combustion products. Potential uses include applicability to pollution-free powerplant using intermittent solar energy. Engine parts are fabricated from silicon carbide, silicon nitride, stainless steel, and other high-tensile strength materials.

  9. 40 CFR 86.1503 - Abbreviations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled...

  10. 40 CFR 86.1502 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled...

  11. Pollutant emissions and environmental assessment of ethyl 3-ethoxybutyrate, a potential renewable fuel

    DOE PAGES

    Storey, John M. E.; Bunce, Michael P.; Clarke, Edwina M.; ...

    2016-06-14

    Renewable and bio-based transportation fuel sources can lower the life-cycle greenhouse gas emissions from vehicles. Here, we present an initial assessment of ethyl 3-ethoxybutyrate (EEB) as a biofuel in terms of its performance as a fuel oxygenate and its persistence in the environment. EEB can be produced from ethanol and poly-3-hydroxybutyrate, a bacterial storage polymer that can be produced from non-food biomass and other organic feedstocks. The physicochemical properties of EEB and fuel-relevant properties of EEB-gasoline blends were measured, emissions of criteria pollutants from EEB as a gasoline additive in a production vehicle were evaluated, and fate and persistence ofmore » EEB in the environment were estimated. EEB solubility in water was 25.8 g/L, its K ow was 1.8, and its Henry's Law constant was 1.04 x 10 -5 atm-m 3/mole. The anti-knock index values for 5% and 20% v/v EEB-gasoline blends were 91.6 and 91.9, respectively. Reductions in fuel economy were consistent with the level of oxygenation, and criteria emissions were met by the vehicle operated over the urban dynamometer driving cycle (FTP 75). Predicted environmental persistence ranged from 15 d to 30 d which indicates that EEB is not likely to be a persistent organic pollutant. Combined, these results suggest a high potential for the use of EEB as a renewable fuel source.« less

  12. Pollutant emissions and environmental assessment of ethyl 3-ethoxybutyrate, a potential renewable fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Storey, John M. E.; Bunce, Michael P.; Clarke, Edwina M.

    Renewable and bio-based transportation fuel sources can lower the life-cycle greenhouse gas emissions from vehicles. Here, we present an initial assessment of ethyl 3-ethoxybutyrate (EEB) as a biofuel in terms of its performance as a fuel oxygenate and its persistence in the environment. EEB can be produced from ethanol and poly-3-hydroxybutyrate, a bacterial storage polymer that can be produced from non-food biomass and other organic feedstocks. The physicochemical properties of EEB and fuel-relevant properties of EEB-gasoline blends were measured, emissions of criteria pollutants from EEB as a gasoline additive in a production vehicle were evaluated, and fate and persistence ofmore » EEB in the environment were estimated. EEB solubility in water was 25.8 g/L, its K ow was 1.8, and its Henry's Law constant was 1.04 x 10 -5 atm-m 3/mole. The anti-knock index values for 5% and 20% v/v EEB-gasoline blends were 91.6 and 91.9, respectively. Reductions in fuel economy were consistent with the level of oxygenation, and criteria emissions were met by the vehicle operated over the urban dynamometer driving cycle (FTP 75). Predicted environmental persistence ranged from 15 d to 30 d which indicates that EEB is not likely to be a persistent organic pollutant. Combined, these results suggest a high potential for the use of EEB as a renewable fuel source.« less

  13. Pollutant emissions and environmental assessment of ethyl 3-ethoxybutyrate, a potential renewable fuel.

    PubMed

    Storey, John M E; Bunce, Michael P; Clarke, Edwina M; Edmonds, Jennifer W; Findlay, Robert H; Ritchie, Stephen M C; Eyers, Laurent; McMurry, Zackery A; Smoot, James C

    2016-09-01

    Renewable and bio-based transportation fuel sources can lower the life-cycle greenhouse gas emissions from vehicles. We present an initial assessment of ethyl 3-ethoxybutyrate (EEB) as a biofuel in terms of its performance as a fuel oxygenate and its persistence in the environment. EEB can be produced from ethanol and poly-3-hydroxybutyrate, a bacterial storage polymer that can be produced from non-food biomass and other organic feedstocks. Physicochemical properties of EEB and fuel-relevant properties of EEB-gasoline blends were measured, emissions of criteria pollutants from EEB as a gasoline additive in a production vehicle were evaluated, and fate and persistence of EEB in the environment were estimated. EEB solubility in water was 25.8 g/L, its Kow was 1.8, and its Henry's Law constant was 1.04 × 10(-5) atm-m(3)/mole. The anti-knock index values for 5 and 20 % v/v EEB-gasoline blends were 91.6 and 91.9, respectively. Reductions in fuel economy were consistent with the level of oxygenation, and criteria emissions were met by the vehicle operated over the urban dynamometer driving cycle (FTP 75). Predicted environmental persistence ranged from 15 to 30 days which indicates that EEB is not likely to be a persistent organic pollutant. In combination, these results suggest a high potential for the use of EEB as a renewable fuel source.

  14. On feasibility of a closed nuclear power fuel cycle with minimum radioactivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrianova, E. A.; Davidenko, V. D.; Tsibulskiy, V. F., E-mail: Tsibulskiy-VF@nrcki.ru

    2015-12-15

    Practical implementation of a closed nuclear fuel cycle implies solution of two main tasks. The first task is creation of environmentally acceptable operating conditions of the nuclear fuel cycle considering, first of all, high radioactivity of the involved materials. The second task is creation of effective and economically appropriate conditions of involving fertile isotopes in the fuel cycle. Creation of technologies for management of the high-level radioactivity of spent fuel reliable in terms of radiological protection seems to be the hardest problem.

  15. Carbon Corrosion in PEM Fuel Cells and the Development of Accelerated Stress Tests

    DOE PAGES

    Macauley, Natalia; Papadias, Dennis D.; Fairweather, Joseph; ...

    2018-03-15

    Here, carbon corrosion is an important degradation mechanism that can impair PEMFC performance through the destruction of catalyst connectivity, collapse of the electrode pore structure, loss of hydrophobic character, and an increase of the catalyst particle size. In this study, carbon corrosion was quantified in situ by measurement of carbon dioxide in the fuel cell exhaust gases through non-dispersive infrared spectroscopy during simulated drive cycle operations consisting of potential cycling with varying upper and lower potential limits. These studies were conducted for three different types of carbon supports. A reduction in the catalyst layer thickness was observed during a simulatedmore » drive cycle operation with a concomitant decrease in catalyst layer porosity, which led to performance losses due to increased mass transport limitations. The observed thickness reduction was primarily due to compaction of the catalyst layer, with the actual mass of carbon oxidation (loss) contributing only a small fraction (< 20%). The dynamics of carbon corrosion are presented along with a model that simulates the transient and dynamic corrosion rates observed in our experiments. Accelerated carbon corrosion stress tests are presented and their effects are compared to those observed for the drive cycle test.« less

  16. Carbon Corrosion in PEM Fuel Cells and the Development of Accelerated Stress Tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macauley, Natalia; Papadias, Dennis D.; Fairweather, Joseph

    Here, carbon corrosion is an important degradation mechanism that can impair PEMFC performance through the destruction of catalyst connectivity, collapse of the electrode pore structure, loss of hydrophobic character, and an increase of the catalyst particle size. In this study, carbon corrosion was quantified in situ by measurement of carbon dioxide in the fuel cell exhaust gases through non-dispersive infrared spectroscopy during simulated drive cycle operations consisting of potential cycling with varying upper and lower potential limits. These studies were conducted for three different types of carbon supports. A reduction in the catalyst layer thickness was observed during a simulatedmore » drive cycle operation with a concomitant decrease in catalyst layer porosity, which led to performance losses due to increased mass transport limitations. The observed thickness reduction was primarily due to compaction of the catalyst layer, with the actual mass of carbon oxidation (loss) contributing only a small fraction (< 20%). The dynamics of carbon corrosion are presented along with a model that simulates the transient and dynamic corrosion rates observed in our experiments. Accelerated carbon corrosion stress tests are presented and their effects are compared to those observed for the drive cycle test.« less

  17. 40 CFR 86.1530 - Test sequence; general requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) Emission Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and... Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle...

  18. Penetration of hydrogen-based energy system and its potential for causing global environmental change: Scoping risk analysis based on life cycle thinking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kikuchi, Ryunosuke

    2006-03-15

    A hydrogen-based economy seems superficially to be environmentally friendly, and many people have worked toward its realization. Today hydrogen is mainly produced by decarbonizing fossil fuels (e.g. natural gas), and in the future decarbonization of both fossil fuels and biomass will play a leading role in the production of hydrogen. The main purpose of this paper is to suggest the identification of potential environmental risks in terms of 'life cycle thinking' (which considers all aspects from production to utilization) with regard to the hydrogen-based economy to come. Hydrogen production by decarbonization results in CO{sub 2} emissions. The final destination ofmore » the recovered CO{sub 2} is uncertain. Furthermore, there is a possibility that hydrogen molecules will escape to the atmosphere, posing risks that could occasion global environmental changes such as depletion of stratospheric ozone, temperature change in the stratosphere and change of the hydrides cycle through global vaporization. Based on the results of simulation, requirements regarding the following items are proposed to minimize potential risks: hydrogen source, production and storage loss.« less

  19. The study of integrated coal-gasifier molten carbonate fuel cell systems

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A novel integration concept for a coal-fueled coal gasifier-molten carbonate fuel cell power plant was studied. Effort focused on determining the efficiency potential of the concept, design, and development requirements of the processes in order to achieve the efficiency. The concept incorporates a methane producing catalytic gasifier of the type previously under development by Exxon Research and Development Corp., a reforming molten carbonate fuel cell power section of the type currently under development by United Technologies Corp., and a gasifier-fuel cell recycle loop. The concept utilizes the fuel cell waste heat, in the form of hydrogen and carbon monoxide, to generate additional fuel in the coal gasifier, thereby eliminating the use of both an O2 plant and a stream bottoming cycle from the power plant. The concept has the potential for achieving coal-pile-to-busbar efficiencies of 50-59%, depending on the process configuration and degree of process configuration and degree of process development requirements. This is significantly higher than any previously reported gasifier-molten carbonate fuel cell system.

  20. Economic Analysis of Complex Nuclear Fuel Cycles with NE-COST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganda, Francesco; Dixon, Brent; Hoffman, Edward

    The purpose of this work is to present a new methodology, and associated computational tools, developed within the U.S. Department of Energy (U.S. DOE) Fuel Cycle Option Campaign to quantify the economic performance of complex nuclear fuel cycles. The levelized electricity cost at the busbar is generally chosen to quantify and compare the economic performance of different baseload generating technologies, including of nuclear: it is the cost of electricity which renders the risk-adjusted discounted net present value of the investment cash flow equal to zero. The work presented here is focused on the calculation of the levelized cost of electricitymore » of fuel cycles at mass balance equilibrium, which is termed LCAE (Levelized Cost of Electricity at Equilibrium). To alleviate the computational issues associated with the calculation of the LCAE for complex fuel cycles, a novel approach has been developed, which has been called the “island approach” because of its logical structure: a generic complex fuel cycle is subdivided into subsets of fuel cycle facilities, called islands, each containing one and only one type of reactor or blanket and an arbitrary number of fuel cycle facilities. A nuclear economic software tool, NE-COST, written in the commercial programming software MATLAB®, has been developed to calculate the LCAE of complex fuel cycles with the “island” computational approach. NE-COST has also been developed with the capability to handle uncertainty: the input parameters (both unit costs and fuel cycle characteristics) can have uncertainty distributions associated with them, and the output can be computed in terms of probability density functions of the LCAE. In this paper NE-COST will be used to quantify, as examples, the economic performance of (1) current Light Water Reactors (LWR) once-through systems; (2) continuous plutonium recycling in Fast Reactors (FR) with driver and blanket; (3) Recycling of plutonium bred in FR into LWR. For each fuel cycle, the contributions to the total LCAE of the main cost components will be identified.« less

  1. 40 CFR 600.207-08 - Calculation and use of vehicle-specific 5-cycle-based fuel economy values for vehicle...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... economy values from the tests performed using gasoline or diesel test fuel. (ii)(A) Calculate the 5-cycle city and highway fuel economy values from the tests performed using alcohol or natural gas test fuel...-specific 5-cycle-based fuel economy values for vehicle configurations. 600.207-08 Section 600.207-08...

  2. 40 CFR 600.207-08 - Calculation and use of vehicle-specific 5-cycle-based fuel economy values for vehicle...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... economy values from the tests performed using gasoline or diesel test fuel. (ii)(A) Calculate the 5-cycle city and highway fuel economy values from the tests performed using alcohol or natural gas test fuel...-specific 5-cycle-based fuel economy values for vehicle configurations. 600.207-08 Section 600.207-08...

  3. Electrochemical stability and postmortem studies of Pt/SiC catalysts for polymer electrolyte membrane fuel cells.

    PubMed

    Stamatin, Serban N; Speder, Jozsef; Dhiman, Rajnish; Arenz, Matthias; Skou, Eivind M

    2015-03-25

    In the presented work, the electrochemical stability of platinized silicon carbide is studied. Postmortem transmission electron microscopy and X-ray photoelectron spectroscopy were used to document the change in the morphology and structure upon potential cycling of Pt/SiC catalysts. Two different potential cycle aging tests were used in order to accelerate the support corrosion, simulating start-up/shutdown and load cycling. On the basis of the results, we draw two main conclusions. First, platinized silicon carbide exhibits improved electrochemical stability over platinized active carbons. Second, silicon carbide undergoes at least mild oxidation if not even silicon leaching.

  4. 40 CFR 86.1503 - Abbreviations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for Otto-Cycle...-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test Procedures § 86.1503...

  5. 40 CFR 86.1502 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for Otto-Cycle...-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test Procedures § 86.1502...

  6. Intergenerational considerations affecting the future of nuclear power: equity as a framework for assessing fuel cycles.

    PubMed

    Taebi, Behnam; Kadak, Andrew C

    2010-09-01

    Alternative fuel cycles are being considered in an effort to prolong uranium fuel supplies for thousands of years to come and to manage nuclear waste. These strategies bring with them different benefits and burdens for the present generation and for future generations. In this article, we present a method that provides insight into future fuel cycle alternatives and into the conflicts arising between generations within the framework of intergenerational equity. A set of intersubjective values is drawn from the notion of sustainable development. By operationalizing these values and mapping out their impacts, value criteria are introduced for the assessment of fuel cycles, which are based on the distribution of burdens and benefits between generations. The once-through fuel cycle currently deployed in the United States and three future fuel cycles are subsequently assessed according to these criteria. The four alternatives are then compared in an integrated analysis in which we shed light on the implicit tradeoffs made by decisionmakers when they choose a certain fuel cycle. When choosing a fuel cycle, what are the societal costs and burdens accepted for each generation and how can these factors be justified? This article presents an integrated decision-making method, which considers intergenerational aspects of such decisions; this method could also be applied to other technologies. © 2010 Society for Risk Analysis.

  7. Potential improvements in turbofan engine fuel economy

    NASA Technical Reports Server (NTRS)

    Hines, R. W.; Gaffin, W. O.

    1976-01-01

    The method developed for initial evaluation of possible performance improvements in the NASA Aircraft Energy Efficiency Program, directed toward improving the fuel economy of turbofan engines, is outlined, and results of the evaluation of 100 candidate engine modifications are presented. The study indicates that fuel consumption improvements of as much as 5% may be possible in current JT3D, JT8D, and JT9D turbofan engines. Aerodynamic, thermodynamic, material, and structural advances are expected to yield fuel consumption improvements on the order of 10 to 15% in advanced turbofan engines, with the greatest improvement stemming from significantly higher cycle pressure ratios. Higher turbine temperature and fan bypass ratios are also expected to contribute to fuel conservation.

  8. FY16 Status Report for the Uranium-Molybdenum Fuel Concept

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, Wendy D.; Doherty, Ann L.; Henager, Charles H.

    2016-09-22

    The Fuel Cycle Research and Development program of the Office of Nuclear Energy has implemented a program to develop a Uranium-Molybdenum metal fuel for light water reactors. Uranium-Molybdenum fuel has the potential to provide superior performance based on its thermo-physical properties. With sufficient development, it may be able to provide the Light Water Reactor industry with a melt-resistant, accident-tolerant fuel with improved safety response. The Pacific Northwest National Laboratory has been tasked with extrusion development and performing ex-reactor corrosion testing to characterize the performance of Uranium-Molybdenum fuel in both these areas. This report documents the results of the fiscal yearmore » 2016 effort to develop the Uranium-Molybdenum metal fuel concept for light water reactors.« less

  9. 40 CFR 86.1537 - Idle test run.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for Otto-Cycle...-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test Procedures § 86.1537 Idle...

  10. 40 CFR 86.1537 - Idle test run.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for Otto-Cycle...-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test Procedures § 86.1537 Idle...

  11. 78 FR 11903 - Acceptability of Corrective Action Programs for Fuel Cycle Facilities

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-20

    ... Cycle Facilities AGENCY: Nuclear Regulatory Commission. ACTION: Draft NUREG; request for public comment... ``Acceptability of Corrective Action Programs for Fuel Cycle Facilities.'' The draft NUREG provides guidance to... a fuel cycle facility is acceptable. DATES: Comments may be submitted by April 22, 2013. Comments...

  12. 40 CFR 86.1537 - Idle test run.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for Otto-Cycle...-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test Procedures § 86.1537 Idle...

  13. Life cycle assessment of automobile/fuel options.

    PubMed

    MacLean, Heather L; Lave, Lester B

    2003-12-01

    We examine the possibilities for a "greener" car that would use less material and fuel, be less polluting, and would have a well-managed end-of-life. Light-duty vehicles are fundamental to our economy and will continue to be for the indefinite future. Any redesign to make these vehicles greener requires consumer acceptance. Consumer desires for large, powerful vehicles have been the major stumbling block in achieving a "green car". The other major barrier is inherent contradictions among social goals such as fuel economy, safety, low emissions of pollutants, and low emissions of greenhouse gases, which has led to conflicting regulations such as emissions regulations blocking sales of direct injection diesels in California, which would save fuel. In evaluating fuel/vehicle options with the potential to improve the greenness of cars [diesel (direct injection) and ethanol in internal combustion engines, battery-powered, gasoline hybrid electric, and hydrogen fuel cells], we find no option dominates the others on all dimensions. The principles of green design developed by Anastas and Zimmerman (Environ. Sci. Technol. 2003, 37, 94A-101A) and the use of a life cycle approach provide insights on the key sustainability issues associated with the various options.

  14. Life-cycle assessment of diesel, natural gas and hydrogen fuel cell bus transportation systems

    NASA Astrophysics Data System (ADS)

    Ally, Jamie; Pryor, Trevor

    The Sustainable Transport Energy Programme (STEP) is an initiative of the Government of Western Australia, to explore hydrogen fuel cell technology as an alternative to the existing diesel and natural gas public transit infrastructure in Perth. This project includes three buses manufactured by DaimlerChrysler with Ballard fuel cell power sources operating in regular service alongside the existing natural gas and diesel bus fleets. The life-cycle assessment (LCA) of the fuel cell bus trial in Perth determines the overall environmental footprint and energy demand by studying all phases of the complete transportation system, including the hydrogen infrastructure, bus manufacturing, operation, and end-of-life disposal. The LCAs of the existing diesel and natural gas transportation systems are developed in parallel. The findings show that the trial is competitive with the diesel and natural gas bus systems in terms of global warming potential and eutrophication. Emissions that contribute to acidification and photochemical ozone are greater for the fuel cell buses. Scenario analysis quantifies the improvements that can be expected in future generations of fuel cell vehicles and shows that a reduction of greater than 50% is achievable in the greenhouse gas, photochemical ozone creation and primary energy demand impact categories.

  15. International nuclear fuel cycle fact book. Revision 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harmon, K.M.; Lakey, L.T.; Leigh, I.W.

    This Fact Book has been compiled in an effort to provide (1) an overview of worldwide nuclear power and fuel cycle programs and (2) current data concerning fuel cycle and waste management facilities, R and D programs, and key personnel in countries other than the United States. Additional information on each country's program is available in the International Source Book: Nuclear Fuel Cycle Research and Development, PNL-2478, Rev. 2. The Fact Book is organized as follows: (1) Overview section - summary tables which indicate national involvement in nuclear reactor, fuel cycle, and waste management development activities; (2) national summaries -more » a section for each country which summarizes nuclear policy, describes organizational relationships and provides addresses, names of key personnel, and facilities information; (3) international agencies - a section for each of the international agencies which has significant fuel cycle involvement; (4) energy supply and demand - summary tables, including nuclear power projections; (5) fuel cycle - summary tables; and (6) travel aids - international dialing instructions, international standard time chart, passport and visa requirements, and currency exchange rate.« less

  16. International Nuclear Fuel Cycle Fact Book. Revision 5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harmon, K.M.; Lakey, L.T.; Leigh, I.W.

    This Fact Book has been compiled in an effort to provide: (1) an overview of worldwide nuclear power and fuel cycle programs; and (2) current data concerning fuel cycle and waste management facilities, R and D programs, and key personnel in countries other than the United States. Additional information on each country's program is available in the International Source Book: Nuclear Fuel Cycle Research and Development, PNL-2478, Rev. 2. The Fact Book is organized as follows: (1) Overview section - summary tables which indicate national involvement in nuclear reactor, fuel cycle, and waste management development activities; (2) national summaries -more » a section for each country which summarizes nuclear policy, describes organizational relationships and provides addresses, names of key personnel, and facilities information; (3) international agencies - a section for each of the international agencies which has significant fuel cycle involvement; (4) energy supply and demand - summary tables, including nuclear power projections; (5) fuel cycle - summary tables; and (6) travel aids international dialing instructions, international standard time chart, passport and visa requirements, and currency exchange rate.« less

  17. Hydraulic Hybrid and Conventional Parcel Delivery Vehicles' Measured Laboratory Fuel Economy on Targeted Drive Cycles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lammert, M. P.; Burton, J.; Sindler, P.

    2014-10-01

    This research project compares laboratory-measured fuel economy of a medium-duty diesel powered hydraulic hybrid vehicle drivetrain to both a conventional diesel drivetrain and a conventional gasoline drivetrain in a typical commercial parcel delivery application. Vehicles in this study included a model year 2012 Freightliner P100H hybrid compared to a 2012 conventional gasoline P100 and a 2012 conventional diesel parcel delivery van of similar specifications. Drive cycle analysis of 484 days of hybrid parcel delivery van commercial operation from multiple vehicles was used to select three standard laboratory drive cycles as well as to create a custom representative cycle. These fourmore » cycles encompass and bracket the range of real world in-use data observed in Baltimore United Parcel Service operations. The NY Composite cycle, the City Suburban Heavy Vehicle Cycle cycle, and the California Air Resources Board Heavy Heavy-Duty Diesel Truck (HHDDT) cycle as well as a custom Baltimore parcel delivery cycle were tested at the National Renewable Energy Laboratory's Renewable Fuels and Lubricants Laboratory. Fuel consumption was measured and analyzed for all three vehicles. Vehicle laboratory results are compared on the basis of fuel economy. The hydraulic hybrid parcel delivery van demonstrated 19%-52% better fuel economy than the conventional diesel parcel delivery van and 30%-56% better fuel economy than the conventional gasoline parcel delivery van on cycles other than the highway-oriented HHDDT cycle.« less

  18. Advantages of liquid fluoride thorium reactor in comparison with light water reactor

    NASA Astrophysics Data System (ADS)

    Bahri, Che Nor Aniza Che Zainul; Majid, Amran Ab.; Al-Areqi, Wadeeah M.

    2015-04-01

    Liquid Fluoride Thorium Reactor (LFTR) is an innovative design for the thermal breeder reactor that has important potential benefits over the traditional reactor design. LFTR is fluoride based liquid fuel, that use the thorium dissolved in salt mixture of lithium fluoride and beryllium fluoride. Therefore, LFTR technology is fundamentally different from the solid fuel technology currently in use. Although the traditional nuclear reactor technology has been proven, it has perceptual problems with safety and nuclear waste products. The aim of this paper is to discuss the potential advantages of LFTR in three aspects such as safety, fuel efficiency and nuclear waste as an alternative energy generator in the future. Comparisons between LFTR and Light Water Reactor (LWR), on general principles of fuel cycle, resource availability, radiotoxicity and nuclear weapon proliferation shall be elaborated.

  19. Advantages of liquid fluoride thorium reactor in comparison with light water reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bahri, Che Nor Aniza Che Zainul, E-mail: anizazainul@gmail.com; Majid, Amran Ab.; Al-Areqi, Wadeeah M.

    2015-04-29

    Liquid Fluoride Thorium Reactor (LFTR) is an innovative design for the thermal breeder reactor that has important potential benefits over the traditional reactor design. LFTR is fluoride based liquid fuel, that use the thorium dissolved in salt mixture of lithium fluoride and beryllium fluoride. Therefore, LFTR technology is fundamentally different from the solid fuel technology currently in use. Although the traditional nuclear reactor technology has been proven, it has perceptual problems with safety and nuclear waste products. The aim of this paper is to discuss the potential advantages of LFTR in three aspects such as safety, fuel efficiency and nuclearmore » waste as an alternative energy generator in the future. Comparisons between LFTR and Light Water Reactor (LWR), on general principles of fuel cycle, resource availability, radiotoxicity and nuclear weapon proliferation shall be elaborated.« less

  20. Advanced Nuclear Fuel Cycle Transitions: Optimization, Modeling Choices, and Disruptions

    NASA Astrophysics Data System (ADS)

    Carlsen, Robert W.

    Many nuclear fuel cycle simulators have evolved over time to help understan the nuclear industry/ecosystem at a macroscopic level. Cyclus is one of th first fuel cycle simulators to accommodate larger-scale analysis with it liberal open-source licensing and first-class Linux support. Cyclus also ha features that uniquely enable investigating the effects of modeling choices o fuel cycle simulators and scenarios. This work is divided into thre experiments focusing on optimization, effects of modeling choices, and fue cycle uncertainty. Effective optimization techniques are developed for automatically determinin desirable facility deployment schedules with Cyclus. A novel method fo mapping optimization variables to deployment schedules is developed. Thi allows relationships between reactor types and scenario constraints to b represented implicitly in the variable definitions enabling the usage o optimizers lacking constraint support. It also prevents wasting computationa resources evaluating infeasible deployment schedules. Deployed power capacit over time and deployment of non-reactor facilities are also included a optimization variables There are many fuel cycle simulators built with different combinations o modeling choices. Comparing results between them is often difficult. Cyclus flexibility allows comparing effects of many such modeling choices. Reacto refueling cycle synchronization and inter-facility competition among othe effects are compared in four cases each using combinations of fleet of individually modeled reactors with 1-month or 3-month time steps. There are noticeable differences in results for the different cases. The larges differences occur during periods of constrained reactor fuel availability This and similar work can help improve the quality of fuel cycle analysi generally There is significant uncertainty associated deploying new nuclear technologie such as time-frames for technology availability and the cost of buildin advanced reactors. Historically, fuel cycle analysis has focused on answerin questions of fuel cycle feasibility and optimality. However, there has no been much work done to address uncertainty in fuel cycle analysis helpin answer questions of fuel cycle robustness. This work develops an demonstrates a methodology for evaluating deployment strategies whil accounting for uncertainty. Techniques are developed for measuring th hedging properties of deployment strategies under uncertainty. Additionally methods for using optimization to automatically find good hedging strategie are demonstrated.

  1. Fuel governor for controlled autoignition engines

    DOEpatents

    Jade, Shyam; Hellstrom, Erik; Stefanopoulou, Anna; Jiang, Li

    2016-06-28

    Methods and systems for controlling combustion performance of an engine are provided. A desired fuel quantity for a first combustion cycle is determined. One or more engine actuator settings are identified that would be required during a subsequent combustion cycle to cause the engine to approach a target combustion phasing. If the identified actuator settings are within a defined acceptable operating range, the desired fuel quantity is injected during the first combustion cycle. If not, an attenuated fuel quantity is determined and the attenuated fuel quantity is injected during the first combustion cycle.

  2. High-temperature Gas Reactor (HTGR)

    NASA Astrophysics Data System (ADS)

    Abedi, Sajad

    2011-05-01

    General Atomics (GA) has over 35 years experience in prismatic block High-temperature Gas Reactor (HTGR) technology design. During this period, the design has recently involved into a modular have been performed to demonstrate its versatility. This versatility is directly related to refractory TRISO coated - particle fuel that can contain any type of fuel. This paper summarized GA's fuel cycle studies individually and compares each based upon its cycle sustainability, proliferation-resistance capabilities, and other performance data against pressurized water reactor (PWR) fuel cycle data. Fuel cycle studies LEU-NV;commercial HEU-Th;commercial LEU-Th;weapons-grade plutonium consumption; and burning of LWR waste including plutonium and minor actinides in the MHR. results show that all commercial MHR options, with the exception of HEU-TH, are more sustainable than a PWR fuel cycle. With LEU-NV being the most sustainable commercial options. In addition, all commercial MHR options out perform the PWR with regards to its proliferation-resistance, with thorium fuel cycle having the best proliferation-resistance characteristics.

  3. Alternative Fuels Data Center

    Science.gov Websites

    specified volumes of renewable fuels according to the categories below. EISA established life cycle GHG demonstrate a 20% reduction in life cycle GHG emissions. Advanced Biofuel: Any fuel derived from cellulosic or categories may be used to meet this category. Fuels in this category must demonstrate a life cycle GHG

  4. 40 CFR 86.1506 - Equipment required and specifications; overview.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... appear in §§ 86.1509 through 86.1511. (2) Fuel and analytical tests. Fuel requirements for idle exhaust... Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test... for performing idle exhaust emission tests on Otto-cycle heavy-duty engines and Otto-cycle light-duty...

  5. Fuel consumption for various driving styles in conventional and hybrid electric vehicles: Integrating driving cycle predictions with fuel consumption optimization

    DOE PAGES

    Rios-Torres, Jackeline; Liu, Jun; Khattak, Asad

    2018-06-14

    Here, improving fuel economy and lowering emissions are key societal goals. Standard driving cycles, pre-designed by the US Environmental Protection Agency (EPA), have long been used to estimate vehicle fuel economy in laboratory-controlled conditions. They have also been used to test and tune different energy management strategies for hybrid electric vehicles (HEVs). This paper aims to estimate fuel consumption for a conventional vehicle and a HEV using personalized driving cycles extracted from real-world data to study the effects of different driving styles and vehicle types on fuel consumption when compared to the estimates based on standard driving cycles. To domore » this, we extracted driving cycles for conventional vehicles and HEVs from a large-scale U.S. survey that contains real-world GPS-based driving records. Next, the driving cycles were assigned to one of three categories: volatile, normal, or calm. Then, the driving cycles were used along with a driver-vehicle simulation that captures driver decisions (vehicle speed during a trip), powertrain, and vehicle dynamics to estimate fuel consumption for conventional vehicles and HEVs with power-split powertrain. To further optimize fuel consumption for HEVs, the Equivalent Consumption Minimization Strategy (ECMS) is applied. The results show that depending on the driving style and the driving scenario, conventional vehicle fuel consumption can vary widely compared with standard EPA driving cycles. Specifically, conventional vehicle fuel consumption was 13% lower in calm urban driving, but almost 34% higher for volatile highway driving compared with standard EPA driving cycles. Interestingly, when a driving cycle is predicted based on the application of case-based reasoning and used to tune the power distribution in a hybrid electric vehicle, its fuel consumption can be reduced by up to 12% in urban driving. Implications and limitations of the findings are discussed.« less

  6. Fuel consumption for various driving styles in conventional and hybrid electric vehicles: Integrating driving cycle predictions with fuel consumption optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rios-Torres, Jackeline; Liu, Jun; Khattak, Asad

    Here, improving fuel economy and lowering emissions are key societal goals. Standard driving cycles, pre-designed by the US Environmental Protection Agency (EPA), have long been used to estimate vehicle fuel economy in laboratory-controlled conditions. They have also been used to test and tune different energy management strategies for hybrid electric vehicles (HEVs). This paper aims to estimate fuel consumption for a conventional vehicle and a HEV using personalized driving cycles extracted from real-world data to study the effects of different driving styles and vehicle types on fuel consumption when compared to the estimates based on standard driving cycles. To domore » this, we extracted driving cycles for conventional vehicles and HEVs from a large-scale U.S. survey that contains real-world GPS-based driving records. Next, the driving cycles were assigned to one of three categories: volatile, normal, or calm. Then, the driving cycles were used along with a driver-vehicle simulation that captures driver decisions (vehicle speed during a trip), powertrain, and vehicle dynamics to estimate fuel consumption for conventional vehicles and HEVs with power-split powertrain. To further optimize fuel consumption for HEVs, the Equivalent Consumption Minimization Strategy (ECMS) is applied. The results show that depending on the driving style and the driving scenario, conventional vehicle fuel consumption can vary widely compared with standard EPA driving cycles. Specifically, conventional vehicle fuel consumption was 13% lower in calm urban driving, but almost 34% higher for volatile highway driving compared with standard EPA driving cycles. Interestingly, when a driving cycle is predicted based on the application of case-based reasoning and used to tune the power distribution in a hybrid electric vehicle, its fuel consumption can be reduced by up to 12% in urban driving. Implications and limitations of the findings are discussed.« less

  7. Influence of bio-fuels on passenger car vehicle emissions

    NASA Astrophysics Data System (ADS)

    Petrea, M.; Kapernaum, M.; Wahl, C.

    2009-04-01

    In order to reduce the emissions of air pollutants, vehicles design and fuel formulation have changed. Ultra clean vehicle technologies started to be used in increased number. As a result, the emissions composition is expected to change as well. The use of new technologies and new fuels require new emissions tests especially for non-regulated compounds. The interest in using bio fuels as alternative fuels for petroleum-based ones has increased constantly in the last years. The advantages of the bio fuels usage is given by their similar proprieties, characteristics of renew ability, biodegradability and potential beneficial effects on the exhaust emission. The study involved measurements on a roller test facility of a reference passenger car representing new technologies (emission standards, injection system). The vehicle operated by use of reference gasoline and reference gasoline blended (10 and 20%) with bio-ethanol (EtOH). The measurements used different driving cycles: ARTEMIS cycle, real world driving cycle, NEDC cycle, the standard European driving cycle and additionally, a driving cycle consisting in Idle, 30, 50, 90 km/h. The sampling positions were before and after the catalyst and in the exhaust pipe. The detailed speciation of NMVOC' (non methane volatile organic compounds) was completed by use of active carbon tubes, DNPH (2,4-dinitrophenylhydrazine) tubes and cold traps. The particles were monitored by use of an on-line EEPS (Engine Exhaust Particle Sizer). CO2, NO, NO2 and NOX (NO +NO2) were continuously monitored by use of an on- line FTIR (Fourier transform infrared spectroscopy)- MEXA system. The investigations reveal that among the carbonylic compounds 15 oxygenated species were found in engine out exhaust and only 3 in tailpipe emissions, namely formaldehyde, acetaldehyde and acroleine. These are of great interest due to their impacts on human health. The hydrocarbons emissions decrease by increased of EtOH content. New compounds were observed. The nitro-compounds found in the after engine position by increased EtOH were no more found in the exhaust gas. The results show that total particle concentration, mass and diameter decreased substantially after catalyst and filter by increased ethanol blend.

  8. Argonne's Michael Wang talks about the GREET Model for reducing vehicle emi

    ScienceCinema

    Wang, Michael

    2018-05-11

    To fully evaluate energy and emission impacts of advanced vehicle technologies and new transportation fuels, the fuel cycle from wells to wheels and the vehicle cycle through material recovery and vehicle disposal need to be considered. Sponsored by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy (EERE), Argonne has developed a full life-cycle model called GREET (Greenhouse gases, Regulated Emissions, and Energy use in Transportation). It allows researchers and analysts to evaluate various vehicle and fuel combinations on a full fuel-cycle/vehicle-cycle basis. The first version of GREET was released in 1996. Since then, Argonne has continued to update and expand the model. The most recent GREET versions are the GREET 1 2012 version for fuel-cycle analysis and GREET 2.7 version for vehicle-cycle analysis.

  9. Fusion Applications and Market Evaluation (FAME) Study

    DTIC Science & Technology

    1988-02-01

    fuel from the breeder. Pyrochemical reprocessing is identified as having the potential for low cost, but needs development . The fast-fission designs... Development Administration, "Alternatives for Man- aging Wastes from Reactors and Post-Fission Operations in the LWR Fuel Cycle," ERDA-76-43 (1976). 5...of the ICF program to produce pulsed radiation for military development applications. X-rays can be converted into UV at about 50% energy efficiency

  10. Regulatory cross-cutting topics for fuel cycle facilities.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denman, Matthew R.; Brown, Jason; Goldmann, Andrew Scott

    This report overviews crosscutting regulatory topics for nuclear fuel cycle facilities for use in the Fuel Cycle Research & Development Nuclear Fuel Cycle Evaluation and Screening study. In particular, the regulatory infrastructure and analysis capability is assessed for the following topical areas: Fire Regulations (i.e., how applicable are current Nuclear Regulatory Commission (NRC) and/or International Atomic Energy Agency (IAEA) fire regulations to advance fuel cycle facilities) Consequence Assessment (i.e., how applicable are current radionuclide transportation tools to support risk-informed regulations and Level 2 and/or 3 PRA) While not addressed in detail, the following regulatory topic is also discussed: Integrated Security,more » Safeguard and Safety Requirement (i.e., how applicable are current Nuclear Regulatory Commission (NRC) regulations to future fuel cycle facilities which will likely be required to balance the sometimes conflicting Material Accountability, Security, and Safety requirements.)« less

  11. Update to Millstone 3 elevated pH tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bergmann, C.A.; Perock, J.D.; Hudson, M.J.B.

