Science.gov

Sample records for fuel dry storage

  1. Inspection of Used Fuel Dry Storage Casks

    SciTech Connect

    Dennis C. Kunerth; Tim McJunkin; Mark McKay; Sasan Bakhtiari

    2012-09-01

    ABSTRACT The U.S. Nuclear Regulatory Commission (NRC) regulates the storage of used nuclear fuel, which is now and will be increasingly placed in dry storage systems. Since a final disposition pathway is not defined, the fuel is expected to be maintained in dry storage well beyond the time frame originally intended. Due to knowledge gaps regarding the viability of current dry storage systems for long term use, efforts are underway to acquire the technical knowledge and tools required to understand the issues and verify the integrity of the dry storage system components. This report summarizes the initial efforts performed by researchers at Idaho National Laboratory and Argonne National Laboratory to identify and evaluate approaches to in-situ inspection dry storage casks. This task is complicated by the design of the current storage systems that severely restrict access to the casks.

  2. Spent fuel behavior in dry storage

    NASA Astrophysics Data System (ADS)

    Johnson, A. B., Jr.; Pankaskie, P. J.; Gilbert, E. R.

    1982-02-01

    Dry storage is emerging as an attractive and timely alternative to complement wet storage, and assist utilities to meet interim storage needs. Spent fuel is handled and stored under dry conditions. Dry storage of irradiated Zircaloy clad fuel in metal casks, drywells, silos and vaults is demonstrated. Hot cell and laboratory studies also are underway to investigate specific phenomena related to cladding behavior in dry storage. A substantial fraction of the LWR spent fuel inventory has aged for relatively long times and has relatively low decay heats. This suggests that much of the fuel inventory can be stored at relatively low temperatures. Alternatively, rod consolidation of the older can be considered without exceeding maximum cladding temperatures.

  3. Horizontal modular dry irradiated fuel storage system

    DOEpatents

    Fischer, Larry E.; McInnes, Ian D.; Massey, John V.

    1988-01-01

    A horizontal, modular, dry, irradiated fuel storage system (10) includes a thin-walled canister (12) for containing irradiated fuel assemblies (20), which canister (12) can be positioned in a transfer cask (14) and transported in a horizontal manner from a fuel storage pool (18), to an intermediate-term storage facility. The storage system (10) includes a plurality of dry storage modules (26) which accept the canister (12) from the transfer cask (14) and provide for appropriate shielding about the canister (12). Each module (26) also provides for air cooling of the canister (12) to remove the decay heat of the irradiated fuel assemblies (20). The modules (26) can be interlocked so that each module (26) gains additional shielding from the next adjacent module (26). Hydraulic rams (30) are provided for inserting and removing the canisters (12) from the modules (26).

  4. Heat Transfer Modeling of Dry Spent Nuclear Fuel Storage Facilities

    SciTech Connect

    Lee, S.Y.

    1999-01-13

    The present work was undertaken to provide heat transfer model that accurately predicts the thermal performance of dry spent nuclear fuel storage facilities. One of the storage configurations being considered for DOE Aluminum-clad Spent Nuclear Fuel (Al-SNF), such as the Material and Testing Reactor (MTR) fuel, is in a dry storage facility. To support design studies of storage options a computational and experimental program has been conducted at the Savannah River Site (SRS). The main objective is to develop heat transfer models including natural convection effects internal to an interim dry storage canister and to geological codisposal Waste Package (WP). Calculated temperatures will be used to demonstrate engineering viability of a dry storage option in enclosed interim storage and geological repository WP and to assess the chemical and physical behaviors of the Al-SNF in the dry storage facilities. The current paper describes the modeling approaches and presents the computational results along with the experimental data.

  5. Corrosion assessment of dry fuel storage containers

    SciTech Connect

    Graves, C.E.

    1994-09-01

    The structural stability as a function of expected corrosion degradation of 75 dry fuel storage containers located in the 200 Area Low-Level Waste Burial Grounds was evaluated. These containers include 22 concrete burial containers, 13 55-gal (208-l) drums, and 40 Experimental Breeder Reactor II (EBR-II) transport/storage casks. All containers are buried beneath at least 48 in. of soil and a heavy plastic tarp with the exception of 35 of the EBR-II casks which are exposed to atmosphere. A literature review revealed that little general corrosion is expected and pitting corrosion of the carbon steel used as the exterior shell for all containers (with the exception of the concrete containers) will occur at a maximum rate of 3.5 mil/yr. Penetration from pitting of the exterior shell of the 208-l drums and EBR-II casks is calculated to occur after 18 and 71 years of burial, respectively. The internal construction beneath the shell would be expected to preclude containment breach, however, for the drums and casks. The estimates for structural failure of the external shells, large-scale shell deterioration due to corrosion, are considerably longer, 39 and 150 years respectively for the drums and casks. The concrete burial containers are expected to withstand a service life of 50 years.

  6. Behavior of spent nuclear fuel and storage system components in dry interim storage. Revision 1

    SciTech Connect

    Johnson, A.B. Jr.; Gilbert, E.R.; Guenther, R.J.

    1983-02-01

    Irradiated nuclear fuel has been handled under dry conditions since the early days of nuclear reactor operation, and use of dry storage facilities for extended management of irradiated fuel began in 1964. Irradiated fuel is currently being stored dry in four types of facilities: dry wells, vaults, silos, and metal casks. Essentially all types of irradiated nuclear fuel are currently stored under dry conditions. Gas-cooled reactor (GCR) and liquid metal fast breeder reactor (LMFBR) fuels are stored in vaults and dry wells. Certain types of fuel are being stored in licensed dry storage facilities: Magnox fuel in vaults in the United Kingdom; organic-cooled reactor (OCR) fuel (clad with a zirconium alloy) in silos in Canada; and boiling water reactor (BWR) fuel (clad with Zircaloy) in a metal storage cask in Germany. Dry storage demonstrations are under way for Zircaloy-clad fuel from BWRs, pressurized heavy-water reactors (PHWRs), and pressurized water reactors (PWRs) in all four types of dry storage facilities. The demonstrations and related hot cell and laboratory tests are directed toward expanding the data base and establishing a licensing basis for dry storage of water reactor fuel. This report reviews the scope of dry interim storage technology, the performance of fuel and facility materials, the status of programs in several countries to license dry storage of water reactor fuel, and the characteristics of water reactor fuel that relate to dry storage conditions. 110 refs., 22 figs., 28 tabs.

  7. Behavior of spent nuclear fuel and storage system components in dry interim storage.

    SciTech Connect

    Johnson, A.B. Jr.; Gilbert, E.R.; Guenther, R.J.

    1982-08-01

    Irradiated nuclear fuel has been handled under dry conditions since the early days of nuclear reactor operation, and use of dry storage facilities for extended management of irradiated fuel began in 1964. Irradiated fuel is currently being stored dry in four types of facilities: dry wells, vaults, silos, and metal casks. Essentially all types of irradiated nuclear fuel are currently stored under dry conditions. Gas-cooled reactor (GCR) and liquid metal fast breeder reactor (LMFBR) fuels are stored in vaults and dry wells. Certain types of fuel are being stored in licensed dry storage facilities: Magnox fuel in vaults in the United Kingdom and organic-cooled reactor (OCR) fuel in silos in Canada. Dry storage demonstrations are under way for Zircaloy-clad fuel from boiling water reactors BWR's, pressurized heavy-water reactors (PHWRs), and pressurized water reactors (PWRs) in all four types of dry storage facilities. The demonstrations and related hot cell and laboratory tests are directed toward expanding the data base and establishing a licensing basis for dry storage of water reactor fuel. This report reviews the scope of dry interim storage technology, the performance of fuel and facility materials, the status of programs in several countries to license dry storage of water reactor fuel, and the characteristics of water reactor fuel that relate to dry storage conditions.

  8. Dry Storage of Research Reactor Spent Nuclear Fuel - 13321

    SciTech Connect

    Adams, T.M.; Dunsmuir, M.D.; Leduc, D.R.; Severynse, T.F.; Sindelar, R.L.; Moore, E.N.

    2013-07-01

    Spent fuel from domestic and foreign research reactors is received and stored at the Savannah River Site's L Area Material Storage (L Basin) Facility. This DOE-owned fuel consists primarily of highly enriched uranium in metal, oxide or silicide form with aluminum cladding. Upon receipt, the fuel is unloaded and transferred to basin storage awaiting final disposition. Disposition alternatives include processing via the site's H Canyon facility for uranium recovery, or packaging and shipment of the spent fuel to a waste repository. A program has been developed to provide a phased approach for dry storage of the L Basin fuel. The initial phase of the dry storage program will demonstrate loading, drying, and storage of fuel in twelve instrumented canisters to assess fuel performance. After closure, the loaded canisters are transferred to pad-mounted concrete overpacks, similar to those used for dry storage of commercial fuel. Unlike commercial spent fuel, however, the DOE fuel has high enrichment, very low to high burnup, and low decay heat. The aluminum cladding presents unique challenges due to the presence of an oxide layer that forms on the cladding surface, and corrosion degradation resulting from prolonged wet storage. The removal of free and bound water is essential to the prevention of fuel corrosion and radiolytic generation of hydrogen. The demonstration will validate models predicting pressure, temperature, gas generation, and corrosion performance, provide an engineering scale demonstration of fuel handling, drying, leak testing, and canister backfill operations, and establish 'road-ready' storage of fuel that is suitable for offsite repository shipment or retrievable for onsite processing. Implementation of the Phase I demonstration can be completed within three years. Phases II and III, leading to the de-inventory of L Basin, would require an additional 750 canisters and 6-12 years to complete. Transfer of the fuel from basin storage to dry storage

  9. Safety issues of dry fuel storage at RSWF

    SciTech Connect

    Clarksean, R.L.; Zahn, T.P.

    1995-02-01

    Safety issues associated with the dry storage of EBR-II spent fuel are presented and discussed. The containers for the fuel have been designed to prevent a leak of fission gases to the environment. The storage system has four barriers for the fission gases. These barriers are the fuel cladding, an inner container, an outer container, and the liner at the RSWF. Analysis has shown that the probability of a leak to the environment is much less than 10{sup {minus}6} per year, indicating that such an event is not considered credible. A drop accident, excessive thermal loads, criticality, and possible failure modes of the containers are also addressed.

  10. Licensing of spent fuel dry storage and consolidated rod storage: A Review of Issues and Experiences

    SciTech Connect

    Bailey, W.J.

    1990-02-01

    The results of this study, performed by Pacific Northwest Laboratory (PNL) and sponsored by the US Department of Energy (DOE), respond to the nuclear industry's recommendation that a report be prepared that collects and describes the licensing issues (and their resolutions) that confront a new applicant requesting approval from the US Nuclear Regulatory Commission (NRC) for dry storage of spent fuel or for large-scale storage of consolidated spent fuel rods in pools. The issues are identified in comments, questions, and requests from the NRC during its review of applicants' submittals. Included in the report are discussions of (1) the 18 topical reports on cask and module designs for dry storage fuel that have been submitted to the NRC, (2) the three license applications for dry storage of spent fuel at independent spent fuel storage installations (ISFSIs) that have been submitted to the NRC, and (3) the three applications (one of which was later withdrawn) for large-scale storage of consolidated fuel rods in existing spent fuel storage pools at reactors that were submitted tot he NRC. For each of the applications submitted, examples of some of the issues (and suggestions for their resolutions) are described. The issues and their resolutions are also covered in detail in an example in each of the three subject areas: (1) the application for the CASTOR V/21 dry spent fuel storage cask, (2) the application for the ISFSI for dry storage of spent fuel at Surry, and (3) the application for full-scale wet storage of consolidated spent fuel at Millstone-2. The conclusions in the report include examples of major issues that applicants have encountered. Recommendations for future applicants to follow are listed. 401 refs., 26 tabs.

  11. Safety Aspects of Dry Spent Fuel Storage and Spent Fuel Management - 13559

    SciTech Connect

    Botsch, W.; Smalian, S.; Hinterding, P.

    2013-07-01

    Dry storage systems are characterized by passive and inherent safety systems ensuring safety even in case of severe incidents or accidents. After the events of Fukushima, the advantages of such passively and inherently safe dry storage systems have become more and more obvious. As with the storage of all radioactive materials, the storage of spent nuclear fuel (SF) and high-level radioactive waste (HLW) must conform to safety requirements. Following safety aspects must be achieved throughout the storage period: - safe enclosure of radioactive materials, - safe removal of decay heat, - securing nuclear criticality safety, - avoidance of unnecessary radiation exposure. The implementation of these safety requirements can be achieved by dry storage of SF and HLW in casks as well as in other systems such as dry vault storage systems or spent fuel pools, where the latter is neither a dry nor a passive system. Furthermore, transport capability must be guaranteed during and after storage as well as limitation and control of radiation exposure. The safe enclosure of radioactive materials in dry storage casks can be achieved by a double-lid sealing system with surveillance of the sealing system. The safe removal of decay heat must be ensured by the design of the storage containers and the storage facility. The safe confinement of radioactive inventory has to be ensured by mechanical integrity of fuel assembly structures. This is guaranteed, e.g. by maintaining the mechanical integrity of the fuel rods or by additional safety measures for defective fuel rods. In order to ensure nuclear critically safety, possible effects of accidents have also to be taken into consideration. In case of dry storage it might be necessary to exclude the re-positioning of fissile material inside the container and/or neutron moderator exclusion might be taken into account. Unnecessary radiation exposure can be avoided by the cask or canister vault system itself. In Germany dry storage of SF in

  12. Status of work at PNL supporting dry storage of spent fuel

    SciTech Connect

    Cunningham, M.E.; McKinnon, M.A.; Michener, T.E.; Thomas, L.E.; Thornhill, C.K.

    1993-01-01

    This report discusses three projects related to dry storage of light-water reactor spent fuel which are being conducted at Pacific Northwest Laboratory. Performance testing of six dry storage systems (four metal casks and two concrete storage systems) has been completed and results compiled. Two computer codes for predicting spent fuel and storage system thermal performance, COBRA-SFS and HYDRA-II, have been developed and have been reviewed by the US Nuclear Regulatory Commission. Air oxidation testing of spent fuel was conducted from 1984 through 1990 to obtain data to support recommendations of temperature-time limits for air dry storage of spent light-water reactor fuel.

  13. Status of work at PNL supporting dry storage of spent fuel

    SciTech Connect

    Cunningham, M.E.; McKinnon, M.A.; Michener, T.E.; Thomas, L.E.; Thornhill, C.K.

    1992-01-01

    Three projects related to dry storage of light-water reactor spent fuel are being conducted at Pacific Northwest Laboratory. Performance testing of six dry storage systems (four metal casks and two concrete storage systems) has been completed and results compiled. Two computer codes for predicting spent fuel and storage system thermal performance, COBRA-SFS and HYDRA-II, have been developed and have been reviewed by the US Nuclear Regulatory Commission. Air oxidation testing of spent fuel was conducted from 1984 through 1990 to obtain data to support recommendations of temperature-time limits for air dry storage for periods up to 40 years.

  14. Foreign experience on effects of extended dry storage on the integrity of spent nuclear fuel

    SciTech Connect

    Schneider, K.J.; Mitchell, S.J.

    1992-04-01

    This report summarizes the results of a survey of foreign experience in dry storage of spent fuel from nuclear power reactors that was carried out for the US Department of Energy's (DOE) Office of Civilian Radioactive Waste Management (OCRWM). The report reviews the mechanisms for degradation of spent fuel cladding and fuel materials in dry storage, identifies the status and plans of world-wide experience and applications, and documents the available information on the expected long-term integrity of the dry-stored spent fuel from actual foreign experience. Countries covered in this survey are: Argentina, Canada, Federal Republic of Germany (before reunification with the former East Germany), former German Democratic Republic (former East Germany), France, India, Italy, Japan, South Korea, Spain, Switzerland, United Kingdom, and the former USSR (most of these former Republics are now in the Commonwealth of Independent States (CIS)). Industrial dry storage of Magnox fuels started in 1972 in the United Kingdom; Canada began industrial dry storage of CANDU fuels in 1980. The technology for safe storage is generally considered to be developed for time periods of 30 to 100 years for LWR fuel in inert gas and for some fuels in oxidizing gases at low temperatures. Because it will probably be decades before countries will have a repository for spent fuels and high-level wastes, the plans for expanded use of dry storage have increased significantly in recent years and are expected to continue to increase in the near future.

  15. Foreign experience on effects of extended dry storage on the integrity of spent nuclear fuel

    SciTech Connect

    Schneider, K.J.; Mitchell, S.J.

    1992-04-01

    This report summarizes the results of a survey of foreign experience in dry storage of spent fuel from nuclear power reactors that was carried out for the US Department of Energy`s (DOE) Office of Civilian Radioactive Waste Management (OCRWM). The report reviews the mechanisms for degradation of spent fuel cladding and fuel materials in dry storage, identifies the status and plans of world-wide experience and applications, and documents the available information on the expected long-term integrity of the dry-stored spent fuel from actual foreign experience. Countries covered in this survey are: Argentina, Canada, Federal Republic of Germany (before reunification with the former East Germany), former German Democratic Republic (former East Germany), France, India, Italy, Japan, South Korea, Spain, Switzerland, United Kingdom, and the former USSR (most of these former Republics are now in the Commonwealth of Independent States [CIS]). Industrial dry storage of Magnox fuels started in 1972 in the United Kingdom; Canada began industrial dry storage of CANDU fuels in 1980. The technology for safe storage is generally considered to be developed for time periods of 30 to 100 years for LWR fuel in inert gas and for some fuels in oxidizing gases at low temperatures. Because it will probably be decades before countries will have a repository for spent fuels and high-level wastes, the plans for expanded use of dry storage have increased significantly in recent years and are expected to continue to increase in the near future.

  16. OVERVIEW OF CRITERIA FOR INTERIM WET & DRY STORAGE OF RESEARCH REACTOR SPENT NUCLEAR FUEL

    SciTech Connect

    Sindelar, R.; Vinson, D.; Iyer, N.; Fisher, D.

    2010-11-03

    Following discharge from research reactors, spent nuclear fuel may be stored 'wet' in water pools or basins, or it may be stored 'dry' in various configurations including non-sealed or sealed containers until retrieved for ultimate disposition. Interim safe storage practices are based on avoiding degradation to the fuel that would impact functions related to safety. Recommended practices including environmental controls with technical bases, are outlined for wet storage and dry storage of aluminum-clad, aluminum-based research reactor fuel. For wet storage, water quality must be maintained to minimize corrosion degradation of aluminum fuel. For dry storage, vented canister storage of aluminum fuel readily provides a safe storage configuration. For sealed dry storage, drying must be performed so as to minimize water that would cause additional corrosion and hydrogen generation. Consideration must also be given to the potential for radiolytically-generated hydrogen from the bound water in the attendant oxyhydroxides on aluminum fuel from reactor operation for dry storage systems.

  17. Initial evaluation of dry storage issues for spent nuclear fuels in wet storage at the Idaho Chemical Processing Plant

    SciTech Connect

    Guenther, R J; Johnson, Jr, A B; Lund, A L; Gilbert, E R

    1996-07-01

    The Pacific Northwest Laboratory has evaluated the basis for moving selected spent nuclear fuels in the CPP-603 and CPP-666 storage pools at the Idaho Chemical Processing Plant from wet to dry interim storage. This work is being conducted for the Lockheed Idaho Technologies Company as part of the effort to determine appropriate conditioning and dry storage requirements for these fuels. These spent fuels are from 22 test reactors and include elements clad with aluminum or stainless steel and a wide variety of fuel materials: UAl{sub x}, UAl{sub x}-Al and U{sub 3}O{sub 8}-Al cermets, U-5% fissium, UMo, UZrH{sub x}, UErZrH, UO{sub 2}-stainless steel cermet, and U{sub 3}O{sub 8}-stainless steel cermet. The study also included declad uranium-zirconium hydride spent fuel stored in the CPP-603 storage pools. The current condition and potential failure mechanisms for these spent fuels were evaluated to determine the impact on conditioning and dry storage requirements. Initial recommendations for conditioning and dry storage requirements are made based on the potential degradation mechanisms and their impacts on moving the spent fuel from wet to dry storage. Areas needing further evaluation are identified.

  18. Spent-fuel dry-storage testing at E-MAD (March 1978-March 1982)

    SciTech Connect

    Unterzuber, R.; Milnes, R.D.; Marinkovich, B.A.; Kubancsek, G.M.

    1982-09-01

    From March 1978 through March 1982, spent fuel dry storage tests were conducted at the Engine Maintenance, Assembly and Disassembly (E-MAD) facility on the Nevada Test Site to confirm that commercial reactor spent fuel could be encapsulated and passively stored in one or more interim dry storage cell concepts. These tests were: electrically heated drywell, isolated and adjacent drywell, concrete silo, fuel assembly internal temperature measurement, and air-cooled vault. This document presents the test data and results as well as results from supporting test operations (spent fuel calorimetry and canister gas sampling).

  19. Spent fuel dry storage technology development: thermal evaluation of sealed storage cask containing spent fuel

    SciTech Connect

    Schmitten, P.F.; Wright, J.B.

    1980-08-01

    A PWR spent fuel assembly was encapsulated inside the E-MAD Hot Bay and placed in a instrumented above surface storage cell during December 1978 for thermal testing. Instrumentation provided to measure canister, liner and concrete temperatures consisted of thermocouples which were inserted into tubes on the outside of the canister and liner and in three radial positions in the concrete. Temperatures from the SSC test assembly have been recorded throughout the past 16 months. Canister and liner temperatures have reached their peak values of 200{sup 0}F and 140{sup 0}F, respectively. Computer predictions of the transient and steady-state temperatures show good agreement with the test data.

  20. Spent nuclear fuel integrity during dry storage - performance tests and demonstrations

    SciTech Connect

    McKinnon, M.A.; Doherty, A.L.

    1997-06-01

    This report summarizes the results of fuel integrity surveillance determined from gas sampling during and after performance tests and demonstrations conducted from 1983 through 1996 by or in cooperation with the US DOE Office of Commercial Radioactive Waste Management (OCRWM). The cask performance tests were conducted at Idaho National Engineering Laboratory (INEL) between 1984 and 1991 and included visual observation and ultrasonic examination of the condition of the cladding, fuel rods, and fuel assembly hardware before dry storage and consolidation of fuel, and a qualitative determination of the effects of dry storage and fuel consolidation on fission gas release from the spent fuel rods. The performance tests consisted of 6 to 14 runs involving one or two loading, usually three backfill environments (helium, nitrogen, and vacuum backfills), and one or two storage system orientations. The nitrogen and helium backfills were sampled and analyzed to detect leaking spent fuel rods. At the end of each performance test, periodic gas sampling was conducted on each cask. A spent fuel behavior project (i.e., enhanced surveillance, monitoring, and gas sampling activities) was initiated by DOE in 1994 for intact fuel in a CASTOR V/21 cask and for consolidated fuel in a VSC-17 cask. The results of the gas sampling activities are included in this report. Information on spent fuel integrity is of interest in evaluating the impact of long-term dry storage on the behavior of spent fuel rods. Spent fuel used during cask performance tests at INEL offers significant opportunities for confirmation of the benign nature of long-term dry storage. Supporting cask demonstration included licensing and operation of an independent spent fuel storage installation (ISFSI) at the Virginia Power (VP) Surry reactor site. A CASTOR V/21, an MC-10, and a Nuclear Assurance NAC-I28 have been loaded and placed at the VP ISFSI as part of the demonstration program. 13 refs., 14 figs., 9 tabs.

  1. Cosmic Ray Muon Imaging of Spent Nuclear Fuel in Dry Storage Casks

    SciTech Connect

    Durham, J. Matthew; Guardincerri, Elena; Morris, Christopher L.; Poulson, Daniel; Bacon, Jeffrey Darnell; Chichester, David; Fabritius, Joseph; Fellows, Shelby; Plaud-Ramos, Kenie Omar; Morley, Deborah Jean; Winston, Philip

    2016-04-29

    In this paper, cosmic ray muon radiography has been used to identify the absence of spent nuclear fuel bundles inside a sealed dry storage cask. The large amounts of shielding that dry storage casks use to contain radiation from the highly radioactive contents impedes typical imaging methods, but the penetrating nature of cosmic ray muons allows them to be used as an effective radiographic probe. This technique was able to successfully identify missing fuel bundles inside a sealed Westinghouse MC-10 cask. This method of fuel cask verification may prove useful for international nuclear safeguards inspectors. Finally, muon radiography may find other safety and security or safeguards applications, such as arms control verification.

  2. Basis for assessing the movement of spent nuclear fuels from wet to dry storage at the Idaho Chemical Processing Plant

    SciTech Connect

    Guenther, R.J.; Gilbert, E.R.; Johnson, A.B.; Lund, A.L.; Pednekar, S.P.; Windes, W.E.

    1994-12-01

    An assessment of the possible material interactions arising from the movement of previously wet stored spent nuclear fuel (SNF) into long-term dry interim storage has been conducted for selected fuels in the Idaho Chemical Processing Plant (ICPP). Three main classes of fuels are addressed: aluminum (Al) clad, stainless steel (SS) clad, and unclad Uranium-Zirconium Hydride (UZrHx) fuel types. Degradation issues for the cladding, fuel matrix material, and storage canister in both wet and dry storage environments are assessed. Possible conditioning techniques to stabilize the fuel and optimum dry environment conditions during storage are also addressed.

  3. Safeguards-by-Design: Guidance for Independent Spent Fuel Dry Storage Installations (ISFSI)

    SciTech Connect

    Trond Bjornard; Philip C. Durst

    2012-05-01

    This document summarizes the requirements and best practices for implementing international nuclear safeguards at independent spent fuel storage installations (ISFSIs), also known as Away-from- Reactor (AFR) storage facilities. These installations may provide wet or dry storage of spent fuel, although the safeguards guidance herein focuses on dry storage facilities. In principle, the safeguards guidance applies to both wet and dry storage. The reason for focusing on dry independent spent fuel storage installations is that this is one of the fastest growing nuclear installations worldwide. Independent spent fuel storage installations are typically outside of the safeguards nuclear material balance area (MBA) of the reactor. They may be located on the reactor site, but are generally considered by the International Atomic Energy Agency (IAEA) and the State Regulator/SSAC to be a separate facility. The need for this guidance is becoming increasingly urgent as more and more nuclear power plants move their spent fuel from resident spent fuel ponds to independent spent fuel storage installations. The safeguards requirements and best practices described herein are also relevant to the design and construction of regional independent spent fuel storage installations that nuclear power plant operators are starting to consider in the absence of a national long-term geological spent fuel repository. The following document has been prepared in support of two of the three foundational pillars for implementing Safeguards-by-Design (SBD). These are: i) defining the relevant safeguards requirements, and ii) defining the best practices for meeting the requirements. This document was prepared with the design of the latest independent dry spent fuel storage installations in mind and was prepared specifically as an aid for designers of commercial nuclear facilities to help them understand the relevant international requirements that follow from a country’s safeguards agreement with

  4. Conceptual design report for the ICPP spent nuclear fuel dry storage project

    SciTech Connect

    1996-07-01

    The conceptual design is presented for a facility to transfer spent nuclear fuel from shipping casks to dry storage containers, and to safely store those containers at ICPP at INEL. The spent fuels to be handled at the new facility are identified and overall design and operating criteria established. Physical configuration of the facility and the systems used to handle the SNF are described. Detailed cost estimate for design and construction of the facility is presented.

  5. Spent fuel behavior under abnormal thermal transients during dry storage

    SciTech Connect

    Stahl, D.; Landow, M.P.; Burian, R.J.; Pasupathi, V.

    1986-01-01

    This study was performed to determine the effects of abnormally high temperatures on spent fuel behavior. Prior to testing, calculations using the CIRFI3 code were used to determine the steady-state fuel and cask component temperatures. The TRUMP code was used to determine transient heating rates under postulated abnormal events during which convection cooling of the cask surfaces was obstructed by a debris bed covering the cask. The peak rate of temperature rise during the first 6 h was calculated to be about 15/sup 0/C/h, followed by a rate of about 1/sup 0/C/h. A Turkey Point spent fuel rod segment was heated to approx. 800/sup 0/C. The segment deformed uniformly with an average strain of 17% at failure and a local strain of 60%. Pretest characterization of the spent fuel consisted of visual examination, profilometry, eddy-current examination, gamma scanning, fission gas collection, void volume measurement, fission gas analysis, hydrogen analysis of the cladding, burnup analysis, cladding metallography, and fuel ceramography. Post-test characterization showed that the failure was a pinhole cladding breach. The results of the tests showed that spent fuel temperatures in excess of 700/sup 0/C are required to produce a cladding breach in fuel rods pressurized to 500 psing (3.45 MPa) under postulated abnormal thermal transient cask conditions. The pinhole cladding breach that developed would be too small to compromise the confinement of spent fuel particles during an abnormal event or after normal cooling conditions are restored. This behavior is similar to that found in other slow ramp tests with irradiated and nonirradiated rod sections and nonirradiated whole rods under conditions that bracketed postulated abnormal heating rates. This similarity is attributed to annealing of the irradiation-strengthened Zircaloy cladding during heating. In both cases, the failure was a benign, ductile pinhole rupture.

  6. Cosmic Ray Muon Imaging of Spent Nuclear Fuel in Dry Storage Casks

    DOE PAGES

    Durham, J. Matthew; Guardincerri, Elena; Morris, Christopher L.; ...

    2016-04-29

    In this paper, cosmic ray muon radiography has been used to identify the absence of spent nuclear fuel bundles inside a sealed dry storage cask. The large amounts of shielding that dry storage casks use to contain radiation from the highly radioactive contents impedes typical imaging methods, but the penetrating nature of cosmic ray muons allows them to be used as an effective radiographic probe. This technique was able to successfully identify missing fuel bundles inside a sealed Westinghouse MC-10 cask. This method of fuel cask verification may prove useful for international nuclear safeguards inspectors. Finally, muon radiography may findmore » other safety and security or safeguards applications, such as arms control verification.« less

  7. Three-dimensional Computational Fluid Dynamics (CFD) modeling of dry spent nuclear fuel storage canisters

    SciTech Connect

    Lee, S.Y.

    1997-06-01

    One of the interim storage configurations being considered for aluminum-clad foreign research reactor fuel, such as the Material and Testing Reactor (MTR) design, is in a dry storage facility. To support design studies of storage options, a computational and experimental program was conducted at the Savannah River Site (SRS). The objective was to develop computational fluid dynamics (CFD) models which would be benchmarked using data obtained from a full scale heat transfer experiment conducted in the SRS Experimental Thermal Fluids Laboratory. The current work documents the CFD approach and presents comparison of results with experimental data. CFDS-FLOW3D (version 3.3) CFD code has been used to model the 3-dimensional convective velocity and temperature distributions within a single dry storage canister of MTR fuel elements. For the present analysis, the Boussinesq approximation was used for the consideration of buoyancy-driven natural convection. Comparison of the CFD code can be used to predict reasonably accurate flow and thermal behavior of a typical foreign research reactor fuel stored in a dry storage facility.

  8. Use of filler materials to aid spent nuclear fuel dry storage

    SciTech Connect

    Anderson, K.J.

    1981-09-01

    The use of filler materials (also known as stabilizer or encapsulating materials) was investigated in conjunction with the dry storage of irradiated light water reactor (LWR) fuel. The results of this investigation appear to be equally valid for the wet storage of fuel. The need for encapsulation and suitable techniques for closing was also investigated. Various materials were reviewed (including solids, liquids, and gases) which were assumed to fill the void areas within a storage can containing either intact or disassembled spent fuel. Materials were reviewed and compared on the basis of cost, thermal characteristics, and overall suitability in the proposed environment. A thermal analysis was conducted to yield maximum centerline and surface temperatures of a design basis fuel encapsulated within various filler materials. In general, air was found to be the most likely choice as a filler material for the dry storage of spent fuel. The choice of any other filler material would probably be based on a desire, or need, to maximize specific selection criteria, such as surface temperatures, criticality safety, or confinement.

  9. Corrosion experiments on stainless steels used in dry storage canisters of spent nuclear fuel

    SciTech Connect

    Ryskamp, J.M.; Adams, J.P.; Faw, E.M.; Anderson, P.A.

    1996-09-01

    Nonradioactive (cold) experiments have been set up in the Idaho Chemical Processing Plant (ICPP)-1634, and radioactive (hot) experiments have been set up in the Irradiated Fuel Storage Facility (IFSF) at ICPP. The objective of these experiments is to provide information on the interactions (corrosion) between the spent nuclear fuel currently stored at the ICPP and the dry storage canisters and containment materials in which this spent fuel will be stored for the next several decades. This information will be used to help select canister materials that will retain structural integrity over this period within economic, criticality, and other constraints. The two purposes for Dual Purpose Canisters (DPCs) are for interim storage of spent nuclear fuel and for shipment to a final geological repository. Information on how corrosion products, sediments, and degraded spent nuclear fuel may corrode DPCs will be required before the DPCs will be allowed to be shipped out of the State of Idaho. The information will also be required by the Nuclear Regulatory Commission (NRC) to support the licensing of DPCs. Stainless steels 304L and 316L are the most likely materials for dry interim storage canisters. Welded stainless steel coupons are used to represent the canisters in both hot and cold experiments.

  10. Optimization of a Dry, Mixed Nuclear Fuel Storage Array for Nuclear Criticality Safety

    NASA Astrophysics Data System (ADS)

    Baranko, Benjamin T.

    A dry storage array of used nuclear fuel at the Idaho National Laboratory contains a mixture of more than twenty different research and test reactor fuel types in up to 636 fuel storage canisters. New analysis demonstrates that the current arrangement of the different fuel-type canisters does not minimize the system neutron multiplication factor (keff), and that the entire facility storage capacity cannot be utilized without exceeding the subcritical limit (ksafe) for ensuring nuclear criticality safety. This work determines a more optimal arrangement of the stored fuels with a goal to minimize the system keff, but with a minimum of potential fuel canister relocation movements. The solution to this multiple-objective optimization problem will allow for both an improvement in the facility utilization while also offering an enhancement in the safety margin. The solution method applies stochastic approximation and a Tabu search metaheuristic to an empirical model developed from supporting MCNP calculations. The results establish an optimal relocation of between four to sixty canisters, which will allow the current thirty-one empty canisters to be used for storage while reducing the array keff by up to 0.018 +/- 0.003 relative to the current arrangement.

  11. Spent fuel dry storage technology development: Report of consolidated thermal data

    NASA Astrophysics Data System (ADS)

    Lundberg, W. L.

    1980-09-01

    A drywell/sealed cask technique for spent fuel storage is discussed. Experiments indicate that PWR fuel with decay heat levels in excess of 2 kW could be stored in isolated drywells in Nevada test site soil without exceeding the current fuel clad temperature limit (715 F). The ability to thermally analyze near surface drywells and above ground storage casks is assessed. It is concluded that the required analysis procedures, computer programs, etc., are already developed and available. Soil thermal conductivity requires additional study to better understand the soil drying mechanism and effects of moisture. Work is also required to develop an internal canister subchannel model. In addition, the ability of the overall drywell thermal model to accommodate thermal interaction effects between adjacent drywells should be confirmed.

  12. Cosmic ray muon computed tomography of spent nuclear fuel in dry storage casks

    DOE PAGES

    Poulson, Daniel Cris; Durham, J. Matthew; Guardincerri, Elena; ...

    2017-10-22

    Radiography with cosmic ray muon scattering has proven to be a successful method of imaging nuclear material through heavy shielding. Of particular interest is monitoring dry storage casks for diversion of plutonium contained in spent reactor fuel. Using muon tracking detectors that surround a cylindrical cask, cosmic ray muon scattering can be simultaneously measured from all azimuthal angles, giving complete tomographic coverage of the cask interior. This article describes the first application of filtered back projection algorithms, typically used in medical imaging, to cosmic ray muon scattering imaging. The specific application to monitoring spent nuclear fuel in dry storage casksmore » is investigated via GEANT4 simulations. With a cylindrical muon tracking detector surrounding a typical spent fuel cask, simulations indicate that missing fuel bundles can be detected with a statistical significance of ~18σ in less than two days exposure and a sensitivity at 1σ to a 5% missing portion of a fuel bundle. Finally, we discuss potential detector technologies and geometries.« less

  13. The Effect of Weld Residual Stress on Life of Used Nuclear Fuel Dry Storage Canisters

    SciTech Connect

    Ronald G. Ballinger; Sara E. Ferry; Bradley P. Black; Sebastien P. Teysseyre

    2013-08-01

    With the elimination of Yucca Mountain as the long-term storage facility for spent nuclear fuel in the United States, a number of other storage options are being explored. Currently, used fuel is stored in dry-storage cask systems constructed of steel and concrete. It is likely that used fuel will continue to be stored at existing open-air storage sites for up to 100 years. This raises the possibility that the storage casks will be exposed to a salt-containing environment for the duration of their time in interim storage. Austenitic stainless steels, which are used to construct the canisters, are susceptible to stress corrosion cracking (SCC) in chloride-containing environments if a continuous aqueous film can be maintained on the surface and the material is under stress. Because steel sensitization in the canister welds is typically avoided by avoiding post-weld heat treatments, high residual stresses are present in the welds. While the environment history will play a key role in establishing the chemical conditions for cracking, weld residual stresses will have a strong influence on both crack initiation and propagation. It is often assumed for modeling purposes that weld residual stresses are tensile, high and constant through the weld. However, due to the strong dependence of crack growth rate on stress, this assumption may be overly conservative. In particular, the residual stresses become negative (compressive) at certain points in the weld. The ultimate goal of this research project is to develop a probabilistic model with quantified uncertainties for SCC failure in the dry storage casks. In this paper, the results of a study of the residual stresses, and their postulated effects on SCC behavior, in actual canister welds are presented. Progress on the development of the model is reported.

  14. Dry spent fuel storage in Germany status in 1995 and prospects

    SciTech Connect

    Janberg, K. |; Malrnstroem, H.; Rittscher, D.; Willax, H.O.

    1995-12-31

    The German back-end policy until mid `94 was primarily based on reprocessing. Direct disposal was an acceptable alternative only when reprocessing was not available or economically not feasible. However, a law was passed in 1994 by Parliament which lifts these conditions applied to the choice of the final disposal route. For the THTR (Thorium High Temperature Reactor) fuel there was no reprocessing available and therefore the decommissioning of this reactor required the unloading of its fuel into dry storage casks. At the beginning of Nov `94 more than 260 CASTOR casks are already stored at the Ahaus site. The other storage facility at Gorleben was intended to be opened in July `94 with the CASTOR IIa, containing 4.5 t of HM. However, though the cask was loaded it is in early `95 waiting for its transport approval. The AVR-Reactor at the Juelich Research Center has been shut down and its fuel is also stored in casks. In early `95 around 50 are already loaded and transferred into the on-site storage facility. At the same time at the Greifswald site in former GDR a big storage facility is under construction. This facility has to receive all the wastes resulting from the decommissioning of the WWER 440 Voronesh-type reactors and the spent fuel also to be stored in casks.

  15. Select Generic Dry-Storage Pilot Plant Design for Safeguards and Security by Design (SSBD) per Used Fuel Campaign

    SciTech Connect

    Demuth, Scott Francis; Sprinkle, James K.

    2015-05-26

    As preparation to the year-end deliverable (Provide SSBD Best Practices for Generic Dry-Storage Pilot Scale Plant) for the Work Package (FT-15LA040501–Safeguards and Security by Design for Extended Dry Storage), the initial step was to select a generic dry-storage pilot plant design for SSBD. To be consistent with other DOE-NE Fuel Cycle Research and Development (FCR&D) activities, the Used Fuel Campaign was engaged for the selection of a design for this deliverable. For the work Package FT-15LA040501–“Safeguards and Security by Design for Extended Dry Storage”, SSBD will be initiated for the Generic Dry-Storage Pilot Scale Plant described by the layout of Reference 2. SSBD will consider aspects of the design that are impacted by domestic material control and accounting (MC&A), domestic security, and international safeguards.

  16. Analysis of dose consequences arising from the release of spent nuclear fuel from dry storage casks.

    SciTech Connect

    Durbin, Samuel G.; Morrow, Charles.

    2013-01-01

    The resulting dose consequences from releases of spent nuclear fuel (SNF) residing in a dry storage casks are examined parametrically. The dose consequences are characterized by developing dose versus distance curves using simplified bounding assumptions. The dispersion calculations are performed using the MELCOR Accident Consequence Code System (MACCS2) code. Constant weather and generic system parameters were chosen to ensure that the results in this report are comparable with each other and to determine the relative impact on dose of each variable. Actual analyses of site releases would need to accommodate local weather and geographic data. These calculations assume a range of fuel burnups, release fractions (RFs), three exposure scenarios (2 hrs and evacuate, 2 hrs and shelter, and 24 hrs exposure), two meteorological conditions (D-4 and F-2), and three release heights (ground level 1 meter (m), 10 m, and 100 m). This information was developed to support a policy paper being developed by U.S. Nuclear Regulatory Commission (NRC) staff on an independent spent fuel storage installation (ISFSI) and monitored retrievable storage installation (MRS) security rulemaking.

  17. NDE to Manage Atmospheric SCC in Canisters for Dry Storage of Spent Fuel: An Assessment

    SciTech Connect

    Meyer, Ryan M.; Pardini, Allan F.; Cuta, Judith M.; Adkins, Harold E.; Casella, Andrew M.; Qiao, Hong; Larche, Michael R.; Diaz, Aaron A.; Doctor, Steven R.

    2013-09-01

    This report documents efforts to assess representative horizontal (Transuclear NUHOMS®) and vertical (Holtec HI-STORM) storage systems for the implementation of non-destructive examination (NDE) methods or techniques to manage atmospheric stress corrosion cracking (SCC) in canisters for dry storage of used nuclear fuel. The assessment is conducted by assessing accessibility and deployment, environmental compatibility, and applicability of NDE methods. A recommendation of this assessment is to focus on bulk ultrasonic and eddy current techniques for direct canister monitoring of atmospheric SCC. This assessment also highlights canister regions that may be most vulnerable to atmospheric SCC to guide the use of bulk ultrasonic and eddy current examinations. An assessment of accessibility also identifies canister regions that are easiest and more difficult to access through the ventilation paths of the concrete shielding modules. A conceivable sampling strategy for canister inspections is to sample only the easiest to access portions of vulnerable regions. There are aspects to performing an NDE inspection of dry canister storage system (DCSS) canisters for atmospheric SCC that have not been addressed in previous performance studies. These aspects provide the basis for recommendations of future efforts to determine the capability and performance of eddy current and bulk ultrasonic examinations for atmospheric SCC in DCSS canisters. Finally, other important areas of investigation are identified including the development of instrumented surveillance specimens to identify when conditions are conducive for atmospheric SCC, characterization of atmospheric SCC morphology, and an assessment of air flow patterns over canister surfaces and their influence on chloride deposition.

  18. Assessment of the integrity of spent fuel assemblies used in dry storage demonstrations at the Nevada Test Site

    SciTech Connect

    Johnson, A.B. Jr.; Dobbins, J.C.; Zaloudek, F.R.

    1987-07-01

    This report summarizes the histories of 17 Zircaloy-clad spent fuel assemblies used in dry storage tests and demonstrations at the Engine Maintenance and Disassembly (EMAD) and Climax facilities at the Nevada Test Site (NTS). The 18th assembly was shipped to the Battelle Columbus Laboratory (BCL) and remained there for extensive characterization and as a source of specimens for whole-rod and rod-segment dry storage tests. The report traces the history of the assemblies after discharge from the Turkey Point Unit 3 pressurized-water reactor (1975 and 1977) through shipment (first arrival at EMAD in December 1978), dry storage tests and demonstrations, and shipment by truck cask from EMAD to the Idaho National Engineering Laboratory (INEL) in May/June 1986. The principal objectives of this report are to assess and document the integrity of the fuel during the extensive dry storage activities at NTS and BCL, and to briefly summarize the dry storage technologies and procedures demonstrated in this program. The dry storage tests and demonstrations involved the following concepts and facilities: (1) surface drywells (EMAD); (2) deep drywells (425 m underground in the Climax granite formation); (3) concrete silo (EMAD); (4) air-cooled vault (EMAD); (5) electrically-heated module for fuel assembly thermal calibration and testing (EMAD/FAITM). 20 refs., 43 figs., 9 tabs.

  19. Critical Analysis of Dry Storage Temperature Limits for Zircaloy-Clad Spent Nuclear Fuel Based on Diffusion Controlled Cavity Growth

    SciTech Connect

    Hayes, T.A.; Rosen, R.S.; Kassner, M.E.

    1999-12-01

    Interim dry storage of spent nuclear fuel (SNF) rods is of critical concern because a shortage of existing SNF wet storage capacity combined with delays in the availability of a permanent disposal repository has led to an increasing number of SNF rods being placed into interim dry storage. Safe interim dry storage must be maintained for a minimum of twenty years according to the Standard Review Plan for Dry Cask Storage Systems [1] and the Code of Federal Regulations, 10 CFR Part 72 [2]. Interim dry storage licensees must meet certain safety conditions when storing SNF rods to ensure that there is a ''very low probability (e.g. 0.5%) of cladding breach during long-term storage'' [1]. Commercial SNF typically consists of uranium oxide pellets surrounded by a thin cladding. The cladding is usually an {alpha}-zirconium based alloy know as ''Zircaloy''. In dry storage, the SNF rods are confined in one of several types of cask systems approved by the Nuclear Regulatory Commission (NRC). ''The cask system must be designed to prevent degradation of fuel cladding that results in a type of cladding breach, such as axial-splits or ductile fracture, where irradiated UO{sub 2} particles may be released. In addition, the fuel cladding should not degrade to the point where more than one percent of the fuel rods suffer pinhole or hairline crack type failure under normal storage conditions [1].'' The NRC has approved two models [3,4] for use by proposed dry storage licensees to determine the maximum initial temperature limit for nuclear fuel rods in dry storage that supposedly meet the above criteria and yield consistent temperature limits. Though these two models are based on the same fundamental failure theory, different assumptions have been made including the choice of values for material constants in the failure equation. This report will examine and compare the similarities and inconsistencies of these two models. It will illustrate some of the shortcomings of the current

  20. The Feasibility of Cask "Fingerprinting" as a Spent-Fuel, Dry-Storage Cask Safeguards Technique

    SciTech Connect

    Ziock, K P; Vanier, P; Forman, L; Caffrey, G; Wharton, J; Lebrun, A

    2005-07-27

    This report documents a week-long measurement campaign conducted on six, dry-storage, spent-nuclear-fuel storage casks at the Idaho National Laboratory. A gamma-ray imager, a thermal-neutron imager and a germanium spectrometer were used to collect data on the casks. The campaign was conducted to examine the feasibility of using the cask radiation signatures as unique identifiers for individual casks as part of a safeguards regime. The results clearly show different morphologies for the various cask types although the signatures are deemed insufficient to uniquely identify individual casks of the same type. Based on results with the germanium spectrometer and differences between thermal neutron images and neutron-dose meters, this result is thought to be due to the limitations of the extant imagers used, rather than of the basic concept. Results indicate that measurements with improved imagers could contain significantly more information. Follow-on measurements with new imagers either currently available as laboratory prototypes or under development are recommended.

  1. Fuel performance in water storage

    SciTech Connect

    Hoskins, A.P.; Scott, J.G.; Shelton-Davis, C.V.; McDannel, G.E.

    1993-11-01

    Westinghouse Idaho Nuclear Company operates the Idaho Chemical Processing Plant (ICPP) at the Idaho National Engineering Laboratory (INEL) for the Department of Energy (DOE). A variety of different types of fuels have been stored there since the 1950`s prior to reprocessing for uranium recovery. In April of 1992, the DOE decided to end fuel reprocessing, changing the mission at ICPP. Fuel integrity in storage is now viewed as long term until final disposition is defined and implemented. Thus, the condition of fuel and storage equipment is being closely monitored and evaluated to ensure continued safe storage. There are four main areas of fuel storage at ICPP: an original underwater storage facility (CPP-603), a modern underwater storage facility (CPP-666), and two dry fuel storage facilities. The fuels in storage are from the US Navy, DOE (and its predecessors the Energy Research and Development Administration and the Atomic Energy Commission), and other research programs. Fuel matrices include uranium oxide, hydride, carbide, metal, and alloy fuels. In the underwater storage basins, fuels are clad with stainless steel, zirconium, and aluminum. Also included in the basin inventory is canned scrap material. The dry fuel storage contains primarily graphite and aluminum type fuels. A total of 55 different fuel types are currently stored at the Idaho Chemical Processing Plant. The corrosion resistance of the barrier material is of primary concern in evaluating the integrity of the fuel in long term water storage. The barrier material is either the fuel cladding (if not canned) or the can material.

  2. Spent-fuel-storage alternatives

    SciTech Connect

    Not Available

    1980-01-01

    The Spent Fuel Storage Alternatives meeting was a technical forum in which 37 experts from 12 states discussed storage alternatives that are available or are under development. The subject matter was divided into the following five areas: techniques for increasing fuel storage density; dry storage of spent fuel; fuel characterization and conditioning; fuel storage operating experience; and storage and transport economics. Nineteen of the 21 papers which were presented at this meeting are included in this Proceedings. These have been abstracted and indexed. (ATT)

  3. Initial measurements of BN-350 spent fuel in dry storage casks using the dual slab verification detonator

    SciTech Connect

    Santi, Peter Angelo; Browne, Michael C; Freeman, Corey R; Parker, Robert F; Williams, Richard B

    2010-01-01

    The Dual Slab Verification Detector (DSVD) has been developed, built, and characterized by Los Alamos National Laboratory in cooperation with the International Atomic Energy Agency (IAEA) as part of the dry storage safeguards system for the spent fuel from the BN-350 fast reactor. The detector consists of two rows of 3He tubes embedded in a slab of polyethylene which has been designed to be placed on the outer surface of the dry storage cask. By performing DSVD measurements at several different locations around the outer surface of the DUC, a signature 'fingerprint' can be established for each DUC based on the neutron flux emanating from inside the dry storage cask. The neutron fingerprint for each individual DUC will be dependent upon the spatial distribution of nuclear material within the cask, thus making it sensitive to the removal of a certain amount of material from the cask. An initial set of DSVD measurements have been performed on the first set of dry storage casks that have been loaded with canisters of spent fuel and moved onto the dry storage pad to both establish an initial fingerprint for these casks as well as to quantify systematic uncertainties associated with these measurements. The results from these measurements will be presented and compared with the expected results that were determined based on MCNPX simulations of the dry storage facility. The ability to safeguard spent nuclear fuel is strongly dependent on the technical capabilities of establishing and maintaining continuity of knowledge (COK) of the spent fuel as it is released from the reactor core and either reprocessed or packaged and stored at a storage facility. While the maintenance of COK is often done using continuous containment and surveillance (C/S) on the spent fuel, it is important that the measurement capabilities exist to re-establish the COK in the event of a significant gap in the continuous CIS by performing measurements that independently confirm the presence and content

  4. Imaging Spent Fuel in Dry Storage Casks with Cosmic Ray Muons

    SciTech Connect

    Durham, J. Matthew; Dougan, Arden

    2015-11-05

    Highly energetic cosmic ray muons are a natural source of ionizing radiation that can be used to make tomographic images of the interior of dense objects. Muons are capable of penetrating large amounts of shielding that defeats typical radiographic probes like neutrons or photons. This is the only technique which can examine spent nuclear fuel rods sealed inside dry casks.

  5. Testing and analyses of the TN-24P PWR spent-fuel dry storage cask loaded with consolidated fuel

    SciTech Connect

    McKinnon, M A; Michener, T E; Jensen, M F; Rodman, G R

    1989-02-01

    A performance test of a Transnuclear, Inc. TN-24P storage cask configured for pressurized water reactor (PWR) spent fuel was performed. The work was performed by the Pacific Northwest Laboratory (PNL) and Idaho National Engineering Laboratory (INEL) for the US Department of Energy Office of Civilian Radioactive Waste Management (OCRWM) and the Electric Power Research Institute. The performance test consisted of loading the TN-24P cask with 24 canisters of consolidated PWR spent fuel from Virginia Power's Surry and Florida Power and Light's Turkey Point reactors. Cask surface and fuel canister guide tube temperatures were measured, as were cask surface gamma and neutron dose rates. Testing was performed with vacuum, nitrogen, and helium backfill environments in both vertical and horizontal cask orientations. Transnuclear, Inc., arranged to have a partially insulated run added to the end of the test to simulate impact limiters. Limited spent fuel integrity data were also obtained. From both heat transfer and shielding perspectives, the TN-24P cask with minor refinements can be effectively implemented at reactor sites and central storage facilities for safe storage of unconsolidated and consolidated spent fuel. 35 refs., 93 figs., 17 tabs.

  6. Dry Transfer Systems for Used Nuclear Fuel

    SciTech Connect

    Brett W. Carlsen; Michaele BradyRaap

    2012-05-01

    The potential need for a dry transfer system (DTS) to enable retrieval of used nuclear fuel (UNF) for inspection or repackaging will increase as the duration and quantity of fuel in dry storage increases. This report explores the uses for a DTS, identifies associated general functional requirements, and reviews existing and proposed systems that currently perform dry fuel transfers. The focus of this paper is on the need for a DTS to enable transfer of bare fuel assemblies. Dry transfer systems for UNF canisters are currently available and in use for transferring loaded canisters between the drying station and storage and transportation casks.

  7. Managing aging effects on dry cask storage systems for extended long-term storage and transportation of used fuel - rev. 0

    SciTech Connect

    Chopra, O.K.; Diercks, D.; Fabian, R.; Ma, D.; Shah, V.; Tam, S.W.; Liu, Y.

    2012-07-06

    The cancellation of the Yucca Mountain repository program in the United States raises the prospect of extended long-term storage (i.e., >120 years) and deferred transportation of used fuel at operating and decommissioned nuclear power plant sites. Under U.S. federal regulations contained in Title 10 of the Code of Federal Regulations (CFR) 72.42, the initial license term for an Independent Spent Fuel Storage Installation (ISFSI) must not exceed 40 years from the date of issuance. Licenses may be renewed by the U.S. Nuclear Regulatory Commission (NRC) at the expiration of the license term upon application by the licensee for a period not to exceed 40 years. Application for ISFSI license renewals must include the following: (1) Time-limited aging analyses (TLAAs) that demonstrate that structures, systems, and components (SSCs) important to safety will continue to perform their intended function for the requested period of extended operation; and (2) a description of the aging management program (AMP) for management of issues associated with aging that could adversely affect SSCs important to safety. In addition, the application must also include design bases information as documented in the most recent updated final safety analysis report as required by 10 CFR 72.70. Information contained in previous applications, statements, or reports filed with the Commission under the license may be incorporated by reference provided that those references are clear and specific. The NRC has recently issued the Standard Review Plan (SRP) for renewal of used-fuel dry cask storage system (DCSS) licenses and Certificates of Compliance (CoCs), NUREG-1927, under which NRC may renew a specific license or a CoC for a term not to exceed 40 years. Both the license and the CoC renewal applications must contain revised technical requirements and operating conditions (fuel storage, surveillance and maintenance, and other requirements) for the ISFSI and DCSS that address aging effects that

  8. Feasibility study for Zaporozhye Nuclear Power Plant spent fuel dry storage facility in Ukraine. Export trade information

    SciTech Connect

    1995-12-01

    This document reports the results of a Feasibility Study sponsored by a TDA grant to Zaporozhye Nuclear Power Plant (ZNPP) in Ukraine to study the construction of storage facilities for spent nuclear fuel. It provides pertinent information to U.S. companies interested in marketing spent fuel storage technology and related business to countries of the former Soviet Union or Eastern Europe.

  9. Numerical Modeling of Heat and Mass Transfer Processes in the Transfer of Spent Nuclear Fuel from "Wet" to "Dry" Cask Storage

    NASA Astrophysics Data System (ADS)

    Karyakin, Yu. E.; Pletnev, A. A.; Fedorovich, E. D.

    2017-01-01

    The paper describes in brief the heat and mass transfer processes in the transfer of spent nuclear fuel of the RBMK-100 reactor from "wet" to "dry" cask storage. The algorithms are described and the results are presented of the "through" calculation of the heat and mass transfer processes in ampoules and in a metal-concrete cask at various stages of spent nuclear fuel management.

  10. Annotated Bibliography for Drying Nuclear Fuel

    SciTech Connect

    Rebecca E. Smith

    2011-09-01

    Internationally, the nuclear industry is represented by both commercial utilities and research institutions. Over the past two decades many of these entities have had to relocate inventories of spent nuclear fuel from underwater storage to dry storage. These efforts were primarily prompted by two factors: insufficient storage capacity (potentially precipitated by an open-ended nuclear fuel cycle) or deteriorating quality of existing underwater facilities. The intent of developing this bibliography is to assess what issues associated with fuel drying have been identified, to consider where concerns have been satisfactorily addressed, and to recommend where additional research would offer the most value to the commercial industry and the U. S. Department of Energy.

  11. Standard review plan for reviewing safety analysis reports for dry metallic spent fuel storage casks

    SciTech Connect

    Not Available

    1988-01-01

    The Cask Standard Review Plan (CSRP) has been prepared as guidance to be used in the review of Cask Safety Analysis Reports (CSARs) for storage packages. The principal purpose of the CSRP is to assure the quality and uniformity of storage cask reviews and to present a well-defined base from which to evaluate proposed changes in the scope and requirements of reviews. The CSRP also sets forth solutions and approaches determined to be acceptable in the past by the NRC staff in dealing with a specific safety issue or safety-related design area. These solutions and approaches are presented in this form so that reviewers can take consistent and well-understood positions as the same safety issues arise in future cases. An applicant submitting a CSAR does not have to follow the solutions or approaches presented in the CSRP. However, applicants should recognize that the NRC staff has spent substantial time and effort in reviewing and developing their positions for the issues. A corresponding amount of time and effort will probably be required to review and accept new or different solutions and approaches.

  12. Spent fuel drying system test results (second dry-run)

    SciTech Connect

    Klinger, G.S.; Oliver, B.M.; Abrefah, J.; Marschman, S.C.; MacFarlan, P.J.; Ritter, G.A.

    1998-07-01

    The water-filled K-Basins in the Hanford 100 Area have been used to store N-Reactor spent nuclear fuel (SNF) since the 1970s. Because some leaks have been detected in the basins and some of the fuel is breached due to handling damage and corrosion, efforts are underway to remove the fuel elements from wet storage. An Integrated Process Strategy (IPS) has been developed to package, dry, transport, and store these metallic uranium fuel elements in an interim storage facility on the Hanford Site (WHC 1995). Information required to support the development of the drying processes, and the required safety analyses, is being obtained from characterization tests conducted on fuel elements removed from the K-Basins. A series of whole element drying tests (reported in separate documents, see Section 7.0) have been conducted by Pacific Northwest National Laboratory (PNNL) on several intact and damaged fuel elements recovered from both the K-East and K-West Basins. This report documents the results of the second dry-run test, which was conducted without a fuel element. With the concurrence of project management, the test protocol for this run, and subsequent drying test runs, was modified. These modifications were made to allow for improved data correlation with drying procedures proposed under the IPS. Details of these modifications are discussed in Section 3.0.

