Significance of and prospects for fuel recycle in Japan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Otsuka, K.; Ikeda, K.
Japan's nuclear power plant capacity ranks fourth in the world at around 20 GW. But nuclear fuel cycle industries (enrichment, reprocessing and radioactive waste management) are still in their infancy compared with the size and stage of the power plants. Thus it is a matter of urgency to establish a nuclear fuel cycle in Japan which can promote nuclear energy as a quasi-indigenous energy source. Some moves toward establishing a nuclear fuel cycle have been observed recently. As a case in point, in July 1984, the Federation of Electric Power Companies has formally requested Aomori Prefecture to locate nuclear fuelmore » cycle facilities in the Shimokita Peninsula region. Plutonium recovered from spent fuel will be utilized in LWR, ATR, and FBR. Research and development activities on these technologies are in progress.« less
ANALYZING SHORT CUT METHODS FOR LIFE CYCLE ASSESSMENT INVENTORIES
Work in progress at the U.S. EPA's National Risk Management Research Laboratory is developing methods for quickly, easily, and inexpensively developing Life Cycle Assessment (LCA) inventories. An LCA inventory represents the inputs and outputs from processes, including fuel and ...
Liquid fossil-fuel technology. Quarterly technical progress report, April-June 1982
DOE Office of Scientific and Technical Information (OSTI.GOV)
Linville, B.
This report primarily covers in-house oil, gas, and synfuel research and lists the contracted research. The report is broken into the following areas: liquid fossil fuel cycle, extraction, processing, utilization, and project integration and technology transfer. BETC publications are listed. (DLC)
The Yeast Cyclin-Dependent Kinase Routes Carbon Fluxes to Fuel Cell Cycle Progression.
Ewald, Jennifer C; Kuehne, Andreas; Zamboni, Nicola; Skotheim, Jan M
2016-05-19
Cell division entails a sequence of processes whose specific demands for biosynthetic precursors and energy place dynamic requirements on metabolism. However, little is known about how metabolic fluxes are coordinated with the cell division cycle. Here, we examine budding yeast to show that more than half of all measured metabolites change significantly through the cell division cycle. Cell cycle-dependent changes in central carbon metabolism are controlled by the cyclin-dependent kinase (Cdk1), a major cell cycle regulator, and the metabolic regulator protein kinase A. At the G1/S transition, Cdk1 phosphorylates and activates the enzyme Nth1, which funnels the storage carbohydrate trehalose into central carbon metabolism. Trehalose utilization fuels anabolic processes required to reliably complete cell division. Thus, the cell cycle entrains carbon metabolism to fuel biosynthesis. Because the oscillation of Cdk activity is a conserved feature of the eukaryotic cell cycle, we anticipate its frequent use in dynamically regulating metabolism for efficient proliferation. Copyright © 2016 Elsevier Inc. All rights reserved.
Progress Towards International Repositories
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCombie, C.; Chapman, N.
2002-02-27
The nuclear fuel cycle is designed to be very international, with some specialist activities (e.g. fuel fabrication, reprocessing, etc.) being confined to a few countries. Nevertheless, political and public opposition has in the past been faced by proposals to internationalise the back-end of the cycle, in particular waste disposal. Attitudes, however, have been changing recently and there is now more acceptance of the general concept of shared repositories and of specific proposals such as that of Pangea. However, as for national facilities, progress towards implementation of shared repositories will be gradual. Moreover, the best vehicle for promoting the concept maymore » not be a commercial type of organization. Consequently the Pangea project team are currently establishing a widely based Association for this purpose.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pavel Hejzlar, Peter Yarsky, Mike Driscoll, Dan Wachs, Kevan Weaver, Ken Czerwinski, Mike Pope, James Parry, Theron D. Marshall, Cliff B. Davis, Dustin Crawford, Thomas Hartmann, Pradip Saha; Hejzlar, Pavel; Yarsky, Peter
2005-01-31
This project is organized under four major tasks (each of which has two or more subtasks) with contributions among the three collaborating organizations (MIT, INEEL and ANL-West): Task A: Core Physics and Fuel Cycle; Task B: Core Thermal Hydraulics; Task C: Plant Design; Task D: Fuel Design The lead PI, Michael J. Driscoll, has consolidated and summarized the technical progress submissions provided by the contributing investigators from all sites, under the above principal task headings.
A Learning Progression for Energy in Socio-Ecological Systems
ERIC Educational Resources Information Center
Jin, Hui; Anderson, Charles W.
2012-01-01
This article reports on our work of developing a learning progression focusing on K-12 students' performances of using energy concept in their accounts of carbon-transforming processes in socio-ecological systems. Carbon-transforming processes--the ecological carbon cycle and the combustion of biomass and fossil fuels--provide all of the energy…
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1979-10-01
The primary objective of this program is to develop and demonstrate an improved PWR fuel assembly design capable of batch average burnups of 45,000-50,000 MWd/mtU. To accomplish this, a number of technical areas must be investigated to verify acceptable extended-burnup fuel performance. This report is the first semi-annual progress report for the program, and it describes work performed during the July-December 1978 time period. Efforts during this period included the definition of a preliminary design for a high-burnup fuel rod, physics analyses of extended-burnup fuel cycles, studies of the physics characteristics of changes in fuel assembly metal-to-water ratios, and developmentmore » of a design concept for post-irradiation examination equipment to be utilized in examining high-burnup lead-test assemblies.« less
Importance of helium-3 for the future
NASA Technical Reports Server (NTRS)
Kulcinski, Gerald L.
1989-01-01
Relevant plasma physics principles of thermonuclear research; the state of plasma physics as it pertains to the D-He(3) cycle; the technological benefits of the D-He(3) fuel cycle; the availability of He(3); and its location, methods of extraction and cost are discussed. A perspective on the rate of progress toward the goal of heating the confined plasma fuel to sufficiently high temperatures at high enough densities and for long enough times to cause substantial fusion of the atoms to take place is given in graphical form. The main technological advantages resulting from the D-He(3) fuel cycle, when compared with the DT cycle, are as follows: (1) increased electrical conversion efficiency; (2) reduced radiation damage to reactors; (3) reduced radioactive waste; (4) an increased level of safety in case of an accident; (5) the lower cost of electricity; and (6) the shorter time to commercialization. An account is given of mining He(3) on the Moon.
Nuclear Safety. Technical progress journal, April--June 1996: Volume 37, No. 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muhlheim, M D
1996-01-01
This journal covers significant issues in the field of nuclear safety. Its primary scope is safety in the design, construction, operation, and decommissioning of nuclear power reactors worldwide and the research and analysis activities that promote this goal, but it also encompasses the safety aspects of the entire nuclear fuel cycle, including fuel fabrication, spent-fuel processing and handling, nuclear waste disposal, the handling of fissionable materials and radioisotopes, and the environmental effects of all these activities.
Nuclear Safety. Technical progress journal, January--March 1994: Volume 35, No. 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silver, E G
1994-01-01
This is a journal that covers significant issues in the field of nuclear safety. Its primary scope is safety in the design, construction, operation, and decommissioning of nuclear power reactors worldwide and the research and analysis activities that promote this goal, but it also encompasses the safety aspects of the entire nuclear fuel cycle, including fuel fabrication, spent-fuel processing and handling, and nuclear waste disposal, the handling of fissionable materials and radioisotopes, and the environmental effects of all these activities.
The emerging role and targetability of the TCA cycle in cancer metabolism.
Anderson, Nicole M; Mucka, Patrick; Kern, Joseph G; Feng, Hui
2018-02-01
The tricarboxylic acid (TCA) cycle is a central route for oxidative phosphorylation in cells, and fulfills their bioenergetic, biosynthetic, and redox balance requirements. Despite early dogma that cancer cells bypass the TCA cycle and primarily utilize aerobic glycolysis, emerging evidence demonstrates that certain cancer cells, especially those with deregulated oncogene and tumor suppressor expression, rely heavily on the TCA cycle for energy production and macromolecule synthesis. As the field progresses, the importance of aberrant TCA cycle function in tumorigenesis and the potentials of applying small molecule inhibitors to perturb the enhanced cycle function for cancer treatment start to evolve. In this review, we summarize current knowledge about the fuels feeding the cycle, effects of oncogenes and tumor suppressors on fuel and cycle usage, common genetic alterations and deregulation of cycle enzymes, and potential therapeutic opportunities for targeting the TCA cycle in cancer cells. With the application of advanced technology and in vivo model organism studies, it is our hope that studies of this previously overlooked biochemical hub will provide fresh insights into cancer metabolism and tumorigenesis, subsequently revealing vulnerabilities for therapeutic interventions in various cancer types.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fraas, A.P.
1971-08-01
The facts of fuel supply limitations, environmental quality demands, and spiraling electric generating costs strongly favor development of electric power plants that simultaneously run at higher efficiency, i.e., higher temperature, use to advantage clean fuels, and have as low a capital cost as possible. Both fuel supply and thermal pollution considerations that are becoming progressively more important strongly favor the development of a higher temperature, and more efficient, thermodynamic cycle for electric power plants. About 200,000 hr of operation of boiling potassium systems, including over 15,000 hr of potassium vapor turbine operation under the space power plant program, suggest thatmore » a potassium vapor topping cycle with a turbine inlet temperature of approximately 1500/sup 0/F merits consideration. A design study has been carried out to indicate the size, cost, and development problems of the new types of equipment required. The results indicate that a potassium vapor cycle superimposed on a conventional 1050/sup 0/F steam cycle would give an overall thermal efficiency of about 54% as compared to only 40% from a conventional steam cycle. Thus the proposed system would have a fuel consumption only 75% and a heat rejection rate only 50% that of a conventional plant. The system requires clean fuel, and takes advantage of the present trend toward eliminating SO/sub 2/, NO/sub x/ and ash emissions. Surprisingly, at first sight, the assessment at this stage shows that the capital cost may be less than that of a conventional plant. The main reason for this is use of pressurized combustion, which leads to a much smaller combustor, and thin tube walls to contain potassium at about the same pressure.« less
High-level waste program progress report, April 1, 1980-June 30, 1980
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1980-08-01
The highlights of this report are on: waste management analysis for nuclear fuel cycles; fixation of waste in concrete; study of ceramic and cermet waste forms; alternative high-level waste forms development; and high-level waste container development.
Metals and Ceramics Division annual progress report, October 1, 1978-June 30, 1979
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peterson, S.
Research is reported concerning: (1) engineering materials including materials compatibility, mechanical properties, nondestructive testing, pressure vessel technology, and welding and brazing; (2) fuels and processes consisting of ceramic technology, fuel cycle technology, fuels evaluation, fuels fabrication and metals processing; and (3) materials science which includes, ceramic studies, physical metallurgy and properties, radiation effects and microstructural analysis, metastable and superconducting materials, structure and properties of surfaces, theoretical research, and x-ray research and applications. Highlights of the work of the metallographic group and the current status of the High-Temperature Materials Laboratory (HTML) and the Materials and Structures Technology Management Center (MSTMC) aremore » presented. (FS)« less
Developing the User Experience for a Next Generation Nuclear Fuel Cycle Simulator (NGFCS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, Paul H.; Schneider, Erich; Pascucci, Valerio
This project made substantial progress on its original aim for providing a modern user experience for nuclear fuel cycle analysis while also creating a robust and functional next- generation fuel cycle simulator. The Cyclus kernel experienced a dramatic clari cation of its interfaces and data model, becoming a full- edged agent-based framework, with strong support for third party developers of novel archetypes. The most important contribution of this project to the the development of Cyclus was the introduction of tools to facilitate archetype development. These include automated code generation of routine archetype components, metadata annotations to provide re ection andmore » rich description of each data member's purpose, and mechanisms for input validation and output of complex data. A comprehensive social science investigation of decision makers' interests in nuclear fuel cycles, and speci cally their interests in nuclear fuel cycle simulators (NFCSs) as tools for understanding nuclear fuel cycle options, was conducted. This included document review and analysis, stakeholder interviews, and a survey of decision makers. This information was used to study the role of visualization formats and features in communicating information about nuclear fuel cycles. A exible and user-friendly tool was developed for building Cyclus analysis models, featuring a drag-and-drop interface and automatic input form generation for novel archetypes. Cycic allows users to design fuel cycles from arbitrary collections of facilities for the rst time, with mechanisms that contribute to consistency within that fuel cycle. Interacting with some of the metadata capabilities introduced in the above-mentioned tools to support archetype development, Cycic also automates the generation of user input forms for novel archetypes with little to no special knowledge required by the archetype developers. Translation of the fundamental metrics of Cyclus into more interesting quantities is accomplished in the Cymetric python package. This package is speci cally designed to support the introduction of new metrics by building upon existing metrics. This concept allows for multiple dependencies and encourages building complex metrics out of incremental transformations to those prior metrics. New archetype developers can contribute their own archetype-speci c metric using the same capability. A simple demonstration of this capability focused on generating time-dependent cash ows for reactor deployment that could then be analyzed in di erent ways. Cyclist, a dedicated application for exploration of Cyclus results, was developed. It's primary capabilities at this stage are best-suited to experienced fuel cycle analysts, but it provides a basic platform for simpler visualizations for other audiences. An important part of its interface is the ability to uidly examine di erent slices of what is fundamentally a ve-dimensional sparse data set. A drag-and-drop interface simpli es the process of selecting which data is displayed in the plot as well as which dimensions are being used for« less
NASA Technical Reports Server (NTRS)
Swette, Larry L.; Laconti, Anthony B.; Mccatty, Stephen A.
1993-01-01
This paper will update the progress in developing electrocatalyst systems and electrode structures primarily for the positive electrode of single-unit solid polymer proton exchange membrane (PEM) regenerative fuel cells. The work was done with DuPont Nafion 117 in complete fuel cells (40 sq cm electrodes). The cells were operated alternately in fuel cell mode and electrolysis mode at 80 C. In fuel cell mode, humidified hydrogen and oxygen were supplied at 207 kPa (30 psi); in electrolysis mode, water was pumped over the positive electrode and the gases were evolved at ambient pressure. Cycling data will be presented for Pt-Ir catalysts and limited bifunctional data will be presented for Pt, Ir, Ru, Rh, and Na(x)Pt3O4 catalysts as well as for electrode structure variations.
Life cycle assessment of molten carbonate fuel cells: State of the art and strategies for the future
NASA Astrophysics Data System (ADS)
Mehmeti, Andi; Santoni, Francesca; Della Pietra, Massimiliano; McPhail, Stephen J.
2016-03-01
This study aims to review and provide an up to date international life cycle thinking literature with particular emphasis on life cycle assessment (LCA), applied to Molten Carbonate Fuel Cells (MCFCs), a technology forcefully entering the field of decentralized heat and power generation. Critical environmental issues, comparison of results between studies and improvement strategies are analyzed and highlighted. The findings stress that MCFC environmental performance is heavily influenced by the current use of non-renewable energy and high material demand of rare minerals which generate high environmental burdens in the manufacturing stage, thereby confirming the prominent role of these processes in a comprehensive LCA study. The comparison of operational phases highlights that MCFCs are robust and able to compete with other mature technologies contributing substantially to airborne emissions reduction and promoting a switch to renewable fuels, however, further progress and market competitiveness urges adoption of an eco-efficiency philosophy to forge the link between environmental and economic concerns. Adopting a well-organized systematic research driven by life cycle models and eco-efficiency principles stakeholders will glean valuable information to make well balanced decisions for improving performance towards the concept 'producing more quality with less resources' and accelerate market penetration of the technology.
The Pre-exponential Factor in Electrochemistry.
He, Zheng-Da; Chen, Yan-Xia; Santos, Elizabeth; Schmickler, Wolfgang
2018-07-02
Like many branches of science, not to mention culture in general, electrochemistry has a number of recurring topics: Areas of research that are popular for a certain time, then fade away as their possibilities seem to have been exhausted, only to return decades later as progress in experimental or theoretical techniques offer new possibilities for their investigation. A prime example are fuel cells, which have undergone five such cycles, but here we discuss a general concept of kinetics-the pre-exponential factor of a rate constant-which has undergone two such cycles. The first cycle was in the 1950-1980s, when the methods of electrochemical kinetics were developed, and the interpretation was based on transition-state theory. The second was triggered by the re-discovery of Kramers theory for reactions in condensed phases. This Minireview will show that the time has come for a third cycle based on recent progress in electrocatalysis. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Indirect-fired gas turbine dual fuel cell power cycle
Micheli, Paul L.; Williams, Mark C.; Sudhoff, Frederick A.
1996-01-01
A fuel cell and gas turbine combined cycle system which includes dual fuel cell cycles combined with a gas turbine cycle wherein a solid oxide fuel cell cycle operated at a pressure of between 6 to 15 atms tops the turbine cycle and is used to produce CO.sub.2 for a molten carbonate fuel cell cycle which bottoms the turbine and is operated at essentially atmospheric pressure. A high pressure combustor is used to combust the excess fuel from the topping fuel cell cycle to further heat the pressurized gas driving the turbine. A low pressure combustor is used to combust the excess fuel from the bottoming fuel cell to reheat the gas stream passing out of the turbine which is used to preheat the pressurized air stream entering the topping fuel cell before passing into the bottoming fuel cell cathode. The CO.sub.2 generated in the solid oxide fuel cell cycle cascades through the system to the molten carbonate fuel cell cycle cathode.
CY2013 Annual Report for DOE-ITU INERI 2010-006-E
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kennedy, J. Rory; Rondinella, Vincenzo V.
2014-12-01
New concepts for nuclear energy development are considered in both the USA and Europe within the framework of the Generation-IV International Forum (GIF) as well as in various US-DOE programs (e.g. the Fuel Cycle Research and Development - FCRD) and as part of the European Sustainable Nuclear Energy Technology Platform (SNE-TP). Since most new fuel cycle concepts envisage the adoption of a closed nuclear fuel cycle employing fast reactors, the fuel behavior characteristics of the various proposed advanced fuel forms must be effectively investigated using state of the art experimental techniques before implementation. More rapid progress can be achieved ifmore » effective synergy with advanced (multi-scale) modeling efforts can be achieved. The fuel systems to be considered include minor actinide (MA) transmutation fuel types such as advanced MOX, advanced metal alloy, inert matrix fuel (IMF), and other ceramic fuels like nitrides, carbides, etc., for fast neutronic spectrum conditions. Most of the advanced fuel compounds have already been the object of past examination programs, which included irradiations in research reactors. The knowledge derived from previous experience constitutes a significant, albeit incomplete body of data. New or upgraded experimental tools are available today that can extend the scientific and technological knowledge towards achieving the objectives associated with the new generation of nuclear reactors and fuels. The objectives of this project will be three-fold: (1) to extend the available knowledge on properties and irradiation behavior of high burnup and minor actinide bearing advanced fuel systems; (2) to establish a synergy with multi-scale and code development efforts in which experimental data and expertise on the irradiation behavior of nuclear fuels is properly conveyed for the upgrade/development of advanced modeling tools; (3) to promote the effective use of international resources to the characterization of irradiated fuel through exchange of expertise and information among leading experimental facilities. The priorities in this project will be set according to the down selection procedure of U.S. and European development programs.« less
40 CFR 86.1513 - Fuel specifications.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test Procedures...
Safeguards Considerations for Thorium Fuel Cycles
Worrall, Louise G.; Worrall, Andrew; Flanagan, George F.; ...
2016-04-21
We report that by around 2025, thorium-based fuel cycles are likely to be deployed internationally. States such as China and India are pursuing research, development, and deployment pathways toward a number of commercial-scale thorium fuel cycles, and they are already building test reactors and the associated fuel cycle infrastructure. In the future, the potential exists for these emerging programs to sell, export, and deploy thorium fuel cycle technology in other states. Without technically adequate international safeguards protocols and measures in place, any future potential clandestine misuse of these fuel cycles could go undetected, compromising the deterrent value of these protocolsmore » and measures. The development of safeguards approaches for thorium-based fuel cycles is therefore a matter of some urgency. Yet, the focus of the international safeguards community remains mainly on safeguarding conventional 235U- and 239Pu-based fuel cycles while the safeguards challenges of thorium-uranium fuel cycles remain largely uninvestigated. This raises the following question: Is the International Atomic Energy Agency and international safeguards system ready for thorium fuel cycles? Furthermore, is the safeguards technology of today sufficiently mature to meet the verification challenges posed by thorium-based fuel cycles? In defining these and other related research questions, the objectives of this paper are to identify key safeguards considerations for thorium-based fuel cycles and to call for an early dialogue between the international safeguards and the nuclear fuel cycle communities to prepare for the potential safeguards challenges associated with these fuel cycles. In this paper, it is concluded that directed research and development programs are required to meet the identified safeguards challenges and to take timely action in preparation for the international deployment of thorium fuel cycles.« less
40 CFR 86.1514 - Analytical gases.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test Procedures...
40 CFR 86.1519 - CVS calibration.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test Procedures...
40 CFR 86.1542 - Information required.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test Procedures...
40 CFR 86.1501 - Scope; applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test Procedures...
Nuclear Fuel Cycle Options Catalog: FY16 Improvements and Additions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Price, Laura L.; Barela, Amanda Crystal; Schetnan, Richard Reed
2016-08-31
The United States Department of Energy, Office of Nuclear Energy, Fuel Cycle Technology Program sponsors nuclear fuel cycle research and development. As part of its Fuel Cycle Options campaign, the DOE has established the Nuclear Fuel Cycle Options Catalog. The catalog is intended for use by the Fuel Cycle Technologies Program in planning its research and development activities and disseminating information regarding nuclear energy to interested parties. The purpose of this report is to document the improvements and additions that have been made to the Nuclear Fuel Cycle Options Catalog in the 2016 fiscal year.
40 CFR 86.1509 - Exhaust gas sampling system.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test Procedures...
SEPARATIONS AND WASTE FORMS CAMPAIGN IMPLEMENTATION PLAN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vienna, John D.; Todd, Terry A.; Peterson, Mary E.
2012-11-26
This Separations and Waste Forms Campaign Implementation Plan provides summary level detail describing how the Campaign will achieve the objectives set-forth by the Fuel Cycle Reasearch and Development (FCRD) Program. This implementation plan will be maintained as a living document and will be updated as needed in response to changes or progress in separations and waste forms research and the FCRD Program priorities.
40 CFR 86.1516 - Calibration; frequency and overview.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test...
40 CFR 86.1509 - Exhaust gas sampling system.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test...
40 CFR 86.1544 - Calculation; idle exhaust emissions.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) Emission Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle...
40 CFR 86.1544 - Calculation; idle exhaust emissions.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) Emission Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle...
40 CFR 86.1509 - Exhaust gas sampling system.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test...
40 CFR 86.1516 - Calibration; frequency and overview.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) Emission Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle...
40 CFR 86.1516 - Calibration; frequency and overview.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) Emission Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle...
40 CFR 86.1516 - Calibration; frequency and overview.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) Emission Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle...
40 CFR 86.1544 - Calculation; idle exhaust emissions.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) Emission Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle...
40 CFR 86.1544 - Calculation; idle exhaust emissions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test...
40 CFR 86.1522 - Carbon monoxide analyzer calibration.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) Emission Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle...
40 CFR 86.1516 - Calibration; frequency and overview.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) Emission Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle...
40 CFR 86.1524 - Carbon dioxide analyzer calibration.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) Emission Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle...
40 CFR 86.1506 - Equipment required and specifications; overview.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) Emission Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle...
40 CFR 86.1540 - Idle exhaust sample analysis.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test...
40 CFR 86.1530 - Test sequence; general requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) Emission Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle...
40 CFR 86.1544 - Calculation; idle exhaust emissions.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) Emission Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle...
40 CFR 86.1526 - Calibration of other equipment.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test...
40 CFR 86.1527 - Idle test procedure; overview.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test...
40 CFR 86.1511 - Exhaust gas analysis system.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test...
40 CFR 86.1509 - Exhaust gas sampling system.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test...
40 CFR 86.1505 - Introduction; structure of subpart.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test...
Comparison of Engine Cycle Codes for Rocket-Based Combined Cycle Engines
NASA Technical Reports Server (NTRS)
Waltrup, Paul J.; Auslender, Aaron H.; Bradford, John E.; Carreiro, Louis R.; Gettinger, Christopher; Komar, D. R.; McDonald, J.; Snyder, Christopher A.
2002-01-01
This paper summarizes the results from a one day workshop on Rocket-Based Combined Cycle (RBCC) Engine Cycle Codes held in Monterey CA in November of 2000 at the 2000 JANNAF JPM with the authors as primary participants. The objectives of the workshop were to discuss and compare the merits of existing Rocket-Based Combined Cycle (RBCC) engine cycle codes being used by government and industry to predict RBCC engine performance and interpret experimental results. These merits included physical and chemical modeling, accuracy and user friendliness. The ultimate purpose of the workshop was to identify the best codes for analyzing RBCC engines and to document any potential shortcomings, not to demonstrate the merits or deficiencies of any particular engine design. Five cases representative of the operating regimes of typical RBCC engines were used as the basis of these comparisons. These included Mach 0 sea level static and Mach 1.0 and Mach 2.5 Air-Augmented-Rocket (AAR), Mach 4 subsonic combustion ramjet or dual-mode scramjet, and Mach 8 scramjet operating modes. Specification of a generic RBCC engine geometry and concomitant component operating efficiencies, bypass ratios, fuel/oxidizer/air equivalence ratios and flight dynamic pressures were provided. The engine included an air inlet, isolator duct, axial rocket motor/injector, axial wall fuel injectors, diverging combustor, and exit nozzle. Gaseous hydrogen was used as the fuel with the rocket portion of the system using a gaseous H2/O2 propellant system to avoid cryogenic issues. The results of the workshop, even after post-workshop adjudication of differences, were surprising. They showed that the codes predicted essentially the same performance at the Mach 0 and I conditions, but progressively diverged from a common value (for example, for fuel specific impulse, Isp) as the flight Mach number increased, with the largest differences at Mach 8. The example cases and results are compared and discussed in this paper.
Brown, Nicholas R.; Carlsen, Brett W.; Dixon, Brent W.; ...
2016-06-09
Dynamic fuel cycle simulation tools are intended to model holistic transient nuclear fuel cycle scenarios. As with all simulation tools, fuel cycle simulators require verification through unit tests, benchmark cases, and integral tests. Model validation is a vital aspect as well. Although compara-tive studies have been performed, there is no comprehensive unit test and benchmark library for fuel cycle simulator tools. The objective of this paper is to identify the must test functionalities of a fuel cycle simulator tool within the context of specific problems of interest to the Fuel Cycle Options Campaign within the U.S. Department of Energy smore » Office of Nuclear Energy. The approach in this paper identifies the features needed to cover the range of promising fuel cycle options identified in the DOE-NE Fuel Cycle Evaluation and Screening (E&S) and categorizes these features to facilitate prioritization. Features were categorized as essential functions, integrating features, and exemplary capabilities. One objective of this paper is to propose a library of unit tests applicable to each of the essential functions. Another underlying motivation for this paper is to encourage an international dialog on the functionalities and standard test methods for fuel cycle simulator tools.« less
Assessment for advanced fuel cycle options in CANDU
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morreale, A.C.; Luxat, J.C.; Friedlander, Y.
2013-07-01
The possible options for advanced fuel cycles in CANDU reactors including actinide burning options and thorium cycles were explored and are feasible options to increase the efficiency of uranium utilization and help close the fuel cycle. The actinide burning TRUMOX approach uses a mixed oxide fuel of reprocessed transuranic actinides from PWR spent fuel blended with natural uranium in the CANDU-900 reactor. This system reduced actinide content by 35% and decreased natural uranium consumption by 24% over a PWR once through cycle. The thorium cycles evaluated used two CANDU-900 units, a generator and a burner unit along with a drivermore » fuel feedstock. The driver fuels included plutonium reprocessed from PWR, from CANDU and low enriched uranium (LEU). All three cycles were effective options and reduced natural uranium consumption over a PWR once through cycle. The LEU driven system saw the largest reduction with a 94% savings while the plutonium driven cycles achieved 75% savings for PWR and 87% for CANDU. The high neutron economy, online fuelling and flexible compact fuel make the CANDU system an ideal reactor platform for many advanced fuel cycles.« less
International nuclear fuel cycle fact book. Revision 6
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harmon, K.M.; Lakey, L.T.; Leigh, I.W.
1986-01-01
The International Fuel Cycle Fact Book has been compiled in an effort to provide (1) an overview of worldwide nuclear power and fuel cycle programs and (2) current data concerning fuel cycle and waste management facilities, R and D programs and key personnel. Additional information on each country's program is available in the International Source Book: Nuclear Fuel Cycle Research and Development, PNL-2478, Rev. 2.
Lead Slowing-Down Spectrometry Time Spectral Analysis for Spent Fuel Assay: FY11 Status Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kulisek, Jonathan A.; Anderson, Kevin K.; Bowyer, Sonya M.
2011-09-30
Developing a method for the accurate, direct, and independent assay of the fissile isotopes in bulk materials (such as used fuel) from next-generation domestic nuclear fuel cycles is a goal of the Office of Nuclear Energy, Fuel Cycle R&D, Material Protection and Control Technology (MPACT) Campaign. To meet this goal, MPACT supports a multi-institutional collaboration, of which PNNL is a part, to study the feasibility of Lead Slowing Down Spectroscopy (LSDS). This technique is an active nondestructive assay method that has the potential to provide independent, direct measurement of Pu and U isotopic masses in used fuel with an uncertaintymore » considerably lower than the approximately 10% typical of today's confirmatory assay methods. This document is a progress report for FY2011 PNNL analysis and algorithm development. Progress made by PNNL in FY2011 continues to indicate the promise of LSDS analysis and algorithms applied to used fuel. PNNL developed an empirical model based on calibration of the LSDS to responses generated from well-characterized used fuel. The empirical model, which accounts for self-shielding effects using empirical basis vectors calculated from the singular value decomposition (SVD) of a matrix containing the true self-shielding functions of the used fuel assembly models. The potential for the direct and independent assay of the sum of the masses of 239Pu and 241Pu to within approximately 3% over a wide used fuel parameter space was demonstrated. Also, in FY2011, PNNL continued to develop an analytical model. Such efforts included the addition of six more non-fissile absorbers in the analytical shielding function and the non-uniformity of the neutron flux across the LSDS assay chamber. A hybrid analytical-empirical approach was developed to determine the mass of total Pu (sum of the masses of 239Pu, 240Pu, and 241Pu), which is an important quantity in safeguards. Results using this hybrid method were of approximately the same accuracy as the pure empirical approach. In addition, total Pu with much better accuracy with the hybrid approach than the pure analytical approach. In FY2012, PNNL will continue efforts to optimize its empirical model and minimize its reliance on calibration data. In addition, PNNL will continue to develop an analytical model, considering effects such as neutron-scattering in the fuel and cladding, as well as neutrons streaming through gaps between fuel pins in the fuel assembly.« less
VISION User Guide - VISION (Verifiable Fuel Cycle Simulation) Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacob J. Jacobson; Robert F. Jeffers; Gretchen E. Matthern
2009-08-01
The purpose of this document is to provide a guide for using the current version of the Verifiable Fuel Cycle Simulation (VISION) model. This is a complex model with many parameters; the user is strongly encouraged to read this user guide before attempting to run the model. This model is an R&D work in progress and may contain errors and omissions. It is based upon numerous assumptions. This model is intended to assist in evaluating “what if” scenarios and in comparing fuel, reactor, and fuel processing alternatives at a systems level for U.S. nuclear power. The model is not intendedmore » as a tool for process flow and design modeling of specific facilities nor for tracking individual units of fuel or other material through the system. The model is intended to examine the interactions among the components of a fuel system as a function of time varying system parameters; this model represents a dynamic rather than steady-state approximation of the nuclear fuel system. VISION models the nuclear cycle at the system level, not individual facilities, e.g., “reactor types” not individual reactors and “separation types” not individual separation plants. Natural uranium can be enriched, which produces enriched uranium, which goes into fuel fabrication, and depleted uranium (DU), which goes into storage. Fuel is transformed (transmuted) in reactors and then goes into a storage buffer. Used fuel can be pulled from storage into either separation of disposal. If sent to separations, fuel is transformed (partitioned) into fuel products, recovered uranium, and various categories of waste. Recycled material is stored until used by its assigned reactor type. Note that recovered uranium is itself often partitioned: some RU flows with recycled transuranic elements, some flows with wastes, and the rest is designated RU. RU comes out of storage if needed to correct the U/TRU ratio in new recycled fuel. Neither RU nor DU are designated as wastes. VISION is comprised of several Microsoft Excel input files, a Powersim Studio core, and several Microsoft Excel output files. All must be co-located in the same folder on a PC to function. We use Microsoft Excel 2003 and have not tested VISION with Microsoft Excel 2007. The VISION team uses both Powersim Studio 2005 and 2009 and it should work with either.« less
Fuel cycle cost reduction through Westinghouse fuel design and core management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frank, F.J.; Scherpereel, L.R.
1985-11-01
This paper describes advances in Westinghouse nuclear fuel and their impact on fuel cycle cost. Recent fabrication development has been aimed at maintaining high integrity, increased operating flexibility, longer operating cycles, and improved core margins. Development efforts at Westinghouse toward meeting these directions have culminated in VANTAGE 5 fuel. The current trend toward longer operating cycles provides a further driving force to minimize the resulting inherent increase in fuel cycle costs by further increases in region discharge burnup. Westinghouse studies indicate the capability of currently offered products to meet cycle lengths up to 24 months.
Variants of closing the nuclear fuel cycle
NASA Astrophysics Data System (ADS)
Andrianova, E. A.; Davidenko, V. D.; Tsibulskiy, V. F.; Tsibulskiy, S. V.
2015-12-01
Influence of the nuclear energy structure, the conditions of fuel burnup, and accumulation of new fissile isotopes from the raw isotopes on the main parameters of a closed fuel cycle is considered. The effects of the breeding ratio, the cooling time of the spent fuel in the external fuel cycle, and the separation of the breeding area and the fissile isotope burning area on the parameters of the fuel cycle are analyzed.
Lead Slowing-Down Spectrometry for Spent Fuel Assay: FY11 Status Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warren, Glen A.; Casella, Andrew M.; Haight, R. C.
2011-08-01
Executive Summary Developing a method for the accurate, direct, and independent assay of the fissile isotopes in bulk materials (such as used fuel) from next-generation domestic nuclear fuel cycles is a goal of the Office of Nuclear Energy, Fuel Cycle R&D, Material Protection and Control Technology (MPACT) Campaign. To meet this goal, MPACT supports a multi-institutional collaboration to study the feasibility of Lead Slowing Down Spectroscopy (LSDS). This technique is an active nondestructive assay method that has the potential to provide independent, direct measurement of Pu and U isotopic masses in used fuel with an uncertainty considerably lower than themore » approximately 10% typical of today’s confirmatory assay methods. This document is a progress report for FY2011 collaboration activities. Progress made by the collaboration in FY2011 continues to indicate the promise of LSDS techniques applied to used fuel. PNNL developed an empirical model based on calibration of the LSDS to responses generated from well-characterized used fuel. The empirical model demonstrated the potential for the direct and independent assay of the sum of the masses of 239Pu and 241Pu to within approximately 3% over a wide used fuel parameter space. Similar results were obtained using a perturbation approach developed by LANL. Benchmark measurements have been successfully conducted at LANL and at RPI using their respective LSDS instruments. The ISU and UNLV collaborative effort is focused on the fabrication and testing of prototype fission chambers lined with ultra-depleted 238U and 232Th, and uranium deposition on a stainless steel disc using spiked U3O8 from room temperature ionic liquid was successful, with improving thickness obtained. In FY2012, the collaboration plans a broad array of activities. PNNL will focus on optimizing its empirical model and minimizing its reliance on calibration data, as well continuing efforts on developing an analytical model. Additional measurements are planned at LANL and RPI. LANL measurements will include a Pu sample, which is expected to provide more counts at longer slowing-down times to help identify discrepancies between experimental data and MCNPX simulations. RPI measurements will include the assay of an entire fresh fuel assembly for the study of self-shielding effects as well as the ability to detect diversion by detecting a missing fuel pin in the fuel assembly. The development of threshold neutron sensors will continue, and UNLV will calibrate existing ultra-depleted uranium deposits at ISU.« less
OECD/NEA Ongoing activities related to the nuclear fuel cycle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cornet, S.M.; McCarthy, K.; Chauvin, N.
2013-07-01
As part of its role in encouraging international collaboration, the OECD Nuclear Energy Agency is coordinating a series of projects related to the Nuclear Fuel Cycle. The Nuclear Science Committee (NSC) Working Party on Scientific Issues of the Nuclear Fuel Cycle (WPFC) comprises five different expert groups covering all aspects of the fuel cycle from front to back-end. Activities related to fuels, materials, physics, separation chemistry, and fuel cycles scenarios are being undertaken. By publishing state-of-the-art reports and organizing workshops, the groups are able to disseminate recent research advancements to the international community. Current activities mainly focus on advanced nuclearmore » systems, and experts are working on analyzing results and establishing challenges associated to the adoption of new materials and fuels. By comparing different codes, the Expert Group on Advanced Fuel Cycle Scenarios is aiming at gaining further understanding of the scientific issues and specific national needs associated with the implementation of advanced fuel cycles. At the back end of the fuel cycle, separation technologies (aqueous and pyrochemical processing) are being assessed. Current and future activities comprise studies on minor actinides separation and post Fukushima studies. Regular workshops are also organized to discuss recent developments on Partitioning and Transmutation. In addition, the Nuclear Development Committee (NDC) focuses on the analysis of the economics of nuclear power across the fuel cycle in the context of changes of electricity markets, social acceptance and technological advances and assesses the availability of the nuclear fuel and infrastructure required for the deployment of existing and future nuclear power. The Expert Group on the Economics of the Back End of the Nuclear Fuel Cycle (EBENFC), in particular, is looking at assessing economic and financial issues related to the long term management of spent nuclear fuel. (authors)« less
Argillite And Crystalline Disposal Research: Accomplishments And Path-Forward.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McMahon, Kevin A.; Jove-Colon, Carlos F.; Wang, Yifeng
The intention of this document is to provide a path-forward for research and development (R&D) for two host rock media-specific (argillite and crystalline) disposal research work packages within the Used Fuel Disposition Campaign (UFDC). The two work packages, Argillite Disposal R&D and Crystalline Disposal R&D, support the achievement of the overarching mission and objectives of the Department of Energy Office of Nuclear Energy Fuel Cycle Technologies Program. These two work packages cover many of the fundamental technical issues that will have multiple implications to other disposal research work packages by bridging knowledge gaps to support the development of the safetymore » case. The path-forward begins with the assumption of target dates that are set out in the January 2013 DOE Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste (http://energy.gov/downloads/strategy-management-and-disposal-used-nuclear-fuel-and-high-levelradioactive- waste). The path-forward will be maintained as a living document and will be updated as needed in response to available funding and the progress of multiple R&D tasks in the Used Fuel Disposition Campaign and the Fuel Cycle Technologies Program. This path forward is developed based on the report of “Used Fuel Disposition Campaign Disposal Research and Development Roadmap (FCR&D-USED- 2011-000065 REV0)” (DOE, 2011). This document delineates the goals and objectives of the UFDC R&D program, needs for generic disposal concept design, and summarizes the prioritization of R&D issues.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Nicholas R.; Carlsen, Brett W.; Dixon, Brent W.
Dynamic fuel cycle simulation tools are intended to model holistic transient nuclear fuel cycle scenarios. As with all simulation tools, fuel cycle simulators require verification through unit tests, benchmark cases, and integral tests. Model validation is a vital aspect as well. Although compara-tive studies have been performed, there is no comprehensive unit test and benchmark library for fuel cycle simulator tools. The objective of this paper is to identify the must test functionalities of a fuel cycle simulator tool within the context of specific problems of interest to the Fuel Cycle Options Campaign within the U.S. Department of Energy smore » Office of Nuclear Energy. The approach in this paper identifies the features needed to cover the range of promising fuel cycle options identified in the DOE-NE Fuel Cycle Evaluation and Screening (E&S) and categorizes these features to facilitate prioritization. Features were categorized as essential functions, integrating features, and exemplary capabilities. One objective of this paper is to propose a library of unit tests applicable to each of the essential functions. Another underlying motivation for this paper is to encourage an international dialog on the functionalities and standard test methods for fuel cycle simulator tools.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-08-01
A concept for an advanced coal-fired combined-cycle power generating system is currently being developed. The first phase of this three-phase program consists of conducting the necessary research and development to define the system, evaluating the economic and technical feasibility of the concept, and preparing an R&D plan to develop the concept further. The system proposed to meet these goals is a combined-cycle system where air for a gas turbine is indirectly heated to approximately 1800{degree}F in furnaces fired with coal-derived fuels and then directly heated in a natural-gas-fired combustor to about 2400{degree}F. The system is based on a pyrolyzing processmore » that converts the coal into a low-Btu fuel gas and char. The fuel gas is relatively clean, and it is fired to heat tube surfaces that are susceptible to corrosion and problems from ash deposition. In particular, the high-temperature air heater tubes, which will need to be a ceramic material, will be located in a separate furnace or region of a furnace that is exposed to combustion products from the low-Btu fuel gas only.« less
40 CFR 86.1501 - Scope; applicability.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural...
40 CFR 86.1519 - CVS calibration.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural...
40 CFR 86.1514 - Analytical gases.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural...
Code of Federal Regulations, 2011 CFR
2011-07-01
.... (i) Calculate the 5-cycle city and highway fuel economy values from the tests performed using gasoline or diesel test fuel. (ii)(A) Calculate the 5-cycle city and highway fuel economy values from the tests performed using alcohol or natural gas test fuel, if 5-cycle testing has been performed. Otherwise...
40 CFR 86.1401 - Scope; applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for New Gasoline-Fueled Otto-Cycle Light-Duty Vehicles and New Gasoline-Fueled Otto-Cycle Light-Duty... procedures for gasoline-fueled Otto-cycle light-duty vehicles, and for gasoline-fueled Otto-cycle light-duty...
77 FR 19278 - Informational Meeting on Nuclear Fuel Cycle Options
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-30
... DEPARTMENT OF ENERGY Informational Meeting on Nuclear Fuel Cycle Options AGENCY: Office of Fuel Cycle Technologies, Office of Nuclear Energy, Department of Energy. ACTION: Notice of meeting. SUMMARY: The Office of Fuel Cycle Technologies will be hosting a one- day informational meeting at the Argonne...
78 FR 45983 - Acceptability of Corrective Action Programs for Fuel Cycle Facilities
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-30
... Programs for Fuel Cycle Facilities AGENCY: Nuclear Regulatory Commission. ACTION: Draft NUREG; withdrawal... withdrawing draft NUREG-2154, ``Acceptability of Corrective Action Programs for Fuel Cycle Facilities,'' based... determine whether a submittal for a Corrective Action Program (CAP), voluntarily submitted by fuel cycle...
77 FR 823 - Guidance for Fuel Cycle Facility Change Processes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-06
... NUCLEAR REGULATORY COMMISSION [NRC-2009-0262] Guidance for Fuel Cycle Facility Change Processes... Fuel Cycle Facility Change Processes.'' This regulatory guide describes the types of changes for which fuel cycle facility licensees should seek prior approval from the NRC and discusses how licensees can...
NASA Astrophysics Data System (ADS)
Ault, Timothy M.
The environment, health, and safety properties of thorium-uranium-based (''thorium'') fuel cycles are estimated and compared to those of analogous uranium-plutonium-based (''uranium'') fuel cycle options. A structured assessment methodology for assessing and comparing fuel cycle is refined and applied to several reference fuel cycle options. Resource recovery as a measure of environmental sustainability for thorium is explored in depth in terms of resource availability, chemical processing requirements, and radiological impacts. A review of available experience and recent practices indicates that near-term thorium recovery will occur as a by-product of mining for other commodities, particularly titanium. The characterization of actively-mined global titanium, uranium, rare earth element, and iron deposits reveals that by-product thorium recovery would be sufficient to satisfy even the most intensive nuclear demand for thorium at least six times over. Chemical flowsheet analysis indicates that the consumption of strong acids and bases associated with thorium resource recovery is 3-4 times larger than for uranium recovery, with the comparison of other chemical types being less distinct. Radiologically, thorium recovery imparts about one order of magnitude larger of a collective occupational dose than uranium recovery. Moving to the entire fuel cycle, four fuel cycle options are compared: a limited-recycle (''modified-open'') uranium fuel cycle, a modified-open thorium fuel cycle, a full-recycle (''closed'') uranium fuel cycle, and a closed thorium fuel cycle. A combination of existing data and calculations using SCALE are used to develop material balances for the four fuel cycle options. The fuel cycle options are compared on the bases of resource sustainability, waste management (both low- and high-level waste, including used nuclear fuel), and occupational radiological impacts. At steady-state, occupational doses somewhat favor the closed thorium option while low-level waste volumes slightly favor the closed uranium option, although uncertainties are significant in both cases. The high-level waste properties (radioactivity, decay heat, and ingestion radiotoxicity) all significantly favor the closed fuel cycle options (especially the closed thorium option), but an alternative measure of key fission product inventories that drive risk in a repository slightly favors the uranium fuel cycles due to lower production of iodine-129. Resource requirements are much lower for the closed fuel cycle options and are relatively similar between thorium and uranium. In additional to the steady-state results, a variety of potential transition pathways are considered for both uranium and thorium fuel cycle end-states. For dose, low-level waste, and fission products contributing to repository risk, the differences among transition impacts largely reflected the steady-state differences. However, the HLW properties arrived at a distinctly opposite result in transition (strongly favoring uranium, whereas thorium was strongly favored at steady-state), because used present-day fuel is disposed without being recycled given that uranium-233, rather than plutonium, is the primarily fissile nuclide at the closed thorium fuel cycle's steady-state. Resource consumption was the only metric was strongly influenced by the specific transition pathway selected, favoring those pathways that more quickly arrived at steady-state through higher breeding ratio assumptions regardless of whether thorium or uranium was used.
40 CFR 86.1527 - Idle test procedure; overview.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled...
40 CFR 86.1505 - Introduction; structure of subpart.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled...
40 CFR 86.1540 - Idle exhaust sample analysis.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled...
40 CFR 86.1526 - Calibration of other equipment.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled...
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
2013-07-01
The Global conference is a forum for the discussion of the scientific, technical, social and regulatory aspects of the nuclear fuel cycle. Relevant topics include global utilization of nuclear energy, current fuel cycle technologies, advanced reactors, advanced fuel cycles, nuclear nonproliferation and public acceptance.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-02
... Uranium Enrichment Fuel Cycle Facility's Inspection Reports Regarding Louisiana Energy Services, National..., Uranium Enrichment Branch, Division of Fuel Cycle Safety and Safeguards, Office of Nuclear Material Safety... Commission. Brian W. Smith, Chief, Uranium Enrichment Branch, Division of Fuel Cycle Safety and Safeguards...
75 FR 45678 - Notice of Availability of Interim Staff Guidance Document for Fuel Cycle Facilities
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-03
... Document for Fuel Cycle Facilities AGENCY: Nuclear Regulatory Commission. ACTION: Notice of availability..., Division of Fuel Cycle Safety and Safeguards, Office of Nuclear Material Safety and Safeguards, U.S... Commission (NRC) prepares and issues Interim Staff Guidance (ISG) documents for fuel cycle facilities. These...
76 FR 44049 - Guidance for Fuel Cycle Facility Change Processes
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-22
... NUCLEAR REGULATORY COMMISSION [NRC-2009-0262] Guidance for Fuel Cycle Facility Change Processes...-issued Draft Regulatory Guide, DG- 3037, ``Guidance for Fuel Cycle Facility Change Processes'' in the...-3037 from August 12, 2011 to September 16, 2011. DG-3037 describes the types of changes for fuel cycle...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-29
... Uranium Enrichment Fuel Cycle Facility Inspection Reports Regarding Louisiana Energy Services, National... Enrichment Branch, Division of Fuel Cycle Safety and Safeguards, Office of Nuclear Material Safety and... Enrichment Branch, Division of Fuel Cycle Safety and Safeguards, Office of Nuclear Material Safety and...
Fuel inspection and reconstitution experience at Surry Power Station
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brookmire, T.A.
Surry Power Station, located on the James River near Williamsburg, Virginia, has two Westinghouse pressurized water reactors. Unit 2 consistently sets a high standard of fuel performance (no indication of fuel failures in recent cycles), while unit 1, since cycle 6, has been plagued with numerous fuel failures. Both Surry units operate with Westinghouse standard 15 x 15 fuel. Virginia Power management set goals to reduce the coolant activity, thus reducing person-rem exposure and the associated costs of high coolant activity. To achieve this goal, extensive fuel examination campaigns were undertaken that included high-magnification video inspectionsa, debris cleaning, wet andmore » vacuum fuel sipping, fuel rod ultrasonic testing, and eddy current examination. In the summer of 1985, during cycle 8 operation, Kraftwerk Union reconstituted (repaired) the damage, once-burned assemblies from cycles 6 and 7 by replacing failed fuel rods with solid Zircaloy-4 rods. Currently, cycle 9 has operated for 5 months without any indication of fuel failure (the cycle 9 core has two reconstituted assemblies).« less
40 CFR 86.1537 - Idle test run.
Code of Federal Regulations, 2014 CFR
2014-07-01
... EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and...
Performance evaluation of two-stage fuel cycle from SFR to PWR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fei, T.; Hoffman, E.A.; Kim, T.K.
2013-07-01
One potential fuel cycle option being considered is a two-stage fuel cycle system involving the continuous recycle of transuranics in a fast reactor and the use of bred plutonium in a thermal reactor. The first stage is a Sodium-cooled Fast Reactor (SFR) fuel cycle with metallic U-TRU-Zr fuel. The SFRs need to have a breeding ratio greater than 1.0 in order to produce fissile material for use in the second stage. The second stage is a PWR fuel cycle with uranium and plutonium mixed oxide fuel based on the design and performance of the current state-of-the-art commercial PWRs with anmore » average discharge burnup of 50 MWd/kgHM. This paper evaluates the possibility of this fuel cycle option and discusses its fuel cycle performance characteristics. The study focuses on an equilibrium stage of the fuel cycle. Results indicate that, in order to avoid a positive coolant void reactivity feedback in the stage-2 PWR, the reactor requires high quality of plutonium from the first stage and minor actinides in the discharge fuel of the PWR needs to be separated and sent back to the stage-1 SFR. The electricity-sharing ratio between the 2 stages is 87.0% (SFR) to 13.0% (PWR) for a TRU inventory ratio (the mass of TRU in the discharge fuel divided by the mass of TRU in the fresh fuel) of 1.06. A sensitivity study indicated that by increasing the TRU inventory ratio to 1.13, The electricity generation fraction of stage-2 PWR is increased to 28.9%. The two-stage fuel cycle system considered in this study was found to provide a high uranium utilization (>80%). (authors)« less
Sensitivity Analysis and Optimization of the Nuclear Fuel Cycle: A Systematic Approach
NASA Astrophysics Data System (ADS)
Passerini, Stefano
For decades, nuclear energy development was based on the expectation that recycling of the fissionable materials in the used fuel from today's light water reactors into advanced (fast) reactors would be implemented as soon as technically feasible in order to extend the nuclear fuel resources. More recently, arguments have been made for deployment of fast reactors in order to reduce the amount of higher actinides, hence the longevity of radioactivity, in the materials destined to a geologic repository. The cost of the fast reactors, together with concerns about the proliferation of the technology of extraction of plutonium from used LWR fuel as well as the large investments in construction of reprocessing facilities have been the basis for arguments to defer the introduction of recycling technologies in many countries including the US. In this thesis, the impacts of alternative reactor technologies on the fuel cycle are assessed. Additionally, metrics to characterize the fuel cycles and systematic approaches to using them to optimize the fuel cycle are presented. The fuel cycle options of the 2010 MIT fuel cycle study are re-examined in light of the expected slower rate of growth in nuclear energy today, using the CAFCA (Code for Advanced Fuel Cycle Analysis). The Once Through Cycle (OTC) is considered as the base-line case, while advanced technologies with fuel recycling characterize the alternative fuel cycle options available in the future. The options include limited recycling in L WRs and full recycling in fast reactors and in high conversion LWRs. Fast reactor technologies studied include both oxide and metal fueled reactors. Additional fuel cycle scenarios presented for the first time in this work assume the deployment of innovative recycling reactor technologies such as the Reduced Moderation Boiling Water Reactors and Uranium-235 initiated Fast Reactors. A sensitivity study focused on system and technology parameters of interest has been conducted to test the robustness of the conclusions presented in the MIT Fuel Cycle Study. These conclusions are found to still hold, even when considering alternative technologies and different sets of simulation assumptions. Additionally, a first of a kind optimization scheme for the nuclear fuel cycle analysis is proposed and the applications of such an optimization are discussed. Optimization metrics of interest for different stakeholders in the fuel cycle (economics, fuel resource utilization, high level waste, transuranics/proliferation management, and environmental impact) are utilized for two different optimization techniques: a linear one and a stochastic one. Stakeholder elicitation provided sets of relative weights for the identified metrics appropriate to each stakeholder group, which were then successfully used to arrive at optimum fuel cycle configurations for recycling technologies. The stochastic optimization tool, based on a genetic algorithm, was used to identify non-inferior solutions according to Pareto's dominance approach to optimization. The main tradeoff for fuel cycle optimization was found to be between economics and most of the other identified metrics. (Copies available exclusively from MIT Libraries, libraries.mit.edu/docs - docs mit.edu)
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-18
... DEPARTMENT OF ENERGY Blue Ribbon Commission on America's Nuclear Future, Reactor and Fuel Cycle... meeting. SUMMARY: This notice announces an open meeting of the Reactor and Fuel Cycle Technology (RFCT... back end of the nuclear fuel cycle. The Commission will provide advice and make recommendations on...