    1995-03-01

    In view of the potential radiological benefits of elevated coolant pH operation, Northwest Utilities (NU), in support of an EPRI-Westinghouse program, agreed to operate the Millstone 3 plant at the start of its second fuel cycle as a demonstration of the effect of elevated coolant pH on out-of-core radiation fields. Operating with an elevated pH is defined as operating with an average lithium concentration of 3.35 ppm, until reaching an end of cycle pH of 7.2 or 7.4. The plant operated during its second and third cycles with an elevated coolant pH. The end of cycle pH during the secondmore » cycle was 7.4, and 7.2 during the third cycle. (During the first cycle, operation was with a coordinated pH of 7.0). Evaluation of the dose rate trends in Millstone 3 after two cycles of elevated coolant pH operation concluded that an elevated coolant pH resulted in a 15 percent lower component dose rate compared to other plants that operated with coordinated pH 6.9. However, due to a possible increase in fuel clad corrosion, operation during cycle 4 was restricted to pH 6.9 coordinated chemistry, with the exception of the last two months during which the pH increased to 7.35. At the end of cycle 4 (EOC4), there was a greater increase in component and crud trap dose rates than expected. This paper reviews the radiological trends in the plant and discusses the potential causes for the increase in the dose rates at EOC4.« less

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yates, K.R.; Schreiber, A.M.; Rudolph, A.W.

    The US Nuclear Regulatory Commission has initiated the Fuel Cycle Risk Assessment Program to provide risk assessment methods for assistance in the regulatory process for nuclear fuel cycle facilities other than reactors. Both the once-through cycle and plutonium recycle are being considered. A previous report generated by this program defines and describes fuel cycle facilities, or elements, considered in the program. This report, the second from the program, describes the survey and computer compilation of fuel cycle risk-related literature. Sources of available information on the design, safety, and risk associated with the defined set of fuel cycle elements were searchedmore » and documents obtained were catalogued and characterized with respect to fuel cycle elements and specific risk/safety information. Both US and foreign surveys were conducted. Battelle's computer-based BASIS information management system was used to facilitate the establishment of the literature compilation. A complete listing of the literature compilation and several useful indexes are included. Future updates of the literature compilation will be published periodically. 760 annotated citations are included.« less

  13. Carbon corrosion in PEM fuel cells during drive cycle operation

    DOE PAGES

    Borup, Rodney L.; Papadias, D. D.; Mukundan, Rangachary; ...

    2015-09-14

    One of the major contributors to degradation involves the electrocatalyst, including the corrosion of the carbons used as catalyst supports, which leads to changes in the catalyst layer structure. We have measured and quantified carbon corrosion during drive cycle operation and as a variation of the upper and lower potential limits used during drive cycle operation. The amount of carbon corrosion is exacerbated by the voltage cycling inherent in the drive cycle compared with constant potential operation. The potential gap between upper and lower potentials appears to be more important than the absolute operating potentials in the normal operating potentialmore » regime (0.40V to 0.95V) as changes in the measured carbon corrosion are similar when the upper potential was lower compared to raising the lower potential. Catalyst layer thinning was observed during the simulated drive cycle operation which had an associated decrease in catalyst layer porosity. This catalyst layer thinning is not due solely to carbon corrosion, although carbon corrosion likely plays a role; much of this thinning must be from compaction of the material in the catalyst layer. As a result, the decrease in catalyst layer porosity leads to additional performance losses due to mass transport losses.« less

  14. 40 CFR 86.335-79 - Gasoline-fueled engine test cycle.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Gasoline-fueled engine test cycle. 86....335-79 Gasoline-fueled engine test cycle. (a) The following test sequence shall be followed in.... Cycle No. Mode No. Mode Observed torque (percent of maximum observed) Time in mode-seconds Cumulative...

  15. 40 CFR 86.1309-90 - Exhaust gas sampling system; Otto-cycle and non-petroleum-fueled engines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-cycle and non-petroleum-fueled engines. 86.1309-90 Section 86.1309-90 Protection of Environment... HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for New Otto-Cycle and Diesel Heavy-Duty...-cycle and non-petroleum-fueled engines. (a)(1) General. The exhaust gas sampling system described in...

  16. Climate Impact and Economic Feasibility of Solar Thermochemical Jet Fuel Production.

    PubMed

    Falter, Christoph; Batteiger, Valentin; Sizmann, Andreas

    2016-01-05

    Solar thermochemistry presents a promising option for the efficient conversion of H2O and CO2 into liquid hydrocarbon fuels using concentrated solar energy. To explore the potential of this fuel production pathway, the climate impact and economic performance are analyzed. Key drivers for the economic and ecological performance are thermochemical energy conversion efficiency, the level of solar irradiation, operation and maintenance, and the initial investment in the fuel production plant. For the baseline case of a solar tower concentrator with CO2 capture from air, jet fuel production costs of 2.23 €/L and life cycle greenhouse gas (LC GHG) emissions of 0.49 kgCO2-equiv/L are estimated. Capturing CO2 from a natural gas combined cycle power plant instead of the air reduces the production costs by 15% but leads to LC GHG emissions higher than that of conventional jet fuel. Favorable assumptions for all involved process steps (30% thermochemical energy conversion efficiency, 3000 kWh/(m(2) a) solar irradiation, low CO2 and heliostat costs) result in jet fuel production costs of 1.28 €/L at LC GHG emissions close to zero. Even lower production costs may be achieved if the commercial value of oxygen as a byproduct is considered.

  17. Indirect-fired gas turbine bottomed with fuel cell

    DOEpatents

    Micheli, P.L.; Williams, M.C.; Parsons, E.L.

    1995-09-12

    An indirect-heated gas turbine cycle is bottomed with a fuel cell cycle with the heated air discharged from the gas turbine being directly utilized at the cathode of the fuel cell for the electricity-producing electrochemical reaction occurring within the fuel cell. The hot cathode recycle gases provide a substantial portion of the heat required for the indirect heating of the compressed air used in the gas turbine cycle. A separate combustor provides the balance of the heat needed for the indirect heating of the compressed air used in the gas turbine cycle. Hot gases from the fuel cell are used in the combustor to reduce both the fuel requirements of the combustor and the NOx emissions therefrom. Residual heat remaining in the air-heating gases after completing the heating thereof is used in a steam turbine cycle or in an absorption refrigeration cycle. Some of the hot gases from the cathode can be diverted from the air-heating function and used in the absorption refrigeration cycle or in the steam cycle for steam generating purposes. 1 fig.

  18. Indirect-fired gas turbine bottomed with fuel cell

    DOEpatents

    Micheli, Paul L.; Williams, Mark C.; Parsons, Edward L.

    1995-01-01

    An indirect-heated gas turbine cycle is bottomed with a fuel cell cycle with the heated air discharged from the gas turbine being directly utilized at the cathode of the fuel cell for the electricity-producing electrochemical reaction occurring within the fuel cell. The hot cathode recycle gases provide a substantial portion of the heat required for the indirect heating of the compressed air used in the gas turbine cycle. A separate combustor provides the balance of the heat needed for the indirect heating of the compressed air used in the gas turbine cycle. Hot gases from the fuel cell are used in the combustor to reduce both the fuel requirements of the combustor and the NOx emissions therefrom. Residual heat remaining in the air-heating gases after completing the heating thereof is used in a steam turbine cycle or in an absorption refrigeration cycle. Some of the hot gases from the cathode can be diverted from the air-heating function and used in the absorption refrigeration cycle or in the steam cycle for steam generating purposes.

  19. Review of Biojet Fuel Conversion Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Wei-Cheng; Tao, Ling; Markham, Jennifer

    Biomass-derived jet (biojet) fuel has become a key element in the aviation industry’s strategy to reduce operating costs and environmental impacts. Researchers from the oil-refining industry, the aviation industry, government, biofuel companies, agricultural organizations, and academia are working toward developing commercially viable and sustainable processes that produce long-lasting renewable jet fuels with low production costs and low greenhouse gas emissions. Additionally, jet fuels must meet ASTM International specifications and potentially be a 100% drop-in replacement for the current petroleum jet fuel. The combustion characteristics and engine tests demonstrate the benefits of running the aviation gas turbine with biojet fuels. Inmore » this study, the current technologies for producing renewable jet fuels, categorized by alcohols-to-jet, oil-to-jet, syngas-to-jet, and sugar-to-jet pathways, are reviewed. The main challenges for each technology pathway, including feedstock availability, conceptual process design, process economics, life-cycle assessment of greenhouse gas emissions, and commercial readiness, are discussed. Although the feedstock price and availability and energy intensity of the process are significant barriers, biomass-derived jet fuel has the potential to replace a significant portion of conventional jet fuel required to meet commercial and military demand.« less

  20. Fully Ceramic Microencapsulated Fuel Development for LWR Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snead, Lance Lewis; Besmann, Theodore M; Terrani, Kurt A

    2012-01-01

    The concept, fabrication, and key feasibility issues of a new fuel form based on the microencapsulated (TRISO-type) fuel which has been specifically engineered for LWR application and compacted within a SiC matrix will be presented. This fuel, the so-called fully ceramic microencapsulated fuel is currently undergoing development as an accident tolerant fuel for potential UO2 replacement in commercial LWRs. While the ability of this fuel to facilitate normal LWR cycle performance is an ongoing effort within the program, this will not be a focus of this paper. Rather, key feasibility and performance aspects of the fuel will be presented includingmore » the ability to fabricate a LWR-specific TRISO, the need for and route to a high thermal conductivity and fully dense matrix that contains neutron poisons, and the performance of that matrix under irradiation and the interaction of the fuel with commercial zircaloy clad.« less

  1. A fuel cycle assessment guide for utility and state energy planners

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-07-01

    This guide, one in a series of documents designed to help assess fuel cycles, is a framework for setting parameters, collecting data, and analyzing fuel cycles for supply-side and demand-side management. It provides an automated tool for entering comparative fuel cycle data that are meaningful to state and utility integrated resource planning, collaborative, and regional energy planning activities. It outlines an extensive range of energy technology characteristics and environmental, social, and economic considerations within each stage of a fuel cycle. The guide permits users to focus on specific stages or effects that are relevant to the technology being evaluated andmore » that meet the user`s planning requirements.« less

  2. Life Cycle Water Consumption for Shale Gas and Conventional Natural Gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, Corrie E.; Horner, Robert M.; Harto, Christopher B.

    2013-10-15

    Shale gas production represents a large potential source of natural gas for the nation. The scale and rapid growth in shale gas development underscore the need to better understand its environmental implications, including water consumption. This study estimates the water consumed over the life cycle of conventional and shale gas production, accounting for the different stages of production and for flowback water reuse (in the case of shale gas). This study finds that shale gas consumes more water over its life cycle (13–37 L/GJ) than conventional natural gas consumes (9.3–9.6 L/GJ). However, when used as a transportation fuel, shale gasmore » consumes significantly less water than other transportation fuels. When used for electricity generation, the combustion of shale gas adds incrementally to the overall water consumption compared to conventional natural gas. The impact of fuel production, however, is small relative to that of power plant operations. The type of power plant where the natural gas is utilized is far more important than the source of the natural gas.« less

  3. Life cycle water consumption for shale gas and conventional natural gas.

    PubMed

    Clark, Corrie E; Horner, Robert M; Harto, Christopher B

    2013-10-15

    Shale gas production represents a large potential source of natural gas for the nation. The scale and rapid growth in shale gas development underscore the need to better understand its environmental implications, including water consumption. This study estimates the water consumed over the life cycle of conventional and shale gas production, accounting for the different stages of production and for flowback water reuse (in the case of shale gas). This study finds that shale gas consumes more water over its life cycle (13-37 L/GJ) than conventional natural gas consumes (9.3-9.6 L/GJ). However, when used as a transportation fuel, shale gas consumes significantly less water than other transportation fuels. When used for electricity generation, the combustion of shale gas adds incrementally to the overall water consumption compared to conventional natural gas. The impact of fuel production, however, is small relative to that of power plant operations. The type of power plant where the natural gas is utilized is far more important than the source of the natural gas.

  4. Global Warming in Geologic Time

    ScienceCinema

    Archer, David

    2018-01-01

    The notion is pervasive in the climate science community and in the public at large that the climate impacts of fossil fuel CO2 release will only persist for a few centuries. This conclusion has no basis in theory or models of the atmosphere / ocean carbon cycle, which we review here. The largest fraction of the CO2 recovery will take place on time scales of centuries, as CO2 invades the ocean, but a significant fraction of the fossil fuel CO2, ranging in published models in the literature from 20-60%, remains airborne for a thousand years or longer. Ultimate recovery takes place on time scales of hundreds of thousands of years, a geologic longevity typically associated in public perceptions with nuclear waste. The glacial / interglacial climate cycles demonstrate that ice sheets and sea level respond dramatically to millennial-timescale changes in climate forcing. There are also potential positive feedbacks in the carbon cycle, including methane hydrates in the ocean, and peat frozen in permafrost, that are most sensitive to the long tail of the fossil fuel CO2 in the atmosphere.

  5. An assessment of the attractiveness of material associated with thorium/uranium and uranium closed fuel cycles from a safeguards perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bathke, Charles Gary; Wallace, Richard K; Hase, Kevin R

    2010-01-01

    This paper reports the continued evaluation of the attractiveness of materials mixtures containing special nuclear materials (SNM) associated with various proposed nuclear fuel cycles. Specifically, this paper examines two closed fuel cycles. The first fuel cycle examined is a thorium fuel cycle in which a pressurized heavy water reactor (PHWR) is fueled with mixtures of plutonium/thorium and {sup 233}U/thorium. The used fuel is then reprocessed using the THOREX process and the actinides are recycled. The second fuel cycle examined consists of conventional light water reactors (LWR) whose fuel is reprocessed for actinides that are then fed to and recycled untilmore » consumed in fast-spectrum reactors: fast reactors and accelerator driven systems (ADS). As reprocessing of LWR fuel has already been examined, this paper will focus on the reprocessing of the scheme's fast-spectrum reactors' fuel. This study will indicate what is required to render these materials as having low utility for use in nuclear weapons. Nevertheless, the results of this paper suggest that all reprocessing products evaluated so far need to be rigorously safeguarded and provided high levels of physical protection. These studies were performed at the request of the United States Department of Energy (DOE). The methodology and key findings will be presented.« less

  6. A summary of the ECAS performance and cost results for MHD system. [Energy Conversion Alternatives Study

    NASA Technical Reports Server (NTRS)

    Seikel, G. R.; Sovie, R. J.; Burns, R. K.; Barna, G. J.; Burkhart, J. A.; Nainiger, J. J.; Smith, J. M.

    1976-01-01

    The interagency-funded, NASA-coordinated Energy Conversion Alternatives Study (ECAS) has studied the potential of various advanced power plant concepts using coal and coal-derived fuel. Principle studies were conducted through prime contracts with the General Electric Company and the Westinghouse Electric Corporation. The results indicate that open-cycle coal-fired direct-preheat MHD systems have potentially one of the highest coal-pile-to-bus-bar efficiencies and also one of the lowest costs of electricity (COE) of the systems studied. Closed-cycle MHD systems may have the potential to approach the efficiency and COE of open-cycle MHD. The 1200-1500 F liquid-metal MHD systems studied do not appear to have the potential of exceeding the efficiency or competing with the COE of advanced steam plants.

  7. DE-NE0000735 - FINAL REPORT ON THORIUM FUEL CYCLE NEUP PROJECT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krahn, Steven; Ault, Timothy; Worrall, Andrew

    The report is broken into six chapters, including this executive summary chapter. Following an introduction, this report discusses each of the project’s three major components (Fuel Cycle Data Package (FCDP) Development, Thorium Fuel Cycle Literature Analysis and Database Development, and the Thorium Fuel Cycle Technical Track and Proceedings). A final chapter is devoted to summarization. Various outcomes, publications, etc. originating from this project can be found in the Appendices at the end of the document.

  8. Argonne's Michael Wang talks about the GREET Model for reducing vehicle emi

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Michael

    2012-07-25

    To fully evaluate energy and emission impacts of advanced vehicle technologies and new transportation fuels, the fuel cycle from wells to wheels and the vehicle cycle through material recovery and vehicle disposal need to be considered. Sponsored by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy (EERE), Argonne has developed a full life-cycle model called GREET (Greenhouse gases, Regulated Emissions, and Energy use in Transportation). It allows researchers and analysts to evaluate various vehicle and fuel combinations on a full fuel-cycle/vehicle-cycle basis. The first version of GREET was released in 1996. Since then, Argonne has continuedmore » to update and expand the model. The most recent GREET versions are the GREET 1 2012 version for fuel-cycle analysis and GREET 2.7 version for vehicle-cycle analysis.« less

  9. 75 FR 30864 - NUREG-1520, “Standard Review Plan for the Review of a License Application for a Fuel Cycle...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-02

    ... a License Application for a Fuel Cycle Facility''; Notice of Availability AGENCY: Nuclear Regulatory... Cycle Facility,'' dated May 2010. ADDRESSES: NRC's Public Document Room (PDR): The public may examine... INFORMATION: The SRP for the review of a license application for a fuel cycle facility (NUREG-1520), Revision...

  10. Durable electrocatalytic-activity of Pt-Au/C cathode in PEMFCs.

    PubMed

    Selvaganesh, S Vinod; Selvarani, G; Sridhar, P; Pitchumani, S; Shukla, A K

    2011-07-21

    Longevity remains as one of the central issues in the successful commercialization of polymer electrolyte membrane fuel cells (PEMFCs) and primarily hinges on the durability of the cathode. Incorporation of gold (Au) to platinum (Pt) is known to ameliorate both the electrocatalytic activity and stability of cathode in relation to pristine Pt-cathodes that are currently being used in PEMFCs. In this study, an accelerated stress test (AST) is conducted to simulate prolonged fuel-cell operating conditions by potential cycling the carbon-supported Pt-Au (Pt-Au/C) cathode. The loss in performance of PEMFC with Pt-Au/C cathode is found to be ∼10% after 7000 accelerated potential-cycles as against ∼60% for Pt/C cathode under similar conditions. These data are in conformity with the electrochemical surface-area values. PEMFC with Pt-Au/C cathode can withstand >10,000 potential cycles with very little effect on its performance. X-ray diffraction and transmission electron microscopy studies on the catalyst before and after AST suggest that incorporating Au with Pt helps mitigate aggregation of Pt particles during prolonged fuel-cell operations while X-ray photoelectron spectroscopy reflects that the metallic nature of Pt is retained in the Pt-Au catalyst during AST in comparison to Pt/C that shows a major portion of Pt to be present as oxidic platinum. Field-emission scanning electron microscopy conducted on the membrane electrode assembly before and after AST suggests that incorporating Au with Pt helps mitigating deformations in the catalyst layer. This journal is © the Owner Societies 2011

  11. EVALUATION OF THE EFFECTIVENESS OF TRUCK EFFICIENCY TECHNOLOGIES IN CLASS 8 TRACTOR-TRAILERS BASED ON A TRACTIVE ENERGY ANALYSIS USING MEASURED DRIVE CYCLE DATA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaClair, Tim J; Gao, Zhiming; Fu, Joshua S.

    2014-01-01

    Quantifying the fuel savings that can be achieved from different truck fuel efficiency technologies for a fleet s specific usage allows the fleet to select the combination of technologies that will yield the greatest operational efficiency and profitability. This paper presents an analysis of vehicle usage in a commercial vehicle fleet and an assessment of advanced efficiency technologies using an analysis of measured drive cycle data for a class 8 regional commercial shipping fleet. Drive cycle measurements during a period of a full year from six tractor-trailers in normal operations in a less-than-truckload (LTL) carrier were analyzed to develop amore » characteristic drive cycle that is highly representative of the fleet s usage. The vehicle mass was also estimated to account for the variation of loads that the fleet experienced. The drive cycle and mass data were analyzed using a tractive energy analysis to quantify the fuel efficiency and CO2 emissions benefits that can be achieved on class 8 tractor-trailers when using advanced efficiency technologies, either individually or in combination. Although differences exist among class 8 tractor-trailer fleets, this study provides valuable insight into the energy and emissions reduction potential that various technologies can bring in this important trucking application.« less

  12. 75 FR 81675 - Notice of Issuance of Regulatory Guide

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-28

    ... Fuel Cycle Facilities.'' FOR FURTHER INFORMATION CONTACT: Mekonen M. Bayssie, Regulatory Guide... Materials in Liquid and Gaseous Effluents from Nuclear Fuel Cycle Facilities,'' was published as Draft... guidance is applicable to nuclear fuel cycle facilities, with the exception of uranium milling facilities...

  13. High-durability catalytic electrode composed of Pt nanoparticle-supported carbon nanowalls synthesized by radical-injection plasma-enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Imai, Shun; Kondo, Hiroki; Cho, Hyungjun; Kano, Hiroyuki; Ishikawa, Kenji; Sekine, Makoto; Hiramatsu, Mineo; Ito, Masafumi; Hori, Masaru

    2017-10-01

    For polymer electrolyte fuel cell applications, carbon nanowalls (CNWs) were synthesized by radical-injection plasma-enhanced chemical vapor deposition, and a high density of Pt nanoparticles (>1012 cm-2) was supported on the CNWs using a supercritical fluid deposition system. The high potential cycle tests were applied and the electrochemical surface area of the Pt nanoparticle-supported CNWs did not change significantly, even after 20 000 high potential cycles. According to transmission electron microscopy observations, the mean diameter of Pt changed slightly after the cycle tests, while the crystallinity of the CNWs evaluated using Raman spectroscopy showed almost no change.

  14. Bioethanol from poplar clone Imola: an environmentally viable alternative to fossil fuel?

    PubMed

    Guo, Miao; Li, Changsheng; Facciotto, Gianni; Bergante, Sara; Bhatia, Rakesh; Comolli, Roberto; Ferré, Chiara; Murphy, Richard

    2015-01-01

    Environmental issues, e.g. climate change, fossil resource depletion have triggered ambitious national/regional policies to develop biofuel and bioenergy roles within the overall energy portfolio to achieve decarbonising the global economy and increase energy security. With the 10 % binding target for the transport sector, the Renewable Energy Directive confirms the EU's commitment to renewable transport fuels especially advanced biofuels. Imola is an elite poplar clone crossed from Populus deltoides Bartr. and Populus nigra L. by Research Units for Intensive Wood Production, Agriculture Research Council in Italy. This study examines its suitability for plantation cultivation under short or very short rotation coppice regimes as a potential lignocellulosic feedstock for the production of ethanol as a transport biofuel. A life cycle assessment (LCA) approach was used to model the cradle-to-gate environmental profile of Imola-derived biofuel benchmarked against conventional fossil gasoline. Specific attention was given to analysing the agroecosystem fluxes of carbon and nitrogen occurring in the cultivation of the Imola biomass in the biofuel life cycle using a process-oriented biogeochemistry model (DeNitrification-DeComposition) specifically modified for application to 2G perennial bioenergy crops and carbon and nitrogen cycling. Our results demonstrate that carbon and nitrogen cycling in perennial crop-soil ecosystems such as this example can be expected to have significant effects on the overall environmental profiles of 2G biofuels. In particular, soil carbon accumulation in perennial biomass plantations is likely to be a significant component in the overall greenhouse gas balance of future biofuel and other biorefinery products and warrants ongoing research and data collection for LCA models. We conclude that bioethanol produced from Imola represents a promising alternative transport fuel offering some savings ranging from 35 to 100 % over petrol in global warming potential, ozone depletion and photochemical oxidation impact categories. Via comparative analyses for Imola-derived bioethanol across potential supply chains, we highlight priority issues for potential improvement in 2G biofuel profiling. Advanced clones of poplar such as Imola for 2G biofuel production in Italy as modelled here show potential to deliver an environmentally sustainable lignocellulosic biorefinery industry and accelerate advanced biofuel penetration in the transport sector.

  15. Thorium Fuel Cycle Option Screening in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taiwo, Temitope A.; Kim, Taek K.; Wigeland, Roald A.

    2016-05-01

    As part of a nuclear fuel cycle Evaluation and Screening (E&S) study, a wide-range of thorium fuel cycle options were evaluated and their performance characteristics and challenges to implementation were compared to those of other nuclear fuel cycle options based on criteria specified by the Nuclear Energy Office of the U.S. Department of Energy (DOE). The evaluated nuclear fuel cycles included the once-through, limited, and continuous recycle options using critical or externally-driven nuclear energy systems. The E&S study found that the continuous recycle of 233U/Th in fuel cycles using either thermal or fast reactors is an attractive promising fuel cyclemore » option with high effective fuel resource utilization and low waste generation, but did not perform quite as well as the continuous recycle of Pu/U using a fast critical system, which was identified as one of the most promising fuel cycle options in the E&S study. This is because compared to their uranium counterparts the thorium-based systems tended to have higher radioactivity in the short term (about 100 years post irradiation) because of differences in the fission product yield curves, and in the long term (100,000 years post irradiation) because of the decay of 233U and daughters, and because of higher mass flow rates due to lower discharge burnups. Some of the thorium-based systems also require enriched uranium support, which tends to be detrimental to resource utilization and waste generation metrics. Finally, similar to the need for developing recycle fuel fabrication, fuels separations and fast reactors for the most promising options using Pu/U recycle, the future thorium-based fuel cycle options with continuous recycle would also require such capabilities, although their deployment challenges are expected to be higher since such facilities have not been developed in the past to a comparable level of maturity for Th-based systems.« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buck, Edgar C.; Wittman, Richard S.

    The U.S. Department of Energy Office of Nuclear Energy (DOE-NE), Office of Fuel Cycle Technology has established the Used Fuel Disposition Campaign (UFDC) to conduct the research and development activities related to storage, transportation, and disposal of used nuclear fuel (UNF) and high-level radioactive waste. Within the UFDC, the components for a general system model of the degradation and subsequent transport of UNF is being developed to analyze the performance of disposal options [Sassani et al., 2012]. Two model components of the near-field part of the problem are the ANL Mixed Potential Model and the PNNL Radiolysis Model. This reportmore » is in response to the desire to integrate the two models as outlined in [Buck, E.C, J.L. Jerden, W.L. Ebert, R.S. Wittman, (2013) “Coupling the Mixed Potential and Radiolysis Models for Used Fuel Degradation,” FCRD-UFD-2013-000290, M3FT-PN0806058]« less

  17. Hydrogen-fueled postal vehicle performance evaluation

    NASA Technical Reports Server (NTRS)

    Hall, R. A.

    1979-01-01

    Fuel consumption, range, and emissions data were obtained while operating a hydrogen-fueled postal delivery vehicle over a defined Postal Service Driving Cycle and the 1975 Urban Driving Cycle. The vehicle's fuel consumption was 0.366 pounds of hydrogen per mile over the postal driving cycle and 0.22 pounds of hydrogen per mile over the urban driving cycle. These data correspond to 6.2 and 10.6 mpg equivalent gasoline mileage for the two driving cycles, respectively. The vehicle's range was 24.2 miles while being operated on the postal driving cycle. Vehicle emissions were measured over the urban driving cycle. HC and CO emissions were quite low, as would be expected. The oxides of nitrogen were found to be 4.86 gm/mi, a value which is well above the current Federal and California standards. Vehicle limitations discussed include excessive engine flashbacks, inadequate acceleration capability the engine air/fuel ratio, the water injection systems, and the cab temperature. Other concerns are safety considerations, iron-titanium hydride observed in the fuel system, evidence of water in the engine rocker cover, and the vehicle maintenance required during the evaluation.

  18. Hybrid Power Management Program Evaluated Fuel Cell/Ultracapacitor Combinations and Developed Other New Applications

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.

    2004-01-01

    In fiscal year 2003, the continuation of the Hybrid Power Management (HPM) Program through NASA Glenn Research Center's Commercial Technology Office resulted in several new successful applications of this pioneering technology. HPM is the innovative integration of diverse, state-of-the-art power devices in an optimal configuration for space and terrestrial applications. The appropriate application and control of the various power devices significantly improves overall system performance and efficiency. The advanced power devices include ultracapacitors, fuel cells, and photovoltaics. HPM has extremely wide potential, with applications from nanowatts to megawatts--including power generation, transportation systems, biotechnology systems, and space power systems. HPM has the potential to significantly alleviate global energy concerns, improve the environment, and stimulate the economy. Fuel cells provide excellent efficiency and energy density, but do not have good power density. In contrast, ultracapacitors have excellent power density and virtually unlimited cycle life. To improve the power density of the fuel cell, the combination of fuel cells and ultracapacitors was evaluated.

  19. Hybrid chromophore/template nanostructures: a customizable platform material for solar energy storage and conversion.

    PubMed

    Kolpak, Alexie M; Grossman, Jeffrey C

    2013-01-21

    Challenges with cost, cyclability, and/or low energy density have largely prevented the development of solar thermal fuels, a potentially attractive alternative energy technology based on molecules that can capture and store solar energy as latent heat in a closed cycle. In this paper, we present a set of novel hybrid photoisomer/template solar thermal fuels that can potentially circumvent these challenges. Using first-principles computations, we demonstrate that these fuels, composed of organic photoisomers bound to inexpensive carbon-based templates, can reversibly store solar energy at densities comparable to Li-ion batteries. Furthermore, we show that variation of the template material in combination with the photoisomer can be used to optimize many of the key performance metrics of the fuel-i.e., the energy density, the storage lifetime, the temperature of the output heat, and the efficiency of the solar-to-heat conversion. Our work suggests that the solar thermal fuels concept can be translated into a practical and highly customizable energy storage and conversion technology.

  20. Modeling transit bus fuel consumption on the basis of cycle properties.

    PubMed

    Delgado, Oscar F; Clark, Nigel N; Thompson, Gregory J

    2011-04-01

    A method exists to predict heavy-duty vehicle fuel economy and emissions over an "unseen" cycle or during unseen on-road activity on the basis of fuel consumption and emissions data from measured chassis dynamometer test cycles and properties (statistical parameters) of those cycles. No regression is required for the method, which relies solely on the linear association of vehicle performance with cycle properties. This method has been advanced and examined using previously published heavy-duty truck data gathered using the West Virginia University heavy-duty chassis dynamometer with the trucks exercised over limited test cycles. In this study, data were available from a Washington Metropolitan Area Transit Authority emission testing program conducted in 2006. Chassis dynamometer data from two conventional diesel buses, two compressed natural gas buses, and one hybrid diesel bus were evaluated using an expanded driving cycle set of 16 or 17 different driving cycles. Cycle properties and vehicle fuel consumption measurements from three baseline cycles were selected to generate a linear model and then to predict unseen fuel consumption over the remaining 13 or 14 cycles. Average velocity, average positive acceleration, and number of stops per distance were found to be the desired cycle properties for use in the model. The methodology allowed for the prediction of fuel consumption with an average error of 8.5% from vehicles operating on a diverse set of chassis dynamometer cycles on the basis of relatively few experimental measurements. It was found that the data used for prediction should be acquired from a set that must include an idle cycle along with a relatively slow transient cycle and a relatively high speed cycle. The method was also applied to oxides of nitrogen prediction and was found to have less predictive capability than for fuel consumption with an average error of 20.4%.

  1. Method for modeling driving cycles, fuel use, and emissions for over snow vehicles.

    PubMed

    Hu, Jiangchuan; Frey, H Christopher; Sandhu, Gurdas S; Graver, Brandon M; Bishop, Gary A; Schuchmann, Brent G; Ray, John D

    2014-07-15

    As input to a winter use plan, activity, fuel use, and tailpipe exhaust emissions of over snow vehicles (OSV), including five snow coaches and one snowmobile, were measured on a designated route in Yellowstone National Park (YNP). Engine load was quantified in terms of vehicle specific power (VSP), which is a function of speed, acceleration, and road grade. Compared to highway vehicles, VSP for OSVs is more sensitive to rolling resistance and less sensitive to aerodynamic drag. Fuel use rates increased linearly (R2>0.96) with VSP. For gasoline-fueled OSVs, fuel-based emission rates of carbon monoxide (CO) and nitrogen oxides (NOx) typically increased with increasing fuel use rate, with some cases of very high CO emissions. For the diesel OSVs, which had selective catalytic reduction and diesel particulate filters, fuel-based NOx and particulate matter (PM) emission rates were not sensitive to fuel flow rate, and the emission controls were effective. Inter vehicle variability in cycle average fuel use and emissions rates for CO and NOx was substantial. However, there was relatively little inter-cycle variation in cycle average fuel use and emission rates when comparing driving cycles. Recommendations are made regarding how real-world OSV activity, fuel use, and emissions data can be improved.

  2. Low Carbon Technology Options for the Natural Gas ...

    EPA Pesticide Factsheets

    The ultimate goal of this task is to perform environmental and economic analysis of natural gas based power production technologies (different routes) to investigate and evaluate strategies for reducing emissions from the power sector. It is a broad research area. Initially, the research will be focused on the preliminary analyses of hydrogen fuel based power production technologies utilizing hydrogen fuel in a large size, heavy-duty gas turbines in integrated reformer combined cycle (IRCC) and integrated gasification combined cycle (IGCC) for electric power generation. The research will be expanded step-by-step to include other advanced (e.g., Net Power, a potentially transformative technology utilizing a high efficiency CO2 conversion cycle (Allam cycle), and chemical looping etc.) pre-combustion and post-combustion technologies applied to natural gas, other fossil fuels (coal and heavy oil) and biomass/biofuel based on findings. Screening analysis is already under development and data for the analysis is being processed. The immediate action on this task include preliminary economic and environmental analysis of power production technologies applied to natural gas. Data for catalytic reforming technology to produce hydrogen from natural gas is being collected and compiled on Microsoft Excel. The model will be expanded for exploring and comparing various technologies scenarios to meet our goal. The primary focus of this study is to: 1) understand the chemic

  3. 40 CFR 86.1537 - Idle test run.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled... dilute sampling. (6) For bag sampling, sample idle emissions long enough to obtain a sufficient bag...

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stimpson, Shane G; Powers, Jeffrey J; Clarno, Kevin T

    The Consortium for Advanced Simulation of Light Water Reactors (CASL) aims to provide high-fidelity, multiphysics simulations of light water reactors (LWRs) by coupling a variety of codes within the Virtual Environment for Reactor Analysis (VERA). One of the primary goals of CASL is to predict local cladding failure through pellet-clad interaction (PCI). This capability is currently being pursued through several different approaches, such as with Tiamat, which is a simulation tool within VERA that more tightly couples the MPACT neutron transport solver, the CTF thermal hydraulics solver, and the MOOSE-based Bison-CASL fuel performance code. However, the process in this papermore » focuses on running fuel performance calculations with Bison-CASL to predict PCI using the multicycle output data from coupled neutron transport/thermal hydraulics simulations. In recent work within CASL, Watts Bar Unit 1 has been simulated over 12 cycles using the VERA core simulator capability based on MPACT and CTF. Using the output from these simulations, Bison-CASL results can be obtained without rerunning all 12 cycles, while providing some insight into PCI indicators. Multi-cycle Bison-CASL results are presented and compared against results from the FRAPCON fuel performance code. There are several quantities of interest in considering PCI and subsequent fuel rod failures, such as the clad hoop stress and maximum centerline fuel temperature, particularly as a function of time. Bison-CASL performs single-rod simulations using representative power and temperature distributions, providing high-resolution results for these and a number of other quantities. This will assist in identifying fuels rods as potential failure locations for use in further analyses.« less

  5. In-plane and through-plane non-uniform carbon corrosion of polymer electrolyte fuel cell cathode catalyst layer during extended potential cycles

    NASA Astrophysics Data System (ADS)

    Ghosh, Sourov; Ohashi, Hidenori; Tabata, Hiroshi; Hashimasa, Yoshiyuki; Yamaguchi, Takeo

    2017-09-01

    The impact of electrochemical carbon corrosion via potential cycling durability tests mimicking start-stop operation events on the microstructure of the cathode catalyst layer in polymer electrolyte fuel cells (PEFCs) is investigated using focused ion beam (FIB) fabrication without/with the pore-filling technique and subsequent scanning electron microscope (SEM) observations. FIB/SEM investigations without pore-filling reveals that the durability test induces non-uniform cathode shrinking across the in-plane direction; the thickness of the catalyst layer decreases more under the gas flow channel compared to the area under the rim of the flow field. Furthermore, FIB/SEM investigations with the pore-filling technique reveal that the durability test also induces non-uniform cathode shrinking in the through-plane direction; the pores in the area close to the membrane are more shrunken compared with those close to the microporous layer. In particular, a thin area (1-1.5 μm) close to the membrane is found to be severely damaged; it includes closed pores that hinder mass transport through the catalyst layer. It is suggested that uneven carbon corrosion and catalyst layer compaction are responsible for the performance loss during potential cycling operation of PEFCs.

