Sample records for fuel efficiency increase

  1. Increased Automobile Fuel Efficiency and Synthetic Fuels: Alternatives for Reducing Oil Imports

    DOT National Transportation Integrated Search

    1982-09-01

    This report assesses and compares increased automobile fuel efficiency and synthetic fuels production with respect to their potential to reduce conventional oil consumption, and their costs and impacts. Conservation and fuel switching as a means of r...

  2. Thermal protection performance of opposing jet generating with solid fuel

    NASA Astrophysics Data System (ADS)

    Shen, Binxian; Liu, Weiqiang

    2018-03-01

    A light and small gas supply device, which uses fuel gas generating with solid fuel as coolant gas, is introduced for opposing jet thermal protection in hypersonic vehicles. A numerical study on heat flux reduction in hypersonic flow with opposing jet is conducted to investigate the cooling efficiency of fuel gas. Flow field and cooling efficiency at different jet temperatures, as well as the effect of fuel gas, are determined. Detailed results show that shock stand-off distance changes with an increase in jet pressure ratio and remains constant with an increase in jet temperature. Cooling efficiency weakens with an increase in jet temperature and can be strengthened by enhancing jet pressure. Lastly, a remarkable heat flux reduction is observed with fuel gas injection with respect to no fuel gas injection when jet temperature reaches 900 K, thereby proving the positive cooling efficiency of fuel gas.

  3. The ways of SOFC systems efficiency increasing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demin, A.K.; Timofeyeva, N.

    1996-04-01

    The efficiency of solid oxide fuel cells (SOFCs) is described. This paper considers methods to lift the fuel utilization and/or the average cell voltage with the goal of increasing the cell efficiency by improved cell designs.

  4. Mixing enhancement in a scramjet combustor using fuel jet injection swirl

    NASA Astrophysics Data System (ADS)

    Flesberg, Sonja M.

    The scramjet engine has proven to be a viable means of powering a hypersonic vehicle, especially after successful flights of the X-51 WaveRider and various Hy-SHOT test vehicles. The major challenge associated with operating a scramjet engine is the short residence time of the fuel and oxidizer in the combustor. The fuel and oxidizer have only milliseconds to mix, ignite and combust in the combustion chamber. Combustion cannot occur until the fuel and oxidizer are mixed on a molecular level. Therefore the improvement of mixing is of utmost interest since this can increase combustion efficiency. This study investigated mixing enhancement of fuel and oxidizer within the combustion chamber of a scramjet by introducing swirl to the fuel jet. The investigation was accomplished with numerical simulations using STAR-CCM+ computational fluid dynamic software. The geometry of the University of Virginia Supersonic Combustion Facility was used to model the isolator, combustor and nozzle of a scramjet engine for simulation purposes. Experimental data from previous research at the facility was used to verify the simulation model before investigating the effect of fuel jet swirl on mixing. The model used coaxial fuel jet with a swirling annular jet. Single coaxial fuel jet and dual coaxial fuel jet configurations were simulated for the investigation. The coaxial fuel jets were modelled with a swirling annular jet and non-swirling core jet. Numerical analysis showed that fuel jet swirl not only increased mixing and entrainment of the fuel with the oxidizer but the mixing occurred further upstream than without fuel jet swirl. The burning efficiency was calculated for the all the configurations. An increase in burning efficiency indicated an increase in the mixing of H2 with O2. In the case of the single fuel jet models, the maximum burning efficiency increase due to fuel injection jet swirl was 23.3%. The research also investigated the possibility that interaction between two swirling jets would produce increased mixing and to study how the distance between the two fuel injector exits would affect mixing. Three swirl patterns were investigated: 1) the first swirl pattern as viewed by an observer looking downstream had the right fuel annular jet swirling counter clockwise and the left fuel annular jet swirling clockwise, 2) the second swirl pattern as viewed by an observer looking downstream had the right fuel jet swirling clockwise and the left fuel jet swirling counter clockwise, 3) the third swirl pattern as viewed by an observer looking downstream had both the right and left fuel jet swirling in the same clockwise direction. Each one of the swirl patterns were simulated with the distances between the center points of the fuel jets modelled 3, 4, and 5 times the fuel injector radius. The swirl pattern that produced the greatest increase in burning efficiency differed according to the fuel injector spacing. The maximum increase in burning efficiency compared to the corresponding non-swirling two jet baseline case was 24.6% and was produced by the first swirl pattern with the distance between the center points of the fuel jets being 5 times the fuel injector radius. The burning efficiency for the single jet non-swirling baseline case and the first swirl pattern with the distance between the center points of the fuel jets being 5 times the fuel injector radius was 0.70 and 0.90 respectively indicating a 29% increase due to dual fuel injection swirl.

  5. Aircraft Geared Architecture Reduces Fuel Cost and Noise

    NASA Technical Reports Server (NTRS)

    2015-01-01

    In an effort to increase fuel efficiency and reduce noise in commercial airplanes, NASA aeronautics teamed up with East Hartford, Connecticut-based Pratt & Whitney through a Space Act Agreement to help the company increase the efficiency of its turbofan engine. The company's new PurePower line of engines is 15 percent more fuel-efficient and up to 75 percent quieter than its competitors.

  6. Essays in energy, environment and technological change

    NASA Astrophysics Data System (ADS)

    Zhou, Yichen Christy

    This dissertation studies technological change in the context of energy and environmental economics. Technology plays a key role in reducing greenhouse gas emissions from the transportation sector. Chapter 1 estimates a structural model of the car industry that allows for endogenous product characteristics to investigate how gasoline taxes, R&D subsidies and competition affect fuel efficiency and vehicle prices in the medium-run, both through car-makers' decisions to adopt technologies and through their investments in knowledge capital. I use technology adoption and automotive patents data for 1986-2006 to estimate this model. I show that 92% of fuel efficiency improvements between 1986 and 2006 were driven by technology adoption, while the role of knowledge capital is largely to reduce the marginal production costs of fuel-efficient cars. A counterfactual predicts that an additional 1/gallon gasoline tax in 2006 would have increased the technology adoption rate, and raised average fuel efficiency by 0.47 miles/gallon, twice the annual fuel efficiency improvement in 2003-2006. An R&D subsidy that would reduce the marginal cost of knowledge capital by 25% in 2006 would have raised investment in knowledge capital. This subsidy would have raised fuel efficiency only by 0.06 miles/gallon in 2006, but would have increased variable profits by 2.3 billion over all firms that year. Passenger vehicle fuel economy standards in the United States will require substantial improvements in new vehicle fuel economy over the next decade. Economic theory suggests that vehicle manufacturers adopt greater fuel-saving technologies for vehicles with larger market size. Chapter 2 documents a strong connection between market size, measured by sales, and technology adoption. Using variation consumer demographics and purchasing pattern to account for the endogeneity of market size, we find that a 10 percent increase in market size raises vehicle fuel efficiency by 0.3 percent, as compared to a mean improvement of 1.4 percent per year over 1997-2013. Historically, fuel price and demographic-driven market size changes have had large effects on technology adoption. Furthermore, fuel taxes would induce firms to adopt fuel-saving technologies on their most efficient cars, thereby polarizing the fuel efficiency distribution of the new vehicle fleet.

  7. Technological growth of fuel efficiency in european automobile market 1975–2015

    DOE PAGES

    Hu, Kejia; Chen, Yuche

    2016-08-29

    This paper looks at the technological growth of new car fleet fuel efficiency in the European Union between 1975 and 2015. According to the analysis results, from1975 to 2006 the fuel efficiency technology improvements were largely offset by vehicles' increased weight, engine size, and consumer amenities such as acceleration capacity. After 2006, downsizing in weight and engine capacity was observed in new car fleet, while fuel consumption decreased by 32% between 2006 and 2015. We adopt a statistical method and find that from 1975 to 2015, a 1% increase in weight would result in 0.3 to 0.5% increments in fuelmore » consumption per 100 km, and a 1% reduction in 0-100 km/h acceleration time would increase fuel consumption by about 0.3%. Impacts of other attributes on fuel consumption are also assessed. To meet the European Union's 2021 fuel consumption target, downsizing of cars, as well as at least maintaining fuel efficiency technology growth trend observed between 2005 and 2015, are needed. Lastly, government policies on controlling improvement in acceleration performance or promoting alternative fuel vehicles are also important to achieve European Union 2021 target.« less

  8. Technological growth of fuel efficiency in european automobile market 1975–2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Kejia; Chen, Yuche

    This paper looks at the technological growth of new car fleet fuel efficiency in the European Union between 1975 and 2015. According to the analysis results, from1975 to 2006 the fuel efficiency technology improvements were largely offset by vehicles' increased weight, engine size, and consumer amenities such as acceleration capacity. After 2006, downsizing in weight and engine capacity was observed in new car fleet, while fuel consumption decreased by 32% between 2006 and 2015. We adopt a statistical method and find that from 1975 to 2015, a 1% increase in weight would result in 0.3 to 0.5% increments in fuelmore » consumption per 100 km, and a 1% reduction in 0-100 km/h acceleration time would increase fuel consumption by about 0.3%. Impacts of other attributes on fuel consumption are also assessed. To meet the European Union's 2021 fuel consumption target, downsizing of cars, as well as at least maintaining fuel efficiency technology growth trend observed between 2005 and 2015, are needed. Lastly, government policies on controlling improvement in acceleration performance or promoting alternative fuel vehicles are also important to achieve European Union 2021 target.« less

  9. The Effect of Compression Ratio, Fuel Octane Rating, and Ethanol Content on Spark-Ignition Engine Efficiency.

    PubMed

    Leone, Thomas G; Anderson, James E; Davis, Richard S; Iqbal, Asim; Reese, Ronald A; Shelby, Michael H; Studzinski, William M

    2015-09-15

    Light-duty vehicles (LDVs) in the United States and elsewhere are required to meet increasingly challenging regulations on fuel economy and greenhouse gas (GHG) emissions as well as criteria pollutant emissions. New vehicle trends to improve efficiency include higher compression ratio, downsizing, turbocharging, downspeeding, and hybridization, each involving greater operation of spark-ignited (SI) engines under higher-load, knock-limited conditions. Higher octane ratings for regular-grade gasoline (with greater knock resistance) are an enabler for these technologies. This literature review discusses both fuel and engine factors affecting knock resistance and their contribution to higher engine efficiency and lower tailpipe CO2 emissions. Increasing compression ratios for future SI engines would be the primary response to a significant increase in fuel octane ratings. Existing LDVs would see more advanced spark timing and more efficient combustion phasing. Higher ethanol content is one available option for increasing the octane ratings of gasoline and would provide additional engine efficiency benefits for part and full load operation. An empirical calculation method is provided that allows estimation of expected vehicle efficiency, volumetric fuel economy, and CO2 emission benefits for future LDVs through higher compression ratios for different assumptions on fuel properties and engine types. Accurate "tank-to-wheel" estimates of this type are necessary for "well-to-wheel" analyses of increased gasoline octane ratings in the context of light duty vehicle transportation.

  10. Thermodynamic analysis of engineering solutions aimed at raising the efficiency of integrated gasification combined cycle

    NASA Astrophysics Data System (ADS)

    Gordeev, S. I.; Bogatova, T. F.; Ryzhkov, A. F.

    2017-11-01

    Raising the efficiency and environmental friendliness of electric power generation from coal is the aim of numerous research groups today. The traditional approach based on the steam power cycle has reached its efficiency limit, prompted by materials development and maneuverability performance. The rival approach based on the combined cycle is also drawing nearer to its efficiency limit. However, there is a reserve for efficiency increase of the integrated gasification combined cycle, which has the energy efficiency at the level of modern steam-turbine power units. The limit of increase in efficiency is the efficiency of NGCC. One of the main problems of the IGCC is higher costs of receiving and preparing fuel gas for GTU. It would be reasonable to decrease the necessary amount of fuel gas in the power unit to minimize the costs. The effect can be reached by raising of the heat value of fuel gas, its heat content and the heat content of cycle air. On the example of the process flowsheet of the IGCC with a power of 500 MW, running on Kuznetsk bituminous coal, by means of software Thermoflex, the influence of the developed technical solutions on the efficiency of the power plant is considered. It is received that rise in steam-air blast temperature to 900°C leads to an increase in conversion efficiency up to 84.2%. An increase in temperature levels of fuel gas clean-up to 900°C leads to an increase in the IGCC efficiency gross/net by 3.42%. Cycle air heating reduces the need for fuel gas by 40% and raises the IGCC efficiency gross/net by 0.85-1.22%. The offered solutions for IGCC allow to exceed net efficiency of analogous plants by 1.8-2.3%.

  11. A parametric study of the microwave plasma-assisted combustion of premixed ethylene/air mixtures

    NASA Astrophysics Data System (ADS)

    Fuh, Che A.; Wu, Wei; Wang, Chuji

    2017-11-01

    A parametric study of microwave argon plasma assisted combustion (PAC) of premixed ethylene/air mixtures was carried out using visual imaging, optical emission spectroscopy and cavity ringdown spectroscopy as diagnostic tools. The parameters investigated included the plasma feed gas flow rate, the plasma power, the fuel equivalence ratio and the total flow rate of the fuel/air mixture. The combustion enhancement effects were characterized by the minimum ignition power, the flame length and the fuel efficiency of the combustor. It was found that: (1) increasing the plasma feed gas flow rate resulted in a decrease in the flame length, an increase in the minimum ignition power for near stoichiometric fuel equivalence ratios and a corresponding decrease in the minimum ignition power for ultra-lean and rich fuel equivalence ratios; (2) at a constant plasma power, increasing the total flow rate of the ethylene/air mixture from 1.0 slm to 1.5 slm resulted in an increase in the flame length and a reduction in the fuel efficiency; (3) increasing the plasma power resulted in a slight increase in flame length as well as improved fuel efficiency with fewer C2(d) and CH(A) radicals present downstream of the flame; (4) increasing the fuel equivalence ratio caused an increase in flame length but at a reduced fuel efficiency when plasma power was kept constant; and (5) the ground state OH(X) number density was on the order of 1015 molecules/cm3 and was observed to drop downstream along the propagation axis of the flame at all parameters investigated. Results suggest that each of the parameters independently influences the PAC processes.

  12. Effect of ethanol-gasoline blends on small engine generator energy efficiency and exhaust emission.

    PubMed

    Lin, Wen-Yinn; Chang, Yuan-Yi; Hsieh, You-Ru

    2010-02-01

    This study was focused on fuel energy efficiency and pollution analysis of different ratios of ethanol-gasoline blended fuels (E0, E3, E6, and E9) under different loadings. In this research, the experimental system consisted of a small engine generator, a particulate matter measurement system, and an exhaust gas analyzer system. Different fuels, unleaded gasoline, and ethanol-gasoline blends (E0, E3, E6, and E9) were used to study their effects on the exhaust gas emission and were expressed as thermal efficiency of the small engine generator energy efficiency. The results suggested that particle number concentration increased as the engine loading increased; however, it decreased as the ethanol content in the blend increased. While using E6 as fuel, the carbon monoxide (CO) concentration was less than other fuels (E0, E3, and E9) for each engine loading. The average of CO concentration reduction by using E3, E6, and E9 is 42, 86, and 83%, respectively. Using an ethanol-gasoline blend led to a significant reduction in exhaust emissions by approximately 78.7, 97.5, and 89.46% of the mean average values of hydrocarbons (HCs) with E3, E6, and E9 fuels, respectively, for all engine loadings. Using an ethanol-gasoline blend led to a significant reduction in exhaust emissions by approximately 35, 86, and 77% of the mean average values of nitrogen oxides (NOx) with E3, E6, and E9 fuels, respectively, at each engine loading. The E6 fuel gave the best results of the exhaust emissions, and the E9 fuel gave the best results of the particle emissions and engine performance. The thermal efficiency of the small engine generator increased as the ethanol content in the blend increased and as the engine loading increased.

  13. Leveraging land development returns to finance transportation infrastructure improvements.

    DOT National Transportation Integrated Search

    2011-03-01

    The United States faces a crisis in transportation finance. Increasing fuel prices coupled with increasing : demand for fuel-efficient cars is driving down fuel consumption, and the associated fuel tax revenues. At : the same time, the demand for new...

  14. Fuel Efficiency Improvement in Rail Freight Transportation

    DOT National Transportation Integrated Search

    1975-12-01

    Railroad diesel fuel conservation is becoming increasingly cost-effective. The price of diesel fuel has increased almost two and one-half times since the October 1973 Embargo. The estimated value of diesel fuel, if in short supply, is over 1 dollar a...

  15. Application of sorption heat pumps for increasing of new power sources efficiency

    NASA Astrophysics Data System (ADS)

    Vasiliev, L.; Filatova, O.; Tsitovich, A.

    2010-07-01

    In the 21st century the way to increase the efficiency of new sources of energy is directly related with extended exploration of renewable energy. This modern tendency ensures the fuel economy needs to be realized with nature protection. The increasing of new power sources efficiency (cogeneration, trigeneration systems, fuel cells, photovoltaic systems) can be performed by application of solid sorption heat pumps, regrigerators, heat and cold accumulators, heat transformers, natural gas and hydrogen storage systems and efficient heat exchangers.

  16. A Fuel-Efficient Conflict Resolution Maneuver for Separation Assurance

    NASA Technical Reports Server (NTRS)

    Bowe, Aisha Ruth; Santiago, Confesor

    2012-01-01

    Automated separation assurance algorithms are envisioned to play an integral role in accommodating the forecasted increase in demand of the National Airspace System. Developing a robust, reliable, air traffic management system involves safely increasing efficiency and throughput while considering the potential impact on users. This experiment seeks to evaluate the benefit of augmenting a conflict detection and resolution algorithm to consider a fuel efficient, Zero-Delay Direct-To maneuver, when resolving a given conflict based on either minimum fuel burn or minimum delay. A total of twelve conditions were tested in a fast-time simulation conducted in three airspace regions with mixed aircraft types and light weather. Results show that inclusion of this maneuver has no appreciable effect on the ability of the algorithm to safely detect and resolve conflicts. The results further suggest that enabling the Zero-Delay Direct-To maneuver significantly increases the cumulative fuel burn savings when choosing resolution based on minimum fuel burn while marginally increasing the average delay per resolution.

  17. Evaluating the Environmental Performance of the U.S. Next Generation Air Transportation System

    NASA Technical Reports Server (NTRS)

    Graham, Michael; Augustine, Stephen; Ermatinger, Christopher; Difelici, John; Thompson, Terence R.; Marcolini, Michael A.; Creedon, Jeremiah F.

    2009-01-01

    The environmental impacts of several possible U.S. Next Generation Air Transportation scenarios have been quantitatively evaluated for noise, air-quality, fuel-efficiency, and CO2 impacts. Three principal findings have emerged. (1) 2025 traffic levels about 30% higher than 2006 are obtained by increasing traffic according to FAA projections while also limiting traffic at each airport using reasonable ratios of demand to capacity. NextGen operational capabilities alone enable attainment of an additional 10-15% more flights beyond that 2025 baseline level with negligible additional noise, air-quality, and fuel-efficiency impacts. (2) The addition of advanced engine and airframe technologies provides substantial additional reductions in noise and air-quality impacts, and further improves fuel efficiency. 2025 environmental goals based on projected system-wide improvement rates of about 1% per year for noise and fuel-efficiency (an air-quality goal is not yet formulated) are achieved using this new vehicle technology. (3) Overall air-transport "product", as measured by total flown distance or total payload distance, increases by about 50% relative to 2006, but total fuel consumption and CO2 production increase by only about 40% using NextGen operational capabilities. With the addition of advanced engine/airframe technologies, the increase in total fuel consumption and CO2 production can be reduced to about 30%.

  18. Fuel Treatment Effects on Water Use Efficiency in Western Pine Forests Under Fire Suppression Evaluated Using Tree Ring Carbon Isotopes

    NASA Astrophysics Data System (ADS)

    Taylor, A. H.; Belmecheri, S.; Harris, L. B.

    2016-12-01

    We identified variation on water use efficiency interpreted from carbon 13 in tree ring cellulose in dense ponderosa pines forests in Washington and Arizona. Historically, these forests burned every decade until fires were suppressed beginning in the early twentieth century. The reduction in fire caused large increases in forest density and forest biomass and potential for intense fire. Forests with hazardous fuels are common in the western United States and these types of forests are treated with mechanical thinning and mechanical thinning and burning to reduce hazardous fuels and fire intensity. At each site we extracted tree ring samples from five trees in each treatment type and a control to identify the effects of fuel treatment of concentration of carbon 13 in tree ring cellulose. Water use efficiency as measured by carbon 13 increased after fuel treatments. Treatment effects were larger for the mechanical plus burn treatment than for the mechanical treatment in each study area compared to the control stands Our results suggest that fuel treatments reduce sensitivity of tree growth to climate and increase water use efficiency. Since tree ring carbon 13 is related to plant productivity, carbon 13 in tree rings can be used as a metric of change in ecosystem function for evaluating fuel treatments.

  19. Biodiesel from lemon and lemon grass oil and its effect on engine performance and exhaust emission

    NASA Astrophysics Data System (ADS)

    Dhivagar, R.; Sundararaj, S.; Vignesh, V. R.

    2018-03-01

    In the present scenario many developing countries are depending on oil producing nations for their fuel resources. Due to demand and scarcity of the fuel, there has been a huge increase in fuel prices. The vehicular population is also continuously increasing and becoming a great menace to peoples. This paper aims to provide an alternate solution for petroleum based fuels. It suggests that biodiesel produced from lemon and lemon grass oil can be used as an alternative fuel. This work investigates the thermal performance of four stroke diesel engine using blends of biodiesel and diesel as a fuel. Performance parameters like brake thermal efficiency, mechanical efficiency and specific fuel consumption were measured at different loads for diesel and various combination of biofuel (L10, L20, and L30). The maximum brake thermal efficiency obtained is about 26.12%for L20 which is slightly higher than that of diesel (24.91%). Engine experimental results showed that exhaust emissions including CO2 and HC were reduced by 6% and 5% for L20 mixture of biodiesel whereas CO emission was as same as diesel. However, there was increase in NOxby 26% to the diesel fuel.

  20. Propellant vaporization as a criterion for rocket-engine design : experimental effect of fuel temperature on liquid-oxygen - heptane performance

    NASA Technical Reports Server (NTRS)

    Heidmann, M F

    1957-01-01

    Characteristic exhaust velocity of a 200-pound-thrust rocket engine was evaluated for fuel temperatures of -90 degrees, and 200 degrees f with a spray formed by two impinging heptane jets reacting in a highly atomized oxygen atmosphere. Tests covered a range of mixture ratios and chamber lengths. The characteristic exhaust-velocity efficiency increased 2 percent for a 290 degree f increase in fuel temperature. This increase in performance can be compared with that obtained by increasing chamber length by about 1/2 inch. The result agrees with the fuel-temperature effect predicted from an analysis based on droplet evaporation theory. Mixture ratio markedly affected characteristic exhaust velocity efficiency, but total flow rate and fuel temperature did not.

  1. Advances in fuel cell vehicle design

    NASA Astrophysics Data System (ADS)

    Bauman, Jennifer

    Factors such as global warming, dwindling fossil fuel reserves, and energy security concerns combine to indicate that a replacement for the internal combustion engine (ICE) vehicle is needed. Fuel cell vehicles have the potential to address the problems surrounding the ICE vehicle without imposing any significant restrictions on vehicle performance, driving range, or refuelling time. Though there are currently some obstacles to overcome before attaining the widespread commercialization of fuel cell vehicles, such as improvements in fuel cell and battery durability, development of a hydrogen infrastructure, and reduction of high costs, the fundamental concept of the fuel cell vehicle is strong: it is efficient, emits zero harmful emissions, and the hydrogen fuel can be produced from various renewable sources. Therefore, research on fuel cell vehicle design is imperative in order to improve vehicle performance and durability, increase efficiency, and reduce costs. This thesis makes a number of key contributions to the advancement of fuel cell vehicle design within two main research areas: powertrain design and DC/DC converters. With regards to powertrain design, this research first analyzes various powertrain topologies and energy storage system types. Then, a novel fuel cell-battery-ultracapacitor topology is presented which shows reduced mass and cost, and increased efficiency, over other promising topologies found in the literature. A detailed vehicle simulator is created in MATLAB/Simulink in order to simulate and compare the novel topology with other fuel cell vehicle powertrain options. A parametric study is performed to optimize each powertrain and general conclusions for optimal topologies, as well as component types and sizes, for fuel cell vehicles are presented. Next, an analytical method to optimize the novel battery-ultracapacitor energy storage system based on maximizing efficiency, and minimizing cost and mass, is developed. This method can be applied to any system utilizing the novel battery-ultracapacitor energy storage system and is not limited in application to only fuel cell vehicles. With regards to DC/DC converters, it is important to design efficient and light-weight converters for use in fuel cell and other electric vehicles to improve overall vehicle fuel economy. Thus, this research presents a novel soft-switching method, the capacitor-switched regenerative snubber, for the high-power DC/DC boost converters commonly used in fuel cell vehicles. This circuit is shown to increase the efficiency and reduce the overall mass of the DC/DC boost converter.

  2. EXPERIMENTAL EVALUATION OF FUEL OIL ADDITIVES FOR REDUCING EMISSIONS AND INCREASING EFFICIENCY OF BOILERS

    EPA Science Inventory

    The report gives results of an evaluation of the effectiveness of combustion-type fuel oil additives to reduce emissions and increase efficiency in a 50-bhp (500 kw) commercial oil-fired packaged boiler. Most additive evaluation runs were made during continuous firing, constant-l...

  3. Effects of ethanol on vehicle energy efficiency and implications on ethanol life-cycle greenhouse gas analysis.

    PubMed

    Yan, Xiaoyu; Inderwildi, Oliver R; King, David A; Boies, Adam M

    2013-06-04

    Bioethanol is the world's largest-produced alternative to petroleum-derived transportation fuels due to its compatibility within existing spark-ignition engines and its relatively mature production technology. Despite its success, questions remain over the greenhouse gas (GHG) implications of fuel ethanol use with many studies showing significant impacts of differences in land use, feedstock, and refinery operation. While most efforts to quantify life-cycle GHG impacts have focused on the production stage, a few recent studies have acknowledged the effect of ethanol on engine performance and incorporated these effects into the fuel life cycle. These studies have broadly asserted that vehicle efficiency increases with ethanol use to justify reducing the GHG impact of ethanol. These results seem to conflict with the general notion that ethanol decreases the fuel efficiency (or increases the fuel consumption) of vehicles due to the lower volumetric energy content of ethanol when compared to gasoline. Here we argue that due to the increased emphasis on alternative fuels with drastically differing energy densities, vehicle efficiency should be evaluated based on energy rather than volume. When done so, we show that efficiency of existing vehicles can be affected by ethanol content, but these impacts can serve to have both positive and negative effects and are highly uncertain (ranging from -15% to +24%). As a result, uncertainties in the net GHG effect of ethanol, particularly when used in a low-level blend with gasoline, are considerably larger than previously estimated (standard deviations increase by >10% and >200% when used in high and low blends, respectively). Technical options exist to improve vehicle efficiency through smarter use of ethanol though changes to the vehicle fleets and fuel infrastructure would be required. Future biofuel policies should promote synergies between the vehicle and fuel industries in order to maximize the society-wise benefits or minimize the risks of adverse impacts of ethanol.

  4. Enabling High Efficiency Ethanol Engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szybist, J.; Confer, K.

    2011-03-01

    Delphi Automotive Systems and ORNL established this CRADA to explore the potential to improve the energy efficiency of spark-ignited engines operating on ethanol-gasoline blends. By taking advantage of the fuel properties of ethanol, such as high compression ratio and high latent heat of vaporization, it is possible to increase efficiency with ethanol blends. Increasing the efficiency with ethanol-containing blends aims to remove a market barrier of reduced fuel economy with E85 fuel blends, which is currently about 30% lower than with petroleum-derived gasoline. The same or higher engine efficiency is achieved with E85, and the reduction in fuel economy ismore » due to the lower energy density of E85. By making ethanol-blends more efficient, the fuel economy gap between gasoline and E85 can be reduced. In the partnership between Delphi and ORNL, each organization brought a unique and complementary set of skills to the project. Delphi has extensive knowledge and experience in powertrain components and subsystems as well as overcoming real-world implementation barriers. ORNL has extensive knowledge and expertise in non-traditional fuels and improving engine system efficiency for the next generation of internal combustion engines. Partnering to combine these knowledge bases was essential towards making progress to reducing the fuel economy gap between gasoline and E85. ORNL and Delphi maintained strong collaboration throughout the project. Meetings were held regularly, usually on a bi-weekly basis, with additional reports, presentations, and meetings as necessary to maintain progress. Delphi provided substantial hardware support to the project by providing components for the single-cylinder engine experiments, engineering support for hardware modifications, guidance for operational strategies on engine research, and hardware support by providing a flexible multi-cylinder engine to be used for optimizing engine efficiency with ethanol-containing fuels.« less

  5. Chapter 11. Fuel Economy: The Case for Market Failure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greene, David L; German, John; Delucchi, Mark A

    2009-01-01

    The efficiency of energy using durable goods, from automobiles to home air conditioners, is not only a key determinant of economy-wide energy use but also of greenhouse gas (GHG) emissions, climate change and energy insecurity. Energy analysts have long noted that consumers appear to have high implicit discount rates for future fuel savings when choosing among energy using durable goods (Howarth and Sanstad, 1995). In modeling consumers choices of appliances, the Energy Information Administration (EIA) has used discount rates of 30 percent for heating systems, 69 percent for choice of refrigerator and up to 111 percent for choice of watermore » heater (U.S. DOE/EIA, 1996). Several explanations have been offered for this widespread phenomenon, including asymmetric information, bounded rationality and transaction costs. This chapter argues that uncertainty combined with loss aversion by consumers is sufficient to explain the failure to adopt cost effective energy efficiency improvements in the market for automotive fuel economy, although other market failures appear to be present as well. Understanding how markets for energy efficiency function is crucial to formulating effective energy policies (see Pizer, 2006). Fischer et al., (2004), for example, demonstrated that if consumers fully value the discounted present value of future fuel savings, fuel economy standards are largely redundant and produce small welfare losses. However, if consumers value only the first three years of fuel savings, then fuel economy standards can significantly increase consumer welfare. The nature of any market failure that might be present in the market for energy efficiency would also affect the relative efficacy of energy taxes versus regulatory standards (CBO, 2003). If markets function efficiently, energy taxes would generally be more efficient than regulatory standards in increasing energy efficiency and reducing energy use. If markets are decidedly inefficient, standards would likely be more effective. The chapter explores the roles of uncertainty and loss-aversion in the market for automotive fuel economy. The focus is on the determination of the technical efficiency of the vehicle rather than consumers choices among vehicles. Over the past three decades, changes in the mix of vehicles sold has played little if any role in raising the average fuel economy of new light-duty vehicles from 13 miles per gallon (mpg) in 1975 to 21 mpg today (Heavenrich, 2006). Over that same time period, average vehicle weight is up 2 percent, horsepower is up 60 percent, passenger car interior volume increased by 2 percent and the market share of light trucks grew by 31 percentage points. Historically, at least, increasing light-duty vehicle fuel economy in the United States has been a matter of manufacturers decisions to apply technology to increase the technical efficiency of cars and light trucks. Understanding how efficiently the market determines the technical fuel economy of new vehicles would seem to be critical to formulating effective policies to encourage future fuel economy improvement. The central issue is whether or not the market for fuel economy is economically efficient. Rubenstein (1998) lists the key assumptions of the rational economic decision model. The decision maker must have a clear picture of the choice problem he or she faces. He should be fully aware of the set of alternatives from which to choose and have the skill necessary to make complicated calculations needed to discover the optimal course of action. Finally, the decision maker should have the unlimited ability to calculate and be indifferent to alternatives and choice sets.« less

  6. Methanol Fuel Cell

    NASA Technical Reports Server (NTRS)

    Voecks, G. E.

    1985-01-01

    In proposed fuel-cell system, methanol converted to hydrogen in two places. External fuel processor converts only part of methanol. Remaining methanol converted in fuel cell itself, in reaction at anode. As result, size of fuel processor reduced, system efficiency increased, and cost lowered.

  7. Performance and emission characteristics of swirl-can combustors to near-stoichiometric fuel-air ratio

    NASA Technical Reports Server (NTRS)

    Diehl, L. A.; Trout, A. M.

    1976-01-01

    Emissions and performance characteristics were determined for two full annular swirl-can combustors operated to near stoichiometric fuel-air ratio. Test condition variations were as follows: combustor inlet-air temperatures, 589, 756, 839, and 894 K; reference velocities, 24 to 37 meters per second; inlet pressure, 62 newtons per square centimeter; and fuel-air ratios, 0.015 to 0.065. The combustor average exit temperature and combustor efficiency were calculated from the combustor exhaust gas composition. For fuel-air ratios greater than 0.04, the combustion efficiency decreased with increasing fuel-air ratios in a near-linear manner. Increasing the combustor inlet air temperature tended to offset this decrease. Maximum oxides of nitrogen emission indices occurred at intermediate fuel-air ratios and were dependent on combustor design. Carbon monoxide levels were extremely high and were the primary cause of poor combustion efficiency at the higher fuel-air ratios. Unburned hydrocarbons were low for all test conditions. For high fuel-air ratios SAE smoke numbers greater than 25 were produced, except at the highest inlet-air temperatures.

  8. Increasing the electric efficiency of a fuel cell system by recirculating the anodic offgas

    NASA Astrophysics Data System (ADS)

    Heinzel, A.; Roes, J.; Brandt, H.

    The University of Duisburg-Essen and the Center for Fuel Cell Technology (ZBT Duisburg GmbH) have developed a compact multi-fuel steam reformer suitable for natural gas, propane and butane. Fuel processor prototypes based on this concept were built up in the power range from 2.5 to 12.5 kW thermal hydrogen power for different applications and different industrial partners. The fuel processor concept contains all the necessary elements, a prereformer step, a primary reformer, water gas shift reactors, a steam generator, internal heat exchangers, in order to achieve an optimised heat integration and an external burner for heat supply as well as a preferential oxidation step (PrOx) as CO purification. One of the built fuel processors is designed to deliver a thermal hydrogen power output of 2.5 kW according to a PEM fuel cell stack providing about 1 kW electrical power and achieves a thermal efficiency of about 75% (LHV basis after PrOx), while the CO content of the product gas is below 20 ppm. This steam reformer has been combined with a 1 kW PEM fuel cell. Recirculating the anodic offgas results in a significant efficiency increase for the fuel processor. The gross efficiency of the combined system was already clearly above 30% during the first tests. Further improvements are currently investigated and developed at the ZBT.

  9. Water-in-diesel emulsions and related systems.

    PubMed

    Lif, Anna; Holmberg, Krister

    2006-11-16

    Water-in-diesel emulsions are fuels for regular diesel engines. The advantages of an emulsion fuel are reductions in the emissions of nitrogen oxides and particulate matters, which are both health hazardous, and reduction in fuel consumption due to better burning efficiency. An important aspect is that diesel emulsions can be used without engine modifications. This review presents the influence of water on the emissions and on the combustion efficiency. Whereas there is a decrease in emissions of nitrogen oxides and particulate matters, there is an increase in the emissions of hydrocarbons and carbon monoxide with increasing water content of the emulsion. The combustion efficiency is improved when water is emulsified with diesel. This is a consequence of the microexplosions, which facilitate atomization of the fuel. The review also covers related fuels, such as diesel-in-water-in-diesel emulsions, i.e., double emulsions, water-in-diesel microemulsions, and water-in-vegetable oil emulsions, i.e., biodiesel emulsions. A brief overview of other types of alternative fuels is also included.

  10. Heat Pipes Reduce Engine-Exhaust Emissions

    NASA Technical Reports Server (NTRS)

    Schultz, D. F.

    1986-01-01

    Increased fuel vaporization raises engine efficiency. Heat-pipe technology increased efficiency of heat transfer beyond that obtained by metallic conduction. Resulted in both improved engine operation and reduction in fuel consumption. Raw material conservation through reduced dependence on strategic materials also benefit from this type of heat-pipe technology. Applications result in improved engine performance and cleaner environment.

  11. Dimethyl ether (DME) as an alternative fuel

    NASA Astrophysics Data System (ADS)

    Semelsberger, Troy A.; Borup, Rodney L.; Greene, Howard L.

    With ever growing concerns on environmental pollution, energy security, and future oil supplies, the global community is seeking non-petroleum based alternative fuels, along with more advanced energy technologies (e.g., fuel cells) to increase the efficiency of energy use. The most promising alternative fuel will be the fuel that has the greatest impact on society. The major impact areas include well-to-wheel greenhouse gas emissions, non-petroleum feed stocks, well-to-wheel efficiencies, fuel versatility, infrastructure, availability, economics, and safety. Compared to some of the other leading alternative fuel candidates (i.e., methane, methanol, ethanol, and Fischer-Tropsch fuels), dimethyl ether appears to have the largest potential impact on society, and should be considered as the fuel of choice for eliminating the dependency on petroleum. DME can be used as a clean high-efficiency compression ignition fuel with reduced NO x, SO x, and particulate matter, it can be efficiently reformed to hydrogen at low temperatures, and does not have large issues with toxicity, production, infrastructure, and transportation as do various other fuels. The literature relevant to DME use is reviewed and summarized to demonstrate the viability of DME as an alternative fuel.

  12. Alternatives to the motor fuel tax : final report.

    DOT National Transportation Integrated Search

    2001-11-01

    The National Highway Cooperative Research Program (NCHRP) published its Report 377, Alternatives to Motor Fuel Taxes for Financing Surface Transportation Improvements, in 1995. Increased fuel efficiency and the use of alternative fuels were seen as p...

  13. Dual Spark Plugs For Stratified-Charge Rotary Engine

    NASA Technical Reports Server (NTRS)

    Abraham, John; Bracco, Frediano V.

    1996-01-01

    Fuel efficiency of stratified-charge, rotary, internal-combustion engine increased by improved design featuring dual spark plugs. Second spark plug ignites fuel on upstream side of main fuel injector; enabling faster burning and more nearly complete utilization of fuel.

  14. Alternative aircraft fuels

    NASA Technical Reports Server (NTRS)

    Longwell, J. P.; Grobman, J. S.

    1977-01-01

    The efficient utilization of fossil fuels by future jet aircraft may necessitate the broadening of current aviation turbine fuel specifications. The most significant changes in specifications would be an increased aromatics content and a higher final boiling point in order to minimize refinery energy consumption and costs. These changes would increase the freezing point and might lower the thermal stability of the fuel, and could cause increased pollutant emissions, increased combustor liner temperatures, and poorer ignition characteristics. The effects that broadened specification fuels may have on present-day jet aircraft and engine components and the technology required to use fuels with broadened specifications are discussed.

  15. Improve Your Boiler's Combustion Efficiency: Office of Industrial Technologies (OIT) Steam Energy Tips No.4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2002-03-01

    Operating your boiler with an optimum amount of excess air will minimize heat loss up the stack and improve combustion efficiency. Combustion efficiency is a measure of how effectively the heat content of a fuel is transferred into usable heat. The stack temperature and flue gas oxygen (or carbon dioxide) concentrations are primary indicators of combustion efficiency. Given complete mixing, a precise or stoichiometric amount of air is required to completely react with a given quantity of fuel. In practice, combustion conditions are never ideal, and additional or ''excess'' air must be supplied to completely burn the fuel. The correctmore » amount of excess air is determined from analyzing flue gas oxygen or carbon dioxide concentrations. Inadequate excess air results in unburned combustibles (fuel, soot, smoke, and carbon monoxide) while too much results in heat lost due to the increased flue gas flow--thus lowering the overall boiler fuel-to-steam efficiency. The table relates stack readings to boiler performance. On well-designed natural gas-fired systems, an excess air level of 10% is attainable. An often stated rule of thumb is that boiler efficiency can be increased by 1% for each 15% reduction in excess air or 40 F reduction in stack gas temperature.« less

  16. Altitude Performance Characteristics of Turbojet-engine Tail-pipe Burner with Variable-area Exhaust Nozzle Using Several Fuel Systems and Flame Holders

    NASA Technical Reports Server (NTRS)

    Johnson, Lavern A; Meyer, Carl L

    1950-01-01

    A tail-pipe burner with a variable-area exhaust nozzle was investigated. From five configurations a fuel-distribution system and a flame holder were selected. The best configuration was investigated over a range of altitudes and flight Mach numbers. For the best configuration, an increase in altitude lowered the augmented thrust ratio, exhaust-gas total temperature, and tail-pipe combustion efficiency, and raised the specific fuel consumption. An increase in flight Mach number raised the augmented thrust ratio but had no apparent effect on exhaust-gas total temperature, tail-pipe combustion efficiency, or specific fuel consumption.

  17. Experimental evaluation of oxygen-enriched air and emulsified fuels in a six-cylinder diesel engine

    NASA Astrophysics Data System (ADS)

    Sekar, R. R.; Marr, W. W.; Cole, R. L.; Marciniak, T. J.; Longman, D. E.

    1993-01-01

    The objectives of this investigation are to (1) determine the technical feasibility of using oxygen-enriched air to increase the efficiency of and reduce emissions from diesel engines, (2) examine the effects of water-emulsified fuel on the formation of nitrogen oxides in oxygen-enriched combustion, and (3) investigate the use of lower-grade fuels in high-speed diesel engines by emulsifying the fuel with water. These tests, completed on a Caterpillar model 3406B, six-cylinder engine are a scale-up from previous, single-cylinder-engine tests. The engine was tested with (1) intake-air oxygen levels up to 30%, (2) water content up to 20% of the fuel, (3) three fuel-injection timings, and (4) three fuel-flow rates (power levels). The Taguchi technique for experimental design was used to minimize the number of experimental points in the test matrix. Four separate test matrices were run to cover two different fuel-flow-rate strategies and two different fuels (No. 2 diesel and No. 6 diesel). A liquid-oxygen tank located outside the test cell supplied the oxygen for the tests. The only modification of the engine was installation of a pressure transducer in one cylinder. All tests were run at 1800 rpm, which corresponds to the synchronous speed of a 60-Hz generator. Test results show that oxygen enrichment results in power increases of 50% or more while significantly decreasing the levels of smoke and particulates emitted. The increase in power was accompanied by a small increase in thermal efficiency. Maximum engine power was limited by the test-cell dynamometer capacity and the capacity of the fuel-injection pump. Oxygen enrichment increases nitrogen-oxide emissions significantly. No adverse effects of oxygen enrichment on the turbocharger were observed. The engine operated successfully with No. 6 fuel, but it operated at a lower thermal efficiency and emitted more smoke and particulates than with No. 2 fuel.

  18. Light-Duty Diesel Vehicles: Efficiency and Emissions Attributes and Market Issues

    EIA Publications

    2009-01-01

    This report responds to a request from Senator Jeff Sessions for an analysis of the environmental and energy efficiency attributes of light-duty diesel vehicles. Specifically, the inquiry asked for a comparison of the characteristics of diesel-fueled vehicles with those of similar gasoline-fueled, E85-fueled, and hybrid vehicles, as well as a discussion of any technical, economic, regulatory, or other obstacles to increasing the use of diesel-fueled vehicles in the United States

  19. Numerical analysis of combustion characteristics of hybrid rocket motor with multi-section swirl injection

    NASA Astrophysics Data System (ADS)

    Li, Chengen; Cai, Guobiao; Tian, Hui

    2016-06-01

    This paper is aimed to analyse the combustion characteristics of hybrid rocket motor with multi-section swirl injection by simulating the combustion flow field. Numerical combustion flow field and combustion performance parameters are obtained through three-dimensional numerical simulations based on a steady numerical model proposed in this paper. The hybrid rocket motor adopts 98% hydrogen peroxide and polyethylene as the propellants. Multiple injection sections are set along the axis of the solid fuel grain, and the oxidizer enters the combustion chamber by means of tangential injection via the injector ports in the injection sections. Simulation results indicate that the combustion flow field structure of the hybrid rocket motor could be improved by multi-section swirl injection method. The transformation of the combustion flow field can greatly increase the fuel regression rate and the combustion efficiency. The average fuel regression rate of the motor with multi-section swirl injection is improved by 8.37 times compared with that of the motor with conventional head-end irrotational injection. The combustion efficiency is increased to 95.73%. Besides, the simulation results also indicate that (1) the additional injection sections can increase the fuel regression rate and the combustion efficiency; (2) the upstream offset of the injection sections reduces the combustion efficiency; and (3) the fuel regression rate and the combustion efficiency decrease with the reduction of the number of injector ports in each injection section.

  20. Alternative aviation turbine fuels

    NASA Technical Reports Server (NTRS)

    Grobman, J.

    1977-01-01

    The efficient utilization of fossil fuels by future jet aircraft may necessitate the broadening of current aviation turbine fuel specifications. The most significant changes in specifications would be an increased aromatics content and a higher final boiling point in order to minimize refinery energy consumption and costs. These changes would increase the freezing point and might lower the thermal stability of the fuel and could cause increased pollutant emissions, increased smoke and carbon formation, increased combustor liner temperatures, and poorer ignition characteristics. This paper discusses the effects that broadened specification fuels may have on present-day jet aircraft and engine components and the technology required to use fuels with broadened specifications.

  1. [Electricity generation from sweet potato fuel ethanol wastewater using microbial fuel cell technology].