77 FR 73060 - Standard Review Plan for Review of Fuel Cycle Facility License Applications
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-07
... NUCLEAR REGULATORY COMMISSION [NRC-2012-0220] Standard Review Plan for Review of Fuel Cycle... 1, ``Standard Review Plan (SRP) for the Review of a License Application for a Fuel Cycle Facility... for a fuel cycle facility (NUREG-1520) provides NRC staff guidance for reviewing and evaluating the...
77 FR 75676 - Standard Review Plan for Review of Fuel Cycle Facility License Applications
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-21
... NUCLEAR REGULATORY COMMISSION [NRC-2012-0220] Standard Review Plan for Review of Fuel Cycle... Review of a License Application for a Fuel Cycle Facility.'' The NRC is extending the public comment... of Fuel Cycle Safety and Safeguards, Office of Nuclear Material Safety and Safeguards. [FR Doc. 2012...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gehin, Jess C; Oakley, Brian; Worrall, Andrew
2015-01-01
Abstract One of the key objectives of the U.S. Department of Energy (DOE) Nuclear Energy R&D Roadmap is the development of sustainable nuclear fuel cycles that can improve natural resource utilization and provide solutions to the management of nuclear wastes. Recently, an evaluation and screening (E&S) of fuel cycle systems has been conducted to identify those options that provide the best opportunities for obtaining such improvements and also to identify the required research and development activities that can support the development of advanced fuel cycle options. In order to evaluate and screen the E&S study included nine criteria including Developmentmore » and Deployment Risk (D&DR). More specifically, this criterion was represented by the following metrics: Development time, development cost, deployment cost from prototypic validation to first-of-a-kind commercial, compatibility with the existing infrastructure, existence of regulations for the fuel cycle and familiarity with licensing, and existence of market incentives and/or barriers to commercial implementation of fuel cycle processes. Given the comprehensive nature of the study, a systematic approach was needed to determine metric data for the D&DR criterion, and is presented here. As would be expected, the Evaluation Group representing the once-through use of uranium in thermal reactors is always the highest ranked fuel cycle Evaluation Group for this D&DR criterion. Evaluation Groups that consist of once-through fuel cycles that use existing reactor types are consistently ranked very high. The highest ranked limited and continuous recycle fuel cycle Evaluation Groups are those that recycle Pu in thermal reactors. The lowest ranked fuel cycles are predominately continuous recycle single stage and multi-stage fuel cycles that involve TRU and/or U-233 recycle.« less
Benefits of barrier fuel on fuel cycle economics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crowther, R.L.; Kunz, C.L.
1988-01-01
Barrier fuel rod cladding was developed to eliminate fuel rod failures from pellet/cladding stress/corrosion interaction and to eliminate the associated need to restrict the rate at which fuel rod power can be increased. The performance of barrier cladding has been demonstrated through extensive testing and through production application to many boiling water reactors (BWRs). Power reactor data have shown that barrier fuel rod cladding has a significant beneficial effect on plant capacity factor and plant operating costs and significantly increases fuel reliability. Independent of the fuel reliability benefit, it is less obvious that barrier fuel has a beneficial effect ofmore » fuel cycle costs, since barrier cladding is more costly to fabricate. Evaluations, measurements, and development activities, however, have shown that the fuel cycle cost benefits of barrier fuel are large. This paper is a summary of development activities that have shown that application of barrier fuel significantly reduces BWR fuel cycle costs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Braase, Lori
Develop advanced nuclear fuel cycle separation and waste management technologies that improve current fuel cycle performance and enable a sustainable fuel cycle, with minimal processing, waste generation, and potential for material diversion.
40 CFR 86.335-79 - Gasoline-fueled engine test cycle.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Gasoline-fueled engine test cycle. 86... Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.335-79 Gasoline-fueled engine test cycle. (a) The following test sequence shall be followed in...
40 CFR 86.335-79 - Gasoline-fueled engine test cycle.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 19 2013-07-01 2013-07-01 false Gasoline-fueled engine test cycle. 86... Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.335-79 Gasoline-fueled engine test cycle. (a) The following test sequence shall be followed in...
40 CFR 86.335-79 - Gasoline-fueled engine test cycle.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 19 2012-07-01 2012-07-01 false Gasoline-fueled engine test cycle. 86... Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.335-79 Gasoline-fueled engine test cycle. (a) The following test sequence shall be followed in...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chichester, Heather Jean MacLean; Hayes, Steven Lowe; Dempsey, Douglas
This report summarizes the objectives of the current irradiation testing activities being undertaken by the Advanced Fuels Campaign relative to supporting the development and demonstration of innovative design features for metallic fuels in order to realize reliable performance to ultra-high burnups. The AFC-3 and AFC-4 test series are nearing completion; the experiments in this test series that have been completed or are in progress are reviewed and the objectives and test matrices for the final experiments in these two series are defined. The objectives, testing strategy, and test parameters associated with a future AFC test series, AFC-5, are documented. Finally,more » the future intersections and/or synergies of the AFC irradiation testing program with those of the TREAT transient testing program, emerging needs of proposed Versatile Test Reactor concepts, and the Joint Fuel Cycle Study program’s Integrated Recycle Test are discussed.« less
The challenges and opportunities of supersonic transport propulsion technology
NASA Technical Reports Server (NTRS)
Strack, William C.; Morris, Shelby J., Jr.
1988-01-01
The major challenges confronting the propulsion community for civil supersonic transport applications are identified: high propulsion system efficiency at both supersonic and subsonic cruise conditions, low-cost fuel with adequate thermal stability at high temperatures, low noise cycles and exhaust systems, low emission combustion systems, and low drag installations. Both past progress and future opportunities are discussed in relation to perceived technology shortfalls for an economically successful airplane that satisfies environmental constraints.
Analysis of fuel cycle strategies and U.S. transition scenarios
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wigeland, Roald; Taiwo, Temitope A.
2016-10-17
The nuclear fuel cycle Evaluation and Screening (E&S) study that was completed in October 2014 [1] enabled the identification of four fuel cycle groups that are considered most promising based on a set of nine evaluation criteria: (a) six benefit criteria of Nuclear Waste Management, Proliferation Risk, Nuclear Material Security Risk, Safety, Environmental Impact, Resource Utilization, and (b) three challenge criteria of Development and Deployment Risk, Institutional Issues, Financial Risk and Economics. The E&S study was conducted at a level of analysis that is "technology- neutral," that is, without consideration of specific technologies, but using the fundamental physics characteristics ofmore » each part of the fuel cycle. The study focused on the fuel cycle performance benefits at the fuel cycle equilibrium state, with only limited consideration of transition and deployment impacts. Common characteristics of the four most promising fuel cycle options include continuous recycle of all U/Pu or U/TRU, the use of fast-spectrum reactors, and no use of uranium enrichment once fuel cycle equilibrium has been established. The high-level wastes are mainly from processing of irradiated fuel, and there would be no disposal of any spent fuel. Building on the findings of the E&S study, additional studies have been conducted in the last two years following the information exchange meeting, the 13th IEMPT, which was held in Seoul, the Republic of Korea in 2014. Insights are presented from the recent studies on the benefits and challenges of recycling minor actinides, and transition considerations to some of the most promising fuel cycle options.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Price, Laura L.; Barela, Amanda Crystal; Walkow, Walter M.
An Evaluation and Screening team supporting the Fuel Cycle Technologies Program Office of the United States Department of Energy, Office of Nuclear Energy is conducting an evaluation and screening of a comprehensive set of fuel cycle options. These options have been assigned to one of 40 evaluation groups, each of which has a representative fuel cycle option [Todosow 2013]. A Fuel Cycle Data Package System Datasheet has been prepared for each representative fuel cycle option to ensure that the technical information used in the evaluation is high-quality and traceable [Kim, et al., 2013]. The information contained in the Fuel Cyclemore » Data Packages has been entered into the Nuclear Fuel Cycle Options Catalog at Sandia National Laboratories so that it is accessible by the evaluation and screening team and other interested parties. In addition, an independent team at Savannah River National Laboratory has verified that the information has been entered into the catalog correctly. This report documents that the 40 representative fuel cycle options have been entered into the Catalog, and that the data entered into the catalog for the 40 representative options has been entered correctly.« less
40 CFR 86.1503 - Abbreviations.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled...
On feasibility of a closed nuclear power fuel cycle with minimum radioactivity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrianova, E. A.; Davidenko, V. D.; Tsibulskiy, V. F., E-mail: Tsibulskiy-VF@nrcki.ru
2015-12-15
Practical implementation of a closed nuclear fuel cycle implies solution of two main tasks. The first task is creation of environmentally acceptable operating conditions of the nuclear fuel cycle considering, first of all, high radioactivity of the involved materials. The second task is creation of effective and economically appropriate conditions of involving fertile isotopes in the fuel cycle. Creation of technologies for management of the high-level radioactivity of spent fuel reliable in terms of radiological protection seems to be the hardest problem.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watelet, R.P.; Ruggles, A.E.; Hagen, K.G.
1976-05-01
The development status of a heart assist system driven by a nuclear fueled, electronically controlled vapor cycle engine termed the tidal regenerator engine (TRE) is described. The TRE pressurization is controlled by a torque motor coupled to a displacer. The electrical power for the sensor, electronic logic and actuator is provided by thermoelectric modules interposed between the engine superheater and boiler. The TRE is direct coupled to an assist blood pump which also acts as a blood-cooled heat exchanger, pressure-volume transformer and sensor for the electronic logic. Engine cycle efficiency in excess of 14% has been demonstrated routinely. Overall systemmore » efficiency on 33 watts of over 9% has been demonstrated. A binary version of this engine in the annular configuration is now being tested. The preliminary tests demonstrated 10% cycle efficiency on the first buildup which ran well and started easily.« less
40 CFR 86.1530 - Test sequence; general requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) Emission Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and... Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle...
Economic Analysis of Complex Nuclear Fuel Cycles with NE-COST
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ganda, Francesco; Dixon, Brent; Hoffman, Edward
The purpose of this work is to present a new methodology, and associated computational tools, developed within the U.S. Department of Energy (U.S. DOE) Fuel Cycle Option Campaign to quantify the economic performance of complex nuclear fuel cycles. The levelized electricity cost at the busbar is generally chosen to quantify and compare the economic performance of different baseload generating technologies, including of nuclear: it is the cost of electricity which renders the risk-adjusted discounted net present value of the investment cash flow equal to zero. The work presented here is focused on the calculation of the levelized cost of electricitymore » of fuel cycles at mass balance equilibrium, which is termed LCAE (Levelized Cost of Electricity at Equilibrium). To alleviate the computational issues associated with the calculation of the LCAE for complex fuel cycles, a novel approach has been developed, which has been called the “island approach” because of its logical structure: a generic complex fuel cycle is subdivided into subsets of fuel cycle facilities, called islands, each containing one and only one type of reactor or blanket and an arbitrary number of fuel cycle facilities. A nuclear economic software tool, NE-COST, written in the commercial programming software MATLAB®, has been developed to calculate the LCAE of complex fuel cycles with the “island” computational approach. NE-COST has also been developed with the capability to handle uncertainty: the input parameters (both unit costs and fuel cycle characteristics) can have uncertainty distributions associated with them, and the output can be computed in terms of probability density functions of the LCAE. In this paper NE-COST will be used to quantify, as examples, the economic performance of (1) current Light Water Reactors (LWR) once-through systems; (2) continuous plutonium recycling in Fast Reactors (FR) with driver and blanket; (3) Recycling of plutonium bred in FR into LWR. For each fuel cycle, the contributions to the total LCAE of the main cost components will be identified.« less
Code of Federal Regulations, 2012 CFR
2012-07-01
... economy values from the tests performed using gasoline or diesel test fuel. (ii)(A) Calculate the 5-cycle city and highway fuel economy values from the tests performed using alcohol or natural gas test fuel...-specific 5-cycle-based fuel economy values for vehicle configurations. 600.207-08 Section 600.207-08...
Code of Federal Regulations, 2013 CFR
2013-07-01
... economy values from the tests performed using gasoline or diesel test fuel. (ii)(A) Calculate the 5-cycle city and highway fuel economy values from the tests performed using alcohol or natural gas test fuel...-specific 5-cycle-based fuel economy values for vehicle configurations. 600.207-08 Section 600.207-08...
40 CFR 86.1503 - Abbreviations.
Code of Federal Regulations, 2010 CFR
2010-07-01
... EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for Otto-Cycle...-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test Procedures § 86.1503...
Code of Federal Regulations, 2010 CFR
2010-07-01
... EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for Otto-Cycle...-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test Procedures § 86.1502...
Taebi, Behnam; Kadak, Andrew C
2010-09-01
Alternative fuel cycles are being considered in an effort to prolong uranium fuel supplies for thousands of years to come and to manage nuclear waste. These strategies bring with them different benefits and burdens for the present generation and for future generations. In this article, we present a method that provides insight into future fuel cycle alternatives and into the conflicts arising between generations within the framework of intergenerational equity. A set of intersubjective values is drawn from the notion of sustainable development. By operationalizing these values and mapping out their impacts, value criteria are introduced for the assessment of fuel cycles, which are based on the distribution of burdens and benefits between generations. The once-through fuel cycle currently deployed in the United States and three future fuel cycles are subsequently assessed according to these criteria. The four alternatives are then compared in an integrated analysis in which we shed light on the implicit tradeoffs made by decisionmakers when they choose a certain fuel cycle. When choosing a fuel cycle, what are the societal costs and burdens accepted for each generation and how can these factors be justified? This article presents an integrated decision-making method, which considers intergenerational aspects of such decisions; this method could also be applied to other technologies. © 2010 Society for Risk Analysis.
Research needs for finely resolved fossil carbon emissions
Gurney, K.; Ansley, W.; Mendoza, D.; Petron, G.; Frost, G.; Gregg, J.; Fischer, M.; Pataki, Diane E.; Ackerman, K.; Houweling, S.; Corbin, K.; Andres, R.; Blasing, T.J.
2007-01-01
Scientific research on the global carbon cycle has emerged as a high priority in biogeochemistry, climate studies, and global change policy. The emission of carbon dioxide (CO2) from fossil fuel combustion is a dominant driver of the current net carbon fluxes between the land, the oceans, and the atmosphere, and it is a key contributor to the rise in modern radiative forcing. Contrary to a commonly held perception, our quantitative knowledge about these emissions is insufficient to satisfy current scientific and policy needs. A more highly spatially and temporally resolved quantification of the social and economic drivers of fossil fuel combustion, and the resulting CO2 emissions, is essential to supporting scientific and policy progress. In this article, a new community of emissions researchers called the CO2 Fossil Fuel Emission Effort (CO2FFEE) outlines a research agenda to meet the need for improved fossil fuel CO2 emissions information and solicits comment from the scientific community and research agencies.
Advanced Fusion Reactors for Space Propulsion and Power Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chapman, John J.
In recent years the methodology proposed for conversion of light elements into energy via fusion has made steady progress. Scientific studies and engineering efforts in advanced fusion systems designs have introduced some new concepts with unique aspects including consideration of Aneutronic fuels. The plant parameters for harnessing aneutronic fusion appear more exigent than those required for the conventional fusion fuel cycle. However aneutronic fusion propulsion plants for Space deployment will ultimately offer the possibility of enhanced performance from nuclear gain as compared to existing ionic engines as well as providing a clean solution to Planetary Protection considerations and requirements. Protonmore » triggered 11Boron fuel (p- 11B) will produce abundant ion kinetic energy for In-Space vectored thrust. Thus energetic alpha particles' exhaust momentum can be used directly to produce high Isp thrust and also offer possibility of power conversion into electricity. p-11B is an advanced fusion plant fuel with well understood reaction kinematics but will require some new conceptual thinking as to the most effective implementation.« less
Advanced Fusion Reactors for Space Propulsion and Power Systems
NASA Technical Reports Server (NTRS)
Chapman, John J.
2011-01-01
In recent years the methodology proposed for conversion of light elements into energy via fusion has made steady progress. Scientific studies and engineering efforts in advanced fusion systems designs have introduced some new concepts with unique aspects including consideration of Aneutronic fuels. The plant parameters for harnessing aneutronic fusion appear more exigent than those required for the conventional fusion fuel cycle. However aneutronic fusion propulsion plants for Space deployment will ultimately offer the possibility of enhanced performance from nuclear gain as compared to existing ionic engines as well as providing a clean solution to Planetary Protection considerations and requirements. Proton triggered 11Boron fuel (p- 11B) will produce abundant ion kinetic energy for In-Space vectored thrust. Thus energetic alpha particles "exhaust" momentum can be used directly to produce high ISP thrust and also offer possibility of power conversion into electricity. p- 11B is an advanced fusion plant fuel with well understood reaction kinematics but will require some new conceptual thinking as to the most effective implementation.
40 CFR 86.1537 - Idle test run.
Code of Federal Regulations, 2013 CFR
2013-07-01
... EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for Otto-Cycle...-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test Procedures § 86.1537 Idle...
40 CFR 86.1537 - Idle test run.
Code of Federal Regulations, 2012 CFR
2012-07-01
... EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for Otto-Cycle...-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test Procedures § 86.1537 Idle...
78 FR 11903 - Acceptability of Corrective Action Programs for Fuel Cycle Facilities
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-20
... Cycle Facilities AGENCY: Nuclear Regulatory Commission. ACTION: Draft NUREG; request for public comment... ``Acceptability of Corrective Action Programs for Fuel Cycle Facilities.'' The draft NUREG provides guidance to... a fuel cycle facility is acceptable. DATES: Comments may be submitted by April 22, 2013. Comments...
40 CFR 86.1537 - Idle test run.
Code of Federal Regulations, 2010 CFR
2010-07-01
... EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for Otto-Cycle...-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test Procedures § 86.1537 Idle...
Operations research applications in nuclear energy
NASA Astrophysics Data System (ADS)
Johnson, Benjamin Lloyd
This dissertation consists of three papers; the first is published in Annals of Operations Research, the second is nearing submission to INFORMS Journal on Computing, and the third is the predecessor of a paper nearing submission to Progress in Nuclear Energy. We apply operations research techniques to nuclear waste disposal and nuclear safeguards. Although these fields are different, they allow us to showcase some benefits of using operations research techniques to enhance nuclear energy applications. The first paper, "Optimizing High-Level Nuclear Waste Disposal within a Deep Geologic Repository," presents a mixed-integer programming model that determines where to place high-level nuclear waste packages in a deep geologic repository to minimize heat load concentration. We develop a heuristic that increases the size of solvable model instances. The second paper, "Optimally Configuring a Measurement System to Detect Diversions from a Nuclear Fuel Cycle," introduces a simulation-optimization algorithm and an integer-programming model to find the best, or near-best, resource-limited nuclear fuel cycle measurement system with a high degree of confidence. Given location-dependent measurement method precisions, we (i) optimize the configuration of n methods at n locations of a hypothetical nuclear fuel cycle facility, (ii) find the most important location at which to improve method precision, and (iii) determine the effect of measurement frequency on near-optimal configurations and objective values. Our results correspond to existing outcomes but we obtain them at least an order of magnitude faster. The third paper, "Optimizing Nuclear Material Control and Accountability Measurement Systems," extends the integer program from the second paper to locate measurement methods in a larger, hypothetical nuclear fuel cycle scenario given fixed purchase and utilization budgets. This paper also presents two mixed-integer quadratic programming models to increase the precision of existing methods given a fixed improvement budget and to reduce the measurement uncertainty in the system while limiting improvement costs. We quickly obtain similar or better solutions compared to several intuitive analyses that take much longer to perform.
Fuel Cycle Performance of Thermal Spectrum Small Modular Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Worrall, Andrew; Todosow, Michael
2016-01-01
Small modular reactors may offer potential benefits, such as enhanced operational flexibility. However, it is vital to understand the holistic impact of small modular reactors on the nuclear fuel cycle and fuel cycle performance. The focus of this paper is on the fuel cycle impacts of light water small modular reactors in a once-through fuel cycle with low-enriched uranium fuel. A key objective of this paper is to describe preliminary reactor core physics and fuel cycle analyses conducted in support of the U.S. Department of Energy Office of Nuclear Energy Fuel Cycle Options Campaign. Challenges with small modular reactors include:more » increased neutron leakage, fewer assemblies in the core (and therefore fewer degrees of freedom in the core design), complex enrichment and burnable absorber loadings, full power operation with inserted control rods, the potential for frequent load-following operation, and shortened core height. Each of these will impact the achievable discharge burn-up in the reactor and the fuel cycle performance. This paper summarizes the results of an expert elicitation focused on developing a list of the factors relevant to small modular reactor fuel, core, and operation that will impact fuel cycle performance. Preliminary scoping analyses were performed using a regulatory-grade reactor core simulator. The hypothetical light water small modular reactor considered in these preliminary scoping studies is a cartridge type one-batch core with 4.9% enrichment. Some core parameters, such as the size of the reactor and general assembly layout, are similar to an example small modular reactor concept from industry. The high-level issues identified and preliminary scoping calculations in this paper are intended to inform on potential fuel cycle impacts of one-batch thermal spectrum SMRs. In particular, this paper highlights the impact of increased neutron leakage and reduced number of batches on the achievable burn-up of the reactor. Fuel cycle performance metrics for a small modular reactor are compared to a conventional three-batch light water reactor in the following areas: nuclear waste management, environmental impact, and resource utilization. Metrics performance for a small modular reactor are degraded for mass of spent nuclear fuel and high level waste disposed, mass of depleted uranium disposed, land use per energy generated, and carbon emission per energy generated« less
International nuclear fuel cycle fact book. Revision 4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harmon, K.M.; Lakey, L.T.; Leigh, I.W.
This Fact Book has been compiled in an effort to provide (1) an overview of worldwide nuclear power and fuel cycle programs and (2) current data concerning fuel cycle and waste management facilities, R and D programs, and key personnel in countries other than the United States. Additional information on each country's program is available in the International Source Book: Nuclear Fuel Cycle Research and Development, PNL-2478, Rev. 2. The Fact Book is organized as follows: (1) Overview section - summary tables which indicate national involvement in nuclear reactor, fuel cycle, and waste management development activities; (2) national summaries -more » a section for each country which summarizes nuclear policy, describes organizational relationships and provides addresses, names of key personnel, and facilities information; (3) international agencies - a section for each of the international agencies which has significant fuel cycle involvement; (4) energy supply and demand - summary tables, including nuclear power projections; (5) fuel cycle - summary tables; and (6) travel aids - international dialing instructions, international standard time chart, passport and visa requirements, and currency exchange rate.« less
International Nuclear Fuel Cycle Fact Book. Revision 5
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harmon, K.M.; Lakey, L.T.; Leigh, I.W.
This Fact Book has been compiled in an effort to provide: (1) an overview of worldwide nuclear power and fuel cycle programs; and (2) current data concerning fuel cycle and waste management facilities, R and D programs, and key personnel in countries other than the United States. Additional information on each country's program is available in the International Source Book: Nuclear Fuel Cycle Research and Development, PNL-2478, Rev. 2. The Fact Book is organized as follows: (1) Overview section - summary tables which indicate national involvement in nuclear reactor, fuel cycle, and waste management development activities; (2) national summaries -more » a section for each country which summarizes nuclear policy, describes organizational relationships and provides addresses, names of key personnel, and facilities information; (3) international agencies - a section for each of the international agencies which has significant fuel cycle involvement; (4) energy supply and demand - summary tables, including nuclear power projections; (5) fuel cycle - summary tables; and (6) travel aids international dialing instructions, international standard time chart, passport and visa requirements, and currency exchange rate.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lammert, M. P.; Burton, J.; Sindler, P.
2014-10-01
This research project compares laboratory-measured fuel economy of a medium-duty diesel powered hydraulic hybrid vehicle drivetrain to both a conventional diesel drivetrain and a conventional gasoline drivetrain in a typical commercial parcel delivery application. Vehicles in this study included a model year 2012 Freightliner P100H hybrid compared to a 2012 conventional gasoline P100 and a 2012 conventional diesel parcel delivery van of similar specifications. Drive cycle analysis of 484 days of hybrid parcel delivery van commercial operation from multiple vehicles was used to select three standard laboratory drive cycles as well as to create a custom representative cycle. These fourmore » cycles encompass and bracket the range of real world in-use data observed in Baltimore United Parcel Service operations. The NY Composite cycle, the City Suburban Heavy Vehicle Cycle cycle, and the California Air Resources Board Heavy Heavy-Duty Diesel Truck (HHDDT) cycle as well as a custom Baltimore parcel delivery cycle were tested at the National Renewable Energy Laboratory's Renewable Fuels and Lubricants Laboratory. Fuel consumption was measured and analyzed for all three vehicles. Vehicle laboratory results are compared on the basis of fuel economy. The hydraulic hybrid parcel delivery van demonstrated 19%-52% better fuel economy than the conventional diesel parcel delivery van and 30%-56% better fuel economy than the conventional gasoline parcel delivery van on cycles other than the highway-oriented HHDDT cycle.« less
Advanced Nuclear Fuel Cycle Transitions: Optimization, Modeling Choices, and Disruptions
NASA Astrophysics Data System (ADS)
Carlsen, Robert W.
Many nuclear fuel cycle simulators have evolved over time to help understan the nuclear industry/ecosystem at a macroscopic level. Cyclus is one of th first fuel cycle simulators to accommodate larger-scale analysis with it liberal open-source licensing and first-class Linux support. Cyclus also ha features that uniquely enable investigating the effects of modeling choices o fuel cycle simulators and scenarios. This work is divided into thre experiments focusing on optimization, effects of modeling choices, and fue cycle uncertainty. Effective optimization techniques are developed for automatically determinin desirable facility deployment schedules with Cyclus. A novel method fo mapping optimization variables to deployment schedules is developed. Thi allows relationships between reactor types and scenario constraints to b represented implicitly in the variable definitions enabling the usage o optimizers lacking constraint support. It also prevents wasting computationa resources evaluating infeasible deployment schedules. Deployed power capacit over time and deployment of non-reactor facilities are also included a optimization variables There are many fuel cycle simulators built with different combinations o modeling choices. Comparing results between them is often difficult. Cyclus flexibility allows comparing effects of many such modeling choices. Reacto refueling cycle synchronization and inter-facility competition among othe effects are compared in four cases each using combinations of fleet of individually modeled reactors with 1-month or 3-month time steps. There are noticeable differences in results for the different cases. The larges differences occur during periods of constrained reactor fuel availability This and similar work can help improve the quality of fuel cycle analysi generally There is significant uncertainty associated deploying new nuclear technologie such as time-frames for technology availability and the cost of buildin advanced reactors. Historically, fuel cycle analysis has focused on answerin questions of fuel cycle feasibility and optimality. However, there has no been much work done to address uncertainty in fuel cycle analysis helpin answer questions of fuel cycle robustness. This work develops an demonstrates a methodology for evaluating deployment strategies whil accounting for uncertainty. Techniques are developed for measuring th hedging properties of deployment strategies under uncertainty. Additionally methods for using optimization to automatically find good hedging strategie are demonstrated.
Fuel governor for controlled autoignition engines
Jade, Shyam; Hellstrom, Erik; Stefanopoulou, Anna; Jiang, Li
2016-06-28
Methods and systems for controlling combustion performance of an engine are provided. A desired fuel quantity for a first combustion cycle is determined. One or more engine actuator settings are identified that would be required during a subsequent combustion cycle to cause the engine to approach a target combustion phasing. If the identified actuator settings are within a defined acceptable operating range, the desired fuel quantity is injected during the first combustion cycle. If not, an attenuated fuel quantity is determined and the attenuated fuel quantity is injected during the first combustion cycle.
High-temperature Gas Reactor (HTGR)
NASA Astrophysics Data System (ADS)
Abedi, Sajad
2011-05-01
General Atomics (GA) has over 35 years experience in prismatic block High-temperature Gas Reactor (HTGR) technology design. During this period, the design has recently involved into a modular have been performed to demonstrate its versatility. This versatility is directly related to refractory TRISO coated - particle fuel that can contain any type of fuel. This paper summarized GA's fuel cycle studies individually and compares each based upon its cycle sustainability, proliferation-resistance capabilities, and other performance data against pressurized water reactor (PWR) fuel cycle data. Fuel cycle studies LEU-NV;commercial HEU-Th;commercial LEU-Th;weapons-grade plutonium consumption; and burning of LWR waste including plutonium and minor actinides in the MHR. results show that all commercial MHR options, with the exception of HEU-TH, are more sustainable than a PWR fuel cycle. With LEU-NV being the most sustainable commercial options. In addition, all commercial MHR options out perform the PWR with regards to its proliferation-resistance, with thorium fuel cycle having the best proliferation-resistance characteristics.
specified volumes of renewable fuels according to the categories below. EISA established life cycle GHG demonstrate a 20% reduction in life cycle GHG emissions. Advanced Biofuel: Any fuel derived from cellulosic or categories may be used to meet this category. Fuels in this category must demonstrate a life cycle GHG
40 CFR 86.1506 - Equipment required and specifications; overview.
Code of Federal Regulations, 2014 CFR
2014-07-01
... appear in §§ 86.1509 through 86.1511. (2) Fuel and analytical tests. Fuel requirements for idle exhaust... Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test... for performing idle exhaust emission tests on Otto-cycle heavy-duty engines and Otto-cycle light-duty...
Rios-Torres, Jackeline; Liu, Jun; Khattak, Asad
2018-06-14
Here, improving fuel economy and lowering emissions are key societal goals. Standard driving cycles, pre-designed by the US Environmental Protection Agency (EPA), have long been used to estimate vehicle fuel economy in laboratory-controlled conditions. They have also been used to test and tune different energy management strategies for hybrid electric vehicles (HEVs). This paper aims to estimate fuel consumption for a conventional vehicle and a HEV using personalized driving cycles extracted from real-world data to study the effects of different driving styles and vehicle types on fuel consumption when compared to the estimates based on standard driving cycles. To domore » this, we extracted driving cycles for conventional vehicles and HEVs from a large-scale U.S. survey that contains real-world GPS-based driving records. Next, the driving cycles were assigned to one of three categories: volatile, normal, or calm. Then, the driving cycles were used along with a driver-vehicle simulation that captures driver decisions (vehicle speed during a trip), powertrain, and vehicle dynamics to estimate fuel consumption for conventional vehicles and HEVs with power-split powertrain. To further optimize fuel consumption for HEVs, the Equivalent Consumption Minimization Strategy (ECMS) is applied. The results show that depending on the driving style and the driving scenario, conventional vehicle fuel consumption can vary widely compared with standard EPA driving cycles. Specifically, conventional vehicle fuel consumption was 13% lower in calm urban driving, but almost 34% higher for volatile highway driving compared with standard EPA driving cycles. Interestingly, when a driving cycle is predicted based on the application of case-based reasoning and used to tune the power distribution in a hybrid electric vehicle, its fuel consumption can be reduced by up to 12% in urban driving. Implications and limitations of the findings are discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rios-Torres, Jackeline; Liu, Jun; Khattak, Asad
Here, improving fuel economy and lowering emissions are key societal goals. Standard driving cycles, pre-designed by the US Environmental Protection Agency (EPA), have long been used to estimate vehicle fuel economy in laboratory-controlled conditions. They have also been used to test and tune different energy management strategies for hybrid electric vehicles (HEVs). This paper aims to estimate fuel consumption for a conventional vehicle and a HEV using personalized driving cycles extracted from real-world data to study the effects of different driving styles and vehicle types on fuel consumption when compared to the estimates based on standard driving cycles. To domore » this, we extracted driving cycles for conventional vehicles and HEVs from a large-scale U.S. survey that contains real-world GPS-based driving records. Next, the driving cycles were assigned to one of three categories: volatile, normal, or calm. Then, the driving cycles were used along with a driver-vehicle simulation that captures driver decisions (vehicle speed during a trip), powertrain, and vehicle dynamics to estimate fuel consumption for conventional vehicles and HEVs with power-split powertrain. To further optimize fuel consumption for HEVs, the Equivalent Consumption Minimization Strategy (ECMS) is applied. The results show that depending on the driving style and the driving scenario, conventional vehicle fuel consumption can vary widely compared with standard EPA driving cycles. Specifically, conventional vehicle fuel consumption was 13% lower in calm urban driving, but almost 34% higher for volatile highway driving compared with standard EPA driving cycles. Interestingly, when a driving cycle is predicted based on the application of case-based reasoning and used to tune the power distribution in a hybrid electric vehicle, its fuel consumption can be reduced by up to 12% in urban driving. Implications and limitations of the findings are discussed.« less
Argonne's Michael Wang talks about the GREET Model for reducing vehicle emi
Wang, Michael
2018-05-11
To fully evaluate energy and emission impacts of advanced vehicle technologies and new transportation fuels, the fuel cycle from wells to wheels and the vehicle cycle through material recovery and vehicle disposal need to be considered. Sponsored by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy (EERE), Argonne has developed a full life-cycle model called GREET (Greenhouse gases, Regulated Emissions, and Energy use in Transportation). It allows researchers and analysts to evaluate various vehicle and fuel combinations on a full fuel-cycle/vehicle-cycle basis. The first version of GREET was released in 1996. Since then, Argonne has continued to update and expand the model. The most recent GREET versions are the GREET 1 2012 version for fuel-cycle analysis and GREET 2.7 version for vehicle-cycle analysis.
Regulatory cross-cutting topics for fuel cycle facilities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denman, Matthew R.; Brown, Jason; Goldmann, Andrew Scott
This report overviews crosscutting regulatory topics for nuclear fuel cycle facilities for use in the Fuel Cycle Research & Development Nuclear Fuel Cycle Evaluation and Screening study. In particular, the regulatory infrastructure and analysis capability is assessed for the following topical areas: Fire Regulations (i.e., how applicable are current Nuclear Regulatory Commission (NRC) and/or International Atomic Energy Agency (IAEA) fire regulations to advance fuel cycle facilities) Consequence Assessment (i.e., how applicable are current radionuclide transportation tools to support risk-informed regulations and Level 2 and/or 3 PRA) While not addressed in detail, the following regulatory topic is also discussed: Integrated Security,more » Safeguard and Safety Requirement (i.e., how applicable are current Nuclear Regulatory Commission (NRC) regulations to future fuel cycle facilities which will likely be required to balance the sometimes conflicting Material Accountability, Security, and Safety requirements.)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adrian Miron; Joshua Valentine; John Christenson
2009-10-01
The current state of the art in nuclear fuel cycle (NFC) modeling is an eclectic mixture of codes with various levels of applicability, flexibility, and availability. In support of the advanced fuel cycle systems analyses, especially those by the Advanced Fuel Cycle Initiative (AFCI), Unviery of Cincinnati in collaboration with Idaho State University carried out a detailed review of the existing codes describing various aspects of the nuclear fuel cycle and identified the research and development needs required for a comprehensive model of the global nuclear energy infrastructure and the associated nuclear fuel cycles. Relevant information obtained on the NFCmore » codes was compiled into a relational database that allows easy access to various codes' properties. Additionally, the research analyzed the gaps in the NFC computer codes with respect to their potential integration into programs that perform comprehensive NFC analysis.« less
Atmospheric and Soil Carbon and Halophytes
NASA Technical Reports Server (NTRS)
Hendricks, Robert C.; Bushnell, Dennis M.
2010-01-01
World population is anticipated to grow 40% within 40-50 years with unprecedented demands for energy, food, freshwater, and clean environments. At 43% of the total landmass, exploiting the Earth s arid and semi-arid lands becomes a matter of necessity. Compared with glycophyte agriculture, we view seawater and brackish water halophyte saline agriculture in its nascent stage and see the need to explore and farm on a massive scale. Halophyte farming costs should be the same as glycophyte cellulosic biomass farming; processing for cellulosic matter should also be applicable. Halophyte life cycle analyses (LCA) within the fueling debate are incomplete, yet glycophyte LCA favors biomass fueling. The Biomass Revolution is in progress. The capacity, cost, and logistics required for biomass replacement of petroleum-based fuels, however, will require all feedstock sources and regional cooperative productivity, technical investments, and both the participation and cooperation of the American farmer and global farm community
Atmospheric and Soil Carbon and Halophytes
NASA Technical Reports Server (NTRS)
Hendricks, Robert C.; Bushnell, Dennis M.
2011-01-01
World population is anticipated to grow 40% within 40-50 years (2008 baseline) with unprecedented demands for energy, food, freshwater, and clean environments. At 43% of the total landmass, exploiting the Earth's arid and semi-arid lands becomes a matter of necessity. Compared with glycophyte agriculture, we view seawater and brackish water halophyte saline agriculture in its nascent stage and see the need to explore and farm on a massive scale. Halophyte farming costs should be the same as glycophyte cellulosic biomass farming; processing for cellulosic matter should also be applicable. Halophyte life cycle analyses (LCA) within the fueling debate are incomplete, yet glycophyte LCA favors biomass fueling. The Biomass Revolution is in progress. The capacity, cost, and logistics required for biomass replacement of petroleum-based fuels, however, will require all feedstock sources and regional cooperative productivity, technical investments, and both the participation and cooperation of the American farmer and global farm community.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yates, K.R.; Schreiber, A.M.; Rudolph, A.W.
The US Nuclear Regulatory Commission has initiated the Fuel Cycle Risk Assessment Program to provide risk assessment methods for assistance in the regulatory process for nuclear fuel cycle facilities other than reactors. Both the once-through cycle and plutonium recycle are being considered. A previous report generated by this program defines and describes fuel cycle facilities, or elements, considered in the program. This report, the second from the program, describes the survey and computer compilation of fuel cycle risk-related literature. Sources of available information on the design, safety, and risk associated with the defined set of fuel cycle elements were searchedmore » and documents obtained were catalogued and characterized with respect to fuel cycle elements and specific risk/safety information. Both US and foreign surveys were conducted. Battelle's computer-based BASIS information management system was used to facilitate the establishment of the literature compilation. A complete listing of the literature compilation and several useful indexes are included. Future updates of the literature compilation will be published periodically. 760 annotated citations are included.« less
40 CFR 86.335-79 - Gasoline-fueled engine test cycle.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Gasoline-fueled engine test cycle. 86....335-79 Gasoline-fueled engine test cycle. (a) The following test sequence shall be followed in.... Cycle No. Mode No. Mode Observed torque (percent of maximum observed) Time in mode-seconds Cumulative...
40 CFR 86.1309-90 - Exhaust gas sampling system; Otto-cycle and non-petroleum-fueled engines.
Code of Federal Regulations, 2010 CFR
2010-07-01
...-cycle and non-petroleum-fueled engines. 86.1309-90 Section 86.1309-90 Protection of Environment... HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for New Otto-Cycle and Diesel Heavy-Duty...-cycle and non-petroleum-fueled engines. (a)(1) General. The exhaust gas sampling system described in...
Indirect-fired gas turbine bottomed with fuel cell
Micheli, P.L.; Williams, M.C.; Parsons, E.L.
1995-09-12
An indirect-heated gas turbine cycle is bottomed with a fuel cell cycle with the heated air discharged from the gas turbine being directly utilized at the cathode of the fuel cell for the electricity-producing electrochemical reaction occurring within the fuel cell. The hot cathode recycle gases provide a substantial portion of the heat required for the indirect heating of the compressed air used in the gas turbine cycle. A separate combustor provides the balance of the heat needed for the indirect heating of the compressed air used in the gas turbine cycle. Hot gases from the fuel cell are used in the combustor to reduce both the fuel requirements of the combustor and the NOx emissions therefrom. Residual heat remaining in the air-heating gases after completing the heating thereof is used in a steam turbine cycle or in an absorption refrigeration cycle. Some of the hot gases from the cathode can be diverted from the air-heating function and used in the absorption refrigeration cycle or in the steam cycle for steam generating purposes. 1 fig.
Indirect-fired gas turbine bottomed with fuel cell
Micheli, Paul L.; Williams, Mark C.; Parsons, Edward L.
1995-01-01
An indirect-heated gas turbine cycle is bottomed with a fuel cell cycle with the heated air discharged from the gas turbine being directly utilized at the cathode of the fuel cell for the electricity-producing electrochemical reaction occurring within the fuel cell. The hot cathode recycle gases provide a substantial portion of the heat required for the indirect heating of the compressed air used in the gas turbine cycle. A separate combustor provides the balance of the heat needed for the indirect heating of the compressed air used in the gas turbine cycle. Hot gases from the fuel cell are used in the combustor to reduce both the fuel requirements of the combustor and the NOx emissions therefrom. Residual heat remaining in the air-heating gases after completing the heating thereof is used in a steam turbine cycle or in an absorption refrigeration cycle. Some of the hot gases from the cathode can be diverted from the air-heating function and used in the absorption refrigeration cycle or in the steam cycle for steam generating purposes.
A fuel cycle assessment guide for utility and state energy planners
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-07-01
This guide, one in a series of documents designed to help assess fuel cycles, is a framework for setting parameters, collecting data, and analyzing fuel cycles for supply-side and demand-side management. It provides an automated tool for entering comparative fuel cycle data that are meaningful to state and utility integrated resource planning, collaborative, and regional energy planning activities. It outlines an extensive range of energy technology characteristics and environmental, social, and economic considerations within each stage of a fuel cycle. The guide permits users to focus on specific stages or effects that are relevant to the technology being evaluated andmore » that meet the user`s planning requirements.« less
ORIGEN-based Nuclear Fuel Inventory Module for Fuel Cycle Assessment: Final Project Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skutnik, Steven E.
The goal of this project, “ORIGEN-based Nuclear Fuel Depletion Module for Fuel Cycle Assessment" is to create a physics-based reactor depletion and decay module for the Cyclus nuclear fuel cycle simulator in order to assess nuclear fuel inventories over a broad space of reactor operating conditions. The overall goal of this approach is to facilitate evaluations of nuclear fuel inventories for a broad space of scenarios, including extended used nuclear fuel storage and cascading impacts on fuel cycle options such as actinide recovery in used nuclear fuel, particularly for multiple recycle scenarios. The advantages of a physics-based approach (compared tomore » a recipe-based approach which has been typically employed for fuel cycle simulators) is in its inherent flexibility; such an approach can more readily accommodate the broad space of potential isotopic vectors that may be encountered under advanced fuel cycle options. In order to develop this flexible reactor analysis capability, we are leveraging the Origen nuclear fuel depletion and decay module from SCALE to produce a standalone “depletion engine” which will serve as the kernel of a Cyclus-based reactor analysis module. The ORIGEN depletion module is a rigorously benchmarked and extensively validated tool for nuclear fuel analysis and thus its incorporation into the Cyclus framework can bring these capabilities to bear on the problem of evaluating long-term impacts of fuel cycle option choices on relevant metrics of interest, including materials inventories and availability (for multiple recycle scenarios), long-term waste management and repository impacts, etc. Developing this Origen-based analysis capability for Cyclus requires the refinement of the Origen analysis sequence to the point where it can reasonably be compiled as a standalone sequence outside of SCALE; i.e., wherein all of the computational aspects of Origen (including reactor cross-section library processing and interpolation, input and output processing, and depletion/decay solvers) can be self-contained into a single executable sequence. Further, to embed this capability into other software environments (such as the Cyclus fuel cycle simulator) requires that Origen’s capabilities be encapsulated into a portable, self-contained library which other codes can then call directly through function calls, thereby directly accessing the solver and data processing capabilities of Origen. Additional components relevant to this work include modernization of the reactor data libraries used by Origen for conducting nuclear fuel depletion calculations. This work has included the development of new fuel assembly lattices not previously available (such as for CANDU heavy-water reactor assemblies) as well as validation of updated lattices for light-water reactors updated to employ modern nuclear data evaluations. The CyBORG reactor analysis module as-developed under this workscope is fully capable of dynamic calculation of depleted fuel compositions from all commercial U.S. reactor assembly types as well as a number of international fuel types, including MOX, VVER, MAGNOX, and PHWR CANDU fuel assemblies. In addition, the Origen-based depletion engine allows for CyBORG to evaluate novel fuel assembly and reactor design types via creation of Origen reactor data libraries via SCALE. The establishment of this new modeling capability affords fuel cycle modelers a substantially improved ability to model dynamically-changing fuel cycle and reactor conditions, including recycled fuel compositions from fuel cycle scenarios involving material recycle into thermal-spectrum systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bathke, Charles Gary; Wallace, Richard K; Hase, Kevin R
2010-01-01
This paper reports the continued evaluation of the attractiveness of materials mixtures containing special nuclear materials (SNM) associated with various proposed nuclear fuel cycles. Specifically, this paper examines two closed fuel cycles. The first fuel cycle examined is a thorium fuel cycle in which a pressurized heavy water reactor (PHWR) is fueled with mixtures of plutonium/thorium and {sup 233}U/thorium. The used fuel is then reprocessed using the THOREX process and the actinides are recycled. The second fuel cycle examined consists of conventional light water reactors (LWR) whose fuel is reprocessed for actinides that are then fed to and recycled untilmore » consumed in fast-spectrum reactors: fast reactors and accelerator driven systems (ADS). As reprocessing of LWR fuel has already been examined, this paper will focus on the reprocessing of the scheme's fast-spectrum reactors' fuel. This study will indicate what is required to render these materials as having low utility for use in nuclear weapons. Nevertheless, the results of this paper suggest that all reprocessing products evaluated so far need to be rigorously safeguarded and provided high levels of physical protection. These studies were performed at the request of the United States Department of Energy (DOE). The methodology and key findings will be presented.« less
DE-NE0000735 - FINAL REPORT ON THORIUM FUEL CYCLE NEUP PROJECT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krahn, Steven; Ault, Timothy; Worrall, Andrew
The report is broken into six chapters, including this executive summary chapter. Following an introduction, this report discusses each of the project’s three major components (Fuel Cycle Data Package (FCDP) Development, Thorium Fuel Cycle Literature Analysis and Database Development, and the Thorium Fuel Cycle Technical Track and Proceedings). A final chapter is devoted to summarization. Various outcomes, publications, etc. originating from this project can be found in the Appendices at the end of the document.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kulisek, Jonathan A.; Anderson, Kevin K.; Bowyer, Sonya M.
2012-07-19
Developing a method for the accurate, direct, and independent assay of the fissile isotopes in bulk materials (such as used fuel) of next-generation domestic nuclear fuel cycles is a goal of the Office of Nuclear Energy, Fuel Cycle R&D, Material Protection and Control Technology (MPACT) Campaign. To meet this goal, MPACT continues to support a multi-institutional collaboration to address the feasibility of Lead Slowing Down Spectroscopy (LSDS) as an active nondestructive assay method that has the potential to provide independent, direct measurement of Pu and U isotopic masses in used fuel with an uncertainty considerably lower than the approximately 10%more » typical of today’s confirmatory assay methods. An LSDS is comprised of a stack of lead (typically 1-6 m3) in which materials to be measured are placed in the lead and a pulse of neutrons is injected. The neutrons in this pulse lose energy due to inelastic and (subsequently) elastic scattering and the average energy of the neutrons decreases as the time increases by a well-defined relationship. In the interrogation energy region (~0.1-1000 eV) the neutrons have little energy spread (~30%) about the average neutron energy. Due to this characteristic, the energy of the (assay) neutrons can then be determined by measuring the time elapsed since the neutron pulse. By measuring the induced fission neutrons emitted from the used fuel, it is possible to determine isotopic-mass content by unfolding the unique structure of isotopic resonances across the interrogation energy region. This paper will present efforts on the development of time-spectral analysis algorithms, fast neutron detector advances, and validation and testing measurements.« less
Argonne's Michael Wang talks about the GREET Model for reducing vehicle emi
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Michael
2012-07-25
To fully evaluate energy and emission impacts of advanced vehicle technologies and new transportation fuels, the fuel cycle from wells to wheels and the vehicle cycle through material recovery and vehicle disposal need to be considered. Sponsored by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy (EERE), Argonne has developed a full life-cycle model called GREET (Greenhouse gases, Regulated Emissions, and Energy use in Transportation). It allows researchers and analysts to evaluate various vehicle and fuel combinations on a full fuel-cycle/vehicle-cycle basis. The first version of GREET was released in 1996. Since then, Argonne has continuedmore » to update and expand the model. The most recent GREET versions are the GREET 1 2012 version for fuel-cycle analysis and GREET 2.7 version for vehicle-cycle analysis.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-02
... a License Application for a Fuel Cycle Facility''; Notice of Availability AGENCY: Nuclear Regulatory... Cycle Facility,'' dated May 2010. ADDRESSES: NRC's Public Document Room (PDR): The public may examine... INFORMATION: The SRP for the review of a license application for a fuel cycle facility (NUREG-1520), Revision...
Advanced reactors and associated fuel cycle facilities: safety and environmental impacts.
Hill, R N; Nutt, W M; Laidler, J J
2011-01-01
The safety and environmental impacts of new technology and fuel cycle approaches being considered in current U.S. nuclear research programs are contrasted to conventional technology options in this paper. Two advanced reactor technologies, the sodium-cooled fast reactor (SFR) and the very high temperature gas-cooled reactor (VHTR), are being developed. In general, the new reactor technologies exploit inherent features for enhanced safety performance. A key distinction of advanced fuel cycles is spent fuel recycle facilities and new waste forms. In this paper, the performance of existing fuel cycle facilities and applicable regulatory limits are reviewed. Technology options to improve recycle efficiency, restrict emissions, and/or improve safety are identified. For a closed fuel cycle, potential benefits in waste management are significant, and key waste form technology alternatives are described. Copyright © 2010 Health Physics Society
Brown, Nicholas R.; Worrall, Andrew; Todosow, Michael
2016-11-18
Small modular reactors (SMRs) offer potential benefits, such as enhanced operational flexibility. However, it is vital to understand the holistic impact of SMRs on nuclear fuel cycle performance. The focus of this paper is the fuel cycle impacts of light water SMRs in a once-through fuel cycle with low-enriched uranium fuel. A key objective of this paper is to describe preliminary example reactor core physics and fuel cycle analyses conducted in support of the U.S. Department of Energy, Office of Nuclear Energy, Fuel Cycle Options Campaign. The hypothetical light water SMR example case considered in these preliminary scoping studies ismore » a cartridge type one-batch core with slightly less than 5.0% enrichment. Challenges associated with SMRs include increased neutron leakage, fewer assemblies in the core (and therefore fewer degrees of freedom in the core design), complex enrichment and burnable absorber loadings, full power operation with inserted control rods, the potential for frequent load-following operation, and shortened core height. Each of these will impact the achievable discharge burnup in the reactor and the fuel cycle performance. This paper summarizes a list of the factors relevant to SMR fuel, core, and operation that will impact fuel cycle performance. The high-level issues identified and preliminary scoping calculations in this paper are intended to inform on potential fuel cycle impacts of one-batch thermal spectrum SMRs. In particular, this paper highlights the impact of increased neutron leakage and reduced number of batches on the achievable burnup of the reactor. Fuel cycle performance metrics for a hypothetical example SMR are compared with those for a conventional three-batch light water reactor in the following areas: nuclear waste management, environmental impact, and resource utilization. The metrics performance for such an SMR is degraded for the mass of spent nuclear fuel and high-level waste disposed of, mass of depleted uranium disposed of, land use per energy generated, and carbon emissions per energy generated. Finally, it is noted that the features of some SMR designs impact three main aspects of fuel cycle performance: (1) small cores which means high leakage (there is a radial and axial component), (2) no boron which means heterogeneous core and extensive use of control rods and BPs, and (3) single batch cores. But not all of the SMR designs have all of these traits. As a result, the approach used in this study is therefore a bounding case and not all SMRs may be affected to the same extent.« less
75 FR 81675 - Notice of Issuance of Regulatory Guide
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-28
... Fuel Cycle Facilities.'' FOR FURTHER INFORMATION CONTACT: Mekonen M. Bayssie, Regulatory Guide... Materials in Liquid and Gaseous Effluents from Nuclear Fuel Cycle Facilities,'' was published as Draft... guidance is applicable to nuclear fuel cycle facilities, with the exception of uranium milling facilities...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larry Zirker; Nathan Jerred; Dr. Indrajit Charit
2012-03-01
Research proposal 08-1079, 'A Comparative Study of Welded ODS Cladding Materials for AFCI/GNEP,' was funded in 2008 under an Advanced Fuel Cycle Initiative (AFCI) Research and Development Funding Opportunity, number DE-PS07-08ID14906. Th proposal sought to conduct research on joining oxide dispersion strengthen (ODS) tubing material to a solid end plug. This document summarizes the scientific and technical progress achieved during the project, which ran from 2008 to 2011.