  13. Consequence Analysis for Used Fuel Extended Storage

    SciTech Connect

    Dunn, Timothy; Gerhard, Michael; Sutton, Mark; Wen, Josh

    2014-09-23

    Early identification and evaluation of security issues related to the extended storage of used nuclear fuel is critical. A breach in a dry fuel storage container has the possibility of external gas from the atmosphere interacting with the used fuel rods at high temperatures, resulting in rapid oxidation and possibly the ignition of a zirconium fire. In support of this idea, the current work aims to develop a computational model of heat transfer and fluid flow in and through a breached dry fuel storage cask to determine if the resulting flow conditions are likely to result in a fire.

  14. Creation of a Geant4 Muon Tomography Package for Imaging of Nuclear Fuel in Dry Cask Storage

    SciTech Connect

    Tsoukalas, Lefteri H.

    2016-03-01

    This is the final report of the NEUP project “Creation of a Geant4 Muon Tomography Package for Imaging of Nuclear Fuel in Dry Cask Storage”, DE-NE0000695. The project started on December 1, 2013 and this report covers the period December 1, 2013 through November 30, 2015. The project was successfully completed and this report provides an overview of the main achievements, results and findings throughout the duration of the project. Additional details can be found in the main body of this report and on the individual Quarterly Reports and associated Deliverables of the project, uploaded in PICS-NE.

  15. A Review of NDE Methods for Detecting and Monitoring of Atmospheric SCC in Dry Cask Storage Canisters for Used Nuclear Fuel

    SciTech Connect

    Meyer, Ryan M.; Hanson, Brady D.; Sorenson, Ken B.

    2013-04-01

    Dry cask storage systems (DCSSs) for used nuclear fuel (UNF) were originally envisioned for storage periods of short duration (~ a few decades). However, uncertainty challenges the opening of a permanent repository for UNF implying that UNF will need to remain in dry storage for much longer durations than originally envisioned (possibly for centuries). Thus, aging degradation of DCSSs becomes an issue that may not have been sufficiently considered in the design phase and that can challenge the efficacy of very long-term storage of UNF. A particular aging degradation concern is atmospheric stress corrosion cracking (SCC) of DCSSs located in marine environments. In this report, several nondestructive (NDE) methods are evaluated with respect to their potential for effective monitoring of atmospheric SCC in welded canisters of DCSSs. Several of the methods are selected for evaluation based on their usage for in-service inspection applications in the nuclear power industry. The technologies considered include bulk ultrasonic techniques, acoustic emission, visual techniques, eddy current, and guided ultrasonic waves.

  16. Spent fuel drying system test results (first dry-run)

    SciTech Connect

    Klinger, G.S.; Oliver, B.M.; Abrefah, J.; Marschman, S.C.; MacFarlan, P.J.; Ritter, G.A.

    1998-07-01

    The water-filled K-Basins in the Hanford 100 Area have been used to store N-Reactor spent nuclear fuel (SNF) since the 1970s. Because some leaks in the basin have been detected and some of the fuel is breached due to handling damage and corrosion, efforts are underway to remove the fuel elements from wet storage. An Integrated Process Strategy (IPS) has been developed to package, dry, transport, and store these metallic uranium fuel elements in an interim storage facility on the Hanford Site. Information required to support the development of the drying processes, and the required safety analyses, is being obtained from characterization tests conducted on fuel elements removed from the K-Basins. A series of whole element drying tests (reported in separate documents, see Section 7.0) have been conducted by Pacific Northwest National Laboratory (PNNL) on several intact and damaged fuel elements recovered from both the K-East and K-West Basins. This report documents the results of the first dry-run test, which was conducted without a fuel element. The empty test apparatus was subjected to a combination of low- and high-temperature vacuum drying treatments that were intended to mimic, wherever possible, the fuel treatment strategies of the IPS. The data from this dry-run test can serve as a baseline for the first two fuel element tests, 1990 (Run 1) and 3128W (Run 2). The purpose of this dry-run was to establish the background levels of hydrogen in the system, and the hydrogen generation and release characteristics attributable to the test system without a fuel element present. This test also serves to establish the background levels of water in the system and the water release characteristics. The system used for the drying test series was the Whole Element Furnace Testing System, described in Section 2.0, which is located in the Postirradiation Testing Laboratory (PTL, 327 Building). The test conditions and methodology are given in section 3.0, and the experimental

  17. Drying studies of simulated DOE aluminum plate fuels

    SciTech Connect

    Lords, R.E.; Windes, W.E.; Crepeau, J.C.; Sidwell, R.W.

    1996-05-01

    Experiments have been conducted to validate the Idaho National Engineering Laboratory (INEL) drying procedures for preparation of corroded aluminum plate fuel for dry storage in an existing vented (and filtered) fuel storage facility. A mixture of hydrated aluminum oxide bound with a clay was used to model the aluminum corrosion product and sediment expected in these Department of Energy (DOE) owned fuel types. Previous studies demonstrated that the current drying procedures are adequate for removal of free water inside the storage canister and for transfer of this fuel to a vented dry storage facility. However, using these same drying procedures, the simulated corrosion product was found to be difficult to dry completely from between the aluminum clad plates of the fuel. Another related set of experiments was designed to ensure that the fuel would not be damaged during the drying process. Aluminum plate fuels are susceptible to pitting damage on the cladding that can result in a portion of UAl{sub x} fuel meat being disgorged. This would leave a water-filled void beneath the pit in the cladding. The question was whether bursting would occur when water in the void flashes to steam, causing separation of the cladding from the fuel, and/or possible rupture. Aluminum coupons were fabricated to model damaged fuel plates. These coupons do not rupture or sustain any visible damage during credible drying scenarios.

  18. Evaluation of hoop creep behaviors in long-term dry storage condition of pre-hydrided and high burn-up nuclear fuel cladding

    SciTech Connect

    Kim, Sun-Ki; Bang, J.G.; Kim, D.H.; Yang, Y.S.

    2007-07-01

    Related to the degradation of the mechanical properties of Zr-based nuclear fuel cladding tubes under long term dry storage condition, the mechanical tests which can simulate the degradation of the mechanical properties properly are needed. Especially, the degradation of the mechanical properties by creep mechanism seems to be dominant under long term dry storage condition. Accordingly, in this paper, ring creep tests were performed in order to evaluate the creep behaviors of high burn-up fuel cladding under a hoop loading condition in a hot cell. The tests are performed with Zircaloy-4 fuel cladding whose burn-up is approximately {approx}60,000 MWd/tU in the temperature range from 350 deg. to 550 deg.. The tests are also performed with pre-hydrided Zircaloy-4 and ZIRLO up to 1,000 ppm. First of all, the hoop loading grip for the ring creep test was designed in order that a constant curvature of the specimen was maintained during the creep deformation, and the graphite lubricant was used to minimize the friction between the outer surface of the die insert and the inner surface of the ring specimen. The specimen for the ring creep test was designed to limit the deformation within the gauge section and to maximize the uniformity of the strain distribution. It was confirmed that the mechanical properties under a hoop loading condition can be correctly evaluated by using this test technique. In this paper, secondary creep rate with increasing hydrogen content are drawn, and then kinetic data such as pre-exponential factor and activation energy for creep process are also drawn. In addition, creep life are predicted by obtaining LMP (Larson-Miller parameter) correlation in the function of hydrogen content and applied stress to yield stress ratio. (authors)

  19. FACILITY LAYOUT OF FUEL STORAGE BUILDING (CPP603) SHOWING STORAGE BASINS, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FACILITY LAYOUT OF FUEL STORAGE BUILDING (CPP-603) SHOWING STORAGE BASINS, FUEL ELEMENT CUTTING FACILITY, AND DRY GRAPHITE STORAGE FACILITY. INL DRAWING NUMBER 200-0603-00-030-056329. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  20. Spent fuel storage requirements 1993--2040

    SciTech Connect

    Not Available

    1994-09-01

    Historical inventories of spent fuel are combined with U.S. Department of Energy (DOE) projections of future discharges from commercial nuclear reactors in the United States to provide estimates of spent fuel storage requirements through the year 2040. The needs are estimated for storage capacity beyond that presently available in the reactor storage pools. These estimates incorporate the maximum capacities within current and planned in-pool storage facilities and any planned transshipments of spent fuel to other reactors or facilities. Existing and future dry storage facilities are also discussed. The nuclear utilities provide historical data through December 1992 on the end of reactor life are based on the DOE/Energy Information Administration (EIA) estimates of future nuclear capacity, generation, and spent fuel discharges.

  1. Used fuel extended storage security and safeguards by design roadmap

    SciTech Connect

    Durbin, Samuel G.; Lindgren, Eric Richard; Jones, Robert; Ketusky, Edward; England, Jeffrey; Scherer, Carolynn; Sprinkle, James; Miller, Michael.; Rauch, Eric; Scaglione, John; Dunn, T.

    2016-05-01

    In the United States, spent nuclear fuel (SNF) is safely and securely stored in spent fuel pools and dry storage casks. The available capacity in spent fuel pools across the nuclear fleet has nearly reached a steady state value. The excess SNF continues to be loaded in dry storage casks. Fuel is expected to remain in dry storage for periods beyond the initial dry cask certification period of 20 years. Recent licensing renewals have approved an additional 40 years. This report identifies the current requirements and evaluation techniques associated with the safeguards and security of SNF dry cask storage. A set of knowledge gaps is identified in the current approaches. Finally, this roadmap identifies known knowledge gaps and provides a research path to deliver the tools and models needed to close the gaps and allow the optimization of the security and safeguards approaches for an interim spent fuel facility over the lifetime of the storage site.

  2. Selecting fuel storage tanks

    SciTech Connect

    Doherty, R. )

    1993-07-01

    Until the use of underground storage tanks (USTs) for fuel storage was mandated by the 1970 Uniform Fire Code, above-ground storage tanks (ASTs) were widely used. The tanks were relatively crude by today's standards so the technical superiority and fire protection afforded by use of underground tanks soon made USTs the system of choice for almost all uses. As a result, tens of thousands of tanks have been underground for more than 20 years, and at some point, many of them began leaking. Often, the first sign of these leaks appeared when groundwater became contaminated. The EPA responded to this major environmental problem by strictly regulating the use of below-ground tanks to store flammable liquids. These added regulations have had a severe effect on both service stations and private fueling. The removal of underground tanks and the removal and disposal of any contaminated soil is an extremely expensive proposition. Furthermore, new Uniform Fire Code regulations have added to the costs, imposing requirements for double-walled tanks, corrosion protection, electronic leak monitoring, and annual tank testing. These requirements, plus the financial responsibility requirements the EPA imposed on owners and users of below-ground tanks, led directly to a reconsideration of the use of above-ground tanks for some applications.

  3. Review of Drying Methods for Spent Nuclear Fuel

    SciTech Connect

    Large, W.S.

    1999-10-21

    SRTC is developing technology for direct disposal of aluminum spent nuclear fuel (SNF). The development program includes analyses and tests to support design and safe operation of a facility for ''road ready'' dry storage of SNF-filled canisters. The current technology development plan includes review of available SNF drying methods and recommendation of a drying method for aluminum SNF.

  4. Standard review plan for dry cask storage systems. Final report

    SciTech Connect

    1997-01-01

    The Standard Review Plan (SRP) For Dry Cask Storage Systems provides guidance to the Nuclear Regulatory Commission staff in the Spent Fuel Project Office for performing safety reviews of dry cask storage systems. The SRP is intended to ensure the quality and uniformity of the staff reviews, present a basis for the review scope, and clarification of the regulatory requirements. Part 72, Subpart B generally specifies the information needed in a license application for the independent storage of spent nuclear fuel and high level radioactive waste. Regulatory Guide 3.61 {open_quotes}Standard Format and Content for a Topical Safety Analysis Report for a Spent Fuel Dry Storage Cask{close_quotes} contains an outline of the specific information required by the staff. The SRP is divided into 14 sections which reflect the standard application format. Regulatory requirements, staff positions, industry codes and standards, acceptance criteria, and other information are discussed.

  5. Spent fuel storage. Facts booklet

    SciTech Connect

    1980-04-01

    In October 1977, the Department of Energy (DOE) announced a spent nuclear fuel policy where the Government would, under certain conditions, take title to and store spent nuclear fuel from commercial power reactors. The policy is intended to provide spent fuel storage until final disposition is available. DOE has programs for providing safe, long-term disposal of nuclear waste. The spent fuel storage program is one element of waste management and compliments the disposal program. The costs for spent fuel services are to be fully recovered by the Government from the utilities. This will allow the utilities to confidently consider the costs for disposition of spent fuel in their rate structure. The United States would also store limited amounts of foreign spent fuel to meet nonproliferation objectives. This booklet summarizes information on many aspects of spent fuel storage.

  6. Preliminary Design Report Shippingport Spent Fuel Drying and Inerting System

    SciTech Connect

    JEPPSON, D.W.

    2000-05-18

    A process description and system flow sheets have been prepared to support the design/build package for the Shippingport Spent Fuel Canister drying and inerting process skid. A process flow diagram was prepared to show the general steps to dry and inert the Shippingport fuel loaded into SSFCs for transport and dry storage. Flow sheets have been prepared to show the flows and conditions for the various steps of the drying and inerting process. Calculations and data supporting the development of the flow sheets are included.

  7. Spent-fuel storage requirements

    NASA Astrophysics Data System (ADS)

    1982-06-01

    Spent fuel storage requirements, as projected through the year 2000 for U.S. LWRs, were calculated using information supplied by the utilities reflecting plant status as of December 31, 1981. Projections through the year 2000 combined fuel discharge projections of the utilities with the assumed discharges of typical reactors required to meet the nuclear capacity of 165 GWe projected by the Energy Information Administration for the year 2000. Three cases were developed and are summarized. A reference case, or maximum at-reactor capacity case, assumes that all reactor storage pools are increased to their maximum capacities as estimated by the utilities for spent fuel storage utilizing currently licensed technologies. The reference case assumes no transshipments between pools except as current licensed by the Nuclear Regulatory Commission. This case identifies an initial requirement for 13 MTU of additional storage in 1984, and a cumulative requirement for 14,490 MTU additional storage in the year 2000.

  8. Remote automatic plasma arc-closure welding of a dry-storage canister for spent nuclear fuel and high-level radioactive waste

    SciTech Connect

    Sprecace, R.P.; Blankenship, W.P.

    1982-12-31

    A carbon steel storage canister has been designed for the dry encapsulation of spent nuclear fuel assemblies or of logs of vitrified high level radioactive waste. The canister design is in conformance with the requirements of the ASME Code, Section III, Division 1 for a Class 3 vessel. The canisters will be loaded and sealed as part of a completely remote process sequence to be performed in the hot bay of an experimental encapsulation facility at the Nevada Test Site. The final closure to be made is a full penetration butt weld between the canister body, a 12.75-in O.D. x 0.25-in wall pipe, and a mating semiellipsoidal closure lid. Due to a combination of design, application and facility constraints, the closure weld must be made in the 2G position (canister vertical). The plasma arc welding system is described, and the final welding procedure is described and discussed in detail. Several aspects and results of the procedure development activity, which are of both specific and general interest, are highlighted; these include: The critical welding torch features which must be exactly controlled to permit reproducible energy input to, and gas stream interaction with, the weld puddle. A comparison of results using automatic arc voltage control with those obtained using a mechanically fixed initial arc gap. The optimization of a keyhole initiation procedure. A comparison of results using an autogenous keyhole closure procedure with those obtained using a filler metal addition. The sensitivity of the welding process and procedure to variations in joint configuration and dimensions and to variations in base metal chemistry. Finally, the advantages and disadvantages of the plasma arc process for this application are summarized from the current viewpoint, and the applicability of this process to other similar applications is briefly indicated.

  9. Demonstrating the Safety of Long-Term Dry Storage - 13468

    SciTech Connect

    McCullum, Rod; Brookmire, Tom; Kessler, John; Leblang, Suzanne; Levin, Adam; Martin, Zita; Nesbit, Steve; Nichol, Marc; Pickens, Terry

    2013-07-01

    Commercial nuclear plants in the United States were originally designed with the expectation that used nuclear fuel would be moved directly from the reactor pools and transported off site for either reprocessing or direct geologic disposal. However, Federal programs intended to meet this expectation were never able to develop the capability to remove used fuel from reactor sites - and these programs remain stalled to this day. Therefore, in the 1980's, with reactor pools reaching capacity limits, industry began developing dry cask storage technology to provide for additional on-site storage. Use of this technology has expanded significantly since then, and has today become a standard part of plant operations at most US nuclear sites. As this expansion was underway, Federal programs remained stalled, and it became evident that dry cask systems would be in use longer than originally envisioned. In response to this challenge, a strong technical basis supporting the long term dry storage safety has been developed. However, this is not a static situation. The technical basis must be able to address future challenges. Industry is responding to one such challenge - the increasing prevalence of high burnup (HBU) used fuel and the need to provide long term storage assurance for these fuels equivalent to that which has existed for lower burnup fuels over the past 25 years. This response includes a confirmatory demonstration program designed to address the aging characteristics of HBU fuel and set a precedent for a learning approach to aging management that will have broad applicability across the used fuel storage landscape. (authors)

  10. CONSTRUCTION PROGRESS PHOTO SHOWING WEST STORAGE BASIN AT FUEL STORAGE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CONSTRUCTION PROGRESS PHOTO SHOWING WEST STORAGE BASIN AT FUEL STORAGE BUILDING (CPP-603). INL PHOTO NUMBER NRTS-51-689. Unknown Photographer, 1950 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  11. Bases for extrapolating materials durability in fuel storage pools

    SciTech Connect

    Johnson, A.B. Jr.

    1994-12-01

    A major body of evidence indicates that zirconium alloys have the most consistent and reliable durability in wet storage, justifying projections of safe wet storage greater than 50 y. Aluminum alloys have the widest range of durabilities in wet storage; systematic control and monitoring of water chemistry have resulted in low corrosion rates for more than two decades on some fuels and components. However, cladding failures have occurred in a few months when important parameters were not controlled. Stainless steel is extremely durable when stress, metallurgical and water chemistry factors are controlled. LWR SS cladding has survived for 25 y in wet storage. However, sensitized, stressed SS fuels and components have seriously degraded in fuel storage pools (FSPs) at {approximately} 30 C. Satisfactory durability of fuel assembly and FSP component materials in extended wet storage requires investments in water quality management and surveillance, including chemical and biological factors. The key aspect of the study is to provide storage facility operators and other decision makers a basis to judge the durability of a given fuel type in wet storage as a prelude to basing other fuel management plans (e.g. dry storage) if wet storage will not be satisfactory through the expected period of interim storage.

  12. Structural Sensitivity of Dry Storage Canisters

    SciTech Connect

    Klymyshyn, Nicholas A.; Karri, Naveen K.; Adkins, Harold E.; Hanson, Brady D.

    2013-09-27

    This LS-DYNA modeling study evaluated a generic used nuclear fuel vertical dry storage cask system under tip-over, handling drop, and seismic load cases to determine the sensitivity of the canister containment boundary to these loads. The goal was to quantify the expected failure margins to gain insight into what material changes over the extended long-term storage lifetime could have the most influence on the security of the containment boundary. It was determined that the tip-over case offers a strong challenge to the containment boundary, and identifies one significant material knowledge gap, the behavior of welded stainless steel joints under high-strain-rate conditions. High strain rates are expected to increase the material’s effective yield strength and ultimate strength, and may decrease its ductility. Determining and accounting for this behavior could potentially reverse the model prediction of a containment boundary failure at the canister lid weld. It must be emphasized that this predicted containment failure is an artifact of the generic system modeled. Vendor specific designs analyze for cask tip-over and these analyses are reviewed and approved by the Nuclear Regulatory Commission. Another location of sensitivity of the containment boundary is the weld between the base plate and the canister shell. Peak stresses at this location predict plastic strains through the whole thickness of the welded material. This makes the base plate weld an important location for material study. This location is also susceptible to high strain rates, and accurately accounting for the material behavior under these conditions could have a significant effect on the predicted performance of the containment boundary. The handling drop case was largely benign to the containment boundary, with just localized plastic strains predicted on the outer surfaces of wall sections. It would take unusual changes in the handling drop scenario to harm the containment boundary, such as

  13. Storage of LWR spent fuel in air: Volume 1: Design and operation of a spent fuel oxidation test facility

    SciTech Connect

    Thornhill, C.K.; Campbell, T.K.; Thornhill, R.E.

    1988-12-01

    This report describes the design and operation and technical accomplishments of a spent-fuel oxidation test facility at the Pacific Northwest Laboratory. The objective of the experiments conducted in this facility was to develop a data base for determining spent-fuel dry storage temperature limits by characterizing the oxidation behavior of light-water reactor (LWR) spent fuels in air. These data are needed to support licensing of dry storage in air as an alternative to spent-fuel storage in water pools. They are to be used to develop and validate predictive models of spent-fuel behavior during dry air storage in an Independent Spent Fuel Storage Installation (ISFSI). The present licensed alternative to pool storage of spent fuel is dry storage in an inert gas environment, which is called inerted dry storage (IDS). Licensed air storage, however, would not require monitoring for maintenance of an inert-gas environment (which IDS requires) but does require the development of allowable temperature limits below which UO/sub 2/ oxidation in breached fuel rods would not become a problem. Scoping tests at PNL with nonirradiated UO/sub 2/ pellets and spent-fuel fragment specimens identified the need for a statistically designed test matrix with test temperatures bounding anticipated maximum acceptable air-storage temperatures. This facility was designed and operated to satisfy that need. 7 refs.

  14. Spent nuclear fuel Canister Storage Building CDR Review Committee report

    SciTech Connect

    Dana, W.P.

    1995-12-01

    The Canister Storage Building (CSB) is a subproject under the Spent Nuclear Fuels Major System Acquisition. This subproject is necessary to design and construct a facility capable of providing dry storage of repackaged spent fuels received from K Basins. The CSB project completed a Conceptual Design Report (CDR) implementing current project requirements. A Design Review Committee was established to review the CDR. This document is the final report summarizing that review

  15. Spent fuel data for waste storage programs

    SciTech Connect

    Greene, E M

    1980-09-01

    Data on LWR spent fuel were compiled for dissemination to participants in DOE-sponsored waste storage programs. Included are mechanical descriptions of the existing major types of LWR fuel assemblies, spent LWR fuel fission product inventories and decay heat data, and inventories of LWR spent fuel currently in storage, with projections of future quantities.

  16. Interim Storage of Hanford Spent Fuel & Associated Sludge

    SciTech Connect

    MAKENAS, B.J.

    2002-07-01

    The Hanford site is currently dealing with a number of types of Spent Nuclear Fuel. The route to interim dry storage for the various fuel types branches along two different paths. Fuel types such as metallic N reactor fuel and Shippingport Core 2 Blanket assemblies are being placed in approximately 4 m long canisters which are then stored in tubes below grade in a new canister storage building. Other fuels such as TRIGA{trademark} and Light Water Reactor fuel will be relocated and stored in stand-alone casks on a concrete pad. Varying degrees of sophistication are being applied with respect to the drying and/or evacuation of the fuel interim storage canisters depending on the reactivity of the fuel, the degree of damaged fuel and the previous storage environment. The characterization of sludge from the Hanford K Basins is nearly complete and canisters are being designed to store the sludge (including uranium particles from fuel element cleaning) on an interim basis.

  17. Viability of Existing INL Facilities for Dry Storage Cask Handling

    SciTech Connect

    Randy Bohachek; Charles Park; Bruce Wallace; Phil Winston; Steve Marschman

    2013-04-01

    This report evaluates existing capabilities at the INL to determine if a practical and cost effective method could be developed for opening and handling full-sized dry storage casks. The Idaho Nuclear Technology and Engineering Center (INTEC) CPP-603, Irradiated Spent Fuel Storage Facility, provides the infrastructure to support handling and examining casks and their contents. Based on a reasonable set of assumptions, it is possible to receive, open, inspect, remove samples, close, and reseal large bolted-lid dry storage casks at the INL. The capability can also be used to open and inspect casks that were last examined at the TAN Hot Shop over ten years ago. The Castor V/21 and REA-2023 casks can provide additional confirmatory information regarding the extended performance of low-burnup (<45 GWD/MTU) used nuclear fuel. Once a dry storage cask is opened inside CPP-603, used fuel retrieved from the cask can be packaged in a shipping cask, and sent to a laboratory for testing. Testing at the INL’s Materials and Fuels Complex (MFC) can occur starting with shipment of samples from CPP-603 over an on-site road, avoiding the need to use public highways. This reduces cost and reduces the risk to the public. The full suite of characterization methods needed to establish the condition of the fuel exists and MFC. Many other testing capabilities also exist at MFC, but when those capabilities are not adequate, samples can be prepared and shipped to other laboratories for testing. This report discusses how the casks would be handled, what work needs to be done to ready the facilities/capabilities, and what the work will cost.

  18. Viability of Existing INL Facilities for Dry Storage Cask Handling

    SciTech Connect

    Bohachek, Randy; Wallace, Bruce; Winston, Phil; Marschman, Steve

    2013-04-30

    This report evaluates existing capabilities at the INL to determine if a practical and cost effective method could be developed for opening and handling full-sized dry storage casks. The Idaho Nuclear Technology and Engineering Center (INTEC) CPP-603, Irradiated Spent Fuel Storage Facility, provides the infrastructure to support handling and examining casks and their contents. Based on a reasonable set of assumptions, it is possible to receive, open, inspect, remove samples, close, and reseal large bolted-lid dry storage casks at the INL. The capability can also be used to open and inspect casks that were last examined at the TAN Hot Shop over ten years ago. The Castor V/21 and REA-2023 casks can provide additional confirmatory information regarding the extended performance of low-burnup (<45 GWD/MTU) used nuclear fuel. Once a dry storage cask is opened inside CPP-603, used fuel retrieved from the cask can be packaged in a shipping cask, and sent to a laboratory for testing. Testing at the INL’s Materials and Fuels Complex (MFC) can occur starting with shipment of samples from CPP-603 over an on-site road, avoiding the need to use public highways. This reduces cost and reduces the risk to the public. The full suite of characterization methods needed to establish the condition of the fuel exists and MFC. Many other testing capabilities also exist at MFC, but when those capabilities are not adequate, samples can be prepared and shipped to other laboratories for testing. This report discusses how the casks would be handled, what work needs to be done to ready the facilities/capabilities, and what the work will cost.

  19. Compressed gas fuel storage system

    DOEpatents

    Wozniak, John J.; Tiller, Dale B.; Wienhold, Paul D.; Hildebrand, Richard J.

    2001-01-01

    A compressed gas vehicle fuel storage system comprised of a plurality of compressed gas pressure cells supported by shock-absorbing foam positioned within a shape-conforming container. The container is dimensioned relative to the compressed gas pressure cells whereby a radial air gap surrounds each compressed gas pressure cell. The radial air gap allows pressure-induced expansion of the pressure cells without resulting in the application of pressure to adjacent pressure cells or physical pressure to the container. The pressure cells are interconnected by a gas control assembly including a thermally activated pressure relief device, a manual safety shut-off valve, and means for connecting the fuel storage system to a vehicle power source and a refueling adapter. The gas control assembly is enclosed by a protective cover attached to the container. The system is attached to the vehicle with straps to enable the chassis to deform as intended in a high-speed collision.

  20. Methane storage in dry water gas hydrates.

    PubMed

    Wang, Weixing; Bray, Christopher L; Adams, Dave J; Cooper, Andrew I

    2008-09-03

    Dry water stores 175 v(STP)/v methane at 2.7 MPa and 273.2 K in a hydrate form which is close to the Department of Energy volumetric target for methane storage. Dry water is a silica-stabilized free-flowing powder (95% wt water), and fast methane uptakes were observed (90% saturation uptake in 160 min with no mixing) as a result of the relatively large surface-to-volume ratio of this material.

  1. Dry Processing of Used Nuclear Fuel

    SciTech Connect

    K. M. Goff; M. F. Simpson

    2009-09-01

    Dry (non-aqueous) separations technologies have been used for treatment of used nuclear fuel since the 1960s, and they are still being developed and demonstrated in many countries. Dry technologies offer potential advantages compared to traditional aqueous separations including: compactness, resistance to radiation effects, criticality control benefits, compatibility with advanced fuel types, and ability to produce low purity products. Within the Department of Energy’s Advanced Fuel Cycle Initiative, an electrochemical process employing molten salts is being developed for recycle of fast reactor fuel and treatment of light water reactor oxide fuel to produce a feed for fast reactors. Much of the development of this technology is based on treatment of used Experimental Breeder Reactor II (EBR-II) fuel, which is metallic. Electrochemical treatment of the EBR-II fuel has been ongoing in the Fuel Conditioning Facility, located at the Materials and Fuel Complex of Idaho National Laboratory since 1996. More than 3.8 metric tons of heavy metal of metallic fast reactor fuel have been treated using this technology. This paper will summarize the status of electrochemical development and demonstration activities with used nuclear fuel, including high-level waste work. A historic perspective on the background of dry processing will also be provided.

  2. Fuel-Cell Structure Prevents Membrane Drying

    NASA Technical Reports Server (NTRS)

    Mcelroy, J.

    1986-01-01

    Embossed plates direct flows of reactants and coolant. Membrane-type fuel-cell battery has improved reactant flow and heat removal. Compact, lightweight battery produces high current and power without drying of membranes.

  3. Improved Food Drying and Storage Training Manual.

    ERIC Educational Resources Information Center

    Zweig, Peter R.; And Others

    This manual is intended to serve as a guide for those who are helping future Peace Corps volunteers to acquire basic food drying and storage skills. Included in the guide are lesson outlines and handouts for use in each of the 30 sessions of the course. Representative topics discussed in the individual sessions are scheduling, solar dryers,…

  4. Summary Report for Capsule Dry Storage Project

    SciTech Connect

    JOSEPHSON, W S

    2003-09-04

    There are 1.936 cesium (Cs) and strontium (Sr) capsules stored in pools at the Waste Encapsulation and Storage Facility (WESF). These capsules will be moved to dry storage on the Hanford Site as an interim measure to reduce risk. The Cs/Sr Capsule Dry Storage Project (CDSP) is conducted under the assumption the capsules will eventually be moved to the repository at Yucca Mountain, and the design criteria include requirements that will facilitate acceptance at the repository. The storage system must also permit retrieval of capsules in the event vitrification of the capsule contents is pursued. A cut away drawing of a typical cesium chloride (CsCI) capsule and the capsule property and geometry information are provided in Figure 1.1. Strontium fluoride (SrF{sub 2}) capsules are similar in design to CsCl capsules. Further details of capsule design, current state, and reference information are given later in this report and its references. Capsule production and life history is covered in WMP-16938, Capsule Characterization Report for Capsule Dry Storage Project, and is briefly summarized in Section 5.2 of this report.

  5. NORTH ELEVATION OF IRRADIATED FUEL STORAGE FACILITY LOCATED IN FUEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    NORTH ELEVATION OF IRRADIATED FUEL STORAGE FACILITY LOCATED IN FUEL STORAGE BUILDING (CPP-603). PHOTO TAKEN LOOKING SOUTH. INL PHOTO NUMBER HD-54-16-1. Mike Crane, Photographer, 8/2005 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  6. SOUTH ELEVATION OF IRRADIATED FUEL STORAGE FACILITY LOCATED IN FUEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SOUTH ELEVATION OF IRRADIATED FUEL STORAGE FACILITY LOCATED IN FUEL STORAGE BUILDING (CPP-603). PHOTO TAKEN LOOKING NORTH. INL PHOTO NUMBER HD-54-15-2. Mike Crane, Photographer, 8/2005 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  7. Gas storage in "dry water" and "dry gel" clathrates.

    PubMed

    Carter, Benjamin O; Wang, Weixing; Adams, Dave J; Cooper, Andrew I

    2010-03-02

    "Dry water" (DW) is a free-flowing powder prepared by mixing water, hydrophobic silica particles, and air at high speeds. We demonstrated recently that DW can be used to dramatically enhance methane uptake rates in methane gas hydrate (MGH). Here, we expand on our initial work, demonstrating that DW can be used to increase the kinetics of formation of gas clathrates for gases other than methane, such as CO(2) and Kr. We also show that the stability of the system toward coalescence can be increased via the inclusion of a gelling agent to form a "dry gel", thus dramatically improving the recyclability of the material. For example, the addition of gellan gum allows effective reuse over at least eight clathration cycles without the need for reblending. DW and its "dry gel" modification may represent a potential platform for recyclable gas storage or gas separation on a practicable time scale in a static, unmixed system.

  8. Spent Fuel Drying System Test Results (Dry-Run in Preparation for Run 8)

    SciTech Connect

    BM Oliver; GS Klinger; J Abrefah; SC Marschman; PJ MacFarlan; GA Ritter

    1999-08-11

    The water-filled K-Basins in the Hanford 100 Area have been used to store N-Reactor spent nuclear fuel (SNF) since the 1970s. Because some leaks in the basin have been detected and some of the fuel is breached due to handling damage and corrosion, efforts are underway to remove the fuel elements from wet storage. An Integrated Process Strategy (IPS) has been developed to package, dry, transport, and store these metallic uranium fuel elements in an interim storage facility on the Hanford Site (WHC 1995). Information required to support the development of the drying processes, and the required safety analyses, is being obtained from characterization tests conducted on fuel elements removed from the K-Basins. A series of whole element drying tests (reported in separate documents, see Section 7.0) have been conducted by Pacific Northwest National Laboratory (PNNL)(a)on several intact and damaged fuel elements recovered from both the K-East and K-West Basins. This report documents the results of a test ''dry-run'' conducted prior to the eighth and last of those tests, which was conducted on an N-Reactor outer fuel element removed from K-West canister6513U. The system used for the dry-run test was the Whole Element Furnace Testing System, described in Section 2.0, located in the Postirradiation Testing Laboratory (PTL, 327 Building). The test conditions and methodologies are given in Section 3.0. The experimental results are provided in Section 4.0 and discussed Section 5.0.

  9. 77 FR 9591 - List of Approved Spent Fuel Storage Casks: HI-STORM 100, Revision 8

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-17

    ... COMMISSION 10 CFR Part 72 RIN 3150-AJ05 List of Approved Spent Fuel Storage Casks: HI-STORM 100, Revision 8... the Holtec International HI-STORM 100 dry cask storage system listing within the ``List of Approved... other aspects of the HI-STORM 100 dry storage cask system. Because the NRC considers this...

  10. Fuel Aging in Storage and Transportation (FAST): Accelerated Characterization and Performance Assessment of the Used Nuclear Fuel Storage System

    SciTech Connect

    McDeavitt, Sean

    2016-08-02

    This Integrated Research Project (IRP) was established to characterize key limiting phenomena related to the performance of used nuclear fuel (UNF) storage systems. This was an applied engineering project with a specific application in view (i.e., UNF dry storage). The completed tasks made use of a mixture of basic science and engineering methods. The overall objective was to create, or enable the creation of, predictive tools in the form of observation methods, phenomenological models, and databases that will enable the design, installation, and licensing of dry UNF storage systems that will be capable of containing UNF for extended period of time.

  11. Minimum criticality dose evaluation for the Irradiated Fuel Storage Facility

    SciTech Connect

    Kim, S.S.

    1999-09-01

    The Irradiated Fuel Storage Facility (IFSF) is a government-owned, contractor-operated facility located at the Idaho National Engineering and Environmental Laboratory within the Idaho Nuclear Technology and Engineering Center. The mission of the facility is to provide safe dry storage for various types of irradiated fuels. Included are fuel elements such as irradiated ATR, EBR, MTR, Fort St. Vrain, TRIGA, and ROVER Parka fuels. Fuels requiring dry storage are received at the IFSF in fuel-shipping casks. At the facility receiving dock, the casks are removed from the transport vehicle, positioned in a cask transport car, and moved into the fuel-handling cave. Several functions are performed in the fuel-handling cave, including transferring fuel from shipping casks to storage canisters, preparing fuel elements for storage and processing. The minimum postulated criticality dose calculations were performed for the cask-receiving and fuel-handling areas to place criticality alarm system (CAS) detectors. The number of fissions for the minimum accident of concern is based on a dose of 20-rad air at 2 m in 1 min. The eigenvalue calculations were first performed to determine the size of the critical source. Then, two sets of fixed-source calculations were followed to calculate contributions from neutron and capture gamma rays and from prompt gamma rays. Two sets of MCNP calculations involved point and spherical critical sources. Validity of the Monte Carlo results was tested against ANISN deterministic calculations. The flux-to-dose conversion factors are based on ANSI/ANS-6.1.1-1977. All of the MCNP runs used continuous-energy ENDF/B-V cross sections. The BUGLE-80 cross-section library was used for the ANISN calculations.

  12. Ingredients of proper wood fuel storage

    SciTech Connect

    White, M.S.

    1980-06-01

    This article deals with wood fuel storage and some of the problems arising out of long term storage. It was found that piles with steep sloping sides caused rainwater to be shed, while flat piles allowed rain water to percolate and become absorbed by the wood. After five months of storage, the outer one foot of cone-shaped piles gained moisture while the bulk of it was dried. Incidences of spontaneous fires increased with a pile height above 16 foot. The fires were commonly located in cracks near the surface of the pile which allowed oxygen to come in contact with the hot interior. Several preventative measures are put forward, these include the development of a first-in first-out storage and retrieval system, construction of piles on a non-combustible thermal conducting surface and removal of ice from the pile surface to allow heat to escape are suggested. The covering of green piles may decrease the average moisture content but should also be well ventilated to allow heat to escape.

  13. High Burnup Dry Storage Cask Research and Development Project, Final Test Plan

    SciTech Connect

    2014-02-27

    EPRI is leading a project team to develop and implement the first five years of a Test Plan to collect data from a SNF dry storage system containing high burnup fuel.12 The Test Plan defined in this document outlines the data to be collected, and the storage system design, procedures, and licensing necessary to implement the Test Plan.13 The main goals of the proposed test are to provide confirmatory data14 for models, future SNF dry storage cask design, and to support license renewals and new licenses for ISFSIs. To provide data that is most relevant to high burnup fuel in dry storage, the design of the test storage system must mimic real conditions that high burnup SNF experiences during all stages of dry storage: loading, cask drying, inert gas backfilling, and transfer to the ISFSI for multi-year storage.15 Along with other optional modeling, SETs, and SSTs, the data collected in this Test Plan can be used to evaluate the integrity of dry storage systems and the high burnup fuel contained therein over many decades. It should be noted that the Test Plan described in this document discusses essential activities that go beyond the first five years of Test Plan implementation.16 The first five years of the Test Plan include activities up through loading the cask, initiating the data collection, and beginning the long-term storage period at the ISFSI. The Test Plan encompasses the overall project that includes activities that may not be completed until 15 or more years from now, including continued data collection, shipment of the Research Project Cask to a Fuel Examination Facility, opening the cask at the Fuel Examination Facility, and examining the high burnup fuel after the initial storage period.

  14. VIEW OF SOUTH STORAGE BASIN NUMBER 1 OF FUEL STORAGE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF SOUTH STORAGE BASIN NUMBER 1 OF FUEL STORAGE BUILDING (CPP-603). PHOTO TAKEN LOOKING NORTHEAST. INL PHOTO NUMBER HD-54-18-4. Mike Crane, Photographer, 8/2005 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  15. VIEW OF MIDDLE STORAGE BASIN NUMBER 2 OF FUEL STORAGE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF MIDDLE STORAGE BASIN NUMBER 2 OF FUEL STORAGE BUILDING (CPP-603). PHOTO TAKEN LOOKING NORTHEAST. INL PHOTO NUMBER HD-54-17-3. Mike Crane, Photographer, 8/2005 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  16. Fuel removal, transport, and storage

    SciTech Connect

    Reno, H.W.

    1986-01-01

    The March 1979 accident at Unit 2 of the Three Mile Island Nuclear Power Station (TMI-2) which damaged the core of the reactor resulted in numerous scientific and technical challenges. Some of those challenges involve removing the core debris from the reactor, packaging it into canisters, loading canisters into a rail cask, and transporting the debris to the Idaho National Engineering Laboratory (INEL) for storage, examination, and preparation for final disposal. This paper highlights how some challenges were resolved, including lessons learned and benefits derived therefrom. Key to some success at TMI was designing, testing, fabricating, and licensing two rail casks, which each provide double containment of the damaged fuel. 10 refs., 12 figs.

  17. Seismic Performance of Dry Casks Storage for Long- Term Exposure

    SciTech Connect

    Ibarra, Luis; Sanders, David; Yang, Haori; Pantelides, Chris

    2016-12-30

    The main goal of this study is to evaluate the long-term seismic performance of freestanding and anchored Dry Storage Casks (DSCs) using experimental tests on a shaking table, as well as comprehensive numerical evaluations that include the cask-pad-soil system. The study focuses on the dynamic performance of vertical DSCs, which can be designed as free-standing structures resting on a reinforced concrete foundation pad, or casks anchored to a foundation pad. The spent nuclear fuel (SNF) at nuclear power plants (NPPs) is initially stored in fuel-storage pools to control the fuel temperature. After several years, the fuel assemblies are transferred to DSCs at sites contiguous to the plant, known as Interim Spent Fuel Storage Installations (ISFSIs). The regulations for these storage systems (10 CFR 72) ensure adequate passive heat removal and radiation shielding during normal operations, off-normal events, and accident scenarios. The integrity of the DSCs is important, even if the overpack does not breach, because eventually the spent fuel-rods need to be shipped either to a reprocessing plant or a repository. DSCs have been considered as a temporary storage solution, and usually are licensed for 20 years, although they can be relicensed for operating periods of up to 60 years. In recent years, DSCs have been reevaluated as a potential mid-term solution, in which the operating period may be extended for up to 300 years. At the same time, recent seismic events have underlined the significant risks DSCs are exposed. The consideration of DCSs for storing spent fuel for hundreds of years has created new challenges. In the case of seismic hazard, longer-term operating periods not only lead to larger horizontal accelerations, but also increase the relative effect of vertical accelerations that usually are disregarded for smaller seismic events. These larger seismic demands could lead to casks sliding and tipping over, impacting the concrete pad or adjacent casks. The casks

  18. Metal hydride fuel storage and method thereof

    DOEpatents

    Morse, Jeffrey D.; Jankowski, Alan F.; Yu, Conrad

    2006-10-17

    Disclosed herein is a metal hydride fuel storage cartridge having integrated resistive heaters that can be used in conjunction with fuel cells such as MEMS-based fuel cells. The cartridge is fabricated using micromachining methods and thin/thick film materials synthesis techniques.

  19. Metal hydride fuel storage and method thereof

    DOEpatents

    Morse, Jeffrey D [Martinez, CA; Jankowski, Alan F [Livermore, CA; Yu, Conrad [Antioch, CA

    2009-05-05

    Disclosed herein is a metal hydride fuel storage cartridge having integrated resistive heaters that can be used in conjunction with fuel cells such as MEMS-based fuel cells. The cartridge is fabricated using micromachining methods and thin/thick film materials synthesis techniques.

  20. Sunflower production, harvesting, drying and storage

    SciTech Connect

    Hofman, V.; Berglund, D.; Hellevang, K.

    1982-01-01

    Sunflower, produced for its edible oil, has recently evolved as an important cash crop for the Dakotas and Minnesota. This oilseed crop has increased from 81,000 hectares in the mid-1960's to over 1,620,000 hectares in 1981. Over 90% of the sunflower crop planted in the United States is of oilseed varieties. Sunflower tends to fit well in small grain cropping rotation. Sunflower is planted after small grains in the spring and harvested in the fall, following small grain harvest. Planting of sunflower is recommended from May 20 to May 31. Soil temperature should be between 4/sup 0/C and 10/sup 0/C for germinaton. Diseases occurring in sunflower can greatly reduce yield and hinder harvest operations. A sunflower crop is normally ready for harvest about 120 days after planting. Combines suitable for treshing small gains can be adapted to harvest sunflower. Sunflower can be dried in conventional crop dryers; bin, batch and continuous flow dryers have been used successfully. Sunflower dries easily due to the relatively small amount of water removed. Drying temperatures up to 104/sup 0/C do not have an adverse affect on the oil percentage or fatty acid composition of oil type sunflower. A serious fire hazard exists when drying sunflower. The storage of sunflower is similar to any other crop. The recommended storage moisture content is 8% for oil seeds and 10% for confectionary. Cooling the sunflower seed greatly increases the storability and decreases insect damage. Sunflower should be cooled to about 0/sup 0/C which nearly stops microbial activity. The sunflower should be checked at least weekly. 9 figures, 1 table. (DP)

  1. Dry Storage Casks Monitoring by Means of Ultrasonic Tomography

    NASA Astrophysics Data System (ADS)

    Salchak, Y.; Bulavinov, A.; Pinchuk, R.; Lider, A.; Bolotina, I.; Sednev, D.

    Spent nuclear fuel (SNF) is one of the most hazardous types of nuclear power plant waste. This fact emphasizes the importance of careful handling and storage of SNF. There are two current state-of-the art technologies of SNF storage facility: wet and dry. It is important to mention that IAEA does not determine which kind of handling strategy should be chosen, however it is noted that dry storage of SNF could be used for one hundred years. Mining and Chemical Enterprise (MCE) is one of the leading Russian companies that deals exclusively with the dry storage of SNF. This company has implemented a long-term storage scheme. At the same time MCE faced the challenge of nondestructive monitoring of the degradation process of structural material of cask and its sealing with weld seam. Currently, X-ray testing is used for this purpose but in order to provide an effective nonradioactive method of monitoring MCE has initiated a collaborative R&D project with TPU supported by the Russian Government. Ultrasonic industrial tomography technique was proposed as the solution. The method is based on application of phased and sparse arrays transducer with real-time visualization algorithm. Received acoustic data is processed and realized by means of Sampling Phased Array technology which is a collaborative development of TPU and I-Deal Technology, GmbH. The multichannel ultrasonic set-up of immersion control was assembled for performing testing of seven experimental specimens with representative defects (side drill-holes, notches, natural welding flaws). X-ray tomography of high-resolution was chosen as the reference method. All indications were successfully reconstructed in B and C-scans and 3D image. The next step is to automate the monitoring procedure completely and to introduce an evaluation tool for current flaw state and prediction of its further behavior.

  2. Hydrogen storage and integrated fuel cell assembly

    DOEpatents

    Gross, Karl J.

    2010-08-24

    Hydrogen is stored in materials that absorb and desorb hydrogen with temperature dependent rates. A housing is provided that allows for the storage of one or more types of hydrogen-storage materials in close thermal proximity to a fuel cell stack. This arrangement, which includes alternating fuel cell stack and hydrogen-storage units, allows for close thermal matching of the hydrogen storage material and the fuel cell stack. Also, the present invention allows for tailoring of the hydrogen delivery by mixing different materials in one unit. Thermal insulation alternatively allows for a highly efficient unit. Individual power modules including one fuel cell stack surrounded by a pair of hydrogen-storage units allows for distribution of power throughout a vehicle or other electric power consuming devices.

  3. The shutdown reactor: Optimizing spent fuel storage cost

    SciTech Connect

    Pennington, C.W.

    1995-12-31

    Several studies have indicated that the most prudent way to store fuel at a shutdown reactor site safely and economically is through the use of a dry storage facility licensed under 10CFR72. While such storage is certainly safe, is it true that the dry ISFSI represents the safest and most economical approach for the utility? While no one is really able to answer that question definitely, as yet, Holtec has studied this issue for some time and believes that both an economic and safety case can be made for an optimization strategy that calls for the use of both wet and dry ISFSI storage of spent fuel at some plants. For the sake of brevity, this paper summarizes some of Holtec`s findings with respect to the economics of maintaining some fuel in wet storage at a shutdown reactor. The safety issue, or more importantly the perception of safety of spent fuel in wet storage, still varies too much with the eye of the beholder, and until a more rigorous presentation of safety analyses can be made in a regulatory setting, it is not practically useful to argue about how many angels can sit on the head of a safety-related pin. Holtec is prepared to present such analyses, but this does not appear to be the proper venue. Thus, this paper simply looks at certain economic elements of a wet ISFSI at a shutdown reactor to make a prima facie case that wet storage has some attractiveness at a shutdown reactor and should not be rejected out of hand. Indeed, an optimization study at certain plants may well show the economic vitality of keeping some fuel in the pool and converting the NRC licensing coverage from 10CFR50 to 10CFR72. If the economics look attractive, then the safety issue may be confronted with a compelling interest.

  4. Information handbook on independent spent fuel storage installations

    SciTech Connect

    Raddatz, M.G.; Waters, M.D.

    1996-12-01

    In this information handbook, the staff of the U.S. Nuclear Regulatory Commission describes (1) background information regarding the licensing and history of independent spent fuel storage installations (ISFSIs), (2) a discussion of the licensing process, (3) a description of all currently approved or certified models of dry cask storage systems (DCSSs), and (4) a description of sites currently storing spent fuel in an ISFSI. Storage of spent fuel at ISFSIs must be in accordance with the provisions of 10 CFR Part 72. The staff has provided this handbook for information purposes only. The accuracy of any information herein is not guaranteed. For verification or for more details, the reader should refer to the respective docket files for each DCSS and ISFSI site. The information in this handbook is current as of September 1, 1996.

  5. Remote inspection of the IFSF spent fuel storage rack

    SciTech Connect

    Uldrich, E.D.

    1996-05-01

    The Irradiated Fuel Storage Facility (IFSF) is a dry storage facility for spent nuclear fuels located at the Idaho Chemical Processing Plant; it was constructed in the 1970`s specifically for the Fort Saint Vrain spent reactor fuels. Currently, it is being used for various spent fuels. It was not known if IFSF would met current DOE seismic criteria, so re-analysis was started, with the rack being analyzed first. The rack was inspected to determine the as-built condition. LazrLyne and VideoRuler were used in lieu of using a tape measure with the camera. It was concluded that when a visual inspection shows widely varying weld sizes, the engineer has to use all resources available to determine the most probable specified weld sizes.

  6. Understanding the Risk of Chloride Induced Stress Corrosion Cracking of Interim Storage Containers for the Dry Storage of Spent Nuclear Fuel: Evolution of Brine Chemistry on the Container Surface.

    SciTech Connect

    Enos, David; Bryan, Charles R.

    2015-10-01

    Although the susceptibility of austenitic stainless steels to chloride-induced stress corrosion cracking is well known, uncertainties exist in terms of the environmental conditions that exist on the surface of the storage containers. While a diversity of salts is present in atmospheric aerosols, many of these are not stable when placed onto a heated surface. Given that the surface temperature of any container storing spent nuclear fuel will be well above ambient, it is likely that salts deposited on its surface may decompose or degas. To characterize this effect, relevant single and multi-salt mixtures are being evaluated as a function of temperature and relative humidity to establish the rates of degassing, as well as the likely final salt and brine chemistries that will remain on the canister surface.

  7. Receipt and Storage Issues at the TMI-2 Irradiated Fuel Storage Installation

    SciTech Connect

    Christensen, Allan B.; Custer, Kenneth; Gardner, Rick; Kaylor, James; Stalnaker, James

    2002-07-01

    In less than a year, up to 12 canisters of TMI-2 reactor fuel debris were loaded into each of 28 Dry Storage Containers (DSCs), and placed into interim storage at an Irradiated Spent Fuel Storage Facility (ISFSI) at the Idaho National Engineering and Environmental Laboratory (INEEL). Draining and drying the canisters, loading and welding the DSCs, shipping the DSCs 25 miles, and storing in the ISFSI initially required up to 3 weeks per DSC. Significant time efficiencies were achieved during the early stages, reducing the time to less than one week per DSC. These efficiencies were achieved mostly in canister draining and drying and DSC lid welding, and despite several occurrences that had to be resolved before continuing work. The ISFSI has been operated without issue since, with the exception that license basis monitoring has indicated an unusual pattern of season- and position-dependent hydrogen generation. This paper discusses some of the innovations and storage experiences for the first ISFSI designed for the storage of severely defected fuel. (authors)

  8. Nondestructive Examination Guidance for Dry Storage Casks

    SciTech Connect

    Meyer, Ryan M.; Suffield, Sarah R.; Hirt, Evelyn H.; Suter, Jonathan D.; Lareau, John P.; Zhuge, Jing Wei; Qiao, Hong; Moran, Traci L.; Ramuhalli, Pradeep

    2016-09-30

    In this report, an assessment of NDE methods is performed for components of NUHOMS 80 and 102 dry storage system components in an effort to assist NRC staff with review of license renewal applications. The report considers concrete components associated with the horizontal storage modules (HSMs) as well as metal components in the HSMs. In addition, the report considers the dry shielded canister (DSC). Scope is limited to NDE methods that are considered most likely to be proposed by licensees. The document, ACI 349.3R, Evaluation of Existing Nuclear Safety-Related Concrete Structures, is used as the basis for the majority of the NDE methods summarized for inspecting HSM concrete components. Two other documents, ACI 228.2R, Nondestructive Test Methods for Evaluation of Concrete in Structures, and ORNL/TM-2007/191, Inspection of Nuclear Power Plant Structure-Overview of Methods and Related Application, supplement the list with additional technologies that are considered applicable. For the canister, the ASME B&PV Code is used as the basis for NDE methods considered, along with currently funded efforts through industry (Electric Power Research Institute [EPRI]) and the U.S. Department of Energy (DOE) to develop inspection technologies for canisters. The report provides a description of HSM and DSC components with a focus on those aspects of design considered relevant to inspection. This is followed by a brief description of other concrete structural components such as bridge decks, dams, and reactor containment structures in an effort to facilitate comparison between these structures and HSM concrete components and infer which NDE methods may work best for certain HSM concrete components based on experience with these other structures. Brief overviews of the NDE methods are provided with a focus on issues and influencing factors that may impact implementation or performance. An analysis is performed to determine which NDE methods are most applicable to specific

  9. Extended Storage for Research and Test Reactor Spent Fuel for 2006 and Beyond

    SciTech Connect

    Hurt, William Lon; Moore, K.M.; Shaber, Eric Lee; Mizia, Ronald Eugene

    1999-10-01

    This paper will examine issues associated with extended storage of a variety of spent nuclear fuels. Recent experiences at the Idaho National Engineering and Environmental Laboratory and Hanford sites will be described. Particular attention will be given to storage of damaged or degraded fuel. The first section will address a survey of corrosion experience regarding wet storage of spent nuclear fuel. The second section will examine issues associated with movement from wet to dry storage. This paper also examines technology development needs to support storage and ultimate disposition.

  10. Hydrogen storage materials and method of making by dry homogenation

    DOEpatents

    Jensen, Craig M.; Zidan, Ragaiy A.

    2002-01-01

    Dry homogenized metal hydrides, in particular aluminum hydride compounds, as a material for reversible hydrogen storage is provided. The reversible hydrogen storage material comprises a dry homogenized material having transition metal catalytic sites on a metal aluminum hydride compound, or mixtures of metal aluminum hydride compounds. A method of making such reversible hydrogen storage materials by dry doping is also provided and comprises the steps of dry homogenizing metal hydrides by mechanical mixing, such as be crushing or ball milling a powder, of a metal aluminum hydride with a transition metal catalyst. In another aspect of the invention, a method of powering a vehicle apparatus with the reversible hydrogen storage material is provided.

  11. Extinguishing in-flight engine fuel-leak fires with dry chemicals

    NASA Technical Reports Server (NTRS)

    Altman, R. L.

    1981-01-01

    The fire extinguishant storage temperature requirements were examined for several commercially available dry chemicals. Particular emphasis was placed on the development of dry powder extinguishant that, when discharged into a jet engine fuel leak fire, would stick to the hot surfaces. Moreover, after putting out the initial fire, these extinguishants would act as antireignition catalysts, even when the fuel continued to leak onto the heated surface.

  12. Foreign programs for the storage of spent nuclear power plant fuels, high-level waste canisters and transuranic wastes

    SciTech Connect

    Harmon, K.M.; Johnson, A.B. Jr.

    1984-04-01

    The various national programs for developing and applying technology for the interim storage of spent fuel, high-level radioactive waste, and TRU wastes are summarized. Primary emphasis of the report is on dry storage techniques for uranium dioxide fuels, but data are also provided concerning pool storage.

  13. Dry Cask Storage Characterization Project - Phase 1: CASTOR V/21 Cask Opening and Examination

    SciTech Connect

    Bare, Walter Claude; Ebner, Matthias Anthony; Torgerson, Laurence Dale

    2001-08-01

    This report documents visual examination and testing conducted in 1999 and early 2000 at the Idaho National Engineering and Environmental Laboratory (INEEL) on a Gesellschaft für Nuklear Service (GNS) CASTOR V/21 pressurized water reactor (PWR) spent fuel dry storage cask. The purpose of the examination and testing is to develop a technical basis for renewal of licenses and Certificates of Compliance for dry storage systems for spent nuclear fuel and high-level waste at independent spent fuel storage installation sites. The examination and testing was conducted to assess the condition of the cask internal and external surfaces, cask contents consisting of 21 Westinghouse PWR spent fuel assemblies from Dominion’s (formerly named Virginia Power) Surry Power Station and cask concrete storage pad. The assemblies have been continuously stored in the CASTOR cask since 1985. Cask exterior surface and selected fuel assembly temperatures, and cask surface gamma and neutron dose rates were measured. Cask external/internal surfaces, fuel basket components including accessible weldments, fuel assembly exteriors, and primary lid seals were visually examined. Selected fuel rods were removed from one fuel assembly, visually examined, and then shipped to Argonne National Laboratory for nondestructive, destructive, and mechanical examination. Cask interior crud samples and helium cover gas samples were collected and analyzed. The results of the examination and testing indicate the concrete storage pad, CASTOR V/21 cask, and cask contents exhibited sound structural and seal integrity and that long-term storage has not caused detectable degradation of the spent fuel cladding or the release of gaseous fission products between 1985 and 1999.

  14. Thermal Analysis of a Dry Storage Concept for Capsule Dry Storage Project

    SciTech Connect

    JOSEPHSON, W S

    2003-09-04

    There are 1,936 cesium (Cs) and strontium (Sr) capsules stored in pools at the Waste Encapsulation and Storage Facility (WESF). These capsules will be moved to dry storage on the Hanford Site as an interim measure to reduce risk. The Cs/Sr Capsule Dry Storage Project is conducted under the assumption that the capsules will eventually be moved to the repository at Yucca Mountain, and the design criteria include requirements that will facilitate acceptance at the repository. The storage system must also permit retrieval of capsules in the event that vitrification of the capsule contents is pursued. The Capsule Advisory Panel (CAP) was created by the Project Manager for the Hanford Site Capsule Dry Storage Project (CDSP). The purpose of the CAP is to provide specific technical input to the CDSP; to identify design requirements; to ensure design requirements for the project are conservative and defensible; to identify and resolve emerging, critical technical issues, as requested; and to support technical reviews performed by regulatory organizations, as requested. The CAP will develop supporting and summary documents that can be used as part of the technical and safety bases for the CDSP. The purpose of capsule dry storage thermal analysis is to: (1) Summarize the pertinent thermal design requirements sent to vendors, (2) Summarize and address the assumptions that underlie those design requirements, (3) Demonstrate that an acceptable design exists that satisfies the requirements, (4) Identify key design features and phenomena that promote or impede design success, (5) Support other CAP analyses such as corrosion and integrity evaluations, and (6) Support the assessment of proposed designs. It is not the purpose of this report to optimize or fully analyze variations of postulated acceptable designs. The present evaluation will indicate the impact of various possible design features, but not systematically pursue design improvements obtainable through analysis

  15. 78. BUILDINGS NO. 537, GENERAL STORAGE (DRY HOUSE), NO. 538, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    78. BUILDINGS NO. 537, GENERAL STORAGE (DRY HOUSE), NO. 538, GENERAL STORAGE (GRAPHITING & SORTING HOUSE), LOOKING SOUTHEAST AT NORTHWEST AND SOUTHWEST SIDES. BUILDING NO. 537 WAS ONCE USED AS A DRY HOUSE, AND BUILDING NO. 538 AS A GLAZING (GRAPHITING) AND SORTING HOUSE. - Picatinny Arsenal, 500 Area, Powder Factory & Power House, State Route 15 near I-80, Dover, Morris County, NJ

  16. CRITICALITY SAFETY CONTROL OF LEGACY FUEL FOUND AT 105-K WEST FUEL STORAGE BASIN

    SciTech Connect

    JENSEN, M.A.