    PubMed

    Cai, Xiao-Bo; Yang, Yi; Sun, Yan-Ping; Zhang, Liang; Xiao, Yao; Zhao, Hai

    2010-10-01

    Air cathode microbial fuel cell (MFC) were investigated for electricity production from sweet potato fuel ethanol wastewater containing 5000 mg/L of chemical oxygen demand (COD). Maximum power density of 334.1 mW/m2, coulombic efficiency (CE) of 10.1% and COD removal efficiency of 92.2% were approached. The effect of phosphate buffer solution (PBS) and COD concentration on the performance of MFC was further examined. The addition of PBS from 50 mmol/L to 200 mmol/L increased the maximum power density and CE by 33.4% and 26.0%, respectively. However, the COD removal efficiency was not relative to PBS concentration in the wastewater. When the COD increased from 625 mg/L to 10 000 mg/L, the maximum value of COD removal efficiency and the maximum power density were gained at the wastewater strength of 5 000 mg/L. But the CE ranged from 28.9% to 10.3% with a decreasing trend. These results demonstrate that sweet potato fuel ethanol wastewater can be used for electricity generation in MFC while at the same time achieving wastewater treatment. The increasing of PBS concentration can improve the power generation of MFC. The maximum power density of MFC increases with the rise of COD concentration, but the electricity generation will decrease for the acidification of high wastewater concentration.

  2. High regression rate hybrid rocket fuel grains with helical port structures

    NASA Astrophysics Data System (ADS)

    Walker, Sean D.

    Hybrid rockets are popular in the aerospace industry due to their storage safety, simplicity, and controllability during rocket motor burn. However, they produce fuel regression rates typically 25% lower than solid fuel motors of the same thrust level. These lowered regression rates produce unacceptably high oxidizer-to-fuel (O/F) ratios that produce a potential for motor instability, nozzle erosion, and reduced motor duty cycles. To achieve O/F ratios that produce acceptable combustion characteristics, traditional cylindrical fuel ports are fabricated with very long length-to-diameter ratios to increase the total burning area. These high aspect ratios produce further reduced fuel regression rate and thrust levels, poor volumetric efficiency, and a potential for lateral structural loading issues during high thrust burns. In place of traditional cylindrical fuel ports, it is proposed that by researching the effects of centrifugal flow patterns introduced by embedded helical fuel port structures, a significant increase in fuel regression rates can be observed. The benefits of increasing volumetric efficiencies by lengthening the internal flow path will also be observed. The mechanisms of this increased fuel regression rate are driven by enhancing surface skin friction and reducing the effect of boundary layer "blowing" to enhance convective heat transfer to the fuel surface. Preliminary results using additive manufacturing to fabricate hybrid rocket fuel grains from acrylonitrile-butadiene-styrene (ABS) with embedded helical fuel port structures have been obtained, with burn-rate amplifications up to 3.0x than that of cylindrical fuel ports.

  3. Enhanced Efficiency of Internal Combustion Engines By Employing Spinning Gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geyko, Vasily; Fisch, Nathaniel

    2014-02-27

    The efficiency of the internal combustion engine might be enhanced by employing spinning gas. A gas spinning at near sonic velocities has an effectively higher heat capacity, which allows practical fuel cycles, which are far from the Carnot efficiency, to approach more closely the Carnot efficiency. A gain in fuel efficiency of several percent is shown to be theoretically possible for the Otto and Diesel cycles. The use of a flywheel, in principle, could produce even greater increases in the efficiency.

  4. Enhanced efficiency of internal combustion engines by employing spinning gas.

    PubMed

    Geyko, V I; Fisch, N J

    2014-08-01

    The efficiency of the internal combustion engine might be enhanced by employing spinning gas. A gas spinning at near sonic velocities has an effectively higher heat capacity, which allows practical fuel cycles, which are far from the Carnot efficiency, to approach more closely the Carnot efficiency. A remarkable gain in fuel efficiency is shown to be theoretically possible for the Otto and Diesel cycles. The use of a flywheel, in principle, could produce even greater increases in efficiency.

  5. Comparison of advanced turboprop and turbofan airplanes

    NASA Technical Reports Server (NTRS)

    Johnson, V. S.

    1983-01-01

    Results of a parametric study to determine the effects of design variables and penalties on the fuel efficiency of Mach 0.8, 125-passenger, advanced turboprop airplanes show that propeller-wing interference penalty has a major effect. Propeller tip speed has a minor effect, and could be decreased to alleviate the noise problem without significant effects on fuel efficiency. The anticipated noise levels produced by the propfan will require additional acoustical treatment for the fuselage; this additional weight can have a significant effect on fuel efficiency. The propfan advantage over an equivalent technology turbofan is strongly dependent on the interference penalty and acoustical treatment weight. Lowering the cruise Mach number to around 0.73 would result in greatly increased fuel efficiency.

  6. Analysis of the net energy use impacts of PURPA (Public Utility Regulatory Policy Act) electricity generation under alternative assumptions regarding the technology mix of PURPA generators and displaced utility generators: Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The goals of this study were to explore the magnitude of potential fuel savings (or increased fuel consumption) under different possible combinations of Qualifying Facilities generation and utility displacement, and to identify those combinations which might result in a net increase in fuel consumption. In exploring the impact of cogeneration net heat rate on net savings (or increase) in fuel consumption, the study also addressed the extent to which cogenerator efficiency affects the overall fuel use impact of Public Utility Regulatory Policies Act (PURPA) implementation. This research thus seeks to identify possible scenarios in which PURPA implementation may not resultmore » in the conversation of fossil fuels, and to define possible situations in which the FERC's efficiency standard may lead to energy-inefficient Qualifying Facility development. 9 refs., 6 figs., 6 tabs.« less

  7. Recent developments in BWR fuel design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Congdon, S.P.; Noble, L.D.; Wood, J.E.

    1991-11-01

    Substantial increases in the cost effectiveness and performance capability of boiling water reactor (BWR) fuel designs have been implemented in the past 5 to 7 yr. This increase has been driven by (a) utility desires to lower fuel and operating costs and (b) design innovations that have lowered enrichment requirements, improved thermal-hydraulic performance, and increased discharge exposure. Higher discharge exposures reduce disposal costs for European and Asian utilities and enable US utilities to lengthen operating cycles. A typical BWR reload fuel bundle fabricated today has 25% higher {sup 235}U enrichment and a factor of 2 higher gadolinium loading than onemore » made several years ago. Today's BWR fuel bundles also contain more unheated water reduces the axial water density variation, lowers the void coefficient, and enhances the neutron efficiency of the bundle, reducing both the gadolinium poison and the enrichment requirements. In addition to these general trends, the following unique design innovations have further enhanced the fuel cost efficiency and performance characteristics of BWR fuel: ferrule spacer, part length rods, interactive channel, and bundle enhanced spectral shift. GE's fuel designs offer the flexibility for modern BWR fuel requirements and contain unique design features that enhance flexibility for modern BWR fuel requirements and contain unique design features that enhance flexibility and fuel cycle economics.« less

  8. Environmental issues of synthetic transportation fuels from coal

    DOT National Transportation Integrated Search

    1982-11-01

    This report, Background paper #3, contains papers written for Office of Technology Assessment to assist in preparation of the report, Increased Automobile Fuel Efficiency and Synthetic Fuels: Alternatives for Reducing Oil Imports. Environmental impac...

  9. Analysis of the Future Effects of the Fuel Shortage and Increased Small Car Usage Upon Traffic Deaths and Injuries

    DOT National Transportation Integrated Search

    1976-01-01

    The Automotive Energy Efficiency Project is concerned with the examination of technological options for improving the fuel efficiency of highway vehicles. This examination includes an analysis of the effects of existing and proposed mandated standard...

  10. Student Program for Environmental Excellence in Design (SPEED) Grant - Closed Announcement FY 2015

    EPA Pesticide Factsheets

    SPEED aims to increase students’ awareness and understanding of the environmental benefits stemming from increasing fuel efficiency, reducing carbon intensity in transportation fuels, and reducing emissions in advanced vehicles.

  11. Researchers Examine Nanoparticles' Impact on Fuel Emissions and Air Pollution

    EPA Pesticide Factsheets

    Nanoparticle catalysts offer an opportunity to increase fuel efficiency. While overall particle emissions may decrease, the emissions of some species may increase and changes to the particle size distribution can impact health.

  12. Student Program for Environmental Excellence in Design (SPEED) Grant - Closed Announcement FY 2014

    EPA Pesticide Factsheets

    SPEED aims to increase students’ awareness and understanding of the environmental benefits stemming from increasing fuel efficiency, reducing carbon intensity in transportation fuels, and reducing emissions in advanced vehicles.

  13. Clean Cities Strategic Planning White Paper: Light Duty Vehicle Fuel Economy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saulsbury, Bo; Hopson, Dr Janet L; Greene, David

    2015-04-01

    Increasing the energy efficiency of motor vehicles is critical to achieving national energy goals of reduced petroleum dependence, protecting the global climate, and promoting continued economic prosperity. Even with fuel economy and greenhouse gas emissions standards and various economic incentives for clean and efficient vehicles, providing reliable and accurate fuel economy information to the public is important to achieving these goals. This white paper reviews the current status of light-duty vehicle fuel economy in the United States and the role of the Department of Energy (DOE) Clean Cities Program in disseminating fuel economy information to the public.

  14. Materials Approach to Fuel Efficient Tires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Votruba-Drzal, Peter; Kornish, Brian

    2015-06-30

    The objective of this project was to design, develop, and demonstrate fuel efficient and safety regulation compliant tire filler and barrier coating technologies that will improve overall fuel efficiency by at least 2%. The program developed and validated two complementary approaches to improving fuel efficiency through tire improvements. The first technology was a modified silica-based product that is 15% lower in cost and/or enables a 10% improvement in tread wear while maintaining the already demonstrated minimum of 2% improvement in average fuel efficiency. The second technology was a barrier coating with reduced oxygen transmission rate compared to the state-of-the-art halobutylmore » rubber inner liners that will provide extended placarded tire pressure retention at significantly reduced material usage. A lower-permeance, thinner inner liner coating which retains tire pressure was expected to deliver the additional 2% reduction in fleet fuel consumption. From the 2006 Transportation Research Board Report1, a 10 percent reduction in rolling resistance can reduce consumer fuel expenditures by 1 to 2 percent for typical vehicles. This savings is equivalent to 6 to 12 gallons per year. A 1 psi drop in inflation pressure increases the tire's rolling resistance by about 1.4 percent.« less

  15. FY2016 Ceramic Fuels Development Annual Highlights

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mcclellan, Kenneth James

    Key challenges for the Advanced Fuels Campaign are the development of fuel technologies to enable major increases in fuel performance (safety, reliability, power and burnup) beyond current technologies, and development of characterization methods and predictive fuel performance models to enable more efficient development and licensing of advanced fuels. Ceramic fuel development activities for fiscal year 2016 fell within the areas of 1) National and International Technical Integration, 2) Advanced Accident Tolerant Ceramic Fuel Development, 3) Advanced Techniques and Reference Materials Development, and 4) Fabrication of Enriched Ceramic Fuels. High uranium density fuels were the focus of the ceramic fuels efforts.more » Accomplishments for FY16 primarily reflect the prioritization of identification and assessment of new ceramic fuels for light water reactors which have enhanced accident tolerance while also maintaining or improving normal operation performance, and exploration of advanced post irradiation examination techniques which will support more efficient testing and qualification of new fuel systems.« less

  16. Proposed Rule and Related Materials for Greenhouse Gas Emissions Standards and Fuel Efficiency Standards for Medium- and Heavy-Duty Engines and Vehicles

    EPA Pesticide Factsheets

    EPA and NHTSA, on behalf of the Department of Transportation, each proposed rules to establish a comprehensive Heavy-Duty National Program to reduce greenhouse gas emissions and increase fuel efficiency for onroad heavy-duty vehicles.

  17. Wayne County, NY, municipal vehicle retrofit project - final report.

    DOT National Transportation Integrated Search

    2015-07-01

    Police Departments struggle with both increasing fuel prices and increasing demands for : greater fuel efficiency and lower emissions. According to vehicle manufacturers, an : average of one gallon of gasoline is burned every hour that a vehicles ...

  18. Impact of Various Compression Ratio on the Compression Ignition Engine with Diesel and Jatropha Biodiesel

    NASA Astrophysics Data System (ADS)

    Sivaganesan, S.; Chandrasekaran, M.; Ruban, M.

    2017-03-01

    The present experimental investigation evaluates the effects of using blends of diesel fuel with 20% concentration of Methyl Ester of Jatropha biodiesel blended with various compression ratio. Both the diesel and biodiesel fuel blend was injected at 23º BTDC to the combustion chamber. The experiment was carried out with three different compression ratio. Biodiesel was extracted from Jatropha oil, 20% (B20) concentration is found to be best blend ratio from the earlier experimental study. The engine was maintained at various compression ratio i.e., 17.5, 16.5 and 15.5 respectively. The main objective is to obtain minimum specific fuel consumption, better efficiency and lesser Emission with different compression ratio. The results concluded that full load show an increase in efficiency when compared with diesel, highest efficiency is obtained with B20MEOJBA with compression ratio 17.5. It is noted that there is an increase in thermal efficiency as the blend ratio increases. Biodiesel blend has performance closer to diesel, but emission is reduced in all blends of B20MEOJBA compared to diesel. Thus this work focuses on the best compression ratio and suitability of biodiesel blends in diesel engine as an alternate fuel.

  19. The Influence of Fuel Properties on Combustion Efficiency and the Partitioning of Pyrogenic Carbon

    NASA Astrophysics Data System (ADS)

    Urbanski, S. P.; Baker, S. P.; Lincoln, E.; Richardson, M.

    2016-12-01

    The partitioning of volatized pyrogenic carbon into CO2, CO, CH4, non-methane organic carbon, and particulate organic carbon (POC) and elemental carbon (PEC) depends on the combustion characteristics of biomass fires which are influenced by the moisture content, structure and arrangement of the fuels. Flaming combustion is characterized by efficient conversion of volatized carbon into CO2. In contrast, smoldering is less efficient and produces incomplete combustion products like CH4 and carbonaceous particles. This paper presents a laboratory study that has examined the relationship between the partitioning of volatized pyrogenic carbon and specific fuel properties. The study focused on fuel beds composed of simple fuel particles — ponderosa pine needles. Ponderosa pine was selected because it contains a common wildland fuel component, conifer needles, which can be easily arranged into fuel beds of variable structure (bulk density and depth) and moisture contents that are both representative of natural conditions and are easily replicated. Modified combustion efficiency (MCE, ΔCO2/[ΔCO2+ ΔCO]) and emission factors (EF) for CO2, CO, CH4, POC, and PEC were measured over a range of needle moisture content and fuel bed bulk density and depth representative of naturally occurring fuel beds. We found that, as expected, MCE decreases as the fuel bed bulk density increases and emissions of CO, CH4, PM2.5, and POC increased. However, fuel bed depth did not appear to have an effect on how effect on MCE or emission factors. Surprisingly, a consistent relationship between the needle moisture content and emissions was not identified. At the high bulk densities, moisture content had a strong influence on MCE which explained variability in EFCH4. However, moisture content appeared to have an influence EFPOC and EFPEC that was independent of MCE. These findings may have significant implications since many models of biomass burning assume that litter fuels, such as ponderosa pine needles, burn almost exclusively via flaming combustion with a high efficiency. Our results indicate that for fuel bed properties typical of many conifer forests, pollutants generated from fires will be higher than that predicted using standard biomass burning models.

  20. Sinusoidal potential cycling operation of a direct ethanol fuel cell to improving carbon dioxide yields

    NASA Astrophysics Data System (ADS)

    Majidi, Pasha; Pickup, Peter G.

    2014-12-01

    A direct ethanol fuel cell has been operated under sinusoidal (AC) potential cycling conditions in order to increase the yield of carbon dioxide and thereby increase cell efficiency relative to operation at a fixed potential. At 80 °C, faradaic yields of CO2 as high as 25% have been achieved with a PtRu anode catalyst, while the maximum CO2 production at constant potential was 13%. The increased yields under cycling conditions have been attributed to periodic oxidative stripping of adsorbed CO. These results will be important in the optimization of operating conditions for direct ethanol fuel cells, where the benefits of potential cycling are projected to increase as catalysts that produce CO2 more efficiently are implemented.

  1. Investigation on the effect of diaphragm on the combustion characteristics of solid-fuel ramjet

    NASA Astrophysics Data System (ADS)

    Gong, Lunkun; Chen, Xiong; Yang, Haitao; Li, Weixuan; Zhou, Changsheng

    2017-10-01

    The flow field characteristics and the regression rate distribution of solid-fuel ramjet with three-hole diaphragm were investigated by numerical and experimental methods. The experimental data were obtained by burning high-density polyethylene using a connected-pipe facility to validate the numerical model and analyze the combustion efficiency of the solid-fuel ramjet. The three-dimensional code developed in the present study adopted three-order MUSCL and central difference schemes, AUSMPW + flux vector splitting method, and second-order moment turbulence-chemistry model, together with k-ω shear stress transport (SST) turbulence model. The solid fuel surface temperature was calculated with fluid-solid heat coupling method. The numerical results show that strong circumferential flow exists in the region upstream of the diaphragm. The diaphragm can enhance the regression rate of the solid fuel in the region downstream of the diaphragm significantly, which mainly results from the increase of turbulent viscosity. As the diaphragm port area decreases, the regression rate of the solid fuel downstream of the diaphragm increases. The diaphragm can result in more sufficient mixing between the incoming air and fuel pyrolysis gases, while inevitably producing some pressure loss. The experimental results indicate that the effect of the diaphragm on the combustion efficiency of hydrocarbon fuels is slightly negative. It is conjectured that the diaphragm may have some positive effects on the combustion efficiency of the solid fuel with metal particles.

  2. Role of the Department of Defense in the Research and Development of Alternative Fuels

    DTIC Science & Technology

    2015-06-12

    most cost effective defense against another oil embargo than subsidizing synthetic fuels .”57 Again, the political and budgetary climate effectively......to develop technologies that will decrease the nation’s need for fossil fuel . The market demand for fuel -efficient cars sharply increased within the

  3. Thrust Augmented Nozzle for a Hybrid Rocket with a Helical Fuel Port

    NASA Astrophysics Data System (ADS)

    Marshall, Joel H.

    A thrust augmented nozzle for hybrid rocket systems is investigated. The design lever-ages 3-D additive manufacturing to embed a helical fuel port into the thrust chamber of a hybrid rocket burning gaseous oxygen and ABS plastic as propellants. The helical port significantly increases how quickly the fuel burns, resulting in a fuel-rich exhaust exiting the nozzle. When a secondary gaseous oxygen flow is injected into the nozzle downstream of the throat, all of the remaining unburned fuel in the plume spontaneously ignites. This secondary reaction produces additional high pressure gases that are captured by the nozzle and significantly increases the motor's performance. Secondary injection and combustion allows a high expansion ratio (area of the nozzle exit divided by area of the throat) to be effective at low altitudes where there would normally be significantly flow separation and possibly an embedded shock wave due. The result is a 15 percent increase in produced thrust level with no loss in engine efficiency due to secondary injection. Core flow efficiency was increased significantly. Control tests performed using cylindrical fuel ports with secondary injection, and helical fuel ports without secondary injection did not exhibit this performance increase. Clearly, both the fuel-rich plume and secondary injection are essential features allowing the hybrid thrust augmentation to occur. Techniques for better design optimization are discussed.

  4. High performance direct methanol fuel cell with thin electrolyte membrane

    NASA Astrophysics Data System (ADS)

    Wan, Nianfang

    2017-06-01

    A high performance direct methanol fuel cell is achieved with thin electrolyte membrane. 320 mW cm-2 of peak power density and over 260 mW cm-2 at 0.4 V are obtained when working at 90 °C with normal pressure air supply. It is revealed that the increased anode half-cell performance with temperature contributes primarily to the enhanced performance at elevated temperature. From the comparison of iR-compensated cathode potential of methanol/air with that of H2/air fuel cell, the impact of methanol crossover on cathode performance decreases with current density and becomes negligible at high current density. Current density is found to influence fuel efficiency and methanol crossover significantly from the measurement of fuel efficiency at different current density. At high current density, high fuel efficiency can be achieved even at high temperature, indicating decreased methanol crossover.

  5. Study of cost/benefit tradeoffs for reducing the energy consumption of the commercial air transportation system

    NASA Technical Reports Server (NTRS)

    Coykendall, R. E.; Curry, J. K.; Domke, A. E.; Madsen, S. E.

    1976-01-01

    Economic studies were conducted for three general fuel conserving options: (1) improving fuel consumption characteristics of existing aircraft via retrofit modifications; (2) introducing fuel efficient derivations of existing production aircraft and/or introducing fuel efficient, current state-of-the-art new aircraft; and (3) introducing an advanced state-of-the-art turboprop airplane. These studies were designed to produce an optimum airline fleet mix for the years 1980, 1985 and 1990. The fleet selected accommodated a normal growth market by introducing somewhat larger aircraft while solving for maximum departure frequencies and a minimum load factor corresponding to a 15% investment hurdle rate. Fuel burnt per available-seat-mile flown would drop 22% from 1980 to 1990 due to the use of more fuel efficient aircraft designs, larger average aircraft size, and increased seating density. An inflight survey was taken to determine air traveler attitudes towards a new generation of advanced turboprops.

  6. Configuring a fuel cell based residential combined heat and power system

    NASA Astrophysics Data System (ADS)

    Ahmed, Shabbir; Papadias, Dionissios D.; Ahluwalia, Rajesh K.

    2013-11-01

    The design and performance of a fuel cell based residential combined heat and power (CHP) system operating on natural gas has been analyzed. The natural gas is first converted to a hydrogen-rich reformate in a steam reformer based fuel processor, and the hydrogen is then electrochemically oxidized in a low temperature polymer electrolyte fuel cell to generate electric power. The heat generated in the fuel cell and the available heat in the exhaust gas is recovered to meet residential needs for hot water and space heating. Two fuel processor configurations have been studied. One of the configurations was explored to quantify the effects of design and operating parameters, which include pressure, temperature, and steam-to-carbon ratio in the fuel processor, and fuel utilization in the fuel cell. The second configuration applied the lessons from the study of the first configuration to increase the CHP efficiency. Results from the two configurations allow a quantitative comparison of the design alternatives. The analyses showed that these systems can operate at electrical efficiencies of ∼46% and combined heat and power efficiencies of ∼90%.

  7. Pt-Ni and Pt-Co Catalyst Synthesis Route for Fuel Cell Applications

    NASA Technical Reports Server (NTRS)

    Firdosy, Samad A.; Ravi, Vilupanur A.; Valdez, Thomas I.; Kisor, Adam; Narayan, Sri R.

    2013-01-01

    Oxygen reduction reactions (ORRs) at the cathode are the rate-limiting step in fuel cell performance. The ORR is 100 times slower than the corresponding hydrogen oxidation at the anode. Speeding up the reaction at the cathode will improve fuel cell efficiency. The cathode material is generally Pt powder painted onto a substrate (e.g., graphite paper). Recent efforts in the fuel cell area have focused on replacing Pt with Pt-X alloys (where X = Co, Ni, Zr, etc.) in order to (a) reduce cost, and (b) increase ORR rates. One of these strategies is to increase ORR rates by reducing the powder size, which would result in an increase in the surface area, thereby facilitating faster reaction rates. In this work, a process has been developed that creates Pt-Ni or Pt-Co alloys that are finely divided (on the nano scale) and provide equivalent performance at lower Pt loadings. Lower Pt loadings will translate to lower cost. Precursor salts of the metals are dissolved in water and mixed. Next, the salt mixtures are dried on a hot plate. Finally, the dried salt mixture is heattreated in a furnace under flowing reducing gas. The catalyst powder is then used to fabricate a membrane electrode assembly (MEA) for electrochemical performance testing. The Pt- Co catalyst-based MEA showed comparable performance to an MEA fabri cated using a standard Pt black fuel cell catalyst. The main objective of this program has been to increase the overall efficiencies of fuel cell systems to support power for manned lunar bases. This work may also have an impact on terrestrial programs, possibly to support the effort to develop a carbon-free energy source. This catalyst can be used to fabricate high-efficiency fuel cell units that can be used in space as regenerative fuel cell systems, and terrestrially as primary fuel cells. Terrestrially, this technology will become increasingly important when transition to a hydrogen economy occurs.

  8. Increasing Efficiency by Maximizing Electrical Output

    DTIC Science & Technology

    2016-08-01

    to electricity technology in a few limited areas, one being a geothermal flash plant at Naval Air Weapons Station China Lake. But, there are few...generation c) Increasing the efficiency of portable generators to reduce fuel needs. d) Bottom cycling on a geothermal flash plant like the one at Naval...portable generators to reduce fuel needs. d) Bottom cycling on a geothermal flash plant like the one at Naval Air Weapons Station China Lake

  9. Study on effect of mixing mechanism by the transverse gaseous injection flow in scramjet engine with variable parameters

    NASA Astrophysics Data System (ADS)

    Yadav, Siddhita; Pandey, K. M.

    2018-04-01

    In scramjet engine the mixing mechanism of fuel and atmospheric air is very complicated, because the fuel have time in milliseconds for mixing with atmospheric air in combustion chamber having supersonic speed. Mixing efficiency of fuel and atmospheric air depends on mainly these parameters: Aspect ratio of injector, vibration amplitude, shock type, number of injector, jet to transverse flow momentum flux ratio, injector geometry, injection angle, molecular weight, incoming air stream angle, jet to transverse flow pressure ratio, spacing variation, mass flow rate of fuel etc. here is a very brief study of these parameters from previously done research on these parameters for the improvement of mixing efficiency. The mixing process have the significant role for the working of engine, and mixing between the atmospheric air and the jet fuel is significant factor for improving the overall thrust of the engine. The results obtained by study of papers are obtained by the 3D-Reynolds Average-Nervier-Stokes(RANS) equations along with the 2-equation k-ω shear-stress-transport (SST) turbulence model. Engine having multi air jets have 60% more mixing efficiency than single air jet, thus if the jets are increased, the mixing efficiency of engine can also be increased up to 150% by changing jet from 1 to 16. When using delta shape of injector the mixing efficiency is inversely proportional to the pressure ratio. When the fuel is injected inside the combustor from the top and bottom walls of the engine efficiency of mixing in reacting zone is higher than the single wall injection and in comparison to parallel flow, the transverse type flow is better as the atmospheric air jet can penetrate smoothly in the fuel jets and mixes well in less time. Hence this study of parameters and their effects on mixing can enhance the efficiency of mixing in engine.

  10. Testing of Lightweight Fuel Cell Vehicles System at Low Speeds with Energy Efficiency Analysis

    NASA Astrophysics Data System (ADS)

    Mustaffa, Muhammad Rizuwan B.; Mohamed, Wan Ahmad Najmi B. Wan

    2013-12-01

    A fuel cell vehicle power train mini test bench was developed which consists of a 1 kW open cathode hydrogen fuel cell, electric motor, wheel, gearing system, DC/DC converter and vehicle control system (VCS). Energy efficiency identification and energy flow evaluation is a useful tool in identifying a detail performance of each component and sub-systems in a fuel cell vehicle system configuration. Three artificial traction loads was simulated at 30 kg, 40 kg and 50 kg force on a single wheel drive configuration. The wheel speed range reported here covers from idle to 16 km/h (low speed range) as a preliminary input in the research work frame. The test result shows that the system efficiency is 84.5 percent when the energy flow is considered from the fuel cell to the wheel and 279 watts of electrical power was produced by the fuel cell during that time. Dynamic system responses was also identified as the load increases beyond the motor traction capabilities where the losses at the converter and motor controller increased significantly as it tries to meet the motor traction power demands. This work is currently being further expanded within the work frame of developing a road-worthy fuel cell vehicle.

  11. Performance analysis of a SOFC under direct internal reforming conditions

    NASA Astrophysics Data System (ADS)

    Janardhanan, Vinod M.; Heuveline, Vincent; Deutschmann, Olaf

    This paper presents the performance analysis of a planar solid-oxide fuel cell (SOFC) under direct internal reforming conditions. A detailed solid-oxide fuel cell model is used to study the influences of various operating parameters on cell performance. Significant differences in efficiency and power density are observed for isothermal and adiabatic operational regimes. The influence of air number, specific catalyst area, anode thickness, steam to carbon (s/c) ratio of the inlet fuel, and extend of pre-reforming on cell performance is analyzed. In all cases except for the case of pre-reformed fuel, adiabatic operation results in lower performance compared to isothermal operation. It is further discussed that, though direct internal reforming may lead to cost reduction and increased efficiency by effective utilization of waste heat, the efficiency of the fuel cell itself is higher for pre-reformed fuel compared to non-reformed fuel. Furthermore, criteria for the choice of optimal operating conditions for cell stacks operating under direct internal reforming conditions are discussed.

  12. Los Alamos National Security, LLC Request for Information on how industry may partner with the Laboratory on KIVA software.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mcdonald, Kathleen Herrera

    2016-02-29

    KIVA is a family of Fortran-based computational fluid dynamics software developed by LANL. The software predicts complex fuel and air flows as well as ignition, combustion, and pollutant-formation processes in engines. The KIVA models have been used to understand combustion chemistry processes, such as auto-ignition of fuels, and to optimize diesel engines for high efficiency and low emissions. Fuel economy is heavily dependent upon engine efficiency, which in turn depends to a large degree on how fuel is burned within the cylinders of the engine. Higher in-cylinder pressures and temperatures lead to increased fuel economy, but they also create moremore » difficulty in controlling the combustion process. Poorly controlled and incomplete combustion can cause higher levels of emissions and lower engine efficiencies.« less

  13. Effects of Automobile Emissions on Air Pollution in the United States

    NASA Astrophysics Data System (ADS)

    Cohen, Ryan; Singh, Ramesh

    2016-07-01

    Currently, about more than 253,000,000 automobiles and trucks, some are new, old, gas and electric, ply on the roads in the United States of America. Around the world, human activities and energy demand are the main sources for the air pollution and ozone depletion, causing dense haze, fog and smog especially during winter season in the country like China and India and also observed in different parts of the world. In recent years, automakers have been pushed by new governmental regulations and global expectations to create more fuel-efficient vehicles that burn less fossil fuels and create fewer harmful emissions. Automakers are exploring alternative fuel options such as hydrogen, natural gas, hybrids, and completely electric vehicles. Since the Nissan Leaf's introduction in 2010, fully electric vehicles have become widely produced and just fewer than 400,000 fully electric cars have been sold in the United States. Taking the influx of more fuel-efficient and alternative energy vehicles in the market into account, we have analyzed satellite and ground observed atmospheric pollution and greenhouse gases during 2009-2014 in the United States of America. Our results show that the increasing population of hybrid and fuel efficient vehicles have cut down the atmospheric pollution and greenhouse emissions in US in general, whereas in California the pollution level has increased as a result frequency of fog and haze events are seen during winter season. We will present a comparison of atmospheric pollution over US and California State in view of the increasing hybrid and fuel efficient vehicles.

  14. Combustion characteristics of an SI engine fueled with biogas fuel

    NASA Astrophysics Data System (ADS)

    Chen, Lei; Long, Wuqiang; Song, Peng

    2017-04-01

    An experimental research of the effect of H2 substitution and CO2 dilution on CH4 combustion has been carried out on a spark ignition engine. The results show that H2 addition could improve BMEP, thermal efficiency, CO and THC emissions. NOX emissions increased for higher low heating value (LHV) of H2 than CH4. CO2 dilution could effective reduce NOX emission of H2-CH4 combustion. Although engine performance, thermal efficiency and exhaust get unacceptable under high fuel dilution ratio (F.D.R.) conditions, it could be solved by decreasing F.D.R. and/or increasing hydrogen substitution ratio (H.S.R.).

  15. Novel carbon-ion fuel cells. Quarterly technical report No. 9, October 1, 1995--December 31, 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cocks, F.H.

    1995-12-31

    This report presents research to develop an entirely new, fundamentally different class of fuel cell using a solid electrolyte that transports carbon ions. This fuel cell would use solid carbon dissolved in molten metal as a fuel reservoir and anode; expensive gaseous or liquid fuel would not be required. Thermodynamic factors favor a carbon-ion fuel cell over other fuel cell designs: a combination of enthalpy, entropy, and Gibbs free energy makes the reaction of solid carbon and oxygen very efficient, and the entropy change allows this efficiency to slightly increase at high temperatures. The high temperature exhaust of the fuelmore » cell would make it useful as a ``topping cycle``, to be followed by conventional steam turbine systems.« less

  16. ECAS Phase I fuel cell results. [Energy Conservation Alternatives Study

    NASA Technical Reports Server (NTRS)

    Warshay, M.

    1978-01-01

    This paper summarizes and discusses the fuel cell system results of Phase I of the Energy Conversion Alternatives Study (ECAS). Ten advanced electric powerplant systems for central-station baseload generation using coal were studied by NASA in ECAS. Three types of low-temperature fuel cells (solid polymer electrolyte, SPE, aqueous alkaline, and phosphoric acid) and two types of high-temperature fuel cells (molten carbonate, MC, and zirconia solid electrolyte, SE) were studied. The results indicate that (1) overall efficiency increases with fuel cell temperature, and (2) scale-up in powerplant size can produce a significant reduction in cost of electricity (COE) only when it is accompanied by utilization of waste fuel cell heat through a steam bottoming cycle and/or integration with a gasifier. For low-temperature fuel cell systems, the use of hydrogen results in the highest efficiency and lowest COE. In spite of higher efficiencies, because of higher fuel cell replacement costs integrated SE systems have higher projected COEs than do integrated MC systems. Present data indicate that life can be projected to over 30,000 hr for MC fuel cells, but data are not yet sufficient for similarly projecting SE fuel cell life expectancy.

  17. Increase in the efficiency of electric melting of pellets in an arc furnace with allowance for the energy effect of afterburning of carbon oxide in slag using fuel-oxygen burners

    NASA Astrophysics Data System (ADS)

    Stepanov, V. A.; Krakht, L. N.; Merker, E. E.; Sazonov, A. V.; Chermenev, E. A.

    2015-12-01

    The problems of increasing the efficiency of electric steelmaking using fuel-oxygen burners to supply oxygen for the afterburning of effluent gases in an arc furnace are considered. The application of a new energy-saving regime based on a proposed technology of electric melting is shown to intensify the processes of slag formation, heating, and metal decarburization.

  18. Analysis and performance assessment of a new solar-based multigeneration system integrated with ammonia fuel cell and solid oxide fuel cell-gas turbine combined cycle

    NASA Astrophysics Data System (ADS)

    Siddiqui, Osamah; Dincer, Ibrahim

    2017-12-01

    In the present study, a new solar-based multigeneration system integrated with an ammonia fuel cell and solid oxide fuel cell-gas turbine combined cycle to produce electricity, hydrogen, cooling and hot water is developed for analysis and performance assessment. In this regard, thermodynamic analyses and modeling through both energy and exergy approaches are employed to assess and evaluate the overall system performance. Various parametric studies are conducted to study the effects of varying system parameters and operating conditions on the energy and exergy efficiencies. The results of this study show that the overall multigeneration system energy efficiency is obtained as 39.1% while the overall system exergy efficiency is calculated as 38.7%, respectively. The performance of this multigeneration system results in an increase of 19.3% in energy efficiency as compared to single generation system. Furthermore, the exergy efficiency of the multigeneration system is 17.8% higher than the single generation system. Moreover, both energy and exergy efficiencies of the solid oxide fuel cell-gas turbine combined cycle are determined as 68.5% and 55.9% respectively.

  19. Inhaled Diesel Emissions Generated with Cerium Oxide Nanoparticle Fuel Additive Induce Adverse Pulmonary and Systemic Effects

    EPA Science Inventory

    Diesel exhaust (DE) exposure induces adverse cardiopulmonary effects. Cerium oxide nanoparticles added to diesel fuel (DECe) increases fuel burning efficiency but leads to altered emission characteristics and potentially altered health effects. Here, we evaluated whether DECe res...

  20. Enhanced methanol utilization in direct methanol fuel cell

    DOEpatents

    Ren, Xiaoming; Gottesfeld, Shimshon

    2001-10-02

    The fuel utilization of a direct methanol fuel cell is enhanced for improved cell efficiency. Distribution plates at the anode and cathode of the fuel cell are configured to distribute reactants vertically and laterally uniformly over a catalyzed membrane surface of the fuel cell. A conductive sheet between the anode distribution plate and the anodic membrane surface forms a mass transport barrier to the methanol fuel that is large relative to a mass transport barrier for a gaseous hydrogen fuel cell. In a preferred embodiment, the distribution plate is a perforated corrugated sheet. The mass transport barrier may be conveniently increased by increasing the thickness of an anode conductive sheet adjacent the membrane surface of the fuel cell.

  1. Evaporation And Ignition Of Dense Fuel Sprays

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Harstad, Kenneth G.

    1988-01-01

    Simple theoretical model makes useful predictions of trends. Pair of reports presents theoretical model of evaporation and ignition of sprayed liquid fuel. Developed as part of research in combustion of oil and liquid fuels derived from coal, tar sand, and shale in furnace. Work eventually contributes to increase efficiency of combustion and decrease pollution generated by burning of such fuels.

  2. Prospects for energy efficiency improvement and reduction of emissions and life cycle costs for natural gas vehicles

    NASA Astrophysics Data System (ADS)

    Kozlov, A. V.; Terenchenko, A. S.; Luksho, V. A.; Karpukhin, K. E.

    2017-01-01

    This work is devoted to the experimental investigation of the possibilities to reduce greenhouse gas emissions and to increase energy efficiency of engines that use natural gas as the main fuel and the analysis of economic efficiency of use of dual fuel engines in vehicles compared to conventional diesel. The results of experimental investigation of a 190 kW dual-fuel engine are presented; it is shown that quantitative and qualitative working process control may ensure thermal efficiency at the same level as that of the diesel engine and in certain conditions 5...8% higher. The prospects for reduction of greenhouse gas emissions have been assessed. The technical and economic evaluation of use of dual fuel engines in heavy-duty vehicles has been performed, taking into account the total life cycle. It is shown that it is possible to reduce life cycle costs by two times.

  3. Increase in energy efficiency of use of vegetable waste

    NASA Astrophysics Data System (ADS)

    Safin, R. R.; Safiullina, A. K.; Nazipova, F. V.

    2017-10-01

    Wastes of woodworking which are exposed to granulation for equalization of humidity, dispersion and also for increase in energy efficiency are the most widespread types of alternative fuel in Russia. Besides, one of the effective methods of the increase in calorific capability of granulates now is the preliminary torrefaction of wood waste - heat treatment without air oxygen access. However this technology is rather researched in detail only in relation to wood particles, while pellets from wastes of agricultural productions are also popular in the market in recent years. The possibility of the increase of the efficiency of production of pellets from sunflower pod by torrefaction is considered in this article, and the analysis of their characteristics in comparison with wood pellets is carried out. It is established that the process of heat treatment of waste of sunflower production is similar to torrefaction of wood raw materials in many respects; therefore, the equipment with similar characteristics can be used. According to the received results on pellet’s properties it is established that hygroscopicity and swelling of samples of fuel granules from sunflower pod considerably decreases with the increase in temperature of treatment that simplifies requirements for their storage and transportation. Besides, it is defined that torrefaction of the granulated fuel from sunflower pod does not yield in calorific properties to the similar fuel granules made of wood sawdust. Thus feasibility of use of heat treatment in production of fuel granules from waste of vegetable raw materials is proved.

  4. Metal hydride and pyrophoric fuel additives for dicyclopentadiene based hybrid propellants

    NASA Astrophysics Data System (ADS)

    Shark, Steven C.

    The purpose of this study is to investigate the use of reactive energetic fuel additives that have the potential to increase the combustion performance of hybrid rocket propellants in terms of solid fuel regression rate and combustion efficiency. Additives that can augment the combustion flame zone in a hybrid rocket motor by means of increased energy feedback to the fuel grain surface are of great interest. Metal hydrides have large volumetric hydrogen densities, which gives these materials high performance potential as fuel additives in terms of specifc impulse. The excess hydrogen and corresponding base metal may also cause an increase in the hybrid rocket solid fuel regression rate. Pyrophoric additives also have potential to increase the solid fuel regression rate by reacting more readily near the burning fuel surface providing rapid energy feedback. An experimental performance evaluation of metal hydride fuel additives for hybrid rocket motor propulsion systems is examined in this study. Hypergolic ignition droplet tests and an accelerated aging study revealed the protection capabilities of Dicyclopentadiene (DCPD) as a fuel binder, and the ability for unaided ignition. Static hybrid rocket motor experiments were conducted using DCPD as the fuel. Sodium borohydride (NabH4) and aluminum hydride (AlH3) were examined as fuel additives. Ninety percent rocket grade hydrogen peroxide (RGHP) was used as the oxidizer. In this study, the sensitivity of solid fuel regression rate and characteristic velocity (C*) efficiency to total fuel grain port mass flux and particle loading is examined. These results were compared to HTPB combustion performance as a baseline. Chamber pressure histories revealed steady motor operation in most tests, with reduced ignition delays when using NabH4 as a fuel additive. The addition of NabH4 and AlH3 produced up to a 47% and 85% increase in regression rate over neat DCPD, respectively. For all test conditions examined C* efficiency ranges between 80% and 90%. The regression rate and C* efficiency mass flux dependence indicate a shift towards a more diffusion controlled system with metal hydride particle addition. Although these types of energetic particles have potential as high performing fuel additives, they can be in low supply and expensive. An opposed flow burner was investigated as a means to screen and characterize hybrid rocket fuels prior to full scale rocket motor testing. Although this type of configuration has been investigated in the past, no comparison has been made to hybrid rocket motor operation in terms of mass flux. Polymeric fuels and low melt temperature fuels with and without additives were investigated via an opposed flow burner. The effects of laminar and turbulent flow regimes on the convective heat transfer in the opposed flow system was depicted in the regression rate trends of these fuels. Regression rate trends similar to hybrid rocket motor operation were depicted, including the entrainment mechanism for paran fuel. However, there was a shift in overall magnitude of these results. A decrease in regression rate occurred for HTPB loaded with passivated nano-aluminum, due to low resonance time in the reaction zone. Previous results have shown that pyrophoric additives can cause an increase in regression rate in the opposed flow burner configuration. It is proposed that the opposed burner is useful as a screening and characterization tool for some propellant combinations. Gaseous oxygen (GOX) was investigated as an oxidizer for similar fuels evaluated with RGHP. Specifically, combustion performance sensitivity to mass flux and MH particle size was investigated. Similar results to the RGHP experiments were observed for the regression rate tends of HTPB, DPCD, and NabH 4 addition. Kinetically limited regression rate dependence on mass flux was observed at the higher mass flux levels. No major increase in C* efficiency was observed for MH addition. The C* efficiency varied with equivalence ratio by approximately 10 percentage points, which was not observed in the RGHP experiments. A 10 percentage point decrease in C* efficiency was observed with increasing mass flux in the system. This was most likely due to poorly mixed fuel and oxidizer in center of the combustion chamber at the higher mass flux levels. Detailed measurements of the hybrid rocket combustion zone is useful for understanding the mechanisms governing performance, but can be difficult to obtain. Traditional slab burner configurations have proven useful but are operationally limited in pressure and mass flux ranges. A new optical cylindrical combustor (OCC) design is presented that allows surface and flame zone imaging and tracking during hybrid rocket motor operation at appreciable mass flux and pressure levels, > 100 kg/s/m2 and > 0.69 MPa. The flame height and regression rate sensitivity to mass flux and chamber pressure was examined for the same fuels examined in the GOX hybrid rocket motor, with the addition of DCPD fuel loaded with Al and unpassivated mechanically activated Al-PTFE. The regression rate trends were on the same order of magnitude of traditional hybrid rocket motor results. A flame height decrease was observed for increased mass flux. The flame height increased with NabH 4 addition, which is most likely a function of increased blowing at the surface. There was no appreciable flame height sensitivity to NabH4 particle size. There was no relative change in flame height or regression rate between the Al and AL-PTFE addition. The OCC allowed visualization of the hybrid rocket fuel flame zone at mass flux and pressure levels that are not known to be report for traditional slab burner configurations in literature. The OCC proved to be a new useful tool for investigated hybrid rocket propellant combustion characteristics.

  5. Effect of Rapid Evaporation on Fuel Injection Processes

    NASA Astrophysics Data System (ADS)

    Sloss, Clayton A.; McCahan, Susan

    1996-11-01

    In the pursuit of developing more efficient fuel oil burners, ways of improving combustion efficiency through increased fuel atomization are being studied. By preheating the fuel prior to injection it may be possible to induce a superheated state in the l iquid during expansion through the nozzle. This increases the evaporation rate and improves atomization of the fluid. With enough superheat, and using fuels with sufficiently large specific heats, it is theoretically possible to achieve complete evaporati on. In this experiment dodecane, fuel oil, kerosene, and diesel fuel are injected from 10 bar to 1 bar while the upstream temperature is varied from 20^oC to 330^oC. A commercial oil burner nozzle is used to simulate a realistic injection environm ent and a plain converging nozzle is used under the same conditions to isolate and study the thermodynamic effects. Photographic observations of the commercial nozzle spray found smaller droplet sizes and decreased cone angles as the degree of superheat i ncreased. A coherent evaporation wave was observed in dodecane jets at high levels of superheat in the plain converging nozzle. * This work is supported by Imperial Oil/ESTAC

  6. Supersonic transport vis-a-vis energy savings

    NASA Technical Reports Server (NTRS)

    Cormery, G.

    1979-01-01

    The energy and economic saving modifications in supersonic transportation are studied. Modifications in the propulsion systems and in the aerodynamic configurations of the Concorde aircraft to reduce noise generation and increase fuel efficiency are discussed. The conversion of supersonic aircraft from fuel oils to synthetic fuels is examined.

  7. Study of cost/benefit tradeoffs for reducing the energy consumption of the commercial air transportation system. [Advanced turboprop introduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coykendall, R.E.; Curry, J.K.; Domke, A.E.