  6. A case study by life cycle assessment

    NASA Astrophysics Data System (ADS)

    Li, Shuyun

    2017-05-01

    This article aims to assess the potential environmental impact of an electrical grinder during its life cycle. The Life Cycle Inventory Analysis was conducted based on the Simplified Life Cycle Assessment (SLCA) Drivers that calculated from the Valuation of Social Cost and Simplified Life Cycle Assessment Model (VSSM). The detailed results for LCI can be found under Appendix II. The Life Cycle Impact Assessment was performed based on Eco-indicator 99 method. The analysis results indicated that the major contributor to the environmental impact as it accounts for over 60% overall SLCA output. In which, 60% of the emission resulted from the logistic required for the maintenance activities. This was measured by conducting the hotspot analysis. After performing sensitivity analysis, it is evidenced that changing fuel type results in significant decrease environmental footprint. The environmental benefit can also be seen from the negative output values of the recycling activities. By conducting Life Cycle Assessment analysis, the potential environmental impact of the electrical grinder was investigated.

  7. 40 CFR 190.10 - Standards for normal operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Standards for the Uranium Fuel Cycle § 190.10 Standards for normal operations. Operations covered by this... radioactive materials, radon and its daughters excepted, to the general environment from uranium fuel cycle... the general environment from the entire uranium fuel cycle, per gigawatt-year of electrical energy...

  8. 77 FR 65729 - Uranium Enrichment Fuel Cycle Facility Inspection Reports Regarding Louisiana Energy Services LLC...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-30

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 70-3103; NRC-2010-0264] Uranium Enrichment Fuel Cycle Facility Inspection Reports Regarding Louisiana Energy Services LLC, National Enrichment Facility, Eunice..., Chief, Uranium Enrichment Branch, Division of Fuel Cycle Safety and Safeguards, Office of Nuclear...

  9. Advanced Fuel Cycle Cost Basis – 2017 Edition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dixon, B. W.; Ganda, F.; Williams, K. A.

    This report, commissioned by the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the DOE Nuclear Technology Research and Development (NTRD) Program (previously the Fuel Cycle Research and Development (FCRD) and the Advanced Fuel Cycle Initiative (AFCI)). The report describes the NTRD cost basis development process, reference information on NTRD cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This reportmore » contains reference cost data for numerous fuel cycle cost modules (modules A-O) as well as cost modules for a number of reactor types (R modules). The fuel cycle cost modules were developed in the areas of natural uranium mining and milling, thorium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, managed decay storage, recycled product storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, transuranic, and high-level waste. Since its inception, this report has been periodically updated. The last such internal document was published in August 2015 while the last external edition was published in December of 2009 as INL/EXT-07-12107 and is available on the Web at URL: www.inl.gov/technicalpublications/Documents/4536700.pdf. This current report (Sept 2017) is planned to be reviewed for external release, at which time it will replace the 2009 report as an external publication. This information is used in the ongoing evaluation of nuclear fuel cycles by the NE NTRD program.« less

  10. The basic features of a closed fuel cycle without fast reactors

    NASA Astrophysics Data System (ADS)

    Bobrov, E. A.; Alekseev, P. N.; Teplov, P. S.

    2017-01-01

    In this paper the basic features of a closed fuel cycle with thermal reactors are considered. The three variants of multiple Pu and U recycling in VVER reactors was investigated. The comparison of MOX and REMIX fuel approaches for closed fuel cycle with thermal reactors is presented. All variants make possible to recycle several times the total amount of Pu and U obtained from spent fuel. The reported study was funded by RFBR according to the research project № 16-38-00021

  11. 40 CFR 86.135-90 - Dynamometer procedure.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... petroleum gas-fueled Otto-cycle vehicles, the composite samples collected in bags are analyzed for THC, CO..., liquefied petroleum gas-fueled and methanol-fueled diesel-cycle vehicles), THC is sampled and analyzed... analyzed for THC, CO, CO2, CH4, and NOX. (3) For natural gas-fueled, liquefied petroleum gas-fueled and...

  12. Analyzing Vehicle Fuel Saving Opportunities through Intelligent Driver Feedback

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonder, J.; Earleywine, M.; Sparks, W.

    2012-06-01

    Driving style changes, e.g., improving driver efficiency and motivating driver behavior changes, could deliver significant petroleum savings. This project examines eliminating stop-and-go driving and unnecessary idling, and also adjusting acceleration rates and cruising speeds to ideal levels to quantify fuel savings. Such extreme adjustments can result in dramatic fuel savings of over 30%, but would in reality only be achievable through automated control of vehicles and traffic flow. In real-world driving, efficient driving behaviors could reduce fuel use by 20% on aggressively driven cycles and by 5-10% on more moderately driven trips. A literature survey was conducted of driver behaviormore » influences, and pertinent factors from on-road experiments with different driving styles were observed. This effort highlighted important driver influences such as surrounding vehicle behavior, anxiety over trying to get somewhere quickly, and the power/torque available from the vehicle. Existing feedback approaches often deliver efficiency information and instruction. Three recommendations for maximizing fuel savings from potential drive cycle improvement are: (1) leveraging applications with enhanced incentives, (2) using an approach that is easy and widely deployable to motivate drivers, and (3) utilizing connected vehicle and automation technologies to achieve large and widespread efficiency improvements.« less

  13. Kerosene-base fuels in small gasoline engines. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Failla, C.C.; Pouring, A.A.

    1991-01-01

    This document presents the results of an engineering study to demonstrate the technology for converting small gasoline spark-ignited engines, to burn kerosene type fuels to power small generators (0.5 to 3.0 kw). Commercially available (plus those in the developmental stage), reciprocating, two-stroke, four stroke and rotary engines were evaluated for their conversion potential. Unique combustion systems were identified and trade-off studies conducted on engine type, combustion systems, and modification required to burn kerosene type fuels, with special emphasis given to minimizing life cycle cost. Recommendations for the most feasible system are given.

  14. Evaluation of advanced lift concepts and potential fuel conservation for short-haul aircraft

    NASA Technical Reports Server (NTRS)

    Sweet, H. S.; Renshaw, J. H.; Bowden, M. K.

    1975-01-01

    The effect of different field lengths, cruise requirements, noise level, and engine cycle characteristics on minimizing fuel consumption and minimizing operating cost at high fuel prices were evaluated for some advanced short-haul aircraft. The conceptual aircraft were designed for 148 passengers using the upper surface-internally blown jet flap, the augmentor wing, and the mechanical flap lift systems. Advanced conceptual STOL engines were evaluated as well as a near-term turbofan and turboprop engine. Emphasis was given to designs meeting noise levels equivalent to 95-100 EPNdB at 152 m (500 ft) sideline.

  15. Plutonium: Advancing our Understanding to Support Sustainable Nuclear Fuel Cycles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lines, Amanda M.; Adami, Susan R.; Casella, Amanda

    With Global energy needs increasing, real energy solutions to meet demands now, are needed. Fossil fuels are not an ideal candidate to meet these needs because of their negative impact on the environment. Renewables such as wind and solar have huge potential, but still need major technological advancements (particularly in the area of battery storage) before they can effectively meet growing world needs. The best option for meeting large energy needs without a large carbon footprint is nuclear energy. Of course, nuclear energy can face a fair amount of opposition and concern. However, through modern engineering and science many ofmore » these concerns can now be addressed. Many safety concerns can be met by engineering advancements, but perhaps the biggest area of concern is what to do with the used nuclear fuel after it is removed from the reactor. Currently the United States (and several other countries) utilize an open fuel cycle, meaning fuel is only used once and then discarded. It should be noted that fuel coming out of a reactor has utilized approximately 1% of the total energy that could be produced by the uranium in the fuel rod. The answer here is to close the fuel cycle and recycle the nuclear materials. By reprocessing used nuclear fuel, all the U can be repurposed without requiring disposal. The various fission products can be removed and either discarded (hugely reduced waste volume) or more reasonably, utilized in specialty reactors to make more energy or needed research/medical isotopes. While reprocessing technology is currently advanced enough to meet energy needs, completing research to improve and better understand these techniques is still needed. Better understanding behavior of fission products is one area of important research. Despite it being discovered over 75 years ago, plutonium is still an exciting element to study because of the complex solution chemistry it exhibits. In aqueous solutions Pu can exist simultaneously in multiple oxidation states, including 3+, 4+, and 6+. It also readily forms a variety of metal-ligand complexes depending on solution pH and available ligands. Understanding of the behavior of Pu in solution remains an important area of research today, with relevance to developing sustainable nuclear fuel cycles, minimizing its impact on the environment, and detecting and preventing the spread of nuclear weapons technology.« less

  16. Advanced Fuel Cycle Technology: Special Session in Honor of Dr. Michael Lineberry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D.M. Wachs; N. Woolstenhulme

    2014-06-01

    The US DOE recently initiated an effort to develop accident tolerant fuel designs for potential use in commercial power reactors. Evaluation of various fuel design concepts will require a broad array of testing that will include performance attributes at both steady state and transient irradiation conditions. The first stage of the transient testing program is intended to establish the relative performance limits of each proposed concept and to support development of first-draft fuel performance models. It is anticipated that this data can subsequently be used as the basis for larger scale qualification testing. This initial stage of the testing programmore » is outlined in this paper.« less

  17. Potential benefits of a ceramic thermal barrier coating on large power generation gas turbine

    NASA Technical Reports Server (NTRS)

    Clark, J. S.; Nainiger, J. J.

    1977-01-01

    Thermal barrier coating design option offers benefit in terms of reduced electricity costs when used in utility gas turbines. Options considered include: increased firing temperature, increased component life, reduced cooling air requirements, and increased corrosion resistance (resulting in increased tolerance for dirty fuels). Performance and cost data were obtained. Simple, recuperated and combined cycle applications were considered, and distillate and residual fuels were assumed. The results indicate that thermal barrier coatings could produce large electricity cost savings if these coatings permit turbine operation with residual fuels at distillate-rated firing temperatures. The results also show that increased turbine inlet temperature can result in substantial savings in fuel and capital costs.

  18. Facile one-pot synthesis of platinum nanoparticles decorated nitrogen-graphene with high electrocatalytic performance for oxygen reduction and anodic fuels oxidation

    NASA Astrophysics Data System (ADS)

    Navaee, Aso; Salimi, Abdollah; Soltanian, Saeid; Servati, Peyman

    2015-03-01

    Due to exceptional electronic properties of graphene (Gr) and nitrogen doped graphene (N-Gr), they are considered as superior supporting platforms for novel metal nanoparticle decorations. Here, we report, a novel one-step electrochemical method for synthesis of Nitrogen-doped graphene sheets uniformly decorated with platinum nanoparticles (Pt/N-Gr). A graphite rod and platinum wire are respectively used for graphene and platinum nanoparticles production. The potential is cycled from -3V to +3V in acetonitrile solution as a nitrogen dopant source. By increasing the number of cycles the nitrogen-doped graphene/platinum nanoparticles composite is generated. After heat-treating the composite is characterized with various techniques such as FTIR, Raman, XPS, SEM and TEM. The electrocatalytic activity of the prepared composite toward the reduction of O2 and the oxidation of usual anodic fuels such as methanol, ethanol, hydrazine and formic acid is investigated using cyclic voltammetry technique. In comparison to commercial platinum/carbon, the onset potentials and the current densities for both O2 reduction and fuels oxidation are remarkably improved. Furthermore, the modified electrode by this composite shows good long-term stability and poisoning tolerance.

  19. Economic assessment and energy model scenarios of municipal solid waste incineration and gas turbine hybrid dual-fueled cycles in Thailand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Udomsri, Seksan, E-mail: seksan.udomsri@energy.kth.s; Martin, Andrew R.; Fransson, Torsten H.

    Finding environmentally benign methods related to sound municipal solid waste (MSW) management is of highest priority in Southeast Asia. It is very important to study new approaches which can reduce waste generation and simultaneously enhance energy recovery. One concrete example of particular significance is the concept of hybrid dual-fuel power plants featuring MSW and another high-quality fuel like natural gas. The hybrid dual-fuel cycles provide significantly higher electrical efficiencies than a composite of separate single-fuel power plant (standalone gas turbine combined cycle and MSW incineration). Although hybrid versions are of great importance for energy conversion from MSW, an economic assessmentmore » of these systems must be addressed for a realistic appraisal of these technologies. This paper aims to further examine an economic assessment and energy model analysis of different conversion technologies. Energy models are developed to further refine the expected potential of MSW incineration with regards to energy recovery and environmental issues. Results show that MSW incineration can play role for greenhouse gas reduction, energy recovery and waste management. In Bangkok, the electric power production via conventional incineration and hybrid power plants can cover 2.5% and 8% of total electricity consumption, respectively. The hybrid power plants have a relative short payback period (5 years) and can further reduce the CO{sub 2} levels by 3% in comparison with current thermal power plants.« less

  20. Economic assessment and energy model scenarios of municipal solid waste incineration and gas turbine hybrid dual-fueled cycles in Thailand.

    PubMed

    Udomsri, Seksan; Martin, Andrew R; Fransson, Torsten H

    2010-07-01

    Finding environmentally benign methods related to sound municipal solid waste (MSW) management is of highest priority in Southeast Asia. It is very important to study new approaches which can reduce waste generation and simultaneously enhance energy recovery. One concrete example of particular significance is the concept of hybrid dual-fuel power plants featuring MSW and another high-quality fuel like natural gas. The hybrid dual-fuel cycles provide significantly higher electrical efficiencies than a composite of separate single-fuel power plant (standalone gas turbine combined cycle and MSW incineration). Although hybrid versions are of great importance for energy conversion from MSW, an economic assessment of these systems must be addressed for a realistic appraisal of these technologies. This paper aims to further examine an economic assessment and energy model analysis of different conversion technologies. Energy models are developed to further refine the expected potential of MSW incineration with regards to energy recovery and environmental issues. Results show that MSW incineration can play role for greenhouse gas reduction, energy recovery and waste management. In Bangkok, the electric power production via conventional incineration and hybrid power plants can cover 2.5% and 8% of total electricity consumption, respectively. The hybrid power plants have a relative short payback period (5 years) and can further reduce the CO(2) levels by 3% in comparison with current thermal power plants. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  1. 78 FR 23312 - Uranium Enrichment Fuel Cycle Inspection Reports Regarding Louisiana Energy Services, National...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-18

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 70-3103; NRC-2010-0264] Uranium Enrichment Fuel Cycle Inspection Reports Regarding Louisiana Energy Services, National Enrichment Facility, Eunice, New Mexico..., Division of Fuel Cycle Safety, and Safeguards Office of Nuclear Material Safety, and Safeguards. [FR Doc...

  2. Open-Cycle Gas Turbine/Steam Turbine Combined Cycles with synthetic fuels from coal

    NASA Technical Reports Server (NTRS)

    Shah, R. P.; Corman, J. C.

    1977-01-01

    The Open-Cycle Gas Turbine/Steam Turbine Combined Cycle can be an effective energy conversion system for converting coal to electricity. The intermediate step in this energy conversion process is to convert the coal into a fuel acceptable to a gas turbine. This can be accomplished by producing a synthetic gas or liquid, and by removing, in the fuel conversion step, the elements in the fuel that would be harmful to the environment if combusted. In this paper, two open-cycle gas turbine combined systems are evaluated: one employing an integrated low-Btu gasifier, and one utilizing a semi-clean liquid fuel. A consistent technical/economic information base is developed for these two systems, and is compared with a reference steam plant burning coal directly in a conventional furnace.

  3. [Research on carbon reduction potential of electric vehicles for low-carbon transportation and its influencing factors].

    PubMed

    Shi, Xiao-Qing; Li, Xiao-Nuo; Yang, Jian-Xin

    2013-01-01

    Transportation is the key industry of urban energy consumption and carbon emissions. The transformation of conventional gasoline vehicles to new energy vehicles is an important initiative to realize the goal of developing low-carbon city through energy saving and emissions reduction, while electric vehicles (EV) will play an important role in this transition due to their advantage in energy saving and lower carbon emissions. After reviewing the existing researches on energy saving and emissions reduction of electric vehicles, this paper analyzed the factors affecting carbon emissions reduction. Combining with electric vehicles promotion program in Beijing, the paper analyzed carbon emissions and reduction potential of electric vehicles in six scenarios using the optimized energy consumption related carbon emissions model from the perspective of fuel life cycle. The scenarios included power energy structure, fuel type (energy consumption per 100 km), car type (CO2 emission factor of fuel), urban traffic conditions (speed), coal-power technologies and battery type (weight, energy efficiency). The results showed that the optimized model was able to estimate carbon emissions caused by fuel consumption more reasonably; electric vehicles had an obvious restrictive carbon reduction potential with the fluctuation of 57%-81.2% in the analysis of six influencing factors, while power energy structure and coal-power technologies play decisive roles in life-cycle carbon emissions of electric vehicles with the reduction potential of 78.1% and 81.2%, respectively. Finally, some optimized measures were proposed to reduce transport energy consumption and carbon emissions during electric vehicles promotion including improving energy structure and coal technology, popularizing energy saving technologies and electric vehicles, accelerating the battery R&D and so on. The research provides scientific basis and methods for the policy development for the transition of new energy vehicles in low-carbon transport.

  4. Mitochondrial Targeted Coenzyme Q, Superoxide, and Fuel Selectivity in Endothelial Cells

    PubMed Central

    Fink, Brian D.; O'Malley, Yunxia; Dake, Brian L.; Ross, Nicolette C.; Prisinzano, Thomas E.; Sivitz, William I.

    2009-01-01

    Background Previously, we reported that the “antioxidant” compound “mitoQ” (mitochondrial-targeted ubiquinol/ubiquinone) actually increased superoxide production by bovine aortic endothelial (BAE) cell mitochondria incubated with complex I but not complex II substrates. Methods and Results To further define the site of action of the targeted coenzyme Q compound, we extended these studies to include different substrate and inhibitor conditions. In addition, we assessed the effects of mitoquinone on mitochondrial respiration, measured respiration and mitochondrial membrane potential in intact cells, and tested the intriguing hypothesis that mitoquinone might impart fuel selectivity in intact BAE cells. In mitochondria respiring on differing concentrations of complex I substrates, mitoquinone and rotenone had interactive effects on ROS consistent with redox cycling at multiple sites within complex I. Mitoquinone increased respiration in isolated mitochondria respiring on complex I but not complex II substrates. Mitoquinone also increased oxygen consumption by intact BAE cells. Moreover, when added to intact cells at 50 to 1000 nM, mitoquinone increased glucose oxidation and reduced fat oxidation, at doses that did not alter membrane potential or induce cell toxicity. Although high dose mitoquinone reduced mitochondrial membrane potential, the positively charged mitochondrial-targeted cation, decyltriphenylphosphonium (mitoquinone without the coenzyme Q moiety), decreased membrane potential more than mitoquinone, but did not alter fuel selectivity. Therefore, non-specific effects of the positive charge were not responsible and the quinone moiety is required for altered nutrient selectivity. Conclusions In summary, the interactive effects of mitoquinone and rotenone are consistent with redox cycling at more than one site within complex I. In addition, mitoquinone has substrate dependent effects on mitochondrial respiration, increases repiration by intact cells, and alters fuel selectivity favoring glucose over fatty acid oxidation at the intact cell level. PMID:19158951

  5. Mitochondrial targeted coenzyme Q, superoxide, and fuel selectivity in endothelial cells.

    PubMed

    Fink, Brian D; O'Malley, Yunxia; Dake, Brian L; Ross, Nicolette C; Prisinzano, Thomas E; Sivitz, William I

    2009-01-01

    Previously, we reported that the "antioxidant" compound "mitoQ" (mitochondrial-targeted ubiquinol/ubiquinone) actually increased superoxide production by bovine aortic endothelial (BAE) cell mitochondria incubated with complex I but not complex II substrates. To further define the site of action of the targeted coenzyme Q compound, we extended these studies to include different substrate and inhibitor conditions. In addition, we assessed the effects of mitoquinone on mitochondrial respiration, measured respiration and mitochondrial membrane potential in intact cells, and tested the intriguing hypothesis that mitoquinone might impart fuel selectivity in intact BAE cells. In mitochondria respiring on differing concentrations of complex I substrates, mitoquinone and rotenone had interactive effects on ROS consistent with redox cycling at multiple sites within complex I. Mitoquinone increased respiration in isolated mitochondria respiring on complex I but not complex II substrates. Mitoquinone also increased oxygen consumption by intact BAE cells. Moreover, when added to intact cells at 50 to 1000 nM, mitoquinone increased glucose oxidation and reduced fat oxidation, at doses that did not alter membrane potential or induce cell toxicity. Although high dose mitoquinone reduced mitochondrial membrane potential, the positively charged mitochondrial-targeted cation, decyltriphenylphosphonium (mitoquinone without the coenzyme Q moiety), decreased membrane potential more than mitoquinone, but did not alter fuel selectivity. Therefore, non-specific effects of the positive charge were not responsible and the quinone moiety is required for altered nutrient selectivity. In summary, the interactive effects of mitoquinone and rotenone are consistent with redox cycling at more than one site within complex I. In addition, mitoquinone has substrate dependent effects on mitochondrial respiration, increases repiration by intact cells, and alters fuel selectivity favoring glucose over fatty acid oxidation at the intact cell level.

  6. Cycle analysis of MCFC/gas turbine system

    NASA Astrophysics Data System (ADS)

    Musa, Abdullatif; Alaktiwi, Abdulsalam; Talbi, Mosbah

    2017-11-01

    High temperature fuel cells such as the solid oxide fuel cell (SOFC) and the molten carbonate fuel cell (MCFC) are considered extremely suitable for electrical power plant application. The molten carbonate fuel cell (MCFC) performances is evaluated using validated model for the internally reformed (IR) fuel cell. This model is integrated in Aspen Plus™. Therefore, several MCFC/Gas Turbine systems are introduced and investigated. One of this a new cycle is called a heat recovery (HR) cycle. In the HR cycle, a regenerator is used to preheat water by outlet air compressor. So the waste heat of the outlet air compressor and the exhaust gases of turbine are recovered and used to produce steam. This steam is injected in the gas turbine, resulting in a high specific power and a high thermal efficiency. The cycles are simulated in order to evaluate and compare their performances. Moreover, the effects of an important parameters such as the ambient air temperature on the cycle performance are evaluated. The simulation results show that the HR cycle has high efficiency.

  7. Assessment of potential life-cycle energy and greenhouse gas emission effects from using corn-based butanol as a transportation fuel.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, M.; Wang, M.; Liu, J.

    2008-01-01

    Since advances in the ABE (acetone-butanol-ethanol) fermentation process in recent years have led to significant increases in its productivity and yields, the production of butanol and its use in motor vehicles have become an option worth evaluating. This study estimates the potential life-cycle energy and emission effects associated with using bio-butanol as a transportation fuel. It employs a well-to-wheels (WTW) analysis tool: the Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model. The estimates of life-cycle energy use and greenhouse gas (GHG) emissions are based on an Aspen Plus(reg. sign) simulation for a corn-to-butanol production process, which describesmore » grain processing, fermentation, and product separation. Bio-butanol-related WTW activities include corn farming, corn transportation, butanol production, butanol transportation, and vehicle operation. In this study, we also analyzed the bio-acetone that is coproduced with bio-butanol as an alternative to petroleum-based acetone. We then compared the results for bio-butanol with those of conventional gasoline. Our study shows that driving vehicles fueled with corn-based butanol produced by the current ABE fermentation process could result in substantial fossil energy savings (39%-56%) and avoid large percentage of the GHG emission burden, yielding a 32%-48% reduction relative to using conventional gasoline. On energy basis, a bushel of corn produces less liquid fuel from the ABE process than that from the corn ethanol dry mill process. The coproduction of a significant portion of acetone from the current ABE fermentation presents a challenge. A market analysis of acetone, as well as research and development on robust alternative technologies and processes that minimize acetone while increase the butanol yield, should be conducted.« less

  8. Assessment of potential life-cycle energy and greenhouse gas emission effects from using corn-based butanol as a transportation fuel.

    PubMed

    Wu, May; Wang, Michael; Liu, Jiahong; Huo, Hong

    2008-01-01

    Since advances in the ABE (acetone-butanol-ethanol) fermentation process in recent years have led to significant increases in its productivity and yields, the production of butanol and its use in motor vehicles have become an option worth evaluating. This study estimates the potential life-cycle energy and emission effects associated with using bio-butanol as a transportation fuel. It employs a well-to-wheels (WTW) analysis tool: the Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model. The estimates of life-cycle energy use and greenhouse gas (GHG) emissions are based on an Aspen Plus(R) simulation for a corn-to-butanol production process, which describes grain processing, fermentation, and product separation. Bio-butanol-related WTW activities include corn farming, corn transportation, butanol production, butanol transportation, and vehicle operation. In this study, we also analyzed the bio-acetone that is coproduced with bio-butanol as an alternative to petroleum-based acetone. We then compared the results for bio-butanol with those of conventional gasoline. Our study shows that driving vehicles fueled with corn-based butanol produced by the current ABE fermentation process could result in substantial fossil energy savings (39%-56%) and avoid large percentage of the GHG emission burden, yielding a 32%-48% reduction relative to using conventional gasoline. On energy basis, a bushel of corn produces less liquid fuel from the ABE process than that from the corn ethanol dry mill process. The coproduction of a significant portion of acetone from the current ABE fermentation presents a challenge. A market analysis of acetone, as well as research and development on robust alternative technologies and processes that minimize acetone while increase the butanol yield, should be conducted.

  9. Development of a Short-Duration Drive Cycle to Represent Long-Term Measured Drive Cycle Data: Evaluation of Truck Efficiency Technologies in Class 8 Tractor Trailers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaClair, Tim; Gao, Zhiming; Fu, Joshua

    Quantifying the fuel savings and emissions reductions that can be achieved from truck fuel efficiency technologies for a fleet's specific usage allows the fleet to select a combination of technologies that will yield the greatest operational efficiency and profitability. An accurate characterization of usage for the fleet is critical for such an evaluation; however, short-term measured drive cycle data do not generally reflect overall usage very effectively. This study presents a detailed analysis of vehicle usage in a commercial vehicle fleet and demonstrates the development of a short-duration synthetic drive cycle with measured drive cycle data collected over an extendedmore » period of time. The approach matched statistical measures of the vehicle speed with acceleration history and integrated measured grade data to develop a compressed drive cycle that accurately represents total usage. Drive cycle measurements obtained during a full year from six tractor trailers in normal operations in a less-than-truckload carrier were analyzed to develop a synthetic drive cycle. The vehicle mass was also estimated to account for the variation of loads that the fleet experienced. These drive cycle and mass data were analyzed with a tractive energy analysis to quantify the benefits in terms of fuel efficiency and reduced carbon dioxide emissions that can be achieved on Class 8 tractor trailers by using advanced efficiency technologies, either individually or in combination. Although differences exist between Class 8 tractor trailer fleets, this study provides valuable insight into the energy and emissions reduction potential that various technologies can bring in this important trucking application. Finally, the methodology employed for generating the synthetic drive cycle serves as a rigorous approach to develop an accurate usage characterization that can be used to effectively compress large quantities of drive cycle data.« less

  10. Development of a Short-Duration Drive Cycle to Represent Long-Term Measured Drive Cycle Data: Evaluation of Truck Efficiency Technologies in Class 8 Tractor Trailers

    DOE PAGES

    LaClair, Tim; Gao, Zhiming; Fu, Joshua; ...

    2014-12-01

    Quantifying the fuel savings and emissions reductions that can be achieved from truck fuel efficiency technologies for a fleet's specific usage allows the fleet to select a combination of technologies that will yield the greatest operational efficiency and profitability. An accurate characterization of usage for the fleet is critical for such an evaluation; however, short-term measured drive cycle data do not generally reflect overall usage very effectively. This study presents a detailed analysis of vehicle usage in a commercial vehicle fleet and demonstrates the development of a short-duration synthetic drive cycle with measured drive cycle data collected over an extendedmore » period of time. The approach matched statistical measures of the vehicle speed with acceleration history and integrated measured grade data to develop a compressed drive cycle that accurately represents total usage. Drive cycle measurements obtained during a full year from six tractor trailers in normal operations in a less-than-truckload carrier were analyzed to develop a synthetic drive cycle. The vehicle mass was also estimated to account for the variation of loads that the fleet experienced. These drive cycle and mass data were analyzed with a tractive energy analysis to quantify the benefits in terms of fuel efficiency and reduced carbon dioxide emissions that can be achieved on Class 8 tractor trailers by using advanced efficiency technologies, either individually or in combination. Although differences exist between Class 8 tractor trailer fleets, this study provides valuable insight into the energy and emissions reduction potential that various technologies can bring in this important trucking application. Finally, the methodology employed for generating the synthetic drive cycle serves as a rigorous approach to develop an accurate usage characterization that can be used to effectively compress large quantities of drive cycle data.« less

  11. 40 CFR 600.207-12 - Calculation and use of vehicle-specific 5-cycle-based fuel economy and CO2 emission values for...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... economy and CO2 emission values from the tests performed using gasoline or diesel test fuel. (ii) Calculate the 5-cycle city and highway fuel economy and CO2 emission values from the tests performed using alcohol or natural gas test fuel, if 5-cycle testing has been performed. Otherwise, the procedure in § 600...

  12. 40 CFR 600.207-12 - Calculation and use of vehicle-specific 5-cycle-based fuel economy and CO2 emission values for...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... economy and CO2 emission values from the tests performed using gasoline or diesel test fuel. (ii) Calculate the 5-cycle city and highway fuel economy and CO2 emission values from the tests performed using alcohol or natural gas test fuel, if 5-cycle testing has been performed. Otherwise, the procedure in § 600...

  13. 40 CFR 600.207-12 - Calculation and use of vehicle-specific 5-cycle-based fuel economy and CO2 emission values for...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... economy and CO2 emission values from the tests performed using gasoline or diesel test fuel. (ii) Calculate the 5-cycle city and highway fuel economy and CO2 emission values from the tests performed using alcohol or natural gas test fuel, if 5-cycle testing has been performed. Otherwise, the procedure in § 600...

  14. An Integrated Fuel Depletion Calculator for Fuel Cycle Options Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneider, Erich; Scopatz, Anthony

    2016-04-25

    Bright-lite is a reactor modeling software developed at the University of Texas Austin to expand upon the work done with the Bright [1] reactor modeling software. Originally, bright-lite was designed to function as a standalone reactor modeling software. However, this aim was refocused t couple bright-lite with the Cyclus fuel cycle simulator [2] to make it a module for the fuel cycle simulator.

  15. Closed DTU fuel cycle with Np recycle and waste transmutation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beller, D.E.; Sailor, W.C.; Venneri, F.

    1999-09-01

    A nuclear energy scenario for the 21st century that included a denatured thorium-uranium-oxide (DTU) fuel cycle and new light water reactors (LWRs) supported by accelerator-driven transmutation of waste (ATW) systems was previously described. This coupled system with the closed DTU fuel cycle provides several improvements beyond conventional LWR (CLWR) (once-through, UO{sub 2} fuel) nuclear technology: increased proliferation resistance, reduced waste, and efficient use of natural resources. However, like CLWR fuel cycles, the spent fuel in the first one-third core discharged after startup contains higher-quality Pu than the equilibrium fuel cycle. To eliminate this high-grade Pu, Np is separated and recycledmore » with Th and U--rather than with higher actinides [(HA) including Pu]. The presence of Np in the LWR feed greatly increases the production of {sup 238}Pu so that a few kilograms of Pu generated enough alpha-decay heat that the separated Pu is highly resistant to proliferation. This alternate process also simplifies the pyrochemical separation of fuel elements (Th and U) from HAs. To examine the advantages of this concept, the authors modeled a US deployment scenario for nuclear energy that includes DTU-LWRs plus ATW`s to burn the actinides produced by these LWRs and to close the back-end of the DTU fuel cycle.« less

  16. Final Report on Two-Stage Fast Spectrum Fuel Cycle Options

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Won Sik; Lin, C. S.; Hader, J. S.

    2016-01-30

    This report presents the performance characteristics of two “two-stage” fast spectrum fuel cycle options proposed to enhance uranium resource utilization and to reduce nuclear waste generation. One is a two-stage fast spectrum fuel cycle option of continuous recycle of plutonium (Pu) in a fast reactor (FR) and subsequent burning of minor actinides (MAs) in an accelerator-driven system (ADS). The first stage is a sodium-cooled FR fuel cycle starting with low-enriched uranium (LEU) fuel; at the equilibrium cycle, the FR is operated using the recovered Pu and natural uranium without supporting LEU. Pu and uranium (U) are co-extracted from the dischargedmore » fuel and recycled in the first stage, and the recovered MAs are sent to the second stage. The second stage is a sodium-cooled ADS in which MAs are burned in an inert matrix fuel form. The discharged fuel of ADS is reprocessed, and all the recovered heavy metals (HMs) are recycled into the ADS. The other is a two-stage FR/ADS fuel cycle option with MA targets loaded in the FR. The recovered MAs are not directly sent to ADS, but partially incinerated in the FR in order to reduce the amount of MAs to be sent to the ADS. This is a heterogeneous recycling option of transuranic (TRU) elements« less

  17. Sustainable Thorium Nuclear Fuel Cycles: A Comparison of Intermediate and Fast Neutron Spectrum Systems

    DOE PAGES

    Brown, Nicholas R.; Powers, Jeffrey J.; Feng, B.; ...

    2015-05-21

    This paper presents analyses of possible reactor representations of a nuclear fuel cycle with continuous recycling of thorium and produced uranium (mostly U-233) with thorium-only feed. The analysis was performed in the context of a U.S. Department of Energy effort to develop a compendium of informative nuclear fuel cycle performance data. The objective of this paper is to determine whether intermediate spectrum systems, having a majority of fission events occurring with incident neutron energies between 1 eV and 10 5 eV, perform as well as fast spectrum systems in this fuel cycle. The intermediate spectrum options analyzed include tight latticemore » heavy or light water-cooled reactors, continuously refueled molten salt reactors, and a sodium-cooled reactor with hydride fuel. All options were modeled in reactor physics codes to calculate their lattice physics, spectrum characteristics, and fuel compositions over time. Based on these results, detailed metrics were calculated to compare the fuel cycle performance. These metrics include waste management and resource utilization, and are binned to accommodate uncertainties. The performance of the intermediate systems for this selfsustaining thorium fuel cycle was similar to a representative fast spectrum system. However, the number of fission neutrons emitted per neutron absorbed limits performance in intermediate spectrum systems.« less

  18. Energy and cost savings results for advanced technology systems from the Cogeneration Technology Alternatives Study /CTAS/

    NASA Technical Reports Server (NTRS)

    Sagerman, G. D.; Barna, G. J.; Burns, R. K.

    1979-01-01

    The Cogeneration Technology Alternatives Study (CTAS), a program undertaken to identify the most attractive advanced energy conversion systems for industrial cogeneration applications in the 1985-2000 time period, is described, and preliminary results are presented. Two cogeneration options are included in the analysis: a topping application, in which fuel is input to the energy conversion system which generates electricity and waste heat from the conversion system is used to provide heat to the process, and a bottoming application, in which fuel is burned to provide high temperature process heat and waste heat from the process is used as thermal input to the energy conversion system which generates energy. Steam turbines, open and closed cycle gas turbines, combined cycles, diesel engines, Stirling engines, phosphoric acid and molten carbonate fuel cells and thermionics are examined. Expected plant level energy savings, annual energy cost savings, and other results of the economic analysis are given, and the sensitivity of these results to the assumptions concerning fuel prices, price of purchased electricity and the potential effects of regional energy use characteristics is discussed.

  19. Life cycle assessment of fuel ethanol produced from soluble sugar in sweet sorghum stalks in North China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Ning; Yang, Yang; Cai, Hao

    This paper describes the results of a life cycle assessment of sweet sorghum stalk (SSS)-based ethanol in North China. We determined the environmental performance of SSS-based ethanol and examined its advantages and disadvantages, as compared to gasoline, focusing on the life cycle of feedstock production, transportation, ethanol production and distribution, and use. The GREET transportation model and the method developed by the Centre of Environmental Sciences at Leiden University (CML method) were used to compile a life cycle inventory and to assess environmental impacts. Results indicate that SSS-based ethanol has advantages in terms of energy consumption, with a well tomore » wheel decrease of 85% fossil energy and 44% global warming potential, as compared with gasoline. Abiotic depletion potential, acidification potential, and photochemical ozone creation potential were also 50–90% lower than in the case of gasoline, while human health toxic potential was 36% lower. However, SSS-based sorghum did not have advantages over gasoline in terms of life cycle cost, land use, and water consumption. Results indicate that such an evaluation cannot just consider a few types of environmental impacts, researchers should promote systematic and comprehensive life cycle assessment of ethanol to guide the development of an energy strategy for China.« less

  20. Manufacturing Experience for Oxide Dispersion Strengthened Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, Wendy D.; Doherty, Ann L.; Henager, Charles H.