    2005-08-19

    In August 2004, two sealed canisters containing spent nuclear fuel were opened for processing at the Hanford Site's K West fuel storage basin. The fuel was to be processed through cleaning and sorting stations, repackaged into special baskets, placed into a cask, and removed from the basin for further processing and eventual dry storage. The canisters were expected to contain fuel from the old Hanford C Reactor, a graphite-moderated reactor fueled by very low-enriched uranium metal. The expected fuel type was an aluminum-clad slug about eight inches in length and with a weight of about eight pounds. Instead of the expected fuel, the two canisters contained several pieces of thin tubes, some with wire wraps. The material was placed into unsealed canisters for storage and to await further evaluation. Videotapes and still photographs of the items were examined in consultation with available retired Hanford employees. It was determined that the items had a fair probability of being cut-up pieces of fuel rods from the retired Hanford Plutonium Recycle Test Reactor (PRTR). Because the items had been safely handled several times, it was apparent that a criticality safety hazard did not exist when handling the material by itself, but it was necessary to determine if a hazard existed when combining the material with other known types of spent nuclear fuel. Because the PRTR operated more than 40 years ago, investigators had to rely on a combination of researching archived documents, and utilizing common-sense estimates coupled with bounding assumptions, to determine that the fuel items could be handled safely with other spent nuclear fuel in the storage basin. As older DOE facilities across the nation are shut down and cleaned out, the potential for more discoveries of this nature is increasing. As in this case, it is likely that only incomplete records will exist and that it will be increasingly difficult to immediately characterize the nature of the suspect fissionable

  17. Improvement in storage stability of infrared dried rough rice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to develop infrared drying (IRD) method to improve the stability of physicochemical properties of rough rice during storage. The effect of IRD on the physicochemical properties of stored rough rice was compared with that of hot air drying (HAD) and ambient air drying ...

  18. BWR Spent Nuclear Fuel Integrity Research and Development Survey for UKABWR Spent Fuel Interim Storage

    SciTech Connect

    Bevard, Bruce Balkcom; Mertyurek, Ugur; Belles, Randy; Scaglione, John M.

    2015-10-01

    The objective of this report is to identify issues and support documentation and identify and detail existing research on spent fuel dry storage; provide information to support potential R&D for the UKABWR (United Kingdom Advanced Boiling Water Reactor) Spent Fuel Interim Storage (SFIS) Pre-Construction Safety Report; and support development of answers to questions developed by the regulator. Where there are gaps or insufficient data, Oak Ridge National Laboratory (ORNL) has summarized the research planned to provide the necessary data along with the schedule for the research, if known. Spent nuclear fuel (SNF) from nuclear power plants has historically been stored on site (wet) in spent fuel pools pending ultimate disposition. Nuclear power users (countries, utilities, vendors) are developing a suite of options and set of supporting analyses that will enable future informed choices about how best to manage these materials. As part of that effort, they are beginning to lay the groundwork for implementing longer-term interim storage of the SNF and the Greater Than Class C (CTCC) waste (dry). Deploying dry storage will require a number of technical issues to be addressed. For the past 4-5 years, ORNL has been supporting the U.S. Department of Energy (DOE) in identifying these key technical issues, managing the collection of data to be used in issue resolution, and identifying gaps in the needed data. During this effort, ORNL subject matter experts (SMEs) have become expert in understanding what information is publicly available and what gaps in data remain. To ensure the safety of the spent fuel under normal and frequent conditions of wet and subsequent dry storage, intact fuel must be shown to: 1.Maintain fuel cladding integrity; 2.Maintain its geometry for cooling, shielding, and subcriticality; 3.Maintain retrievability, and damaged fuel with pinhole or hairline cracks must be shown not to degrade further. Where PWR (pressurized water reactor) information is

  19. Energy Storage Fuel Cell Vehicle Analysis

    SciTech Connect

    Pesaran, A; Markel, T; Zolot, M; Sprik, S; Tataria, H; Duong, T

    2005-08-01

    In recent years, hydrogen fuel cell (FC) vehicle technology has received considerable attention as a strategy to decrease oil consumption and reduce harmful emissions. However, the cost, transient response, and cold performance of FC systems may present significant challenges to widespread adoption of the technology for transportation in the next 15 years. The objectives of this effort were to perform energy storage modeling with fuel cell vehicle simulations to quantify the benefits of hybridization and to identify a process for setting the requirements of ES for hydrogen-powered FC vehicles for U.S. Department of Energy's Energy Storage Program.

  20. Fuel Temperature Fluctuations During Storage

    NASA Astrophysics Data System (ADS)

    Levitin, R. E.; Zemenkov, Yu D.

    2016-10-01

    When oil and petroleum products are stored, their temperature significantly impacts how their properties change. The paper covers the problem of determining temperature fluctuations of hydrocarbons during storage. It provides results of the authors’ investigations of the stored product temperature variations relative to the ambient temperature. Closeness and correlation coefficients between these values are given. Temperature variations equations for oil and petroleum products stored in tanks are deduced.

  1. Fuel Cells and Electrochemical Energy Storage.

    ERIC Educational Resources Information Center

    Sammells, Anthony F.

    1983-01-01

    Discusses the nature of phosphoric acid, molten carbonate, and solid oxide fuel cells and major features and types of batteries used for electrical energy storage. Includes two tables presenting comparison of major battery features and summary of major material problems in the sodium-sulfur and lithium-alloy metal sulfide batteries. (JN)

  2. Cryogenic reactant storage for lunar base regenerative fuel cells

    NASA Astrophysics Data System (ADS)

    Kohout, Lisa L.

    1989-02-01

    There are major advantages to be gained by integrating a cryogenic reactant storage system with a hydrogen-oxygen regenerative fuel cell (RFC) to provide on-site electrical power during the lunar night. Although applicable to any power system using hydrogen-oxygen RFC's for energy storage, cryogenic reactant storage offers a significant benefit whenever the sun/shade cycle and energy storage period approach hundreds of hours. For solar power installations on the moon, cryogenic reactant storage reduces overall specific mass and meteoroid vulnerability of the system. In addition, it offers synergistic benefits to on-site users, such as availability of primary fuel cell reactants for surface rover vehicles and cryogenic propellants for OTV's. The integration involves processing and storing the RFC reactant streams as cryogenic liquids rather than pressurized gases, so that reactant containment (tankage per unit mass of reactants) can be greatly reduced. Hydrogen-oxygen alkaline RFC's, GaAs photovoltaic (PV) arrays, and space cryogenic processing/refrigeration technologies are assumed to be available for the conceptual system design. Advantages are demonstrated by comparing the characteristics of two power system concepts: a conventional lunar surface PV/RFC power system using pressurized gas storage in SOA filament wound pressure vessels and, that same system with gas liquefaction and storage replacing the pressurized storage. Comparisons are made at 20 and 250 kWe. Although cryogenic storage adds a processing plant (drying and liquefaction) to the system plus 30 percent more solar array to provide processing power, the approximate order of magnitude reduction in tankage mass, confirmed by this analysis, results in a reduction in overall total system mass of approximately 50 percent.

  3. Cryogenic reactant storage for lunar base regenerative fuel cells

    NASA Astrophysics Data System (ADS)

    Kohout, Lisa L.

    There are major advantages to be gained by integrating a cryogenic reactant storage system with a hydrogen-oxygen regenerative fuel cell (RFC) to provide on-site electrical power during the lunar night. Although applicable to any power system using hydrogen-oxygen RFC's for energy storage, cryogenic reactant storage offers a significant benefit whenever the sun/shade cycle and energy storage period approach hundreds of hours. For solar power installations on the moon, cryogenic reactant storage reduces overall specific mass and meteoroid vulnerability of the system. In addition, it offers synergistic benefits to on-site users, such as availability of primary fuel cell reactants for surface rover vehicles and cryogenic propellants for OTV's. The integration involves processing and storing the RFC reactant streams as cryogenic liquids rather than pressurized gases, so that reactant containment (tankage per unit mass of reactants) can be greatly reduced. Hydrogen-oxygen alkaline RFC's, GaAs photovoltaic (PV) arrays, and space cryogenic processing/refrigeration technologies are assumed to be available for the conceptual system design. Advantages are demonstrated by comparing the characteristics of two power system concepts: a conventional lunar surface PV/RFC power system using pressurized gas storage in SOA filament wound pressure vessels and, that same system with gas liquefaction and storage replacing the pressurized storage. Comparisons are made at 20 and 250 kWe. Although cryogenic storage adds a processing plant (drying and liquefaction) to the system plus 30 percent more solar array to provide processing power, the approximate order of magnitude reduction in tankage mass, confirmed by this analysis, results in a reduction in overall total system mass of approximately 50 percent.

  4. Cryogenic reactant storage for lunar base regenerative fuel cells

    NASA Technical Reports Server (NTRS)

    Kohout, Lisa L.

    1989-01-01

    There are major advantages to be gained by integrating a cryogenic reactant storage system with a hydrogen-oxygen regenerative fuel cell (RFC) to provide on-site electrical power during the lunar night. Although applicable to any power system using hydrogen-oxygen RFC's for energy storage, cryogenic reactant storage offers a significant benefit whenever the sun/shade cycle and energy storage period approach hundreds of hours. For solar power installations on the moon, cryogenic reactant storage reduces overall specific mass and meteoroid vulnerability of the system. In addition, it offers synergistic benefits to on-site users, such as availability of primary fuel cell reactants for surface rover vehicles and cryogenic propellants for OTV's. The integration involves processing and storing the RFC reactant streams as cryogenic liquids rather than pressurized gases, so that reactant containment (tankage per unit mass of reactants) can be greatly reduced. Hydrogen-oxygen alkaline RFC's, GaAs photovoltaic (PV) arrays, and space cryogenic processing/refrigeration technologies are assumed to be available for the conceptual system design. Advantages are demonstrated by comparing the characteristics of two power system concepts: a conventional lunar surface PV/RFC power system using pressurized gas storage in SOA filament wound pressure vessels and, that same system with gas liquefaction and storage replacing the pressurized storage. Comparisons are made at 20 and 250 kWe. Although cryogenic storage adds a processing plant (drying and liquefaction) to the system plus 30 percent more solar array to provide processing power, the approximate order of magnitude reduction in tankage mass, confirmed by this analysis, results in a reduction in overall total system mass of approximately 50 percent.

  5. Effects of Lower Drying-Storage Temperature on the Ductility of High-Burnup PWR Cladding

    SciTech Connect

    Billone, M. C.; Burtseva, T. A.

    2016-08-30

    The purpose of this research effort is to determine the effects of canister and/or cask drying and storage on radial hydride precipitation in, and potential embrittlement of, high-burnup (HBU) pressurized water reactor (PWR) cladding alloys during cooling for a range of peak drying-storage temperatures (PCT) and hoop stresses. Extensive precipitation of radial hydrides could lower the failure hoop stresses and strains, relative to limits established for as-irradiated cladding from discharged fuel rods stored in pools, at temperatures below the ductile-to-brittle transition temperature (DBTT).

  6. Drying results of K-Basin fuel element 0309M (Run 3)

    SciTech Connect

    Oliver, B.M.; Klinger, G.S.; Abrefah, J.; Marschman, S.C.; MacFarlan, P.J.; Ritter, G.A.

    1998-07-01

    An N-Reactor outer fuel element that had been stored underwater in the Hanford 100 Area K-West Basin was subjected to a combination of low- and high-temperature vacuum drying treatments. These studies are part of a series of tests being conducted by Pacific Northwest National Laboratory on the drying behavior of spent nuclear fuel elements removed from both the K-West and K-East Basins. The drying test series was designed to test fuel elements that ranged from intact to severely damaged. The fuel element discussed in this report was removed from K-West canister 0309M during the second fuel selection campaign, conducted in 1996, and has remained in wet storage in the Postirradiation Testing Laboratory (PTL, 327 Building) since that time. The fuel element was broken in two pieces, with a relatively clean fracture, and the larger piece was tested. A gray/white coating was observed. This was the first test of a damaged fuel element in the furnace. K-West canisters can hold up to seven complete fuel assemblies, but, for purposes of this report, the element tested here is designated as Element 0309M. Element 0309M was subjected to drying processes based on those proposed under the Integrated Process Strategy, which included a hot drying step.

  7. Regulatory Perspective on Potential Fuel Reconfiguration and Its Implication to High Burnup Spent Fuel Storage and Transportation - 13042

    SciTech Connect

    Li, Zhian; Rahimi, Meraj; Tang, David; Aissa, Mourad; Flaganan, Michelle; Wagner, John C.

    2013-07-01

    The recent experiments conducted by Argonne National Laboratory on high burnup fuel cladding material property show that the ductile to brittle transition temperature of high burnup fuel cladding is dependent on: (1) cladding material, (2) irradiation conditions, and (3) drying-storage histories (stress at maximum temperature) [1]. The experiment results also show that the ductile to brittle temperature increases as the fuel burnup increases. These results indicate that the current knowledge in cladding material property is insufficient to determine the structural performance of the cladding of high burnup fuel after it has been stored in a dry cask storage system for some time. The uncertainties in material property and the elevated ductile to brittle transition temperature impose a challenge to the storage cask and transportation packaging designs because the cask designs may not be able to rely on the structural integrity of the fuel assembly for control of fissile material, radiation source, and decay heat source distributions. The fuel may reconfigure during further storage and/or the subsequent transportation conditions. In addition, the fraction of radioactive materials available for release from spent fuel under normal condition of storage and transport may also change. The spent fuel storage and/or transportation packaging vendors, spent fuel shippers, and the regulator may need to consider this possible fuel reconfiguration and its impact on the packages' ability to meet the safety requirements of Part 72 and Part 71 of Title 10 of the Code of Federal Regulations. The United States Nuclear Regulatory Commission (NRC) is working with the scientists at Oak Ridge National Laboratory (ORNL) to assess the impact of fuel reconfiguration on the safety of the dry storage systems and transportation packages. The NRC Division of Spent Fuel Storage and Transportation has formed a task force to work on the safety and regulatory concerns in relevance to high burnup

  8. Proliferation resistance assessment of various methods of spent nuclear fuel storage and disposal

    NASA Astrophysics Data System (ADS)

    Kollar, Lenka

    Many countries are planning to build or already are building new nuclear power plants to match their growing energy needs. Since all nuclear power plants handle nuclear materials that could potentially be converted and used for nuclear weapons, they each present a nuclear proliferation risk. Spent nuclear fuel presents the largest build-up of nuclear material at a power plant. This is a proliferation risk because spent fuel contains plutonium that can be chemically separated and used for a nuclear weapon. The International Atomic Energy Agency (IAEA) safeguards spent fuel in all non-nuclear weapons states that are party to the Non-Proliferation Treaty. Various safeguards methods are in use at nuclear power plants and research is underway to develop safeguards methods for spent fuel in centralized storage or underground storage and disposal. Each method of spent fuel storage presents different proliferation risks due to the nature of the storage method and the safeguards techniques that are utilized. Previous proliferation resistance and proliferation risk assessments have mainly compared nuclear material through the whole fuel cycle and not specifically focused on spent fuel storage. This project evaluates the proliferation resistance of the three main types of spent fuel storage: spent fuel pool, dry cask storage, and geological repository. The proliferation resistance assessment methodology that is used in this project is adopted from previous work and altered to be applicable to spent fuel storage. The assessment methodology utilizes various intrinsic and extrinsic proliferation-resistant attributes for each spent fuel storage type. These attributes are used to calculate a total proliferation resistant (PR) value. The maximum PR value is 1.00 and a greater number means that the facility is more proliferation resistant. Current data for spent fuel storage in the United States and around the world was collected. The PR values obtained from this data are 0.49 for

  9. 46 CFR 108.237 - Fuel storage facilities.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Fuel storage facilities. 108.237 Section 108.237... AND EQUIPMENT Construction and Arrangement Helicopter Facilities § 108.237 Fuel storage facilities. (a) Helicopter fuel storage tanks must be installed as far as practicable from— (1) The landing area; and...

  10. Fuel cell energy storage for Space Station enhancement

    NASA Technical Reports Server (NTRS)

    Stedman, J. K.

    1990-01-01

    Viewgraphs on fuel cell energy storage for space station enhancement are presented. Topics covered include: power profile; solar dynamic power system; photovoltaic battery; space station energy demands; orbiter fuel cell power plant; space station energy storage; fuel cell system modularity; energy storage system development; and survival power supply.

  11. 46 CFR 108.237 - Fuel storage facilities.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Fuel storage facilities. 108.237 Section 108.237... AND EQUIPMENT Construction and Arrangement Helicopter Facilities § 108.237 Fuel storage facilities. (a) Helicopter fuel storage tanks must be installed as far as practicable from— (1) The landing area; and...

  12. Storage characteristics of large round alfalfa bales: dry hay

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Losses of forage dry matter (DM) and quality in large round bales of alfalfa stored outdoors can be substantial. The objective of this research was to determine the effect of wrap type and storage method on the preservation of dry alfalfa bales stored outdoors. Several methods to wrap large round ...

  13. West Valley vitrified HLW and spent-fuel on-site storage alternatives

    SciTech Connect

    Rothstein, H.; Swanson, J.; Kumar, S.

    1995-12-31

    Design layouts were developed for a West Valley Demonstration Project SSA with integrated interim storage of high-level radioactive waste canisters, spent fuel, and GTCC wastes from potential closure activities. Overall SSA cost estimates were prepared for the potential use of any of the NRC-licensed dry storage concepts. Using the costs for the concept closest to the average cost of all the concepts, comparisons were made to estimated costs for continued storage in the process building and FRS.

  14. Drying results of K-Basin fuel element 5744U (Run 4)

    SciTech Connect

    Klinger, G.S.; Oliver, B.M.; Abrefah, J.; Marschman, S.C.; MacFarlan, P.J.; Ritter, G.A.

    1998-07-01

    The water-filled K-Basins in the Hanford 100 Area have been used to store N-Reactor spent nuclear fuel (SNF) since the 1970s. Because some leaks in the basins have been detected and some of the fuel is breached due to handling damage and corrosion, efforts are underway to remove the fuel elements from wet storage. An Integrated Process Strategy (IPS) has been developed to package, dry, transport, and store these metallic uranium fuel elements in an interim storage facility on the Hanford Site. Information required to support the development of the drying processes, and the required safety analyses, is being obtained from characterization tests conducted on fuel elements removed from the K-Basins. A series of whole element drying tests (reported in separate documents, see Section 8.0) have been conducted by Pacific Northwest National Laboratory (PNNL) on several intact and damaged fuel elements recovered from both the K-East and K-West Basins. This report documents the results of the fourth of those tests, which was conducted on an N-Reactor outer fuel element removed from K-West canister 5744U. This element (referred to as Element 5744U) was stored underwater in the K-West Basin from 1983 until 1996. Element 5744U was subjected to a combination of low- and high-temperature vacuum drying treatments that were intended to mimic, wherever possible, the fuel treatment strategies of the IPS. The system used for the drying test was the Whole Element Furnace Testing System, described in Section 2.0, located in the Postirradiation Testing Laboratory (PTL, 327 Building). The test conditions and methodologies are given in Section 3.0. Inspections of the fuel element before and after the test are provided in Section 4.0. The experimental results are provided in Section 5.0, and discussed in Section 6.0.

  15. Drying Results of K-Basin Fuel Element 2660M (Run 7)

    SciTech Connect

    B.M. Oliver; G.S. Klinger; J. Abrefah; S.C. Marschman; P.J. MacFarlan; G.A. Ritter

    1999-07-26

    The water-filled K-Basins in the Hanford 100 Area have been used to store N-Reactor spent nuclear fuel (SNF) since the 1970s. Because some leaks in the basin have been detected and some of the fuel is breached due to handling damage and corrosion, efforts are underway to remove the fuel elements from wet storage. An Integrated Process Strategy (IPS) has been developed to package, dry, transport, and store these metallic uranium fuel elements in an interim storage facility on the Hanford Site (WHC 1995). Information required to support the development of the drying processes, and the required safety analyses, is being obtained from characterization tests conducted on fuel elements removed from the K-Basins. A series of whole element drying tests (reported in separate documents, see Section 8.0) have been conducted by Pacific Northwest National Laboratory (PNNL) on several intact and damaged fuel elements recovered from both the K-East and K-West Basins. This report documents the results of the seventh of those tests, which was conducted on an N-Reactor outer fuel element removed from K-West canister 2660M. This element (referred to as Element 2660M) was stored underwater in the K-West Basin from 1983 until 1996. Element 2660M was subjected to a combination of low- and high-temperature vacuum drying treatments that were intended to mimic, wherever possible, the fuel treatment strategies of the IPS. The system used for the drying test was the Whole Element Furnace Testing System, described in Section 2.0, located in the Postirradiation Testing Laboratory (PTL, 327 Building). The test conditions and methodologies are given in Section 3.0. Inspections of the fuel element before and after the test are provided in Section 4.0. The experimental results are provided in Section 5.0, and discussed in Section 6.0.

  16. Drying Results of K-Basin Fuel Element 6513U (Run 8)

    SciTech Connect

    BM Oliver; GS Klinger; J Abrefah; SC Marschman; PJ MacFarlan; GA Ritter

    1999-08-11

    The water-filled K-Basins in the Hanford 100 Area have been used to store N-Reactor spent nuclear fuel (SNF) since the 1970s. Because some leaks in the basin have been detected and some of the fuel is breached due to handling damage and corrosion, efforts are underway to remove the fuel elements from wet storage. An Integrated Process Strategy (IPS) has been developed to package, dry, transport, and store these metallic uranium fuel elements in an interim storage facility on the Hanford Site (WHC 1995). Information required to support the development of the drying processes, and the required safety analyses, is being obtained from characterization tests conducted on fuel elements removed from the K-Basins. A series of whole element drying tests (reported in separate documents, see Section 8.0) have been conducted by Pacific Northwest National Laboratory (PNNL)on several intact and damaged fuel elements recovered from both the K-East and K-West Basins. This report documents the results of the eighth of those tests, which was conducted on an N-Reactor outer fuel element removed from K-West canister 6513U. This element (referred to as Element 6513U) was stored underwater in the K-West Basin from 1983 until 1996. Element 6513U was subjected to a combination of low- and high-temperature vacuum drying treatments that were intended to mimic, wherever possible, the fuel treatment strategies of the IPS. The system used for the drying test was the Whole Element Furnace Testing System, described in Section 2.0, located in the Postirradiation Testing Laboratory (PTL, 327 Building). The test conditions and methodologies are given in Section 3.0. Inspections of the fuel element before and after the test are provided in Section 4.0. The experimental results are provided in Section 5.0 and discussed in Section 6.0.

  17. Drying results of K-Basin fuel element 1164M (run 6)

    SciTech Connect

    Oliver, B.M.; Klinger, G.S.; Abrefah, J.; Marschman, S.C.; MacFarlan, P.J.; Ritter, G.A.

    1998-08-01

    The water-filled K-Basins in the Hanford 100 Area have been used to store N-Reactor spent nuclear fuel (SNF) since the 1970s. Because some leaks in the basin have been detected and some of the fuel is breached due to handling damage and corrosion, efforts are underway to remove the fuel elements from wet storage. An Integrated Process Strategy (IPS) has been developed to package, dry, transport, and store these metallic uranium fuel elements in an interim storage facility on the Hanford site (WHC 1995). Information required to support the development of the drying processes, and the required safety analyses, is being obtained from characterization tests conducted on fuel elements removed from the K-Basins. A series of whole element drying tests (reported in separate documents, see Section 8.0) have been conducted by Pacific Northwest National Laboratory (PNNL) on several intact and damaged fuel elements recovered from both the K-East and K-West Basins. This report documents the results of the sixth of those tests, which was conducted on an N-Reactor outer fuel element removed from K-West canister 1164 M. This element (referred to as Element 1164M) was stored underwater in the K-West Basin from 1983 until 1996. Element 1164M was subjected to a combination of low- and high-temperature vacuum drying treatments that were intended to mimic, wherever possible, the fuel treatment strategies of the IPS. The system used for the drying test was the Whole Element Furnace Testing System, described in Section 2.0, located in the Postirradiation Testing laboratory (PTL, 327 Building). The test conditions and methodologies are given in Section 3.0. Inspections of the fuel element before and after the test are provided in Section 4.0. The experimental results are provided in Section 5.0, and discussed in Section 6.0.

  18. Studies on drying and storage of chilgoza (Pinus gerardiana) nuts.

    PubMed

    Thakur, N S; Sharma, Somesh; Gupta, Rakesh; Gupta, Atul

    2014-09-01

    Present studies were undertaken with the aim of screening a suitable mode of drying and packaging material for storage of chilgoza nuts. A temperature of 55 °C was found most suitable for the drying of nuts in cabinet drier. Cabinet drier was found the best drying mode among four for drying of chilgoza nuts on the basis of quality characteristics such as moisture, water activity and sensory attributes. Further, out of five packaging materials selected in the study, glass jar followed by aluminium laminate pouch was found to be suitable for the packing and storage of dried nuts in ambient conditions for 6 months on the basis of retention of better physico-chemical and sensory attributes.

  19. Safety of interim storage solutions of used nuclear fuel during extended term

    SciTech Connect

    Shelton, C.; Bader, S.; Issard, H.; Arslan, M.

    2013-07-01

    In 2013, the total amount of stored used nuclear fuel (UNF) in the world will reach 225,000 T HM. The UNF inventory in wet storage will take up over 80% of the available total spent fuel pool (SFP) capacity. Interim storage solutions are needed. They give flexibility to the nuclear operators and ensure that nuclear reactors continue to operate. However, we need to keep in mind that they are also an easy way to differ final decision and implementation of a UNF management approach (recycling or final disposal). In term of public perception, they can have a negative impact overtime as it may appear that nuclear industry may have significant issues to resolve. In countries lacking an integrated UNF management approach, the UNF are being discharged from the SFPs to interim storage (mostly to dry storage) at the same rate as UNF is being discharged from reactors, as the SFPs at the reactor sites are becoming full. This is now the case in USA, Taiwan, Switzerland, Spain, South Africa and Germany. For interim storage, AREVA has developed different solutions in order to allow the continued operation of reactors while meeting the current requirements of Safety Authorities: -) Dry storage canisters on pads, -) Dual-purpose casks (dry storage and transportation), -) Vault dry storage, and -) Centralized pool storage.

  20. Drying results of K-Basin fuel element 1990 (Run 1)

    SciTech Connect

    Marschman, S.C.; Abrefah, J.; Klinger, G.S.; Oliver, B.M.; MacFarlan, P.J.; Ritter, G.A.

    1998-06-01

    The water-filled K-Basins in the Hanford 100-Area have been used to store N-Reactor spent nuclear fuel (SNF) since the 1970s. Because some leaks in the basins have been detected and some of the fuel is breached due to handling damage and corrosion, efforts are underway to remove the fuel elements from wet storage. An Integrated Process Strategy (IPS) has been developed to package, dry, transport, and store these metallic uranium fuels in an interim storage facility on the Hanford Site (WHC 1995). Information required to support the development of the drying processes, and the required safety analyses, is being obtained from characterization tests conducted on fuel elements removed from the K-Basins. A series of whole element drying tests (reported in separate documents, see Section 8.0) have been conducted by Pacific Northwest National Laboratory (PNNL) on several intact and damaged fuel elements recovered from both the K-East and K-West Basins. This report documents the results of the first of those tests (Run 1), which was conducted on an N-Reactor inner fuel element (1990) that had been stored underwater in the K-West Basin (see Section 2.0). This fuel element was subjected to a combination of low- and high-temperature vacuum drying treatments that were intended to mimic, wherever possible, the fuel treatment strategies of the IPS. The testing was conducted in the Whole Element Furnace Testing System, described in Section 3.0, located in the Postirradiation Testing Laboratory (PTL, 327 Building). The test conditions and methodology are given in Section 4.0, and the experimental results provided in Section 5.0. These results are further discussed in Section 6.0.

  1. Storage capacity in hot dry rock reservoirs

    DOEpatents

    Brown, Donald W.

    1997-01-01

    A method of extracting thermal energy, in a cyclic manner, from geologic strata which may be termed hot dry rock. A reservoir comprised of hot fractured rock is established and water or other liquid is passed through the reservoir. The water is heated by the hot rock, recovered from the reservoir, cooled by extraction of heat by means of heat exchange apparatus on the surface, and then re-injected into the reservoir to be heated again. Water is added to the reservoir by means of an injection well and recovered from the reservoir by means of a production well. Water is continuously provided to the reservoir and continuously withdrawn from the reservoir at two different flow rates, a base rate and a peak rate. Increasing water flow from the base rate to the peak rate is accomplished by rapidly decreasing backpressure at the outlet of the production well in order to meet periodic needs for amounts of thermal energy greater than a baseload amount, such as to generate additional electric power to meet peak demands. The rate of flow of water provided to the hot dry rock reservoir is maintained at a value effective to prevent depletion of the liquid

  2. Storage capacity in hot dry rock reservoirs

    DOEpatents

    Brown, D.W.

    1997-11-11

    A method is described for extracting thermal energy, in a cyclic manner, from geologic strata which may be termed hot dry rock. A reservoir comprised of hot fractured rock is established and water or other liquid is passed through the reservoir. The water is heated by the hot rock, recovered from the reservoir, cooled by extraction of heat by means of heat exchange apparatus on the surface, and then re-injected into the reservoir to be heated again. Water is added to the reservoir by means of an injection well and recovered from the reservoir by means of a production well. Water is continuously provided to the reservoir and continuously withdrawn from the reservoir at two different flow rates, a base rate and a peak rate. Increasing water flow from the base rate to the peak rate is accomplished by rapidly decreasing backpressure at the outlet of the production well in order to meet periodic needs for amounts of thermal energy greater than a baseload amount, such as to generate additional electric power to meet peak demands. The rate of flow of water provided to the hot dry rock reservoir is maintained at a value effective to prevent depletion of the liquid inventory of the reservoir. 4 figs.

  3. Leaker B.W.R. spent fuel elements: Radiochemical analysis on cover gases of storage containers after long storage

    SciTech Connect

    Paratore, A.L.; Pastore, G.; Partiti, C.

    1993-12-31

    Very few examples of non-destructive tests are available concerning of spent nuclear fuel elements after long period of dry storage under water. In Italy ENEL and FIAT CIEI performed two test campaigns in 1990 and 1991 at the pool storage facility AVOGADRO of Saluggia, aimed to investigate the condition of leaker B.W.R. fuel elements, dry-sealed into storage containers and stored under water since 1984. Radiochemical analyses were conducted on samples of the container`s cover gases by means of ``PSEUDO-SIPPING`` methods, with the following objectives: measurements of percentage of moisture radiolysis born hydrogen, detection of the possible presence of explosive mixtures; measurements of Kr 85 activity, verification of the behavior of cladding leaks. Results confirmed either the absence of dangerous quantities of radiolysis hydrogen, or a general increase of Kr 85 activity, compared with data coming from checks performed at the reactor site before fuel insertion into the storage containers. Cladding leaks at first were probably increased by transport conditions of spent fuel, dry-placed into shipping casks, and later on they were stabilized by the immersion in the pool cold water.

  4. Adapting Dry Cask Storage for Aging at a Geologic Repository

    SciTech Connect

    C. Sanders; D. Kimball

    2005-08-02

    A Spent Nuclear Fuel (SNF) Aging System is a crucial part of operations at the proposed Yucca Mountain repository in the United States. Incoming commercial SNF that does not meet thermal limits for emplacement will be aged on outdoor pads. U.S. Department of Energy SNF will also be managed using the Aging System. Proposed site-specific designs for the Aging System are closely based upon designs for existing dry cask storage (DCS) systems. This paper evaluates the applicability of existing DCS systems for use in the SNF Aging System at Yucca Mountain. The most important difference between existing DCS facilities and the Yucca Mountain facility is the required capacity. Existing DCS facilities typically have less than 50 casks. The current design for the aging pad at Yucca Mountain calls for a capacity of over 2,000 casks (20,000 MTHM) [1]. This unprecedented number of casks poses some unique problems. The response of DCS systems to off-normal and accident conditions needs to be re-evaluated for multiple storage casks. Dose calculations become more complicated, since doses from multiple or very long arrays of casks can dramatically increase the total boundary dose. For occupational doses, the geometry of the cask arrays and the order of loading casks must be carefully considered in order to meet ALARA goals during cask retrieval. Due to the large area of the aging pad, skyshine must also be included when calculating public and worker doses. The expected length of aging will also necessitate some design adjustments. Under 10 CFR 72.236, DCS systems are initially certified for a period of 20 years [2]. Although the Yucca Mountain facility is not intended to be a storage facility under 10 CFR 72, the operational life of the SNF Aging System is 50 years [1]. Any cask system selected for use in aging will have to be qualified to this design lifetime. These considerations are examined, and a summary is provided of the adaptations that must be made in order to use DCS

  5. Develop an piezoelectric sensing based on SHM system for nuclear dry storage system

    NASA Astrophysics Data System (ADS)

    Ma, Linlin; Lin, Bin; Sun, Xiaoyi; Howden, Stephen; Yu, Lingyu

    2016-04-01

    In US, there are over 1482 dry cask storage system (DCSS) in use storing 57,807 fuel assemblies. Monitoring is necessary to determine and predict the degradation state of the systems and structures. Therefore, nondestructive monitoring is in urgent need and must be integrated into the fuel cycle to quantify the "state of health" for the safe operation of nuclear power plants (NPP) and radioactive waste storage systems (RWSS). Innovative approaches are desired to evaluate the degradation and damage of used fuel containers under extended storage. Structural health monitoring (SHM) is an emerging technology that uses in-situ sensory system to perform rapid nondestructive detection of structural damage as well as long-term integrity monitoring. It has been extensively studied in aerospace engineering over the past two decades. This paper presents the development of a SHM and damage detection methodology based on piezoelectric sensors technologies for steel canisters in nuclear dry cask storage system. Durability and survivability of piezoelectric sensors under temperature influence are first investigated in this work by evaluating sensor capacitance and electromechanical admittance. Toward damage detection, the PES are configured in pitch catch setup to transmit and receive guided waves in plate-like structures. When the inspected structure has damage such as a surface defect, the incident guided waves will be reflected or scattered resulting in changes in the wave measurements. Sparse array algorithm is developed and implemented using multiple sensors to image the structure. The sparse array algorithm is also evaluated at elevated temperature.

  6. International safeguards for spent fuel storage

    SciTech Connect

    Kratzer, M.; Wonder, E.; Immerman, W.; Crane, F.

    1981-08-01

    This report analyzes the nonproliferation effectiveness and political and economic acceptability of prospective improvements in international safeguard techniques for LWR spent fuel storage. Although the applicability of item accounting considerably eases the safeguarding of stored spent fuel, the problem of verification is potentially serious. A number of simple gamma and neutron nondestructive assay techniques were found to offer considerable improvements, of a qualitative rather than quantitative nature, in verification-related data and information, and possess the major advantage of intruding very little on facility operations. A number of improved seals and monitors appear feasible as well, but improvements in the timeliness of detection will not occur unless the frequency of inspection is increased or a remote monitoring capability is established. Limitations on IAEA Safeguards resources and on the integration of results from material accounting and containment and surveillance remain problems.

  7. Application of filtered back projection to muon radiography for imaging dry storage casks

    DOE PAGES

    Poulson, Daniel Cris; Durham, J. Matthew; Guardincerri, Elena; ...

    2017-10-22

    Radiography with cosmic ray muon scattering has proven to be a successful method of imaging nuclear material through heavy shielding. Of particular interest is monitoring dry storage casks for diversion of plutonium contained in spent reactor fuel. Using muon tracking detectors that surround a cylindrical cask, cosmic ray muon scattering can be simultaneously measured from all azimuthal angles, giving complete tomographic coverage of the cask interior. This article describes the first application of filtered back projection algorithms, typically used in medical imaging, to cosmic ray muon scattering imaging. The specific application to monitoring spent nuclear fuel in dry storage casksmore » is investigated via GEANT4 simulations. With a cylindrical muon tracking detector surrounding a typical spent fuel cask, simulations indicate that missing fuel bundles can be detected with a statistical significance of ∼18σ in less than two days exposure and a sensitivity at 1σ to a 5% missing portion of a fuel bundle. Finally, we discuss potential detector technologies and geometries.« less

  8. Developing a concept for a national used fuel interim storage facility in the United States

    SciTech Connect

    Lewis, Donald Wayne

    2013-07-01

    In the United States (U.S.) the nuclear waste issue has plagued the nuclear industry for decades. Originally, spent fuel was to be reprocessed but with the threat of nuclear proliferation, spent fuel reprocessing has been eliminated, at least for now. In 1983, the Nuclear Waste Policy Act of 1982 [1] was established, authorizing development of one or more spent fuel and high-level nuclear waste geological repositories and a consolidated national storage facility, called a 'Monitored Retrievable Storage' facility, that could store the spent nuclear fuel until it could be placed into the geological repository. Plans were under way to build a geological repository, Yucca Mountain, but with the decision by President Obama to terminate the development of Yucca Mountain, a consolidated national storage facility that can store spent fuel for an interim period until a new repository is established has become very important. Since reactor sites have not been able to wait for the government to come up with a storage or disposal location, spent fuel remains in wet or dry storage at each nuclear plant. The purpose of this paper is to present a concept developed to address the DOE's goals stated above. This concept was developed over the past few months by collaboration between the DOE and industry experts that have experience in designing spent nuclear fuel facilities. The paper examines the current spent fuel storage conditions at shutdown reactor sites, operating reactor sites, and the type of storage systems (transportable versus non-transportable, welded or bolted). The concept lays out the basis for a pilot storage facility to house spent fuel from shutdown reactor sites and then how the pilot facility can be enlarged to a larger full scale consolidated interim storage facility. (authors)

  9. EAST ELEVATION OF HIGH BAY ADDITION OF FUEL STORAGE BUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EAST ELEVATION OF HIGH BAY ADDITION OF FUEL STORAGE BUILDING (CPP-603). INL DRAWING NUMBER 200-0603-00-706-051286. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  10. Extended Dry Storage Signature Bench Scale Detector Conceptual Design

    SciTech Connect

    Rauch, Eric Benton

    2016-09-02

    This report is the conceptual design of a detector based on research within the Extended Dry Storage Signature Development project under the DOE-­NE MPACT campaign. This is the second year of the project; from this year’s positive results, the next step is building a prototype and testing with real materials .

  11. 38. East elevation of coffee storage and drying shed with ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    38. East elevation of coffee storage and drying shed with circular, cattle watering pond in left foreground and coffee mill in background right. HAER PR, 6-MAGU, 1C-1 - Hacienda Buena Vista, PR Route 10 (Ponce to Arecibo), Magueyes, Ponce Municipio, PR

  12. 9 CFR 590.549 - Dried egg storage.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 2 2014-01-01 2014-01-01 false Dried egg storage. 590.549 Section 590.549 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE EGG PRODUCTS INSPECTION INSPECTION OF EGGS AND EGG PRODUCTS (EGG PRODUCTS INSPECTION ACT) Sanitary,...

  13. 9 CFR 590.549 - Dried egg storage.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 2 2012-01-01 2012-01-01 false Dried egg storage. 590.549 Section 590.549 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE EGG PRODUCTS INSPECTION INSPECTION OF EGGS AND EGG PRODUCTS (EGG PRODUCTS INSPECTION ACT) Sanitary,...

  14. 9 CFR 590.549 - Dried egg storage.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 2 2013-01-01 2013-01-01 false Dried egg storage. 590.549 Section 590.549 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE EGG PRODUCTS INSPECTION INSPECTION OF EGGS AND EGG PRODUCTS (EGG PRODUCTS INSPECTION ACT) Sanitary,...

  15. 9 CFR 590.549 - Dried egg storage.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Dried egg storage. 590.549 Section 590.549 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE EGG PRODUCTS INSPECTION INSPECTION OF EGGS AND EGG PRODUCTS (EGG PRODUCTS INSPECTION ACT) Sanitary,...

  16. 9 CFR 590.549 - Dried egg storage.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Dried egg storage. 590.549 Section 590.549 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE EGG PRODUCTS INSPECTION INSPECTION OF EGGS AND EGG PRODUCTS (EGG PRODUCTS INSPECTION ACT) Sanitary,...

  17. Movement of Fuel Ashore: Storage, Capacity, Throughput, and Distribution Analysis

    DTIC Science & Technology

    2015-12-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release; distribution is unlimited MOVEMENT OF FUEL...3. REPORT TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE MOVEMENT OF FUEL ASHORE: STORAGE, CAPACITY, THROUGHPUT, AND DISTRIBUTION...of fuel movement ashore using only the ship- to-shore connectors available to the MEB. 14. SUBJECT TERMS Marine Corps, fuel, energy

  18. Drying Results of K-Basin Fuel Element 6603M (Rune 5)

    SciTech Connect

    B.M. Oliver; G.A. Ritter; G.S. Klinger; J. Abrefah; L.R. Greenwood; P.J. MacFarlan; S.C. Marschman

    1999-09-24

    The water-filled K-Basins in the Hanford 100 Area have been used to store N-Reactor spent nuclear fuel (SNF) since the 1970s. An Integrated Process Strategy (IPS) has been developed to package, dry, transport, and store these metallic uranium spent nuclear fuels in an interim storage facility on the Hanford Site (WHC 1995). Information required to support the development of the drying processes, and the required safety analyses, is being obtained from characterization tests conducted on fuel elements removed from the K-Basins. A series of drying tests (reported in separate documents, see Section 8.0) have been conducted by Pacific Northwest National Laboratory (PNNL) on several intact and damaged fuel elements recovered from both the K-East and K-West Basins. This report documents the results of the fifth of those tests conducted on an N-Reactor outer fuel element (6603M) which had been stored underwater in the Hanford 100 Area K-West basin from 1983 until 1996. This fuel element was subjected to a combination of low- and high-temperature vacuum drying treatments which were intended to mimic, wherever possible, the fuel treatment strategies of the IPS. The system used for the drying test was the Whole Element Furnace Testing System, described in Section 2.0. The test conditions and methodologies are given in Section 3.0. Inspections on the fuel element before and after the test are provided in Section 4.0. The experimental results are provided in Section 5.0. Discussion of the results is given in Section 6.0.

  19. PLOT PLAN OF FUEL STORAGE BUILDING (CPP603) SHOWING STORAGE BASINS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PLOT PLAN OF FUEL STORAGE BUILDING (CPP-603) SHOWING STORAGE BASINS AND PROPOSED LOCATION OF FUEL ELEMENT CUTTING FACILITY. INL DRAWING NUMBER 200-0603-00-706-051287. ALTERNATE ID NUMBER CPP-C-1287. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  20. Evaluation of Radiation Impacts of Spent Nuclear Fuel Storage (SNFS-2) of Chernobyl NPP - 13495

    SciTech Connect

    Paskevych, Sergiy; Batiy, Valiriy; Sizov, Andriy; Schmieman, Eric

    2013-07-01

    Radiation effects are estimated for the operation of a new dry storage facility for spent nuclear fuel (SNFS-2) of Chernobyl NPP RBMK reactors. It is shown that radiation exposure during normal operation, design and beyond design basis accidents are minor and meet the criteria for safe use of radiation and nuclear facilities in Ukraine. (authors)

  1. 30 CFR 75.1912 - Fire suppression systems for permanent underground diesel fuel storage facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... chemical type (ABC) fire suppression system listed or approved as an engineered dry chemical extinguishing... permanent underground diesel fuel storage facility. (1) Alternate types of fire suppression systems shall be... protected against the entrance of foreign materials such as mud, coal dust, and rock dust. (b) The...

  2. Hanford Single-Pass Reactor Fuel Storage Basin Demolition.

    PubMed

    Armstrong, Jason A.

    2003-02-01

    ABSTRACT The Environmental Restoration Contractor at the Hanford Site is tasked with removing auxiliary reactor structures and leaving the remaining concrete structure surrounding each reactor core. This is referred to as Interim Safe Storage. Part of placing the F Reactor into Interim Safe Storage is the demolition of the fuel storage basin, which was deactivated in 1970 by placing debris material into the basin prior to back filling with soil. Besides the debris material (wooden floor decking, handrails, and monorail pieces), the fuel storage basin contents included the possibility of spent nuclear fuel, fuel buckets, fuel spacers, process tubes, and tongs. Demolition of the fuel storage basin offered many unique radiological control challenges and innovative approaches to demolition. This paper describes how the total effective dose equivalent and contamination were controlled, how the use of a remote operated excavator was employed to remove high-dose-rate material, and how wireless technology was used to monitor changing radiological conditions.

  3. Hanford single-pass reactor fuel storage basin demolition.

    PubMed

    Armstrong, Jason A

    2003-02-01

    The Environmental Restoration Contractor at the Hanford Site is tasked with removing auxiliary reactor structures and leaving the remaining concrete structure surrounding each reactor core. This is referred to as Interim Safe Storage. Part of placing the F Reactor into Interim Safe Storage is the demolition of the fuel storage basin, which was deactivated in 1970 by placing debris material into the basin prior to back filling with soil. Besides the debris material (wooden floor decking, handrails, and monorail pieces), the fuel storage basin contents included the possibility of spent nuclear fuel, fuel buckets, fuel spacers, process tubes, and tongs. Demolition of the fuel storage basin offered many unique radiological control challenges and innovative approaches to demolition. This paper describes how the total effective dose equivalent and contamination were controlled, how the use of a remote operated excavator was employed to remove high-dose-rate material, and how wireless technology was used to monitor changing radiological conditions.

  4. Energy storage in ultrathin solid oxide fuel cells.

    PubMed

    Van Overmeere, Quentin; Kerman, Kian; Ramanathan, Shriram

    2012-07-11

    The power output of hydrogen fuel cells quickly decreases to zero if the fuel supply is interrupted. We demonstrate thin film solid oxide fuel cells with nanostructured vanadium oxide anodes that generate power for significantly longer time than reference porous platinum anode thin film solid oxide fuel cells when the fuel supply is interrupted. The charge storage mechanism was investigated quantitatively with likely identified contributions from the oxidation of the vanadium oxide anode, its hydrogen storage properties, and different oxygen concentration at the electrodes. Fuel cells capable of storing charge even for short periods of time could contribute to ultraminiaturization of power sources for mobile energy.

  5. Design and Operation of Equipment to Detect and Remove Water within Used Nuclear Fuel Storage Bottles

    SciTech Connect

    C.C. Baker; T.M. Pfeiffer; J.C. Price

    2013-09-01

    Inspection and drying equipment has been implemented in a hot cell to address the inadvertent ingress of water into used nuclear fuel storage bottles. Operated with telemanipulators, the system holds up to two fuel bottles and allows their threaded openings to be connected to pressure transducers and a vacuum pump. A prescribed pressure rebound test is used to diagnose the presence of moisture. Bottles found to contain moisture are dried by vaporization. The drying process is accelerated by the application of heat and vacuum. These techniques detect and remove virtually all free water (even water contained in a debris bed) while leaving behind most, if not all, particulates. The extracted water vapour passes through a thermoelectric cooler where it is condensed back to the liquid phase for collection. Fuel bottles are verified to be dry by passing the pressure rebound test.

  6. Dose reduction improvements in storage basins of spent nuclear fuel

    SciTech Connect

    Huang, Fan-Hsiung F.

    1997-08-13

    Spent nuclear fuel in storage basins at the Hanford Site has corroded and contaminated basin water, which has leaked into the soil; the fuel also had deposited a layer of radioactive sludge on basin floors. The SNF is to be removed from the basins to protect the nearby Columbia River. Because the radiation level is high, measures have been taken to reduce the background dose rate to as low as reasonably achievable (ALARA) to prevent radiation doses from becoming the limiting factor for removal of the SW in the basins to long-term dry storage. All activities of the SNF Project require application of ALARA principles for the workers. On the basis of these principles dose reduction improvements have been made by first identifying radiological sources. Principal radiological sources in the basin are basin walls, basin water, recirculation piping and equipment. Dose reduction activities focus on cleaning and coating basin walls to permit raising the water level, hydrolasing piping, and placing lead plates. In addition, the transfer bay floor will be refinished to make decontamination easier and reduce worker exposures in the radiation field. The background dose rates in the basin will be estimated before each task commences and after it is completed; these dose reduction data will provide the basis for cost benefit analysis.

  7. IMPACT ANALYSIS OF SPENT FUEL DRY CASKS UNDER ACCIDENTAL DROP SCENARIOS.

    SciTech Connect

    BRAVERMAN,J.I.; MORANTE,R.J.; XU,J.; HOFMAYER,C.H.; SHAUKAT,S.K.

    2003-08-17

    A series of analyses were performed to assess the structural response of spent nuclear fuel dry casks subjected to various handling and on-site transfer events. The results of these analyses are being used by the Nuclear Regulatory Commission (NRC) to perform a probabilistic risk assessment (PRA). Although the PRA study is being performed for a specific nuclear plant, the PRA study is also intended to provide a framework for a general methodology that could also be applied to other dry cask systems at other nuclear plants. The dry cask system consists of a transfer cask, used for handling and moving the multi-purpose canister OLIIpC that contains the fuel, and a storage cask, used to store the MPC and fuel on a concrete pad at the site. This paper describes the analyses of the casks for two loading events. The first loading consists of dropping the transfer cask while it is lowered by a crane to a concrete floor at ground elevation. The second loading consists of dropping the storage cask while it is being transferred to the concrete storage pad outdoors. Three dimensional finite element models of the transfer cask and storage cask, containing the MPC and fuel, were utilized to perform the drop analyses. These models were combined with finite element models of the target structures being impacted. The transfer cask drop analyses considered various drop heights for the cask impacting the reinforced concrete floor at ground level. The finite element model of the target included a section of the concrete floor and concrete wall supporting the floor. The storage cask drop analyses evaluated a 30.5 cm (12 in.) drop of the cask impacting three different surfaces: reinforced concrete, asphalt, and gravel.

  8. IMPACT ANALYSIS OF SPENT FUEL DRY CASKS UNDER ACCIDENTAL DROP SCENARIOS.

    SciTech Connect

    BRAVERMAN,J.I.; MORANTE,R.J.; XU,J.; HOFMAYER,C.H.; SHAUKAT,S.K.

    2003-03-17

    A series of analyses were performed to assess the structural response of spent nuclear fuel dry casks subjected to various handling and on-site transfer events. The results of these analyses are being used by the Nuclear Regulatory Commission (NRC) to perform a probabilistic risk assessment (PRA). Although the PRA study is being performed for a specific nuclear plant, the PRA study is also intended to provide a framework for a general methodology that could also be applied to other dry cask systems at other nuclear plants. The dry cask system consists of a transfer cask, used for handling and moving the multi-purpose canister (MPC) that contains the fuel, and a storage cask, used to store the MPC and fuel on a concrete pad at the site. This paper describes the analyses of the casks for two loading events. The first loading consists of dropping the transfer cask while it is lowered by a crane to a concrete floor at ground elevation. The second loading consists of dropping the storage cask while it is being transferred to the concrete storage pad outdoors. Three dimensional finite element models of the transfer cask and storage cask, containing the MPC and fuel, were utilized to perform the drop analyses. These models were combined with finite element models of the target structures being impacted. The transfer cask drop analyses considered various drop heights for the cask impacting the reinforced concrete floor at ground level. The finite element model of the target included a section of the concrete floor and concrete wall supporting the floor. The storage cask drop analyses evaluated a 30.5 cm (12 in.) drop of the cask impacting three different surfaces: reinforced concrete, asphalt, and gravel.

  9. INTERIM STORAGE AND LONG TERM DISPOSAL OF RESEARCH REACTOR SPENT FUEL

    SciTech Connect

    Vinson, D

    2006-08-22

    Aluminum clad research reactor spent nuclear fuel (SNF) is currently being consolidated in wet storage basins (pools). Approximately 20 metric tons (heavy metal) of aluminum-based spent nuclear fuel (Al-SNF) is being consolidated for treatment, packaging, interim storage, and preparation for ultimate disposal in a geologic repository. The storage and disposal of Al-SNF are subject to requirements that provide for safety and acceptable radionuclide release. The options studied for interim storage of SNF include wet storage and dry storage. Two options have also been studied to develop the technical basis for the qualification and repository disposal of aluminum spent fuel. The two options studied include Direct Disposal and Melt-Dilute treatment. The implementation of these options present relative benefits and challenges. Both the Direct Disposal and the Melt-Dilute treatment options have been developed and their technical viability assessed. Adaptation of the melt-dilute technology for the treatment of spent fuel offers the benefits of converting the spent fuel into a proliferation resistant form and/or significantly reducing the volume of the spent fuel. A Mobile Melt-Dilute system concept has emerged to realize these benefits and a prototype system developed. The application of the melt-dilute technology for the treatment of legacy nuclear materials has been evaluated and also offers the promise for the safe disposal of these materials.

  10. Study on vitamin D₂ stability in dried mushrooms during drying and storage.

    PubMed

    Sławińska, Aneta; Fornal, Emilia; Radzki, Wojciech; Skrzypczak, Katarzyna; Zalewska-Korona, Marta; Michalak-Majewska, Monika; Parfieniuk, Ewa; Stachniuk, Anna

    2016-05-15

    The main objective of this work was to determine the stability of vitamin D2 in dried mushrooms Agaricus bisporus, Pleurotus ostreatus and Lentinula edodes during storage, as well as to examine the possibility of inducing vitamin D2 production in dried mushrooms by UVB irradiation. After 1.5 year storage of dried mushrooms, the level of vitamin D2 in button mushrooms was found to be 6.90 μg/g dw, which is a 48.32% of initial level of vitamin D2. In the case of dried oyster and shiitake mushrooms there was a decrease to the level of 66.90% and 68.40%, respectively. It was determined that dried mushrooms can produce ergocalciferol under UVB irradiation. The highest content of vitamin D2 was observed in A. bisporus. Freeze-dried A. bisporus contained from 42.08 to 119.21 μg/g dw and hot-air dried mushrooms contained from 21.51 to 81.17 μg/g dw vitamin D2.

  11. Application of probabilistic risk assessment techniques during design phase for dry storage casks

    SciTech Connect

    Hallbert, B.P.; Satterwhite, D.G.; Meale, B.M.

    1990-01-01

    Canisters containing the Three Mile Island (TMI) spent fuel and debris are being stored in a storage pool at the Idaho National Engineering Laboratory (INEL). In order to store these canisters in dry storage casks, a system is being designed to remove entrained water from the canisters. The conceptual design for this drying process was evaluated in respect to the occurrence of a nuclear criticality. The system design was evaluated to address the mechanical failure of the components. Also, human interfaces with the equipment were assessed. The integration of these two facets resulted in a model that was quantified to calculate the occurrence frequency of a nuclear criticality. Changes to design, administrative guidelines, and procedures were recommended so that an acceptable level of risk based on nuclear criticality occurrence frequency could be achieved. 1 ref., 2 figs.

  12. 17. Forge building, fuel storage shed, and foundry, 1906 Photocopied ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. Forge building, fuel storage shed, and foundry, 1906 Photocopied from a photograph by Thomas S. Bronson, 'Group at Whitney Factory, 5 November 1906,' NHCHSL. The most reliable view of the fuel storage sheds and foundry, together with a view of the forge building. - Eli Whitney Armory, West of Whitney Avenue, Armory Street Vicinity, Hamden, New Haven County, CT

  13. Alkaline regenerative fuel cell systems for energy storage

    SciTech Connect

    Schubert, F.H.; Reid, M.A.; Martin, R.E.

    1981-01-01

    This paper presents the results of a preliminary design study of a Regenerative Fuel Cell Energy Storage system for application to future low-earth orbit space missions. This high energy density storage system is based on state-of-the-art alkaline electrolyte cell technology and incorporates dedicated fuel cell and electrolysis cell modules. 11 refs.

  14. R D for the storage, transport, and handling of coal-based fuels

    SciTech Connect

    Not Available

    1991-01-01

    The product of several advanced physical coal cleaning processes is a dry, ultrafine coal (DUC), in the order of 10 microns mean mass diameter. To utilize this fuel commercially, cost-effective, environmentally safe systems must be provided for the storage, transport, and handling of this finely divided form of fuel. The objective of the project described herein is the development of total logistics systems for DUC, including experimental verification of key features. The systems to be developed will provide for safe, economic, and environmentally protective storage and delivery of DUC for residential, commercial, and industrial uses. 20 figs.

  15. Lightweight cryogenic-compatible pressure vessels for vehicular fuel storage

    DOEpatents

    Aceves, Salvador; Berry, Gene; Weisberg, Andrew H.

    2004-03-23

    A lightweight, cryogenic-compatible pressure vessel for flexibly storing cryogenic liquid fuels or compressed gas fuels at cryogenic or ambient temperatures. The pressure vessel has an inner pressure container enclosing a fuel storage volume, an outer container surrounding the inner pressure container to form an evacuated space therebetween, and a thermal insulator surrounding the inner pressure container in the evacuated space to inhibit heat transfer. Additionally, vacuum loss from fuel permeation is substantially inhibited in the evacuated space by, for example, lining the container liner with a layer of fuel-impermeable material, capturing the permeated fuel in the evacuated space, or purging the permeated fuel from the evacuated space.

  16. Arrival condition of spent fuel after storage, handling, and transportation

    SciTech Connect

    Bailey, W.J.; Pankaskie, P.J.; Langstaff, D.C.; Gilbert, E.R.; Rising, K.H.; Schreiber, R.E.

    1982-11-01

    This report presents the results of a study conducted to determine the probable arrival condition of spent light-water reactor (LWR) fuel after handling and interim storage in spent fuel storage pools and subsequent handling and accident-free transport operations under normal or slightly abnormal conditions. The objective of this study was to provide information on the expected condition of spent LWR fuel upon arrival at interim storage or fuel reprocessing facilities or at disposal facilities if the fuel is declared a waste. Results of a literature survey and data evaluation effort are discussed. Preliminary threshold limits for storing, handling, and transporting unconsolidated spent LWR fuel are presented. The difficulty in trying to anticipate the amount of corrosion products (crud) that may be on spent fuel in future shipments is also discussed, and potential areas for future work are listed. 95 references, 3 figures, 17 tables.