    1976-06-01

    Economic studies were conducted for three general fuel-conserving options: (1) improving fuel-consumption characteristics of existing aircraft via retrofit modifications; (2) introducing fuel-efficient derivations of existing production aircraft and/or introducing fuel efficient, current state-of-the-art new aircraft; and (3) introducing an advanced state-of-the-art turboprop airplane. These studies were designed to produce an optimum airline fleet mix for the years 1980, 1985 and 1990. The fleet selected accommodated a normal growth market by introducing somewhat larger aircraft while solving for maximum departure frequencies and a minimum load factor corresponding to a 15% investment hurdle rate. Fuel burnt per available-seat-mile flown would drop 22%more » from 1980 to 1990 due to the use of more fuel efficient aircraft designs, larger average aircraft size, and increased seating density. An inflight survey was taken to determine air traveler attitudes towards a new generation of advanced turboprops. (Author) (GRA)« less

  8. Evaluation of Metal Halide, Plasma, and LED Lighting Technologies for a Hydrogen Fuel Cell Mobile Light (H 2 LT)

    DOE PAGES

    Miller, L. B.; Donohoe, S. P.; Jones, M. H.; ...

    2015-04-22

    This article reports on the testing and comparison of a prototype hydrogen fuel cell light tower (H2LT) and a conventional diesel-powered metal halide light trailer for use in road maintenance and construction activities. The prototype was originally outfitted with plasma lights and then with light-emitting diode (LED) luminaires. Light output and distribution, lighting energy efficiency (i.e., efficacy), power source thermal efficiency, and fuel costs are compared. The metal halide luminaires have 2.2 and 3.1 times more light output than the plasma and LED luminaires, respectively, but they require more power/lumen to provide that output. The LED luminaires have 1.6 timesmore » better light efficacy than either the metal halide or plasma luminaires. The light uniformity ratios produced by the plasma and LED towers are acceptable. The fuel cell thermal efficiency at the power required to operate the plasma lights is 48%, significantly higher than the diesel generator efficiency of 23% when operating the metal halide lights. Due to the increased efficiency of the fuel cell and the LED lighting, the fuel cost per lumen-hour of the H2LT is 62% of the metal halide diesel light tower assuming a kilogram of hydrogen is twice the cost of a gallon of diesel fuel.« less

  9. Performance and Exhaust Emissions in a Natural-Gas Fueled Dual-Fuel Engine

    NASA Astrophysics Data System (ADS)

    Shioji, Masahiro; Ishiyama, Takuji; Ikegami, Makoto; Mitani, Shinichi; Shibata, Hiroaki

    In order to establish the optimum fueling in a natural gas fueled dual fuel engine, experiments were done for some operational parameters on the engine performances and the exhaust emissions. The results show that the pilot fuel quantity should be increased and its injection timing should be advanced to suppress unburned hydrocarbon emission in the middle and low output range, while the quantity should be reduced and the timing retarded to avoid onset of knock at high loads. Unburned hydrocarbon emission and thermal efficiency are improved by avoiding too lean natural gas mixture by restricting intake charge air. However, the improvement is limited because the ignition of pilot fuel deteriorates with excessive throttling. It is concluded that an adequate combination of throttle control and equivalence ratio ensures low hydrocarbon emission and the thermal efficiency comparable to diesel operation.

  10. A study on emission characteristics of an EFI engine with ethanol blended gasoline fuels

    NASA Astrophysics Data System (ADS)

    He, Bang-Quan; Wang, Jian-Xin; Hao, Ji-Ming; Yan, Xiao-Guang; Xiao, Jian-Hua

    The effect of ethanol blended gasoline fuels on emissions and catalyst conversion efficiencies was investigated in a spark ignition engine with an electronic fuel injection (EFI) system. The addition of ethanol to gasoline fuel enhances the octane number of the blended fuels and changes distillation temperature. Ethanol can decrease engine-out regulated emissions. The fuel containing 30% ethanol by volume can drastically reduce engine-out total hydrocarbon emissions (THC) at operating conditions and engine-out THC, CO and NO x emissions at idle speed, but unburned ethanol and acetaldehyde emissions increase. Pt/Rh based three-way catalysts are effective in reducing acetaldehyde emissions, but the conversion of unburned ethanol is low. Tailpipe emissions of THC, CO and NO x have close relation to engine-out emissions, catalyst conversion efficiency, engine's speed and load, air/fuel equivalence ratio. Moreover, the blended fuels can decrease brake specific energy consumption.

  11. Influence of diligent disintegration on anaerobic biomass and performance of microbial fuel cell.

    PubMed

    Divyalakshmi, Palanisamy; Murugan, Devaraj; Rai, Chockalingam Lajapathi

    2017-12-01

    To enhance the performance of microbial fuel cells (MFC) by increasing the surface area of cathode and diligent mechanical disintegration of anaerobic biomass. Tannery effluent and anaerobic biomass were used. The increase in surface area of the cathode resulted in 78% COD removal, with the potential, current density, power density and coulombic efficiency of 675 mV, 147 mA m -2 , 33 mW m -2 and 3.5%, respectively. The work coupled with increased surface area of the cathode with diligent mechanical disintegration of the biomass, led to a further increase in COD removal of 82% with the potential, current density, power density and coulombic efficiency of 748 mV, 229 mA m -2 , 78 mW m -2 and 6% respectively. Mechanical disintegration of the biomass along with increased surface area of cathode enhances power generation in vertical MFC reactors using tannery effluent as fuel.

  12. Efficiency gain of solid oxide fuel cell systems by using anode offgas recycle - Results for a small scale propane driven unit

    NASA Astrophysics Data System (ADS)

    Dietrich, Ralph-Uwe; Oelze, Jana; Lindermeir, Andreas; Spitta, Christian; Steffen, Michael; Küster, Torben; Chen, Shaofei; Schlitzberger, Christian; Leithner, Reinhard

    The transfer of high electrical efficiencies of solid oxide fuel cells (SOFC) into praxis requires appropriate system concepts. One option is the anode-offgas recycling (AOGR) approach, which is based on the integration of waste heat using the principle of a chemical heat pump. The AOGR concept allows a combined steam- and dry-reforming of hydrocarbon fuel using the fuel cell products steam and carbon dioxide. SOFC fuel gas of higher quantity and quality results. In combination with internal reuse of waste heat the system efficiency increases compared to the usual path of partial oxidation (POX). The demonstration of the AOGR concept with a 300 Wel-SOFC stack running on propane required: a combined reformer/burner-reactor operating in POX (start-up) and AOGR modus; a hotgas-injector for anode-offgas recycling to the reformer; a dynamic process model; a multi-variable process controller; full system operation for experimental proof of the efficiency gain. Experimental results proof an efficiency gain of 18 percentage points (η·POX = 23%, η·AOGR = 41%) under idealized lab conditions. Nevertheless, further improvements of injector performance, stack fuel utilization and additional reduction of reformer reformer O/C ratio and system pressure drop are required to bring this approach into self-sustaining operation.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, L. B.; Donohoe, S. P.; Jones, M. H.

    This article reports on the testing and comparison of a prototype hydrogen fuel cell light tower (H2LT) and a conventional diesel-powered metal halide light trailer for use in road maintenance and construction activities. The prototype was originally outfitted with plasma lights and then with light-emitting diode (LED) luminaires. Light output and distribution, lighting energy efficiency (i.e., efficacy), power source thermal efficiency, and fuel costs are compared. The metal halide luminaires have 2.2 and 3.1 times more light output than the plasma and LED luminaires, respectively, but they require more power/lumen to provide that output. The LED luminaires have 1.6 timesmore » better light efficacy than either the metal halide or plasma luminaires. The light uniformity ratios produced by the plasma and LED towers are acceptable. The fuel cell thermal efficiency at the power required to operate the plasma lights is 48%, significantly higher than the diesel generator efficiency of 23% when operating the metal halide lights. Due to the increased efficiency of the fuel cell and the LED lighting, the fuel cost per lumen-hour of the H2LT is 62% of the metal halide diesel light tower assuming a kilogram of hydrogen is twice the cost of a gallon of diesel fuel.« less

  14. Alternative Fuel Vehicle Adoption Increases Fleet Gasoline Consumption and Greenhouse Gas Emissions under United States Corporate Average Fuel Economy Policy and Greenhouse Gas Emissions Standards.

    PubMed

    Jenn, Alan; Azevedo, Inês M L; Michalek, Jeremy J

    2016-03-01

    The United States Corporate Average Fuel Economy (CAFE) standards and Greenhouse Gas (GHG) Emission standards are designed to reduce petroleum consumption and GHG emissions from light-duty passenger vehicles. They do so by requiring automakers to meet aggregate criteria for fleet fuel efficiency and carbon dioxide (CO2) emission rates. Several incentives for manufacturers to sell alternative fuel vehicles (AFVs) have been introduced in recent updates of CAFE/GHG policy for vehicles sold from 2012 through 2025 to help encourage a fleet technology transition. These incentives allow automakers that sell AFVs to meet less-stringent fleet efficiency targets, resulting in increased fleet-wide gasoline consumption and emissions. We derive a closed-form expression to quantify these effects. We find that each time an AFV is sold in place of a conventional vehicle, fleet emissions increase by 0 to 60 t of CO2 and gasoline consumption increases by 0 to 7000 gallons (26,000 L), depending on the AFV and year of sale. Using projections for vehicles sold from 2012 to 2025 from the Energy Information Administration, we estimate that the CAFE/GHG AFV incentives lead to a cumulative increase of 30 to 70 million metric tons of CO2 and 3 to 8 billion gallons (11 to 30 billion liters) of gasoline consumed over the vehicles' lifetimes - the largest share of which is due to legacy GHG flex-fuel vehicle credits that expire in 2016. These effects may be 30-40% larger in practice than we estimate here due to optimistic laboratory vehicle efficiency tests used in policy compliance calculations.

  15. High Efficiency, Clean Combustion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donald Stanton

    2010-03-31

    Energy use in trucks has been increasing at a faster rate than that of automobiles within the U.S. transportation sector. According to the Energy Information Administration (EIA) Annual Energy Outlook (AEO), a 23% increase in fuel consumption for the U.S. heavy duty truck segment is expected between 2009 to 2020. The heavy duty vehicle oil consumption is projected to grow between 2009 and 2050 while light duty vehicle (LDV) fuel consumption will eventually experience a decrease. By 2050, the oil consumption rate by LDVs is anticipated to decrease below 2009 levels due to CAFE standards and biofuel use. In contrast,more » the heavy duty oil consumption rate is anticipated to double. The increasing trend in oil consumption for heavy trucks is linked to the vitality, security, and growth of the U.S. economy. An essential part of a stable and vibrant U.S. economy is a productive U.S. trucking industry. Studies have shown that the U.S. gross domestic product (GDP) is strongly correlated to freight transport. Over 90% of all U.S. freight tonnage is transported by diesel power and over 75% is transported by trucks. Given the vital role that the trucking industry plays in the economy, improving the efficiency of the transportation of goods was a central focus of the Cummins High Efficient Clean Combustion (HECC) program. In a commercial vehicle, the diesel engine remains the largest source of fuel efficiency loss, but remains the greatest opportunity for fuel efficiency improvements. In addition to reducing oil consumption and the dependency on foreign oil, this project will mitigate the impact on the environment by meeting US EPA 2010 emissions regulations. Innovation is a key element in sustaining a U.S. trucking industry that is competitive in global markets. Unlike passenger vehicles, the trucking industry cannot simply downsize the vehicle and still transport the freight with improved efficiency. The truck manufacturing and supporting industries are faced with numerous challenges to reduce oil consumption and greenhouse gases, meet stringent emissions regulations, provide customer value, and improve safety. The HECC program successfully reduced engine fuel consumption and greenhouse gases while providing greater customer valve. The US EPA 2010 emissions standard poses a significant challenge for developing clean diesel powertrains that meet the DoE Vehicle Technologies Multi-Year Program Plan (MYPP) for fuel efficiency improvement while remaining affordable. Along with exhaust emissions, an emphasis on heavy duty vehicle fuel efficiency is being driven by increased energy costs as well as the potential regulation of greenhouse gases. An important element of the success of meeting emissions while significantly improving efficiency is leveraging Cummins component technologies such as fuel injection equipment, aftertreatment, turbomahcinery, electronic controls, and combustion systems. Innovation in component technology coupled with system integration is enabling Cummins to move forward with the development of high efficiency clean diesel products with a long term goal of reaching a 55% peak brake thermal efficiency for the engine plus aftertreatment system. The first step in developing high efficiency clean products has been supported by the DoE co-sponsored HECC program. The objectives of the HECC program are: (1) To design and develop advanced diesel engine architectures capable of achieving US EPA 2010 emission regulations while improving the brake thermal efficiency by 10% compared to the baseline (a state of the art 2007 production diesel engine). (2) To design and develop components and subsystems (fuel systems, air handling, controls, etc) to enable construction and development of multi-cylinder engines. (3) To perform an assessment of the commercial viability of the newly developed engine technology. (4) To specify fuel properties conducive to improvements in emissions, reliability, and fuel efficiency for engines using high-efficiency clean combustion (HECC) technologies. To demonstrate the technology is compatible with B20 (biodiesel). (5) To further improve the brake thermal efficiency of the engine as integrated into the vehicle. To demonstrate robustness and commercial viability of the HECC engine technology as integrated into the vehicles. The Cummins HECC program supported the Advanced Combustion Engine R&D and Fuels Technology initiatives of the DoE Vehicle Technologies Multi-Year Program Plan (MYPP). In particular, the HECC project goals enabled the DoE Vehicle Technologies Program (VTP) to meet energy-efficiency improvement targets for advanced combustion engines suitable for passenger and commercial vehicles, as well as addressing technology barriers and R&D needs that are common between passenger and commercial vehicle applications of advanced combustion engines.« less

  16. Health Effects Associated with Inhalation Exposure to Diesel Emission Generated with and without CeO2 Nano Fuel Additive

    EPA Science Inventory

    Diesel exhaust (DE) exposure induces adverse cardiopulmonary effects. Addition of nano cerium (Ce) oxide additive to diesel fuel (DECe) increases fuel burning efficiency resulting in altered emission characteristics and potentially altered health effects. We hypothesized that inh...

  17. SMALL SCALE BIOMASS FUELED GAS TURBINE ENGINE

    EPA Science Inventory

    A new generation of small scale (less than 20 MWe) biomass fueled, power plants are being developed based on a gas turbine (Brayton cycle) prime mover. These power plants are expected to increase the efficiency and lower the cost of generating power from fuels such as wood. The n...

  18. Solid Oxide Fuel Cell/Gas Turbine Hybrid Cycle Technology for Auxiliary Aerospace Power

    NASA Technical Reports Server (NTRS)

    Steffen, Christopher J., Jr.; Freeh, Joshua E.; Larosiliere, Louis M.

    2005-01-01

    A notional 440 kW auxiliary power unit has been developed for 300 passenger commercial transport aircraft in 2015AD. A hybrid engine using solid-oxide fuel cell stacks and a gas turbine bottoming cycle has been considered. Steady-state performance analysis during cruise operation has been presented. Trades between performance efficiency and system mass were conducted with system specific energy as the discriminator. Fuel cell performance was examined with an area specific resistance. The ratio of fuel cell versus turbine power was explored through variable fuel utilization. Area specific resistance, fuel utilization, and mission length had interacting effects upon system specific energy. During cruise operation, the simple cycle fuel cell/gas turbine hybrid was not able to outperform current turbine-driven generators for system specific energy, despite a significant improvement in system efficiency. This was due in part to the increased mass of the hybrid engine, and the increased water flow required for on-board fuel reformation. Two planar, anode-supported cell design concepts were considered. Designs that seek to minimize the metallic interconnect layer mass were seen to have a large effect upon the system mass estimates.

  19. Thermodynamic Modeling and Dispatch of Distributed Energy Technologies including Fuel Cell -- Gas Turbine Hybrids

    NASA Astrophysics Data System (ADS)

    McLarty, Dustin Fogle

    Distributed energy systems are a promising means by which to reduce both emissions and costs. Continuous generators must be responsive and highly efficiency to support building dynamics and intermittent on-site renewable power. Fuel cell -- gas turbine hybrids (FC/GT) are fuel-flexible generators capable of ultra-high efficiency, ultra-low emissions, and rapid power response. This work undertakes a detailed study of the electrochemistry, chemistry and mechanical dynamics governing the complex interaction between the individual systems in such a highly coupled hybrid arrangement. The mechanisms leading to the compressor stall/surge phenomena are studied for the increased risk posed to particular hybrid configurations. A novel fuel cell modeling method introduced captures various spatial resolutions, flow geometries, stack configurations and novel heat transfer pathways. Several promising hybrid configurations are analyzed throughout the work and a sensitivity analysis of seven design parameters is conducted. A simple estimating method is introduced for the combined system efficiency of a fuel cell and a turbine using component performance specifications. Existing solid oxide fuel cell technology is capable of hybrid efficiencies greater than 75% (LHV) operating on natural gas, and existing molten carbonate systems greater than 70% (LHV). A dynamic model is calibrated to accurately capture the physical coupling of a FC/GT demonstrator tested at UC Irvine. The 2900 hour experiment highlighted the sensitivity to small perturbations and a need for additional control development. Further sensitivity studies outlined the responsiveness and limits of different control approaches. The capability for substantial turn-down and load following through speed control and flow bypass with minimal impact on internal fuel cell thermal distribution is particularly promising to meet local demands or provide dispatchable support for renewable power. Advanced control and dispatch heuristics are discussed using a case study of the UCI central plant. Thermal energy storage introduces a time horizon into the dispatch optimization which requires novel solution strategies. Highly efficient and responsive generators are required to meet the increasingly dynamic loads of today's efficient buildings and intermittent local renewable wind and solar power. Fuel cell gas turbine hybrids will play an integral role in the complex and ever-changing solution to local electricity production.

  20. Three Essays on National Oil Company Efficiency, Energy Demand and Transportation

    NASA Astrophysics Data System (ADS)

    Eller, Stacy L.

    This dissertation is composed of three separate essays in the field of energy economics. In the first paper, both data envelopment analysis and stochastic production frontier estimation are employed to provide empirical evidence on the revenue efficiency of national oil companies (NOCs) and private international oil companies (IOCs). Using a panel of 80 oil producing firms, the analysis suggests that NOCs are generally less efficient at generating revenue from a given resource base than IOCs, with some exceptions. Due to differing firm objectives, however, structural and institutional features may help explain much of the inefficiency. The second paper analyzes the relationship between economic development and the demand for energy. Energy consumption is modeled using panel data from 1990 to 2004 for 50 countries spanning all levels of development. We find the relationship between energy consumption and economic development corresponds to the structure of aggregate output and the nature of derived demand for electricity and direct-use fuels in each sector. Notably, the evidence of non-constant income elasticity of demand is much greater for electricity demand than for direct-use fuel consumption. In addition, we show that during periods of rapid economic development, one in which the short-term growth rate exceeds the long-run average, an increase in aggregate output is met by less energy-efficient capital. This is a result of capital being fixed in the short-term. As additional, more efficient capital stock is added to the production process, the short-term increase in energy intensity will diminish. In the third essay, we develop a system of equations to estimate a model of motor vehicle fuel consumption, vehicle miles traveled and implied fuel efficiency for the 67 counties of the State of Florida from 2001 to 2008. This procedure allows us to decompose the factors of fuel demand into elasticities of vehicle driving demand and fuel efficiency. Particular attention is paid to the influence of the price of fuel, the sale of goods and services, vehicle ownership and population density on each component of our model.

  1. Synthetic Biology and Microbial Fuel Cells: Towards Self-Sustaining Life Support Systems

    NASA Technical Reports Server (NTRS)

    Hogan, John Andrew

    2014-01-01

    NASA ARC and the J. Craig Venter Institute (JCVI) collaborated to investigate the development of advanced microbial fuels cells (MFCs) for biological wastewater treatment and electricity production (electrogenesis). Synthetic biology techniques and integrated hardware advances were investigated to increase system efficiency and robustness, with the intent of increasing power self-sufficiency and potential product formation from carbon dioxide. MFCs possess numerous advantages for space missions, including rapid processing, reduced biomass and effective removal of organics, nitrogen and phosphorus. Project efforts include developing space-based MFC concepts, integration analyses, increasing energy efficiency, and investigating novel bioelectrochemical system applications

  2. Alternate-Fueled Combustor-Sector Performance. Parts A and B; (A) Combustor Performance; (B) Combustor Emissions

    NASA Technical Reports Server (NTRS)

    Shouse, D. T.; Hendricks, R. C.; Lynch, A.; Frayne, C. W.; Stutrud, J. S.; Corporan, E.; Hankins, T.

    2012-01-01

    Alternate aviation fuels for military or commercial use are required to satisfy MIL-DTL-83133F(2008) or ASTM D 7566 (2010) standards, respectively, and are classified as "drop-in" fuel replacements. To satisfy legacy issues, blends to 50% alternate fuel with petroleum fuels are certified individually on the basis of processing and assumed to be feedstock agnostic. Adherence to alternate fuels and fuel blends requires "smart fueling systems" or advanced fuel-flexible systems, including combustors and engines, without significant sacrifice in performance or emissions requirements. This paper provides preliminary performance (Part A) and emissions and particulates (Part B) combustor sector data. The data are for nominal inlet conditions at 225 psia and 800 F (1.551 MPa and 700 K), for synthetic-paraffinic-kerosene- (SPK-) type (Fisher-Tropsch (FT)) fuel and blends with JP-8+100 relative to JP-8+100 as baseline fueling. Assessments are made of the change in combustor efficiency, wall temperatures, emissions, and luminosity with SPK of 0%, 50%, and 100% fueling composition at 3% combustor pressure drop. The performance results (Part A) indicate no quantifiable differences in combustor efficiency, a general trend to lower liner and higher core flow temperatures with increased FT fuel blends. In general, emissions data (Part B) show little differences, but with percent increase in FT-SPK-type fueling, particulate emissions and wall temperatures are less than with baseline JP-8. High-speed photography illustrates both luminosity and combustor dynamic flame characteristics.

  3. Professional Advanced Research and Analysis

    NASA Technical Reports Server (NTRS)

    Coulman, George A.

    1996-01-01

    Reported here is a summary of studies examining some problems in an energy conversion system. Regenerative fuel cell systems have been suggested for future manned space missions, but to meet the needed specific power requirements substantial improvements in the state-of-the-art technologies are needed. Similar improvements are needed, with emphasis on cost reduction in addition to higher conversion efficiency, for fuel cell systems that have potential for terrestrial applications. Polymer Electrolyte Membrane (PEM) fuel cells have been identified as promising candidates for development that would lead to the desired cost reduction and increased efficiency.

  4. Solid polymer electrolyte (SPE) fuel cell technology program, phase 1/1A. [design and fabrication

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A solid polymer electrolyte fuel cell was studied for the purpose of improving the characteristics of the technology. Several facets were evaluated, namely: (1) reduced fuel cell costs; (2) reduced fuel cell weight; (3) improved fuel cell efficiency; and (4) increased systems compatibility. Demonstrated advances were incorporated into a full scale hardware design. A single cell unit was fabricated. A substantial degree of success was demonstrated.

  5. A review of integration strategies for solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Zhang, Xiongwen; Chan, S. H.; Li, Guojun; Ho, H. K.; Li, Jun; Feng, Zhenping

    Due to increasing oil and gas demand, the depletion of fossil resources, serious global warming, efficient energy systems and new energy conversion processes are urgently needed. Fuel cells and hybrid systems have emerged as advanced thermodynamic systems with great promise in achieving high energy/power efficiency with reduced environmental loads. In particular, due to the synergistic effect of using integrated solid oxide fuel cell (SOFC) and classical thermodynamic cycle technologies, the efficiency of the integrated system can be significantly improved. This paper reviews different concepts/strategies for SOFC-based integration systems, which are timely transformational energy-related technologies available to overcome the threats posed by climate change and energy security.

  6. Distributed renewable power from biomass and other waste fuels

    NASA Astrophysics Data System (ADS)

    Lyons, Chris

    2012-03-01

    The world population is continually growing and putting a burden on our fossil fuels. These fossil fuels such as coal, oil and natural gas are used for a variety of critical needs such as power production and transportation. While significant environmental improvements have been made, the uses of these fuels are still causing significant ecological impacts. Coal power production efficiency has not improved over the past thirty years and with relatively cheap petroleum cost, transportation mileage has not improved significantly either. With the demand for these fossil fuels increasing, ultimately price will also have to increase. This presentation will evaluate alternative power production methods using localized distributed generation from biomass, municipal solid waste and other waste sources of organic materials. The presentation will review various gasification processes that produce a synthetic gas that can be utilized as a fuel source in combustion turbines for clean and efficient combined heat and power. This fuel source can produce base load renewable power. In addition tail gases from the production of bio-diesel and methanol fuels can be used to produce renewable power. Being localized can reduce the need for long and costly transmission lines making the production of fuels and power from waste a viable alternative energy source for the future.

  7. The status of Fast Ignition Realization Experiment (FIREX) and prospects for inertial fusion energy

    NASA Astrophysics Data System (ADS)

    Azechi, H.; FIREX Project Team

    2016-05-01

    Here we report recent progress for the fast ignition inertial confinement fusion demonstration. The fraction of low energy (< 1 MeV) component of the relativistic electron beam (REB), which efficiently heats the fuel core, increases by a factor of 4 by enhancing pulse contrast of heating laser and removing preformed plasma sources. Kilo-tesla magnetic field is studied to guide the diverging REB to the fuel core. The transport simulation of the REB accelerated by the heating laser in the externally applied and compressed magnetic field indicates that the REB can be guided efficiently to the fuel core. The integrated simulation shows > 4% of the heating efficiency and > 4 keV of ion temperature are achievable by using GEKKO-XII and LFEX, properly designed cone-fuel and an external magnetic field.

  8. Simulated Altitude Performance of Combustor of Westinghouse 19XB-1 Jet-Propulsion Engine

    NASA Technical Reports Server (NTRS)

    Childs, J. Howard; McCafferty, Richard J.

    1948-01-01

    A 19XB-1 combustor was operated under conditions simulating zero-ram operation of the 19XB-1 turbojet engine at various altitudes and engine speeds. The combustion efficiencies and the altitude operational limits were determined; data were also obtained on the character of the combustion, the pressure drop through the combustor, and the combustor-outlet temperature and velocity profiles. At altitudes about 10,000 feet below the operational limits, the flames were yellow and steady and the temperature rise through the combustor increased with fuel-air ratio throughout the range of fuel-air ratios investigated. At altitudes near the operational limits, the flames were blue and flickering and the combustor was sluggish in its response to changes in fuel flow. At these high altitudes, the temperature rise through the combustor increased very slowly as the fuel flow was increased and attained a maximum at a fuel-air ratio much leaner than the over-all stoichiometric; further increases in fuel flow resulted in decreased values of combustor temperature rise and increased resonance until a rich-limit blow-out occurred. The approximate operational ceiling of the engine as determined by the combustor, using AN-F-28, Amendment-3, fuel, was 30,400 feet at a simulated engine speed of 7500 rpm and increased as the engine speed was increased. At an engine speed of 16,000 rpm, the operational ceiling was approximately 48,000 feet. Throughout the range of simulated altitudes and engine speeds investigated, the combustion efficiency increased with increasing engine speed and with decreasing altitude. The combustion efficiency varied from over 99 percent at operating conditions simulating high engine speed and low altitude operation to less than 50 percent at conditions simulating operation at altitudes near the operational limits. The isothermal total pressure drop through the combustor was 1.82 times as great as the inlet dynamic pressure. As expected from theoretical considerations, a straight-line correlation was obtained when the ratio of the combustor total pressure drop to the combustor-inlet dynamic pressure was plotted as a function of the ratio of the combustor-inlet air density to the combustor-outlet gas density. The combustor-outlet temperature profiles were, in general, more uniform for runs in which the temperature rise was low and the combustion efficiency was high. Inspection of the combustor basket after 36 hours of operation showed very little deterioration and no appreciable carbon deposits.

  9. Transcriptome Changes in Douglas-fir (Pseudotsuga menziesii) Induced by Exposure to Diesel Emissions Generated with CeO2 Nanoparticle Fuel Additive

    EPA Science Inventory

    When cerium oxide nanoparticles are added to diesel fuel, fuel burning efficiency increases, producing emissions (DECe) with characteristics that differ from conventional diesel exhaust (DE). It has previously been shown that DECe induces more adverse pulmonary effects in rats on...

  10. Multiphase Nanocrystalline Ceramic Concept for Nuclear Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mecartnery, Martha; Graeve, Olivia; Patel, Maulik

    2017-05-25

    The goal of this research is to help develop new fuels for higher efficiency, longer lifetimes (higher burn-up) and increased accident tolerance in future nuclear reactors. Multiphase nanocrystalline ceramics will be used in the design of simulated advanced inert matrix nuclear fuel to provide for enhanced plasticity, better radiation tolerance, and improved thermal conductivity

  11. Developing an energy efficient steam reforming process to produce hydrogen from sulfur-containing fuels

    NASA Astrophysics Data System (ADS)

    Simson, Amanda

    Hydrogen powered fuel cells have the potential to produce electricity with higher efficiency and lower emissions than conventional combustion technology. In order to realize the benefits of a hydrogen fuel cell an efficient method to produce hydrogen is needed. Currently, over 90% of hydrogen is produced from the steam reforming of natural gas. However, for many applications including fuel cell vehicles, the use of a liquid fuel rather than natural gas is desirable. This work investigates the feasibility of producing hydrogen efficiently by steam reforming E85 (85% ethanol/15% gasoline), a commercially available sulfur-containing transportation fuel. A Rh-Pt/SiO2-ZrO2 catalyst has demonstrated good activity for the E85 steam reforming reaction. An industrial steam reforming process is often run less efficiently, with more water and at higher temperatures, in order to prevent catalyst deactivation. Therefore, it is desirable to develop a process that can operate without catalyst deactivation at more energy efficient conditions. In this study, the steam reforming of a sulfur-containing fuel (E85) was studied at near stoichiometric steam/carbon ratios and at 650C, conditions at which catalyst deactivation is normally measured. At these conditions the catalyst was found to be stable steam reforming a sulfur-free E85. However, the addition of low concentrations of sulfur significantly deactivated the catalyst. The presence of sulfur in the fuel caused catalyst deactivation by promoting ethylene which generates surface carbon species (coke) that mask catalytic sites. The amount of coke increased during time on stream and became increasingly graphitic. However, the deactivation due to both sulfur adsorption and coke formation was reversible with air treatment at 650°C. However, regenerations were found to reduce the catalyst life. Air regenerations produce exotherms on the catalyst surface that cause structural changes to the catalyst. During regenerations the accessibility of the precious metal particles is reduced which causes the catalyst to deactivate more rapidly during subsequent steam reforming cycles. Changes to the carrier morphology also occur at these conditions. Regenerating the catalyst before significant deactivation is measured can improve the stability of the catalyst. Thus a process with preemptive controlled air regenerations is proposed in order to run a steam reforming process with sulfur containing fuels.

  12. Method and apparatus for selectively controlling the speed of an engine

    DOEpatents

    Davis, Roy Inge

    2001-02-27

    A control assembly 12 for use within a vehicle 10 having an engine 14 and which selectively controls the speed of the engine 14 in order to increase fuel efficiency and to effect relatively smooth starting and stopping of the engine. Particularly, in one embodiment, control assembly 12 cooperatively operates with a starter/alternator assembly 20 and is adapted for use with hybrid vehicles employing a start/stop powertrain assembly, wherein fuel efficiency is increased by selectively stopping engine operation when the vehicle has stopped.

  13. Using Polymer Electrolyte Membrane Fuel Cells in a Hybrid Surface Ship Propulsion Plant to Increase Fuel Efficiency

    DTIC Science & Technology

    2010-06-01

    cell ( PEMFC ), and the phosphoric acid fuel cell (PAFC). 2.3.1 Solid Oxide Fuel Cells (SOFC) The first type of fuel cell considered is the SOFC. This...durability issues for use within a given application. 2.3.2 Polymer Electrolyte Membrane Fuel Cells ( PEMFC ) The PEMFC operates by passing hydrogen that has...cells. Some advantages of PEMFC operating at such low temperatures is that the fuel cell doesn’t require as meticulous of a support system infrastructure

  14. Process Developed for Fabricating Engineered Pore Structures for High- Fuel-Utilization Solid Oxide Fuel Cells

    NASA Technical Reports Server (NTRS)

    Sofie, Stephen W.; Cable, Thomas L.; Salamone, Sam M.

    2005-01-01

    Solid oxide fuel cells (SOFCs) have tremendous commercial potential because of their high efficiency, high energy density, and flexible fuel capability (ability to use fossil fuels). The drive for high-power-utilizing, ultrathin electrolytes (less than 10 microns), has placed an increased demand on the anode to provide structural support, yet allow sufficient fuel entry for sustained power generation. Concentration polarization, a condition where the fuel demand exceeds the supply, is evident in all commercial-based anode-supported cells, and it presents a significant roadblock to SOFC commercialization.

  15. Efficiency Assessment of Support Mechanisms for Wood-Fired Cogeneration Development in Estonia

    NASA Astrophysics Data System (ADS)

    Volkova, Anna; Siirde, Andres

    2010-01-01

    There are various support mechanisms for wood-fired cogeneration plants, which include both support for cogeneration development and stimulation for increasing consumption of renewable energy sources. The efficiency of these mechanisms is analysed in the paper. Overview of cogeneration development in Estonia is given with the focus on wood-fired cogeneration. Legislation acts and amendments, related to cogeneration support schemes, were described. For evaluating the efficiency of support mechanisms an indicator - fuel cost factor was defined. This indicator includes the costs related to the chosen fuel influence on the final electricity generation costs without any support mechanisms. The wood fuel cost factors were compared with the fuel cost factors for peat and oil shale. For calculating the fuel cost factors, various data sources were used. The fuel prices data were based on the average cost of fuels in Estonia for the period from 2000 till 2008. The data about operating and maintenance costs, related to the fuel type in the case of comparing wood fuel and oil shale fuel were taken from the CHP Balti and Eesti reports. The data about operating and maintenance costs used for peat and wood fuel comparison were taken from the Tallinn Elektrijaam reports. As a result, the diagrams were built for comparing wood and its competitive fuels. The decision boundary lines were constructed on the diagram for the situation, when no support was provided for wood fuels and for the situations, when various support mechanisms were provided during the last 12 years.

  16. Updates to Indiana fuel tax and registration revenue projections.

    DOT National Transportation Integrated Search

    2012-09-01

    Highway revenues both at the federal and state levels have failed to keep up with expected investments required for infrastructure : preservation and improvement. The reasons for this trend include the increasing fuel efficiency of vehicles, slowing ...

  17. Cost-effectiveness analysis of CNG urban taxi operations.

    DOT National Transportation Integrated Search

    1993-10-01

    Increased emphasis on energy efficiency and air quality has resulted in a number of state and federal initiatives : examining the use of alternative fuels for motor vehicles. Texas' program for alternate fuels includes compressed : natural gas (CNG)....

  18. Method and apparatus for fuel gas moisturization and heating

    DOEpatents

    Ranasinghe, Jatila; Smith, Raub Warfield

    2002-01-01

    Fuel gas is saturated with water heated with a heat recovery steam generator heat source. The heat source is preferably a water heating section downstream of the lower pressure evaporator to provide better temperature matching between the hot and cold heat exchange streams in that portion of the heat recovery steam generator. The increased gas mass flow due to the addition of moisture results in increased power output from the gas and steam turbines. Fuel gas saturation is followed by superheating the fuel, preferably with bottom cycle heat sources, resulting in a larger thermal efficiency gain compared to current fuel heating methods. There is a gain in power output compared to no fuel heating, even when heating the fuel to above the LP steam temperature.

  19. Maritime Fuel Cell Generator Project.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pratt, Joseph William

    Fuel costs and emissions in maritime ports are an opportunity for transportation energy efficiency improvement and emissions reduction efforts. Ocean-going vessels, harbor craft, and cargo handling equipment are still major contributors to air pollution in and around ports. Diesel engine costs continually increase as tighter criteria pollutant regulations come into effect and will continue to do so with expected introduction of carbon emission regulations. Diesel fuel costs will also continue to rise as requirements for cleaner fuels are imposed. Both aspects will increase the cost of diesel-based power generation on the vessel and on shore. Although fuel cells have beenmore » used in many successful applications, they have not been technically or commercially validated in the port environment. One opportunity to do so was identified in Honolulu Harbor at the Young Brothers Ltd. wharf. At this facility, barges sail regularly to and from neighbor islands and containerized diesel generators provide power for the reefers while on the dock and on the barge during transport, nearly always at part load. Due to inherent efficiency characteristics of fuel cells and diesel generators, switching to a hydrogen fuel cell power generator was found to have potential emissions and cost savings.« less

  20. Numerical Modeling of Fuel Injection into an Accelerating, Turning Flow with a Cavity

    NASA Astrophysics Data System (ADS)

    Colcord, Ben James

    Deliberate continuation of the combustion in the turbine passages of a gas turbine engine has the potential to increase the efficiency and the specific thrust or power of current gas-turbine engines. This concept, known as a turbine-burner, must overcome many challenges before becoming a viable product. One major challenge is the injection, mixing, ignition, and burning of fuel within a short residence time in a turbine passage characterized by large three-dimensional accelerations. One method of increasing the residence time is to inject the fuel into a cavity adjacent to the turbine passage, creating a low-speed zone for mixing and combustion. This situation is simulated numerically, with the turbine passage modeled as a turning, converging channel flow of high-temperature, vitiated air adjacent to a cavity. Both two- and three-dimensional, reacting and non-reacting calculations are performed, examining the effects of channel curvature and convergence, fuel and additional air injection configurations, and inlet conditions. Two-dimensional, non-reacting calculations show that higher aspect ratio cavities improve the fluid interaction between the channel flow and the cavity, and that the cavity dimensions are important for enhancing the mixing. Two-dimensional, reacting calculations show that converging channels improve the combustion efficiency. Channel curvature can be either beneficial or detrimental to combustion efficiency, depending on the location of the cavity and the fuel and air injection configuration. Three-dimensional, reacting calculations show that injecting fuel and air so as to disrupt the natural motion of the cavity stimulates three-dimensional instability and improves the combustion efficiency.

  1. Energy efficiency in buildings, industry and transportation

    NASA Astrophysics Data System (ADS)

    Milovanovic, Dobrica; Babic, Milun; Jovicic, Nebojsa; Gordic, Dusan

    2012-11-01

    This paper reviews the literature concerning the energy saving and outlines the importance of energy efficiency, particularly in three the most important areas: buildings, industry and transportation. Improving energy efficiency plays a crucial role in minimizing the societal and environmental impacts of economic growth and offers a powerful tool for achieving sustainable development by reducing the need for investment in new infrastructure, by cutting fuel costs, and by increasing competitiveness for businesses and welfare for consumers. It creates environmental benefits through reduced emissions of greenhouse gases and local air pollutants. It can offer social benefits in the form of increased energy security (through reduced dependence on fossil fuels, particularly when imported) and better energy services.

  2. Investigating the pros and cons of browns gas and varying EGR on combustion, performance, and emission characteristics of diesel engine.

    PubMed

    Thangaraj, Suja; Govindan, Nagarajan

    2018-01-01

    The significance of mileage to the fruitful operation of a trucking organization cannot be downplayed. Fuel is one of the biggest variable expenses in a trucking wander. An attempt is made in this research to improve the combustion efficiency of a diesel engine for better fuel economy by introducing hydroxy gas which is also called browns gas or HHO gas in the suction line, without compromising performance and emission. Brown's gas facilitates the air-fuel mixture to ignite faster and efficient combustion. By considering safety and handling issues in automobiles, HHO gas generation by electrolysis of water in the presence of sodium bicarbonate electrolytes (NaHCO 3 ) and usage was explored in this research work over compressed pure hydrogen, due to generation and capacity of immaculate hydrogen as of now confines the application in diesel engine operation. Brown's gas was utilized as a supplementary fuel in a single-cylinder, four-stroke compression ignition (CI) engine. Experiments were carried out on a constant speed engine at 1500 rpm, result shows at constant HHO flow rate of 0.73 liter per minute (LPM), brake specific fuel consumption (BSFC) decreases by 7% at idle load to 16% at full load, and increases brake thermal efficiency (BTE) by 8.9% at minimum load to 19.7% at full load. In the dual fuel (diesel +HHO) operation, CO emissions decreases by 19.4, 64.3, and 34.6% at 25, 50, and 75% load, respectively, and unburned hydrocarbon (UHC) emissions decreased by 11.3% at minimum load to 33.5% at maximum load at the expense of NO x emission increases by 1.79% at 75% load and 1.76% at full load than neat diesel operation. The negative impact of an increase in NO x is reduced by adding EGR. It was evidenced in this experimental work that the use of Brown's gas with EGR in the dual fuel mode in a diesel engine improves the fuel efficiency, performance, and reduces the exhaust emissions.

  3. Influence of nanodispersed modifications of magnetite powders on spray nozzle efficiency of diesel engine injector

    NASA Astrophysics Data System (ADS)

    Saidov, M. A.; Perekrestov, A. P.

    2017-10-01

    The paper presents data on the impact of new environmental requirements relating to the quality of diesel fuel on the anti-wear properties of fuel. Anti-wear additive is proposed as a material for increasing the tribotechnical characteristics of diesel fuel. This additive consists of diesel fuel with micelles contained in it, formed on the basis of molecules of solid plasticity lubrication of iron oxide (Fe3O4) - magnetite, and with surrounding molecules of oleic acid (C18H34O2). The additive has low shear resistance and increased lubricity of diesel fuel when this additive is introduced into it.

  4. Highly efficient conversion of terpenoid biomass to jet-fuel range cycloalkanes in a biphasic tandem catalytic process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xiaokun; Li, Teng; Tang, Kan

    2017-06-12

    The demand for bio-jet fuels to reduce carbon emissions is increasing substantially in the aviation sector, while the scarcity of high-density jet fuel components limits the use of bio-jet fuels in high-performance aircrafts compared with conventional jet fuels. In this paper, we report a novel biphasic tandem catalytic process (biTCP) for synthesizing cycloalkanes from renewable terpenoid biomass, such as 1,8-cineole. Multistep tandem reactions, including C–O ring opening by hydrolysis, dehydration, and hydrogenation, were carried out in the “one-pot” biTCP. 1,8-Cineole was efficiently converted to p-menthane at high yields (>99%) in the biTCP under mild reaction conditions. Finally, the catalytic reactionmore » mechanism is discussed.« less

  5. Potential of spark ignition engine for increased fuel efficiency. Final report, January-October 1978

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, T. Jr.; Cole, D.; Bolt, J.A.

    The objective of this study was to assess the potential of the spark ignition engine to deliver maximum fuel efficiency at 1981 Statutory Emission Standards in the 1983-1984 timeframe and beyond that to 1990. Based on the results of an extensive literature search, manufacturer's known product plans, and fuel economies of 1978 engines as a baseline, proposed methods of attaining fuel economy while complying with the future standards were ascertained. Methods of engine control optimization, engine design optimization as well as methods of varying engine parameters were considered. The potential improvements in fuel economy associated with these methods, singly andmore » in combination, were determined and are expressed as percentage changes of the fuel economy of the baseline engines. A summary of the principal conclusions are presented, followed by a description of the engine baseline reference, analysis and projection of fuel economy improvements, and a preliminary assessment of the impact of fuel economy benefits on manufacturing cost.« less

  6. Staged combustion with piston engine and turbine engine supercharger

    DOEpatents

    Fischer, Larry E [Los Gatos, CA; Anderson, Brian L [Lodi, CA; O'Brien, Kevin C [San Ramon, CA

    2006-05-09

    A combustion engine method and system provides increased fuel efficiency and reduces polluting exhaust emissions by burning fuel in a two-stage combustion system. Fuel is combusted in a piston engine in a first stage producing piston engine exhaust gases. Fuel contained in the piston engine exhaust gases is combusted in a second stage turbine engine. Turbine engine exhaust gases are used to supercharge the piston engine.

  7. Staged combustion with piston engine and turbine engine supercharger

    DOEpatents

    Fischer, Larry E [Los Gatos, CA; Anderson, Brian L [Lodi, CA; O'Brien, Kevin C [San Ramon, CA

    2011-11-01

    A combustion engine method and system provides increased fuel efficiency and reduces polluting exhaust emissions by burning fuel in a two-stage combustion system. Fuel is combusted in a piston engine in a first stage producing piston engine exhaust gases. Fuel contained in the piston engine exhaust gases is combusted in a second stage turbine engine. Turbine engine exhaust gases are used to supercharge the piston engine.

  8. Analysis of a fuel cell on-site integrated energy system for a residential complex

    NASA Technical Reports Server (NTRS)

    Simons, S. N.; Maag, W. L.

    1979-01-01

    The energy use and costs of the on-site integrated energy system (OS/IES) which provides electric power from an on-site power plant and recovers heat that would normally be rejected to the environment is compared to a conventional system purchasing electricity from a utility and a phosphoric acid fuel cell powered system. The analysis showed that for a 500-unit apartment complex a fuel OS/IES would be about 10% more energy conservative in terms of total coal consumption than a diesel OS/IES system or a conventional system. The fuel cell OS/IES capital costs could be 30 to 55% greater than the diesel OS/IES capital costs for the same life cycle costs. The life cycle cost of a fuel cell OS/IES would be lower than that for a conventional system as long as the cost of electricity is greater than $0.05 to $0.065/kWh. An analysis of several parametric combinations of fuel cell power plant and state-of-art energy recovery systems and annual fuel requirement calculations for four locations were made. It was shown that OS/IES component choices are a major factor in fuel consumption, with the least efficient system using 25% more fuel than the most efficient. Central air conditioning and heat pumps result in minimum fuel consumption while individual air conditioning units increase it, and in general the fuel cell of highest electrical efficiency has the lowest fuel consumption.