    2016-09-22

    This report documents the results of the development and the manufacturing experience gained at the Pacific Northwest National Laboratories (PNNL) while working with the oxide dispersion strengthened (ODS) materials MA 956, 14YWT, and 9YWT. The Fuel Cycle Research and Development program of the Office of Nuclear Energy has implemented a program to develop a Uranium-Molybdenum metal fuel for light water reactors. ODS materials have the potential to provide improved performance for the U-Mo concept.

  1. Life Cycle Assessment of landfill biogas management: sensitivity to diffuse and combustion air emissions.

    PubMed

    Beylot, Antoine; Villeneuve, Jacques; Bellenfant, Gaël

    2013-02-01

    GOAL AND SCOPE: The life cycle inventory of landfill emissions is a key point in Life Cycle Assessment (LCA) of waste management options and is highly subject to discussion. Result sensitivity to data inventory is accounted for through the implementation of scenarios that help examine how waste landfilling should be modeled in LCA. Four landfill biogas management options are environmentally evaluated in a Life Cycle Assessment perspective: (1) no biogas management (open dump), conventional landfill with (2) flaring, (3) combined heat and power (CHP) production in an internal combustion engine and (4) biogas upgrading for use as a fuel in buses. Average, maximum and minimum literature values are considered both for combustion emission factors in flares and engines and for trace pollutant concentrations in biogas. Biogas upgrading for use as a fuel in buses appears as the most relevant option with respect to most non-toxic impact categories and ecotoxicity, when considering average values for trace gas concentrations and combustion emission factors. Biogas combustion in an engine for CHP production shows the best performances in terms of climate change, but generates significantly higher photochemical oxidant formation and marine eutrophication impact potentials than flaring or biogas upgrading for use as a fuel in buses. However the calculated environmental impact potentials of landfill biogas management options depend largely on the trace gas concentrations implemented in the model. The use of average or extreme values reported in the literature significantly modifies the impact potential of a given scenario (up to two orders of magnitude for open dumps with respect to human toxicity). This should be taken into account when comparing landfilling with other waste management options. Also, the actual performances of a landfill top cover (in terms of oxidation rates) and combustion technology (in terms of emission factors) appear as key parameters affecting the ranking of biogas management options. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Energy analysis of electric vehicles using batteries or fuel cells through well-to-wheel driving cycle simulations

    NASA Astrophysics Data System (ADS)

    Campanari, Stefano; Manzolini, Giampaolo; Garcia de la Iglesia, Fernando

    This work presents a study of the energy and environmental balances for electric vehicles using batteries or fuel cells, through the methodology of the well to wheel (WTW) analysis, applied to ECE-EUDC driving cycle simulations. Well to wheel balances are carried out considering different scenarios for the primary energy supply. The fuel cell electric vehicles (FCEV) are based on the polymer electrolyte membrane (PEM) technology, and it is discussed the possibility to feed the fuel cell with (i) hydrogen directly stored onboard and generated separately by water hydrolysis (using renewable energy sources) or by conversion processes using coal or natural gas as primary energy source (through gasification or reforming), (ii) hydrogen generated onboard with a fuel processor fed by natural gas, ethanol, methanol or gasoline. The battery electric vehicles (BEV) are based on Li-ion batteries charged with electricity generated by central power stations, either based on renewable energy, coal, natural gas or reflecting the average EU power generation feedstock. A further alternative is considered: the integration of a small battery to FCEV, exploiting a hybrid solution that allows recovering energy during decelerations and substantially improves the system energy efficiency. After a preliminary WTW analysis carried out under nominal operating conditions, the work discusses the simulation of the vehicles energy consumption when following standardized ECE-EUDC driving cycle. The analysis is carried out considering different hypothesis about the vehicle driving range, the maximum speed requirements and the possibility to sustain more aggressive driving cycles. The analysis shows interesting conclusions, with best results achieved by BEVs only for very limited driving range requirements, while the fuel cell solutions yield best performances for more extended driving ranges where the battery weight becomes too high. Results are finally compared to those of conventional internal combustion engine vehicles, showing the potential advantages of the different solutions considered in the paper and indicating the possibility to reach the target of zero-emission vehicles (ZEV).

  3. Alternative Fuels Data Center: Propane Vehicle Emissions

    Science.gov Websites

    compared to conventional gasoline and diesel fuel. When used as a vehicle fuel, propane can offer life , processing, manufacturing, distribution, use, and disposal or recycling. When comparing fuels, a life cycle GREET model estimates the life cycle petroleum use and GHG emissions for multiple fuels. When this model

  4. Uranium to Electricity: The Chemistry of the Nuclear Fuel Cycle

    ERIC Educational Resources Information Center

    Settle, Frank A.

    2009-01-01

    The nuclear fuel cycle consists of a series of industrial processes that produce fuel for the production of electricity in nuclear reactors, use the fuel to generate electricity, and subsequently manage the spent reactor fuel. While the physics and engineering of controlled fission are central to the generation of nuclear power, chemistry…

  5. Life cycle inventory energy consumption and emissions for biodiesel versus petroleum diesel fueled construction vehicles.

    PubMed

    Pang, Shih-Hao; Frey, H Christopher; Rasdorf, William J

    2009-08-15

    Substitution of soy-based biodiesel fuels for petroleum diesel will alter life cycle emissions for construction vehicles. A life cycle inventory was used to estimate fuel cycle energy consumption and emissions of selected pollutants and greenhouse gases. Real-world measurements using a portable emission measurement system (PEMS) were made forfive backhoes, four front-end loaders, and six motor graders on both fuels from which fuel consumption and tailpipe emission factors of CO, HC, NO(x), and PM were estimated. Life cycle fossil energy reductions are estimated it 9% for B20 and 42% for B100 versus petroleum diesel based on the current national energy mix. Fuel cycle emissions will contribute a larger share of total life cycle emissions as new engines enter the in-use fleet. The average differences in life cycle emissions for B20 versus diesel are: 3.5% higher for NO(x); 11.8% lower for PM, 1.6% higher for HC, and 4.1% lower for CO. Local urban tailpipe emissions are estimated to be 24% lower for HC, 20% lower for CO, 17% lower for PM, and 0.9% lower for NO(x). Thus, there are environmental trade-offs such as for rural vs urban areas. The key sources of uncertainty in the B20 LCI are vehicle emission factors.

  6. Neutronics Design of a Thorium-Fueled Fission Blanket for LIFE (Laser Inertial Fusion-based Energy)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Powers, J; Abbott, R; Fratoni, M

    The Laser Inertial Fusion-based Energy (LIFE) project at LLNL includes development of hybrid fusion-fission systems for energy generation. These hybrid LIFE engines use high-energy neutrons from laser-based inertial confinement fusion to drive a subcritical blanket of fission fuel that surrounds the fusion chamber. The fission blanket contains TRISO fuel particles packed into pebbles in a flowing bed geometry cooled by a molten salt (flibe). LIFE engines using a thorium fuel cycle provide potential improvements in overall fuel cycle performance and resource utilization compared to using depleted uranium (DU) and may minimize waste repository and proliferation concerns. A preliminary engine designmore » with an initial loading of 40 metric tons of thorium can maintain a power level of 2000 MW{sub th} for about 55 years, at which point the fuel reaches an average burnup level of about 75% FIMA. Acceptable performance was achieved without using any zero-flux environment 'cooling periods' to allow {sup 233}Pa to decay to {sup 233}U; thorium undergoes constant irradiation in this LIFE engine design to minimize proliferation risks and fuel inventory. Vast reductions in end-of-life (EOL) transuranic (TRU) inventories compared to those produced by a similar uranium system suggest reduced proliferation risks. Decay heat generation in discharge fuel appears lower for a thorium LIFE engine than a DU engine but differences in radioactive ingestion hazard are less conclusive. Future efforts on development of thorium-fueled LIFE fission blankets engine development will include design optimization, fuel performance analysis work, and further waste disposal and nonproliferation analyses.« less

  7. Assessment of Novel Routes of Biomethane Utilization in a Life Cycle Perspective

    PubMed Central

    Moghaddam, Elham Ahmadi; Ahlgren, Serina; Nordberg, Åke

    2016-01-01

    Biomethane, as a replacement for natural gas, reduces the use of fossil-based sources and supports the intended change from fossil to bio-based industry. The study assessed different biomethane utilization routes for production of methanol, dimethyl ether (DME), and ammonia, as fuel or platform chemicals and combined heat and power (CHP). Energy efficiency and environmental impacts of the different pathways was studied in a life cycle perspective covering the technical system from biomass production to the end product. Among the routes studied, CHP had the highest energy balance and least environmental impact. DME and methanol performed competently in energy balance and environmental impacts in comparison with the ammonia route. DME had the highest total energy output, as fuel, heat, and steam, among the different routes studied. Substituting the bio-based routes for fossil-based alternatives would give a considerable reduction in environmental impacts such as global warming potential and acidification potential for all routes studied, especially CHP, DME, and methanol. Eutrophication potential was mainly a result of biomass and biomethane production, with marginal differences between the different routes. PMID:28066762

  8. Uranium oxide fuel cycle analysis in VVER-1000 with VISTA simulation code

    NASA Astrophysics Data System (ADS)

    Mirekhtiary, Seyedeh Fatemeh; Abbasi, Akbar

    2018-02-01

    The VVER-1000 Nuclear power plant generates about 20-25 tons of spent fuel per year. In this research, the fuel transmutation of Uranium Oxide (UOX) fuel was calculated by using of nuclear fuel cycle simulation system (VISTA) code. In this simulation, we evaluated the back end components fuel cycle. The back end component calculations are Spent Fuel (SF), Actinide Inventory (AI) and Fission Product (FP) radioisotopes. The SF, AI and FP values were obtained 23.792178 ton/y, 22.811139 ton/y, 0.981039 ton/y, respectively. The obtained value of spent fuel, major actinide, and minor actinide and fission products were 23.8 ton/year, 22.795 ton/year, 0.024 ton/year and 0.981 ton/year, respectively.

  9. The scheme for evaluation of isotopic composition of fast reactor core in closed nuclear fuel cycle

    NASA Astrophysics Data System (ADS)

    Saldikov, I. S.; Ternovykh, M. Yu; Fomichenko, P. A.; Gerasimov, A. S.

    2017-01-01

    The PRORYV (i.e. «Breakthrough» in Russian) project is currently under development. Within the framework of this project, fast reactors BN-1200 and BREST-OD-300 should be built to, inter alia, demonstrate possibility of the closed nuclear fuel cycle technologies with plutonium as a main source of power. Russia has a large inventory of plutonium which was accumulated in the result of reprocessing of spent fuel of thermal power reactors and conversion of nuclear weapons. This kind of plutonium will be used for development of initial fuel assemblies for fast reactors. To solve the closed nuclear fuel modeling tasks REPRORYV code was developed. It simulates the mass flow for nuclides in the closed fuel cycle. This paper presents the results of modeling of a closed nuclear fuel cycle, nuclide flows considering the influence of the uncertainty on the outcome of neutron-physical characteristics of the reactor.

  10. THE ATTRACTIVENESS OF MATERIAS ASSOCIATED WITH THORIUM-BASED NUCLEAR FUEL CYCLES FOR PHWRS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prichard, Andrew W.; Niehus, Mark T.; Collins, Brian A.

    2011-07-17

    This paper reports the continued evaluation of the attractiveness of materials mixtures containing special nuclear materials (SNM) associated with thorium based nuclear fuel cycles. Specifically, this paper examines a thorium fuel cycle in which a pressurized heavy water reactor (PHWR) is fueled with mixtures of natural uranium/233U/thorium. This paper uses a PHWR fueled with natural uranium as a base fuel cycle, and then compares material attractiveness of fuel cycles that use 233U/thorium salted with natural uranium. The results include the material attractiveness of fuel at beginning of life (BoL), end of life (EoL), and the number of fuel assemblies requiredmore » to collect a bare critical mass of plutonium or uranium. This study indicates what is required to render the uranium as having low utility for use in nuclear weapons; in addition, this study estimates the increased number of assemblies required to accumulate a bare critical mass of plutonium that has a higher utility for use in nuclear weapons. This approach identifies that some fuel cycles may be easier to implement the International Atomic Energy Agency (IAEA) safeguards approach and have a more effective safeguards by design outcome. For this study, approximately one year of fuel is required to be reprocessed to obtain one bare critical mass of plutonium. Nevertheless, the result of this paper suggests that all spent fuel needs to be rigorously safeguarded and provided with high levels of physical protection. This study was performed at the request of the United States Department of Energy /National Nuclear Security Administration (DOE/NNSA). The methodology and key findings will be presented.« less

  11. Fuel cycle cost uncertainty from nuclear fuel cycle comparison

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, J.; McNelis, D.; Yim, M.S.

    2013-07-01

    This paper examined the uncertainty in fuel cycle cost (FCC) calculation by considering both model and parameter uncertainty. Four different fuel cycle options were compared in the analysis including the once-through cycle (OT), the DUPIC cycle, the MOX cycle and a closed fuel cycle with fast reactors (FR). The model uncertainty was addressed by using three different FCC modeling approaches with and without the time value of money consideration. The relative ratios of FCC in comparison to OT did not change much by using different modeling approaches. This observation was consistent with the results of the sensitivity study for themore » discount rate. Two different sets of data with uncertainty range of unit costs were used to address the parameter uncertainty of the FCC calculation. The sensitivity study showed that the dominating contributor to the total variance of FCC is the uranium price. In general, the FCC of OT was found to be the lowest followed by FR, MOX, and DUPIC. But depending on the uranium price, the FR cycle was found to have lower FCC over OT. The reprocessing cost was also found to have a major impact on FCC.« less

  12. 78 FR 67223 - Proposed Guidance for Fuel Cycle Facility; Material Control and Accounting Plans and Completing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-08

    ..., 72, et al. Proposed Guidance for Fuel Cycle Facility; Material Control and Accounting Plans and Completing NRC Form 327 and Amendments to Material Control and Accounting Regulations; Proposed Rules #0;#0... Guidance for Fuel Cycle Facility; Material Control and Accounting Plans and Completing NRC Form 327 AGENCY...

  13. Managing the Nuclear Fuel Cycle: Policy Implications of Expanding Global Access to Nuclear Power

    DTIC Science & Technology

    2007-11-01

    critical aspect of the nuclear fuel cycle for the United States, where longstanding nonproliferation policy discouraged commercial nuclear fuel...perhaps the most critical question in this decade for strengthening the nuclear nonproliferation regime: how can access to sensitive fuel cycle...process can take advantage of the slight difference in atomic mass between 235U and 238U. The typical enrichment process requires about 10 lbs of uranium

  14. Fuel sensor-less control of a liquid feed fuel cell under dynamic loading conditions for portable power sources (II)

    NASA Astrophysics Data System (ADS)

    Chang, C. L.; Chen, C. Y.; Sung, C. C.; Liou, D. H.; Chang, C. Y.; Cha, H. C.

    This work presents a new fuel sensor-less control scheme for liquid feed fuel cells that is able to control the supply to a fuel cell system for operation under dynamic loading conditions. The control scheme uses cell-operating characteristics, such as potential, current, and power, to regulate the fuel concentration of a liquid feed fuel cell without the need for a fuel concentration sensor. A current integral technique has been developed to calculate the quantity of fuel required at each monitoring cycle, which can be combined with the concentration regulating process to control the fuel supply for stable operation. As verified by systematic experiments, this scheme can effectively control the fuel supply of a liquid feed fuel cell with reduced response time, even under conditions where the membrane electrolyte assembly (MEA) deteriorates gradually. This advance will aid the commercialization of liquid feed fuel cells and make them more adaptable for use in portable and automotive power units such as laptops, e-bikes, and handicap cars.

  15. High regression rate hybrid rocket fuel grains with helical port structures

    NASA Astrophysics Data System (ADS)

    Walker, Sean D.

    Hybrid rockets are popular in the aerospace industry due to their storage safety, simplicity, and controllability during rocket motor burn. However, they produce fuel regression rates typically 25% lower than solid fuel motors of the same thrust level. These lowered regression rates produce unacceptably high oxidizer-to-fuel (O/F) ratios that produce a potential for motor instability, nozzle erosion, and reduced motor duty cycles. To achieve O/F ratios that produce acceptable combustion characteristics, traditional cylindrical fuel ports are fabricated with very long length-to-diameter ratios to increase the total burning area. These high aspect ratios produce further reduced fuel regression rate and thrust levels, poor volumetric efficiency, and a potential for lateral structural loading issues during high thrust burns. In place of traditional cylindrical fuel ports, it is proposed that by researching the effects of centrifugal flow patterns introduced by embedded helical fuel port structures, a significant increase in fuel regression rates can be observed. The benefits of increasing volumetric efficiencies by lengthening the internal flow path will also be observed. The mechanisms of this increased fuel regression rate are driven by enhancing surface skin friction and reducing the effect of boundary layer "blowing" to enhance convective heat transfer to the fuel surface. Preliminary results using additive manufacturing to fabricate hybrid rocket fuel grains from acrylonitrile-butadiene-styrene (ABS) with embedded helical fuel port structures have been obtained, with burn-rate amplifications up to 3.0x than that of cylindrical fuel ports.

  16. Military utility of very large airplanes and alternative fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mikolowsky, W.T.; Noggle, L.W.; Stanley, W.L.

    1977-09-01

    Synthetic chemical fuels and nuclear fuels were evaluated for use in very large airplanes (VLA's). Candidate fuels included synthetic jet fuel, liquid hydrogen, liquid methane, methanol, ethanol, ammonia, and gasoline. Airplane life-cycle costs and life-cycle energy consumption are estimated, and energy and cost effectiveness are evaluated. It is concluded that a synthetic conventional hydrocarbon jet fuel remains the most attractive for military aircraft. (PMA)

  17. Updating the U.S. Life Cycle GHG Petroleum Baseline to 2014 with Projections to 2040 Using Open-Source Engineering-Based Models.

    PubMed

    Cooney, Gregory; Jamieson, Matthew; Marriott, Joe; Bergerson, Joule; Brandt, Adam; Skone, Timothy J

    2017-01-17

    The National Energy Technology Laboratory produced a well-to-wheels (WTW) life cycle greenhouse gas analysis of petroleum-based fuels consumed in the U.S. in 2005, known as the NETL 2005 Petroleum Baseline. This study uses a set of engineering-based, open-source models combined with publicly available data to calculate baseline results for 2014. An increase between the 2005 baseline and the 2014 results presented here (e.g., 92.4 vs 96.2 g CO 2 e/MJ gasoline, + 4.1%) are due to changes both in modeling platform and in the U.S. petroleum sector. An updated result for 2005 was calculated to minimize the effect of the change in modeling platform, and emissions for gasoline in 2014 were about 2% lower than in 2005 (98.1 vs 96.2 g CO 2 e/MJ gasoline). The same methods were utilized to forecast emissions from fuels out to 2040, indicating maximum changes from the 2014 gasoline result between +2.1% and -1.4%. The changing baseline values lead to potential compliance challenges with frameworks such as the Energy Independence and Security Act (EISA) Section 526, which states that Federal agencies should not purchase alternative fuels unless their life cycle GHG emissions are less than those of conventionally produced, petroleum-derived fuels.

  18. Comparison of Engine Cycle Codes for Rocket-Based Combined Cycle Engines

    NASA Technical Reports Server (NTRS)

    Waltrup, Paul J.; Auslender, Aaron H.; Bradford, John E.; Carreiro, Louis R.; Gettinger, Christopher; Komar, D. R.; McDonald, J.; Snyder, Christopher A.

    2002-01-01

    This paper summarizes the results from a one day workshop on Rocket-Based Combined Cycle (RBCC) Engine Cycle Codes held in Monterey CA in November of 2000 at the 2000 JANNAF JPM with the authors as primary participants. The objectives of the workshop were to discuss and compare the merits of existing Rocket-Based Combined Cycle (RBCC) engine cycle codes being used by government and industry to predict RBCC engine performance and interpret experimental results. These merits included physical and chemical modeling, accuracy and user friendliness. The ultimate purpose of the workshop was to identify the best codes for analyzing RBCC engines and to document any potential shortcomings, not to demonstrate the merits or deficiencies of any particular engine design. Five cases representative of the operating regimes of typical RBCC engines were used as the basis of these comparisons. These included Mach 0 sea level static and Mach 1.0 and Mach 2.5 Air-Augmented-Rocket (AAR), Mach 4 subsonic combustion ramjet or dual-mode scramjet, and Mach 8 scramjet operating modes. Specification of a generic RBCC engine geometry and concomitant component operating efficiencies, bypass ratios, fuel/oxidizer/air equivalence ratios and flight dynamic pressures were provided. The engine included an air inlet, isolator duct, axial rocket motor/injector, axial wall fuel injectors, diverging combustor, and exit nozzle. Gaseous hydrogen was used as the fuel with the rocket portion of the system using a gaseous H2/O2 propellant system to avoid cryogenic issues. The results of the workshop, even after post-workshop adjudication of differences, were surprising. They showed that the codes predicted essentially the same performance at the Mach 0 and I conditions, but progressively diverged from a common value (for example, for fuel specific impulse, Isp) as the flight Mach number increased, with the largest differences at Mach 8. The example cases and results are compared and discussed in this paper.

  19. Life-Cycle Assessment of Cookstove Fuels in India and China

    EPA Science Inventory

    A life cycle assessment (LCA) was conducted to compare the environmental footprint of current and possible fuels used for cooking within China and India. Current fuel mix profiles are compared to scenarios of projected differences in and/or cleaner cooking fuels. Results are repo...

  20. Life-Cycle Assessment of Cookstove Fuels in India and China ...

    EPA Pesticide Factsheets

    A life cycle assessment (LCA) was conducted to compare the environmental footprint of current and possible fuels used for cooking within China and India. Current fuel mix profiles are compared to scenarios of projected differences in and/or cleaner cooking fuels. Results are reported for a suite of relevant life cycle impact assessment indicators: global climate change, energy demand, fossil depletion, water consumption, particulate matter formation, acidification, eutrophication and photochemical smog formation. Traditional fuels demonstrate notably poor relative performance in particulate matter formation, photochemical oxidant formation, freshwater eutrophication, and black carbon emissions. Most fuels demonstrate trade-offs between impact categories. Stove efficiency is found to be a crucial variable determining environmental performance across all impact categories. The study shows that electricity and many of the processed fuels, while yielding emission reductions in homes at the point of use, transfer many of those emissions upstream into the processing and distribution life cycle stage. To conduct LCA study of the cookstove fuels being used in India and China to determine how fuels and stoves compare based on a holistic assessment considering the LCA environmental tradeoffs

  1. Fuel economy and life-cycle cost analysis of a fuel cell hybrid vehicle

    NASA Astrophysics Data System (ADS)

    Jeong, Kwi Seong; Oh, Byeong Soo

    The most promising vehicle engine that can overcome the problem of present internal combustion is the hydrogen fuel cell. Fuel cells are devices that change chemical energy directly into electrical energy without combustion. Pure fuel cell vehicles and fuel cell hybrid vehicles (i.e. a combination of fuel cell and battery) as energy sources are studied. Considerations of efficiency, fuel economy, and the characteristics of power output in hybridization of fuel cell vehicle are necessary. In the case of Federal Urban Driving Schedule (FUDS) cycle simulation, hybridization is more efficient than a pure fuel cell vehicle. The reason is that it is possible to capture regenerative braking energy and to operate the fuel cell system within a more efficient range by using battery. Life-cycle cost is largely affected by the fuel cell size, fuel cell cost, and hydrogen cost. When the cost of fuel cell is high, hybridization is profitable, but when the cost of fuel cell is less than 400 US$/kW, a pure fuel cell vehicle is more profitable.

  2. IMPACTS ON HUMAN HEALTH FROM THE COAL AND NUCLEAR FUEL CYCLES AND OTHER TECHNOLOGIES ASSOCIATED WITH ELECTRIC POWER GENERATION AND TRANSMISSION

    EPA Science Inventory

    The report evaluates major public health impacts of electric power generation and transmission associated with the nuclear fuel cycle and with coal use. Only existing technology is evaluated. For the nuclear cycle, effects of future use of fuel reprocessing and long-term radioact...

  3. Life cycle assessment of camelina oil derived biodiesel and jet fuel in the Canadian Prairies.

    PubMed

    Li, Xue; Mupondwa, Edmund

    2014-05-15

    This study evaluated the environmental impact of biodiesel and hydroprocessed renewable jet fuel derived from camelina oil in terms of global warming potential, human health, ecosystem quality, and energy resource consumption. The life cycle inventory is based on production activities in the Canadian Prairies and encompasses activities ranging from agricultural production to oil extraction and fuel conversion. The system expansion method is used in this study to avoid allocation and to credit input energy to co-products associated with the products displaced in the market during camelina oil extraction and fuel processing. This is the preferred allocation method for LCA analysis in the context of most renewable and sustainable energy programs. The results show that greenhouse gas (GHG) emissions from 1 MJ of camelina derived biodiesel ranged from 7.61 to 24.72 g CO2 equivalent and 3.06 to 31.01 kg CO2/MJ equivalent for camelina HRJ fuel. Non-renewable energy consumption for camelina biodiesel ranged from 0.40 to 0.67 MJ/MJ; HRJ fuel ranged from -0.13 to 0.52 MJ/MJ. Camelina oil as a feedstock for fuel production accounted for the highest contribution to overall environmental performance, demonstrating the importance of reducing environmental burdens during the agricultural production process. Attaining higher seed yield would dramatically lower environmental impacts associated with camelina seed, oil, and fuel production. The lower GHG emissions and energy consumption associated with camelina in comparison with other oilseed derived fuel and petroleum fuel make camelina derived fuel from Canadian Prairies environmentally attractive. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  4. Modeling and analysis of tritium dynamics in a DT fusion fuel cycle

    NASA Astrophysics Data System (ADS)

    Kuan, William

    1998-11-01

    A number of crucial design issues have a profound effect on the dynamics of the tritium fuel cycle in a DT fusion reactor, where the development of appropriate solutions to these issues is of particular importance to the introduction of fusion as a commercial system. Such tritium-related issues can be classified according to their operational, safety, and economic impact to the operation of the reactor during its lifetime. Given such key design issues inherent in next generation fusion devices using the DT fuel cycle development of appropriate models can then lead to optimized designs of the fusion fuel cycle for different types of DT fusion reactors. In this work, two different types of modeling approaches are developed and their application to solving key tritium issues presented. For the first approach, time-dependent inventories, concentrations, and flow rates characterizing the main subsystems of the fuel cycle are simulated with a new dynamic modular model of a fusion reactor's fuel cycle, named X-TRUFFLES (X-Windows TRitiUm Fusion Fuel cycLE dynamic Simulation). The complex dynamic behavior of the recycled fuel within each of the modeled subsystems is investigated using this new integrated model for different reactor scenarios and design approaches. Results for a proposed fuel cycle design taking into account current technologies are presented, including sensitivity studies. Ways to minimize the tritium inventory are also assessed by examining various design options that could be used to minimize local and global tritium inventories. The second modeling approach involves an analytical model to be used for the calculation of the required tritium breeding ratio, i.e., a primary design issue which relates directly to the feasibility and economics of DT fusion systems. A time-integrated global tritium balance scheme is developed and appropriate analytical expressions are derived for tritium self-sufficiency relevant parameters. The easy exploration of the large parameter space of the fusion fuel cycle can thus be conducted as opposed to previous modeling approaches. Future guidance for R&D (research and development) in fusion nuclear technology is discussed in view of possible routes to take in reducing the tritium breeding requirements of DT fusion reactors.

  5. 40 CFR 79.50 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... commonly used in heavy-duty engine evaluation. The EDS for heavy-duty diesel engines is specified in 40 CFR part 86, appendix I(f)(2). Evaporative Emission Generator (EEG) means a fuel tank or vessel to which...-fueled vehicles, Otto cycle methanol-fueled vehicles, diesel cycle diesel-fueled vehicles, and diesel...

  6. 40 CFR 79.50 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... commonly used in heavy-duty engine evaluation. The EDS for heavy-duty diesel engines is specified in 40 CFR part 86, appendix I(f)(2). Evaporative Emission Generator (EEG) means a fuel tank or vessel to which...-fueled vehicles, Otto cycle methanol-fueled vehicles, diesel cycle diesel-fueled vehicles, and diesel...

  7. 40 CFR 600.209-08 - Calculation of vehicle-specific 5-cycle fuel economy values for a model type.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... intended for sale at high altitude, the Administrator may use fuel economy data from tests conducted on... from the tests performed using gasoline or diesel test fuel. (ii) If 5-cycle testing was performed on the alcohol or natural gas test fuel, calculate the city and highway fuel economy values from the...

  8. 40 CFR 600.209-08 - Calculation of vehicle-specific 5-cycle fuel economy values for a model type.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... intended for sale at high altitude, the Administrator may use fuel economy data from tests conducted on... from the tests performed using gasoline or diesel test fuel. (ii) If 5-cycle testing was performed on the alcohol or natural gas test fuel, calculate the city and highway fuel economy values from the...

  9. 40 CFR 600.209-08 - Calculation of vehicle-specific 5-cycle fuel economy values for a model type.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... vehicle configuration 5-cycle fuel economy values as determined in § 600.207-08 for low-altitude tests. (1... economy data from tests conducted on these vehicle configuration(s) at high altitude to calculate the fuel... city and highway fuel economy values from the tests performed using gasoline or diesel test fuel. (ii...

  10. Development of Ultra-Low Platinum Alloy Cathode Catalysts for PEM Fuel Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popov, Branko N.; Weidner, John

    2016-01-07

    The goal of this project is to synthesize a low cost PEM fuel cell cathode catalyst and support with optimized average mass activity, stability of mass activity, initial high current density performance under H 2/air (power density), and catalyst and support stability able to meet 2017 DOE targets for electrocatalysts for transportation applications. Pt*/ACCS-2 catalyst was synthesized according to a novel methodology developed at USC through: (i) surface modification, (ii) metal catalyzed pyrolysis and (iii) chemical leaching to remove excess meal used to dope the support. Pt* stands for suppressed platinum catalyst synthesized with Co doped platinum. The procedure resultsmore » in increasing carbon graphitization, inclusion of cobalt in the bulk and formation of non-metallic active sites on the carbon surface. Catalytic activity of the support shows an onset potential of 0.86 V for the oxygen reduction reaction (ORR) with well-defined kinetic and mass transfer regions and 2.5% H 2O 2 production. Pt*/ACCS-2 catalyst durability under 0.6-1.0 V potential cycling and support stability under 1.0-1.5 V potential cycling was evaluated. The results indicated excellent catalyst and support performance under simulated start-up/shut down operating conditions (1.0 – 1.5 V, 5000 cycles) which satisfy DOE 2017 catalyst and support durability and activity. The 30% Pt*/ACCS-2 catalyst showed high initial mass activity of 0.34 A/mg PGM at 0.9 ViR-free and loss of mass activity of 45% after 30,000 cycles (0.6-1.0 V). The catalyst performance under H 2-air fuel cell operating conditions showed only 24 mV (iR-free) loss at 0.8 A/cm 2 with an ECSA loss of 42% after 30,000 cycles (0.6-1.0 V). The support stability under 1.0-1.5 V potential cycling showed mass activity loss of 50% and potential loss of 8 mV (iR-free) at 1.5 A/cm 2. The ECSA loss was 22% after 5,000 cycles. Furthermore, the Pt*/ACCS-2 catalyst showed an initial power density (rated) of 0.174 g PGM/kW. Excellent activity and stability of the catalyst are due to synergistic effect of the catalytic activity and stability of ACCS-2, its enhanced hydrophobicity as well as activity of compressive Pt* lattice catalysts. For the first time, we report a carbon based support which is stable under simulated start-up/shut down operating conditions. Five 25cm 2 MEA’s were fabricated at USC using Pt*/ACCS-2 cathode catalyst for independent evaluation at National Renewable Energy. In the Final NREL report they summarize their results as follow: (1) Initial ORR activity and performance of the USC MEA’s Pt*/ACCS-2 under oxygen air, evaluated at NREL were comparable to that measured and reported by USC in their report: (2) Cyclic durability studies indicate that Pt*/ACCS-2 catalysts has minimal losses in activity and performant under 1-1.5 V potential cycling indicating a robust corrosion resistant support.« less

  11. Lignin Valorization: Emerging Approaches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beckham, Gregg T

    Lignin, an aromatic biopolymer found in plant cell walls, is a key component of lignocellulosic biomass and generally utilized for heat and power. However, lignin's chemical composition makes it an attractive source for biological and catalytic conversion to fuels and chemicals. Bringing together experts from biology, catalysis, engineering, analytical chemistry, and techno-economic/life-cycle analysis, Lignin Valorization presents a comprehensive, interdisciplinary picture of how lignocellulosic biorefineries could potentially employ lignin valorization technologies. Chapters will specifically focus on the production of fuels and chemicals from lignin and topics covered include (i) methods for isolating lignin in the context of the lignocellulosic biorefinery, (ii)more » thermal, chemo-catalytic, and biological methods for lignin depolymerization, (iii) chemo-catalytic and biological methods for upgrading lignin, (iv) characterization of lignin, and (v) techno-economic and life-cycle analysis of integrated processes to utilize lignin in an integrated biorefinery. The book provides the latest breakthroughs and challenges in upgrading lignin to fuels and chemicals for graduate students and researchers in academia, governmental laboratories, and industry interested in biomass conversion.« less

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rebecca E. Smith

    Internationally, the nuclear industry is represented by both commercial utilities and research institutions. Over the past two decades many of these entities have had to relocate inventories of spent nuclear fuel from underwater storage to dry storage. These efforts were primarily prompted by two factors: insufficient storage capacity (potentially precipitated by an open-ended nuclear fuel cycle) or deteriorating quality of existing underwater facilities. The intent of developing this bibliography is to assess what issues associated with fuel drying have been identified, to consider where concerns have been satisfactorily addressed, and to recommend where additional research would offer the most valuemore » to the commercial industry and the U. S. Department of Energy.« less

  13. A two-dimensional, finite-difference model of the oxidation of a uranium carbide fuel pellet

    NASA Astrophysics Data System (ADS)

    Shepherd, James; Fairweather, Michael; Hanson, Bruce C.; Heggs, Peter J.

    2015-12-01

    The oxidation of spent uranium carbide fuel, a candidate fuel for Generation IV nuclear reactors, is an important process in its potential reprocessing cycle. However, the oxidation of uranium carbide in air is highly exothermic. A model has therefore been developed to predict the temperature rise, as well as other useful information such as reaction completion times, under different reaction conditions in order to help in deriving safe oxidation conditions. Finite difference-methods are used to model the heat and mass transfer processes occurring during the reaction in two dimensions and are coupled to kinetics found in the literature.

  14. ORNL experience and perspectives related to processing of thorium and 233U for nuclear fuel

    DOE PAGES

    Croff, Allen G.; Collins, Emory D.; Del Cul, G. D.; ...

    2016-05-01

    Thorium-based nuclear fuel cycles have received renewed attention in both research and public circles since about the year 2000. Much of the attention has been focused on nuclear fission energy production that utilizes thorium as a fertile element for producing fissionable 233U for recycle in thermal reactors, fast reactors, or externally driven systems. Here, lesser attention has been paid to other fuel cycle operations that are necessary for implementation of a sustainable thorium-based fuel cycle such as reprocessing and fabrication of recycle fuels containing 233U.

  15. Real-world fuel use and gaseous emission rates for flex fuel vehicles operated on E85 versus gasoline.

    PubMed

    Delavarrafiee, Maryam; Frey, H Christopher

    2018-03-01

    Flex fuel vehicles (FFVs) typically operate on gasoline or E85, an 85%/15% volume blend of ethanol and gasoline. Differences in FFV fuel use and tailpipe emission rates are quantified for E85 versus gasoline based on real-world measurements of five FFVs with a portable emissions measurement system (PEMS), supplemented chassis dynamometer data, and estimates from the Motor Vehicle Emission Simulator (MOVES) model. Because of inter-vehicle variability, an individual FFV may have higher nitrogen oxide (NO x ) or carbon monoxide (CO) emission rates on E85 versus gasoline, even though average rates are lower. Based on PEMS data, the comparison of tailpipe emission rates for E85 versus gasoline is sensitive to vehicle-specific power (VSP). For example, although CO emission rates are lower for all VSP modes, they are proportionally lowest at higher VSP. Driving cycles with high power demand are more advantageous with respect to CO emissions, but less advantageous for NO x . Chassis dynamometer data are available for 121 FFVs at 50,000 useful life miles. Based on the dynamometer data, the average difference in tailpipe emissions for E85 versus gasoline is -23% for NO x , -30% for CO, and no significant difference for hydrocarbons (HC). To account for both the fuel cycle and tailpipe emissions from the vehicle, a life cycle inventory was conducted. Although tailpipe NO x emissions are lower for E85 versus gasoline for FFVs and thus benefit areas where the vehicles operate, the life cycle NO x emissions are higher because the NO x emissions generated during fuel production are higher. The fuel production emissions take place typically in rural areas. Although there are not significant differences in the total HC emissions, there are differences in HC speciation. The net effect of lower tailpipe NO x emissions and differences in HC speciation on ozone formation should be further evaluated. Reported comparisons of flex fuel vehicle (FFV) tailpipe emission rates for E85 versus gasoline have been inconsistent. To date, this is the most comprehensive evaluation of available and new data. The large range of inter-vehicle variability illustrates why prior studies based on small sample sizes led to apparently contradictory findings. E85 leads to significant reductions in tailpipe nitrogen oxide (NO x ) and carbon monoxide (CO) emission rates compared with gasoline, indicating a potential benefit for ozone air quality management in NO x -limited areas. The comparison of FFV tailpipe emissions between E85 and gasoline is sensitive to power demand and driving cycles.