  17. Testing of the dual slab verification detector for attended measurements of the BN-350 dry storage casks

    SciTech Connect

    Santi, Peter A; Browne, Michael C; Williams, Richard B; Parker, Robert F

    2009-01-01

    The Dual Slab Verification Detector (DSVD) has been developed and built by Los Alamos National Laboratory in cooperation with the International Atomic Energy Agency (IAEA) as part of the dry storage safeguards system for the spent fuel from the BN-350 fast reactor. The detector consists of two rows of {sup 3}He tubes embedded in a slab of polyethylene which has been designed to be placed on the outer surface of the dry storage cask. The DSVD will be used to perform measurements of the neutron flux emanating from inside the dry storage cask at several locations around each cask to establish a neutron 'fingerprint' that is sensitive to the contents of the cask. The sensitivity of the fingerprinting technique to the removal of specific amount of nuclear material from the cask is determined by the characteristics of the detector that is used to perform the measurements, the characteristics of the spent fuel being measured, and systematic uncertainties that are associated with the dry storage scenario. MCNPX calculations of the BN-350 dry storage asks and layout have shown that the neutron fingerprint verification technique using measurements from the DSVD would be sensitive to both the amount and location of material that is present within an individual cask. To confirm the performance of the neutron fingerprint technique in verifying the presence of BN-350 spent fuel in dry storage, an initial series of measurements have been performed to test the performance and characteristics of the DSVD. Results of these measurements will be presented and compared with MCNPX results.

  18. PLAN VIEW OF FUEL STORAGE BUILDING (CPP603) SHOWING STORAGE BASINS. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PLAN VIEW OF FUEL STORAGE BUILDING (CPP-603) SHOWING STORAGE BASINS. INL DRAWING NUMBER 200-0603-00-706-051285. ALTERNATE ID NUMBER CPP-D-1285. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  19. FEASIBILITY OF ACOUSTIC METHODS FOR IMPURITY GAS MONITORING IN DRY STORAGE SYSTEMS

    SciTech Connect

    Meyer, Ryan M.; Cuta, Judith M.; Jones, Anthony M.; Denslow, Kayte M.; Ramuhalli, Pradeep; Adkins, Harold E.; Hanson, Brady D.

    2015-05-01

    This paper explores the feasibility of monitoring impurities in dry storage containers (DSCs) for spent nuclear fuel using non-invasive acoustic sensing. The conceived implementation considers measurements based on changes in acoustic velocity at successive measurement intervals. Uncertainty contributions from the measurement system and temperature variability are estimated. Sources of temperature variability considered include changes in the decay heat source over time and ambient temperature variation. The results show that performance of a system which does not incorporate temperature compensation will be dependent upon geographic location and the decay heat source strength. The results also indicate that an annual measurement interval is optimal.

  20. Nonlinear Ultrasonic Diagnosis and Prognosis of ASR Damage in Dry Cask Storage

    SciTech Connect

    Qu, Jianmin; Bazant, Zdenek; Jacobs, Laurence; Guimaraes, Maria

    2015-11-30

    Alkali-silica reaction (ASR) is a deleterious chemical process that may occur in cement-based materials such as mortars and concretes, where the hydroxyl ions in the highly alkaline pore solution attack the siloxane groups in the siliceous minerals in the aggregates. The reaction produces a cross-linked alkali-silica gel. The ASR gel swells in the presence of water. Expansion of the gel results in cracking when the swelling-induced stress exceeds the fracture toughness of the concrete. As the ASR continues, cracks may grow and eventually coalesce, which results in reduced service life and a decrease safety of concrete structures. Since concrete is widely used as a critical structural component in dry cask storage of used nuclear fuels, ASR damage poses a significant threat to the sustainability of long term dry cask storage systems. Therefore, techniques for effectively detecting, managing and mitigating ASR damage are needed. Currently, there are no nondestructive methods to accurately detect ASR damage in existing concrete structures. The only current way of accurately assessing ASR damage is to drill a core from an existing structure, and conduct microscopy on this drilled cylindrical core. Clearly, such a practice is not applicable to dry cask storage systems. To meet these needs, this research is aimed at developing (1) a suite of nonlinear ultrasonic quantitative nondestructive evaluation (QNDE) techniques to characterize ASR damage, and (2) a physics-based model for ASR damage evolution using the QNDE data. Outcomes of this research will provide a nondestructive diagnostic tool to evaluate the extent of the ASR damage, and a prognostic tool to estimate the future reliability and safety of the concrete structures in dry cask storage systems

  1. Developing a structural health monitoring system for nuclear dry cask storage canister

    NASA Astrophysics Data System (ADS)

    Sun, Xiaoyi; Lin, Bin; Bao, Jingjing; Giurgiutiu, Victor; Knight, Travis; Lam, Poh-Sang; Yu, Lingyu

    2015-03-01

    Interim storage of spent nuclear fuel from reactor sites has gained additional importance and urgency for resolving waste-management-related technical issues. In total, there are over 1482 dry cask storage system (DCSS) in use at US plants, storing 57,807 fuel assemblies. Nondestructive material condition monitoring is in urgent need and must be integrated into the fuel cycle to quantify the "state of health", and more importantly, to guarantee the safe operation of radioactive waste storage systems (RWSS) during their extended usage period. A state-of-the-art nuclear structural health monitoring (N-SHM) system based on in-situ sensing technologies that monitor material degradation and aging for nuclear spent fuel DCSS and similar structures is being developed. The N-SHM technology uses permanently installed low-profile piezoelectric wafer sensors to perform long-term health monitoring by strategically using a combined impedance (EMIS), acoustic emission (AE), and guided ultrasonic wave (GUW) approach, called "multimode sensing", which is conducted by the same network of installed sensors activated in a variety of ways. The system will detect AE events resulting from crack (case for study in this project) and evaluate the damage evolution; when significant AE is detected, the sensor network will switch to the GUW mode to perform damage localization, and quantification as well as probe "hot spots" that are prone to damage for material degradation evaluation using EMIS approach. The N-SHM is expected to eventually provide a systematic methodology for assessing and monitoring nuclear waste storage systems without incurring human radiation exposure.

  2. Drying grain using a hydrothermally treated liquid lignite fuel

    SciTech Connect

    Bukurov, Z.; Cvijanovic, P.; Bukurov, M.; Ljubicic, B.R.

    1995-12-01

    A shortage of domestic oil and natural gas resources in Yugoslavia, particularly for agricultural and industrial purposes, has motivated the authors to explore the possibility of using liquid lignite as an alternate fuel for drying grain. This paper presents a technical and economic assessment of the possibility of retrofitting grain-drying plants currently fueled by oil or natural gas to liquid lignite fuel. All estimates are based on lignite taken from the Kovin deposit. Proposed technology includes underwater mining techniques, aqueous ash removal, hydrothermal processing, solids concentration, pipeline transport up to 120 km, and liquid lignite direct combustion. For the characterization of Kovin lignite, standard ASTM procedures were used: proximate, ultimate, ash, heating value, and Theological analyses were performed. Results from an extensive economic analysis indicate a delivered cost of US$20/ton for the liquid lignite. For the 70 of the grain-drying plants in the province of Vojvodina, this would mean a total yearly saving of about US $2,500,000. The advantages of this concept are obvious: easy to transport and store, nonflammable, nonexplosive, nontoxic, 30%-40% cheaper than imported oil and gas, domestic fuel is at hand. The authors believe that liquid lignite, rather than an alternative, is becoming more and more an imperative.

  3. Reticle storage in microenvironments with extreme clean dry air

    NASA Astrophysics Data System (ADS)

    Gettel, Astrid; Glüer, Detlev; Honold, Alfred

    2012-11-01

    Haze formation on the patterned metal surface of reticles is a known problem for IC manufacturers that can impact device yield and increase operational costs due to the need for more frequent cleaning of the reticles. Storage of reticles in an ultraclean environment can reduce haze formation and reduce operational costs. We examined the contamination levels of a new type of reticle stocker that stores reticles in microenvironments which are continuously purged with extreme clean dry air (XCDA). Each microenvironment consists of twelve vertically stacked reticle storage slots which can be opened at any slot. The design of the microenvironment includes an XCDA supply that provides a homogeneous horizontal flow of XCDA between the reticles. Figure 1. Reduction of contamination levels inside the storage microenvironment as a function of XCDA flow rate. As shown in Fig. 1, continuous XCDA purge reduces the contaminant levels inside the microenvironment. The amount of reduction depends on the XCDA purge flow rate and the chemical species. Volatile organic substances can be reduced by more than two orders of magnitude. Humidity is reduced less because the plastic material of the storage microenvironment incorporates water in its matrix and can release moisture to the extremely dry atmosphere. Chemical filters applied to mini- or microenvironments typically reduce the contaminant levels only by 95-99% and do not reduce the humidity. To pick and place reticles, the reticle storage microenvironment must be opened. The transient contaminant levels inside the empty microenvironment show an increase at the moment when the microenvironment is opened. Under the given conditions, the microenvironment returns to equilibrium levels with a time constant of 105 seconds (see Fig. 2). Similar dynamic response was measured for IPA and acetone. Figure 2. Transient humidity when the storage microenvironment was opened for reticle handling. The impact of handling on reticles stored inside

  4. Development of a rapid screening protocol for selection of strains resistant to spray drying and storage in dry powder.

    PubMed

    Reimann, S; Grattepanche, F; Baggenstos, C; Rezzonico, E; Berger, B; Arigoni, F; Lacroix, C

    2010-06-01

    An efficient screening method for selection of Bifidobacterium longum strains resistant to spray drying and storage was developed based on randomly amplified polymorphic DNA (RAPD) for identification of the best survivors in mixed strains bacterial preparations. Three different primers were used to generate RAPD profiles of 22 B. longum strains. All strains were distinguished according to their RAPD profiles except for the strain NCC2705 and its H(2)O(2) resistant derivative variant. The 22 strains were grouped in 3 batches of 7, 7 and 8 strains and subjected to spray drying and storage at 30 and 37 °C under anaerobic conditions. Batch survival rates after spray drying reached 17.1±4.4%. Strains showing the highest prevalence and/or resistance to storage at 37 °C were selected from individual batches for subsequent spray drying and storage testing. After 67 days of storage, NCC572 was identified as the dominant strain in powder. The stability of strain NCC572 was confirmed by performing single spray drying and storage tests. Out of 22 B. longum strains, a robust strain was identified by combining RAPD with a simultaneous screening test for survival under spray drying and storage. The method allowed a fast screening of B. longum strains in mixture for resistance to spray drying and storage compared to traditional screening procedures carried out with individual strains, in the same conditions. This approach could be applied to other stress conditions.

  5. The Impact of Microbially Influenced Corrosion on Spent Nuclear Fuel and Storage Life

    SciTech Connect

    J. H. Wolfram; R. E. Mizia; R. Jex; L. Nelson; K. M. Garcia

    1996-10-01

    A study was performed to evaluate if microbial activity could be considered a threat to spent nuclear fuel integrity. The existing data regarding the impact of microbial influenced corrosion (MIC) on spent nuclear fuel storage does not allow a clear assessment to be made. In order to identify what further data are needed, a literature survey on MIC was accomplished with emphasis on materials used in nuclear fuel fabrication, e.g., A1, 304 SS, and zirconium. In addition, a survey was done at Savannah River, Oak Ridge, Hanford, and the INEL on the condition of their wet storage facilities. The topics discussed were the SNF path forward, the types of fuel, ramifications of damaged fuel, involvement of microbial processes, dry storage scenarios, ability to identify microbial activity, definitions of water quality, and the use of biocides. Information was also obtained at international meetings in the area of biological mediated problems in spent fuel and high level wastes. Topics dis cussed included receiving foreign reactor research fuels into existing pools, synergism between different microbes and other forms of corrosion, and cross contamination.

  6. Thermal analysis of cold vacuum drying of spent nuclear fuel

    SciTech Connect

    Piepho, M.G.

    1998-07-20

    The thermal analysis examined transient thermal and chemical behavior of the Multi canister Overpack (MCO) container for a broad range of cases that represent the Cold Vacuum Drying (CVD) processes. The cases were defined to consider both normal and off-normal operations at the CVD Facility for an MCO with Mark IV N, Reactor spent fuel in four fuel baskets and one scrap basket. This analysis provides the basis for the MCO thermal behavior at the CVD Facility for its Phase 2 Safety Analysis Report (revision 4).

  7. Fuel Cell Systems for First Lunar Outpost: Reactant Storage Options

    NASA Technical Reports Server (NTRS)

    Nelson, P. A.

    1996-01-01

    A Lunar Surface Power Working Group was formed to review candidate systems for providing power to the first lunar outpost habitat. The working group concluded that the most attractive candidate included a photovoltaic unit, a fuel cell, a regenerator to recycle the reactants, and storage of oxygen and hydrogen gases. Most of the volume (97 percent) and weight (64 percent) are taken up by the reactants and their storage tank. The large volume is difficult to accommodate, and therefore, the working group explored ways of reducing the volume. An alternative approach to providing separate high pressure storage tanks is to use two of the descent stage propellant storage tanks, which would have to be wrapped with graphite fibers to increase their pressure capability. This saves 90 percent of the volume required for storage of fuel cell reactants. Another approach is to use the descent storage propellant tanks for storage of the fuel cell reactants as cryogenic liquids, but his requires a gas liquefication system, increases the solar array by 40 percent, and increases the heat rejection rate by 170 percent compared with storage of reactants as high pressure gases. For a high power system (greater than 20 kW) the larger energy storage requirements would probably favor the cryogenic storage option.

  8. Fuel cell systems for first lunar outpost -- Reactant storage options

    SciTech Connect

    Nelson, P.A.

    1995-06-01

    A Lunar Surface Power Working Group was formed to review candidate systems for providing power to the First Lunar Outpost habitat. The working group met for five days in the fall of 1992 and concluded that the most attractive candidate included a photovoltaic unit, a fuel cell, a regenerator to recycle the reactants, and storage of oxygen and hydrogen gases. Most of the volume (97%) and weight (64%) are taken up by the reactants and their storage tanks. The large volume is difficult to accommodate, and therefore, the working group explored ways of reducing the volume. An alternative approach to providing separate high pressure storage tanks is to use two of the descent stage propellant storage tanks, which would have to be wrapped with graphite fibers to increase their pressure capability. This saves 90% of the volume required for storage of fuel cell reactants. Another approach is to use the descent storage propellant tanks for storage of the fuel cell reactants as cryogenic liquids, but this requires a gas liquefaction system, increases the solar array by 40%, and increases the heat rejection rate by 170% compared with storage of reactants as high pressure gases. For a high power system (>20 kW) the larger energy storage requirement would probably favor the cryogenic storage option.

  9. 11. The work area of a typical fuel storage and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. The work area of a typical fuel storage and transfer basin. The wooden floor was built over the 20-foot deep water-filled basin. Buckets filled with irradiated fuel of dummy slugs in the floor and were hung on trolleys attached to the monorail tracks suspended from the ceiling. 85-H807 - B Reactor, Richland, Benton County, WA

  10. 81. GENERAL VIEW FROM NORTH OF FUEL STORAGE TANK ON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    81. GENERAL VIEW FROM NORTH OF FUEL STORAGE TANK ON SOUTH END OF SLC-3W FUEL APRON. CORNER OF CONTROL SKID VISIBLE ON LEFT. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  11. 82. GENERAL VIEW FROM NORTH OF FUEL STORAGE AND TRANSFER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    82. GENERAL VIEW FROM NORTH OF FUEL STORAGE AND TRANSFER CONTROL SKID (SKID 2) ON SOUTH END OF SLC-3W FUEL APRON - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  12. VIEW OF CRANE LOADING AND UNLOADING AREA OF FUEL STORAGE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF CRANE LOADING AND UNLOADING AREA OF FUEL STORAGE BUILDING (CPP-603). PHOTO TAKEN LOOKING SOUTH. INL PHOTO NUMBER HD-54-17-1. Mike Crane, Photographer, 8/2005 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  13. SOUTH, EAST, NORTH ELEVATIONS AND SECTIONS OF FUEL STORAGE BUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SOUTH, EAST, NORTH ELEVATIONS AND SECTIONS OF FUEL STORAGE BUILDING (CPP-603). INL DRAWING NUMBER 200-0603-61-299-103030. ALTERNATE ID NUMBER 542-31-B-22. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  14. VIEW OF CRANE LOADING AND UNLOADING AREA OF FUEL STORAGE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF CRANE LOADING AND UNLOADING AREA OF FUEL STORAGE BUILDING (CPP-603). PHOTO TAKEN LOOKING NORTH. INL PHOTO NUMBER HD-54-17-4. Mike Crane, Photographer, 8/2005 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  15. CONSTRUCTION PROGRESS PHOTO SHOWING EMPLACEMENT STEEL BEAMS FUEL STORAGE BUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CONSTRUCTION PROGRESS PHOTO SHOWING EMPLACEMENT STEEL BEAMS FUEL STORAGE BUILDING (CPP-603) LOOKING EAST. INL PHOTO NUMBER NRTS-51-1371. Unknown Photographer, 1/31/1951 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  16. INTERIOR OF SECOND FLOOR CONTROL ROOM OF FUEL STORAGE BUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR OF SECOND FLOOR CONTROL ROOM OF FUEL STORAGE BUILDING (CPP-603). PHOTO TAKEN LOOKING SOUTHWEST. INL PHOTO NUMBER HD-54-19-2. Mike Crane, Photographer, 8/2005 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  17. Alkaline fuel cells for prime power and energy storage

    NASA Astrophysics Data System (ADS)

    Stedman, J. K.

    Alkaline fuel cell technology and its application to future space missions requiring high power and energy storage are discussed. Energy densities exceeding 100 watthours per pound and power densities approaching 0.5 pounds per kilowatt are calculated for advanced systems. Materials research to allow reversible operation of cells for energy storage and higher temperature operation for peaking power is warranted.

  18. Combustion gas properties. 2: Natural gas fuel and dry air

    NASA Technical Reports Server (NTRS)

    Wear, J. D.; Jones, R. E.; Trout, A. M.; Mcbride, B. J.

    1985-01-01

    A series of computations has been made to produce the equilibrium temperature and gas composition for natural gas fuel and dry air. The computed tables and figures provide combustion gas property data for pressures from 0.5 to 50 atmospheres and equivalence ratios from 0 to 2.0. Only samples tables and figures are provided in this report. The complete set of tables and figures is provided on four microfiche films supplied with this report.

  19. Drying results of K-Basin fuel element 3128W (run 2)

    SciTech Connect

    Abrefah, J.; Klinger, G.S.; Oliver, B.M.; Marshman, S.C.; MacFarlan, P.J.; Ritter, G.A.; Flament, T.A.

    1998-07-01

    An N-Reactor outer fuel element that had been stored underwater in the Hanford 100 Area K-East Basin was subjected to a combination of low- and high-temperature vacuum drying treatments. These studies are part of a series of tests being conducted by Pacific Northwest National Laboratory on the drying behavior of N-Reactor spent nuclear fuel elements removed from both the K-West and K-East Basins. The drying test series was designed to test fuel elements that ranged from intact to severely damaged. The fuel element discussed in this report was removed from an open K-East canister (3128W) during the first fuel selection campaign conducted in 1995, and has remained in wet storage in the Postirradiation Testing Laboratory (PTL, 327 Building) since that time. Although it was judged to be breached during in-basin (i.e., K-Basin) examinations, visual inspection of this fuel element in the hot cell indicated that it was likely intact. Some scratches on the coating covering the cladding were identified before the furnace test. The drying test was conducted in the Whole Element Furnace Testing System located in G-Cell within the PTL. This test system is composed of three basic systems: the in-cell furnace equipment, the system gas loop, and the analytical instrument package. Element 3128W was subjected to the drying processes based on those proposed under the Integrated Process Strategy, which included a hot drying step. Results of the Pressure Rise and Gas Evolution Tests suggest that most of the free water in the system was released during the extended CVD cycle (68 hr versus 8 hr for the first run). An additional {approximately}0.34 g of water was released during the subsequent HVD phase, characterized by multiple water release peaks, with a principle peak at {approximately}180 C. This additional water is attributed to decomposition of a uranium hydrate (UO{sub 4}{center_dot}4H{sub 2}O/UO{sub 4}{center_dot}2H{sub 2}O) coating that was observed to be covering the surface

  20. Equipment concepts for dry intercask transfer of spent fuel

    SciTech Connect

    Schneider, K.J.

    1983-07-01

    This report documents the results of a study of preconceptual design and analysis of four intercask transfer concepts. The four concepts are: a large shielded cylindrical turntable that contains an integral fuel handling machine (turntable concept); a shielded fuel handling machine under which shipping and storage casks are moved horizontally (shuttle concept); a small hot cell containing equipment for transferring fuel between shipping and storage casks (that enter and leave the cell on carts) in a bifurcated trench (trench concept); and a large hot cell, shielded by an earthen berm, that houses equipment for handling fuel between casks that enter and leave the cell on a single cart (igloo concept). The casks considered in this study are most of the transport casks currently operable in the USA, and the storage casks designated REA-2023 and GNS Castor-V. Exclusive of basic services assumed to be provided at the host site, the design and capital costs are estimated to range from $9 to $13 million. The portion of capital costs for portable equipment (for potential later use at another site) was estimated to range from 70% to 98%, depending on the concept. Increasing portability from a range of 70 to 90% to 98% adds $2 to 4 million to the capital costs. Operating costs are estimated at about $2 million/year for all concepts. Implementation times range from about 18 months for the more conventional systems to 40 months for the more unique systems. Times and costs for relocation to another site are 10 to 14 months and about $1 million, plus shipping costs and costs of new construction at the new site. All concepts have estimated capacities for fuel transfer at least equal to the criterion set for this study. Only the hot cell concepts have capability for recanning or repair of canisters. Some development is believed to be required for the turntable and shuttle concepts, but none for the other two concepts.

  1. Dry compliant seal for phosphoric acid fuel cell

    DOEpatents

    Granata, Jr., Samuel J.; Woodle, Boyd M.

    1990-01-01

    A dry compliant overlapping seal for a phosphoric acid fuel cell preformed f non-compliant Teflon to make an anode seal frame that encircles an anode assembly, a cathode seal frame that encircles a cathode assembly and a compliant seal frame made of expanded Teflon, generally encircling a matrix assembly. Each frame has a thickness selected to accommodate various tolerances of the fuel cell elements and are either bonded to one of the other frames or to a bipolar or end plate. One of the non-compliant frames is wider than the other frames forming an overlap of the matrix over the wider seal frame, which cooperates with electrolyte permeating the matrix to form a wet seal within the fuel cell that prevents process gases from intermixing at the periphery of the fuel cell and a dry seal surrounding the cell to keep electrolyte from the periphery thereof. The frames may be made in one piece, in L-shaped portions or in strips and have an outer perimeter which registers with the outer perimeter of bipolar or end plates to form surfaces upon which flanges of pan shaped, gas manifolds can be sealed.

  2. Microbial Condition of Water Samples from Foreign Fuel Storage Facilities

    SciTech Connect

    Berry, C.J.; Fliermans, C.B.; Santo Domingo, J.

    1997-10-30

    In order to assess the microbial condition of foreign nuclear fuel storage facilities, fourteen different water samples were received from facilities outside the United States that have sent spent nuclear fuel to SRS for wet storage. Each water sample was analyzed for microbial content and activity as determined by total bacteria, viable aerobic bacteria, viable anaerobic bacteria, viable sulfate- reducing bacteria, viable acid-producing bacteria and enzyme diversity. The results for each water sample were then compared to other foreign samples and to data from the receiving basin for off- site fuel (RBOF) at SRS.

  3. Fuel Storage Facility Final Safety Analysis Report. Revision 1

    SciTech Connect

    Linderoth, C.E.

    1984-03-01

    The Fuel Storage Facility (FSF) is an integral part of the Fast Flux Test Facility. Its purpose is to provide long-term storage (20-year design life) for spent fuel core elements used to provide the fast flux environment in FFTF, and for test fuel pins, components and subassemblies that have been irradiated in the fast flux environment. This Final Safety Analysis Report (FSAR) and its supporting documentation provides a complete description and safety evaluation of the site, the plant design, operations, and potential accidents.

  4. A Preliminary Evaluation of Using Fill Materials to Stabilize Used Nuclear Fuel During Storage and Transportation

    SciTech Connect

    Maheras, Steven J.; Best, Ralph; Ross, Steven B.; Lahti, Erik A.; Richmond, David J.

    2012-08-01

    This report contains a preliminary evaluation of potential fill materials that could be used to fill void spaces in and around used nuclear fuel contained in dry storage canisters in order to stabilize the geometry and mechanical structure of the used nuclear fuel during extended storage and transportation after extended storage. Previous work is summarized, conceptual descriptions of how canisters might be filled were developed, and requirements for potential fill materials were developed. Elements of the requirements included criticality avoidance, heat transfer or thermodynamic properties, homogeneity and rheological properties, retrievability, material availability and cost, weight and radiation shielding, and operational considerations. Potential fill materials were grouped into 5 categories and their properties, advantages, disadvantages, and requirements for future testing were discussed. The categories were molten materials, which included molten metals and paraffin; particulates and beads; resins; foams; and grout. Based on this analysis, further development of fill materials to stabilize used nuclear fuel during storage and transportation is not recommended unless options such as showing that the fuel remains intact or canning of used nuclear fuel do not prove to be feasible.

  5. Ductile-to-brittle transition temperature for high-burnup cladding alloys exposed to simulated drying-storage conditions

    NASA Astrophysics Data System (ADS)

    Billone, M. C.; Burtseva, T. A.; Einziger, R. E.

    2013-02-01

    Structural analyses of dry casks containing high-burnup fuel require cladding mechanical properties and failure limits to assess fuel behavior. Pre-storage drying-transfer operations and early stage storage subject cladding to higher temperatures and much higher pressure-induced tensile hoop stresses relative to in-reactor operation and pool storage. Under these conditions, radial hydrides may precipitate during slow cooling and provide an additional embrittlement mechanism as the cladding temperature decreases below the ductile-to-brittle transition temperature (DBTT). A test procedure was developed to simulate the effects of drying-storage temperature histories. Following drying-storage simulation, samples were subjected to ring-compression test (RCT) loading, which was used as a ductility screening test and to simulate pinch-type loading that may occur during cask transport. RCT samples with <2% offset strain prior to >50% wall cracking were assessed as brittle. Prior to testing high-burnup cladding, many tests were conducted with pre-hydrided Zircaloy-4 (Zry-4) and ZIRLO™ to determine target 400 °C hoop stresses for high-burnup rodlets. Zry-4 cladding segments, from a 67-GWd/MTU fuel rod, with 520-620 wppm hydrogen and ZIRLO™ cladding segments from a 70-GWd/MTU fuel rod, with 350-650 wppm hydrogen were defueled and tested. Following drying-storage simulation, the extent of radial-hydride precipitation was characterized by the radial-hydride continuity factor. It was found that the DBTT was dependent on: cladding material, irradiation conditions, and drying-storage histories (stress at maximum temperature). High-burnup ZIRLO™ exhibited higher susceptible to radial-hydride formation and embrittlement than high-burnup Zry-4. It was also observed that uniformly pre-hydrided, non-irradiated cladding was not a good surrogate for high-burnup cladding because of the high density of circumferential hydrides across the wall and the high metal-matrix ductility for

  6. COBRA-SFS (Spent-Fuel Storage) thermal-hydraulic analyses of the CASTOR-1C and REA 2023 BWR storage casks containing consolidated spent fuel

    SciTech Connect

    Rector, D.R.; Cuta, J.M.; Lombardo, N.J.

    1986-12-01

    Consolidation of spent nuclear fuel rods is being considered as one option for more efficient and compact storage of reactor spent fuel assemblies. In this concept, rods from two disassembled spent fuel assemblies will be consolidated in a space originally intended to store a single unconsolidated assembly. The thermal performance of consolidated fuel rods in dry storage, especially in multiassembly storage systems, is one of the major issues that must be addressed prior to implementation. In this study, Pacific Northwest Laboratory researchers performed thermal-hydraulic analyses for both the REA 2023 cask and the CASTOR-1C cask containing either unconsolidated or consolidated BWR spent fuel assemblies. The objective was to determine the effect of consolidating spent fuel assemblies on the temperature distributions within both types of casks. Two major conclusions resulted from this study. First, a lumping technique (combining rods and flow channels), which reduces the number of computational nodes required to model complex multiassembly geometries, could be used for both unconsolidated and consolidated rods with negligible effect on prediction accuracies. Second, with a relatively high thermal conductivity backfill gas (e.g., helium), the predicted peak fuel rod temperature in a canister of consolidated rods generating the same amount of heat as an unconsolidated assembly is essentially the same as the peak temperature in the unconsolidated assembly. In contrast, with a relatively low thermal conductivity backfill gas (e.g., nitrogen), the opposite is true and the predicted peak temperature in a consolidated canister is significantly higher than in an unconsolidated assembly. Therefore, when rods are consolidated, selection of the backfill gas is important in maintaining peak rod temperatures below allowable values for rods with relatively high decay heat generation rates.

  7. Storage, transportation and disposal system for used nuclear fuel assemblies

    DOEpatents

    Scaglione, John M.; Wagner, John C.

    2017-01-10

    An integrated storage, transportation and disposal system for used fuel assemblies is provided. The system includes a plurality of sealed canisters and a cask sized to receive the sealed canisters in side by side relationship. The plurality of sealed canisters include an internal basket structure to receive a plurality of used fuel assemblies. The internal basket structure includes a plurality of radiation-absorbing panels and a plurality of hemispherical ribs generally perpendicular to the canister sidewall. The sealed canisters are received within the cask for storage and transportation and are removed from the cask for disposal at a designated repository. The system of the present invention allows the handling of sealed canisters separately or collectively, while allowing storage and transportation of high burnup fuel and damaged fuel to the designated repository.

  8. Alkaline regenerative fuel cell systems for energy storage

    NASA Technical Reports Server (NTRS)

    Schubert, F. H.; Reid, M. A.; Martin, R. E.

    1981-01-01

    A description is presented of the results of a preliminary design study of a regenerative fuel cell energy storage system for application to future low-earth orbit space missions. The high energy density storage system is based on state-of-the-art alkaline electrolyte cell technology and incorporates dedicated fuel cell and electrolysis cell modules. In addition to providing energy storage, the system can provide hydrogen and oxygen for attitude control of the satellite and for life support. During the daylight portion of the orbit the electrolysis module uses power provided by the solar array to generate H2 and O2 from the product water produced by the fuel cell module. The fuel cell module supplies electrical power during the dark period of the orbit.

  9. Effects of drying and air-dry storage of soils on their capacity for denitrification of nitrate

    SciTech Connect

    Patten, D.K.; Bremner, J.M.; Blackmer, A.M.

    1980-01-01

    The effects of drying and air-dry storage of soils on their capacity for denitrification of nitrate were studied by determining the influence of these pretreatments on the ability of soils to reduce nitrate to gaseous forms of nitrogen (N/sub 2/, N/sub 2/O, and NO) when incubated anaerobically with nitrate for various times. It was found that drying of soils markedly increases their capacity for denitrification of nitrate under anaerobic conditions and that the effect observed increases as the temperature of drying is increased from 25/sup 0/ to 100/sup 0/C. Partial drying of soils and storage of air-dried soils also lead to a significant increase in their ability to denitrify nitrate under anaerobic conditions. Determination of the CO/sub 2/ produced when field-moist, partly dried, air-dried, and air-dried and stored soils were incubated anaerobically with nitrate showed that production of CO/sub 2/ was very highly correlated with production of (N/sub 2/O + N/sub 2/)-N. This suggests that drying and air-dry storage of soils increase their capacity to denitrify nitrate under anaerobic conditions by increasing the amount of soil organic matter readily utilized by denitrifying microorganisms.

  10. Spent Nuclear Fuel (SNF) Project Cold Vacuum Drying (CVD) Facility Operations Manual

    SciTech Connect

    IRWIN, J.J.

    2000-11-18

    The mission of the Spent Nuclear Fuel (SNF) Project Cold Vacuum Drying Facility (CVDF) is to achieve the earliest possible removal of free water from Multi-Canister Overpacks (MCOs). The MCOs contain metallic uranium SNF that have been removed from the 100K Area fuel storage water basins (i.e., the K East and K West Basins) at the US. Department of Energy Hanford Site in Southeastern Washington state. Removal of free water is necessary to halt water-induced corrosion of exposed uranium surfaces and to allow the MCOs and their SNF payloads to be safely transported to the Hanford Site 200 East Area and stored within the SNF Project Canister Storage Building (CSB). The CVDF is located within a few hundred yards of the basins, southwest of the 165KW Power Control Building and the 105KW Reactor Building. The site area required for the facility and vehicle circulation is approximately 2 acres. Access and egress is provided by the main entrance to the 100K inner area using existing roadways. The CVDF will remove free. water from the MCOs to reduce the potential for continued fuel-water corrosion reactions. The cold vacuum drying process involves the draining of bulk water from the MCO and subsequent vacuum drying. The MCO will be evacuated to a pressure of 8 torr or less and backfilled with an inert gas (helium). The MCO will be sealed, leak tested, and then transported to the CSB within a sealed shipping cask. (The MCO remains within the same shipping Cask from the time it enters the basin to receive its SNF payload until it is removed from the Cask by the CSB MCO handling machine.) The CVDF subproject acquired the required process systems, supporting equipment, and facilities. The cold vacuum drying operations result in an MCO containing dried fuel that is prepared for shipment to the CSB by the Cask transportation system. The CVDF subproject also provides equipment to dispose of solid wastes generated by the cold vacuum drying process and transfer process water removed

  11. Spent Nuclear Fuel Dry Transfer System Cold Demonstration Project Final Report

    SciTech Connect

    Christensen, Max R; McKinnon, M. A.

    1999-12-01

    The spent nuclear fuel dry transfer system (DTS) provides an interface between large and small casks and between storage-only and transportation casks. It permits decommissioning of reactor pools after shutdown and allows the use of large storage-only casks for temporary onsite storage of spent nuclear fuel irrespective of reactor or fuel handling limitations at a reactor site. A cold demonstration of the DTS prototype was initiated in August 1996 at the Idaho National Engineering and Environmental Laboratory (INEEL). The major components demonstrated included the fuel assembly handling subsystem, the shield plug/lid handling subsystem, the cask interface subsystem, the demonstration control subsystem, a support frame, and a closed circuit television and lighting system. The demonstration included a complete series of DTS operations from source cask receipt and opening through fuel transfer and closure of the receiving cask. The demonstration included both normal operations and recovery from off-normal events. It was designed to challenge the system to determine whether there were any activities that could be made to jeopardize the activities of another function or its safety. All known interlocks were challenged. The equipment ran smoothly and functioned as designed. A few "bugs" were corrected. Prior to completion of the demonstration testing, a number of DTS prototype systems were modified to apply lessons learned to date. Additional testing was performed to validate the modifications. In general, all the equipment worked exceptionally well. The demonstration also helped confirm cost estimates that had been made at several points in the development of the system.

  12. Storage assembly for spent nuclear fuel

    SciTech Connect

    Lapides, M.E.

    1982-04-27

    A technique for storing spent fuel rods from a nuclear reactor is disclosed herein. This technique utilizes a housing including a closed inner chamber for containing the fuel rods and a thermally conductive member located partially within the housing chamber and partially outside the housing for transferring heat generated by the fuel rods from the chamber to the ambient surroundings. Particulate material is located within the chamber and surrounds the fuel rods contained therein. This material is selected to serve as a heat transfer media between the contained cells and the heat transferring member and, at the same time, stand ready to fuse into a solid mass around the contained cells if the heat transferring member malfunctions or otherwise fails to transfer the generated heat out of the housing chamber in a predetermined way.

  13. Compact Fuel Cell Power Supplies with Safe Fuel Storage

    DTIC Science & Technology

    2004-12-01

    Ammonia Ammonia is produced industrially from natural gas and nitrogen via the Haber - Bosch process in which methane is reformed to make hydrogen...W-h/kg, which is roughly twice that of state-of-the-art batteries. Increasing the capacity of the ammonia -storage tank improves the overall energy...characteristics to consider in the design of an ammonia -storage tank: safety and effective energy density. Reductions in tank wall thickness improve the

  14. Utilization of polysaccharides in the drying of fuel alcohol

    SciTech Connect

    Ladisch, M.R.; Gulati, M.; Westgate, P.

    1995-12-01

    The fuel ethanol industry has grown from an annual production level of about 100 million gallons in 1978 to 1.5 billion gallons today. Technical developments which have paralleled this growth include improvements in fermentation technology, energy integration of fermentation ethanol plants, and use of improved methods of separating ethanol from water. The role of biotechnology in this expanding use of renewable resources for fuel alcohol production will be reviewed. Developments in the concentrating of fermentation ethanol by distillation, and the drying of ethanol by an adsorptive method will be presented in the context of advances in the energetics of product recovery from fermentation broths. The principles of these methods, and their current and future impact on fermentation alcohol production which uses corn will be discussed.

  15. COMPLETION OF THE FIRST INTEGRATED SPENT NUCLEAR FUEL TRANSSHIPMENT/INTERIM STORAGE FACILITY IN NW RUSSIA

    SciTech Connect

    Dyer, R.S.; Barnes, E.; Snipes, R.L.; Hoeibraaten, S.; Gran, H.C.; Foshaug, E.; Godunov, V.

    2003-02-27

    Northwest and Far East Russia contain large quantities of unsecured spent nuclear fuel (SNF) from decommissioned submarines that potentially threaten the fragile environments of the surrounding Arctic and North Pacific regions. The majority of the SNF from the Russian Navy, including that from decommissioned nuclear submarines, is currently stored in on-shore and floating storage facilities. Some of the SNF is damaged and stored in an unstable condition. Existing Russian transport infrastructure and reprocessing facilities cannot meet the requirements for moving and reprocessing this amount of fuel. Additional interim storage capacity is required. Most of the existing storage facilities being used in Northwest Russia do not meet health and safety, and physical security requirements. The United States and Norway are currently providing assistance to the Russian Federation (RF) in developing systems for managing these wastes. If these wastes are not properly managed, they could release significant concentrations of radioactivity to these sensitive environments and could become serious global environmental and physical security issues. There are currently three closely-linked trilateral cooperative projects: development of a prototype dual-purpose transport and storage cask for SNF, a cask transshipment interim storage facility, and a fuel drying and cask de-watering system. The prototype cask has been fabricated, successfully tested, and certified. Serial production is now underway in Russia. In addition, the U.S. and Russia are working together to improve the management strategy for nuclear submarine reactor compartments after SNF removal.

  16. Crude oil and finished fuel storage stability: An annotated review

    SciTech Connect

    Whisman, M.L.; Anderson, R.P.; Woodward, P.W.; Giles, H.N.

    1991-01-01

    A state-of-the-art review and assessment of storage effects on crude oil and product quality was undertaken through a literature search by computer accessing several data base sources. Pertinent citations from that literature search are tabulated for the years 1980 to the present. This 1990 revision supplements earlier reviews by Brinkman and others which covered stability publications through 1979 and an update in 1983 by Goetzinger and others that covered the period 1952--1982. For purposes of organization, citations are listed in the current revision chronologically starting with the earliest 1980 publications. The citations have also been divided according to primary subject matter. Consequently 11 sections appear including: alternate fuels, gasoline, distillate fuel, jet fuel, residual fuel, crude oil, biodegradation, analyses, reaction mechanisms, containment, and handling and storage. Each section contains a brief narrative followed by all the citations for that category.

  17. West Valley facility spent fuel handling, storage, and shipping experience

    SciTech Connect

    Bailey, W.J.

    1990-11-01

    The result of a study on handling and shipping experience with spent fuel are described in this report. The study was performed by Pacific Northwest Laboratory (PNL) and was jointly sponsored by the US Department of Energy (DOE) and the Electric Power Research Institute (EPRI). The purpose of the study was to document the experience with handling and shipping of relatively old light-water reactor (LWR) fuel that has been in pool storage at the West Valley facility, which is at the Western New York Nuclear Service Center at West Valley, New York and operated by DOE. A subject of particular interest in the study was the behavior of corrosion product deposits (i.e., crud) deposits on spent LWR fuel after long-term pool storage; some evidence of crud loosening has been observed with fuel that was stored for extended periods at the West Valley facility and at other sites. Conclusions associated with the experience to date with old spent fuel that has been stored at the West Valley facility are presented. The conclusions are drawn from these subject areas: a general overview of the West Valley experience, handling of spent fuel, storing of spent fuel, rod consolidation, shipping of spent fuel, crud loosening, and visual inspection. A list of recommendations is provided. 61 refs., 4 figs., 5 tabs.

  18. Hydrogen Storage Needs for Early Motive Fuel Cell Markets

    SciTech Connect

    Kurtz, J.; Ainscough, C.; Simpson, L.; Caton, M.

    2012-11-01

    The National Renewable Energy Laboratory's (NREL) objective for this project is to identify performance needs for onboard energy storage of early motive fuel cell markets by working with end users, manufacturers, and experts. The performance needs analysis is combined with a hydrogen storage technology gap analysis to provide the U.S. Department of Energy (DOE) Fuel Cell Technologies Program with information about the needs and gaps that can be used to focus research and development activities that are capable of supporting market growth.

  19. NUHOMS modular spent-fuel storage system: Performance testing

    SciTech Connect

    Strope, L.A.; McKinnon, M.A. ); Dyksterhouse, D.J.; McLean, J.C. )

    1990-09-01

    This report documents the results of a heat transfer and shielding performance evaluation of the NUTECH HOrizontal MOdular Storage (NUHOMS{reg sign}) System utilized by the Carolina Power and Light Co. (CP L) in an Independent Spent Fuel Storage Installation (ISFSI) licensed by the US Nuclear Regulatory Commission (NRC). The ISFSI is located at CP L's H. B. Robinson Nuclear Plant (HBR) near Hartsville, South Carolina. The demonstration included testing of three modules, first with electric heaters and then with spent fuel. The results indicated that the system was conservatively designed, with all heat transfer and shielding design criteria easily met. 5 refs., 45 figs., 9 tabs.

  20. Bioventing to treat fuel spills from underground storage tanks

    SciTech Connect

    Kampbell, D.H.; Wilson, J.T.

    1991-01-01

    Bioventilation is a procedure to cleanse soil gas of volatile fuel hydrocarbons originating from storage tank leaks. The rate of vapor degradation is a controlling parameter in the design of a bioventing system. A laboratory microcosm procedure using sandy soil from an aviation gasoline spill site was used to measure relative kinetics of some fuel vapors. (Copyright (c) 1991 Elsevier Science Publishers B.V.)

  1. Spent nuclear fuel canister storage building conceptual design report

    SciTech Connect

    Swenson, C.E.

    1996-01-01

    This Conceptual Design Report provides the technical basis for the Spent Nuclear Fuels Project, Canister Storage Building, and as amended by letter (correspondence number 9555700, M.E. Witherspoon to E.B. Sellers, ``Technical Baseline and Updated Cost Estimate for the Canister Storage Building``, dated October 24, 1995), includes the project cost baseline and Criteria to be used as the basis for starting detailed design in fiscal year 1995.

  2. Benchmarking criticality analysis of TRIGA fuel storage racks.

    PubMed

    Robinson, Matthew Loren; DeBey, Timothy M; Higginbotham, Jack F

    2017-01-01

    A criticality analysis was benchmarked to sub-criticality measurements of the hexagonal fuel storage racks at the United States Geological Survey TRIGA MARK I reactor in Denver. These racks, which hold up to 19 fuel elements each, are arranged at 0.61m (2 feet) spacings around the outer edge of the reactor. A 3-dimensional model was created of the racks using MCNP5, and the model was verified experimentally by comparison to measured subcritical multiplication data collected in an approach to critical loading of two of the racks. The validated model was then used to show that in the extreme condition where the entire circumference of the pool was lined with racks loaded with used fuel the storage array is subcritical with a k value of about 0.71; well below the regulatory limit of 0.8. A model was also constructed of the rectangular 2×10 fuel storage array used in many other TRIGA reactors to validate the technique against the original TRIGA licensing sub-critical analysis performed in 1966. The fuel used in this study was standard 20% enriched (LEU) aluminum or stainless steel clad TRIGA fuel.

  3. Development of a novel ultrasonic temperature probe for long-term monitoring of dry cask storage systems

    SciTech Connect

    Bakhtiari, S.; Wang, K.; Elmer, T. W.; Koehl, E.; Raptis, A. C.

    2013-01-25

    With the recent cancellation of the Yucca Mountain repository and the limited availability of wet storage utilities for spent nuclear fuel (SNF), more attention has been directed toward dry cask storage systems (DCSSs) for long-term storage of SNF. Consequently, more stringent guidelines have been issued for the aging management of dry storage facilities that necessitate monitoring of the conditions of DCSSs. Continuous health monitoring of DCSSs based on temperature variations is one viable method for assessing the integrity of the system. In the present work, a novel ultrasonic temperature probe (UTP) is being tested for long-term online temperature monitoring of DCSSs. Its performance was evaluated and compared with type N thermocouple (NTC) and resistance temperature detector (RTD) using a small-scale dry storage canister mockup. Our preliminary results demonstrate that the UTP system developed at Argonne is able to achieve better than 0.8 Degree-Sign C accuracy, tested at temperatures of up to 400 Degree-Sign C. The temperature resolution is limited only by the sampling rate of the current system. The flexibility of the probe allows conforming to complex geometries thus making the sensor particularly suited to measurement scenarios where access is limited.

  4. Development of a novel ultrasonic temperature probe for long-term monitoring of dry cask storage systems

    NASA Astrophysics Data System (ADS)

    Bakhtiari, S.; Wang, K.; Elmer, T. W.; Koehl, E.; Raptis, A. C.

    2013-01-01

    With the recent cancellation of the Yucca Mountain repository and the limited availability of wet storage utilities for spent nuclear fuel (SNF), more attention has been directed toward dry cask storage systems (DCSSs) for long-term storage of SNF. Consequently, more stringent guidelines have been issued for the aging management of dry storage facilities that necessitate monitoring of the conditions of DCSSs. Continuous health monitoring of DCSSs based on temperature variations is one viable method for assessing the integrity of the system. In the present work, a novel ultrasonic temperature probe (UTP) is being tested for long-term online temperature monitoring of DCSSs. Its performance was evaluated and compared with type N thermocouple (NTC) and resistance temperature detector (RTD) using a small-scale dry storage canister mockup. Our preliminary results demonstrate that the UTP system developed at Argonne is able to achieve better than 0.8 °C accuracy, tested at temperatures of up to 400 °C. The temperature resolution is limited only by the sampling rate of the current system. The flexibility of the probe allows conforming to complex geometries thus making the sensor particularly suited to measurement scenarios where access is limited.

  5. Chemical Hydrides for Hydrogen Storage in Fuel Cell Applications

    SciTech Connect

    Devarakonda, Maruthi N.; Brooks, Kriston P.; Ronnebro, Ewa; Rassat, Scot D.; Holladay, Jamelyn D.

    2012-04-16

    Due to its high hydrogen storage capacity (up to 19.6% by weight for the release of 2.5 molar equivalents of hydrogen gas) and its stability under typical ambient conditions, ammonia borane (AB) is a promising material for chemical hydrogen storage for fuel cell applications in transportation sector. Several systems models for chemical hydride materials such as solid AB, liquid AB and alane were developed and evaluated at PNNL to determine an optimal configuration that would meet the 2010 and future DOE targets for hydrogen storage. This paper presents an overview of those systems models and discusses the simulation results for various transient drive cycle scenarios.

  6. Storage of LWR spent fuel in air. Volume 3, Results from exposure of spent fuel to fluorine-contaminated air

    SciTech Connect

    Cunningham, M.E.; Thomas, L.E.

    1995-06-01

    The Behavior of Spent Fuel in Storage (BSFS) Project has conducted research to develop data on spent nuclear fuel (irradiated U0{sub 2}) that could be used to support design, licensing, and operation of dry storage installations. Test Series B conducted by the BSFS Project was designed as a long-term study of the oxidation of spent fuel exposed to air. It was discovered after the exposures were completed in September 1990 that the test specimens had been exposed to an atmosphere of bottled air contaminated with an unknown quantity of fluorine. This exposure resulted in the test specimens reacting with both the oxygen and the fluorine in the oven atmospheres. The apparent source of the fluorine was gamma radiation-induced chemical decomposition of the fluoro-elastomer gaskets used to seal the oven doors. This chemical decomposition apparently released hydrofluoric acid (HF) vapor into the oven atmospheres. Because the Test Series B specimens were exposed to a fluorine-contaminated oven atmosphere and reacted with the fluorine, it is recommended that the Test Series B data not be used to develop time-temperature limits for exposure of spent nuclear fuel to air. This report has been prepared to document Test Series B and present the collected data and observations.

  7. REVIEW OF FAST FLUX TEST FACILITY (FFTF) FUEL EXPERIMENTS FOR STORAGE IN INTERIM STORAGE CASKS (ISC)

    SciTech Connect

    CHASTAIN, S.A.

    2005-10-24

    Appendix H, Section H.3.3.10.11 of the Final Safety Analysis Report (FSAR), provides the limits to be observed for fueled components authorized for storage in the Fast Flux Test Facility (FFTF) spent fuel storage system. Currently, the authorization basis allows standard driver fuel assemblies (DFA), as described in the FSAR Chapter 17, Section 17.5.3.1, to be stored provided decay power per assembly is {le} 250 watts, post-irradiation time is four years minimum, average assembly burn-up is 150,000 MWD/MTHM maximum and the pre-irradiation enrichment is 29.3% maximum (per H.3.3.10.11). In addition, driver evaluation (DE), core characterizer assemblies (CCA), and run-to-cladding-breach (RTCB) assemblies are included based on their similarities to a standard DFA. Ident-69 pin containers with fuel pins from these DFAs can also be stored. Section H.3.3.10.11 states that fuel types outside the specification criteria above will be addressed on a case-by-case basis. There are many different types of fuel and blanket experiments that were irradiated in the FFTF which now require offload to the spent fuel storage system. Two reviews were completed for a portion of these special type fuel components to determine if placement into the Core Component Container (CCC)/Interim Storage Cask (ISC) would require any special considerations or changes to the authorization basis. Project mission priorities coupled with availability of resources and analysts prevented these evaluations from being completed as a single effort. Areas of review have included radiological accident release consequences, radiological shielding adequacy, criticality safety, thermal limits, confinement, and stress. The results of these reviews are available in WHC-SD-FF-RPT-005, Rev. 0 and 1, ''Review of FFTF Fuel Experiments for Storage at ISA'', (Reference I), which subsequently allowed a large portion of these components to be included in the authorization basis (Table H.3.3-21). The report also identified

  8. 16. Forge building and fuel storage shed from the southwest, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. Forge building and fuel storage shed from the southwest, c.1918 Photocopied from a photograph in the collection of William F. Applegate, 43 Grandview Avenue, Wallingford, Connecticut. - Eli Whitney Armory, West of Whitney Avenue, Armory Street Vicinity, Hamden, New Haven County, CT

  9. Signatures of Extended Storage of Used Nuclear Fuel in Casks

    SciTech Connect

    Rauch, Eric Benton

    2016-09-28

    As the amount of used nuclear fuel continues to grow, more and more used nuclear fuel will be transferred to storage casks. A consolidated storage facility is currently in the planning stages for storing these casks, where at least 10,000 MTHM of fuel will be stored. This site will have potentially thousands of casks once it is operational. A facility this large presents new safeguards and nuclear material accounting concerns. A new signature based on the distribution of neutron sources and multiplication within casks was part of the Department of Energy Office of Nuclear Energy’s Material Protection, Account and Control Technologies (MPACT) campaign. Under this project we looked at fingerprinting each cask's neutron signature. Each cask has a unique set of fuel, with a unique spread of initial enrichment, burnup, cooling time, and power history. The unique set of fuel creates a unique signature of neutron intensity based on the arrangement of the assemblies. The unique arrangement of neutron sources and multiplication produces a reliable and unique identification of the cask that has been shown to be relatively constant over long time periods. The work presented here could be used to restore from a loss of continuity of knowledge at the storage site. This presentation will show the steps used to simulate and form this signature from the start of the effort through its conclusion in September 2016.

  10. 78 FR 56947 - Prairie Island; Independent Spent Fuel Storage Installation; Notice of Docketing of Amendment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-16

    ... COMMISSION Prairie Island; Independent Spent Fuel Storage Installation; Notice of Docketing of Amendment... Information AGENCY: Nuclear Regulatory Commission. ACTION: License amendment request; opportunity to request a... spent fuel storage installation located in Welch, Minnesota. DATES: Requests for a hearing or...

  11. 10 CFR 72.214 - List of approved spent fuel storage casks.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General License for Storage of Spent Fuel at Power Reactor Sites § 72.214 List of approved...

  12. 10 CFR 72.214 - List of approved spent fuel storage casks.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General License for Storage of Spent Fuel at Power Reactor Sites § 72.214 List of approved...

  13. Partial Defect Verification of Spent Fuel Assemblies by PDET: Principle and Field Testing in Interim Spent Fuel Storage Facility (CLAB) in Sweden

    SciTech Connect

    Ham, Y.S.; Kerr, P.; Sitaraman, S.; Swan, R.; Rossa, R.; Liljenfeldt, H.

    2015-07-01

    The need for the development of a credible method and instrument for partial defect verification of spent fuel has been emphasized over a few decades in the safeguards communities as the diverted spent fuel pins can be the source of nuclear terrorism or devices. The need is increasingly more important and even urgent as many countries have started to transfer spent fuel to so called 'difficult-to-access' areas such as dry storage casks, reprocessing or geological repositories. Partial defect verification is required by IAEA before spent fuel is placed into 'difficult-to-access' areas. Earlier, Lawrence Livermore National Laboratory (LLNL) has reported the successful development of a new, credible partial defect verification method for pressurized water reactor (PWR) spent fuel assemblies without use of operator data, and further reported the validation experiments using commercial spent fuel assemblies with some missing fuel pins. The method was found to be robust as the method is relatively invariant to the characteristic variations of spent fuel assemblies such as initial fuel enrichment, cooling time, and burn-up. Since then, the PDET system has been designed and prototyped for 17x17 PWR spent fuel assemblies, complete with data acquisition software and acquisition electronics. In this paper, a summary description of the PDET development followed by results of the first successful field testing using the integrated PDET system and actual spent fuel assemblies performed in a commercial spent fuel storage site, known as Central Interim Spent fuel Storage Facility (CLAB) in Sweden will be presented. In addition to partial defect detection initial studies have determined that the tool can be used to verify the operator declared average burnup of the assembly as well as intra-assembly burnup levels. (authors)

  14. Recommendations on Fuel Parameters for Standard Technical Specifications for Spent Fuel Storage Casks

    SciTech Connect

    Bowman, S.M.

    2001-03-08

    The U.S. Nuclear Regulatory Commission (NRC) is currently reviewing the technical specifications for spent fuel storage casks in an effort to develop standard technical specifications (STS) that define the allowable spent nuclear fuel (SNF) contents. One of the objectives of the review is to minimize the level of detail in the STS that define the acceptable fuel types. To support this initiative, this study has been performed to identify potential fuel specification parameters needed for criticality safety and radiation shielding analysis and rank their importance relative to a potential compromise of the margin of safety.

  15. 30 CFR 75.1912 - Fire suppression systems for permanent underground diesel fuel storage facilities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... underground diesel fuel storage facilities. 75.1912 Section 75.1912 Mineral Resources MINE SAFETY AND HEALTH... Diesel-Powered Equipment § 75.1912 Fire suppression systems for permanent underground diesel fuel storage... permanent underground diesel fuel storage facility. (1) Alternate types of fire suppression systems shall...

  16. 77 FR 24585 - List of Approved Spent Fuel Storage Casks: HI-STORM 100, Revision 8

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-25

    ... 3150-AJ05 List of Approved Spent Fuel Storage Casks: HI-STORM 100, Revision 8 AGENCY: Nuclear... amends the NRC's spent fuel storage regulations by revising the Holtec International HI-STORM 100 System... International HI-STORM 100 System listing within the ``List of Approved Spent Fuel Storage Casks'' to...

  17. 78 FR 32077 - List of Approved Spent Fuel Storage Casks: MAGNASTOR® System

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-29

    ... COMMISSION 10 CFR Part 72 RIN 3150-AJ22 List of Approved Spent Fuel Storage Casks: MAGNASTOR System AGENCY... Commission (NRC) is withdrawing a direct final rule that would have revised its spent fuel storage... ``List of Approved Spent Fuel Storage Casks.'' The NRC is taking this action because it has received...

  18. 78 FR 40199 - Draft Spent Fuel Storage and Transportation Interim Staff Guidance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-03

    ... COMMISSION Draft Spent Fuel Storage and Transportation Interim Staff Guidance AGENCY: Nuclear Regulatory... Regulatory Commission (NRC) requests public comment on Draft Spent Fuel Storage and Transportation Interim... Integrity for Continued Storage of High Burnup Fuel Beyond 20 Years.'' The draft SFST-ISG provides...

  19. 77 FR 60482 - Yankee Atomic Electric Company; Yankee Rowe Independent Spent Fuel Storage Installation, Staff...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-03

    ... COMMISSION Yankee Atomic Electric Company; Yankee Rowe Independent Spent Fuel Storage Installation, Staff Evaluation; Exemption 1.0 Background Yankee Atomic Electric Company (YAEC, the licensee) is the holder of... for the storage of spent fuel in an Independent Spent Fuel Storage Installation (ISFSI) to...

  20. Drying and storage effects on poly(ethylene glycol) hydrogel mechanical properties and bioactivity.

    PubMed

    Luong, P T; Browning, M B; Bixler, R S; Cosgriff-Hernandez, E

    2014-09-01

    Hydrogels based on poly(ethylene glycol) (PEG) are increasingly used in biomedical applications because of their ability to control cell-material interactions by tuning hydrogel physical and biological properties. Evaluation of stability after drying and storage are critical in creating an off-the-shelf biomaterial that functions in vivo according to original specifications. However, there has not been a study that systematically investigates the effects of different drying conditions on hydrogel compositional variables. In the first part of this study, PEG-diacrylate hydrogels underwent common processing procedures (vacuum-drying, lyophilizing, hydrating then vacuum-drying), and the effect of this processing on the mechanical properties and swelling ratios was measured. Significant changes in compressive modulus, tensile modulus, and swelling ratio only occurred for select processed hydrogels. No consistent trends were observed after processing for any of the formulations tested. The effect of storage conditions on cell adhesion and spreading on collagen- and streptococcal collagen-like protein (Scl2-2)-PEG-diacrylamide hydrogels was then evaluated to characterize bioactivity retention after storage. Dry storage conditions preserved bioactivity after 6 weeks of storage; whereas, storage in PBS significantly reduced bioactivity. This loss of bioactivity was attributed to ester hydrolysis of the protein linker, acrylate-PEG-N-hydroxysuccinimide. These studies demonstrate that these processing methods and dry storage conditions may be used to prepare bioactive PEG hydrogel scaffolds with recoverable functionality after storage.