  9. A thermodynamic approach for selecting operating conditions in the design of reversible solid oxide cell energy systems

    NASA Astrophysics Data System (ADS)

    Wendel, Christopher H.; Kazempoor, Pejman; Braun, Robert J.

    2016-01-01

    Reversible solid oxide cell (ReSOC) systems are being increasingly considered for electrical energy storage, although much work remains before they can be realized, including cell materials development and system design optimization. These systems store electricity by generating a synthetic fuel in electrolysis mode and subsequently recover electricity by electrochemically oxidizing the stored fuel in fuel cell mode. System thermal management is improved by promoting methane synthesis internal to the ReSOC stack. Within this strategy, the cell-stack operating conditions are highly impactful on system performance and optimizing these parameters to suit both operating modes is critical to achieving high roundtrip efficiency. Preliminary analysis shows the thermoneutral voltage to be a useful parameter for analyzing ReSOC systems and the focus of this study is to quantitatively examine how it is affected by ReSOC operating conditions. The results reveal that the thermoneutral voltage is generally reduced by increased pressure, and reductions in temperature, fuel utilization, and hydrogen-to-carbon ratio. Based on the thermodynamic analysis, many different combinations of these operating conditions are expected to promote efficient energy storage. Pressurized systems can achieve high efficiency at higher temperature and fuel utilization, while non-pressurized systems may require lower stack temperature and suffer from reduced energy density.

  10. Study and program plan for improved heavy duty gas turbine engine ceramic component development

    NASA Technical Reports Server (NTRS)

    Helms, H. E.

    1977-01-01

    Fuel economy in a commercially viable gas turbine engine was demonstrated through use of ceramic materials. Study results show that increased turbine inlet and generator inlet temperatures, through the use of ceramic materials, contribute the greatest amount to achieving fuel economy goals. Improved component efficiencies show significant additional gains in fuel economy.

  11. Small global effect on terrestrial net primary production due to increased fossil fuel aerosol emissions from East Asia since the turn of the century.

    PubMed

    O'Sullivan, M; Rap, A; Reddington, C L; Spracklen, D V; Gloor, M; Buermann, W

    2016-08-16

    The global terrestrial carbon sink has increased since the start of this century at a time of growing carbon emissions from fossil fuel burning. Here we test the hypothesis that increases in atmospheric aerosols from fossil fuel burning enhanced the diffuse light fraction and the efficiency of plant carbon uptake. Using a combination of models, we estimate that at global scale changes in light regimes from fossil fuel aerosol emissions had only a small negative effect on the increase in terrestrial net primary production over the period 1998-2010. Hereby, the substantial increases in fossil fuel aerosol emissions and plant carbon uptake over East Asia were effectively canceled by opposing trends across Europe and North America. This suggests that if the recent increase in the land carbon sink would be causally linked to fossil fuel emissions, it is unlikely via the effect of aerosols but due to other factors such as nitrogen deposition or nitrogen-carbon interactions.

  12. Dynamic modeling and evaluation of solid oxide fuel cell - combined heat and power system operating strategies

    NASA Astrophysics Data System (ADS)

    Nanaeda, Kimihiro; Mueller, Fabian; Brouwer, Jacob; Samuelsen, Scott

    Operating strategies of solid oxide fuel cell (SOFC) combined heat and power (CHP) systems are developed and evaluated from a utility, and end-user perspective using a fully integrated SOFC-CHP system dynamic model that resolves the physical states, thermal integration and overall efficiency of the system. The model can be modified for any SOFC-CHP system, but the present analysis is applied to a hotel in southern California based on measured electric and heating loads. Analysis indicates that combined heat and power systems can be operated to benefit both the end-users and the utility, providing more efficient electric generation as well as grid ancillary services, namely dispatchable urban power. Design and operating strategies considered in the paper include optimal sizing of the fuel cell, thermal energy storage to dispatch heat, and operating the fuel cell to provide flexible grid power. Analysis results indicate that with a 13.1% average increase in price-of-electricity (POE), the system can provide the grid with a 50% operating range of dispatchable urban power at an overall thermal efficiency of 80%. This grid-support operating mode increases the operational flexibility of the SOFC-CHP system, which may make the technology an important utility asset for accommodating the increased penetration of intermittent renewable power.

  13. Small gas-turbine units for the power industry: Ways for improving the efficiency and the scale of implementation

    NASA Astrophysics Data System (ADS)

    Kosoi, A. S.; Popel', O. S.; Beschastnykh, V. N.; Zeigarnik, Yu. A.; Sinkevich, M. V.

    2017-10-01

    Small power units (<1 MW) see increasing application due to enhanced growth of the distributed power generation and smart power supply systems. They are usually used for feeding facilities whose connection to centralized networks involves certain problems of engineering or economical nature. Small power generation is based on a wide range of processes and primary sources, including renewable and local ones, such as nonconventional hydrocarbon fuel comprising associated gas, biogas, coalmine methane, etc. Characteristics of small gas-turbine units (GTU) that are most widely available on the world market are reviewed. The most promising lines for the development of the new generation of small GTUs are examined. Special emphasis is placed on the three lines selected for improving the efficiency of small GTUs: increasing the fuel efficiency, cutting down the maintenance cost, and integration with local or renewable power sources. It is demonstrated that, as to the specific fuel consumption, small GTUs of the new generation can have an efficiency 20-25% higher than those of the previous generation, require no maintenance between overhauls, and can be capable of efficient integration into intelligent electrical networks with power facilities operating on renewable or local power sources.

  14. Factors influencing efficient structure of fuel and energy complex

    NASA Astrophysics Data System (ADS)

    Sidorova, N. G.; Novikova, S. A.

    2017-10-01

    The development of the Russian fuel-energy complex is a priority for the national economic policy, and the Far East is a link between Russia and the Asia-Pacific region. Large-scale engineering of numerous resources of the Far East will force industrial development, increase living standard and strengthen Russia’s position in the global energy market. So, revealing the factors which influence rational structure of the fuel-energy complex is very urgent nowadays. With the use of depth analysis of development tendencies of the complex and its problems the authors show ways of its efficiency improvement.

  15. Hybrid fuel formulation and technology development

    NASA Technical Reports Server (NTRS)

    Dean, D. L.

    1995-01-01

    The objective was to develop an improved hybrid fuel with higher regression rate, a regression rate expression exponent close to 0.5, lower cost, and higher density. The approach was to formulate candidate fuels based on promising concepts, perform thermomechanical analyses to select the most promising candidates, develop laboratory processes to fabricate fuel grains as needed, fabricate fuel grains and test in a small lab-scale motor, select the best candidate, and then scale up and validate performance in a 2500 lbf scale, 11-inch diameter motor. The characteristics of a high performance fuel have been verified in 11-inch motor testing. The advanced fuel exhibits a 15% increase in density over an all hydrocarbon formulation accompanied by a 50% increase in regression rate, which when multiplied by the increase in density yields a 70% increase in fuel mass flow rate; has a significantly lower oxidizer-to-fuel (O/F) ratio requirement at 1.5; has a significantly decreased axial regression rate variation making for more uniform propellant flow throughout motor operation; is very clean burning; extinguishes cleanly and quickly; and burns with a high combustion efficiency.

  16. Investigation and Mitigation of Degradation in Hydrogen Fuel Cells

    NASA Astrophysics Data System (ADS)

    Mandal, Pratiti

    The ever increasing demand of petroleum in the transport sector has led to depletion of low cost/low risk reserves, increased level of pollution, and greenhouse gas emissions that take a heavy toll on the environment as well as the national economy. There is an urgent need to utilize alternative energy resources along with an efficient and affordable energy conversion system to arrest environmental degradation. Polymer electrolyte fuel cells (PEFCs) show great promise in this regard, they use hydrogen gas as a fuel that electrochemically reacts with air to produce electrical energy and water as the by product. In a fuel cell electric vehicle (FCEV), these zero tail pipe emission systems offer high efficiency and power density for medium-heavy duty and long range transportation. However, PEFC technology is currently challenged by its limited durability when subjected to harsh and adverse operating conditions and transients that arises during the normal course of vehicle operation. The hydrogen-based fuel cell power train for electric vehicles must achieve high durability while maintaining high power efficiency and fuel economy in order to equal the range and lifetime of an internal-combustion engine vehicle. The technology also needs to meet the cost targets to make FCEVs a commercial success. In this dissertation, one of the degradation phenomena that severely impede the durability of the system has been investigated. In scenarios where the cell becomes locally starved of hydrogen fuel, "cell reversal" occurs, which causes the cell to consume itself through carbon corrosion and eventually fail. Carbon corrosion in the anode disrupts the original structure of the electrode and can cause undesirable outcomes like catalyst particle migration, aggregation, loss of structural and chemical integrity. Through a comprehensive study using advanced electrochemical diagnostics and high resolution 3D imaging, a new understanding to extend PEFC life time and robustness by implementing engineered materials solutions has been achieved. This will eventually help in making fuel cell systems more efficient, durable and economically viable, in order to better harness clean energy resources.

  17. Impacts of Increased Diesel Penetration in the Transportation Sector, The

    EIA Publications

    1998-01-01

    Requested by the Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy. Analyzes the impacts on petroleum prices, demand, and refinery operations of a projected increase in demand for diesel fuel stemming from greater penetration of diesel-fueled engines in the light-duty vehicle fleet of the U.S. transportation sector.

  18. Future fuels and engines for railroad locomotives. Volume 1: Summary

    NASA Technical Reports Server (NTRS)

    Liddle, S. G.; Bonzo, B. B.; Purohit, G. P.; Stallkamp, J. A.

    1981-01-01

    The potential for reducing the dependence of railroads on petroleum fuel, particularly Diesel No. 2 was investigated. Two approaches are studied: (1) to determine how the use of Diesel No. 2 can be reduced through increased efficiency and conservation, and (2) to use fuels other than Diesel No. 2 both in Diesel and other types of engines. Because synthetic hydrocarbon fuels are particularly suited to medium speed diesel engines, the first commercial application of these fuels may be by the railroad industry.

  19. Routing strategies for efficient deployment of alternative fuel vehicles for freight delivery.

    DOT National Transportation Integrated Search

    2017-02-01

    With increasing concerns on environmental issues, recent research on Vehicle Routing Problems : (VRP) has added new factors such as greenhouse gas emissions and alternative fuel vehicles into : the models. In this report, we consider one such promisi...

  20. Effect of design changes and operating conditions on combustion and operational performance of a 28-inch diameter Ram-jet engine / T. B. Shillito and Shigeo Nakanishi

    NASA Technical Reports Server (NTRS)

    Shillito, T B; Nakanishi, Shigeo

    1952-01-01

    The results of an altitude test-chamber investigation of the effects of a number of design changes and operating conditions on altitude peformance of a 28-inch diameter ram jet engine are presented. Most of the investigation was for a simulated flight Mach number of 2.0 above the tropopause. Fuel-air distribution, gutter width, the presence of a pilot flame, cimbustion-chamber-inlet temperature, and exhaust-nozzle throat area were found to have significant effects on limits of combustion. Combustion efficiency increased with increasing combustion-chamber-inlet temperature and was adversely affected by an increase in the exhaust-nozzld area. Similiar lean limits of combustion were obtained for both Diesel fuel and normal heptane, but combustion efficiences obtained with Diesel fuel were lower than those obtained with normal heptane.

  1. Heating and Efficiency Comparison of a Fischer-Tropsch (FT) Fuel, JP-8+100, and Blends in a Three-Cup Combustor Sector

    NASA Technical Reports Server (NTRS)

    Thomas, Anna E.; Shouse, Dale T.; Neuroth, Craig; Lynch, Amy; Frayne, Charles W.; Stutrud, Jeffrey S.; Corporan, Edwin; Hankins, Terry; Saxena, Nikita T.; Hendricks, Robert C.

    2012-01-01

    In order to realize alternative fueling for military and commercial use, the industry has set forth guidelines that must be met by each fuel. These aviation fueling requirements are outlined in MIL-DTL-83133F(2008) or ASTM D 7566-Annex standards and are classified as drop-in fuel replacements. This paper provides combustor performance data for synthetic-paraffinic-kerosene- (SPK-) type (Fisher-Tropsch (FT)) fuel and blends with JP-8+100, relative to JP-8+100 as baseline fueling. Data were taken at various nominal inlet conditions: 75 psia (0.52 MPa) at 500 aF (533 K), 125 psia (0.86 MPa) at 625 aF (603 K), 175 psia (1.21 MPa) at 725 aF (658 K), and 225 psia (1.55 MPa) at 790 aF (694 K). Combustor performance analysis assessments were made for the change in flame temperatures, combustor efficiency, wall temperatures, and exhaust plane temperatures at 3%, 4%, and 5% combustor pressure drop (% P) for fuel:air ratios (F/A) ranging from 0.010 to 0.025. Significant general trends show lower liner temperatures and higher flame and combustor outlet temperatures with increases in FT fueling relative to JP-8+100 fueling. The latter affects both turbine efficiency and blade/vane life. In general, 100% SPK-FT fuel and blends with JP-8+100 produce less particulates and less smoke and have lower thermal impact on combustor hardware.

  2. Light and Heavy Tactical Wheeled Vehicle Fuel Consumption Evaluations Using Fuel Efficient Gear Oils (FEGO)

    DTIC Science & Technology

    2016-05-01

    UNCLASSIFIED LIGHT AND HEAVY TACTICAL WHEELED VEHICLE FUEL CONSUMPTION EVALUATIONS USING FUEL EFFICIENT GEAR OILS (FEGO) FINAL... HEAVY TACTICAL WHEELED VEHICLE FUEL CONSUMPTION EVALUATIONS USING FUEL EFFICIENT GEAR OILS (FEGO) FINAL REPORT TFLRF No. 477 by Adam C...August 2014 – March 2016 4. TITLE AND SUBTITLE LIGHT AND HEAVY TACTICAL WHEELED VEHICLE FUEL CONSUMPTION EVALUATIONS USING FEUL EFFICIENT GEAR OILS

  3. Planning Strategies for Transportation Fuel Consumption Reduction: An Evaluation of the Hawaii Clean Energy Initiative’s Transportation Plan

    DTIC Science & Technology

    2014-04-01

    technologies to improve fleet efficiency goals, and evaluate switching to biodiesel for trucks and vehicles without other alternatives (HCEI 2011...standards and biodiesel usage levels 2020 Goal 50 MGY of renewable fuels 28 working with industry to increase EV market penetration, and...Strategy Reduction Potential Purchase more efficient vehicles 10-20% Promote hybrid technologies 10-20% Evaluate biodiesel switching (freight) TBD

  4. Environmental implications of alternative-fueled automobiles: Air quality and greenhouse gas tradeoffs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MaClean, H.L.; Lave, L.B.

    The authors analyze alternative fuel-powerstrain options for internal combustion engine automobiles. Fuel/engine efficiency, energy use, pollutant discharges, and greenhouse gas emissions are estimated for spark and compression ignited, direct injected (DI), and indirect injected (II) engines fueled by conventional and reformulated gasoline, reformulated diesel, compressed natural gas (CNG), and alcohols. Since comparisons of fuels and technologies in dissimilar vehicles are misleading, the authors hold emissions level, range, vehicle size class, and style constant. At present, CNG vehicles have the best exhaust emissions performance while DI diesels have the worst. Compared to a conventional gasoline fueled II automobile, greenhouse gases couldmore » be reduced by 40% by a DI CNG automobile and by 25% by a DI diesel. Gasoline- and diesel-fueled automobiles are able to attain long ranges with little weight or fuel economy penalty. CNG vehicles have the highest penalty for increasing range, due to their heavy fuel storage systems, but are the most attractive for a 160-km range. DI engines, particularly diesels, may not be able to meet strict emissions standards, at least not without lowering efficiency.« less

  5. PM, carbon, and PAH emissions from a diesel generator fuelled with soy-biodiesel blends.

    PubMed

    Tsai, Jen-Hsiung; Chen, Shui-Jen; Huang, Kuo-Lin; Lin, Yuan-Chung; Lee, Wen-Jhy; Lin, Chih-Chung; Lin, Wen-Yinn

    2010-07-15

    Biodiesels have received increasing attention as alternative fuels for diesel engines and generators. This study investigates the emissions of particulate matter (PM), total carbon (TC), e.g., organic/elemental carbons, and polycyclic aromatic hydrocarbons (PAHs) from a diesel generator fuelled with soy-biodiesel blends. Among the tested diesel blends (B0, B10 (10 vol% soy-biodiesel), B20, and B50), B20 exhibited the lowest PM emission concentration despite the loads (except the 5 kW case), whereas B10 displayed lower PM emission factors when operating at 0 and 10 kW than the other fuel blends. The emission concentrations or factors of EC, OC, and TC were the lowest when B10 or B20 was used regardless of the loading. Under all tested loads, the average concentrations of total-PAHs emitted from the generator using the B10 and B20 were lower (by 38% and 28%, respectively) than those using pure petroleum diesel fuel (B0), while the emission factors of total-PAHs decreased with an increasing ratio of biodiesel to premium diesel. With an increasing loading, although the brake specific fuel consumption decreased, the energy efficiency increased despite the bio/petroleum diesel ratio. Therefore, soy-biodiesel is promising for use as an alternative fuel for diesel generators to increase energy efficiency and reduce the PM, carbon, and PAH emissions. 2010 Elsevier B.V. All rights reserved.

  6. Altitude Performance Characteristics of Tail-pipe Burner with Variable-area Exhaust Nozzle

    NASA Technical Reports Server (NTRS)

    Jansen, Emmert T; Thorman, H Carl

    1950-01-01

    An investigation was conducted in the NACA Lewis altitude wind tunnel to determine effect of altitude and flight Mach number on performance of tail-pipe burner equipped with variable-area exhaust nozzle and installed on full-scale turbojet engine. At a given flight Mach number, with constant exhaust-gas and turbine-outlet temperatures, increasing altitude lowered the tail-pipe combustion efficiency and raised the specific fuel consumption while the augmented thrust ratio remained approximately constant. At a given altitude, increasing flight Mach number raised the combustion efficiency and augmented thrust ratio and lowered the specific fuel consumption.

  7. Odor intensity and characterization studies of exhaust from a turbojet engine combustor

    NASA Technical Reports Server (NTRS)

    Butze, H. F.; Kendall, D. A.

    1973-01-01

    Sensory odor tests of the exhaust from a turbojet combustor operating at simulated idle conditions were made by a human panel sniffing diluted exhaust gas. Simultaneously, samples of undiluted exhaust gas were collected on adsorbent substrates, subsequently removed by solvent flushing, and analyzed chemically by liquid chromatographic methods. The concentrations of the principal malodorous species, the aromatic (unburned fuel-related) and the oxygenated (partially burned fuel) fractions, as determined chromatographically, correlated well with the intensity of the odor as determined by sniffing. Odor intensity increased as combustion efficiency decreased. Combustor modifications which increased combustion efficiency decreased odor intensity.

  8. A fuel treatment reduces fire severity and increases suppression efficiency in a mixed conifer forest

    Treesearch

    Jason J. Moghaddas; Larry Craggs

    2007-01-01

    Fuel treatments are being implemented on public and private lands across the western United States. Although scientists and managers have an understanding of how fuel treatments can modify potential fire behaviour under modelled conditions, there is limited information on how treatments perform under real wildfire conditions in Sierran mixed conifer forests. The Bell...

  9. Ultra Efficient Engine Technology Systems Integration and Environmental Assessment

    NASA Technical Reports Server (NTRS)

    Daggett, David L.; Geiselhart, Karl A. (Technical Monitor)

    2002-01-01

    This study documents the design and analysis of four types of advanced technology commercial transport airplane configurations (small, medium large and very large) with an assumed technology readiness date of 2010. These airplane configurations were used as a platform to evaluate the design concept and installed performance of advanced technology engines being developed under the NASA Ultra Efficient Engine Technology (UEET) program. Upon installation of the UEET engines onto the UEET advanced technology airframes, the small and medium airplanes both achieved an additional 16% increase in fuel efficiency when using GE advanced turbofan engines. The large airplane achieved an 18% increase in fuel efficiency when using the P&W geared fan engine. The very large airplane (i.e. BWB), also using P&W geared fan engines, only achieved an additional 16% that was attributed to a non-optimized airplane/engine combination.

  10. Gasification of refinery sludge in an updraft reactor for syngas production

    NASA Astrophysics Data System (ADS)

    Ahmed, Reem; Sinnathambi, Chandra M.; Eldmerdash, Usama

    2014-10-01

    The study probes into the investigation on gasification of dry refinery sludge. The details of the study includes; influence of operation time, oxidation temperature and equivalence ratios on carbon gas conversion rate, gasification efficiency, heating value and fuel gas yield are presented. The results show that, the oxidation temperature increased sharply up to 858°C as the operating time increased up to 36 min then bridging occurred at 39 min which cause drop in reaction temperature up to 819 °C. This bridging was found to affect also the syngas compositions, meanwhile as the temperature decreased the CO, H2, CH4 compositions are also found to be decreases. Higher temperature catalyzed the reduction reaction (CO2+ C = 450 2CO ), and accelerated the carbon conversion and gasification efficiencies, resulted in more solid fuel is converted to a high heating value gas fuel. The equivalence ratio of 0.195 was found to be the optimum value for carbon conversion and cold gas efficiencies, high heating value of gas, and fuel gas yield to reach their maximum values of 96.1 % and 53.7 %, 5.42 MJ Nm-3 of, and 2.5 Nm3 kg-1 respectively.

  11. Bioelectricity production from food waste leachate using microbial fuel cells: effect of NaCl and pH.

    PubMed

    Li, Xiao Min; Cheng, Ka Yu; Wong, Jonathan W C

    2013-12-01

    Microbial fuel cells are a promising technology for simultaneous treatment and energy recovery from food waste leachate. This study evaluates the effects of NaCl (0-150 mM) and pH on the treatment of food waste leachate using microbial fuel cells. The food waste leachate amended with 100mM NaCl enabled the highest maximum power density (1000 mW/m(3)) and lowest internal resistance (371Ω). Increasing the anodic pH gradually from acidic to alkaline conditions (pH 4-9) resulted in a gradual increase in maximum power density to 9956 mW/m(3) and decrease in internal cell resistance to 35.3Ω. The coulombic efficiency obtained under acidic conditions was only 17.8%, but increased significantly to 60.0% and 63.4% in the neutral and alkaline pH's MFCs, respectively. Maintaining a narrow pH window (6.3-7.6) was essential for efficient bioelectricity production and COD removal using microbial fuel cells for the treatment of food waste leachate. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Alternative Fuels Data Center

    Science.gov Websites

    technologies and operational practices which increase fuel efficiency and reduce emissions from goods movement . EPA provides partners with performance benchmarking tools, fleet management best practices, technology is working with partners to test and verify advanced technologies and operational practices that save

  13. Multiphysics Modeling of a Single Channel in a Nuclear Thermal Propulsion Grooved Ring Fuel Element

    NASA Technical Reports Server (NTRS)

    Kim, Tony; Emrich, William J., Jr.; Barkett, Laura A.; Mathias, Adam D.; Cassibry, Jason T.

    2013-01-01

    In the past, fuel rods have been used in nuclear propulsion applications. A new fuel element concept that reduces weight and increases efficiency uses a stack of grooved discs. Each fuel element is a flat disc with a hole on the interior and grooves across the top. Many grooved ring fuel elements for use in nuclear thermal propulsion systems have been modeled, and a single flow channel for each design has been analyzed. For increased efficiency, a fuel element with a higher surface-area-to-volume ratio is ideal. When grooves are shallower, i.e., they have a lower surface area, the results show that the exit temperature is higher. By coupling the physics of turbulence with those of heat transfer, the effects on the cooler gas flowing through the grooves of the thermally excited solid can be predicted. Parametric studies were done to show how a pressure drop across the axial length of the channels will affect the exit temperatures of the gas. Geometric optimization was done to show the behaviors that result from the manipulation of various parameters. Temperature profiles of the solid and gas showed that more structural optimization is needed to produce the desired results. Keywords: Nuclear Thermal Propulsion, Fuel Element, Heat Transfer, Computational Fluid Dynamics, Coupled Physics Computations, Finite Element Analysis

  14. Increasing efficiency of TPP fuel suply system due to LNG usage as a reserve fuel

    NASA Astrophysics Data System (ADS)

    Zhigulina, E. V.; Khromchenkov, V. G.; Mischner, J.; Yavorovsky, Y. V.

    2017-11-01

    The paper is devoted to the analysis of fuel economy efficiency increase possibility at thermal power plants (TPP) due to the transition from the use of black oil as a reserve fuel to liquefied natural gas (LNG) produced at the very station. The work represents the technical solution that allows to generate, to store and to use LNG as the reserve fuel TPP. The annual amounts of black oil and natural gas that are needed to ensure the reliable operation of several power plants in Russia were assessed. Some original schemes of the liquefied natural gas production and storing as alternative reserve fuel generated by means of application of expansion turbines are proposed. The simulation results of the expansion process for two compositions of natural gas with different contents of high-boiling fractions are presented. The dependences of the condensation outlet and power generation from the flow initial parameters and from the natural gas composition are obtained and analysed. It was shown that the choice of a particular circuit design depends primarily on the specific natural gas composition. The calculations have proved the effectiveness and the technical ability to use liquefied natural gas as a backup fuel at reconstructed and newly designed gas power station.

  15. Reforming options for hydrogen production from fossil fuels for PEM fuel cells

    NASA Astrophysics Data System (ADS)

    Ersoz, Atilla; Olgun, Hayati; Ozdogan, Sibel

    PEM fuel cell systems are considered as a sustainable option for the future transport sector in the future. There is great interest in converting current hydrocarbon based transportation fuels into hydrogen rich gases acceptable by PEM fuel cells on-board of vehicles. In this paper, we compare the results of our simulation studies for 100 kW PEM fuel cell systems utilizing three different major reforming technologies, namely steam reforming (SREF), partial oxidation (POX) and autothermal reforming (ATR). Natural gas, gasoline and diesel are the selected hydrocarbon fuels. It is desired to investigate the effect of the selected fuel reforming options on the overall fuel cell system efficiency, which depends on the fuel processing, PEM fuel cell and auxiliary system efficiencies. The Aspen-HYSYS 3.1 code has been used for simulation purposes. Process parameters of fuel preparation steps have been determined considering the limitations set by the catalysts and hydrocarbons involved. Results indicate that fuel properties, fuel processing system and its operation parameters, and PEM fuel cell characteristics all affect the overall system efficiencies. Steam reforming appears as the most efficient fuel preparation option for all investigated fuels. Natural gas with steam reforming shows the highest fuel cell system efficiency. Good heat integration within the fuel cell system is absolutely necessary to achieve acceptable overall system efficiencies.

  16. High-Octane Mid-Level Ethanol Blend Market Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Caley; Newes, Emily; Brooker, Aaron

    2015-12-01

    The United States government has been promoting increased use of biofuels, including ethanol from non-food feedstocks, through policies contained in the Energy Independence and Security Act of 2007. The objective is to enhance energy security, reduce greenhouse gas (GHG) emissions, and provide economic benefits. However, the United States has reached the ethanol blend wall, where more ethanol is produced domestically than can be blended into standard gasoline. Nearly all ethanol is blended at 10 volume percent (vol%) in gasoline. At the same time, the introduction of more stringent standards for fuel economy and GHG tailpipe emissions is driving research tomore » increase the efficiency of spark ignition (SI) engines. Advanced strategies for increasing SI engine efficiency are enabled by higher octane number (more highly knock-resistant) fuels. Ethanol has a research octane number (RON) of 109, compared to typical U.S. regular gasoline at 91-93. Accordingly, high RON ethanol blends containing 20 vol% to 40 vol% ethanol are being extensively studied as fuels that enable design of more efficient engines. These blends are referred to as high-octane fuel (HOF) in this report. HOF could enable dramatic growth in the U.S. ethanol industry, with consequent energy security and GHG emission benefits, while also supporting introduction of more efficient vehicles. HOF could provide the additional ethanol demand necessary for more widespread deployment of cellulosic ethanol. However, the potential of HOF can be realized only if it is adopted by the motor fuel marketplace. This study assesses the feasibility, economics, and logistics of this adoption by the four required participants--drivers, vehicle manufacturers, fuel retailers, and fuel producers. It first assesses the benefits that could motivate these participants to adopt HOF. Then it focuses on the drawbacks and barriers that these participants could face when adopting HOF and proposes strategies--including incentives and policies--to curtail these barriers. These curtailment strategies are grouped into scenarios that are then modeled to investigate their feasibility and explore the dynamics involved in HOF deployment. This report does not advocate for or against incentives or policies, but presents simulations of their effects.« less

  17. We have just begun to create efficient transport aircraft

    NASA Technical Reports Server (NTRS)

    Maglieri, D. J.; Dollyhigh, S. M.

    1982-01-01

    Factors affecting the cost-effectiveness and economics of the air transportation industry are reviewed. The delivery of more fuel-efficient aircraft and eventual total replacement in the 1990's by fleets of advanced aircraft are seen to offset rising fuel costs. Better airport operations are perceived to eliminate fuel-costly delays due to overcrowded runways, lack of available carriers, and maintenance of aircraft in holding patterns. Noise reduction research will lower the lawsuit costs from noise pollution, and the introduction of advanced turbofans for long, short, and medium range flights, advanced commuter planes, and advanced SSTs offering projected 50% increases in current aircraft efficiencies are seen to be limited only by the airlines' ability to provide purchase financing, rather than by a lack of available new technology.

  18. Key challenges and recent progress in batteries, fuel cells, and hydrogen storage for clean energy systems

    NASA Astrophysics Data System (ADS)

    Chalk, Steven G.; Miller, James F.

    Reducing or eliminating the dependency on petroleum of transportation systems is a major element of US energy research activities. Batteries are a key enabling technology for the development of clean, fuel-efficient vehicles and are key to making today's hybrid electric vehicles a success. Fuel cells are the key enabling technology for a future hydrogen economy and have the potential to revolutionize the way we power our nations, offering cleaner, more efficient alternatives to today's technology. Additionally fuel cells are significantly more energy efficient than combustion-based power generation technologies. Fuel cells are projected to have energy efficiency twice that of internal combustion engines. However before fuel cells can realize their potential, significant challenges remain. The two most important are cost and durability for both automotive and stationary applications. Recent electrocatalyst developments have shown that Pt alloy catalysts have increased activity and greater durability than Pt catalysts. The durability of conventional fluorocarbon membranes is improving, and hydrocarbon-based membranes have also shown promise of equaling the performance of fluorocarbon membranes at lower cost. Recent announcements have also provided indications that fuel cells can start from freezing conditions without significant deterioration. Hydrogen storage systems for vehicles are inadequate to meet customer driving range expectations (>300 miles or 500 km) without intrusion into vehicle cargo or passenger space. The United States Department of Energy has established three centers of Excellence for hydrogen storage materials development. The centers are focused on complex metal hydrides that can be regenerated onboard a vehicle, chemical hydrides that require off-board reprocessing, and carbon-based storage materials. Recent developments have shown progress toward the 2010 DOE targets. In addition DOE has established an independent storage material testing center to verify storage capacity of promising materials. These developments point to a viable path to achieving the DOE/FreedomCAR cost and performance goals. The transition to hydrogen-powered fuel cell vehicles will occur over the next 10-15 years. In the interim, fossil fuel consumption will be reduced by increased penetration of battery/gasoline hybrid cars.

  19. Fuel efficient stoves for the poorest two billion

    NASA Astrophysics Data System (ADS)

    Gadgil, Ashok

    2012-03-01

    About 2 billion people cook their daily meals on generally inefficient, polluting, biomass cookstoves. The fuels include twigs and leaves, agricultural waste, animal dung, firewood, and charcoal. Exposure to resulting smoke leads to acute respiratory illness, and cancers, particularly among women cooks, and their infant children near them. Resulting annual mortality estimate is almost 2 million deaths, higher than that from malaria or tuberculosis. There is a large diversity of cooking methods (baking, boiling, long simmers, brazing and roasting), and a diversity of pot shapes and sizes in which the cooking is undertaken. Fuel-efficiency and emissions depend on the tending of the fire (and thermal power), type of fuel, stove characteristics, and fit of the pot to the stove. Thus, no one perfect fuel-efficient low-emitting stove can suit all users. Affordability imposes a further severe constraint on the stove design. For various economic strata within the users, a variety of stove designs may be appropriate and affordable. In some regions, biomass is harvested non-renewably for cooking fuel. There is also increasing evidence that black carbon emitted from stoves is a significant contributor to atmospheric forcing. Thus improved biomass stoves can also help mitigate global climate change. The speaker will describe specific work undertaken to design, develop, test, and disseminate affordable fuel-efficient stoves for internally displaced persons (IDPs) of Darfur, Sudan, where the IDPs face hardship, humiliation, hunger, and risk of sexual assault owing to their dependence on local biomass for cooking their meals.

  20. Future fuels and engines for railroad locomotives. Volume 2: Technical document

    NASA Technical Reports Server (NTRS)

    Liddle, S. G.

    1981-01-01

    The potential for reducing the dependence of railroads on petroleum fuel, particularly Diesel No. 2 was studied. The study takes two approaches: to determine the use of Diesel No. 2 can be reduced through increased efficiency and conservation, and to use fuels other than Diesel No. 2 both in Diesel and other types of engines. Synthetic hydrocarbon fuels, probably derived from oil shale, will be needed if present diesel-electric locomotives continue to be used.

  1. CIR MDCA replacement

    NASA Image and Video Library

    2015-05-13

    ISS043E190395 (05/13/2015) --- NASA astronaut Terry Virts prepares the Multi-user Droplet Combustion Apparatus from inside the Combustion Integrated Rack for upcoming runs of the FLame Extinguishment Experiment, or FLEX-2. The FLEX-2 experiment studies how quickly fuel burns, the conditions required for soot to form, and how mixtures of fuels evaporate before burning. Understanding these processes could lead to the production of a safer spacecraft as well as increased fuel efficiency for engines using liquid fuel on Earth.

  2. Intergenerational equity and conservation

    NASA Technical Reports Server (NTRS)

    Otoole, R. P.; Walton, A. L.

    1980-01-01

    The issue of integenerational equity in the use of natural resources is discussed in the context of coal mining conversion. An attempt to determine if there is a clear-cut benefit to future generations in setting minimum coal extraction efficiency standards in mining is made. It is demonstrated that preserving fossil fuels beyond the economically efficient level is not necessarily beneficial to future generations even in terms of their own preferences. Setting fossil fuel conservation targets for intermediate products (i.e. energy) may increase the quantities of fossil fuels available to future generations and hence lower the costs, but there may be serious disadvantages to future generations as well. The use of relatively inexpensive fossil fuels in this generation may result in more infrastructure development and more knowledge production available to future generations. The value of fossil fuels versus these other endowments in the future depends on many factors which cannot possibly be evaluated at present. Since there is no idea of whether future generations are being helped or harmed, it is recommended that integenerational equity not be used as a factor in setting coal mine extraction efficiency standards, or in establishing requirements.

  3. Alternative Fuels Data Center: County Fleet Goes Big on Idle Reduction,

    Science.gov Websites

    Ethanol Use, Fuel Efficiency County Fleet Goes Big on Idle Reduction, Ethanol Use, Fuel , Ethanol Use, Fuel Efficiency on Facebook Tweet about Alternative Fuels Data Center: County Fleet Goes Big on Idle Reduction, Ethanol Use, Fuel Efficiency on Twitter Bookmark Alternative Fuels Data Center

  4. Marginal abatement cost curve for nitrogen oxides incorporating controls, renewable electricity, energy efficiency, and fuel switching.

    PubMed

    Loughlin, Daniel H; Macpherson, Alexander J; Kaufman, Katherine R; Keaveny, Brian N

    2017-10-01

    A marginal abatement cost curve (MACC) traces out the relationship between the quantity of pollution abated and the marginal cost of abating each additional unit. In the context of air quality management, MACCs are typically developed by sorting control technologies by their relative cost-effectiveness. Other potentially important abatement measures such as renewable electricity, energy efficiency, and fuel switching (RE/EE/FS) are often not incorporated into MACCs, as it is difficult to quantify their costs and abatement potential. In this paper, a U.S. energy system model is used to develop a MACC for nitrogen oxides (NO x ) that incorporates both traditional controls and these additional measures. The MACC is decomposed by sector, and the relative cost-effectiveness of RE/EE/FS and traditional controls are compared. RE/EE/FS are shown to have the potential to increase emission reductions beyond what is possible when applying traditional controls alone. Furthermore, a portion of RE/EE/FS appear to be cost-competitive with traditional controls. Renewable electricity, energy efficiency, and fuel switching can be cost-competitive with traditional air pollutant controls for abating air pollutant emissions. The application of renewable electricity, energy efficiency, and fuel switching is also shown to have the potential to increase emission reductions beyond what is possible when applying traditional controls alone.

  5. Adelphi-Goddard emulsified fuel project. [using water/oil emulsions

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Thermal efficiency and particle emissions were studied using water/oil emulsions. These studies were done using number 2 and number 6 fuel oil. The number 6 oil had a sulfur content greater than one percent and experiments were conducted to remove the sulfur dioxide from the stack gases. Test findings include: (1) emulsion effected a reduction in soot at a low excess air levels; (2) a steam atomizing system will produce a water/oil emulsion. The fuel in the study was emulsified in the steam atomization process, hence, pre-emulsification did not yield a dramatic reduction in soot or an increase in thermal efficiency.

  6. An Overview of Power Electronics Applications in Fuel Cell Systems: DC and AC Converters

    PubMed Central

    Ali, M. S.; Kamarudin, S. K.; Masdar, M. S.; Mohamed, A.

    2014-01-01

    Power electronics and fuel cell technologies play an important role in the field of renewable energy. The demand for fuel cells will increase as fuel cells become the main power source for portable applications. In this application, a high-efficiency converter is an essential requirement and a key parameter of the overall system. This is because the size, cost, efficiency, and reliability of the overall system for portable applications primarily depend on the converter. Therefore, the selection of an appropriate converter topology is an important and fundamental aspect of designing a fuel cell system for portable applications as the converter alone plays a major role in determining the overall performance of the system. This paper presents a review of power electronics applications in fuel cell systems, which include various topology combinations of DC converters and AC inverters and which are primarily used in fuel cell systems for portable or stand-alone applications. This paper also reviews the switching techniques used in power conditioning for fuel cell systems. Finally, this paper addresses the current problem encountered with DC converters and AC inverter. PMID:25478581

  7. An overview of power electronics applications in fuel cell systems: DC and AC converters.

    PubMed

    Ali, M S; Kamarudin, S K; Masdar, M S; Mohamed, A

    2014-01-01

    Power electronics and fuel cell technologies play an important role in the field of renewable energy. The demand for fuel cells will increase as fuel cells become the main power source for portable applications. In this application, a high-efficiency converter is an essential requirement and a key parameter of the overall system. This is because the size, cost, efficiency, and reliability of the overall system for portable applications primarily depend on the converter. Therefore, the selection of an appropriate converter topology is an important and fundamental aspect of designing a fuel cell system for portable applications as the converter alone plays a major role in determining the overall performance of the system. This paper presents a review of power electronics applications in fuel cell systems, which include various topology combinations of DC converters and AC inverters and which are primarily used in fuel cell systems for portable or stand-alone applications. This paper also reviews the switching techniques used in power conditioning for fuel cell systems. Finally, this paper addresses the current problem encountered with DC converters and AC inverter.

  8. Diesel engine performance and emissions with fuels derived from waste tyres.

    PubMed

    Verma, Puneet; Zare, Ali; Jafari, Mohammad; Bodisco, Timothy A; Rainey, Thomas; Ristovski, Zoran D; Brown, Richard J

    2018-02-06

    The disposal of waste rubber and scrap tyres is a significant issue globally; disposal into stockpiles and landfill poses a serious threat to the environment, in addition to creating ecological problems. Fuel production from tyre waste could form part of the solution to this global issue. Therefore, this paper studies the potential of fuels derived from waste tyres as alternatives to diesel. Production methods and the influence of reactor operating parameters (such as reactor temperature and catalyst type) on oil yield are outlined. These have a major effect on the performance and emission characteristics of diesel engines when using tyre derived fuels. In general, tyre derived fuels increase the brake specific fuel consumption and decrease the brake thermal efficiency. The majority of studies indicate that NOx emissions increase with waste tyre derived fuels; however, a few studies have reported the opposite trend. A similar increasing trend has been observed for CO and CO 2 emissions. Although most studies reported an increase in HC emission owing to lower cetane number and higher density, some studies have reported reduced HC emissions. It has been found that the higher aromatic content in such fuels can lead to increased particulate matter emissions.

  9. Investigation on the gaseous and particulate emissions of a compression ignition engine fueled with diesel-dimethyl carbonate blends.

    PubMed

    Cheung, C S; Zhu, Ruijun; Huang, Zuohua

    2011-01-01

    The effect of dimethyl carbonate (DMC) on the gaseous and particulate emissions of a diesel engine was investigated using Euro V diesel fuel blended with different proportions of DMC. Combustion analysis shows that, with the blended fuel, the ignition delay and the heat release rate in the premixed combustion phase increase, while the total combustion duration and the fuel consumed in the diffusion combustion phase decrease. Compared with diesel fuel, with an increase of DMC in the blended fuel, the brake thermal efficiency is slightly improved but the brake specific fuel consumption increases. On the emission side, CO increases significantly at low engine load but decreases at high engine load while HC decreases slightly. NO(x) reduces slightly but the reduction is not statistically significant, while NO(2) increases slightly. Particulate mass and number concentrations decrease upon using the blended fuel while the geometric mean diameter of the particles shifts towards smaller size. Overall speaking, diesel-DMC blends lead to significant improvement in particulate emissions while the impact on CO, HC and NO(x) emissions is small. Copyright © 2010 Elsevier B.V. All rights reserved.

  10. Alternate-Fueled Combustor-Sector Performance

    NASA Technical Reports Server (NTRS)

    Thomas, Anna E.; Saxena, Nikita T.; Shouse, Dale T.; Neuroth, Craig; Hendricks, Robert C.; Lynch, Amy; Frayne, Charles W.; Stutrud, Jeffrey S.; Corporan, Edwin; Hankins, Terry

    2012-01-01

    In order to realize alternative fueling for military and commercial use, the industry has set forth guidelines that must be met by each fuel. These aviation fueling requirements are outlined in MILDTL- 83133F(2008) or ASTM D 7566 Annex (2011) standards, and are classified as drop-in fuel replacements. This paper provides combustor performance data for synthetic-paraffinic-kerosene- (SPK-) type (Fisher-Tropsch (FT)) fuel and blends with JP-8+100, relative to JP-8+100 as baseline fueling. Data were taken at various nominal inlet conditions: 75 psia (0.52 MPa) at 500 F (533 K), 125 psia (0.86 MPa) at 625 F (603 K), 175 psia (1.21 MPa) at 725 F (658 K), and 225 psia (1.55 MPa) at 790 F (694 K). Combustor performance analysis assessments were made for the change in flame temperatures, combustor efficiency, wall temperatures, and exhaust plane temperatures at 3%, 4%, and 5% combustor pressure drop (% delta P) for fuel: air ratios (F/A) ranging from 0.010 to 0.025. Significant general trends show lower liner temperatures and higher flame and combustor outlet temperatures with increases in FT fueling relative to JP-8+100 fueling. The latter affects both turbine efficiency and blade/vane life.

  11. Experimental investigation on the availability, performance, combustion and emission distinctiveness of bael oil/ diesel/ diethyl ether blends powered in a variable compression ratio diesel engine

    NASA Astrophysics Data System (ADS)

    Krishnamoorthi, M.; Malayalamurthi, R.

    2018-02-01

    The present work aims at experimental investigation on the combined effect of injection timing (IT) and injection pressure (IP) on the performance and emissions characteristics, and exergy analysis of a compression-ignition (CI) engine powered with bael oil blends. The tests were conducted using ternary blends of bael oil, diethyl ether (DEE) and neat diesel (D) at various engine loads at a constant engine speed (1500 rpm). With B2 (60%D + 30%bael oil+10%DEE) fuel, the brake thermal efficiency (BTE) of the engine is augmented by 3.5%, reduction of 4.7% of oxides of nitrogen (NOx) emission has been observed at 100% engine load with 250 bar IP. B2 fuel exhibits 7% lower scale of HC emissions compared to that of diesel fuel at 100% engine load in 23 °bTDC IT. The increment in both cooling water and exhaust gas availabilities lead to increasing exergy efficiency with increasing load. The exergy efficiency of about 62.17% has been recorded by B2 fuel at an injection pressure of 230 IP bar with 100% load. On the whole, B2 fuel displays the best performance and combustion characteristics. It also exhibits better characteristics of emissions level in terms of lower HC, smoke opacity and NOx.