Thorium Fuel Cycle Option Screening in the United States
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taiwo, Temitope A.; Kim, Taek K.; Wigeland, Roald A.
2016-05-01
As part of a nuclear fuel cycle Evaluation and Screening (E&S) study, a wide-range of thorium fuel cycle options were evaluated and their performance characteristics and challenges to implementation were compared to those of other nuclear fuel cycle options based on criteria specified by the Nuclear Energy Office of the U.S. Department of Energy (DOE). The evaluated nuclear fuel cycles included the once-through, limited, and continuous recycle options using critical or externally-driven nuclear energy systems. The E&S study found that the continuous recycle of 233U/Th in fuel cycles using either thermal or fast reactors is an attractive promising fuel cyclemore » option with high effective fuel resource utilization and low waste generation, but did not perform quite as well as the continuous recycle of Pu/U using a fast critical system, which was identified as one of the most promising fuel cycle options in the E&S study. This is because compared to their uranium counterparts the thorium-based systems tended to have higher radioactivity in the short term (about 100 years post irradiation) because of differences in the fission product yield curves, and in the long term (100,000 years post irradiation) because of the decay of 233U and daughters, and because of higher mass flow rates due to lower discharge burnups. Some of the thorium-based systems also require enriched uranium support, which tends to be detrimental to resource utilization and waste generation metrics. Finally, similar to the need for developing recycle fuel fabrication, fuels separations and fast reactors for the most promising options using Pu/U recycle, the future thorium-based fuel cycle options with continuous recycle would also require such capabilities, although their deployment challenges are expected to be higher since such facilities have not been developed in the past to a comparable level of maturity for Th-based systems.« less
Hydrogen-fueled postal vehicle performance evaluation
NASA Technical Reports Server (NTRS)
Hall, R. A.
1979-01-01
Fuel consumption, range, and emissions data were obtained while operating a hydrogen-fueled postal delivery vehicle over a defined Postal Service Driving Cycle and the 1975 Urban Driving Cycle. The vehicle's fuel consumption was 0.366 pounds of hydrogen per mile over the postal driving cycle and 0.22 pounds of hydrogen per mile over the urban driving cycle. These data correspond to 6.2 and 10.6 mpg equivalent gasoline mileage for the two driving cycles, respectively. The vehicle's range was 24.2 miles while being operated on the postal driving cycle. Vehicle emissions were measured over the urban driving cycle. HC and CO emissions were quite low, as would be expected. The oxides of nitrogen were found to be 4.86 gm/mi, a value which is well above the current Federal and California standards. Vehicle limitations discussed include excessive engine flashbacks, inadequate acceleration capability the engine air/fuel ratio, the water injection systems, and the cab temperature. Other concerns are safety considerations, iron-titanium hydride observed in the fuel system, evidence of water in the engine rocker cover, and the vehicle maintenance required during the evaluation.
Engineering organisms for industrial fuel production.
Berry, David A
2010-01-01
Volatile fuel costs, the need to reduce greenhouse gas emissions and fuel security concerns are driving efforts to produce sustainable renewable fuels and chemicals. Petroleum comes from sunlight, CO(2) and water converted via a biological intermediate into fuel over a several million year timescale. It stands to reason that using biology to short-circuit this time cycle offers an attractive alternative--but only with relevant products at or below market prices. The state of the art of biological engineering over the past five years has progressed to allow for market needs to drive innovation rather than trying to adapt existing approaches to the market. This report describes two innovations using synthetic biology to dis-intermediate fuel production. LS9 is developing a means to convert biological intermediates such as cellulosic hydrolysates into drop-in hydrocarbon product replacements such as diesel. Joule Unlimited is pioneering approaches to eliminate feedstock dependency by efficiently capturing sunlight, CO(2) and water to produce fuels and chemicals. The innovations behind these companies are built with the market in mind, focused on low cost biosynthesis of existing products of the petroleum industry. Through successful deployment of technologies such as those behind LS9 and Joule Unlimited, alternative sources of petroleum products will mitigate many of the issues faced with our petroleum-based economy. © 2010 Landes Bioscience
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matloch, L.; Vaccaro, S.; Couland, M.
The back end of the nuclear fuel cycle continues to develop. The European Commission, particularly the Nuclear Safeguards Directorate of the Directorate General for Energy, implements Euratom safeguards and needs to adapt to this situation. The verification methods for spent nuclear fuel, which EURATOM inspectors can use, require continuous improvement. Whereas the Euratom on-site laboratories provide accurate verification results for fuel undergoing reprocessing, the situation is different for spent fuel which is destined for final storage. In particular, new needs arise from the increasing number of cask loadings for interim dry storage and the advanced plans for the construction ofmore » encapsulation plants and geological repositories. Various scenarios present verification challenges. In this context, EURATOM Safeguards, often in cooperation with other stakeholders, is committed to further improvement of NDA methods for spent fuel verification. In this effort EURATOM plays various roles, ranging from definition of inspection needs to direct participation in development of measurement systems, including support of research in the framework of international agreements and via the EC Support Program to the IAEA. This paper presents recent progress in selected NDA methods. These methods have been conceived to satisfy different spent fuel verification needs, ranging from attribute testing to pin-level partial defect verification. (authors)« less
Modeling transit bus fuel consumption on the basis of cycle properties.
Delgado, Oscar F; Clark, Nigel N; Thompson, Gregory J
2011-04-01
A method exists to predict heavy-duty vehicle fuel economy and emissions over an "unseen" cycle or during unseen on-road activity on the basis of fuel consumption and emissions data from measured chassis dynamometer test cycles and properties (statistical parameters) of those cycles. No regression is required for the method, which relies solely on the linear association of vehicle performance with cycle properties. This method has been advanced and examined using previously published heavy-duty truck data gathered using the West Virginia University heavy-duty chassis dynamometer with the trucks exercised over limited test cycles. In this study, data were available from a Washington Metropolitan Area Transit Authority emission testing program conducted in 2006. Chassis dynamometer data from two conventional diesel buses, two compressed natural gas buses, and one hybrid diesel bus were evaluated using an expanded driving cycle set of 16 or 17 different driving cycles. Cycle properties and vehicle fuel consumption measurements from three baseline cycles were selected to generate a linear model and then to predict unseen fuel consumption over the remaining 13 or 14 cycles. Average velocity, average positive acceleration, and number of stops per distance were found to be the desired cycle properties for use in the model. The methodology allowed for the prediction of fuel consumption with an average error of 8.5% from vehicles operating on a diverse set of chassis dynamometer cycles on the basis of relatively few experimental measurements. It was found that the data used for prediction should be acquired from a set that must include an idle cycle along with a relatively slow transient cycle and a relatively high speed cycle. The method was also applied to oxides of nitrogen prediction and was found to have less predictive capability than for fuel consumption with an average error of 20.4%.
Method for modeling driving cycles, fuel use, and emissions for over snow vehicles.
Hu, Jiangchuan; Frey, H Christopher; Sandhu, Gurdas S; Graver, Brandon M; Bishop, Gary A; Schuchmann, Brent G; Ray, John D
2014-07-15
As input to a winter use plan, activity, fuel use, and tailpipe exhaust emissions of over snow vehicles (OSV), including five snow coaches and one snowmobile, were measured on a designated route in Yellowstone National Park (YNP). Engine load was quantified in terms of vehicle specific power (VSP), which is a function of speed, acceleration, and road grade. Compared to highway vehicles, VSP for OSVs is more sensitive to rolling resistance and less sensitive to aerodynamic drag. Fuel use rates increased linearly (R2>0.96) with VSP. For gasoline-fueled OSVs, fuel-based emission rates of carbon monoxide (CO) and nitrogen oxides (NOx) typically increased with increasing fuel use rate, with some cases of very high CO emissions. For the diesel OSVs, which had selective catalytic reduction and diesel particulate filters, fuel-based NOx and particulate matter (PM) emission rates were not sensitive to fuel flow rate, and the emission controls were effective. Inter vehicle variability in cycle average fuel use and emissions rates for CO and NOx was substantial. However, there was relatively little inter-cycle variation in cycle average fuel use and emission rates when comparing driving cycles. Recommendations are made regarding how real-world OSV activity, fuel use, and emissions data can be improved.
40 CFR 86.1537 - Idle test run.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled... dilute sampling. (6) For bag sampling, sample idle emissions long enough to obtain a sufficient bag...
40 CFR 190.10 - Standards for normal operations.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Standards for the Uranium Fuel Cycle § 190.10 Standards for normal operations. Operations covered by this... radioactive materials, radon and its daughters excepted, to the general environment from uranium fuel cycle... the general environment from the entire uranium fuel cycle, per gigawatt-year of electrical energy...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-30
... NUCLEAR REGULATORY COMMISSION [Docket No. 70-3103; NRC-2010-0264] Uranium Enrichment Fuel Cycle Facility Inspection Reports Regarding Louisiana Energy Services LLC, National Enrichment Facility, Eunice..., Chief, Uranium Enrichment Branch, Division of Fuel Cycle Safety and Safeguards, Office of Nuclear...
Advanced Fuel Cycle Cost Basis – 2017 Edition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dixon, B. W.; Ganda, F.; Williams, K. A.
This report, commissioned by the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the DOE Nuclear Technology Research and Development (NTRD) Program (previously the Fuel Cycle Research and Development (FCRD) and the Advanced Fuel Cycle Initiative (AFCI)). The report describes the NTRD cost basis development process, reference information on NTRD cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This reportmore » contains reference cost data for numerous fuel cycle cost modules (modules A-O) as well as cost modules for a number of reactor types (R modules). The fuel cycle cost modules were developed in the areas of natural uranium mining and milling, thorium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, managed decay storage, recycled product storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, transuranic, and high-level waste. Since its inception, this report has been periodically updated. The last such internal document was published in August 2015 while the last external edition was published in December of 2009 as INL/EXT-07-12107 and is available on the Web at URL: www.inl.gov/technicalpublications/Documents/4536700.pdf. This current report (Sept 2017) is planned to be reviewed for external release, at which time it will replace the 2009 report as an external publication. This information is used in the ongoing evaluation of nuclear fuel cycles by the NE NTRD program.« less
The basic features of a closed fuel cycle without fast reactors
NASA Astrophysics Data System (ADS)
Bobrov, E. A.; Alekseev, P. N.; Teplov, P. S.
2017-01-01
In this paper the basic features of a closed fuel cycle with thermal reactors are considered. The three variants of multiple Pu and U recycling in VVER reactors was investigated. The comparison of MOX and REMIX fuel approaches for closed fuel cycle with thermal reactors is presented. All variants make possible to recycle several times the total amount of Pu and U obtained from spent fuel. The reported study was funded by RFBR according to the research project № 16-38-00021
Fuel economy of hybrid fuel-cell vehicles
NASA Astrophysics Data System (ADS)
Ahluwalia, Rajesh K.; Wang, X.; Rousseau, A.
The potential improvement in fuel economy of a mid-size fuel-cell vehicle by combining it with an energy storage system has been assessed. An energy management strategy is developed and used to operate the direct hydrogen, pressurized fuel-cell system in a load-following mode and the energy storage system in a charge-sustaining mode. The strategy places highest priority on maintaining the energy storage system in a state where it can supply unanticipated boost power when the fuel-cell system alone cannot meet the power demand. It is found that downsizing a fuel-cell system decreases its efficiency on a drive cycle which is compensated by partial regenerative capture of braking energy. On a highway cycle with limited braking energy the increase in fuel economy with hybridization is small but on the stop-and-go urban cycle the fuel economy can improve by 27%. On the combined highway and urban drive cycles the fuel economy of the fuel-cell vehicle is estimated to increase by up to 15% by hybridizing it with an energy storage system.
40 CFR 86.135-90 - Dynamometer procedure.
Code of Federal Regulations, 2014 CFR
2014-07-01
... petroleum gas-fueled Otto-cycle vehicles, the composite samples collected in bags are analyzed for THC, CO..., liquefied petroleum gas-fueled and methanol-fueled diesel-cycle vehicles), THC is sampled and analyzed... analyzed for THC, CO, CO2, CH4, and NOX. (3) For natural gas-fueled, liquefied petroleum gas-fueled and...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-18
... NUCLEAR REGULATORY COMMISSION [Docket No. 70-3103; NRC-2010-0264] Uranium Enrichment Fuel Cycle Inspection Reports Regarding Louisiana Energy Services, National Enrichment Facility, Eunice, New Mexico..., Division of Fuel Cycle Safety, and Safeguards Office of Nuclear Material Safety, and Safeguards. [FR Doc...
Open-Cycle Gas Turbine/Steam Turbine Combined Cycles with synthetic fuels from coal
NASA Technical Reports Server (NTRS)
Shah, R. P.; Corman, J. C.
1977-01-01
The Open-Cycle Gas Turbine/Steam Turbine Combined Cycle can be an effective energy conversion system for converting coal to electricity. The intermediate step in this energy conversion process is to convert the coal into a fuel acceptable to a gas turbine. This can be accomplished by producing a synthetic gas or liquid, and by removing, in the fuel conversion step, the elements in the fuel that would be harmful to the environment if combusted. In this paper, two open-cycle gas turbine combined systems are evaluated: one employing an integrated low-Btu gasifier, and one utilizing a semi-clean liquid fuel. A consistent technical/economic information base is developed for these two systems, and is compared with a reference steam plant burning coal directly in a conventional furnace.
Cycle analysis of MCFC/gas turbine system
NASA Astrophysics Data System (ADS)
Musa, Abdullatif; Alaktiwi, Abdulsalam; Talbi, Mosbah
2017-11-01
High temperature fuel cells such as the solid oxide fuel cell (SOFC) and the molten carbonate fuel cell (MCFC) are considered extremely suitable for electrical power plant application. The molten carbonate fuel cell (MCFC) performances is evaluated using validated model for the internally reformed (IR) fuel cell. This model is integrated in Aspen Plus™. Therefore, several MCFC/Gas Turbine systems are introduced and investigated. One of this a new cycle is called a heat recovery (HR) cycle. In the HR cycle, a regenerator is used to preheat water by outlet air compressor. So the waste heat of the outlet air compressor and the exhaust gases of turbine are recovered and used to produce steam. This steam is injected in the gas turbine, resulting in a high specific power and a high thermal efficiency. The cycles are simulated in order to evaluate and compare their performances. Moreover, the effects of an important parameters such as the ambient air temperature on the cycle performance are evaluated. The simulation results show that the HR cycle has high efficiency.
A Characteristics-Based Approach to Radioactive Waste Classification in Advanced Nuclear Fuel Cycles
NASA Astrophysics Data System (ADS)
Djokic, Denia
The radioactive waste classification system currently used in the United States primarily relies on a source-based framework. This has lead to numerous issues, such as wastes that are not categorized by their intrinsic risk, or wastes that do not fall under a category within the framework and therefore are without a legal imperative for responsible management. Furthermore, in the possible case that advanced fuel cycles were to be deployed in the United States, the shortcomings of the source-based classification system would be exacerbated: advanced fuel cycles implement processes such as the separation of used nuclear fuel, which introduce new waste streams of varying characteristics. To be able to manage and dispose of these potential new wastes properly, development of a classification system that would assign appropriate level of management to each type of waste based on its physical properties is imperative. This dissertation explores how characteristics from wastes generated from potential future nuclear fuel cycles could be coupled with a characteristics-based classification framework. A static mass flow model developed under the Department of Energy's Fuel Cycle Research & Development program, called the Fuel-cycle Integration and Tradeoffs (FIT) model, was used to calculate the composition of waste streams resulting from different nuclear fuel cycle choices: two modified open fuel cycle cases (recycle in MOX reactor) and two different continuous-recycle fast reactor recycle cases (oxide and metal fuel fast reactors). This analysis focuses on the impact of waste heat load on waste classification practices, although future work could involve coupling waste heat load with metrics of radiotoxicity and longevity. The value of separation of heat-generating fission products and actinides in different fuel cycles and how it could inform long- and short-term disposal management is discussed. It is shown that the benefits of reducing the short-term fission-product heat load of waste destined for geologic disposal are neglected under the current source-based radioactive waste classification system, and that it is useful to classify waste streams based on how favorable the impact of interim storage is on increasing repository capacity. The need for a more diverse set of waste classes is discussed, and it is shown that the characteristics-based IAEA classification guidelines could accommodate wastes created from advanced fuel cycles more comprehensively than the U.S. classification framework.
Webinar May 17: Fuel Cell Electric Bus Progress Toward Meeting Technical
Targets | News | NREL Webinar May 17: Fuel Cell Electric Bus Progress toward Meeting Technical Targets Webinar May 17: Fuel Cell Electric Bus Progress toward Meeting Technical Targets May 14, 2018 The U.S. Department of Energy's (DOE's) Fuel Cell Technologies Office will present a live webinar titled
Code of Federal Regulations, 2012 CFR
2012-07-01
... economy and CO2 emission values from the tests performed using gasoline or diesel test fuel. (ii) Calculate the 5-cycle city and highway fuel economy and CO2 emission values from the tests performed using alcohol or natural gas test fuel, if 5-cycle testing has been performed. Otherwise, the procedure in § 600...
Code of Federal Regulations, 2014 CFR
2014-07-01
... economy and CO2 emission values from the tests performed using gasoline or diesel test fuel. (ii) Calculate the 5-cycle city and highway fuel economy and CO2 emission values from the tests performed using alcohol or natural gas test fuel, if 5-cycle testing has been performed. Otherwise, the procedure in § 600...
Code of Federal Regulations, 2013 CFR
2013-07-01
... economy and CO2 emission values from the tests performed using gasoline or diesel test fuel. (ii) Calculate the 5-cycle city and highway fuel economy and CO2 emission values from the tests performed using alcohol or natural gas test fuel, if 5-cycle testing has been performed. Otherwise, the procedure in § 600...
An Integrated Fuel Depletion Calculator for Fuel Cycle Options Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schneider, Erich; Scopatz, Anthony
2016-04-25
Bright-lite is a reactor modeling software developed at the University of Texas Austin to expand upon the work done with the Bright [1] reactor modeling software. Originally, bright-lite was designed to function as a standalone reactor modeling software. However, this aim was refocused t couple bright-lite with the Cyclus fuel cycle simulator [2] to make it a module for the fuel cycle simulator.
Closed DTU fuel cycle with Np recycle and waste transmutation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beller, D.E.; Sailor, W.C.; Venneri, F.
1999-09-01
A nuclear energy scenario for the 21st century that included a denatured thorium-uranium-oxide (DTU) fuel cycle and new light water reactors (LWRs) supported by accelerator-driven transmutation of waste (ATW) systems was previously described. This coupled system with the closed DTU fuel cycle provides several improvements beyond conventional LWR (CLWR) (once-through, UO{sub 2} fuel) nuclear technology: increased proliferation resistance, reduced waste, and efficient use of natural resources. However, like CLWR fuel cycles, the spent fuel in the first one-third core discharged after startup contains higher-quality Pu than the equilibrium fuel cycle. To eliminate this high-grade Pu, Np is separated and recycledmore » with Th and U--rather than with higher actinides [(HA) including Pu]. The presence of Np in the LWR feed greatly increases the production of {sup 238}Pu so that a few kilograms of Pu generated enough alpha-decay heat that the separated Pu is highly resistant to proliferation. This alternate process also simplifies the pyrochemical separation of fuel elements (Th and U) from HAs. To examine the advantages of this concept, the authors modeled a US deployment scenario for nuclear energy that includes DTU-LWRs plus ATW`s to burn the actinides produced by these LWRs and to close the back-end of the DTU fuel cycle.« less
Final Report on Two-Stage Fast Spectrum Fuel Cycle Options
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Won Sik; Lin, C. S.; Hader, J. S.
2016-01-30
This report presents the performance characteristics of two “two-stage” fast spectrum fuel cycle options proposed to enhance uranium resource utilization and to reduce nuclear waste generation. One is a two-stage fast spectrum fuel cycle option of continuous recycle of plutonium (Pu) in a fast reactor (FR) and subsequent burning of minor actinides (MAs) in an accelerator-driven system (ADS). The first stage is a sodium-cooled FR fuel cycle starting with low-enriched uranium (LEU) fuel; at the equilibrium cycle, the FR is operated using the recovered Pu and natural uranium without supporting LEU. Pu and uranium (U) are co-extracted from the dischargedmore » fuel and recycled in the first stage, and the recovered MAs are sent to the second stage. The second stage is a sodium-cooled ADS in which MAs are burned in an inert matrix fuel form. The discharged fuel of ADS is reprocessed, and all the recovered heavy metals (HMs) are recycled into the ADS. The other is a two-stage FR/ADS fuel cycle option with MA targets loaded in the FR. The recovered MAs are not directly sent to ADS, but partially incinerated in the FR in order to reduce the amount of MAs to be sent to the ADS. This is a heterogeneous recycling option of transuranic (TRU) elements« less
Brown, Nicholas R.; Powers, Jeffrey J.; Feng, B.; ...
2015-05-21
This paper presents analyses of possible reactor representations of a nuclear fuel cycle with continuous recycling of thorium and produced uranium (mostly U-233) with thorium-only feed. The analysis was performed in the context of a U.S. Department of Energy effort to develop a compendium of informative nuclear fuel cycle performance data. The objective of this paper is to determine whether intermediate spectrum systems, having a majority of fission events occurring with incident neutron energies between 1 eV and 10 5 eV, perform as well as fast spectrum systems in this fuel cycle. The intermediate spectrum options analyzed include tight latticemore » heavy or light water-cooled reactors, continuously refueled molten salt reactors, and a sodium-cooled reactor with hydride fuel. All options were modeled in reactor physics codes to calculate their lattice physics, spectrum characteristics, and fuel compositions over time. Based on these results, detailed metrics were calculated to compare the fuel cycle performance. These metrics include waste management and resource utilization, and are binned to accommodate uncertainties. The performance of the intermediate systems for this selfsustaining thorium fuel cycle was similar to a representative fast spectrum system. However, the number of fission neutrons emitted per neutron absorbed limits performance in intermediate spectrum systems.« less
NASA Technical Reports Server (NTRS)
Bailey, M. M.
1985-01-01
Three alternative power cycles were compared in application as an exhaust-gas heat-recovery system for use with advanced adiabatic diesel engines. The power cycle alternatives considered were steam Rankine, organic Rankine with RC-1 as the working fluid, and variations of an air Brayton cycle. The comparison was made in terms of fuel economy and economic payback potential for heavy-duty trucks operating in line-haul service. The results indicate that, in terms of engine rated specific fuel consumption, a diesel/alternative-power-cycle engine offers a significant improvement over the turbocompound diesel used as the baseline for comparison. The maximum imporvement resulted from the use of a Rankine cycle heat-recovery system in series with turbocompounding. The air Brayton cycle alternatives studied, which included both simple-cycle and compression-intercooled configurations, were less effective and provided about half the fuel consumption improvement of the Rankine cycle alternatives under the same conditions. Capital and maintenance cost estimates were also developed for each of the heat-recovery power cycle systems. These costs were integrated with the fuel savings to identify the time required for net annual savings to pay back the initial capital investment. The sensitivity of capital payback time to arbitrary increases in fuel price, not accompanied by corresponding hardware cost inflation, was also examined. The results indicate that a fuel price increase is required for the alternative power cycles to pay back capital within an acceptable time period.
Alternative Fuels Data Center: Propane Vehicle Emissions
compared to conventional gasoline and diesel fuel. When used as a vehicle fuel, propane can offer life , processing, manufacturing, distribution, use, and disposal or recycling. When comparing fuels, a life cycle GREET model estimates the life cycle petroleum use and GHG emissions for multiple fuels. When this model
Uranium to Electricity: The Chemistry of the Nuclear Fuel Cycle
ERIC Educational Resources Information Center
Settle, Frank A.
2009-01-01
The nuclear fuel cycle consists of a series of industrial processes that produce fuel for the production of electricity in nuclear reactors, use the fuel to generate electricity, and subsequently manage the spent reactor fuel. While the physics and engineering of controlled fission are central to the generation of nuclear power, chemistry…
Pang, Shih-Hao; Frey, H Christopher; Rasdorf, William J
2009-08-15
Substitution of soy-based biodiesel fuels for petroleum diesel will alter life cycle emissions for construction vehicles. A life cycle inventory was used to estimate fuel cycle energy consumption and emissions of selected pollutants and greenhouse gases. Real-world measurements using a portable emission measurement system (PEMS) were made forfive backhoes, four front-end loaders, and six motor graders on both fuels from which fuel consumption and tailpipe emission factors of CO, HC, NO(x), and PM were estimated. Life cycle fossil energy reductions are estimated it 9% for B20 and 42% for B100 versus petroleum diesel based on the current national energy mix. Fuel cycle emissions will contribute a larger share of total life cycle emissions as new engines enter the in-use fleet. The average differences in life cycle emissions for B20 versus diesel are: 3.5% higher for NO(x); 11.8% lower for PM, 1.6% higher for HC, and 4.1% lower for CO. Local urban tailpipe emissions are estimated to be 24% lower for HC, 20% lower for CO, 17% lower for PM, and 0.9% lower for NO(x). Thus, there are environmental trade-offs such as for rural vs urban areas. The key sources of uncertainty in the B20 LCI are vehicle emission factors.
Uranium oxide fuel cycle analysis in VVER-1000 with VISTA simulation code
NASA Astrophysics Data System (ADS)
Mirekhtiary, Seyedeh Fatemeh; Abbasi, Akbar
2018-02-01
The VVER-1000 Nuclear power plant generates about 20-25 tons of spent fuel per year. In this research, the fuel transmutation of Uranium Oxide (UOX) fuel was calculated by using of nuclear fuel cycle simulation system (VISTA) code. In this simulation, we evaluated the back end components fuel cycle. The back end component calculations are Spent Fuel (SF), Actinide Inventory (AI) and Fission Product (FP) radioisotopes. The SF, AI and FP values were obtained 23.792178 ton/y, 22.811139 ton/y, 0.981039 ton/y, respectively. The obtained value of spent fuel, major actinide, and minor actinide and fission products were 23.8 ton/year, 22.795 ton/year, 0.024 ton/year and 0.981 ton/year, respectively.
The scheme for evaluation of isotopic composition of fast reactor core in closed nuclear fuel cycle
NASA Astrophysics Data System (ADS)
Saldikov, I. S.; Ternovykh, M. Yu; Fomichenko, P. A.; Gerasimov, A. S.
2017-01-01
The PRORYV (i.e. «Breakthrough» in Russian) project is currently under development. Within the framework of this project, fast reactors BN-1200 and BREST-OD-300 should be built to, inter alia, demonstrate possibility of the closed nuclear fuel cycle technologies with plutonium as a main source of power. Russia has a large inventory of plutonium which was accumulated in the result of reprocessing of spent fuel of thermal power reactors and conversion of nuclear weapons. This kind of plutonium will be used for development of initial fuel assemblies for fast reactors. To solve the closed nuclear fuel modeling tasks REPRORYV code was developed. It simulates the mass flow for nuclides in the closed fuel cycle. This paper presents the results of modeling of a closed nuclear fuel cycle, nuclide flows considering the influence of the uncertainty on the outcome of neutron-physical characteristics of the reactor.
THE ATTRACTIVENESS OF MATERIAS ASSOCIATED WITH THORIUM-BASED NUCLEAR FUEL CYCLES FOR PHWRS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prichard, Andrew W.; Niehus, Mark T.; Collins, Brian A.
2011-07-17
This paper reports the continued evaluation of the attractiveness of materials mixtures containing special nuclear materials (SNM) associated with thorium based nuclear fuel cycles. Specifically, this paper examines a thorium fuel cycle in which a pressurized heavy water reactor (PHWR) is fueled with mixtures of natural uranium/233U/thorium. This paper uses a PHWR fueled with natural uranium as a base fuel cycle, and then compares material attractiveness of fuel cycles that use 233U/thorium salted with natural uranium. The results include the material attractiveness of fuel at beginning of life (BoL), end of life (EoL), and the number of fuel assemblies requiredmore » to collect a bare critical mass of plutonium or uranium. This study indicates what is required to render the uranium as having low utility for use in nuclear weapons; in addition, this study estimates the increased number of assemblies required to accumulate a bare critical mass of plutonium that has a higher utility for use in nuclear weapons. This approach identifies that some fuel cycles may be easier to implement the International Atomic Energy Agency (IAEA) safeguards approach and have a more effective safeguards by design outcome. For this study, approximately one year of fuel is required to be reprocessed to obtain one bare critical mass of plutonium. Nevertheless, the result of this paper suggests that all spent fuel needs to be rigorously safeguarded and provided with high levels of physical protection. This study was performed at the request of the United States Department of Energy /National Nuclear Security Administration (DOE/NNSA). The methodology and key findings will be presented.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Nicholas R.; Worrall, Andrew; Todosow, Michael
Small modular reactors (SMRs) offer potential benefits, such as enhanced operational flexibility. However, it is vital to understand the holistic impact of SMRs on nuclear fuel cycle performance. The focus of this paper is the fuel cycle impacts of light water SMRs in a once-through fuel cycle with low-enriched uranium fuel. A key objective of this paper is to describe preliminary example reactor core physics and fuel cycle analyses conducted in support of the U.S. Department of Energy, Office of Nuclear Energy, Fuel Cycle Options Campaign. The hypothetical light water SMR example case considered in these preliminary scoping studies ismore » a cartridge type one-batch core with slightly less than 5.0% enrichment. Challenges associated with SMRs include increased neutron leakage, fewer assemblies in the core (and therefore fewer degrees of freedom in the core design), complex enrichment and burnable absorber loadings, full power operation with inserted control rods, the potential for frequent load-following operation, and shortened core height. Each of these will impact the achievable discharge burnup in the reactor and the fuel cycle performance. This paper summarizes a list of the factors relevant to SMR fuel, core, and operation that will impact fuel cycle performance. The high-level issues identified and preliminary scoping calculations in this paper are intended to inform on potential fuel cycle impacts of one-batch thermal spectrum SMRs. In particular, this paper highlights the impact of increased neutron leakage and reduced number of batches on the achievable burnup of the reactor. Fuel cycle performance metrics for a hypothetical example SMR are compared with those for a conventional three-batch light water reactor in the following areas: nuclear waste management, environmental impact, and resource utilization. The metrics performance for such an SMR is degraded for the mass of spent nuclear fuel and high-level waste disposed of, mass of depleted uranium disposed of, land use per energy generated, and carbon emissions per energy generated. Finally, it is noted that the features of some SMR designs impact three main aspects of fuel cycle performance: (1) small cores which means high leakage (there is a radial and axial component), (2) no boron which means heterogeneous core and extensive use of control rods and BPs, and (3) single batch cores. But not all of the SMR designs have all of these traits. As a result, the approach used in this study is therefore a bounding case and not all SMRs may be affected to the same extent.« less
Fuel cycle cost uncertainty from nuclear fuel cycle comparison
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, J.; McNelis, D.; Yim, M.S.
2013-07-01
This paper examined the uncertainty in fuel cycle cost (FCC) calculation by considering both model and parameter uncertainty. Four different fuel cycle options were compared in the analysis including the once-through cycle (OT), the DUPIC cycle, the MOX cycle and a closed fuel cycle with fast reactors (FR). The model uncertainty was addressed by using three different FCC modeling approaches with and without the time value of money consideration. The relative ratios of FCC in comparison to OT did not change much by using different modeling approaches. This observation was consistent with the results of the sensitivity study for themore » discount rate. Two different sets of data with uncertainty range of unit costs were used to address the parameter uncertainty of the FCC calculation. The sensitivity study showed that the dominating contributor to the total variance of FCC is the uranium price. In general, the FCC of OT was found to be the lowest followed by FR, MOX, and DUPIC. But depending on the uranium price, the FR cycle was found to have lower FCC over OT. The reprocessing cost was also found to have a major impact on FCC.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-08
..., 72, et al. Proposed Guidance for Fuel Cycle Facility; Material Control and Accounting Plans and Completing NRC Form 327 and Amendments to Material Control and Accounting Regulations; Proposed Rules #0;#0... Guidance for Fuel Cycle Facility; Material Control and Accounting Plans and Completing NRC Form 327 AGENCY...
Richland five-year O2 R and D Program. Integrated site operation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1966-07-11
The technical feasibility of using an electrolytic reduction process to reduce metal scrap and oxide to usable uranium metal is being studied. The incentives for using electrolytic reduction at Richland may be summarized as follows: (1) reduce the unit and total costs of producing plutonium; (2) increase the flexibility of the Richland reactors for producing isotopes, particularly U-236; and (3) simplify the present fuel cycle complex. The scope of the mission is limited to the evaluation of hollow extruded I and E cores, the evaluation of electro-reduced uranium, an investigation of the solution rate of UO{sub 2} in the electrolyte,more » and small-scale irradiations of UO{sub 2} fuels in the N and K Reactors. Progress during FY 1966 is summarized.« less
Managing the Nuclear Fuel Cycle: Policy Implications of Expanding Global Access to Nuclear Power
2007-11-01
critical aspect of the nuclear fuel cycle for the United States, where longstanding nonproliferation policy discouraged commercial nuclear fuel...perhaps the most critical question in this decade for strengthening the nuclear nonproliferation regime: how can access to sensitive fuel cycle...process can take advantage of the slight difference in atomic mass between 235U and 238U. The typical enrichment process requires about 10 lbs of uranium
FY2013 Progress Report for Fuel & Lubricant Technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
none,
2014-02-01
Annual progress report for Fuel & Lubricant Technologies. The Fuel & Lubricant Technologies Program supports fuels and lubricants research and development (R&D) to provide vehicle manufacturers and users with cost-competitive options that enable high fuel economy with low emissions, and contribute to petroleum displacement.
FY2014 Fuel & Lubricant Technologies Annual Progress Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stork, Kevin
2016-02-01
Annual progress report for Fuel & Lubricant Technologies. The Fuel & Lubricant Technologies Program supports fuels and lubricants research and development (R&D) to provide vehicle manufacturers and users with cost-competitive options that enable high fuel economy with low emissions, and contribute to petroleum displacement.
Radiotoxicity Characterization of Multi-Recycled Thorium Fuel - 12394
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franceschini, F.; Wenner, M.; Fiorina, C.
2012-07-01
As described in companion papers, Westinghouse is proposing the implementation of a thorium based fuel cycle to burn the transuranic (TRU) contained in the used nuclear fuel. The potential of thorium as a TRU burner is described in another paper presented at this conference. This paper analyzes the long-term impact of thorium on the front-end and backend of the fuel cycle. This is accomplished by an assessment of the isotopic make-up of Th in a closed cycle and its impact on representative metrics, such as radiotoxicity, decay heat and gamma heat. The behavior in both thermal and fast neutron energymore » ranges has been investigated. Irradiation in a Th fuel PWR has been assumed as representative of the thermal range, while a Th fuel fast reactor (FR) has been employed to characterize the behavior in the high-energy range. A comparison with a U-fuel closed-cycle FR has been undertaken in an attempt of a more comprehensive evaluation of each cycle's long-term potential. As the Th fuel undergoes multiple cycles of irradiation, the isotopic composition of the recycled fuel changes. Minor Th isotopes are produced; U-232 and Pa-231 build up; the U vector gradually shifts towards increasing amounts of U-234, U-235 etc., eventually leading to the production of non negligible amounts of TRU isotopes, especially Pu-238. The impact of the recycled fuel isotopic makeup on the in-core behavior is mild, and for some aspects beneficial, i.e. the reactivity swing during irradiation is reduced as the fertile characteristics of the fuel increase. On the other hand, the front and the back-end of the fuel cycle are negatively affected due to the presence of Th-228 and U-232 and the build-up of higher actinides (Pu-238 etc.). The presence of U-232 can also be seen as advantageous as it represents an obstacle to potential proliferators. Notwithstanding the increase in the short-term radiotoxicity and decay heat in the multi-recycled fuel, the Th closed cycle has some potentially substantial advantages compared to the U cycle, such as the smaller actinide radiotoxicity and decay heat for up to 25,000 years after irradiation. In order for these benefits to materialize, the capability to reprocess and remotely manufacture industrial amounts of recycled fuel appears to be the key. Westinghouse is proposing the implementation of a thorium based fuel cycle to burn the TRU contained in the current UNF. The general approach and the potential of thorium as TRU burner is described in other papers presented at this conference. The focus of this paper is to analyze the long-term potential of thorium, once the legacy TRU has been exhausted and the thorium reactor system will become self-sufficient. Therefore, a comparison of Th closed cycle, in fast and thermal neutron energy ranges, vs. U closed cycle, in the fast energy range, has been undertaken. The results presented focus on selected backend and front-end metrics: isotopic actinide composition and potential implications on ingested radiotoxicity, decay heat and gamma heat. The evaluation confirms potential substantial improvements in the backend of the fuel cycle by transitioning to a thorium closed cycle. These benefits are the result of a much lower TRU content, in particular Pu-241, Am-241 and Pu-240, characterizing the Th vs. U actinide inventories, and the ensuing process waste to be disposed. On the other hand, the larger gamma activity of Th recycled fuel, consisting predominantly of hard gammas from U-232's decay products, is a significant challenge for fuel handling, transportation and manufacturing but can be claimed as beneficial for the proliferation resistance of the fuel. It is worth remembering that in our perspective the Th closed cycle and the U closed cycle will follow a transmutation phase which will likely take place over several decades and dictate the technologies required. These will likely include remote fuel manufacturing, regardless of the specific system adopted for the transmutation, which could then be inherited for the ensuing closed cycles. Finally, specific data related to the fuel manufacturing and separation technologies and their performance in the prospected industrial scale deployment, are key for further quantification of the potential merits of the options explored. Further studies in this direction should be warranted before making definitive conclusion. (authors)« less
Military utility of very large airplanes and alternative fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mikolowsky, W.T.; Noggle, L.W.; Stanley, W.L.
1977-09-01
Synthetic chemical fuels and nuclear fuels were evaluated for use in very large airplanes (VLA's). Candidate fuels included synthetic jet fuel, liquid hydrogen, liquid methane, methanol, ethanol, ammonia, and gasoline. Airplane life-cycle costs and life-cycle energy consumption are estimated, and energy and cost effectiveness are evaluated. It is concluded that a synthetic conventional hydrocarbon jet fuel remains the most attractive for military aircraft. (PMA)
DOT National Transportation Integrated Search
2000-02-01
Since the passage of the Energy Policy Act of 1992, some, albeit limited, progress has been made in acquiring alternative fuel vehicles and reducing the consumption of petroleum fuels in transportation. DOE estimates about 1 million alternative fuel ...
User Guide for VISION 3.4.7 (Verifiable Fuel Cycle Simulation) Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacob J. Jacobson; Robert F. Jeffers; Gretchen E. Matthern
2011-07-01
The purpose of this document is to provide a guide for using the current version of the Verifiable Fuel Cycle Simulation (VISION) model. This is a complex model with many parameters and options; the user is strongly encouraged to read this user guide before attempting to run the model. This model is an R&D work in progress and may contain errors and omissions. It is based upon numerous assumptions. This model is intended to assist in evaluating 'what if' scenarios and in comparing fuel, reactor, and fuel processing alternatives at a systems level. The model is not intended as amore » tool for process flow and design modeling of specific facilities nor for tracking individual units of fuel or other material through the system. The model is intended to examine the interactions among the components of a fuel system as a function of time varying system parameters; this model represents a dynamic rather than steady-state approximation of the nuclear fuel system. VISION models the nuclear cycle at the system level, not individual facilities, e.g., 'reactor types' not individual reactors and 'separation types' not individual separation plants. Natural uranium can be enriched, which produces enriched uranium, which goes into fuel fabrication, and depleted uranium (DU), which goes into storage. Fuel is transformed (transmuted) in reactors and then goes into a storage buffer. Used fuel can be pulled from storage into either separation or disposal. If sent to separations, fuel is transformed (partitioned) into fuel products, recovered uranium, and various categories of waste. Recycled material is stored until used by its assigned reactor type. VISION is comprised of several Microsoft Excel input files, a Powersim Studio core, and several Microsoft Excel output files. All must be co-located in the same folder on a PC to function. You must use Powersim Studio 8 or better. We have tested VISION with the Studio 8 Expert, Executive, and Education versions. The Expert and Education versions work with the number of reactor types of 3 or less. For more reactor types, the Executive version is currently required. The input files are Excel2003 format (xls). The output files are macro-enabled Excel2007 format (xlsm). VISION 3.4 was designed with more flexibility than previous versions, which were structured for only three reactor types - LWRs that can use only uranium oxide (UOX) fuel, LWRs that can use multiple fuel types (LWR MF), and fast reactors. One could not have, for example, two types of fast reactors concurrently. The new version allows 10 reactor types and any user-defined uranium-plutonium fuel is allowed. (Thorium-based fuels can be input but several features of the model would not work.) The user identifies (by year) the primary fuel to be used for each reactor type. The user can identify for each primary fuel a contingent fuel to use if the primary fuel is not available, e.g., a reactor designated as using mixed oxide fuel (MOX) would have UOX as the contingent fuel. Another example is that a fast reactor using recycled transuranic (TRU) material can be designated as either having or not having appropriately enriched uranium oxide as a contingent fuel. Because of the need to study evolution in recycling and separation strategies, the user can now select the recycling strategy and separation technology, by year.« less
Life-Cycle Assessment of Cookstove Fuels in India and China
A life cycle assessment (LCA) was conducted to compare the environmental footprint of current and possible fuels used for cooking within China and India. Current fuel mix profiles are compared to scenarios of projected differences in and/or cleaner cooking fuels. Results are repo...
Life-Cycle Assessment of Cookstove Fuels in India and China ...
A life cycle assessment (LCA) was conducted to compare the environmental footprint of current and possible fuels used for cooking within China and India. Current fuel mix profiles are compared to scenarios of projected differences in and/or cleaner cooking fuels. Results are reported for a suite of relevant life cycle impact assessment indicators: global climate change, energy demand, fossil depletion, water consumption, particulate matter formation, acidification, eutrophication and photochemical smog formation. Traditional fuels demonstrate notably poor relative performance in particulate matter formation, photochemical oxidant formation, freshwater eutrophication, and black carbon emissions. Most fuels demonstrate trade-offs between impact categories. Stove efficiency is found to be a crucial variable determining environmental performance across all impact categories. The study shows that electricity and many of the processed fuels, while yielding emission reductions in homes at the point of use, transfer many of those emissions upstream into the processing and distribution life cycle stage. To conduct LCA study of the cookstove fuels being used in India and China to determine how fuels and stoves compare based on a holistic assessment considering the LCA environmental tradeoffs
Fuel economy and life-cycle cost analysis of a fuel cell hybrid vehicle
NASA Astrophysics Data System (ADS)
Jeong, Kwi Seong; Oh, Byeong Soo
The most promising vehicle engine that can overcome the problem of present internal combustion is the hydrogen fuel cell. Fuel cells are devices that change chemical energy directly into electrical energy without combustion. Pure fuel cell vehicles and fuel cell hybrid vehicles (i.e. a combination of fuel cell and battery) as energy sources are studied. Considerations of efficiency, fuel economy, and the characteristics of power output in hybridization of fuel cell vehicle are necessary. In the case of Federal Urban Driving Schedule (FUDS) cycle simulation, hybridization is more efficient than a pure fuel cell vehicle. The reason is that it is possible to capture regenerative braking energy and to operate the fuel cell system within a more efficient range by using battery. Life-cycle cost is largely affected by the fuel cell size, fuel cell cost, and hydrogen cost. When the cost of fuel cell is high, hybridization is profitable, but when the cost of fuel cell is less than 400 US$/kW, a pure fuel cell vehicle is more profitable.
The report evaluates major public health impacts of electric power generation and transmission associated with the nuclear fuel cycle and with coal use. Only existing technology is evaluated. For the nuclear cycle, effects of future use of fuel reprocessing and long-term radioact...
Modeling and analysis of tritium dynamics in a DT fusion fuel cycle
NASA Astrophysics Data System (ADS)
Kuan, William
1998-11-01
A number of crucial design issues have a profound effect on the dynamics of the tritium fuel cycle in a DT fusion reactor, where the development of appropriate solutions to these issues is of particular importance to the introduction of fusion as a commercial system. Such tritium-related issues can be classified according to their operational, safety, and economic impact to the operation of the reactor during its lifetime. Given such key design issues inherent in next generation fusion devices using the DT fuel cycle development of appropriate models can then lead to optimized designs of the fusion fuel cycle for different types of DT fusion reactors. In this work, two different types of modeling approaches are developed and their application to solving key tritium issues presented. For the first approach, time-dependent inventories, concentrations, and flow rates characterizing the main subsystems of the fuel cycle are simulated with a new dynamic modular model of a fusion reactor's fuel cycle, named X-TRUFFLES (X-Windows TRitiUm Fusion Fuel cycLE dynamic Simulation). The complex dynamic behavior of the recycled fuel within each of the modeled subsystems is investigated using this new integrated model for different reactor scenarios and design approaches. Results for a proposed fuel cycle design taking into account current technologies are presented, including sensitivity studies. Ways to minimize the tritium inventory are also assessed by examining various design options that could be used to minimize local and global tritium inventories. The second modeling approach involves an analytical model to be used for the calculation of the required tritium breeding ratio, i.e., a primary design issue which relates directly to the feasibility and economics of DT fusion systems. A time-integrated global tritium balance scheme is developed and appropriate analytical expressions are derived for tritium self-sufficiency relevant parameters. The easy exploration of the large parameter space of the fusion fuel cycle can thus be conducted as opposed to previous modeling approaches. Future guidance for R&D (research and development) in fusion nuclear technology is discussed in view of possible routes to take in reducing the tritium breeding requirements of DT fusion reactors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kasten, P.R.; Coobs, J.H.; Lotts, A.L.
1976-04-01
Progress is summarized in studies relating to HTGR fuel reprocessing, refabrication, and recycle; HTGR fuel materials development and performance testing; HTGR PCRV development; HTGR materials investigations; HTGR fuel chemistry; HTGR safety studies; and GCFR irradiation experiments and steam generator modeling.
Code of Federal Regulations, 2011 CFR
2011-07-01
... commonly used in heavy-duty engine evaluation. The EDS for heavy-duty diesel engines is specified in 40 CFR part 86, appendix I(f)(2). Evaporative Emission Generator (EEG) means a fuel tank or vessel to which...-fueled vehicles, Otto cycle methanol-fueled vehicles, diesel cycle diesel-fueled vehicles, and diesel...
Code of Federal Regulations, 2010 CFR
2010-07-01
... commonly used in heavy-duty engine evaluation. The EDS for heavy-duty diesel engines is specified in 40 CFR part 86, appendix I(f)(2). Evaporative Emission Generator (EEG) means a fuel tank or vessel to which...-fueled vehicles, Otto cycle methanol-fueled vehicles, diesel cycle diesel-fueled vehicles, and diesel...
Potential External (non-DOE) Constraints on U.S. Fuel Cycle Options
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steven J. Piet
2012-07-01
The DOE Fuel Cycle Technologies (FCT) Program will be conducting a screening of fuel cycle options in FY2013 to help focus fuel cycle R&D activities. As part of this screening, performance criteria and go/no-go criteria are being identified. To help ensure that these criteria are consistent with current policy, an effort was initiated to identify the status and basis of potentially relevant regulations, laws, and policies that have been established external to DOE. As such regulations, laws, and policies may be beyond DOE’s control to change, they may constrain the screening criteria and internally-developed policy. This report contains a historicalmore » survey and analysis of publically available domestic documents that could pertain to external constraints on advanced nuclear fuel cycles. “External” is defined as public documents outside DOE. This effort did not include survey and analysis of constraints established internal to DOE.« less
40 CFR 600.209-08 - Calculation of vehicle-specific 5-cycle fuel economy values for a model type.
Code of Federal Regulations, 2013 CFR
2013-07-01
... intended for sale at high altitude, the Administrator may use fuel economy data from tests conducted on... from the tests performed using gasoline or diesel test fuel. (ii) If 5-cycle testing was performed on the alcohol or natural gas test fuel, calculate the city and highway fuel economy values from the...
40 CFR 600.209-08 - Calculation of vehicle-specific 5-cycle fuel economy values for a model type.
Code of Federal Regulations, 2012 CFR
2012-07-01
... intended for sale at high altitude, the Administrator may use fuel economy data from tests conducted on... from the tests performed using gasoline or diesel test fuel. (ii) If 5-cycle testing was performed on the alcohol or natural gas test fuel, calculate the city and highway fuel economy values from the...
40 CFR 600.209-08 - Calculation of vehicle-specific 5-cycle fuel economy values for a model type.
Code of Federal Regulations, 2011 CFR
2011-07-01
... vehicle configuration 5-cycle fuel economy values as determined in § 600.207-08 for low-altitude tests. (1... economy data from tests conducted on these vehicle configuration(s) at high altitude to calculate the fuel... city and highway fuel economy values from the tests performed using gasoline or diesel test fuel. (ii...
ORNL experience and perspectives related to processing of thorium and 233U for nuclear fuel
Croff, Allen G.; Collins, Emory D.; Del Cul, G. D.; ...
2016-05-01
Thorium-based nuclear fuel cycles have received renewed attention in both research and public circles since about the year 2000. Much of the attention has been focused on nuclear fission energy production that utilizes thorium as a fertile element for producing fissionable 233U for recycle in thermal reactors, fast reactors, or externally driven systems. Here, lesser attention has been paid to other fuel cycle operations that are necessary for implementation of a sustainable thorium-based fuel cycle such as reprocessing and fabrication of recycle fuels containing 233U.
DEMONSTRATION OF POTENTIAL FOR SELECTIVE CATALYTIC REDUCTION AND DIESEL PARTICULATE FILTERS
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGILL,R; KHAIR, M; SHARP, C
2003-08-24
This project addresses the potential for Selective Catalytic Reduction (SCR) devices (using urea as reductant) together with Diesel Particulate Filters (DPF) and low-pressure loop exhaust gas recirculation (EGR) to achieve future stringent emissions standards for heavy-duty engines powering Class 8 vehicles. Two emission control systems consisting of the three technologies (EGR, SCR, and DPF) were calibrated on a Caterpillar C-12 heavy-duty diesel engine. Results of these calibrations showed good promise in meeting the 2010 heavy-duty emission standards as set forth by the Environmental Protection Agency (EPA). These two emission control systems were developed to evaluate a series of fuels thatmore » have similar formulations except for their sulfur content. Additionally, one fuel, code-named BP15, was also evaluated. This fuel was prepared by processing straight-run distillate stocks through a commercial, single stage hydrotreater employing high activity catalyst at maximum severity. An additional goal of this program is to provide data for an on-going EPA technology review that evaluates progress toward meeting 2007/2010 emission standards. These emissions levels were to be achieved not only on the transient test cycles but in other modes of operation such as the steady-state Euro-III style emission test known as the OICA (Organisation Internationale des Compagnies d'Automobiles) or the ESC (European Stationary Cycle). Additionally, hydrocarbon and carbon monoxide emissions standards are to be met.« less
Effect on combined cycle efficiency of stack gas temperature constraints to avoid acid corrosion
NASA Technical Reports Server (NTRS)
Nainiger, J. J.
1980-01-01
To avoid condensation of sulfuric acid in the gas turbine exhaust when burning fuel oils contaning sulfur, the exhaust stack temperature and cold-end heat exchanger surfaces must be kept above the condensation temperature. Raising the exhaust stack temperature, however, results in lower combined cycle efficiency compared to that achievable by a combined cycle burning a sulfur-free fuel. The maximum difference in efficiency between the use of sulfur-free and fuels containing 0.8 percent sulfur is found to be less than one percentage point. The effect of using a ceramic thermal barrier coating (TBC) and a fuel containing sulfur is also evaluated. The combined-cycle efficiency gain using a TBC with a fuel containing sulfur compared to a sulfur-free fuel without TBC is 0.6 to 1.0 percentage points with air-cooled gas turbines and 1.6 to 1.8 percentage points with water-cooled gas turbines.
NASA Technical Reports Server (NTRS)
Eisenberg, J. D.