  1. Drying and Storage Effects on Poly(ethylene glycol) Hydrogel Mechanical Properties and Bioactivity

    PubMed Central

    Luong, P.T.; Browning, M.B.; Bixler, R.S.; Cosgriff-Hernandez, E.

    2014-01-01

    Hydrogels based on poly(ethylene glycol) (PEG) are increasingly used in biomedical applications due to the ability to control cell-material interactions by tuning hydrogel physical and biological properties. Evaluation of stability after drying and storage are critical in creating an off-the-shelf biomaterial that functions in vivo according to original specifications. However, there has not been a study that systematically investigates the effects of different drying conditions and hydrogel compositional variables. In the first part of this study, PEG-diacrylate hydrogels underwent common processing procedures (vacuum-drying, lyophilizing, hydrating then vacuum-drying) and the effect of this processing on the mechanical properties and swelling ratios was measured. Significant changes in compressive modulus, tensile modulus, and swelling ratio only occurred for select processed hydrogels. No consistent trends were observed after processing for any of the formulations tested. The effect of storage conditions on cell adhesion and spreading on collagen- and streptococcal collagen-like protein (Scl2-2)-PEG-diacrylamide hydrogels was then evaluated to characterize bioactivity retention after storage. Dry storage conditions preserved bioactivity after 6 weeks of storage; whereas, storage in PBS significantly reduced bioactivity. This loss of bioactivity was attributed to ester hydrolysis of the protein linker, acrylate-PEG-N-hydroxysuccinimide. These studies demonstrate that these processing methods and dry storage conditions may be used to prepare bioactive PEG hydrogel scaffolds with recoverable functionality after storage. PMID:24123725

  2. Safeguards for spent fuel in an irretrievable storage facility

    SciTech Connect

    Richter, B.; Stein, G. )

    1992-01-01

    Ultimately, high-level waste from the reprocessing of German spent fuel, spent light water reactor (LWR) fuel assemblies that will not be reprocessed, and spent THTR-300 fuel will be disposed of in a geologic repository in the Gorleben salt dome, provided it will be licensed; the exploration of the salt dome is under way. Because of its fissile material content, particularly plutonium, the International Atomic Energy Agency will not release spent fuel from safeguards, although the irradiated material will be packaged in huge containers and irretrievably buried in the salt. International safeguards in an irretrievable storage facility will have to be designed accordingly. This paper discusses various safeguards aspects, investigations, and results. Technical aspects were presented in a previous paper.

  3. Changing the Rules on Fuel Export at Sellafield's First Fuel Storage Pond - 12065

    SciTech Connect

    Carlisle, Derek

    2012-07-01

    The Pile Fuel Storage Pond (PFSP) was built in 1949/50 to receive, store and de-can fuel and isotopes from the Windscale Piles. Following closure of the Piles in 1957, plant operations were scaled down until fuel processing eventually ceased in 1962. The facility has held an inventory of metal fuel both from the Piles and from other programmes since that time. The pond is currently undergoing remediation and removal of the fuel is a key step in that process, unfortunately the fuel export infrastructure on the plant is no longer functional and due to the size and limited lifting capability, the plant is not compatible with today's large volume heavy export flasks. The baseline scheme for the plant is to package fuel into a small capacity flask and transfer it to another facility for treatment and repackaging into a flask compatible with other facilities on site. Due to programme priorities the repackaging facility is not available to do this work for several years causing a delay to the work. In an effort accelerate the programme the Metal Fuel Pilot Project (MFPP) was initiated to challenge the norms for fuel transfer and develop a new methodology for transferring the fuel. In developing a transfer scheme the team had to overcome challenges associated with unknown fuel condition, transfers outside of bulk containment, pyro-phoricity and oxidisation hazards as well as developing remote control and recovery systems for equipment not designed for this purpose. A combination of novel engineering and enhanced operational controls were developed which resulted in the successful export of the first fuel to leave the Pile Fuel Storage Pond in over 40 years. The learning from the pilot project is now being considered by the main project team to see how the new methodology can be applied to the full inventory of the pond. (author)

  4. Unitized Regenerative Fuel Cell System Gas Storage-Radiator Development

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth A.; Jakupta, Ian

    2005-01-01

    High-energy-density regenerative fuel cell systems that are used for energy storage require novel approaches to integrating components in order to preserve mass and volume. A lightweight unitized regenerative fuel cell (URFC) energy storage system concept is being developed at the NASA Glenn Research Center. This URFC system minimizes mass by using the surface area of the hydrogen and oxygen storage tanks as radiating heat surfaces for overall thermal control of the system. The waste heat generated by the URFC stack during charging and discharging is transferred from the cell stack to the surface of each tank by loop heat pipes, which are coiled around each tank and covered with a thin layer of thermally conductive carbon composite. The thin layer of carbon composite acts as a fin structure that spreads the heat away from the heat pipe and across the entire tank surface. Two different-sized commercial-grade composite tanks were constructed with integral heat pipes and tested in a thermal vacuum chamber to examine the feasibility of using the storage tanks as system radiators. The storage tank-radiators were subjected to different steady-state heat loads and varying heat load profiles. The surface emissivity and specific heat capacity of each tank were calculated. In the future, the results will be incorporated into a model that simulates the performance of similar radiators using lightweight, spacerated carbon composite tanks.

  5. 78 FR 67348 - Invitation for Public Comment on Draft Test Plan for the High Burnup Dry Storage Cask Research...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-12

    ... Invitation for Public Comment on Draft Test Plan for the High Burnup Dry Storage Cask Research and... notice of request for public comment on its draft test plan for the High Burnup Dry Storage Cask Research... of dry storage cask systems and experiments would be beneficial. A draft test plan for the...

  6. Spent nuclear fuel storage -- Performance tests and demonstrations

    SciTech Connect

    McKinnon, M.A.; DeLoach, V.A.

    1993-04-01

    This report summarizes the results of heat transfer and shielding performance tests and demonstrations conducted from 1983 through 1992 by or in cooperation with the US Department of Energy (DOE), Office of Commercial Radioactive Waste Management (OCRWM). The performance tests consisted of 6 to 14 runs involving one or two loadings, usually three backfill environments (helium, nitrogen, and vacuum backfills), and one or two storage system orientations. A description of the test plan, spent fuel load patterns, results from temperature and dose rate measurements, and fuel integrity evaluations are contained within the report.

  7. Fail-safe storage rack for irradiated fuel rod assemblies

    DOEpatents

    Lewis, Donald R.

    1993-01-01

    A fail-safe storage rack is provided for interim storage of spent but radioactive nuclear fuel rod assemblies. The rack consists of a checkerboard array of substantially square, elongate receiving tubes fully enclosed by a double walled container, the outer wall of which is imperforate for liquid containment and the inner wall of which is provided with perforations for admitting moderator liquid flow to the elongate receiving tubes, the liquid serving to take up waste heat from the stored nuclear assemblies and dissipate same to the ambient liquid reservoir. A perforated cover sealing the rack facilitates cooling liquid entry and dissipation.

  8. Fail-safe storage rack for irradiated fuel rod assemblies

    DOEpatents

    Lewis, D.R.

    1993-03-23

    A fail-safe storage rack is provided for interim storage of spent but radioactive nuclear fuel rod assemblies. The rack consists of a checkerboard array of substantially square, elongate receiving tubes fully enclosed by a double walled container, the outer wall of which is imperforate for liquid containment and the inner wall of which is provided with perforations for admitting moderator liquid flow to the elongate receiving tubes, the liquid serving to take up waste heat from the stored nuclear assemblies and dissipate same to the ambient liquid reservoir. A perforated cover sealing the rack facilitates cooling liquid entry and dissipation.

  9. Energy Storage: Batteries and Fuel Cells for Exploration

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle A.; Miller, Thomas B.; Hoberecht, Mark A.; Baumann, Eric D.

    2007-01-01

    NASA's Vision for Exploration requires safe, human-rated, energy storage technologies with high energy density, high specific energy and the ability to perform in a variety of unique environments. The Exploration Technology Development Program is currently supporting the development of battery and fuel cell systems that address these critical technology areas. Specific technology efforts that advance these systems and optimize their operation in various space environments are addressed in this overview of the Energy Storage Technology Development Project. These technologies will support a new generation of more affordable, more reliable, and more effective space systems.

  10. Fail-safe storage rack for fuel rod assemblies

    SciTech Connect

    Lewis, D.R.

    1991-12-31

    This report discusses a fail-safe storage rack which is provided for interim storage of spent but radioactive nuclear fuel rod assemblies. The rack consists of a checkerboard array of substantially square, elongate receiving tubes fully enclosed by a double walled container, the outer wall of which is imperforate for liquid containment and the inner wall of which is provided with perforations for admitting moderator liquid flow to the elongate receiving tubes, the liquid serving to take up waste heat from the stored nuclear assemblies and dissipate same to the ambient liquid reservoir. A perforated cover sealing the rack facilitates cooling liquid entry and dissipation.

  11. Computational Fluid Dynamics Best Practice Guidelines in the Analysis of Storage Dry Cask

    SciTech Connect

    Zigh, A.; Solis, J.

    2008-07-01

    Computational fluid dynamics (CFD) methods are used to evaluate the thermal performance of a dry cask under long term storage conditions in accordance with NUREG-1536 [NUREG-1536, 1997]. A three-dimensional CFD model was developed and validated using data for a ventilated storage cask (VSC-17) collected by Idaho National Laboratory (INL). The developed Fluent CFD model was validated to minimize the modeling and application uncertainties. To address modeling uncertainties, the paper focused on turbulence modeling of buoyancy driven air flow. Similarly, in the application uncertainties, the pressure boundary conditions used to model the air inlet and outlet vents were investigated and validated. Different turbulence models were used to reduce the modeling uncertainty in the CFD simulation of the air flow through the annular gap between the overpack and the multi-assembly sealed basket (MSB). Among the chosen turbulence models, the validation showed that the low Reynolds k-{epsilon} and the transitional k-{omega} turbulence models predicted the measured temperatures closely. To assess the impact of pressure boundary conditions used at the air inlet and outlet channels on the application uncertainties, a sensitivity analysis of operating density was undertaken. For convergence purposes, all available commercial CFD codes include the operating density in the pressure gradient term of the momentum equation. The validation showed that the correct operating density corresponds to the density evaluated at the air inlet condition of pressure and temperature. Next, the validated CFD method was used to predict the thermal performance of an existing dry cask storage system. The evaluation uses two distinct models: a three-dimensional and an axisymmetrical representation of the cask. In the 3-D model, porous media was used to model only the volume occupied by the rodded region that is surrounded by the BWR channel box. In the axisymmetric model, porous media was used to model

  12. Cholesterol oxidation and astaxanthin degradation in shrimp during sun drying and storage.

    PubMed

    Hernández Becerra, Josafat A; Ochoa Flores, Angélica A; Valerio-Alfaro, Gerardo; Soto-Rodriguez, Ida; Rodríguez-Estrada, María T; García, Hugo S

    2014-02-15

    Dried salted shrimps are made from raw shrimps, which are cooked and dried under direct sunlight. The preparation and storage include treatments and conditions that can promote oxidative changes in different components. The aim of this study was to monitor the formation of major cholesterol oxidation products and the changes in the astaxanthin content and fatty acid profile in dried salted shrimp during cooking, sun drying and storage. During sun drying, most of the astaxanthin (75%) was degraded in cooked shrimp, while cholesterol oxidation products (COPs) showed a dramatic increase (8.6-fold), reaching a total concentration of 372.9 ± 16.3 μg/g of lipids. Further storage favoured both astaxanthin degradation (83%) and COPs formation (886.6 ± 97.9 μg/g of lipids after 90 days of storage). The high degradation of astaxanthin and the elevated formation of COPs during sun drying and storage indicate the necessity to re-evaluate the processing and storage conditions of salted dried shrimp.

  13. Rapid determination of wood fuel moisture content using a microwave oven for drying

    SciTech Connect

    Harris, R.A.

    1982-10-01

    A method of determining moisture content (MC) of wood fuel using a microwave oven for drying the wood was evaluated by drying paired samples of five different wood fuel types in a microwave oven and a conventional oven. When compared to the conventional oven drying method, the microwave technique produces consistently lower MC determinations, although the differences are less than 1 percent. The advantage of the microwave technique is the speed at which MC determinations can be determined (less than 15 minutes). Schedules for drying five wood fuel types are presented. (Refs. 7).

  14. 20. Interior view of fuel storage pit or vault adjacent ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. Interior view of fuel storage pit or vault adjacent to Test Cell 9 in Component Test Laboratory (T-27), looking west. Photograph shows upgraded instrumentation, piping, tanks, and technological modifications installed in 1997-99 to accommodate component testing requirements for the Atlas V missile. - Air Force Plant PJKS, Systems Integration Laboratory, Components Test Laboratory, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  15. Hydrogen-Oxygen PEM Regenerative Fuel Cell Energy Storage System

    NASA Technical Reports Server (NTRS)

    Bents, David J.; Scullin, Vincent J.; Chang, Bei-Jiann; Johnson, Donald W.; Garcia, Christopher P.

    2005-01-01

    An introduction to the closed cycle hydrogen-oxygen polymer electrolyte membrane (PEM) regenerative fuel cell (RFC), recently constructed at NASA Glenn Research Center, is presented. Illustrated with explanatory graphics and figures, this report outlines the engineering motivations for the RFC as a solar energy storage device, the system requirements, layout and hardware detail of the RFC unit at NASA Glenn, the construction history, and test experience accumulated to date with this unit.

  16. Fire hazard analysis for the fuel supply shutdown storage buildings

    SciTech Connect

    REMAIZE, J.A.

    2000-09-27

    The purpose of a fire hazards analysis (FHA) is to comprehensively assess the risk from fire and other perils within individual fire areas in a DOE facility in relation to proposed fire protection so as to ascertain whether the objectives of DOE 5480.7A, Fire Protection, are met. This Fire Hazards Analysis was prepared as required by HNF-PRO-350, Fire Hazards Analysis Requirements, (Reference 7) for a portion of the 300 Area N Reactor Fuel Fabrication and Storage Facility.

  17. Hydrogen Fuel Cells and Storage Technology: Fundamental Research for Optimization of Hydrogen Storage and Utilization

    SciTech Connect

    Perret, Bob; Heske, Clemens; Nadavalath, Balakrishnan; Cornelius, Andrew; Hatchett, David; Bae, Chusung; Pang, Tao; Kim, Eunja; Hemmers, Oliver

    2011-03-28

    Design and development of improved low-cost hydrogen fuel cell catalytic materials and high-capacity hydrogenn storage media are paramount to enabling the hydrogen economy. Presently, effective and durable catalysts are mostly precious metals in pure or alloyed form and their high cost inhibits fuel cell applications. Similarly, materials that meet on-board hydrogen storage targets within total mass and volumetric constraints are yet to be found. Both hydrogen storage performance and cost-effective fuel cell designs are intimately linked to the electronic structure, morphology and cost of the chosen materials. The FCAST Project combined theoretical and experimental studies of electronic structure, chemical bonding, and hydrogen adsorption/desorption characteristics of a number of different nanomaterials and metal clusters to develop better fundamental understanding of hydrogen storage in solid state matrices. Additional experimental studies quantified the hydrogen storage properties of synthesized polyaniline(PANI)/Pd composites. Such conducting polymers are especially interesting because of their high intrinsic electron density and the ability to dope the materials with protons, anions, and metal species. Earlier work produced contradictory results: one study reported 7% to 8% hydrogen uptake while a second study reported zero hydrogen uptake. Cost and durability of fuel cell systems are crucial factors in their affordability. Limits on operating temperature, loss of catalytic reactivity and degradation of proton exchange membranes are factors that affect system durability and contribute to operational costs. More cost effective fuel cell components were sought through studies of the physical and chemical nature of catalyst performance, characterization of oxidation and reduction processes on system surfaces. Additional development effort resulted in a new hydrocarbon-based high-performance sulfonated proton exchange membrane (PEM) that can be manufactured at low

  18. Vehicular hydrogen storage using lightweight tanks (regenerative fuel cell systems)

    SciTech Connect

    Mitlitsky, F; Myers, B; Weisberg, A H

    1999-06-01

    Energy storage systems with extremely high specific energy (>400 Wh/kg) have been designed that use lightweight tankage to contain the gases generated by reversible (unitized) regenerative fuel cells (URFCs). Lawrence Livermore National Laboratory (LLNL) will leverage work for aerospace applications supported by other sponsors (including BMDO, NASA, and USAF) to develop URFC systems for transportation and utility applications. Lightweight tankage is important for primary fuel cell powered vehicles that use on-board storage of hydrogen. Lightweight pressure vessels with state-of-the-art performance factors were designed, and prototypes are being fabricated to meet the DOE 2000 goals (4000 Wh/kg, 12% hydrogen by weight, 700 Wh/liter, and $20/kWh in high volume production). These pressure vessels use technologies that are easily adopted by industrial partners. Advanced liners provide permeation barriers for gas storage and are mandrels for composite overwrap. URFCs are important to the efficient use of hydrogen as a transportation fuel and enabler of renewable energy. H{sub 2}/halogen URFCs may be advantageous for stationary applications whereas H{sub 2}/O{sub 2} or H{sub 2}/air URFCs are advantageous for vehicular applications. URFC research and development is required to improve performance (efficiency), reduce catalyst loading, understand engineering operation, and integrate systems. LLNL has the experimental equipment and advanced URFC membrane electrode assemblies (some with reduced catalyst loading) for evaluating commercial hardware (not funded by DOE in FY1999).

  19. Design Verification Report Spent Nuclear Fuel (SNF) Project Canister Storage Building (CSB)

    SciTech Connect

    PICKETT, W.W.

    2000-09-22

    The Sub-project W379, ''Spent Nuclear Fuel Canister Storage Building (CSB),'' was established as part of the Spent Nuclear Fuel (SNF) Project. The primary mission of the CSB is to safely store spent nuclear fuel removed from the K Basins in dry storage until such time that it can be transferred to the national geological repository at Yucca Mountain Nevada. This sub-project was initiated in late 1994 by a series of studies and conceptual designs. These studies determined that the partially constructed storage building, originally built as part of the Hanford Waste Vitrification Plant (HWVP) Project, could be redesigned to safely store the spent nuclear fuel. The scope of the CSB facility initially included a receiving station, a hot conditioning system, a storage vault, and a Multi-Canister Overpack (MCO) Handling Machine (MHM). Because of evolution of the project technical strategy, the hot conditioning system was deleted from the scope and MCO welding and sampling stations were added in its place. This report outlines the methods, procedures, and outputs developed by Project W379 to verify that the provided Structures, Systems, and Components (SSCs): satisfy the design requirements and acceptance criteria; perform their intended function; ensure that failure modes and hazards have been addressed in the design; and ensure that the SSCs as installed will not adversely impact other SSCs. Because this sub-project is still in the construction/start-up phase, all verification activities have not yet been performed (e.g., canister cover cap and welding fixture system verification, MCO Internal Gas Sampling equipment verification, and As-built verification.). The verification activities identified in this report that still are to be performed will be added to the start-up punchlist and tracked to closure.

  20. Solar hydrogen production: renewable hydrogen production by dry fuel reforming

    NASA Astrophysics Data System (ADS)

    Bakos, Jamie; Miyamoto, Henry K.

    2006-09-01

    SHEC LABS - Solar Hydrogen Energy Corporation constructed a pilot-plant to demonstrate a Dry Fuel Reforming (DFR) system that is heated primarily by sunlight focusing-mirrors. The pilot-plant consists of: 1) a solar mirror array and solar concentrator and shutter system; and 2) two thermo-catalytic reactors to convert Methane, Carbon Dioxide, and Water into Hydrogen. Results from the pilot study show that solar Hydrogen generation is feasible and cost-competitive with traditional Hydrogen production. More than 95% of Hydrogen commercially produced today is by the Steam Methane Reformation (SMR) of natural gas, a process that liberates Carbon Dioxide to the atmosphere. The SMR process provides a net energy loss of 30 to 35% when converting from Methane to Hydrogen. Solar Hydrogen production provides a 14% net energy gain when converting Methane into Hydrogen since the energy used to drive the process is from the sun. The environmental benefits of generating Hydrogen using renewable energy include significant greenhouse gas and criteria air contaminant reductions.

  1. Viability of lactic acid bacteria and bifidobacteria in fermented soymilk after drying, subsequent rehydration and storage.

    PubMed

    Wang, Yi-Chieh; Yu, Roch-Chui; Chou, Cheng-Chun

    2004-06-01

    To develop a probiotic dietary adjunct, soymilk fermented with various combinations of lactic acid bacteria (Streptococcus thermophilus and Lactobacillus acidophilus) and bifidobacteria (Bifidobacterium longum and Bifidobacterium infantis) was subjected to freeze-drying and spray-drying. Survival of the starter organisms during the drying process, subsequent rehydration at different temperatures and during a 4-month period of storage under different storage conditions was examined. After freeze-drying, lactic acid bacteria and bifidobacteria exhibited a survival percent of 46.2-75.1% and 43.2-51.9%, respectively, higher than that noted after spray-drying. Regardless of the drying condition, S. thermophilus showed a higher percentage of survival than L. acidophilus, while B. longum survived better than B. infantis. Further study with soymilk fermented with S. thermophilus and B. longum revealed that the freeze-dried and spray-dried fermented soymilk rehydrated at 35-50 degrees C and 20 degrees C, respectively, was optimum for the recovery of the starter organisms. Both S. thermophilus and B. longum survived better in the freeze-dried than the spray-dried fermented soymilk during storage. A higher percent of survival was also noted for both the starter organisms when the dried fermented soymilk was stored at 4 degrees C than 25 degrees C. Holding the dried fermented soymilk in the laminated pouch enabled S. thermophilus and B. longum to exhibit a higher percentage of survival than in the deoxidant- and desiccant-containing glass or polyester (PET) bottle. Among all the packaging materials and storage temperatures tested, starter organisms were most stable in the dried fermented soymilk held in laminated pouch and stored at 4 degrees C. Under this storage condition, S. thermophilus and B. longum showed a survival percentage of 51.1% and 68.8%, respectively, in the freeze-dried fermented soymilk after 4 months of storage. Meanwhile, S. thermophilus and B. infantis in

  2. Characterization of the 309 building fuel transfer pit and storage basin

    SciTech Connect

    Hale, N.S.

    1998-03-19

    This document identifies radiological, chemical and physical conditions inside the Fuel Transfer Pit and Fuel Storage Basins. These spaces are located inside the Plutonium Recycle Test Reactor structure (309 Building.) The fuel handling and storage feature of the PRTR were primarily located in these spaces. The conditions were assessed as part of overall 309 Building transition.

  3. A fuel cell energy storage system for Space Station extravehicular activity

    NASA Technical Reports Server (NTRS)

    Rosso, Matthew J., Jr.; Adlhart, Otto J.; Marmolejo, Jose A.

    1988-01-01

    The development of a fuel cell energy storage system for the Space Station Extravehicular Mobility Unit (EMU) is discussed. The ion-exchange membrane fuel cell uses hydrogen stored as a metal hydride. Several features of the hydrogen-oxygen fuel cell are examined, including its construction, hydrogen storage, hydride recharge, water heat, water removal, and operational parameters.

  4. 75 FR 77017 - Nextera Energy Seabrook, LLC Seabrook Station Independent Spent Fuel Storage Installation; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-10

    ... COMMISSION Nextera Energy Seabrook, LLC Seabrook Station Independent Spent Fuel Storage Installation; Exemption 1.0 Background NextEra Energy Seabrook, LLC (NextEra, the licensee) is the holder of Facility..., subpart K, a general license is issued for the storage of spent fuel in an independent spent fuel...

  5. 75 FR 81031 - Consideration of Environmental Impacts of Temporary Storage of Spent Fuel After Cessation of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-23

    ... release from stored SNF. Multiple studies of the safety and security of spent fuel storage, including the... facilities, the studies of the safety and security of spent fuel storage (conducted both before and after the... are not publicly available; these are reports concerning the safety and security of spent fuel...

  6. 30 CFR 75.1903 - Underground diesel fuel storage facilities and areas; construction and safety precautions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... storage; and (4) Maintained to prevent the accumulation of water. (c) Welding or cutting other than that... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Underground diesel fuel storage facilities and...-UNDERGROUND COAL MINES Diesel-Powered Equipment § 75.1903 Underground diesel fuel storage facilities and...

  7. Dry hog fuel to improve effiency, cut emissions

    SciTech Connect

    Schwieger, B.

    1980-02-01

    Various dryers in wood-fired powerplants are described and it is stated that when moisture levels of hog fuel rise above 55%, boilers cannot produce enough heat to sustain combustion. Methods to avoid this problem are suggested and include the burning of a low-moisture fuel in conjunction with the hog fuel and the installation of a dryer to remove some moisture from the fuel before it enter the furnace. It is generally agreed that flue-gas dryers should be considered in the design of hog-fuel-fired steam sytems whenever fuel moisture exceeds about 50%.

  8. Replacement of tritiated water from irradiated fuel storage bay

    SciTech Connect

    Castillo, I.; Boniface, H.; Suppiah, S.; Kennedy, B.; Minichilli, A.; Mitchell, T.

    2015-03-15

    Recently, AECL developed a novel method to reduce tritium emissions (to groundwater) and personnel doses at the NRU (National Research Universal) reactor irradiated fuel storage bay (also known as rod or spent fuel bay) through a water swap process. The light water in the fuel bay had built up tritium that had been transferred from the heavy water moderator through normal fuel transfers. The major advantage of the thermal stratification method was that a very effective tritium reduction could be achieved by swapping a minimal volume of bay water and warm tritiated water would be skimmed off the bay surface. A demonstration of the method was done that involved Computational Fluid Dynamics (CFD) modeling of the swap process and a test program that showed excellent agreement with model prediction for the effective removal of almost all the tritium with a minimal water volume. Building on the successful demonstration, AECL fabricated, installed, commissioned and operated a full-scale system to perform a water swap. This full-scale water swap operation achieved a tritium removal efficiency of about 96%.

  9. Storage of Residual Fuel Oil in Underground Unlined Rock Caverns.

    DTIC Science & Technology

    1980-12-01

    Francaise des Petroles BP, Elf Union, Shell Francaise, and Compagnie Francaise de Raffinage (Total). The company and its subsidiaries were formed with...DEC 80 D C BANKS UNCLASSIFIED WES/NP/S4.-8O-19 ti. LE VEL MISCELLANEOUS PAPER GL-80-19 31 STORAGE OF RESIDUAL FUEL OIL IN UNDERGROUND UNLINED ROCK...Ruimaia.~ indl a riiirI( le ol Air in1 wi r’ hve en coIit’Icted to enc1ouraige muiliriershnpl I[I the i 5kRM. 1) By Innf t-Ii .fi’ I ’I.]%- I "W

  10. Capacitive bioanodes enable renewable energy storage in microbial fuel cells.

    PubMed

    Deeke, Alexandra; Sleutels, Tom H J A; Hamelers, Hubertus V M; Buisman, Cees J N

    2012-03-20

    We developed an integrated system for storage of renewable electricity in a microbial fuel cell (MFC). The system contained a capacitive electrode that was inserted into the anodic compartment of an MFC to form a capacitive bioanode. This capacitive bioanode was compared with a noncapacitive bioanode on the basis of performance and storage capacity. The performance and storage capacity were investigated during polarization curves and charge-discharge experiments. During polarization curves the capacitive electrode reached a maximum current density of 1.02 ± 0.04 A/m(2), whereas the noncapacitive electrode reached a current density output of only 0.79 ± 0.03 A/m(2). During the charge-discharge experiment with 5 min of charging and 20 min of discharging, the capacitive electrode was able to store a total of 22,831 C/m(2), whereas the noncapacitive electrode was only able to store 12,195 C/m(2). Regarding the charge recovery of each electrode, the capacitive electrode was able to recover 52.9% more charge during each charge-discharge experiment compared with the noncapacitive electrode. The capacitive electrode outperformed the noncapacitive electrode throughout each charge-discharge experiment. With a capacitive electrode it is possible to use the MFC simultaneously for production and storage of renewable electricity.

  11. Unitized Regenerative Fuel Cell System Gas Storage/Radiator Development

    NASA Technical Reports Server (NTRS)

    Jakupca, Ian; Burke, Kenneth A.

    2003-01-01

    The ancillary components for Unitized Regenerative Fuel Cell (URFC) Energy Storage System are being developed at the NASA Glenn Research Center. This URFC system is unique in that it uses the surface area of the hydrogen and oxygen storage tanks as radiating heat surfaces for overall thermal control of the system. The waste heat generated by the URFC stack during charging and discharging is transferred from the cell stack to the surface of each tank by loop heat pipes. The heat pipes are coiled around each tank and covered with a thin layer of thermally conductive layer of carbon composite. The thin layer of carbon composite acts as a fin structure that spreads the heat away from the heat pipe and across the entire tank surface. Two different sized commercial grade composite tanks were constructed with integral heat pipes and tested in a thermal vacuum chamber to examine the feasibility of using the storage tanks as system radiators. The storage radiators were subjected to different steady-state heat loads and varying heat load profiles. The surface emissivity and specific heat capacity of each tank were calculated. The results were incorporated into a model that simulates the performance of similar radiators using lightweight, space rated carbon composite tanks.

  12. Alkaline fuel cells for the regenerative fuel cell energy storage system

    SciTech Connect

    Martin, R.E.

    1983-08-01

    United Technologies Corporation has been conducting a development program sponsored by Lewis Research Center of NASA directed toward advancing the state of the art of the alkaline fuel cell. The goal of the program is the development of an extended endurance, high-performance, high-efficiency fuel cell for use in a multi-hundred kilowatt regenerative fuel cell. This technology advancement program has identified a low-weight design and cell components with increased performance and extended endurance. Longterm endurance testing of full-size fuel cell modules has demonstrated the extended endurance capability of potassium titanate matrix cells, the long-term performance stability of the anode catalyst, and the suitability of a lightweight graphite structure for use at the anode in an alkaline fuel cell. In addition under the program, a full-size alkaline fuel cell module has completed 5,000 hours of a planned 20,000-hour test to a cyclical load profile. The continuous load profile consists of 60 minutes at open circuit followed by 30 minutes at 200 ASF which simulates the operation of a Regenerative Fuel Cell Energy Storage System in low earth orbit.

  13. Multi-criteria decision analysis of concentrated solar power with thermal energy storage and dry cooling.

    PubMed

    Klein, Sharon J W

    2013-12-17

    Decisions about energy backup and cooling options for parabolic trough (PT) concentrated solar power have technical, economic, and environmental implications. Although PT development has increased rapidly in recent years, energy policies do not address backup or cooling option requirements, and very few studies directly compare the diverse implications of these options. This is the first study to compare the annual capacity factor, levelized cost of energy (LCOE), water consumption, land use, and life cycle greenhouse gas (GHG) emissions of PT with different backup options (minimal backup (MB), thermal energy storage (TES), and fossil fuel backup (FF)) and different cooling options (wet (WC) and dry (DC). Multicriteria decision analysis was used with five preference scenarios to identify the highest-scoring energy backup-cooling combination for each preference scenario. MB-WC had the highest score in the Economic and Climate Change-Economy scenarios, while FF-DC and FF-WC had the highest scores in the Equal and Availability scenarios, respectively. TES-DC had the highest score for the Environmental scenario. DC was ranked 1-3 in all preference scenarios. Direct comparisons between GHG emissions and LCOE and between GHG emissions and land use suggest a preference for TES if backup is require for PT plants to compete with baseload generators.

  14. Kinetic and thermodynamic bases to resolve issues regarding conditioning of uranium metal fuels

    SciTech Connect

    Johnson, A.B.; Ballinger, R.G.; Simpson, K.A.

    1994-12-01

    Numerous uranium - bearing fuels are corroding in fuel storage pools in several countries. At facilities where reprocessing is no longer available, dry storage is being evaluated to preclude aqueous corrosion that is ongoing. It is essential that thermodynamic and kinetic factors are accounted for in transitions of corroding uranium-bearing fuels to dry storage. This paper addresses a process that has been proposed to move Hanford N-Reactor fuel from wet storage to dry storage.

  15. Effect of liquid retentate storage on flavor of spray-dried whey protein concentrate and isolate.

    PubMed

    Whitson, M; Miracle, R E; Bastian, E; Drake, M A

    2011-08-01

    The objective of this study was to determine the effects of holding time of liquid retentate on flavor of spray-dried whey proteins: Cheddar whey protein isolate (WPI) and Mozzarella 80% whey protein concentrate (WPC80). Liquid WPC80 and WPI retentate were manufactured and stored at 3°C. After 0, 6, 12, 24, and 48h, the product was spray-dried (2kg) and the remaining retentate held until the next time point. The design was replicated twice for each product. Powders were stored at 21°C and evaluated every 4 mo throughout 12 mo of storage. Flavor profiles of rehydrated proteins were documented by descriptive sensory analysis. Volatile components were analyzed with solid phase microextraction coupled with gas chromatography mass spectrometry. Cardboard flavors increased in both spray-dried products with increased retentate storage time and cabbage flavors increased in WPI. Concurrent with sensory results, lipid oxidation products (hexanal, heptanal, octanal) and sulfur degradation products (dimethyl disulfide, dimethyl trisulfide) increased in spray-dried products with increased liquid retentate storage time, whereas diacetyl decreased. Shelf stability was decreased in spray-dried products from longer retentate storage times. For maximum quality and shelf life, liquid retentate should be held for less than 12h before spray drying.

  16. Ecohydrology of dry regions: storage versus pulse soil water dynamics

    USGS Publications Warehouse

    Lauenroth, William K.; Schlaepfer, Daniel R.; Bradford, John B.

    2014-01-01

    Although arid and semiarid regions are defined by low precipitation, the seasonal timing of temperature and precipitation can influence net primary production and plant functional type composition. The importance of precipitation seasonality is evident in semiarid areas of the western U.S., which comprise the Intermountain (IM) zone, a region that receives important winter precipitation and is dominated by woody plants and the Great Plains (GP), a region that receives primarily summer precipitation and is dominated by perennial grasses. Although these general relationships are well recognized, specific differences in water cycling between these regions have not been well characterized. We used a daily time step soil water simulation model and twenty sites from each region to analyze differences in soil water dynamics and ecosystem water balance. IM soil water patterns are characterized by storage of water during fall, winter, and spring resulting in relatively reliable available water during spring and early summer, particularly in deep soil layers. By contrast, GP soil water patterns are driven by pulse precipitation events during the warm season, resulting in fluctuating water availability in all soil layers. These contrasting patterns of soil water—storage versus pulse dynamics—explain important differences between the two regions. Notably, the storage dynamics of the IN sites increases water availability in deep soil layers, favoring the deeper rooted woody plants in that region, whereas the pulse dynamics of the Great Plains sites provide water primarily in surface layers, favoring the shallow-rooted grasses in that region. In addition, because water received when plants are either not active or only partially so is more vulnerable to evaporation and sublimation than water delivered during the growing season, IM ecosystems use a smaller fraction of precipitation for transpiration (47%) than GP ecosystems (49%). Recognizing the pulse-storage dichotomy in

  17. CONSTRUCTION VIEW FUEL STORAGE BUILDING (CPP603) LOOKING EAST SHOWING ASBESTOS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CONSTRUCTION VIEW FUEL STORAGE BUILDING (CPP-603) LOOKING EAST SHOWING ASBESTOS SIDING. INL PHOTO NUMBER NRTS-51-1543. Unknown Photographer, 2/28/1951 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  18. BUILDING PLANS OF FUEL STORAGE BUILDING (CPP603). INL DRAWING NUMBER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    BUILDING PLANS OF FUEL STORAGE BUILDING (CPP-603). INL DRAWING NUMBER 200-0603-61-299-103029. ALTERNATE ID NUMBER 542-31-B-21. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  19. CONSTRUCTION PROGRESS PHOTO SHOWING FUEL STORAGE BUILDING (CPP603) LOOKING NORTHWEST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CONSTRUCTION PROGRESS PHOTO SHOWING FUEL STORAGE BUILDING (CPP-603) LOOKING NORTHWEST. INL PHOTO NUMBER NRTS-50-895. Unknown Photographer, 10/30/1950 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  20. Statistical analysis of oxidation rates for K Basin fuel in dry air

    SciTech Connect

    Trimble, D.J.

    1998-02-06

    Test data from oxidation of K Basin fuel (SNF) samples in dry air were reviewed, and linear reaction rates were derived on a time-average basis. The derived rates were compared to literature data for unirradiated uranium in dry air using rate law of the form log(rate) = a + b (I/T). The analyses found differences between the SNF data and the literature data. Oxidation rate below 150 C was higher for K Basin fuel than for unirradiated uranium.

  1. R D for the storage, transport, and handling of coal-based fuels

    SciTech Connect

    Not Available

    1990-01-01

    The product of several advanced physical coal cleaning processes is a dry, ultrafine coal (DUC), in the order of 10 microns mean mass diameter. Environmentally safe systems must be provided for the storage, transport, and handling of this fuel. The objective of the project is the development of total logistics systems for DUC, including experimental verification of key features. The systems to be developed will provide for safe, economic, and environmentally protective storage and delivery of DUC for residential, commercial, and industrial uses. Work this quarter entailed: obtaining all of the test coals including 10 lbs of Illinois No. 6 cleaned by the LICADO process. Installation of the test system for the Residential Storage Tank including piping and the components required to recycle the ultrafine coal. Completion of the design of the scale model test of the Industrial/Commercial Storage System. Piping and supports for the porous fluidization plates in the floor of the tanks have been completed. Preliminary results with the Illinois No. 6 coal cleaned by the Bechtel heptane/asphalt process indicate that this material is cohesive and difficult to fluidize. Studies of dune formation have been made with the Illinois No. 6 coal. These data provide information on the minimum velocity which will transport the particles. 11 refs., 18 figs.

  2. Storage of comminuted forest biomass and its effect on fuel quality.

    SciTech Connect

    Afzal, M; Bedane, A.H.; Sokhansanj, Shahabaddine; Mahmood, W.

    2009-11-01

    White birch was stored in the form of bundles, wood chips and loose slash for a period of one year to examine the change in biomass fuel properties. The samples were collected at regular quarterly intervals to measure the moisture content, CNS content, ash content and calorific value. Data loggers were also placed into the woody biomass to measure the temperature change inside the piles. After the first quarter of the storage period and continuing into the next three months of storage, the moisture content showed most significant change. The moisture content of the biomass bundles increased from 29 % to above 80 % (db). The moisture content of the pile of wood chips covered with a tarp decreased from 51% to 26% and showed a continuous decline in moisture content to the end of storage period. However, the moisture content of uncovered wood chip piles were observed to continuously increase throughout the storage period resulting in more than double in magnitude from 59% to 160% (db). The dry matter loss was higher in wood chip piles (8-27%) than in bundles (~3%). Among the other properties, there was slightly higher loss of calorific value in wood chips (~1.6%) as compared to bundles (~0.7%) at the end of one year. Other changes in woody biomass properties were also discussed. The proposed two-dimensional mathematical model predicted the moisture content and temperature profile in the woody biomass pile closely to the experimental data.

  3. Environmental Assessment: Construct Fuel Bowser Storage Area Install Underground Storage Tank, Security Fencing, Lighting Construct Bowser Open Storage Pavement at Grand Forks AFB, North Dakota

    DTIC Science & Technology

    2004-10-01

    Air Force Base has pro- posed the construction of an underground fuel-water recovery storage tank with SeGU- D We rity fencing and light- Is, Sec...your ad. Second or Third year Plumbing Apprentice. We are looking for a second or. third year plumbing apprentice to join our work force. Need...storage tank with secu- rity fencing and light- Ing and a paved open storage area for fuel bowsers on Grand Forks AFB. 2 - RESERVED We Fest lawn

  4. Stabilization of reactor fuel storage pool-TTP

    SciTech Connect

    Sevigny, G.

    1994-10-01

    The proposed work includes evaluating standard and improved technologies an designing an integrated demonstration system to clean the water and sludge the fuel storage pools. The water released would meet drinking water standards and tritium standards. The volume of radioactive sludge would be reduced by partial separation of the sludge and radionuclides and eventual solidification of the hazardous and radioactive waste. The scope of the wo includes a survey of needs and applicable technologies, system engineering evaluation, conceptual design, detailed design, fabrication of the integrat demonstration system, and testing of the system. The survey task will locate potential specific customers within the DOE complex, and outside of the DOE complex throughout the United States, that be able to utilize the narrowly focused technology to stabilize/shutdown reactor fuel storage pools, responsible parties will be located and asked respond to a survey about their specific process requirements. Literature searches will be run through technical and scientific databases to locate technologies that may be an improvement over the standard baselined technol for cleanup of radioactively-contaminated pools. Systems engineering will provide decision analysis support for the development, evaluation, design, test functions of the treatment of pool water and sludge.

  5. Sensitivity analysis of a dry-processed Candu fuel pellet's design parameters

    SciTech Connect

    Choi, Hangbok; Ryu, Ho Jin

    2007-07-01

    Sensitivity analysis was carried out in order to investigate the effect of a fuel pellet's design parameters on the performance of a dry-processed Canada deuterium uranium (CANDU) fuel and to suggest the optimum design modifications. Under a normal operating condition, a dry-processed fuel has a higher internal pressure and plastic strain due to a higher fuel centerline temperature when compared with a standard natural uranium CANDU fuel. Under a condition that the fuel bundle dimensions do not change, sensitivity calculations were performed on a fuel's design parameters such as the axial gap, dish depth, gap clearance and plenum volume. The results showed that the internal pressure and plastic strain of the cladding were most effectively reduced if a fuel's element plenum volume was increased. More specifically, the internal pressure and plastic strain of the dry-processed fuel satisfied the design limits of a standard CANDU fuel when the plenum volume was increased by one half a pellet, 0.5 mm{sup 3}/K. (authors)

  6. Spray drying as a strategy for biosurfactant recovery, concentration and storage.

    PubMed

    Barcelos, Gisely S; Dias, Lívia C; Fernandes, Péricles L; Fernandes, Rita de Cássi R; Borges, Arnaldo C; Kalks, Karlos Hm; Tótola, Marcos R

    2014-01-01

    The objective of this study was to analyze the use of Spray Drying for concentration and preservation of biosurfactants produced by Bacillus subtilis LBBMA RI4914 isolated from a heavy oil reservoir. Kaolinite and maltodextrin 10DE or 20DE were tested as drying adjuvants. Surface activity of the biosurfactant was analyzed by preparing dilution x surface activity curves of crude biosurfactant, crude biosurfactant plus adjuvants and of the dried products, after their reconstitution in water. The shelf life of the dried products was also evaluated. Spray drying was effective in the recovery and concentration of biosurfactant, while keeping its surface activity. Drying adjuvants were required to obtain a solid product with the desired characteristics. These compounds did not interfere with tensoactive properties of the biosurfactant molecules. The dehydrated product maintained its surfactant properties during storage at room temperature during the evaluation period (120 days), with no detectable loss of activity.

  7. Electricity Storage and the Hydrogen-Chlorine Fuel Cell

    NASA Astrophysics Data System (ADS)

    Rugolo, Jason Steven

    Electricity storage is an essential component of the transforming energy marketplace. Its absence at any significant scale requires that electricity producers sit ready to respond to every flick of a switch, constantly adjusting power production to meet demand. The dispatchable electricity production technologies that currently enable this type of market are growing unpopular because of their carbon emissions. Popular methods to move away from fossil fuels are wind and solar power. These sources also happen to be the least dispatchable. Electricity storage can solve that problem. By overproducing during sunlight to store energy for evening use, or storing during windy periods for delivery in future calm ones, electricity storage has the potential to allow intermittent renewable sources to constitute a large portion of our electricity mix. I investigate the variability of wind in Chapter 2, and show that the variability is not significantly reduced by geographically distributing power production over the entire country of the Netherlands. In Chapter 3, I calculate the required characteristics of a linear-response, constant activity storage technology to map wind and solar production scenarios onto several different supply scenarios for a range of specified system efficiencies. I show that solid electrode batteries have two orders of magnitude too little energy per unit power to be well suited for renewable balancing and emphasize the value of the modular separation between the power and energy components of regenerative fuel cell technologies. In Chapter 4 I introduce the regenerative hydrogen-chlorine fuel cell (rHCFC), which is a specific technology that shows promise for the above applications. In collaboration with Sustainable Innovations, we have made and tested 6 different rHCFCs. In order to understand the relative importance of the different inefficiencies in the rHCFC, Chapter 5 introduces a complex temperature and concentration dependent model of the r

  8. Transfer of Plutonium-Uranium Extraction Plant and N Reactor irradiated fuel for storage at the 105-KE and 105-KW fuel storage basins, Hanford Site, Richland Washington

    SciTech Connect

    1995-07-01

    The U.S. Department of Energy (DOE) needs to remove irradiated fuel from the Plutonium-Uranium Extraction (PUREX) Plant and N Reactor at the Hanford Site, Richland, Washington, to stabilize the facilities in preparation for decontamination and decommissioning (D&D) and to reduce the cost of maintaining the facilities prior to D&D. DOE is proposing to transfer approximately 3.9 metric tons (4.3 short tons) of unprocessed irradiated fuel, by rail, from the PUREX Plant in the 200 East Area and the 105 N Reactor (N Reactor) fuel storage basin in the 100 N Area, to the 105-KE and 105-KW fuel storage basins (K Basins) in the 100 K Area. The fuel would be placed in storage at the K Basins, along with fuel presently stored, and would be dispositioned in the same manner as the other existing irradiated fuel inventory stored in the K Basins. The fuel transfer to the K Basins would consolidate storage of fuels irradiated at N Reactor and the Single Pass Reactors. Approximately 2.9 metric tons (3.2 short tons) of single-pass production reactor, aluminum clad (AC) irradiated fuel in four fuel baskets have been placed into four overpack buckets and stored in the PUREX Plant canyon storage basin to await shipment. In addition, about 0.5 metric tons (0.6 short tons) of zircaloy clad (ZC) and a few AC irradiated fuel elements have been recovered from the PUREX dissolver cell floors, placed in wet fuel canisters, and stored on the canyon deck. A small quantity of ZC fuel, in the form of fuel fragments and chips, is suspected to be in the sludge at the bottom of N Reactor`s fuel storage basin. As part of the required stabilization activities at N Reactor, this sludge would be removed from the basin and any identifiable pieces of fuel elements would be recovered, placed in open canisters, and stored in lead lined casks in the storage basin to await shipment. A maximum of 0.5 metric tons (0.6 short tons) of fuel pieces is expected to be recovered.

  9. [Dry matter storage and water soluble sugar content in different age classes rhizomes of Phragmites communis population in dry land habitat of Songnen Plain of China].

    PubMed

    Yang, Yun-Fei; Zhang, Bao-Tian; Tian, Shang-Yi

    2008-09-01

    Based on the investigation and measurement of Phragmites communis in a single dominant species community in dry land habitat of Songnen Plain, the seasonal variation of dry matter storage and water soluble sugar content in different age classes rhizomes at three growth stages were analyzed. The results showed that at all growth stages, younger age class rhizomes had lower dry matter storage and water soluble sugar content, and there was an obvious difference between younger and older age classes. The dry matter storage and water soluble sugar content in younger age class rhizomes increased rapidly with growth season, and the difference between younger and older age classes reduced gradually. In the whole growth season, all the rhizomes of six age classes kept up the activities in nutrient consumption, re-storage and even overcompensating storage, and the activities of younger age class rhizomes were much higher. The dry matter storage and water soluble sugar content in older age class rhizomes increased with year. There existed extremely significant differences (P < 0.01) in the dry matter storage within and among different age class rhizomes, and the difference was larger within age classes than among age classes. Significant differences (P < 0.05) in water soluble sugar content were also observed among different age class rhizomes. The dry matter storage and water soluble sugar content in P. communis rhizomes increased in quadratic with increasing age class.

  10. Fast facility spent-fuel and waste assay instrument. [Fluorinel Dissolution and Fuel Storage (FAST) Facility

    SciTech Connect

    Eccleston, G.W.; Johnson, S.S.; Menlove, H.O.; Van Lyssel, T.; Black, D.; Carlson, B.; Decker, L.; Echo, M.W.

    1983-01-01

    A delayed-neutron assay instrument was installed in the Fluorinel Dissolution and Fuel Storage Facility at Idaho National Engineering Laboratory. The dual-assay instrument is designed to measure both spent fuel and waste solids that are produced from fuel processing. A set of waste standards, fabricated by Los Alamos using uranium supplied by Exxon Nuclear Idaho Company, was used to calibrate the small-sample assay region of the instrument. Performance testing was completed before installation of the instrument to determine the effects of uranium enrichment, hydrogenous materials, and neutron poisons on assays. The unit was designed to measure high-enriched uranium samples in the presence of large neutron backgrounds. Measurements indicate that the system can assay low-enriched uranium samples with moderate backgrounds if calibrated with proper standards.

  11. Regenerative Fuel Cell System As Alternative Energy Storage For Space

    NASA Astrophysics Data System (ADS)

    Lucas, J.; Bockstahler, K.; Funke, H.; Jehle, W.; Markgraf, S.; Henn, N.; Schautz, M.

    2011-10-01

    Next generation telecommunication satellites will demand more power. Power levels of 20 to 30kW are foreseen for the next 10 years. Battery technology that can sustain 30kW for eclipse lengths of up to 72 minutes (equals amount of stored energy of 36kWh) will represent a major impact on the total mass of the satellite, even with Li-ion battery technologies, which are estimated to reach an energy density of 250Wh/kg (begin of life) on cell level i.e. 150Wh/kg on subsystem level in 10 years. For the high power level another technology is needed to reach the next goal of 300 - 350Wh/kg on subsystem level. One candidate is the Regenerative Fuel Cell (RFC) technology which proves to be superior to batteries with increasing power demand and increasing discharge time. Such an RFC system based on hydrogen and oxygen technology consists of storage for the reactants (H2, O2 and H2O), a fuel cell (FC) and an electrolyser (ELY). In charge mode, the electrolyser splits water in hydrogen and oxygen using electrical power from solar cells. The gases are stored in appropriate tanks. In discharge mode, during time intervals of power demand, O2 and H2 are converted in the fuel cell to generate electricity under formation of water as by-product. The water is stored in tanks and during charge mode rerouted to the electrolyser thus creating a closed-loop process. Today Astrium is developing an RFCS as energy storage and supply unit for some future ESA missions. A complete RFCS breadboard has been established and the operational behaviour of the system is being tested. First test results, dedicated experience gained from system testing and a comparison with the analytical prediction will be discussed and presented.

  12. New co-products from grain-based fuel ethanol production and their drying performance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fuel ethanol production in the U.S. and elsewhere is an important and growing industry. In the U.S, about 40% of annual corn production is now converted into fuel ethanol. During co-product recovery, condensed distillers solubles (CDS) has to be mixed with distillers wet grains before drying due to ...

  13. Shipping and storage cask data for spent nuclear fuel

    SciTech Connect

    Johnson, E.R.; Notz, K.J.

    1988-11-01

    This document is a compilation of data on casks used for the storage and/or transport of commercially generated spent fuel in the US based on publicly available information. In using the information contained in the following data sheets, it should be understood that the data have been assembled from published information, which in some instances was not internally consistent. Moreover, it was sometimes necessary to calculate or infer the values of some attributes from available information. Nor was there always a uniform method of reporting the values of some attributes; for example, an outside surface dose of the loaded cask was sometimes reported to be the maximum acceptable by NRC, while in other cases the maximum actual dose rate expected was reported, and in still other cases the expected average dose rate was reported. A summary comparison of the principal attributes of storage and transportable storage casks is provided and a similar comparison for shipping casks is also shown. References to source data are provided on the individual data sheets for each cask.

  14. Method for producing a dried coal fuel having a reduced tendency to spontaneously ignite from a low rank coal

    SciTech Connect

    Li, Y.H.; Bonnecaze, B.F.; Matthews, J.D.; Skinner, J.L.; Wunderlich, D.K.

    1983-08-02

    A method is disclosed for producing a dried coal fuel having a reduced tendency to spontaneously ignite from a low rank coal by drying the low rank coal and thereafter cooling the dried coal to a temperature below about 100/sup 0/F. Optionally the dried coal is partially oxidized prior to cooling and optionally the dried coal is mixed with a deactivating fluid.

  15. Effects of spray-drying and storage on astaxanthin content of Haematococcus pluvialis biomass.

    PubMed

    Raposo, Maria Filomena J; Morais, Alcina M M B; Morais, Rui M S C

    2012-03-01

    The main objective of this study was to evaluate the stability of astaxanthin after drying and storage at different conditions during a 9-week period. Recovery of astaxanthin was evaluated by extracting pigments from the dried powders and analysing extracts by HPLC. The powders obtained were stored under different conditions of temperature and oxygen level and the effects on the degradation of astaxanthin were examined. Under the experimental conditions conducted in this study, the drying temperature that yielded the highest content of astaxanthin was 220°C, as the inlet, and 120°C, as the outlet temperature of the drying chamber. The best results were obtained for biomass dried at 180/110°C and stored at -21°C under nitrogen, with astaxanthin degradation lower than 10% after 9 weeks of storage. A reasonable preservation of astaxanthin can be achieved by conditions 180/80°C, -21°C nitrogen, 180/110°C, 21°C nitrogen, and 220/80°C, 21°C vacuum: the ratio of astaxanthin degradation is equal or inferior to 40%. In order to prevent astaxanthin degradation of Haematococcus pluvialis biomass, it is recommended the storage of the spray dried carotenized cells (180/110ºC) under nitrogen and -21°C.

  16. Spent nuclear fuel vacuum drying thermal-hydraulic analysis and dynamic model development status report

    SciTech Connect

    Irwin, J.J.; Ogden, D.M., Westinghouse Hanford

    1996-08-28

    This report summarizes preliminary thermal hydraulic scoping analysis and model development associated with the K Basin spent fuel MCO draining and vacuum drying system. The purpose of the draining and drying system is to remove all free water from the interior of the MCO, baskets, and fuel prior to back filling with inert gas and transfer to the hot conditioning process. Dominant physical processes and parameters are delineated and related quantitatively. Minimum dynamic modeling capability required to simulate the process of transporting heat to the residual water on the fuel and transport of the steam produced from the system by vacuum pumping are defined.

  17. Research on Spent Fuel Storage and Transportation in CRIEPI (Part 2 Concrete Cask Storage)

    SciTech Connect

    Koji Shirai; Jyunichi Tani; Taku Arai; Masumi Watatu; Hirofumi Takeda; Toshiari Saegusa; Philip L. Winston

    2008-10-01

    Concrete cask storage has been implemented in the world. At a later stage of storage period, the containment of the canister may deteriorate due to stress corrosion cracking phenomena in a salty air environment. High resistant stainless steels against SCC have been tested as compared with normal stainless steel. Taking account of the limited time-length of environment with certain level of humidity and temperature range, the high resistant stainless steels will survive from SCC damage. In addition, the adhesion of salt from salty environment on the canister surface will be further limited with respect to the canister temperature and angle of the canister surface against the salty air flow in the concrete cask. Optional countermeasure against SCC with respect to salty air environment has been studied. Devices consisting of various water trays to trap salty particles from the salty air were designed to be attached at the air inlet for natural cooling of the cask storage building. Efficiency for trapping salty particles was evaluated. Inspection of canister surface was carried out using an optical camera inserted from the air outlet through the annulus of a concrete cask that has stored real spent fuel for more than 15 years. The camera image revealed no gross degradation on the surface of the canister. Seismic response of a full-scale concrete cask with simulated spent fuel assemblies has been demonstrated. The cask did not tip over, but laterally moved by the earthquake motion. Stress generated on the surface of the spent fuel assemblies during the earthquake motion were within the elastic region.

  18. Impact of a Diesel High Pressure Common Rail Fuel System and Onboard Vehicle Storage on B20 Biodiesel Blend Stability

    SciTech Connect

    Christensen, Earl; McCormick, Robert L.; Sigelko, Jenny; Johnson, Stuart; Zickmann, Stefan; Lopes, Shailesh; Gault, Roger; Slade, David

    2016-04-01

    Adoption of high-pressure common-rail (HPCR) fuel systems, which subject diesel fuels to higher temperatures and pressures, has brought into question the efficacy of ASTM International specifications for biodiesel and biodiesel blend oxidation stability, as well as the lack of any stability parameter for diesel fuel. A controlled experiment was developed to investigate the impact of a light-duty diesel HPCR fuel system on the stability of 20% biodiesel (B20) blends under conditions of intermittent use and long-term storage in a relatively hot and dry climate. B20 samples with Rancimat induction periods (IPs) near the current 6.0-hour minimum specification (6.5 hr) and roughly double the ASTM specification (13.5 hr) were prepared from a conventional diesel and a highly unsaturated biodiesel. Four 2011 model year Volkswagen Passats equipped with HPCR fuel injection systems were utilized: one on B0, two on B20-6.5 hr, and one on B20-13.5 hr. Each vehicle was operated over a one-hour drive cycle in a hot running loss test cell to initially stress the fuel. The cars were then kept at Volkswagen's Arizona Proving Ground for two (35 degrees C average daily maximum) to six months (26 degrees C average daily maximum). The fuel was then stressed again by running a portion of the one-hour dynamometer drive cycle (limited by the amount of fuel in the tank). Fuel rail and fuel tank samples were analyzed for IP, acid number, peroxide content, polymer content, and ester profile. The HPCR fuel pumps were removed, dismantled, and inspected for deposits or abnormal wear. Analysis of fuels collected during initial dynamometer tests showed no impact of exposure to HPCR conditions. Long-term storage with intermittent use showed that IP remained above 3 hours, acid number below 0.3 mg KOH/g, peroxides low, no change in ester profile, and no production of polymers. Final dynamometer tests produced only small changes in fuel properties. Inspection of the HPCR fuel pumps revealed no

  19. 10 CFR 72.240 - Conditions for spent fuel storage cask reapproval.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Conditions for spent fuel storage cask reapproval. 72.240 Section 72.240 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS...

  20. 10 CFR 72.230 - Procedures for spent fuel storage cask submittals.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Procedures for spent fuel storage cask submittals. 72.230 Section 72.230 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS...

  1. 10 CFR 72.240 - Conditions for spent fuel storage cask reapproval.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Conditions for spent fuel storage cask reapproval. 72.240 Section 72.240 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS...

  2. 10 CFR 72.236 - Specific requirements for spent fuel storage cask approval and fabrication.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Specific requirements for spent fuel storage cask approval and fabrication. 72.236 Section 72.236 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND...

  3. 10 CFR 72.230 - Procedures for spent fuel storage cask submittals.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Procedures for spent fuel storage cask submittals. 72.230 Section 72.230 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS...

  4. 77 FR 9515 - List of Approved Spent Fuel Storage Casks: HI-STORM 100, Revision 8

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-17

    ... RIN 3150-AJ05 List of Approved Spent Fuel Storage Casks: HI-STORM 100, Revision 8 AGENCY: Nuclear... Commission) is amending its spent fuel storage regulations by revising the Holtec International HI-STORM 100... and safety will be adequately protected. This direct final rule revises the HI-STORM 100 listing in...