  16. Effect on combined cycle efficiency of stack gas temperature constraints to avoid acid corrosion

    NASA Technical Reports Server (NTRS)

    Nainiger, J. J.

    1980-01-01

    To avoid condensation of sulfuric acid in the gas turbine exhaust when burning fuel oils contaning sulfur, the exhaust stack temperature and cold-end heat exchanger surfaces must be kept above the condensation temperature. Raising the exhaust stack temperature, however, results in lower combined cycle efficiency compared to that achievable by a combined cycle burning a sulfur-free fuel. The maximum difference in efficiency between the use of sulfur-free and fuels containing 0.8 percent sulfur is found to be less than one percentage point. The effect of using a ceramic thermal barrier coating (TBC) and a fuel containing sulfur is also evaluated. The combined-cycle efficiency gain using a TBC with a fuel containing sulfur compared to a sulfur-free fuel without TBC is 0.6 to 1.0 percentage points with air-cooled gas turbines and 1.6 to 1.8 percentage points with water-cooled gas turbines.

  17. Scenarios for Low Carbon and Low Water Electric Power Plant Operations: Implications for Upstream Water Use.

    PubMed

    Dodder, Rebecca S; Barnwell, Jessica T; Yelverton, William H

    2016-11-01

    Electric sector water use, in particular for thermoelectric operations, is a critical component of the water-energy nexus. On a life cycle basis per unit of electricity generated, operational (e.g., cooling system) water use is substantially higher than water demands for the fuel cycle (e.g., natural gas and coal) and power plant manufacturing (e.g., equipment and construction). However, could shifting toward low carbon and low water electric power operations create trade-offs across the electricity life cycle? We compare business-as-usual with scenarios of carbon reductions and water constraints using the MARKet ALlocation (MARKAL) energy system model. Our scenarios show that, for water withdrawals, the trade-offs are minimal: operational water use accounts for over 95% of life cycle withdrawals. For water consumption, however, this analysis identifies potential trade-offs under some scenarios. Nationally, water use for the fuel cycle and power plant manufacturing can reach up to 26% of the total life cycle consumption. In the western United States, nonoperational consumption can even exceed operational demands. In particular, water use for biomass feedstock irrigation and manufacturing/construction of solar power facilities could increase with high deployment. As the United States moves toward lower carbon electric power operations, consideration of shifting water demands can help avoid unintended consequences.

  18. Assuaging Nuclear Energy Risks: The Angarsk International Uranium Enrichment Center

    NASA Astrophysics Data System (ADS)

    Myers, Astasia

    2011-06-01

    The recent nuclear renaissance has motivated many countries, especially developing nations, to plan and build nuclear power reactors. However, domestic low enriched uranium demands may trigger nations to construct indigenous enrichment facilities, which could be redirected to fabricate high enriched uranium for nuclear weapons. The potential advantages of establishing multinational uranium enrichment sites are numerous including increased low enrichment uranium access with decreased nuclear proliferation risks. While multinational nuclear initiatives have been discussed, Russia is the first nation to actualize this concept with their Angarsk International Uranium Enrichment Center (IUEC). This paper provides an overview of the historical and modern context of the multinational nuclear fuel cycle as well as the evolution of Russia's IUEC, which exemplifies how international fuel cycle cooperation is an alternative to domestic facilities.

  19. Analyzing Real-World Light Duty Vehicle Efficiency Benefits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonder, Jeffrey; Wood, Eric; Chaney, Larry

    Off-cycle technologies represent an important pathway to achieve real-world fuel savings, through which OEMs can potentially receive credit toward CAFE compliance. DOE national labs such as NREL are well positioned to provide objective input on these technologies using large, national data sets in conjunction with OEM- and technology-specific testing. This project demonstrates an approach that combines vehicle testing (dynamometer and on-road) with powertrain modeling and simulation over large, representative datasets to quantify real-world fuel economy. The approach can be applied to specific off-cycle technologies (engine encapsulation, start/stop, connected vehicle, etc.) in A/B comparisons to support calculation of realistic real-world impacts.more » Future work will focus on testing-based A/B technology comparisons that demonstrate the significance of this approach.« less

  20. Nanotechnology for environmentally sustainable electromobility

    NASA Astrophysics Data System (ADS)

    Ellingsen, Linda Ager-Wick; Hung, Christine Roxanne; Majeau-Bettez, Guillaume; Singh, Bhawna; Chen, Zhongwei; Whittingham, M. Stanley; Strømman, Anders Hammer

    2016-12-01

    Electric vehicles (EVs) powered by lithium-ion batteries (LIBs) or proton exchange membrane hydrogen fuel cells (PEMFCs) offer important potential climate change mitigation effects when combined with clean energy sources. The development of novel nanomaterials may bring about the next wave of technical improvements for LIBs and PEMFCs. If the next generation of EVs is to lead to not only reduced emissions during use but also environmentally sustainable production chains, the research on nanomaterials for LIBs and PEMFCs should be guided by a life-cycle perspective. In this Analysis, we describe an environmental life-cycle screening framework tailored to assess nanomaterials for electromobility. By applying this framework, we offer an early evaluation of the most promising nanomaterials for LIBs and PEMFCs and their potential contributions to the environmental sustainability of EV life cycles. Potential environmental trade-offs and gaps in nanomaterials research are identified to provide guidance for future nanomaterial developments for electromobility.

  1. A highly durable fuel cell electrocatalyst based on double-polymer-coated carbon nanotubes

    PubMed Central

    Berber, Mohamed R.; Hafez, Inas H.; Fujigaya, Tsuyohiko; Nakashima, Naotoshi

    2015-01-01

    Driven by the demand for the commercialization of fuel cell (FC) technology, we describe the design and fabrication of a highly durable FC electrocatalyst based on double-polymer-coated carbon nanotubes for use in polymer electrolyte membrane fuel cells. The fabricated electrocatalyst is composed of Pt-deposited polybenzimidazole-coated carbon nanotubes, which are further coated with Nafion. By using this electrocatalyst, a high FC performance with a power density of 375 mW/cm2 (at 70 ˚C, 50% relative humidity using air (cathode)/H2(anode)) was obtained, and a remarkable durability of 500,000 accelerated potential cycles was recorded with only a 5% loss of the initial FC potential and 20% loss of the maximum power density, which were far superior properties compared to those of the membrane electrode assembly prepared using carbon black in place of the carbon nanotubes. The present study indicates that the prepared highly durable fuel cell electrocatalyst is a promising material for the next generation of PEMFCs. PMID:26594045

  2. A highly durable fuel cell electrocatalyst based on double-polymer-coated carbon nanotubes.

    PubMed

    Berber, Mohamed R; Hafez, Inas H; Fujigaya, Tsuyohiko; Nakashima, Naotoshi

    2015-11-23

    Driven by the demand for the commercialization of fuel cell (FC) technology, we describe the design and fabrication of a highly durable FC electrocatalyst based on double-polymer-coated carbon nanotubes for use in polymer electrolyte membrane fuel cells. The fabricated electrocatalyst is composed of Pt-deposited polybenzimidazole-coated carbon nanotubes, which are further coated with Nafion. By using this electrocatalyst, a high FC performance with a power density of 375 mW/cm(2) (at 70 ˚C, 50% relative humidity using air (cathode)/H2(anode)) was obtained, and a remarkable durability of 500,000 accelerated potential cycles was recorded with only a 5% loss of the initial FC potential and 20% loss of the maximum power density, which were far superior properties compared to those of the membrane electrode assembly prepared using carbon black in place of the carbon nanotubes. The present study indicates that the prepared highly durable fuel cell electrocatalyst is a promising material for the next generation of PEMFCs.

  3. Energy and emissions saving potential of additive manufacturing: the case of lightweight aircraft components

    DOE PAGES

    Huang, Runze; Riddle, Matthew; Graziano, Diane; ...

    2015-05-08

    Additive manufacturing (AM) holds great potential for improving materials efficiency, reducing life-cycle impacts, and enabling greater engineering functionality compared to conventional manufacturing (CM) processes. For these reasons, AM has been adopted by a growing number of aircraft component manufacturers to achieve more lightweight, cost-effective designs. This study estimates the net changes in life-cycle primary energy and greenhouse gas emissions associated with AM technologies for lightweight metallic aircraft components through the year 2050, to shed light on the environmental benefits of a shift from CM to AM processes in the U.S. aircraft industry. A systems modeling framework is presented, with integratesmore » engineering criteria, life-cycle environmental data, and aircraft fleet stock and fuel use models under different AM adoption scenarios. Estimated fleetwide life-cycle primary energy savings in a rapid adoption scenario reach 70-174 million GJ/year in 2050, with cumulative savings of 1.2-2.8 billion GJ. Associated cumulative emission reduction potentials of CO2e were estimated at 92.8-217.4 million metric tons. About 95% of the savings is attributed to airplane fuel consumption reductions due to lightweighting. In addition, about 4050 tons aluminum, 7600 tons titanium and 8100 tons of nickel alloys could be saved per year in 2050. The results indicate a significant role of AM technologies in helping society meet its long-term energy use and GHG emissions reduction goals, and highlight barriers and opportunities for AM adoption for the aircraft industry.« less

  4. Energy and emissions saving potential of additive manufacturing: the case of lightweight aircraft components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Runze; Riddle, Matthew; Graziano, Diane

    Additive manufacturing (AM) holds great potential for improving materials efficiency, reducing life-cycle impacts, and enabling greater engineering functionality compared to conventional manufacturing (CM) processes. For these reasons, AM has been adopted by a growing number of aircraft component manufacturers to achieve more lightweight, cost-effective designs. This study estimates the net changes in life-cycle primary energy and greenhouse gas emissions associated with AM technologies for lightweight metallic aircraft components through the year 2050, to shed light on the environmental benefits of a shift from CM to AM processes in the U.S. aircraft industry. A systems modeling framework is presented, with integratesmore » engineering criteria, life-cycle environmental data, and aircraft fleet stock and fuel use models under different AM adoption scenarios. Estimated fleetwide life-cycle primary energy savings in a rapid adoption scenario reach 70-174 million GJ/year in 2050, with cumulative savings of 1.2-2.8 billion GJ. Associated cumulative emission reduction potentials of CO2e were estimated at 92.8-217.4 million metric tons. About 95% of the savings is attributed to airplane fuel consumption reductions due to lightweighting. In addition, about 4050 tons aluminum, 7600 tons titanium and 8100 tons of nickel alloys could be saved per year in 2050. The results indicate a significant role of AM technologies in helping society meet its long-term energy use and GHG emissions reduction goals, and highlight barriers and opportunities for AM adoption for the aircraft industry.« less

  5. Relative Sustainability of Natural Gas Assisted High-Octane Gasoline Blendstock Production from Biomass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Eric C; Zhang, Yi Min; Cai, Hao

    Biomass-derived hydrocarbon fuel technologies are being developed and pursued for better economy, environment, and society benefits underpinning the sustainability of transportation energy. Increasing availability and affordability of natural gas (NG) in the US can play an important role in assisting renewable fuel technology development, primarily in terms of economic feasibility. When a biorefinery is co-processing NG with biomass, the current low cost of NG coupled with the higher NG carbon conversion efficiency potentially allow for cost competitiveness of the fuel while achieving a minimum GHG emission reduction of 50 percent or higher compared to petroleum fuel. This study evaluates themore » relative sustainability of the production of high-octane gasoline blendstock via indirect liquefaction (IDL) of biomass (and with NG co-feed) through methanol/dimethyl ether intermediates. The sustainability metrics considered in this study include minimum fuel selling price (MFSP), carbon conversion efficiency, life cycle GHG emissions, life cycle water consumption, fossil energy return on investment (EROI), GHG emission avoidance cost, and job creation. Co-processing NG can evidently improve the MFSP. Evaluation of the relative sustainability can shed light on the biomass-NG synergistic impacts and sustainability trade-offs associated with the IDL as high-octane gasoline blendstock production.« less

  6. Coupling fuel cycles with repositories: how repository institutional choices may impact fuel cycle design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forsberg, C.; Miller, W.F.

    2013-07-01

    The historical repository siting strategy in the United States has been a top-down approach driven by federal government decision making but it has been a failure. This policy has led to dispatching fuel cycle facilities in different states. The U.S. government is now considering an alternative repository siting strategy based on voluntary agreements with state governments. If that occurs, state governments become key decision makers. They have different priorities. Those priorities may change the characteristics of the repository and the fuel cycle. State government priorities, when considering hosting a repository, are safety, financial incentives and jobs. It follows that statesmore » will demand that a repository be the center of the back end of the fuel cycle as a condition of hosting it. For example, states will push for collocation of transportation services, safeguards training, and navy/private SNF (Spent Nuclear Fuel) inspection at the repository site. Such activities would more than double local employment relative to what was planned for the Yucca Mountain-type repository. States may demand (1) the right to take future title of the SNF so if recycle became economic the reprocessing plant would be built at the repository site and (2) the right of a certain fraction of the repository capacity for foreign SNF. That would open the future option of leasing of fuel to foreign utilities with disposal of the SNF in the repository but with the state-government condition that the front-end fuel-cycle enrichment and fuel fabrication facilities be located in that state.« less

  7. MSFR TRU-burning potential and comparison with an SFR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fiorina, C.; Cammi, A.; Franceschini, F.

    2013-07-01

    The objective of this work is to evaluate the Molten Salt Fast Reactor (MSFR) potential benefits in terms of transuranics (TRU) burning through a comparative analysis with a sodium-cooled FR. The comparison is based on TRU- and MA-burning rates, as well as on the in-core evolution of radiotoxicity and decay heat. Solubility issues limit the TRU-burning rate to 1/3 that achievable in traditional low-CR FRs (low-Conversion-Ratio Fast Reactors). The softer spectrum also determines notable radiotoxicity and decay heat of the equilibrium actinide inventory. On the other hand, the liquid fuel suggests the possibility of using a Pu-free feed composed onlymore » of Th and MA (Minor Actinides), thus maximizing the MA burning rate. This is generally not possible in traditional low-CR FRs due to safety deterioration and decay heat of reprocessed fuel. In addition, the high specific power and the lack of out-of-core cooling times foster a quick transition toward equilibrium, which improves the MSFR capability to burn an initial fissile loading, and makes the MSFR a promising system for a quick (i.e., in a reactor lifetime) transition from the current U-based fuel cycle to a novel closed Th cycle. (authors)« less

  8. Nitrogen-doped fullerene as a potential catalyst for hydrogen fuel cells.

    PubMed

    Gao, Feng; Zhao, Guang-Lin; Yang, Shizhong; Spivey, James J

    2013-03-06

    We examine the possibility of nitrogen-doped C60 fullerene (N-C60) as a cathode catalyst for hydrogen fuel cells. We use first-principles spin-polarized density functional theory calculations to simulate the electrocatalytic reactions on N-C60. The first-principles results show that an O2 molecule can be adsorbed and partially reduced on the N-C complex sites (Pauling sites) of N-C60 without any activation barrier. Through a direct pathway, the partially reduced O2 can further react with H(+) and additional electrons and complete the water formation reaction (WFR) with no activation energy barrier. In the indirect pathway, reduced O2 reacts with H(+) and additional electrons to form H2O molecules through a transition state (TS) with a small activation barrier (0.22-0.37 eV). From an intermediate state to a TS, H(+) can obtain a kinetic energy of ∼0.95-3.68 eV, due to the Coulomb electric interaction, and easily overcome the activation energy barrier during the WFR. The full catalytic reaction cycles can be completed energetically, and N-C60 fullerene recovers to its original structure for the next catalytic reaction cycle. N-C60 fullerene is a potential cathode catalyst for hydrogen fuel cells.

  9. The life cycle assessment of alternative fuel chains for urban buses and trolleybuses.

    PubMed

    Kliucininkas, L; Matulevicius, J; Martuzevicius, D

    2012-05-30

    This paper describes a comparative analysis of public transport alternatives in the city of Kaunas, Lithuania. An LCA (Life Cycle Assessment) inventory analysis of fuel chains was undertaken using the midi urban bus and a similar type of trolleybus. The inventory analysis of fuel chains followed the guidelines provided by the ISO 14040 and ISO 14044 standards. The ReCiPe Life Cycle Impact Assessment (LCIA) methodology was used to quantify weighted damage originating from five alternative fuel chains. The compressed biogas fuel chain had the lowest weighted damage value, namely 45.7 mPt/km, whereas weighted damage values of the fuel chains based on electricity generation for trolleybuses were 60.6 mPt/km (for natural gas) and 78.9 mPt/km (for heavy fuel oil). The diesel and compressed natural gas fuel chains exhibited considerably higher damage values of 114.2 mPt/km and 132.6 mPt/km, respectively. The comparative life cycle assessment of fuel chains suggested that biogas-powered buses and electric trolleybuses can be considered as the best alternatives to use when modernizing the public transport fleet in Kaunas. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Life-cycle analysis of alternative aviation fuels in GREET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elgowainy, A.; Han, J.; Wang, M.

    2012-07-23

    The Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model, developed at Argonne National Laboratory, has been expanded to include well-to-wake (WTWa) analysis of aviation fuels and aircraft. This report documents the key WTWa stages and assumptions for fuels that represent alternatives to petroleum jet fuel. The aviation module in GREET consists of three spreadsheets that present detailed characterizations of well-to-pump and pump-to-wake parameters and WTWa results. By using the expanded GREET version (GREET1{_}2011), we estimate WTWa results for energy use (total, fossil, and petroleum energy) and greenhouse gas (GHG) emissions (carbon dioxide, methane, and nitrous oxide) formore » (1) each unit of energy (lower heating value) consumed by the aircraft or (2) each unit of distance traveled/ payload carried by the aircraft. The fuel pathways considered in this analysis include petroleum-based jet fuel from conventional and unconventional sources (i.e., oil sands); Fisher-Tropsch (FT) jet fuel from natural gas, coal, and biomass; bio-jet fuel from fast pyrolysis of cellulosic biomass; and bio-jet fuel from vegetable and algal oils, which falls under the American Society for Testing and Materials category of hydroprocessed esters and fatty acids. For aircraft operation, we considered six passenger aircraft classes and four freight aircraft classes in this analysis. Our analysis revealed that, depending on the feedstock source, the fuel conversion technology, and the allocation or displacement credit methodology applied to co-products, alternative bio-jet fuel pathways have the potential to reduce life-cycle GHG emissions by 55-85 percent compared with conventional (petroleum-based) jet fuel. Although producing FT jet fuel from fossil feedstock sources - such as natural gas and coal - could greatly reduce dependence on crude oil, production from such sources (especially coal) produces greater WTWa GHG emissions compared with petroleum jet fuel production unless carbon management practices, such as carbon capture and storage, are used.« less

  11. Life-Cycle Analysis of Alternative Aviation Fuels in GREET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elgowainy, A.; Han, J.; Wang, M.

    2012-06-01

    The Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model, developed at Argonne National Laboratory, has been expanded to include well-to-wake (WTWa) analysis of aviation fuels and aircraft. This report documents the key WTWa stages and assumptions for fuels that represent alternatives to petroleum jet fuel. The aviation module in GREET consists of three spreadsheets that present detailed characterizations of well-to-pump and pump-to-wake parameters and WTWa results. By using the expanded GREET version (GREET1_2011), we estimate WTWa results for energy use (total, fossil, and petroleum energy) and greenhouse gas (GHG) emissions (carbon dioxide, methane, and nitrous oxide) formore » (1) each unit of energy (lower heating value) consumed by the aircraft or(2) each unit of distance traveled/ payload carried by the aircraft. The fuel pathways considered in this analysis include petroleum-based jet fuel from conventional and unconventional sources (i.e., oil sands); Fisher-Tropsch (FT) jet fuel from natural gas, coal, and biomass; bio-jet fuel from fast pyrolysis of cellulosic biomass; and bio-jet fuel from vegetable and algal oils, which falls under the American Society for Testing and Materials category of hydroprocessed esters and fatty acids. For aircraft operation, we considered six passenger aircraft classes and four freight aircraft classes in this analysis. Our analysis revealed that, depending on the feedstock source, the fuel conversion technology, and the allocation or displacement credit methodology applied to co-products, alternative bio-jet fuel pathways have the potential to reduce life-cycle GHG emissions by 55–85 percent compared with conventional (petroleum-based) jet fuel. Although producing FT jet fuel from fossil feedstock sources — such as natural gas and coal — could greatly reduce dependence on crude oil, production from such sources (especially coal) produces greater WTWa GHG emissions compared with petroleum jet fuel production unless carbon management practices, such as carbon capture and storage, are used.« less

  12. OPTIMIZATION OF HETEROGENEOUS UTILIZATION OF THORIUM IN PWRS TO ENHANCE PROLIFERATION RESISTANCE AND REDUCE WASTE.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    TODOSOW,M.; KAZIMI,M.

    2004-08-01

    Issues affecting the implementation, public perception and acceptance of nuclear power include: proliferation, radioactive waste, safety, and economics. The thorium cycle directly addresses the proliferation and waste issues, but optimization studies of core design and fuel management are needed to ensure that it fits within acceptable safety and economic margins. Typical pressurized water reactors, although loaded with uranium fuel, produce 225 to 275 kg of plutonium per gigawatt-year of operation. Although the spent fuel is highly radioactive, it nevertheless offers a potential proliferation pathway because the plutonium is relatively easy to separate, amounts to many critical masses, and does notmore » present any significant intrinsic barrier to weapon assembly. Uranium 233, on the other hand, produced by the irradiation of thorium, although it too can be used in weapons, may be ''denatured'' by the addition of natural, depleted or low enriched uranium. Furthermore, it appears that the chemical behavior of thoria or thoria-urania fuel makes it a more stable medium for the geological disposal of the spent fuel. It is therefore particularly well suited for a once-through fuel cycle. The use of thorium as a fertile material in nuclear fuel has been of interest since the dawn of nuclear power technology due to its abundance and to potential neutronic advantages. Early projects include homogeneous mixtures of thorium and uranium oxides in the BORAX-IV, Indian Point I, and Elk River reactors, as well as heterogeneous mixtures in the Shippingport seed-blanket reactor. However these projects were developed under considerably different circumstances than those which prevail at present. The earlier applications preceded the current proscription, for non-proliferation purposes, of the use of uranium enriched to more than 20 w/o in {sup 235}U, and has in practice generally prohibited the use of uranium highly enriched in {sup 235}U. They were designed when the expected burnup of light water fuel was on the order of 25 MWD/kgU--about half the present day value--and when it was expected that the spent fuel would be recycled to recover its fissile content.« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farrell, John T; Kelly, Kenneth J; Duran, Adam W

    Range-extended electric vehicle (EV) technology can be a viable option for reducing fuel consumption from medium-duty (MD) and heavy-duty (HD) engines by approximately 50 percent or more. Such engines have wide variations in use and duty cycles, however, and identifying the vocations/duty cycles most suitable for range-extended applications is vital for maximizing the potential benefits. This presentation provides information about NREL's research on range-extended EV technologies, with a focus on NREL's real-world data collection and analysis approach to identifying the vocations/duty cycles best suited for range-extender applications and to help guide related powertrain optimization and design requirements. The presentation alsomore » details NREL's drive cycle development process as it pertains to package delivery applications.« less

  14. Experimental evaluation of thermal ratcheting behavior in UO2 fuel elements

    NASA Technical Reports Server (NTRS)

    Phillips, W. M.

    1973-01-01

    The effects of thermal cycling of UO2 at high temperatures has been experimentally evaluated to determine the rates of distortion of UO2/clad fuel elements. Two capsules were rested in the 1500 C range, one with a 50 C thermal cycle, the other with a 100 C thermal cycle. It was observed that eight hours at the lower cycle temperature produced sufficient UO2 redistribution to cause clad distortion. The amount of distortion produced by the 100 C cycle was less than double that produced by the 50 C, indicating smaller thermal cycles would result in clad distortion. An incubation period was observed to occur before the onset of distortion with cycling similar to fuel swelling observed in-pile at these temperatures.

  15. Fuel-cycle emissions for conventional and alternative fuel vehicles : an assessment of air toxics

    DOT National Transportation Integrated Search

    2000-08-01

    This report provides information on recent efforts to use the Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) fuel-cycle model to estimate air toxics emissions. GREET, developed at Argonne National Laboratory, currentl...

  16. Solid oxide fuel cell power plant having a bootstrap start-up system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lines, Michael T

    The bootstrap start-up system (42) achieves an efficient start-up of the power plant (10) that minimizes formation of soot within a reformed hydrogen rich fuel. A burner (48) receives un-reformed fuel directly from the fuel supply (30) and combusts the fuel to heat cathode air which then heats an electrolyte (24) within the fuel cell (12). A dilute hydrogen forming gas (68) cycles through a sealed heat-cycling loop (66) to transfer heat and generated steam from an anode side (32) of the electrolyte (24) through fuel processing system (36) components (38, 40) and back to an anode flow field (26)more » until fuel processing system components (38, 40) achieve predetermined optimal temperatures and steam content. Then, the heat-cycling loop (66) is unsealed and the un-reformed fuel is admitted into the fuel processing system (36) and anode flow (26) field to commence ordinary operation of the power plant (10).« less

  17. Optimization of burnable poison design for Pu incineration in fully fertile free PWR core

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fridman, E.; Shwageraus, E.; Galperin, A.

    2006-07-01

    The design challenges of the fertile-free based fuel (FFF) can be addressed by careful and elaborate use of burnable poisons (BP). Practical fully FFF core design for PWR reactor has been reported in the past [1]. However, the burnable poison option used in the design resulted in significant end of cycle reactivity penalty due to incomplete BP depletion. Consequently, excessive Pu loading were required to maintain the target fuel cycle length, which in turn decreased the Pu burning efficiency. A systematic evaluation of commercially available BP materials in all configurations currently used in PWRs is the main objective of thismore » work. The BP materials considered are Boron, Gd, Er, and Hf. The BP geometries were based on Wet Annular Burnable Absorber (WABA), Integral Fuel Burnable Absorber (IFBA), and Homogeneous poison/fuel mixtures. Several most promising combinations of BP designs were selected for the full core 3D simulation. All major core performance parameters for the analyzed cases are very close to those of a standard PWR with conventional UO{sub 2} fuel including possibility of reactivity control, power peaking factors, and cycle length. The MTC of all FFF cores was found at the full power conditions at all times and very close to that of the UO{sub 2} core. The Doppler coefficient of the FFF cores is also negative but somewhat lower in magnitude compared to UO{sub 2} core. The soluble boron worth of the FFF cores was calculated to be lower than that of the UO{sub 2} core by about a factor of two, which still allows the core reactivity control with acceptable soluble boron concentrations. The main conclusion of this work is that judicial application of burnable poisons for fertile free fuel has a potential to produce a core design with performance characteristics close to those of the reference PWR core with conventional UO{sub 2} fuel. (authors)« less

  18. Solar Airplanes and Regenerative Fuel Cells

    NASA Technical Reports Server (NTRS)

    Bents, David J.

    2007-01-01

    A solar electric aircraft with the potential to "fly forever" has captured NASA's interest, and the concept for such an aircraft was pursued under Aeronautics Environmental Research Aircraft and Sensor Technology (ERAST) project. Feasibility of this aircraft happens to depend on the successful development of solar power technologies critical to NASA's Exploration Initiatives; hence, there was widespread interest throughout NASA to bring these technologies to a flight demonstration. The most critical is an energy storage system to sustain mission power during night periods. For the solar airplane, whose flight capability is already limited by the diffuse nature of solar flux and subject to latitude and time of year constraints, the feasibility of long endurance flight depends on a storage density figure of merit better than 400-600 watt-hr per kilogram. This figure of merit is beyond the capability of present day storage technologies (other than nuclear) but may be achievable in the hydrogen-oxygen regenerative fuel cell (RFC). This potential has led NASA to undertake the practical development of a hydrogen-oxygen regenerative fuel cell, initially as solar energy storage for a high altitude UAV science platform but eventually to serve as the primary power source for NASAs lunar base and other planet surface installations. Potentially the highest storage capacity and lowest weight of any non-nuclear device, a flight-weight RFC aboard a solar-electric aircraft that is flown continuously through several successive day-night cycles will provide the most convincing demonstration that this technology's widespread potential has been realized. In 1998 NASA began development of a closed cycle hydrogen oxygen PEM RFC under the Aeronautics Environmental Research Aircraft and Sensor Technology (ERAST) project and continued its development, originally for a solar electric airplane flight, through FY2005 under the Low Emissions Alternative Power (LEAP) project. Construction of the closed loop system began in 2002 at the NASA Glenn Research Center in Cleveland, Ohio. System checkout was completed, and testing began, in July of 2003. The initial test sequences were done with only a fuel cell or electrolyzer in the test rig. Those tests were used to verify the test apparatus, procedures, and software. The first complete cycles of the fully closed loop, regenerative fuel cell system were successfully completed in the following September. Following some hardware upgrades to increase reactant recirculation flow, the test rig was operated at full power in December 2003 and again in January 2004. In March 2004 a newer generation of fuel cell and electrolyzer stacks was substituted for the original hardware and these stacks were successfully tested at full power under cyclic operation in June of 2004.

  19. Evaluation of isotopic composition of fast reactor core in closed nuclear fuel cycle

    NASA Astrophysics Data System (ADS)

    Tikhomirov, Georgy; Ternovykh, Mikhail; Saldikov, Ivan; Fomichenko, Peter; Gerasimov, Alexander

    2017-09-01

    The strategy of the development of nuclear power in Russia provides for use of fast power reactors in closed nuclear fuel cycle. The PRORYV (i.e. «Breakthrough» in Russian) project is currently under development. Within the framework of this project, fast reactors BN-1200 and BREST-OD-300 should be built to, inter alia, demonstrate possibility of the closed nuclear fuel cycle technologies with plutonium as a main source of energy. Russia has a large inventory of plutonium which was accumulated in the result of reprocessing of spent fuel of thermal power reactors and conversion of nuclear weapons. This kind of plutonium will be used for development of initial fuel assemblies for fast reactors. The closed nuclear fuel cycle concept of the PRORYV assumes self-supplied mode of operation with fuel regeneration by neutron capture reaction in non-enriched uranium, which is used as a raw material. Operating modes of reactors and its characteristics should be chosen so as to provide the self-sufficient mode by using of fissile isotopes while refueling by depleted uranium and to support this state during the entire period of reactor operation. Thus, the actual issue is modeling fuel handling processes. To solve these problems, the code REPRORYV (Recycle for PRORYV) has been developed. It simulates nuclide streams in non-reactor stages of the closed fuel cycle. At the same time various verified codes can be used to evaluate in-core characteristics of a reactor. By using this approach various options for nuclide streams and assess the impact of different plutonium content in the fuel, fuel processing conditions, losses during fuel processing, as well as the impact of initial uncertainties on neutron-physical characteristics of reactor are considered in this study.

  20. 40 CFR 600.209-12 - Calculation of vehicle-specific 5-cycle fuel economy and CO2 emission values for a model type.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... city and highway fuel economy and CO2 emission values from the tests performed using gasoline or diesel test fuel. (ii) If 5-cycle testing was performed on the alcohol or natural gas test fuel, calculate the city and highway fuel economy and CO2 emission values from the tests performed using alcohol or natural...

  1. 40 CFR 600.209-12 - Calculation of vehicle-specific 5-cycle fuel economy and CO2 emission values for a model type.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... city and highway fuel economy and CO2 emission values from the tests performed using gasoline or diesel test fuel. (ii) If 5-cycle testing was performed on the alcohol or natural gas test fuel, calculate the city and highway fuel economy and CO2 emission values from the tests performed using alcohol or natural...

  2. 40 CFR 600.209-12 - Calculation of vehicle-specific 5-cycle fuel economy and CO2 emission values for a model type.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... city and highway fuel economy and CO2 emission values from the tests performed using gasoline or diesel test fuel. (ii) If 5-cycle testing was performed on the alcohol or natural gas test fuel, calculate the city and highway fuel economy and CO2 emission values from the tests performed using alcohol or natural...

  3. 40 CFR 600.114-08 - Vehicle-specific 5-cycle fuel economy calculations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Vehicle-specific 5-cycle fuel economy calculations. 600.114-08 Section 600.114-08 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy Regulations for 1978 and Later Model Yea...

  4. 40 CFR 600.114-08 - Vehicle-specific 5-cycle fuel economy and carbon-related exhaust emission calculations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 31 2012-07-01 2012-07-01 false Vehicle-specific 5-cycle fuel economy... Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy and Carbon-Related Exhaust Emission Test Procedures § 600.114-08...

  5. 40 CFR 600.114-08 - Vehicle-specific 5-cycle fuel economy and carbon-related exhaust emission calculations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 30 2011-07-01 2011-07-01 false Vehicle-specific 5-cycle fuel economy... Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy and Carbon-Related Exhaust Emission Regulations for 1978 and Later...

  6. 40 CFR 600.114-12 - Vehicle-specific 5-cycle fuel economy and carbon-related exhaust emission calculations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 31 2013-07-01 2013-07-01 false Vehicle-specific 5-cycle fuel economy... Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy and Carbon-Related Exhaust Emission Test Procedures § 600.114-12...

  7. 40 CFR 600.114-12 - Vehicle-specific 5-cycle fuel economy and carbon-related exhaust emission calculations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 31 2012-07-01 2012-07-01 false Vehicle-specific 5-cycle fuel economy... Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy and Carbon-Related Exhaust Emission Test Procedures § 600.114-12...

  8. 40 CFR 600.114-08 - Vehicle-specific 5-cycle fuel economy and carbon-related exhaust emission calculations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 31 2013-07-01 2013-07-01 false Vehicle-specific 5-cycle fuel economy... Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy and Carbon-Related Exhaust Emission Test Procedures § 600.114-08...

  9. Fuel and Emissions Reduction in Electric Power Take-Off Equipped Utility Vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konan, Arnaud; Ragatz, Adam; Prohaska, Robert

    The National Renewable Energy Laboratory (NREL) evaluated the performance of Pacific Gas and Electric plug-in hybrid electric power take off (ePTO) utility trucks equipped with Altec, Inc.'s Jobsite Energy Management System. NREL collected on-road performance data from Class 5 utility 'trouble trucks' and Class 8 material handlers and developed representative drive cycles for chassis dynamometer testing. The drive cycles were analyzed and jobsite energy use was quantified for impacts and potential further hybridization for the utility truck vocation.

  10. Performance testing of a prototype Pd-Ag diffuser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgan, G. A.; Hodge, B. J.

    The fusion fuel cycle has gained significant attention over the last decade as interest in fusion programs has increased. One of the critical components of the fusion process is the tritium fuel cycle. The tritium fuel cycle is designed to supply and recycle process tritium at a specific throughput rate. One of the most important processes within the tritium fuel cycle is the clean-up of the of the process tritium. This step will initially separate the hydrogen isotopes (H2, D2, and T2) from the rest of the process gas using Pd-Ag diffusers or permeators. The Pd-Ag diffuser is an integralmore » component for any tritium purification system; whether part of the United States’ defense mission or fusion programs. Domestic manufacturers of Pd-Ag diffusers are extremely limited and only a few manufacturers exist. Johnson-Matthey (JM) Pd-Ag diffusers (permeators) have previously been evaluated for the separation of hydrogen isotopes from non-hydrogen gas species in the process. JM is no longer manufacturing Pd-Ag diffusers and a replacement vendor needs to be identified to support future needs. A prototype Pd-Ag diffuser has been manufactured by Power and Energy, and is considered a potential replacement for the JM diffuser for tritium service. New diffuser designs for a tritium facility for any fusion energy applications must be characterized by evaluating their operating envelope prior to installation in a tritium processing facility. The prototype Pd-Ag diffuser was characterized to determine the overall performance as a function of the permeation of hydrogen through the membrane. The tests described in this report consider the effects of feed gas compositions, feed flow rates, pump configuration and internal tube pressure on the permeation of H2 through the Pd-Ag tubes.« less

  11. Small Engine Component Technology (SECT) study. Program report

    NASA Technical Reports Server (NTRS)

    Almodovar, E.; Exley, T.; Kaehler, H.; Schneider, W.

    1986-01-01

    The study was conducted to identify high payoff technologies for year 2000 small gas turbine applications and to provide a technology plan for guiding future research and technology efforts. A regenerative cycle turboprop engine was selected for a 19 passenger commuter aircraft application. A series of engines incorporating eight levels of advanced technologies were studied and their impact on aircraft performance was evaluated. The study indicated a potential reduction in fuel burn of 38.3 percent. At $1.00 per gallon fuel price, a potential DOC benefit of 12.5 percent would be achieved. At $2.00 per gallon, the potential DOC benefit would increase to 17.0 percent. Four advanced technologies are recommended and appropriate research and technology programs were established to reach the year 2000 goals.