1977-01-01
The effect on fuel consumption of turbofans with intercooled, regenerative cycles and with intercooled, regenerative, reheat cycles was studied. The technology level for both engine and aircraft was that projected for 1985. The simulated mission was a 5556 km flight carrying 200 passengers at Mach 0.8 at 11582 min. Results indicate that these relatively complex cycles offer little, if any, fuel savings potential relative to a conventional turbofan cycle of comparable advanced technology. The intercooled, regenerative cycle yields about the same fuel economy as a conventional cycle at close to the same overall pressure ratio.
Promising Fuel Cycle Options for R&D – Results, Insights, and Future Directions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wigeland, Roald Arnold
2015-05-01
The Fuel Cycle Options (FCO) campaign in the U.S. DOE Fuel Cycle Research & Development Program conducted a detailed evaluation and screening of nuclear fuel cycles. The process for this study was described at the 2014 ICAPP meeting. This paper reports on detailed insights and questions from the results of the study. The comprehensive study identified continuous recycle in fast reactors as the most promising option, using either U/Pu or U/TRU recycle, and potentially in combination with thermal reactors, as reported at the ICAPP 2014 meeting. This paper describes the examination of the results in detail that indicated that theremore » was essentially no difference in benefit between U/Pu and U/TRU recycle, prompting questions about the desirability of pursuing the more complex U/TRU approach given that the estimated greater challenges for development and deployment. The results will be reported from the current effort that further explores what, if any, benefits of TRU recycle (minor actinides in addition to plutonium recycle) may be in order to inform decisions on future R&D directions. The study also identified continuous recycle using thorium-based fuel cycles as potentially promising, in either fast or thermal systems, but with lesser benefit. Detailed examination of these results indicated that the lesser benefit was confined to only a few of the evaluation metrics, identifying the conditions under which thorium-based fuel cycles would be promising to pursue. For the most promising fuel cycles, the FCO is also conducting analyses on the potential transition to such fuel cycles to identify the issues, challenges, and the timing for critical decisions that would need to be made to avoid unnecessary delay in deployment, including investigation of issues such as the effects of a temporary lack of plutonium fuel resources or supporting infrastructure. These studies are placed in the context of an overall analysis approach designed to provide comprehensive information to the decision-making process.« less
Hybrid life-cycle assessment of natural gas based fuel chains for transportation.
Strømman, Anders Hammer; Solli, Christian; Hertwich, Edgar G
2006-04-15
This research compares the use of natural gas, methanol, and hydrogen as transportation fuels. These three fuel chains start with the extraction and processing of natural gas in the Norwegian North Sea and end with final use in Central Europe. The end use is passenger transportation with a sub-compact car that has an internal combustion engine for the natural gas case and a fuel cell for the methanol and hydrogen cases. The life cycle assessment is performed by combining a process based life-cycle inventory with economic input-output data. The analysis shows that the potential climate impacts are lowest for the hydrogen fuel scenario with CO2 deposition. The hydrogen fuel chain scenario has no significant environmental disadvantage compared to the other fuel chains. Detailed analysis shows that the construction of the car contributes significantly to most impact categories. Finally, it is shown how the application of a hybrid inventory model ensures a more complete inventory description compared to standard process-based life-cycle assessment. This is particularly significant for car construction which would have been significantly underestimated in this study using standard process life-cycle assessment alone.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-10
... processes are more akin to fuel cycle processes. This framework was established in the 1970's to license the... nuclear power globally and close the nuclear fuel cycle through reprocessing spent fuel and deploying fast... Accounting;'' and a Nuclear Energy Institute white [[Page 34009
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hagen, K.G.
1975-06-01
The report describes the development status of a heart assist system driven by a nuclear fueled, electronically controlled vapor cycle engine termed the tidal regenerator engine (TRE). The TRE pressurization (typically from 5-160 psia) is controlled by a torque motor coupled to a displacer. The electrical power for the sensor, electronic logic and actuator is provided by a thermoelectric module interposed between the engine superheater and boiler. The TRE is direct coupled to an assist blood pump which also acts as a blood-cooled heat exchanger, pressure-volume transformer and sensor for the electronic logic. Engine efficiencies in excess of 14% havemore » been demonstrated. Efficiency values as high as 13% have been achieved to date.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forsberg, C.; Miller, W.F.
2013-07-01
The historical repository siting strategy in the United States has been a top-down approach driven by federal government decision making but it has been a failure. This policy has led to dispatching fuel cycle facilities in different states. The U.S. government is now considering an alternative repository siting strategy based on voluntary agreements with state governments. If that occurs, state governments become key decision makers. They have different priorities. Those priorities may change the characteristics of the repository and the fuel cycle. State government priorities, when considering hosting a repository, are safety, financial incentives and jobs. It follows that statesmore » will demand that a repository be the center of the back end of the fuel cycle as a condition of hosting it. For example, states will push for collocation of transportation services, safeguards training, and navy/private SNF (Spent Nuclear Fuel) inspection at the repository site. Such activities would more than double local employment relative to what was planned for the Yucca Mountain-type repository. States may demand (1) the right to take future title of the SNF so if recycle became economic the reprocessing plant would be built at the repository site and (2) the right of a certain fraction of the repository capacity for foreign SNF. That would open the future option of leasing of fuel to foreign utilities with disposal of the SNF in the repository but with the state-government condition that the front-end fuel-cycle enrichment and fuel fabrication facilities be located in that state.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lindley, Benjamin A.; Parks, Geoffrey T.; Franceschini, Fausto
Multiple recycle of long-lived actinides has the potential to greatly reduce the required storage time for spent nuclear fuel or high level nuclear waste. This is generally thought to require fast reactors as most transuranic (TRU) isotopes have low fission probabilities in thermal reactors. Reduced-moderation LWRs are a potential alternative to fast reactors with reduced time to deployment as they are based on commercially mature LWR technology. Thorium (Th) fuel is neutronically advantageous for TRU multiple recycle in LWRs due to a large improvement in the void coefficient. If Th fuel is used in reduced-moderation LWRs, it appears neutronically feasiblemore » to achieve full actinide recycle while burning an external supply of TRU, with related potential improvements in waste management and fuel utilization. In this paper, the fuel cycle of TRU-bearing Th fuel is analysed for reduced-moderation PWRs and BWRs (RMPWRs and RBWRs). RMPWRs have the advantage of relatively rapid implementation and intrinsically low conversion ratios. However, it is challenging to simultaneously satisfy operational and fuel cycle constraints. An RBWR may potentially take longer to implement than an RMPWR due to more extensive changes from current BWR technology. However, the harder neutron spectrum can lead to favourable fuel cycle performance. A two-stage fuel cycle, where the first pass is Th-Pu MOX, is a technically reasonable implementation of either concept. The first stage of the fuel cycle can therefore be implemented at relatively low cost as a Pu disposal option, with a further policy option of full recycle in the medium term. (authors)« less
The life cycle assessment of alternative fuel chains for urban buses and trolleybuses.
Kliucininkas, L; Matulevicius, J; Martuzevicius, D
2012-05-30
This paper describes a comparative analysis of public transport alternatives in the city of Kaunas, Lithuania. An LCA (Life Cycle Assessment) inventory analysis of fuel chains was undertaken using the midi urban bus and a similar type of trolleybus. The inventory analysis of fuel chains followed the guidelines provided by the ISO 14040 and ISO 14044 standards. The ReCiPe Life Cycle Impact Assessment (LCIA) methodology was used to quantify weighted damage originating from five alternative fuel chains. The compressed biogas fuel chain had the lowest weighted damage value, namely 45.7 mPt/km, whereas weighted damage values of the fuel chains based on electricity generation for trolleybuses were 60.6 mPt/km (for natural gas) and 78.9 mPt/km (for heavy fuel oil). The diesel and compressed natural gas fuel chains exhibited considerably higher damage values of 114.2 mPt/km and 132.6 mPt/km, respectively. The comparative life cycle assessment of fuel chains suggested that biogas-powered buses and electric trolleybuses can be considered as the best alternatives to use when modernizing the public transport fleet in Kaunas. Copyright © 2012 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franceschini, F.; Lahoda, E. J.; Kucukboyaci, V. N.
2012-07-01
The efforts to reduce fuel cycle cost have driven LWR fuel close to the licensed limit in fuel fissile content, 5.0 wt% U-235 enrichment, and the acceptable duty on current Zr-based cladding. An increase in the fuel enrichment beyond the 5 wt% limit, while certainly possible, entails costly investment in infrastructure and licensing. As a possible way to offset some of these costs, the addition of small amounts of Erbia to the UO{sub 2} powder with >5 wt% U-235 has been proposed, so that its initial reactivity is reduced to that of licensed fuel and most modifications to the existingmore » facilities and equipment could be avoided. This paper discusses the potentialities of such a fuel on the US market from a vendor's perspective. An analysis of the in-core behavior and fuel cycle performance of a typical 4-loop PWR with 18 and 24-month operating cycles has been conducted, with the aim of quantifying the potential economic advantage and other operational benefits of this concept. Subsequently, the implications on fuel manufacturing and storage are discussed. While this concept has certainly good potential, a compelling case for its short-term introduction as PWR fuel for the US market could not be determined. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roser, R.
1998-08-01
NRG Technologies, Inc. is attempting to develop hardware and infrastructure that will allow mixtures of hydrogen and conventional fuels to become viable alternatives to conventional fuels alone. This commercialization can be successful if the authors are able to achieve exhaust emission levels of less than 0.03 g/kw-hr NOx and CO; and 0.15 g/kw-hr NMHC at full engine power without the use of exhaust catalysts. The major barriers to achieving these goals are that the lean burn regimes required to meet exhaust emissions goals reduce engine output substantially and tend to exhibit higher-than-normal total hydrocarbon emissions. Also, hydrogen addition to conventionalmore » fuels increases fuel cost, and reduces both vehicle range and engine output power. Maintaining low emissions during transient driving cycles has not been demonstrated. A three year test plan has been developed to perform the investigations into the issues described above. During this initial year of funding research has progressed in the following areas: (a) a cost effective single-cylinder research platform was constructed; (b) exhaust gas speciation was performed to characterize the nature of hydrocarbon emissions from hydrogen-enriched natural gas fuels; (c) three H{sub 2}/CH{sub 4} fuel compositions were analyzed using spark timing and equivalence ratio sweeping procedures and finally; (d) a full size pick-up truck platform was converted to run on HCNG fuels. The testing performed in year one of the three year plan represents a baseline from which to assess options for overcoming the stated barriers to success.« less
Experimental evaluation of thermal ratcheting behavior in UO2 fuel elements
NASA Technical Reports Server (NTRS)
Phillips, W. M.
1973-01-01
The effects of thermal cycling of UO2 at high temperatures has been experimentally evaluated to determine the rates of distortion of UO2/clad fuel elements. Two capsules were rested in the 1500 C range, one with a 50 C thermal cycle, the other with a 100 C thermal cycle. It was observed that eight hours at the lower cycle temperature produced sufficient UO2 redistribution to cause clad distortion. The amount of distortion produced by the 100 C cycle was less than double that produced by the 50 C, indicating smaller thermal cycles would result in clad distortion. An incubation period was observed to occur before the onset of distortion with cycling similar to fuel swelling observed in-pile at these temperatures.
Potential impacts of Brayton and Stirling cycle engines
NASA Astrophysics Data System (ADS)
Heft, R. C.
1980-11-01
Two engine technologies (Brayton cycle and Stirling cycle) are examined for their potential economic impact and fuel utilization. An economic analysis of the expected response of buyers to the attributes of the alternative engines was performed. Hedonic coefficients for vehicle fuel efficiency, performance and size were estimated for domestic cars based upon historical data. The marketplace value of the fuel efficiency enhancement provided by Brayton or Stirling engines was estimated. Under the assumptions of 10 years for plant conversions and 1990 and 1995 as the introduction data for turbine and Stirling engines respectively, the comparative fuel savings and present value of the future savings in fuel costs were estimated.
Potential impacts of Brayton and Stirling cycle engines
NASA Technical Reports Server (NTRS)
Heft, R. C.
1980-01-01
Two engine technologies (Brayton cycle and Stirling cycle) are examined for their potential economic impact and fuel utilization. An economic analysis of the expected response of buyers to the attributes of the alternative engines was performed. Hedonic coefficients for vehicle fuel efficiency, performance and size were estimated for domestic cars based upon historical data. The marketplace value of the fuel efficiency enhancement provided by Brayton or Stirling engines was estimated. Under the assumptions of 10 years for plant conversions and 1990 and 1995 as the introduction data for turbine and Stirling engines respectively, the comparative fuel savings and present value of the future savings in fuel costs were estimated.
Fuel-cycle emissions for conventional and alternative fuel vehicles : an assessment of air toxics
DOT National Transportation Integrated Search
2000-08-01
This report provides information on recent efforts to use the Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) fuel-cycle model to estimate air toxics emissions. GREET, developed at Argonne National Laboratory, currentl...
Solid oxide fuel cell power plant having a bootstrap start-up system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lines, Michael T
The bootstrap start-up system (42) achieves an efficient start-up of the power plant (10) that minimizes formation of soot within a reformed hydrogen rich fuel. A burner (48) receives un-reformed fuel directly from the fuel supply (30) and combusts the fuel to heat cathode air which then heats an electrolyte (24) within the fuel cell (12). A dilute hydrogen forming gas (68) cycles through a sealed heat-cycling loop (66) to transfer heat and generated steam from an anode side (32) of the electrolyte (24) through fuel processing system (36) components (38, 40) and back to an anode flow field (26)more » until fuel processing system components (38, 40) achieve predetermined optimal temperatures and steam content. Then, the heat-cycling loop (66) is unsealed and the un-reformed fuel is admitted into the fuel processing system (36) and anode flow (26) field to commence ordinary operation of the power plant (10).« less
Standardized verification of fuel cycle modeling
Feng, B.; Dixon, B.; Sunny, E.; ...
2016-04-05
A nuclear fuel cycle systems modeling and code-to-code comparison effort was coordinated across multiple national laboratories to verify the tools needed to perform fuel cycle analyses of the transition from a once-through nuclear fuel cycle to a sustainable potential future fuel cycle. For this verification study, a simplified example transition scenario was developed to serve as a test case for the four systems codes involved (DYMOND, VISION, ORION, and MARKAL), each used by a different laboratory participant. In addition, all participants produced spreadsheet solutions for the test case to check all the mass flows and reactor/facility profiles on a year-by-yearmore » basis throughout the simulation period. The test case specifications describe a transition from the current US fleet of light water reactors to a future fleet of sodium-cooled fast reactors that continuously recycle transuranic elements as fuel. After several initial coordinated modeling and calculation attempts, it was revealed that most of the differences in code results were not due to different code algorithms or calculation approaches, but due to different interpretations of the input specifications among the analysts. Therefore, the specifications for the test case itself were iteratively updated to remove ambiguity and to help calibrate interpretations. In addition, a few corrections and modifications were made to the codes as well, which led to excellent agreement between all codes and spreadsheets for this test case. Although no fuel cycle transition analysis codes matched the spreadsheet results exactly, all remaining differences in the results were due to fundamental differences in code structure and/or were thoroughly explained. As a result, the specifications and example results are provided so that they can be used to verify additional codes in the future for such fuel cycle transition scenarios.« less
Evaluation of isotopic composition of fast reactor core in closed nuclear fuel cycle
NASA Astrophysics Data System (ADS)
Tikhomirov, Georgy; Ternovykh, Mikhail; Saldikov, Ivan; Fomichenko, Peter; Gerasimov, Alexander
2017-09-01
The strategy of the development of nuclear power in Russia provides for use of fast power reactors in closed nuclear fuel cycle. The PRORYV (i.e. «Breakthrough» in Russian) project is currently under development. Within the framework of this project, fast reactors BN-1200 and BREST-OD-300 should be built to, inter alia, demonstrate possibility of the closed nuclear fuel cycle technologies with plutonium as a main source of energy. Russia has a large inventory of plutonium which was accumulated in the result of reprocessing of spent fuel of thermal power reactors and conversion of nuclear weapons. This kind of plutonium will be used for development of initial fuel assemblies for fast reactors. The closed nuclear fuel cycle concept of the PRORYV assumes self-supplied mode of operation with fuel regeneration by neutron capture reaction in non-enriched uranium, which is used as a raw material. Operating modes of reactors and its characteristics should be chosen so as to provide the self-sufficient mode by using of fissile isotopes while refueling by depleted uranium and to support this state during the entire period of reactor operation. Thus, the actual issue is modeling fuel handling processes. To solve these problems, the code REPRORYV (Recycle for PRORYV) has been developed. It simulates nuclide streams in non-reactor stages of the closed fuel cycle. At the same time various verified codes can be used to evaluate in-core characteristics of a reactor. By using this approach various options for nuclide streams and assess the impact of different plutonium content in the fuel, fuel processing conditions, losses during fuel processing, as well as the impact of initial uncertainties on neutron-physical characteristics of reactor are considered in this study.
Code of Federal Regulations, 2012 CFR
2012-07-01
... city and highway fuel economy and CO2 emission values from the tests performed using gasoline or diesel test fuel. (ii) If 5-cycle testing was performed on the alcohol or natural gas test fuel, calculate the city and highway fuel economy and CO2 emission values from the tests performed using alcohol or natural...
Code of Federal Regulations, 2014 CFR
2014-07-01
... city and highway fuel economy and CO2 emission values from the tests performed using gasoline or diesel test fuel. (ii) If 5-cycle testing was performed on the alcohol or natural gas test fuel, calculate the city and highway fuel economy and CO2 emission values from the tests performed using alcohol or natural...
Code of Federal Regulations, 2013 CFR
2013-07-01
... city and highway fuel economy and CO2 emission values from the tests performed using gasoline or diesel test fuel. (ii) If 5-cycle testing was performed on the alcohol or natural gas test fuel, calculate the city and highway fuel economy and CO2 emission values from the tests performed using alcohol or natural...
40 CFR 600.114-08 - Vehicle-specific 5-cycle fuel economy calculations.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Vehicle-specific 5-cycle fuel economy calculations. 600.114-08 Section 600.114-08 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy Regulations for 1978 and Later Model Yea...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 31 2012-07-01 2012-07-01 false Vehicle-specific 5-cycle fuel economy... Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy and Carbon-Related Exhaust Emission Test Procedures § 600.114-08...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 30 2011-07-01 2011-07-01 false Vehicle-specific 5-cycle fuel economy... Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy and Carbon-Related Exhaust Emission Regulations for 1978 and Later...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 31 2013-07-01 2013-07-01 false Vehicle-specific 5-cycle fuel economy... Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy and Carbon-Related Exhaust Emission Test Procedures § 600.114-12...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 31 2012-07-01 2012-07-01 false Vehicle-specific 5-cycle fuel economy... Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy and Carbon-Related Exhaust Emission Test Procedures § 600.114-12...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 31 2013-07-01 2013-07-01 false Vehicle-specific 5-cycle fuel economy... Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy and Carbon-Related Exhaust Emission Test Procedures § 600.114-08...
Advanced Fuels Campaign FY 2014 Accomplishments Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Braase, Lori; May, W. Edgar
The mission of the Advanced Fuels Campaign (AFC) is to perform Research, Development, and Demonstration (RD&D) activities for advanced fuel forms (including cladding) to enhance the performance and safety of the nation’s current and future reactors; enhance proliferation resistance of nuclear fuel; effectively utilize nuclear energy resources; and address the longer-term waste management challenges. This includes development of a state-of-the art Research and Development (R&D) infrastructure to support the use of a “goal-oriented science-based approach.” In support of the Fuel Cycle Research and Development (FCRD) program, AFC is responsible for developing advanced fuels technologies to support the various fuel cyclemore » options defined in the Department of Energy (DOE) Nuclear Energy Research and Development Roadmap, Report to Congress, April 2010. AFC uses a “goal-oriented, science-based approach” aimed at a fundamental understanding of fuel and cladding fabrication methods and performance under irradiation, enabling the pursuit of multiple fuel forms for future fuel cycle options. This approach includes fundamental experiments, theory, and advanced modeling and simulation. The modeling and simulation activities for fuel performance are carried out under the Nuclear Energy Advanced Modeling and Simulation (NEAMS) program, which is closely coordinated with AFC. In this report, the word “fuel” is used generically to include fuels, targets, and their associated cladding materials. R&D of light water reactor (LWR) fuels with enhanced accident tolerance is also conducted by AFC. These fuel systems are designed to achieve significantly higher fuel and plant performance to allow operation to significantly higher burnup, and to provide enhanced safety during design basis and beyond design basis accident conditions. The overarching goal is to develop advanced nuclear fuels and materials that are robust, have high performance capability, and are more tolerant to accident conditions than traditional fuel systems. AFC management and integration activities included continued support for international collaborations, primarily with France, Japan, the European Union, Republic of Korea, and China, as well as various working group and expert group activities in the Organization for Economic Cooperation and Development Nuclear Energy Agency (OECD-NEA) and the International Atomic Energy Agency (IAEA). Three industry-led Funding Opportunity Announcements (FOAs) and two university-led Integrated Research Projects (IRPs), funded in 2013, made significant progress in fuels and materials development. All are closely integrated with AFC and Accident Tolerant Fuels (ATF) research. Accomplishments made during fiscal year (FY) 2014 are highlighted in this report, which focuses on completed work and results. The process details leading up to the results are not included; however, the lead technical contact is provided for each section.« less
Simulation on reactor TRIGA Puspati core kinetics fueled with thorium (Th) based fuel element
NASA Astrophysics Data System (ADS)
Mohammed, Abdul Aziz; Pauzi, Anas Muhamad; Rahman, Shaik Mohmmed Haikhal Abdul; Zin, Muhamad Rawi Muhammad; Jamro, Rafhayudi; Idris, Faridah Mohamad
2016-01-01
In confronting global energy requirement and the search for better technologies, there is a real case for widening the range of potential variations in the design of nuclear power plants. Smaller and simpler reactors are attractive, provided they can meet safety and security standards and non-proliferation issues. On fuel cycle aspect, thorium fuel cycles produce much less plutonium and other radioactive transuranic elements than uranium fuel cycles. Although not fissile itself, Th-232 will absorb slow neutrons to produce uranium-233 (233U), which is fissile. By introducing Thorium, the numbers of highly enriched uranium fuel element can be reduced while maintaining the core neutronic performance. This paper describes the core kinetic of a small research reactor core like TRIGA fueled with a Th filled fuel element matrix using a general purpose Monte Carlo N-Particle (MCNP) code.
Simulation on reactor TRIGA Puspati core kinetics fueled with thorium (Th) based fuel element
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohammed, Abdul Aziz, E-mail: azizM@uniten.edu.my; Rahman, Shaik Mohmmed Haikhal Abdul; Pauzi, Anas Muhamad, E-mail: anas@uniten.edu.my
2016-01-22
In confronting global energy requirement and the search for better technologies, there is a real case for widening the range of potential variations in the design of nuclear power plants. Smaller and simpler reactors are attractive, provided they can meet safety and security standards and non-proliferation issues. On fuel cycle aspect, thorium fuel cycles produce much less plutonium and other radioactive transuranic elements than uranium fuel cycles. Although not fissile itself, Th-232 will absorb slow neutrons to produce uranium-233 ({sup 233}U), which is fissile. By introducing Thorium, the numbers of highly enriched uranium fuel element can be reduced while maintainingmore » the core neutronic performance. This paper describes the core kinetic of a small research reactor core like TRIGA fueled with a Th filled fuel element matrix using a general purpose Monte Carlo N-Particle (MCNP) code.« less
Curran, Scott J.; Gao, Zhiming; Wagner, Robert M.
2014-12-22
In-cylinder blending of gasoline and diesel to achieve reactivity-controlled compression ignition has been shown to reduce NO X and soot emissions while maintaining or improving brake thermal efficiency as compared with conventional diesel combustion. The reactivity-controlled compression ignition concept has an advantage over many advanced combustion strategies in that the fuel reactivity can be tailored to the engine speed and load, allowing stable low-temperature combustion to be extended over more of the light-duty drive cycle load range. In this paper, a multi-mode reactivity-controlled compression ignition strategy is employed where the engine switches from reactivity-controlled compression ignition to conventional diesel combustionmore » when speed and load demand are outside of the experimentally determined reactivity-controlled compression ignition range. The potential for reactivity-controlled compression ignition to reduce drive cycle fuel economy and emissions is not clearly understood and is explored here by simulating the fuel economy and emissions for a multi-mode reactivity-controlled compression ignition–enabled vehicle operating over a variety of US drive cycles using experimental engine maps for multi-mode reactivity-controlled compression ignition, conventional diesel combustion, and a 2009 port-fuel injected gasoline engine. Drive cycle simulations are completed assuming a conventional mid-size passenger vehicle with an automatic transmission. Multi-mode reactivity-controlled compression ignition fuel economy simulation results are compared with the same vehicle powered by a representative 2009 port-fuel injected gasoline engine over multiple drive cycles. Finally, engine-out drive cycle emissions are compared with conventional diesel combustion, and observations regarding relative gasoline and diesel tank sizes needed for the various drive cycles are also summarized.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brett W Carlsen; Urairisa Phathanapirom; Eric Schneider
2013-07-01
FEFC processes, unlike many of the proposed fuel cycles and technologies under consideration, involve mature operational processes presently in use at a number of facilities worldwide. This report identifies significant impacts resulting from these current FEFC processes and activities. Impacts considered to be significant are those that may be helpful in differentiating between fuel cycle performance and for which the FEFC impact is not negligible relative to those from the remainder of the full fuel cycle. This report: • Defines ‘representative’ processes that typify impacts associated with each step of the FEFC, • Establishes a framework and architecture for rollingmore » up impacts into normalized measures that can be scaled to quantify their contribution to the total impacts associated with various fuel cycles, and • Develops and documents the bases for estimates of the impacts and costs associated with each of the representative FEFC processes.« less
Consolidated fuel reprocessing program
NASA Astrophysics Data System (ADS)
1985-04-01
A survey of electrochemical methods applications in fuel reprocessing was completed. A dummy fuel assembly shroud was cut using the remotely operated laser disassembly equipment. Operations and engineering efforts have continued to correct equipment operating, software, and procedural problems experienced during the previous uranium compaigns. Fuel cycle options were examined for the liquid metal reactor fuel cycle. In high temperature gas cooled reactor spent fuel studies, preconceptual designs were completed for the concrete storage cask and open field drywell storage concept. These and other tasks operating under the consolidated fuel reprocessing program are examined.
40 CFR 86.336-79 - Diesel engine test cycle.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Diesel engine test cycle. 86.336-79... New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.336-79 Diesel engine test cycle. (a) The following 13-mode cycle shall be followed in dynamometer operation...
Market-Based and System-Wide Fuel Cycle Optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, Paul Philip Hood; Scopatz, Anthony; Gidden, Matthew
This work introduces automated optimization into fuel cycle simulations in the Cyclus platform. This includes system-level optimizations, seeking a deployment plan that optimizes the performance over the entire transition, and market-level optimization, seeking an optimal set of material trades at each time step. These concepts were introduced in a way that preserves the flexibility of the Cyclus fuel cycle framework, one of its most important design principles.
NASA Astrophysics Data System (ADS)
Lin, R.; Xiong, F.; Tang, W. C.; Técher, L.; Zhang, J. M.; Ma, J. X.
2014-08-01
Durability is one of the most important limiting factors for the commercialization of proton exchange membrane fuel cell (PEMFC). Fuel cells are more vulnerable to degradation under operating conditions as dynamic load cycle or start up/shut down. The purpose of this study is to evaluate influences of driving cycles on the durability of fuel cells through analyzing the degradation mechanism of a segmented cell in real time. This study demonstrates that the performance of the fuel cell significantly decreases after 200 cycles. The segmented cell technology is used to measure the local current density distribution, which shows that the current density at the exit region and the inlet region declines much faster than the other parts. Meanwhile, electro-chemical impedance spectroscopy (EIS) reveals that after 200 cycles the ohmic resistance of fuel cell increases, especially at the cathode, and electro-chemical surface area (ESA) decreases from 392 to 307 cm2 mg-1. Furthermore, scanning electron microscopy (SEM) images of the membrane-electrode assembly (MEA) in cross-section demonstrate crackle flaw on the surface of the catalyst layer and the delamination of the electrodes from the membrane. Transmission electron microscope (TEM) results also show that the Pt particle size increases distinctly after driving cycles.
Recent advances in nanostructured Nb-based oxides for electrochemical energy storage
NASA Astrophysics Data System (ADS)
Yan, Litao; Rui, Xianhong; Chen, Gen; Xu, Weichuan; Zou, Guifu; Luo, Hongmei
2016-04-01
For the past five years, nanostructured niobium-based oxides have emerged as one of the most prominent materials for batteries, supercapacitors, and fuel cell technologies, for instance, TiNb2O7 as an anode for lithium-ion batteries (LIBs), Nb2O5 as an electrode for supercapacitors (SCs), and niobium-based oxides as chemically stable electrochemical supports for fuel cells. Their high potential window can prevent the formation of lithium dendrites, and their rich redox chemistry (Nb5+/Nb4+, Nb4+/Nb3+) makes them very promising electrode materials. Their unique chemical stability under acid conditions is favorable for practical fuel-cell operation. In this review, we summarized recent progress made concerning the use of niobium-based oxides as electrodes for batteries (LIBs, sodium-ion batteries (SIBs), and vanadium redox flow batteries (VRBs)), SCs, and fuel cell applications. Moreover, crystal structures, charge storage mechanisms in different crystal structures, and electrochemical performances in terms of the specific capacitance/capacity, rate capability, and cycling stability of niobium-based oxides are discussed. Insights into the future research and development of niobium-based oxide compounds for next-generation electrochemical devices are also presented. We believe that this review will be beneficial for research scientists and graduate students who are searching for promising electrode materials for batteries, SCs, and fuel cells.
Recent advances in nanostructured Nb-based oxides for electrochemical energy storage.
Yan, Litao; Rui, Xianhong; Chen, Gen; Xu, Weichuan; Zou, Guifu; Luo, Hongmei
2016-04-28
For the past five years, nanostructured niobium-based oxides have emerged as one of the most prominent materials for batteries, supercapacitors, and fuel cell technologies, for instance, TiNb2O7 as an anode for lithium-ion batteries (LIBs), Nb2O5 as an electrode for supercapacitors (SCs), and niobium-based oxides as chemically stable electrochemical supports for fuel cells. Their high potential window can prevent the formation of lithium dendrites, and their rich redox chemistry (Nb(5+)/Nb(4+), Nb(4+)/Nb(3+)) makes them very promising electrode materials. Their unique chemical stability under acid conditions is favorable for practical fuel-cell operation. In this review, we summarized recent progress made concerning the use of niobium-based oxides as electrodes for batteries (LIBs, sodium-ion batteries (SIBs), and vanadium redox flow batteries (VRBs)), SCs, and fuel cell applications. Moreover, crystal structures, charge storage mechanisms in different crystal structures, and electrochemical performances in terms of the specific capacitance/capacity, rate capability, and cycling stability of niobium-based oxides are discussed. Insights into the future research and development of niobium-based oxide compounds for next-generation electrochemical devices are also presented. We believe that this review will be beneficial for research scientists and graduate students who are searching for promising electrode materials for batteries, SCs, and fuel cells.
The JRC-ITU approach to the safety of advanced nuclear fuel cycles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fanghaenel, T.; Rondinella, V.V.; Somers, J.
2013-07-01
The JRC-ITU safety studies of advanced fuels and cycles adopt two main axes. First the full exploitation of still available and highly relevant knowledge and samples from past fuel preparation and irradiation campaigns (complementing the limited number of ongoing programmes). Secondly, the shift of focus from simple property measurement towards the understanding of basic mechanisms determining property evolution and behaviour of fuel compounds during normal, off-normal and accident conditions. The final objective of the second axis is the determination of predictive tools applicable to systems and conditions different from those from which they were derived. State of the art experimentalmore » facilities, extensive networks of partnerships and collaboration with other organizations worldwide, and a developing programme for training and education are essential in this approach. This strategy has been implemented through various programs and projects. The SUPERFACT programme constitutes the main body of existing knowledge on the behavior in-pile of MOX fuel containing minor actinides. It encompassed all steps of a closed fuel cycle. Another international project investigating the safety of a closed cycle is METAPHIX. In this case a U-Pu19-Zr10 metal alloy containing Np, Am and Cm constitutes the fuel. 9 test pins have been prepared and irradiated. In addition to the PIE (Post Irradiation Examination), pyrometallurgical separation of the irradiated fuel has been performed, to demonstrate all the steps of a multiple recycling closed cycle and characterize their safety relevant aspects. Basic studies like thermodynamic fuel properties, fuel-cladding-coolant interactions have also been carried out at JRC-ITU.« less
Advanced Thermally Stable Coal-Based Jet Fuels
2008-02-01
of hydrotreated refined chemical oil derived jet fuels in the pyrolytic regime. Preprints of Papers-American Chemical Society Division of Fuel...hydrogenation of a mixture of light cycle oil and refined chemical oil met or exceeded all but four JP-8 specifications. The fuel has excellent low-temperature...mixture of light cycle oil and refined chemical oil met or exceeded all but four JP-8 specifications. The fuel has excellent low-temperature viscosity
DOT National Transportation Integrated Search
2011-12-20
This report presents the results of the successful ethanol fuel demonstration program conducted from September 2007 to September 2010. This project was a part of the U.S. Department of Transportation (DOT) Alternative Fuels and Life Cycle Engineering...
Stratton, Russell W; Wolfe, Philip J; Hileman, James I
2011-12-15
Alternative fuels represent a potential option for reducing the climate impacts of the aviation sector. The climate impacts of alternatives fuel are traditionally considered as a ratio of life cycle greenhouse gas (GHG) emissions to those of the displaced petroleum product; however, this ignores the climate impacts of the non-CO(2) combustion effects from aircraft in the upper atmosphere. The results of this study show that including non-CO(2) combustion emissions and effects in the life cycle of a Synthetic Paraffinic Kerosene (SPK) fuel can lead to a decrease in the relative merit of the SPK fuel relative to conventional jet fuel. For example, an SPK fuel option with zero life cycle GHG emissions would offer a 100% reduction in GHG emissions but only a 48% reduction in actual climate impact using a 100-year time window and the nominal climate modeling assumption set outlined herein. Therefore, climate change mitigation policies for aviation that rely exclusively on relative well-to-wake life cycle GHG emissions as a proxy for aviation climate impact may overestimate the benefit of alternative fuel use on the global climate system.
An analysis of international nuclear fuel supply options
NASA Astrophysics Data System (ADS)
Taylor, J'tia Patrice
As the global demand for energy grows, many nations are considering developing or increasing nuclear capacity as a viable, long-term power source. To assess the possible expansion of nuclear power and the intricate relationships---which cover the range of economics, security, and material supply and demand---between established and aspirant nuclear generating entities requires models and system analysis tools that integrate all aspects of the nuclear enterprise. Computational tools and methods now exist across diverse research areas, such as operations research and nuclear engineering, to develop such a tool. This dissertation aims to develop methodologies and employ and expand on existing sources to develop a multipurpose tool to analyze international nuclear fuel supply options. The dissertation is comprised of two distinct components: the development of the Material, Economics, and Proliferation Assessment Tool (MEPAT), and analysis of fuel cycle scenarios using the tool. Development of MEPAT is aimed for unrestricted distribution and therefore uses publicly available and open-source codes in its development when possible. MEPAT is built using the Powersim Studio platform that is widely used in systems analysis. MEPAT development is divided into three modules focusing on: material movement; nonproliferation; and economics. The material movement module tracks material quantity in each process of the fuel cycle and in each nuclear program with respect to ownership, location and composition. The material movement module builds on techniques employed by fuel cycle models such as the Verifiable Fuel Cycle Simulation (VISION) code developed at the Idaho National Laboratory under the Advanced Fuel Cycle Initiative (AFCI) for the analysis of domestic fuel cycle. Material movement parameters such as lending and reactor preference, as well as fuel cycle parameters such as process times and material factors are user-specified through a Microsoft Excel(c) data spreadsheet. The material movement module is the largest of the three, and the two other modules that assess nonproliferation and economics of the options are dependent on its output. Proliferation resistance measures from literature are modified and incorporated in MEPAT. The module to assess the nonproliferation of the supply options allows the user to specify defining attributes for the fuel cycle processes, and determines significant quantities of materials as well as measures of proliferation resistance. The measure is dependent on user-input and material information. The economics module allows the user to specify costs associated with different processes and other aspects of the fuel cycle. The simulation tool then calculates economic measures that relate the cost of the fuel cycle to electricity production. The second part of this dissertation consists of an examination of four scenarios of fuel supply option using MEPAT. The first is a simple scenario illustrating the modules and basic functions of MEPAT. The second scenario recreates a fuel supply study reported earlier in literature, and compares MEPAT results with those reported earlier for validation. The third, and a rather realistic, scenario includes four nuclear programs with one program entering the nuclear energy market. The fourth scenario assesses the reactor options available to the Hashemite Kingdom of Jordan, which is currently assessing available options to introduce nuclear power in the country. The methodology developed and implemented in MEPAT to analyze the material, proliferation and economics of nuclear fuel supply options is expected to help simplify and assess different reactor and fuel options available to utilities, government agencies and international organizations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelly, Jarod C.; Sullivan, John L.; Burnham, Andrew
This study examines the vehicle-cycle impacts associated with substituting lightweight materials for those currently found in light-duty passenger vehicles. We determine part-based energy use and greenhouse gas (GHG) emission ratios by collecting material substitution data from both the literature and automotive experts and evaluating that alongside known mass-based energy use and GHG emission ratios associated with material pair substitutions. Several vehicle parts, along with full vehicle systems, are examined for lightweighting via material substitution to observe the associated impact on GHG emissions. Results are contextualized by additionally examining fuel-cycle GHG reductions associated with mass reductions relative to the baseline vehiclemore » during the use phase and also determining material pair breakeven driving distances for GHG emissions. The findings show that, while material substitution is useful in reducing vehicle weight, it often increases vehicle-cycle GHGs depending upon the material substitution pair. However, for a vehicle’s total life cycle, fuel economy benefits are greater than the increased burdens associated with the vehicle manufacturing cycle, resulting in a net total life-cycle GHG benefit. The vehicle cycle will become increasingly important in total vehicle life-cycle GHGs, since fuel-cycle GHGs will be gradually reduced as automakers ramp up vehicle efficiency to meet fuel economy standards.« less
Fuel Sustainability And Actinide Production Of Doping Minor Actinide In Water-Cooled Thorium Reactor
NASA Astrophysics Data System (ADS)
Permana, Sidik
2017-07-01
Fuel sustainability of nuclear energy is coming from an optimum fuel utilization of the reactor and fuel breeding program. Fuel cycle option becomes more important for fuel cycle utilization as well as fuel sustainability capability of the reactor. One of the important issues for recycle fuel option is nuclear proliferation resistance issue due to production plutonium. To reduce the proliferation resistance level, some barriers were used such as matrial barrier of nuclear fuel based on isotopic composition of even mass number of plutonium isotope. Analysis on nuclear fuel sustainability and actinide production composition based on water-cooled thorium reactor system has been done and all actinide composition are recycled into the reactor as a basic fuel cycle scheme. Some important parameters are evaluated such as doping composition of minor actinide (MA) and volume ratio of moderator to fuel (MFR). Some feasible parameters of breeding gains have been obtained by additional MA doping and some less moderation to fuel ratios (MFR). The system shows that plutonium and MA are obtained low compositions and it obtains some higher productions of even mass plutonium, which is mainly Pu-238 composition, as a control material to protect plutonium to be used as explosive devices.
40 CFR 86.1801-12 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Complete Otto-Cycle Heavy-Duty Vehicles § 86.1801-12 Applicability. (a) Applicability. Except as otherwise... passenger vehicles, and Otto-cycle complete heavy-duty vehicles, including multi-fueled, alternative fueled... Otto-cycle heavy-duty vehicles. (c) Optional applicability. (1) [Reserved] (2) A manufacturer may...
NASA Technical Reports Server (NTRS)
Lansing, F. L.
1977-01-01
Various configurations combining solar-Rankine and fuel-Brayton cycles were analyzed in order to find the arrangement which has the highest thermal efficiency and the smallest fuel share. A numerical example is given to evaluate both the thermodynamic performance and the economic feasibility of each configuration. The solar-assisted regenerative Rankine cycle was found to be leading the candidates from both points of energy utilization and fuel conservation.
Rapid methods for radionuclide contaminant transport in nuclear fuel cycle simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huff, Kathryn
Here, nuclear fuel cycle and nuclear waste disposal decisions are technologically coupled. However, current nuclear fuel cycle simulators lack dynamic repository performance analysis due to the computational burden of high-fidelity hydrolgic contaminant transport models. The Cyder disposal environment and repository module was developed to fill this gap. It implements medium-fidelity hydrologic radionuclide transport models to support assessment appropriate for fuel cycle simulation in the Cyclus fuel cycle simulator. Rapid modeling of hundreds of discrete waste packages in a geologic environment is enabled within this module by a suite of four closed form models for advective, dispersive, coupled, and idealized con-more » taminant transport: a Degradation Rate model, a Mixed Cell model, a Lumped Parameter model, and a 1-D Permeable Porous Medium model. A summary of the Cyder module, its timestepping algorithm, and the mathematical models implemented within it are presented. Additionally, parametric demonstrations simulations performed with Cyder are presented and shown to demonstrate functional agreement with parametric simulations conducted in a standalone hydrologic transport model, the Clay Generic Disposal System Model developed by the Used Fuel Disposition Campaign Department of Energy Office of Nuclear Energy.« less
NASA Astrophysics Data System (ADS)
Meriyanti, Su'ud, Zaki; Rijal, K.; Zuhair, Ferhat, A.; Sekimoto, H.
2010-06-01
In this study a fesibility design study of medium sized (1000 MWt) gas cooled fast reactors which can utilize natural uranium as fuel cycle input has been conducted. Gas Cooled Fast Reactor (GFR) is among six types of Generation IV Nuclear Power Plants. GFR with its hard neuron spectrum is superior for closed fuel cycle, and its ability to be operated in high temperature (850° C) makes various options of utilizations become possible. To obtain the capability of consuming natural uranium as fuel cycle input, modified CANDLE burn-up scheme[1-6] is adopted this GFR system by dividing the core into 10 parts of equal volume axially. Due to the limitation of thermal hydraulic aspects, the average power density of the proposed design is selected about 70 W/cc. As an optimization results, a design of 1000 MWt reactors which can be operated 10 years without refueling and fuel shuffling and just need natural uranium as fuel cycle input is discussed. The average discharge burn-up is about 280 GWd/ton HM. Enough margin for criticallity was obtained for this reactor.
Rapid methods for radionuclide contaminant transport in nuclear fuel cycle simulation
Huff, Kathryn
2017-08-01
Here, nuclear fuel cycle and nuclear waste disposal decisions are technologically coupled. However, current nuclear fuel cycle simulators lack dynamic repository performance analysis due to the computational burden of high-fidelity hydrolgic contaminant transport models. The Cyder disposal environment and repository module was developed to fill this gap. It implements medium-fidelity hydrologic radionuclide transport models to support assessment appropriate for fuel cycle simulation in the Cyclus fuel cycle simulator. Rapid modeling of hundreds of discrete waste packages in a geologic environment is enabled within this module by a suite of four closed form models for advective, dispersive, coupled, and idealized con-more » taminant transport: a Degradation Rate model, a Mixed Cell model, a Lumped Parameter model, and a 1-D Permeable Porous Medium model. A summary of the Cyder module, its timestepping algorithm, and the mathematical models implemented within it are presented. Additionally, parametric demonstrations simulations performed with Cyder are presented and shown to demonstrate functional agreement with parametric simulations conducted in a standalone hydrologic transport model, the Clay Generic Disposal System Model developed by the Used Fuel Disposition Campaign Department of Energy Office of Nuclear Energy.« less
Characterizing model uncertainties in the life cycle of lignocellulose-based ethanol fuels.
Spatari, Sabrina; MacLean, Heather L
2010-11-15
Renewable and low carbon fuel standards being developed at federal and state levels require an estimation of the life cycle carbon intensity (LCCI) of candidate fuels that can substitute for gasoline, such as second generation bioethanol. Estimating the LCCI of such fuels with a high degree of confidence requires the use of probabilistic methods to account for known sources of uncertainty. We construct life cycle models for the bioconversion of agricultural residue (corn stover) and energy crops (switchgrass) and explicitly examine uncertainty using Monte Carlo simulation. Using statistical methods to identify significant model variables from public data sets and Aspen Plus chemical process models,we estimate stochastic life cycle greenhouse gas (GHG) emissions for the two feedstocks combined with two promising fuel conversion technologies. The approach can be generalized to other biofuel systems. Our results show potentially high and uncertain GHG emissions for switchgrass-ethanol due to uncertain CO₂ flux from land use change and N₂O flux from N fertilizer. However, corn stover-ethanol,with its low-in-magnitude, tight-in-spread LCCI distribution, shows considerable promise for reducing life cycle GHG emissions relative to gasoline and corn-ethanol. Coproducts are important for reducing the LCCI of all ethanol fuels we examine.
Evaluation of solid oxide fuel cell systems for electricity generation
NASA Technical Reports Server (NTRS)
Somers, E. V.; Vidt, E. J.; Grimble, R. E.
1982-01-01
Air blown (low BTU) gasification with atmospheric pressure Solid Electrolyte Fuel Cells (SOFC) and Rankine bottoming cycle, oxygen blown (medium BTU) gasification with atmospheric pressure SOFC and Rankine bottoming cycle, air blown gasification with pressurized SOFC and combined Brayton/Rankine bottoming cycle, oxygen blown gasification with pressurized SOFC and combined Brayton/Rankine bottoming cycle were evaluated.
10 CFR 51.51 - Uranium fuel cycle environmental data-Table S-3.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Uranium fuel cycle environmental data-Table S-3. 51.51... cycle environmental data—Table S-3. (a) Under § 51.50, every environmental report prepared for the... Cycle Environmental Data, as the basis for evaluating the contribution of the environmental effects of...
Code of Federal Regulations, 2014 CFR
2014-07-01
... fossil- or other-fuel-fired combustion device used to produce heat and to transfer heat to recirculating... the sequential use of energy. Cogeneration unit means a stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine that is a topping-cycle unit or a bottoming-cycle unit: (1...
Code of Federal Regulations, 2012 CFR
2012-07-01
... fossil- or other-fuel-fired combustion device used to produce heat and to transfer heat to recirculating... the sequential use of energy. Cogeneration unit means a stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine that is a topping-cycle unit or a bottoming-cycle unit: (1...
Code of Federal Regulations, 2013 CFR
2013-07-01
... fossil- or other-fuel-fired combustion device used to produce heat and to transfer heat to recirculating... the sequential use of energy. Cogeneration unit means a stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine that is a topping-cycle unit or a bottoming-cycle unit: (1...
Impact of New Nuclear Data Libraries on Small Sized Long Life CANDLE HTGR Design Parameters
NASA Astrophysics Data System (ADS)
Liem, Peng Hong; Hartanto, Donny; Tran, Hoai Nam
2017-01-01
The impact of new evaluated nuclear data libraries (JENDL-4.0, ENDF/B-VII.0 and JEFF-3.1) on the core characteristics of small-sized long-life CANDLE High Temperature Gas-Cooled Reactors (HTGRs) with uranium and thorium fuel cycles was investigated. The most important parameters of the CANDLE core characteristics investigated here covered (1) infinite multiplication factor of the fresh fuel containing burnable poison, (2) the effective multiplication factor of the equilibrium core, (3) the moving velocity of the burning region, (4) the attained discharge burnup, and (5) the maximum power density. The reference case was taken from the current JENDL-3.3 results. For the uranium fuel cycle, the impact of the new libraries was small, while significant impact was found for thorium fuel cycle. The findings indicated the needs of more accurate nuclear data libraries for nuclides involved in thorium fuel cycle in the future.
Meta-analysis and Harmonization of Life Cycle Assessment Studies for Algae Biofuels.
Tu, Qingshi; Eckelman, Matthew; Zimmerman, Julie
2017-09-05
Algae biodiesel (BioD) and renewable diesel (RD) have been recognized as potential solutions to mitigating fossil-fuel consumption and the associated environmental issues. Life cycle assessment (LCA) has been used by many researchers to evaluate the potential environmental impacts of these algae-derived fuels, yielding a wide range of results and, in some cases, even differing on indicating whether these fuels are preferred to petroleum-derived fuels or not. This meta-analysis reviews the methodological preferences and results for energy consumption, greenhouse gas emissions, and water consumption for 54 LCA studies that considered algae BioD and RD. The significant variation in reported results can be primarily attributed to the difference in scope, assumptions, and data sources. To minimize the variation in life cycle inventory calculations, a harmonized inventory data set including both nominal and uncertainty data is calculated for each stage of the algae-derived fuel life cycle.
Thickness effects of yttria-doped ceria interlayers on solid oxide fuel cells
NASA Astrophysics Data System (ADS)
Fan, Zeng; An, Jihwan; Iancu, Andrei; Prinz, Fritz B.
2012-11-01
Determining the optimal thickness range of the interlayed yttria-doped ceria (YDC) films promises to further enhance the performance of solid oxide fuel cells (SOFCs) at low operating temperatures. The YDC interlayers are fabricated by the atomic layer deposition (ALD) method with one super cycle of the YDC deposition consisting of 6 ceria deposition cycles and one yttria deposition cycle. YDC films of various numbers of ALD super cycles, ranging from 2 to 35, are interlayered into bulk fuel cells with a 200 um thick yttria-stabilized zirconia (YSZ) electrolyte. Measurements and analysis of the linear sweep voltammetry of these fuel cells reveal that the performance of the given cells is maximized at 10 super cycles. Auger elemental mapping and X-ray photoelectron spectroscopy (XPS) techniques are employed to determine the film completeness, and they verify 10 super cycles of YDC to be the critical thickness point. This optimal YDC interlayer condition (6Ce1Y × 10 super cycles) is applied to the case of micro fuel cells as well, and the average performance enhancement factor is 1.4 at operating temperatures of 400 and 450 °C. A power density of 1.04 W cm-2 at 500 °C is also achieved with the optimal YDC recipe.
The myth of the ``proliferation-resistant'' closed nuclear fuel cycle
NASA Astrophysics Data System (ADS)
Lyman, Edwin S.
2000-07-01
National nuclear energy programs that engage in reprocessing of spent nuclear fuel (SNF) and the development of "closed" nuclear fuel cycles based on the utilization of plutonium process and store large quantities of weapons-usable nuclear materials in forms vulnerable to diversion or theft by national or subnational groups. Proliferation resistance, an idea dating back at least as far as the International Fuel Cycle Evaluation (INFCE) of the late 1970s, is a loosely defined term referring to processes for chemical separation of SNF that do not extract weapons-usable materials in a purified form.
CONSTRUCTION PROGRESS PHOTO SHOWING WEST STORAGE BASIN AT FUEL STORAGE ...
CONSTRUCTION PROGRESS PHOTO SHOWING WEST STORAGE BASIN AT FUEL STORAGE BUILDING (CPP-603). INL PHOTO NUMBER NRTS-51-689. Unknown Photographer, 1950 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID
Experimental and theoretical investigation of fatigue life in reusable rocket thrust chambers
NASA Technical Reports Server (NTRS)
Hannum, N. P.; Kasper, H. J.; Pavli, A. J.
1976-01-01
During a test program to investigate low-cycle thermal fatigue, 13 rocket combustion chambers were fabricated and cyclically test fired to failure. Six oxygen-free, high-conductivity (OFHC) copper and seven Amzirc chambers were tested. The chamber liners were fabricated of copper or copper alloy and contained milled coolant channels. The chambers were completed by means of an electroformed nickel closeout. The oxidant/fuel ratio for the liquid oxygen and gaseous hydrogen propellants was 6.0. The failures in the OFHC copper chambers were not typical fatigue failures but are described as creep rupture enhanced by ratcheting. The coolant channels bulged toward the chamber centerline, resulting in progressive thinning of the wall during each cycle. The failures in the Amzirc alloy chambers were caused by low-cycle thermal fatigue. The lives were much shorter than were predicted by an analytical structural analysis computer program used in conjunction with fatigue life data from isothermal test specimens, due to the uneven distribution of Zr in the chamber material.