  12. Influence of Compression Ratio on High Load Performance and Knock Behavior for Gasoline Port-Fuel Injection, Natural Gas Direct Injection and Blended Operation in a Spark Ignition Engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pamminger, Michael; Sevik, James; Scarcelli, Riccardo

    Natural Gas (NG) is an alternative fuel which has attracted a lot of attention recently, in particular in the US due to shale gas availability. The higher hydrogen-to-carbon (H/C) ratio, compared to gasoline, allows for decreasing carbon dioxide emissions throughout the entire engine map. Furthermore, the high knock resistance of NG allows increasing the efficiency at high engine loads compared to fuels with lower knock resistance. NG direct injection (DI) allows for fuel to be added after intake valve closing (IVC) resulting in an increase in power density compared to an injection before IVC. Steady-state engine tests were performed onmore » a single-cylinder research engine equipped with gasoline (E10) port-fuel injection (PFI) and NG DI to allow for in-cylinder blending of both fuels. Knock investigations were performed at two discrete compression ratios (CR), 10.5 and 12.5. Operating conditions span mid-load, wide-open-throttle and boosted conditions, depending on the knock response of the fuel blend. Blended operation was performed using E10 gasoline and NG. An additional gasoline type fuel (E85) with higher knock resistance than E10 was used as a high-octane reference fuel, since the octane rating of E10-NG fuel blends is unknown. Spark timing was varied at different loads under stoichiometric conditions in order to study the knock response as well as the effects on performance and efficiency. As anticipated, results suggest that the knock resistance can be increased significantly by increasing the NG amount. Comparing the engine operation with the least knock resistant fuel, E10 PFI, and the fuel blend with the highest knock resistance, 75% NG DI, shows an increase in indicated mean effective pressure of about 9 bar at CR 12.5. The usage of reference fuels with known knock characteristics allowed an assessment of knock characteristic of intermediate E10-NG blend levels. Mathematical correlations were developed allowing characterizing the occurrence of knocking combustion by using the Livengood-Wu knock integral. For most of the fueling strategies and operating conditions, the mathematical correlations show good agreement when compared to experimental data.« less

  13. Highly efficient conversion of plant oil to bio-aviation fuel and valuable chemicals by combination of enzymatic transesterification, olefin cross-metathesis, and hydrotreating.

    PubMed

    Wang, Meng; Chen, Mojin; Fang, Yunming; Tan, Tianwei

    2018-01-01

    The production of fuels and chemicals from renewable resources is increasingly important due to the environmental concern and depletion of fossil fuel. Despite the fast technical development in the production of aviation fuels, there are still several shortcomings such as a high cost of raw materials, a low yield of aviation fuels, and poor process techno-economic consideration. In recent years, olefin metathesis has become a powerful and versatile tool for generating new carbon-carbon bonds. The cross-metathesis reaction, one kind of metathesis reaction, has a high potential to efficiently convert plant oil into valuable chemicals, such as α-olefin and bio-aviation fuel by combining with a hydrotreatment process. In this research, an efficient, four-step conversion of plant oil into bio-aviation fuel and valuable chemicals was developed by the combination of enzymatic transesterification, olefin cross-metathesis, and hydrotreating. Firstly, plant oil including oil with poor properties was esterified to fatty acid methyl esters by an enzyme-catalyzed process. Secondly, the fatty acid methyl esters were partially hydrotreated catalytically to transform poly-unsaturated fatty acid such as linoleic acid into oleic acid. The olefin cross-metathesis then transformed the oleic acid methyl ester (OAME) into 1-decene and 1-decenoic acid methyl ester (DAME). The catalysts used in this process were prepared/selected in function of the catalytic reaction and the reaction conditions were optimized. The carbon efficiency analysis of the new process illustrated that it was more economically feasible than the traditional hydrotreatment process. A highly efficient conversion process of plant oil into bio-aviation fuel and valuable chemicals by the combination of enzymatic transesterification, olefin cross-metathesis, and hydrotreatment with prepared and selected catalysts was designed. The reaction conditions were optimized. Plant oil was transformed into bio-aviation fuel and a high value α-olefin product with high carbon utilization.

  14. Effects of water-emulsified fuel on a diesel engine generator's thermal efficiency and exhaust.

    PubMed

    Syu, Jin-Yuan; Chang, Yuan-Yi; Tseng, Chao-Heng; Yan, Yeou-Lih; Chang, Yu-Min; Chen, Chih-Chieh; Lin, Wen-Yinn

    2014-08-01

    Water-emulsified diesel has proven itself as a technically sufficient improvement fuel to improve diesel engine fuel combustion emissions and engine performance. However, it has seldom been used in light-duty diesel engines. Therefore, this paper focuses on an investigation into the thermal efficiency and pollution emission analysis of a light-duty diesel engine generator fueled with different water content emulsified diesel fuels (WD, including WD-0, WD-5, WD-10, and WD-15). In this study, nitric oxide, carbon monoxide, hydrocarbons, and carbon dioxide were analyzed by a vehicle emission gas analyzer and the particle size and number concentration were measured by an electrical low-pressure impactor. In addition, engine loading and fuel consumption were also measured to calculate the thermal efficiency. Measurement results suggested that water-emulsified diesel was useful to improve the thermal efficiency and the exhaust emission of a diesel engine. Obviously, the thermal efficiency was increased about 1.2 to 19.9%. In addition, water-emulsified diesel leads to a significant reduction of nitric oxide emission (less by about 18.3 to 45.4%). However the particle number concentration emission might be increased if the loading of the generator becomes lower than or equal to 1800 W. In addition, exhaust particle size distributions were shifted toward larger particles at high loading. The consequence of this research proposed that the water-emulsified diesel was useful to improve the engine performance and some of exhaust emissions, especially the NO emission reduction. Implications: The accumulated test results provide a good basis to resolve the corresponding pollutants emitted from a light-duty diesel engine generator. By measuring and analyzing transforms of exhaust pollutant from this engine generator, the effects of water-emulsified diesel fuel and loading on emission characteristics might be more clear. Understanding reduction of pollutant emissions during the use of water-emulsified diesel helps improve the effectiveness of the testing program. The analyzed consequences provide useful information to the government for setting policies to curb pollutant emissions from a light-duty diesel engine generator more effectively.

  15. Small global effect on terrestrial net primary production due to increased fossil fuel aerosol emissions from East Asia since the turn of the century

    DOE PAGES

    O'Sullivan, M.; Rap, A.; Reddington, C. L.; ...

    2016-07-29

    The global terrestrial carbon sink has increased since the start of this century at a time of growing carbon emissions from fossil fuel burning. Here we test the hypothesis that increases in atmospheric aerosols from fossil fuel burning enhanced the diffuse light fraction and the efficiency of plant carbon uptake. Using a combination of models, we estimate that at global scale changes in light regimes from fossil fuel aerosol emissions had only a small negative effect on the increase in terrestrial net primary production over the period 1998–2010. Hereby, the substantial increases in fossil fuel aerosol emissions and plant carbonmore » uptake over East Asia were effectively canceled by opposing trends across Europe and North America. This suggests that if the recent increase in the land carbon sink would be causally linked to fossil fuel emissions, it is unlikely via the effect of aerosols but due to other factors such as nitrogen deposition or nitrogen-carbon interactions.« less

  16. Small global effect on terrestrial net primary production due to increased fossil fuel aerosol emissions from East Asia since the turn of the century

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Sullivan, M.; Rap, A.; Reddington, C. L.

    The global terrestrial carbon sink has increased since the start of this century at a time of growing carbon emissions from fossil fuel burning. Here we test the hypothesis that increases in atmospheric aerosols from fossil fuel burning enhanced the diffuse light fraction and the efficiency of plant carbon uptake. Using a combination of models, we estimate that at global scale changes in light regimes from fossil fuel aerosol emissions had only a small negative effect on the increase in terrestrial net primary production over the period 1998–2010. Hereby, the substantial increases in fossil fuel aerosol emissions and plant carbonmore » uptake over East Asia were effectively canceled by opposing trends across Europe and North America. This suggests that if the recent increase in the land carbon sink would be causally linked to fossil fuel emissions, it is unlikely via the effect of aerosols but due to other factors such as nitrogen deposition or nitrogen-carbon interactions.« less

  17. Impact of non-petroleum vehicle fuel economy on GHG mitigation potential

    NASA Astrophysics Data System (ADS)

    Luk, Jason M.; Saville, Bradley A.; MacLean, Heather L.

    2016-04-01

    The fuel economy of gasoline vehicles will increase to meet 2025 corporate average fuel economy standards (CAFE). However, dedicated compressed natural gas (CNG) and battery electric vehicles (BEV) already exceed future CAFE fuel economy targets because only 15% of non-petroleum energy use is accounted for when determining compliance. This study aims to inform stakeholders about the potential impact of CAFE on life cycle greenhouse gas (GHG) emissions, should non-petroleum fuel vehicles displace increasingly fuel efficient petroleum vehicles. The well-to-wheel GHG emissions of a set of hypothetical model year 2025 light-duty vehicles are estimated. A reference gasoline vehicle is designed to meet the 2025 fuel economy target within CAFE, and is compared to a set of dedicated CNG vehicles and BEVs with different fuel economy ratings, but all vehicles meet or exceed the fuel economy target due to the policy’s dedicated non-petroleum fuel vehicle incentives. Ownership costs and BEV driving ranges are estimated to provide context, as these can influence automaker and consumer decisions. The results show that CNG vehicles that have lower ownership costs than gasoline vehicles and BEVs with long distance driving ranges can exceed the 2025 CAFE fuel economy target. However, this could lead to lower efficiency CNG vehicles and heavier BEVs that have higher well-to-wheel GHG emissions than gasoline vehicles on a per km basis, even if the non-petroleum energy source is less carbon intensive on an energy equivalent basis. These changes could influence the effectiveness of low carbon fuel standards and are not precluded by the light-duty vehicle GHG emissions standards, which regulate tailpipe but not fuel production emissions.

  18. A fuel treatment reduces potential fire severity and increases suppression efficiency in a Sierran mixed conifer forest

    Treesearch

    Jason J. Moghaddas

    2006-01-01

    Fuel treatments are being widely implemented on public and private lands across the western U.S. While scientists and managers have an understanding of how fuel treatments can modify potential fire behavior under modeled conditions, there is limited information on how treatments perform under real wildfire conditions in Sierran mixed conifer forests. The Bell Fire...

  19. Low excess air burners keep boiler and air cleaner while cutting fuel costs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, H.

    1981-11-01

    In the 1970s at the Humko Chemical Co., producers of fatty acids used in plastics, soaps, rubber products, and textiles, it was deemed necessary to modify existing boiler equipment to insure an adequate fuel supply and to increase efficienct. Existing equipment operated at an overall average efficiency of 77% and only 6% excess O/sub 2/ could be achieved with number 6 fuel oil and only 2.6% with natural gas. Cleaning the boilers and replacing existing burners with oil and gas firing units led to overall efficiency up to 84% with only 1% excess O/sub 2/. Even though fuel costs havemore » approximately tripled during the ensuing time, Humko's cost of producing steam has only doubled with the more efficienct equipment. (BLM)« less

  20. Regulated and unregulated emissions from a diesel engine fueled with diesel fuel blended with diethyl adipate

    NASA Astrophysics Data System (ADS)

    Zhu, Ruijun; Cheung, C. S.; Huang, Zuohua; Wang, Xibin

    2011-04-01

    Experiments were carried out on a four-cylinder direct-injection diesel engine operating on Euro V diesel fuel blended with diethyl adipate (DEA). The blended fuels contain 8.1%, 16.4%, 25% and 33.8% by volume fraction of DEA, corresponding to 3%, 6%, 9% and 12% by mass of oxygen in the blends. The engine performance and exhaust gas emissions of the different fuels were investigated at five engine loads at a steady speed of 1800 rev/min. The results indicated an increase of brake specific fuel consumption and brake thermal efficiency when the engine was fueled with the blended fuels. In comparison with diesel fuel, the blended fuels resulted in an increase in hydrocarbon (HC) and carbon monoxide (CO), but a decrease in particulate mass concentrations. The nitrogen oxides (NO x) emission experienced a slight variation among the test fuels. In regard to the unregulated gaseous emissions, formaldehyde and acetaldehyde increased, while 1,3-butadiene, ethene, ethyne, propylene and BTX (benzene, toluene and xylene) in general decreased. A diesel oxidation catalyst (DOC) was found to reduce significantly most of the investigated unregulated pollutants when the exhaust gas temperature was sufficiently high.

  1. Maintaining Continuity of Knowledge of Spent Fuel Pools: Tool Survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benz, Jacob M.; Smartt, Heidi A.; Tanner, Jennifer E.

    This report examines supplemental tools that can be used in addition to optical surveillance cameras to maintain CoK in low-to-no light conditions, and increase the efficiency and effectiveness of spent fuel CoK, including item counting and ID verification, in challenging conditions.

  2. Engine Would Recover Exhaust Energy More Efficiently

    NASA Technical Reports Server (NTRS)

    Dimpelfeld, Philip M.

    1993-01-01

    Exhaust energy used for supercharging and extra shaft power. Flow of exhaust apportioned by waste gate to meet demand of turbocharger, and portion not fed to turbocharger sent to power-recovery turbine. Expected to increase fuel efficiency.

  3. Structural tests and development of a laminar flow control wing surface composite chordwise joint

    NASA Technical Reports Server (NTRS)

    Lineberger, L. B.

    1984-01-01

    The dramatic increases in fuel costs and the potential for periods of limited fuel availability provided the impetus to explore technologies to reduce transport aircraft fuel consumption. NASA sponsored the Aircraft Energy Efficiency (ACEE) program beginning in 1976 to develop technologies to improve fuel efficiency. The Lockheed-Georgia Company accomplished under NAS1-16235 Laminar-Flow-Control (LFC) Wing Panel Structural Design and Development (WSSD); design, manufacturing, and testing activities. An in-depth preliminary design of the baseline 1993 LFC wing was accomplished. A surface panel using the Lockheed graphite/epoxy integrated LFC wing box structural concept was designed. The concept was shown by analysis to be structurally efficient and cost effective. Critical details of the surface and surface joint was demonstrated by fabricating and testing complex, concept selection specimens. The Lockheed-Georgia Company accomplishments, Development of LFC Wind Surface Composite Structures (WSCS), are documented. Tests were conducted on two CV2 panels to verify the static tension and fatigue strength of LFC wing surface chordwise joints.

  4. Electricity generation from rapeseed straw hydrolysates using microbial fuel cells.

    PubMed

    Jablonska, Milena A; Rybarczyk, Maria K; Lieder, Marek

    2016-05-01

    Rapeseed straw is an attractive fuel material for microbial fuel cells (MFCs) due to its high content of carbohydrates (more than 60% carbohydrates). This study has demonstrated that reducing sugars can be efficiently extracted from raw rapeseed straw by combination of hydrothermal pretreatment and enzymatic hydrolysis followed by utilization as a fuel in two-chamber MFCs for electrical power generation. The most efficient method of saccharification of this lignocellulosic biomass (17%) turned out hydrothermal pretreatment followed by enzymatic hydrolysis. Electricity was produced using hydrolysate concentrations up to 150 mg/dm(3). The power density reached 54 mW/m(2), while CEs ranged from 60% to 10%, corresponding to the initial reducing sugar concentrations of 10-150 mg/dm(3). The COD degradation rates based on charge calculation increased from 0.445 g COD/m(2)/d for the hydrolysate obtained with the microwave treatment to 0.602 g COD/m(2)/d for the most efficient combination of hydrothermal treatment followed by enzymatic hydrolysis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Effects of Fuel and Nozzle Characteristics on Micro Gas Turbine System: A Review

    NASA Astrophysics Data System (ADS)

    Akasha Hashim, Muhammad; Khalid, Amir; Salleh, Hamidon; Sunar, Norshuhaila Mohamed

    2017-08-01

    For many decades, gas turbines have been used widely in the internal combustion engine industry. Due to the deficiency of fossil fuel and the concern of global warming, the used of bio-gas have been recognized as one of most clean fuels in the application of engine to improve performance of lean combustion and minimize the production of NOX and PM. This review paper is to understand the combustion performance using dual-fuel nozzle for a micro gas turbine that was basically designed as a natural gas fuelled engine, the nozzle characteristics of the micro gas turbine has been modelled and the effect of multi-fuel used were investigated. The used of biogas (hydrogen) as substitute for liquid fuel (methane) at constant fuel injection velocity, the flame temperature is increased, but the fuel low rate reduced. Applying the blended fuel at constant fuel rate will increased the flame temperature as the hydrogen percentages increased. Micro gas turbines which shows the uniformity of the flow distribution that can be improved without the increase of the pressure drop by applying the variable nozzle diameters into the fuel supply nozzle design. It also identifies the combustion efficiency, better fuel mixing in combustion chamber using duel fuel nozzle with the largest potential for the future. This paper can also be used as a reference source that summarizes the research and development activities on micro gas turbines.

  6. Aeronautical fuel conservation possibilities for advanced subsonic transports. [application of aeronautical technology for drag and weight reduction

    NASA Technical Reports Server (NTRS)

    Braslow, A. L.; Whitehead, A. H., Jr.

    1973-01-01

    The anticipated growth of air transportation is in danger of being constrained by increased prices and insecure sources of petroleum-based fuel. Fuel-conservation possibilities attainable through the application of advances in aeronautical technology to aircraft design are identified with the intent of stimulating NASA R and T and systems-study activities in the various disciplinary areas. The material includes drag reduction; weight reduction; increased efficiency of main and auxiliary power systems; unconventional air transport of cargo; and operational changes.

  7. The effects of competition on efficiency of electricity generation: A post-PURPA analysis

    NASA Astrophysics Data System (ADS)

    Jordan, Paula Faye

    1998-10-01

    The central issue of this research is the effects increased market competition has on production efficiency. Specifically, the research focuses upon measuring the relative level of efficiency in the generation of electricity in 1978 and 1993. It is hypothesized that the Public Utilities Regulatory Policy Act (PURPA), passed by Congress in 1978, made progress toward achieving its legislative intent of increasing competition, and therefore increased efficiency, in the generation of electricity. The methodology used to measure levels of efficiency in this research is the stochastic statistical estimator with the functional form of the translog production function. The models are then estimated using the maximum likelihood estimating technique using plant level data of coal generating units in the U.S. for 1978 and 1993. Results from the estimation of these models indicate that: (a) For the technical efficiency measures, the 1978 data set out performed the 1993 data set for the OTE and OTE of Fuel measures; (b) the 1993 data set was relatively more efficient in the OTE of Capital and the OTE of Labor when compared to the 1978 data set; (c) The 1993 observations indicated a relatively greater level of efficiency over 1978 in the OAE, OAE of Fuel, and OAE of Capital measures; (d) The OAE of Labor measure findings supported the 1978 observations as more efficient when compared to the 1993 set of observations; (e) When looking at the top and bottom ranked sites within each data set, the results indicated that sites which were top or poor performers for the technical and allocative efficiency measures tended to be a top or poor performer for the overall, fuel, and capital measures. The sites that appeared as a top or poor performer of labor measures within the technical and allocative groups were often unique and didn't necessarily appear as a top or poor performer in the other efficiency measures.

  8. Summaries of reports from the Congressional office of technology assessment

    NASA Astrophysics Data System (ADS)

    1985-11-01

    A summary of reports from the Congressional office of technology assessment on the following topics is presented. (1) Residential Energy Conservation, 1979 (2) Energy Efficiency of Buildings in Cities, 1982 (3)Industrial Energy Use, 1983 (4)Increased Automobiles fuel efficiency and synthetic fuels, 1982. (5)U.S. Vulnerability to an oil import curtailment: The oil Replacement Capability, 1984. (6)Oil and Gas Technologies for the Arctic and Deep water, 1985. (7)Acid Rain and Transport Air pollutants: Implications for Public Policy. (AIP)

  9. Experimental investigation and modeling of an aircraft Otto engine operating with gasoline and heavier fuels

    NASA Astrophysics Data System (ADS)

    Saldivar Olague, Jose

    A Continental "O-200" aircraft Otto-cycle engine has been modified to burn diesel fuel. Algebraic models of the different processes of the cycle were developed from basic principles applied to a real engine, and utilized in an algorithm for the simulation of engine performance. The simulation provides a means to investigate the performance of the modified version of the Continental engine for a wide range of operating parameters. The main goals of this study are to increase the range of a particular aircraft by reducing the specific fuel consumption of the engine, and to show that such an engine can burn heavier fuels (such as diesel, kerosene, and jet fuel) instead of gasoline. Such heavier fuels are much less flammable during handling operations making them safer than aviation gasoline and very attractive for use in flight operations from naval vessels. The cycle uses an electric spark to ignite the heavier fuel at low to moderate compression ratios, The stratified charge combustion process is utilized in a pre-chamber where the spray injection of the fuel occurs at a moderate pressure of 1200 psi (8.3 MPa). One advantage of fuel injection into the combustion chamber instead of into the intake port, is that the air-to-fuel ratio can be widely varied---in contrast to the narrower limits of the premixed combustion case used in gasoline engines---in order to obtain very lean combustion. Another benefit is that higher compression ratios can be attained in the modified cycle with heavier fuels. The combination of injection into the chamber for lean combustion, and higher compression ratios allow to limit the peak pressure in the cylinder, and to avoid engine damage. Such high-compression ratios are characteristic of Diesel engines and lead to increase in thermal efficiency without pre-ignition problems. In this experimental investigation, operations with diesel fuel have shown that considerable improvements in the fuel efficiency are possible. The results of simulations using performance models show that the engine can deliver up to 178% improvement in fuel efficiency and operating range, and reduce the specific fuel consumption to 58% when compared to gasoline. Directions for future research and other modifications to the proposed spark assisted cycle are also described.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pawlowski, Alexander; Splitter, Derek A

    It is well known that spark ignited engine performance and efficiency is closely coupled to fuel octane number. The present work combines historical and recent trends in spark ignition engines to build a database of engine design, performance, and fuel octane requirements over the past 80 years. The database consists of engine compression ratio, required fuel octane number, peak mean effective pressure, specific output, and combined unadjusted fuel economy for passenger vehicles and light trucks. Recent trends in engine performance, efficiency, and fuel octane number requirement were used to develop correlations of fuel octane number utilization, performance, specific output. Themore » results show that historically, engine compression ratio and specific output have been strongly coupled to fuel octane number. However, over the last 15 years the sales weighted averages of compression ratios, specific output, and fuel economy have increased, while the fuel octane number requirement has remained largely unchanged. Using the developed correlations, 10-year-out projections of engine performance, design, and fuel economy are estimated for various fuel octane numbers, both with and without turbocharging. The 10-year-out projection shows that only by keeping power neutral while using 105 RON fuel will allow the vehicle fleet to meet CAFE targets if only the engine is relied upon to decrease fuel consumption. If 98 RON fuel is used, a power neutral fleet will have to reduce vehicle weight by 5%.« less

  11. 41 CFR 102-34.40 - Who must comply with motor vehicle fuel efficiency requirements?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... motor vehicle fuel efficiency requirements? 102-34.40 Section 102-34.40 Public Contracts and Property... with motor vehicle fuel efficiency requirements? (a) Executive agencies operating domestic fleets must comply with motor vehicle fuel efficiency requirements for such fleets. (b) This subpart does not apply...

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pamminger, Michael; Sevik, James; Scarcelli, Riccardo

    The compression ratio is a strong lever to increase the efficiency of an internal combustion engine. However, among others, it is limited by the knock resistance of the fuel used. Natural gas shows a higher knock resistance compared to gasoline, which makes it very attractive for use in internal combustion engines. The current paper describes the knock behavior of two gasoline fuels, and specific incylinder blend ratios with one of the gasoline fuels and natural gas. The engine used for these investigations is a single cylinder research engine for light duty application which is equipped with two separate fuel systems.more » Both fuels can be used simultaneously which allows for gasoline to be injected into the intake port and natural gas to be injected directly into the cylinder to overcome the power density loss usually connected with port fuel injection of natural gas. Adding natural gas at wide open throttle helps to reduce knock mitigating measures and increases the efficiency and power density compared to the other gasoline type fuels with lower knock resistance. The used methods, knock intensity and number of pressure waves, do not show significant differences in knock behavior for the natural gas - gasoline blends compared to the gasoline type fuels. A knock integral was used to describe the knock onset location of the fuels tested. Two different approaches were used to determine the experimental knock onset and were compared to the knock onset delivered by the knock integral (chemical knock onset). The gasoline type fuels show good agreement between chemical and experimental knock onset. However, the natural gas -gasoline blends show higher discrepancies comparing chemical and experimental knock onset.« less

  13. High-Efficiency Food Production in a Renewable Energy Based Micro-Grid Power System

    NASA Technical Reports Server (NTRS)

    Bubenheim, David; Meiners, Dennis

    2016-01-01

    Controlled Environment Agriculture (CEA) systems can be used to produce high-quality, desirable food year round, and the fresh produce can positively contribute to the health and well being of residents in communities with difficult supply logistics. While CEA has many positive outcomes for a remote community, the associated high electric demands have prohibited widespread implementation in what is typically already a fully subscribed power generation and distribution system. Recent advances in CEA technologies as well as renewable power generation, storage, and micro-grid management are increasing system efficiency and expanding the possibilities for enhancing community supporting infrastructure without increasing demands for outside supplied fuels. We will present examples of how new lighting, nutrient delivery, and energy management and control systems can enable significant increases in food production efficiency while maintaining high yields in CEA. Examples from Alaskan communities where initial incorporation of renewable power generation, energy storage and grid management techniques have already reduced diesel fuel consumption for electric generation by more than 40% and expanded grid capacity will be presented. We will discuss how renewable power generation, efficient grid management to extract maximum community service per kW, and novel energy storage approaches can expand the food production, water supply, waste treatment, sanitation and other community support services without traditional increases of consumable fuels supplied from outside the community. These capabilities offer communities with a range of choices to enhance their communities. The examples represent a synergy of technology advancement efforts to develop sustainable community support systems for future space-based human habitats and practical implementation of infrastructure components to increase efficiency and enhance health and well being in remote communities today and tomorrow.

  14. High-Efficiency Food Production in a Renewable Energy Based Micro-Grid

    NASA Technical Reports Server (NTRS)

    Bubenheim, David L.

    2017-01-01

    Controlled Environment Agriculture (CEA) systems can be used to produce high-quality, desirable food year round, and the fresh produce can positively contribute to the health and well being of residents in communities with difficult supply logistics. While CEA has many positive outcomes for a remote community, the associated high electric demands have prohibited widespread implementation in what is typically already a fully subscribed power generation and distribution system. Recent advances in CEA technologies as well as renewable power generation, storage, and micro-grid management are increasing system efficiency and expanding the possibilities for enhancing community supporting infrastructure without increasing demands for outside supplied fuels. We will present examples of how new lighting, nutrient delivery, and energy management and control systems can enable significant increases in food production efficiency while maintaining high yields in CEA.Examples from Alaskan communities where initial incorporation of renewable power generation, energy storage and grid management techniques have already reduced diesel fuel consumption for electric generation by more than 40 and expanded grid capacity will be presented. We will discuss how renewable power generation, efficient grid management to extract maximum community service per kW, and novel energy storage approaches can expand the food production, water supply, waste treatment, sanitation and other community support services without traditional increases of consumable fuels supplied from outside the community. These capabilities offer communities with a range of choices to enhance their communities. The examples represent a synergy of technology advancement efforts to develop sustainable community support systems for future space-based human habitats and practical implementation of infrastructure components to increase efficiency and enhance health and well-being in remote communities today and tomorrow.

  15. Compressed Air System Redesign Results in Increased Production at a Fuel System Plant (Caterpillar Fuel Systems Pontiac Plant)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2001-06-01

    This case study is one in a series on industrial firms who are implementing energy efficient technologies and system improvements into their manufacturing processes. This case study documents the activities, savings, and lessons learned on the Caterpillar's Pontiac Plant project.

  16. Quantifying autonomous vehicles national fuel consumption impacts: A data-rich approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yuche; Gonder, Jeffrey; Young, Stanley

    Autonomous vehicles are drawing significant attention from governments, manufacturers and consumers. Experts predict them to be the primary means of transportation by the middle of this century. Recent literature shows that vehicle automation has the potential to alter traffic patterns, vehicle ownership, and land use, which may affect fuel consumption from the transportation sector. In this paper, we developed a data-rich analytical framework to quantify system-wide fuel impacts of automation in the United States by integrating (1) a dynamic vehicle sales, stock, and usage model, (2) an historical transportation network-level vehicle miles traveled (VMT)/vehicle activity database, and (3) estimates ofmore » automation's impacts on fuel efficiency and travel demand. The vehicle model considers dynamics in vehicle fleet turnover and fuel efficiency improvements of conventional and advanced vehicle fleet. The network activity database contains VMT, free-flow speeds, and historical speeds of road links that can help us accurately identify fuel-savings opportunities of automation. Based on the model setup and assumptions, we found that the impacts of automation on fuel consumption are quite wide-ranging - with the potential to reduce fuel consumption by 45% in our 'Optimistic' case or increase it by 30% in our 'Pessimistic' case. Second, implementing automation on urban roads could potentially result in larger fuel savings compared with highway automation because of the driving features of urban roads. Lastly, through scenario analysis, we showed that the proposed framework can be used for refined assessments as better data on vehicle-level fuel efficiency and travel demand impacts of automation become available.« less

  17. Quantifying autonomous vehicles national fuel consumption impacts: A data-rich approach

    DOE PAGES

    Chen, Yuche; Gonder, Jeffrey; Young, Stanley; ...

    2017-11-06

    Autonomous vehicles are drawing significant attention from governments, manufacturers and consumers. Experts predict them to be the primary means of transportation by the middle of this century. Recent literature shows that vehicle automation has the potential to alter traffic patterns, vehicle ownership, and land use, which may affect fuel consumption from the transportation sector. In this paper, we developed a data-rich analytical framework to quantify system-wide fuel impacts of automation in the United States by integrating (1) a dynamic vehicle sales, stock, and usage model, (2) an historical transportation network-level vehicle miles traveled (VMT)/vehicle activity database, and (3) estimates ofmore » automation's impacts on fuel efficiency and travel demand. The vehicle model considers dynamics in vehicle fleet turnover and fuel efficiency improvements of conventional and advanced vehicle fleet. The network activity database contains VMT, free-flow speeds, and historical speeds of road links that can help us accurately identify fuel-savings opportunities of automation. Based on the model setup and assumptions, we found that the impacts of automation on fuel consumption are quite wide-ranging - with the potential to reduce fuel consumption by 45% in our 'Optimistic' case or increase it by 30% in our 'Pessimistic' case. Second, implementing automation on urban roads could potentially result in larger fuel savings compared with highway automation because of the driving features of urban roads. Lastly, through scenario analysis, we showed that the proposed framework can be used for refined assessments as better data on vehicle-level fuel efficiency and travel demand impacts of automation become available.« less

  18. A comparative study of almond biodiesel-diesel blends for diesel engine in terms of performance and emissions.

    PubMed

    Abu-Hamdeh, Nidal H; Alnefaie, Khaled A

    2015-01-01

    This paper investigates the opportunity of using almond oil as a renewable and alternative fuel source. Different fuel blends containing 10, 30, and 50% almond biodiesel (B10, B30, and B50) with diesel fuel (B0) were prepared and the influence of these blends on emissions and some performance parameters under various load conditions were inspected using a diesel engine. Measured engine performance parameters have generally shown a slight increase in exhaust gas temperature and in brake specific fuel consumption and a slight decrease in brake thermal efficiency. Gases investigated were carbon monoxide (CO) and oxides of nitrogen (NOx). Furthermore, the concentration of the total particulate and the unburned fuel emissions in the exhaust gas were tested. A blend of almond biodiesel with diesel fuel gradually reduced the engine CO and total particulate emissions compared to diesel fuel alone. This reduction increased with more almond biodiesel blended into the fuel. Finally, a slight increase in engine NO x using blends of almond biodiesel was measured.

  19. Co-Optimization of Fuels & Engines: Fuel Blendstocks with the Potential to Optimize Future Gasoline Engine Performance; Identification of Five Chemical Families for Detailed Evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farrell, John T; Holladay, John; Wagner, Robert

    The U.S. Department of Energy's (DOE's) Co-Optimization of Fuels & Engines (Co-Optima) initiative is conducting the early-stage research needed to accelerate the market introduction of advanced fuel and engine technologies. The research includes both spark-ignition (SI) and compression-ignition (CI) combustion approaches, targeting applications that impact the entire on-road fleet (light-, medium-, and heavy-duty vehicles). The initiative's major goals include significant improvements in vehicle fuel economy, lower-cost pathways to reduce emissions, and leveraging diverse U.S. fuel resources. A key objective of Co-Optima's research is to identify new blendstocks that enhance current petroleum blending components, increase blendstock diversity, and provide refiners withmore » increased flexibility to blend fuels with the key properties required to optimize advanced internal combustion engines. This report identifies eight representative blendstocks from five chemical families that have demonstrated the potential to increase boosted SI engine efficiency, meet key fuel quality requirements, and be viable for production at commercial scale by 2025-2030.« less

  20. A Comparative Study of Almond Biodiesel-Diesel Blends for Diesel Engine in Terms of Performance and Emissions

    PubMed Central

    Alnefaie, Khaled A.

    2015-01-01

    This paper investigates the opportunity of using almond oil as a renewable and alternative fuel source. Different fuel blends containing 10, 30, and 50% almond biodiesel (B10, B30, and B50) with diesel fuel (B0) were prepared and the influence of these blends on emissions and some performance parameters under various load conditions were inspected using a diesel engine. Measured engine performance parameters have generally shown a slight increase in exhaust gas temperature and in brake specific fuel consumption and a slight decrease in brake thermal efficiency. Gases investigated were carbon monoxide (CO) and oxides of nitrogen (NOx). Furthermore, the concentration of the total particulate and the unburned fuel emissions in the exhaust gas were tested. A blend of almond biodiesel with diesel fuel gradually reduced the engine CO and total particulate emissions compared to diesel fuel alone. This reduction increased with more almond biodiesel blended into the fuel. Finally, a slight increase in engine NOx using blends of almond biodiesel was measured. PMID:25874218

  1. Experimental Study of an On-board Fuel Tank Inerting System

    NASA Astrophysics Data System (ADS)

    Wu, Fei; Lin, Guiping; Zeng, Yu; Pan, Rui; Sun, Haoyang

    2017-03-01

    A simulated aircraft fuel tank inerting system was established and experiments were conducted to investigate the performance of the system. The system uses hollow fiber membrane which is widely used in aircraft as the air separation device and a simplified 20% scale multi compartment fuel tank as the inerting object. Experiments were carried out to investigate the influences of different operating parameters on the inerting effectiveness of the system, including NEA (nitrogen-enriched air) flow rate, NEA oxygen concentration, NEA distribution, pressure of bleeding air and fuel load of the tank. Results showed that for the multi compartment fuel tank, concentrated flow washing inerting would cause great differences throughout the distribution of oxygen concentration in the fuel tank, and inerting dead zone would exist. The inerting effectiveness was greatly improved and the ullage oxygen concentration of the tank would reduce to 12% successfully when NEA entered three compartments evenly. The time span of a complete inerting process reduced obviously with increasing NEA flow rate and decreasing NEA concentration, but the trend became weaker gradually. However, the reduction of NEA concentration will decrease the utilization efficiency of the bleeding air. In addition, the time span can also be reduced by raising the pressure of bleeding air, which will improve the bleeding air utilization efficiency at the same time. The time span decreases linearly as the fuel load increases.

  2. Gasification of refinery sludge in an updraft reactor for syngas production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmed, Reem; Eldmerdash, Usama; Sinnathambi, Chandra M., E-mail: chandro@petronas.com.my

    2014-10-24

    The study probes into the investigation on gasification of dry refinery sludge. The details of the study includes; influence of operation time, oxidation temperature and equivalence ratios on carbon gas conversion rate, gasification efficiency, heating value and fuel gas yield are presented. The results show that, the oxidation temperature increased sharply up to 858°C as the operating time increased up to 36 min then bridging occurred at 39 min which cause drop in reaction temperature up to 819 °C. This bridging was found to affect also the syngas compositions, meanwhile as the temperature decreased the CO, H{sub 2}, CH{sub 4}more » compositions are also found to be decreases. Higher temperature catalyzed the reduction reaction (CO{sub 2}+C = 450 2CO), and accelerated the carbon conversion and gasification efficiencies, resulted in more solid fuel is converted to a high heating value gas fuel. The equivalence ratio of 0.195 was found to be the optimum value for carbon conversion and cold gas efficiencies, high heating value of gas, and fuel gas yield to reach their maximum values of 96.1 % and 53.7 %, 5.42 MJ Nm{sup −3} of, and 2.5 Nm{sup 3} kg{sup −1} respectively.« less

  3. Study of the Performances of a Thermoelectric Generator Based on a Catalytic Meso-Scale H₂/C₃H₈ Fueled Combustor.

    PubMed

    Abedi, Hossein; Merotto, Laura; Fanciulli, Carlo; Donde, Roberto; De Luliis, Silvana; Passaretti, Francesca

    2017-03-01

    In this work the thermoelectric generator (TEG) based on catalytic combustion already developed in our lab has been further investigated and improved. The system made of two thermoelectric (TE) modules coupled with a catalytic combustor has been used in this work to obtain higher overall efficiency by adding hydrogen to the fuel mixture. Since implementation of hydrogen as a fuel has shown low and stable combustion temperature in literature, it is expected to achieve good overall efficiency of TEG. Moreover, hydrogen can be used to improve the system inducing self-ignition. Focus of the present work is the implementation of different mixture proportions, varying the amount of hydrogen, and the investigation of their effects on the overall efficiency. The overall TEG efficiency, has been evaluated by parallel characterization of thermoelectric modules and exhaust gases composition. The system performances have been characterized using different mixtures: the results indicate that addition of H₂ to the fuel contribute to increase the chemical and overall TEG efficiency respect to previous work, producing up to 5.92 W of electrical power. Finally, the effects of H₂ for on self-ignition conditions have been investigated finding the minimum H₂ amount for different gas flow rates.

  4. A conceptual design of catalytic gasification fuel cell hybrid power plant with oxygen transfer membrane

    NASA Astrophysics Data System (ADS)

    Shi, Wangying; Han, Minfang

    2017-09-01

    A hybrid power generation system integrating catalytic gasification, solid oxide fuel cell (SOFC), oxygen transfer membrane (OTM) and gas turbine (GT) is established and system energy analysis is performed. In this work, the catalytic gasifier uses steam, recycled anode off-gas and pure oxygen from OTM system to gasify coal, and heated by hot cathode off-gas at the same time. A zero-dimension SOFC model is applied and verified by fitting experimental data. Thermodynamic analysis is performed to investigate the integrated system performance, and system sensitivities on anode off-gas back flow ratio, SOFC fuel utilization, temperature and pressure are discussed. Main conclusions are as follows: (1) System overall electricity efficiency reaches 60.7%(HHV) while the gasifier operates at 700 °C and SOFC at 850 °C with system pressure at 3.04 bar; (2) oxygen enriched combustion simplify the carbon-dioxide capture process, which derives CO2 of 99.2% purity, but results in a penalty of 6.7% on system electricity efficiency; (3) with SOFC fuel utilization or temperature increasing, the power output of SOFC increases while GT power output decreases, and increasing system pressure can improve both the performance of SOFC and GT.

  5. Sustainable Skyscrapers: Designing the Net Zero Energy Building of the Future

    NASA Astrophysics Data System (ADS)

    Kothari, S.; Bartsch, A.

    2016-12-01

    Cities of the future will need to increase population density in order to keep up with the rising populations in the limited available land area. In order to provide sufficient power as the population grows, cities must become more energy efficient. Fossil fuels and grid energy will continue to become more expensive as nonrenewable resources deplete. The obvious solution to increase population density while decreasing the reliance on fossil fuels is to build taller skyscrapers that are energy neutral, i.e. self-sustaining. However, current skyscrapers are not energy efficient, and therefore cannot provide a sustainable solution to the problem of increasing population density in the face of depleting energy resources. The design of a net zero energy building that includes both residential and commercial space is presented. Alternative energy systems such as wind turbines, photovoltaic cells, and a waste-to-fuel conversion plant have been incorporated into the design of a 50 story skyscraper that is not reliant on fossil fuels and has a payback time of about six years. Although the current building was designed to be located in San Francisco, simple modifications to the design would allow this building to fit the needs of any city around the world.

  6. Improving Engine Efficiency Through Core Developments

    NASA Technical Reports Server (NTRS)

    Heidmann, James D.

    2011-01-01

    The NASA Environmentally Responsible Aviation (ERA) Project and Fundamental Aeronautics Projects are supporting compressor and turbine research with the goal of reducing aircraft engine fuel burn and greenhouse gas emissions. The primary goals of this work are to increase aircraft propulsion system fuel efficiency for a given mission by increasing the overall pressure ratio (OPR) of the engine while maintaining or improving aerodynamic efficiency of these components. An additional area of work involves reducing the amount of cooling air required to cool the turbine blades while increasing the turbine inlet temperature. This is complicated by the fact that the cooling air is becoming hotter due to the increases in OPR. Various methods are being investigated to achieve these goals, ranging from improved compressor three-dimensional blade designs to improved turbine cooling hole shapes and methods. Finally, a complementary effort in improving the accuracy, range, and speed of computational fluid mechanics (CFD) methods is proceeding to better capture the physical mechanisms underlying all these problems, for the purpose of improving understanding and future designs.

  7. Performance Charts for a Turbojet System

    NASA Technical Reports Server (NTRS)

    Karp, Irving M.

    1947-01-01

    Convenient charts are presented for computing the thrust, fuel consumption, and other performance values of a turbojet system. These charts take into account the effects of ram pressure, compressor pressure ratio, ratio of combustion-chamber-outlet temperature to atmospheric temperature, compressor efficiency, turbine efficiency, combustion efficiency, discharge-nozzle coefficient, losses in total pressure in the inlet to the jet-propulsion unit and in the combustion chamber, and variation in specific heats with temperature. The principal performance charts show clearly the effects of the primary variables and correction charts provide the effects of the secondary variables. The performance of illustrative cases of turbojet systems is given. It is shown that maximum thrust per unit mass rate of air flow occurs at a lower compressor pressure ratio than minimum specific fuel consumption. The thrust per unit mass rate of air flow increases as the combustion-chamber discharge temperature increases. For minimum specific fuel consumption, however, an optimum combustion-chamber discharge temperature exists, which in some cases may be less than the limiting temperature imposed by the strength temperature characteristics of present materials.

  8. Method of regulating the amount of underfire air for combustion of wood fuels in spreader-stroke boilers

    DOEpatents

    Tuttle, Kenneth L.

    1980-01-01

    A method of metering underfire air for increasing efficiency and reducing particulate emissions from wood-fire, spreader-stoker boilers is disclosed. A portion of the combustion air, approximately one pound of air per pound of wood, is fed through the grate into the fuel bed, while the remainder of the combustion air is distributed above the fuel in the furnace, and the fuel bed is maintained at a depth sufficient to consume all oxygen admitted under fire and to insure a continuous layer of fresh fuel thereover to entrap charred particles inside the fuel bed.

  9. Drive cycle simulation of high efficiency combustions on fuel economy and exhaust properties in light-duty vehicles

    DOE PAGES

    Gao, Zhiming; Curran, Scott J.; Parks, James E.; ...

    2015-04-06

    We present fuel economy and engine-out emissions for light-duty (LD) conventional and hybrid vehicles powered by conventional and high-efficiency combustion engines. Engine technologies include port fuel-injected (PFI), direct gasoline injection (GDI), reactivity controlled compression ignition (RCCI) and conventional diesel combustion (CDC). In the case of RCCI, the engine utilized CDC combustion at speed/load points not feasible with RCCI. The results, without emissions considered, show that the best fuel economies can be achieved with CDC/RCCI, with CDC/RCCI, CDC-only, and lean GDI all surpassing PFI fuel economy significantly. In all cases, hybridization significantly improved fuel economy. The engine-out hydrocarbon (HC), carbon monoxidemore » (CO), nitrogen oxides (NOx), and particulate matter (PM) emissions varied remarkably with combustion mode. The simulated engine-out CO and HC emissions from RCCI are significantly higher than CDC, but RCCI makes less NOx and PM emissions. Hybridization can improve lean GDI and RCCI cases by increasing time percentage for these more fuel efficient modes. Moreover, hybridization can dramatically decreases the lean GDI and RCCI engine out emissions. Importantly, lean GDI and RCCI combustion modes decrease exhaust temperatures, especially for RCCI, which limits aftertreatment performance to control tailpipe emissions. Overall, the combination of engine and hybrid drivetrain selected greatly affects the emissions challenges required to meet emission regulations.« less

  10. Report of Ad Hoc Committee on Energy Efficiency in Transportation to the Interdepartmental Fuel and Energy Committee of the State of New York. Interim Report.

    ERIC Educational Resources Information Center

    New York State Interdepartmental Fuel and Energy Committee, Albany.

    After presenting the background of the availability of fuel for transportation and the increasing per capita energy consumption, the report examines the State's role in energy conservation. Five proposals are outlined: (1) a coordinated education program designed to increase public awareness of the current energy situation; (2) a pilot program of…

  11. Fuel economy of hybrid fuel-cell vehicles

    NASA Astrophysics Data System (ADS)

    Ahluwalia, Rajesh K.; Wang, X.; Rousseau, A.

    The potential improvement in fuel economy of a mid-size fuel-cell vehicle by combining it with an energy storage system has been assessed. An energy management strategy is developed and used to operate the direct hydrogen, pressurized fuel-cell system in a load-following mode and the energy storage system in a charge-sustaining mode. The strategy places highest priority on maintaining the energy storage system in a state where it can supply unanticipated boost power when the fuel-cell system alone cannot meet the power demand. It is found that downsizing a fuel-cell system decreases its efficiency on a drive cycle which is compensated by partial regenerative capture of braking energy. On a highway cycle with limited braking energy the increase in fuel economy with hybridization is small but on the stop-and-go urban cycle the fuel economy can improve by 27%. On the combined highway and urban drive cycles the fuel economy of the fuel-cell vehicle is estimated to increase by up to 15% by hybridizing it with an energy storage system.