  5. INTERIOR VIEW OF FUEL STORAGE BUILDING (CPP603) LOOKING SOUTHWEST SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW OF FUEL STORAGE BUILDING (CPP-603) LOOKING SOUTHWEST SHOWING STORAGE BASIN IN FOREGROUND, TRANSFER CRANE AND UNLOADER TO LEFT OF NORTH SIDE OF HOT CELL. INL PHOTO NUMBER NRTS-58-157. J. Anderson, Photographer, 1/15/1958 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  6. Feasibility Study For Use Of Commercial Cask Vendor Dry Transfer Systems To Unload Used Fuel Assemblies In L-Area

    SciTech Connect

    Krementz, Dan; Rose, David; Dunsmuir, Mike

    2014-02-06

    The purpose of this study is to determine whether a commercial dry transfer system (DTS) could be used for loading or unloading used nuclear fuel (UNF) in L-Basin and to determine if a DTS pool adapter could be made for L-Basin Transfer Pit #2 that could accommodate a variety of DTS casks and fuel baskets or canisters up to 24” diameter.[1, 2] This study outlines the technical feasibility of accommodating different vendor dry transfer systems in the L-Basin Transfer Bay with a general work scope. It identifies equipment needing development, facility modifications, and describes the needed analyses and calculations. After reviewing the L-Basin Transfer Bay area layout and information on the only DTS system currently in use for the Nuclear Assurance Corporation Legal Weight Truck cask (NAC LWT), the authors conclude that use of a dry transfer cask is feasible. AREVA was contacted and acknowledged that they currently do not have a design for a dry transfer cask for their new Transnuclear Long Cask (TN-LC) cask. Nonetheless, this study accounted for a potential future DTS from AREVA to handle fuel baskets up to 18” in diameter. Due to the layout of the Transfer Bay, it was determined that a DTS cask pool adapter designed specifically for spanning Pit #2 and placed just north of the 70 Ton Cask lid lifting superstructure would be needed. The proposed pool adapter could be used to transition a fuel basket up to 24” in diameter and ~11 feet long from a dry transfer cask to the basin. The 18” and 24” applications of the pool adapter are pending vendor development of dry transfer casks that accommodate these diameters. Once a fuel basket has been lowered into Pit #2 through a pool adapter, a basket cart could be used to move the basket out from under the pool adapter for access by the 5 Ton Crane. The cost to install a dry transfer cask handling system in L-Area capable of handling multiple vendor provided transport and dry transfer casks and baskets with

  7. Design Verification Report Spent Nuclear Fuel (SNF) Project Canister Storage Building (CSB)

    SciTech Connect

    BAZINET, G.D.

    2000-11-03

    The Sub-project W379, ''Spent Nuclear Fuel Canister Storage Building (CSB),'' was established as part of the Spent Nuclear Fuel (SNF) Project. The primary mission of the CSB is to safely store spent nuclear fuel removed from the K Basins in dry storage until such time that it can be transferred to the national geological repository at Yucca Mountain Nevada. This sub-project was initiated in late 1994 by a series of studies and conceptual designs. These studies determined that the partially constructed storage building, originally built as part of the Hanford Waste Vitrification Plant (HWVP) Project, could be redesigned to safely store the spent nuclear fuel. The scope of the CSB facility initially included a receiving station, a hot conditioning system, a storage vault, and a Multi-Canister Overpack (MCO) Handling Machine (MHM). Because of evolution of the project technical strategy, the hot conditioning system was deleted from the scope and MCO welding and sampling stations were added in its place. This report outlines the methods, procedures, and outputs developed by Project W379 to verify that the provided Structures, Systems, and Components (SSCs): satisfy the design requirements and acceptance criteria; perform their intended function; ensure that failure modes and hazards have been addressed in the design; and ensure that the SSCs as installed will not adversely impact other SSCs. The original version of this document was prepared by Vista Engineering for the SNF Project. The purpose of this revision is to document completion of verification actions that were pending at the time the initial report was prepared. Verification activities for the installed and operational SSCs have been completed. Verification of future additions to the CSB related to the canister cover cap and welding fixture system and MCO Internal Gas Sampling equipment will be completed as appropriate for those components. The open items related to verification of those requirements are noted

  8. Drying and storage methods affect cyfluthrin concentrations in exposed plant samples

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Standard procedures exist for collection and chemical analyses of pyrethroid insecticides in environmental matrices. However, less detail is given for drying and potential storage methods of plant samples prior to analyses. Due to equipment and financial limitations, immediate sample analysis is n...

  9. 78 FR 19148 - Shielding and Radiation Protection Review Effort and Licensing Conditions for Dry Storage...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-29

    ...; ] NUCLEAR REGULATORY COMMISSION 10 CFR Part 72 Shielding and Radiation Protection Review Effort and Licensing Conditions for Dry Storage Applications AGENCY: Nuclear Regulatory Commission. ACTION: Draft interim staff guidance; request for public comment. SUMMARY: The U.S. Nuclear Regulatory Commission...

  10. Extinction of in-flight engine fuel-leak fires with dry chemicals

    NASA Technical Reports Server (NTRS)

    Altman, R. L.

    1983-01-01

    The dry chemicals discussed here are seen as having a greater weight effectiveness than the halons in current use for controlling fuel-leak fires, especially in the presence of high airflow rates. The commercial dry chemicals K2CO3, KHCO3, and KC2N2H3O3 are found to be more effective than CF2ClBr and CF3Br in delaying the hot-surface reignition of fuel-leak fires after initial extinguishment. Experimental dry chemical formulations of potassium dawsonite, KAl(OH)2CO3, and of KCl and KI are seen as being even more weight effective than the above-mentioned commercial dry chemicals. It is noted, however, that the suitability and effectiveness of dry chemicals in controlling engine nacele fires has not yet been demonstrated in test aircraft.

  11. Evaluating Fuel Leak and Aging Infrastructure at Red Hill, Hawaii, the Largest Underground Fuel Storage Facility in the United States

    EPA Pesticide Factsheets

    Learn about how EPA Region 9, Hawaii’s Department of Health, U.S. Navy, and Defense Logistics Agency are working tprotect human health and the environment at the Red Hill Bulk Fuel Storage Facility in Hawaii.

  12. Assessment of xylanase activity in dry storage as a potential method of reducing feedstock cost.

    PubMed

    Smith, William A; Thompson, David N; Thompson, Vicki S; Radtke, Corey W; Carter, Brady

    2009-05-01

    Enzymatic preprocessing of lignocellulosic biomass in dry storage systems has the potential to improve feedstock characteristics and lower ethanol production costs. To assess the potential for endoxylanase activity at low water contents, endoxylanase activity was tested using a refined wheat arabinoxylan substrate and three commercial endoxylanases over the water activity range 0.21-1.0, corresponding to water contents of 5% to >60% (dry basis). Homogeneously mixed dry samples were prepared at a fixed enzyme to substrate ratio and incubated in chambers at a variety of fixed water activities. Replicates were sacrificed periodically, and endoxylanase activity was quantified as an increase in reducing sugar relative to desiccant-stored controls. Endoxylanase activity was observed at water activities over 0.91 in all enzyme preparations in less than 4 days and at a water activity of 0.59 in less than 1 week in two preparations. Endoxylanase activity after storage was confirmed for selected desiccant-stored controls by incubation at 100% relative humidity. Water content to water activity relationships were determined for three lignocellulosic substrates, and results indicate that two endoxylanase preparations retained limited activity as low as 7% to 13% water content (dry basis), which is well within the range of water contents representative of dry biomass storage. Future work will examine the effects of endoxylanase activity toward substrates such as corn stover, wheat straw, and switchgrass in low water content environments.

  13. Technical framework to facilitate foreign spent fuel storage and geologic disposal in Russia

    SciTech Connect

    Jardine, L J; Halsey, W G; Cmith, C F

    2000-01-31

    The option of storage and eventual geologic disposal in Russia of spent fuel of US origin used in Taiwan provides a unique opportunity that can benefit many parties. Taiwan has a near term need for a spent fuel storage and geologic disposal solution, available financial resources, but limited prospect for a timely domestic solution. Russia has significant spent fuel storage and transportation management experience, candidate storage and repository sites, but limited financial resources available for their development. The US has interest in Taiwan energy security, national security and nonproliferation interests in Russian spent fuel storage and disposal and interest in the US origin fuel. While it is understood that such a project includes complex policy and international political issues as well as technical issues, the goal of this paper is to begin the discussion by presenting a technical path forward to establish the feasibility of this concept for Russia.

  14. ALARA Analysis for Shippingport Pressurized Water Reactor Core 2 Fuel Storage in the Canister Storage Building (CSB)

    SciTech Connect

    LEWIS, M.E.

    2000-04-06

    The addition of Shippingport Pressurized Water Reactor (PWR) Core 2 Blanket Fuel Assembly storage in the Canister Storage Building (CSB) will increase the total cumulative CSB personnel exposure from receipt and handling activities. The loaded Shippingport Spent Fuel Canisters (SSFCs) used for the Shippingport fuel have a higher external dose rate. Assuming an MCO handling rate of 170 per year (K East and K West concurrent operation), 24-hr CSB operation, and nominal SSFC loading, all work crew personnel will have a cumulative annual exposure of less than the 1,000 mrem limit.

  15. Spent nuclear fuel project cold vacuum drying facility operations manual

    SciTech Connect

    IRWIN, J.J.

    1999-05-12

    This document provides the Operations Manual for the Cold Vacuum Drying Facility (CVDF). The Manual was developed in conjunction with HNF-SD-SNF-SAR-002, Safety Analysis Report for the Cold Vacuum Drying Facility, Phase 2, Supporting Installation of Processing Systems (Garvin 1998) and, the HNF-SD-SNF-DRD-002, 1997, Cold Vacuum Drying Facility Design Requirements, Rev. 3a. The Operations Manual contains general descriptions of all the process, safety and facility systems in the CVDF, a general CVD operations sequence, and has been developed for the SNFP Operations Organization and shall be updated, expanded, and revised in accordance with future design, construction and startup phases of the CVDF until the CVDF final ORR is approved.

  16. Design for Corrosion Control of Aviation Fuel Storage and Distribution Systems

    DTIC Science & Technology

    1975-06-01

    AD-AOll 588 DESIGN FOR CORROSION CONTROL OF AVIATION FUEL STORAGE AND DISTRIBUTION SYSTEMS Fred Reinhart Civil Engineering Laboratory Prepared for...191137 OC DESIGN FOR CORROSION CONTROL OF AVIATION FUEL STORAGE AND DISTRIBUTION SYSTEMS Fred Reinhart O Civil Engineering Laboratory Naval...ZOVERE, fFinal Report for: 15 Oct 70 DESIGN FOR CORROSION CONTROL OF AVIATION FUEL I STORGE AD DITRIBTIONSYSTMS thru 15 Oct 74 STORGE ND ISTIBUTON

  17. High temperature solid oxide regenerative fuel cell for solar photovoltaic energy storage

    NASA Technical Reports Server (NTRS)

    Bents, David J.

    1987-01-01

    A hydrogen-oxygen regenerative fuel cell (RFC) energy storage system based on high temperature solid oxide fuel cell (SOFC) technology is described. The reactants are stored as gases in lightweight insulated pressure vessels. The product water is stored as a liquid in saturated equilibrium with the fuel gas. The system functions as a secondary battery and is applicable to darkside energy storage for solar photovoltaics.

  18. 78 FR 78165 - List of Approved Spent Fuel Storage Casks: HI-STORM 100 Cask System; Amendment No. 9

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-26

    ... RIN 3150-AJ12 List of Approved Spent Fuel Storage Casks: HI-STORM 100 Cask System; Amendment No. 9... amends the NRC's spent fuel storage regulations by revising the Holtec International HI-STORM 100...

  19. Viability in methyl soyate of microbial contaminants from farm fuel storage tanks

    SciTech Connect

    Ryu, D.; Katta, S.K.; Bullerman, L.B.; Hanna, M.A.; Gennadios, A.

    1996-11-01

    Biodiesel is a renewable, environmentally sound alternative fuel derived from vegetable oils and animal fats, Microbial contamination is a known problem with diesel fuel. The susceptibility of methyl soyate or its blends with diesel fuel to microbial growth has not been investigated. Bacillus species including two B. cereus strains were identified as problem-causing microorganisms in diesel fuel samples collected from agricultural diesel fuel storage tanks. Growth of these microorganisms was inhibited by methyl soyate. Inoculated bacteria were not viable in methyl soyate or in 20/80, 50/50, and 80/20% methyl soyate/diesel fuel blend samples after 8 weeks of storage. In contrast, bacterial counts increased significantly (P < 0.05) in both distilled water control and diesel fuel samples after 8 weeks of storage. 15 refs., 5 figs., 1 tab.

  20. 10 CFR 171.15 - Annual fees: Reactor licenses and independent spent fuel storage licenses.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Annual fees: Reactor licenses and independent spent fuel... REACTOR LICENSES AND FUEL CYCLE LICENSES AND MATERIALS LICENSES, INCLUDING HOLDERS OF CERTIFICATES OF... NRC § 171.15 Annual fees: Reactor licenses and independent spent fuel storage licenses. (a)...

  1. 10 CFR 171.15 - Annual fees: Reactor licenses and independent spent fuel storage licenses.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Annual fees: Reactor licenses and independent spent fuel... REACTOR LICENSES AND FUEL CYCLE LICENSES AND MATERIALS LICENSES, INCLUDING HOLDERS OF CERTIFICATES OF... NRC § 171.15 Annual fees: Reactor licenses and independent spent fuel storage licenses. (a)...

  2. Regenerative fuel cell energy storage system for a low Earth orbit space station

    SciTech Connect

    Martin, R.E.; Garow, J.; Michaels, K.B.

    1984-08-01

    Results of a study to define the characteristics of a regenerative fuel cell energy storage system for a large space station operating in low earth orbit (LEO) are presented. The regenerative fuel cell system employs an alkaline electrolyte fuel cell with the option of employing either an alkaline or a solid polymer electrolyte electrolyzer.

  3. Ductility Evaluation of As-Hydrided and Hydride Reoriented Zircaloy-4 Cladding under Simulated Dry-Storage Condition

    SciTech Connect

    Yan, Yong; Plummer, Lee K; Ray, Holly B; Cook, Tyler S; Bilheux, Hassina Z

    2014-01-01

    Pre-storage drying-transfer operations and early stage storage expose cladding to higher temperatures and much higher pressure-induced tensile hoop stresses relative to normal operation in-reactor and pool storage under these conditions. Radial hydrides could precipitate during slow cooling and provide an additional embrittlement mechanism as the cladding temperature decreases below the ductile-to-brittle transition temperature. As a means of simulating this behavior, unirradiated hydrided Zircaloy-4 samples were fabricated by a gas charging method to levels that encompass the range of hydrogen concentrations observed in current used fuel. Mechanical testing was carried out by the ring compression test (RCT) method at various temperatures to evaluate the sample s ductility for both as-hydrided and post-hydride reorientation treated specimens. As-hydrided samples with higher hydrogen concentration (>800 ppm) resulted in lower strain before fracture and reduced maximum load. Increasing RCT temperatures resulted in increased ductility of the as-hydrided cladding. A systematic radial hydride treatment was conducted at various pressures and temperatures for the hydrided samples with H content around 200 ppm. Following the radial hydride treatment, RCTs on the hydride reoriented samples were conducted and exhibited lower ductility compared to as-hydrided samples.

  4. Effects of drying eggs and egg storage on hatchability and development of Anopheles arabiensis

    PubMed Central

    2013-01-01

    Background The mass rearing of insects requires a large colony from which individuals can be harvested for sterilization and release. Attention is given to larval food requirements and to handling and rearing conditions to ensure predictability and synchrony of development. Maximizing production requires optimized adult holding to ensure mating success, blood feeding and oviposition. Appropriate egg storage and harvesting is necessary to compensate any unpredicted reduction in egg production. Methods Anopheles arabiensis eggs were collected on wet filter paper in eggs cups. The eggs were cleaned and then dried over a suction device with adjustable speed and time. The effects of drying, storage time and storage condition (wet, dry and bulk with relative humidity 75 ± 5% and storage temperatures of 10, 15 and 20°C) on hatch rate, duration of larval stages (L1 to pupal stage), duration of L1 to adult emergence, survival of L1 to pupal stage and the survival of L1 to adult emergence were investigated. Post drying and post storage hatch rates were determined by counting hatched and unhatched eggs and were confirmed by counting the viable larvae in the rearing medium. Results The hatch rate of eggs dried at wind speeds of 1.0 or 1.8 m/s was not significantly different from the control, but eggs dried at 3.0 m/s resulted in very low (64%) hatchability as compared to the control (82%). Eggs stored at 20°C and 75 ± 5% RH in bulk in an aerated vial showed better survival than eggs stored in wet or dry conditions at 10 or 15°C. No significant changes in larval duration and survival were recorded after six days of bulk storage. Conclusion Anopheles arabiensis eggs can be stored in bulk at 20°C and 75 ± 5% RH for six days without any decrease in hatch rate, and up to 9 days with no impact on larval development. PMID:24028497

  5. BWR spent fuel storage cask performance test. Volume 1. Cask handling experience and decay heat, heat transfer, and shielding data

    SciTech Connect

    McKinnon, M.A.; Doman, J.W.; Tanner, J.E.; Guenther, R.J.; Creer, J.M.; King, C.E.

    1986-02-01

    This report documents a heat transfer and shielding performance test conducted on a Ridihalgh, Eggers and Associates REA 2023 boiling water reactor (BWR) spent fuel storage cask. The testing effort consisted of three parts: pretest preparations, performance testing, and post-test activities. Pretest preparations included conducting cask handling dry runs and characterizing BWR spent fuel assemblies from Nebraska Public Power District's Cooper Nuclear Station. The performance test matrix included 14 runs consisting of two loadings, two cask orientations, and three backfill environments. Post-test activities included calorimetry and axial radiation scans of selected fuel assemblies, in-basin sipping of each assembly, crud collection, video and photographic scans, and decontamination of the cask interior and exterior.

  6. Storage and production of hydrogen for fuel cell applications

    NASA Astrophysics Data System (ADS)

    Aiello, Rita

    The increased utilization of proton-exchange membrane (PEM) fuel cells as an alternative to internal combustion engines is expected to increase the demand for hydrogen, which is used as the energy source in these systems. The objective of this work is to develop and test new methods for the storage and production of hydrogen for fuel cells. Six ligand-stabilized hydrides were synthesized and tested as hydrogen storage media for use in portable fuel cells. These novel compounds are more stable than classical hydrides (e.g., NaBH4, LiAlH4) and react to release hydrogen less exothermically upon hydrolysis with water. Three of the compounds produced hydrogen in high yield (88 to 100 percent of the theoretical) and at significantly lower temperatures than those required for the hydrolysis of NaBH4 and LiAlH4. However, a large excess of water and acid were required to completely wet the hydride and keep the pH of the reaction medium neutral. The hydrolysis of the classical hydrides with steam can overcome these limitations. This reaction was studied in a flow reactor and the results indicate that classical hydrides can be hydrolyzed with steam in high yields at low temperatures (110 to 123°C) and in the absence of acid. Although excess steam was required, the pH of the condensed steam was neutral. Consequently, steam could be recycled back to the reactor. Production of hydrogen for large-scale transportation fuel cells is primarily achieved via the steam reforming, partial oxidation or autothermal reforming of natural gas or the steam reforming of methanol. However, in all of these processes CO is a by-product that must be subsequently removed because the Pt-based electrocatalyst used in the fuel cells is poisoned by its presence. The direct cracking of methane over a Ni/SiO2 catalyst can produce CO-free hydrogen. In addition to hydrogen, filamentous carbon is also produced. This material accumulates on the catalyst and eventually deactivates it. The Ni/SiO2 catalyst

  7. Drying tests conducted on Three Mile Island fuel canisters containing simulated debris

    SciTech Connect

    Palmer, A.J.

    1995-12-31

    Drying tests were conducted on TMI-2 fuel canisters filled with simulated core debris. During these tests, canisters were dried by heating externally by a heating blanket while simultaneously purging the canisters` interior with hot, dry nitrogen. Canister drying was found to be dominated by moisture retention properties of a concrete filler material (LICON) used for geometry control. This material extends the drying process 10 days or more beyond what would be required were it not there. The LICON resides in a nonpurgeable chamber separate from the core debris, and because of this configuration, dew point measurements on the exhaust stream do not provide a good indication of the dew point in the canisters. If the canisters are not dried, but rather just dewatered, 140-240 lb of water (not including the LICON water of hydration) will remain in each canister, approximately 50-110 lb of which is pore water in the LICON and the remainder unbound water.

  8. 76 FR 33121 - List of Approved Spent Fuel Storage Casks: HI-STORM Flood/Wind Addition

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-08

    ... 3150-AI90 List of Approved Spent Fuel Storage Casks: HI-STORM Flood/Wind Addition AGENCY: Nuclear... the NRC's spent fuel storage regulations to add the Holtec HI-STORM Flood/Wind cask system to the... Holtec HI- STORM Flood/Wind cask system to the ``List of Approved Spent Fuel Storage Casks''...

  9. Gaseous fuels production from dried sewage sludge via air gasification.

    PubMed

    Werle, Sebastian; Dudziak, Mariusz

    2014-07-01

    Gasification is a perspective alternative method of dried sewage sludge thermal treatment. For the purpose of experimental investigations, a laboratory fixed-bed gasifier installation was designed and built. Two sewage sludge (SS) feedstocks, taken from two typical Polish wastewater treatment systems, were analysed: SS1, from a mechanical-biological wastewater treatment system with anaerobic stabilization (fermentation) and high temperature drying; and (SS2) from a mechanical-biological-chemical wastewater treatment system with fermentation and low temperature drying. The gasification results show that greater oxygen content in sewage sludge has a strong influence on the properties of the produced gas. Increasing the air flow caused a decrease in the heating value of the produced gas. Higher hydrogen content in the sewage sludge (from SS1) affected the produced gas composition, which was characterized by high concentrations of combustible components. In the case of the SS1 gasification, ash, charcoal, and tar were produced as byproducts. In the case of SS2 gasification, only ash and tar were produced. SS1 and solid byproducts from its gasification (ash and charcoal) were characterized by lower toxicity in comparison to SS2. However, in all analysed cases, tar samples were toxic.

  10. Measurements and Characterization of Neutron and Gamma Dose Quantities in the Vicinity of an Independent Spent Fuel Storage Installation

    SciTech Connect

    Darois, E.L.; Keefer, D.G.; Plazeski, P.E.; Connell, J.

    2006-07-01

    As part of the decommissioning of the Maine Yankee Atomic Power Company (MYAPCo) nuclear power plant, the spent nuclear fuel is being temporarily stored in a dry cask storage facility on a portion of the original licensed property. Each of the spent nuclear fuel (SNF) storage casks hold approximately 25 spent fuel assemblies. Additional storage casks for the greater-than-Class C waste (GTCC) are also used. This waste is contained in 64 casks (60 SNF, 4 GTCC), each of which contain a substantial amount of concrete for shielding and structural purposes. The vertical concrete casks (VCCs) are typically separated by a distance of 4 and 6 feet. The storage casks are effective personnel radiation shields for most of the gamma and neutron radiation emitted from the fuel. However measurable gamma and neutron radiation levels are present in the vicinity of the casks. In order to establish a controlled area boundary around the facility such that a member of the public annual dose level of 0.25-mSv could be demonstrated, measurements of gamma and neutron dose equivalents were conducted. External gamma exposure rates were measured with a Pressurized Ion Chamber (PIC). Neutron absorbed dose and dose equivalent rates were measured with a Rossi-type tissue equivalent proportional counter (TEPC). Both gamma and neutron measurements were made at increasing distances from the facility as well as at a background location. The results of the measurements show that the distance to the 0.25-mSv per year boundary for 100% occupancy conditions varies from 321 feet to 441 feet from the geometric center of the storage pads, depending on the direction from the pad. For the TEPC neutron measurements, the average quality factor from the facilities was approximately 7.4. This quality factor compares well with the average quality factor of 7.6 that was measured during a calibration performed with a bare Cf-252 source. (authors)

  11. Dry Matter Losses and Greenhouse Gas Emissions From Outside Storage of Short Rotation Coppice Willow Chip.

    PubMed

    Whittaker, Carly; Yates, Nicola E; Powers, Stephen J; Misselbrook, Tom; Shield, Ian

    This study examined the dry matter losses and the greenhouse gas (GHG) concentrations within two short rotation coppice (SRC) willow wood chip storage heaps. One heap was built on a grassland area (East Midlands) and the other (Rothamsted) on a concrete hard standing. A series of 1- and 3-m probes were embedded in the heaps in order to retrieve gas samples for analysis, and pre-weighed net bags were positioned in the core of the heap to detect dry matter losses. The bagged samples showed dry matter losses of 18 and 19 % in the East Midlands and Rothamsted heaps after 210 and 97 days storage, respectively. The Rothamsted heap showed a whole-heap dry matter loss of 21 %. During this time, the wood chips dried from 54 to 39 % moisture content in the East Midlands heap and 50 to 43 % at Rothamsted. The results from analysing the whole Rothamsted heap indicated an overall loss of 1.5 GJ per tonne stored, although measurements from bagged samples in the core suggested that the chips dried sufficiently to have a minimal energy loss from storage. The process of mixing the heap, however, led to incorporation of wet outer layers and hence the average moisture content was higher in an average sample of chip. After establishment of the heaps, the temperature rose rapidly and this correlated with a peak in carbon dioxide (CO2) concentration within the heap. A peak in methane (CH4) concentration was also detected in both heaps, though more noticeably in the East Midlands heap after around 55 days. In both instances, the peak CH4 concentration occurred as CO2 concentrations dropped, suggesting that after an active period of aerobic decomposition in the first 2 months of storage, the conditions in the heap became anaerobic. The results from this study suggest that outside wood chip storage is not an efficient method of storing biomass, though this may be location-specific as there are some studies showing lower dry matter losses. It is necessary to explore other methods of

  12. COBRA-SFS thermal analysis of a sealed storage cask for the Monitored Retrievable Storage of spent fuel

    SciTech Connect

    Rector, D.R.; Wheeler, C.L.

    1986-01-01

    The COBRA-SFS (Spent Fuel Storage) computer code was used to predict temperature distributions in a concrete Sealed Storage Cask (SSC). This cask was designed for the Department of Energy in the Monitored Retrievable Storage (MRS) program for storage of spent fuel from commercial power operations. Analytical results were obtained for nominal operation of the SSC with spent fuel from 36 PWR fuel assemblies consolidated in 12 cylindrical canisters. Each canister generates 1650 W of thermal power. A parametric study was performed to assess the effects on cask thermal performance of thermal conductivity of the concrete, the fin material, and the amount of radial reinforcing steel bars (rebar). Seven different cases were modeled. The results of the COBRA-SFS analysis of the current cask design predict that the peak fuel cladding temperature in the SSC will not exceed the 37/sup 0/C design limit for the maximum spent fuel load of 19.8 kW and a maximum expected ambient temperature of 37.8/sup 0/C (100/sup 0/F). The results of the parametric analyses illustrate the importance of material selection and design optimization with regard to the SSC thermal performance.

  13. Tape extensometer sensitivity and reliability. [Climax fuel storage at NTS

    SciTech Connect

    Yow, J.L. Jr.; Wilder, D.G.

    1981-09-21

    The Spent Fuel Test-Climax is a test of retrievable storage in granite of spent nuclear reactor fuel. The rock has been instrumented to measure temperatures, stress changes, and displacements. Periodic tape extensometer readings provide test drift convergence data. Vertical and horizontal tape readings are made at five locations in each of two 3.4m x 3.4m (11 ft x 11 ft) drifts and six locations in a 4.6m x 6.2m (15 ft x 20.5 ft) drift. The sensitivity of the readings to temperature effects, errors in temperature corrections, change of steel tape, and change of operator has been examined. Calculated corrections for temperature-induced changes in distance range from 0.001 in. to 0.003 in.//sup 0/C. A tape changeout evidenced both a systematic error apparently due to slight changes in tape registration during punching and to nonidentical location of punched holes in the two tapes and a random error due to variability of reading and punching operations. These errors were corrected by making duplicate measurements for the tapes. Tape readings by the same operator have been repeatable within +-0.001 in. in the smaller drifts and +-0.002 in. in the larger. Different operators have been able to repeat readings to within +-0.004 in. (usually within +-0.002 in.) with generally consistent direction of offset between operators. Corrections of readings and review of plotted data show the tape extensometer to be a reliable instrument for tunnel convergence measurements.

  14. Fuel Pond Sludge - Lessons Learned from Initial De-sludging of Sellafield's Pile Fuel Storage Pond - 12066

    SciTech Connect

    Carlisle, Derek; Adamson, Kate

    2012-07-01

    The Pile Fuel Storage Pond (PFSP) at Sellafield was built and commissioned between the late 1940's and early 1950's as a storage and cooling facility for irradiated fuel and isotopes from the two Windscale Pile reactors. The pond was linked via submerged water ducts to each reactor, where fuel and isotopes were discharged into skips for transfer along the duct to the pond. In the pond the fuel was cooled then de-canned underwater prior to export for reprocessing. The plant operated successfully until it was taken out of operation in 1962 when the First Magnox Fuel Storage Pond took over fuel storage and de-canning operations on the site. The pond was then used for storage of miscellaneous Intermediate Level Waste (ILW) and fuel from the UK's Nuclear Programme for which no defined disposal route was available. By the mid 1970's the import of waste ceased and the plant, with its inventory, was placed into a passive care and maintenance regime. By the mid 1990s, driven by the age of the facility and concern over the potential challenge to dispose of the various wastes and fuels being stored, the plant operator initiated a programme of work to remediate the facility. This programme is split into a number of key phases targeted at sustained reduction in the hazard associated with the pond, these include: - Pond Preparation: Before any remediation work could start the condition of the pond had to be transformed from a passive store to a plant capable of complex retrieval operations. This work included plant and equipment upgrades, removal of redundant structures and the provision of a effluent treatment plant for removing particulate and dissolved activity from the pond water. - Canned Fuel Retrieval: Removal of canned fuel, including oxide and carbide fuels, is the highest priority within the programme. Handling and export equipment required to remove the canned fuel from the pond has been provided and treatment routes developed utilising existing site facilities to

  15. Operation of polymer electrolyte membrane fuel cells with dry feeds: Design and operating strategies

    NASA Astrophysics Data System (ADS)

    Hogarth, Warren H. J.; Benziger, Jay B.

    The operation of polymer electrolyte membrane fuel cells (PEMFCs) with dry feeds has been examined with different fuel cell flow channel designs as functions of pressure, temperature and flow rate. Auto-humidified (or self-humidifying) PEMFC operation is improved at higher pressures and low gas velocities where axial dispersion enhances "back-mixing" of the product water with the dry feed. We demonstrate auto-humidified operation of the channel-less, self-draining fuel cell, based on a stirred tank reactor; data is presented showing auto-humidified operation from 25 to 115 °C at 1 and 3 atm. Design and operating requirements are derived for the auto-humidified operation of the channel-less, self-draining fuel cell. The auto-humidified self-draining fuel cell outperforms a fully humidified serpentine flow channel fuel cell at high current densities. The new design offers substantial benefits for simplicity of operation and control including: the ability to self-drain reducing flooding, the ability to uniformly disperse water removing current gradients and the ability to operate on dry feeds eliminating the need for humidifiers. Additionally, the design lends itself well to a modular design concept.

  16. Volatile organic compound emissions from dry mill fuel ethanol production.

    PubMed

    Brady, Daniel; Pratt, Gregory C

    2007-09-01

    Ethanol fuel production is growing rapidly in the rural Midwest, and this growth presents potential environmental impacts. In 2002, the U.S. Environmental Protection Agency (EPA) and the Minnesota Pollution Control Agency (MPCA) entered into enforcement actions with 12 fuel ethanol plants in Minnesota. The enforcement actions uncovered underreported emissions and resulted in consent decrees that required pollution control equipment be installed. A key component of the consent decrees was a requirement to conduct emissions tests for volatile organic compounds (VOCs) with the goal of improving the characterization and control of emissions. The conventional VOC stack test method was thought to underquantify total VOC emissions from ethanol plants. A hybrid test method was also developed that involved quantification of individual VOC species. The resulting database of total and speciated VOC emissions from 10 fuel ethanol plants is relatively small, but it is the most extensive to date and has been used to develop and gauge compliance with permit limits and to estimate health risks in Minnesota. Emissions were highly variable among facilities and emissions units. In addition to the variability, the small number of samples and the presence of many values below detection limits complicate the analysis of the data. To account for these issues, a nested bootstrap procedure on the Kaplan-Meier method was used to calculate means and upper confidence limits. In general, the fermentation scrubbers and fluid bed coolers emitted the largest mass of VOC emissions. Across most facilities and emissions units ethanol was the pollutant emitted at the highest rate. Acetaldehyde, acetic acid, and ethyl acetate were also important emissions from some units. Emissions of total VOCs, ethanol, and some other species appeared to be a function of the beer feed rate, although the relationship was not reliable enough to develop a production rate-based emissions factor.

  17. Critical experiments supporting underwater storage of tightly packed configurations of spent fuel pins

    NASA Astrophysics Data System (ADS)

    Hoovler, G. S.; Baldwin, M. N.; Maceda, E. L.; Welfare, F. G.

    1981-11-01

    Critical experiments were performed with low enriched UO2 arrays simulating underwater pin storage of spent pressurized water reactor fuel. Pin storage refers to a storage concept in which fuel assemblies are dismantled and the individual fuel pins from several assemblies are tightly packed into specially designed cannisters. Each critical configuration is sufficiently described and documented to permit the use of these data for validating critically calculational methods according to ANSI Standard N16.9-1975. The reactivity of each benchmark core was calculated using the AMPX-KENO IV package. The results of these analyses are also presented.

  18. DEMONSTRATION OF LONG-TERM STORAGE CAPABILITY FOR SPENT NUCLEAR FUEL IN L BASIN

    SciTech Connect

    Sindelar, R.; Deible, R.

    2011-04-27

    The U.S. Department of Energy decisions for the ultimate disposition of its inventory of used nuclear fuel presently in, and to be received and stored in, the L Basin at the Savannah River Site, and schedule for project execution have not been established. A logical decision timeframe for the DOE is following the review of the overall options for fuel management and disposition by the Blue Ribbon Commission on America's Nuclear Future (BRC). The focus of the BRC review is commercial fuel; however, the BRC has included the DOE fuel inventory in their review. Even though the final report by the BRC to the U.S. Department of Energy is expected in January 2012, no timetable has been established for decisions by the U.S. Department of Energy on alternatives selection. Furthermore, with the imminent lay-up and potential closure of H-canyon, no ready path for fuel disposition would be available, and new technologies and/or facilities would need to be established. The fuel inventory in wet storage in the 3.375 million gallon L Basin is primarily aluminum-clad, aluminum-based fuel of the Materials Test Reactor equivalent design. An inventory of non-aluminum-clad fuel of various designs is also stored in L Basin. Safe storage of fuel in wet storage mandates several high-level 'safety functions' that would be provided by the Structures, Systems, and Components (SSCs) of the storage system. A large inventory of aluminum-clad, aluminum-based spent nuclear fuel, and other nonaluminum fuel owned by the U.S. Department of Energy is in wet storage in L Basin at the Savannah River Site. An evaluation of the present condition of the fuel, and the Structures, Systems, or Components (SSCs) necessary for its wet storage, and the present programs and storage practices for fuel management have been performed. Activities necessary to validate the technical bases for, and verify the condition of the fuel and the SSCs under long-term wet storage have also been identified. The overall

  19. Irradiation of Microbes from Spent Nuclear Fuel Storage Pool Environments

    SciTech Connect

    Breckenridge, C.R.; Watkins, C.S.; Bruhn, D.F.; Roberto, F.F.; Tsang, M.N.; Pinhero, P.J.; Brey, R.F.; Wright, R.N.; Windes, W.F.

    1999-09-03

    Microbes have been isolated and identified from spent nuclear fuel storage pools at the Idaho National Engineering and Environmental Laboratory (INEEL). Included among these are Corynebacterium aquaticum, Pseudomonas putida, Comamonas acidovorans, Gluconobacter cerinus, Micrococcus diversus, Rhodococcus rhodochrous, and two strains of sulfate-reducing bacteria (SRB). We examined the sensitivity of these microbes to a variety of total exposures of radiation generated by a 6-MeV linear accelerator (LINAC). The advantage of using a LINAC is that it provides a relatively quick screen of radiation tolerance. In the first set of experiments, we exposed each of the aforementioned microbes along with four additional microbes, pseudomonas aeruginosa, Micrococcus luteus, Escherchia coli, and Deinococcus radiodurans to exposures of 5 x 10{sup 3} and 6 x 10{sup 4} rad. All microbial specimens withstood the lower exposure with little or no reduction in cell population. Upon exposing the microbes to the larger dose of 6 x 10{sup 4} rad, we observed two distinct groupings: microbes that demonstrate resistance to radiation, and microbes that display intolerance through a dramatic reduction from their initial population. Microbes in the radiation tolerant grouping were exposed to 1.1 x 10{sup 5} rad to examine the extent of their resistance. We observe a correlation between radiation resistance and gram stain. The gram-positive species we examined seem to demonstrate a greater radiation resistance.

  20. Regenerative Hydrogen-oxygen Fuel Cell-electrolyzer Systems for Orbital Energy Storage

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.

    1984-01-01

    Fuel cells have found application in space since Gemini. Over the years technology advances have been factored into the mainstream hardware programs. Performance levels and service lives have been gradually improving. More recently, the storage application for fuel cell-electrolyzer combinations are receiving considerable emphasis. The regenerative system application described here is part of a NASA Fuel Cell Program which was developed to advance the fuel cell and electrolyzer technology required to satisfy the identified power generation and energy storage need of the Agency for space transportation and orbital applications to the year 2000.

  1. Evaluation of Dried Storage of Platelets for Transfusion: Physiologic Integrity and Hemostatic Functionality

    DTIC Science & Technology

    1994-06-17

    ONR Grant No. N00014-92-J-1244 EVALUATION OF DRIED STORAGE OF PLATELETS FOR TRANSFUSION: PHYSIOLOGIC INTEGRITY AND HEMOSTATIC FUNCTIONALITY. Principal...protection for commercialization of the manufacture and use of lyophilized platelets in transfusion medicine is still pending in U.S. Patent Court and... platelets for correction of bleeding times in thrombocytopenic rabbits. Three different preparations, representing the platelets from a total of six units

  2. Evaluation of Dried Storage of Platelets for Transfusion: Physiologic Integrity and Hemostatic Functionality

    DTIC Science & Technology

    1993-02-01

    thrombogenic effects of rehydrated platelets involve the use of thrombocytopenic animals. We plan to use a COBE Spectra Blood Cell Separator apheresis ...34AD-A276 018 DT SFEB 2 199-4 SECOND ANNUAL REPORT F 2 4 February 1, 1993 - January 31, 1994 "Evaluation of Dried Storage of Platelets for Transfusion...canine platelets and assessment of multiple infusions of non-labelled rehydrated platelets . The attached subcontract report from Dr. Read and

  3. Survival of Salmonella during Drying of Fresh Ginger Root (Zingiber officinale) and Storage of Ground Ginger.

    PubMed

    Gradl, Dana R; Sun, Lingxiang; Larkin, Emily L; Chirtel, Stuart J; Keller, Susanne E

    2015-11-01

    The survival of Salmonella on fresh ginger root (Zingiber officinale) during drying was examined using both a laboratory oven at 51 and 60°C with two different fan settings and a small commercially available food dehydrator. The survival of Salmonella in ground ginger stored at 25 and 37°C at 33% (low) and 97% (high) relative humidity (RH) was also examined. To inoculate ginger, a four-serovar cocktail of Salmonella was collected by harvesting agar lawn cells. For drying experiments, ginger slices (1 ± 0.5 mm thickness) were surface inoculated at a starting level of approximately 9 log CFU/g. Higher temperature (60°C) coupled with a slow fan speed (nonstringent condition) to promote a slower reduction in the water activity (aw) of the ginger resulted in a 3- to 4-log reduction in Salmonella populations in the first 4 to 6 h with an additional 2- to 3-log reduction by 24 h. Higher temperature with a higher fan speed (stringent condition) resulted in significantly less destruction of Salmonella throughout the 24-h period (P < 0.001). Survival appeared related to the rate of reduction in the aw. The aw also influenced Salmonella survival during storage of ground ginger. During storage at 97% RH, the maximum aw values were 0.85 at 25°C and 0.87 at 37°C; Salmonella was no longer detected after 25 and 5 days of storage, respectively, under these conditions. At 33% RH, the aw stabilized to approximately 0.35 at 25°C and 0.31 at 37°C. Salmonella levels remained relatively constant throughout the 365-day and 170-day storage periods for the respective temperatures. These results indicate a relationship between temperature and aw and the survival of Salmonella during both drying and storage of ginger.

  4. Seed storage at elevated partial pressure of oxygen, a fast method for analysing seed ageing under dry conditions

    PubMed Central

    Groot, S. P. C.; Surki, A. A.; de Vos, R. C. H.; Kodde, J.

    2012-01-01

    Background and Aims Despite differences in physiology between dry and relative moist seeds, seed ageing tests most often use a temperature and seed moisture level that are higher than during dry storage used in commercial practice and gene banks. This study aimed to test whether seed ageing under dry conditions can be accelerated by storing under high-pressure oxygen. Methods Dry barley (Hordeum vulgare), cabbage (Brassica oleracea), lettuce (Lactuca sativa) and soybean (Glycine max) seeds were stored between 2 and 7 weeks in steel tanks under 18 MPa partial pressure of oxygen. Storage under high-pressure nitrogen gas or under ambient air pressure served as controls. The method was compared with storage at 45 °C after equilibration at 85 % relative humidity and long-term storage at the laboratory bench. Germination behaviour, seedling morphology and tocopherol levels were assessed. Key Results The ageing of the dry seeds was indeed accelerated by storing under high-pressure oxygen. The morphological ageing symptoms of the stored seeds resembled those observed after ageing under long-term dry storage conditions. Barley appeared more tolerant of this storage treatment compared with lettuce and soybean. Less-mature harvested cabbage seeds were more sensitive, as was the case for primed compared with non-primed lettuce seeds. Under high-pressure oxygen storage the tocopherol levels of dry seeds decreased, in a linear way with the decline in seed germination, but remained unchanged in seeds deteriorated during storage at 45 °C after equilibration at 85 % RH. Conclusions Seed storage under high-pressure oxygen offers a novel and relatively fast method to study the physiology and biochemistry of seed ageing at different seed moisture levels and temperatures, including those that are representative of the dry storage conditions as used in gene banks and commercial practice. PMID:22967856

  5. Categorization of failed and damaged spent LWR (light-water reactor) fuel currently in storage

    SciTech Connect

    Bailey, W.J.

    1987-11-01

    The results of a study that was jointly sponsored by the US Department of Energy and the Electric Power Research Institute are described in this report. The purpose of the study was to (1) estimate the number of failed fuel assemblies and damaged fuel assemblies (i.e., ones that have sustained mechanical or chemical damage but with fuel rod cladding that is not breached) in storage, (2) categorize those fuel assemblies, and (3) prepare this report as an authoritative, illustrated source of information on such fuel. Among the more than 45,975 spent light-water reactor fuel assemblies currently in storage in the United States, it appears that there are nearly 5000 failed or damaged fuel assemblies. 78 refs., 23 figs., 19 tabs.

  6. Making the case for direct hydrogen storage in fuel cell vehicles

    SciTech Connect

    James, B.D.; Thomas, C.E.; Baum, G.N.; Lomas, F.D. Jr.; Kuhn, I.F. Jr.

    1997-12-31

    Three obstacles to the introduction of direct hydrogen fuel cell vehicles are often states: (1) inadequate onboard hydrogen storage leading to limited vehicle range; (2) lack of an hydrogen infrastructure, and (3) cost of the entire fuel cell system. This paper will address the first point with analysis of the problem/proposed solutions for the remaining two obstacles addressed in other papers. Results of a recent study conducted by Directed Technologies Inc. will be briefly presented. The study, as part of Ford Motor Company/DOE PEM Fuel Cell Program, examines multiple pure hydrogen onboard storage systems on the basis of weight, volume, cost, and complexity. Compressed gas, liquid, carbon adsorption, and metal hydride storage are all examined with compressed hydrogen storage at 5,000 psia being judged the lowest-risk, highest benefit, near-term option. These results are combined with recent fuel cell vehicle drive cycle simulations to estimate the onboard hydrogen storage requirement for full vehicle range (380 miles on the combined Federal driving schedule). The results indicate that a PNGV-like vehicle using powertrain weights and performance realistically available by the 2004 PNGV target data can achieve approximate fuel economy equivalent to 100 mpg on gasoline (100 mpg{sub eq}) and requires storage of approximately 3.6 kg hydrogen for full vehicle storage quantity allows 5,000 psia onboard storage without altering the vehicle exterior lines or appreciably encroaching on the passenger or trunk compartments.

  7. Combustion Gas Properties I-ASTM Jet a Fuel and Dry Air

    NASA Technical Reports Server (NTRS)

    Jones, R. E.; Trout, A. M.; Wear, J. D.; Mcbride, B. J.

    1984-01-01

    A series of computations was made to produce the equilibrium temperature and gas composition for ASTM jet A fuel and dry air. The computed tables and figures provide combustion gas property data for pressures from 0.5 to 50 atmospheres and equivalence ratios from 0 to 2.0.

  8. Combustion characteristics of dry coal-powder-fueled adiabatic diesel engine: Final report

    SciTech Connect

    Kakwani, R.M.; Kamo, R.

    1989-01-01

    This report describes the progress and findings of a research program aimed at investigating the combustion characteristics of dry coal powder fueled diesel engine. During this program, significant achievements were made in overcoming many problems facing the coal-powder-fueled engine. The Thermal Ignition Combustion System (TICS) concept was used to enhance the combustion of coal powder fuel. The major coal-fueled engine test results and accomplishments are as follows: design, fabrication and engine testing of improved coal feed system for fumigation of coal powder to the intake air; design, fabrication and engine testing of the TICS chamber made from a superalloy material (Hastelloy X); design, fabrication and engine testing of wear resistant chrome oxide ceramic coated piston rings and cylinder liner; lubrication system was improved to separate coal particles from the contaminated lubricating oil; control of the ignition timing of fumigated coal powder by utilizing exhaust gas recirculation (EGR) and variable TICS chamber temperature; coal-fueled engine testing was conducted in two configurations: dual fuel (with diesel pilot) and 100% coal-fueled engine without diesel pilot or heated intake air; cold starting of the 100% coal-powder-fueled engine with a glow plug; and coal-fueled-engine was operated from 800 to 1800 rpm speed and idle to full load engine conditions.

  9. Vitamins, fatty acids, and antioxidant capacity stability during storage of freeze-dried human milk.

    PubMed

    Lozano, Blanca; Castellote, Ana Isabel; Montes, Rosa; López-Sabater, M Carmen

    2014-09-01

    Although freezing is the most common method used to preserve human milk, nutritional and immunological components may be lost during storage. Freeze-drying could increase the shelf life of human milk, while preserving its original characteristics. Seventy-two samples of freeze-dried human milk were stored for different periods of time, up to a maximum of 3 months, at 4 °C or 40 °C. Vitamin C, tocopherols, antioxidant capacity, and fatty acids composition were analyzed. A new HILIC-UHPLC method improving vitamin C determination was also validated. Ascorbic acid and total vitamin C concentrations significantly decreased at both temperatures, while antioxidant capacity only decreased at 40 °C. Fatty acids composition and both γ-tocopherol and δ-tocopherol contents remained unaltered. The stability after storage of freeze-dried milk was higher than that reported for frozen or fresh milk indicating that freeze-drying is a promising option to improve the preservation of human milk in banks.

  10. U.S. Naval Base, Pearl Harbor, Red Hill Underground Fuel Storage ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    U.S. Naval Base, Pearl Harbor, Red Hill Underground Fuel Storage System, Linear underground system extending from North Road to Icarus Way, Joint Base Pearl Harbor-Hickam, Honolulu, Honolulu County, HI

  11. 78 FR 3454 - Prairie Island, Independent Spent Fuel Storage Installation; Notice of Docketing of Amendment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-16

    ... COMMISSION Prairie Island, Independent Spent Fuel Storage Installation; Notice of Docketing of Amendment... Considerations and Containing Sensitive Unclassified Non-Safeguards Information AGENCY: Nuclear Regulatory... CFR), who believes access to Sensitive Unclassified Non-Safeguards Information (SUNSI) is necessary...

  12. Dry Bag Isostatic Pressing for Improved Green Strength of Nuclear Fuel Pellets

    SciTech Connect

    G. W. Egeland; L. D. Zuck; W. R. Cannon; P. A. Lessing; P. G. Medvedev

    2010-11-01

    Dry bag isostatic pressing is proposed for mass production of nuclear fuel pellets. Dry bag isostatically pressed rods of a fuel surrogate (95% CeO2-5% HfO2) 200 mm long by 8 mm diameter were cut into pellets using a wire saw. Four different binder and two different CeO2 powder sources were investigated. The strength of the isostatically pressed pellets for all binder systems measured by diametral compression was about 50% higher than pellets produced by uniaxial dry pressing at the same pressure. It was proposed that the less uniform density of uniaxially pressed pellets accounted for the lower strength. The strength of pellets containing CeO2 powder with significantly higher moisture content was five times higher than pellets containing CeO2 powder with a low moisture content. Capillary pressure of the moisture was thought to supply the added binding strength.

  13. Investigation of Hydrogen Storage in Single Walled Carbon Nanotubes for Fuel Cells-2

    DTIC Science & Technology

    2010-03-11

    1 Final Report Title: Investigation of hydrogen storage in Single Walled Carbon Nanotubes for fuel cells - 2 AFOSR/AOARD...SUBTITLE Investigation of hydrogen storage in single walled carbon nanotubes for fuel cells-2 5a. CONTRACT NUMBER FA23860914157 5b. GRANT NUMBER...SUPPLEMENTARY NOTES 14. ABSTRACT Single walled carbon nanotubes (SWCNTs) dispersed in 2-propanol are deposited on the alumina substrate using drop caste

  14. Evaluation of Aluminum-Boron Carbide Neutron Absorbing Materials for Interim Storage of Used Nuclear Fuel

    SciTech Connect

    Wang, Lumin; Wierschke, Jonathan Brett

    2015-04-08

    The objective of this work was to understand the corrosion behavior of Boral® and Bortec® neutron absorbers over long-term deployment in a used nuclear fuel dry cask storage environment. Corrosion effects were accelerated by flowing humidified argon through an autoclave at temperatures up to 570°C. Test results show little corrosion of the aluminum matrix but that boron is leaching out of the samples. Initial tests performed at 400 and 570°C were hampered by reduced flow caused by the rapid build-up of solid deposits in the outlet lines. Analysis of the deposits by XRD shows that the deposits are comprised of boron trioxide and sassolite (H3BO3). The collection of boron- containing compounds in the outlet lines indicated that boron was being released from the samples. Observation of the exposed samples using SEM and optical microscopy show the growth of new phases in the samples. These phases were most prominent in Bortec® samples exposed at 570°C. Samples of Boral® exposed at 570°C showed minimal new phase formation but showed nearly the complete loss of boron carbide particles. Boron carbide loss was also significant in Boral samples at 400°C. However, at 400°C phases similar to those found in Bortec® were observed. The rapid loss of the boron carbide particles in the Boral® is suspected to inhibit the formation of the new secondary phases. However, Material samples in an actual dry cask environment would be exposed to temperatures closer to 300°C and less water than the lowest test. The results from this study conclude that at the temperature and humidity levels present in a dry cask environment, corrosion and boron leaching will have no effect on the performance of Boral® and Bortec® to maintain criticality control.

  15. Life cycle assessment of fuel ethanol derived from corn grain via dry milling.

    PubMed

    Kim, Seungdo; Dale, Bruce E

    2008-08-01

    Life cycle analysis enables to investigate environmental performance of fuel ethanol used in an E10 fueled compact passenger vehicle. Ethanol is derived from corn grain via dry milling. This type of analysis is an important component for identifying practices that will help to ensure that a renewable fuel, such as ethanol, may be produced in a sustainable manner. Based on data from eight counties in seven Corn Belt states as corn farming sites, we show ethanol derived from corn grain as E10 fuel would reduce nonrenewable energy and greenhouse gas emissions, but would increase acidification, eutrophication and photochemical smog, compared to using gasoline as liquid fuel. The ethanol fuel systems considered in this study offer economic benefits, namely more money returned to society than the investment for producing ethanol. The environmental performance of ethanol fuel system varies significantly with corn farming sites because of different crop management practices, soil properties, and climatic conditions. The dominant factor determining most environmental impacts considered here (i.e., greenhouse gas emissions, acidification, eutrophication, and photochemical smog formation) is soil related nitrogen losses (e.g., N2O, NOx, and NO3-). The sources of soil nitrogen include nitrogen fertilizer, crop residues, and air deposition. Nitrogen fertilizer is probably the primary source. Simulations using an agro-ecosystem model predict that planting winter cover crops would reduce soil nitrogen losses and increase soil organic carbon levels, thereby greatly improving the environmental performance of the ethanol fuel system.

  16. OBLIQUE PHOTO OF NORTHWEST CORNER OF FUEL STORAGE BUILDING (CPP603). ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OBLIQUE PHOTO OF NORTHWEST CORNER OF FUEL STORAGE BUILDING (CPP-603). PHOTO TAKEN LOOKING SOUTHEAST. INL PHOTO NUMBER HD-54-14-4. Mike Crane, Photographer, 8/2005 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  17. 0BLIQUE PHOTO OF EAST ELEVATION OF FUEL STORAGE BUILDING (CPP603). ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    0BLIQUE PHOTO OF EAST ELEVATION OF FUEL STORAGE BUILDING (CPP-603). PHOTO TAKEN LOOKING WEST. INL PHOTO NUMBER HD-54-15-1. Mike Crane, Photographer, 8/2005 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  18. OBLIQUE PHOTO OF NORTH ELEVATION OF FUEL STORAGE BUILDING (CPP603). ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OBLIQUE PHOTO OF NORTH ELEVATION OF FUEL STORAGE BUILDING (CPP-603). PHOTO TAKEN LOOKING SOUTH. INL PHOTO NUMBER HD-54-14-3. Mike Crane, Photographer, 8/2005 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  19. 76 FR 9381 - Notice of Availability of Interim Staff Guidance Documents for Spent Fuel Storage Casks

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-17

    ... Gordon, Structural Mechanics and Materials Branch, Division of Spent Fuel Storage and Transportation... ISG-23 should be directed to Matthew Gordon, Structural Mechanics and Materials Branch, Division of.... Michele Sampson, Acting Chief, Structural Mechanics and Materials Branch, Division of Spent Fuel...

  20. VIEW OF FECF HOT CELL OF FUEL STORAGE BUILDING (CPP603). ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF FECF HOT CELL OF FUEL STORAGE BUILDING (CPP-603). PHOTO TAKEN LOOKING NORHTWEST. INL PHOTO NUMBER HD-54-18-3. Mike Crane, Photographer, 8/2005 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  1. SIDING AND ROOF DETAILS OF FUEL STORAGE BUILDING (CPP603). INL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SIDING AND ROOF DETAILS OF FUEL STORAGE BUILDING (CPP-603). INL DRAWING NUMBER 200-0603-61-299-103033. ALTERNATE ID NUMBER 542-31-B-25. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  2. MISCELLANEOUS SECTIONS AND DETAILS OF FUEL STORAGE BUILDING (CPP603). INL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MISCELLANEOUS SECTIONS AND DETAILS OF FUEL STORAGE BUILDING (CPP-603). INL DRAWING NUMBER 200-0603-61-299-103032. ALTERNATE ID NUMBER 542-31-B-24. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  3. VIEW OF TRANSFER BASIN CORRIDOR OF FUEL STORAGE BUILDING (CPP603). ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF TRANSFER BASIN CORRIDOR OF FUEL STORAGE BUILDING (CPP-603). PHOTO TAKEN LOOKING NORTH. INL PHOTO NUMBER HD-54-17-2. Mike Crane, Photographer, 8/2005 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  4. WEST ELEVATION OF FUEL STORAGE BUILDING (CPP603). PHOTO TAKEN LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    WEST ELEVATION OF FUEL STORAGE BUILDING (CPP-603). PHOTO TAKEN LOOKING NORTHEAST. INL PHOTO NUMBER HD-54-20-3. Mike Crane, Photographer, 8/2005 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  5. NORTHERN PORTION OF WEST ELEVATION OF FUEL STORAGE BUILDING (CPP603). ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    NORTHERN PORTION OF WEST ELEVATION OF FUEL STORAGE BUILDING (CPP-603). PHOTO TAKEN LOOKING SOUTHEAST. INL PHOTO NUMBER HD-54-20-2. Mike Crane, Photographer, 8/2005 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  6. WEST ELEVATION OF FUEL STORAGE BUILDING (CPP603). PHOTO TAKEN LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    WEST ELEVATION OF FUEL STORAGE BUILDING (CPP-603). PHOTO TAKEN LOOKING NORTHEAST. INL PHOTO NUMBER HD-54-20-1. Mike Crane, Photographer, 8/2005 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  7. INTERIOR VIEW OF FUEL STORAGE BUILDING (CPP603) SHOWING CRANE ASSEMBLY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW OF FUEL STORAGE BUILDING (CPP-603) SHOWING CRANE ASSEMBLY FOR TRANSFER PIT. INL PHOTO NUMBER NRTS-51-2404. Unknown Photographer, 5/31/1951 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  8. NORTHERN PORTION OF WEST ELEVATION OF FUEL STORAGE BUILDING (CPP603). ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    NORTHERN PORTION OF WEST ELEVATION OF FUEL STORAGE BUILDING (CPP-603). PHOTO TAKEN LOOKING NORTHEAST. INL PHOTO NUMBER HD-54-20-4. Mike Crane, Photographer, 8/2005 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  9. WEST ELEVATIONS AND SECTIONS OF FUEL STORAGE BUILDING (CPP603). INL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    WEST ELEVATIONS AND SECTIONS OF FUEL STORAGE BUILDING (CPP-603). INL DRAWING NUMBER 200-063-61-299-103031. ALTERNATE ID NUMBER 542-31-B-23. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  10. 78 FR 66858 - Waste Confidence-Continued Storage of Spent Nuclear Fuel

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-07

    ...; ] NUCLEAR REGULATORY COMMISSION 10 CFR Part 51 RIN 3150-AJ20 Waste Confidence--Continued Storage of Spent... storage of spent nuclear fuel beyond a reactor's licensed life for operation and prior to ultimate..., contact the individuals listed in the FOR FURTHER INFORMATION CONTACT section of this document....

  11. 10 CFR 72.236 - Specific requirements for spent fuel storage cask approval and fabrication.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR... storage cask must be designed to provide adequate heat removal capacity without active cooling systems. (g... ascertain that there are no cracks, pinholes, uncontrolled voids, or other defects that could...