Singh, Anoop; Pant, Deepak; Korres, Nicholas E; Nizami, Abdul-Sattar; Prasad, Shiv; Murphy, Jerry D
2010-07-01
Progressive depletion of conventional fossil fuels with increasing energy consumption and greenhouse gas (GHG) emissions have led to a move towards renewable and sustainable energy sources. Lignocellulosic biomass is available in massive quantities and provides enormous potential for bioethanol production. However, to ascertain optimal biofuel strategies, it is necessary to take into account environmental impacts from cradle to grave. Life cycle assessment (LCA) techniques allow detailed analysis of material and energy fluxes on regional and global scales. This includes indirect inputs to the production process and associated wastes and emissions, and the downstream fate of products in the future. At the same time if not used properly, LCA can lead to incorrect and inappropriate actions on the part of industry and/or policy makers. This paper aims to list key issues for quantifying the use of resources and releases to the environment associated with the entire life cycle of lignocellulosic bioethanol production. Copyright 2009 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Shmelev, A. N.; Kulikov, G. G.; Kurnaev, V. A.; Salahutdinov, G. H.; Kulikov, E. G.; Apse, V. A.
2015-12-01
Discussions are currently going on as to whether it is suitable to employ thorium in the nuclear fuel cycle. This work demonstrates that the 231Pa-232U-233U-Th composition to be produced in the thorium blanket of a hybrid thermonuclear reactor (HTR) as a fuel for light-water reactors opens up the possibility of achieving high, up to 30% of heavy metals (HM), or even ultrahigh fuel burnup. This is because the above fuel composition is able to stabilize its neutron-multiplying properties in the process of high fuel burnup. In addition, it allows the nuclear fuel cycle (NFC) to be better protected against unauthorized proliferation of fissile materials owing to an unprecedentedly large fraction of 232U (several percent!) in the uranium bred from the Th blanket, which will substantially hamper the use of fissile materials in a closed NFC for purposes other than power production.
A physical and economic model of the nuclear fuel cycle
NASA Astrophysics Data System (ADS)
Schneider, Erich Alfred
A model of the nuclear fuel cycle that is suitable for use in strategic planning and economic forecasting is presented. The model, to be made available as a stand-alone software package, requires only a small set of fuel cycle and reactor specific input parameters. Critical design criteria include ease of use by nonspecialists, suppression of errors to within a range dictated by unit cost uncertainties, and limitation of runtime to under one minute on a typical desktop computer. Collision probability approximations to the neutron transport equation that lead to a computationally efficient decoupling of the spatial and energy variables are presented and implemented. The energy dependent flux, governed by coupled integral equations, is treated by multigroup or continuous thermalization methods. The model's output includes a comprehensive nuclear materials flowchart that begins with ore requirements, calculates the buildup of 24 actinides as well as fission products, and concludes with spent fuel or reprocessed material composition. The costs, direct and hidden, of the fuel cycle under study are also computed. In addition to direct disposal and plutonium recycling strategies in current use, the model addresses hypothetical cycles. These include cycles chosen for minor actinide burning and for their low weapons-usable content.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fedorov, Y.S.; Bibichev, B.A.; Zilberman, B.Y.
2013-07-01
REMIX fuel consumption in WWER-1000 is considered. REMIX fuel is fabricated from non-separated mixture of uranium and plutonium obtained during NPP spent fuel reprocessing with further makeup by enriched natural uranium. It makes possible to recycle several times the total amount of uranium and plutonium obtained from spent fuel with 100% loading of the WWER-1000 core. The stored SNF could be also involved in REMIX fuel cycle by enrichment of regenerated uranium. The same approach could be applied to closing the fuel cycle of CANDU reactors. (authors)
NASA Astrophysics Data System (ADS)
Andrianova, E. A.; Tsibul'skiy, V. F.
2017-12-01
At present, 240 000 t of spent nuclear fuel (SF) has been accumulated in the world. Its long-term storage should meet safety conditions and requires noticeable finances, which grow every year. Obviously, this situation cannot exist for a long time; in the end, it will require a final decision. At present, several variants of solution of the problem of SF management are considered. Since most of the operating reactors and those under construction are thermal reactors, it is reasonable to assume that the structure of the nuclear power industry in the near and medium-term future will be unchanged, and it will be necessary to utilize plutonium in thermal reactors. In this study, different strategies of SF management are compared: open fuel cycle with long-term SF storage, closed fuel cycle with MOX fuel usage in thermal reactors and subsequent long-term storage of SF from MOX fuel, and closed fuel cycle in thermal reactors with heterogeneous fuel arrangement. The concept of heterogeneous fuel arrangement is considered in detail. While in the case of traditional fuel it is necessary to reprocess the whole amount of spent fuel, in the case of heterogeneous arrangement, it is possible to separate plutonium and 238U in different fuel rods. In this case, it is possible to achieve nearly complete burning of fissile isotopes of plutonium in fuel rods loaded with plutonium. These fuel rods with burned plutonium can be buried after cooling without reprocessing. They would contain just several percent of initially loaded plutonium, mainly even isotopes. Fuel rods with 238U alone should be reprocessed in the usual way.
40 CFR 600.209-08 - Calculation of vehicle-specific 5-cycle fuel economy values for a model type.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Calculation of vehicle-specific 5-cycle fuel economy values for a model type. 600.209-08 Section 600.209-08 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy Regulations fo...
40 CFR 600.109-08 - EPA driving cycles.
Code of Federal Regulations, 2012 CFR
2012-07-01
... ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy and Carbon-Related Exhaust....115 of this chapter. (b) The highway fuel economy driving cycle is specified in this paragraph. (1) The Highway Fuel Economy Driving Schedule is set forth in appendix I of this part. The driving...
40 CFR 600.109-08 - EPA driving cycles.
Code of Federal Regulations, 2013 CFR
2013-07-01
... ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy and Carbon-Related Exhaust....115 of this chapter. (b) The highway fuel economy driving cycle is specified in this paragraph. (1) The Highway Fuel Economy Driving Schedule is set forth in appendix I of this part. The driving...
PROCESS DEVELOPMENT QUARTERLY REPORT. II. PILOT PLANT WORK
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuhlman, N. ed.
1957-05-01
Progress is reported on the gross solubility of U in digestions of Mallinokrodt feed materials, studies of variables affecting U purity in a TBP hexane extraction cycle, low-acid flowsheet for TBP--hexane extraction process based on a 440 g U/liter in lM HNO/sub 3/ digest liquor, hacking studies in the pilot plant pumperdecanter system, recovery of U from residues from the dingot process, lowering the H level in dingot metal, forging of dingot bar stock, dingot extrusion, fubrication of UO/sub 2/ fuel elements, and the determination of H content of derby and ingot metal. (W.L.H.)
CONSTRUCTION PROGRESS PHOTO SHOWING FUEL STORAGE BUILDING (CPP603) LOOKING NORTHWEST. ...
CONSTRUCTION PROGRESS PHOTO SHOWING FUEL STORAGE BUILDING (CPP-603) LOOKING NORTHWEST. INL PHOTO NUMBER NRTS-50-895. Unknown Photographer, 10/30/1950 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID
Hult, Johan; Richter, Mattias; Nygren, Jenny; Aldén, Marcus; Hultqvist, Anders; Christensen, Magnus; Johansson, Bengt
2002-08-20
High-repetition-rate laser-induced fluorescence measurements of fuel and OH concentrations in internal combustion engines are demonstrated. Series of as many as eight fluorescence images, with a temporal resolution ranging from 10 micros to 1 ms, are acquired within one engine cycle. A multiple-laser system in combination with a multiple-CCD camera is used for cycle-resolved imaging in spark-ignition, direct-injection stratified-charge, and homogeneous-charge compression-ignition engines. The recorded data reveal unique information on cycle-to-cycle variations in fuel transport and combustion. Moreover, the imaging system in combination with a scanning mirror is used to perform instantaneous three-dimensional fuel-concentration measurements.
The Use of Thorium within the Nuclear Power Industry - 13472
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Keith
2013-07-01
Thorium is 3 to 4 times more abundant than uranium and is widely distributed in nature as an easily exploitable resource in many countries. Unlike natural uranium, which contains ∼0.7% fissile {sup 235}U isotope, natural thorium does not contain any fissile material and is made up of the fertile {sup 232}Th isotope only. Therefore thorium and thorium-based fuel as metal, oxide or carbide, has been utilized in combination with fissile {sup 235}U or {sup 239}Pu in nuclear research and power reactors for conversion to fissile {sup 233}U, thereby enlarging fissile material resources. During the pioneering years of nuclear energy, frommore » the mid 1950's to mid 1970's, there was considerable interest worldwide to develop thorium fuels and fuel cycles in order to supplement uranium reserves. Thorium fuels and fuel cycles are particularly relevant to countries having large thorium deposits but very limited uranium reserves for their long term nuclear power programme. The feasibility of thorium utilization in high temperature gas cooled reactors (HTGR), light water reactors (LWR), pressurized heavy water reactors (PHWRs), liquid metal cooled fast breeder reactors (LMFBR) and molten salt breeder reactors (MSBR) were demonstrated. The initial enthusiasm for thorium fuels and fuel cycles was not sustained among the developing countries later, due to new discovery of uranium deposits and their improved availability. However, in recent times, the need for proliferation-resistance, longer fuel cycles, higher burnup, and improved waste form characteristics, reduction of plutonium inventories and in situ use of bred-in fissile material has led to renewed interest in thorium-based fuels and fuel cycles. (authors)« less
A Non-Proliferating Fuel Cycle: No Enrichment, Reprocessing or Accessible Spent Fuel - 12375
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker, Frank L.
2012-07-01
Current fuel cycles offer a number of opportunities for access to plutonium, opportunities to create highly enriched uranium and access highly radioactive wastes to create nuclear weapons and 'dirty' bombs. The non-proliferating fuel cycle however eliminates or reduces such opportunities and access by eliminating the mining, milling and enrichment of uranium. The non-proliferating fuel cycle also reduces the production of plutonium per unit of energy created, eliminates reprocessing and the separation of plutonium from the spent fuel and the creation of a stream of high-level waste. It further simplifies the search for land based deep geologic repositories and interim storagemore » sites for spent fuel in the USA by disposing of the spent fuel in deep sub-seabed sediments after storing the spent fuel at U.S. Navy Nuclear Shipyards that have the space and all of the necessary equipment and security already in place. The non-proliferating fuel cycle also reduces transportation risks by utilizing barges for the collection of spent fuel and transport to the Navy shipyards and specially designed ships to take the spent fuel to designated disposal sites at sea and to dispose of them there in deep sub-seabed sediments. Disposal in the sub-seabed sediments practically eliminates human intrusion. Potential disposal sites include Great Meteor East and Southern Nares Abyssal Plain. Such sites then could easily become international disposal sites since they occur in the open ocean. It also reduces the level of human exposure in case of failure because of the large physical and chemical dilution and the elimination of a major pathway to man-seawater is not potable. Of course, the recovery of uranium from sea water and the disposal of spent fuel in sub-seabed sediments must be proven on an industrial scale. All other technologies are already operating on an industrial scale. If externalities, such as reduced terrorist threats, environmental damage (including embedded emissions), long term care, reduced access to 'dirty' bomb materials, the social and political costs of siting new facilities and the psychological impact of no solution to the nuclear waste problem, were taken into account, the costs would be far lower than those of the present fuel cycle. (authors)« less
Multiple recycle of REMIX fuel at VVER-1000 operation in closed fuel cycle
NASA Astrophysics Data System (ADS)
Alekseev, P. N.; Bobrov, E. A.; Chibinyaev, A. V.; Teplov, P. S.; Dudnikov, A. A.
2015-12-01
The basic features of loading the VVER-1000 core with a new variant of REMIX fuel (REgenerated MIXture of U-Pu oxides) are considered during its multiple recycle in a closed nuclear fuel cycle. The fuel composition is produced on the basis of the uranium-plutonium regenerate extracted at processing the spent nuclear fuel (SNF) from a VVER-1000, depleted uranium, and the fissionable material: 235U as a part of highly enriched uranium (HEU) from warheads superfluous for defense purposes or 233U accumulated in thorium blankets of fusion (electronuclear) neutron sources or fast reactors. Production of such a fuel assumes no use of natural uranium in addition. When converting a part of the VVER-1000 reactors to the closed fuel cycle based on the REMIX technology, the consumption of natural uranium decreases considerably, and there is no substantial degradation of the isotopic composition of plutonium or change in the reactor-safety characteristics at the passage from recycle to recycle.
Multiple recycle of REMIX fuel at VVER-1000 operation in closed fuel cycle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alekseev, P. N.; Bobrov, E. A., E-mail: evgeniybobrov89@rambler.ru; Chibinyaev, A. V.
2015-12-15
The basic features of loading the VVER-1000 core with a new variant of REMIX fuel (REgenerated MIXture of U–Pu oxides) are considered during its multiple recycle in a closed nuclear fuel cycle. The fuel composition is produced on the basis of the uranium–plutonium regenerate extracted at processing the spent nuclear fuel (SNF) from a VVER-1000, depleted uranium, and the fissionable material: {sup 235}U as a part of highly enriched uranium (HEU) from warheads superfluous for defense purposes or {sup 233}U accumulated in thorium blankets of fusion (electronuclear) neutron sources or fast reactors. Production of such a fuel assumes no usemore » of natural uranium in addition. When converting a part of the VVER-1000 reactors to the closed fuel cycle based on the REMIX technology, the consumption of natural uranium decreases considerably, and there is no substantial degradation of the isotopic composition of plutonium or change in the reactor-safety characteristics at the passage from recycle to recycle.« less
NASA Astrophysics Data System (ADS)
Pehl, Michaja; Arvesen, Anders; Humpenöder, Florian; Popp, Alexander; Hertwich, Edgar G.; Luderer, Gunnar
2017-12-01
Both fossil-fuel and non-fossil-fuel power technologies induce life-cycle greenhouse gas emissions, mainly due to their embodied energy requirements for construction and operation, and upstream CH4 emissions. Here, we integrate prospective life-cycle assessment with global integrated energy-economy-land-use-climate modelling to explore life-cycle emissions of future low-carbon power supply systems and implications for technology choice. Future per-unit life-cycle emissions differ substantially across technologies. For a climate protection scenario, we project life-cycle emissions from fossil fuel carbon capture and sequestration plants of 78-110 gCO2eq kWh-1, compared with 3.5-12 gCO2eq kWh-1 for nuclear, wind and solar power for 2050. Life-cycle emissions from hydropower and bioenergy are substantial (˜100 gCO2eq kWh-1), but highly uncertain. We find that cumulative emissions attributable to upscaling low-carbon power other than hydropower are small compared with direct sectoral fossil fuel emissions and the total carbon budget. Fully considering life-cycle greenhouse gas emissions has only modest effects on the scale and structure of power production in cost-optimal mitigation scenarios.
Advanced Fuel Cycles for Fusion Reactors: Passive Safety and Zero-Waste Options
NASA Astrophysics Data System (ADS)
Zucchetti, Massimo; Sugiyama, Linda E.
2006-05-01
Nuclear fusion is seen as a much ''cleaner'' energy source than fission. Most of the studies and experiments on nuclear fusion are currently devoted to the Deuterium-Tritium (DT) fuel cycle, since it is the easiest way to reach ignition. The recent stress on safety by the world's community has stimulated the research on other fuel cycles than the DT one, based on 'advanced' reactions, such as the Deuterium-Helium-3 (DHe) one. These reactions pose problems, such as the availability of 3He and the attainment of the higher plasma parameters that are required for burning. However, they have many advantages, like for instance the very low neutron activation, while it is unnecessary to breed and fuel tritium. The extrapolation of Ignitor technologies towards a larger and more powerful experiment using advanced fuel cycles (Candor) has been studied. Results show that Candor does reach the passive safety and zero-waste option. A fusion power reactor based on the DHe cycle could be the ultimate response to the environmental requirements for future nuclear power plants.
Ecodesign of Liquid Fuel Tanks
NASA Astrophysics Data System (ADS)
Gicevska, Jana; Bazbauers, Gatis; Repele, Mara
2011-01-01
The subject of the study is a 10 litre liquid fuel tank made of metal and used for fuel storage and transportation. The study dealt with separate life cycle stages of this product, compared environmental impacts of similar fuel tanks made of metal and plastic, as well as analysed the product's end-of-life cycle stage, studying the waste treatment and disposal scenarios. The aim of this study was to find opportunities for improvement and to develop proposals for the ecodesign of 10 litre liquid fuel tank.
NASA Astrophysics Data System (ADS)
Vislov, I. S.; Pischulin, V. P.; Kladiev, S. N.; Slobodyan, S. M.
2016-08-01
The state and trends in the development of nuclear fuel cycles in nuclear engineering, taking into account the ecological aspects of using nuclear power plants, are considered. An analysis of advantages and disadvantages of nuclear engineering, compared with thermal engineering based on organic fuel types, was carried out. Spent nuclear fuel (SNF) reprocessing is an important task in the nuclear industry, since fuel unloaded from modern reactors of any type contains a large amount of radioactive elements that are harmful to the environment. On the other hand, the newly generated isotopes of uranium and plutonium should be reused to fabricate new nuclear fuel. The spent nuclear fuel also includes other types of fission products. Conditions for SNF handling are determined by ecological and economic factors. When choosing a certain handling method, one should assess these factors at all stages of its implementation. There are two main methods of SNF handling: open nuclear fuel cycle, with spent nuclear fuel assemblies (NFAs) that are held in storage facilities with their consequent disposal, and closed nuclear fuel cycle, with separation of uranium and plutonium, their purification from fission products, and use for producing new fuel batches. The development of effective closed fuel cycles using mixed uranium-plutonium fuel can provide a successful development of the nuclear industry only under the conditions of implementation of novel effective technological treatment processes that meet strict requirements of environmental safety and reliability of process equipment being applied. The diversity of technological processes is determined by different types of NFA devices and construction materials being used, as well as by the composition that depends on nuclear fuel components and operational conditions for assemblies in the nuclear power reactor. This work provides an overview of technological processes of SNF treatment and methods of handling of nuclear fuel assemblies. Based on analysis of modern engineering solutions on SNF regeneration, it has been concluded that new reprocessing technologies should meet the ecological safety requirements, provide a more extensive use of the resource base of nuclear engineering, allow the production of valuable and trace elements on an industrial scale, and decrease radioactive waste release.
CONSTRUCTION PROGRESS PHOTO SHOWING EMPLACEMENT STEEL BEAMS FUEL STORAGE BUILDING ...
CONSTRUCTION PROGRESS PHOTO SHOWING EMPLACEMENT STEEL BEAMS FUEL STORAGE BUILDING (CPP-603) LOOKING EAST. INL PHOTO NUMBER NRTS-51-1371. Unknown Photographer, 1/31/1951 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID
Luk, Jason M; Kim, Hyung Chul; De Kleine, Robert; Wallington, Timothy J; MacLean, Heather L
2017-08-01
The literature analyzing the fuel saving, life cycle greenhouse gas (GHG) emission, and ownership cost impacts of lightweighting vehicles with different powertrains is reviewed. Vehicles with lower powertrain efficiencies have higher fuel consumption. Thus, fuel savings from lightweighting internal combustion engine vehicles can be higher than those of hybrid electric and battery electric vehicles. However, the impact of fuel savings on life cycle costs and GHG emissions depends on fuel prices, fuel carbon intensities and fuel storage requirements. Battery electric vehicle fuel savings enable reduction of battery size without sacrificing driving range. This reduces the battery production cost and mass, the latter results in further fuel savings. The carbon intensity of electricity varies widely and is a major source of uncertainty when evaluating the benefits of fuel savings. Hybrid electric vehicles use gasoline more efficiently than internal combustion engine vehicles and do not require large plug-in batteries. Therefore, the benefits of lightweighting depend on the vehicle powertrain. We discuss the value proposition of the use of lightweight materials and alternative powertrains. Future assessments of the benefits of vehicle lightweighting should capture the unique characteristics of emerging vehicle powertrains.
The Carbon Cycle: Implications for Climate Change and Congress
2008-03-13
burning of fossil fuels, deforestation , and other land use activities, have significantly altered the carbon cycle. As a result, atmospheric...80% of human-related CO2 emissions results from fossil fuel combustion, and 20% from land use change (primarily deforestation ). Fossil fuel burning...warming the planet. At present, the oceans and land surface are acting as sinks for CO2 emitted from fossil fuel combustion and deforestation , but
OSPREY Model Development Status Update
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veronica J Rutledge
2014-04-01
During the processing of used nuclear fuel, volatile radionuclides will be discharged to the atmosphere if no recovery processes are in place to limit their release. The volatile radionuclides of concern are 3H, 14C, 85Kr, and 129I. Methods are being developed, via adsorption and absorption unit operations, to capture these radionuclides. It is necessary to model these unit operations to aid in the evaluation of technologies and in the future development of an advanced used nuclear fuel processing plant. A collaboration between Fuel Cycle Research and Development Offgas Sigma Team member INL and a NEUP grant including ORNL, Syracuse University,more » and Georgia Institute of Technology has been formed to develop off gas models and support off gas research. Georgia Institute of Technology is developing fundamental level model to describe the equilibrium and kinetics of the adsorption process, which are to be integrated with OSPREY. This report discusses the progress made on expanding OSPREY to be multiple component and the integration of macroscale and microscale level models. Also included in this report is a brief OSPREY user guide.« less
NASA Astrophysics Data System (ADS)
Mason, Thomas J.; Millichamp, Jason; Neville, Tobias P.; El-kharouf, Ahmad; Pollet, Bruno G.; Brett, Daniel J. L.
2012-12-01
This paper describes the use of an in situ analytical technique based on simultaneous displacement and resistance measurement of gas diffusion layers (GDLs) used in polymer electrolyte fuel cells (PEFCs), when exposed to varying compaction pressure. In terms of the losses within fuel cells, the ohmic loss makes up a significant portion. Of this loss, the contact resistance between the GDL and the bipolar plate (BPP) is an important constituent. By analysing the change in thickness and ohmic resistance of GDLs under compression, important mechanical and electrical properties are obtained. Derived parameters such as the 'displacement factor' are used to characterise a representative range of commercial GDLs. Increasing compaction pressure leads to a non-linear decrease in resistance for all GDLs. For Toray paper, compaction becomes more irreversible with pressure with no elastic region observed. Different GDLs have different intrinsic resistance; however, all GDLs of the same class share a common compaction profile (change in resistance with pressure). Cyclic compression of Toray GDL leads to progressive improvement in resistance and reduction in thickness that stabilises after ∼10 cycles.
LIFE CYCLE BASED STUDIES ON BIOETHANOL FUEL FOR SUSTAINABLE TRANSPORTATION: A LITERATURE REVIEW
A literature search was conducted and revealed 45 publications (1996-2005) that compare bio-ethanol systems to conventional fuel on a life-cycle basis, or using life cycle assessment. Feedstocks, such as sugar beets, wheat, potato, sugar cane, and corn, have been investigated in...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Eric C. D.; Talmadge, Michael; Dutta, Abhijit
Conversion technologies for biomass to liquid hydrocarbon fuels are being actively developed. Converting biomass into advanced hydrocarbon fuels requires detailed assessments to help prioritize research; techno-economic analysis (TEA) is a long established tool used to assess feasibility and progress. TEA provides information needed to make informed judgments about the viability of any given conceptual conversion process; it is particularly useful to identify technical barriers and measure progress toward overcoming those barriers. Expansion of the cellulosic biofuels industry at the scale needed to meet the Renewable Fuel Standard goals is also expected to have environmental impacts. Hence, the success of themore » biofuels industry depends not only on economic viability, but also on environmental sustainability. A biorefinery process that is economically feasible but suffers from key sustainability drawbacks is not likely to represent a long-term solution to replace fossil-derived fuels. Overarching concerns like environmental sustainability need to be addressed for biofuels production. Combined TEA and environmental sustainability assessment of emerging pathways helps facilitate biorefinery designs that are both economically feasible and minimally impactful to the environment. This study focuses on environmental sustainability assessment and techno-economic analysis for the production of high-octane gasoline blendstock via gasification and methanol/dimethyl ether intermediates. Results from the conceptual process design with economic analysis, along with the quantification and assessment of the environmental sustainability, are presented and discussed. Sustainability metrics associated with the production of high-octane gasoline include carbon conversion efficiency, consumptive water use, life-cycle greenhouse gas emissions, fossil energy consumption, energy return on investment and net energy value.« less
40 CFR 86.1403 - Abbreviations.
Code of Federal Regulations, 2010 CFR
2010-07-01
... EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for New Gasoline-Fueled Otto-Cycle Light-Duty Vehicles and New Gasoline-Fueled Otto-Cycle Light-Duty Trucks; Certification...
Code of Federal Regulations, 2010 CFR
2010-07-01
... EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for New Gasoline-Fueled Otto-Cycle Light-Duty Vehicles and New Gasoline-Fueled Otto-Cycle Light-Duty Trucks; Certification...
Code of Federal Regulations, 2010 CFR
2010-07-01
... EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for New Gasoline-Fueled Otto-Cycle Light-Duty Vehicles and New Gasoline-Fueled Otto-Cycle Light-Duty Trucks; Certification...
Alternative Fuels Data Center: Idle Reduction Research and Development
researchers at Argonne National Laboratory completed their analysis of the full fuel-cycle effects of idle Laboratory analyzed the full fuel-cycle effects of current idle reduction technologies. Researchers compared , electrified parking spaces, APUs, and several combinations of these. They compared effects for the United
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 30 2014-07-01 2014-07-01 false Vehicle-specific 5-cycle fuel economy and carbon-related exhaust emission calculations. 600.114-12 Section 600.114-12 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sleaford, B W; Collins, B A; Ebbinghaus, B B
2010-04-26
This paper examines the attractiveness of material mixtures containing special nuclear materials (SNM) associated with reprocessing and the thorium-based LWR fuel cycle. This paper expands upon the results from earlier studies that examined the attractiveness of SNM associated with the reprocessing of spent light water reactor (LWR) fuel by various reprocessing schemes and the recycle of plutonium as a mixed oxide (MOX) fuel in LWR. This study shows that {sup 233}U that is produced in thorium-based fuel cycles is very attractive for weapons use. Consistent with other studies, these results also show that all fuel cycles examined to date needmore » to be rigorously safeguarded and provided moderate to high levels of physical protection. These studies were performed at the request of the United States Department of Energy (DOE), and are based on the calculation of 'attractiveness levels' that has been couched in terms chosen for consistency with those normally used for nuclear materials in DOE nuclear facilities. The methodology and key findings will be presented.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sleaford, Brad W.; Ebbinghaus, B. B.; Bradley, Keith S.
2010-06-11
This paper examines the attractiveness of material mixtures containing special nuclear materials (SNM) associated with reprocessing and the thorium-based LWR fuel cycle. This paper expands upon the results from earlier studies [ , ] that examined the attractiveness of SNM associated with the reprocessing of spent light water reactor (LWR) fuel by various reprocessing schemes and the recycle of plutonium as a mixed oxide (MOX) fuel in LWR. This study shows that 233U that is produced in thorium-based fuel cycles is very attractive for weapons use. Consistent with other studies, these results also show that all fuel cycles examined tomore » date need to be rigorously safeguarded and provided moderate to high levels of physical protection. These studies were performed at the request of the United States Department of Energy (DOE), and are based on the calculation of "attractiveness levels" that has been couched in terms chosen for consistency with those normally used for nuclear materials in DOE nuclear facilities [ ]. The methodology and key findings will be presented.« less
Heat exchangers in regenerative gas turbine cycles
NASA Astrophysics Data System (ADS)
Nina, M. N. R.; Aguas, M. P. N.
1985-09-01
Advances in compact heat exchanger design and fabrication together with fuel cost rises continuously improve the attractability of regenerative gas turbine helicopter engines. In this study cycle parameters aiming at reduced specific fuel consumption and increased payload or mission range, have been optimized together with heat exchanger type and size. The discussion is based on a typical mission for an attack helicopter in the 900 kw power class. A range of heat exchangers is studied to define the most favorable geometry in terms of lower fuel consumption and minimum engine plus fuel weight. Heat exchanger volume, frontal area ratio and pressure drop effect on cycle efficiency are considered.
3 CFR - Improving Energy Security, American Competitiveness and Job Creation, and Environmental...
Code of Federal Regulations, 2011 CFR
2011-01-01
... source of fossil fuel consumption and greenhouse gas pollution. I therefore request that the... annual progress in reducing transportation sector emissions and fossil fuel consumption consistent with... substantial annual progress in reducing transportation sector greenhouse gas emissions and fossil fuel...
Gaseous fuel reactors for power systems
NASA Technical Reports Server (NTRS)
Kendall, J. S.; Rodgers, R. J.
1977-01-01
Gaseous-fuel nuclear reactors have significant advantages as energy sources for closed-cycle power systems. The advantages arise from the removal of temperature limits associated with conventional reactor fuel elements, the wide variety of methods of extracting energy from fissioning gases, and inherent low fissile and fission product in-core inventory due to continuous fuel reprocessing. Example power cycles and their general performance characteristics are discussed. Efficiencies of gaseous fuel reactor systems are shown to be high with resulting minimal environmental effects. A technical overview of the NASA-funded research program in gaseous fuel reactors is described and results of recent tests of uranium hexafluoride (UF6)-fueled critical assemblies are presented.
Zhai, Haibo; Frey, H Christopher; Rouphail, Nagui M; Gonçalves, Gonçalo A; Farias, Tiago L
2009-08-01
The objective of this research is to evaluate differences in fuel consumption and tailpipe emissions of flexible fuel vehicles (FFVs) operated on ethanol 85 (E85) versus gasoline. Theoretical ratios of fuel consumption and carbon dioxide (CO2) emissions for both fuels are estimated based on the same amount of energy released. Second-by-second fuel consumption and emissions from one FFV Ford Focus fueled with E85 and gasoline were measured under real-world traffic conditions in Lisbon, Portugal, using a portable emissions measurement system (PEMS). Cycle average dynamometer fuel consumption and emission test results for FFVs are available from the U.S. Department of Energy, and emissions certification test results for ethanol-fueled vehicles are available from the U.S. Environmental Protection Agency. On the basis of the PEMS data, vehicle-specific power (VSP)-based modal average fuel and emission rates for both fuels are estimated. For E85 versus gasoline, empirical ratios of fuel consumption and CO2 emissions agree within a margin of error to the theoretical expectations. Carbon monoxide (CO) emissions were found to be typically lower. From the PEMS data, nitric oxide (NO) emissions associated with some higher VSP modes are higher for E85. From the dynamometer and certification data, average hydrocarbon (HC) and nitrogen oxides (NOx) emission differences vary depending on the vehicle. The differences of average E85 versus gasoline emission rates for all vehicle models are -22% for CO, 12% for HC, and -8% for NOx emissions, which imply that replacing gasoline with E85 reduces CO emissions, may moderately decrease NOx tailpipe emissions, and may increase HC tailpipe emissions. On a fuel life cycle basis for corn-based ethanol versus gasoline, CO emissions are estimated to decrease by 18%. Life-cycle total and fossil CO2 emissions are estimated to decrease by 25 and 50%, respectively; however, life-cycle HC and NOx emissions are estimated to increase by 18 and 82%, respectively.
Analysis of a topping-cycle, aircraft, gas-turbine-engine system which uses cryogenic fuel
NASA Technical Reports Server (NTRS)
Turney, G. E.; Fishbach, L. H.
1984-01-01
A topping-cycle aircraft engine system which uses a cryogenic fuel was investigated. This system consists of a main turboshaft engine that is mechanically coupled (by cross-shafting) to a topping loop, which augments the shaft power output of the system. The thermodynamic performance of the topping-cycle engine was analyzed and compared with that of a reference (conventional) turboshaft engine. For the cycle operating conditions selected, the performance of the topping-cycle engine in terms of brake specific fuel consumption (bsfc) was determined to be about 12 percent better than that of the reference turboshaft engine. Engine weights were estimated for both the topping-cycle engine and the reference turboshaft engine. These estimates were based on a common shaft power output for each engine. Results indicate that the weight of the topping-cycle engine is comparable with that of the reference turboshaft engine.
Study of LH2-fueled topping cycle engine for aircraft propulsion
NASA Technical Reports Server (NTRS)
Turney, G. E.; Fishbach, L. H.
1983-01-01
An analytical investigation was made of a topping cycle aircraft engine system which uses a cryogenic fuel. This system consists of a main turboshaft engine which is mechanically coupled (by cross-shafting) to a topping loop which augments the shaft power output of the system. The thermodynamic performance of the topping cycle engine was analyzed and compared with that of a reference (conventional-type) turboshaft engine. For the cycle operating conditions selected, the performance of the topping cycle engine in terms of brake specific fuel consumption (bsfc) was determined to be about 12 percent better than that of the reference turboshaft engine. Engine weights were estimated for both the topping cycle engine and the reference turboshaft engine. These estimates were based on a common shaft power output for each engine. Results indicate that the weight of the topping cycle engine is comparable to that of the reference turboshaft engine.
Performance and economics of advanced energy conversion systems for coal and coal-derived fuels
NASA Technical Reports Server (NTRS)
Corman, J. C.; Fox, G. R.
1978-01-01
The desire to establish an efficient Energy Conversion System to utilize the fossil fuel of the future - coal - has produced many candidate systems. A comparative technical/economic evaluation was performed on the seven most attractive advanced energy conversion systems. The evaluation maintains a cycle-to-cycle consistency in both performance and economic projections. The technical information base can be employed to make program decisions regarding the most attractive concept. A reference steam power plant was analyzed to the same detail and, under the same ground rules, was used as a comparison base. The power plants were all designed to utilize coal or coal-derived fuels and were targeted to meet an environmental standard. The systems evaluated were two advanced steam systems, a potassium topping cycle, a closed cycle helium system, two open cycle gas turbine combined cycles, and an open cycle MHD system.
Fluid flow and fuel-air mixing in a motored two-dimensional Wankel rotary engine
NASA Technical Reports Server (NTRS)
Shih, T. I.-P.; Nguyen, H. L.; Stegeman, J.
1986-01-01
The implicit-factored method of Beam and Warming was employed to obtain numerical solutions to the conservation equations of mass, species, momentum, and energy to study the unsteady, multidimensional flow and mixing of fuel and air inside the combustion chambers of a two-dimensional Wankel rotary engine under motored conditions. The effects of the following engine design and operating parameters on fluid flow and fuel-air mixing during the intake and compression cycles were studied: engine speed, angle of gaseous fuel injection during compression cycle, and speed of the fuel leaving fuel injector.
Fluid flow and fuel-air mixing in a motored two-dimensional Wankel rotary engine
NASA Astrophysics Data System (ADS)
Shih, T. I.-P.; Nguyen, H. L.; Stegeman, J.
1986-06-01
The implicit-factored method of Beam and Warming was employed to obtain numerical solutions to the conservation equations of mass, species, momentum, and energy to study the unsteady, multidimensional flow and mixing of fuel and air inside the combustion chambers of a two-dimensional Wankel rotary engine under motored conditions. The effects of the following engine design and operating parameters on fluid flow and fuel-air mixing during the intake and compression cycles were studied: engine speed, angle of gaseous fuel injection during compression cycle, and speed of the fuel leaving fuel injector.
Molten salt reactor neutronics and fuel cycle modeling and simulation with SCALE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Betzler, Benjamin R.; Powers, Jeffrey J.; Worrall, Andrew
Current interest in advanced nuclear energy and molten salt reactor (MSR) concepts has enhanced interest in building the tools necessary to analyze these systems. A Python script known as ChemTriton has been developed to simulate equilibrium MSR fuel cycle performance by modeling the changing isotopic composition of an irradiated fuel salt using SCALE for neutron transport and depletion calculations. Some capabilities in ChemTriton that have improved, include a generic geometry capable of modeling multi-zone and multi-fluid systems, enhanced time-dependent feed and separations, and a critical concentration search. Although more generally applicable, the capabilities developed to date are illustrated in thismore » paper in three applied problems: (1) simulating the startup of a thorium-based MSR fuel cycle (a likely scenario requires the first of these MSRs to be started without available 233U); (2) determining the effect of the removal of different fission products on MSR operations; and (3) obtaining the equilibrium concentration of a mixed-oxide light-water reactor fuel in a two-stage fuel cycle with a sodium fast reactor. Moreover, the third problem is chosen to demonstrate versatility in an application to analyze the fuel cycle of a non-MSR system. During the first application, the initial fuel salt compositions fueled with different sources of fissile material are made feasible after (1) removing the associated nonfissile actinides after much of the initial fissile isotopes have burned and (2) optimizing the thorium concentration to maintain a critical configuration without significantly reducing breeding capability. In the second application, noble metal, volatile gas, and rare earth element fission products are shown to have a strong negative effect on criticality in a uranium-fueled thermal-spectrum MSR; their removal significantly increases core lifetime (by 30%) and fuel utilization. In the third application, the fuel of a mixed-oxide light-water reactor approaches an equilibrium composition after 20 depletion steps, demonstrating the potential for the longer time scales required to achieve equilibrium for solid-fueled systems over liquid fuel systems. This time to equilibrium can be reduced by starting with an initial fuel composition closer to that of the equilibrium fuel, reducing the need to handle time-dependent fuel compositions.« less
Molten salt reactor neutronics and fuel cycle modeling and simulation with SCALE
Betzler, Benjamin R.; Powers, Jeffrey J.; Worrall, Andrew
2017-03-01
Current interest in advanced nuclear energy and molten salt reactor (MSR) concepts has enhanced interest in building the tools necessary to analyze these systems. A Python script known as ChemTriton has been developed to simulate equilibrium MSR fuel cycle performance by modeling the changing isotopic composition of an irradiated fuel salt using SCALE for neutron transport and depletion calculations. Some capabilities in ChemTriton that have improved, include a generic geometry capable of modeling multi-zone and multi-fluid systems, enhanced time-dependent feed and separations, and a critical concentration search. Although more generally applicable, the capabilities developed to date are illustrated in thismore » paper in three applied problems: (1) simulating the startup of a thorium-based MSR fuel cycle (a likely scenario requires the first of these MSRs to be started without available 233U); (2) determining the effect of the removal of different fission products on MSR operations; and (3) obtaining the equilibrium concentration of a mixed-oxide light-water reactor fuel in a two-stage fuel cycle with a sodium fast reactor. Moreover, the third problem is chosen to demonstrate versatility in an application to analyze the fuel cycle of a non-MSR system. During the first application, the initial fuel salt compositions fueled with different sources of fissile material are made feasible after (1) removing the associated nonfissile actinides after much of the initial fissile isotopes have burned and (2) optimizing the thorium concentration to maintain a critical configuration without significantly reducing breeding capability. In the second application, noble metal, volatile gas, and rare earth element fission products are shown to have a strong negative effect on criticality in a uranium-fueled thermal-spectrum MSR; their removal significantly increases core lifetime (by 30%) and fuel utilization. In the third application, the fuel of a mixed-oxide light-water reactor approaches an equilibrium composition after 20 depletion steps, demonstrating the potential for the longer time scales required to achieve equilibrium for solid-fueled systems over liquid fuel systems. This time to equilibrium can be reduced by starting with an initial fuel composition closer to that of the equilibrium fuel, reducing the need to handle time-dependent fuel compositions.« less
A Review of RedOx Cycling of Solid Oxide Fuel Cells Anode
Faes, Antonin; Hessler-Wyser, Aïcha; Zryd, Amédée; Van Herle, Jan
2012-01-01
Solid oxide fuel cells are able to convert fuels, including hydrocarbons, to electricity with an unbeatable efficiency even for small systems. One of the main limitations for long-term utilization is the reduction-oxidation cycling (RedOx cycles) of the nickel-based anodes. This paper will review the effects and parameters influencing RedOx cycles of the Ni-ceramic anode. Second, solutions for RedOx instability are reviewed in the patent and open scientific literature. The solutions are described from the point of view of the system, stack design, cell design, new materials and microstructure optimization. Finally, a brief synthesis on RedOx cycling of Ni-based anode supports for standard and optimized microstructures is depicted. PMID:24958298
40 CFR 86.1407-86.1412 - [Reserved
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for New Gasoline-Fueled Otto-Cycle Light-Duty Vehicles and New Gasoline-Fueled Otto-Cycle Light...
40 CFR 86.1417-86.1421 - [Reserved
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for New Gasoline-Fueled Otto-Cycle Light-Duty Vehicles and New Gasoline-Fueled Otto-Cycle Light...
40 CFR 86.1414-86.1415 - [Reserved
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for New Gasoline-Fueled Otto-Cycle Light-Duty Vehicles and New Gasoline-Fueled Otto-Cycle Light...
Cycle-to-cycle IMEP fluctuations in a stoichiometrically-fueled S. I. engine at low speed and load
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sztenderowicz, M.L.; Heywood, J.B.
1990-01-01
In a previous experimental investigation of the effects of residual gas nonuniformity on S.I. engine combustion variability, it was found that eliminating residual gas nonuniformity by skip firing has no detectable impact on the flame development process, but nonetheless caused IMEP fluctuations to drop by about half under very light load conditions. This paper reports that under further investigation, it has been determined that the observed IMEP fluctuations, particularly for optimally-phased cycles, are controlled by cyclic variations in the amount of fuel burning per cycle. Real-time sampling of the hydrocarbon concentration in the exhaust port has shown that the variationmore » in fuel burned per cycle is not primarily due to variations in combustion completeness, and must therefore be attributed to variations in the amount of fuel trapped within the cylinder prior to combustion. Several mechanisms for this variation were identified, all of which are plausible but none of which are likely to dominate: variations in fuel quantity left in the cylinder from the previous cycle; variations in the fluid dynamics of the intake process; fresh charge displacement due to variations in residual gas temperature; variations in leakage through valves; and fluctuations in crevice effects and blow-by.« less
Policy implications of uncertainty in modeled life-cycle greenhouse gas emissions of biofuels.
Mullins, Kimberley A; Griffin, W Michael; Matthews, H Scott
2011-01-01
Biofuels have received legislative support recently in California's Low-Carbon Fuel Standard and the Federal Energy Independence and Security Act. Both present new fuel types, but neither provides methodological guidelines for dealing with the inherent uncertainty in evaluating their potential life-cycle greenhouse gas emissions. Emissions reductions are based on point estimates only. This work demonstrates the use of Monte Carlo simulation to estimate life-cycle emissions distributions from ethanol and butanol from corn or switchgrass. Life-cycle emissions distributions for each feedstock and fuel pairing modeled span an order of magnitude or more. Using a streamlined life-cycle assessment, corn ethanol emissions range from 50 to 250 g CO(2)e/MJ, for example, and each feedstock-fuel pathway studied shows some probability of greater emissions than a distribution for gasoline. Potential GHG emissions reductions from displacing fossil fuels with biofuels are difficult to forecast given this high degree of uncertainty in life-cycle emissions. This uncertainty is driven by the importance and uncertainty of indirect land use change emissions. Incorporating uncertainty in the decision making process can illuminate the risks of policy failure (e.g., increased emissions), and a calculated risk of failure due to uncertainty can be used to inform more appropriate reduction targets in future biofuel policies.
Nuclear power generation and fuel cycle report 1996
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-10-01
This report presents the current status and projections through 2015 of nuclear capacity, generation, and fuel cycle requirements for all countries using nuclear power to generate electricity for commercial use. It also contains information and forecasts of developments in the worldwide nuclear fuel market. Long term projections of U.S. nuclear capacity, generation, and spent fuel discharges for two different scenarios through 2040 are developed. A discussion on decommissioning of nuclear power plants is included.
Fuel cycle for a fusion neutron source
NASA Astrophysics Data System (ADS)
Ananyev, S. S.; Spitsyn, A. V.; Kuteev, B. V.
2015-12-01
The concept of a tokamak-based stationary fusion neutron source (FNS) for scientific research (neutron diffraction, etc.), tests of structural materials for future fusion reactors, nuclear waste transmutation, fission reactor fuel production, and control of subcritical nuclear systems (fusion-fission hybrid reactor) is being developed in Russia. The fuel cycle system is one of the most important systems of FNS that provides circulation and reprocessing of the deuterium-tritium fuel mixture in all fusion reactor systems: the vacuum chamber, neutral injection system, cryogenic pumps, tritium purification system, separation system, storage system, and tritium-breeding blanket. The existing technologies need to be significantly upgraded since the engineering solutions adopted in the ITER project can be only partially used in the FNS (considering the capacity factor higher than 0.3, tritium flow up to 200 m3Pa/s, and temperature of reactor elements up to 650°C). The deuterium-tritium fuel cycle of the stationary FNS is considered. The TC-FNS computer code developed for estimating the tritium distribution in the systems of FNS is described. The code calculates tritium flows and inventory in tokamak systems (vacuum chamber, cryogenic pumps, neutral injection system, fuel mixture purification system, isotope separation system, tritium storage system) and takes into account tritium loss in the fuel cycle due to thermonuclear burnup and β decay. For the two facility versions considered, FNS-ST and DEMO-FNS, the amount of fuel mixture needed for uninterrupted operation of all fuel cycle systems is 0.9 and 1.4 kg, consequently, and the tritium consumption is 0.3 and 1.8 kg per year, including 35 and 55 g/yr, respectively, due to tritium decay.
THE ECONOMICS OF REPROCESSING vs DIRECT DISPOSAL OF SPENT NUCLEAR FUEL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matthew Bunn; Steve Fetter; John P. Holdren
This report assesses the economics of reprocessing versus direct disposal of spent nuclear fuel. The breakeven uranium price at which reprocessing spent nuclear fuel from existing light-water reactors (LWRs) and recycling the resulting plutonium and uranium in LWRs would become economic is assessed, using central estimates of the costs of different elements of the nuclear fuel cycle (and other fuel cycle input parameters), for a wide range of range of potential reprocessing prices. Sensitivity analysis is performed, showing that the conclusions reached are robust across a wide range of input parameters. The contribution of direct disposal or reprocessing and recyclingmore » to electricity cost is also assessed. The choice of particular central estimates and ranges for the input parameters of the fuel cycle model is justified through a review of the relevant literature. The impact of different fuel cycle approaches on the volume needed for geologic repositories is briefly discussed, as are the issues surrounding the possibility of performing separations and transmutation on spent nuclear fuel to reduce the need for additional repositories. A similar analysis is then performed of the breakeven uranium price at which deploying fast neutron breeder reactors would become competitive compared with a once-through fuel cycle in LWRs, for a range of possible differences in capital cost between LWRs and fast neutron reactors. Sensitivity analysis is again provided, as are an analysis of the contribution to electricity cost, and a justification of the choices of central estimates and ranges for the input parameters. The equations used in the economic model are derived and explained in an appendix. Another appendix assesses the quantities of uranium likely to be recoverable worldwide in the future at a range of different possible future prices.« less
NASA Astrophysics Data System (ADS)
Meier, Paul Joseph
This research uses Life-Cycle Assessment (LCA) to better understand the energy and environmental performance for two electricity generation systems, a 620 MW combined-cycle natural gas plant, and an 8kW building-integrated photovoltaic system. The results of the LCA are used to provide an effective and accurate means for evaluating greenhouse gas emission reduction strategies for U.S. electricity generation. The modern combined-cycle plant considered in this thesis is nominally 48% thermally efficient, but it is only 43% energy efficient when evaluated across its entire life-cycle, due primarily to energy losses during the natural gas fuel cycle. The emission rate for the combined-cycle natural gas plant life-cycle (469 tonnes CO2-equivalent per GWeh), was 23% higher than the emission rate from plant operation alone (382 tonnes CO2-equivalent per GWeh). Uncertainty in the rate of fuel-cycle methane releases results in a potential range of emission rates between 457 to 534 tonnes CO 2-equivalent per GWeh for the studied plant. The photovoltaic system modules have a sunlight to DC electricity conversion efficiency of 5.7%. However, the system's sunlight to AC electricity conversion efficiency is 4.3%, when accounting for life-cycle energy inputs, as well as losses due to system wiring, AC inversion, and module degradation. The LCA illustrates that the PV system has a low, but not zero, life-cycle greenhouse gas emission rate of 39 Tonnes CO2-equivalent per GWeh. A ternary method of evaluation is used to evaluate three greenhouse gas mitigation alternatives: (1) fuel-switching from coal to natural gas for Kyoto-based compliance, (2) fuel-switching from coal to nuclear/renewable for Kyoto based compliance, and (3) fuel-switching to meet the White House House's Global Climate Change Initiative. In a moderate growth scenario, fuel-switching from coal to natural gas fails to meet a Kyoto-based emission target, while fuel-switching to nuclear/renewable meets the emission objective by reducing coal generated electricity 32% below 2000 levels. The Global Climate Change Initiative allows annual greenhouse gas emissions to increase to levels that are 54% higher than the proposed U.S. commitment under the Kyoto Protocol.
Impacts of Wind and Solar on Fossil-Fueled Generators: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lew, D.; Brinkman, G.; Kumar, N.
2012-08-01
High penetrations of wind and solar power will impact the operations of the remaining generators on the power system. Regional integration studies have shown that wind and solar may cause fossil-fueled generators to cycle on and off and ramp down to part load more frequently and potentially more rapidly. Increased cycling, deeper load following, and rapid ramping may result in wear-and-tear impacts on fossil-fueled generators that lead to increased capital and maintenance costs, increased equivalent forced outage rates, and degraded performance over time. Heat rates and emissions from fossil-fueled generators may be higher during cycling and ramping than during steady-statemore » operation. Many wind and solar integration studies have not taken these increased cost and emissions impacts into account because data have not been available. This analysis considers the cost and emissions impacts of cycling and ramping of fossil-fueled generation to refine assessments of wind and solar impacts on the power system.« less
Neutronics Studies of Uranium-bearing Fully Ceramic Micro-encapsulated Fuel for PWRs
George, Nathan M.; Maldonado, G. Ivan; Terrani, Kurt A.; ...
2014-12-01
Our study evaluated the neutronics and some of the fuel cycle characteristics of using uranium-based fully ceramic microencapsulated (FCM) fuel in a pressurized water reactor (PWR). Specific PWR lattice designs with FCM fuel have been developed that are expected to achieve higher specific burnup levels in the fuel while also increasing the tolerance to reactor accidents. The SCALE software system was the primary analysis tool used to model the lattice designs. A parametric study was performed by varying tristructural isotropic particle design features (e.g., kernel diameter, coating layer thicknesses, and packing fraction) to understand the impact on reactivity and resultingmore » operating cycle length. Moreover, to match the lifetime of an 18-month PWR cycle, the FCM particle fuel design required roughly 10% additional fissile material at beginning of life compared with that of a standard uranium dioxide (UO 2) rod. Uranium mononitride proved to be a favorable fuel for the fuel kernel due to its higher heavy metal loading density compared with UO 2. The FCM fuel designs evaluated maintain acceptable neutronics design features for fuel lifetime, lattice peaking factors, and nonproliferation figure of merit.« less
Reducing Proliferation Rick Through Multinational Fuel Cycle Facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amanda Rynes
2010-11-01
With the prospect of rapid expansion of the nuclear energy industry and the ongoing concern over weapons proliferation, there is a growing need for a viable alternative to traditional nation-based fuel production facilities. While some in the international community remain apprehensive, the advantages of multinational fuel cycle facilities are becoming increasingly apparent, with states on both sides of the supply chain able to garner the security and financial benefits of such facilities. Proliferation risk is minimized by eliminating the need of states to establish indigenous fuel production capabilities and the concept's structure provides an additional internationally monitored barrier against themore » misuse or diversion of nuclear materials. This article gives a brief description of the arguments for and against the implementation of a complete multinational fuel cycle.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-17
... Amendment Regarding Full-Fuel-Cycle Analyses AGENCY: Office of Energy Efficiency and Renewable Energy... Energy (DOE) announced its intention to use full-fuel-cycle (FFC) measures of energy use and greenhouse... Cycle Analyses, EERE-2011-BT- NOA-0028, 1000 Independence Avenue SW., Washington, DC 20585- 0121. Phone...
An optimization methodology for heterogeneous minor actinides transmutation
NASA Astrophysics Data System (ADS)
Kooyman, Timothée; Buiron, Laurent; Rimpault, Gérald
2018-04-01
In the case of a closed fuel cycle, minor actinides transmutation can lead to a strong reduction in spent fuel radiotoxicity and decay heat. In the heterogeneous approach, minor actinides are loaded in dedicated targets located at the core periphery so that long-lived minor actinides undergo fission and are turned in shorter-lived fission products. However, such targets require a specific design process due to high helium production in the fuel, high flux gradient at the core periphery and low power production. Additionally, the targets are generally manufactured with a high content in minor actinides in order to compensate for the low flux level at the core periphery. This leads to negative impacts on the fuel cycle in terms of neutron source and decay heat of the irradiated targets, which penalize their handling and reprocessing. In this paper, a simplified methodology for the design of targets is coupled with a method for the optimization of transmutation which takes into account both transmutation performances and fuel cycle impacts. The uncertainties and performances of this methodology are evaluated and shown to be sufficient to carry out scoping studies. An illustration is then made by considering the use of moderating material in the targets, which has a positive impact on the minor actinides consumption but a negative impact both on fuel cycle constraints (higher decay heat and neutron) and on assembly design (higher helium production and lower fuel volume fraction). It is shown that the use of moderating material is an optimal solution of the transmutation problem with regards to consumption and fuel cycle impacts, even when taking geometrical design considerations into account.