  12. Alternative Fuels Data Center: Ten Ways You Can Implement Alternative Fuels

    Science.gov Websites

    and Energy-Efficient Vehicle Technologies Ten Ways You Can Implement Alternative Fuels and Energy-Efficient Vehicle Technologies to someone by E-mail Share Alternative Fuels Data Center: Ten Ways You Can Implement Alternative Fuels and Energy-Efficient Vehicle Technologies on Facebook Tweet about

  13. LARGE-SCALE HYDROGEN PRODUCTION FROM NUCLEAR ENERGY USING HIGH TEMPERATURE ELECTROLYSIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James E. O'Brien

    2010-08-01

    Hydrogen can be produced from water splitting with relatively high efficiency using high-temperature electrolysis. This technology makes use of solid-oxide cells, running in the electrolysis mode to produce hydrogen from steam, while consuming electricity and high-temperature process heat. When coupled to an advanced high temperature nuclear reactor, the overall thermal-to-hydrogen efficiency for high-temperature electrolysis can be as high as 50%, which is about double the overall efficiency of conventional low-temperature electrolysis. Current large-scale hydrogen production is based almost exclusively on steam reforming of methane, a method that consumes a precious fossil fuel while emitting carbon dioxide to the atmosphere. Demandmore » for hydrogen is increasing rapidly for refining of increasingly low-grade petroleum resources, such as the Athabasca oil sands and for ammonia-based fertilizer production. Large quantities of hydrogen are also required for carbon-efficient conversion of biomass to liquid fuels. With supplemental nuclear hydrogen, almost all of the carbon in the biomass can be converted to liquid fuels in a nearly carbon-neutral fashion. Ultimately, hydrogen may be employed as a direct transportation fuel in a “hydrogen economy.” The large quantity of hydrogen that would be required for this concept should be produced without consuming fossil fuels or emitting greenhouse gases. An overview of the high-temperature electrolysis technology will be presented, including basic theory, modeling, and experimental activities. Modeling activities include both computational fluid dynamics and large-scale systems analysis. We have also demonstrated high-temperature electrolysis in our laboratory at the 15 kW scale, achieving a hydrogen production rate in excess of 5500 L/hr.« less

  14. Comparison of fuel value and combustion characteristics of two different RDF samples.

    PubMed

    Sever Akdağ, A; Atımtay, A; Sanin, F D

    2016-01-01

    Generation of Municipal Solid Waste (MSW) tends to increase with the growing population and economic development of the society; therefore, establishing environmentally sustainable waste management strategies is crucial. In this sense, waste to energy strategies have come into prominence since they increase the resource efficiency and replace the fossil fuels with renewable energy sources by enabling material and energy recovery instead of landfill disposal of the wastes. Refuse Derived Fuel (RDF), which is an alternative fuel produced from energy-rich Municipal Solid Waste (MSW) materials diverted from landfills, is one of the waste to energy strategies gaining more and more attention. This study aims to investigate the thermal characteristics and co-combustion efficiency of two RDF samples in Turkey. Proximate, ultimate and thermogravimetric analyses (TGA) were conducted on these samples. Furthermore, elemental compositions of ash from RDF samples were determined by X-Ray Fluorescence (XRF) analysis. The RDF samples were combusted alone and co-combusted in mixtures with coal and petroleum coke in a lab scale reactor at certain percentages on energy basis (3%, 5%, 10%, 20% and 30%) where co-combustion processes and efficiencies were investigated. It was found that the calorific values of RDF samples on dry basis were close to that of coal and a little lower compared to petroleum coke used in this study. Furthermore, the analysis indicated that when RDF in the mixture was higher than 10%, the CO concentration in the flue gas increased and so the combustion efficiency decreased; furthermore, the combustion characteristics changed from char combustion to volatile combustion. However, RDF addition to the fuel mixtures decreased the SO2 emission and did not change the NOx profiles. Also, XRF analysis showed that the slagging and fouling potential of RDF combustion was a function of RDF portion in fuel blend. When the RDF was combusted alone, the slagging and fouling indices of its ash were found to be higher than the limit values producing slagging and fouling. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Alternate-Fueled Combustor-Sector Performance

    NASA Technical Reports Server (NTRS)

    Thomas, Anna E.; Saxena, Nikita T.; Shouse, Dale T.; Neuroth, Craig; Hendricks, Robert C.; Lynch, Amy; Frayne, Charles W.; Stutrud, Jeffrey S.; Corporan, Edwin; Hankins, Terry

    2013-01-01

    In order to realize alternative fueling for military and commercial use, the industry has set forth guidelines that must be met by each fuel. These aviation fueling requirements are outlined in MIL-DTL-83133F(2008) or ASTM D 7566 Annex (2011) standards, and are classified as "drop-in" fuel replacements. This report provides combustor performance data for synthetic-paraffinic-kerosene- (SPK-) type (Fischer-Tropsch (FT)) fuel and blends with JP-8+100, relative to JP-8+100 as baseline fueling. Data were taken at various nominal inlet conditions: 75 psia (0.52 MPa) at 500 degF (533 K), 125 psia (0.86 MPa) at 625 degF (603 K), 175 psia (1.21 MPa) at 725 degF (658 K), and 225 psia (1.55 MPa) at 790 degF (694 K). Combustor performance analysis assessments were made for the change in flame temperatures, combustor efficiency, wall temperatures, and exhaust plane temperatures at 3, 4, and 5 percent combustor pressure drop (DP) for fuel:air ratios (F/A) ranging from 0.010 to 0.025. Significant general trends show lower liner temperatures and higher flame and combustor outlet temperatures with increases in FT fueling relative to JP-8+100 fueling. The latter affects both turbine efficiency and blade and vane lives.

  16. Fuel cell programs in the United States for stationary power applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singer, M.

    1996-04-01

    The Department of Energy (DOE), Office of Fossil Energy, is participating with the private sector in sponsoring the development of molten carbonate fuel cell (MCFC) and solid oxide fuel cell (SOFC) technologies for application in the utility, commercial and industrial sectors. Phosphoric acid fuel cell (PAFC) development was sponsored by the Office of Fossil Energy in previous years and is now being commercialized by the private sector. Private sector participants with the Department of Energy include the Electric Power Research Institute (EPRI), the Gas Research institute (GRI), electric and gas utilities, universities, manufacturing companies and their suppliers. through continued governmentmore » and private sector support, fuel cell systems are emerging power generation technologies which are expected to have significant worldwide impacts. An industry with annual sales of over a billion dollars is envisioned early in the 21st century. PAFC power plants have begun to enter the marketplace and MCFC and SOFC power plants are expected to be ready to enter the marketplace in the late 1990s. In support of the efficient and effective use of our natural resources, the fuel cell program seeks to increase energy efficiency and economic effectiveness of power generation. This is to be accomplished through effectiveness of power generation. This is accomplished through the development and commercialization of cost-effective, efficient and environmentally desirable fuel cell systems which will operate on fossil fuels in multiple and end use sectors.« less

  17. Hydrogen enrichment of synthetic fuel

    NASA Technical Reports Server (NTRS)

    Jay, C. G.

    1978-01-01

    Synthetic gas may be produced at lower cost and higher efficiency by using outside source of hydrogen. Method is compatible with same temperatures and pressures as shift reaction. Process increases efficiency by using less coal and water to provide equal amount of synthetic gas.

  18. Electricity production coupled to ammonium in a microbial fuel cell.

    PubMed

    He, Zhen; Kan, Jinjun; Wang, Yanbing; Huang, Yuelong; Mansfeld, Florian; Nealson, Kenneth H

    2009-05-01

    The production of electricity from ammonium was examined using a rotating-cathode microbial fuel cell (MFC). The addition of ammonium chloride, ammonium sulfate, or ammonium phosphate (monobasic) resulted in electricity generation, while adding sodium chloride, nitrate, or nitrite did not cause any increase in current production. The peak current increased with increasing amount of ammonium addition up to 62.3 mM of ammonium chloride, suggesting that ammonium was involved in electricity generation either directly as the anodic fuel or indirectly as substrates for nitrifiers to produce organic compounds for heterotrophs. Adding nitrate or nitrite with ammonium increased current production compared to solely ammonium addition. Using 16S rRNA-linked molecular analyses, we found ammonium-oxidizing bacteria and denitrifying bacteria on both the anode and cathode electrodes, whereas no anammox bacteria were detected. The dominant ammonium-oxidizing bacteria were closely related to Nitrosomonas europaea. The present MFC achieved an ammonium removal efficiency of 49.2 +/- 5.9 or 69.7 +/- 3.6%, depending on hydraulic retention time, but exhibited a very low Coulombic efficiency.

  19. A numerical study on combustion process in a small compression ignition engine run dual-fuel mode (diesel-biogas)

    NASA Astrophysics Data System (ADS)

    Ambarita, H.; Widodo, T. I.; Nasution, D. M.

    2017-01-01

    In order to reduce the consumption of fossil fuel of a compression ignition (CI) engines which is usually used in transportation and heavy machineries, it can be operated in dual-fuel mode (diesel-biogas). However, the literature reviews show that the thermal efficiency is lower due to incomplete combustion process. In order to increase the efficiency, the combustion process in the combustion chamber need to be explored. Here, a commercial CFD code is used to explore the combustion process of a small CI engine run on dual fuel mode (diesel-biogas). The turbulent governing equations are solved based on finite volume method. A simulation of compression and expansions strokes at an engine speed and load of 1000 rpm and 2500W, respectively has been carried out. The pressure and temperature distributions and streamlines are plotted. The simulation results show that at engine power of 732.27 Watt the thermal efficiency is 9.05%. The experiment and simulation results show a good agreement. The method developed in this study can be used to investigate the combustion process of CI engine run on dual-fuel mode.

  20. Case study on incentive mechanism of energy efficiency retrofit in coal-fueled power plant in China.

    PubMed

    Yuan, Donghai; Guo, Xujing; Cao, Yuan; He, Liansheng; Wang, Jinggang; Xi, Beidou; Li, Junqi; Ma, Wenlin; Zhang, Mingshun

    2012-01-01

    An ordinary steam turbine retrofit project is selected as a case study; through the retrofit, the project activities will generate emission reductions within the power grid for about 92,463 tCO(2)e per annum. The internal rate of return (IRR) of the project is only -0.41% without the revenue of carbon credits, for example, CERs, which is much lower than the benchmark value of 8%. Only when the unit price of carbon credit reaches 125 CNY/tCO(2), the IRR could reach the benchmark and an effective carbon tax needs to increase the price of carbon to 243 CNY/tce in order to make the project financially feasible. Design of incentive mechanism will help these low efficiency enterprises improve efficiency and reduce CO(2) emissions, which can provide the power plants sufficient incentive to implement energy efficiency retrofit project in existing coal-fuel power generation-units, and we hope it will make a good demonstration for the other low efficiency coal-fueled power generation units in China.

  1. Case Study on Incentive Mechanism of Energy Efficiency Retrofit in Coal-Fueled Power Plant in China

    PubMed Central

    Yuan, Donghai; Guo, Xujing; Cao, Yuan; He, Liansheng; Wang, Jinggang; Xi, Beidou; Li, Junqi; Ma, Wenlin; Zhang, Mingshun

    2012-01-01

    An ordinary steam turbine retrofit project is selected as a case study; through the retrofit, the project activities will generate emission reductions within the power grid for about 92,463 tCO2e per annum. The internal rate of return (IRR) of the project is only −0.41% without the revenue of carbon credits, for example, CERs, which is much lower than the benchmark value of 8%. Only when the unit price of carbon credit reaches 125 CNY/tCO2, the IRR could reach the benchmark and an effective carbon tax needs to increase the price of carbon to 243 CNY/tce in order to make the project financially feasible. Design of incentive mechanism will help these low efficiency enterprises improve efficiency and reduce CO2 emissions, which can provide the power plants sufficient incentive to implement energy efficiency retrofit project in existing coal-fuel power generation-units, and we hope it will make a good demonstration for the other low efficiency coal-fueled power generation units in China. PMID:23365532

  2. Dual fuel diesel engine operation using LPG

    NASA Astrophysics Data System (ADS)

    Mirica, I.; Pana, C.; Negurescu, N.; Cernat, Al; Nutu, N. C.

    2016-08-01

    Diesel engine fuelling with LPG represents a good solution to reduce the pollutant emissions and to improve its energetic performances. The high autoignition endurance of LPG requires specialized fuelling methods. From all possible LPG fuelling methods the authors chose the diesel-gas method because of the following reasons: is easy to be implemented even at already in use engines; the engine does not need important modifications; the LPG-air mixture has a high homogeneity with favorable influences over the combustion efficiency and over the level of the pollutant emissions, especially on the nitrogen oxides emissions. This paper presents results of the theoretical and experimental investigations on operation of a LPG fuelled heavy duty diesel engine at two operating regimens, 40% and 55%. For 55% engine load is also presented the exhaust gas recirculation influence on the pollutant emission level. Was determined the influence of the diesel fuel with LPG substitution ratio on the combustion parameters (rate of heat released, combustion duration, maximum pressure, maximum pressure rise rate), on the energetic parameters (indicate mean effective pressure, effective efficiency, energetic specific fuel consumption) and on the pollutant emissions level. Therefore with increasing substitute ratio of the diesel fuel with LPG are obtained the following results: the increase of the engine efficiency, the decrease of the specific energetic consumption, the increase of the maximum pressure and of the maximum pressure rise rate (considered as criteria to establish the optimum substitute ratio), the accentuated reduction of the nitrogen oxides emissions level.

  3. Alternative fuels study : a report to Congress on policy options for increasing the use of alternative fuels in transit vehicles, December 2006.

    DOT National Transportation Integrated Search

    2006-12-01

    This report presents the results of a study required by Section 3016(c) of the Safe, Accountable, Flexible, Efficient Transportation Equity Act: A Legacy for Users (SAFETEA-LU). That section directed the Secretary of Transportation to conduct a study...

  4. Fuel/Air Mixing Characteristics of Strut Injections for Scramjet Combustor Applications (Postprint)

    DTIC Science & Technology

    2008-08-01

    regions, and drag will be increased, as suggested by Povinelli .26 Both the total pressure recovery and mixing efficiency for the forward-swept strut are...Experimental Study of Cavity-Strut Combustion in Supersonic Flow,” AIAA Paper 2007-5394, 2007. 26. Povinelli , L.A., “Aerodynamic Drag and Fuel Spreading

  5. Predicting Human Thermal Comfort in Automobiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rugh, J.; Bharathan, D.; Chaney, L.

    The objects of this report are to: (1) increase national energy security by reducing fuel use for vehicle climate control systems; (2) show/demonstrate technology that can reduce the fuel used by LD vehicles' ancillary systems; and (3) develop tools to evaluate the effectiveness of energy-efficient systems including--comfort, cost, practicality, ease-of-use, and reliability.

  6. End-of-injection fuel dribble of multi-hole diesel injector: Comprehensive investigation of phenomenon and discussion on control strategy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moon, Seoksu; Huang, Weidi; Li, Zhilong

    The needle shutdown of fuel injectors leads to an undesired fuel dribble that forms unburned hydrocarbons and decreases the engine thermal efficiency in modern engines. Understanding of the fuel dribbling process is of great importance to establish its minimization strategy for optimal use of conventional fuels. However, the detailed needle dynamics and in- and near-nozzle flow characteristics governing the fuel dribble process have not been thoroughly understood. In this study, the needle dynamics, in- and near-nozzle flow characteristics and fuel dribble of a mini-sac type three-hole diesel injector were investigated using a highspeed X-ray phase-contrast imaging technique at different injectionmore » pressures. The results showed that an increase in injection pressure increased the flow evacuation velocity at the needle close that induced a more intense fuel cavitation and air ingestion inside the nozzle. The fuel dribbling process showed a high shot-toshot deviation. A statistical analysis of 50-shot results exhibited two breakup modes of fuel dribble determined by the flow evacuation velocity at the needle close and presence of air ingestion. In the first mode, the fast breakup with a short residence time of fuel dribble occurred. Meanwhile, the dripping of undisturbed liquid column with a long residence time of fuel dribble occurred in the second mode. An increase in injection pressure increased the population of the first mode due to more intense air ingestion that primarily caused by an increase in needle closing speed other than an increase in peak injection velocity. Based on the results, the formation mechanism and control strategies of the fuel dribble from modern diesel injectors were discussed.« less

  7. Effect of broad properties fuel on injector performance in a reverse flow combustor

    NASA Technical Reports Server (NTRS)

    Raddlebaugh, S. M.; Norgren, C. T.

    1983-01-01

    The effect of fuel type on the performance of various fuel injectors was investigated in a reverse flow combustor. Combustor performance and emissions are documented for simplex pressure atomizing, spill flow, and airblast fuel injectors using a broad properties fuel and compared with performance using Jet A fuel. Test conditions simulated a range of flight conditions including sea level take off, low and high altitude cruise, as well as a parametric evaluation of the effect of increased combustor loading. The baseline simplex injector produced higher emission levels with corresponding lower combustion efficiency with the broad properties fuel. There was little or not loss in performance by the two advanced concept injectors with the broad properties fuel. The airblast injector proved to be especially insensitive to fuel type.

  8. Arrow 227: Air transport system design simulation

    NASA Technical Reports Server (NTRS)

    Bontempi, Michael; Bose, Dave; Brophy, Georgeann; Cashin, Timothy; Kanarios, Michael; Ryan, Steve; Peterson, Timothy

    1992-01-01

    The Arrow 227 is a student-designed commercial transport for use in a overnight package delivery network. The major goal of the concept was to provide the delivery service with the greatest potential return on investment. The design objectives of the Arrow 227 were based on three parameters; production cost, payload weight, and aerodynamic efficiency. Low production cost helps to reduce initial investment. Increased payload weight allows for a decrease in flight cycles and, therefore, less fuel consumption than an aircraft carrying less payload weight and requiring more flight cycles. In addition, fewer flight cycles will allow a fleet to last longer. Finally, increased aerodynamic efficiency in the form of high L/D will decrease fuel consumption.

  9. NOx Emission Reduction by Oscillating combustion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Institute of Gas Technology

    2004-01-30

    High-temperature, natural gas-fired furnaces, especially those fired with preheated air, produce large quantities of NO{sub x} per ton of material processed. Regulations on emissions from industrial furnaces are becoming increasingly more stringent. In addition, competition is forcing operators to make their furnaces more productive and/or efficient. Switching from preheated air to industrial oxygen can increase efficiency and reduce NO{sub x}, but oxygen is significantly more costly than air and may not be compatible with the material being heated. What was needed, and what was developed during this project, is a technology that reduces NO{sub x} emissions while increasing furnace efficiencymore » for both air- and oxy-fired furnaces. Oscillating combustion is a retrofit technology that involves the forced oscillation of the fuel flow rate to a furnace. These oscillations create successive, fuel-rich and fuel-lean zones within the furnace. Heat transfer from the flame to the load increases due to the more luminous fuel-rich zones, a longer overall flame length, and the breakup of the thermal boundary layer. The increased heat transfer shortens heat up times, thereby increasing furnace productivity, and reduces the heat going up the stack, thereby increasing efficiency. The fuel-rich and fuel-lean zones also produce substantially less NO{sub x} than firing at a constant excess air level. The longer flames and higher heat transfer rate reduces overall peak flame temperature and thus reduces additional NO{sub x} formation from the eventual mixing of the zones and burnout of combustibles from the rich zones. This project involved the development of hardware to implement oscillating combustion on an industrial scale, the laboratory testing of oscillating combustion on various types of industrial burners, and the field testing of oscillating combustion on several types of industrial furnace. Before laboratory testing began, a market study was conducted, based on the attributes of oscillating combustion and on the results of an earlier project at GTI and Air Liquide, to determine which applications for oscillating combustion would show the greatest probability for technical success and greatest probability for market acceptability. The market study indicated that furnaces in the steel, glass, and metal melting industries would perform well in both categories. These findings guided the selection of burners for laboratory testing and, with the results of the laboratory testing, guided the selection of field test sites.« less

  10. NOx Emission Reduction by Oscillating Combustion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John C. Wagner

    2004-03-31

    High-temperature, natural gas-fired furnaces, especially those fired with preheated air, produce large quantities of NO{sub x} per ton of material processed. Regulations on emissions from industrial furnaces are becoming increasingly more stringent. In addition, competition is forcing operators to make their furnaces more productive and/or efficient. Switching from preheated air to industrial oxygen can increase efficiency and reduce NO{sub x}, but oxygen is significantly more costly than air and may not be compatible with the material being heated. What was needed, and what was developed during this project, is a technology that reduces NO{sub x} emissions while increasing furnace efficiencymore » for both air- and oxy-fired furnaces. Oscillating combustion is a retrofit technology that involves the forced oscillation of the fuel flow rate to a furnace. These oscillations create successive, fuel-rich and fuel-lean zones within the furnace. Heat transfer from the flame to the load increases due to the more luminous fuel-rich zones, a longer overall flame length, and the breakup of the thermal boundary layer. The increased heat transfer shortens heat up times, thereby increasing furnace productivity, and reduces the heat going up the stack, thereby increasing efficiency. The fuel-rich and fuel-lean zones also produce substantially less NO{sub x} than firing at a constant excess air level. The longer flames and higher heat transfer rate reduces overall peak flame temperature and thus reduces additional NO{sub x} formation from the eventual mixing of the zones and burnout of combustibles from the rich zones. This project involved the development of hardware to implement oscillating combustion on an industrial scale, the laboratory testing of oscillating combustion on various types of industrial burners, and the field testing of oscillating combustion on several types of industrial furnace. Before laboratory testing began, a market study was conducted, based on the attributes of oscillating combustion and on the results of an earlier project at GTI and Air Liquide, to determine which applications for oscillating combustion would show the greatest probability for technical success and greatest probability for market acceptability. The market study indicated that furnaces in the steel, glass, and metal melting industries would perform well in both categories. These findings guided the selection of burners for laboratory testing and, with the results of the laboratory testing, guided the selection of field test sites.« less

  11. Parametric performance of a turbojet engine combustor using jet A and A diesel fuel

    NASA Technical Reports Server (NTRS)

    Butze, H. F.; Humenik, F. M.

    1979-01-01

    The performance of a single-can JT8D combustor was evaluated with Jet A and a high-aromatic diesel fuel over a parametric range of combustor-inlet conditions. Performance parameters investigated were combustion efficiency, emissions of CO, unburned hydrocarbons, and NOx, as well as liner temperatures and smoke. At all conditions the use of diesel fuel instead of Jet A resulted in increases in smoke numbers and liner temperatures; gaseous emissions, on the other hand, did not differ significantly between the two fuels.

  12. Yttrium and rare earth stabilized fast reactor metal fuel

    DOEpatents

    Guon, Jerold; Grantham, LeRoy F.; Specht, Eugene R.

    1992-01-01

    To increase the operating temperature of a reactor, the melting point and mechanical properties of the fuel must be increased. For an actinide-rich fuel, yttrium, lanthanum and/or rare earth elements can be added, as stabilizers, to uranium and plutonium and/or a mixture of other actinides to raise the melting point of the fuel and improve its mechanical properties. Since only about 1% of the actinide fuel may be yttrium, lanthanum, or a rare earth element, the neutron penalty is low, the reactor core size can be reduced, the fuel can be burned efficiently, reprocessing requirements are reduced, and the nuclear waste disposal volumes reduced. A further advantage occurs when yttrium, lanthanum, and/or other rare earth elements are exposed to radiation in a reactor, they produce only short half life radioisotopes, which reduce nuclear waste disposal problems through much shorter assured-isolation requirements.

  13. Convective Heat Transfer with and without Film Cooling in High Temperature, Fuel Rich and Lean Environments

    NASA Astrophysics Data System (ADS)

    Greiner, Nathan J.

    Modern turbine engines require high turbine inlet temperatures and pressures to maximize thermal efficiency. Increasing the turbine inlet temperature drives higher heat loads on the turbine surfaces. In addition, increasing pressure ratio increases the turbine coolant temperature such that the ability to remove heat decreases. As a result, highly effective external film cooling is required to reduce the heat transfer to turbine surfaces. Testing of film cooling on engine hardware at engine temperatures and pressures can be exceedingly difficult and expensive. Thus, modern studies of film cooling are often performed at near ambient conditions. However, these studies are missing an important aspect in their characterization of film cooling effectiveness. Namely, they do not model effect of thermal property variations that occur within the boundary and film cooling layers at engine conditions. Also, turbine surfaces can experience significant radiative heat transfer that is not trivial to estimate analytically. The present research first computationally examines the effect of large temperature variations on a turbulent boundary layer. Subsequently, a method to model the effect of large temperature variations within a turbulent boundary layer in an environment coupled with significant radiative heat transfer is proposed and experimentally validated. Next, a method to scale turbine cooling from ambient to engine conditions via non-dimensional matching is developed computationally and the experimentally validated at combustion temperatures. Increasing engine efficiency and thrust to weight ratio demands have driven increased combustor fuel-air ratios. Increased fuel-air ratios increase the possibility of unburned fuel species entering the turbine. Alternatively, advanced ultra-compact combustor designs have been proposed to decrease combustor length, increase thrust, or generate power for directed energy weapons. However, the ultra-compact combustor design requires a film cooled vane within the combustor. In both these environments, the unburned fuel in the core flow encounters the oxidizer rich film cooling stream, combusts, and can locally heat the turbine surface rather than the intended cooling of the surface. Accordingly, a method to quantify film cooling performance in a fuel rich environment is prescribed. Finally, a method to film cool in a fuel rich environment is experimentally demonstrated.

  14. Evaluation of wind tunnel performance testings of an advanced 45 deg swept 8-bladed propeller at Mach numbers from 0.45 to 0.85

    NASA Technical Reports Server (NTRS)

    Rohrbach, C.; Metzger, F. B.; Black, D. M.; Ladden, R. M.

    1982-01-01

    The increased emphasis of fuel conservation in the world and the rapid increase in the cost of jet fuel has stimulated a series of studies of both conventional and unconventional propulsion systems for commercial aircraft. The results of these studies indicate that a fuel saving of 15 to 30 percent may be realized by the use of an advanced high-speed turboprop (Prop-Fan) compared to aircraft equipped with high bypass turbofan engines of equivalent technology. The Prop-Fan propulsion system is being investigated as part of the NASA Aircraft Energy Efficient Program. This effort includes the wind tunnel testing of a series of 8 and 10-blade Prop-Fan models incorporate swept blades. Test results indicate efficiency levels near the goal of 80 percent at Mach 0.8 cruise and an altitude of 10.67 km (35,000 ft). Each successive swept model has shown improved efficiency relative to the straight blade model. The fourth model, with 45 deg swept blades reported herein, shows a net efficiency of 78.2 at the design point with a power loading of 301 kW/sq meter and a tip speed of 243.8 m/sec (800 ft/sec.).

  15. Control of the low-load region in partially premixed combustion

    NASA Astrophysics Data System (ADS)

    Ingesson, Gabriel; Yin, Lianhao; Johansson, Rolf; Tunestal, Per

    2016-09-01

    Partially premixed combustion (PPC) is a low temperature, direct-injection combustion concept that has shown to give promising emission levels and efficiencies over a wide operating range. In this concept, high EGR ratios, high octane-number fuels and early injection timings are used to slow down the auto-ignition reactions and to enhance the fuel and are mixing before the start of combustion. A drawback with this concept is the combustion stability in the low-load region where a high octane-number fuel might cause misfire and low combustion efficiency. This paper investigates the problem of low-load PPC controller design for increased engine efficiency. First, low-load PPC data, obtained from a multi-cylinder heavy- duty engine is presented. The data shows that combustion efficiency could be increased by using a pilot injection and that there is a non-linearity in the relation between injection and combustion timing. Furthermore, intake conditions should be set in order to avoid operating points with unfavourable global equivalence ratio and in-cylinder temperature combinations. Model predictive control simulations were used together with a calibrated engine model to find a gas-system controller that fulfilled this task. The findings are then summarized in a suggested engine controller design. Finally, an experimental performance evaluation of the suggested controller is presented.

  16. Interrogation of possible imaging conditions for radiation sensitive metal organic frameworks in transmission electron microscopes

    NASA Astrophysics Data System (ADS)

    Patel, Harinkumar Rajendrabhai

    One of the main area of research currently in air-breathing propulsion is increasing the fuel efficiency of engines. Increasing fuel efficiency of an air-breathing engine will be advantageous for civil transport as well as military aircraft. This objective can be achieved in several ways. Present design models are developed based on their uses: commercial transport, high range rescue aircraft, military aircraft. One of the main property of military aircraft is possessing high thrust but increasing fuel efficiency will also be advantageous resulting in more time in combat. Today's engine design operates best at their design point and has reduced thrust and high fuel consumption values in off-design. The adaptive cycle engine concept was introduced to overcome this problem. The adaptive cycle engine is a variable cycle engine concept equipped with an extra bypass (3rd bypass) stream. This engine varies the bypass ratio and the fan pressure ratio, the two main parameters affecting thrust and fuel consumption values of the engine. In cruise, more flow will flow through the third stream resulting in the high bypass engine giving lower fuel consumption. on the other hand, the engine will act as a low bypass engine producing more thrust by allowing more air to flow through core while in combat. The simulation of this engine was carried out using the Numerical Propulsion System Simulation (NPSS) software. The effect of the bypass ratio and the fan pressure ratio along with Mach number were studied. After the parametric variation study, the mixture configuration was also studied. Once the effect of the parameters were understood, the best design operating point configuration was selected and then the engine performance for off-design was calculated. Optimum values of bypass ratio and fan pressure ratio were also obtained for each altitude selected for off-design performance.

  17. Optimisation of composite metallic fuel for minor actinide transmutation in an accelerator-driven system

    NASA Astrophysics Data System (ADS)

    Uyttenhove, W.; Sobolev, V.; Maschek, W.

    2011-09-01

    A potential option for neutralization of minor actinides (MA) accumulated in spent nuclear fuel of light water reactors (LWRs) is their transmutation in dedicated accelerator-driven systems (ADS). A promising fuel candidate dedicated to MA transmutation is a CERMET composite with Mo metal matrix and (Pu, Np, Am, Cm)O 2-x fuel particles. Results of optimisation studies of the CERMET fuel targeting to increasing the MA transmutation efficiency of the EFIT (European Facility for Industrial Transmutation) core are presented. In the adopted strategy of MA burning the plutonium (Pu) balance of the core is minimized, allowing a reduction in the reactivity swing and the peak power form-factor deviation and an extension of the cycle duration. The MA/Pu ratio is used as a variable for the fuel optimisation studies. The efficiency of MA transmutation is close to the foreseen theoretical value of 42 kg TW -1 h -1 when level of Pu in the actinide mixture is about 40 wt.%. The obtained results are compared with the reference case of the EFIT core loaded with the composite CERCER fuel, where fuel particles are incorporated in a ceramic magnesia matrix. The results of this study offer additional information for the EFIT fuel selection.

  18. Evaluation of the micro-carburetor

    NASA Technical Reports Server (NTRS)

    Weiss, M. F.; Hall, R. A.; Mazor, S. D.

    1981-01-01

    A prototype sonic, variable-venturi automotive carburetor was evaluated for its effects on vehicle performance, fuel economy, and exhaust emissions. A 350 CID Chevrolet Impala vehicle was tested on a chassis dynamometer over the 1975 Federal Test Procedure, urban driving cycle. The Micro-carburetor was tested and compared with stock and modified-stock engine configurations. Subsequently, the test vehicle's performance characteristics were examined with the stock carburetor and again with the Micro-carburetor in a series of on-road driveability tests. The test engine was then removed from the vehicle and installed on an engine dynamometer. Engine tests were conducted to compare the fuel economy, thermal efficiency, and cylinder-to-cylinder mixture distribution of the Micro-carburetor to that of the stock configuration. Test results show increases in thermal efficiency and improvements in fuel economy at all test conditions. Improve fuel/air mixture preparation is implied from the information presented. Further improvements in fuel economy and exhaust emissions are possible through a detailed recalibration of the Micro-carburetor.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    A new report from the National Renewable Energy Laboratory (NREL) explores the role of alternative fuels and energy efficient vehicles in motor fuel taxes. Throughout the United States, it is common practice for federal, state, and local governments to tax motor fuels on a per gallon basis to fund construction and maintenance of our transportation infrastructure. In recent years, however, expenses have outpaced revenues creating substantial funding shortfalls that have required supplemental funding sources. While rising infrastructure costs and the decreasing purchasing power of the gas tax are significant factors contributing to the shortfall, the increased use of alternative fuelsmore » and more stringent fuel economy standards are also exacerbating revenue shortfalls. The current dynamic places vehicle efficiency and petroleum use reduction polices at direct odds with policies promoting robust transportation infrastructure. Understanding the energy, transportation, and environmental tradeoffs of motor fuel tax policies can be complicated, but recent experiences at the state level are helping policymakers align their energy and environmental priorities with highway funding requirements.« less

  20. Effects of mixing system and pilot fuel quality on diesel-biogas dual fuel engine performance.

    PubMed

    Bedoya, Iván Darío; Arrieta, Andrés Amell; Cadavid, Francisco Javier

    2009-12-01

    This paper describes results obtained from CI engine performance running on dual fuel mode at fixed engine speed and four loads, varying the mixing system and pilot fuel quality, associated with fuel composition and cetane number. The experiments were carried out on a power generation diesel engine at 1500 m above sea level, with simulated biogas (60% CH(4)-40% CO(2)) as primary fuel, and diesel and palm oil biodiesel as pilot fuels. Dual fuel engine performance using a naturally aspirated mixing system and diesel as pilot fuel was compared with engine performance attained with a supercharged mixing system and biodiesel as pilot fuel. For all loads evaluated, was possible to achieve full diesel substitution using biogas and biodiesel as power sources. Using the supercharged mixing system combined with biodiesel as pilot fuel, thermal efficiency and substitution of pilot fuel were increased, whereas methane and carbon monoxide emissions were reduced.

  1. Exergetic life cycle assessment of hydrogen production from renewables

    NASA Astrophysics Data System (ADS)

    Granovskii, Mikhail; Dincer, Ibrahim; Rosen, Marc A.

    Life cycle assessment is extended to exergetic life cycle assessment and used to evaluate the exergy efficiency, economic effectiveness and environmental impact of producing hydrogen using wind and solar energy in place of fossil fuels. The product hydrogen is considered a fuel for fuel cell vehicles and a substitute for gasoline. Fossil fuel technologies for producing hydrogen from natural gas and gasoline from crude oil are contrasted with options using renewable energy. Exergy efficiencies and greenhouse gas and air pollution emissions are evaluated for all process steps, including crude oil and natural gas pipeline transportation, crude oil distillation and natural gas reforming, wind and solar electricity generation, hydrogen production through water electrolysis, and gasoline and hydrogen distribution and utilization. The use of wind power to produce hydrogen via electrolysis, and its application in a fuel cell vehicle, exhibits the lowest fossil and mineral resource consumption rate. However, the economic attractiveness, as measured by a "capital investment effectiveness factor," of renewable technologies depends significantly on the ratio of costs for hydrogen and natural gas. At the present cost ratio of about 2 (per unit of lower heating value or exergy), capital investments are about five times lower to produce hydrogen via natural gas rather than wind energy. As a consequence, the cost of wind- and solar-based electricity and hydrogen is substantially higher than that of natural gas. The implementation of a hydrogen fuel cell instead of an internal combustion engine permits, theoretically, an increase in a vehicle's engine efficiency of about of two times. Depending on the ratio in engine efficiencies, the substitution of gasoline with "renewable" hydrogen leads to (a) greenhouse gas (GHG) emissions reductions of 12-23 times for hydrogen from wind and 5-8 times for hydrogen from solar energy, and (b) air pollution (AP) emissions reductions of 38-76 times for hydrogen from wind and 16-32 times for hydrogen from solar energy. By comparison, substitution of gasoline with hydrogen from natural gas allows reductions in GHG emissions only as a result of the increased efficiency of a fuel cell engine, and a reduction of AP emissions of 2.5-5 times. These data suggest that "renewable" hydrogen represents a potential long-term solution to many environmental problems.

  2. Efficient Biomass Fuel Cell Powered by Sugar with Photo- and Thermal-Catalysis by Solar Irradiation.

    PubMed

    Liu, Wei; Gong, Yutao; Wu, Weibing; Yang, Weisheng; Liu, Congmin; Deng, Yulin; Chao, Zi-Sheng

    2018-06-19

    The utilization of biomass sugars has received great interesting recently. Herein, we present a highly efficient hybrid solar biomass fuel cell that utilizes thermal- and photocatalysis of solar irradiation and converts biomass sugars into electricity with high power output. The fuel cell uses polyoxometalates (POMs) as photocatalyst to decompose sugars and capture their electrons. The reduced POMs have strong visible and near-infrared light adsorption, which can significantly increase the temperature of the reaction system and largely promotes the thermal oxidation of sugars by the POM. In addition, the reduced POM functions as charge carrier that can release electrons at the anode in the fuel cell to generate electricity. The electron-transfer rates from glucose to POM under thermal and light-irradiation conditions were investigated in detail. The power outputs of this solar biomass fuel cell are investigated by using different types of sugars as fuels, with the highest power density reaching 45 mW cm -2 . © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. In-Situ Optical Imaging of Carrier Transport in Multilayer Solar Cells

    DTIC Science & Technology

    2008-06-01

    5 1. Efficiency Considerations....................................................... 5 2. Construction...improved efficiency solar cells. The need to move forward on these improvements is driven by the increasing price of oil and other traditional fuels...any improvement in material in a high efficiency multi-junction cell can be difficult to mathematically model, and much effort is involved in

  4. Future long-range transports - Prospects for improved fuel efficiency

    NASA Technical Reports Server (NTRS)

    Nagel, A. L.; Alford, W. J., Jr.; Dugan, J. F., Jr.

    1975-01-01

    A status report is provided on current thinking concerning potential improvements in fuel efficiency and possible alternate fuels. Topics reviewed are: historical trends in airplane efficiency; technological opportunities including supercritical aerodynamics, vortex diffusers, composite materials, propulsion systems, active controls, and terminal-area operations; unconventional design concepts, and hydrogen-fueled airplane.

  5. Effective sulfur and energy recovery from hydrogen sulfide through incorporating an air-cathode fuel cell into chelated-iron process.

    PubMed

    Sun, Min; Song, Wei; Zhai, Lin-Feng; Cui, Yu-Zhi

    2013-12-15

    The chelated-iron process is among the most promising techniques for the hydrogen sulfide (H2S) removal due to its double advantage of waste minimization and resource recovery. However, this technology has encountered the problem of chelate degradation which made it difficult to ensure reliable and economical operation. This work aims to develop a novel fuel-cell-assisted chelated-iron process which employs an air-cathode fuel cell for the catalyst regeneration. By using such a process, sulfur and electricity were effectively recovered from H2S and the problem of chelate degradation was well controlled. Experiment on a synthetic sulfide solution showed the fuel-cell-assisted chelated-iron process could maintain high sulfur recovery efficiencies generally above 90.0%. The EDTA was preferable to NTA as the chelating agent for electricity generation, given the Coulombic efficiencies (CEs) of 17.8 ± 0.5% to 75.1 ± 0.5% for the EDTA-chelated process versus 9.6 ± 0.8% to 51.1 ± 2.7% for the NTA-chelated process in the pH range of 4.0-10.0. The Fe (III)/S(2-) ratio exhibited notable influence on the electricity generation, with the CEs improved by more than 25% as the Fe (III)/S(2-) molar ratio increased from 2.5:1 to 3.5:1. Application of this novel process in treating a H2S-containing biogas stream achieved 99% of H2S removal efficiency, 78% of sulfur recovery efficiency, and 78.6% of energy recovery efficiency, suggesting the fuel-cell-assisted chelated-iron process was effective to remove the H2S from gas streams with favorable sulfur and energy recovery efficiencies. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Maximizing power generation from dark fermentation effluents in microbial fuel cell by selective enrichment of exoelectrogens and optimization of anodic operational parameters.

    PubMed

    Varanasi, Jhansi L; Sinha, Pallavi; Das, Debabrata

    2017-05-01

    To selectively enrich an electrogenic mixed consortium capable of utilizing dark fermentative effluents as substrates in microbial fuel cells and to further enhance the power outputs by optimization of influential anodic operational parameters. A maximum power density of 1.4 W/m 3 was obtained by an enriched mixed electrogenic consortium in microbial fuel cells using acetate as substrate. This was further increased to 5.43 W/m 3 by optimization of influential anodic parameters. By utilizing dark fermentative effluents as substrates, the maximum power densities ranged from 5.2 to 6.2 W/m 3 with an average COD removal efficiency of 75% and a columbic efficiency of 10.6%. A simple strategy is provided for selective enrichment of electrogenic bacteria that can be used in microbial fuel cells for generating power from various dark fermentative effluents.

  7. Industrial fuel ethanol yeasts contain adaptive copy number changes in genes involved in vitamin B1 and B6 biosynthesis.

    PubMed

    Stambuk, Boris U; Dunn, Barbara; Alves, Sergio L; Duval, Eduarda H; Sherlock, Gavin

    2009-12-01

    Fuel ethanol is now a global energy commodity that is competitive with gasoline. Using microarray-based comparative genome hybridization (aCGH), we have determined gene copy number variations (CNVs) common to five industrially important fuel ethanol Saccharomyces cerevisiae strains responsible for the production of billions of gallons of fuel ethanol per year from sugarcane. These strains have significant amplifications of the telomeric SNO and SNZ genes, which are involved in the biosynthesis of vitamins B6 (pyridoxine) and B1 (thiamin). We show that increased copy number of these genes confers the ability to grow more efficiently under the repressing effects of thiamin, especially in medium lacking pyridoxine and with high sugar concentrations. These genetic changes have likely been adaptive and selected for in the industrial environment, and may be required for the efficient utilization of biomass-derived sugars from other renewable feedstocks.

  8. Industrial fuel ethanol yeasts contain adaptive copy number changes in genes involved in vitamin B1 and B6 biosynthesis

    PubMed Central

    Stambuk, Boris U.; Dunn, Barbara; Alves, Sergio L.; Duval, Eduarda H.; Sherlock, Gavin

    2009-01-01

    Fuel ethanol is now a global energy commodity that is competitive with gasoline. Using microarray-based comparative genome hybridization (aCGH), we have determined gene copy number variations (CNVs) common to five industrially important fuel ethanol Saccharomyces cerevisiae strains responsible for the production of billions of gallons of fuel ethanol per year from sugarcane. These strains have significant amplifications of the telomeric SNO and SNZ genes, which are involved in the biosynthesis of vitamins B6 (pyridoxine) and B1 (thiamin). We show that increased copy number of these genes confers the ability to grow more efficiently under the repressing effects of thiamin, especially in medium lacking pyridoxine and with high sugar concentrations. These genetic changes have likely been adaptive and selected for in the industrial environment, and may be required for the efficient utilization of biomass-derived sugars from other renewable feedstocks. PMID:19897511

  9. Factorial analysis of diesel engine performance using different types of biofuels.

    PubMed

    Tashtoush, Ghassan M; Al-Widyan, Mohamad I; Albatayneh, Aiman M

    2007-09-01

    In this study, several bio-source-fuels like fresh and waste vegetable oil and waste animal fat were tested at different injector pressures (120, 140, 190, 210 bar) in a direct-injection, naturally aspirated, single-cylinder diesel engine with a design injection pressure of 190 bar. Using 2k factorial analysis, the effect of injection pressure (Pi) and fuel type on three engine parameters, namely, combustion efficiency (etac), mass fuel consumption (mf), and engine speed (N) was examined. It was found that Pi and fuel type significantly affected both etac and mf while they had a slight effect on engine speed. Moreover, with diesel and biodiesels, the etac increased to a maximum at 190 bar but declined at the higher Pi value. In contrast, higher Pi had a favorable effect on etac over the whole Pi range with all the other more viscous fuels tested. In addition, the mass fuel consumption consistently decreased with an increase in Pi for all the fuels including the baseline diesel fuel, with which the engine consistently attained higher etac and higher rpm compared to all the other fuels tested.

  10. Use of Adaptive Injection Strategies to Increase the Full Load Limit of RCCI Operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanson, Reed; Ickes, Andrew; Wallner, Thomas

    2015-01-01

    Dual-fuel combustion using port-injection of low reactivity fuel combined with direct injection of a higher reactivity fuel, otherwise known as Reactivity Controlled Compression Ignition (RCCI), has been shown as a method to achieve low-temperature combustion with moderate peak pressure rise rates, low engine-out soot and NOx emissions, and high indicated thermal efficiency. A key requirement for extending to high-load operation is moderating the reactivity of the premixed charge prior to the diesel injection. One way to accomplish this is to use a very low reactivity fuel such as natural gas. In this work, experimental testing was conducted on a 13Lmore » multi-cylinder heavy-duty diesel engine modified to operate using RCCI combustion with port injection of natural gas and direct injection of diesel fuel. Engine testing was conducted at an engine speed of 1200 RPM over a wide variety of loads and injection conditions. The impact on dual-fuel engine performance and emissions with respect to varying the fuel injection parameters is quantified within this study. The injection strategies used in the work were found to affect the combustion process in similar ways to both conventional diesel combustion and RCCI combustion for phasing control and emissions performance. As the load is increased, the port fuel injection quantity was reduced to keep peak cylinder pressure and maximum pressure rise rate under the imposed limits. Overall, the peak load using the new injection strategy was shown to reach 22 bar BMEP with a peak brake thermal efficiency of 47.6%.« less

  11. Potentialities of TEC topping: A simplified view of parametric effects

    NASA Technical Reports Server (NTRS)

    Morris, J. F.

    1980-01-01

    An examination of the benefits of thermionic-energy-conversion (TEC)-topped power plants and methods of increasing conversion efficiency are discussed. Reductions in the cost of TEC modules yield direct decreases in the cost of electricity (COE) from TEC-topped central station power plants. Simplified COE, overall-efficiency charts presented illustrate this trend. Additional capital-cost diminution results from designing more compact furnaces with considerably increased heat transfer rates allowable and desirable for high temperature TEC and heat pipes. Such improvements can evolve of the protection from hot corrosion and slag as well as the thermal expansion compatibilities offered by silicon-carbide clads on TEC-heating surfaces. Greater efficiencies and far fewer modules are possible with high-temperature, high-power-density TEC: This decreases capital and fuel costs much more and substantially increases electric power outputs for fixed fuel inputs. In addition to more electricity, less pollution, and lower costs, TEC topping used directly in coal-combustion products contributes balance-of-payment gains.