  12. Life cycle assessment of residual lignocellulosic biomass-based jet fuel with activated carbon and lignosulfonate as co-products.

    PubMed

    Pierobon, Francesca; Eastin, Ivan L; Ganguly, Indroneil

    2018-01-01

    Bio-jet fuels are emerging as a valuable alternative to petroleum-based fuels for their potential for reducing greenhouse gas emissions and fossil fuel dependence. In this study, residual woody biomass from slash piles in the U.S. Pacific Northwest is used as a feedstock to produce iso-paraffinic kerosene, through the production of sugar and subsequent patented proprietary fermentation and upgrading. To enhance the economic viability and reduce the environmental impacts of iso-paraffinic kerosene, two co-products, activated carbon and lignosulfonate, are simultaneously produced within the same bio-refinery. A cradle-to-grave life cycle assessment (LCA) is performed for the residual woody biomass-based bio-jet fuel and compared against the cradle-to-grave LCA of petroleum-based jet fuel. This paper also discusses the differences in the environmental impacts of the residual biomass-based bio-jet fuel using two different approaches, mass allocation and system expansion, to partition the impacts between the bio-fuel and the co-products, which are produced in the bio-refinery. The environmental assessment of biomass-based bio-jet fuel reveals an improvement along most critical environmental criteria, as compared to its petroleum-based counterpart. However, the results present significant differences in the environmental impact of biomass-based bio-jet fuel, based on the partitioning method adopted. The mass allocation approach shows a greater improvement along most of the environmental criteria, as compared to the system expansion approach. However, independent of the partitioning approach, the results of this study reveal that more than the EISA mandated 60% reduction in the global warming potential could be achieved by substituting petroleum-based jet fuel with residual woody biomass-based jet fuel. Converting residual woody biomass from slash piles into bio-jet fuel presents the additional benefit of avoiding the impacts of slash pile burning in the forest, which results in a net negative impact on 'Carcinogenics' and 'Respiratory effects', and substantial reduction in the 'Smog' and 'Ecotoxicity' impacts. The production of woody biomass-based bio-jet fuel, however, did not show any significant improvement in the 'Acidification' and 'Eutrophication' impact categories. The study reveals that residual woody biomass recovered from slash piles represents a more sustainable alternative to petroleum for the production of jet fuel with a lower impact on global warming and local pollution. Future research should focus on the optimization of chemical processes of the bio-refinery to reduce the impacts on the 'Acidification' and 'Eutrophication' impact categories.

  13. Significance of and prospects for fuel recycle in Japan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Otsuka, K.; Ikeda, K.

    Japan's nuclear power plant capacity ranks fourth in the world at around 20 GW. But nuclear fuel cycle industries (enrichment, reprocessing and radioactive waste management) are still in their infancy compared with the size and stage of the power plants. Thus it is a matter of urgency to establish a nuclear fuel cycle in Japan which can promote nuclear energy as a quasi-indigenous energy source. Some moves toward establishing a nuclear fuel cycle have been observed recently. As a case in point, in July 1984, the Federation of Electric Power Companies has formally requested Aomori Prefecture to locate nuclear fuelmore » cycle facilities in the Shimokita Peninsula region. Plutonium recovered from spent fuel will be utilized in LWR, ATR, and FBR. Research and development activities on these technologies are in progress.« less

  14. Environmental Impacts, Health and Safety Impacts, and Financial Costs of the Front End of the Nuclear Fuel Cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brett W Carlsen; Urairisa Phathanapirom; Eric Schneider

    2013-07-01

    FEFC processes, unlike many of the proposed fuel cycles and technologies under consideration, involve mature operational processes presently in use at a number of facilities worldwide. This report identifies significant impacts resulting from these current FEFC processes and activities. Impacts considered to be significant are those that may be helpful in differentiating between fuel cycle performance and for which the FEFC impact is not negligible relative to those from the remainder of the full fuel cycle. This report: • Defines ‘representative’ processes that typify impacts associated with each step of the FEFC, • Establishes a framework and architecture for rollingmore » up impacts into normalized measures that can be scaled to quantify their contribution to the total impacts associated with various fuel cycles, and • Develops and documents the bases for estimates of the impacts and costs associated with each of the representative FEFC processes.« less

  15. Consolidated fuel reprocessing program

    NASA Astrophysics Data System (ADS)

    1985-04-01

    A survey of electrochemical methods applications in fuel reprocessing was completed. A dummy fuel assembly shroud was cut using the remotely operated laser disassembly equipment. Operations and engineering efforts have continued to correct equipment operating, software, and procedural problems experienced during the previous uranium compaigns. Fuel cycle options were examined for the liquid metal reactor fuel cycle. In high temperature gas cooled reactor spent fuel studies, preconceptual designs were completed for the concrete storage cask and open field drywell storage concept. These and other tasks operating under the consolidated fuel reprocessing program are examined.

  16. 40 CFR 86.336-79 - Diesel engine test cycle.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Diesel engine test cycle. 86.336-79... New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.336-79 Diesel engine test cycle. (a) The following 13-mode cycle shall be followed in dynamometer operation...

  17. Market-Based and System-Wide Fuel Cycle Optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, Paul Philip Hood; Scopatz, Anthony; Gidden, Matthew

    This work introduces automated optimization into fuel cycle simulations in the Cyclus platform. This includes system-level optimizations, seeking a deployment plan that optimizes the performance over the entire transition, and market-level optimization, seeking an optimal set of material trades at each time step. These concepts were introduced in a way that preserves the flexibility of the Cyclus fuel cycle framework, one of its most important design principles.

  18. Investigation of dynamic driving cycle effect on the degradation of proton exchange membrane fuel cell by segmented cell technology

    NASA Astrophysics Data System (ADS)

    Lin, R.; Xiong, F.; Tang, W. C.; Técher, L.; Zhang, J. M.; Ma, J. X.

    2014-08-01

    Durability is one of the most important limiting factors for the commercialization of proton exchange membrane fuel cell (PEMFC). Fuel cells are more vulnerable to degradation under operating conditions as dynamic load cycle or start up/shut down. The purpose of this study is to evaluate influences of driving cycles on the durability of fuel cells through analyzing the degradation mechanism of a segmented cell in real time. This study demonstrates that the performance of the fuel cell significantly decreases after 200 cycles. The segmented cell technology is used to measure the local current density distribution, which shows that the current density at the exit region and the inlet region declines much faster than the other parts. Meanwhile, electro-chemical impedance spectroscopy (EIS) reveals that after 200 cycles the ohmic resistance of fuel cell increases, especially at the cathode, and electro-chemical surface area (ESA) decreases from 392 to 307 cm2 mg-1. Furthermore, scanning electron microscopy (SEM) images of the membrane-electrode assembly (MEA) in cross-section demonstrate crackle flaw on the surface of the catalyst layer and the delamination of the electrodes from the membrane. Transmission electron microscope (TEM) results also show that the Pt particle size increases distinctly after driving cycles.

  19. Reduction of Greenhouse Gas and Criteria Pollutant Emissions by Direct Conversion of Associated Flare Gas to Synthetic Fuels at Oil Wellheads

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Eric C; Zhang, Yi Min; Schuetzle, Dennis

    This study describes the results of a 'well-to-wheel' life cycle assessment (LCA) carried out to determine the potential greenhouse gas and criteria pollutant emission reductions that could be achieved by converting associated flare gas directly to synthetic fuels at oil wellheads in the US and globally. A Greyrock Flare Gas-to-Fuels(TM) conversion process at an Ohio oil well was used as the base case for this LCA. The liquid fuel produced directly from associated gas is comprised primarily of premium synthetic diesel with a small amount of synthetic gasoline. In this LCA scenario, the synthetic diesel and synthetic gasoline are blendedmore » at 20 and 10 vol% with petroleum diesel and gasoline, respectively. While the synthetic diesel fuel can be used as is (100%), the 20 vol% synthetic diesel blend (with petroleum diesel) was found to significantly improve engine performance, increase fuel economy, and reduce emissions. The direct conversion of associated gas to synthetic diesel fuels globally could reduce emissions of CO2 and CH4 by up to 356 and 5.96 million metric tons/year, respectively, resulting in the reduction of greenhouse gases (GHGs) by about 113.3 and 92.2% (20 year global warming potential) and 73.8 and 50.7% (100 year global warming potential) for synthetic diesel and gasoline fuels when compared to petroleum-derived gasoline fuels, respectively. Likewise, diesel criteria emissions could be reduced globally by up to 23.3, 0.374, 42.4, and 61.3 million metric tons/year globally for CO, particulates, NOx, and hydrocarbons, respectively. The potential economic benefit of this approach is that up to 5.30 and 71.1 billion liters of synthetic fuels could be produced each year in the US and globally from associated gas, respectively.« less

  20. Mass tracking and material accounting in the Integral Fast Reactor (IFR)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orechwa, Y.; Adams, C.H.; White, A.M.

    1991-01-01

    The Integral Fast Reactor (IFR) is a generic advanced liquid metal cooled reactor concept being developed at Argonne National Laboratory (ANL). There are a number of technical features of the IFR which contribute to its potential as a next-generation reactor. These are associated with large safety margins with regard to off-normal events involving the heat transport system, and the use of metallic fuel which makes possible the utilization of innovative fuel cycle processes. The latter feature permits fuel cycle closure the compact, low-cost reprocessing facilities, collocated with the reactor plant. These primary features are being demonstrated in the facilities atmore » ANL-West, utilizing Experimental Breeder Reactor 2 and the associated Fuel Cycle Facility (FCF) as an IFR prototype. The demonstration of this IFR prototype includes the design and implementation of the Mass-Tracking System (MTG). In this system, data from the operations of the FCF, including weights and batch-process parameters, are collected and maintained by the MTG running on distributed workstations. The components of the MTG System include: (1) an Oracle database manager with a Fortran interface, (2) a set of MTG Tasks'' which collect, manipulate and report data, (3) a set of MTG Terminal Sessions'' which provide some interactive control of the Tasks, and (4) a set of servers which manage the Tasks and which provide the communications link between the MTG System and Operator Control Stations, which control process equipment and monitoring devices within the FCF.« less

  1. Underpotential deposition-mediated layer-by-layer growth of thin films

    DOEpatents

    Wang, Jia Xu; Adzic, Radoslav R.

    2015-05-19

    A method of depositing contiguous, conformal submonolayer-to-multilayer thin films with atomic-level control is described. The process involves the use of underpotential deposition of a first element to mediate the growth of a second material by overpotential deposition. Deposition occurs between a potential positive to the bulk deposition potential for the mediating element where a full monolayer of mediating element forms, and a potential which is less than, or only slightly greater than, the bulk deposition potential of the material to be deposited. By cycling the applied voltage between the bulk deposition potential for the mediating element and the material to be deposited, repeated desorption/adsorption of the mediating element during each potential cycle can be used to precisely control film growth on a layer-by-layer basis. This process is especially suitable for the formation of a catalytically active layer on core-shell particles for use in energy conversion devices such as fuel cells.

  2. The JRC-ITU approach to the safety of advanced nuclear fuel cycles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fanghaenel, T.; Rondinella, V.V.; Somers, J.

    2013-07-01

    The JRC-ITU safety studies of advanced fuels and cycles adopt two main axes. First the full exploitation of still available and highly relevant knowledge and samples from past fuel preparation and irradiation campaigns (complementing the limited number of ongoing programmes). Secondly, the shift of focus from simple property measurement towards the understanding of basic mechanisms determining property evolution and behaviour of fuel compounds during normal, off-normal and accident conditions. The final objective of the second axis is the determination of predictive tools applicable to systems and conditions different from those from which they were derived. State of the art experimentalmore » facilities, extensive networks of partnerships and collaboration with other organizations worldwide, and a developing programme for training and education are essential in this approach. This strategy has been implemented through various programs and projects. The SUPERFACT programme constitutes the main body of existing knowledge on the behavior in-pile of MOX fuel containing minor actinides. It encompassed all steps of a closed fuel cycle. Another international project investigating the safety of a closed cycle is METAPHIX. In this case a U-Pu19-Zr10 metal alloy containing Np, Am and Cm constitutes the fuel. 9 test pins have been prepared and irradiated. In addition to the PIE (Post Irradiation Examination), pyrometallurgical separation of the irradiated fuel has been performed, to demonstrate all the steps of a multiple recycling closed cycle and characterize their safety relevant aspects. Basic studies like thermodynamic fuel properties, fuel-cladding-coolant interactions have also been carried out at JRC-ITU.« less

  3. Advanced Thermally Stable Coal-Based Jet Fuels

    DTIC Science & Technology

    2008-02-01

    of hydrotreated refined chemical oil derived jet fuels in the pyrolytic regime. Preprints of Papers-American Chemical Society Division of Fuel...hydrogenation of a mixture of light cycle oil and refined chemical oil met or exceeded all but four JP-8 specifications. The fuel has excellent low-temperature...mixture of light cycle oil and refined chemical oil met or exceeded all but four JP-8 specifications. The fuel has excellent low-temperature viscosity

  4. Ethanol Research : Alternative Fuels & Life-Cycle Engineering Program : November 29, 2006 to November 28, 2011

    DOT National Transportation Integrated Search

    2011-12-20

    This report presents the results of the successful ethanol fuel demonstration program conducted from September 2007 to September 2010. This project was a part of the U.S. Department of Transportation (DOT) Alternative Fuels and Life Cycle Engineering...

  5. Hydrogen turbine power conversion system assessment

    NASA Technical Reports Server (NTRS)

    Wright, D. E.; Lucci, A. D.; Campbell, J.; Lee, J. C.

    1978-01-01

    A three part technical study was conducted whereby parametric technical and economic feasibility data were developed on several power conversion systems suitable for the generation of central station electric power through the combustion of hydrogen and the use of the resulting heat energy in turbogenerator equipment. The study assessed potential applications of hydrogen-fueled power conversion systems and identified the three most promising candidates: (1) Ericsson Cycle, (2) gas turbine, and (3) direct steam injection system for fossil fuel as well as nuclear powerplants. A technical and economic evaluation was performed on the three systems from which the direct injection system (fossil fuel only) was selected for a preliminary conceptual design of an integrated hydrogen-fired power conversion system.

  6. Development and validation of purged thermal protection systems for liquid hydrogen fuel tanks of hypersonic vehicles

    NASA Technical Reports Server (NTRS)

    Helenbrook, R. D.; Colt, J. Z.

    1977-01-01

    An economical, lightweight, safe, efficient, reliable, and reusable insulation system was developed for hypersonic cruise vehicle hydrogen fuel tanks. Results indicate that, a nitrogen purged, layered insulation system with nonpermeable closed-cell insulation next to the cryogenic tank and a high service temperature fibrous insulation surrounding it, is potentially an attractive solution to the insulation problem. For the postulated hypersonic flight the average unit weight of the purged insulation system (including insulation, condensate and fuel boil off) is 6.31 kg/sq m (1.29 psf). Limited cyclic tests of large specimens of closed cell polymethacrylimide foam indicate it will withstand the expected thermal cycle.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shepherd, James; Fairweather, Michael; Hanson, Bruce C.

    The oxidation of spent uranium carbide fuel, a candidate fuel for Generation IV nuclear reactors, is an important process in its potential reprocessing cycle. However, the oxidation of uranium carbide in air is highly exothermic. A model has therefore been developed to predict the temperature rise, as well as other useful information such as reaction completion times, under different reaction conditions in order to help in deriving safe oxidation conditions. Finite difference-methods are used to model the heat and mass transfer processes occurring during the reaction in two dimensions and are coupled to kinetics found in the literature.

  8. An analysis of international nuclear fuel supply options

    NASA Astrophysics Data System (ADS)

    Taylor, J'tia Patrice

    As the global demand for energy grows, many nations are considering developing or increasing nuclear capacity as a viable, long-term power source. To assess the possible expansion of nuclear power and the intricate relationships---which cover the range of economics, security, and material supply and demand---between established and aspirant nuclear generating entities requires models and system analysis tools that integrate all aspects of the nuclear enterprise. Computational tools and methods now exist across diverse research areas, such as operations research and nuclear engineering, to develop such a tool. This dissertation aims to develop methodologies and employ and expand on existing sources to develop a multipurpose tool to analyze international nuclear fuel supply options. The dissertation is comprised of two distinct components: the development of the Material, Economics, and Proliferation Assessment Tool (MEPAT), and analysis of fuel cycle scenarios using the tool. Development of MEPAT is aimed for unrestricted distribution and therefore uses publicly available and open-source codes in its development when possible. MEPAT is built using the Powersim Studio platform that is widely used in systems analysis. MEPAT development is divided into three modules focusing on: material movement; nonproliferation; and economics. The material movement module tracks material quantity in each process of the fuel cycle and in each nuclear program with respect to ownership, location and composition. The material movement module builds on techniques employed by fuel cycle models such as the Verifiable Fuel Cycle Simulation (VISION) code developed at the Idaho National Laboratory under the Advanced Fuel Cycle Initiative (AFCI) for the analysis of domestic fuel cycle. Material movement parameters such as lending and reactor preference, as well as fuel cycle parameters such as process times and material factors are user-specified through a Microsoft Excel(c) data spreadsheet. The material movement module is the largest of the three, and the two other modules that assess nonproliferation and economics of the options are dependent on its output. Proliferation resistance measures from literature are modified and incorporated in MEPAT. The module to assess the nonproliferation of the supply options allows the user to specify defining attributes for the fuel cycle processes, and determines significant quantities of materials as well as measures of proliferation resistance. The measure is dependent on user-input and material information. The economics module allows the user to specify costs associated with different processes and other aspects of the fuel cycle. The simulation tool then calculates economic measures that relate the cost of the fuel cycle to electricity production. The second part of this dissertation consists of an examination of four scenarios of fuel supply option using MEPAT. The first is a simple scenario illustrating the modules and basic functions of MEPAT. The second scenario recreates a fuel supply study reported earlier in literature, and compares MEPAT results with those reported earlier for validation. The third, and a rather realistic, scenario includes four nuclear programs with one program entering the nuclear energy market. The fourth scenario assesses the reactor options available to the Hashemite Kingdom of Jordan, which is currently assessing available options to introduce nuclear power in the country. The methodology developed and implemented in MEPAT to analyze the material, proliferation and economics of nuclear fuel supply options is expected to help simplify and assess different reactor and fuel options available to utilities, government agencies and international organizations.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelly, Jarod C.; Sullivan, John L.; Burnham, Andrew

    This study examines the vehicle-cycle impacts associated with substituting lightweight materials for those currently found in light-duty passenger vehicles. We determine part-based energy use and greenhouse gas (GHG) emission ratios by collecting material substitution data from both the literature and automotive experts and evaluating that alongside known mass-based energy use and GHG emission ratios associated with material pair substitutions. Several vehicle parts, along with full vehicle systems, are examined for lightweighting via material substitution to observe the associated impact on GHG emissions. Results are contextualized by additionally examining fuel-cycle GHG reductions associated with mass reductions relative to the baseline vehiclemore » during the use phase and also determining material pair breakeven driving distances for GHG emissions. The findings show that, while material substitution is useful in reducing vehicle weight, it often increases vehicle-cycle GHGs depending upon the material substitution pair. However, for a vehicle’s total life cycle, fuel economy benefits are greater than the increased burdens associated with the vehicle manufacturing cycle, resulting in a net total life-cycle GHG benefit. The vehicle cycle will become increasingly important in total vehicle life-cycle GHGs, since fuel-cycle GHGs will be gradually reduced as automakers ramp up vehicle efficiency to meet fuel economy standards.« less

  10. Fuel Sustainability And Actinide Production Of Doping Minor Actinide In Water-Cooled Thorium Reactor

    NASA Astrophysics Data System (ADS)

    Permana, Sidik

    2017-07-01

    Fuel sustainability of nuclear energy is coming from an optimum fuel utilization of the reactor and fuel breeding program. Fuel cycle option becomes more important for fuel cycle utilization as well as fuel sustainability capability of the reactor. One of the important issues for recycle fuel option is nuclear proliferation resistance issue due to production plutonium. To reduce the proliferation resistance level, some barriers were used such as matrial barrier of nuclear fuel based on isotopic composition of even mass number of plutonium isotope. Analysis on nuclear fuel sustainability and actinide production composition based on water-cooled thorium reactor system has been done and all actinide composition are recycled into the reactor as a basic fuel cycle scheme. Some important parameters are evaluated such as doping composition of minor actinide (MA) and volume ratio of moderator to fuel (MFR). Some feasible parameters of breeding gains have been obtained by additional MA doping and some less moderation to fuel ratios (MFR). The system shows that plutonium and MA are obtained low compositions and it obtains some higher productions of even mass plutonium, which is mainly Pu-238 composition, as a control material to protect plutonium to be used as explosive devices.

  11. Spray sealing: A breakthrough in integral fuel tank sealing technology

    NASA Astrophysics Data System (ADS)

    Richardson, Martin D.; Zadarnowski, J. H.

    1989-11-01

    In a continuing effort to increase readiness, a new approach to sealing integral fuel tanks is being developed. The technique seals potential leak sources by spraying elastomeric materials inside the tank cavity. Laboratory evaluations project an increase in aircraft supportability and reliability, an improved maintainability, decreasing acquisition and life cycle costs. Increased usable fuel volume and lower weight than conventional bladders improve performance. Concept feasibility was demonstrated on sub-scale aircraft fuel tanks. Materials were selected by testing sprayable elastomers in a fuel tank environment. Chemical stability, mechanical properties, and dynamic durability of the elastomer are being evaluated at the laboratory level and in sub-scale and full scale aircraft component fatigue tests. The self sealing capability of sprayable materials is also under development. Ballistic tests show an improved aircraft survivability, due in part to the elastomer's mechanical properties and its ability to damp vibrations. New application equipment, system removal, and repair methods are being investigated.

  12. Revised Point of Departure Design Options for Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Fittje, James E.; Borowski, Stanley K.; Schnitzler, Bruce

    2015-01-01

    In an effort to further refine potential point of departure nuclear thermal rocket engine designs, four proposed engine designs representing two thrust classes and utilizing two different fuel matrix types are designed and analyzed from both a neutronics and thermodynamic cycle perspective. Two of these nuclear rocket engine designs employ a tungsten and uranium dioxide cermet (ceramic-metal) fuel with a prismatic geometry based on the ANL-200 and the GE-710, while the other two designs utilize uranium-zirconium-carbide in a graphite composite fuel and a prismatic fuel element geometry developed during the Rover/NERVA Programs. Two engines are analyzed for each fuel type, a small criticality limited design and a 111 kN (25 klbf) thrust class engine design, which has been the focus of numerous manned mission studies, including NASA's Design Reference Architecture 5.0. slightly higher T/W ratios, but they required substantially more 235U.

  13. 40 CFR 86.1801-12 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Complete Otto-Cycle Heavy-Duty Vehicles § 86.1801-12 Applicability. (a) Applicability. Except as otherwise... passenger vehicles, and Otto-cycle complete heavy-duty vehicles, including multi-fueled, alternative fueled... Otto-cycle heavy-duty vehicles. (c) Optional applicability. (1) [Reserved] (2) A manufacturer may...

  14. The fuel market effects of biofuel policies and implications for regulations based on lifecycle emissions

    NASA Astrophysics Data System (ADS)

    Rajagopal, Deepak

    2013-06-01

    The absence of a globally-consistent and binding commitment to reducing greenhouse emissions provides a rationale for partial policies, such as renewable energy mandates, product emission standards, etc to target lifecycle emissions of the regulated products or services. While appealing in principle, regulation of lifecycle emissions presents several practical challenges. Using biofuels as an illustrative example, we highlight some outstanding issues in the design and implementation of life cycle-based policies and discuss potential remedies. We review the literature on emissions due to price effects in fuel markets, which are akin to emissions due to indirect land use change, but are, unlike the latter, ignored under all current life cycle emissions-based regulations. We distinguish the current approaches to regulating indirect emissions into hard and soft approaches and discuss their implications.

  15. Experimental investigation of an ammonia-based combined power and cooling cycle

    NASA Astrophysics Data System (ADS)

    Tamm, Gunnar Olavi

    A novel ammonia-water thermodynamic cycle, capable of producing both power and refrigeration, was proposed by D. Yogi Goswami. The binary mixture exhibits variable boiling temperatures during the boiling process, which leads to a good thermal match between the heating fluid and working fluid for efficient heat source utilization. The cycle can be driven by low temperature sources such as solar, geothermal, and waste heat from a conventional power cycle, reducing the reliance on high temperature sources such as fossil fuels. A theoretical simulation of the cycle at heat source temperatures obtainable from low and mid temperature solar collectors showed that the ideal cycle could produce power and refrigeration at a maximum exergy efficiency, defined as the ratio of the net work and refrigeration output to the change in availability of the heat source, of over 60%. The exergy efficiency is a useful measure of the cycle's performance as it compares the effectiveness of different cycles in harnessing the same source. An experimental system was constructed to demonstrate the feasibility of the cycle and to compare the experimental results with the theoretical simulations. In this first phase of experimentation, the turbine expansion was simulated with a throttling valve and a heat exchanger. Results showed that the vapor generation and absorption condensation processes work experimentally. The potential for combined turbine work and refrigeration output was evidenced in operating the system. Analysis of losses led to modifications in the system design, which were implemented to yield improvements in heat exchange, vapor generation, pump performance and overall stability. The research that has been conducted verifies the potential of the power and cooling cycle as an alternative to using conventional fossil fuel technologies. The research that continues is to further demonstrate the concept and direct it towards industry. On the large scale, the cycle can be used for industrial power production or as a central power plant for a community, with refrigeration produced as required by the application. On the small scale, an affordable residential or commercial unit could allow independent electricity generation for the home or business while also cooling it.

  16. Comparative thermodynamic performance of some Rankine/Brayton cycle configurations for a low-temperature energy application

    NASA Technical Reports Server (NTRS)

    Lansing, F. L.

    1977-01-01

    Various configurations combining solar-Rankine and fuel-Brayton cycles were analyzed in order to find the arrangement which has the highest thermal efficiency and the smallest fuel share. A numerical example is given to evaluate both the thermodynamic performance and the economic feasibility of each configuration. The solar-assisted regenerative Rankine cycle was found to be leading the candidates from both points of energy utilization and fuel conservation.

  17. Immobilization of Fast Reactor First Cycle Raffinate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langley, K. F.; Partridge, B. A.; Wise, M.

    This paper describes the results of work to bring forward the timing for the immobilization of first cycle raffinate from reprocessing fuel from the Dounreay Prototype Fast Reactor (PFR). First cycle raffinate is the liquor which contains > 99% of the fission products separated from spent fuel during reprocessing. Approximately 203 m3 of raffinate from the reprocessing of PFR fuel is held in four tanks at the UKAEA's site at Dounreay, Scotland. Two methods of immobilization of this high level waste (HLW) have been considered: vitrification and cementation. Vitrification is the standard industry practice for the immobilization of first cyclemore » raffinate, and many papers have been presented on this technique elsewhere. However, cementation is potentially feasible for immobilizing first cycle raffinate because the heat output is an order of magnitude lower than typical HLW from commercial reprocessing operations such as that at the Sellafield site in Cumbria, England. In fact, it falls within the upper end of the UK definition of intermediate level waste (ILW). Although the decision on which immobilization technique will be employed has yet to be made, initial development work has been undertaken to identify a suitable cementation formulation using inactive simulant of the raffinate. An approach has been made to the waste disposal company Nirex to consider the disposability of the cemented product material. The paper concentrates on the process development work that is being undertaken on cementation to inform the decision making process for selection of the immobilization method.« less

  18. Light-Duty Drive Cycle Simulations of Diesel Engine-Out Exhaust Properties for an RCCI-Enabled Vehicle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Zhiming; Curran, Scott; Daw, C Stuart

    2013-01-01

    In-cylinder blending of gasoline and diesel fuels to achieve low-temperature reactivity controlled compression ignition (RCCI) can reduce NOx and PM emissions while maintaining or improving brake thermal efficiency compared to conventional diesel combustion (CDC). Moreover, the dual-fueling RCCI is able to achieve these benefits by tailoring combustion reactivity over a wider range of engine operation than is possible with a single fuel. However, the currently demonstrated range of stable RCCI combustion just covers a portion of the engine speed-load range required in several light-duty drive cycles. This means that engines must switch from RCCI to CDC when speed and loadmore » fall outside of the stable RCCI range. In this study we investigated the impact of RCCI as it has recently been demonstrated on practical engine-out exhaust temperature and emissions by simulating a multi-mode RCCI-enabled vehicle operating over two urban and two highway driving cycles. To implement our simulations, we employed experimental engine maps for a multi-mode RCCI/CDC engine combined with a standard mid-size, automatic transmission, passenger vehicle in the Autonomie vehicle simulation platform. Our results include both detailed transient and cycle-averaged engine exhaust temperature and emissions for each case, and we note the potential implications of the modified exhaust properties on catalytic emissions control and utilization of waste heat recovery on future RCCI-enabled vehicles.« less

  19. Analysis of maximum allowable fragment heights during dissolution of high flux isotope reactor fuel in an h-canyon dissolver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniel, G.; Rudisill, T.

    2017-07-17

    As part of the Spent Nuclear Fuel (SNF) processing campaign, H-Canyon is planning to begin dissolving High Flux Isotope Reactor (HFIR) fuel in late FY17 or early FY18. Each HFIR fuel core contains inner and outer fuel elements which were fabricated from uranium oxide (U 3O 8) dispersed in a continuous Al phase using traditional powder metallurgy techniques. Fuels fabricated in this manner, like other SNF’s processed in H-Canyon, dissolve by the same general mechanisms with similar gas generation rates and the production of H 2. The HFIR fuel cores will be dissolved using a flowsheet developed by the Savannahmore » River National Laboratory (SRNL) in either the 6.4D or 6.1D dissolver using a unique insert. Multiple cores will be charged to the same dissolver solution maximizing the concentration of dissolved Al. The recovered U will be down-blended into low-enriched U for subsequent use as commercial reactor fuel. During the development of the HFIR fuel dissolution flowsheet, the cycle time for the initial core was estimated at 28 to 40 h. Once the cycle is complete, H-Canyon personnel will open the dissolver and probe the HFIR insert wells to determine the height of any fuel fragments which did not dissolve. Before the next core can be charged to the dissolver, an analysis of the potential for H 2 gas generation must show that the combined surface area of the fuel fragments and the subsequent core will not generate H 2 concentrations in the dissolver offgas which exceeds 60% of the lower flammability limit (LFL) of H 2 at 200 °C. The objective of this study is to identify the maximum fuel fragment height as a function of the Al concentration in the dissolving solution which will provide criteria for charging successive HFIR cores to an H-Canyon dissolver.« less

  20. Rapid methods for radionuclide contaminant transport in nuclear fuel cycle simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huff, Kathryn

    Here, nuclear fuel cycle and nuclear waste disposal decisions are technologically coupled. However, current nuclear fuel cycle simulators lack dynamic repository performance analysis due to the computational burden of high-fidelity hydrolgic contaminant transport models. The Cyder disposal environment and repository module was developed to fill this gap. It implements medium-fidelity hydrologic radionuclide transport models to support assessment appropriate for fuel cycle simulation in the Cyclus fuel cycle simulator. Rapid modeling of hundreds of discrete waste packages in a geologic environment is enabled within this module by a suite of four closed form models for advective, dispersive, coupled, and idealized con-more » taminant transport: a Degradation Rate model, a Mixed Cell model, a Lumped Parameter model, and a 1-D Permeable Porous Medium model. A summary of the Cyder module, its timestepping algorithm, and the mathematical models implemented within it are presented. Additionally, parametric demonstrations simulations performed with Cyder are presented and shown to demonstrate functional agreement with parametric simulations conducted in a standalone hydrologic transport model, the Clay Generic Disposal System Model developed by the Used Fuel Disposition Campaign Department of Energy Office of Nuclear Energy.« less

  1. Preliminary Design Study of Medium Sized Gas Cooled Fast Reactor with Natural Uranium as Fuel Cycle Input

    NASA Astrophysics Data System (ADS)

    Meriyanti, Su'ud, Zaki; Rijal, K.; Zuhair, Ferhat, A.; Sekimoto, H.

    2010-06-01

    In this study a fesibility design study of medium sized (1000 MWt) gas cooled fast reactors which can utilize natural uranium as fuel cycle input has been conducted. Gas Cooled Fast Reactor (GFR) is among six types of Generation IV Nuclear Power Plants. GFR with its hard neuron spectrum is superior for closed fuel cycle, and its ability to be operated in high temperature (850° C) makes various options of utilizations become possible. To obtain the capability of consuming natural uranium as fuel cycle input, modified CANDLE burn-up scheme[1-6] is adopted this GFR system by dividing the core into 10 parts of equal volume axially. Due to the limitation of thermal hydraulic aspects, the average power density of the proposed design is selected about 70 W/cc. As an optimization results, a design of 1000 MWt reactors which can be operated 10 years without refueling and fuel shuffling and just need natural uranium as fuel cycle input is discussed. The average discharge burn-up is about 280 GWd/ton HM. Enough margin for criticallity was obtained for this reactor.

  2. Rapid methods for radionuclide contaminant transport in nuclear fuel cycle simulation

    DOE PAGES

    Huff, Kathryn

    2017-08-01

    Here, nuclear fuel cycle and nuclear waste disposal decisions are technologically coupled. However, current nuclear fuel cycle simulators lack dynamic repository performance analysis due to the computational burden of high-fidelity hydrolgic contaminant transport models. The Cyder disposal environment and repository module was developed to fill this gap. It implements medium-fidelity hydrologic radionuclide transport models to support assessment appropriate for fuel cycle simulation in the Cyclus fuel cycle simulator. Rapid modeling of hundreds of discrete waste packages in a geologic environment is enabled within this module by a suite of four closed form models for advective, dispersive, coupled, and idealized con-more » taminant transport: a Degradation Rate model, a Mixed Cell model, a Lumped Parameter model, and a 1-D Permeable Porous Medium model. A summary of the Cyder module, its timestepping algorithm, and the mathematical models implemented within it are presented. Additionally, parametric demonstrations simulations performed with Cyder are presented and shown to demonstrate functional agreement with parametric simulations conducted in a standalone hydrologic transport model, the Clay Generic Disposal System Model developed by the Used Fuel Disposition Campaign Department of Energy Office of Nuclear Energy.« less

  3. Evaluation of solid oxide fuel cell systems for electricity generation

    NASA Technical Reports Server (NTRS)

    Somers, E. V.; Vidt, E. J.; Grimble, R. E.

    1982-01-01

    Air blown (low BTU) gasification with atmospheric pressure Solid Electrolyte Fuel Cells (SOFC) and Rankine bottoming cycle, oxygen blown (medium BTU) gasification with atmospheric pressure SOFC and Rankine bottoming cycle, air blown gasification with pressurized SOFC and combined Brayton/Rankine bottoming cycle, oxygen blown gasification with pressurized SOFC and combined Brayton/Rankine bottoming cycle were evaluated.

  4. 10 CFR 51.51 - Uranium fuel cycle environmental data-Table S-3.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Uranium fuel cycle environmental data-Table S-3. 51.51... cycle environmental data—Table S-3. (a) Under § 51.50, every environmental report prepared for the... Cycle Environmental Data, as the basis for evaluating the contribution of the environmental effects of...

  5. 40 CFR 97.402 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... fossil- or other-fuel-fired combustion device used to produce heat and to transfer heat to recirculating... the sequential use of energy. Cogeneration unit means a stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine that is a topping-cycle unit or a bottoming-cycle unit: (1...

  6. 40 CFR 97.402 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... fossil- or other-fuel-fired combustion device used to produce heat and to transfer heat to recirculating... the sequential use of energy. Cogeneration unit means a stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine that is a topping-cycle unit or a bottoming-cycle unit: (1...

  7. 40 CFR 97.402 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... fossil- or other-fuel-fired combustion device used to produce heat and to transfer heat to recirculating... the sequential use of energy. Cogeneration unit means a stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine that is a topping-cycle unit or a bottoming-cycle unit: (1...

  8. Impact of New Nuclear Data Libraries on Small Sized Long Life CANDLE HTGR Design Parameters

    NASA Astrophysics Data System (ADS)

    Liem, Peng Hong; Hartanto, Donny; Tran, Hoai Nam

    2017-01-01

    The impact of new evaluated nuclear data libraries (JENDL-4.0, ENDF/B-VII.0 and JEFF-3.1) on the core characteristics of small-sized long-life CANDLE High Temperature Gas-Cooled Reactors (HTGRs) with uranium and thorium fuel cycles was investigated. The most important parameters of the CANDLE core characteristics investigated here covered (1) infinite multiplication factor of the fresh fuel containing burnable poison, (2) the effective multiplication factor of the equilibrium core, (3) the moving velocity of the burning region, (4) the attained discharge burnup, and (5) the maximum power density. The reference case was taken from the current JENDL-3.3 results. For the uranium fuel cycle, the impact of the new libraries was small, while significant impact was found for thorium fuel cycle. The findings indicated the needs of more accurate nuclear data libraries for nuclides involved in thorium fuel cycle in the future.