Computational Analysis of the Combustion Processes in an Axisymmetric, RBCC Flowpath
NASA Technical Reports Server (NTRS)
Steffen, Christopher J., Jr.; Yungster, Shaye
2001-01-01
Computational fluid dynamic simulations have been used to study the combustion processes within an axisymmetric, RBCC flowpath. Two distinct operating modes have been analyzed to date, including the independent ramjet stream (IRS) cycle and the supersonic combustion ramjet (scramJet) cycle. The IRS cycle investigation examined the influence of fuel-air ratio, fuel distribution, and rocket chamber pressure upon the combustion physics and thermal choke characteristics. Results indicate that adjustment of the amount and radial distribution of fuel can control the thermal choke point. The secondary massflow rate was very sensitive to the fuel-air ratio and the rocket chamber pressure. The scramjet investigation examined the influence of fuel-air ratio and fuel injection schedule upon combustion performance estimates. An analysis of the mesh-dependence of these calculations was presented. Jet penetration data was extracted from the three-dimensional simulations and compared favorably with experimental correlations of similar flows. Results indicate that combustion efficiency was very sensitive to the fuel schedule.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shmelev, A. N., E-mail: shmelan@mail.ru; Kulikov, G. G., E-mail: ggkulikov@mephi.ru; Kurnaev, V. A., E-mail: kurnaev@yandex.ru
2015-12-15
Discussions are currently going on as to whether it is suitable to employ thorium in the nuclear fuel cycle. This work demonstrates that the {sup 231}Pa–{sup 232}U–{sup 233}U–Th composition to be produced in the thorium blanket of a hybrid thermonuclear reactor (HTR) as a fuel for light-water reactors opens up the possibility of achieving high, up to 30% of heavy metals (HM), or even ultrahigh fuel burnup. This is because the above fuel composition is able to stabilize its neutron-multiplying properties in the process of high fuel burnup. In addition, it allows the nuclear fuel cycle (NFC) to be bettermore » protected against unauthorized proliferation of fissile materials owing to an unprecedentedly large fraction of {sup 232}U (several percent!) in the uranium bred from the Th blanket, which will substantially hamper the use of fissile materials in a closed NFC for purposes other than power production.« less
Alternative Fuels in Epilepsy and Amyotrophic Lateral Sclerosis.
Tefera, Tesfaye W; Tan, Kah Ni; McDonald, Tanya S; Borges, Karin
2017-06-01
This review summarises the recent findings on metabolic treatments for epilepsy and Amyotrophic Lateral Sclerosis (ALS) in honour of Professor Ursula Sonnewald. The metabolic impairments in rodent models of these disorders as well as affected patients are being discussed. In both epilepsy and ALS, there are defects in glucose uptake and reduced tricarboxylic acid (TCA) cycling, at least in part due to reduced amounts of C4 TCA cycle intermediates. In addition there are impairments in glycolysis in ALS. A reduction in glucose uptake can be addressed by providing the brain with alternative fuels, such as ketones or medium-chain triglycerides. As anaplerotic fuels, such as the triglyceride of heptanoate, triheptanoin, refill the TCA cycle C4/C5 intermediate pool that is deficient, they are ideal to boost TCA cycling and thus the oxidative metabolism of all fuels.
Life cycle design metrics for energy generation technologies: Method, data, and case study
NASA Astrophysics Data System (ADS)
Cooper, Joyce; Lee, Seung-Jin; Elter, John; Boussu, Jeff; Boman, Sarah
A method to assist in the rapid preparation of Life Cycle Assessments of emerging energy generation technologies is presented and applied to distributed proton exchange membrane fuel cell systems. The method develops life cycle environmental design metrics and allows variations in hardware materials, transportation scenarios, assembly energy use, operating performance and consumables, and fuels and fuel production scenarios to be modeled and comparisons to competing systems to be made. Data and results are based on publicly available U.S. Life Cycle Assessment data sources and are formulated to allow the environmental impact weighting scheme to be specified. A case study evaluates improvements in efficiency and in materials recycling and compares distributed proton exchange membrane fuel cell systems to other distributed generation options. The results reveal the importance of sensitivity analysis and system efficiency in interpreting case studies.
Cai, Hao; Wang, Michael Q
2014-10-21
The climate impact assessment of vehicle/fuel systems may be incomplete without considering short-lived climate forcers of black carbon (BC) and primary organic carbon (POC). We quantified life-cycle BC and POC emissions of a large variety of vehicle/fuel systems with an expanded Greenhouse gases, Regulated Emissions, and Energy use in Transportation model developed at Argonne National Laboratory. Life-cycle BC and POC emissions have small impacts on life-cycle greenhouse gas (GHG) emissions of gasoline, diesel, and other fuel vehicles, but would add 34, 16, and 16 g CO2 equivalent (CO2e)/mile, or 125, 56, and 56 g CO2e/mile with the 100 or 20 year Global Warming Potentials of BC and POC emissions, respectively, for vehicles fueled with corn stover-, willow tree-, and Brazilian sugarcane-derived ethanol, mostly due to BC- and POC-intensive biomass-fired boilers in cellulosic and sugarcane ethanol plants for steam and electricity production, biomass open burning in sugarcane fields, and diesel-powered agricultural equipment for biomass feedstock production/harvest. As a result, life-cycle GHG emission reduction potentials of these ethanol types, though still significant, are reduced from those without considering BC and POC emissions. These findings, together with a newly expanded GREET version, help quantify the previously unknown impacts of BC and POC emissions on life-cycle GHG emissions of U.S. vehicle/fuel systems.
Benefits of solar/fossil hybrid gas turbine systems
NASA Technical Reports Server (NTRS)
Bloomfield, H. S.
1978-01-01
The potential benefits of solar/fossil hybrid gas turbine power systems were assessed. Both retrofit and new systems were considered from the aspects of; cost of electricity, fuel conservation, operational mode, technology requirements, and fuels flexibility. Hybrid retrofit (repowering) of existing combustion (simple Brayton cycle) turbines can provide near-term fuel savings and solar experience, while new and advanced recuperated or combined cycle systems may be an attractive fuel saving and economically competitive vehicle to transition from today's gas and oil-fired powerplants to other more abundant fuels.
Benefits of solar/fossil hybrid gas turbine systems
NASA Technical Reports Server (NTRS)
Bloomfield, H. S.
1979-01-01
The potential benefits of solar/fossil hybrid gas turbine power systems were assessed. Both retrofit and new systems were considered from the aspects of cost of electricity, fuel conservation, operational mode, technology requirements, and fuels flexibility. Hybrid retrofit (repowering) of existing combustion (simple Brayton cycle) turbines can provide near-term fuel savings and solar experience, while new and advanced recuperated or combined cycle systems may be an attractive fuel saving and economically competitive vehicle to transition from today's gas and oil-fired powerplants to other more abundant fuels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sutton, M; Blink, J A; Greenberg, H R
2012-04-25
The Used Fuel Disposition (UFD) Campaign within the Department of Energy's Office of Nuclear Energy (DOE-NE) Fuel Cycle Technology (FCT) program has been tasked with investigating the disposal of the nation's spent nuclear fuel (SNF) and high-level nuclear waste (HLW) for a range of potential waste forms and geologic environments. The planning, construction, and operation of a nuclear disposal facility is a long-term process that involves engineered barriers that are tailored to both the geologic environment and the waste forms being emplaced. The UFD Campaign is considering a range of fuel cycles that in turn produce a range of wastemore » forms. The UFD Campaign is also considering a range of geologic media. These ranges could be thought of as adding uncertainty to what the disposal facility design will ultimately be; however, it may be preferable to thinking about the ranges as adding flexibility to design of a disposal facility. For example, as the overall DOE-NE program and industrial actions result in the fuel cycles that will produce waste to be disposed, and the characteristics of those wastes become clear, the disposal program retains flexibility in both the choice of geologic environment and the specific repository design. Of course, other factors also play a major role, including local and State-level acceptance of the specific site that provides the geologic environment. In contrast, the Yucca Mountain Project (YMP) repository license application (LA) is based on waste forms from an open fuel cycle (PWR and BWR assemblies from an open fuel cycle). These waste forms were about 90% of the total waste, and they were the determining waste form in developing the engineered barrier system (EBS) design for the Yucca Mountain Repository design. About 10% of the repository capacity was reserved for waste from a full recycle fuel cycle in which some actinides were extracted for weapons use, and the remaining fission products and some minor actinides were encapsulated in borosilicate glass. Because the heat load of the glass was much less than the PWR and BWR assemblies, the glass waste form was able to be co-disposed with the open cycle waste, by interspersing glass waste packages among the spent fuel assembly waste packages. In addition, the Yucca Mountain repository was designed to include some research reactor spent fuel and naval reactor spent fuel, within the envelope that was set using the commercial reactor assemblies as the design basis waste form. This milestone report supports Sandia National Laboratory milestone M2FT-12SN0814052, and is intended to be a chapter in that milestone report. The independent technical review of this LLNL milestone was performed at LLNL and is documented in the electronic Information Management (IM) system at LLNL. The objective of this work is to investigate what aspects of quantifying, characterizing, and representing the uncertainty associated with the engineered barrier are affected by implementing different advanced nuclear fuel cycles (e.g., partitioning and transmutation scenarios) together with corresponding designs and thermal constraints.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuehn, S.E.
1995-03-01
This article examines why the diesel engine is a very attractive choice for producing power in the combined-cycle configuration. The medium-speed diesel is already one of the most efficient simple cycle sources of electricity, especially with lower grade fuels. Large units have heat-rate efficiencies as high as 45%, equating to a heat rate of 7,580 Btu/k Whr, and no other power production prime mover can match this efficiency. Diesels also offer designers fuel flexibility and can burn an extreme variety of fuels without sacrificing many of its positive operating attributes. Diesels are the first building block in a highly efficientmore » combined cycle system that relies on the hot gas and oxygen in the diesel`s exhaust to combust either natural gas, light distillate oil, heavy oil or coal, in a boiler. By using a fired boiler, steam can be generated at sufficient temperature and pressure to operate a Rankine steam cycle efficiently. Diesel combined-cycle plants can be configured in much the same way a gas turbine plant would be. However, the diesel combined-cycle scheme requires supplemental firing to generate appropriate steam conditions. The most efficient cycle, therefore, would not be achieved until combustion air and supplemental fuel are minimized to levels that satisfy steam conditions, steam generation and power generation constraints.« less
Emissions from U.S. waste collection vehicles.
Maimoun, Mousa A; Reinhart, Debra R; Gammoh, Fatina T; McCauley Bush, Pamela
2013-05-01
This research is an in-depth environmental analysis of potential alternative fuel technologies for waste collection vehicles. Life-cycle emissions, cost, fuel and energy consumption were evaluated for a wide range of fossil and bio-fuel technologies. Emission factors were calculated for a typical waste collection driving cycle as well as constant speed. In brief, natural gas waste collection vehicles (compressed and liquid) fueled with North-American natural gas had 6-10% higher well-to-wheel (WTW) greenhouse gas (GHG) emissions relative to diesel-fueled vehicles; however the pump-to-wheel (PTW) GHG emissions of natural gas waste collection vehicles averaged 6% less than diesel-fueled vehicles. Landfill gas had about 80% lower WTW GHG emissions relative to diesel. Biodiesel waste collection vehicles had between 12% and 75% lower WTW GHG emissions relative to diesel depending on the fuel source and the blend. In 2011, natural gas waste collection vehicles had the lowest fuel cost per collection vehicle kilometer travel. Finally, the actual driving cycle of waste collection vehicles consists of repetitive stops and starts during waste collection; this generates more emissions than constant speed driving. Published by Elsevier Ltd.
To Recycle or Not to Recycle? An Intergenerational Approach to Nuclear Fuel Cycles
Kloosterman, Jan Leen
2007-01-01
This paper approaches the choice between the open and closed nuclear fuel cycles as a matter of intergenerational justice, by revealing the value conflicts in the production of nuclear energy. The closed fuel cycle improve sustainability in terms of the supply certainty of uranium and involves less long-term radiological risks and proliferation concerns. However, it compromises short-term public health and safety and security, due to the separation of plutonium. The trade-offs in nuclear energy are reducible to a chief trade-off between the present and the future. To what extent should we take care of our produced nuclear waste and to what extent should we accept additional risks to the present generation, in order to diminish the exposure of future generation to those risks? The advocates of the open fuel cycle should explain why they are willing to transfer all the risks for a very long period of time (200,000 years) to future generations. In addition, supporters of the closed fuel cycle should underpin their acceptance of additional risks to the present generation and make the actual reduction of risk to the future plausible. PMID:18075732
To recycle or not to recycle? An intergenerational approach to nuclear fuel cycles.
Taebi, Behnam; Kloosterman, Jan Leen
2008-06-01
This paper approaches the choice between the open and closed nuclear fuel cycles as a matter of intergenerational justice, by revealing the value conflicts in the production of nuclear energy. The closed fuel cycle improve sustainability in terms of the supply certainty of uranium and involves less long-term radiological risks and proliferation concerns. However, it compromises short-term public health and safety and security, due to the separation of plutonium. The trade-offs in nuclear energy are reducible to a chief trade-off between the present and the future. To what extent should we take care of our produced nuclear waste and to what extent should we accept additional risks to the present generation, in order to diminish the exposure of future generation to those risks? The advocates of the open fuel cycle should explain why they are willing to transfer all the risks for a very long period of time (200,000 years) to future generations. In addition, supporters of the closed fuel cycle should underpin their acceptance of additional risks to the present generation and make the actual reduction of risk to the future plausible.
NASA Technical Reports Server (NTRS)
Walter, R. A.
1982-01-01
The results obtained from fuel economy and emission tests conducted on a prototype Chrysler Volare diesel vehicle are documented. The vehicle was tested on a chassis dynamometer over selected drive cycles and steady-state conditions. The fuel used, was a DOE/BETC referee fuel. Particulate emission rates were calculated from dilution tunnel measurements and large volume particulate samples were collected for biological and chemical analysis. The vehicle obtained 32.7 mpg for the FTP urban cycle and 48.8 mpg for the highway cycle. The emissions rates were 0.42/1.58/1.17/0.28 g/mile of HC, CO, NOx and particulates respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Core, Gregory Matthew
This report contains a summary of irradiation testing of Fuel Cycle Research and Development (FCRD) Accident Tolerant Fuels Series 1 (ATF 1) experiments performed at Idaho National Laboratory (INL) in FY 2016. ATF 1 irradiation testing work performed in FY 2016 included design, analysis, and fabrication of ATF-1B drop in capsule ATF 1 series experiments and irradiation testing of ATF-1 capsules in the ATR.
Thermally regenerative hydrogen/oxygen fuel cell power cycles
NASA Technical Reports Server (NTRS)
Morehouse, J. H.
1986-01-01
Two innovative thermodynamic power cycles are analytically examined for future engineering feasibility. The power cycles use a hydrogen-oxygen fuel cell for electrical energy production and use the thermal dissociation of water for regeneration of the hydrogen and oxygen. The TDS (thermal dissociation system) uses a thermal energy input at over 2000 K to thermally dissociate the water. The other cycle, the HTE (high temperature electrolyzer) system, dissociates the water using an electrolyzer operating at high temperature (1300 K) which receives its electrical energy from the fuel cell. The primary advantages of these cycles is that they are basically a no moving parts system, thus having the potential for long life and high reliability, and they have the potential for high thermal efficiency. Both cycles are shown to be classical heat engines with ideal efficiency close to Carnot cycle efficiency. The feasibility of constructing actual cycles is investigated by examining process irreversibilities and device efficiencies for the two types of cycles. The results show that while the processes and devices of the 2000 K TDS exceed current technology limits, the high temperature electrolyzer system appears to be a state-of-the-art technology development. The requirements for very high electrolyzer and fuel cell efficiencies are seen as determining the feasbility of the HTE system, and these high efficiency devices are currently being developed. It is concluded that a proof-of-concept HTE system experiment can and should be conducted.
Development, Regeneration, and Evolution of Feathers
Chen, Chih-Feng; Foley, John; Tang, Pin-Chi; Li, Ang; Jiang, Ting Xin; Wu, Ping; Widelitz, Randall B.; Chuong, Cheng Ming
2017-01-01
The feather is a complex ectodermal organ with hierarchical branching patterns. It provides functions in endothermy, communication, and flight. Studies of feather growth, cycling, and health are of fundamental importance to avian biology and poultry science. In addition, feathers are an excellent model for morphogenesis studies because of their accessibility, and their distinct patterns can be used to assay the roles of specific molecular pathways. Here we review the progress in aspects of development, regeneration, and evolution during the past three decades. We cover the development of feather buds in chicken embryos, regenerative cycling of feather follicle stem cells, formation of barb branching patterns, emergence of intrafeather pigmentation patterns, interplay of hormones and feather growth, and the genetic identification of several feather variants. The discovery of feathered dinosaurs redefines the relationship between feathers and birds. Inspiration from biomaterials and flight research further fuels biomimetic potential of feathers as a multidisciplinary research focal point. PMID:25387232
Bipropellant propulsion with reciprocating pumps
NASA Astrophysics Data System (ADS)
Whitehead, John C.
1993-06-01
A pressure regulated gas generator rocket cycle with alternately pressurized pairs of reciprocating pumps offers thrust-on-demand operation with significantly lower inert mass than conventional spacecraft liquid propulsion systems. The operation of bipropellant feed systems with reciprocating pumps is explained, with consideration for both short and long term missions. There are several methods for startup and shutdown of this self-starting pump-fed system, with preference determined by thrust duty cycle and mission duration. Progress to date includes extensive development testing of components unique to this type of system, and several live tests with monopropellant hydrazine. Pneumatic pump control valves which render pistons and bellows automatically responsive to downstream liquid demand are significantly simpler than those described previously. A compact pumpset mounted to central liquid manifolds has a pair of oxidizer pumps pneumatically slaved to a pair of fuel pumps to reduce vibration. A warm gas pressure reducer for tank expulsion can eliminate any remaining need for inert gas storage.
Novel carbon-ion fuel cells. Quarterly technical report No. 10, January 1, 1996--March 31, 1996
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cocks, F.H.
1996-08-01
This report presents research to develop an entirely new, fundamentally different class of fuel cell using a solid electrolyte that transports carbon ions. This fuel cell would use solid carbon dissolved in molten metal as a fuel reservoir and anode; expensive gaseous or liquid fuel would not be required. A high temperature fuel cell based on a carbon ion membrane/electrolyte would operate in a way like yttria-doped zirconia solid oxide fuel cells; however, the fuel cell would transport the C ion from a fuel source to O{sub 2} in the atmosphere. Such fuel cells, operating above 1000 C, would producemore » an exhaust gas that could be fed directly into existing boilers, and could thus act as ``topping cycles`` to existing power plant steam cycles.« less
10 CFR 51.51 - Uranium fuel cycle environmental data-Table S-3.
Code of Federal Regulations, 2012 CFR
2012-01-01
... a discussion of the environmental significance of the data set forth in the table as weighed in the... 10 Energy 2 2012-01-01 2012-01-01 false Uranium fuel cycle environmental data-Table S-3. 51.51... cycle environmental data—Table S-3. (a) Under § 51.50, every environmental report prepared for the...
10 CFR 51.51 - Uranium fuel cycle environmental data-Table S-3.
Code of Federal Regulations, 2011 CFR
2011-01-01
... a discussion of the environmental significance of the data set forth in the table as weighed in the... 10 Energy 2 2011-01-01 2011-01-01 false Uranium fuel cycle environmental data-Table S-3. 51.51... cycle environmental data—Table S-3. (a) Under § 51.50, every environmental report prepared for the...
10 CFR 51.51 - Uranium fuel cycle environmental data-Table S-3.
Code of Federal Regulations, 2014 CFR
2014-01-01
... a discussion of the environmental significance of the data set forth in the table as weighed in the... 10 Energy 2 2014-01-01 2014-01-01 false Uranium fuel cycle environmental data-Table S-3. 51.51... cycle environmental data—Table S-3. (a) Under § 51.50, every environmental report prepared for the...
10 CFR 51.51 - Uranium fuel cycle environmental data-Table S-3.
Code of Federal Regulations, 2013 CFR
2013-01-01
... a discussion of the environmental significance of the data set forth in the table as weighed in the... 10 Energy 2 2013-01-01 2013-01-01 false Uranium fuel cycle environmental data-Table S-3. 51.51... cycle environmental data—Table S-3. (a) Under § 51.50, every environmental report prepared for the...
DIRECT-CYCLE, BOILING-WATER NUCLEAR REACTOR
Harrer, J.M.; Fromm, L.W. Jr.; Kolba, V.M.
1962-08-14
A direct-cycle boiling-water nuclear reactor is described that employs a closed vessel and a plurality of fuel assemblies, each comprising an outer tube closed at its lower end, an inner tube, fuel rods in the space between the tubes and within the inner tube. A body of water lying within the pressure vessel and outside the fuel assemblies is converted to saturated steam, which enters each fuel assembly at the top and is converted to superheated steam in the fuel assembly while it is passing therethrough first downward through the space between the inner and outer tubes of the fuel assembly and then upward through the inner tube. (AEC)
NASA Astrophysics Data System (ADS)
Saldivar Olague, Jose
A Continental "O-200" aircraft Otto-cycle engine has been modified to burn diesel fuel. Algebraic models of the different processes of the cycle were developed from basic principles applied to a real engine, and utilized in an algorithm for the simulation of engine performance. The simulation provides a means to investigate the performance of the modified version of the Continental engine for a wide range of operating parameters. The main goals of this study are to increase the range of a particular aircraft by reducing the specific fuel consumption of the engine, and to show that such an engine can burn heavier fuels (such as diesel, kerosene, and jet fuel) instead of gasoline. Such heavier fuels are much less flammable during handling operations making them safer than aviation gasoline and very attractive for use in flight operations from naval vessels. The cycle uses an electric spark to ignite the heavier fuel at low to moderate compression ratios, The stratified charge combustion process is utilized in a pre-chamber where the spray injection of the fuel occurs at a moderate pressure of 1200 psi (8.3 MPa). One advantage of fuel injection into the combustion chamber instead of into the intake port, is that the air-to-fuel ratio can be widely varied---in contrast to the narrower limits of the premixed combustion case used in gasoline engines---in order to obtain very lean combustion. Another benefit is that higher compression ratios can be attained in the modified cycle with heavier fuels. The combination of injection into the chamber for lean combustion, and higher compression ratios allow to limit the peak pressure in the cylinder, and to avoid engine damage. Such high-compression ratios are characteristic of Diesel engines and lead to increase in thermal efficiency without pre-ignition problems. In this experimental investigation, operations with diesel fuel have shown that considerable improvements in the fuel efficiency are possible. The results of simulations using performance models show that the engine can deliver up to 178% improvement in fuel efficiency and operating range, and reduce the specific fuel consumption to 58% when compared to gasoline. Directions for future research and other modifications to the proposed spark assisted cycle are also described.
AGR-3/4 Irradiation Test Predictions using PARFUME
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skerjanc, William Frances; Collin, Blaise Paul
2016-03-01
PARFUME, a fuel performance modeling code used for high temperature gas reactors, was used to model the AGR-3/4 irradiation test using as-run physics and thermal hydraulics data. The AGR-3/4 test is the combined third and fourth planned irradiations of the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program. The AGR-3/4 test train consists of twelve separate and independently controlled and monitored capsules. Each capsule contains four compacts filled with both uranium oxycarbide (UCO) unaltered “driver” fuel particles and UCO designed-to-fail (DTF) fuel particles. The DTF fraction was specified to be 1×10-2. This report documents the calculations performed to predictmore » failure probability of TRISO-coated fuel particles during the AGR-3/4 experiment. In addition, this report documents the calculated source term from both the driver fuel and DTF particles. The calculations include the modeling of the AGR-3/4 irradiation that occurred from December 2011 to April 2014 in the Advanced Test Reactor (ATR) over a total of ten ATR cycles including seven normal cycles, one low power cycle, one unplanned outage cycle, and one Power Axial Locator Mechanism cycle. Results show that failure probabilities are predicted to be low, resulting in zero fuel particle failures per capsule. The primary fuel particle failure mechanism occurred as a result of localized stresses induced by the calculated IPyC cracking. Assuming 1,872 driver fuel particles per compact, failure probability calculated by PARFUME leads to no predicted particle failure in the AGR-3/4 driver fuel. In addition, the release fraction of fission products Ag, Cs, and Sr were calculated to vary depending on capsule location and irradiation temperature. The maximum release fraction of Ag occurs in Capsule 7 reaching up to 56% for the driver fuel and 100% for the DTF fuel. The release fraction of the other two fission products, Cs and Sr, are much smaller and in most cases less than 1% for the driver fuel. The notable exception occurs in Capsule 7 where the release fraction for Cs and Sr reach up to 0.73% and 2.4%, respectively, for the driver fuel. For the DTF fuel in Capsule 7, the release fraction for Cs and Sr are estimated to be 100% and 5%, respectively.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bignan, G.; Gonnier, C.; Lyoussi, A.
2015-07-01
Research and development on fuel and material behaviour under irradiation is a key issue for sustainable nuclear energy in order to meet specific needs by keeping the best level of safety. These needs mainly deal with a constant improvement of performances and safety in order to optimize the fuel cycle and hence to reach nuclear energy sustainable objectives. A sustainable nuclear energy requires a high level of performances in order to meet specific needs such as: - Pursuing improvement of the performances and safety of present and coming water cooled reactor technologies. This will require a continuous R and Dmore » support following a long-term trend driven by the plant life management, safety demonstration, flexibility and economics improvement. Experimental irradiations of structure materials are necessary to anticipate these material behaviours and will contribute to their optimisation. - Upgrading continuously nuclear fuel technology in present and future nuclear power plants to achieve better performances and to optimise the fuel cycle keeping the best level of safety. Fuel evolution for generation II, III and III+ is a key stake requiring developments, qualification tests and safety experiments to ensure the competitiveness and safety: experimental tests exploring the full range of fuel behaviour determine fuel stability limits and safety margins, as a major input for the fuel reliability analysis. To perform such accurate and innovative progress and developments, specific and ad hoc instrumentation, irradiation devices, measurement methods are necessary to be set up inside or beside the material testing reactor (MTR) core. These experiments require beforehand in situ and on line sophisticated measurements to accurately determine different key parameters such as thermal and fast neutron fluxes and nuclear heating in order to precisely monitor and control the conducted assays. The new Material Testing Reactor JHR (Jules Horowitz Reactor) currently under construction at CEA Cadarache research centre in the south of France will represent a major Research Infrastructure for scientific studies regarding material and fuel behavior under irradiation. It will also be devoted to medical isotopes production. Hence JHR will offer a real opportunity to perform R and D programs regarding needs above and hence will crucially contribute to the selection, optimization and qualification of these innovative materials and fuels. The JHR reactor objectives, principles and main characteristics associated to specific experimental devices associated to measurement techniques and methodology, their performances, their limitations and field of applications will be presented and discussed. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lopp, Sean; Wood, Eric; Duran, Adam
Commercial vehicle fuel economy is known to vary significantly with both positive and negative road grade. Medium- and heavy-duty vehicles operating at highway speeds require incrementally larger amounts of energy to pull heavy payloads up inclines as road grade increases. Non-hybrid vehicles are then unable to recapture energy on descent and lose energy through friction braking. While the on-road effects of road grade are well understood, the majority of standard commercial vehicle drive cycles feature no climb or descent requirements. Additionally, existing literature offers a limited number of sources that attempt to estimate the on-road energy implications of road grademore » in the medium- and heavy-duty space. This study uses real-world commercial vehicle drive cycles from the National Renewable Energy Laboratory's Fleet DNA database to simulate the effects of road grade on fuel economy across a range of vocations, operating conditions, and locations. Drive-cycles are matched with vocation-specific vehicle models and simulated with and without grade. Fuel use due to grade is presented, and variation in fuel consumption due to drive cycle and vehicle characteristics is explored through graphical and statistical comparison. The results of this study suggest that road grade accounts for 1%-9% of fuel use in commercial vehicles on average and up to 40% on select routes.« less
ERIC Educational Resources Information Center
Human Engineering Inst., Cleveland, OH.
THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF DIFFERENCES BETWEEN TWO AND FOUR CYCLE ENGINES, THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE FUEL SYSTEM, AND THE PROCEDURES FOR DIESEL ENGINE REMOVAL. TOPICS ARE (1) REVIEW OF TWO CYCLE AND FOUR CYCLE CONCEPT, (2) SOME BASIC CHARACTERISTICS OF FOUR CYCLE ENGINES,…
2010-08-19
highlight the benefits of regenerative braking . Parameters within the drive cycle may include vehicle speed, elevation/grade changes, road surface...assist to downsize the engine due to infinite maximum speed requirements • Drive cycle less suited to regenerative braking improvement compared to...will be cycle dependent. A high speed drive cycle may for example drive a focus on aerodynamic improvements, while high frequency of braking will
Thermodynamic Cycle and CFD Analyses for Hydrogen Fueled Air-breathing Pulse Detonation Engines
NASA Technical Reports Server (NTRS)
Povinelli, Louis A.; Yungster, Shaye
2002-01-01
This paper presents the results of a thermodynamic cycle analysis of a pulse detonation engine (PDE) using a hydrogen-air mixture at static conditions. The cycle performance results, namely the specific thrust, fuel consumption and impulse are compared to a single cycle CFD analysis for a detonation tube which considers finite rate chemistry. The differences in the impulse values were indicative of the additional performance potential attainable in a PDE.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-29
... Accounting Regulations and Proposed Guidance for Fuel Cycle Facility Material Control and Accounting Plans... material control and accounting (MC&A) of special nuclear material (SNM) and the proposed guidance...
A Novel Fuel/Reactor Cycle to Implement the 300 Years Nuclear Waste Policy Approach - 12377
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carelli, M.D.; Franceschini, F.; Lahoda, E.J.
2012-07-01
A thorium-based fuel cycle system can effectively burn the currently accumulated commercial used nuclear fuel and move to a sustainable equilibrium where the actinide levels in the high level waste are low enough to yield a radiotoxicity after 300 years lower than that of the equivalent uranium ore. The second step of the Westinghouse approach to solving the waste 'problem' has been completed. The thorium fuel cycle has indeed the potential of burning the legacy TRU and achieve the waste objective proposed. Initial evaluations have been started for the third step, development and selection of appropriate reactors. Indications are thatmore » the probability of show-stoppers is rather remote. It is, therefore, believed that development of the thorium cycle and associated technologies will provide a permanent solution to the waste management. Westinghouse is open to the widest collaboration to make this a reality. (authors)« less
2015 Annual Progress Report: DOE Hydrogen and Fuel Cells Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
The 2015 Annual Progress Report summarizes fiscal year 2015 activities and accomplishments by projects funded by the DOE Hydrogen and Fuel Cells Program. It covers the program areas of hydrogen production; hydrogen delivery; hydrogen storage; fuel cells; manufacturing R&D; technology validation; safety, codes and standards; systems analysis; and market transformation.
The WSTIAC Quarterly. Volume 9, Number 3
2010-01-25
program .[8] THE THORIUM FUEL CYCLE AND LFTR POWER PLANT The thorium fuel cycle is based on a series of neutron absorp- tion and beta decay processes...the fig- ure is a graphite matrix moderated MSR reactor with fuel salt mixture (ThF4-U233F4) being circulated by a pump through the core and to a...the core as purified salt. As one of the unique safety features, a melt-plug at the reactor bottom would permit the reactor fluid fuel to be drained
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lammert, M. P.; McCormick, R. L.; Sindler, P.
2012-10-01
Oxides of nitrogen (NOx) emissions for transit buses for up to five different fuels and three standard transit duty cycles were compared to establish whether there is a real-world biodiesel NOx increase for transit bus duty cycles and engine calibrations. Six buses representing the majority of the current national transit fleet and including hybrid and selective catalyst reduction systems were tested on a heavy-duty chassis dynamometer with certification diesel, certification B20 blend, low aromatic (California Air Resources Board) diesel, low aromatic B20 blend, and B100 fuels over the Manhattan, Orange County and UDDS test cycles. Engine emissions certification level hadmore » the dominant effect on NOx; kinetic intensity was the secondary driving factor. The biodiesel effect on NOx emissions was not statistically significant for most buses and duty cycles for blends with certification diesel, except for a 2008 model year bus. CARB fuel had many more instances of a statistically significant effect of reducing NOx. SCR systems proved effective at reducing NOx to near the detection limit on all duty cycles and fuels, including B100. While offering a fuel economy benefit, a hybrid system significantly increased NOx emissions over a same year bus with a conventional drivetrain and the same engine.« less
Emissions from photovoltaic life cycles.
Fthenakis, Vasilis M; Kim, Hyung Chul; Alsema, Erik
2008-03-15
Photovoltaic (PV) technologies have shown remarkable progress recently in terms of annual production capacity and life cycle environmental performances, which necessitate timely updates of environmental indicators. Based on PV production data of 2004-2006, this study presents the life-cycle greenhouse gas emissions, criteria pollutant emissions, and heavy metal emissions from four types of major commercial PV systems: multicrystalline silicon, monocrystalline silicon, ribbon silicon, and thin-film cadmium telluride. Life-cycle emissions were determined by employing average electricity mixtures in Europe and the United States during the materials and module production for each PV system. Among the current vintage of PV technologies, thin-film cadmium telluride (CdTe) PV emits the least amount of harmful air emissions as it requires the least amount of energy during the module production. However, the differences in the emissions between different PV technologies are very small in comparison to the emissions from conventional energy technologies that PV could displace. As a part of prospective analysis, the effect of PV breeder was investigated. Overall, all PV technologies generate far less life-cycle air emissions per GWh than conventional fossil-fuel-based electricity generation technologies. At least 89% of air emissions associated with electricity generation could be prevented if electricity from photovoltaics displaces electricity from the grid.
Study of a LH2-fueled topping cycle engine for aircraft propulsion
NASA Technical Reports Server (NTRS)
Turney, G. E.; Fishbach, L. H.
1983-01-01
An analytical investigation was made of a topping cycle aircraft engine system which uses a cryogenic fuel. This system consists of a main turboshaft engine which is mechanically coupled (by cross-shafting) to a topping loop which augments the shaft power output of the system. The thermodynamic performance of the topping cycle engine was analyzed and compared with that of a reference (conventional-type) turboshaft engine. For the cycle operating conditions selected, the performance of the topping cycle engine in terms of brake specific fuel consumption (bsfc) was determined to be about 12 percent better than that of the reference turboshaft engine. Engine weights were estimated for both the topping cycle engine and the reference turboshaft engine. These estimates were based on a common shaft power output for each engine. Results indicate that the weight of the topping cycle engine is comparable to that of the reference turboshaft engine. Previously announced in STAR as N83-34942
Nuclear Fuel Cycle Introductory Concepts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karpius, Peter Joseph
2017-02-02
The nuclear fuel cycle is a complex entity, with many stages and possibilities, encompassing natural resources, energy, science, commerce, and security, involving a host of nations around the world. This overview describes the process for generating nuclear power using fissionable nuclei.
Hazards of the Nuclear Fuel Cycle
ERIC Educational Resources Information Center
Holdren, John P.
1974-01-01
Outlines the stages of the nuclear fuel cycle where routine radiation releases occur and where nonroutine releases could occur. Examines the impact of these occurrences and emphasizes the regulations, practices, and technologies that prevail in the United States. (Author/GS)
COMPREHENSIVE STANDARDS: THE POWER GENERATION CASE
This study presents an illustrative data base of material quantities and environmental effluents in the fuel cycles for alternative technologies of thermally generated power. The entire fuel cycle for each of the alternative ten technologies is outlined for a representative power...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-30
... Accounting Regulations and Proposed Guidance for Fuel Cycle Facility Material Control and Accounting Plans... accounting (MC&A) of special nuclear material (SNM). The public meeting has been rescheduled for January 9...
Evaluation of life-cycle air emission factors of freight transportation.
Facanha, Cristiano; Horvath, Arpad
2007-10-15
Life-cycle air emission factors associated with road, rail, and air transportation of freight in the United States are analyzed. All life-cycle phases of vehicles, infrastructure, and fuels are accounted for in a hybrid life-cycle assessment (LCA). It includes not only fuel combustion, but also emissions from vehicle manufacturing, maintenance, and end of life, infrastructure construction, operation, maintenance, and end of life, and petroleum exploration, refining, and fuel distribution. Results indicate that total life-cycle emissions of freight transportation modes are underestimated if only tailpipe emissions are accounted for. In the case of CO2 and NOx, tailpipe emissions underestimate total emissions by up to 38%, depending on the mode. Total life-cycle emissions of CO and SO2 are up to seven times higher than tailpipe emissions. Sensitivity analysis considers the effects of vehicle type, geography, and mode efficiency on the final results. Policy implications of this analysis are also discussed. For example, while it is widely assumed that currently proposed regulations will result in substantial reductions in emissions, we find that this is true for NOx, emissions, because fuel combustion is the main cause, and to a lesser extent for SO2, but not for PM10 emissions, which are significantly affected by the other life-cycle phases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bi, G.; Liu, C.; Si, S.
This paper was focused on core design, neutronics evaluation and fuel cycle analysis for Thorium-Uranium Breeding Recycle in current PWRs, without any major change to the fuel lattice and the core internals, but substituting the UOX pellet with Thorium-based pellet. The fuel cycle analysis indicates that Thorium-Uranium Breeding Recycle is technically feasible in current PWRs. A 4-loop, 193-assembly PWR core utilizing 17 x 17 fuel assemblies (FAs) was taken as the model core. Two mixed cores were investigated respectively loaded with mixed reactor grade Plutonium-Thorium (PuThOX) FAs and mixed reactor grade {sup 233}U-Thorium (U{sub 3}ThOX) FAs on the basis ofmore » reference full Uranium oxide (UOX) equilibrium-cycle core. The UOX/PuThOX mixed core consists of 121 UOX FAs and 72 PuThOX FAs. The reactor grade {sup 233}U extracted from burnt PuThOX fuel was used to fabrication of U{sub 3}ThOX for starting Thorium-. Uranium breeding recycle. In UOX/U{sub 3}ThOX mixed core, the well designed U{sub 3}ThOX FAs with 1.94 w/o fissile uranium (mainly {sup 233}U) were located on the periphery of core as a blanket region. U{sub 3}ThOX FAs remained in-core for 6 cycles with the discharged burnup achieving 28 GWD/tHM. Compared with initially loading, the fissile material inventory in U{sub 3}ThOX fuel has increased by 7% via 1-year cooling after discharge. 157 UOX fuel assemblies were located in the inner of UOX/U{sub 3}ThOX mixed core refueling with 64 FAs at each cycle. The designed UOX/PuThOX and UOX/U{sub 3}ThOX mixed core satisfied related nuclear design criteria. The full core performance analyses have shown that mixed core with PuThOX loading has similar impacts as MOX on several neutronic characteristic parameters, such as reduced differential boron worth, higher critical boron concentration, more negative moderator temperature coefficient, reduced control rod worth, reduced shutdown margin, etc.; while mixed core with U{sub 3}ThOX loading on the periphery of core has no visible impacts on neutronic characteristics compared with reference full UOX core. The fuel cycle analysis has shown that {sup 233}U mono-recycling with U{sub 3}ThOX fuel could save 13% of natural uranium resource compared with UOX once through fuel cycle, slightly more than that of Plutonium single-recycling with MOX fuel. If {sup 233}U multi-recycling with U{sub 3}ThOX fuel is implemented, more natural uranium resource would be saved. (authors)« less
Impacts of Heterogeneous Recycle in Fast Reactors on Overall Fuel Cycle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Temitope A. Taiwo; Samuel E. Bays; Abdullatif M. Yacout
2011-03-01
A study in the United States has evaluated the attributes of the heterogeneous recycle approach for plutonium and minor actinide transmutation in fast reactor fuel cycles, with comparison to the homogeneous recycle approach, where pertinent. The work investigated the characteristics, advantages, and disadvantages of the approach in the overall fuel cycle, including reactor transmutation, systems and safety impacts, fuel separation and fabrication issues, and proliferation risk and transportation impacts. For this evaluation, data from previous and ongoing national studies on heterogeneous recycle were reviewed and synthesized. Where useful, information from international sources was included in the findings. The intent ofmore » the work was to provide a comprehensive assessment of the heterogeneous recycle approach at the current time.« less
An investigation on the fuel savings potential of hybrid hydraulic refuse collection vehicles.
Bender, Frank A; Bosse, Thomas; Sawodny, Oliver
2014-09-01
Refuse trucks play an important role in the waste collection process. Due to their typical driving cycle, these vehicles are characterized by large fuel consumption, which strongly affects the overall waste disposal costs. Hybrid hydraulic refuse vehicles offer an interesting alternative to conventional diesel trucks, because they are able to recuperate, store and reuse braking energy. However, the expected fuel savings can vary strongly depending on the driving cycle and the operational mode. Therefore, in order to assess the possible fuel savings, a typical driving cycle was measured in a conventional vehicle run by the waste authority of the City of Stuttgart, and a dynamical model of the considered vehicle was built up. Based on the measured driving cycle and the vehicle model including the hybrid powertrain components, simulations for both the conventional and the hybrid vehicle were performed. Fuel consumption results that indicate savings of about 20% are presented and analyzed in order to evaluate the benefit of hybrid hydraulic vehicles used for refuse collection. Copyright © 2014 Elsevier Ltd. All rights reserved.
Transuranic Waste Burning Potential of Thorium Fuel in a Fast Reactor - 12423
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wenner, Michael; Franceschini, Fausto; Ferroni, Paolo
Westinghouse Electric Company (referred to as 'Westinghouse' in the rest of this paper) is proposing a 'back-to-front' approach to overcome the stalemate on nuclear waste management in the US. In this approach, requirements to further the societal acceptance of nuclear waste are such that the ultimate health hazard resulting from the waste package is 'as low as reasonably achievable'. Societal acceptability of nuclear waste can be enhanced by reducing the long-term radiotoxicity of the waste, which is currently driven primarily by the protracted radiotoxicity of the transuranic (TRU) isotopes. Therefore, a transition to a more benign radioactive waste can bemore » accomplished by a fuel cycle capable of consuming the stockpile of TRU 'legacy' waste contained in the LWR Used Nuclear Fuel (UNF) while generating waste which is significantly less radio-toxic than that produced by the current open U-based fuel cycle (once through and variations thereof). Investigation of a fast reactor (FR) operating on a thorium-based fuel cycle, as opposed to the traditional uranium-based is performed. Due to a combination between its neutronic properties and its low position in the actinide chain, thorium not only burns the legacy TRU waste, but it does so with a minimal production of 'new' TRUs. The effectiveness of a thorium-based fast reactor to burn legacy TRU and its flexibility to incorporate various fuels and recycle schemes according to the evolving needs of the transmutation scenario have been investigated. Specifically, the potential for a high TRU burning rate, high U-233 generation rate if so desired and low concurrent production of TRU have been used as metrics for the examined cycles. Core physics simulations of a fast reactor core running on thorium-based fuels and burning an external TRU feed supply have been carried out over multiple cycles of irradiation, separation and reprocessing. The TRU burning capability as well as the core isotopic content have been characterized. Results will be presented showing the potential for thorium to reach a high TRU transmutation rate over a wide variety of fuel types (oxide, metal, nitride and carbide) and transmutation schemes (recycle or partition of in-bred U-233). In addition, a sustainable scheme has been devised to burn the TRU accumulated in the core inventory once the legacy TRU supply has been exhausted, thereby achieving long-term virtually TRU-free. A comprehensive 'back-to-front' approach to the fuel cycle has recently been proposed by Westinghouse which emphasizes achieving 'acceptable', low-radiotoxicity, high-level waste, with the intent not only to satisfy all technical constraints but also to improve public acceptance of nuclear energy. Following this approach, the thorium fuel cycle, due to its low radiotoxicity and high potential for TRU transmutation has been selected as a promising solution. Additional studies not shown here have shown significant reduction of decay heat. The TRU burning potential of the Th-based fuel cycle has been illustrated with a variety of fuel types, using the Toshiba ARR to perform the analysis, including scenarios with continued LWR operation of either uranium fueled or thorium fueled LWRs. These scenarios will afford overall reduction in actinide radiotoxicity, however when the TRU supply is exhausted, a continued U- 235 LWR operation must be assumed to provide TRU makeup feed. This scenario will never reach the characteristically low TRU content of a closed thorium fuel cycle with its associated potential benefits on waste radiotoxicity, as exemplified by the transition scenario studied. At present, the cases studied indicate ThC as a potential fuel for maximizing TRU burning, while ThN with nitrogen enriched to 95% N-15 shows the highest breeding potential. As a result, a transition scenario with ThN was developed to show that a sustainable, closed Th-cycle can be achieved starting from burning the legacy TRU stock and completing the transmutation of the residual TRU remaining in the core inventory after the legacy TRU external supply has been exhausted. The radiotoxicity of the actinide waste during the various phases has been characterized, showing the beneficial effect of the decreasing content of TRU in the recycled fuel as the transition to a closed Th-based fuel cycle is undertaken. Due to the back-to-front nature of the proposed methodology, detailed designs are not the first step taken when assessing a fuel cycle scenario potential. As a result, design refinement is still required and should be expected in future studies. Moreover, significant safety assessment, including determination of associated reactivity coefficients, fuel and reprocessing feasibility studies and economic assessments will still be needed for a more comprehensive and meaningful comparison against other potential solutions. With the above considerations in mind, the potential advantages of thorium fuelled reactors on HLW management optimization lead us to believe that thorium fuelled reactor systems can play a significant role in the future and deserve further consideration. (authors)« less
NASA Technical Reports Server (NTRS)
Beecher, D. T.
1976-01-01
Nine advanced energy conversion concepts using coal or coal-derived fuels are summarized. They are; (1) open-cycle gas turbines, (2) combined gas-steam turbine cycles, (3) closed-cycle gas turbines, (4) metal vapor Rankine topping, (5) open-cycle MHD; (6) closed-cycle MHD; (7) liquid-metal MHD; (8) advanced steam; and (9) fuel cell systems. The economics, natural resource requirements, and performance criteria for the nine concepts are discussed.
A combined gas cooled nuclear reactor and fuel cell cycle
NASA Astrophysics Data System (ADS)
Palmer, David J.
Rising oil costs, global warming, national security concerns, economic concerns and escalating energy demands are forcing the engineering communities to explore methods to address these concerns. It is the intention of this thesis to offer a proposal for a novel design of a combined cycle, an advanced nuclear helium reactor/solid oxide fuel cell (SOFC) plant that will help to mitigate some of the above concerns. Moreover, the adoption of this proposal may help to reinvigorate the Nuclear Power industry while providing a practical method to foster the development of a hydrogen economy. Specifically, this thesis concentrates on the importance of the U.S. Nuclear Navy adopting this novel design for its nuclear electric vessels of the future with discussion on efficiency and thermodynamic performance characteristics related to the combined cycle. Thus, the goals and objectives are to develop an innovative combined cycle that provides a solution to the stated concerns and show that it provides superior performance. In order to show performance, it is necessary to develop a rigorous thermodynamic model and computer program to analyze the SOFC in relation with the overall cycle. A large increase in efficiency over the conventional pressurized water reactor cycle is realized. Both sides of the cycle achieve higher efficiencies at partial loads which is extremely important as most naval vessels operate at partial loads as well as the fact that traditional gas turbines operating alone have poor performance at reduced speeds. Furthermore, each side of the cycle provides important benefits to the other side. The high temperature exhaust from the overall exothermic reaction of the fuel cell provides heat for the reheater allowing for an overall increase in power on the nuclear side of the cycle. Likewise, the high temperature helium exiting the nuclear reactor provides a controllable method to stabilize the fuel cell at an optimal temperature band even during transients helping to increase performance and reduce degradation of the fuel cell. It also provides the high temperature needed to efficiently produce hydrogen for the fuel cell. Moreover, the inclusion of a highly reliable and electrically independent fuel cell is particularly important as the ship will have the ability to divert large amounts of power from the propulsion system to energize high energy weapon pulse loads without disturbing vital parts of the C4ISR systems or control panels. Ultimately, the thesis shows that the combined cycle is mutually beneficial to each side of the cycle and overall critically needed for our future.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Calculation and use of vehicle-specific 5-cycle-based fuel economy values for vehicle configurations. 600.207-08 Section 600.207-08 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Fue...
2016 Annual Progress Report: DOE Hydrogen and Fuel Cells Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
The 2016 Annual Progress Report summarizes fiscal year 2016 activities and accomplishments by projects funded by the DOE Hydrogen and Fuel Cells Program. It covers the program areas of hydrogen production; hydrogen delivery; hydrogen storage; fuel cells; manufacturing R&D; technology validation; safety, codes and standards; systems analysis; market transformation; and Small Business Innovation Research projects.
Lean Development with the Morpheus Simulation Software
NASA Technical Reports Server (NTRS)
Brogley, Aaron C.
2013-01-01
The Morpheus project is an autonomous robotic testbed currently in development at NASA's Johnson Space Center (JSC) with support from other centers. Its primary objectives are to test new 'green' fuel propulsion systems and to demonstrate the capability of the Autonomous Lander Hazard Avoidance Technology (ALHAT) sensor, provided by the Jet Propulsion Laboratory (JPL) on a lunar landing trajectory. If successful, these technologies and lessons learned from the Morpheus testing cycle may be incorporated into a landing descent vehicle used on the moon, an asteroid, or Mars. In an effort to reduce development costs and cycle time, the project employs lean development engineering practices in its development of flight and simulation software. The Morpheus simulation makes use of existing software packages where possible to reduce the development time. The development and testing of flight software occurs primarily through the frequent test operation of the vehicle and incrementally increasing the scope of the test. With rapid development cycles, risk of loss of the vehicle and loss of the mission are possible, but efficient progress in development would not be possible without that risk.
Cogeneration Technology Alternatives Study (CTAS). Volume 1: Summary
NASA Technical Reports Server (NTRS)
Barna, G. J.; Burns, R. K.; Sagerman, G. D.
1980-01-01
Various advanced energy conversion systems that can use coal or coal-derived fuels for industrial cogeneration applications were compared to provide information needed by DOE to establish research and development funding priorities for advanced-technology systems that could significantly advance the use of coal or coal-derived fuels in industrial cogeneration. Steam turbines, diesel engines, open-cycle gas turbines, combined cycles, closed-cycle gas turbines, Stirling engines, phosphoric acid fuel cells, molten carbonate fuel cells, and thermionics were studied with technology advancements appropriate for the 1985-2000 time period. The various advanced systems were compared and evaluated for wide diversity of representative industrial plants on the basis of fuel energy savings, annual energy cost savings, emissions savings, and rate of return on investment as compared with purchasing electricity from a utility and providing process heat with an on-site boiler. Also included in the comparisons and evaluations are results extrapolated to the national level.
Cogeneration Technology Alternatives Study (CTAS). Volume 2: Comparison and evaluation of results
NASA Technical Reports Server (NTRS)
1984-01-01
CTAS compared and evaluated various advanced energy conversion systems that can use coal or coal-derived fuels for industrial cogeneration applications. The principal aim of the study was to provide information needed by DOE to establish research and development (R&D) funding priorities for advanced-technology systems that could significantly advance the use of coal or coal-derived fuels in industrial cogeneration. Steam turbines, diesel engines, open-cycle gas turbines, combined cycles, closed-cycle gas turbines, Stirling engines, phosphoric acid fuel cells, molten carbonate fuel cells, and thermionics were studied with technology advancements appropriate for the 1985-2000 time period. The various advanced systems were compared and evaluated for a wide diversity of representative industrial plants on the basis of fuel energy savings, annual energy cost savings, emissions savings, and rate of return on investment (ROI) as compared with purchasing electricity from a utility and providing process heat with an on-site boiler.
Solid Oxide Fuel Cell/Gas Turbine Hybrid Cycle Technology for Auxiliary Aerospace Power
NASA Technical Reports Server (NTRS)
Steffen, Christopher J., Jr.; Freeh, Joshua E.; Larosiliere, Louis M.
2005-01-01
A notional 440 kW auxiliary power unit has been developed for 300 passenger commercial transport aircraft in 2015AD. A hybrid engine using solid-oxide fuel cell stacks and a gas turbine bottoming cycle has been considered. Steady-state performance analysis during cruise operation has been presented. Trades between performance efficiency and system mass were conducted with system specific energy as the discriminator. Fuel cell performance was examined with an area specific resistance. The ratio of fuel cell versus turbine power was explored through variable fuel utilization. Area specific resistance, fuel utilization, and mission length had interacting effects upon system specific energy. During cruise operation, the simple cycle fuel cell/gas turbine hybrid was not able to outperform current turbine-driven generators for system specific energy, despite a significant improvement in system efficiency. This was due in part to the increased mass of the hybrid engine, and the increased water flow required for on-board fuel reformation. Two planar, anode-supported cell design concepts were considered. Designs that seek to minimize the metallic interconnect layer mass were seen to have a large effect upon the system mass estimates.