  12. Effect of vane twist on the performance of dome swirlers for gas turbine airblast atomizers

    NASA Technical Reports Server (NTRS)

    Micklow, Gerald J.; Dogra, Anju S.; Nguyen, H. Lee

    1990-01-01

    For advanced gas turbine engines, two combustor systems, the lean premixed/prevaporized (LPP) and the rich burn/quick quench/lean burn (RQL) offer great potential for reducing NO(x) emissions. An important consideration for either concept is the development of an advanced fuel injection system that will provide a stable, efficient, and very uniform combustion system over a wide operating range. High-shear airblast fuel injectors for gas turbine combustors have exhibited superior atomization and mixing compared with pressure-atomizing fuel injectors. This improved mixing has lowered NO(x) emissions and the pattern factor, and has enabled combustors to alternate fuels while maintaining a stable, efficient combustion system. The performance of high-shear airblast fuel injectors is highly dependent on the design of the dome swirl vanes. The type of swirl vanes most widely used in gas turbine combustors are usually flat for ease of manufacture, but vanes with curvature will, in general, give superior aerodynamic performance. The design and performance of high-turning, low-loss curved dome swirl vanes with twist along the span are investigated. The twist induces a secondary vortex flow pattern which will improve the atomization of the fuel, thereby producing a more uniform fuel-air distribution. This uniform distribution will increase combustion efficiency while lowering NO(x) emissions. A systematic swirl vane design system is presented based on one-, two-, and three-dimensional flowfield calculations, with variations in vane-turning angle, rate of turning, vane solidity, and vane twist as design parameters.

  13. Particle fueling experiments with a series of pellets in LHD

    NASA Astrophysics Data System (ADS)

    Baldzuhn, J.; Damm, H.; Dinklage, A.; Sakamoto, R.; Motojima, G.; Yasuhara, R.; Ida, K.; Yamada, H.; LHD Experiment Group; Wendelstein 7-X Team

    2018-03-01

    Ice pellet injection is performed in the heliotron Large Helical Device (LHD). The pellets are injected in short series, with up to eight individual pellets. Parameter variations are performed for the pellet ice isotopes, the LHD magnetic configurations, the heating scenario, and some others. These experiments are performed in order to find out whether deeper fueling can be achieved with a series of pellets compared to single pellets. An increase of the fueling efficiency is expected since pre-cooling of the plasma by the first pellets within a series could aid deeper penetration of later pellets in the same series. In addition, these experiments show which boundary conditions must be fulfilled to optimize the technique. The high-field side injection of pellets, as proposed for deep fueling in a tokamak, will not be feasible with the same efficiency in a stellarator or heliotron because there the magnetic field gradient is smaller than in a tokamak of comparable size. Hence, too shallow pellet fueling, in particular in a large device or a fusion reactor, will be an issue that can be overcome only by extremely high pellet velocities, or other techniques that will have to be developed in the future. It turned out by our investigations that the fueling efficiency can be enhanced by the injection of a series of pellets to some extent. However, further investigations will be needed in order to optimize this approach for deep particle fueling.

  14. Effect of vane twist on the performance of dome swirlers for gas turbine airblast atomizers

    NASA Astrophysics Data System (ADS)

    Micklow, Gerald J.; Dogra, Anju S.; Nguyen, H. Lee

    1990-07-01

    For advanced gas turbine engines, two combustor systems, the lean premixed/prevaporized (LPP) and the rich burn/quick quench/lean burn (RQL) offer great potential for reducing NO(x) emissions. An important consideration for either concept is the development of an advanced fuel injection system that will provide a stable, efficient, and very uniform combustion system over a wide operating range. High-shear airblast fuel injectors for gas turbine combustors have exhibited superior atomization and mixing compared with pressure-atomizing fuel injectors. This improved mixing has lowered NO(x) emissions and the pattern factor, and has enabled combustors to alternate fuels while maintaining a stable, efficient combustion system. The performance of high-shear airblast fuel injectors is highly dependent on the design of the dome swirl vanes. The type of swirl vanes most widely used in gas turbine combustors are usually flat for ease of manufacture, but vanes with curvature will, in general, give superior aerodynamic performance. The design and performance of high-turning, low-loss curved dome swirl vanes with twist along the span are investigated. The twist induces a secondary vortex flow pattern which will improve the atomization of the fuel, thereby producing a more uniform fuel-air distribution. This uniform distribution will increase combustion efficiency while lowering NO(x) emissions. A systematic swirl vane design system is presented based on one-, two-, and three-dimensional flowfield calculations, with variations in vane-turning angle, rate of turning, vane solidity, and vane twist as design parameters.

  15. Effect of vane twist on the performance of dome swirlers for gas turbine airblast atomizers

    NASA Astrophysics Data System (ADS)

    Micklow, Gerald J.; Dogra, Anju S.; Nguyen, H. Lee

    1990-06-01

    For advanced gas turbine engines, two combustor systems, the lean premixed/prevaporized (LPP) and the rich burn/quick quench/lean burn (RQL) offer great potential for reducing NO(x) emissions. An important consideration for either concept is the development of an advanced fuel injection system that will provide a stable, efficient, and very uniform combustion system over a wide operating range. High-shear airblast fuel injectors for gas turbine combustors have exhibited superior atomization and mixing compared with pressure-atomizing fuel injectors. This improved mixing has lowered NO(x) emissions and the pattern factor, and has enabled combustors to alternate fuels while maintaining a stable, efficient combustion system. The performance of high-shear airblast fuel injectors is highly dependent on the design of the dome swirl vanes. The type of swirl vanes most widely used in gas turbine combustors are usually flat for ease of manufacture, but vanes with curvature will, in general, give superior aerodynamic performance. The design and performance of high-turning, low-loss curved dome swirl vanes with twist along the span are investigated. The twist induces a secondary vortex flow pattern which will improve the atomization of the fuel, thereby producing a more uniform fuel-air distribution. This uniform distribution will increase combustion efficiency while lowering NO(x) emissions. A systematic swirl vane design system is presented based on one-, two-, and three-dimensional flowfield calculations, with variations in vane-turning angle, rate of turning, vane solidity, and vane twist as design parameters.

  16. Advanced rotary engine studies

    NASA Technical Reports Server (NTRS)

    Jones, C.

    1980-01-01

    A review of rotary engine developments relevant to a stratified charge rotary aircraft engine is presented. Advantages in module size and weight, fuel efficiency, reliability, and multi-fuel capability are discussed along with developments in turbocharging, increased mean effective pressure, improved apex seal/trochoid wear surfacing materials, and high strength and temperature aluminum casting alloys. A carbureted prototype aircraft engine is also described.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baek, M. H.; Kim, S. J.; Yoo, J.

    The major roles of a prototype SFR are to provide irradiation test capability for the fuel and structure materials, and to obtain operational experiences of systems. Due to a compromise between the irradiation capability and construction costs, the power level should be properly determined. In this paper, a trade-off study on the power level of the prototype SFR was performed from a neutronics viewpoint. To select candidate cores, the parametric study of pin diameters was estimated using 20 wt.% uranium fuel. The candidate cores of different power levels, 125 MWt, 250 MWt, 400 MWt, and 500 MWt, were compared withmore » the 1500 MWt reference core. The resulting core performance and economic efficiency indices became insensitive to the power at about 400-500 MWt and sharply deteriorated at about 125-250 MWt with decreasing core sizes. Fuel management scheme, TRU core performance comparing with uranium core, and sodium void reactivity were also evaluated with increasing power levels. It is found that increasing the number of batches showed higher burnup performance and economic efficiency. However, increasing the cycle length showed the trends in lower economic efficiency. Irradiation performance of TRU and enriched TRU cores was improved about 20 % and 50 %, respectively. The maximum sodium void reactivity of 5.2$ was confirmed less than the design limit of 7.5$. As a result, the power capacity of the prototype SFR should not be less than 250 MWt and would be appropriate at {approx} 500 MWt considering the performance and economic efficiency. (authors)« less

  18. A Highly Efficient Six-Stroke Internal Combustion Engine Cycle with Water Injection for In-Cylinder Exhaust Heat Recovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conklin, Jim; Szybist, James P

    2010-01-01

    A concept is presented here that adds two additional strokes to the four-stroke Otto or Diesel cycle that has the potential to increase fuel efficiency of the basic cycle. The engine cycle can be thought of as a 4 stroke Otto or Diesel cycle followed by a 2-stroke heat recovery steam cycle. Early exhaust valve closing during the exhaust stroke coupled with water injection are employed to add an additional power stroke at the end of the conventional four-stroke Otto or Diesel cycle. An ideal thermodynamics model of the exhaust gas compression, water injection at top center, and expansion wasmore » used to investigate this modification that effectively recovers waste heat from both the engine coolant and combustion exhaust gas. Thus, this concept recovers energy from two waste heat sources of current engine designs and converts heat normally discarded to useable power and work. This concept has the potential of a substantial increase in fuel efficiency over existing conventional internal combustion engines, and under appropriate injected water conditions, increase the fuel efficiency without incurring a decrease in power density. By changing the exhaust valve closing angle during the exhaust stroke, the ideal amount of exhaust can be recompressed for the amount of water injected, thereby minimizing the work input and maximizing the mean effective pressure of the steam expansion stroke (MEPsteam). The value of this exhaust valve closing for maximum MEPsteam depends on the limiting conditions of either one bar or the dew point temperature of the expansion gas/moisture mixture when the exhaust valve opens to discard the spent gas mixture in the sixth stroke. The range of MEPsteam calculated for the geometry of a conventional gasoline spark-ignited internal combustion engine and for plausible water injection parameters is from 0.75 to 2.5 bars. Typical combustion mean effective pressures (MEPcombustion) of naturally aspirated gasoline engines are up to 10 bar, thus this concept has the potential to significantly increase the engine efficiency and fuel economy while not resulting in a decrease in power density.« less

  19. Emission FTIR analyses of thin microscopic patches of jet fuel residues deposited on heated metal surfaces

    NASA Technical Reports Server (NTRS)

    Lauer, J. L.; Vogel, P.

    1986-01-01

    The relationship of fuel stability to fuel composition and the development of mechanisms for deposit formation were investigated. Fuel deposits reduce heat transfer efficiency and increase resistance to fuel flow and are highly detrimental to aircraft performance. Infrared emission Fourier transform spectroscopy was chosen as the primary method of analysis because it was sensitive enough to be used in-situ on tiny patches of monolayers or of only a few molecular layers of deposits which generally proved completely insoluble in any nondestructive solvents. Deposits of four base fuels were compared; dodecane, a dodecane/tetralin blend, commercial Jet A fuel, and a broadened-properties jet fuel particularly rich in polynuclear aromatics. Every fuel in turn was provided with and without small additions of such additives as thiophene, furan, pyrrole, and copper and iron naphthenates.

  20. Fuel-Cell-Powered Electric Motor Drive Analyzed for a Large Airplane

    NASA Technical Reports Server (NTRS)

    Brown, Gerald V.; Choi, Benjamin B.

    2005-01-01

    Because of its high efficiency, fuel cell technology may be used to launch a new generation of more-electric aeropropulsion and power systems for future aircraft. Electric-motor-driven airplanes using fuel-cell powerplants would be beneficial to the environment because of fuel savings, low noise, and zero carbon-dioxide emissions. In spite of the fuel cell s efficiency benefit, to produce the same shaft drive power, a fuel cell- powered electric-drive system must be definitely heavier than a turbine-drive system. However, the fuel-cell system s overall efficiency from fuel-to-shaft power is higher than for a turbine-drive system. This means that the fuel consumption rate could be lower than for a conventional system. For heavier, fuel-laden planes for longer flights, we might achieve substantial fuel savings. In the airplane industry, in fact, an efficiency gain of even a few percentage points can make a major economic difference in operating costs.

  1. Fuel Use and Greenhouse Gas Emissions from Offshore Fisheries of the Republic of Korea.

    PubMed

    Park, Jeong-A; Gardner, Caleb; Chang, Myo-In; Kim, Do-Hoon; Jang, Young-Soo

    2015-01-01

    Greenhouse Gas (GHG) emissions from the offshore fisheries industry in the Republic of Korea (Korea) were examined in response to growing concerns about global warming and the contribution of emissions from different industrial sectors. Fuel usage and GHG emissions (CO2, CH4, N2O) were analysed using the 'Tier 1' method provided by the Intergovernmental Panel on Climate Change (IPCC) from the offshore fishery, which is the primary domestic seafood production sector in Korea. In 2013, fuel usage in the offshore fishery accounted for 59.7% (557,463 KL) of total fuel consumption of fishing vessels in Korea. Fuel consumption and thus GHG emissions were not stable through time in this industry, increasing by 2.4% p.a. for three consecutive years, from 2011 to 2013, despite a decrease in the number of vessels operating. GHG emissions generated in offshore fisheries also changed through time and increased from 1,442,975 tCO2e/year in 2011 to 1,477,279 tCO2e/year in 2013. Changes in both fuel use and GHG emissions per kg offshore fish production appeared to be associated with decreasing catch rates by the fleet, which in turn were a reflection of decrease in fish biomass. Another important feature of GHG emissions in this industry was the high variation in GHG emission per kg fish product among different fishing methods. The long line fishery had approximately three times the emissions of the average production while the jigging fishery was more than two times higher than the average. Lowest emissions were from the trawl sector, which is regarded as having greatest environmental impact using traditional biodiversity metrics although had lowest environmental impact in terms of fuel and GHG emission metrics used in this study. The observed deterioration in fuel efficiency of the offshore fishery each year is of concern but also demonstrates that fuel efficiency can change, which shows there is opportunity to improve efficiency with changes to fishery management and harvesting operations.

  2. Fuel Use and Greenhouse Gas Emissions from Offshore Fisheries of the Republic of Korea

    PubMed Central

    Park, Jeong-A; Gardner, Caleb; Chang, Myo-In; Kim, Do-Hoon; Jang, Young-Soo

    2015-01-01

    Greenhouse Gas (GHG) emissions from the offshore fisheries industry in the Republic of Korea (Korea) were examined in response to growing concerns about global warming and the contribution of emissions from different industrial sectors. Fuel usage and GHG emissions (CO2, CH4, N2O) were analysed using the ‘Tier 1’ method provided by the Intergovernmental Panel on Climate Change (IPCC) from the offshore fishery, which is the primary domestic seafood production sector in Korea. In 2013, fuel usage in the offshore fishery accounted for 59.7% (557,463 KL) of total fuel consumption of fishing vessels in Korea. Fuel consumption and thus GHG emissions were not stable through time in this industry, increasing by 2.4% p.a. for three consecutive years, from 2011 to 2013, despite a decrease in the number of vessels operating. GHG emissions generated in offshore fisheries also changed through time and increased from 1,442,975 tCO2e/year in 2011 to 1,477,279 tCO2e/year in 2013. Changes in both fuel use and GHG emissions per kg offshore fish production appeared to be associated with decreasing catch rates by the fleet, which in turn were a reflection of decrease in fish biomass. Another important feature of GHG emissions in this industry was the high variation in GHG emission per kg fish product among different fishing methods. The long line fishery had approximately three times the emissions of the average production while the jigging fishery was more than two times higher than the average. Lowest emissions were from the trawl sector, which is regarded as having greatest environmental impact using traditional biodiversity metrics although had lowest environmental impact in terms of fuel and GHG emission metrics used in this study. The observed deterioration in fuel efficiency of the offshore fishery each year is of concern but also demonstrates that fuel efficiency can change, which shows there is opportunity to improve efficiency with changes to fishery management and harvesting operations. PMID:26317341

  3. Emission studies from combustion of empty fruit bunch pellets in a fluidized bed combustor

    NASA Astrophysics Data System (ADS)

    Fazli Othaman, Muhamad; Sabudin, Sulastri; Faizal Mohideen Batcha, Mohd

    2017-08-01

    Malaysia is producing a very large amount of biomass annually from milling activities of oil palm. This biomass is currently being used efficiently in many ways including as fuel for boilers together with fossil fuels. This paper reports the emission characteristics from biomass combustion in a swirling fluidized bed combustor (SFBC). Pelletized empty fruit bunch (PEFB), one of largest biomass produced from oil palm industries were used as fuel in the present study. Combustion experiments were conducted with several quantitiesof excess air: 20%, 40%, 60% and 80% for a constant fuel feedrate of 30kg/hr. The effect of excess air was investigated for three major emissions gaseous namely CO, CO2 and NOx. Fly ash produced from the combustion was also analysed to find the contents of unburnt carbon and other impurities. From the results, it was found that the emission of CO decreased from 64 ppm to 40 ppm while the amount of CO2 increased slightly with the increasing of excess air from 20% to 80%. The NOx emission also increased from 290 ppm to 350 ppm because of N2 in the EA reacts with O2 due to high combustion temperature. The combustion efficiencies of about 99% obtained in the present study, showing the prospects of using SFBC in commercial scale.

  4. Effect of anhydrous ethanol/gasoline blends on performance and exhaust emissions of spark-ignited non-road engines.

    PubMed

    Ribeiro, Camilo Bastos; Martins, Kelly Geronazzo; Gueri, Matheus Vitor Diniz; Pavanello, Guilherme Pozzobom; Schirmer, Waldir Nagel

    2018-06-12

    Ethanol is a renewable fuel and it is considered an alternative to gasoline in Otto-cycle engines. The present study evaluated the behavior of exhaustion gas carbon monoxide (CO) and total hydrocarbons (THC) according to the levels of anhydrous ethyl alcohol (AEA) added to gasoline in different proportions (E0, E10, E20, E27, that is, pure gasoline and its blends with AEA at 10, 20, and 27% v/v) in the use of non-road single cylinder engines of different powers (13 and 6.5 hp), to the loads applied to engine-generators and the air-fuel ratio (A/F) admitted to the engine cylinders. Also, the performance of engine-generators was verified in terms of mass, specific and energetic consumption and efficiency of the evaluated systems for the same blends and loads. The results showed that an increase in the AEA content in the blend resulted in significant drops in CO and THC concentrations for both engine-generators, while fuel consumption showed a slight upward trend; the increases in applied loads resulted in an increase in CO and THC concentrations and fuel consumption. In general, a higher AEA content (oxygenated) in the blends had a greater effect on gaseous emissions compared to the effect on consumption and system efficiency.

  5. Conversion of a micro, glow-ignition, two-stroke engine from nitromethane-methanol blend fuel to military jet propellant (JP-8)

    NASA Astrophysics Data System (ADS)

    Wiegand, Andrew L.

    The goal of the thesis "Conversion of a Micro, Glow-Ignition, Two-Stroke Engine from Nitromethane-Methanol Blend Fuel to Military Jet Propellant (JP-8)" was to demonstrate the ability to operate a small engine on JP-8 and was completed in two phases. The first phase included choosing, developing a test stand for, and baseline testing a nitromethane-methanol-fueled engine. The chosen engine was an 11.5 cc, glow-ignition, two-stroke engine designed for remote-controlled helicopters. A micro engine test stand was developed to load and motor the engine. Instrumentation specific to the low flow rates and high speeds of the micro engine was developed and used to document engine behavior. The second phase included converting the engine to operate on JP-8, completing JP-8-fueled steady-state testing, and comparing the performance of the JP-8-fueled engine to the nitromethane-methanol-fueled engine. The conversion was accomplished through a novel crankcase heating method; by heating the crankcase for an extended period of time, a flammable fuel-air mixture was generated in the crankcase scavenged engine, which greatly improved starting times. To aid in starting and steady-state operation, yttrium-zirconia impregnated resin (i.e. ceramic coating) was applied to the combustion surfaces. This also improved the starting times of the JP-8-fueled engine and ultimately allowed for a 34-second starting time. Finally, the steady-state data from both the nitromethane-methanol and JP-8-fueled micro engine were compared. The JP-8-fueled engine showed signs of increased engine friction while having higher indicated fuel conversion efficiency and a higher overall system efficiency. The minimal ability of JP-8 to cool the engine via evaporative effects, however, created the necessity of increased cooling air flow. The conclusion reached was that JP-8-fueled micro engines could be viable in application, but not without additional research being conducted on combustion phenomenon and cooling requirements.

  6. Energy Consumption and Greenhouse Gas Emission of Korean Offshore Fisheries

    NASA Astrophysics Data System (ADS)

    Lee, Jihoon; Kim, Taeho; Ellingsen, Harald; Hognes, Erik Skontorp; Hwang, Bokyu

    2018-06-01

    This paper presents the energy and greenhouse gas (GHG) emission assessments of Korean offshore fisheries. The consumption of energy by fisheries is a significant concern because of its attendant environmental effect, as well as the cost of the fuel consumed in fishing industry. With the global attention of reducing GHG emission and increasing energy efficiency of fuel, the seafood industry needs to further understand its energy use and reduce its GHG emission. In the present study, the amount of energy consumed and the GHG emission of Korean offshore fisheries in a period from 2009 to 2013 were examined. Offshore fisheries accounted for 24% of Korean production in 2013 and 60% of fuel consumption related GHG emission. Whereas the total GHG emission intensity of this sector improved slightly between 2009 and 2012; as such emission decreased by approximately 1.9%, which increased again in 2013. The average amount of total GHG emission in this five years period was 1.78 × 106 tons of carbon dioxide equivalent/year (t CO2 eq. y-1). Active fishing gear was found to consume 20% more fuel than passive gear. However, the production from passive gear was 28%, lower than 72% from active gear. The reason for this is that less abundant stationary resources are harvested using passive gear. Furthermore, the consumption of fuel was significantly influenced by the fishing method. Implementation and development of new fishing technologies and methods are important for improving energy efficiency and reducing the climate impact on fisheries. To realize these purposes, the fishery management system needs to be established by centralizing on energy efficiency and climate effect.

  7. How conservation agriculture can mitigate greenhouse gas emissions and enhance soil carbon storage in croplands

    USDA-ARS?s Scientific Manuscript database

    Conservation agriculture can mitigate greenhouse gas (GHG) emissions from agriculture by enhancing soil carbon sequestration, improving soil quality, N-use efficiency and water use efficiencies, and reducing fuel consumption. Management practices that increase carbon inputs and while reducing carbo...

  8. Fuel poverty increases risk of mould contamination, regardless of adult risk perception & ventilation in social housing properties.

    PubMed

    Sharpe, Richard A; Thornton, Christopher R; Nikolaou, Vasilis; Osborne, Nicholas J

    2015-06-01

    Fuel poverty affects 2.4 million UK homes leading to poor hygrothermal conditions and risk of mould and house dust mite contaminations, which in turn increases risk of asthma exacerbation. For the first time we assess how fuel poverty, occupants' risk perception and use of mechanical ventilation mediate the risk of mould contamination in social housing. Postal questionnaires were sent to 3867 social housing properties to collect adult risk perception, and demographic and environmental information on occupants. Participant details were linked to data pertaining to the individual properties. Multiple logistic regression was used to calculate odds ratios and confidence intervals while allowing for clustering of individuals coming from the same housing estate. We used Structured Equation Modelling and Goodness of Fit analysis in mediation analyses to examine the role of fuel poverty, risk perception, use of ventilation and energy efficiency. Eighteen percent of our target social housing populations (671 households) were included into our study. High risk perception (score of 8-10) was associated with reduced risk of mould contamination in the bedrooms of children (OR 0.5 95% CI; 0.3-0.9) and adults (OR 0.4 95% CI; 0.3-0.7). High risk perception of living with inadequate heating and ventilation reduced the risk of mould contamination (OR 0.5 95% CI; 0.3-0.8 and OR 0.5 95% CI; 0.3-0.7, respectively). Participants living with inadequate heating and not heating due to the cost of fuel had an increased risk of mould contamination (OR 3.4 95% CI; 2.0-5.8 and OR 2.2 95% CI; 1.5-3.2, respectively). Increased risk perception and use of extractor fans did not mediate the association between fuel poverty behaviours and increased risk of mould contamination. Fuel poverty behaviours increased the risk of mould contamination, which corresponds with existing literature. For the first time we used mediation analysis to assess how this association maybe modified by occupant behaviours. Increased risk perception and use of extractor fans did not modify the association between fuel poverty and mould contamination. This suggests that fuel poor populations may not benefit from energy efficiency interventions due to ineffective heating and ventilation practices of those occupants residing participating households. Our findings may be modified by a complex interaction between occupant behaviours and the built environment. We found that participant age, occupancy, SES, pets, drying washing indoors, geographic location, architectural design/age of the property, levels of insulation and type of heating regulated risk of mould contamination. Fuel poverty behaviours affected around a third of participating households and represent a risk factor for increased exposures to damp and mouldy conditions, regardless of adult risk perception, heating and ventilation practices. This requires multidisciplinary approach to assess the complex interaction between occupant behaviours, risk perception, the built environment and the effective use of heating and ventilation practices. Our findings have implications for housing policies and future housing interventions. Effective communication strategies focusing on awareness and perception of risk may help address indoor air quality issues. This must be supported by improved household energy efficiency with the provision of more effective heating and ventilation strategies, specifically to help alleviate those suffering from fuel poverty. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Modeling and experimental performance of an intermediate temperature reversible solid oxide cell for high-efficiency, distributed-scale electrical energy storage

    NASA Astrophysics Data System (ADS)

    Wendel, Christopher H.; Gao, Zhan; Barnett, Scott A.; Braun, Robert J.

    2015-06-01

    Electrical energy storage is expected to be a critical component of the future world energy system, performing load-leveling operations to enable increased penetration of renewable and distributed generation. Reversible solid oxide cells, operating sequentially between power-producing fuel cell mode and fuel-producing electrolysis mode, have the capability to provide highly efficient, scalable electricity storage. However, challenges ranging from cell performance and durability to system integration must be addressed before widespread adoption. One central challenge of the system design is establishing effective thermal management in the two distinct operating modes. This work leverages an operating strategy to use carbonaceous reactant species and operate at intermediate stack temperature (650 °C) to promote exothermic fuel-synthesis reactions that thermally self-sustain the electrolysis process. We present performance of a doped lanthanum-gallate (LSGM) electrolyte solid oxide cell that shows high efficiency in both operating modes at 650 °C. A physically based electrochemical model is calibrated to represent the cell performance and used to simulate roundtrip operation for conditions unique to these reversible systems. Design decisions related to system operation are evaluated using the cell model including current density, fuel and oxidant reactant compositions, and flow configuration. The analysis reveals tradeoffs between electrical efficiency, thermal management, energy density, and durability.

  10. Summary of High-Octane Mid-Level Ethanol Blends Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Theiss, Timothy J.; Alleman, Teresa; Brooker, Aaron

    Original equipment manufacturers (OEMs) of light-duty vehicles are pursuing a broad portfolio of technologies to reduce CO 2 emissions and improve fuel economy. Central to this effort is higher efficiency spark ignition (SI) engines, including technologies reliant on higher compression ratios and fuels with improved anti-knock properties, such as gasoline with significantly increased octane numbers. Ethanol has an inherently high octane number and would be an ideal octane booster for lower-octane petroleum blendstocks. In fact, recently published data from Department of Energy (DOE) national laboratories (Splitter and Szybist, 2014a, 2014b; Szybist, 2010; Szybist and West, 2013) and OEMs (Anderson, 2013)more » and discussions with the U.S. Environmental Protection Agency (EPA) suggest the potential of a new high octane fuel (HOF) with 25–40 vol % of ethanol to assist in reaching Renewable Fuel Standard (RFS2) and greenhouse gas (GHG) emissions goals. This mid-level ethanol content fuel, with a research octane number (RON) of about 100, appears to enable efficiency improvements in a suitably calibrated and designed engine/vehicle system that are sufficient to offset its lower energy density (Jung, 2013; Thomas, et al, 2015). This efficiency improvement would offset the tank mileage (range) loss typically seen for ethanol blends in conventional gasoline and flexible-fuel vehicles (FFVs). The prospects for such a fuel are additionally attractive because it can be used legally in over 18 million FFVs currently on the road. Thus the legacy FFV fleet can serve as a bridge by providing a market for the new fuel immediately, so that future vehicles will have improved efficiency as the new fuel becomes widespread. In this way, HOF can simultaneously help improve fuel economy while expanding the ethanol market in the United States via a growing market for an ethanol blend higher than E10. The DOE Bioenergy Technologies Office initiated a collaborative research program between Oak Ridge National Laboratory (ORNL), the National Renewable Energy Laboratory (NREL), and Argonne National Laboratory (ANL) to investigate HOF in late 2013. The program objective was to provide a quantitative picture of the barriers to adoption of HOF and the highly efficient vehicles it enables, and to quantify the potential environmental and economic benefits of the technology.« less

  11. Performance Evaluation on Otto Engine Generator Using Gasoline and Biogas from Palm Oil Mill Effluent

    NASA Astrophysics Data System (ADS)

    Irvan; Trisakti, B.; Husaini, T.; Sitio, A.; Sitorus, TB

    2017-06-01

    Biogas is a flammable gas produced from the fermentation of organic materials by anaerobic bacteria originating from household waste manure and organic waste including palm oil mill effluent (POME). POME is mainly discharged from the sterilization unit of palm oil processing into crude palm oil. This study utilized biogas produced from liquid waste palm oil for use as fuel in the Otto engine generator 4 - stroke, type STARKE GFH1900LX with a peak power of 1.3 kW, 1.0 kW average power, bore 55 mm, stroke 40 mm, Vd 95 × 10-6 m3, Vc 10 × 10-6 m3, compression ratio of 10.5 : 1, and the number of cylinders = 1. The objective of this study is to evaluate the performance of Otto engine generator fueled with biogas that generated from POME, then comparing its performance fueled by gasoline. The performance included power, torque, specific fuel consumption, thermal efficiency, and the air-fuel ratio. Experiment was conducted by using a variation of the lamp load of 100, 200, 300, 400, and 500 W. The results revealed that the use of biogas as fuel decreased in power, torque, brake thermal efficiency, and air fuel ratio (AFR), while there is an increasing of value specific fuel consumption (SFC).

  12. Alternative Fuels DISI Engine Research ? Autoignition Metrics.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sjoberg, Carl Magnus Goran; Vuilleumier, David

    Improved engine efficiency is required to comply with future fuel economy standards. Alternative fuels have the potential to enable more efficient engines while addressing concerns about energy security. This project contributes to the science base needed by industry to develop highly efficient direct injection spark igniton (DISI) engines that also beneficially exploit the different properties of alternative fuels. Here, the emphasis is on quantifying autoignition behavior for a range of spark-ignited engine conditions, including directly injected boosted conditions. The efficiency of stoichiometrically operated spark ignition engines is often limited by fuel-oxidizer end-gas autoignition, which can result in engine knock. Amore » fuel’s knock resistance is assessed empirically by the Research Octane Number (RON) and Motor Octane Number (MON) tests. By clarifying how these two tests relate to the autoignition behavior of conventional and alternative fuel formulations, fuel design guidelines for enhanced engine efficiency can be developed.« less

  13. LFC leading edge glove flight: Aircraft modification design, test article development and systems integration

    NASA Technical Reports Server (NTRS)

    Etchberger, F. R.

    1983-01-01

    Reduction of skin friction drag by suction of boundary layer air to maintain laminar flow has been known since Prandtl's published work in 1904. The dramatic increases in fuel costs and the potential for periods of limited fuel availability provided the impetus to explore technologies to reduce transport aircraft fuel consumption. NASA sponsored the Aircraft Energy Efficiency (ACEE) program in 1976 to develop technologies to improve fuel efficiency. This report documents the Lockheed-Georgia Company accomplishments in designing and fabricating a leading-edge flight test article incorporating boundary layer suction slots to be flown by NASA on their modified JetStar aircraft. Lockheed-Georgia Company performed as the integration contractor to design the JetStar aircraft modification to accept both a Lockheed and a McDonnell Douglas flight test article. McDonnell Douglas uses a porous skin concept. The report describes aerodynamic analyses, fabrication techniques, JetStar modifications, instrumentation requirements, and structural analyses and testing for the Lockheed test article. NASA will flight test the two LFC leading-edge test articles in a simulated commercial environment over a 6 to 8 month period in 1984. The objective of the flight test program is to evaluate the effectiveness of LFC leading-edge systems in reducing skin friction drag and consequently improving fuel efficiency.

  14. Engine-integrated solid oxide fuel cells for efficient electrical power generation on aircraft

    NASA Astrophysics Data System (ADS)

    Waters, Daniel F.; Cadou, Christopher P.

    2015-06-01

    This work investigates the use of engine-integrated catalytic partial oxidation (CPOx) reactors and solid oxide fuel cells (SOFCs) to reduce fuel burn in vehicles with large electrical loads like sensor-laden unmanned air vehicles. Thermodynamic models of SOFCs, CPOx reactors, and three gas turbine (GT) engine types (turbojet, combined exhaust turbofan, separate exhaust turbofan) are developed and checked against relevant data and source material. Fuel efficiency is increased by 4% and 8% in the 50 kW and 90 kW separate exhaust turbofan systems respectively at only modest cost in specific power (8% and 13% reductions respectively). Similar results are achieved in other engine types. An additional benefit of hybridization is the ability to provide more electric power (factors of 3 or more in some cases) than generator-based systems before encountering turbine inlet temperature limits. A sensitivity analysis shows that the most important parameters affecting the system's performance are operating voltage, percent fuel oxidation, and SOFC assembly air flows. Taken together, this study shows that it is possible to create a GT-SOFC hybrid where the GT mitigates balance of plant losses and the SOFC raises overall system efficiency. The result is a synergistic system with better overall performance than stand-alone components.

  15. Filter-based control of particulate matter from a lean gasoline direct injection engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parks, II, James E; Lewis Sr, Samuel Arthur; DeBusk, Melanie Moses

    New regulations requiring increases in vehicle fuel economy are challenging automotive manufacturers to identify fuel-efficient engines for future vehicles. Lean gasoline direct injection (GDI) engines offer significant increases in fuel efficiency over the more common stoichiometric GDI engines already in the marketplace. However, particulate matter (PM) emissions from lean GDI engines, particularly during stratified combustion modes, are problematic for lean GDI technology to meet U.S. Environmental Protection Agency Tier 3 and other future emission regulations. As such, the control of lean GDI PM with wall-flow filters, referred to as gasoline particulate filter (GPF) technology, is of interest. Since lean GDImore » PM chemistry and morphology differ from diesel PM (where more filtration experience exists), the functionality of GPFs needs to be studied to determine the operating conditions suitable for efficient PM removal. In addition, lean GDI engine exhaust temperatures are generally higher than diesel engines which results in more continuous regeneration of the GPF and less presence of the soot cake layer common to diesel particulate filters. Since the soot layer improves filtration efficiency, this distinction is important to consider. Research on the emission control of PM from a lean GDI engine with a GPF was conducted on an engine dynamometer. PM, after dilution, was characterized with membrane filters, organic vs. elemental carbon characterization, and size distribution techniques at various steady state engine speed and load points. The engine was operated in three primary combustion modes: stoichiometric, lean homogeneous, and lean stratified. In addition, rich combustion was utilized to simulate PM from engine operation during active regeneration of lean NOx control technologies. High (>95%) PM filtration efficiencies were observed over a wide range of conditions; however, some PM was observed to slip through the GPF at high speed and load conditions. The PM characterization at various engine speeds and loads will help enable optimized GPF design and control to achieve more fuel efficient lean GDI vehicles with low PM emissions.« less

  16. Off-design analysis of a gas turbine powerplant augmented by steam injection using various fuels

    NASA Technical Reports Server (NTRS)

    Stochl, R. J.

    1980-01-01

    Results are compared using coal derived low and intermediate heating valve fuel gases and a conventional distillate. The results indicate that steam injection provides substantial increases in both power and efficiency within the available compressor surge margin. The results also indicate that these performance gains are relatively insensitive as to the type of fuel. Also, in a cogeneration application, steam injection could provide some degree of flexibility by varying the split between power and process steam.

  17. Enhancing the performance of Escherichia coli-inoculated microbial fuel cells by introduction of the phenazine-1-carboxylic acid pathway.

    PubMed

    Feng, Jiao; Qian, Ying; Wang, Zhen; Wang, Xin; Xu, Sheng; Chen, Kequan; Ouyang, Pingkai

    2018-06-10

    Microbial fuel cells (MFCs) are a renewable green energy source that uses microorganisms to catalytically convert chemical energy into electrical energy. The efficiency of extracellular electron transfer (EET) from the microbe cell to the anode electrode plays a key role in the MFC. However, the insulating properties of the cell membrane limit the efficiency of EET. Herein, EET efficiency was improved by introducing a phenazine synthesis pathway into Escherichia coli. Through the heterologous expression of phzA1B1C1D1E1F1G1, phenazine-1-carboxylic acid production increased, and the maximum power density increased from 16.7 mW/m 2 to 181.1 mW/m 2 . Furthermore, the charge transfer resistance of 6.7 Ω decreased to 4.2 Ω, which reflected the enhancement of the EET efficiency and the electricity power output. Our results imply that introducing a heterologous electron shuttle into E. coli could be an efficient approach to improving the EET efficiency and performance of an MFC. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Future US energy demands based upon traditional consumption patterns lead to requirements which significantly exceed domestic supply

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Energy consumption in the United States has risen in response to both increasing population and to increasing levels of affluence. Depletion of domestic energy reserves requires consumption modulation, production of fossil fuels, more efficient conversion techniques, and large scale transitions to non-fossile fuel energy sources. Widening disparity between the wealthy and poor nations of the world contributes to trends that increase the likelihood of group action by the lesser developed countries to achieve political and economic goals. The formation of anticartel cartels is envisioned.

  19. Fuel Economy Regulations and Efficiency Technology Improvements in U.S. Cars Since 1975

    NASA Astrophysics Data System (ADS)

    MacKenzie, Donald Warren

    Light-duty vehicles account for 43% of petroleum consumption and 23% of greenhouse gas emissions in the United States. Corporate Average Fuel Economy (CAFE) standards are the primary policy tool addressing petroleum consumption in the U.S., and are set to tighten substantially through 2025. In this dissertation, I address several interconnected questions on the technical, policy, and market aspects of fuel consumption reduction. I begin by quantifying historic improvements in fuel efficiency technologies since the 1970s. First. I develop a linear regression model of acceleration performance conditional on power, weight, powertrain, and body characteristics, showing that vehicles today accelerate 20-30% faster than vehicles with similar specifications in the 1970s. Second, I find that growing use of alternative materials and a switch to more weight-efficient vehicle architectures since 1975 have cut the weight of today's new cars by approximately 790 kg (46%). Integrating these results with model-level specification data, I estimate that the average fuel economy of new cars could have tripled from 1975-2009, if not for changes in performance, size, and features over this period. The pace of improvements was not uniform, averaging 5% annually from 1975-1990, but only 2% annually since then. I conclude that the 2025 standards can be met through improvements in efficiency technology, if we can return to 1980s rates of improvement, and growth in acceleration performance and feature content is curtailed. I next test the hypotheses that higher fuel prices and more stringent CAFE standards cause automotive firms to deploy efficiency technologies more rapidly. I find some evidence that higher fuel prices cause more rapid changes in technology, but little to no evidence that tighter CAFE standards increase rates of technology change. I conclude that standards alone, without continued high gasoline prices, may not drive technology improvements at rates needed to meet the 2025 CAFE standards factors determining industry support for nationwide fuel economy regulations. (Copies available exclusively from MIT Libraries, libraries.mit.edu/docs - docs@mit.edu)

  20. NREL Fuels and Engines R&D Revs Up Vehicle Efficiency, Performance (Text

    Science.gov Websites

    Version) | News | NREL Fuels and Engines R&D Revs Up Vehicle Efficiency, Performance (Text Version) NREL Fuels and Engines R&D Revs Up Vehicle Efficiency, Performance (Text Version) NREL's combustion to the evolution of how fuels interact with engine and vehicle design. This is a text version of

  1. Future long-range transports: Prospects for improved fuel efficiency

    NASA Technical Reports Server (NTRS)

    Nagel, A. L.; Alford, W. J., Jr.; Dugan, J. F., Jr.

    1975-01-01

    A status report is provided on current thinking concerning potential improvements in fuel efficiency and possible alternate fuels. Topics reviewed are: (1) historical trends in airplane efficiency; (2) technological opportunities including supercritical aerodynamics, (3) vortex diffusers, (4) composite materials, (5) propulsion systems, (6) active controls, and terminal-area operations; (7) unconventional design concepts, and (8) hydrogen-fueled airplane.

  2. Increased fuel standards among broad range of energy options

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    During simpler times, the mention of the word 'cafe' might have primarily conjured up images of sidewalk coffee and tea bars along Paris' Champs-Elysees. However, with today's concerns about energy needs, CAFE or Corporate Average Fuel Economy standards for automobile fuel efficiency is a hot topic.On August 2, the U.S. House of Representa tives passed an energy bill rejecting a proposal to substantially increase CAFE standards for increasingly popular sport utility vehicles (SUVs). The proposal, which would have required SUVs to increase their current fleet average of 20.5 miles per gallon (mpg) to 27.5 mpg by 2007, to equal the current passenger car fleet requirement, was shelved for a requirement to more modestly raise mpgs by cutting total SUV gasoline usage by 5 billion gallons over 6 years.

  3. Reformer Fuel Injector

    NASA Technical Reports Server (NTRS)

    Suder, Jennifer L.

    2004-01-01

    Today's form of jet engine power comes from what is called a gas turbine engine. This engine is on average 14% efficient and emits great quantities of green house gas carbon dioxide and air pollutants, Le. nitrogen oxides and sulfur oxides. The alternate method being researched involves a reformer and a solid oxide fuel cell (SOFC). Reformers are becoming a popular area of research within the industry scale. NASA Glenn Research Center's approach is based on modifying the large aspects of industry reforming processes into a smaller jet fuel reformer. This process must not only be scaled down in size, but also decrease in weight and increase in efficiency. In comparison to today's method, the Jet A fuel reformer will be more efficient as well as reduce the amount of air pollutants discharged. The intent is to develop a 10kW process that can be used to satisfy the needs of commercial jet engines. Presently, commercial jets use Jet-A fuel, which is a kerosene based hydrocarbon fuel. Hydrocarbon fuels cannot be directly fed into a SOFC for the reason that the high temperature causes it to decompose into solid carbon and Hz. A reforming process converts fuel into hydrogen and supplies it to a fuel cell for power, as well as eliminating sulfur compounds. The SOFC produces electricity by converting H2 and CO2. The reformer contains a catalyst which is used to speed up the reaction rate and overall conversion. An outside company will perform a catalyst screening with our baseline Jet-A fuel to determine the most durable catalyst for this application. Our project team is focusing on the overall research of the reforming process. Eventually we will do a component evaluation on the different reformer designs and catalysts. The current status of the project is the completion of buildup in the test rig and check outs on all equipment and electronic signals to our data system. The objective is to test various reformer designs and catalysts in our test rig to determine the most efficient configuration to incorporate into the specific compact jet he1 reformer test rig. Additional information is included in the original extended abstract.

  4. Single-Lever Power Control for General Aviation Aircraft Promises Improved Efficiency and Simplified Pilot Controls

    NASA Technical Reports Server (NTRS)

    Musgrave, Jeffrey L.

    1997-01-01

    General aviation research is leading to major advances in internal combustion engine control systems for single-engine, single-pilot aircraft. These advances promise to increase engine performance and fuel efficiency while substantially reducing pilot workload and increasing flight safety. One such advance is a single-lever power control (SLPC) system, a welcome departure from older, less user-friendly, multilever engine control systems. The benefits of using single-lever power controls for general aviation aircraft are improved flight safety through advanced engine diagnostics, simplified powerplant operations, increased time between overhauls, and cost-effective technology (extends fuel burn and reduces overhaul costs). The single-lever concept has proven to be so effective in preliminary studies that general aviation manufacturers are making plans to retrofit current aircraft with the technology and are incorporating it in designs for future aircraft.

  5. Internal combustion engine controls for reduced exhausts contaminants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthews, D.R. Jr.

    1974-06-04

    An electrochemical control system for achieving optimum efficiency in the catalytic conversion of hydrocarbon and carbon monoxide emissions from internal combustion engines is described. The system automatically maintains catalyst temperature at a point for maximum pollutant conversion by adjusting ignition timing and fuel/air ratio during warm-up and subsequent operation. Ignition timing is retarded during engine warm-up to bring the catalytic converter to an efficient operating temperature within a minimum period of time. After the converter reaches a predetermined minimum temperature, the spark is advanced to within its normal operating range. A needle-valve adjustment during warm-up is employed to enrich themore » fuel/air mixture by approximately 10 percent. Following warm-up and attainment of a predetermined catalyst temperature, the needle valve is moved automatically to its normal position (e.g., a fuel/air ratio of 16:1). Although the normal lean mixture causes increased amounts of nitrogen oxide emissions, present NO/sub x/ converters appear capable of handling the increased emissions under normal operating conditions.« less

  6. Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty Combustion Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Musculus, Mark P.