  9. Thickness effects of yttria-doped ceria interlayers on solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Fan, Zeng; An, Jihwan; Iancu, Andrei; Prinz, Fritz B.

    2012-11-01

    Determining the optimal thickness range of the interlayed yttria-doped ceria (YDC) films promises to further enhance the performance of solid oxide fuel cells (SOFCs) at low operating temperatures. The YDC interlayers are fabricated by the atomic layer deposition (ALD) method with one super cycle of the YDC deposition consisting of 6 ceria deposition cycles and one yttria deposition cycle. YDC films of various numbers of ALD super cycles, ranging from 2 to 35, are interlayered into bulk fuel cells with a 200 um thick yttria-stabilized zirconia (YSZ) electrolyte. Measurements and analysis of the linear sweep voltammetry of these fuel cells reveal that the performance of the given cells is maximized at 10 super cycles. Auger elemental mapping and X-ray photoelectron spectroscopy (XPS) techniques are employed to determine the film completeness, and they verify 10 super cycles of YDC to be the critical thickness point. This optimal YDC interlayer condition (6Ce1Y × 10 super cycles) is applied to the case of micro fuel cells as well, and the average performance enhancement factor is 1.4 at operating temperatures of 400 and 450 °C. A power density of 1.04 W cm-2 at 500 °C is also achieved with the optimal YDC recipe.

  10. The myth of the ``proliferation-resistant'' closed nuclear fuel cycle

    NASA Astrophysics Data System (ADS)

    Lyman, Edwin S.

    2000-07-01

    National nuclear energy programs that engage in reprocessing of spent nuclear fuel (SNF) and the development of "closed" nuclear fuel cycles based on the utilization of plutonium process and store large quantities of weapons-usable nuclear materials in forms vulnerable to diversion or theft by national or subnational groups. Proliferation resistance, an idea dating back at least as far as the International Fuel Cycle Evaluation (INFCE) of the late 1970s, is a loosely defined term referring to processes for chemical separation of SNF that do not extract weapons-usable materials in a purified form.

  11. A physical and economic model of the nuclear fuel cycle

    NASA Astrophysics Data System (ADS)

    Schneider, Erich Alfred

    A model of the nuclear fuel cycle that is suitable for use in strategic planning and economic forecasting is presented. The model, to be made available as a stand-alone software package, requires only a small set of fuel cycle and reactor specific input parameters. Critical design criteria include ease of use by nonspecialists, suppression of errors to within a range dictated by unit cost uncertainties, and limitation of runtime to under one minute on a typical desktop computer. Collision probability approximations to the neutron transport equation that lead to a computationally efficient decoupling of the spatial and energy variables are presented and implemented. The energy dependent flux, governed by coupled integral equations, is treated by multigroup or continuous thermalization methods. The model's output includes a comprehensive nuclear materials flowchart that begins with ore requirements, calculates the buildup of 24 actinides as well as fission products, and concludes with spent fuel or reprocessed material composition. The costs, direct and hidden, of the fuel cycle under study are also computed. In addition to direct disposal and plutonium recycling strategies in current use, the model addresses hypothetical cycles. These include cycles chosen for minor actinide burning and for their low weapons-usable content.

  12. Components of Particle Emissions from Light-Duty Spark-Ignition Vehicles with Varying Aromatic Content and Octane Rating in Gasoline.

    PubMed

    Short, Daniel Z; Vu, Diep; Durbin, Thomas D; Karavalakis, Georgios; Asa-Awuku, Akua

    2015-09-01

    Typical gasoline consists of varying concentrations of aromatic hydrocarbons and octane ratings. However, their impacts on particulate matter (PM) such as black carbon (BC) and water-soluble and insoluble particle compositions are not well-defined. This study tests seven 2012 model year vehicles, which include one port fuel injection (PFI) configured hybrid vehicle, one PFI vehicle, and six gasoline direct injection (GDI) vehicles. Each vehicle was driven on the Unified transient testing cycle (UC) using four different fuels. Three fuels had a constant octane rating of 87 with varied aromatic concentrations at 15%, 25%, and 35%. A fourth fuel with higher octane rating, 91, contained 35% aromatics. BC, PM mass, surface tension, and water-soluble organic mass (WSOM) fractions were measured. The water-insoluble mass (WIM) fraction of the vehicle emissions was estimated. Increasing fuel aromatic content increases BC emission factors (EFs) of transient cycles. BC concentrations were higher for the GDI vehicles than the PFI and hybrid vehicles, suggesting a potential climate impact for increased GDI vehicle production. Vehicle steady-state testing showed that the hygroscopicity of PM emissions at high speeds (70 mph; κ > 1) are much larger than emissions at low speeds (30 mph; κ < 0.1). Iso-paraffin content in the fuels was correlated to the decrease in WSOM emissions. Both aromatic content and vehicle speed increase the amount of hygroscopic material found in particle emissions.

  13. Multiple recycle of REMIX fuel based on reprocessed uranium and plutonium mixture in thermal reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fedorov, Y.S.; Bibichev, B.A.; Zilberman, B.Y.

    2013-07-01

    REMIX fuel consumption in WWER-1000 is considered. REMIX fuel is fabricated from non-separated mixture of uranium and plutonium obtained during NPP spent fuel reprocessing with further makeup by enriched natural uranium. It makes possible to recycle several times the total amount of uranium and plutonium obtained from spent fuel with 100% loading of the WWER-1000 core. The stored SNF could be also involved in REMIX fuel cycle by enrichment of regenerated uranium. The same approach could be applied to closing the fuel cycle of CANDU reactors. (authors)

  14. Variants of Regenerated Fissile Materials Usage in Thermal Reactors as the First Stage of Fuel Cycle Closing

    NASA Astrophysics Data System (ADS)

    Andrianova, E. A.; Tsibul'skiy, V. F.

    2017-12-01

    At present, 240 000 t of spent nuclear fuel (SF) has been accumulated in the world. Its long-term storage should meet safety conditions and requires noticeable finances, which grow every year. Obviously, this situation cannot exist for a long time; in the end, it will require a final decision. At present, several variants of solution of the problem of SF management are considered. Since most of the operating reactors and those under construction are thermal reactors, it is reasonable to assume that the structure of the nuclear power industry in the near and medium-term future will be unchanged, and it will be necessary to utilize plutonium in thermal reactors. In this study, different strategies of SF management are compared: open fuel cycle with long-term SF storage, closed fuel cycle with MOX fuel usage in thermal reactors and subsequent long-term storage of SF from MOX fuel, and closed fuel cycle in thermal reactors with heterogeneous fuel arrangement. The concept of heterogeneous fuel arrangement is considered in detail. While in the case of traditional fuel it is necessary to reprocess the whole amount of spent fuel, in the case of heterogeneous arrangement, it is possible to separate plutonium and 238U in different fuel rods. In this case, it is possible to achieve nearly complete burning of fissile isotopes of plutonium in fuel rods loaded with plutonium. These fuel rods with burned plutonium can be buried after cooling without reprocessing. They would contain just several percent of initially loaded plutonium, mainly even isotopes. Fuel rods with 238U alone should be reprocessed in the usual way.

  15. 40 CFR 600.209-08 - Calculation of vehicle-specific 5-cycle fuel economy values for a model type.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Calculation of vehicle-specific 5-cycle fuel economy values for a model type. 600.209-08 Section 600.209-08 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy Regulations fo...

  16. Life cycle assessment of switchgrass- and corn stover-derived ethanol-fueled automobiles.

    PubMed

    Spatari, Sabrina; Zhang, Yimin; MacLean, Heather L

    2005-12-15

    Utilizing domestically produced cellulose-derived ethanol for the light-duty vehicle fleet can potentially improve the environmental performance and sustainability of the transport and energy sectors of the economy. A life cycle assessment model was developed to examine environmental implications of the production and use of ethanol in automobiles in Ontario, Canada. The results were compared to those of low-sulfur reformulated gasoline (RFG) in a functionally equivalent automobile. Two time frames were evaluated, one near-term (2010), which examines converting a dedicated energy crop (switchgrass) and an agricultural residue (corn stover) to ethanol; and one midterm (2020), which assumes technological improvements in the switchgrass-derived ethanol life cycle. Near-term results show that, compared to a RFG automobile, life cycle greenhouse gas (GHG) emissions are 57% lower for an E85-fueled automobile derived from switchgrass and 65% lower for ethanol from corn stover, on a grams of CO2 equivalent per kilometer basis. Corn stover ethanol exhibits slightly lower life cycle GHG emissions, primarily due to sharing emissions with grain production. Through projected improvements in crop and ethanol yields, results for the mid-term scenario show that GHG emissions could be 25-35% lower than those in 2010 and that, even with anticipated improvements in RFG automobiles, E85 automobiles could still achieve up to 70% lower GHG emissions across the life cycle.

  17. Biodiesel production in a semiarid environment: a life cycle assessment approach.

    PubMed

    Biswas, Wahidul K; Barton, Louise; Carter, Daniel

    2011-04-01

    While the use of biodiesel appears to be a promising alternative to petroleum fuel, the replacement of fossil fuel by biofuel may not bring about the intended climate cooling because of the increased soil N2O emissions due to N-fertilizer applications. Using a life cycle assessment approach, we assessed the influence of soil nitrous oxide (N2O) emissions on the life cycle global warming potential of the production and combustion of biodiesel from canola oil produced in a semiarid climate. Utilizing locally measured soil N2O emissions, rather than the Intergovernmental Panel on Climate Change (IPCC) default values, decreased greenhouse gas (GHG) emissions from the production and combustion of 1 GJ biodiesel from 63 to 37 carbon dioxide equivalents (CO2-e)/GJ. GHG were 1.1 to 2.1 times lower than those from petroleum or petroleum-based diesel depending on which soil N2O emission factors were included in the analysis. The advantages of utilizing biodiesel rapidly declined when blended with petroleum diesel. Mitigation strategies that decrease emissions from the production and application of N fertilizers may further decrease the life cycle GHG emissions in the production and combustion of biodiesel.

  18. 40 CFR 600.109-08 - EPA driving cycles.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy and Carbon-Related Exhaust....115 of this chapter. (b) The highway fuel economy driving cycle is specified in this paragraph. (1) The Highway Fuel Economy Driving Schedule is set forth in appendix I of this part. The driving...

  19. 40 CFR 600.109-08 - EPA driving cycles.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy and Carbon-Related Exhaust....115 of this chapter. (b) The highway fuel economy driving cycle is specified in this paragraph. (1) The Highway Fuel Economy Driving Schedule is set forth in appendix I of this part. The driving...

  20. Heat deposition analysis for the High Flux Isotope Reactor’s HEU and LEU core models

    DOE PAGES

    Davidson, Eva E.; Betzler, Benjamin R.; Chandler, David; ...

    2017-08-01

    The High Flux Isotope Reactor at Oak Ridge National Laboratory is an 85 MW th pressurized light-water-cooled and -moderated flux-trap type research reactor. The reactor is used to conduct numerous experiments, advancing various scientific and engineering disciplines. As part of an ongoing program sponsored by the US Department of Energy National Nuclear Security Administration Office of Material Management and Minimization, studies are being performed to assess the feasibility of converting the reactor’s highly enriched uranium fuel to low-enriched uranium fuel. To support this conversion project, reference models with representative experiment target loading and explicit fuel plate representation were developed andmore » benchmarked for both fuels to (1) allow for consistent comparison between designs for both fuel types and (2) assess the potential impact of low-enriched uranium conversion. These high-fidelity models were used to conduct heat deposition analyses at the beginning and end of the reactor cycle and are presented herein. This article (1) discusses the High Flux Isotope Reactor models developed to facilitate detailed heat deposition analyses of the reactor’s highly enriched and low-enriched uranium cores, (2) examines the computational approach for performing heat deposition analysis, which includes a discussion on the methodology for calculating the amount of energy released per fission, heating rates, power and volumetric heating rates, and (3) provides results calculated throughout various regions of the highly enriched and low-enriched uranium core at the beginning and end of the reactor cycle. These are the first detailed high-fidelity heat deposition analyses for the High Flux Isotope Reactor’s highly enriched and low-enriched core models with explicit fuel plate representation. Lastly, these analyses are used to compare heat distributions obtained for both fuel designs at the beginning and end of the reactor cycle, and they are essential for enabling comprehensive thermal hydraulics and safety analyses that require detailed estimates of the heat source within all of the reactor’s fuel element regions.« less

  1. Life cycle assessments of bioenergy oilseed production in rotation with dryland cereals in eastern Oregon, USA

    USDA-ARS?s Scientific Manuscript database

    Oilseed crops are expected to become increasingly important as feedstock for production of renewable jet fuel for the airline industry. However, there are potential social and environmental problems associated with using agricultural land to produce energy crops. The objective of this study was to...

  2. SUNgas: Thermochemical Approaches to Solar Fuels

    NASA Astrophysics Data System (ADS)

    Davidson, Jane

    2013-04-01

    Solar energy offers an intelligent solution to reduce anthropogenic emissions of greenhouse gases and to meet an expanding global demand for energy. A transformative change from fossil to solar energy requires collection, storage, and transport of the earth's most abundant but diffuse and intermittent source of energy. One intriguing approach for harvest and storage of solar energy is production of clean fuels via high temperature thermochemical processes. Concentrated solar energy is the heat source and biomass or water and carbon dioxide are the feedstocks. Two routes to produce fuels using concentrated solar energy and a renewable feed stock will be discussed: gasification of biomass or other carbonaceous materials and metal oxide cycles to produce synthesis gas. The first and most near term route to solar fuels is to gasify biomass. With conventional gasification, air or oxygen is supplied at fuel-rich levels to combust some of the feedstock and in this manner generate the energy required for conversion to H2 and CO. The partial-combustion consumes up to 40% of the energetic value of the feedstock. With air combustion, the product gas is diluted by high levels of CO2 and N2. Using oxygen reduces the product dilution, but at the expense of adding an oxygen plant. Supplying the required heat with concentrated solar radiation eliminates the need for partial combustion of the biomass feedstock. As a result, the product gas has an energetic value greater than that of the feedstock and it is not contaminated by the byproducts of combustion. The second promising route to solar fuels splits water and carbon dioxide. Two-step metal-oxide redox cycles hold out great potential because they the temperature required to achieve a reasonable degree of dissociation is lower than direct thermal dissociation and O2 and the fuel are produced in separate steps. The 1^st step is the endothermic thermal dissociation of the metal oxide to the metal or lower-valence metal oxide. The 2^nd exothermic step is the hydrolysis of the reduced metal to form H2 and the corresponding metal oxide. Two promising options for 2-step cycles, the Zn/ZnO and non-stoichiometric ceria redox cycles, will be compared with a focus on efficiency and state of the art achievements.

  3. Evaluation of Ultra Clean Fuels from Natural Gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robert Abbott; Edward Casey; Etop Esen

    2006-02-28

    ConocoPhillips, in conjunction with Nexant Inc., Penn State University, and Cummins Engine Co., joined with the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) in a cooperative agreement to perform a comprehensive study of new ultra clean fuels (UCFs) produced from remote sources of natural gas. The project study consists of three primary tasks: an environmental Life Cycle Assessment (LCA), a Market Study, and a series of Engine Tests to evaluate the potential markets for Ultra Clean Fuels. The overall objective of DOE's Ultra Clean Transportation Fuels Initiative is to develop and deploy technologies that will produce ultra-cleanmore » burning transportation fuels for the 21st century from both petroleum and non-petroleum resources. These fuels will: (1) Enable vehicles to comply with future emission requirements; (2) Be compatible with the existing liquid fuels infrastructure; (3) Enable vehicle efficiencies to be significantly increased, with concomitantly reduced CO{sub 2} emissions; (4) Be obtainable from a fossil resource, alone or in combination with other hydrocarbon materials such as refinery wastes, municipal wastes, biomass, and coal; and (5) Be competitive with current petroleum fuels. The objectives of the ConocoPhillips Ultra Clean Fuels Project are to perform a comprehensive life cycle analysis and to conduct a market study on ultra clean fuels of commercial interest produced from natural gas, and, in addition, perform engine tests for Fisher-Tropsch diesel and methanol in neat, blended or special formulations to obtain data on emissions. This resulting data will be used to optimize fuel compositions and engine operation in order to minimize the release of atmospheric pollutants resulting from the fuel combustion. Development and testing of both direct and indirect methanol fuel cells was to be conducted and the optimum properties of a suitable fuel-grade methanol was to be defined. The results of the study are also applicable to coal-derived FT liquid fuels. After different gas clean up processes steps, the coal-derived syngas will produce FT liquid fuels that have similar properties to natural gas derived FT liquids.« less

  4. Application of a high-repetition-rate laser diagnostic system for single-cycle-resolved imaging in internal combustion engines.

    PubMed

    Hult, Johan; Richter, Mattias; Nygren, Jenny; Aldén, Marcus; Hultqvist, Anders; Christensen, Magnus; Johansson, Bengt

    2002-08-20

    High-repetition-rate laser-induced fluorescence measurements of fuel and OH concentrations in internal combustion engines are demonstrated. Series of as many as eight fluorescence images, with a temporal resolution ranging from 10 micros to 1 ms, are acquired within one engine cycle. A multiple-laser system in combination with a multiple-CCD camera is used for cycle-resolved imaging in spark-ignition, direct-injection stratified-charge, and homogeneous-charge compression-ignition engines. The recorded data reveal unique information on cycle-to-cycle variations in fuel transport and combustion. Moreover, the imaging system in combination with a scanning mirror is used to perform instantaneous three-dimensional fuel-concentration measurements.

  5. Integrated gasifier combined cycle polygeneration system to produce liquid hydrogen

    NASA Technical Reports Server (NTRS)

    Burns, R. K.; Staiger, P. J.; Donovan, R. M.

    1982-01-01

    An integrated gasifier combined cycle (IGCC) system which simultaneously produces electricity, process steam, and liquid hydrogen was evaluated and compared to IGCC systems which cogenerate electricity and process steam. A number of IGCC plants, all employing a 15 MWe has turbine and producing from 0 to 20 tons per day of liquid hydrogen and from 0 to 20 MWt of process steam were considered. The annual revenue required to own and operate such plants was estimated to be significantly lower than the potential market value of the products. The results indicate a significant potential economic benefit to configuring IGCC systems to produce a clean fuel in addition to electricity and process steam in relatively small industrial applications.

  6. The Use of Thorium within the Nuclear Power Industry - 13472

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Keith

    2013-07-01

    Thorium is 3 to 4 times more abundant than uranium and is widely distributed in nature as an easily exploitable resource in many countries. Unlike natural uranium, which contains ∼0.7% fissile {sup 235}U isotope, natural thorium does not contain any fissile material and is made up of the fertile {sup 232}Th isotope only. Therefore thorium and thorium-based fuel as metal, oxide or carbide, has been utilized in combination with fissile {sup 235}U or {sup 239}Pu in nuclear research and power reactors for conversion to fissile {sup 233}U, thereby enlarging fissile material resources. During the pioneering years of nuclear energy, frommore » the mid 1950's to mid 1970's, there was considerable interest worldwide to develop thorium fuels and fuel cycles in order to supplement uranium reserves. Thorium fuels and fuel cycles are particularly relevant to countries having large thorium deposits but very limited uranium reserves for their long term nuclear power programme. The feasibility of thorium utilization in high temperature gas cooled reactors (HTGR), light water reactors (LWR), pressurized heavy water reactors (PHWRs), liquid metal cooled fast breeder reactors (LMFBR) and molten salt breeder reactors (MSBR) were demonstrated. The initial enthusiasm for thorium fuels and fuel cycles was not sustained among the developing countries later, due to new discovery of uranium deposits and their improved availability. However, in recent times, the need for proliferation-resistance, longer fuel cycles, higher burnup, and improved waste form characteristics, reduction of plutonium inventories and in situ use of bred-in fissile material has led to renewed interest in thorium-based fuels and fuel cycles. (authors)« less

  7. Technology Status and Expected Greenhouse Gas Emissions of Battery, Plug-In Hybrid, and Fuel Cell Electric Vehicles

    NASA Astrophysics Data System (ADS)

    Lipman, Timothy E.

    2011-11-01

    Electric vehicles (EVs) of various types are experiencing a commercial renaissance but of uncertain ultimate success. Many new electric-drive models are being introduced by different automakers with significant technical improvements from earlier models, particularly with regard to further refinement of drivetrain systems and important improvements in battery and fuel cell systems. The various types of hybrid and all-electric vehicles can offer significant greenhouse gas (GHG) reductions when compared to conventional vehicles on a full fuel-cycle basis. In fact, most EVs used under most condition are expected to significantly reduce lifecycle GHG emissions. This paper reviews the current technology status of EVs and compares various estimates of their potential to reduce GHGs on a fuel cycle basis. In general, various studies show that battery powered EVs reduce GHGs by a widely disparate amount depending on the type of powerplant used and the particular region involved, among other factors. Reductions typical of the United States would be on the order of 20-50%, depending on the relative level of coal versus natural gas and renewables in the powerplant feedstock mix. However, much deeper reductions of over 90% are possible for battery EVs running on renewable or nuclear power sources. Plug-in hybrid vehicles running on gasoline can reduce emissions by 20-60%, and fuel cell EV reduce GHGs by 30-50% when running on natural gas-derived hydrogen and up to 95% or more when the hydrogen is made (and potentially compressed) using renewable feedstocks. These are all in comparison to what is usually assumed to be a more advanced gasoline vehicle "baseline" of comparison, with some incremental improvements by 2020 or 2030. Thus, the emissions from all of these EV types are highly variable depending on the details of how the electric fuel or hydrogen is produced.

  8. Multiple recycle of REMIX fuel at VVER-1000 operation in closed fuel cycle

    NASA Astrophysics Data System (ADS)

    Alekseev, P. N.; Bobrov, E. A.; Chibinyaev, A. V.; Teplov, P. S.; Dudnikov, A. A.

    2015-12-01

    The basic features of loading the VVER-1000 core with a new variant of REMIX fuel (REgenerated MIXture of U-Pu oxides) are considered during its multiple recycle in a closed nuclear fuel cycle. The fuel composition is produced on the basis of the uranium-plutonium regenerate extracted at processing the spent nuclear fuel (SNF) from a VVER-1000, depleted uranium, and the fissionable material: 235U as a part of highly enriched uranium (HEU) from warheads superfluous for defense purposes or 233U accumulated in thorium blankets of fusion (electronuclear) neutron sources or fast reactors. Production of such a fuel assumes no use of natural uranium in addition. When converting a part of the VVER-1000 reactors to the closed fuel cycle based on the REMIX technology, the consumption of natural uranium decreases considerably, and there is no substantial degradation of the isotopic composition of plutonium or change in the reactor-safety characteristics at the passage from recycle to recycle.

  9. Multiple recycle of REMIX fuel at VVER-1000 operation in closed fuel cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alekseev, P. N.; Bobrov, E. A., E-mail: evgeniybobrov89@rambler.ru; Chibinyaev, A. V.

    2015-12-15

    The basic features of loading the VVER-1000 core with a new variant of REMIX fuel (REgenerated MIXture of U–Pu oxides) are considered during its multiple recycle in a closed nuclear fuel cycle. The fuel composition is produced on the basis of the uranium–plutonium regenerate extracted at processing the spent nuclear fuel (SNF) from a VVER-1000, depleted uranium, and the fissionable material: {sup 235}U as a part of highly enriched uranium (HEU) from warheads superfluous for defense purposes or {sup 233}U accumulated in thorium blankets of fusion (electronuclear) neutron sources or fast reactors. Production of such a fuel assumes no usemore » of natural uranium in addition. When converting a part of the VVER-1000 reactors to the closed fuel cycle based on the REMIX technology, the consumption of natural uranium decreases considerably, and there is no substantial degradation of the isotopic composition of plutonium or change in the reactor-safety characteristics at the passage from recycle to recycle.« less

  10. Life Cycle Assessment of Cookstoves and Fuels in India ...

    EPA Pesticide Factsheets

    This presentation was requested by the Global Alliance to augment they scheduled to present update on the use of LCA to better understand implications of future policy that consider all pollutants including criteria, air toxics, and other pollutants impacting air quality concerns in these countries. EPA research quantitatively demonstrates through the application of LCA that both cooking fuel mix substitutions and stove technology upgrades provide promising avenues for reducing particulate matter and black carbon emissions. India’s continued reliance on crop residue and dung contributes disproportionately to particulate matter and black carbon environmental impacts. The greatest environmental benefit in China can be realized by promoting fuel mix substitutions or stove technology improvements to replace the combustion of coal powder in traditional stoves. Kenya and Ghana would benefit from adoption of improved stove designs for both firewood and charcoal fuel. Use of improved charcoal kiln technology also has the potential to significantly reduce the impact of charcoal use and production. The study generally demonstrates the positive relative environmental results associated with LPG and natural gas, which show a limited tendency to shift environmental burdens away from indoor air pollutants and to other impact categories such as fossil fuel depletion, freshwater eutrophication, and terrestrial acidification potential when substituted for traditional fuels. T

  11. Evaluation of factors that affect diesel exhaust toxicity. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norbeck, J.M.; Smith, M.R.; Arey, J.

    1998-07-01

    The scope of this project was to obtain a preliminary assessment of the potential impact of the fuel formulation on the speciation and toxic components of diesel exhaust. The test bed was a Cummins L10 engine operating over the heavy-duty transient test cycle using three diesel fuels: a pre-1993 diesel fuel, a low aromatic diesel fuel, and an alternative formulation diesel fuel. The sampling/analysis plan included: determination of the criteria pollutant emission rates (THC, CO, NOx, and PM); determination of PM(10) and PM(2.5) emission rates; collection and analysis of particulate samples for elemental, inorganic ion and elemental/organic carbon analyses; collectionmore » of bas samples for VOC speciation analyses; collection of 2,4-dinitrophenylhydrazine (DNPH) cartridges for determination of oxygenates; collection of nitrosomorpholine with Thermosorb N cartridges; collection of semi-volatiles on PF/XAD and particulate samples for PAH, nitro-PAH, and mutagenicity studies; and collection and analysis of dioxins for the pre-1993 and alternative formulation diesel fuels.« less

  12. The Potential of Different Concepts of Fast Breeder Reactor for the French Fleet Renewal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Massara, Simone; Tetart, Philippe; Lecarpentier, David

    2006-07-01

    The performances of different concepts of Fast Breeder Reactor (Na-cooled, He-cooled and Pb-cooled FBR) for the current French fleet renewal are analyzed in the framework of a transition scenario to a 100% FBR fleet at the end of the 21. century. Firstly, the modeling of these three FBR types by means of a semi-analytical approach in TIRELIRE - STRATEGIE, the EDF fuel cycle simulation code, is presented, together with some validation elements against ERANOS, the French reference code system for neutronic FBR analysis (CEA). Afterwards, performances comparisons are made in terms of maximum deployable power, natural uranium consumption and wastemore » production. The results show that the FBR maximum deployable capacity, independently from the FBR technology, is highly sensitive to the fuel cycle options, like the spent nuclear fuel cooling time or the Minor Actinides management strategy. Thus, some of the key parameters defining the dynamic of FBR deployment are highlighted, to inform the orientation of R and D in the development and optimization of these systems. (authors)« less

  13. Understanding future emissions from low-carbon power systems by integration of life-cycle assessment and integrated energy modelling

    NASA Astrophysics Data System (ADS)

    Pehl, Michaja; Arvesen, Anders; Humpenöder, Florian; Popp, Alexander; Hertwich, Edgar G.; Luderer, Gunnar

    2017-12-01

    Both fossil-fuel and non-fossil-fuel power technologies induce life-cycle greenhouse gas emissions, mainly due to their embodied energy requirements for construction and operation, and upstream CH4 emissions. Here, we integrate prospective life-cycle assessment with global integrated energy-economy-land-use-climate modelling to explore life-cycle emissions of future low-carbon power supply systems and implications for technology choice. Future per-unit life-cycle emissions differ substantially across technologies. For a climate protection scenario, we project life-cycle emissions from fossil fuel carbon capture and sequestration plants of 78-110 gCO2eq kWh-1, compared with 3.5-12 gCO2eq kWh-1 for nuclear, wind and solar power for 2050. Life-cycle emissions from hydropower and bioenergy are substantial (˜100 gCO2eq kWh-1), but highly uncertain. We find that cumulative emissions attributable to upscaling low-carbon power other than hydropower are small compared with direct sectoral fossil fuel emissions and the total carbon budget. Fully considering life-cycle greenhouse gas emissions has only modest effects on the scale and structure of power production in cost-optimal mitigation scenarios.

  14. Advanced Fuel Cycles for Fusion Reactors: Passive Safety and Zero-Waste Options

    NASA Astrophysics Data System (ADS)

    Zucchetti, Massimo; Sugiyama, Linda E.

    2006-05-01

    Nuclear fusion is seen as a much ''cleaner'' energy source than fission. Most of the studies and experiments on nuclear fusion are currently devoted to the Deuterium-Tritium (DT) fuel cycle, since it is the easiest way to reach ignition. The recent stress on safety by the world's community has stimulated the research on other fuel cycles than the DT one, based on 'advanced' reactions, such as the Deuterium-Helium-3 (DHe) one. These reactions pose problems, such as the availability of 3He and the attainment of the higher plasma parameters that are required for burning. However, they have many advantages, like for instance the very low neutron activation, while it is unnecessary to breed and fuel tritium. The extrapolation of Ignitor technologies towards a larger and more powerful experiment using advanced fuel cycles (Candor) has been studied. Results show that Candor does reach the passive safety and zero-waste option. A fusion power reactor based on the DHe cycle could be the ultimate response to the environmental requirements for future nuclear power plants.

  15. Impact of non-petroleum vehicle fuel economy on GHG mitigation potential

    NASA Astrophysics Data System (ADS)

    Luk, Jason M.; Saville, Bradley A.; MacLean, Heather L.

    2016-04-01

    The fuel economy of gasoline vehicles will increase to meet 2025 corporate average fuel economy standards (CAFE). However, dedicated compressed natural gas (CNG) and battery electric vehicles (BEV) already exceed future CAFE fuel economy targets because only 15% of non-petroleum energy use is accounted for when determining compliance. This study aims to inform stakeholders about the potential impact of CAFE on life cycle greenhouse gas (GHG) emissions, should non-petroleum fuel vehicles displace increasingly fuel efficient petroleum vehicles. The well-to-wheel GHG emissions of a set of hypothetical model year 2025 light-duty vehicles are estimated. A reference gasoline vehicle is designed to meet the 2025 fuel economy target within CAFE, and is compared to a set of dedicated CNG vehicles and BEVs with different fuel economy ratings, but all vehicles meet or exceed the fuel economy target due to the policy’s dedicated non-petroleum fuel vehicle incentives. Ownership costs and BEV driving ranges are estimated to provide context, as these can influence automaker and consumer decisions. The results show that CNG vehicles that have lower ownership costs than gasoline vehicles and BEVs with long distance driving ranges can exceed the 2025 CAFE fuel economy target. However, this could lead to lower efficiency CNG vehicles and heavier BEVs that have higher well-to-wheel GHG emissions than gasoline vehicles on a per km basis, even if the non-petroleum energy source is less carbon intensive on an energy equivalent basis. These changes could influence the effectiveness of low carbon fuel standards and are not precluded by the light-duty vehicle GHG emissions standards, which regulate tailpipe but not fuel production emissions.

  16. Ecodesign of Liquid Fuel Tanks

    NASA Astrophysics Data System (ADS)

    Gicevska, Jana; Bazbauers, Gatis; Repele, Mara

    2011-01-01

    The subject of the study is a 10 litre liquid fuel tank made of metal and used for fuel storage and transportation. The study dealt with separate life cycle stages of this product, compared environmental impacts of similar fuel tanks made of metal and plastic, as well as analysed the product's end-of-life cycle stage, studying the waste treatment and disposal scenarios. The aim of this study was to find opportunities for improvement and to develop proposals for the ecodesign of 10 litre liquid fuel tank.

  17. Current state of nuclear fuel cycles in nuclear engineering and trends in their development according to the environmental safety requirements

    NASA Astrophysics Data System (ADS)

    Vislov, I. S.; Pischulin, V. P.; Kladiev, S. N.; Slobodyan, S. M.

    2016-08-01

    The state and trends in the development of nuclear fuel cycles in nuclear engineering, taking into account the ecological aspects of using nuclear power plants, are considered. An analysis of advantages and disadvantages of nuclear engineering, compared with thermal engineering based on organic fuel types, was carried out. Spent nuclear fuel (SNF) reprocessing is an important task in the nuclear industry, since fuel unloaded from modern reactors of any type contains a large amount of radioactive elements that are harmful to the environment. On the other hand, the newly generated isotopes of uranium and plutonium should be reused to fabricate new nuclear fuel. The spent nuclear fuel also includes other types of fission products. Conditions for SNF handling are determined by ecological and economic factors. When choosing a certain handling method, one should assess these factors at all stages of its implementation. There are two main methods of SNF handling: open nuclear fuel cycle, with spent nuclear fuel assemblies (NFAs) that are held in storage facilities with their consequent disposal, and closed nuclear fuel cycle, with separation of uranium and plutonium, their purification from fission products, and use for producing new fuel batches. The development of effective closed fuel cycles using mixed uranium-plutonium fuel can provide a successful development of the nuclear industry only under the conditions of implementation of novel effective technological treatment processes that meet strict requirements of environmental safety and reliability of process equipment being applied. The diversity of technological processes is determined by different types of NFA devices and construction materials being used, as well as by the composition that depends on nuclear fuel components and operational conditions for assemblies in the nuclear power reactor. This work provides an overview of technological processes of SNF treatment and methods of handling of nuclear fuel assemblies. Based on analysis of modern engineering solutions on SNF regeneration, it has been concluded that new reprocessing technologies should meet the ecological safety requirements, provide a more extensive use of the resource base of nuclear engineering, allow the production of valuable and trace elements on an industrial scale, and decrease radioactive waste release.

  18. Bioethanol Blending Reduces Nanoparticle, PAH, and Alkyl- and Nitro-PAH Emissions and the Genotoxic Potential of Exhaust from a Gasoline Direct Injection Flex-Fuel Vehicle.

    PubMed

    Muñoz, Maria; Heeb, Norbert V; Haag, Regula; Honegger, Peter; Zeyer, Kerstin; Mohn, Joachim; Comte, Pierre; Czerwinski, Jan

    2016-11-01

    Bioethanol as an alternative fuel is widely used as a substitute for gasoline and also in gasoline direct injection (GDI) vehicles, which are quickly replacing traditional port-fuel injection (PFI) vehicles. Better fuel efficiency and increased engine power are reported advantages of GDI vehicles. However, increased emissions of soot-like nanoparticles are also associated with GDI technology with yet unknown health impacts. In this study, we compare emissions of a flex-fuel Euro-5 GDI vehicle operated with gasoline (E0) and two ethanol/gasoline blends (E10 and E85) under transient and steady driving conditions and report effects on particle, polycyclic aromatic hydrocarbon (PAH), and alkyl- and nitro-PAH emissions and assess their genotoxic potential. Particle number emissions when operating the vehicle in the hWLTC (hot started worldwide harmonized light-duty vehicle test cycle) with E10 and E85 were lowered by 97 and 96% compared with that of E0. CO emissions dropped by 81 and 87%, while CO 2 emissions were reduced by 13 and 17%. Emissions of selected PAHs were lowered by 67-96% with E10 and by 82-96% with E85, and the genotoxic potentials dropped by 72 and 83%, respectively. Ethanol blending appears to reduce genotoxic emissions on this specific flex-fuel GDI vehicle; however, other GDI vehicle types should be analyzed.

  19. Review of the Fuel Saving, Life Cycle GHG Emission, and Ownership Cost Impacts of Lightweighting Vehicles with Different Powertrains.

    PubMed

    Luk, Jason M; Kim, Hyung Chul; De Kleine, Robert; Wallington, Timothy J; MacLean, Heather L

    2017-08-01

    The literature analyzing the fuel saving, life cycle greenhouse gas (GHG) emission, and ownership cost impacts of lightweighting vehicles with different powertrains is reviewed. Vehicles with lower powertrain efficiencies have higher fuel consumption. Thus, fuel savings from lightweighting internal combustion engine vehicles can be higher than those of hybrid electric and battery electric vehicles. However, the impact of fuel savings on life cycle costs and GHG emissions depends on fuel prices, fuel carbon intensities and fuel storage requirements. Battery electric vehicle fuel savings enable reduction of battery size without sacrificing driving range. This reduces the battery production cost and mass, the latter results in further fuel savings. The carbon intensity of electricity varies widely and is a major source of uncertainty when evaluating the benefits of fuel savings. Hybrid electric vehicles use gasoline more efficiently than internal combustion engine vehicles and do not require large plug-in batteries. Therefore, the benefits of lightweighting depend on the vehicle powertrain. We discuss the value proposition of the use of lightweight materials and alternative powertrains. Future assessments of the benefits of vehicle lightweighting should capture the unique characteristics of emerging vehicle powertrains.