Accelerator Reactor Coupling for Energy Production in Advanced Nuclear Fuel Cycles
Brown, Nicholas R.; Heidet, Florent; Haj Tahar, Malek
2016-01-01
This article is a review of several accelerator–reactor interface issues and nuclear fuel cycle applications of acceleratordriven subcritical systems. The systems considered here have the primary goal of energy production, but that goal is accomplished via a specific application in various proposed nuclear fuel cycles, such as breed-and-burn of fertile material or burning of transuranic material. Several basic principles are reviewed, starting from the proton beam window including the target, blanket, reactor core, and up to the fuel cycle. We focus on issues of interest, such as the impact of the energy required to run the accelerator and associated systemsmore » on the potential electricity delivered to the grid. Accelerator-driven systems feature many of the constraints and issues associated with critical reactors, with the added challenges of subcritical operation and coupling to an accelerator. Reliable accelerator operation and avoidance of beam trips are critically important. One interesting challenge is measurement of blanket subcriticality level during operation. We also review the potential benefits of accelerator-driven systems in various nuclear fuel cycle applications. Ultimately, accelerator-driven subcritical systems with the goal of transmutation of transuranic material have lower 100,000-year radioactivity than a critical fast reactor with recycling of uranium and plutonium.« less
Accelerator–Reactor Coupling for Energy Production in Advanced Nuclear Fuel Cycles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heidet, Florent; Brown, Nicholas R.; Haj Tahar, Malek
2015-01-01
This article is a review of several accelerator-reactor interface issues and nuclear fuel cycle applications of accelerator-driven subcritical systems. The systems considered here have the primary goal of energy production, but that goal is accomplished via a specific application in various proposed nuclear fuel cycles, such as breed-and-burn of fertile material or burning of transuranic material. Several basic principles are reviewed, starting from the proton beam window including the target, blanket, reactor core, and up to the fuel cycle. We focused on issues of interest, e.g. the impact of the energy required to run the accelerator and associated systems onmore » the potential electricity delivered to the grid. Accelerator-driven systems feature many of the constraints and issues associated with critical reactors, with the added challenges of subcritical operation and coupling to an accelerator. Reliable accelerator operation and avoidance of beam trips are a critically important. One interesting challenge is measurement of blanket subcriticality level during operation. We also reviewed the potential benefits of accelerator-driven systems in various nuclear fuel cycle applications. Ultimately, accelerator-driven subcritical systems with the goal of transmutation of transuranic material have lower 100,000-year radioactivity versus a critical fast reactor with recycle of uranium and plutonium.« less
Accelerator-Reactor Coupling for Energy Production in Advanced Nuclear Fuel Cycles
NASA Astrophysics Data System (ADS)
Heidet, Florent; Brown, Nicholas R.; Haj Tahar, Malek
This article is a review of several accelerator-reactor interface issues and nuclear fuel cycle applications of accelerator-driven subcritical systems. The systems considered here have the primary goal of energy production, but that goal is accomplished via a specific application in various proposed nuclear fuel cycles, such as breed-and-burn of fertile material or burning of transuranic material. Several basic principles are reviewed, starting from the proton beam window including the target, blanket, reactor core, and up to the fuel cycle. We focus on issues of interest, such as the impact of the energy required to run the accelerator and associated systems on the potential electricity delivered to the grid. Accelerator-driven systems feature many of the constraints and issues associated with critical reactors, with the added challenges of subcritical operation and coupling to an accelerator. Reliable accelerator operation and avoidance of beam trips are critically important. One interesting challenge is measurement of blanket subcriticality level during operation. We also review the potential benefits of accelerator-driven systems in various nuclear fuel cycle applications. Ultimately, accelerator-driven subcritical systems with the goal of transmutation of transuranic material have lower 100,000-year radioactivity than a critical fast reactor with recycling of uranium and plutonium.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ariani, Menik; Su'ud, Zaki; Waris, Abdul
2012-06-06
A conceptual design study of Gas Cooled Fast Reactors with Modified CANDLE burn-up scheme has been performed. In this study, design GCFR with Helium coolant which can be continuously operated by supplying mixed Natural Uranium/Thorium without fuel enrichment plant or fuel reprocessing plant. The active reactor cores are divided into two region, Thorium fuel region and Uranium fuel region. Each fuel core regions are subdivided into ten parts (region-1 until region-10) with the same volume in the axial direction. The fresh Natural Uranium and Thorium is initially put in region-1, after one cycle of 10 years of burn-up it ismore » shifted to region-2 and the each region-1 is filled by fresh natural Uranium/Thorium fuel. This concept is basically applied to all regions in both cores area, i.e. shifted the core of i{sup th} region into i+1 region after the end of 10 years burn-up cycle. For the next cycles, we will add only Natural Uranium and Thorium on each region-1. The calculation results show the reactivity reached by mixed Natural Uranium/Thorium with volume ratio is 4.7:1. This reactor can results power thermal 550 MWth. After reactor start-up the operation, furthermore reactor only needs Natural Uranium/Thorium supply for continue operation along 100 years.« less
NASA Astrophysics Data System (ADS)
Majidi, Pasha; Pickup, Peter G.
2014-12-01
A direct ethanol fuel cell has been operated under sinusoidal (AC) potential cycling conditions in order to increase the yield of carbon dioxide and thereby increase cell efficiency relative to operation at a fixed potential. At 80 °C, faradaic yields of CO2 as high as 25% have been achieved with a PtRu anode catalyst, while the maximum CO2 production at constant potential was 13%. The increased yields under cycling conditions have been attributed to periodic oxidative stripping of adsorbed CO. These results will be important in the optimization of operating conditions for direct ethanol fuel cells, where the benefits of potential cycling are projected to increase as catalysts that produce CO2 more efficiently are implemented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farrell, John
This presentation reports recent progress on light-duty boosted spark-ignition fuels/engines being developed under the Co-Optimization of Fuels and Engines initiative (Co-Optima). Co-Optima is focused on identifying fuel properties that optimize engine performance, independent of composition, allowing the market to define the best means to blend and provide these fuels. However, in support of this, we are pursuing a systematic study of blendstocks to identify a broad range of feasible options, with the objective of identifying blendstocks that can provide target ranges of key fuel properties, identifying trade-offs on consistent and comprehensive basis, and sharing information with stakeholders.
Recent Progress in Nanostructured Electrocatalysts for PEM Fuel Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Sheng; Shao, Yuyan; Yin, Geping
2013-03-30
Polymer electrolyte membrane (PEM) fuel cells are attracting much attention as promising clean power sources and an alternative to conventional internal combustion engines, secondary batteries, and other power sources. Much effort from government laboratories, industry, and academia has been devoted to developing PEM fuel cells, and great advances have been achieved. Although prototype cars powered by fuel cells have been delivered, successful commercialization requires fuel cell electrocatalysts, which are crucial components at the heart of fuel cells, meet exacting performance targets. In this review, we present a brief overview of the recent progress in fuel cell electrocatalysts, which involves catalystmore » supports, Pt and Pt-based electrocatalysts, and non-Pt electrocatalysts.« less
Standalone BISON Fuel Performance Results for Watts Bar Unit 1, Cycles 1-3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clarno, Kevin T.; Pawlowski, Roger; Stimpson, Shane
2016-03-07
The Consortium for Advanced Simulation of Light Water Reactors (CASL) is moving forward with more complex multiphysics simulations and increased focus on incorporating fuel performance analysis methods. The coupled neutronics/thermal-hydraulics capabilities within the Virtual Environment for Reactor Applications Core Simulator (VERA-CS) have become relatively stable, and major advances have been made in analysis efforts, including the simulation of twelve cycles of Watts Bar Nuclear Unit 1 (WBN1) operation. While this is a major achievement, the VERA-CS approaches for treating fuel pin heat transfer have well-known limitations that could be eliminated through better integration with the BISON fuel performance code. Severalmore » approaches are being implemented to consider fuel performance, including a more direct multiway coupling with Tiamat, as well as a more loosely coupled one-way approach with standalone BISON cases. Fuel performance typically undergoes an independent analysis using a standalone fuel performance code with manually specified input defined from an independent core simulator solution or set of assumptions. This report summarizes the improvements made since the initial milestone to execute BISON from VERA-CS output. Many of these improvements were prompted through tighter collaboration with the BISON development team at Idaho National Laboratory (INL). A brief description of WBN1 and some of the VERA-CS data used to simulate it are presented. Data from a small mesh sensitivity study are shown, which helps justify the mesh parameters used in this work. The multi-cycle results are presented, followed by the results for the first three cycles of WBN1 operation, particularly the parameters of interest to pellet-clad interaction (PCI) screening (fuel-clad gap closure, maximum centerline fuel temperature, maximum/minimum clad hoop stress, and cumulative damage index). Once the mechanics of this capability are functioning, future work will target cycles with known or suspected PCI failures to determine how well they can be estimated.« less
FY 2005 Annual Progress Report for the DOE Hydrogen Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
In cooperation with industry, academia, national laboratories, and other government agencies, the Department of Energy's Hydrogen Program is advancing the state of hydrogen and fuel cell technologies in support of the President's Hydrogen Fuel Initiative. The initiative seeks to develop hydrogen, fuel cell, and infrastructure technologies needed to make it practical and cost-effective for Americans to choose to use fuel cell vehicles by 2020. Significant progress was made in fiscal year 2005 toward that goal.
Tendall, Danielle M; Binder, Claudia R
2011-03-15
The European nuclear fuel cycle (covering the EU-27, Switzerland and Ukraine) was modeled using material flow analysis (MFA).The analysis was based on publicly available data from nuclear energy agencies and industries, national trade offices, and nongovernmental organizations. Military uranium was not considered due to lack of accessible data. Nuclear fuel cycle scenarios varying spent fuel reprocessing, depleted uranium re-enrichment, enrichment assays, and use of fast neutron reactors, were established. They were then assessed according to environmental, economic and social criteria such as resource depletion, waste production, chemical and radiation emissions, costs, and proliferation risks. The most preferable scenario in the short term is a combination of reduced tails assay and enrichment grade, allowing a 17.9% reduction of uranium demand without significantly increasing environmental, economic, or social risks. In the long term, fast reactors could theoretically achieve a 99.4% decrease in uranium demand and nuclear waste production. However, this involves important costs and proliferation risks. Increasing material efficiency is not systematically correlated with the reduction of other risks. This suggests that an overall optimization of the nuclear fuel cycle is difficult to obtain. Therefore, criteria must be weighted according to stakeholder interests in order to determine the most sustainable solution. This paper models the flows of uranium and associated materials in Europe, and provides a decision support tool for identifying the trade-offs of the alternative nuclear fuel cycles considered.
The long-term carbon cycle, fossil fuels and atmospheric composition.
Berner, Robert A
2003-11-20
The long-term carbon cycle operates over millions of years and involves the exchange of carbon between rocks and the Earth's surface. There are many complex feedback pathways between carbon burial, nutrient cycling, atmospheric carbon dioxide and oxygen, and climate. New calculations of carbon fluxes during the Phanerozoic eon (the past 550 million years) illustrate how the long-term carbon cycle has affected the burial of organic matter and fossil-fuel formation, as well as the evolution of atmospheric composition.
Multicylinder Diesel Engine Tests with Unstabilized Water-in-Fuel Emulsions
DOT National Transportation Integrated Search
1981-06-01
Two diesel engines representative of the four-stroke cycle and two-stroke cycle main propulsion units installed in U.S. Coast Guard WPB class cutters were operated in a test environment in an attempt to demonstrate significant fuel savings associated...
Zaimes, George G; Soratana, Kullapa; Harden, Cheyenne L; Landis, Amy E; Khanna, Vikas
2015-08-18
A well-to-wheel (WTW) life cycle assessment (LCA) model is developed to evaluate the environmental profile of producing liquid transportation fuels via fast pyrolysis of perennial grasses: switchgrass and miscanthus. The framework established in this study consists of (1) an agricultural model used to determine biomass growth rates, agrochemical application rates, and other key parameters in the production of miscanthus and switchgrass biofeedstock; (2) an ASPEN model utilized to simulate thermochemical conversion via fast pyrolysis and catalytic upgrading of bio-oil to renewable transportation fuel. Monte Carlo analysis is performed to determine statistical bounds for key sustainability and performance measures including life cycle greenhouse gas (GHG) emissions and Energy Return on Investment (EROI). The results of this work reveal that the EROI and GHG emissions (gCO2e/MJ-fuel) for fast pyrolysis derived fuels range from 1.52 to 2.56 and 22.5 to 61.0 respectively, over the host of scenarios evaluated. Further analysis reveals that the energetic performance and GHG reduction potential of fast pyrolysis-derived fuels are highly sensitive to the choice of coproduct scenario and LCA allocation scheme, and in select cases can change the life cycle carbon balance from meeting to exceeding the renewable fuel standard emissions reduction threshold for cellulosic biofuels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burton, Jonathan L.
Sylvatex is a green nano-chemistry company that has developed a platform technology utilizing renewable, non-toxic inputs to create a stable nanoparticle that can be used in multiple applications. Their mission is to increase the use of renewables globally, to empower a cleaner and healthier future. The main application is a fuel technology product - MicroX - that utilizes proprietary knowledge to scale low-cost, cleaner-burning renewable diesel fuel and additives by using a co-location commercial model. The aspects of this project will include testing of two Sylvatex MicroX fuels on an engine dynamometer platform. Industry standard ultra-low sulfur diesel (ULSD) B3more » fuel and a ULSD B20 will both be used for comparison of the Sylvatex fuels (U.S. standard diesel fuel at the pump contains an average of approximately 3% biodiesel; this is why B3 would be used as a baseline comparison). Sylvatex is currently using a prototype formulation (MicroX 1) that applies a high cost surfactant. An experimental formulation (MicroX 2) that uses lower cost materials is under development. The MicroX 1 will be blended at a 10% level into the B3 ULSD fuel and the MicroX 2 will be blended at a 10% level into both the B3 and the B20 ULSD fuels for study on the engine dynamometer test platform. All fuel blends will be tested over the FTP transient engine test cycle and a steady state ramped modal engine test cycle. Each test cycle will be performed a minimum of 3 times for each fuel. Tailpipe and/or engine out gaseous exhaust emissions (CO2, CO, NOx, THC, O2,), engine out PM emissions, and brake-specific fuel consumption rates will be evaluated for all test cycles.« less
Impact of minor actinide recycling on sustainable fuel cycle options
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heidet, F.; Kim, T. K.; Taiwo, T. A.
The recent Evaluation and Screening study chartered by the U.S. Department of Energy, Office of Nuclear Energy, has identified four fuel cycle options as being the most promising. Among these four options, the two single-stage fuel cycles rely on a fast reactor and are differing in the fact that in one case only uranium and plutonium are recycled while in the other case minor actinides are also recycled. The two other fuel cycles are two-stage and rely on both fast and thermal reactors. They also differ in the fact that in one case only uranium and plutonium are recycled whilemore » in the other case minor actinides are also recycled. The current study assesses the impact of recycling minor actinides on the reactor core design, its performance characteristics, and the characteristics of the recycled material and waste material. The recycling of minor actinides is found not to affect the reactor core performance, as long as the same cycle length, core layout and specific power are being used. One notable difference is that the required transuranics (TRU) content is slightly increased when minor actinides are recycled. The mass flows are mostly unchanged given a same specific power and cycle length. Although the material mass flows and reactor performance characteristics are hardly affected by recycling minor actinides, some differences are observed in the waste characteristics between the two fuel cycles considered. The absence of minor actinides in the waste results in a different buildup of decay products, and in somewhat different behaviors depending on the characteristic and time frame considered. Recycling of minor actinides is found to result in a reduction of the waste characteristics ranging from 10% to 90%. These results are consistent with previous studies in this domain and depending on the time frame considered, packaging conditions, repository site, repository strategy, the differences observed in the waste characteristics could be beneficial and help improve the repository performance. On the other hand, recycling minor actinides also results in an increase of the recycled fuel characteristics and therefore of the charged fuel. The radioactivity is slightly increased while the decay heat and radiotoxicities are very significantly increased. Despite these differences, the characteristics of the fuel at time of discharge remain similar whether minor actinides are recycled or not, with the exception of the inhalation radiotoxicity which is significantly larger with minor actinide recycling. After some cooling the characteristics of the discharged fuel become larger when minor actinides are recycled, potentially affecting the reprocessing plant requirements. Recycling minor actinides has a negative impact on the characteristics of the fresh fuel and will make it more challenging to fabricate fuel containing minor actinides.« less
Phase I Final Scientific Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Xijia; Fetvedt, Jeremy; Dimmig, Walker
This Final Scientific Report addresses the accomplishments achieved during Phase I of DE- FE0023985, Coal Syngas Combustor Development for Supercritical CO 2 Power Cycles. The primary objective of the project was to develop a coal syngas-fueled combustor design for use with high-pressure, high-temperature, oxy-fuel, supercritical CO 2 power cycles, with particular focus given to the conditions required by the Allam Cycle. The primary goals, from the Statement of Project Objectives, were to develop: (1) a conceptual design of a syngas-fueled combustor-turbine block for a 300MWe high-pressure, oxy-fuel, sCO2 power plant; (2) the preliminary design of a 5MWt test combustor; andmore » (3) the definition of a combustor test program. Accomplishments for each of these goals are discussed in this report.« less
Next generation fuel irradiation capability in the High Flux Reactor Petten
NASA Astrophysics Data System (ADS)
Fütterer, Michael A.; D'Agata, Elio; Laurie, Mathias; Marmier, Alain; Scaffidi-Argentina, Francesco; Raison, Philippe; Bakker, Klaas; de Groot, Sander; Klaassen, Frodo
2009-07-01
This paper describes selected equipment and expertise on fuel irradiation testing at the High Flux Reactor (HFR) in Petten, The Netherlands. The reactor went critical in 1961 and holds an operating license up to at least 2015. While HFR has initially focused on Light Water Reactor fuel and materials, it also played a decisive role since the 1970s in the German High Temperature Reactor (HTR) development program. A variety of tests related to fast reactor development in Europe were carried out for next generation fuel and materials, in particular for Very High Temperature Reactor (V/HTR) fuel, fuel for closed fuel cycles (U-Pu and Th-U fuel cycle) and transmutation, as well as for other innovative fuel types. The HFR constitutes a significant European infrastructure tool for the development of next generation reactors. Experimental facilities addressed include V/HTR fuel tests, a coated particle irradiation rig, and tests on fast reactor, transmutation and thorium fuel. The rationales for these tests are given, results are provided and further work is outlined.
40 CFR 600.107-93 - Fuel specifications.
Code of Federal Regulations, 2010 CFR
2010-07-01
... and Later Model Year Automobiles-Test Procedures § 600.107-93 Fuel specifications. (a) The test fuel... chapter. (c) The test fuel specifications for methanol fuel used in Otto-cycle automobiles are given in § 86.113(a) (3) and (4) of this chapter. (d) The test fuel specifications for methanol fuel used in...
40 CFR 86.1313-2004 - Fuel specifications.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for New Otto-Cycle and Diesel Heavy-Duty Engines; Gaseous and Particulate Exhaust Test Procedures... Administrator in exhaust and evaporative emission testing of petroleum-fueled Otto-cycle engines, except that...
40 CFR 86.1313-2004 - Fuel specifications.
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for New Otto-Cycle and Diesel Heavy-Duty Engines; Gaseous and Particulate Exhaust Test Procedures... Administrator in exhaust and evaporative emission testing of petroleum-fueled Otto-cycle engines, except that...
40 CFR 86.1313-2004 - Fuel specifications.
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for New Otto-Cycle and Diesel Heavy-Duty Engines; Gaseous and Particulate Exhaust Test Procedures... Administrator in exhaust and evaporative emission testing of petroleum-fueled Otto-cycle engines, except that...
40 CFR 86.1313-2004 - Fuel specifications.
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for New Otto-Cycle and Diesel Heavy-Duty Engines; Gaseous and Particulate Exhaust Test Procedures... Administrator in exhaust and evaporative emission testing of petroleum-fueled Otto-cycle engines, except that...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-09-01
The International Nuclear Fuel Cycle Fact Book has been compiled in an effort to provide current data concerning fuel cycle and waste management facilities, R D programs and key personnel on 23 countries, including the US, four multi-national agencies, and 21 nuclear societies. The Fact Book is organized as follows: National summaries-a section for each country which summarizes nuclear policy, describes organizational relationships, and provides addresses and names of key personnel and information on facilities. International agencies-a section for each of the international agencies which has significant fuel cycle involvement and a listing of nuclear societies. Glossary-a list of abbreviations/acronymsmore » of organizations, facilities, technical and other terms. The national summaries, in addition to the data described above, feature a small map for each country as well as some general information. The latter presented from the perspective of the Fact Book user in the United States.« less
40 CFR 86.1231-90 - Vehicle preparation.
Code of Federal Regulations, 2012 CFR
2012-07-01
... recording the temperature of the prescribed test fuel at the approximate mid-volume of the fuel when the... specified test fuel (§ 86.1213) at room temperature. Then drive the vehicle through at least one cycle of... Emission Test Procedures for New Gasoline-Fueled, Natural Gas-Fueled, Liquefied Petroleum Gas-Fueled and...
40 CFR 86.1231-90 - Vehicle preparation.
Code of Federal Regulations, 2013 CFR
2013-07-01
... recording the temperature of the prescribed test fuel at the approximate mid-volume of the fuel when the... specified test fuel (§ 86.1213) at room temperature. Then drive the vehicle through at least one cycle of... Emission Test Procedures for New Gasoline-Fueled, Natural Gas-Fueled, Liquefied Petroleum Gas-Fueled and...
40 CFR 86.1231-90 - Vehicle preparation.
Code of Federal Regulations, 2010 CFR
2010-07-01
... recording the temperature of the prescribed test fuel at the approximate mid-volume of the fuel when the... specified test fuel (§ 86.1213) at room temperature. Then drive the vehicle through at least one cycle of... Emission Test Procedures for New Gasoline-Fueled, Natural Gas-Fueled, Liquefied Petroleum Gas-Fueled and...
40 CFR 86.1231-90 - Vehicle preparation.
Code of Federal Regulations, 2011 CFR
2011-07-01
... recording the temperature of the prescribed test fuel at the approximate mid-volume of the fuel when the... specified test fuel (§ 86.1213) at room temperature. Then drive the vehicle through at least one cycle of... Emission Test Procedures for New Gasoline-Fueled, Natural Gas-Fueled, Liquefied Petroleum Gas-Fueled and...
Smith, Sarah R.; Gle, Corine; Abbriano, Raffaela M.; ...
2016-02-04
Diatoms are one of the most productive and successful photosynthetic taxa on Earth and possess attributes such as rapid growth rates and production of lipids, making them candidate sources of renewable fuels. Despite their significance, few details of the mechanisms used to regulate growth and carbon metabolism are currently known, hindering metabolic engineering approaches to enhance productivity. To characterize the transcript level component of metabolic regulation, genome-wide changes in transcript abundance were documented in the model diatom Thalassiosira pseudonana on a time-course of silicon starvation. Growth, cell cycle progression, chloroplast replication, fatty acid composition, pigmentation, and photosynthetic parameters were characterizedmore » alongside lipid accumulation. Extensive coordination of large suites of genes was observed, highlighting the existence of clusters of coregulated genes as a key feature of global gene regulation in T. pseudonana. The identity of key enzymes for carbon metabolic pathway inputs (photosynthesis) and outputs (growth and storage) reveals these clusters are organized to synchronize these processes. Coordinated transcript level responses to silicon starvation are probably driven by signals linked to cell cycle progression and shifts in photophysiology. A mechanistic understanding of how this is accomplished will aid efforts to engineer metabolism for development of algal-derived biofuels.« less
Storage of Renewable Energy by Reduction of CO2 with Hydrogen.
Züttel, Andreas; Mauron, Philippe; Kato, Shunsuke; Callini, Elsa; Holzer, Marco; Huang, Jianmei
2015-01-01
The main difference between the past energy economy during the industrialization period which was mainly based on mining of fossil fuels, e.g. coal, oil and methane and the future energy economy based on renewable energy is the requirement for storage of the energy fluxes. Renewable energy, except biomass, appears in time- and location-dependent energy fluxes as heat or electricity upon conversion. Storage and transport of energy requires a high energy density and has to be realized in a closed materials cycle. The hydrogen cycle, i.e. production of hydrogen from water by renewable energy, storage and use of hydrogen in fuel cells, combustion engines or turbines, is a closed cycle. However, the hydrogen density in a storage system is limited to 20 mass% and 150 kg/m(3) which limits the energy density to about half of the energy density in fossil fuels. Introducing CO(2) into the cycle and storing hydrogen by the reduction of CO(2) to hydrocarbons allows renewable energy to be converted into synthetic fuels with the same energy density as fossil fuels. The resulting cycle is a closed cycle (CO(2) neutral) if CO(2) is extracted from the atmosphere. Today's technology allows CO(2) to be reduced either by the Sabatier reaction to methane, by the reversed water gas shift reaction to CO and further reduction of CO by the Fischer-Tropsch synthesis (FTS) to hydrocarbons or over methanol to gasoline. The overall process can only be realized on a very large scale, because the large number of by-products of FTS requires the use of a refinery. Therefore, a well-controlled reaction to a specific product is required for the efficient conversion of renewable energy (electricity) into an easy to store liquid hydrocarbon (fuel). In order to realize a closed hydrocarbon cycle the two major challenges are to extract CO(2) from the atmosphere close to the thermodynamic limit and to reduce CO(2) with hydrogen in a controlled reaction to a specific hydrocarbon. Nanomaterials with nanopores and the unique surface structures of metallic clusters offer new opportunities for the production of synthetic fuels.
Closed fuel cycle with increased fuel burn-up and economy applying of thorium resources
NASA Astrophysics Data System (ADS)
Kulikov, G. G.; Apse, V. A.
2017-01-01
The possible role of existing thorium reserves in the Russian Federation on engaging thorium in being currently closed (U-Pu)-fuel cycle of nuclear power of the country is considered. The application efficiency of thermonuclear neutron sources with thorium blanket for the economical use of existing thorium reserves is demonstrated. The aim of the work is to find solutions of such major tasks as the reduction of both front-end and back-end of nuclear fuel cycle and an enhancing its protection against the uncontrolled proliferation of fissile materials by means of the smallest changes in the fuel cycle. During implementation of the work we analyzed the results obtained earlier by the authors, brought new information on the number of thorium available in the Russian Federation and made further assessments. On the basis of proposal on the inclusion of hybrid reactors with Th-blanket into the future nuclear power for the production of light uranium fraction 232+233+234U, and 231Pa, we obtained the following results: 1. The fuel cycle will shift from fissile 235U to 233U which is more attractive for thermal power reactors. 2. The light uranium fraction is the most "protected" in the uranium component of fuel and mixed with regenerated uranium will in addition become a low enriched uranium fuel, that will weaken the problem of uncontrolled proliferation of fissile materials. 3. 231Pa doping into the fuel stabilizes its multiplying properties that will allow us to implement long-term fuel residence time and eventually to increase the export potential of all nuclear power technologies. 4. The thorium reserves being near city Krasnoufimsk (Russia) are large enough for operation of large-scale nuclear power of the Russian Federation of 70 GWe capacity during more than a quarter century under assumption that thorium is loaded into blankets of hybrid TNS only. The general conclusion: the inclusion of a small number of hybrid reactors with Th-blanket into the future nuclear power will allow us substantially to solve its problems, as well as to increase its export potential.
Nutramon, Tamsanya; Supachart, Chungpaibulpatana
2009-01-01
The influence of different driving cycles on their exhaust emissions and fuel consumption rate of gasoline passenger car was investigated in Bangkok based on the actual measurements obtained from a test vehicle driving on a standard chassis dynamometer. A newly established Bangkok driving cycle (BDC) and the European driving cycle (EDC) which is presently adopted as the legislative cycle for testing automobiles registered in Thailand were used. The newly developed BDC is constructed using the driving characteristic data obtained from the real on-road driving tests along selected traffic routes. A method for selecting appropriate road routes for real driving tests is also introduced. Variations of keyed driving parameters of BDC with different driving cycles were discussed. The results showed that the HC and CO emission factors of BDC are almost two and four times greater than those of EDC, respectively. Although the difference in the NOx emission factor is small, the value from BDC is still greater than that of EDC by 10%. Under BDC, the test vehicle consumes fuel about 25% more than it does under EDC. All these differences are mainly attributed to the greater proportion of idle periods and higher fluctuations of vehicle speed in the BDC cycle. This result indicated that the exhausted emissions and fuel consumption of vehicles obtained from tests under the legislative modal-type driving cycle (EDC) are significantly different from those actually produced under real traffic conditions especially during peak periods.
NASA Astrophysics Data System (ADS)
Borovkov, V. M.; Osmanova, N. M.
2011-01-01
The effect gained from afterburning of fuel in the gas conduit upstream of the heat-recovery boiler used as part of a PGU-450T combined-cycle plant is considered. The results obtained from calculations of the electric and thermal power outputs produced by the combined-cycle plant equipped with an afterburning chamber are presented.
Power generating system and method utilizing hydropyrolysis
Tolman, R.
1986-12-30
A vapor transmission cycle is described which burns a slurry of coal and water with some of the air from the gas turbine compressor, cools and cleans the resulting low-Btu fuel gas, burns the clean fuel gas with the remaining air from the compressor, and extracts the available energy in the gas turbine. The cycle lends itself to combined-cycle cogeneration for the production of steam, absorption cooling, and electric power.
Comparing shut-down strategies for proton exchange membrane fuel cells
NASA Astrophysics Data System (ADS)
Oyarce, Alejandro; Zakrisson, Erik; Ivity, Matthew; Lagergren, Carina; Ofstad, Axel Baumann; Bodén, Andreas; Lindbergh, Göran
2014-05-01
Application of system strategies for mitigating carbon corrosion of the catalyst support in proton exchange fuel cells (PEMFCs) is a requirement for PEMFC systems, especially in the case of systems for transport application undergoing thousands of start-ups and shut-downs (SU/SD) during its lifetime. This study compares several of the most common shut-down strategies for 1100 cycles SU/SD cycles at 70 °C and 80% RH using commercially available fuel cell components. Each cycle simulates a prolonged shut-down, i.e. finishing each cycle with air filled anode and cathode. Furthermore, all start-ups are unprotected, i.e. introducing the H2 rich gas into an air filled anode. Finally, each cycle also includes normal fuel cell operation at 0.5 A cm-2 using synthetic reformate/air. H2 purge of the cathode and O2 consumption using a load were found to be the most effective strategies. The degradation rate using the H2 purge strategy was 23 μV cycle-1 at 0.86 A cm-2 using H2 and air at the anode and cathode, respectively. This degradation rate may be regarded as a generally low value, especially considering that this value also includes the degradation rate caused by unprotected start-ups.
Conceptual design study of small long-life PWR based on thorium cycle fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Subkhi, M. Nurul; Su'ud, Zaki; Waris, Abdul
2014-09-30
A neutronic performance of small long-life Pressurized Water Reactor (PWR) using thorium cycle based fuel has been investigated. Thorium cycle which has higher conversion ratio in thermal region compared to uranium cycle produce some significant of {sup 233}U during burn up time. The cell-burn up calculations were performed by PIJ SRAC code using nuclear data library based on JENDL 3.3, while the multi-energy-group diffusion calculations were optimized in whole core cylindrical two-dimension R-Z geometry by SRAC-CITATION. this study would be introduced thorium nitride fuel system which ZIRLO is the cladding material. The optimization of 350 MWt small long life PWRmore » result small excess reactivity and reduced power peaking during its operation.« less
The Best Defense: Making Maximum Sense of Minimum Deterrence
2011-06-01
uranium fuel cycles and has unmatched experience in the thorium fuel cycle.25 Published sources claim India produces between 20 and 40kg of plutonium...nuclear energy was moderate at best. Pakistan‘s first reactor , which it received from the United States, did not become operational until 1965.4...In 1974 Pakistan signed an agreement with France to supply a reprocessing plant for extracting plutonium from spent fuel from power reactors
A life-cycle comparison of alternative automobile fuels.
MacLean, H L; Lave, L B; Lankey, R; Joshi, S
2000-10-01
We examine the life cycles of gasoline, diesel, compressed natural gas (CNG), and ethanol (C2H5OH)-fueled internal combustion engine (ICE) automobiles. Port and direct injection and spark and compression ignition engines are examined. We investigate diesel fuel from both petroleum and biosources as well as C2H5OH from corn, herbaceous bio-mass, and woody biomass. The baseline vehicle is a gasoline-fueled 1998 Ford Taurus. We optimize the other fuel/powertrain combinations for each specific fuel as a part of making the vehicles comparable to the baseline in terms of range, emissions level, and vehicle lifetime. Life-cycle calculations are done using the economic input-output life-cycle analysis (EIO-LCA) software; fuel cycles and vehicle end-of-life stages are based on published model results. We find that recent advances in gasoline vehicles, the low petroleum price, and the extensive gasoline infrastructure make it difficult for any alternative fuel to become commercially viable. The most attractive alternative fuel is compressed natural gas because it is less expensive than gasoline, has lower regulated pollutant and toxics emissions, produces less greenhouse gas (GHG) emissions, and is available in North America in large quantities. However, the bulk and weight of gas storage cylinders required for the vehicle to attain a range comparable to that of gasoline vehicles necessitates a redesign of the engine and chassis. Additional natural gas transportation and distribution infrastructure is required for large-scale use of natural gas for transportation. Diesel engines are extremely attractive in terms of energy efficiency, but expert judgment is divided on whether these engines will be able to meet strict emissions standards, even with reformulated fuel. The attractiveness of direct injection engines depends on their being able to meet strict emissions standards without losing their greater efficiency. Biofuels offer lower GHG emissions, are sustainable, and reduce the demand for imported fuels. Fuels from food sources, such as biodiesel from soybeans and C2H5OH from corn, can be attractive only if the co-products are in high demand and if the fuel production does not diminish the food supply. C2H5OH from herbaceous or woody biomass could replace the gasoline burned in the light-duty fleet while supplying electricity as a co-product. While it costs more than gasoline, bioethanol would be attractive if the price of gasoline doubled, if significant reductions in GHG emissions were required, or if fuel economy regulations for gasoline vehicles were tightened.
A Life-Cycle Comparison of Alternative Automobile Fuels.
MacLean, Heather L; Lave, Lester B; Lankey, Rebecca; Joshi, Satish
2000-10-01
We examine the life cycles of gasoline, diesel, compressed natural gas (CNG), and ethanol (C 2 H 5 OH)-fueled internal combustion engine (ICE) automobiles. Port and direct injection and spark and compression ignition engines are examined. We investigate diesel fuel from both petroleum and biosources as well as C 2 H 5 OH from corn, herbaceous bio-mass, and woody biomass. The baseline vehicle is a gasoline-fueled 1998 Ford Taurus. We optimize the other fuel/powertrain combinations for each specific fuel as a part of making the vehicles comparable to the baseline in terms of range, emissions level, and vehicle lifetime. Life-cycle calculations are done using the economic input-output life-cycle analysis (EIO-LCA) software; fuel cycles and vehicle end-of-life stages are based on published model results. We find that recent advances in gasoline vehicles, the low petroleum price, and the extensive gasoline infrastructure make it difficult for any alternative fuel to become commercially viable. The most attractive alternative fuel is compressed natural gas because it is less expensive than gasoline, has lower regulated pollutant and toxics emissions, produces less greenhouse gas (GHG) emissions, and is available in North America in large quantities. However, the bulk and weight of gas storage cylinders required for the vehicle to attain a range comparable to that of gasoline vehicles necessitates a redesign of the engine and chassis. Additional natural gas transportation and distribution infrastructure is required for large-scale use of natural gas for transportation. Diesel engines are extremely attractive in terms of energy efficiency, but expert judgment is divided on whether these engines will be able to meet strict emissions standards, even with reformulated fuel. The attractiveness of direct injection engines depends on their being able to meet strict emissions standards without losing their greater efficiency. Biofuels offer lower GHG emissions, are sustainable, and reduce the demand for imported fuels. Fuels from food sources, such as biodiesel from soybeans and C 2 H 5 OH from corn, can be attractive only if the co-products are in high demand and if the fuel production does not diminish the food supply. C 2 H 5 OH from herbaceous or woody biomass could replace the gasoline burned in the light-duty fleet while supplying electricity as a co-product. While it costs more than gasoline, bioethanol would be attractive if the price of gasoline doubled, if significant reductions in GHG emissions were required, or if fuel economy regulations for gasoline vehicles were tightened.
Minor Actinides-Loaded FBR Core Concept Suitable for the Introductory Period in Japan
NASA Astrophysics Data System (ADS)
Fujimura, Koji; Sasahira, Akira; Yamashita, Junichi; Fukasawa, Tetsuo; Hoshino, Kuniyoshi
According to the Japan's Framework for Nuclear Energy Policy(1), a basic scenario for fast breeder reactors (FBRs) is that they will be introduced on a commercial basis starting around 2050 replacing light water reactors (LWRs). During the FBR introduction period, the Pu from LWR spent fuel is used for FBR startup. Howerver, the FBR core loaded with this Pu has a larger burnup reactivity due to its larger isotopic content of Pu-241 than a core loaded with Pu from an FBR multi-recycling core. The increased burnup reactivity may reduce the cycle length of an FBR. We investigated, an FBR transitional core concept to confront the issues of the FBR introductory period in Japan. Core specifications are based on the compact-type sodium-cooled mixed oxide (MOX)-fueled core designed from the Japanese FBR cycle feasibility studies, because lower Pu inventory should be better for the FBR introductory period in view of its flexibility for the required reprocessing amount of LWR spent fuel to start up FBRs. The reference specifications were selected as follows. Output of 1500MWe and average discharge fuel burnup of about 150GWd/t. Minor Actinides (MAs) recovered from LWR spent fuels which provide Pu to startup FBRs are loaded to the initial loading fuels and exchanged fuels during few cycles until equilibrium. We made the MA content of the initial loading fuel four kinds like 0%, 3%, 4%, 5%. The average of the initial loading fuel is assumed to be 3%, and that of the exchange fuel is set as 5%. This 5% maximum of the MA content is based on the irradiation results of the experimental fast reactor Joyo. We evaluated the core performances including burnup characteristics and the reactivity coefficient and confirmed that transitional core from initial loading until equilibrium cycle with loaded Pu from LWR spent fuel performs similary to an FBR multi-recycling core.
40 CFR 600.109-08 - EPA driving cycles.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 30 2014-07-01 2014-07-01 false EPA driving cycles. 600.109-08 Section 600.109-08 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy and Carbon-Related Exhaust...
Supply of enriched uranium for research reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mueller, H.
1997-08-01
Since the RERTR-meeting In Newport/USA in 1990 the author delivered a series of papers in connection with the fuel cycle for research reactors dealing with its front-end. In these papers the author underlined the need for unified specifications for enriched uranium metal suitable for the production of fuel elements and made proposals with regard to the re-use of in Europe reprocessed highly enriched uranium. With regard to the fuel cycle of research reactors the research reactor community was since 1989 more concentrating on the problems of its back-end since the USA stopped the acceptance of spent research reactor fuel onmore » December 31, 1988. Now, since it is apparent that these back-end problem have been solved by AEA`s ability to reprocess and the preparedness of the USA to again accept physically spent research reactor fuel the author is focusing with this paper again on the front-end of the fuel cycle on the question whether there is at all a safe supply of low and high enriched uranium for research reactors in the future.« less
Kim, Hyung Chul; Wallington, Timothy J
2013-12-17
Lightweighting is a key strategy used to improve vehicle fuel economy. Replacing conventional materials (e.g., steel) with lighter alternatives (e.g., aluminum, magnesium, and composites) decreases energy consumption and greenhouse gas (GHG) emissions during vehicle use, but often increases energy consumption and GHG emissions during materials and vehicle production. Assessing the life-cycle benefits of mass reduction requires a quantitative description of the mass-induced fuel consumption during vehicle use. A new physics-based method for estimating mass-induced fuel consumption (MIF) is proposed. We illustrate the utility of this method by using publicly available data to calculate MIF values in the range of 0.2-0.5 L/(100 km 100 kg) based on 106 records of fuel economy tests by the U.S. Environmental Protection Agency for 2013 model year vehicles. Lightweighting is shown to have the most benefit when applied to vehicles with high fuel consumption and high power. Use of the physics-based model presented here would place future life cycle assessment studies of vehicle lightweighting on a firmer scientific foundation.
Life cycle greenhouse gas emissions of sugar cane renewable jet fuel.
Moreira, Marcelo; Gurgel, Angelo C; Seabra, Joaquim E A
2014-12-16
This study evaluated the life cycle GHG emissions of a renewable jet fuel produced from sugar cane in Brazil under a consequential approach. The analysis included the direct and indirect emissions associated with sugar cane production and fuel processing, distribution, and use for a projected 2020 scenario. The CA-GREET model was used as the basic analytical tool, while Land Use Change (LUC) emissions were estimated employing the GTAP-BIO-ADV and AEZ-EF models. Feedstock production and LUC impacts were evaluated as the main sources of emissions, respectively estimated as 14.6 and 12 g CO2eq/MJ of biofuel in the base case. However, the renewable jet fuel would strongly benefit from bagasse and trash-based cogeneration, which would enable a net life cycle emission of 8.5 g CO2eq/MJ of biofuel in the base case, whereas Monte Carlo results indicate 21 ± 11 g CO2eq/MJ. Besides the major influence of the electricity surplus, the sensitivity analysis showed that the cropland-pasture yield elasticity and the choice of the land use factor employed to sugar cane are relevant parameters for the biofuel life cycle performance. Uncertainties about these estimations exist, especially because the study relies on projected performances, and further studies about LUC are also needed to improve the knowledge about their contribution to the renewable jet fuel life cycle.
Kim, Hyung Chul; Wallington, Timothy J; Sullivan, John L; Keoleian, Gregory A
2015-08-18
Lightweighting is a key strategy to improve vehicle fuel economy. Assessing the life-cycle benefits of lightweighting requires a quantitative description of the use-phase fuel consumption reduction associated with mass reduction. We present novel methods of estimating mass-induced fuel consumption (MIF) and fuel reduction values (FRVs) from fuel economy and dynamometer test data in the U.S. Environmental Protection Agency (EPA) database. In the past, FRVs have been measured using experimental testing. We demonstrate that FRVs can be mathematically derived from coast down coefficients in the EPA vehicle test database avoiding additional testing. MIF and FRVs calculated for 83 different 2013 MY vehicles are in the ranges 0.22-0.43 and 0.15-0.26 L/(100 km 100 kg), respectively, and increase to 0.27-0.53 L/(100 km 100 kg) with powertrain resizing to retain equivalent vehicle performance. We show how use-phase fuel consumption can be estimated using MIF and FRVs in life cycle assessments (LCAs) of vehicle lightweighting from total vehicle and vehicle component perspectives with, and without, powertrain resizing. The mass-induced fuel consumption model is illustrated by estimating lifecycle greenhouse gas (GHG) emission benefits from lightweighting a grille opening reinforcement component using magnesium or carbon fiber composite for 83 different vehicle models.
In-use activity, fuel use, and emissions of heavy-duty diesel roll-off refuse trucks.
Sandhu, Gurdas S; Frey, H Christopher; Bartelt-Hunt, Shannon; Jones, Elizabeth
2015-03-01
The objectives of this study were to quantify real-world activity, fuel use, and emissions for heavy duty diesel roll-off refuse trucks; evaluate the contribution of duty cycles and emissions controls to variability in cycle average fuel use and emission rates; quantify the effect of vehicle weight on fuel use and emission rates; and compare empirical cycle average emission rates with the U.S. Environmental Protection Agency's MOVES emission factor model predictions. Measurements were made at 1 Hz on six trucks of model years 2005 to 2012, using onboard systems. The trucks traveled 870 miles, had an average speed of 16 mph, and collected 165 tons of trash. The average fuel economy was 4.4 mpg, which is approximately twice previously reported values for residential trash collection trucks. On average, 50% of time is spent idling and about 58% of emissions occur in urban areas. Newer trucks with selective catalytic reduction and diesel particulate filter had NOx and PM cycle average emission rates that were 80% lower and 95% lower, respectively, compared to older trucks without. On average, the combined can and trash weight was about 55% of chassis weight. The marginal effect of vehicle weight on fuel use and emissions is highest at low loads and decreases as load increases. Among 36 cycle average rates (6 trucks×6 cycles), MOVES-predicted values and estimates based on real-world data have similar relative trends. MOVES-predicted CO2 emissions are similar to those of the real world, while NOx and PM emissions are, on average, 43% lower and 300% higher, respectively. The real-world data presented here can be used to estimate benefits of replacing old trucks with new trucks. Further, the data can be used to improve emission inventories and model predictions. In-use measurements of the real-world activity, fuel use, and emissions of heavy-duty diesel roll-off refuse trucks can be used to improve the accuracy of predictive models, such as MOVES, and emissions inventories. Further, the activity data from this study can be used to generate more representative duty cycles for more accurate chassis dynamometer testing. Comparisons of old and new model year diesel trucks are useful in analyzing the effect of fleet turnover. The analysis of effect of haul weight on fuel use can be used by fleet managers to optimize operations to reduce fuel cost.
NASA Astrophysics Data System (ADS)
Zhang, Yanan; Hu, Guiping; Brown, Robert C.
2013-06-01
This life cycle assessment evaluates and quantifies the environmental impacts of the production of hydrogen and transportation fuels from the fast pyrolysis and upgrading of corn stover. Input data for this analysis come from Aspen Plus modeling, a GREET (Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation) model database and a US Life Cycle Inventory Database. SimaPro 7.3 software is employed to estimate the environmental impacts. The results indicate that the net fossil energy input is 0.25 MJ and 0.23 MJ per km traveled for a light-duty vehicle fueled by gasoline and diesel fuel, respectively. Bio-oil production requires the largest fossil energy input. The net global warming potential (GWP) is 0.037 kg CO2eq and 0.015 kg CO2eq per km traveled for a vehicle fueled by gasoline and diesel fuel, respectively. Vehicle operations contribute up to 33% of the total positive GWP, which is the largest greenhouse gas footprint of all the unit processes. The net GWPs in this study are 88% and 94% lower than for petroleum-based gasoline and diesel fuel (2005 baseline), respectively. Biomass transportation has the largest impact on ozone depletion among all of the unit processes. Sensitivity analysis shows that fuel economy, transportation fuel yield, bio-oil yield, and electricity consumption are the key factors that influence greenhouse gas emissions.
Research on Power Loss of Continuously Variable Transmission Based on Driving Cycles
NASA Astrophysics Data System (ADS)
Fu, Bing; Zhou, Yunshan; Cao, Chenglong; Li, Quan; Zhang, Feitie
2018-01-01
In order to further enhance the fuel economy of vehicles with continuously variable transmission (CVT), a CVT power loss model under dynamic condition is established based on the power loss model of each transmission component and the vehicle dynamic model. With driving cycles 10-15, NEDC and US06 as input, the distribution of CVT power loss and the influence of the main losses to vehicle fuel economy are analysed. The results show that the variation loss, oil pump loss and torque converter loss are the main losses of CVT power loss under driving cycles, and the metal belt and oil pump have relatively larger fuel saving potential. At low speed reducing the pump loss is more effective to fuel saving, while at high speed reducing the variation loss is more effective.
[Life cycle assessment of the infrastructure for hydrogen sources of fuel cell vehicles].
Feng, Wen; Wang, Shujuan; Ni, Weidou; Chen, Changhe
2003-05-01
In order to promote the application of life cycle assessment and provide references for China to make the project of infrastructure for hydrogen sources of fuel cell vehicles in the near future, 10 feasible plans of infrastructure for hydrogen sources of fuel cell vehicles were designed according to the current technologies of producing, storing and transporting hydrogen. Then life cycle assessment was used as a tool to evaluate the environmental performances of the 10 plans. The standard indexes of classified environmental impacts of every plan were gotten and sensitivity analysis for several parameters were carried out. The results showed that the best plan was that hydrogen will be produced by natural gas steam reforming in central factory, then transported to refuelling stations through pipelines, and filled to fuel cell vehicles using hydrogen gas at last.
Balanced program plan. Analysis for biomedical and environmental research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1976-06-01
Major issues associated with the use of nuclear power are health hazards of exposure to radioactive materials; sources of radiation exposure; reactor accidents; sabotage of nuclear facilities; diversion of fissile material and its use for extortion; and the presence of plutonium in the environment. Fission fuel cycle technology is discussed with regard to milling, UF/sub 6/ production, uranium enrichment, plutonium fuel fabrication, power production, fuel processing, waste management, and fuel and waste transportation. The following problem areas of fuel cycle technology are briefly discussed: characterization, measurement, and monitoring; transport processes; health effects; ecological processes and effects; and integrated assessment. Estimatedmore » program unit costs are summarized by King-Muir Category. (HLW)« less
40 CFR 86.1439 - Certification Short Test emission test procedures-EPA.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) Emission Regulations for New Gasoline-Fueled Otto-Cycle Light-Duty Vehicles and New Gasoline-Fueled Otto-Cycle Light-Duty Trucks; Certification Short Test Procedures § 86.1439 Certification Short... seconds (mt=30), whichever comes second. (B) The vehicle fails the idle mode and the test is immediately...
40 CFR 86.1439 - Certification Short Test emission test procedures-EPA.
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) Emission Regulations for New Gasoline-Fueled Otto-Cycle Light-Duty Vehicles and New Gasoline-Fueled Otto-Cycle Light-Duty Trucks; Certification Short Test Procedures § 86.1439 Certification Short... seconds (mt=30), whichever comes second. (B) The vehicle fails the idle mode and the test is immediately...
40 CFR 86.1506 - Equipment required and specifications; overview.
Code of Federal Regulations, 2012 CFR
2012-07-01
... specifications appear in §§ 86.1509 through 86.1511. (2) Fuel and analytical tests. Fuel requirements for idle... Test Procedures § 86.1506 Equipment required and specifications; overview. (a) This subpart contains procedures for performing idle exhaust emission tests on Otto-cycle heavy-duty engines and Otto-cycle light...
40 CFR 86.1506 - Equipment required and specifications; overview.
Code of Federal Regulations, 2011 CFR
2011-07-01
... specifications appear in §§ 86.1509 through 86.1511. (2) Fuel and analytical tests. Fuel requirements for idle... Test Procedures § 86.1506 Equipment required and specifications; overview. (a) This subpart contains procedures for performing idle exhaust emission tests on Otto-cycle heavy-duty engines and Otto-cycle light...
40 CFR 86.1506 - Equipment required and specifications; overview.
Code of Federal Regulations, 2013 CFR
2013-07-01
... specifications appear in §§ 86.1509 through 86.1511. (2) Fuel and analytical tests. Fuel requirements for idle... Test Procedures § 86.1506 Equipment required and specifications; overview. (a) This subpart contains procedures for performing idle exhaust emission tests on Otto-cycle heavy-duty engines and Otto-cycle light...
40 CFR 86.1416 - Calibration; frequency and overview.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) Emission Regulations for New Gasoline-Fueled Otto-Cycle Light-Duty Vehicles and New Gasoline-Fueled Otto-Cycle Light-Duty Trucks; Certification Short Test Procedures § 86.1416 Calibration; frequency and... calibration of the analyzer must be checked. The analyzer must be adjusted or repaired as necessary. (c) Water...
40 CFR 86.1416 - Calibration; frequency and overview.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) Emission Regulations for New Gasoline-Fueled Otto-Cycle Light-Duty Vehicles and New Gasoline-Fueled Otto-Cycle Light-Duty Trucks; Certification Short Test Procedures § 86.1416 Calibration; frequency and... calibration of the analyzer must be checked. The analyzer must be adjusted or repaired as necessary. (c) Water...
40 CFR 86.1416 - Calibration; frequency and overview.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) Emission Regulations for New Gasoline-Fueled Otto-Cycle Light-Duty Vehicles and New Gasoline-Fueled Otto-Cycle Light-Duty Trucks; Certification Short Test Procedures § 86.1416 Calibration; frequency and... calibration of the analyzer must be checked. The analyzer must be adjusted or repaired as necessary. (c) Water...