  12. Effects of Drying Temperature on Antioxidant Activities of Tomato Powder and Storage Stability of Pork Patties

    PubMed Central

    2016-01-01

    This study was performed to evaluate the antioxidant activity of oven-dried tomato powder (OTP) as affected by drying temperature and the effect of OTP on the product quality of pork patties. Three OTP products were obtained by drying of fresh tomato at 60, 80 and 100℃ oven until constant weight was obtained. Total phenolic content of three kinds of OTPs ranged from 1.95 to 5.94 g/100 g. The highest amount of total phenolic compound was observed in OTP dried at 100℃. Antioxidant activity of three kinds of OTPs was measured by 1,1-diphenyl-2-pycrylhydrazyl (DPPH)-radical scavenging activity, iron chelating ability, reducing power and measurement of lipid peroxide in linoleic acid emulsion system. In all parameters, OTP at 100℃ showed the higher antioxidant activity than other temperatures (p<0.05). Based on the model study, the physicochemical properties, and antioxidant and antimicrobial activities of pork patties containing 1% OTP were measured. Redness of pork patties were increased with the addition of OTPs (p<0.05). Thiobarbituric acid reactive substances (TBARS) values of raw pork patties containing OTPs were lower than those of control (CTL) until 7 d of storage, regardless of drying temperatures (p<0.05). Peroxide values of pork patties made with OTP (1%) were lower than those of CTL until the end of storage time (p<0.05). However, no antimicrobial activities were observed among the treatments (p>0.05). Therefore, OTPs could be used as a natural antioxidant in meat products. PMID:27499664

  13. Storage stability of Anagrapha falcifera nucleopolyhedrovirus in spray-dried formulations.

    PubMed

    Tamez-Guerra, Patricia; McGuire, Michael R; Behle, Robert W; Shasha, Baruch S; Pingel, Randall L

    2002-01-01

    A multiply embedded nucleopolyhedrovirus isolated from Anagrapha falcifera (Kirby) (AfMNPV) can lose insecticidal activity during months of dry storage in ambient room conditions. We tested the spray-dried AfMNPV formulations after storage for up to 1 year at room temperatures for insecticidal activity against neonate Trichoplusia ni (Hübner). Experimental formulations were made using combinations of corn flours, lignin, and sucrose, and were selected based on previous work which demonstrated that these formulations resisted solar degradation in field experiments. Twelve experimental formulations (organized in three groups of four formulations) compared the effect of (1) the ratio of formulation ingredients (lignin and corn flour) to virus concentration, (2) different sources of lignin, or (3) different corn flours and sugar. Based on a single-dose plant assay with these 12 formulations, none of the formulations lost significant activity due to the drying process, when compared with the unformulated wet AfMNPV. Samples of the 12 dried formulations were stored at room (22+/-3 degrees C) and refrigerated (4 degrees C) temperatures. Insecticidal activity (LC(50)) was determined with a dosage-response assay for neonates fed on treated cotton-leaf disks. After 6 (or 9) and 12 months storage, refrigerated samples maintained insecticidal activity better than corresponding samples stored at room temperatures with LC(50)s that averaged 2.0 x 10(6) polyhedral inclusion bodies per milliliter (pibs/ml) for refrigerated samples and 5.4 x 10(6) pibs/ml for samples stored at room temperatures. Compared with unformulated stock virus stored frozen, six formulations stored at room temperature and 10 formulations stored in the refrigerator did not lose significant insecticidal activity after 1 year based on overlapping 90% confidence intervals. Changing the ratio of virus to formulation ingredients did not provide a clear trend over the range of concentrations tested, and may be

  14. Spent fuel handling system for a geologic storage test at the Nevada Test Site

    SciTech Connect

    Duncan, J.E.; House, P.A.; Wright, G.W.

    1980-05-01

    The Lawrence Livermore Laboratory is conducting a test of the geologic storage of encapsulated spent commercial reactor fuel assemblies in a granitic rock at the Nevada Test Site. The test, known as the Spent Fuel Test-Climax (SFT-C), is sponsored by the US Department of Energy, Nevada Operations Office. Eleven pressurized-water-reactor spent fuel assemblies are stored retrievably for three to five years in a linear array in the Climax stock at a depth of 420 m.

  15. Material accountancy measurement techniques in dry-powdered processing of nuclear spent fuels.

    SciTech Connect

    Wolf, S. F.

    1999-03-24

    The paper addresses the development of inductively coupled plasma-mass spectrometry (ICPMS), thermal ionization-mass spectrometry (TIMS), alpha-spectrometry, and gamma spectrometry techniques for in-line analysis of highly irradiated (18 to 64 GWD/T) PWR spent fuels in a dry-powdered processing cycle. The dry-powdered technique for direct elemental and isotopic accountancy assay measurements was implemented without the need for separation of the plutonium, uranium and fission product elements in the bulk powdered process. The analyses allow the determination of fuel burn-up based on the isotopic composition of neodymium and/or cesium. An objective of the program is to develop the ICPMS method for direct fissile nuclear materials accountancy in the dry-powdered processing of spent fuel. The ICPMS measurement system may be applied to the KAERI DUPIC (direct use of spent PWR fuel in CANDU reactors) experiment, and in a near-real-time mode for international safeguards verification and non-proliferation policy concerns.

  16. Fast stack activation procedure and effective long-term storage for high-performance polymer electrolyte membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Yang, Seung Yong; Seo, Dong-Jun; Kim, Myeong-Ri; Seo, Min Ho; Hwang, Sun-Mi; Jung, Yong-Min; Kim, Beom-Jun; Yoon, Young-Gi; Han, Byungchan; Kim, Tae-Young

    2016-10-01

    Time-saving stack activation and effective long-term storage are one of most important issues that must be resolved for the commercialization of polymer electrolyte membrane fuel cell (PEMFC). Herein, we developed the cost-effective stack activation method to finish the whole activation within 30 min and the long-term storage method by using humidified N2 without any significant decrease in cell's performance for 30 days. Specifically, the pre-activation step with the direct injection of DI water into the stack and storage at 65 or 80 °C for 2 h increases the distinctive phase separation between the hydrophobic and hydrophilic regions in Nafion membrane, which significantly reduces the total activation time within 30 min. Additionally, the long-term storage with humidified N2 has no effect on the Pt oxidation and drying of Nafion membrane for 30 days due to its exergonic reaction in the cell. As a result, the high water content in Nafion membrane and the decrease of Pt oxidation are the critical factors that have a strong influence on the activation and long-term storage for high-performance PEMFC.

  17. Realization of the German Concept for Interim Storage of Spent Nuclear Fuel - Current Situation and Prospects

    SciTech Connect

    Thomauske, B. R.

    2003-02-25

    The German government has determined a phase out of nuclear power. With respect to the management of spent fuel it was decided to terminate transports to reprocessing plants by 2005 and to set up interim storage facilities on power plant sites. This paper gives an overview of the German concept for spent fuel management focused on the new on-site interim storage concept and the applied interim storage facilities. Since the end of the year 1998, the utilities have applied for permission of on-site interim storage in 13 storage facilities and 5 storage areas; one application for the interim storage facility Stade was withdrawn due to the planned final shut down of Stade nuclear power plant in autumn 2003. In 2001 and 2002, 3 on-site storage areas and 2 on-site storage facilities for spent fuel were licensed by the Federal Office for Radiation Protection (BfS). A main task in 2002 and 2003 has been the examination of the safety and security of the planned interim storage facilities and the verification of the licensing prerequisites. In the aftermath of September 11, 2001, BfS has also examined the attack with a big passenger airplane. Up to now, these aircraft crash analyses have been performed for three on-site interim storage facilities; the fundamental results will be presented. It is the objective of BfS to conclude the licensing procedures for the applied on-site interim storage facilities in 2003. With an assumed construction period for the storage buildings of about two years, the on-site interim storage facilities could then be available in the year 2005.

  18. LESSONS LEARNED FROM CLEANING OUT THE SLUDGE FROM THE SPENT FUEL STORAGE BASINS AT HANFORD ICEM-07

    SciTech Connect

    KNOLLMEYER PM

    2007-08-31

    Until 2004, the K Basins at Hanford, in southeastern Washington State, held the largest collection of spent nuclear fuel in the United States Department of Energy (DOE) complex. The K East and K West Basins are massive pools each holding more than 4 million liters of water - that sit less than 450 meters from the Columbia River. In a significant multi-year campaign that ended in 2004, Fluor Hanford removed all of the fuel from the two Basins, over 2,300 metric tons (4.6 million pounds), dried it, and then placed it into dry storage in a specially designed facility away from the River. Removing the fuel, however, did not finish the cleanup work at the K Basins. The years of underwater storage had corroded the metallic uranium fuel, leaving behind a thick and sometimes hard-packed layer of sludge that coated the walls, floors and equipment inside the Basins. In places, the depth of the sludge was measured in feet rather than inches, and its composition was definitely not uniform. Together the Basins held an estimated 50 cubic meters of sludge (42 cubic meters in K East and 8 cubic meters in K West). The K East sludge retrieval and transfer work was completed in May 2007. Vacuuming up the sludge into large underwater containers in each of the Basins and then consolidating it all in containers in the K West Basin have presented significant challenges, some unexpected. This paper documents some of those challenges and presents the lessons learned so that other nuclear cleanup projects can benefit from the experience at Hanford.

  19. Water uptake, priming, drying and storage effects in Cassia excelsa Schrad seeds.

    PubMed

    Jeller, H; Perez, S C; Raizer, J

    2003-02-01

    The aims of this study were to evaluate the effects of osmotic potential on the water uptake curve in Cassia excelsa seeds and use the results to analyze the effects of dehydration and storage on primed seed germination. Seeds were imbibed in distilled water and polyethylene glicol (PEG 6000) osmotic solutions at -0.2, -0.4, and -0.6 MPa, at 20 degrees C. The radicle emergence and seed moisture content were evaluated at 6-hour intervals during 240 hours. Afterwards, seeds were primed in distilled water and PEG 6000 solutions at -0.2, -0.4, and -0.6 MPa for 48, 72, 96, and 168 hours at 20 degrees C, followed by air drying and storage for 15 days at 5 degrees C. The lower the osmotic potential, the higher the time required for priming. The osmoconditioning yields benefits with PEG solutions at 0.0 and -0.2 MPa; seed improvements were maintained during storage for 15 days at 5 degrees C, but were reverted by seed drying.

  20. Effects of drying conditions of corn kernels and storage at an elevated humidity on starch structures and properties.

    PubMed

    Setiawan, Stephen; Widjaja, Hany; Rakphongphairoj, Vinai; Jane, Jay-lin

    2010-12-08

    The objective of this study was to understand effects of sun drying (35 °C) and machine drying (80 °C) of corn kernels followed by storage at 27 °C and 85-90% relative humidity for up to 6 months on starch structures and properties. The peak viscosity and starch hydrolysis rate using porcine pancreatic α-amylase of finely ground samples decreased with storage of both sun-dried and machine-dried corn kernels. The rate of enzymatic hydrolysis of the isolated starch obtained from the sun-dried corn increased with storage time, but that from the machine-dried corn decreased. The gelatinization temperature, pasting temperature, and percentage crystallinity of the isolated starch increased but the gelatinization enthalpy-change and peak viscosity of the starch decreased with storage time. Numbers of damaged starch granules and starch granules with pinholes increased but the molecular weight of starch and long branch-chains of amylopectin decreased with storage time. The results indicated that endogenous enzyme activity remained after sun drying, which hydrolyzed starch and reduced viscosity.

  1. 10 CFR 51.23 - Temporary storage of spent fuel after cessation of reactor operation-generic determination of no...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Temporary storage of spent fuel after cessation of reactor... Procedures § 51.23 Temporary storage of spent fuel after cessation of reactor operation—generic determination... necessary, spent fuel generated in any reactor can be stored safely and without significant...

  2. 10 CFR 51.23 - Temporary storage of spent fuel after cessation of reactor operation-generic determination of no...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Temporary storage of spent fuel after cessation of reactor... Procedures § 51.23 Temporary storage of spent fuel after cessation of reactor operation—generic determination... necessary, spent fuel generated in any reactor can be stored safely and without significant...

  3. 40 CFR 63.984 - Fuel gas systems and processes to which storage vessel, transfer rack, or equipment leak...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Fuel Gas System or a Process § 63.984 Fuel gas systems and processes to which storage vessel, transfer... 40 Protection of Environment 11 2013-07-01 2013-07-01 false Fuel gas systems and processes to which storage vessel, transfer rack, or equipment leak regulated material emissions are routed....

  4. 40 CFR 63.984 - Fuel gas systems and processes to which storage vessel, transfer rack, or equipment leak...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Fuel Gas System or a Process § 63.984 Fuel gas systems and processes to which storage vessel, transfer... 40 Protection of Environment 11 2012-07-01 2012-07-01 false Fuel gas systems and processes to which storage vessel, transfer rack, or equipment leak regulated material emissions are routed....

  5. 40 CFR 65.144 - Fuel gas systems and processes to which storage vessel, transfer rack, or equipment leak...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... System or a Process § 65.144 Fuel gas systems and processes to which storage vessel, transfer rack, or... evaluation as specified in § 65.165(a)(1). (c) Statement of connection to fuel gas system. For storage... 40 Protection of Environment 16 2012-07-01 2012-07-01 false Fuel gas systems and processes...

  6. 40 CFR 65.144 - Fuel gas systems and processes to which storage vessel, transfer rack, or equipment leak...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... System or a Process § 65.144 Fuel gas systems and processes to which storage vessel, transfer rack, or... evaluation as specified in § 65.165(a)(1). (c) Statement of connection to fuel gas system. For storage... 40 Protection of Environment 16 2014-07-01 2014-07-01 false Fuel gas systems and processes...

  7. 40 CFR 65.144 - Fuel gas systems and processes to which storage vessel, transfer rack, or equipment leak...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... System or a Process § 65.144 Fuel gas systems and processes to which storage vessel, transfer rack, or... evaluation as specified in § 65.165(a)(1). (c) Statement of connection to fuel gas system. For storage... 40 Protection of Environment 15 2011-07-01 2011-07-01 false Fuel gas systems and processes...

  8. 40 CFR 65.144 - Fuel gas systems and processes to which storage vessel, transfer rack, or equipment leak...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... System or a Process § 65.144 Fuel gas systems and processes to which storage vessel, transfer rack, or... evaluation as specified in § 65.165(a)(1). (c) Statement of connection to fuel gas system. For storage... 40 Protection of Environment 15 2010-07-01 2010-07-01 false Fuel gas systems and processes...

  9. 40 CFR 63.984 - Fuel gas systems and processes to which storage vessel, transfer rack, or equipment leak...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Fuel Gas System or a Process § 63.984 Fuel gas systems and processes to which storage vessel, transfer... 40 Protection of Environment 11 2014-07-01 2014-07-01 false Fuel gas systems and processes to which storage vessel, transfer rack, or equipment leak regulated material emissions are routed....

  10. High temperature solid oxide regenerative fuel cell for solar photovoltaic energy storage

    NASA Technical Reports Server (NTRS)

    Bents, David J.

    1987-01-01

    A hydrogen-oxygen regenerative fuel cell energy storage system based on high temperature solid oxide fuel cell technology is discussed which has application to darkside energy storage for solar photovoltaics. The forward and reverse operating cycles are described, and heat flow, mass, and energy balance data are presented to characterize the system's performance and the variation of performance with changing reactant storage pressure. The present system weighs less than nickel hydrogen battery systems after 0.7 darkside operation, and it maintains a specific weight advantage over radioisotope generators for discharge periods up to 72 hours.

  11. The corrosion of aluminum-clad spent nuclear fuel in wet basin storage

    SciTech Connect

    Howell, J.P.; Burke, S.D.

    1996-02-20

    Large quantities of Defense related spent nuclear fuels are being stored in water basins around the United States. Under the non-proliferation policy, there has been no processing since the late 1980`s and these fuels are caught in the pipeline awaiting stabilization or other disposition. At the Savannah River Site, over 200 metric tons of aluminum clad fuel are being stored in four water filled basins. Some of this fuel has experienced visible pitting corrosion. An intensive effort is underway at SRS to understand the corrosion problems and to improve the basin storage conditions for extended storage requirements. Significant improvements have been accomplished during 1993-1996. This paper presents a discussion of the fundamentals of aluminum alloy corrosion as it pertains to the wet storage of spent nuclear fuel. It examines the effects of variables on corrosion in the storage environment and presents the results of corrosion surveillance testing activities at SRS, as well as discussions of fuel storage basins at other production sites of the Department of Energy.

  12. Report on UQ and PCMM Analysis of Vacuum Drying for UFD S&T Gaps

    SciTech Connect

    M. Fluss

    2015-08-31

    This report discusses two phenomena that could affect the safety, licensing, transportation, storage, and disposition of the spent fuel storage casks and their contents (radial hydriding during drying and water retention after drying) associated with the drying of canisters for dry spent fuel storage. The report discusses modeling frameworks and evaluations that are, or have been, developed as a means to better understand these phenomena. Where applicable, the report also discusses data needs and procedures for monitoring or evaluating the condition of storage containers during and after drying. A recommendation for the manufacturing of a fully passivated fuel rod, resistant to oxidation and hydriding is outlined.

  13. Evaluation of Fluorine-Trapping Agents for Use During Storage of the MSRE Fuel Salt

    SciTech Connect

    Brynestad, J.; Williams, D.F.

    1999-05-01

    A fundamental characteristic of the room temperature Molten Salt Reactor Experiment (MSRE) fuel is that the radiation from the retained fission products and actinides interacts with this fluoride salt to produce fluorine gas. The purpose of this investigation was to identify fluorine-trapping materials for the MSRE fuel salt that can meet both the requirement of interim storage in a sealed (gastight) container and the vented condition required for disposal at the Waste Isolation Pilot Plant (WIPP). Sealed containers will be needed for interim storage because of the large radon source that remains even in fuel salt stripped of its uranium content. An experimental program was undertaken to identify the most promising candidates for efficient trapping of the radiolytic fluorine generated by the MSRE fuel salt. Because of the desire to avoid pressurizing the closed storage containers, an agent that traps fluorine without the generation of gaseous products was sought.

  14. Analysis of dust samples collected from spent nuclear fuel interim storage containers at Hope Creek, Delaware, and Diablo Canyon, California

    SciTech Connect

    Bryan, Charles R.; Enos, David George

    2014-07-01

    Potentially corrosive environments may form on the surface of spent nuclear fuel dry storage canisters by deliquescence of deposited dusts. To assess this, samples of dust were collected from in-service dry storage canisters at two near-marine sites, the Hope Creek and Diablo Canyon storage installations, and have been characterized with respect to mineralogy, chemistry, and texture. At both sites, terrestrially-derived silicate minerals, including quartz, feldspars, micas, and clays, comprise the largest fraction of the dust. Also significant at both sites were particles of iron and iron-chromium metal and oxides generated by the manufacturing process. Soluble salt phases were minor component of the Hope Creek dusts, and were compositionally similar to inland salt aerosols, rich in calcium, sulfate, and nitrate. At Diablo Canyon, however, sea-salt aerosols, occurring as aggregates of NaCl and Mg-sulfate, were a major component of the dust samples. The seasalt aerosols commonly occurred as hollow spheres, which may have formed by evaporation of suspended aerosol seawater droplets, possibly while rising through the heated annulus between the canister and the overpack. The differences in salt composition and abundance for the two sites are attributed to differences in proximity to the open ocean and wave action. The Diablo Canyon facility is on the shores of the Pacific Ocean, while the Hope Creek facility is on the shores of the Delaware River, several miles from the open ocean.

  15. Fluctuation of Arabidopsis seed dormancy with relative humidity and temperature during dry storage

    PubMed Central

    Basbouss-Serhal, Isabelle; Leymarie, Juliette; Bailly, Christophe

    2016-01-01

    The changes in germination potential of freshly harvested seeds of Arabidopsis thaliana stored in various combinations of temperature and relative humidity were investigated over 63 weeks of storage. Seeds of the wild type Col-0 and of two mutants displaying low and high levels of dormancy, cat2-1 and mtr4-1, respectively, were stored at harvest in 24 different environments including a combination of eight relative humidities, from 1 to 85%, and four temperatures (10, 15, 20, and 25 °C). These mutations did not influence behaviour of seeds during storage. Primary dormant seeds did not germinate in darkness at 25 °C but acquired the potential to germinate at this temperature within 7 weeks when stored in relative humidities close to 50% across all temperatures. Sorption isotherms and Arrhenius plots demonstrated that the seed moisture content of 0.06g H2O/g dry weight was a critical value below which dormancy release was associated with reactions of negative activation energy and above which dormancy release increased with temperature. Longer storage times when relative humidity did not exceed 75–85% led to decreased germination at 25 °C, corresponding to the induction of secondary dormancy. Dormancy release and induction of secondary dormancy in the dry state were associated with induction or repression of key genes related to abscisic acid and gibberellins biosynthesis and signalling pathways. In high relative humidity, prolonged storage of seeds induced ageing and progressive loss of viability, but this was not related to the initial level of dormancy. PMID:26428064

  16. Fluctuation of Arabidopsis seed dormancy with relative humidity and temperature during dry storage.

    PubMed

    Basbouss-Serhal, Isabelle; Leymarie, Juliette; Bailly, Christophe

    2016-01-01

    The changes in germination potential of freshly harvested seeds of Arabidopsis thaliana stored in various combinations of temperature and relative humidity were investigated over 63 weeks of storage. Seeds of the wild type Col-0 and of two mutants displaying low and high levels of dormancy, cat2-1 and mtr4-1, respectively, were stored at harvest in 24 different environments including a combination of eight relative humidities, from 1 to 85%, and four temperatures (10, 15, 20, and 25 °C). These mutations did not influence behaviour of seeds during storage. Primary dormant seeds did not germinate in darkness at 25 °C but acquired the potential to germinate at this temperature within 7 weeks when stored in relative humidities close to 50% across all temperatures. Sorption isotherms and Arrhenius plots demonstrated that the seed moisture content of 0.06 g H2O/g dry weight was a critical value below which dormancy release was associated with reactions of negative activation energy and above which dormancy release increased with temperature. Longer storage times when relative humidity did not exceed 75-85% led to decreased germination at 25 °C, corresponding to the induction of secondary dormancy. Dormancy release and induction of secondary dormancy in the dry state were associated with induction or repression of key genes related to abscisic acid and gibberellins biosynthesis and signalling pathways. In high relative humidity, prolonged storage of seeds induced ageing and progressive loss of viability, but this was not related to the initial level of dormancy.

  17. Development of spray-dried co-precipitate of amorphous celecoxib containing storage and compression stabilizers.

    PubMed

    Dhumal, Ravindra S; Shimpi, Shamkant L; Paradkar, Anant R

    2007-09-01

    The purpose of this study was to obtain an amorphous system with minimum unit operations that will prevent recrystallization of amorphous drugs since preparation, during processing (compression) and further storage. Amorphous celecoxib, solid dispersion (SD) of celecoxib with polyvinyl pyrrollidone (PVP) and co-precipitate with PVP and carrageenan (CAR) in different ratios were prepared by the spray drying technique and compressed into tablets. Saturation solubility and dissolution studies were performed to differentiate performance after processing. Differential scanning calorimetry and X-ray powder difraction revealed the amorphous form of celecoxib, whereas infrared spectroscopy revealed hydrogen bonding between celecoxib and PVP. The dissolution profile of the solid dispersion and co-precipitate improved compared to celecoxib and amorphous celecoxib. Amorphous celecoxib was not stable on storage whereas the solid dispersion and co-precipitate powders were stable for 3 months. Tablets of the solid dispersion of celecoxib with PVP and physical mixture with PVP and carrageenan showed better resistance to recrystallization than amorphous celecoxib during compression but recrystallized on storage. However, tablets of co-precipitate with PVP and carageenan showed no evidence of crystallinity during stability studies with comparable dissolution profiles. This extraordinary stability of spray-dried co-precipitate tablets may be attributed to the cushioning action provided by the viscoelastic polymer CAR and hydrogen bonding interaction between celecoxib and PVP. The present study demonstrates the synergistic effect of combining two types of stabilizers, PVP and CAR, on the stability of amorphous drug during compression and storage as compared to their effect when used alone.

  18. Effect of pre-drying treatments and storage on color and phenolic composition of green honeybush (Cyclopia subternata) herbal tea.

    PubMed

    Joubert, Elizabeth; Manley, Marena; Maicu, Christina; de Beer, Dalene

    2010-01-13

    The effect of various pre-drying treatments and storage temperatures on the color (L*, a*, b*, chroma, and hue angle) and phenolic composition of green Cyclopia subternata was investigated. Pre-drying treatments, which included comminution+drying (T2), steaming (ca. 90-93 degrees C/60 s)+comminution + drying (T3), and comminution+steaming+drying (T4), had a detrimental effect (p<0.05) on the color parameters relative to the control (T1) (drying of intact leaves). All drying took place at 40 degrees C and 30% relative humidity (RH). Of the pre-drying treatments (T2, T3, and T4), the best retention of the green leaf color was observed for T3 (p<0.05). T2 reduced the SS and TP contents of the leaves (p<0.05) as well as the content of individual phenolic compounds, including mangiferin, isomangiferin, and eriocitrin. Scolymoside did not follow the same trend as the other compounds, with the intact leaves having the lowest content. It is postulated that oxidation of eriocitrin (eriodictyol-7-O-rutinoside) to scolymoside (luteolin-7-O-rutinoside) occurred with comminution and steaming. The phenolic composition of samples, subjected to T1 and T3 and a 6 month storage period at 0 and 30 degrees C, remained stable. Storage at 30 degrees C resulted in detrimental color changes, leading to the loss of the green leaf color irrespective of the pre-drying treatment.

  19. Hydrocarbon Release During Fuel Storage and Transfer at Gas Stations: Environmental and Health Effects.

    PubMed

    Hilpert, Markus; Mora, Bernat Adria; Ni, Jian; Rule, Ana M; Nachman, Keeve E

    2015-12-01

    At gas stations, fuel is stored and transferred between tanker trucks, storage tanks, and vehicle tanks. During both storage and transfer, a small fraction of unburned fuel is typically released to the environment unless pollution prevention technology is used. While the fraction may be small, the cumulative release can be substantial because of the large quantities of fuel sold. The cumulative release of unburned fuel is a public health concern because gas stations are widely distributed in residential areas and because fuel contains toxic and carcinogenic chemicals. We review the pathways through which gasoline is chronically released to atmospheric, aqueous, and subsurface environments, and how these releases may adversely affect human health. Adoption of suitable pollution prevention technology should not only be based on equipment and maintenance cost but also on energy- and health care-saving benefits.

  20. Effects of Different Drying Methods and Storage Time on Free Radical Scavenging Activity and Total Phenolic Content of Cosmos Caudatus.

    PubMed

    Mediani, Ahmed; Abas, Faridah; Tan, Chin Ping; Khatib, Alfi

    2014-05-07

    The present study was conducted to determine the effect of air (AD), oven (OD) and freeze drying (FD) on the free radical scavenging activity and total phenolic content (TPC) of Cosmos caudatus and the effect of storage time by the comparison with a fresh sample (FS). Among the three drying methods that were used, AD resulted in the highest free radical scavenging activity against 1,1-diphenyl-2-picrylhydrazyl (DPPH) (IC50 = 0.0223 mg/mL) and total phenolic content (27.4 g GAE/100 g), whereas OD produced the lowest scavenging activity and TPC value. After three months of storage, the dried samples showed a high and consistent free radical scavenging activity when compared to stored fresh material. The drying methods could preserve the quality of C. caudatus during storage and the stability of its bioactive components can be maintained.

  1. Effects of Different Drying Methods and Storage Time on Free Radical Scavenging Activity and Total Phenolic Content of Cosmos caudatus

    PubMed Central

    Mediani, Ahmed; Abas, Faridah; Tan, Chin Ping; Khatib, Alfi

    2014-01-01

    The present study was conducted to determine the effect of air (AD), oven (OD) and freeze drying (FD) on the free radical scavenging activity and total phenolic content (TPC) of Cosmos caudatus and the effect of storage time by the comparison with a fresh sample (FS). Among the three drying methods that were used, AD resulted in the highest free radical scavenging activity against 1,1-diphenyl-2-picrylhydrazyl (DPPH) (IC50 = 0.0223 mg/mL) and total phenolic content (27.4 g GAE/100 g), whereas OD produced the lowest scavenging activity and TPC value. After three months of storage, the dried samples showed a high and consistent free radical scavenging activity when compared to stored fresh material. The drying methods could preserve the quality of C. caudatus during storage and the stability of its bioactive components can be maintained. PMID:26784876

  2. Stress corrosion cracking of stainless-steel canister for concrete cask storage of spent fuel

    NASA Astrophysics Data System (ADS)

    Tani, Jun-ichi; Mayuzumi, Masami; Hara, Nobuyoshi

    2008-09-01

    Resistance to external stress corrosion cracking (ESCC) and crevice corrosion were examined for various candidate canister materials in the spent fuel dry storage condition using concrete casks. A constant load ESCC test was conducted on the candidate materials in air after deposition of simulated sea salt particles on the specimen gage section. Highly corrosion resistant stainless steels (SS), S31260 and S31254, did not fail for more than 46 000 h at 353 K with relative humidity of 35%, although the normal stainless steel, S30403 SS failed within 500 h by ESCC. Crevice corrosion potentials of S31260 and S31254 SS became larger than 0.9 V (SCE) in synthetic sea water at temperatures below 298 K, while those of S30403 and S31603 SS were less than 0 V (SCE) at the same temperature range. No rust was found on S31260 and S31254 SS specimens at temperatures below 298 K in the atmospheric corrosion test, which is consistent with the temperature dependency of crevice corrosion potential. From the test result, the critical temperature of atmospheric corrosion was estimated to be 293 K for both S31260 and S31254 SS. Utilizing the ESCC test result and the critical temperature, together with the weather station data and the estimated canister wall temperature, the integrity of canister was assessed from the view point of ESCC.

  3. High Performance Fuel Cell and Electrolyzer Membrane Electrode Assemblies (MEAs) for Space Energy Storage Systems

    NASA Technical Reports Server (NTRS)

    Valdez, Thomas I.; Billings, Keith J.; Kisor, Adam; Bennett, William R.; Jakupca, Ian J.; Burke, Kenneth; Hoberecht, Mark A.

    2012-01-01

    Regenerative fuel cells provide a pathway to energy storage system development that are game changers for NASA missions. The fuel cell/ electrolysis MEA performance requirements 0.92 V/ 1.44 V at 200 mA/cm2 can be met. Fuel Cell MEAs have been incorporated into advanced NFT stacks. Electrolyzer stack development in progress. Fuel Cell MEA performance is a strong function of membrane selection, membrane selection will be driven by durability requirements. Electrolyzer MEA performance is catalysts driven, catalyst selection will be driven by durability requirements. Round Trip Efficiency, based on a cell performance, is approximately 65%.

  4. Effects of water activity on the lipid oxidation and antioxidants of dried laver (porphyra) during storage in the dark.

    PubMed

    Choe, Eunok; Oh, Soojung

    2013-08-01

    Lipid oxidation and antioxidant degradation in dried laver (Porphyra) were determined during storage at water activities (Aw ) of 0.11, 0.30, 0.51, 0.75, or 0.89 in the dark at 40 °C for 15 d. Lipid oxidation was evaluated by measuring peroxide value (POV) and conjugated dienoic acid (CDA) contents, and fatty acid composition was analyzed by gas chromatography. Contents of polyphenols, tocopherols, and porphyran were determined by spectrophotometry, HPLC, and gravimetry, respectively. The POV and CDA contents of the dried laver lipids increased during storage as Aw increased from 0.11 to 0.30, 0.51, 0.75, and 0.89, whereas the relative content of eicosapentaenoic acid was decreased; however, the contents of polyphenols, α-tocopherol, and porphyran in dried laver showed the reverse phenomena. Lipid oxidation and antioxidant degradation in dried laver sharply increased at an Aw of 0.51. Polyphenols, α-tocopherol, and porphyran contributed to reduction of lipid oxidation in dried laver. The degree of lipid oxidation of dried laver was more dependent on the concentration of α-tocopherol than that of either polyphenols or porphyran during storage in the dark. The results strongly suggest that the quality of dried laver can be improved by preserving tocopherols as much as possible while decreasing A(w) during storage.

  5. Application of Framework for Integrating Safety, Security and Safeguards (3Ss) into the Design Of Used Nuclear Fuel Storage Facility

    SciTech Connect

    Badwan, Faris M.; Demuth, Scott F

    2015-01-06

    Department of Energy’s Office of Nuclear Energy, Fuel Cycle Research and Development develops options to the current commercial fuel cycle management strategy to enable the safe, secure, economic, and sustainable expansion of nuclear energy while minimizing proliferation risks by conducting research and development focused on used nuclear fuel recycling and waste management to meet U.S. needs. Used nuclear fuel is currently stored onsite in either wet pools or in dry storage systems, with disposal envisioned in interim storage facility and, ultimately, in a deep-mined geologic repository. The safe management and disposition of used nuclear fuel and/or nuclear waste is a fundamental aspect of any nuclear fuel cycle. Integrating safety, security, and safeguards (3Ss) fully in the early stages of the design process for a new nuclear facility has the potential to effectively minimize safety, proliferation, and security risks. The 3Ss integration framework could become the new national and international norm and the standard process for designing future nuclear facilities. The purpose of this report is to develop a framework for integrating the safety, security and safeguards concept into the design of Used Nuclear Fuel Storage Facility (UNFSF). The primary focus is on integration of safeguards and security into the UNFSF based on the existing Nuclear Regulatory Commission (NRC) approach to addressing the safety/security interface (10 CFR 73.58 and Regulatory Guide 5.73) for nuclear power plants. The methodology used for adaptation of the NRC safety/security interface will be used as the basis for development of the safeguards /security interface and later will be used as the basis for development of safety and safeguards interface. Then this will complete the integration cycle of safety, security, and safeguards. The overall methodology for integration of 3Ss will be proposed, but only the integration of safeguards and security will be applied to the design of the

  6. Spent Nuclear Fuel (SNF) Cold Vacuum Drying (CVD) Facility Operations Manual

    SciTech Connect

    IRWIN, J.J.

    1999-07-02

    This document provides the Operations Manual for the Cold Vacuum Drying Facility (CVDF). The Manual was developed in conjunction with HNF-553, Spent Nuclear Fuel Project Final Safety Analysis Report Annex B--Cold Vacuum Drying Facility. The HNF-SD-SNF-DRD-002, 1999, Cold Vacuum Drying Facility Design Requirements, Rev. 4, and the CVDF Final Design Report. The Operations Manual contains general descriptions of all the process, safety and facility systems in the CVDF, a general CVD operations sequence and references to the CVDF System Design Descriptions (SDDs). This manual has been developed for the SNFP Operations Organization and shall be updated, expanded, and revised in accordance with future design, construction and startup phases of the CVDF until the CVDF final ORR is approved.

  7. Spent Nuclear Fuel (SNF) Project Cold Vacuum Drying (CVD) Facility Operations Manual

    SciTech Connect

    IRWIN, J.J.

    2000-02-03

    This document provides the Operations Manual for the Cold Vacuum Drying Facility (CVDF). The Manual was developed in conjunction with HNF-SD-SNF-SAR-002, Safety Analysis Report for the Cold Vacuum Drying Facility, Phase 2, Supporting Installation of the Processing Systems (Garvin 1998) and, the HNF-SD-SNF-DRD-002, 1997, Cold Vacuum Drying Facility Design Requirements, Rev. 3a. The Operations Manual contains general descriptions of all the process, safety and facility systems in the CVDF, a general CVD operations sequence, and has been developed for the spent nuclear fuel project (SNFP) Operations Organization and shall be updated, expanded, and revised in accordance with future design, construction and startup phases of the CVDF until the CVDF final ORR is approved.

  8. Dry, portable calorimeter for nondestructive measurement of the activity of nuclear fuel

    DOEpatents

    Beyer, Norman S.; Lewis, Robert N.; Perry, Ronald B.

    1976-01-01

    The activity of a quantity of heat-producing nuclear fuel is measured rapidly, accurately and nondestructively by a portable dry calorimeter comprising a preheater, an array of temperature-controlled structures comprising a thermally guarded temperature-controlled oven, and a calculation and control unit. The difference between the amounts of electric power required to maintain the oven temperature with and without nuclear fuel in the oven is measured to determine the power produced by radioactive disintegration and hence the activity of the fuel. A portion of the electronic control system is designed to terminate a continuing sequence of measurements when the standard deviation of the variations of the amount of electric power required to maintain oven temperature is within a predetermined value.

  9. Ceramic anode catalyst for dry methane type molten carbonate fuel cell

    NASA Astrophysics Data System (ADS)

    Tagawa, T.; Yanase, A.; Goto, S.; Yamaguchi, M.; Kondo, M.

    Oxide catalyst materials for methane oxidation were examined in order to develop the anode electrode for molten carbonate type fuel cell (MCFC). As a primary selection, oxides such as lanthanum (La 2O 3) and samarium (Sm 2O 3) were selected from screening experiments of TPD, TG and tubular reactor. Composite materials of these oxides with titanium fine powder were assembled into a cell unit for MCFC as the anode electrode. Steady-state activities were observed with these anode electrode materials when hydrogen was used as a fuel. When methane was directly charged to anode as a fuel (dry methane operation), a power generation with steady state was observed on both lanthanum and samarium composites after gradual decrease of open circuit electromotive force (OCV) and closed circuit current (CCI). The steady-state activity held as long as 144 h of continuous operation.

  10. Effect of storage and drying temperature on the gelation behavior and structural characteristics of sericin.

    PubMed

    Jo, Yoon Nam; Park, Byung-Dae; Um, In Chul

    2015-11-01

    Owing to unique properties, including the wound healing effect, sericin gel and films have attracted significant attention in the biomedical and cosmetic fields. The structural characteristics and properties of sericin gels and films are especially important owing to their effect on the performance of sericin in biomedical and cosmetic applications. In the present study, the effect of temperature on the gelation behavior, gel disruption, and sol-gel transition of sericin was examined using rheometry. In addition, the effect of the drying temperature on the structural characteristics of the sericin film was determined via Fourier transform infrared (FTIR) spectroscopy. The strength of the sericin gel increased and the gelation process was prolonged with decreasing storage temperatures. FTIR and differential scanning calorimetry (DSC) results also revealed that the crystallinity and the thermal decomposition temperature of the sericin film increased with decreasing drying temperature. The sericin gels were disrupted at a storage time of 40min when they were stored at temperatures higher than 50°C, and the corresponding gel strength decreased with increasing temperature. Furthermore, the thermo-reversible nature of gel-sol transition of sericin was confirmed by rheological and FTIR measurements.

  11. MCO Pressurization analysis of spent nuclear fuel transporation and storage

    SciTech Connect

    Ogden, D.M., Westinghouse Hanford

    1996-09-20

    A series of analysis were performed to evaluate the pressurization of the Multi-Canister Overpack (MCO) during the stages of transport, processing and storage for expected operational and off normal events. The study examined both MCO sealing and venting issues. Computer models were developed for the MCO and its transport and storage environments using the GOTH and COBRA-TF computer codes. These thermal- hydraulic models included chemical corrosion and ranged in complexity from simple scoping models to full three-dimensional models. Results of the evaluation indicate that overpressurization of the MCO can occur within hours given the bounding reaction surface area and 3.0 Kg of residual water during shipping or 2.5 Kg of residual water during storage. Overpressurization can be prevented during shipping if the MCO reaction surface area is shown to be less than 80,000 cm{sup 2}. During storage the overpressurization can be prevented by limiting the available water.

  12. Fuel cell systems for First Lunar Outpost-reactant storage option

    NASA Technical Reports Server (NTRS)

    Nelson, P. A.

    1995-01-01

    The office of Space, DOE, appointed a Lunar Surface Power Working Group to review candidate systems for the First Lunar Outpost habitat. The working group met for a total of five days in the fall of 1992 and concluded that the candidate involving a photovoltaic unit, a fuel cell, a regenerator to recycle the reactants, and storage of oxygen and hydrogen gases was the most attractive for this application. Most of the volume (97 percent) and weight (63 percent) are taken up by the reactants and their storage tanks. Therefore, in my work for the Group, and in this report, I have concentrated on finding ways to reduce these volumes and weights. Three options were considered: (1) the baseline case considered in the preliminary system design, that of separate high pressure (200 bar) storage tanks; (2) the use of two of the descent storage propellant tanks wrapped with graphite fibers to increase the pressure capability; and (3) the use of cryogenic storage of reactants in the propellant tanks. The first option results in high storage tank mass and volume. The second option saves 90 percent of the volume by making use of the propellant tanks, but it has little if any weight advantages; the weight saved by not providing extra tanks for reactant storage is nearly entirely added back by the weight of the additional material (graphite fibers) to strengthen the propellant tanks. Use of the descent storage propellant tanks for storage of the fuel cell reactants as cryogenic liquids requires a gas liquefaction system. The weight of this system is expected to be less than that of the storage tanks but it would require development and testing to prove its reliability. The solar array would have to be 40 percent larger and the heat projection range would be 170 percent larger than for storage of reactants as high pressure gases. For a high power system (greater than 20 kW) the larger energy storage requirement would probably favor the cryogenic storage option.

  13. Interim storage technology of spent fuel and high-level waste in Germany

    SciTech Connect

    Geiser, H.; Schroder, J.

    2007-07-01

    The idea of using casks for interim storage of spent fuel arose at GNS after a very controversial political discussion in 1978, when total passive safety features (including aircraft crash conditions) were required for an above ground spent fuel storage facility. In the meantime, GNS has loaded more than 1000 casks at 25 different storage sites in Germany. GNS cask technology is used in 13 countries. Spent fuel assemblies of PWR, BWR, VVER, RBMK, MTR and THTR as well as vitrified high level waste containers are stored in full metal casks of the CASTOR{sup R} type. Also MOX fuel of PWR and BWR has been stored. More than two decades of storage have shown that the basic requirements (safe confinement, criticality safety, sufficient shielding and appropriate heat transfer) have been fulfilled in any case - during normal operation and in case of severe accidents, including aircraft crash. There is no indication of problems arising in the future. Of course, the experience of more than 20 years has resulted in improvements of the cask design. The CASTOR{sup R} casks have been thoroughly investigated by many experiments. There have been approx. 50 full and half scale drop tests and a significant number of fire tests, simulations of aircraft crash, investigations with anti tank weapons, and an explosion of a railway tank with liquid gas neighbouring a loaded CASTOR{sup R} cask. According to customer and site specific demands, different types of storage facilities are realized in Germany. Firstly, there are facilities for long-term storage, such as large ventilated central storage buildings away from reactor or ventilated storage buildings at the reactor site, ventilated underground tunnels or concrete platforms outside a building. Secondly, there are facilities for temporary storage, where casks have been positioned in horizontal orientation under a ventilated shielding cover outside a building. (authors)

  14. Compton Dry-Cask Imaging System

    ScienceCinema

    None

    2016-07-12

    The Compton-Dry Cask Imaging Scanner is a system that verifies and documents the presence of spent nuclear fuel rods in dry-cask storage and determines their isotopic composition without moving or opening the cask. For more information about this project, visit http://www.inl.gov/rd100/2011/compton-dry-cask-imaging-system/

  15. Compton Dry-Cask Imaging System

    SciTech Connect

    2011-01-01

    The Compton-Dry Cask Imaging Scanner is a system that verifies and documents the presence of spent nuclear fuel rods in dry-cask storage and determines their isotopic composition without moving or opening the cask. For more information about this project, visit http://www.inl.gov/rd100/2011/compton-dry-cask-imaging-system/

  16. Activity release from damaged fuel during the Paks-2 cleaning tank incident in the spent fuel storage pool

    NASA Astrophysics Data System (ADS)

    Hózer, Zoltán; Szabó, Emese; Pintér, Tamás; Varjú, Ilona Baracska; Bujtás, Tibor; Farkas, Gábor; Vajda, Nóra

    2009-07-01

    During crud removal operations the integrity of 30 fuel assemblies was lost at high temperature at the unit No. 2 of the Paks NPP. Part of the fission products was released from the damaged fuel into the coolant of the spent fuel storage pool. The gaseous fission products escaped through the chimney from the reactor hall. The volatile and non-volatile materials remained mainly in the coolant and were collected on the filters of water purification system. The activity release from damaged fuel rods during the Paks-2 cleaning tank incident was estimated on the basis of coolant activity concentration measurements and chimney activity data. The typical release rate of noble gases, iodine and caesium was 1-3%. The release of non-volatile fission products and actinides was also detected.

  17. Effects of pretreatment with gamma rays or microwaves on storage stability of dry beans

    SciTech Connect

    Planejamento Alimentar e Nutricao )

    1993-10-01

    The objective of this work was to study the effects of gamma radiation or microwave treatment on physical, chemical, and sensorial properties of dry beans during storage. Microwave treatment for 2 min or gamma irradiation at 2 kGy was applied. Samples were stored at 4-5[degrees]C in a refrigerator and at 30[degrees]C, 75% relative humidity (RH), for 6 months. The hydration capacity of samples stored at 4-5[degrees]C for 6 months was about 60% that of samples stored at 30[degrees]C, 75% RH. Gamma radiation increased the hydration rate and decreased cooking time and hardness of the seeds, whereas microwave treatment resulted in increased hardness and cooking time. Sensorial attributes were preserved in all samples kept under refrigeration (4-5[degrees]C) but deteriorated considerably at 30[degrees]C, 75% RH. Overall, the sensory properties of the irradiated samples did not differ (p [le] 0.05) from those of the controls, while the microwave-treated samples presented inferior sensorial properties. Storage for 6 months at 30[degrees]C, 75% RH, reduced phytate to 50% of the original values in the control and irradiated samples and to 60% in the microwave-treated sample. For the same storage condition and time, methionine was reduced to 72, 75, and 63% of original value, in the control, irradiated, and microwave-treated samples, respectively. 31 refs., 2 figs., 7 tabs.

  18. Heat transfer analysis of the geologic disposal of spent fuel and high level waste storage canisters

    NASA Astrophysics Data System (ADS)

    Allen, G. K.

    1980-08-01

    Near-field temperatures resulting from the storage of high-level waste canisters and spent unreprocessed fuel assembly canisters in geologic formations were determined. Preliminary design of the repository was modeled for a heat transfer computer code, HEATING5, which used the finite difference method to evaluate transient heat transfer. The heat transfer system was evaluated with several two and three dimensional models which transfer heat by a combination of conduction, natural convention, and radiation. Physical properties of the materials in the model were based upon experimental values for the various geologic formations. The effects of canister spacing, fuel age, and use of an overpack were studied for the analysis of the spent fuel canisters; salt, granite, and basalt were considered as the storage media. The effects of canister diameter and use of an overpack were studied for the analysis of the high-level waste canisters; salt was considered as the only storage media for high-level waste canisters.

  19. A FRAMEWORK TO DEVELOP FLAW ACCEPTANCE CRITERIA FOR STRUCTURAL INTEGRITY ASSESSMENT OF MULTIPURPOSE CANISTERS FOR EXTENDED STORAGE OF USED NUCLEAR FUEL

    SciTech Connect

    Lam, P.; Sindelar, R.; Duncan, A.; Adams, T.

    2014-04-07

    A multipurpose canister (MPC) made of austenitic stainless steel is loaded with used nuclear fuel assemblies and is part of the transfer cask system to move the fuel from the spent fuel pool to prepare for storage, and is part of the storage cask system for on-site dry storage. This weld-sealed canister is also expected to be part of the transportation package following storage. The canister may be subject to service-induced degradation especially if exposed to aggressive environments during possible very long-term storage period if the permanent repository is yet to be identified and readied. Stress corrosion cracking may be initiated on the canister surface in the welds or in the heat affected zone because the construction of MPC does not require heat treatment for stress relief. An acceptance criteria methodology is being developed for flaw disposition should the crack-like defects be detected by periodic Inservice Inspection. The external loading cases include thermal accident scenarios and cask drop conditions with the contribution from the welding residual stresses. The determination of acceptable flaw size is based on the procedure to evaluate flaw stability provided by American Petroleum Institute (API) 579 Fitness-for-Service (Second Edition). The material mechanical and fracture properties for base and weld metals and the stress analysis results are obtained from the open literature such as NUREG-1864. Subcritical crack growth from stress corrosion cracking (SCC), and its impact on inspection intervals and acceptance criteria, is not addressed.

  20. Down Select Report of Chemical Hydrogen Storage Materials, Catalysts, and Spent Fuel Regeneration Processes

    SciTech Connect

    Ott, Kevin; Linehan, Sue; Lipiecki, Frank; Aardahl, Christopher L.

    2008-08-24

    The DOE Hydrogen Storage Program is focused on identifying and developing viable hydrogen storage systems for onboard vehicular applications. The program funds exploratory research directed at identifying new materials and concepts for storage of hydrogen having high gravimetric and volumetric capacities that have the potential to meet long term technical targets for onboard storage. Approaches currently being examined are reversible metal hydride storage materials, reversible hydrogen sorption systems, and chemical hydrogen storage systems. The latter approach concerns materials that release hydrogen in endothermic or exothermic chemical bond-breaking processes. To regenerate the spent fuels arising from hydrogen release from such materials, chemical processes must be employed. These chemical regeneration processes are envisioned to occur offboard the vehicle.

  1. SPENT NUCLEAR FUEL STORAGE BASIN WATER CHEMISTRY: ELECTROCHEMICAL EVALUATION OF ALUMINUM CORROSION

    SciTech Connect

    Hathcock, D

    2007-10-30

    The factors affecting the optimal water chemistry of the Savannah River Site spent fuel storage basin must be determines in order to optimize facility efficiency, minimize fuel corrosion, and reduce overall environmental impact from long term spent nuclear fuel storage at the Savannah River Site. The Savannah River National Laboratory is using statistically designed experiments to study the effects of NO{sub 3}{sup -}, SO{sub 4}{sup 2-}, and Cl{sup -} concentrations on alloys commonly used not only as fuel cladding, but also as rack construction materials The results of cyclic polarization pitting and corrosion experiments on samples of Al 6061 and 1100 alloys will be used to construct a predictive model of the basin corrosion and its dependence on the species in the basin. The basin chemistry model and corrosion will be discussed in terms of optimized water chemistry envelope and minimization of cladding corrosion.

  2. Development of A 5,000 BBL, Rubberized Fabric Fuel Storage Tank, Collapsible,

    DTIC Science & Technology

    1981-04-01

    Rubbers ablate at very high heating rates which will protect the cloth for short periods of exposure at large heating rates so the tanks should have...AD-SlOG 005 GOOYEAR AEROSPACE CORP AKRON ON ENGINEERED FABRICS DIV F/S 13/4 DEVELOPMENT OF A 5,000 BOL. RUBBERIZED FABRIC FUEL STORAGE TAN- ETC(Ul...mEEmmhEEmhmhmhE OReport Number v L 4!! FINAL REPORT DEVELOPMENT OF A 5000 BBL RUBBERIZED FABRIC FUEL STORAGE TANK,COLLAPSIBLE I Ronald L Sosnowski

  3. Multidimensional shielding analysis of the JASPER in-vessel fuel storage experiments

    SciTech Connect

    Bucholz, J.A.

    1993-03-01

    The In-Vessel Fuel Storage (IVFS) experiments analyzed in this report were conducted at the Oak Ridge National Laboratory`s Tower Shielding Reactor (TSR) as part of the Japanese-American Shielding Program for Experimental Research (JASPER). These IVFS experiments were designed to study source multiplication and three-dimensional effects related to in-vessel storage of spent fuel elements in liquid metal reactor (LMR) systems. The present report describes the 2-D and 3-D models, analyses, and calculated results corresponding to a limited subset of those IVFS experiments in which the US LMR program has a particular interest.

  4. Structural and technological characteristics of starch isolated from sorghum as a function of drying temperature and storage time.

    PubMed

    Cruz, David Bandeira da; Silva, Wagner Schellin Vieira da; Santos, Ivonir Petrarca Dos; Zavareze, Elessandra da Rosa; Elias, Moacir Cardoso

    2015-11-20

    The quality of sorghum grains can vary according to the conditions of the drying temperature and storage time. The objective of this study was to evaluate the effects of the drying temperature and storage time of sorghum grain on the structure and technological properties of starch. The sorghum grains were dried at 45, 65, and 85°C and stored for six months. The grains were stored in an environment with a controlled temperature and humidity, and the starch from sorghum grains was isolated in initial time, after three and six months. The sorghum starches grains dried at 45 and 65°C present higher relative crystallinity than the starches of sorghum grains dried at 85°C in three months of storage. A reduction in the solubility of the starches of the sorghum grains dried at 85°C was observed when the grains were stored during six months. The breakdown and swelling power of the starches were reduced with the increase of the drying temperature.

  5. Neutron imaging methods for the investigation of energy related materials. Fuel cells, battery, hydrogen storage and nuclear fuel

    NASA Astrophysics Data System (ADS)

    Lehmann, Eberhard H.; Boillat, Pierre; Kaestner, Anders; Vontobel, Peter; Mannes, David

    2015-10-01

    After a short explanation of the state-of-the-art in the field of neutron imaging we give some examples how energy related materials can be studied successfully. These are in particular fuel cell studies, battery research approaches, the storage of hydrogen, but also some investigations with nuclear fuel components. The high contrast for light isotopes like H-1, Li-6 or B-10 are used to trace low amounts of material even within compact sealing of metals which are relatively transparent for neutrons at the same time.

  6. Removal plan for Shippingport pressurized water reactor core 2 blanket fuel assemblies form T plant to the canister storage building

    SciTech Connect

    Lata

    1996-09-26

    This document presents the current strategy and path forward for removal of the Shippingport Pressurized Water Reactor Core 2 blanket fuel assemblies from their existing storage configuration (wet storage within the T Plant canyon) and transport to the Canister Storage Building (designed and managed by the Spent Nuclear Fuel. Division). The removal plan identifies all processes, equipment, facility interfaces, and documentation (safety, permitting, procedures, etc.) required to facilitate the PWR Core 2 assembly removal (from T Plant), transport (to the Canister storage Building), and storage to the Canister Storage Building. The plan also provides schedules, associated milestones, and cost estimates for all handling activities.

  7. Radiolysis Model Sensitivity Analysis for a Used Fuel Storage Canister

    SciTech Connect

    Wittman, Richard S.

    2013-09-20

    This report fulfills the M3 milestone (M3FT-13PN0810027) to report on a radiolysis computer model analysis that estimates the generation of radiolytic products for a storage canister. The analysis considers radiolysis outside storage canister walls and within the canister fill gas over a possible 300-year lifetime. Previous work relied on estimates based directly on a water radiolysis G-value. This work also includes that effect with the addition of coupled kinetics for 111 reactions for 40 gas species to account for radiolytic-induced chemistry, which includes water recombination and reactions with air.

  8. Optimization of dry reforming of methane over Ni/YSZ anodes for solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Guerra, Cosimo; Lanzini, Andrea; Leone, Pierluigi; Santarelli, Massimo; Brandon, Nigel P.

    2014-01-01

    This work investigates the catalytic properties of Ni/YSZ anodes as electrodes of Solid Oxide Fuel Cells (SOFCs) to be operated under direct dry reforming of methane. The experimental test rig consists of a micro-reactor, where anode samples are characterized. The gas composition at the reactor outlet is monitored using a mass spectrometer. The kinetics of the reactions occurring over the anode is investigated by means of Isotherm reactions and Temperature-programmed reactions. The effect of the variation of temperature, gas residence time and inlet carbon dioxide-methane volumetric ratio is analyzed. At 800 °C, the best catalytic performance (in the carbon safe region) is obtained for 1.5 < carbon dioxide/methane ratio < 2, which is an interesting result for prospective direct biogas fueled SOFCs. Conversion is stable over a period of 70 h. Both for temperatures lower than 450 °C and for carbon dioxide-methane ratios lower than equi-molar at 800 °C, conversion is poor due to low activity of the anode toward dry reforming and cracking reactions, respectively. In other ranges, dry reforming and reverse water gas shift are the dominant reactions and the inlet feed reaches almost the equilibrium condition provided that a sufficient gas residence time is obtained.

  9. Alkaline fuel cells for the regenerative fuel cell energy storage system

    NASA Technical Reports Server (NTRS)

    Martin, R. E.

    1983-01-01

    The development of the alkaline Regenerative Fuel Cell System, whose fuel cell module would be a derivative of the 12-kW fuel cell power plant currently being produced for the Space Shuttle Orbiter, is reviewed. Long-term endurance testing of full-size fuel cell modules has demonstrated: (1) the extended endurance capability of potassium titanate matrix cells, (2) the long-term performance stability of the anode catalyst, and (3) the suitability of a lightweight graphite structure for use at the anode. These approaches, developed in the NASA-sponsored fuel cell technology advancement program, would also reduce cell weight by nearly one half.

  10. Alkaline fuel cells for the regenerative fuel cell energy storage system

    NASA Astrophysics Data System (ADS)

    Martin, R. E.

    The development of the alkaline Regenerative Fuel Cell System, whose fuel cell module would be a derivative of the 12-kW fuel cell power plant currently being produced for the Space Shuttle Orbiter, is reviewed. Long-term endurance testing of full-size fuel cell modules has demonstrated: (1) the extended endurance capability of potassium titanate matrix cells, (2) the long-term performance stability of the anode catalyst, and (3) the suitability of a lightweight graphite structure for use at the anode. These approaches, developed in the NASA-sponsored fuel cell technology advancement program, would also reduce cell weight by nearly one half.

  11. US NRC-Sponsored Research on Stress Corrosion Cracking Susceptibility of Dry Storage Canister Materials in Marine Environments - 13344

    SciTech Connect

    Oberson, Greg; Dunn, Darrell; Mintz, Todd; He, Xihua; Pabalan, Roberto; Miller, Larry

    2013-07-01

    At a number of locations in the U.S., spent nuclear fuel (SNF) is maintained at independent spent fuel storage installations (ISFSIs). These ISFSIs, which include operating and decommissioned reactor sites, Department of Energy facilities in Idaho, and others, are licensed by the U.S. Nuclear Regulatory Commission (NRC) under Title 10 of the Code of Federal Regulations, Part 72. The SNF is stored in dry cask storage systems, which most commonly consist of a welded austenitic stainless steel canister within a larger concrete vault or overpack vented to the external atmosphere to allow airflow for cooling. Some ISFSIs are located in marine environments where there may be high concentrations of airborne chloride salts. If salts were to deposit on the canisters via the external vents, a chloride-rich brine could form by deliquescence. Austenitic stainless steels are susceptible to chloride-induced stress corrosion cracking (SCC), particularly in the presence of residual tensile stresses from welding or other fabrication processes. SCC could allow helium to leak out of a canister if the wall is breached or otherwise compromise its structural integrity. There is currently limited understanding of the conditions that will affect the SCC susceptibility of austenitic stainless steel exposed to marine salts. NRC previously conducted a scoping study of this phenomenon, reported in NUREG/CR-7030 in 2010. Given apparent conservatisms and limitations in this study, NRC has sponsored a follow-on research program to more systematically investigate various factors that may affect SCC including temperature, humidity, salt concentration, and stress level. The activities within this research program include: (1) measurement of relative humidity (RH) for deliquescence of sea salt, (2) SCC testing within the range of natural absolute humidity, (3) SCC testing at elevated temperatures, (4) SCC testing at high humidity conditions, and (5) SCC testing with various applied stresses. Results

  12. 29 CFR 1917.156 - Fuel handling and storage.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... not handled by pump shall be handled and transported only in portable containers or equivalent means...) Liquid fuel dispensing devices, such as pumps, shall be mounted either on a concrete island or be... shall be shielded against direct heat radiation. (v) Container installation shall provide the...