  20. Alternate Fuels for Use in Commercial Aircraft

    NASA Technical Reports Server (NTRS)

    Daggett, David L.; Hendricks, Robert C.; Walther, Rainer; Corporan, Edwin

    2008-01-01

    The engine and aircraft Research and Development (R&D) communities have been investigating alternative fueling in near-term, midterm, and far-term aircraft. A drop in jet fuel replacement, consisting of a kerosene (Jet-A) and synthetic fuel blend, will be possible for use in existing and near-term aircraft. Future midterm aircraft may use a biojet and synthetic fuel blend in ultra-efficient airplane designs. Future far-term engines and aircraft in 50-plus years may be specifically designed to use a low- or zero-carbon fuel. Synthetic jet fuels from coal, natural gas, or other hydrocarbon feedstocks are very similar in performance to conventional jet fuel, yet the additional CO2 produced during the manufacturing needs to be permanently sequestered. Biojet fuels need to be developed specifically for jet aircraft without displacing food production. Envisioned as midterm aircraft fuel, if the performance and cost liabilities can be overcome, biofuel blends with synthetic jet or Jet-A fuels have near-term potential in terms of global climatic concerns. Long-term solutions address dramatic emissions reductions through use of alternate aircraft fuels such as liquid hydrogen or liquid methane. Either of these new aircraft fuels will require an enormous change in infrastructure and thus engine and airplane design. Life-cycle environmental questions need to be addressed.

  1. The Carbon Cycle: Implications for Climate Change and Congress

    DTIC Science & Technology

    2008-03-13

    burning of fossil fuels, deforestation , and other land use activities, have significantly altered the carbon cycle. As a result, atmospheric...80% of human-related CO2 emissions results from fossil fuel combustion, and 20% from land use change (primarily deforestation ). Fossil fuel burning...warming the planet. At present, the oceans and land surface are acting as sinks for CO2 emitted from fossil fuel combustion and deforestation , but

  2. LIFE CYCLE BASED STUDIES ON BIOETHANOL FUEL FOR SUSTAINABLE TRANSPORTATION: A LITERATURE REVIEW

    EPA Science Inventory

    A literature search was conducted and revealed 45 publications (1996-2005) that compare bio-ethanol systems to conventional fuel on a life-cycle basis, or using life cycle assessment. Feedstocks, such as sugar beets, wheat, potato, sugar cane, and corn, have been investigated in...

  3. DEMONSTRATION OF POTENTIAL FOR SELECTIVE CATALYTIC REDUCTION AND DIESEL PARTICULATE FILTERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGILL,R; KHAIR, M; SHARP, C

    2003-08-24

    This project addresses the potential for Selective Catalytic Reduction (SCR) devices (using urea as reductant) together with Diesel Particulate Filters (DPF) and low-pressure loop exhaust gas recirculation (EGR) to achieve future stringent emissions standards for heavy-duty engines powering Class 8 vehicles. Two emission control systems consisting of the three technologies (EGR, SCR, and DPF) were calibrated on a Caterpillar C-12 heavy-duty diesel engine. Results of these calibrations showed good promise in meeting the 2010 heavy-duty emission standards as set forth by the Environmental Protection Agency (EPA). These two emission control systems were developed to evaluate a series of fuels thatmore » have similar formulations except for their sulfur content. Additionally, one fuel, code-named BP15, was also evaluated. This fuel was prepared by processing straight-run distillate stocks through a commercial, single stage hydrotreater employing high activity catalyst at maximum severity. An additional goal of this program is to provide data for an on-going EPA technology review that evaluates progress toward meeting 2007/2010 emission standards. These emissions levels were to be achieved not only on the transient test cycles but in other modes of operation such as the steady-state Euro-III style emission test known as the OICA (Organisation Internationale des Compagnies d'Automobiles) or the ESC (European Stationary Cycle). Additionally, hydrocarbon and carbon monoxide emissions standards are to be met.« less

  4. 40 CFR 86.1403 - Abbreviations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for New Gasoline-Fueled Otto-Cycle Light-Duty Vehicles and New Gasoline-Fueled Otto-Cycle Light-Duty Trucks; Certification...

  5. 40 CFR 86.1402 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for New Gasoline-Fueled Otto-Cycle Light-Duty Vehicles and New Gasoline-Fueled Otto-Cycle Light-Duty Trucks; Certification...

  6. 40 CFR 86.1404 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for New Gasoline-Fueled Otto-Cycle Light-Duty Vehicles and New Gasoline-Fueled Otto-Cycle Light-Duty Trucks; Certification...

  7. Alternative Fuels Data Center: Idle Reduction Research and Development

    Science.gov Websites

    researchers at Argonne National Laboratory completed their analysis of the full fuel-cycle effects of idle Laboratory analyzed the full fuel-cycle effects of current idle reduction technologies. Researchers compared , electrified parking spaces, APUs, and several combinations of these. They compared effects for the United

  8. 40 CFR 600.114-12 - Vehicle-specific 5-cycle fuel economy and carbon-related exhaust emission calculations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 30 2014-07-01 2014-07-01 false Vehicle-specific 5-cycle fuel economy and carbon-related exhaust emission calculations. 600.114-12 Section 600.114-12 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST...

  9. NUCLEAR MATERIAL ATTRACTIVENESS: AN ASSESSMENT OF MATERIAL FROM PHWR'S IN A CLOSED THORIUM FUEL CYCLE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sleaford, B W; Collins, B A; Ebbinghaus, B B

    2010-04-26

    This paper examines the attractiveness of material mixtures containing special nuclear materials (SNM) associated with reprocessing and the thorium-based LWR fuel cycle. This paper expands upon the results from earlier studies that examined the attractiveness of SNM associated with the reprocessing of spent light water reactor (LWR) fuel by various reprocessing schemes and the recycle of plutonium as a mixed oxide (MOX) fuel in LWR. This study shows that {sup 233}U that is produced in thorium-based fuel cycles is very attractive for weapons use. Consistent with other studies, these results also show that all fuel cycles examined to date needmore » to be rigorously safeguarded and provided moderate to high levels of physical protection. These studies were performed at the request of the United States Department of Energy (DOE), and are based on the calculation of 'attractiveness levels' that has been couched in terms chosen for consistency with those normally used for nuclear materials in DOE nuclear facilities. The methodology and key findings will be presented.« less

  10. Nuclear Material Attractiveness: An Assessment of Material from PHWR's in a Closed Thorium Fuel Cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sleaford, Brad W.; Ebbinghaus, B. B.; Bradley, Keith S.

    2010-06-11

    This paper examines the attractiveness of material mixtures containing special nuclear materials (SNM) associated with reprocessing and the thorium-based LWR fuel cycle. This paper expands upon the results from earlier studies [ , ] that examined the attractiveness of SNM associated with the reprocessing of spent light water reactor (LWR) fuel by various reprocessing schemes and the recycle of plutonium as a mixed oxide (MOX) fuel in LWR. This study shows that 233U that is produced in thorium-based fuel cycles is very attractive for weapons use. Consistent with other studies, these results also show that all fuel cycles examined tomore » date need to be rigorously safeguarded and provided moderate to high levels of physical protection. These studies were performed at the request of the United States Department of Energy (DOE), and are based on the calculation of "attractiveness levels" that has been couched in terms chosen for consistency with those normally used for nuclear materials in DOE nuclear facilities [ ]. The methodology and key findings will be presented.« less

  11. Heat exchangers in regenerative gas turbine cycles

    NASA Astrophysics Data System (ADS)

    Nina, M. N. R.; Aguas, M. P. N.

    1985-09-01

    Advances in compact heat exchanger design and fabrication together with fuel cost rises continuously improve the attractability of regenerative gas turbine helicopter engines. In this study cycle parameters aiming at reduced specific fuel consumption and increased payload or mission range, have been optimized together with heat exchanger type and size. The discussion is based on a typical mission for an attack helicopter in the 900 kw power class. A range of heat exchangers is studied to define the most favorable geometry in terms of lower fuel consumption and minimum engine plus fuel weight. Heat exchanger volume, frontal area ratio and pressure drop effect on cycle efficiency are considered.

  12. Design tradeoff studies and sensitivity analysis, appendices B1 - B4. [hybrid electric vehicles

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Documentation is presented for a program which separately computes fuel and energy consumption for the two modes of operation of a hybrid electric vehicle. The distribution of daily travel is specified as input data as well as the weights which the component driving cycles are given in each of the composite cycles. The possibility of weight reduction through the substitution of various materials is considered as well as the market potential for hybrid vehicles. Data relating to battery compartment weight distribution and vehicle handling analysis is tabulated.

  13. Gaseous fuel reactors for power systems

    NASA Technical Reports Server (NTRS)

    Kendall, J. S.; Rodgers, R. J.

    1977-01-01

    Gaseous-fuel nuclear reactors have significant advantages as energy sources for closed-cycle power systems. The advantages arise from the removal of temperature limits associated with conventional reactor fuel elements, the wide variety of methods of extracting energy from fissioning gases, and inherent low fissile and fission product in-core inventory due to continuous fuel reprocessing. Example power cycles and their general performance characteristics are discussed. Efficiencies of gaseous fuel reactor systems are shown to be high with resulting minimal environmental effects. A technical overview of the NASA-funded research program in gaseous fuel reactors is described and results of recent tests of uranium hexafluoride (UF6)-fueled critical assemblies are presented.

  14. Lead Slowing-Down Spectrometry Time Spectral Analysis for Spent Fuel Assay: FY11 Status Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulisek, Jonathan A.; Anderson, Kevin K.; Bowyer, Sonya M.

    2011-09-30

    Developing a method for the accurate, direct, and independent assay of the fissile isotopes in bulk materials (such as used fuel) from next-generation domestic nuclear fuel cycles is a goal of the Office of Nuclear Energy, Fuel Cycle R&D, Material Protection and Control Technology (MPACT) Campaign. To meet this goal, MPACT supports a multi-institutional collaboration, of which PNNL is a part, to study the feasibility of Lead Slowing Down Spectroscopy (LSDS). This technique is an active nondestructive assay method that has the potential to provide independent, direct measurement of Pu and U isotopic masses in used fuel with an uncertaintymore » considerably lower than the approximately 10% typical of today's confirmatory assay methods. This document is a progress report for FY2011 PNNL analysis and algorithm development. Progress made by PNNL in FY2011 continues to indicate the promise of LSDS analysis and algorithms applied to used fuel. PNNL developed an empirical model based on calibration of the LSDS to responses generated from well-characterized used fuel. The empirical model, which accounts for self-shielding effects using empirical basis vectors calculated from the singular value decomposition (SVD) of a matrix containing the true self-shielding functions of the used fuel assembly models. The potential for the direct and independent assay of the sum of the masses of 239Pu and 241Pu to within approximately 3% over a wide used fuel parameter space was demonstrated. Also, in FY2011, PNNL continued to develop an analytical model. Such efforts included the addition of six more non-fissile absorbers in the analytical shielding function and the non-uniformity of the neutron flux across the LSDS assay chamber. A hybrid analytical-empirical approach was developed to determine the mass of total Pu (sum of the masses of 239Pu, 240Pu, and 241Pu), which is an important quantity in safeguards. Results using this hybrid method were of approximately the same accuracy as the pure empirical approach. In addition, total Pu with much better accuracy with the hybrid approach than the pure analytical approach. In FY2012, PNNL will continue efforts to optimize its empirical model and minimize its reliance on calibration data. In addition, PNNL will continue to develop an analytical model, considering effects such as neutron-scattering in the fuel and cladding, as well as neutrons streaming through gaps between fuel pins in the fuel assembly.« less

  15. Manufacturing and Performance Assessment of Stamped, Laser Welded, and Nitrided FeCrV Stainless Steel Bipolar Plates for Proton Exchange Membrane Fuel Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brady, Michael P; Abdelhamid, Mahmoud; Dadheech, G

    A manufacturing and single-cell fuel cell performance study of stamped, laser welded, and gas nitrided ferritic stainless steel foils in an advanced automotive bipolar plate assembly design was performed. Two developmental foil compositions were studied: Fee20Cre4V and Fee23Cre4V wt.%. Foils 0.1 mm thick were stamped and then laser welded together to create single bipolar plate assemblies with cooling channels. The plates were then surface treated by pre-oxidation and nitridation in N2e4H2 based gas mixtures using either a conventional furnace or a short-cycle quartz lamp infrared heating system. Single-cell fuel cell testing was performed at 80 C for 500 h atmore » 0.3 A/cm2 using 100% humidification and a 100%/40% humidification cycle that stresses the membrane and enhances release of the fluoride ion and promotes a more corrosive environment for the bipolar plates. Periodic high frequency resistance potential-current scans during the 500 h fuel cell test and posttest analysis of the membrane indicated no resistance increase of the plates and only trace levels of metal ion contamination.« less

  16. Comparison of flexible fuel vehicle and life-cycle fuel consumption and emissions of selected pollutants and greenhouse gases for ethanol 85 versus gasoline.

    PubMed

    Zhai, Haibo; Frey, H Christopher; Rouphail, Nagui M; Gonçalves, Gonçalo A; Farias, Tiago L

    2009-08-01

    The objective of this research is to evaluate differences in fuel consumption and tailpipe emissions of flexible fuel vehicles (FFVs) operated on ethanol 85 (E85) versus gasoline. Theoretical ratios of fuel consumption and carbon dioxide (CO2) emissions for both fuels are estimated based on the same amount of energy released. Second-by-second fuel consumption and emissions from one FFV Ford Focus fueled with E85 and gasoline were measured under real-world traffic conditions in Lisbon, Portugal, using a portable emissions measurement system (PEMS). Cycle average dynamometer fuel consumption and emission test results for FFVs are available from the U.S. Department of Energy, and emissions certification test results for ethanol-fueled vehicles are available from the U.S. Environmental Protection Agency. On the basis of the PEMS data, vehicle-specific power (VSP)-based modal average fuel and emission rates for both fuels are estimated. For E85 versus gasoline, empirical ratios of fuel consumption and CO2 emissions agree within a margin of error to the theoretical expectations. Carbon monoxide (CO) emissions were found to be typically lower. From the PEMS data, nitric oxide (NO) emissions associated with some higher VSP modes are higher for E85. From the dynamometer and certification data, average hydrocarbon (HC) and nitrogen oxides (NOx) emission differences vary depending on the vehicle. The differences of average E85 versus gasoline emission rates for all vehicle models are -22% for CO, 12% for HC, and -8% for NOx emissions, which imply that replacing gasoline with E85 reduces CO emissions, may moderately decrease NOx tailpipe emissions, and may increase HC tailpipe emissions. On a fuel life cycle basis for corn-based ethanol versus gasoline, CO emissions are estimated to decrease by 18%. Life-cycle total and fossil CO2 emissions are estimated to decrease by 25 and 50%, respectively; however, life-cycle HC and NOx emissions are estimated to increase by 18 and 82%, respectively.

  17. Analysis of a topping-cycle, aircraft, gas-turbine-engine system which uses cryogenic fuel

    NASA Technical Reports Server (NTRS)

    Turney, G. E.; Fishbach, L. H.

    1984-01-01

    A topping-cycle aircraft engine system which uses a cryogenic fuel was investigated. This system consists of a main turboshaft engine that is mechanically coupled (by cross-shafting) to a topping loop, which augments the shaft power output of the system. The thermodynamic performance of the topping-cycle engine was analyzed and compared with that of a reference (conventional) turboshaft engine. For the cycle operating conditions selected, the performance of the topping-cycle engine in terms of brake specific fuel consumption (bsfc) was determined to be about 12 percent better than that of the reference turboshaft engine. Engine weights were estimated for both the topping-cycle engine and the reference turboshaft engine. These estimates were based on a common shaft power output for each engine. Results indicate that the weight of the topping-cycle engine is comparable with that of the reference turboshaft engine.

  18. Study of LH2-fueled topping cycle engine for aircraft propulsion

    NASA Technical Reports Server (NTRS)

    Turney, G. E.; Fishbach, L. H.

    1983-01-01

    An analytical investigation was made of a topping cycle aircraft engine system which uses a cryogenic fuel. This system consists of a main turboshaft engine which is mechanically coupled (by cross-shafting) to a topping loop which augments the shaft power output of the system. The thermodynamic performance of the topping cycle engine was analyzed and compared with that of a reference (conventional-type) turboshaft engine. For the cycle operating conditions selected, the performance of the topping cycle engine in terms of brake specific fuel consumption (bsfc) was determined to be about 12 percent better than that of the reference turboshaft engine. Engine weights were estimated for both the topping cycle engine and the reference turboshaft engine. These estimates were based on a common shaft power output for each engine. Results indicate that the weight of the topping cycle engine is comparable to that of the reference turboshaft engine.

  19. Performance and economics of advanced energy conversion systems for coal and coal-derived fuels

    NASA Technical Reports Server (NTRS)

    Corman, J. C.; Fox, G. R.

    1978-01-01

    The desire to establish an efficient Energy Conversion System to utilize the fossil fuel of the future - coal - has produced many candidate systems. A comparative technical/economic evaluation was performed on the seven most attractive advanced energy conversion systems. The evaluation maintains a cycle-to-cycle consistency in both performance and economic projections. The technical information base can be employed to make program decisions regarding the most attractive concept. A reference steam power plant was analyzed to the same detail and, under the same ground rules, was used as a comparison base. The power plants were all designed to utilize coal or coal-derived fuels and were targeted to meet an environmental standard. The systems evaluated were two advanced steam systems, a potassium topping cycle, a closed cycle helium system, two open cycle gas turbine combined cycles, and an open cycle MHD system.

  20. Comparative life cycle assessment of lignocellulosic ethanol production: biochemical versus thermochemical conversion.

    PubMed

    Mu, Dongyan; Seager, Thomas; Rao, P Suresh; Zhao, Fu

    2010-10-01

    Lignocellulosic biomass can be converted into ethanol through either biochemical or thermochemical conversion processes. Biochemical conversion involves hydrolysis and fermentation while thermochemical conversion involves gasification and catalytic synthesis. Even though these routes produce comparable amounts of ethanol and have similar energy efficiency at the plant level, little is known about their relative environmental performance from a life cycle perspective. Especially, the indirect impacts, i.e. emissions and resource consumption associated with the production of various process inputs, are largely neglected in previous studies. This article compiles material and energy flow data from process simulation models to develop life cycle inventory and compares the fossil fuel consumption, greenhouse gas emissions, and water consumption of both biomass-to-ethanol production processes. The results are presented in terms of contributions from feedstock, direct, indirect, and co-product credits for four representative biomass feedstocks i.e., wood chips, corn stover, waste paper, and wheat straw. To explore the potentials of the two conversion pathways, different technological scenarios are modeled, including current, 2012 and 2020 technology targets, as well as different production/co-production configurations. The modeling results suggest that biochemical conversion has slightly better performance on greenhouse gas emission and fossil fuel consumption, but that thermochemical conversion has significantly less direct, indirect, and life cycle water consumption. Also, if the thermochemical plant operates as a biorefinery with mixed alcohol co-products separated for chemicals, it has the potential to achieve better performance than biochemical pathway across all environmental impact categories considered due to higher co-product credits associated with chemicals being displaced. The results from this work serve as a starting point for developing full life cycle assessment model that facilitates effective decision-making regarding lignocellulosic ethanol production.

  1. Comparative Life Cycle Assessment of Lignocellulosic Ethanol Production: Biochemical Versus Thermochemical Conversion

    NASA Astrophysics Data System (ADS)

    Mu, Dongyan; Seager, Thomas; Rao, P. Suresh; Zhao, Fu

    2010-10-01

    Lignocellulosic biomass can be converted into ethanol through either biochemical or thermochemical conversion processes. Biochemical conversion involves hydrolysis and fermentation while thermochemical conversion involves gasification and catalytic synthesis. Even though these routes produce comparable amounts of ethanol and have similar energy efficiency at the plant level, little is known about their relative environmental performance from a life cycle perspective. Especially, the indirect impacts, i.e. emissions and resource consumption associated with the production of various process inputs, are largely neglected in previous studies. This article compiles material and energy flow data from process simulation models to develop life cycle inventory and compares the fossil fuel consumption, greenhouse gas emissions, and water consumption of both biomass-to-ethanol production processes. The results are presented in terms of contributions from feedstock, direct, indirect, and co-product credits for four representative biomass feedstocks i.e., wood chips, corn stover, waste paper, and wheat straw. To explore the potentials of the two conversion pathways, different technological scenarios are modeled, including current, 2012 and 2020 technology targets, as well as different production/co-production configurations. The modeling results suggest that biochemical conversion has slightly better performance on greenhouse gas emission and fossil fuel consumption, but that thermochemical conversion has significantly less direct, indirect, and life cycle water consumption. Also, if the thermochemical plant operates as a biorefinery with mixed alcohol co-products separated for chemicals, it has the potential to achieve better performance than biochemical pathway across all environmental impact categories considered due to higher co-product credits associated with chemicals being displaced. The results from this work serve as a starting point for developing full life cycle assessment model that facilitates effective decision-making regarding lignocellulosic ethanol production.

  2. Fluid flow and fuel-air mixing in a motored two-dimensional Wankel rotary engine

    NASA Technical Reports Server (NTRS)

    Shih, T. I.-P.; Nguyen, H. L.; Stegeman, J.

    1986-01-01

    The implicit-factored method of Beam and Warming was employed to obtain numerical solutions to the conservation equations of mass, species, momentum, and energy to study the unsteady, multidimensional flow and mixing of fuel and air inside the combustion chambers of a two-dimensional Wankel rotary engine under motored conditions. The effects of the following engine design and operating parameters on fluid flow and fuel-air mixing during the intake and compression cycles were studied: engine speed, angle of gaseous fuel injection during compression cycle, and speed of the fuel leaving fuel injector.

  3. Fluid flow and fuel-air mixing in a motored two-dimensional Wankel rotary engine

    NASA Astrophysics Data System (ADS)

    Shih, T. I.-P.; Nguyen, H. L.; Stegeman, J.

    1986-06-01

    The implicit-factored method of Beam and Warming was employed to obtain numerical solutions to the conservation equations of mass, species, momentum, and energy to study the unsteady, multidimensional flow and mixing of fuel and air inside the combustion chambers of a two-dimensional Wankel rotary engine under motored conditions. The effects of the following engine design and operating parameters on fluid flow and fuel-air mixing during the intake and compression cycles were studied: engine speed, angle of gaseous fuel injection during compression cycle, and speed of the fuel leaving fuel injector.

  4. Energy Conversion Alternatives Study (ECAS), General Electric Phase 1. Volume 1: Executive summary. [using coal or coal derived fuels

    NASA Technical Reports Server (NTRS)

    Corman, J. C.

    1976-01-01

    A data base for the comparison of advanced energy conversion systems for utility applications using coal or coal-derived fuels was developed. Estimates of power plant performance (efficiency), capital cost, cost of electricity, natural resource requirements, and environmental intrusion characteristics were made for ten advanced conversion systems. Emphasis was on the energy conversion system in the context of a base loaded utility power plant. All power plant concepts were premised on meeting emission standard requirements. A steam power plant (3500 psig, 1000 F) with a conventional coal-burning furnace-boiler was analyzed as a basis for comparison. Combined cycle gas/steam turbine system results indicated competitive efficiency and a lower cost of electricity compared to the reference steam plant. The Open-Cycle MHD system results indicated the potential for significantly higher efficiency than the reference steam plant but with a higher cost of electricity.

  5. Nanographene synthesized in triple-phase plasmas as a highly durable support of catalysts for polymer electrolyte fuel cells

    NASA Astrophysics Data System (ADS)

    Amano, Tomoki; Kondo, Hiroki; Takeda, Keigo; Ishikawa, Kenji; Hiramatsu, Mineo; Sekine, Makoto; Hori, Masaru

    2018-04-01

    Nanographene was synthesized in triple-phase plasmas comprising a gaseous phase, a gas-liquid boundary layer, and an in-liquid phase using a setup in which one electrode was placed in the gaseous phase while the other was immersed in the liquid phase. The triple-phase plasmas were generated using a pure alcohol, such as ethanol, 1-propanol, or 1-butanol, by applying a high voltage to a pair of electrodes made of copper or graphite. The nanographene synthesized using ethanol had high durability and thus could serve as a catalyst support in polymer electrolyte fuel cells (PEFCs). The PEFCs exhibited low degradation rates in the high-potential cycle test of a half-cell, as a result of which, a loss of only 10% was observed in the effective electrochemical surface area of Pt, even after 10,000 cycles.

  6. Design and evaluation of fluidized bed heat recovery for diesel engine systems

    NASA Technical Reports Server (NTRS)

    Hamm, J. R.; Newby, R. A.; Vidt, E. J.; Lippert, T. E.

    1985-01-01

    The potential of utilizing fluidized bed heat exchangers in place of conventional counter-flow heat exchangers for heat recovery from adiabatic diesel engine exhaust gas streams was studied. Fluidized bed heat recovery systems were evaluated in three different heavy duty transport applications: (1) heavy duty diesel truck; (2) diesel locomotives; and (3) diesel marine pushboat. The three applications are characterized by differences in overall power output and annual utilization. For each application, the exhaust gas source is a turbocharged-adiabatic diesel core. Representative subposed exhaust gas heat utilization power cycles were selected for conceptual design efforts including design layouts and performance estimates for the fluidized bed heat recovery heat exchangers. The selected power cycles were: organic rankine with RC-1 working fluid, turbocompound power turbine with steam injection, and stirling engine. Fuel economy improvement predictions are used in conjunction with capital cost estimates and fuel price data to determine payback times for the various cases.

  7. A Review of RedOx Cycling of Solid Oxide Fuel Cells Anode

    PubMed Central

    Faes, Antonin; Hessler-Wyser, Aïcha; Zryd, Amédée; Van Herle, Jan

    2012-01-01

    Solid oxide fuel cells are able to convert fuels, including hydrocarbons, to electricity with an unbeatable efficiency even for small systems. One of the main limitations for long-term utilization is the reduction-oxidation cycling (RedOx cycles) of the nickel-based anodes. This paper will review the effects and parameters influencing RedOx cycles of the Ni-ceramic anode. Second, solutions for RedOx instability are reviewed in the patent and open scientific literature. The solutions are described from the point of view of the system, stack design, cell design, new materials and microstructure optimization. Finally, a brief synthesis on RedOx cycling of Ni-based anode supports for standard and optimized microstructures is depicted. PMID:24958298

  8. 40 CFR 86.1407-86.1412 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for New Gasoline-Fueled Otto-Cycle Light-Duty Vehicles and New Gasoline-Fueled Otto-Cycle Light...

  9. 40 CFR 86.1417-86.1421 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for New Gasoline-Fueled Otto-Cycle Light-Duty Vehicles and New Gasoline-Fueled Otto-Cycle Light...

  10. 40 CFR 86.1414-86.1415 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for New Gasoline-Fueled Otto-Cycle Light-Duty Vehicles and New Gasoline-Fueled Otto-Cycle Light...

  11. Cycle-to-cycle IMEP fluctuations in a stoichiometrically-fueled S. I. engine at low speed and load

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sztenderowicz, M.L.; Heywood, J.B.

    1990-01-01

    In a previous experimental investigation of the effects of residual gas nonuniformity on S.I. engine combustion variability, it was found that eliminating residual gas nonuniformity by skip firing has no detectable impact on the flame development process, but nonetheless caused IMEP fluctuations to drop by about half under very light load conditions. This paper reports that under further investigation, it has been determined that the observed IMEP fluctuations, particularly for optimally-phased cycles, are controlled by cyclic variations in the amount of fuel burning per cycle. Real-time sampling of the hydrocarbon concentration in the exhaust port has shown that the variationmore » in fuel burned per cycle is not primarily due to variations in combustion completeness, and must therefore be attributed to variations in the amount of fuel trapped within the cylinder prior to combustion. Several mechanisms for this variation were identified, all of which are plausible but none of which are likely to dominate: variations in fuel quantity left in the cylinder from the previous cycle; variations in the fluid dynamics of the intake process; fresh charge displacement due to variations in residual gas temperature; variations in leakage through valves; and fluctuations in crevice effects and blow-by.« less

  12. Nuclear power generation and fuel cycle report 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-10-01

    This report presents the current status and projections through 2015 of nuclear capacity, generation, and fuel cycle requirements for all countries using nuclear power to generate electricity for commercial use. It also contains information and forecasts of developments in the worldwide nuclear fuel market. Long term projections of U.S. nuclear capacity, generation, and spent fuel discharges for two different scenarios through 2040 are developed. A discussion on decommissioning of nuclear power plants is included.

  13. Fuel cycle for a fusion neutron source

    NASA Astrophysics Data System (ADS)

    Ananyev, S. S.; Spitsyn, A. V.; Kuteev, B. V.

    2015-12-01

    The concept of a tokamak-based stationary fusion neutron source (FNS) for scientific research (neutron diffraction, etc.), tests of structural materials for future fusion reactors, nuclear waste transmutation, fission reactor fuel production, and control of subcritical nuclear systems (fusion-fission hybrid reactor) is being developed in Russia. The fuel cycle system is one of the most important systems of FNS that provides circulation and reprocessing of the deuterium-tritium fuel mixture in all fusion reactor systems: the vacuum chamber, neutral injection system, cryogenic pumps, tritium purification system, separation system, storage system, and tritium-breeding blanket. The existing technologies need to be significantly upgraded since the engineering solutions adopted in the ITER project can be only partially used in the FNS (considering the capacity factor higher than 0.3, tritium flow up to 200 m3Pa/s, and temperature of reactor elements up to 650°C). The deuterium-tritium fuel cycle of the stationary FNS is considered. The TC-FNS computer code developed for estimating the tritium distribution in the systems of FNS is described. The code calculates tritium flows and inventory in tokamak systems (vacuum chamber, cryogenic pumps, neutral injection system, fuel mixture purification system, isotope separation system, tritium storage system) and takes into account tritium loss in the fuel cycle due to thermonuclear burnup and β decay. For the two facility versions considered, FNS-ST and DEMO-FNS, the amount of fuel mixture needed for uninterrupted operation of all fuel cycle systems is 0.9 and 1.4 kg, consequently, and the tritium consumption is 0.3 and 1.8 kg per year, including 35 and 55 g/yr, respectively, due to tritium decay.

  14. Neutronics Studies of Uranium-bearing Fully Ceramic Micro-encapsulated Fuel for PWRs

    DOE PAGES

    George, Nathan M.; Maldonado, G. Ivan; Terrani, Kurt A.; ...

    2014-12-01

    Our study evaluated the neutronics and some of the fuel cycle characteristics of using uranium-based fully ceramic microencapsulated (FCM) fuel in a pressurized water reactor (PWR). Specific PWR lattice designs with FCM fuel have been developed that are expected to achieve higher specific burnup levels in the fuel while also increasing the tolerance to reactor accidents. The SCALE software system was the primary analysis tool used to model the lattice designs. A parametric study was performed by varying tristructural isotropic particle design features (e.g., kernel diameter, coating layer thicknesses, and packing fraction) to understand the impact on reactivity and resultingmore » operating cycle length. Moreover, to match the lifetime of an 18-month PWR cycle, the FCM particle fuel design required roughly 10% additional fissile material at beginning of life compared with that of a standard uranium dioxide (UO 2) rod. Uranium mononitride proved to be a favorable fuel for the fuel kernel due to its higher heavy metal loading density compared with UO 2. The FCM fuel designs evaluated maintain acceptable neutronics design features for fuel lifetime, lattice peaking factors, and nonproliferation figure of merit.« less

  15. Life cycle economic and environmental implications of using nanocomposites in automobiles.

    PubMed

    Lloyd, Shannon M; Lave, Lester B

    2003-08-01

    By reducing the energy and materials required to provide goods and services, nanotechnology has the potential to provide more appealing products while improving environmental performance and sustainability. Whether and how soon this potential could be realized depends on phrasing the right research and development (R&D) questions and pursuing commercialization intelligently. A sufficiently broad perspective at the outset is required to understand economic and technical feasibility, estimate life cycle environmental implications, and minimize unanticipated negative impacts. The rapid rise in federally funded nanotechnology R&D dictates that consideration of societal benefits will have a large role in setting the R&D agenda. We estimate potential selected economic and environmental impacts associated with the use of nanotechnology in the automotive industry. In particular, we project the material processing and fuel economy benefits associated with using a clay-polypropylene nanocomposite instead of steel or aluminum in light-duty vehicle body panels. Although the manufacturing cost is currently higher, a life cycle analysis shows potential benefits in reducing energy use and environment discharges by using a nanocomposite design.

  16. Reducing Proliferation Rick Through Multinational Fuel Cycle Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amanda Rynes

    2010-11-01

    With the prospect of rapid expansion of the nuclear energy industry and the ongoing concern over weapons proliferation, there is a growing need for a viable alternative to traditional nation-based fuel production facilities. While some in the international community remain apprehensive, the advantages of multinational fuel cycle facilities are becoming increasingly apparent, with states on both sides of the supply chain able to garner the security and financial benefits of such facilities. Proliferation risk is minimized by eliminating the need of states to establish indigenous fuel production capabilities and the concept's structure provides an additional internationally monitored barrier against themore » misuse or diversion of nuclear materials. This article gives a brief description of the arguments for and against the implementation of a complete multinational fuel cycle.« less

  17. 77 FR 49701 - Energy Conservation Program for Consumer Products and Certain Commercial and Industrial Equipment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-17

    ... Amendment Regarding Full-Fuel-Cycle Analyses AGENCY: Office of Energy Efficiency and Renewable Energy... Energy (DOE) announced its intention to use full-fuel-cycle (FFC) measures of energy use and greenhouse... Cycle Analyses, EERE-2011-BT- NOA-0028, 1000 Independence Avenue SW., Washington, DC 20585- 0121. Phone...

  18. An optimization methodology for heterogeneous minor actinides transmutation

    NASA Astrophysics Data System (ADS)

    Kooyman, Timothée; Buiron, Laurent; Rimpault, Gérald

    2018-04-01

    In the case of a closed fuel cycle, minor actinides transmutation can lead to a strong reduction in spent fuel radiotoxicity and decay heat. In the heterogeneous approach, minor actinides are loaded in dedicated targets located at the core periphery so that long-lived minor actinides undergo fission and are turned in shorter-lived fission products. However, such targets require a specific design process due to high helium production in the fuel, high flux gradient at the core periphery and low power production. Additionally, the targets are generally manufactured with a high content in minor actinides in order to compensate for the low flux level at the core periphery. This leads to negative impacts on the fuel cycle in terms of neutron source and decay heat of the irradiated targets, which penalize their handling and reprocessing. In this paper, a simplified methodology for the design of targets is coupled with a method for the optimization of transmutation which takes into account both transmutation performances and fuel cycle impacts. The uncertainties and performances of this methodology are evaluated and shown to be sufficient to carry out scoping studies. An illustration is then made by considering the use of moderating material in the targets, which has a positive impact on the minor actinides consumption but a negative impact both on fuel cycle constraints (higher decay heat and neutron) and on assembly design (higher helium production and lower fuel volume fraction). It is shown that the use of moderating material is an optimal solution of the transmutation problem with regards to consumption and fuel cycle impacts, even when taking geometrical design considerations into account.

  19. Computational Analysis of the Combustion Processes in an Axisymmetric, RBCC Flowpath

    NASA Technical Reports Server (NTRS)

    Steffen, Christopher J., Jr.; Yungster, Shaye

    2001-01-01

    Computational fluid dynamic simulations have been used to study the combustion processes within an axisymmetric, RBCC flowpath. Two distinct operating modes have been analyzed to date, including the independent ramjet stream (IRS) cycle and the supersonic combustion ramjet (scramJet) cycle. The IRS cycle investigation examined the influence of fuel-air ratio, fuel distribution, and rocket chamber pressure upon the combustion physics and thermal choke characteristics. Results indicate that adjustment of the amount and radial distribution of fuel can control the thermal choke point. The secondary massflow rate was very sensitive to the fuel-air ratio and the rocket chamber pressure. The scramjet investigation examined the influence of fuel-air ratio and fuel injection schedule upon combustion performance estimates. An analysis of the mesh-dependence of these calculations was presented. Jet penetration data was extracted from the three-dimensional simulations and compared favorably with experimental correlations of similar flows. Results indicate that combustion efficiency was very sensitive to the fuel schedule.

  20. Alternative Fuels in Epilepsy and Amyotrophic Lateral Sclerosis.

    PubMed

    Tefera, Tesfaye W; Tan, Kah Ni; McDonald, Tanya S; Borges, Karin

    2017-06-01

    This review summarises the recent findings on metabolic treatments for epilepsy and Amyotrophic Lateral Sclerosis (ALS) in honour of Professor Ursula Sonnewald. The metabolic impairments in rodent models of these disorders as well as affected patients are being discussed. In both epilepsy and ALS, there are defects in glucose uptake and reduced tricarboxylic acid (TCA) cycling, at least in part due to reduced amounts of C4 TCA cycle intermediates. In addition there are impairments in glycolysis in ALS. A reduction in glucose uptake can be addressed by providing the brain with alternative fuels, such as ketones or medium-chain triglycerides. As anaplerotic fuels, such as the triglyceride of heptanoate, triheptanoin, refill the TCA cycle C4/C5 intermediate pool that is deficient, they are ideal to boost TCA cycling and thus the oxidative metabolism of all fuels.

Top