40 CFR 86.1416 - Calibration; frequency and overview.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) Emission Regulations for New Gasoline-Fueled Otto-Cycle Light-Duty Vehicles and New Gasoline-Fueled Otto-Cycle Light-Duty Trucks; Certification Short Test Procedures § 86.1416 Calibration; frequency and... calibration of the analyzer must be checked. The analyzer must be adjusted or repaired as necessary. (c) Water...
40 CFR 86.237-08 - Dynamometer test run, gaseous emissions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... temperature recorder, the vehicle cooling fan, and the heated THC analysis recorder (diesel-cycle only). (The heat exchanger of the constant volume sampler, if used, petroleum-fueled diesel-cycle THC analyzer continuous sample line and filter, methanol-fueled vehicle THC, methanol and formaldehyde sample lines, if...
40 CFR 86.237-08 - Dynamometer test run, gaseous emissions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... temperature recorder, the vehicle cooling fan, and the heated THC analysis recorder (diesel-cycle only). (The heat exchanger of the constant volume sampler, if used, petroleum-fueled diesel-cycle THC analyzer continuous sample line and filter, methanol-fueled vehicle THC, methanol and formaldehyde sample lines, if...
7 CFR 1794.23 - Proposals normally requiring an EA.
Code of Federal Regulations, 2011 CFR
2011-01-01
... classification are: (1) Construction of fuel cell, combustion turbine, combined cycle, or diesel generating... be covered in the EA; (2) Construction of fuel cell, combustion turbine, combined cycle, or diesel... boundaries. (12) Installing a heat recovery steam generator and steam turbine with a rating of more than 200...
Integrated gasification combined cycle (IGCC), which uses a gasilier to convert coal to fuel gas, and then uses a combined cycle power block to generate electricity. is one of the most promising technologies for generating electricity from coal in an environmentally sustainabl...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-13
... Evaluation Report; AREVA Enrichment Services LLC, Eagle Rock Enrichment Facility, Bonneville County, ID... report. FOR FURTHER INFORMATION CONTACT: Breeda Reilly, Senior Project Manager, Advanced Fuel Cycle, Enrichment, and Uranium Conversion, Division of Fuel Cycle Safety and Safeguards, Office of Nuclear Material...
The effect of operating conditions on the performance of soil slurry-SBRs.
Cassidy, D P; Irvine, R L
2001-01-01
Biological treatment of a silty clay loam with aged diesel fuel contamination was conducted in 8 L Soil Slurry-Sequencing Batch Reactors (SS-SBRs). The purpose was to monitor slurry conditions and evaluate reactor performance for varying solids concentration (5%, 25%, 40%, 50%), mixing speed (300 rpm, 700 rpm, 1200 rpm), retention time (8 d, 10 d, 20 d), and volume replaced per cycle (10%, 50%, 90%). Diesel fuel was measured in slurry and in filtered aqueous samples. Oxygen uptake rate (OUR) was monitored. Aggregate size was measured with sieve analyses. Biosurfactant production was quantified with surface tension measurements. Increasing solids concentration and decreasing mixing speed resulted in increased aggregate size, which in turn increased effluent diesel fuel concentrations. Diesel fuel removal was unaffected by retention time and volume replaced per cycle. Biosurfactant production occurred with all operating strategies. Foam thickness was related to surfactant concentration and mixing speed. OUR, surfactant concentration, and foam thickness increased with increasing diesel fuel added per cycle.
An Agent-Based Modeling Framework and Application for the Generic Nuclear Fuel Cycle
NASA Astrophysics Data System (ADS)
Gidden, Matthew J.
Key components of a novel methodology and implementation of an agent-based, dynamic nuclear fuel cycle simulator, Cyclus , are presented. The nuclear fuel cycle is a complex, physics-dependent supply chain. To date, existing dynamic simulators have not treated constrained fuel supply, time-dependent, isotopic-quality based demand, or fuel fungibility particularly well. Utilizing an agent-based methodology that incorporates sophisticated graph theory and operations research techniques can overcome these deficiencies. This work describes a simulation kernel and agents that interact with it, highlighting the Dynamic Resource Exchange (DRE), the supply-demand framework at the heart of the kernel. The key agent-DRE interaction mechanisms are described, which enable complex entity interaction through the use of physics and socio-economic models. The translation of an exchange instance to a variant of the Multicommodity Transportation Problem, which can be solved feasibly or optimally, follows. An extensive investigation of solution performance and fidelity is then presented. Finally, recommendations for future users of Cyclus and the DRE are provided.
Stochastic Optimization for Nuclear Facility Deployment Scenarios
NASA Astrophysics Data System (ADS)
Hays, Ross Daniel
Single-use, low-enriched uranium oxide fuel, consumed through several cycles in a light-water reactor (LWR) before being disposed, has become the dominant source of commercial-scale nuclear electric generation in the United States and throughout the world. However, it is not without its drawbacks and is not the only potential nuclear fuel cycle available. Numerous alternative fuel cycles have been proposed at various times which, through the use of different reactor and recycling technologies, offer to counteract many of the perceived shortcomings with regards to waste management, resource utilization, and proliferation resistance. However, due to the varying maturity levels of these technologies, the complicated material flow feedback interactions their use would require, and the large capital investments in the current technology, one should not deploy these advanced designs without first investigating the potential costs and benefits of so doing. As the interactions among these systems can be complicated, and the ways in which they may be deployed are many, the application of automated numerical optimization to the simulation of the fuel cycle could potentially be of great benefit to researchers and interested policy planners. To investigate the potential of these methods, a computational program has been developed that applies a parallel, multi-objective simulated annealing algorithm to a computational optimization problem defined by a library of relevant objective functions applied to the Ver ifiable Fuel Cycle Simulati on Model (VISION, developed at the Idaho National Laboratory). The VISION model, when given a specified fuel cycle deployment scenario, computes the numbers and types of, and construction, operation, and utilization schedules for, the nuclear facilities required to meet a predetermined electric power demand function. Additionally, it calculates the location and composition of the nuclear fuels within the fuel cycle, from initial mining through to eventual disposal. By varying the specifications of the deployment scenario, the simulated annealing algorithm will seek to either minimize the value of a single objective function, or enumerate the trade-off surface between multiple competing objective functions. The available objective functions represent key stakeholder values, minimizing such important factors as high-level waste disposal burden, required uranium ore supply, relative proliferation potential, and economic cost and uncertainty. The optimization program itself is designed to be modular, allowing for continued expansion and exploration as research needs and curiosity indicate. The utility and functionality of this optimization program are demonstrated through its application to one potential fuel cycle scenario of interest. In this scenario, an existing legacy LWR fleet is assumed at the year 2000. The electric power demand grows exponentially at a rate of 1.8% per year through the year 2100. Initially, new demand is met by the construction of 1-GW(e) LWRs. However, beginning in the year 2040, 600-MW(e) sodium-cooled, fast-spectrum reactors operating in a transuranic burning regime with full recycling of spent fuel become available to meet demand. By varying the fraction of new capacity allocated to each reactor type, the optimization program is able to explicitly show the relationships that exist between uranium utilization, long-term heat for geologic disposal, and cost-of-electricity objective functions. The trends associated with these trade-off surfaces tend to confirm many common expectations about the use of nuclear power, namely that while overall it is quite insensitive to variations in the cost of uranium ore, it is quite sensitive to changes in the capital costs of facilities. The optimization algorithm has shown itself to be robust and extensible, with possible extensions to many further fuel cycle optimization problems of interest.
Quantifying real-gas effects on a laminar n-dodecane - air premixed flame
NASA Astrophysics Data System (ADS)
Gopal, Abishek; Yellapantula, Shashank; Larsson, Johan
2015-11-01
With the increasing demand for higher efficiencies in aircraft gas-turbine engines, there has been a progressive march towards high pressure-ratio cycles. Under these conditions, the aviation fuel, Jet A, is injected into the combustor at supercritical pressures. In this work, we study and quantify the effects of transcriticality on a 1D freely propagating laminar n-dodecane - air premixed flame. The impact of the constitutive state relations arising from the Ideal Gas equation of state(EOS) and Peng-Robinson EOS on flame structure and propagation is presented. The effects of real-gas models of transport properties, such as viscosity on laminar flame speed, are also presented.
Managing the Nuclear Fuel Cycle: Policy Implications of Expanding Global Access to Nuclear Power
2008-09-03
Spent nuclear fuel disposal has remained the most critical aspect of the nuclear fuel cycle for the United States, where longstanding nonproliferation...inalienable right and by and large, neither have U.S. government officials. However, the case of Iran raises perhaps the most critical question in...the enrichment process can take advantage of the slight difference in atomic mass between 235U and 238U. The typical enrichment process requires
Managing the Nuclear Fuel Cycle: Policy Implications of Expanding Global Access to Nuclear Power
2008-01-20
critical aspect of the nuclear fuel cycle for the United States, where longstanding nonproliferation policy discouraged commercial nuclear fuel...have U.S. government officials. However, the case of Iran raises perhaps the most critical question in this decade for strengthening the nuclear...slight difference in atomic mass between 235U and 238U. The typical enrichment process requires about 10 lbs of uranium U3O8 to produce 1 lb of low
Design and control of a variable geometry turbofan with an independently modulated third stream
NASA Astrophysics Data System (ADS)
Simmons, Ronald J.
Emerging 21st century military missions task engines to deliver the fuel efficiency of a high bypass turbofan while retaining the ability to produce the high specific thrust of a low bypass turbofan. This study explores the possibility of satisfying such competing demands by adding a second independently modulated bypass stream to the basic turbofan architecture. This third stream can be used for a variety of purposes including: providing a cool heat sink for dissipating aircraft heat loads, cooling turbine cooling air, and providing a readily available stream of constant pressure ratio air for lift augmentation. Furthermore, by modulating airflow to the second and third streams, it is possible to continuously match the engine's airflow demand to the inlet's airflow supply thereby reducing spillage and increasing propulsive efficiency. This research begins with a historical perspective of variable cycle engines and shows a logical progression to proposed architectures. Then a novel method for investigating optimal performance is presented which determines most favorable on design variable geometry settings, most beneficial moment to terminate flow holding, and an optimal scheduling of variable features for fuel efficient off design operation. Mission analysis conducted across the three candidate missions verifies that these three stream variable cycles can deliver fuel savings in excess of 30% relative to a year 2000 reference turbofan. This research concludes by evaluating the relative impact of each variable technology on the performance of adaptive engine architectures. The most promising technologies include modulated turbine cooling air, variable high pressure turbine inlet area and variable third stream nozzle throat area. With just these few features it is possible to obtain nearly optimal performance, including 90% or more of the potential fuel savings, with far fewer variable features than are available in the study engine. It is abundantly clear that three stream variable architectures can significantly outperform existing two stream turbofans in both fuel efficiency and at the vehicle system level with only a modest increase in complexity and weight. Such engine architectures should be strongly considered for future military applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lammert, M. P.; Walkowicz, K.; Duran, A.
2012-10-01
In-use and laboratory-derived fuel economies were analyzed for a medium-duty hybrid electric drivetrain with 'engine off at idle' capability and a conventional drivetrain in a typical commercial package delivery application. Vehicles studied included eleven 2010 Freightliner P100H hybrids in service at a United Parcel Service facility in Minneapolis during the first half of 2010. The hybrids were evaluated for 18 months against eleven 2010 Freightliner P100D diesels at the same facility. Both vehicle groups use the same 2009 Cummins ISB 200-HP engine. In-use fuel economy was evaluated using UPS's fueling and mileage records, periodic ECM image downloads, and J1939 CANmore » bus recordings during the periods of duty cycle study. Analysis of the in-use fuel economy showed 13%-29% hybrid advantage depending on measurement method, and a delivery route assignment analysis showed 13%-26% hybrid advantage on the less kinetically intense original diesel route assignments and 20%-33% hybrid advantage on the more kinetically intense original hybrid route assignments. Three standardized laboratory drive cycles were selected that encompassed the range of real-world in-use data. The hybrid vehicle demonstrated improvements in ton-mi./gal fuel economy of 39%, 45%, and 21% on the NYC Comp, HTUF Class 4, and CARB HHDDT test cycles, respectively.« less
Hydrocarbon bio-jet fuel from bioconversion of poplar biomass: life cycle assessment.
Budsberg, Erik; Crawford, Jordan T; Morgan, Hannah; Chin, Wei Shan; Bura, Renata; Gustafson, Rick
2016-01-01
Bio-jet fuels compatible with current aviation infrastructure are needed as an alternative to petroleum-based jet fuel to lower greenhouse gas emissions and reduce dependence on fossil fuels. Cradle to grave life cycle analysis is used to investigate the global warming potential and fossil fuel use of converting poplar biomass to drop-in bio-jet fuel via a novel bioconversion platform. Unique to the biorefinery designs in this research is an acetogen fermentation step. Following dilute acid pretreatment and enzymatic hydrolysis, poplar biomass is fermented to acetic acid and then distilled, hydroprocessed, and oligomerized to jet fuel. Natural gas steam reforming and lignin gasification are proposed to meet hydrogen demands at the biorefineries. Separate well to wake simulations are performed using the hydrogen production processes to obtain life cycle data. Both biorefinery designs are assessed using natural gas and hog fuel to meet excess heat demands. Global warming potential of the natural gas steam reforming and lignin gasification bio-jet fuel scenarios range from CO2 equivalences of 60 to 66 and 32 to 73 g MJ(-1), respectively. Fossil fuel usage of the natural gas steam reforming and lignin gasification bio-jet fuel scenarios range from 0.78 to 0.84 and 0.71 to 1.0 MJ MJ(-1), respectively. Lower values for each impact category result from using hog fuel to meet excess heat/steam demands. Higher values result from using natural gas to meet the excess heat demands. Bio-jet fuels produced from the bioconversion of poplar biomass reduce the global warming potential and fossil fuel use compared with petroleum-based jet fuel. Production of hydrogen is identified as a major source of greenhouse gas emissions and fossil fuel use in both the natural gas steam reforming and lignin gasification bio-jet simulations. Using hog fuel instead of natural gas to meet heat demands can help lower the global warming potential and fossil fuel use at the biorefineries.
Code of Federal Regulations, 2013 CFR
2013-01-01
...); (3) A fuel fabrication plant; (4) An enrichment plant or isotope separation plant for the separation..., irradiated fuel element chopping machines, and hot cells. Nuclear fuel cycle-related research and development...
Code of Federal Regulations, 2014 CFR
2014-01-01
...); (3) A fuel fabrication plant; (4) An enrichment plant or isotope separation plant for the separation..., irradiated fuel element chopping machines, and hot cells. Nuclear fuel cycle-related research and development...
NASA Astrophysics Data System (ADS)
Aleiferis, P. G.; Hardalupas, Y.; Taylor, A. M. K. P.; Ishii, K.; Urata, Y.
2005-11-01
Lean-burn spark-ignition engines exhibit higher efficiency and lower specific emissions in comparison with stoichiometrically charged engines. However, as the air-to-fuel (A/F) ratio of the mixture is made leaner than stoichiometric, cycle-by-cycle variations in the early stages of in-cylinder combustion, and subsequent indicated mean effective pressure (IMEP), become more pronounced and limit the range of lean-burn operation. Viable lean-burn engines promote charge stratification, the mixture near the spark plug being richer than the cylinder volume averaged value. Recent work has shown that cycle-by-cycle variations in the early stages of combustion in a stratified-charge engine can be associated with variations in both the local value of A/F ratio near the spark plug around ignition timing, as well as in the volume averaged value of the A/F ratio. The objective of the current work was to identify possible sources of such variability in A/F ratio by studying the in-cylinder field of fuel-droplet distribution during the early intake stroke. This field was visualised in an optical single-cylinder 4-valve pentroof-type spark-ignition engine by means of laser-sheet illumination in planes parallel to the cylinder head gasket 6 and 10 mm below the spark plug. The engine was run with port-injected isooctane at 1500 rpm with 30% volumetric efficiency and air-to-fuel ratio corresponding to both stoichiometric firing (A/F=15, Φ =1.0) and mixture strength close to the lean limit of stable operation (A/F=22, Φ =0.68). Images of Mie intensity scattered by the cloud of fuel droplets were acquired on a cycle-by-cycle basis. These were studied in order to establish possible correlations between the cyclic variations in size, location and scattered-light intensity of the cloud of droplets with the respective variations in IMEP. Because of the low level of Mie intensity scattered by the droplets and because of problems related to elastic scattering on the walls of the combustion chamber, as well as problems related to engine “rocking” at the operating conditions close to the misfire limit, the acquired images were processed for background subtraction by using a PIV-based data correction algorithm. After this processing, the arrival and leaving timings of fuel droplets into the illuminated plane were found not to vary significantly on a cycle-by-cycle basis but the recorded cycle-by-cycle variations in Mie intensity suggested that the amount of fuel in the cylinder could have been 6 26% greater for the “strong” cycles with IMEP 115% higher than the average IMEP, than the ones imaged for “weak” cycles at less than 85% the average IMEP. This would correspond to a maximum cyclic variability in the in-cylinder equivalence ratio Φ of the order of 0.17.
[Progress and prospect of bio-jet fuels industry in domestic and overseas].
Qiao, Kai; Fu, Jie; Zhou, Feng; Ma, Huixia
2016-10-25
We reviewed the progress of the bio-jet fuels industry in recent years and systematically analyzed the technical routes that have been approved or in the pipeline for approval by ASTM D7566. In addition, we highlighted a novel pathway to produce drop-in fuel by near-critical hydrolysis of waste cooking oils or algal oils followed by catalytic decarboxylation. Also, we introduced the source of oils and fats feedstock and the domestic bio-jet fuel industry status during the 12th Five-Year-Plan period. Based on our own research, we discussed the prospect of the bio-jet fuel industry and future research needs.
Lin, Jiefeng; Babbitt, Callie W; Trabold, Thomas A
2013-01-01
A methodology that integrates life cycle assessment (LCA) with thermodynamic analysis is developed and applied to evaluate the environmental impacts of producing biofuels from waste biomass, including biodiesel from waste cooking oil, ethanol from corn stover, and compressed natural gas from municipal solid wastes. Solid oxide fuel cell-based auxiliary power units using bio-fuel as the hydrogen precursor enable generation of auxiliary electricity for idling heavy-duty trucks. Thermodynamic analysis is applied to evaluate the fuel conversion efficiency and determine the amount of fuel feedstock needed to generate a unit of electrical power. These inputs feed into an LCA that compares energy consumption and greenhouse gas emissions of different fuel pathways. Results show that compressed natural gas from municipal solid wastes is an optimal bio-fuel option for SOFC-APU applications in New York State. However, this methodology can be regionalized within the U.S. or internationally to account for different fuel feedstock options. Copyright © 2012 Elsevier Ltd. All rights reserved.
Safety and Regulatory Issues of the Thorium Fuel Cycle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ade, Brian; Worrall, Andrew; Powers, Jeffrey
2014-02-01
Thorium has been widely considered an alternative to uranium fuel because of its relatively large natural abundance and its ability to breed fissile fuel (233U) from natural thorium (232Th). Possible scenarios for using thorium in the nuclear fuel cycle include use in different nuclear reactor types (light water, high temperature gas cooled, fast spectrum sodium, molten salt, etc.), advanced accelerator-driven systems, or even fission-fusion hybrid systems. The most likely near-term application of thorium in the United States is in currently operating light water reactors (LWRs). This use is primarily based on concepts that mix thorium with uranium (UO2 + ThO2),more » add fertile thorium (ThO2) fuel pins to LWR fuel assemblies, or use mixed plutonium and thorium (PuO2 + ThO2) fuel assemblies. The addition of thorium to currently operating LWRs would result in a number of different phenomenological impacts on the nuclear fuel. Thorium and its irradiation products have nuclear characteristics that are different from those of uranium. In addition, ThO2, alone or mixed with UO2 fuel, leads to different chemical and physical properties of the fuel. These aspects are key to reactor safety-related issues. The primary objectives of this report are to summarize historical, current, and proposed uses of thorium in nuclear reactors; provide some important properties of thorium fuel; perform qualitative and quantitative evaluations of both in-reactor and out-of-reactor safety issues and requirements specific to a thorium-based fuel cycle for current LWR reactor designs; and identify key knowledge gaps and technical issues that need to be addressed for the licensing of thorium LWR fuel in the United States.« less
Evaluation of conventional power systems. [emphasizing fossil fuels and nuclear energy
NASA Technical Reports Server (NTRS)
Smith, K. R.; Weyant, J.; Holdren, J. P.
1975-01-01
The technical, economic, and environmental characteristics of (thermal, nonsolar) electric power plants are reviewed. The fuel cycle, from extraction of new fuel to final waste management, is included. Emphasis is placed on the fossil fuel and nuclear technologies.
Energy and climate impacts of producing synthetic hydrocarbon fuels from CO(2).
van der Giesen, Coen; Kleijn, René; Kramer, Gert Jan
2014-06-17
Within the context of carbon dioxide (CO2) utilization there is an increasing interest in using CO2 as a resource to produce sustainable liquid hydrocarbon fuels. When these fuels are produced by solely using solar energy they are labeled as solar fuels. In the recent discourse on solar fuels intuitive arguments are used to support the prospects of these fuels. This paper takes a quantitative approach to investigate some of the claims made in this discussion. We analyze the life cycle performance of various classes of solar fuel processes using different primary energy and CO2 sources. We compare their efficacy with respect to carbon mitigation with ubiquitous fossil-based fuels and conclude that producing liquid hydrocarbon fuels starting from CO2 by using existing technologies requires much more energy than existing fuels. An improvement in life cycle CO2 emissions is only found when solar energy and atmospheric CO2 are used. Producing fuels from CO2 is a very long-term niche at best, not the panacea suggested in the recent public discourse.
Lowering the temperature of solid oxide fuel cells.
Wachsman, Eric D; Lee, Kang Taek
2011-11-18
Fuel cells are uniquely capable of overcoming combustion efficiency limitations (e.g., the Carnot cycle). However, the linking of fuel cells (an energy conversion device) and hydrogen (an energy carrier) has emphasized investment in proton-exchange membrane fuel cells as part of a larger hydrogen economy and thus relegated fuel cells to a future technology. In contrast, solid oxide fuel cells are capable of operating on conventional fuels (as well as hydrogen) today. The main issue for solid oxide fuel cells is high operating temperature (about 800°C) and the resulting materials and cost limitations and operating complexities (e.g., thermal cycling). Recent solid oxide fuel cells results have demonstrated extremely high power densities of about 2 watts per square centimeter at 650°C along with flexible fueling, thus enabling higher efficiency within the current fuel infrastructure. Newly developed, high-conductivity electrolytes and nanostructured electrode designs provide a path for further performance improvement at much lower temperatures, down to ~350°C, thus providing opportunity to transform the way we convert and store energy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shmelev, A. N.; Kulikov, G. G., E-mail: ggkulikov@mephi.ru
The possible role of available thorium resources of the Russian Federation in utilization of thorium in the closed (U–Pu)-fuel cycle of nuclear power is considered. The efficiency of application of fusion neutron sources with thorium blanket for economical use of available thorium resources is demonstrated. The objective of this study is the search for a solution of such major tasks of nuclear power as reduction of the amount of front-end operations in the nuclear fuel cycle and enhancement of its protection against uncontrolled proliferation of fissile materials with the smallest possible alterations in the fuel cycle. The earlier results aremore » analyzed, new information on the amount of thorium resources of the Russian Federation is used, and additional estimates are made. The following basic results obtained on the basis of the assumption of involving fusion reactors with Th-blanket in future nuclear power for generation of the light uranium fraction {sup 232+233+234}U and {sup 231}Pa are formulated. (1) The fuel cycle would shift from fissile {sup 235}U to {sup 233}U, which is more attractive for thermal power reactors. (2) The light uranium fraction is the most “protected” in the uranium fuel component, and being mixed with regenerated uranium, it would become reduced-enrichment uranium fuel, which would relieve the problem of nonproliferation of the fissile material. (3) The addition of {sup 231}Pa into the fuel would stabilize its neutron-multiplying properties, thus making it possible to implement a long fuel residence time and, as a consequence, increase the export potential of the whole nuclear power technology. (4) The available thorium resource in the vicinity of Krasnoufimsk is sufficient for operation of the large-scale nuclear power industry of the Russian Federation with an electric power of 70 GW for more than one quarter of a century. The general conclusion is that involvement of a small number of fusion reactors with Th-blanket in the future nuclear power industry of the Russian Federation would to a large extent solve its problems and increase its export potential.« less
NASA Astrophysics Data System (ADS)
Shmelev, A. N.; Kulikov, G. G.
2016-12-01
The possible role of available thorium resources of the Russian Federation in utilization of thorium in the closed (U-Pu)-fuel cycle of nuclear power is considered. The efficiency of application of fusion neutron sources with thorium blanket for economical use of available thorium resources is demonstrated. The objective of this study is the search for a solution of such major tasks of nuclear power as reduction of the amount of front-end operations in the nuclear fuel cycle and enhancement of its protection against uncontrolled proliferation of fissile materials with the smallest possible alterations in the fuel cycle. The earlier results are analyzed, new information on the amount of thorium resources of the Russian Federation is used, and additional estimates are made. The following basic results obtained on the basis of the assumption of involving fusion reactors with Th-blanket in future nuclear power for generation of the light uranium fraction 232+233+234U and 231Pa are formulated. (1) The fuel cycle would shift from fissile 235U to 233U, which is more attractive for thermal power reactors. (2) The light uranium fraction is the most "protected" in the uranium fuel component, and being mixed with regenerated uranium, it would become reduced-enrichment uranium fuel, which would relieve the problem of nonproliferation of the fissile material. (3) The addition of 231Pa into the fuel would stabilize its neutron-multiplying properties, thus making it possible to implement a long fuel residence time and, as a consequence, increase the export potential of the whole nuclear power technology. (4) The available thorium resource in the vicinity of Krasnoufimsk is sufficient for operation of the large-scale nuclear power industry of the Russian Federation with an electric power of 70 GW for more than one quarter of a century. The general conclusion is that involvement of a small number of fusion reactors with Th-blanket in the future nuclear power industry of the Russian Federation would to a large extent solve its problems and increase its export potential.
A Reload and Startup Plan for and #8233;Conversion of the NIST Research Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diamond, D. J.; Varuttamaseni, A.
The National Institute of Standards and Technology operates a 20 MW research reactor for neutron-based research. The heavy-water moderated and cooled reactor is fueled with high-enriched uranium (HEU) but a program to convert the reactor to low-enriched uranium (LEU) fuel is underway. Among other requirements, a reload and startup test plan must be submitted to the U.S. Nuclear Regulatory Commission (NRC) for their approval. The NRC provides guidance for what should be in the plan to ensure that the licensee has sufficient information to operate the reactor safely. Hence, a plan has been generated consisting of two parts.The reload portionmore » of the plan specifies the fuel management whereby initially only two LEU fuel elements are in the core for eight fuel cycles. This is repeated until a point when the optimum approach is to place four fresh LEU elements into the reactor each cycle. This final transition is repeated and after eight cycles the reactor is completely fueled with LEU. By only adding two LEU fuel elements initially, the plan allows for the consumption of HEU fuel elements that are expected to be in storage at the time of conversion and provides additional qualification of production LEU fuel under actual operating conditions. Because the reload is to take place over many fuel cycles, startup tests will be done at different stages of the conversion. The tests, to be compared with calculations to show that the reactor will operate as planned, are the measurement of critical shim arm position and shim arm and regulating rod reactivity worths. An acceptance criterion for each test is specified based on technical specifications that relate to safe operation. Additional tests are being considered that have less safety significance but may be of interest to bolster the validation of analysis tools.« less
A reload and startup plan for conversion of the NIST research reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
D. J. Diamond
The National Institute of Standards and Technology operates a 20 MW research reactor for neutron-based research. The heavy-water moderated and cooled reactor is fueled with high-enriched uranium (HEU) but a program to convert the reactor to low-enriched uranium (LEU) fuel is underway. Among other requirements, a reload and startup test plan must be submitted to the U.S. Nuclear Regulatory Commission (NRC) for their approval. The NRC provides guidance for what should be in the plan to ensure that the licensee has sufficient information to operate the reactor safely. Hence, a plan has been generated consisting of two parts. The reloadmore » portion of the plan specifies the fuel management whereby initially only two LEU fuel elements are in the core for eight fuel cycles. This is repeated until a point when the optimum approach is to place four fresh LEU elements into the reactor each cycle. This final transition is repeated and after eight cycles the reactor is completely fueled with LEU. By only adding two LEU fuel elements initially, the plan allows for the consumption of HEU fuel elements that are expected to be in storage at the time of conversion and provides additional qualification of production LEU fuel under actual operating conditions. Because the reload is to take place over many fuel cycles, startup tests will be done at different stages of the conversion. The tests, to be compared with calculations to show that the reactor will operate as planned, are the measurement of critical shim arm position and shim arm and regulating rod reactivity worths. An acceptance criterion for each test is specified based on technical specifications that relate to safe operation. Additional tests are being considered that have less safety significance but may be of interest to bolster the validation of analysis tools.« less
Solomon, Lauren A; Podder, Shreya; He, Jessica; Jackson-Chornenki, Nicholas L; Gibson, Kristen; Ziliotto, Rachel G; Rhee, Jess; DeKoter, Rodney P
2017-05-15
During macrophage development, myeloid progenitor cells undergo terminal differentiation coordinated with reduced cell cycle progression. Differentiation of macrophages from myeloid progenitors is accompanied by increased expression of the E26 transformation-specific transcription factor PU.1. Reduced PU.1 expression leads to increased proliferation and impaired differentiation of myeloid progenitor cells. It is not understood how PU.1 coordinates macrophage differentiation with reduced cell cycle progression. In this study, we utilized cultured PU.1-inducible myeloid cells to perform genome-wide chromatin immunoprecipitation sequencing (ChIP-seq) analysis coupled with gene expression analysis to determine targets of PU.1 that may be involved in regulating cell cycle progression. We found that genes encoding cell cycle regulators and enzymes involved in lipid anabolism were directly and inducibly bound by PU.1 although their steady-state mRNA transcript levels were reduced. Inhibition of lipid anabolism was sufficient to reduce cell cycle progression in these cells. Induction of PU.1 reduced expression of E2f1 , an important activator of genes involved in cell cycle and lipid anabolism, indirectly through microRNA 223. Next-generation sequencing identified microRNAs validated as targeting cell cycle and lipid anabolism for downregulation. These results suggest that PU.1 coordinates cell cycle progression with differentiation through induction of microRNAs targeting cell cycle regulators and lipid anabolism. Copyright © 2017 American Society for Microbiology.
Checkpoints couple transcription network oscillator dynamics to cell-cycle progression.
Bristow, Sara L; Leman, Adam R; Simmons Kovacs, Laura A; Deckard, Anastasia; Harer, John; Haase, Steven B
2014-09-05
The coupling of cyclin dependent kinases (CDKs) to an intrinsically oscillating network of transcription factors has been proposed to control progression through the cell cycle in budding yeast, Saccharomyces cerevisiae. The transcription network regulates the temporal expression of many genes, including cyclins, and drives cell-cycle progression, in part, by generating successive waves of distinct CDK activities that trigger the ordered program of cell-cycle events. Network oscillations continue autonomously in mutant cells arrested by depletion of CDK activities, suggesting the oscillator can be uncoupled from cell-cycle progression. It is not clear what mechanisms, if any, ensure that the network oscillator is restrained when progression in normal cells is delayed or arrested. A recent proposal suggests CDK acts as a master regulator of cell-cycle processes that have the potential for autonomous oscillatory behavior. Here we find that mitotic CDK is not sufficient for fully inhibiting transcript oscillations in arrested cells. We do find that activation of the DNA replication and spindle assembly checkpoints can fully arrest the network oscillator via overlapping but distinct mechanisms. Further, we demonstrate that the DNA replication checkpoint effector protein, Rad53, acts to arrest a portion of transcript oscillations in addition to its role in halting cell-cycle progression. Our findings indicate that checkpoint mechanisms, likely via phosphorylation of network transcription factors, maintain coupling of the network oscillator to progression during cell-cycle arrest.
NASA Astrophysics Data System (ADS)
Yurov, D. V.; Prikhod'ko, V. V.
2014-11-01
The features of subcritical hybrid systems (HSs) are discussed in the context of burning up transuranic wastes from the U-Pu nuclear fuel cycle. The advantages of HSs over conventional atomic reactors are considered, and fuel cycle closure alternatives using HSs and fast neutron reactors are comparatively evaluated. The advantages and disadvantages of two HS types with neutron sources (NSs) of widely different natures -- nuclear spallation in a heavy target by protons and nuclear fusion in magnetically confined plasma -- are discussed in detail. The strengths and weaknesses of HSs are examined, and demand for them for closing the U-Pu nuclear fuel cycle is assessed.
Development of a Microchannel High Temperature Recuperator for Fuel Cell Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lukas, Michael
This report summarizes the progress made in development of microchannel recuperators for high temperature fuel cell/turbine hybrid systems for generation of clean power at very high efficiencies. Both Solid Oxide Fuel Cell/Turbine (SOFC/T) and Direct FuelCell/Turbine (DFC/T) systems employ an indirectly heated Turbine Generator to supplement fuel cell generated power. The concept extends the high efficiency of the fuel cell by utilizing the fuel cell’s byproduct heat in a Brayton cycle. Features of the SOFC/T and DFC/T systems include: electrical efficiencies of up to 65% on natural gas, minimal emissions, reduced carbon dioxide release to the environment, simplicity in design,more » and potential cost competitiveness with existing combined cycle power plants. Project work consisted of candidate material selection from FuelCell Energy (FCE) and Pacific Northwest National Laboratory (PNNL) institutional databases as well as from industrial and academic literature. Candidate materials were then downselected and actual samples were tested under representative environmental conditions resulting in further downselection. A microchannel thermal-mechanical model was developed to calculate overall device cost to be later used in developing a final Tier 1 material candidate list. Specifications and operating conditions were developed for both SOFC/T and DFC/T systems. This development included system conceptualization and progression to process flow diagrams (PFD’s) including all major equipment. Material and energy balances were then developed for the two types of systems which were then used for extensive sensitivity studies that used high temperature recuperator (HTR) design parameters (e.g., operating temperature) as inputs and calculated overall system parameters (e.g., system efficiency). The results of the sensitivity studies determined the final HTR design temperatures, pressure drops, and gas compositions. The results also established operating conditions and specifications for all equipment in the SOFC/T and DFC/T systems. Capital cost and Cost of Electricity (COE) sensitivity analyses have been completed for MW-scale SOFC/T and DFC/T systems. Environmental testing consisted of 1000-hour and 2000-hour dry air oxidation testing on leading candidate materials, used to rank order and, in part, develop a final Tier 1 material candidate list. A thermal-mechanical model was subsequently used to provide material and manufacturing cost estimations for microchannel HTR’s to further refine the Tier 1 candidates. A capital cost and 20-year levelized cost of electricity (COE) was developed for a MW-scale version of the SOFC/T system concept as well as for a MW-scale version of the DFC/T system concept. Test frameworks were established for subsequent long-term materials stability testing, including oxidation resistance and mechanical strength. Mechanical strength testing was then carried out by a third-party test laboratory. Technology demonstration vehicles (TDV’s) were designed and fabricated. Several iterations of TDV’s were fabricated, each improved over the previous build as far as fabrication techniques. Two of three fabricated TDV’s were integrated with the TDV Test Facility for hot-testing at simulated operating conditions. The second of these two was successfully hot-tested for over 1000 hours at simulated temperature and pressure. Post-test leakdown assessment showed negligible leakage at benchtop conditions of 30 psig, a considerable improvement over the previous TDV’s.« less
The behaviour of transuranic mixed oxide fuel in a Candu-900 reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morreale, A. C.; Ball, M. R.; Novog, D. R.
2012-07-01
The production of transuranic actinide fuels for use in current thermal reactors provides a useful intermediary step in closing the nuclear fuel cycle. Extraction of actinides reduces the longevity, radiation and heat loads of spent material. The burning of transuranic fuels in current reactors for a limited amount of cycles reduces the infrastructure demand for fast reactors and provides an effective synergy that can result in a reduction of as much as 95% of spent fuel waste while reducing the fast reactor infrastructure needed by a factor of almost 13.5 [1]. This paper examines the features of actinide mixed oxidemore » fuel, TRUMOX, in a CANDU{sup R}* nuclear reactor. The actinide concentrations used were based on extraction from 30 year cooled spent fuel and mixed with natural uranium in 3.1 wt% actinide MOX fuel. Full lattice cell modeling was performed using the WIMS-AECL code, super-cell calculations were analyzed in DRAGON and full core analysis was executed in the RFSP 2-group diffusion code. A time-average full core model was produced and analyzed for reactor coefficients, reactivity device worth and online fuelling impacts. The standard CANDU operational limits were maintained throughout operations. The TRUMOX fuel design achieved a burnup of 27.36 MWd/kg HE. A full TRUMOX fuelled CANDU was shown to operate within acceptable limits and provided a viable intermediary step for burning actinides. The recycling, reprocessing and reuse of spent fuels produces a much more sustainable and efficient nuclear fuel cycle. (authors)« less
Hsieh, S Yp; Chan, D Tm; Kam, M Km; Loong, H Hf; Tsang, W K; Poon, D Mc; Ng, S Cp; Poon, W S
2017-12-01
Temozolomide is the first chemotherapeutic agent proven effective for patients with newly diagnosed glioblastoma. The drug is well tolerated for its low toxicity. The current standard practice is concomitant chemoradiotherapy for 6 weeks followed by 6 cycles of adjuvant temozolomide. Some Caucasian studies have suggested that patients might benefit from extended adjuvant cycles of temozolomide (>6 cycles) to lengthen both progression-free survival and overall survival. In the present study, we compared differences in survival and toxicity profile between patients who received conventional 6-cycle temozolomide and those who received more than 6 cycles of temozolomide. Patients with newly diagnosed glioblastoma without progressive disease and completed concomitant chemoradiotherapy during a 4-year period were studied. Progression-free survival was compared using Kaplan-Meier survival curves. t Test, U test, and correlation were chosen accordingly to examine the impact of age, extent of resection, MGMT promoter methylation status and adjuvant cycles on progression-free survival. For factors with a P value of <0.05 in univariate analyses, Cox regression hazard model was adopted to determine the strongest factors related to progression-free survival. The median progression-free survival was 17.0 months for patients who received 6 cycles of temozolomide (n=7) and 43.4 months for those who received more than 6 cycles (n=7) [P=0.007, log-rank test]. Two patients in the former group and one in the latter group encountered grade 1 toxicity and recovered following dose adjustment. Cycles of adjuvant temozolomide were correlated with progression-free survival (P=0.016, hazard ratio=0.68). Extended cycles of temozolomide are safe and feasible for Chinese patients with disease responsive to temozolomide.
The future of the North American carbon cycle - projections and associated climate change
NASA Astrophysics Data System (ADS)
Huntzinger, D. N.; Chatterjee, A.; Cooley, S. R.; Dunne, J. P.; Hoffman, F. M.; Luo, Y.; Moore, D. J.; Ohrel, S. B.; Poulter, B.; Ricciuto, D. M.; Tzortziou, M.; Walker, A. P.; Mayes, M. A.
2016-12-01
Approximately half of anthropogenic emissions from the burning of fossil fuels is taken up annually by carbon sinks on the land and in the oceans. However, there are key uncertainties in how carbon uptake by terrestrial, ocean, and freshwater systems will respond to, and interact with, climate into the future. Here, we outline the current state of understanding on the future carbon budget of these major reservoirs within North America and the globe. We examine the drivers of future carbon cycle changes, including carbon-climate feedbacks, atmospheric composition, nutrient availability, and human activity and management decisions. Progress has been made at identifying vulnerabilities in carbon pools, including high-latitude permafrost, peatlands, freshwater and coastal wetlands, and ecosystems subject to disturbance events, such as insects, fire and drought. However, many of these processes/pools are not well represented in current models, and model intercomparison studies have shown a range in carbon cycle response to factors such as climate and CO2 fertilization. Furthermore, as model complexity increases, understanding the drivers of model spread becomes increasingly more difficult. As a result, uncertainties in future carbon cycle projections are large. It is also uncertain how management decisions and policies will impact future carbon stocks and flows. In order to guide policy, a better understanding of the risk and magnitude of North American carbon cycle changes is needed. This requires that future carbon cycle projections be conditioned on current observations and be reported with sufficient confidence and fully specified uncertainties.
MOX fuel arrangement for nuclear core
Kantrowitz, M.L.; Rosenstein, R.G.
1998-10-13
In order to use up a stockpile of weapons-grade plutonium, the plutonium is converted into a mixed oxide (MOX) fuel form wherein it can be disposed in a plurality of different fuel assembly types. Depending on the equilibrium cycle that is required, a predetermined number of one or more of the fuel assembly types are selected and arranged in the core of the reactor in accordance with a selected loading schedule. Each of the fuel assemblies is designed to produce different combustion characteristics whereby the appropriate selection and disposition in the core enables the resulting equilibrium cycle to closely resemble that which is produced using urania fuel. The arrangement of the MOX rods and burnable absorber rods within each of the fuel assemblies, in combination with a selective control of the amount of plutonium which is contained in each of the MOX rods, is used to tailor the combustion characteristics of the assembly. 38 figs.
Mox fuel arrangement for nuclear core
Kantrowitz, Mark L.; Rosenstein, Richard G.
2001-05-15
In order to use up a stockpile of weapons-grade plutonium, the plutonium is converted into a mixed oxide (MOX) fuel form wherein it can be disposed in a plurality of different fuel assembly types. Depending on the equilibrium cycle that is required, a predetermined number of one or more of the fuel assembly types are selected and arranged in the core of the reactor in accordance with a selected loading schedule. Each of the fuel assemblies is designed to produce different combustion characteristics whereby the appropriate selection and disposition in the core enables the resulting equilibrium cycle to closely resemble that which is produced using urania fuel. The arrangement of the MOX rods and burnable absorber rods within each of the fuel assemblies, in combination with a selective control of the amount of plutonium which is contained in each of the MOX rods, is used to tailor the combustion. characteristics of the assembly.
MOX fuel arrangement for nuclear core
Kantrowitz, Mark L.; Rosenstein, Richard G.
2001-07-17
In order to use up a stockpile of weapons-grade plutonium, the plutonium is converted into a mixed oxide (MOX) fuel form wherein it can be disposed in a plurality of different fuel assembly types. Depending on the equilibrium cycle that is required, a predetermined number of one or more of the fuel assembly types are selected and arranged in the core of the reactor in accordance with a selected loading schedule. Each of the fuel assemblies is designed to produce different combustion characteristics whereby the appropriate selection and disposition in the core enables the resulting equilibrium cycle to closely resemble that which is produced using urania fuel. The arrangement of the MOX rods and burnable absorber rods within each of the fuel assemblies, in combination with a selective control of the amount of plutonium which is contained in each of the MOX rods, is used to tailor the combustion characteristics of the assembly.
MOX fuel arrangement for nuclear core
Kantrowitz, Mark L.; Rosenstein, Richard G.
1998-01-01
In order to use up a stockpile of weapons-grade plutonium, the plutonium is converted into a mixed oxide (MOX) fuel form wherein it can be disposed in a plurality of different fuel assembly types. Depending on the equilibrium cycle that is required, a predetermined number of one or more of the fuel assembly types are selected and arranged in the core of the reactor in accordance with a selected loading schedule. Each of the fuel assemblies is designed to produce different combustion characteristics whereby the appropriate selection and disposition in the core enables the resulting equilibrium cycle to closely resemble that which is produced using urania fuel. The arrangement of the MOX rods and burnable absorber rods within each of the fuel assemblies, in combination with a selective control of the amount of plutonium which is contained in each of the MOX rods, is used to tailor the combustion characteristics of the assembly.
Modeling and Comparison of Options for the Disposal of Excess Weapons Plutonium in Russia
2002-04-01
fuel LWR cooling time LWR Pu load rate LWR net destruction frac ~ LWR reactors op life mox core frac Excess Separated Pu HTGR Cycle Pu in Waste LWR MOX...reflecting the cycle used in this type of reactor. For the HTGR , the entire core consists of plutonium fuel , therefore a core fraction is not specified...cooling time Time spent fuel unloaded from HTGR reactor must cool before permanently stored 3 years Mox core fraction Fraction of
NASA Astrophysics Data System (ADS)
Marshalkin, V. Ye.; Povyshev, V. M.
2017-12-01
It is shown for a closed thorium-uranium-plutonium fuel cycle that, upon processing of one metric ton of irradiated fuel after each four-year campaign, the radioactive wastes contain 54 kg of fission products, 0.8 kg of thorium, 0.10 kg of uranium isotopes, 0.005 kg of plutonium isotopes, 0.002 kg of neptunium, and "trace" amounts of americium and curium isotopes. This qualitatively simplifies the handling of high-level wastes in nuclear power engineering.
Methanator Fueled Engines for Pollution Control
NASA Technical Reports Server (NTRS)
Cagliostro, D. E.; Winkler, E. L.
1973-01-01
A methanator fueled Otto-cycle engine is compared with other methods proposed to control pollution due to automobile exhaust emissions. The comparison is made with respect to state of development, emission factors, capital cost, operational and maintenance costs, performance, operational limitations, and impact on the automotive industries. The methanator fueled Otto-cycle engine is projected to meet 1975 emission standards and operate at a lower relative total cost compared to the catalytic muffler system and to have low impact. Additional study is required for system development.
40 CFR 86.1434 - Equipment preparation.
Code of Federal Regulations, 2010 CFR
2010-07-01
... New Gasoline-Fueled Otto-Cycle Light-Duty Vehicles and New Gasoline-Fueled Otto-Cycle Light-Duty... the device(s) for removing water from the exhaust sample and the sample filter(s). Remove any water from the water trap(s). Clean and replace the filter(s) as necessary. (c) Set the zero and span points...
40 CFR 86.1434 - Equipment preparation.
Code of Federal Regulations, 2012 CFR
2012-07-01
... New Gasoline-Fueled Otto-Cycle Light-Duty Vehicles and New Gasoline-Fueled Otto-Cycle Light-Duty... the device(s) for removing water from the exhaust sample and the sample filter(s). Remove any water from the water trap(s). Clean and replace the filter(s) as necessary. (c) Set the zero and span points...
40 CFR 86.1434 - Equipment preparation.
Code of Federal Regulations, 2011 CFR
2011-07-01
... New Gasoline-Fueled Otto-Cycle Light-Duty Vehicles and New Gasoline-Fueled Otto-Cycle Light-Duty... the device(s) for removing water from the exhaust sample and the sample filter(s). Remove any water from the water trap(s). Clean and replace the filter(s) as necessary. (c) Set the zero and span points...
40 CFR 86.1434 - Equipment preparation.
Code of Federal Regulations, 2013 CFR
2013-07-01
... New Gasoline-Fueled Otto-Cycle Light-Duty Vehicles and New Gasoline-Fueled Otto-Cycle Light-Duty... the device(s) for removing water from the exhaust sample and the sample filter(s). Remove any water from the water trap(s). Clean and replace the filter(s) as necessary. (c) Set the zero and span points...
40 CFR 86.334-79 - Test procedure overview.
Code of Federal Regulations, 2012 CFR
2012-07-01
... New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.334-79... cycle and 1 hot cycle. The Diesel engine test consists of 3 idle modes and 5 power modes at each of 2 speeds which span the typical operating range of Diesel engines. These procedures require the...
40 CFR 86.334-79 - Test procedure overview.
Code of Federal Regulations, 2013 CFR
2013-07-01
... New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.334-79... cycle and 1 hot cycle. The Diesel engine test consists of 3 idle modes and 5 power modes at each of 2 speeds which span the typical operating range of Diesel engines. These procedures require the...
40 CFR 86.334-79 - Test procedure overview.
Code of Federal Regulations, 2011 CFR
2011-07-01
... New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.334-79... cycle and 1 hot cycle. The Diesel engine test consists of 3 idle modes and 5 power modes at each of 2 speeds which span the typical operating range of Diesel engines. These procedures require the...
40 CFR 86.336-79 - Diesel engine test cycle.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 19 2012-07-01 2012-07-01 false Diesel engine test cycle. 86.336-79... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.336-79...
40 CFR 86.336-79 - Diesel engine test cycle.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 19 2013-07-01 2013-07-01 false Diesel engine test cycle. 86.336-79... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.336-79...
15 CFR 783.4 - Deadlines for submission of reports and amendments.
Code of Federal Regulations, 2010 CFR
2010-01-01
... REGULATIONS CIVIL NUCLEAR FUEL CYCLE-RELATED ACTIVITIES NOT INVOLVING NUCLEAR MATERIALS § 783.4 Deadlines for... location that commenced one or more of the civil nuclear fuel cycle-related activities described in § 783.1... activities involving uranium hard-rock mines must include any such mines that were closed down during...
15 CFR 783.4 - Deadlines for submission of reports and amendments.
Code of Federal Regulations, 2011 CFR
2011-01-01
... REGULATIONS CIVIL NUCLEAR FUEL CYCLE-RELATED ACTIVITIES NOT INVOLVING NUCLEAR MATERIALS § 783.4 Deadlines for... location that commenced one or more of the civil nuclear fuel cycle-related activities described in § 783.1... activities involving uranium hard-rock mines must include any such mines that were closed down during...
15 CFR 783.4 - Deadlines for submission of reports and amendments.
Code of Federal Regulations, 2012 CFR
2012-01-01
... REGULATIONS CIVIL NUCLEAR FUEL CYCLE-RELATED ACTIVITIES NOT INVOLVING NUCLEAR MATERIALS § 783.4 Deadlines for... location that commenced one or more of the civil nuclear fuel cycle-related activities described in § 783.1... activities involving uranium hard-rock mines must include any such mines that were closed down during...
15 CFR 783.4 - Deadlines for submission of reports and amendments.
Code of Federal Regulations, 2013 CFR
2013-01-01
... REGULATIONS CIVIL NUCLEAR FUEL CYCLE-RELATED ACTIVITIES NOT INVOLVING NUCLEAR MATERIALS § 783.4 Deadlines for... location that commenced one or more of the civil nuclear fuel cycle-related activities described in § 783.1... activities involving uranium hard-rock mines must include any such mines that were closed down during...
15 CFR 783.4 - Deadlines for submission of reports and amendments.
Code of Federal Regulations, 2014 CFR
2014-01-01
... REGULATIONS CIVIL NUCLEAR FUEL CYCLE-RELATED ACTIVITIES NOT INVOLVING NUCLEAR MATERIALS § 783.4 Deadlines for... location that commenced one or more of the civil nuclear fuel cycle-related activities described in § 783.1... activities involving uranium hard-rock mines must include any such mines that were closed down during...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-28
... DEPARTMENT OF ENERGY Blue Ribbon Commission on America's Nuclear Future, Reactor and Fuel Cycle Technologies Subcommittee AGENCY: Office of Nuclear Energy, DOE. ACTION: Notice of open meeting correction. On June 21, 2010, the Department of Energy published a notice announcing an open meeting of the Reactor...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-21
... DEPARTMENT OF ENERGY Blue Ribbon Commission on America's Nuclear Future, Reactor and Fuel Cycle Technologies Subcommittee AGENCY: Department of Energy, Office of Nuclear Energy. ACTION: Notice of Open... facsimile (202) 586- 0544; e-mail [email protected]nuclear.energy.gov . Additional information may also be...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-04
... DEPARTMENT OF ENERGY Blue Ribbon Commission on America's Nuclear Future, Reactor and Fuel Cycle Technology Subcommittee AGENCY: Department of Energy, Office of Nuclear Energy. ACTION: Notice of Open...) 586- 0544; e-mail [email protected]nuclear.energy.gov . Additional information will be available at http...
NASA Astrophysics Data System (ADS)
Burlatsky, S. F.; Gummalla, M.; O'Neill, J.; Atrazhev, V. V.; Varyukhin, A. N.; Dmitriev, D. V.; Erikhman, N. S.
2012-10-01
Under typical Polymer Electrolyte Membrane Fuel Cell (PEMFC) fuel cell operating conditions, part of the membrane electrode assembly is subjected to humidity cycling due to variation of inlet gas RH and/or flow rate. Cyclic membrane hydration/dehydration would cause cyclic swelling/shrinking of the unconstrained membrane. In a constrained membrane, it causes cyclic stress resulting in mechanical failure in the area adjacent to the gas inlet. A mathematical modeling framework for prediction of the lifetime of a PEMFC membrane subjected to hydration cycling is developed in this paper. The model predicts membrane lifetime as a function of RH cycling amplitude and membrane mechanical properties. The modeling framework consists of three model components: a fuel cell RH distribution model, a hydration/dehydration induced stress model that predicts stress distribution in the membrane, and a damage accrual model that predicts membrane lifetime. Short descriptions of the model components along with overall framework are presented in the paper. The model was used for lifetime prediction of a GORE-SELECT membrane.