  13. 29 CFR 1917.156 - Fuel handling and storage.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... not handled by pump shall be handled and transported only in portable containers or equivalent means designed for that purpose. Portable containers shall be metal, have tight closures with screw or spring...) Liquid fuel dispensing devices, such as pumps, shall be mounted either on a concrete island or...

  14. 29 CFR 1917.156 - Fuel handling and storage.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... not handled by pump shall be handled and transported only in portable containers or equivalent means designed for that purpose. Portable containers shall be metal, have tight closures with screw or spring...) Liquid fuel dispensing devices, such as pumps, shall be mounted either on a concrete island or...

  15. 29 CFR 1917.156 - Fuel handling and storage.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... not handled by pump shall be handled and transported only in portable containers or equivalent means designed for that purpose. Portable containers shall be metal, have tight closures with screw or spring...) Liquid fuel dispensing devices, such as pumps, shall be mounted either on a concrete island or...

  16. 29 CFR 1917.156 - Fuel handling and storage.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... not handled by pump shall be handled and transported only in portable containers or equivalent means...) Liquid fuel dispensing devices, such as pumps, shall be mounted either on a concrete island or...

  17. Neuro-fuzzy modeling to predict physicochemical and microbiological parameters of partially dried cherry tomato during storage: effects on water activity, temperature and storage time.

    PubMed

    Tao, Yang; Li, Yong; Zhou, Ruiyun; Chu, Dinh-Toi; Su, Lijuan; Han, Yongbin; Zhou, Jianzhong

    2016-10-01

    In the study, osmotically dehydrated cherry tomatoes were partially dried to water activity between 0.746 and 0.868, vacuum-packed and stored at 4-30 °C for 60 days. Adaptive neuro-fuzzy inference system (ANFIS) was utilized to predict the physicochemical and microbiological parameters of these partially dried cherry tomatoes during storage. Satisfactory accuracies were obtained when ANFIS was used to predict the lycopene and total phenolic contents, color and microbial contamination. The coefficients of determination for all the ANFIS models were higher than 0.86 and showed better performance for prediction compared with models developed by response surface methodology. Through ANFIS modeling, the effects of storage conditions on the properties of partially dried cherry tomatoes were visualized. Generally, contents of lycopene and total phenolics decreased with the increase in water activity, temperature and storage time, while aerobic plate count and number of yeasts and molds increased at high water activities and temperatures. Overall, ANFIS approach can be used as an effective tool to study the quality decrease and microbial pollution of partially dried cherry tomatoes during storage, as well as identify the suitable preservation conditions.

  18. Signatures of Extended Storage of Used Nuclear Fuel Comprehensive Final Report

    SciTech Connect

    Rauch, Eric Benton

    2016-09-21

    This report serves as a comprehensive overview of the Extended Storage of Used Nuclear Fuel work performed for the Material Protection, Accounting and Control Technologies campaign under the Department of Energy Office of Nuclear Energy. This paper describes a signature based on the source and fissile material distribution found within a population of used fuel assemblies combined with the neutron absorbers found within cask design that is unique to a specific cask with its specific arrangement of fuel. The paper describes all the steps used in producing and analyzing this signature from the beginning to the project end.

  19. Energy storage using high pressure electrolysis and methods for reconversion. [in automobile fuel synthesis

    NASA Technical Reports Server (NTRS)

    Hughes, W. L.

    1973-01-01

    Theoretical and experimental studies on high pressure electrolysis producing hydrogen and oxygen for energy storage and reconversion are reported. Moderate temperature, high pressure hydrogen/oxygen fuel cells with nickel electrodes are investigated for effects of pressure, temperature, and membrane porosity. Test results from an aphodid burner turbine generator combination obtained 40 percent kilowatt hours out of the fuel cell divided by kilowatt hours into the electrolyzer. It is concluded that high pressure hydrogenation of organic materials can be used to synthesize hydrozenes and methanes for making synthetic vehicular fuels.

  20. Radiological Danger of Disposed Spent Fuel at Different Time of Subsequent Storage

    SciTech Connect

    Gerasimov, A.S.; Bergelson, B.R.; Zaritskaya, T.S.; Kiselev, G.V.; Tikhomirov, G.V.

    2002-07-01

    Decay heat power and radiotoxicity of actinides and fission products extracted from spent uranium and uranium-plutonium nuclear fuel of VVER-1000 type reactors are calculated for storage during a time period of 100 000 years. Maximum permissible activity of nuclides in water were taken into account at calculations of a radiotoxicity. Radiotoxicity is important characteristics of radiological danger from the point of view of a leakage from the storage facility. Decay heat power is important for the heat removal system of the storage facility. (authors)

  1. 76 FR 17019 - List of Approved Spent Fuel Storage Casks: HI-STORM Flood/Wind Addition

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-28

    ... 3150-AI90 List of Approved Spent Fuel Storage Casks: HI-STORM Flood/Wind Addition AGENCY: Nuclear... the Commission) is amending its regulations to add the HI-STORM Flood/Wind cask system to the ``List... spent fuel storage cask designs. Discussion This rule will add the Holtec HI-STORM Flood/Wind (FW)...

  2. 76 FR 17037 - List of Approved Spent Fuel Storage Casks: HI-STORM Flood/Wind Addition

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-28

    ...; ] NUCLEAR REGULATORY COMMISSION 10 CFR Part 72 RIN 3150-AI90 List of Approved Spent Fuel Storage Casks: HI... regulations to add the HI-STORM Flood/Wind cask system to the ``List of Approved Spent Fuel Storage Casks... 13, 2011. SAR Submitted by: Holtec International, Inc. SAR Title: Safety Analysis Report on the...

  3. 78 FR 73379 - List of Approved Spent Fuel Storage Casks: HI-STORM 100 Cask System; Amendment No. 9

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-06

    ... 3150-AJ12 List of Approved Spent Fuel Storage Casks: HI-STORM 100 Cask System; Amendment No. 9 AGENCY... (NRC) is amending its spent fuel storage regulations by revising the Holtec International HI- STORM 100... the HI-STORM 100U part of the HI-STORM 100 Cask System and updates the thermal model and...

  4. 78 FR 22411 - List of Approved Spent Fuel Storage Casks: HI-STORM 100, Amendment No. 8; Corrections

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-16

    ... COMMISSION 10 CFR Part 72 RIN 3150-AJ05 List of Approved Spent Fuel Storage Casks: HI-STORM 100, Amendment No.... (Holtec) HI-STORM 100 Cask System listing within the ``List of Approved Spent Fuel Storage Casks'' to... technical specifications (TS) and the NRC's Safety Evaluation Report (SER) for the Holtec HI-STORM 100...

  5. Radiotoxicity and decay heat power of spent nuclear fuel of VVER type reactors at long-term storage.

    PubMed

    Bergelson, B R; Gerasimov, A S; Tikhomirov, G V

    2005-01-01

    Radiotoxicity and decay heat power of the spent nuclear fuel of VVER-1000 type reactors are calculated during storage time up to 300,000 y. Decay heat power of radioactive waste (radwaste) determines parameters of the heat removal system for the safe storage of spent nuclear fuel. Radiotoxicity determines the radiological hazard of radwaste after its leakage and penetration into the environment.

  6. Remote sensing of fuel moisture content from canopy water indices and normalized dry matter index

    NASA Astrophysics Data System (ADS)

    Raymond Hunt, E.; Wang, Lingli; Qu, John J.; Hao, Xianjun

    2012-01-01

    Fuel moisture content (FMC), an important variable for predicting the occurrence and spread of wildfire, is the ratio of foliar water content and foliar dry matter content. One approach for the remote sensing of FMC has been to estimate the change in canopy water content over time by using a liquid-water spectral index. Recently, the normalized dry matter index (NDMI) was developed for the remote sensing of dry matter content using high-spectral-resolution data. The ratio of a spectral water index and a dry matter index corresponds to the ratio of foliar water and dry matter contents; therefore, we hypothesized that FMC may be remotely sensed with a spectral water index divided by NDMI. For leaf-scale simulations using the PROSPECT (leaf optical properties spectra) model, all water index/NDMI ratios were significantly related to FMC with a second-order polynomial regression. For canopy-scale simulations using the SAIL (scattering by arbitrarily inclined leaves) model, two water index/NDMI ratios, with numerators of the normalized difference infrared index (NDII) and the normalized difference water index (NDWI), predicted FMC with R2 values of 0.900 and 0.864, respectively. Leaves from three species were dried or stacked to vary FMC; measured NDII/NDMI was best related to FMC. Whereas the planned NASA mission Hyperspectral Infrared Imager (HyspIRI) will have high spectral resolution and very high signal-to-noise properties, the planned 19-day repeat frequency will not be sufficient for monitoring FMC with NDII/NDMI. Because increased fire frequency is expected with climatic change, operational assessment of FMC at large scales may require polar-orbiting environmental sensors with narrow bands to calculate NDMI.

  7. Results from Nevada Nuclear Waste Storage Investigations (NNWSI) Series 3 spent fuel dissolution tests

    SciTech Connect

    Wilson, C.N.

    1990-06-01

    The dissolution and radionuclide release behavior of spent fuel in groundwater is being studied by the Yucca Mountain Project (YMP), formerly the Nevada Nuclear Waste Storage Investigations (NNWSI) Project. Specimens prepared from pressurized water reactor fuel rod segments were tested in sealed stainless steel vessels in Nevada Test Site J-13 well water at 85{degree}C and 25{degree}C. The test matrix included three specimens of bare-fuel particles plus cladding hulls, two fuel rod segments with artificially defected cladding and water-tight end fittings, and an undefected fuel rod section with watertight end fittings. Periodic solution samples were taken during test cycles with the sample volumes replenished with fresh J-13 water. Test cycles were periodically terminated and the specimens restarted in fresh J-13 water. The specimens were run for three cycles for a total test duration of 15 months. 22 refs., 32 figs., 26 tabs.

  8. Freeze-drying of HI-6-loaded recombinant human serum albumin nanoparticles for improved storage stability.

    PubMed

    Dadparvar, Miriam; Wagner, Sylvia; Wien, Sascha; Worek, Franz; von Briesen, Hagen; Kreuter, Jörg

    2014-10-01

    Severe intoxications with organophosphates require the immediate administration of atropine in combination with acetyl cholinesterase (AChE) reactivators such as HI-6. Although this therapy regimen enables the treatment of peripheral symptoms, the blood-brain barrier (BBB) restricts the access of the hydrophilic antidotes to the central nervous system which could lead to a fatal respiratory arrest. Therefore, HI-6-loaded albumin nanoparticles were previously developed to enhance the transport across this barrier and were able to reactivate organophosphate-(OP)-inhibited AChE in an in vitro BBB model. Since HI-6 is known to be moisture-sensitive, the feasibility of freeze-drying of the HI-6-loaded nanoparticles was investigated in the present study using different cryo- and lyoprotectants at different concentrations. Trehalose and sucrose (3%, w/v)-containing formulations were superior to mannitol concerning the physicochemical parameters of the nanoparticles whereas trehalose-containing samples were subject of a prolonged storage stability study at temperatures between -20°C and +40°C for predetermined time intervals. Shelf-life computations of the freeze-dried HI-6 nanoparticle formulations revealed a shelf-life time of 18 months when stored at -20°C. The formulations' efficacy was proven in vitro by reactivation of OP-inhibited AChE after transport over a porcine brain capillary endothelial cell layer model.

  9. Effect of rainfall seasonality on carbon storage in tropical dry ecosystems

    NASA Astrophysics Data System (ADS)

    Rohr, Tyler; Manzoni, Stefano; Feng, Xue; Menezes, Rômulo S. C.; Porporato, Amilcare

    2013-07-01

    seasonally dry conditions are typical of large areas of the tropics, their biogeochemical responses to seasonal rainfall and soil carbon (C) sequestration potential are not well characterized. Seasonal moisture availability positively affects both productivity and soil respiration, resulting in a delicate balance between C deposition as litterfall and C loss through heterotrophic respiration. To understand how rainfall seasonality (i.e., duration of the wet season and rainfall distribution) affects this balance and to provide estimates of long-term C sequestration, we develop a minimal model linking the seasonal behavior of the ensemble soil moisture, plant productivity, related C inputs through litterfall, and soil C dynamics. A drought-deciduous caatinga ecosystem in northeastern Brazil is used as a case study to parameterize the model. When extended to different patterns of rainfall seasonality, the results indicate that for fixed annual rainfall, both plant productivity and soil C sequestration potential are largely, and nonlinearly, dependent on wet season duration. Moreover, total annual rainfall is a critical driver of this relationship, leading at times to distinct optima in both production and C storage. These theoretical predictions are discussed in the context of parameter uncertainties and possible changes in rainfall regimes in tropical dry ecosystems.

  10. Irradiation Maintains Functional Components of Dry Hot Peppers (Capsicum annuum L.) under Ambient Storage

    PubMed Central

    Iqbal, Qumer; Amjad, Muhammad; Asi, Muhammad Rafique; Nawaz, Aamir; Khan, Samiya Mahmood; Ariño, Agustin; Ahmad, Tanveer

    2016-01-01

    Hot peppers used as natural flavoring and coloring agents are usually irradiated in prepacked form for decontamination. The effects of gamma radiation on the stability of functional components such as capsaicinoids and antioxidant compounds (carotenoids, ascorbic acid and total phenolics) were investigated in hot peppers (Capsicum annuum). Whole dried peppers packed in polyethylene bags were gamma irradiated at 0 (control), 2, 4, and 6 kGy and subsequently stored at 25 °C for 90 days. The irradiation dose did not substantially affect the initial contents of capsaicinoids, ascorbic acid and total phenolics, though the concentration of carotenoids declined by 8% from the control (76.9 mg/100 g) to 6 kGy radiation dose (70.7 mg/100 g). Similarly, during storage for 90 days at ambient temperature the concentrations of capsaicinoids and total phenolics remained fairly stable with mean percent reductions from 3.3% to 4.2%, while the levels of total carotenoids and ascorbic acid significantly (p < 0.05) declined by 12% and 14%, respectively. Overall, neither irradiation nor subsequent ambient storage could appreciably influence the contents of functional components in hot peppers. These results revealed that gamma irradiation up to 6 kGy can be safely used for decontamination to meet the needs for overseas markets without compromising product quality. PMID:28231158

  11. Sodium and Lithium Storage Properties of Spray-Dried Molybdenum Disulfide-Graphene Hierarchical Microspheres

    PubMed Central

    Kalluri, Sujith; Seng, Kuok Hau; Guo, Zaiping; Du, Aijun; Konstantinov, Konstantin; Liu, Hua Kun; Dou, Shi Xue

    2015-01-01

    Developing nano/micro-structures which can effectively upgrade the intriguing properties of electrode materials for energy storage devices is always a key research topic. Ultrathin nanosheets were proved to be one of the potential nanostructures due to their high specific surface area, good active contact areas and porous channels. Herein, we report a unique hierarchical micro-spherical morphology of well-stacked and completely miscible molybdenum disulfide (MoS2) nanosheets and graphene sheets, were successfully synthesized via a simple and industrial scale spray-drying technique to take the advantages of both MoS2 and graphene in terms of their high practical capacity values and high electronic conductivity, respectively. Computational studies were performed to understand the interfacial behaviour of MoS2 and graphene, which proves high stability of the composite with high interfacial binding energy (−2.02 eV) among them. Further, the lithium and sodium storage properties have been tested and reveal excellent cyclic stability over 250 and 500 cycles, respectively, with the highest initial capacity values of 1300 mAh g−1 and 640 mAh g−1 at 0.1 A g−1. PMID:26173985

  12. 77 FR 20440 - Independent Spent Fuel Storage Installation, Virginia Electric and Power Company, Surry Power...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-04

    ... zones while preparing the dry shielded canister (DSC) loading maps. This resulted in five fuel assemblies being loaded into four DSCs with decay heat greater than the levels specified in the CoC. Dominion... limits in Attachment A, Technical Specifications (TS). The TS restrict the decay heat in lower Zone...

  13. 77 FR 20438 - Independent Spent Fuel Storage Installation, Virginia Electric and Power Company: North Anna...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-04

    ... zones while preparing the dry shielded canister (DSC) loading maps. This resulted in twelve fuel assemblies being loaded into seven DSCs with decay heat greater than the levels specified in the CoC... Specifications (TS). The TS restrict the decay heat in lower Zone ``1a'' locations to...

  14. 75 FR 25120 - List of Approved Spent Fuel Storage Casks: NUHOMS® HD System Revision 1

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-07

    ... HD System to include pressurized water reactor fuel assemblies with control components, reduce the... the water from the dry shielded canister (DSC) and allow only helium as a cover gas during DSC cavity water removal operations, and make corresponding changes to the technical specifications....

  15. Performance and Storage Integrity of Dried Blood Spots for PCB, BFR and Pesticide Measurements

    PubMed Central

    Batterman, Stuart; Chernyak, Sergei

    2014-01-01

    Dried blood spots (DBS) can provide accurate and valuable estimates of exposure to environmental toxicants, and the use of information derived from archived newborn DBS information has enormous potential to open up new research on the impacts of early chemical exposure on disease. Broad application of DBS for the purpose of quantitative exposure estimation requires robust and validated methods. This study investigates the suitability of DBS analyses for population studies of exposure to three chemical groups: polychlorinated biphenyls (PCBs), brominated flame retardants (BFRs), and chlorinated pesticides. It examines background (matrix) contamination, recovery and extraction variability, sensitivity, and storage stability. DBS samples prepared using 50 μL of adult blood were analyzed by GC/MS, and method performance was confirmed by using certified materials and paired DBS-blood samples from six volunteers. Several of the target compounds and their degradation products have not been previously measured in DBS. All target compounds were detected in DBS samples collected from the volunteers. Sample DBS cards showed background contamination of several compounds. When stored at room temperature, target compounds, excluding PBDEs, were stable for up to one month. When refrigerated or frozen, stability was acceptable for all compounds up to one year, and multiyear storage appears acceptable at colder (e.g., −80 °C) temperatures. Multicompartment models may be used to estimate or correct for storage losses. Considering concentrations of contaminants for adults and children reported in the literature, and experimental values of detection limits and background contamination, DBS samples are suitable for quantifying exposures to many PCBs, BFRs and persistent pesticides. PMID:25058892

  16. FIELD-DEPLOYABLE SAMPLING TOOLS FOR SPENT NUCLEAR FUEL INTERROGATION IN LIQUID STORAGE

    SciTech Connect

    Berry, T.; Milliken, C.; Martinez-Rodriguez, M.; Hathcock, D.; Heitkamp, M.

    2012-09-12

    Methodology and field deployable tools (test kits) to analyze the chemical and microbiological condition of aqueous spent fuel storage basins and determine the oxide thickness on the spent fuel basin materials were developed to assess the corrosion potential of a basin. this assessment can then be used to determine the amount of time fuel has spent in a storage basin to ascertain if the operation of the reactor and storage basin is consistent with safeguard declarations or expectations and assist in evaluating general storage basin operations. The test kit was developed based on the identification of key physical, chemical and microbiological parameters identified using a review of the scientific and basin operations literature. The parameters were used to design bench scale test cells for additional corrosion analyses, and then tools were purchased to analyze the key parameters. The tools were used to characterize an active spent fuel basin, the Savannah River Site (SRS) L-Area basin. The sampling kit consisted of a total organic carbon analyzer, an YSI multiprobe, and a thickness probe. The tools were field tested to determine their ease of use, reliability, and determine the quality of data that each tool could provide. Characterization confirmed that the L Area basin is a well operated facility with low corrosion potential.

  17. 10 CFR 171.15 - Annual fees: Reactor licenses and independent spent fuel storage licenses.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... licensee who does not hold a 10 CFR part 50 license, is $241,000. (2) The FY 2011 annual fee is comprised... NRC § 171.15 Annual fees: Reactor licenses and independent spent fuel storage licenses. (a) Each person holding an operating license for a power, test, or research reactor; each person holding...

  18. 114. ARAI Hot cell (ARA626) Building details of fuel storage ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    114. ARA-I Hot cell (ARA-626) Building details of fuel storage pit in plan and section. Spaces shown for 20 elements. Norman Engineering Company: 961-area/SF-626-S-4. Date: January 1959. Ineel index code no. 068-0626-60-613-102752. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID

  19. 75 FR 9452 - Solicitation of Topics for Discussion at a Spent Fuel Storage and Transportation Licensing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-02

    ... COMMISSION Solicitation of Topics for Discussion at a Spent Fuel Storage and Transportation Licensing Conference AGENCY: U.S. Nuclear Regulatory Commission. ACTION: Solicitation of Topics for Discussion at a... Commission (NRC) is soliciting input on topics for discussion at a proposed June 23-24, 2010, public...

  20. Radioactive Release from Aluminum-Based Spent Nuclear Fuel in Basin Storage

    SciTech Connect

    Sindelar, R.L.

    1999-10-21

    The report provides an evaluation of: (1) the release rate of radionuclides through minor cladding penetrations (breaches) on aluminum-based spent nuclear fuel (AL SNF), and (2) the consequences of direct storage of breached AL SNF relative to the authorization basis for SRS basin operation.

  1. Data compliation report: K West Basin fuel storage canister liquid samples

    SciTech Connect

    Trimble, D.J.

    1995-12-21

    Sample analysis data from the 222-S Laboratory are reported. The data are for liquid samples taken from spent fuel storage canisters in the 105 K West Basin during March 1995. An analysis and data report from the Special Analytical Studies group of Westinghouse Hanford Company regarding these samples is also included. Data analysis is not included herein.

  2. 10 CFR 72.214 - List of approved spent fuel storage casks.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false List of approved spent fuel storage casks. 72.214 Section 72.214 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT... International. SAR Title: Final Safety Analysis Report for the HI-STAR 100 Cask System. Docket Number:...

  3. 10 CFR 72.214 - List of approved spent fuel storage casks.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false List of approved spent fuel storage casks. 72.214 Section 72.214 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT... International. SAR Title: Final Safety Analysis Report for the HI-STAR 100 Cask System. Docket Number:...

  4. 77 FR 48565 - Maine Yankee Atomic Power Company, Maine Yankee Independent Spent Fuel Storage Installation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-14

    ... also holds a 10 CFR part 72 general license for storage of spent fuel and greater than Class C waste at...; (iv) granting the exemption would not result in a significant construction impact because there are no construction activities associated with the requested exemption; and; (v) granting the exemption would...

  5. 10 CFR 72.240 - Conditions for spent fuel storage cask renewal.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Section 72.240 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C... report (FSAR) as required by § 72.248; (2) Time-limited aging analyses that demonstrate that...

  6. 78 FR 56775 - Waste Confidence-Continued Storage of Spent Nuclear Fuel

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-13

    ... the period of continued storage beyond the licensed life for operation of a reactor. Table of Contents... integrated into the cask. Bare fuel casks, which tend to be all metal construction, are generally bolted... operation are sufficiently understood as a result of lessons learned and knowledge gained from...

  7. 75 FR 36449 - Yankee Atomic Electric Co.; Yankee Atomic Independent Spent Fuel Storage Installation; Issuance...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-25

    ... COMMISSION Yankee Atomic Electric Co.; Yankee Atomic Independent Spent Fuel Storage Installation; Issuance of... Atomic Electric Company (YAEC), pursuant to 10 CFR 72.7, from the specific provisions of 10 CFR 72.212(a... instructions for the operations and maintenance of ISFSI systems, structures, and components, as required...

  8. 78 FR 63375 - List of Approved Spent Fuel Storage Casks: Transnuclear, Inc. Standardized NUHOMS® Cask System

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-24

    ... U.S. Nuclear Regulatory Commission (NRC) is amending its spent fuel storage regulations by revising... Environmental Management Programs, U.S. Nuclear Regulatory Commission, Washington, DC 20555-0001, telephone: 301... U.S.C. 3501 et seq.). Existing requirements were approved by the Office of Management and...

  9. 76 FR 30980 - Pacific Gas and Electric Company; Humboldt Bay Independent Spent Fuel Storage Installation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-27

    ... COMMISSION Pacific Gas and Electric Company; Humboldt Bay Independent Spent Fuel Storage Installation...-4737, or by e-mail to pdr.resource@nrc.gov . The Pacific Gas and Electric letter HIL-10-005 which... September 8, 2010, a license amendment application from Pacific Gas and Electric Company (PG&E),...

  10. 78 FR 56944 - Pacific Gas and Electric Company; Humboldt Bay Independent Spent Fuel Storage Installation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-16

    ... COMMISSION Pacific Gas and Electric Company; Humboldt Bay Independent Spent Fuel Storage Installation AGENCY... finding of no significant impact (FONSI) for an amendment request submitted by Pacific Gas and Electric... Installation (ISFSI). ADDRESSES: Please refer to Docket ID NRC-2011-0115 when contacting the ] NRC about...

  11. Templated assembly of photoswitches significantly increases the energy-storage capacity of solar thermal fuels.

    PubMed

    Kucharski, Timothy J; Ferralis, Nicola; Kolpak, Alexie M; Zheng, Jennie O; Nocera, Daniel G; Grossman, Jeffrey C

    2014-05-01

    Large-scale utilization of solar-energy resources will require considerable advances in energy-storage technologies to meet ever-increasing global energy demands. Other than liquid fuels, existing energy-storage materials do not provide the requisite combination of high energy density, high stability, easy handling, transportability and low cost. New hybrid solar thermal fuels, composed of photoswitchable molecules on rigid, low-mass nanostructures, transcend the physical limitations of molecular solar thermal fuels by introducing local sterically constrained environments in which interactions between chromophores can be tuned. We demonstrate this principle of a hybrid solar thermal fuel using azobenzene-functionalized carbon nanotubes. We show that, on composite bundling, the amount of energy stored per azobenzene more than doubles from 58 to 120 kJ mol(-1), and the material also maintains robust cyclability and stability. Our results demonstrate that solar thermal fuels composed of molecule-nanostructure hybrids can exhibit significantly enhanced energy-storage capabilities through the generation of template-enforced steric strain.

  12. US Department of Energy Storage of Spent Fuel and High Level Waste

    SciTech Connect

    Sandra M Birk

    2010-10-01

    ABSTRACT This paper provides an overview of the Department of Energy's (DOE) spent nuclear fuel (SNF) and high level waste (HLW) storage management. Like commercial reactor fuel, DOE's SNF and HLW were destined for the Yucca Mountain repository. In March 2010, the DOE filed a motion with the Nuclear Regulatory Commission (NRC) to withdraw the license application for the repository at Yucca Mountain. A new repository is now decades away. The default for the commercial and DOE research reactor fuel and HLW is on-site storage for the foreseeable future. Though the motion to withdraw the license application and delay opening of a repository signals extended storage, DOE's immediate plans for management of its SNF and HLW remain the same as before Yucca Mountain was designated as the repository, though it has expanded its research and development efforts to ensure safe extended storage. This paper outlines some of the proposed research that DOE is conducting and will use to enhance its storage systems and facilities.

  13. Regenerative Fuel Cells: Renewable Energy Storage Devices Based on Neutral Water Input

    SciTech Connect

    2010-09-01

    GRIDS Project: Proton Energy Systems is developing an energy storage device that converts water to hydrogen fuel when excess electricity is available, and then uses hydrogen to generate electricity when energy is needed. The system includes an electrolyzer, which generates and separates hydrogen and oxygen for storage, and a fuel cell which converts the hydrogen and oxygen back to electricity. Traditional systems use acidic membranes, and require expensive materials including platinum and titanium for key parts of the system. In contrast, Proton Energy Systems’ new system will use an inexpensive alkaline membrane and will contain only inexpensive metals such as nickel and stainless steel. If successful, Proton Energy Systems’ system will have similar performance to today’s regenerative fuel cell systems at a fraction of the cost, and can be used to store electricity on the electric grid.

  14. Alkaline regenerative fuel cell energy storage system for manned orbital satellites

    NASA Technical Reports Server (NTRS)

    Martin, R. E.; Gitlow, B.; Sheibley, D. W.

    1982-01-01

    It is pointed out that the alkaline regenerative fuel cell system represents a highly efficient, lightweight, reliable approach for providing energy storage in an orbiting satellite. In addition to its energy storage function, the system can supply hydrogen and oxygen for attitude control of the satellite and for life support. A summary is presented of the results to date obtained in connection with the NASA-sponsored fuel cell technology advancement program, giving particular attention to the requirements of the alkaline regenerative fuel cell and the low-earth mission. Attention is given to system design guidelines, weight considerations, gold-platinum cathode cell performance, matrix development, the electrolyte reservoir plate, and the cyclical load profile tests.

  15. Contaminated sediment removal from a spent fuel storage canal

    SciTech Connect

    Geber, K R

    1993-01-01

    A leaking underground spent fuel transfer canal between a decommissioned reactor and a radiochemical separations building at the Oak Ridge National Laboratory (ORNL) was found to contain RCRA-hazardous and radioactive sediment. Closure of the Part B RCRA permitted facility required the use of an underwater robotic vacuum and a filtration-containment system to separate and stabilize the contaminated sediment. This paper discusses the radiological controls established to maintain contamination and exposures As Low As Reasonably Achievable (ALARA) during the sediment removal.

  16. Successful Deployment of System for the Storage and Retrieval of Spent/Used Nuclear Fuel from Hanford K-West Fuel Storage Basin-13051

    SciTech Connect

    Quintero, Roger; Smith, Sahid; Blackford, Leonard Ty; Johnson, Mike W.; Raymond, Richard; Sullivan, Neal; Sloughter, Jim

    2013-07-01

    In 2012, a system was deployed to remove, transport, and interim store chemically reactive and highly radioactive sludge material from the Hanford Site's 105-K West Fuel Storage Basin that will be managed as spent/used nuclear fuel. The Knockout Pot (KOP) sludge in the 105-K West Basin was a legacy issue resulting from the spent nuclear fuel (SNF) washing process applied to 2200 metric tons of highly degraded fuel elements following long-term underwater storage. The washing process removed uranium metal and other non-uranium constituents that could pass through a screen with 0.25-inch openings; larger pieces are, by definition, SNF or fuel scrap. When originally retrieved, KOP sludge contained pieces of degraded uranium fuel ranging from 600 microns (μm) to 6350 μm mixed with inert material such as aluminum hydroxide, aluminum wire, and graphite in the same size range. In 2011, a system was developed, tested, successfully deployed and operated to pre-treat KOP sludge as part of 105-K West Basin cleanup. The pretreatment process successfully removed the vast majority of inert material from the KOP sludge stream and reduced the remaining volume of material by approximately 65 percent, down to approximately 50 liters of material requiring management as used fuel. The removal of inert material resulted in significant waste minimization and project cost savings because of the reduced number of transportation/storage containers and improvement in worker safety. The improvement in worker safety is a result of shorter operating times and reduced number of remote handled shipments to the site fuel storage facility. Additionally in 2011, technology development, final design, and cold testing was completed on the system to be used in processing and packaging the remaining KOP material for removal from the basin in much the same manner spent fuel was removed. This system was deployed and successfully operated from June through September 2012, to remove and package the last

  17. Fuel-Free Compressed-Air Energy Storage: Fuel-Free, Ubiquitous Compressed-Air Energy Storage and Power Conditioning

    SciTech Connect

    2010-09-13

    GRIDS Project: General Compression has developed a transformative, near-isothermal compressed air energy storage system (GCAES) that prevents air from heating up during compression and cooling down during expansion. When integrated with renewable generation, such as a wind farm, intermittent energy can be stored in compressed air in salt caverns or pressurized tanks. When electricity is needed, the process is reversed and the compressed air is expanded to produce electricity. Unlike conventional compressed air energy storage (CAES) projects, no gas is burned to convert the stored high-pressure air back into electricity. The result of this breakthrough is an ultra-efficient, fully shapeable, 100% renewable and carbon-free power product. The GCAES™ system can provide high quality electricity and ancillary services by effectively integrating renewables onto the grid at a cost that is competitive with gas, coal and nuclear generation.

  18. Computing Q-D Relationships for Storage of Rocket Fuels

    NASA Technical Reports Server (NTRS)

    Jester, Keith

    2005-01-01

    The Quantity Distance Measurement Tool is a GIS BASEP computer program that aids safety engineers by calculating quantity-distance (Q-D) relationships for vessels that contain explosive chemicals used in testing rocket engines. (Q-D relationships are standard relationships between specified quantities of specified explosive materials and minimum distances by which they must be separated from persons, objects, and other explosives to obtain specified types and degrees of protection.) The program uses customized geographic-information-system (GIS) software and calculates Q-D relationships in accordance with NASA's Safety Standard For Explosives, Propellants, and Pyrotechnics. Displays generated by the program enable the identification of hazards, showing the relationships of propellant-storage-vessel safety buffers to inhabited facilities and public roads. Current Q-D information is calculated and maintained in graphical form for all vessels that contain propellants or other chemicals, the explosiveness of which is expressed in TNT equivalents [amounts of trinitrotoluene (TNT) having equivalent explosive effects]. The program is useful in the acquisition, siting, construction, and/or modification of storage vessels and other facilities in the development of an improved test-facility safety program.

  19. A Critical Review of Practice of Equating the Reactivity of Spent Fuel to Fresh Fuel in Burnup Credit Criticality Safety Analyses for PWR Spent Fuel Pool Storage

    SciTech Connect

    Wagner, J.C.; Parks, C.V.

    2000-09-01

    This research examines the practice of equating the reactivity of spent fuel to that of fresh fuel for the purpose of performing burnup credit criticality safety analyses for PWR spent fuel pool (SFP) storage conditions. The investigation consists of comparing k{sub inf} estimates based on reactivity equivalent fresh fuel enrichment (REFFE) to k{sub inf} estimates using the actual spent fuel isotopics. Analyses of selected storage configurations common in PWR SFPs show that this practice yields nonconservative results (on the order of a few tenths of a percent) in configurations in which the spent fuel is adjacent to higher-reactivity assemblies (e.g., fresh or lower-burned assemblies) and yields conservative results in configurations in which spent fuel is adjacent to lower-reactivity assemblies (e.g., higher-burned fuel or empty cells). When the REFFE is determined based on unborated water moderation, analyses for storage conditions with soluble boron present reveal significant nonconservative results associated with the use of the REFFE. This observation is considered to be important, especially considering the recent allowance of credit for soluble boron up to 5% in reactivity. Finally, it is shown that the practice of equating the reactivity of spent fuel to fresh fuel is acceptable, provided the conditions for which the REFFE was determined remain unchanged. Determination of the REFFE for a reference configuration and subsequent use of the REFFE for different configurations violates the basis used for the determination of the REFFE and, thus, may lead to inaccurate, and possibly, nonconservative estimates of reactivity. A significant concentration ({approximately}2000 ppm) of soluble boron is typically (but not necessarily required to be) present in PWR SFPs, of which only a portion ({le} 500 ppm) may be credited in safety analyses. Thus, a large subcritical margin currently exists that more than accounts for errors or uncertainties associated with the use of

  20. Key challenges and recent progress in batteries, fuel cells, and hydrogen storage for clean energy systems

    NASA Astrophysics Data System (ADS)

    Chalk, Steven G.; Miller, James F.

    Reducing or eliminating the dependency on petroleum of transportation systems is a major element of US energy research activities. Batteries are a key enabling technology for the development of clean, fuel-efficient vehicles and are key to making today's hybrid electric vehicles a success. Fuel cells are the key enabling technology for a future hydrogen economy and have the potential to revolutionize the way we power our nations, offering cleaner, more efficient alternatives to today's technology. Additionally fuel cells are significantly more energy efficient than combustion-based power generation technologies. Fuel cells are projected to have energy efficiency twice that of internal combustion engines. However before fuel cells can realize their potential, significant challenges remain. The two most important are cost and durability for both automotive and stationary applications. Recent electrocatalyst developments have shown that Pt alloy catalysts have increased activity and greater durability than Pt catalysts. The durability of conventional fluorocarbon membranes is improving, and hydrocarbon-based membranes have also shown promise of equaling the performance of fluorocarbon membranes at lower cost. Recent announcements have also provided indications that fuel cells can start from freezing conditions without significant deterioration. Hydrogen storage systems for vehicles are inadequate to meet customer driving range expectations (>300 miles or 500 km) without intrusion into vehicle cargo or passenger space. The United States Department of Energy has established three centers of Excellence for hydrogen storage materials development. The centers are focused on complex metal hydrides that can be regenerated onboard a vehicle, chemical hydrides that require off-board reprocessing, and carbon-based storage materials. Recent developments have shown progress toward the 2010 DOE targets. In addition DOE has established an independent storage material testing center

  1. Hydrogen storage systems based on magnesium hydride: from laboratory tests to fuel cell integration

    NASA Astrophysics Data System (ADS)

    de Rango, P.; Marty, P.; Fruchart, D.

    2016-02-01

    The paper reviews the state of the art of hydrogen storage systems based on magnesium hydride, emphasizing the role of thermal management, whose effectiveness depends on the effective thermal conductivity of the hydride, but also depends of other limiting factors such as wall contact resistance and convective exchanges with the heat transfer fluid. For daily cycles, the use of phase change material to store the heat of reaction appears to be the most effective solution. The integration with fuel cells (1 kWe proton exchange membrane fuel cell and solid oxide fuel cell) highlights the dynamic behaviour of these systems, which is related to the thermodynamic properties of MgH2. This allows for "self-adaptive" systems that do not require control of the hydrogen flow rate at the inlet of the fuel cell.

  2. A COMPARISON OF CHALLENGES ASSOCIATED WITH SLUDGE REMOVAL & TREATMENT & DISPOSAL AT SEVERAL SPENT FUEL STORAGE LOCATIONS

    SciTech Connect

    PERES, M.W.

    2007-01-09

    Challenges associated with the materials that remain in spent fuel storage pools are emerging as countries deal with issues related to storing and cleaning up nuclear fuel left over from weapons production. The K Basins at the Department of Energy's site at Hanford in southeastern Washington State are an example. Years of corrosion products and piles of discarded debris are intermingled in the bottom of these two pools that stored more 2,100 metric tons (2,300 tons) of spent fuel. Difficult, costly projects are underway to remove radioactive material from the K Basins. Similar challenges exist at other locations around the globe. This paper compares the challenges of handling and treating radioactive sludge at several locations storing spent nuclear fuel.

  3. Sampling and Analysis Plan for canister liquid and gas sampling at 105-KW fuel storage basin

    SciTech Connect

    Harris, R.A.; Green, M.A.; Makenas, B.J.; Trimble, D.J.

    1995-03-01

    This Sampling and Analysis Plan (SAP) details the sampling and analyses to be performed on fuel canisters transferred to the Weasel Pit of the 105-KW fuel storage basin. The radionuclide content of the liquid and gas in the canisters must be evaluated to support the shipment of fuel elements to the 300 Area in support of the fuel characterization studies (Abrefah, et al. 1994, Trimble 1995). The following sections provide background information and a description of the facility under investigation, discuss the existing site conditions, present the constituents of concern, outline the purpose and scope of the investigation, outline the data quality objectives (DQO), provide analytical detection limit, precision, and accuracy requirements, and address other quality assurance (QA) issues.

  4. Testing and COBRA-SFS analysis of the VSC-17 ventilated concrete, spent fuel storage cask

    SciTech Connect

    McKinnon, M.A.; Dodge, R.E.; Schmitt, R.C.

    1992-04-01

    A performance test of a Pacific Sierra Nuclear VSC-17 ventilated concrete storage cask loaded with 17 canisters of consolidated PWR spent fuel generating approximately 15 kW was conducted. The performance test included measuring the cask surface, concrete, air channel surface, and fuel temperatures, as well as cask surface gamma and neutron dose rates. Testing was performed using vacuum, nitrogen, and helium backfill environments. Pretest predictions of cask thermal performance were made using the COBRA-SFS computer code. Analysis results were within 15{degrees}C of measured peak fuel temperature. Peak fuel temperature for normal operation was 321{degrees}C. In general, the surface dose rates were less than 30 mrem/h on the side of the cask and 40 mrem/h on the top of the cask.

  5. Slurry-Based Chemical Hydrogen Storage Systems for Automotive Fuel Cell Applications

    SciTech Connect

    Brooks, Kriston P.; Semelsberger, Troy; Simmons, Kevin L.; Van Hassel, Bart A.

    2014-05-30

    In this paper, the system designs for hydrogen storage using chemical hydrogen materials in an 80 kWe fuel cell, light-duty vehicle are described. Ammonia borane and alane are used for these designs to represent the general classes of exothermic and endothermic materials. The designs are then compared to the USDRIVE/DOE developed set of system level targets for on-board storage. While most of the DOE targets are predicted to be achieved based on the modeling, the system gravimetric and volumetric densities were more challenging and became the focus of this work. The resulting system evaluation determined that the slurry is majority of the system mass. Only modest reductions in the system mass can be expected with improvements in the balance of plant components. Most of the gravimetric improvements will require developing materials with higher inherent storage capacity or by increasing the solids loading of the chemical hydrogen storage material in the slurry.

  6. Slurry-based chemical hydrogen storage systems for automotive fuel cell applications

    NASA Astrophysics Data System (ADS)

    Brooks, Kriston P.; Semelsberger, Troy A.; Simmons, Kevin L.; van Hassel, Bart

    2014-12-01

    In this paper, the system designs for hydrogen storage using chemical hydrogen materials in an 80-kWe fuel cell, light-duty vehicle are described. Ammonia borane and alane are used for these designs to represent the general classes of exothermic and endothermic materials. The designs are then compared to the USDRIVE/DOE-developed set of system-level targets for onboard storage. While most DOE targets are predicted to be achieved based on the modeling, the system gravimetric and volumetric densities were more challenging and became the focus of this work. The resulting system evaluation determined that the slurry accounts for the majority of the system mass. Only modest reductions in the system mass can be expected with improvements in the balance-of-plant components. Most of the gravimetric improvements will require developing materials with higher inherent storage capacity or by increasing the solids loading of the chemical hydrogen storage material in the slurry.

  7. Denitrification and hydrologic transient storage in a glacial meltwater stream, McMurdo Dry Valleys, Antarctica

    USGS Publications Warehouse

    Gooseff, M.N.; McKnight, Diane M.; Runkel, R.L.; Duff, J.H.

    2004-01-01

    In extreme environments, retention of nutrients within stream ecosystems contributes to the persistence of aquatic biota and continuity of ecosystem function. In the McMurdo Dry Valleys, Antarctica, many glacial meltwater streams flow for only 5-12 weeks a year and yet support extensive benthic microbial communities. We investigated NO3- uptake and denitrification in Green Creek by analyzing small-scale microbial mat dynamics in mesocosms and reach-scale nutrient cycling in two whole-stream NO 3- enrichment experiments. Nitrate uptake results indicated that microbial mats were nitrogen (N)-limited, with NO 3- uptake rates as high as 16 nmol N cm-2 h-1. Denitrification potentials associated with microbial mats were also as high as 16 nmol N cm-2 h-1. During two whole-stream NO3--enrichment experiments, a simultaneous pulse of NO2- was observed in the stream water. The one-dimensional solute transport model with inflow and storage was modified to simulate two storage zones: one to account for short time scale hydrologic exchange of stream water into and out of the benthic microbial mat, the other to account for longer time scale hydrologic exchange with the hyporheic zone. Simulations indicate that injected NO3- was removed both in the microbial mat and in the hyporheic zone and that as much as 20% of the NO3- that entered the microbial mat and hyporheic zone was transformed to NO2- by dissimilatory reduction. Because of the rapid hydrologic exchange in microbial mats, it is likely that denitrification is limited either by biotic assimilation, reductase limitation, or transport limitation (reduced NO2- is transported away from reducing microbes).

  8. Degradation of zopiclone during storage of spiked and authentic whole blood and matching dried blood spots.

    PubMed

    Jantos, Ricarda; Vermeeren, Annemiek; Sabljic, Danica; Ramaekers, Johannes G; Skopp, Gisela

    2013-01-01

    Z-drugs such as zopiclone are increasingly involved in forensic cases. Its degradation occurs in solvents and biological fluids. It is assumed that hydrolysis largely accounts for the breakdown of zopiclone in aqueous media. Therefore, a stability study in blood at different storage conditions (-20, 4, 20, and 40°C) was performed to establish changes of the drug's concentration with time, also including its degradation product 2-amino-5-chloropyridine (ACP). As removal of the aqueous phase may stabilize molecules that are prone to hydrolysis, it was assessed whether the use of dried blood spots (DBS) may be an alternative for storing and analyzing zopiclone and ACP. Spiked and authentic blood samples and corresponding DBS were analyzed using fully validated LC-MS/MS assays. There was agreement between the measurement of zopiclone from either blood or matching DBS in freshly prepared samples. Results showed that zopiclone was unstable in blood at all storage temperatures except at -20°C. Stability of zopiclone in spiked and authentic blood was increased in DBS compared to matching blood samples stored at the same condition. About 85 % of the initial concentration of zopiclone was still intact in DBS on day 8 at 20°C. ACP was formed from zopiclone in equimolar amounts in both media. Therefore, determination of both zopiclone and ACP may be helpful to estimate the initial concentration in both media. Pre-analytical conditions have a major impact on the recovery of zopiclone from blood. With respect to its known advantages, DBS can be recommended as a valuable alternative for the determination of zopiclone from blood.

  9. Environmental safety aspects of the new spent nuclear fuel management and storage system at Ignalina NPP

    SciTech Connect

    Poskas, P.; Ragaisis, V.; Adomaitis, J. E.

    2007-07-01

    In the framework of the preparation for the decommissioning of the Ignalina Nuclear Power Plant (INPP) a new Interim Spent Nuclear Fuel Storage Facility (ISFSF) will be built in the existing sanitary protection zone (SPZ) of INPP. In addition to the ISFSF, the new spent nuclear fuel management activity will include all necessary spent nuclear fuel retrieval and packaging operations at the Reactor Units, transfer of storage casks to the ISFSF, and other activities appropriate to the chosen design solution and required for the safe removal of the existing spent nuclear fuel from storage pools and insertion into the new ISFSF. The Republic of Lithuania regulations require that the average annual dose to the critical group members of population due to operation of nuclear facility shall not exceed dose constraint. If several nuclear facilities are located in the same SPZ, the same dose constraint shall envelope radiological impacts from all operating and planned nuclear facilities. The paper discusses radiological safety assessment aspects as relevant for the new nuclear activity to be implemented in the SPZ of INPP considering specificity of Lithuanian regulatory requirements. The safety assessment methodology aspects, results and conclusions as concern public exposure are outlined and discussed. (authors)

  10. Advanced chemical hydride-based hydrogen generation/storage system for fuel cell vehicles

    SciTech Connect

    Breault, R.W.; Rolfe, J.

    1998-08-01

    Because of the inherent advantages of high efficiency, environmental acceptability, and high modularity, fuel cells are potentially attractive power supplies. Worldwide concerns over clean environments have revitalized research efforts on developing fuel cell vehicles (FCV). As a result of intensive research efforts, most of the subsystem technology for FCV`s are currently well established. These include: high power density PEM fuel cells, control systems, thermal management technology, and secondary power sources for hybrid operation. For mobile applications, however, supply of hydrogen or fuel for fuel cell operation poses a significant logistic problem. To supply high purity hydrogen for FCV operation, Thermo Power`s Advanced Technology Group is developing an advanced hydrogen storage technology. In this approach, a metal hydride/organic slurry is used as the hydrogen carrier and storage media. At the point of use, high purity hydrogen will be produced by reacting the metal hydride/organic slurry with water. In addition, Thermo Power has conceived the paths for recovery and regeneration of the spent hydride (practically metal hydroxide). The fluid-like nature of the spent hydride/organic slurry will provide a unique opportunity for pumping, transporting, and storing these materials. The final product of the program will be a user-friendly and relatively high energy storage density hydrogen supply system for fuel cell operation. In addition, the spent hydride can relatively easily be collected at the pumping station and regenerated utilizing renewable sources, such as biomass, natural, or coal, at the central processing plants. Therefore, the entire process will be economically favorable and environmentally friendly.

  11. Corrosion Surveillance for Research Reactor Spent Nuclear Fuel in Wet Basin Storage

    SciTech Connect

    Howell, J.P.

    1998-10-16

    Foreign and domestic test and research reactor fuel is currently being shipped from locations over the world for storage in water filled basins at the Savannah River Site (SRS). The fuel was provided to many of the foreign countries as a part of the "Atoms for Peace" program in the early 1950's. In support of the wet storage of this fuel at the research reactor sites and at SRS, corrosion surveillance programs have been initiated. The International Atomic Energy Agency (IAEA) established a Coordinated Research Program (CRP) in 1996 on "Corrosion of Research Reactor Aluminum-Clad Spent Fuel in Water" and scientists from ten countries worldwide were invited to participate. This paper presents a detailed discussion of the IAEA sponsored CRP and provides the updated results from corrosion surveillance activities at SRS. In May 1998, a number of news articles around the world reported stories that microbiologically influenced corrosion (MIC) was active on the aluminum-clad spent fuel stored in the RBOF basin at SRS. This assessment was found to be in error with details presented in this paper. A biofilm was found on aluminum coupons, but resulted in no corrosion. Cracks seen on the surface were not caused by corrosion, but by stresses from the volume expansion of the oxide formed during pre-conditioning autoclaving. There has been no pitting caused by MIC or any other corrosion mechanism seen in the RBOF basin since initiation of the SRS Corrosion Surveillance Program in 1993.

  12. Issues relating to spent nuclear fuel storage on the Oak Ridge Reservation

    SciTech Connect

    Klein, J.A.; Turner, D.W.

    1994-12-31

    Currently, about 2,800 metric tons of spent nuclear fuel (SNF) is stored in the US, 1,000 kg of SNF (or about 0.03% of the nation`s total) are stored at the US Department of Energy (DOE) complex in Oak Ridge, Tennessee. However small the total quantity of material stored at Oak Ridge, some of the material is quite singular in character and, thus, poses unique management concerns. The various types of SNF stored at Oak Ridge will be discussed including: (1) High-Flux Isotope Reactor (HFIR) and future Advanced Neutron Source (ANS) fuels; (2) Material Testing Reactor (MTR) fuels, including Bulk Shielding Reactor (BSR) and Oak Ridge Research Reactor (ORR) fuels; (3) Molten Salt Reactor Experiment (MSRE) fuel; (4) Homogeneous Reactor Experiment (HRE) fuel; (5) Miscellaneous SNF stored in Oak Ridge National Laboratory`s (ORNL`s) Solid Waste Storage Areas (SWSAs); (6) SNF stored in the Y-12 Plant 9720-5 Warehouse including Health. Physics Reactor (HPRR), Space Nuclear Auxiliary Power (SNAP-) 10A, and DOE Demonstration Reactor fuels.

  13. A fuel cell energy storage system concept for the Space Station Freedom Extravehicular Mobility Unit

    NASA Astrophysics Data System (ADS)

    Adlhart, Otto J.; Rosso, Matthew J., Jr.; Marmolejo, Jose

    1989-03-01

    An update is given on work to design and build a Fuel Cell Energy Storage System (FCESS) bench-tested unit for the Space Station Freedom Extravehicular Mobility Unit (EMU). Fueled by oxygen and hydride-stored hydrogen, the FCESS is being considered as an alternative to the EMU zinc-silver oxide battery. Superior cycle life and quick recharge are the main attributes of FCESS. The design and performance of a nonventing, 28 V, 34 Ahr system with 7 amp rating are discussed.

  14. Alkaline water electrolysis technology for Space Station regenerative fuel cell energy storage

    NASA Technical Reports Server (NTRS)

    Schubert, F. H.; Hoberecht, M. A.; Le, M.

    1986-01-01

    The regenerative fuel cell system (RFCS), designed for application to the Space Station energy storage system, is based on state-of-the-art alkaline electrolyte technology and incorporates a dedicated fuel cell system (FCS) and water electrolysis subsystem (WES). In the present study, emphasis is placed on the WES portion of the RFCS. To ensure RFCS availability for the Space Station, the RFCS Space Station Prototype design was undertaken which included a 46-cell 0.93 cu m static feed water electrolysis module and three integrated mechanical components.

  15. A fuel cell energy storage system concept for the Space Station Freedom Extravehicular Mobility Unit

    NASA Technical Reports Server (NTRS)

    Adlhart, Otto J.; Rosso, Matthew J., Jr.; Marmolejo, Jose

    1989-01-01

    An update is given on work to design and build a Fuel Cell Energy Storage System (FCESS) bench-tested unit for the Space Station Freedom Extravehicular Mobility Unit (EMU). Fueled by oxygen and hydride-stored hydrogen, the FCESS is being considered as an alternative to the EMU zinc-silver oxide battery. Superior cycle life and quick recharge are the main attributes of FCESS. The design and performance of a nonventing, 28 V, 34 Ahr system with 7 amp rating are discussed.

  16. Container for reprocessing and permanent storage of spent nuclear fuel assemblies

    DOEpatents

    Forsberg, Charles W.

    1992-01-01

    A single canister process container for reprocessing and permanent storage of spent nuclear fuel assemblies comprising zirconium-based cladding and fuel, which process container comprises a collapsible container, having side walls that are made of a high temperature alloy and an array of collapsible support means wherein the container is capable of withstanding temperature necessary to oxidize the zirconium-based cladding and having sufficient ductility to maintain integrity when collapsed under pressure. The support means is also capable of maintaining their integrity at temperature necessary to oxide the zirconium-based cladding. The process container also has means to introduce and remove fluids to and from the container.

  17. Acoustic emission detection with fiber optical sensors for dry cask storage health monitoring

    NASA Astrophysics Data System (ADS)

    Lin, Bin; Bao, Jingjing; Yu, Lingyu; Giurgiutiu, Victor

    2016-04-01

    The increasing number, size, and complexity of nuclear facilities deployed worldwide are increasing the need to maintain readiness and develop innovative sensing materials to monitor important to safety structures (ITS). In the past two decades, an extensive sensor technology development has been used for structural health monitoring (SHM). Technologies for the diagnosis and prognosis of a nuclear system, such as dry cask storage system (DCSS), can improve verification of the health of the structure that can eventually reduce the likelihood of inadvertently failure of a component. Fiber optical sensors have emerged as one of the major SHM technologies developed particularly for temperature and strain measurements. This paper presents the development of optical equipment that is suitable for ultrasonic guided wave detection for active SHM in the MHz range. An experimental study of using fiber Bragg grating (FBG) as acoustic emission (AE) sensors was performed on steel blocks. FBG have the advantage of being durable, lightweight, and easily embeddable into composite structures as well as being immune to electromagnetic interference and optically multiplexed. The temperature effect on the FBG sensors was also studied. A multi-channel FBG system was developed and compared with piezoelectric based AE system. The paper ends with conclusions and suggestions for further work.

  18. Determination of Uranium Metal Concentration in Irradiated Fuel Storage Basin Sludge Using Selective Dissolution

    SciTech Connect

    Delegard, Calvin H.; Sinkov, Sergey I.; Chenault, Jeffrey W.; Schmidt, Andrew J.; Welsh, Terri L.; Pool, Karl N.

    2014-03-01

    Uranium metal corroding in water-saturated sludges now held in the US Department of Energy Hanford Site K West irradiated fuel storage basin can create hazardous hydrogen atmospheres during handling, immobilization, or subsequent transport and storage. Knowledge of uranium metal concentration in sludge thus is essential to safe sludge management and process design, requiring an expeditious routine analytical method to detect uranium metal concentrations as low as 0.03 wt% in sludge even in the presence of 30 wt% or higher total uranium concentrations.

  19. Inulin sugar glasses preserve the structural integrity and biological activity of influenza virosomes during freeze-drying and storage.

    PubMed

    de Jonge, Jørgen; Amorij, Jean-Pierre; Hinrichs, Wouter L J; Wilschut, Jan; Huckriede, Anke; Frijlink, Henderik W

    2007-09-01

    Influenza virosomes are reconstituted influenza virus envelopes that may be used as vaccines or as carrier systems for cellular delivery of therapeutic molecules. Here we present a procedure to generate influenza virosomes as a stable dry-powder formulation by freeze-drying (lyophilization) using an amorphous inulin matrix as a stabilizer. In the presence of inulin the structural integrity and fusogenic activity of virosomes were fully preserved during freeze-drying. For example, the immunological properties of the virosomes, i.e. the HA potency in vitro and the immunogenic potential in vivo, were maintained during lyophilization in the presence of inulin. In addition, compared to virosomes dispersed in buffer, inulin-formulated virosomes showed substantially prolonged preservation of the HA potency upon storage. Also the capacity of virosomes to mediate cellular delivery of macromolecules was maintained during lyophilization in the presence of inulin and upon subsequent storage. Specifically, when dispersed in buffer, virosomes with encapsulated plasmid DNA lost their transfection activity completely within 6 weeks, whereas their transfection activity was fully preserved for at least 12 weeks after incorporation in an inulin matrix. Thus, in the presence of inulin as a stabilizing agent, the shelf-life of influenza virosomes with and without encapsulated macromolecules was considerably prolonged. Formulation of influenza virosomes as a dry-powder is advantageous for storage and transport and offers the possibility to develop needle-free dosage forms, e.g. for oral, nasal, pulmonal, or dermal delivery.

  20. Characterization of physical and viscoelastic properties of polymer films for coating applications under different temperature of drying and storage.

    PubMed

    Perfetti, G; Jansen, K M B; Wildeboer, W J; van Hee, P; Meesters, G M H

    2010-01-15

    The increasing tendency to enhance consumer products with added functionality is leading to ever more complex products. Nowadays more and more particulate products are coated to give the product specific functionalities. An appropriate approach is needed to be able to satisfy customer's requirements. In this work, three reference well-known coating agents, namely two grades of hydroxypropyl methylcellulose (HPMC) and one polyvinyl alcohol (PVA) were selected and investigated. Aqueous solutions of such polymers were obtained and viscosity and shear stress were measured function of shear rate, temperature and polymer concentration. The viscosities of the solutions appear to be mainly shear rate independent, they clearly show Newtonian behaviour. Drying and storage conditions influence on morphology and structure of the cast films were evaluated using scanning electron microscope (SEM). Dynamic mechanical thermal analysis (DMTA) experiments were carried out on HPMC and PVA cast films to assess the viscoelastic properties over wide temperature-frequency range. The time-temperature superposition principle was used to determine the shift factor, aT, and to compose a master curve. Magnitudes and profiles of storage modulus, E', loss modulus, E'', and tan delta master curves are discussed with relation to drying and storage conditions. No impact of drying temperature on the polymer properties was observed whereas the effect of storage temperature resulted to be relevant in terms of shifts in glass transition temperature and, only partially, changes in the magnitudes of E' and E''.