    Regulatory drivers and market demands for lower pollutant emissions, lower carbon dioxide emissions, and lower fuel consumption motivate the development of clean and fuel-efficient engine operating strategies. Most current production engines use a combination of both in-cylinder and exhaust emissions-control strategies to achieve these goals. The emissions and efficiency performance of in-cylinder strategies depend strongly on flow and mixing processes associated with fuel injection. Various diesel engine manufacturers have adopted close-coupled post-injection combustion strategies to both reduce pollutant emissions and to increase engine efficiency for heavy-duty applications, as well as for light- and medium-duty applications. Close-coupled post-injections are typically shortmore » injections that follow a larger main injection in the same cycle after a short dwell, such that the energy conversion efficiency of the post-injection is typical of diesel combustion. Of the various post-injection schedules that have been reported in the literature, effects on exhaust soot vary by roughly an order of magnitude in either direction of increasing or decreasing emissions relative to single injections (O’Connor et al., 2015). While several hypotheses have been offered in the literature to help explain these observations, no clear consensus has been established. For new engines to take full advantage of the benefits that post-injections can offer, the in-cylinder mechanisms that affect emissions and efficiency must be identified and described to provide guidance for engine design.« less

  7. Elimination of fuel pressure fluctuation and multi-injection fuel mass deviation of high pressure common-rail fuel injection system

    NASA Astrophysics Data System (ADS)

    Li, Pimao; Zhang, Youtong; Li, Tieshuan; Xie, Lizhe

    2015-03-01

    The influence of fuel pressure fluctuation on multi-injection fuel mass deviation has been studied a lot, but the fuel pressure fluctuation at injector inlet is still not eliminated efficiently. In this paper, a new type of hydraulic filter consisting of a damping hole and a chamber is developed for elimination of fuel pressure fluctuation and multi-injection fuel mass deviation. Linear model of the improved high pressure common-rail system(HPCRS) including injector, the pipe connecting common-rail with injector and the hydraulic filter is built. Fuel pressure fluctuation at injector inlet, on which frequency domain analysis is conducted through fast Fourier transformation, is acquired at different target pressure and different damping hole diameter experimentally. The linear model is validated and can predict the natural frequencies of the system. Influence of damping hole diameter on fuel pressure fluctuation is analyzed qualitatively based on the linear model, and it can be inferred that an optimal diameter of the damping hole for elimination of fuel pressure fluctuation exists. Fuel pressure fluctuation and fuel mass deviation under different damping hole diameters are measured experimentally, and it is testified that the amplitude of both fuel pressure fluctuation and fuel mass deviation decreases first and then increases with the increasing of damping hole diameter. The amplitude of main injection fuel mass deviation can be reduced by 73% at most under pilot-main injection mode, and the amplitude of post injection fuel mass deviation can be reduced by 92% at most under main-post injection mode. Fuel mass of a single injection increases with the increasing of the damping hole diameter. The hydraulic filter proposed by this research can be potentially used to eliminate fuel pressure fluctuation at injector inlet and improve the stability of HPCRS fuel injection.

  8. Assessment of Energy Efficiency Improvement in the United States Petroleum Refining Industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morrow, William R.; Marano, John; Sathaye, Jayant

    2013-02-01

    Adoption of efficient process technologies is an important approach to reducing CO 2 emissions, in particular those associated with combustion. In many cases, implementing energy efficiency measures is among the most cost-effective approaches that any refiner can take, improving productivity while reducing emissions. Therefore, careful analysis of the options and costs associated with efficiency measures is required to establish sound carbon policies addressing global climate change, and is the primary focus of LBNL’s current petroleum refining sector analysis for the U.S. Environmental Protection Agency. The analysis is aimed at identifying energy efficiency-related measures and developing energy abatement supply curves andmore » CO 2 emissions reduction potential for the U.S. refining industry. A refinery model has been developed for this purpose that is a notional aggregation of the U.S. petroleum refining sector. It consists of twelve processing units and account s for the additional energy requirements from steam generation, hydrogen production and water utilities required by each of the twelve processing units. The model is carbon and energy balanced such that crud e oil inputs and major refinery sector outputs (fuels) are benchmarked to 2010 data. Estimates of the current penetration for the identified energy efficiency measures benchmark the energy requirements to those reported in U.S. DOE 2010 data. The remaining energy efficiency potential for each of the measures is estimated and compared to U.S. DOE fuel prices resulting in estimates of cost- effective energy efficiency opportunities for each of the twelve major processes. A combined cost of conserved energy supply curve is also presented along with the CO 2 emissions abatement opportunities that exist in the U.S. petroleum refinery sector. Roughly 1,200 PJ per year of primary fuels savings and close to 500 GWh per y ear of electricity savings are potentially cost-effective given U.S. DOE fuel price forecasts. This represents roughly 70 million metric tonnes of CO 2 emission reductions assuming 2010 emissions factor for grid electricity. Energy efficiency measures resulting in an additional 400 PJ per year of primary fuels savings and close to 1,700 GWh per year of electricity savings, and an associated 24 million metric tonnes of CO 2 emission reductions are not cost-effective given the same assumption with respect to fuel prices and electricity emissions factors. Compared to the modeled energy requirements for the U.S. petroleum refining sector, the cost effective potential represents a 40% reduction in fuel consumption and a 2% reduction in electricity consumption. The non-cost-effective potential represents an additional 13% reduction in fuel consumption and an additional 7% reduction in electricity consumption. The relative energy reduction potentials are mu ch higher for fuel consumption than electricity consumption largely in part because fuel is the primary energy consumption type in the refineries. Moreover, many cost effective fuel savings measures would increase electricity consumption. The model also has the potential to be used to examine the costs and benefits of the other CO 2 mitigation options, such as combined heat and power (CHP), carbon capture, and the potential introduction of biomass feedstocks. However, these options are not addressed in this report as this report is focused on developing the modeling methodology and assessing fuels savings measures. These opportunities to further reduce refinery sector CO 2 emissions and are recommended for further research and analysis.« less

  9. U28 : longer combination vehicle's impact on improving operational efficiency, freight flows and traffic congestion.

    DOT National Transportation Integrated Search

    2011-12-01

    Longer Combination Vehicles (LCVs) are able to carry more freight than conventional single trailer trucks. As a result, these trucks can increase efficiencies and benefits for freight movements as less fuel and less labor is used per ton of cargo. Ho...

  10. Integrated Fuel Cell/Coal Gasifier

    NASA Technical Reports Server (NTRS)

    Ferrall, J. F.

    1985-01-01

    Powerplant design with low-temperature coal gasifier coupled to highly-exothermic fuel cell for efficient production of dc power eliminates need for oxygen in gasifier and achieves high fuel efficiency with recycling of waste heat from fuel cell.

  11. Alternative Fuels and Their Potential Impact on Aviation

    NASA Technical Reports Server (NTRS)

    Daggett, D.; Hendricks, R.; Walther, R.

    2006-01-01

    With a growing gap between the growth rate of petroleum production and demand, and with mounting environmental needs, the aircraft industry is investigating issues related to fuel availability, candidates for alternative fuels, and improved aircraft fuel efficiency. Bio-derived fuels, methanol, ethanol, liquid natural gas, liquid hydrogen, and synthetic fuels are considered in this study for their potential to replace or supplement conventional jet fuels. Most of these fuels present the airplane designers with safety, logistical, and performance challenges. Synthetic fuel made from coal, natural gas, or other hydrocarbon feedstock shows significant promise as a fuel that could be easily integrated into present and future aircraft with little or no modification to current aircraft designs. Alternatives, such as biofuel, and in the longer term hydrogen, have good potential but presently appear to be better suited for use in ground transportation. With the increased use of these fuels, a greater portion of a barrel of crude oil can be used for producing jet fuel because aircraft are not as fuel-flexible as ground vehicles.

  12. Increase of efficiency and reliability of liquid fuel combustion in small-sized boilers

    NASA Astrophysics Data System (ADS)

    Roslyakov, P. V.; Proskurin, Yu V.; Ionkin, I. L.

    2017-11-01

    One of the ways to increase the efficiency of using fuels is to create highly efficient domestic energy equipment, in particular small-sized hot-water boilers in autonomous heating systems. Increasing the efficiency of the boiler requires a reduction in the temperature of the flue gases leaving, which, in turn, can be achieved by installing additional heating surfaces. The purpose of this work was to determine the principal design solutions and to develop a draft design for a high-efficiency 3-MW hot-water boiler using crude oil as its main fuel. Ensuring a high efficiency of the boiler is realized through the use of an external remote economizer, which makes it possible to reduce the dimensions of the boiler, facilitate the layout of equipment in a limited size block-modular boiler house and virtually eliminate low-temperature corrosion of boiler heat exchange surfaces. In the article the variants of execution of the water boiler and remote economizer are considered and the preliminary design calculations of the remote economizer for various schemes of the boiler layout in the Boiler Designer software package are made. Based on the results of the studies, a scheme was chosen with a three-way boiler and a two-way remote economizer. The design of a three-way fire tube hot water boiler and an external economizer with an internal arrangement of the collectors, providing for its location above the boiler in a block-modular boiler house and providing access for servicing both a remote economizer and a hot water boiler, is proposed. Its mass-dimensional and design parameters are determined. In the software package Boiler Designer thermal, hydraulic and aerodynamic calculations of the developed fire tube boiler have been performed. Optimization of the boiler design was performed, providing the required 94% efficiency value for crude oil combustion. The description of the developed flue and fire-tube hot water boiler and the value of the main design and technical and economic parameters are given.

  13. Experimental investigation of regulated and unregulated emissions from a diesel engine fueled with ultralow-sulfur diesel fuel blended with ethanol and dodecanol

    NASA Astrophysics Data System (ADS)

    Cheung, C. S.; Di, Yage; Huang, Zuohua

    Experiments were conducted on a four-cylinder direct-injection diesel engine using ultralow-sulfur diesel as the main fuel, ethanol as the oxygenate additive and dodecanol as the solvent, to investigate the regulated and unregulated emissions of the engine under five engine loads at an engine speed of 1800 rev min -1. Blended fuels containing 6.1%, 12.2%, 18.2% and 24.2% by volume of ethanol, corresponding to 2%, 4%, 6% and 8% by mass of oxygen in the blended fuel, were used. The results indicate that with an increase in ethanol in the fuel, the brake specific fuel consumption becomes higher while there is little change in the brake thermal efficiency. Regarding the regulated emissions, HC and CO increase significantly at low engine load but might decrease at high engine load, NO x emission slightly decreases at low engine load but slightly increases at high engine load, while particulate mass decreases significantly at high engine load. For the unregulated gaseous emissions, unburned ethanol and acetaldehyde increase but formaldehyde, ethene, ethyne, 1,3-butadiene and BTX (benzene, toluene and xylene) in general decrease, especially at high engine load. A diesel oxidation catalyst (DOC) is found to reduce significantly most of the pollutants, including the air toxics.

  14. 7 CFR 1710.406 - Eligible activities and investments.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Off Grid Renewable energy systems; (ii) Fuel cells; (3) Demand side management (DSM) investments... meter; (8) Re-lamping to more energy efficient lighting; and (9) Fuel Switching as in: (i) The replacement of existing fuel consuming equipment using a particular fuel with more efficient fuel consuming...

  15. Dynamic modeling, experimental evaluation, optimal design and control of integrated fuel cell system and hybrid energy systems for building demands

    NASA Astrophysics Data System (ADS)

    Nguyen, Gia Luong Huu

    Fuel cells can produce electricity with high efficiency, low pollutants, and low noise. With the advent of fuel cell technologies, fuel cell systems have since been demonstrated as reliable power generators with power outputs from a few watts to a few megawatts. With proper equipment, fuel cell systems can produce heating and cooling, thus increased its overall efficiency. To increase the acceptance from electrical utilities and building owners, fuel cell systems must operate more dynamically and integrate well with renewable energy resources. This research studies the dynamic performance of fuel cells and the integration of fuel cells with other equipment in three levels: (i) the fuel cell stack operating on hydrogen and reformate gases, (ii) the fuel cell system consisting of a fuel reformer, a fuel cell stack, and a heat recovery unit, and (iii) the hybrid energy system consisting of photovoltaic panels, fuel cell system, and energy storage. In the first part, this research studied the steady-state and dynamic performance of a high temperature PEM fuel cell stack. Collaborators at Aalborg University (Aalborg, Denmark) conducted experiments on a high temperature PEM fuel cell short stack at steady-state and transients. Along with the experimental activities, this research developed a first-principles dynamic model of a fuel cell stack. The dynamic model developed in this research was compared to the experimental results when operating on different reformate concentrations. Finally, the dynamic performance of the fuel cell stack for a rapid increase and rapid decrease in power was evaluated. The dynamic model well predicted the performance of the well-performing cells in the experimental fuel cell stack. The second part of the research studied the dynamic response of a high temperature PEM fuel cell system consisting of a fuel reformer, a fuel cell stack, and a heat recovery unit with high thermal integration. After verifying the model performance with the obtained experimental data, the research studied the control of airflow to regulate the temperature of reactors within the fuel processor. The dynamic model provided a platform to test the dynamic response for different control gains. With sufficient sensing and appropriate control, a rapid response to maintain the temperature of the reactor despite an increase in power was possible. The third part of the research studied the use of a fuel cell in conjunction with photovoltaic panels, and energy storage to provide electricity for buildings. This research developed an optimization framework to determine the size of each device in the hybrid energy system to satisfy the electrical demands of buildings and yield the lowest cost. The advantage of having the fuel cell with photovoltaic and energy storage was the ability to operate the fuel cell at baseload at night, thus reducing the need for large battery systems to shift the solar power produced in the day to the night. In addition, the dispatchability of the fuel cell provided an extra degree of freedom necessary for unforeseen disturbances. An operation framework based on model predictive control showed that the method is suitable for optimizing the dispatch of the hybrid energy system.

  16. ECN-15655

    NASA Image and Video Library

    1981-05-21

    In this photograph, the C-140 JetStar is fitted with a model of a high-speed propeller. Three different designs were tested at NASA's Dryden Flight Research Facility in 1981-1982. Their swept-back blades were intended to increase the speed and fuel efficiency of turboprop aircraft. Speeds of Mach 0.8 were thought possible, while using 20 to 30 percent less fuel than standard jet engines.

  17. MPA Materials Matter October 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kippen, Karen Elizabeth

    2015-10-20

    In support of the U.S. Department of Energy’s (DOE) Technology-to-Market activities in the Office of Energy Efficiency and Renewable Energy, Fuel Cell Technology Office, Los Alamos researchers hosted the hands-on short course on fuel cells. The DOE’s Technology-to-Market activities efforts place emphasis on national laboratories increasing their industrial contacts, engaging more companies, and developing technology skills.

  18. Effect of power system technology and mission requirements on high altitude long endurance aircraft

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony J.

    1994-01-01

    An analysis was performed to determine how various power system components and mission requirements affect the sizing of a solar powered long endurance aircraft. The aircraft power system consists of photovoltaic cells and a regenerative fuel cell. Various characteristics of these components, such as PV cell type, PV cell mass, PV cell efficiency, fuel cell efficiency, and fuel cell specific mass, were varied to determine what effect they had on the aircraft sizing for a given mission. Mission parameters, such as time of year, flight altitude, flight latitude, and payload mass and power, were also altered to determine how mission constraints affect the aircraft sizing. An aircraft analysis method which determines the aircraft configuration, aspect ratio, wing area, and total mass, for maximum endurance or minimum required power based on the stated power system and mission parameters is presented. The results indicate that, for the power system, the greatest benefit can be gained by increasing the fuel cell specific energy. Mission requirements also substantially affect the aircraft size. By limiting the time of year the aircraft is required to fly at high northern or southern latitudes, a significant reduction in aircraft size or increase in payload capacity can be achieved.

  19. Nitrogen-doped graphdiyne as a metal-free catalyst for high-performance oxygen reduction reactions

    NASA Astrophysics Data System (ADS)

    Liu, Rongji; Liu, Huibiao; Li, Yuliang; Yi, Yuanping; Shang, Xinke; Zhang, Shuangshuang; Yu, Xuelian; Zhang, Suojiang; Cao, Hongbin; Zhang, Guangjin

    2014-09-01

    Fuel cells and metal-air batteries will only become widely available in everyday life when the expensive platinum-based electrocatalysts used for the oxygen reduction reactions are replaced by other efficient, low-cost and stable catalysts. We report here the use of nitrogen-doped graphdiyne as a metal-free electrode with a comparable electrocatalytic activity to commercial Pt/C catalysts for the oxygen reduction reaction in alkaline fuel cells. Nitrogen-doped graphdiyne has a better stability and increased tolerance to the cross-over effect than conventional Pt/C catalysts.Fuel cells and metal-air batteries will only become widely available in everyday life when the expensive platinum-based electrocatalysts used for the oxygen reduction reactions are replaced by other efficient, low-cost and stable catalysts. We report here the use of nitrogen-doped graphdiyne as a metal-free electrode with a comparable electrocatalytic activity to commercial Pt/C catalysts for the oxygen reduction reaction in alkaline fuel cells. Nitrogen-doped graphdiyne has a better stability and increased tolerance to the cross-over effect than conventional Pt/C catalysts. Electronic supplementary information (ESI) available: Detailed RDE and RRDE experiments, additional tables and figures. See DOI: 10.1039/c4nr03185g

  20. Influences of calcium oxide content in marine fuel oil on emission characteristics of marine furnaces under varying humidity and temperature of the inlet air.

    PubMed

    Lin, Cherng-Yuan; Chen, Wei-Cheng

    2004-01-01

    A marine furnace made of stainless steel. combined with an automatic small-size oil-fired burner, was used to experimentally investigate the influences of calcium oxide content in fuel oil on the combustion and emission characteristics under varying temperatures and humidity of the inlet air. Marine fuel oil generally contains various extents of metallic oxides such as CaO, Fe2O3, V2O5, etc which might affect its burning properties. In this study, an air-conditioner was used to adjust the humidity and temperatures of the inlet air to preset values prior to entering the burner. The adjusted inlet air atomized the marine diesel oil A containing a calcium oxide compound, to form a heterogeneous reactant mixture. The reactant mixture was thereafter ignited by a high-voltage electrode in the burner and burned within the marine furnace. The probes of a gas analyzer, H2S analyzer and a K-type thermocouple were inserted into the radial positions of the furnace through the eight rectangular slots which were cut in the upper side of the furnace. The experimental results showed that an increase of either humidity or temperature of the inlet air caused the promotion of the reaction rate of the fuel. The existence of calcium oxide compound in the diesel fuel also facilitated the oxidation reaction in the combustion chamber. The addition of CaO in the diesel fuel under the conditions of higher temperature or higher relative humidity of the inlet air produced the following: higher concentrations of CO2, SO2, and H2S emissions, an increased burning efficiency, a lowered O2 level, production of excess air and NOx emissions as well as a lower thermal loss and a lower burning gas temperature, as compared with the conditions of a lower temperature or a lower humidity of the inlet air. In addition, the burning of diesel fuel with added CaO compound caused a large variation in the burning efficiency, thermal loss, plus CO2, O2, and excess air emissions between the conditions of higher temperature/higher humidity and lower temperature/lower humidity inlet air compared with no CaO addition in the fuel. Moreover, the burning efficiency and the concentrations of excess air and O2 emissions increased, while the thermal loss, burning gas temperature and H2S, SO2, NOx, and CO2 emissions decreased with the increase of the axial distance from the measured location to the burner nozzle.

  1. Effect of proton-conduction in electrolyte on electric efficiency of multi-stage solid oxide fuel cells

    PubMed Central

    Matsuzaki, Yoshio; Tachikawa, Yuya; Somekawa, Takaaki; Hatae, Toru; Matsumoto, Hiroshige; Taniguchi, Shunsuke; Sasaki, Kazunari

    2015-01-01

    Solid oxide fuel cells (SOFCs) are promising electrochemical devices that enable the highest fuel-to-electricity conversion efficiencies under high operating temperatures. The concept of multi-stage electrochemical oxidation using SOFCs has been proposed and studied over the past several decades for further improving the electrical efficiency. However, the improvement is limited by fuel dilution downstream of the fuel flow. Therefore, evolved technologies are required to achieve considerably higher electrical efficiencies. Here we present an innovative concept for a critically-high fuel-to-electricity conversion efficiency of up to 85% based on the lower heating value (LHV), in which a high-temperature multi-stage electrochemical oxidation is combined with a proton-conducting solid electrolyte. Switching a solid electrolyte material from a conventional oxide-ion conducting material to a proton-conducting material under the high-temperature multi-stage electrochemical oxidation mechanism has proven to be highly advantageous for the electrical efficiency. The DC efficiency of 85% (LHV) corresponds to a net AC efficiency of approximately 76% (LHV), where the net AC efficiency refers to the transmission-end AC efficiency. This evolved concept will yield a considerably higher efficiency with a much smaller generation capacity than the state-of-the-art several tens-of-MW-class most advanced combined cycle (MACC). PMID:26218470

  2. Effect of proton-conduction in electrolyte on electric efficiency of multi-stage solid oxide fuel cells.

    PubMed

    Matsuzaki, Yoshio; Tachikawa, Yuya; Somekawa, Takaaki; Hatae, Toru; Matsumoto, Hiroshige; Taniguchi, Shunsuke; Sasaki, Kazunari

    2015-07-28

    Solid oxide fuel cells (SOFCs) are promising electrochemical devices that enable the highest fuel-to-electricity conversion efficiencies under high operating temperatures. The concept of multi-stage electrochemical oxidation using SOFCs has been proposed and studied over the past several decades for further improving the electrical efficiency. However, the improvement is limited by fuel dilution downstream of the fuel flow. Therefore, evolved technologies are required to achieve considerably higher electrical efficiencies. Here we present an innovative concept for a critically-high fuel-to-electricity conversion efficiency of up to 85% based on the lower heating value (LHV), in which a high-temperature multi-stage electrochemical oxidation is combined with a proton-conducting solid electrolyte. Switching a solid electrolyte material from a conventional oxide-ion conducting material to a proton-conducting material under the high-temperature multi-stage electrochemical oxidation mechanism has proven to be highly advantageous for the electrical efficiency. The DC efficiency of 85% (LHV) corresponds to a net AC efficiency of approximately 76% (LHV), where the net AC efficiency refers to the transmission-end AC efficiency. This evolved concept will yield a considerably higher efficiency with a much smaller generation capacity than the state-of-the-art several tens-of-MW-class most advanced combined cycle (MACC).

  3. High-Fidelity Aerostructural Design Optimization of Transport Aircraft with Continuous Morphing Trailing Edge Technology

    NASA Astrophysics Data System (ADS)

    Burdette, David A., Jr.

    Adaptive morphing trailing edge technology offers the potential to decrease the fuel burn of transonic commercial transport aircraft by allowing wings to dynamically adjust to changing flight conditions. Current configurations allow flap and aileron droop; however, this approach provides limited degrees of freedom and increased drag produced by gaps in the wing's surface. Leading members in the aeronautics community including NASA, AFRL, Boeing, and a number of academic institutions have extensively researched morphing technology for its potential to improve aircraft efficiency. With modern computational tools it is possible to accurately and efficiently model aircraft configurations in order to quantify the efficiency improvements offered by mor- phing technology. Coupled high-fidelity aerodynamic and structural solvers provide the capability to model and thoroughly understand the nuanced trade-offs involved in aircraft design. This capability is important for a detailed study of the capabilities of morphing trailing edge technology. Gradient-based multidisciplinary design opti- mization provides the ability to efficiently traverse design spaces and optimize the trade-offs associated with the design. This thesis presents a number of optimization studies comparing optimized config- urations with and without morphing trailing edge devices. The baseline configuration used throughout this work is the NASA Common Research Model. The first opti- mization comparison considers the optimal fuel burn predicted by the Breguet range equation at a single cruise point. This initial singlepoint optimization comparison demonstrated a limited fuel burn savings of less than 1%. Given the effectiveness of the passive aeroelastic tailoring in the optimized non-morphing wing, the singlepoint optimization offered limited potential for morphing technology to provide any bene- fit. To provide a more appropriate comparison, a number of multipoint optimizations were performed. With a 3-point stencil, the morphing wing burned 2.53% less fuel than its optimized non-morphing counterpart. Expanding further to a 7-point stencil, the morphing wing used 5.04% less fuel. Additional studies demonstrate that the size of the morphing device can be reduced without sizable performance reductions, and that as aircraft wings' aspect ratios increase, the effectiveness of morphing trailing edge devices increases. The final set of studies in this thesis consider mission analy- sis, including climb, multi-altitude cruise, and descent. These mission analyses were performed with a number of surrogate models, trained with O(100) optimizations. These optimizations demonstrated fuel burn reductions as large as 5% at off-design conditions. The fuel burn predicted by the mission analysis was up to 2.7% lower for the morphing wing compared to the conventional configuration.

  4. A combined gas cooled nuclear reactor and fuel cell cycle

    NASA Astrophysics Data System (ADS)

    Palmer, David J.

    Rising oil costs, global warming, national security concerns, economic concerns and escalating energy demands are forcing the engineering communities to explore methods to address these concerns. It is the intention of this thesis to offer a proposal for a novel design of a combined cycle, an advanced nuclear helium reactor/solid oxide fuel cell (SOFC) plant that will help to mitigate some of the above concerns. Moreover, the adoption of this proposal may help to reinvigorate the Nuclear Power industry while providing a practical method to foster the development of a hydrogen economy. Specifically, this thesis concentrates on the importance of the U.S. Nuclear Navy adopting this novel design for its nuclear electric vessels of the future with discussion on efficiency and thermodynamic performance characteristics related to the combined cycle. Thus, the goals and objectives are to develop an innovative combined cycle that provides a solution to the stated concerns and show that it provides superior performance. In order to show performance, it is necessary to develop a rigorous thermodynamic model and computer program to analyze the SOFC in relation with the overall cycle. A large increase in efficiency over the conventional pressurized water reactor cycle is realized. Both sides of the cycle achieve higher efficiencies at partial loads which is extremely important as most naval vessels operate at partial loads as well as the fact that traditional gas turbines operating alone have poor performance at reduced speeds. Furthermore, each side of the cycle provides important benefits to the other side. The high temperature exhaust from the overall exothermic reaction of the fuel cell provides heat for the reheater allowing for an overall increase in power on the nuclear side of the cycle. Likewise, the high temperature helium exiting the nuclear reactor provides a controllable method to stabilize the fuel cell at an optimal temperature band even during transients helping to increase performance and reduce degradation of the fuel cell. It also provides the high temperature needed to efficiently produce hydrogen for the fuel cell. Moreover, the inclusion of a highly reliable and electrically independent fuel cell is particularly important as the ship will have the ability to divert large amounts of power from the propulsion system to energize high energy weapon pulse loads without disturbing vital parts of the C4ISR systems or control panels. Ultimately, the thesis shows that the combined cycle is mutually beneficial to each side of the cycle and overall critically needed for our future.

  5. Method and apparatus for controlling fuel/air mixture in a lean burn engine

    DOEpatents

    Kubesh, John Thomas; Dodge, Lee Gene; Podnar, Daniel James

    1998-04-07

    The system for controlling the fuel/air mixture supplied to a lean burn engine when operating on natural gas, gasoline, hydrogen, alcohol, propane, butane, diesel or any other fuel as desired. As specific humidity of air supplied to the lean burn engine increases, the oxygen concentration of exhaust gas discharged by the engine for a given equivalence ratio will decrease. Closed loop fuel control systems typically attempt to maintain a constant exhaust gas oxygen concentration. Therefore, the decrease in the exhaust gas oxygen concentration resulting from increased specific humidity will often be improperly attributed to an excessive supply of fuel and the control system will incorrectly reduce the amount of fuel supplied to the engine. Also, the minimum fuel/air equivalence ratio for a lean burn engine to avoid misfiring will increase as specific humidity increases. A relative humidity sensor to allow the control system to provide a more enriched fuel/air mixture at high specific humidity levels. The level of specific humidity may be used to compensate an output signal from a universal exhaust gas oxygen sensor for changing oxygen concentrations at a desired equivalence ratio due to variation in specific humidity specific humidity. As a result, the control system will maintain the desired efficiency, low exhaust emissions and power level for the associated lean burn engine regardless of the specific humidity level of intake air supplied to the lean burn engine.

  6. Multi-stage fuel cell system method and apparatus

    DOEpatents

    George, Thomas J.; Smith, William C.

    2000-01-01

    A high efficiency, multi-stage fuel cell system method and apparatus is provided. The fuel cell system is comprised of multiple fuel cell stages, whereby the temperatures of the fuel and oxidant gas streams and the percentage of fuel consumed in each stage are controlled to optimize fuel cell system efficiency. The stages are connected in a serial, flow-through arrangement such that the oxidant gas and fuel gas flowing through an upstream stage is conducted directly into the next adjacent downstream stage. The fuel cell stages are further arranged such that unspent fuel and oxidant laden gases too hot to continue within an upstream stage because of material constraints are conducted into a subsequent downstream stage which comprises a similar cell configuration, however, which is constructed from materials having a higher heat tolerance and designed to meet higher thermal demands. In addition, fuel is underutilized in each stage, resulting in a higher overall fuel cell system efficiency.

  7. Effect of grain port length-diameter ratio on combustion performance in hybrid rocket motors

    NASA Astrophysics Data System (ADS)

    Cai, Guobiao; Zhang, Yuanjun; Tian, Hui; Wang, Pengfei; Yu, Nanjia

    2016-11-01

    The objectives of this study are to develop a more accurate regression rate considering the oxidizer mass flow and the fuel grain geometry configuration with numerical and experimental investigations in polyethylene (PE)/90% hydrogen peroxide (HP) hybrid rocket. Firstly, a 2-D axisymmetric CFD model with turbulence, chemistry reaction, solid-gas coupling is built to investigate the combustion chamber internal flow structure. Then a more accurate regression formula is proposed and the combustion efficiency changing with the length-diameter ratio is studied. A series experiments are conducted in various oxidizer mass flow to analyze combustion performance including the regression rate and combustion efficiency. The regression rates are measured by the fuel mass reducing and diameter changing. A new regression rate formula considering the fuel grain configuration is proposed in this paper. The combustion efficiency increases with the length-diameter ratio changing. To improve the performance of a hybrid rocket motor, the port length-diameter ratio is suggested 10-12 in the paper.

  8. PRSEUS Pressure Cube Test Data and Response

    NASA Technical Reports Server (NTRS)

    Lovejoy, Andrew E.

    2013-01-01

    NASA s Environmentally Responsible Aviation (ERA) Program is examining the hybrid wing body (HWB) aircraft, among others, in an effort to increase the fuel efficiency of commercial aircraft. The HWB design combines features of a flying wing with features of conventional transport aircraft, and has the advantage of simultaneously increasing both fuel efficiency and payload. Recent years have seen an increased focus on the structural performance of the HWB. The key structural challenge of a HWB airframe is the ability to create a cost and weight efficient, non-circular, pressurized shell. Conventional round fuselage sections react cabin pressure by hoop tension. However, the structural configuration of the HWB subjects the majority of the structural panels to bi-axial, in-plane loads in addition to the internal cabin pressure, which requires more thorough examination and analysis than conventional transport aircraft components having traditional and less complex load paths. To address this issue, while keeping structural weights low, extensive use of advanced composite materials is made. This report presents the test data and preliminary conclusions for a pressurized cube test article that utilizes Boeing's Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS), and which is part of the building block approach used for HWB development.

  9. Experimental investigation on regulated and unregulated emissions of a diesel engine fueled with ultra-low sulfur diesel fuel blended with biodiesel from waste cooking oil.

    PubMed

    Di, Yage; Cheung, C S; Huang, Zuohua

    2009-01-01

    Experiments were conducted on a 4-cylinder direct-injection diesel engine using ultra-low sulfur diesel, bi oesel and their blends, to investigate the regulated and unregulated emissions of the engine under five engine loads at an engine speed of 1800 rev/min. Blended fuels containing 19.6%, 39.4%, 59.4% and 79.6% by volume of biodiesel, corresponding to 2%, 4%, 6% and 8% by mass of oxygen in the blended fuel, were used. Biodiesel used in this study was converted from waste cooking oil. The following results are obtained with an increase of biodiesel in the fuel. The brake specific fuel consumption and the brake thermal efficiency increase. The HC and CO emissions decrease while NO(x) and NO(2) emissions increase. The smoke opacity and particulate mass concentrations reduce significantly at high engine load. In addition, for submicron particles, the geometry mean diameter of the particles becomes smaller while the total number concentration increases. For the unregulated gaseous emissions, generally, the emissions of formaldehyde, 1,3-butadiene, toluene, xylene decrease, however, acetaldehyde and benzene emissions increase. The results indicate that the combination of ultra-low sulfur diesel and biodiesel from waste cooking oil gives similar results to those in the literature using higher sulfur diesel fuels and biodiesel from other sources.

  10. Use of Adaptive Injection Strategies to Increase the Full Load Limit of RCCI Operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanson, Reed; Ickes, Andrew; Wallner, Thomas

    Dual-fuel combustion using port-injection of low reactivity fuel combined with direct injection (DI) of a higher reactivity fuel, otherwise known as reactivity controlled compression ignition (RCCI), has been shown as a method to achieve low-temperature combustion with moderate peak pressure rise rates, low engine-out soot and NOx emissions, and high indicated thermal efficiency. A key requirement for extending to high-load operation is moderating the reactivity of the premixed charge prior to the diesel injection. One way to accomplish this is to use a very low reactivity fuel such as natural gas. In this work, experimental testing was conducted on amore » 13 l multicylinder heavy-duty diesel engine modified to operate using RCCI combustion with port injection of natural gas and DI of diesel fuel. Engine testing was conducted at an engine speed of 1200 rpm over a wide variety of loads and injection conditions. The impact on dual-fuel engine performance and emissions with respect to varying the fuel injection parameters is quantified within this study. The injection strategies used in the work were found to affect the combustion process in similar ways to both conventional diesel combustion (CDC) and RCCI combustion for phasing control and emissions performance. As the load is increased, the port fuel injection (PFI) quantity was reduced to keep peak cylinder pressure (PCP) and maximum pressure rise rate (MPRR) under the imposed limits. Overall, the peak load using the new injection strategy was shown to reach 22 bar brake mean effective pressure (BMEP) with a peak brake thermal efficiency (BTE) of 47.6%.« less

  11. Coating-type three-dimensional acetate-driven microbial fuel cells.

    PubMed

    Yu, Jin; Tang, Yulan

    2015-08-01

    This study uses sodium acetate as fuel to construct bioelectricity in coating-type three-dimensional microbial fuel cells anode. The coating-type three-dimensional anode was constructed using iron net as structural support, adhering a layer of carbon felt as primary coating and using carbon powder and 30% PTFE solution mixture as coating. The efficiency of electricity production and wastewater treatment were analyzed for the three-dimensional acetate-fed (C2H3NaO2) microbial fuel cells with the various ratio of the coating mixture. The results showed that the efficiency of electricity production was significantly improved when using the homemade coating-type microbial fuel cells anode compared with the one without coating on the iron net, which the apparent internal resistance was decreased by 59.4% and the maximum power density was increased by 1.5 times. It was found the electricity production was greatly influenced by the ratio of the carbon powder and PTFE in the coating. The electricity production was the highest with apparent internal resistance of 190 Ω, and maximum power density of 5189.4 mW m(-3) when 750 mg of carbon powder and 10 ml of PTFE (i.e., ratio 75:1) was used in the coating. With the efficiency of electricity production, wide distribution and low cost of the raw materials, the homemade acetate-fed microbial fuel cells provides a valuable reference to the development of the composition microbial fuel cell anode production. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  12. Hydrogen Fueled Hybrid Solid Oxide Fuel Cell-Gas Turbine (SOFC-GT) System for Long-Haul Rail Application

    NASA Astrophysics Data System (ADS)

    Chow, Justin Jeff

    Freight movement of goods is the artery for America's economic health. Long-haul rail is the premier mode of transport on a ton-mile basis. Concerns regarding greenhouse gas and criteria pollutant emissions, however, have motivated the creation of annually increasing locomotive emissions standards. Health issues from diesel particulate matter, especially near rail yards, have also been on the rise. These factors and the potential to raise conventional diesel-electric locomotive performance warrants the investigation of using future fuels in a more efficient system for locomotive application. This research evaluates the dynamic performance of a Solid Oxide Fuel Cell-Gas Turbine (SOFC-GT) Hybrid system operating on hydrogen fuel to power a locomotive over a rail path starting from the Port of Los Angeles and ending in the City of Barstow. Physical constraints, representative locomotive operation logic, and basic design are used from a previous feasibility study and simulations are performed in the MATLAB Simulink environment. In-house controls are adapted to and expanded upon. Results indicate high fuel-to-electricity efficiencies of at least 54% compared to a conventional diesel-electric locomotive efficiency of 35%. Incorporation of properly calibrated feedback and feed-forward controls enables substantial load following of difficult transients that result from train kinematics while maintaining turbomachinery operating requirements and suppressing thermal stresses in the fuel cell stack. The power split between the SOFC and gas turbine is deduced to be a deterministic factor in the balance between capital and operational costs. Using hydrogen results in no emissions if renewable and offers a potential of 24.2% fuel energy savings for the rail industry.

  13. Effect of exhaust gas recirculation on emissions from a flame-tube combustor using Liquid Jet A fuel

    NASA Technical Reports Server (NTRS)

    Marek, C. J.; Tacina, R. R.

    1976-01-01

    The effects of uncooled exhaust gas recirculation as an inert diluent on emissions of oxides of nitrogen (NO + NO2) and on combustion efficiency were investigated. Ratios of recirculated combustion products to inlet airflow were varied from 10 to 80 percent by using an inlet air ejector nozzle. Liquid Jet A fuel was used. The flame-tube combustor was 10.2 cm in diameter. It was operated with and without a flameholder present. The combustor pressure was maintained constant at 0.5 MPa. The equivalence ratio was varied from 0.3 to 1.0. The inlet air temperature was varied from 590 to 800 K, and the reference velocity from 10 to 30 m/sec. Increasing the percent recirculation from 10 to 25 had the following effects: (1) the peak NOx emission was decreased by 37 percent, from 8 to 5 g NO2/kg fuel, at an inlet air temperature of 590 K and a reference velocity of 15 m/sec; (2) the combustion efficiency was increased, particularly at the higher equivalence ratios; and (3) for a high combustion efficiency of greater than 99.5 percent, the range of operation of the combustor was nearly doubled in terms of equivalence ratio. Increasing the recirculation from 25 to 50 percent did not change the emissions significantly.

  14. Comparative study of performance and emissions of a CI engine using biodiesel of microalgae, macroalgae and rice bran

    NASA Astrophysics Data System (ADS)

    Jayaprabakar, J.; Karthikeyan, A.; Saikiran, K.; Beemkumar, N.; Joy, Nivin

    2017-05-01

    Biodiesel is an alternative and safe fuel to replace conventional petroleum diesel. With high-lubricity and clean-burning ability the biodiesel can be a better fuel component for use in existing diesel engines without any modifications. The aim of this Research was to study the potential use of Macro algae oil, Micro algae oil, Rice Bran oil methyl ester as a substitute for diesel fuel in diesel engine. B10 and B20 blends of these three types of fuels are prepared by transesterification process. The blends on volume basis were used to test them in a four stroke single cylinder diesel engine to study the performance and emission characteristics of these fuels and compared with neat diesel fuel. Also, the property testing of these biofuels were carried out. The biodiesel blends in this study substantially reduces the emission of unburnt hydro carbons and smoke opacity and increases the emission of NOx emission in exhaust gases. These biodiesel blends were consumed more by the engine during testing than Diesel and the brake thermal efficiency and volumetric efficiency for the blends was identical with the Diesel.

  15. Energy for Education

    ERIC Educational Resources Information Center

    Cook, Emma

    2011-01-01

    Increased energy efficiency and reduced reliance on fossil fuels are both essential if people are to have any chance of avoiding escalating energy prices and the grim reality of catastrophic climate change. By increasing the diversity of energy sources people can also achieve increased security, reducing their dependence on imports. As…

  16. Effects of diesel/ethanol dual fuel on emission characteristics in a heavy-duty diesel engine

    NASA Astrophysics Data System (ADS)

    Liu, Junheng; Sun, Ping; Zhang, Buyun

    2017-09-01

    In order to reduce emissions and diesel consumption, the gas emissions characteris-tics of diesel/aqueous ethanol dual fuel combustion (DFC) were carried out on a heavy-duty turbocharged and intercooled automotive diesel engine. The aqueous ethanol is prepared by a blend of anhydrous ethanol and water in certain volume proportion. In DFC mode, aqueous ethanol is injected into intake port to form homogeneous charge, and then ignited by the diesel fuel. Results show that DFC can reduce NOx emissions but increase HC and CO emissions, and this trend becomes more prominent with the increase of water blending ratio. Increased emissions of HC and CO could be efficiently cleaned by diesel oxidation catalytic converter (DOC), even better than those of diesel fuel. It is also found that DFC mode reduces smoke remarkably, while increases some unconventional emissions such as formaldehyde and acetal-dehyde. However, unconventional emissions could be reduced approximately to the level of baseline engine with a DOC.

  17. Diesel particulate emissions from used cooking oil biodiesel.

    PubMed

    Lapuerta, Magín; Rodríguez-Fernández, José; Agudelo, John R

    2008-03-01

    Two different biodiesel fuels, obtained from waste cooking oils with different previous uses, were tested in a DI diesel commercial engine either pure or in 30% and 70% v/v blends with a reference diesel fuel. Tests were performed under a set of engine operating conditions corresponding to typical road conditions. Although the engine efficiency was not significantly affected, an increase in fuel consumption with the biodiesel concentration was observed. This increase was proportional to the decrease in the heating value. The main objective of the work was to study the effect of biodiesel blends on particulate emissions, measured in terms of mass, optical effect (smoke opacity) and size distributions. A sharp decrease was observed in both smoke and particulate matter emissions as the biodiesel concentration was increased. The mean particle size was also reduced with the biodiesel concentration, but no significant increases were found in the range of the smallest particles. No important differences in emissions were found between the two tested biodiesel fuels.

  18. Fuel-Cell Power Source Based on Onboard Rocket Propellants

    NASA Technical Reports Server (NTRS)

    Ganapathi, Gani; Narayan, Sri

    2010-01-01

    The use of onboard rocket propellants (dense liquids at room temperature) in place of conventional cryogenic fuel-cell reactants (hydrogen and oxygen) eliminates the mass penalties associated with cryocooling and boil-off. The high energy content and density of the rocket propellants will also require no additional chemical processing. For a 30-day mission on the Moon that requires a continuous 100 watts of power, the reactant mass and volume would be reduced by 15 and 50 percent, respectively, even without accounting for boiloff losses. The savings increase further with increasing transit times. A high-temperature, solid oxide, electrolyte-based fuel-cell configuration, that can rapidly combine rocket propellants - both monopropellant system with hydrazine and bi-propellant systems such as monomethyl hydrazine/ unsymmetrical dimethyl hydrazine (MMH/UDMH) and nitrogen tetroxide (NTO) to produce electrical energy - overcomes the severe drawbacks of earlier attempts in 1963-1967 of using fuel reforming and aqueous media. The electrical energy available from such a fuel cell operating at 60-percent efficiency is estimated to be 1,500 Wh/kg of reactants. The proposed use of zirconia-based oxide electrolyte at 800-1,000 C will permit continuous operation, very high power densities, and substantially increased efficiency of conversion over any of the earlier attempts. The solid oxide fuel cell is also tolerant to a wide range of environmental temperatures. Such a system is built for easy refueling for exploration missions and for the ability to turn on after several years of transit. Specific examples of future missions are in-situ landers on Europa and Titan that will face extreme radiation and temperature environments, flyby missions to Saturn, and landed missions on the Moon with 14 day/night cycles.

  19. Performance and Emissions of a Small Compression Ignition Engine Run on Dual-fuel Mode (Diesel-Raw biogas)

    NASA Astrophysics Data System (ADS)

    Ambarita, H.; Sinulingga, E. P.; Nasution, M. KM; Kawai, H.

    2017-03-01

    In this work, a compression ignition (CI) engine is tested in dual-fuel mode (Diesel-Raw biogas). The objective is to examine the performance and emission characteristics of the engine when some of the diesel oil is replaced by biogas. The specifications of the CI engine are air cooled single horizontal cylinder, four strokes, and maximum output power of 4.86 kW. It is coupled with a synchronous three phase generator. The load, engine revolution, and biogas flow rate are varied from 600 W to 1500 W, 1000 rpm to 1500 rpm, 0 to 6 L/minute, respectively. The electric power, specific fuel consumption, thermal efficiency, gas emission, and diesel replacement ratio are analyzed. The results show that there is no significant difference of the power resulted by CI run on dual-fuel mode in comparison with pure diesel mode. However, the specific fuel consumption and efficiency decrease significantly as biogas flow rate increases. On the other hand, emission of the engine on dual-fuel mode is better. The main conclusion can be drawn is that CI engine without significant modification can be operated perfectly in dual-fuel mode and diesel oil consumption can be decreased up to 87.5%.

  20. Fuel cell-gas turbine hybrid system design part II: Dynamics and control

    NASA Astrophysics Data System (ADS)

    McLarty, Dustin; Brouwer, Jack; Samuelsen, Scott

    2014-05-01

    Fuel cell gas turbine hybrid systems have achieved ultra-high efficiency and ultra-low emissions at small scales, but have yet to demonstrate effective dynamic responsiveness or base-load cost savings. Fuel cell systems and hybrid prototypes have not utilized controls to address thermal cycling during load following operation, and have thus been relegated to the less valuable base-load and peak shaving power market. Additionally, pressurized hybrid topping cycles have exhibited increased stall/surge characteristics particularly during off-design operation. This paper evaluates additional control actuators with simple control methods capable of mitigating spatial temperature variation and stall/surge risk during load following operation of hybrid fuel cell systems. The novel use of detailed, spatially resolved, physical fuel cell and turbine models in an integrated system simulation enables the development and evaluation of these additional control methods. It is shown that the hybrid system can achieve greater dynamic response over a larger operating envelope than either individual sub-system; the fuel cell or gas turbine. Results indicate that a combined feed-forward, P-I and cascade control strategy is capable of handling moderate perturbations and achieving a 2:1 (MCFC) or 4:1 (SOFC) turndown ratio while retaining >65% fuel-to-electricity efficiency, while maintaining an acceptable stack temperature profile and stall/surge margin.

  1. Flame tube parametric studies for control of fuel bound nitrogen using rich-lean two-stage combustion

    NASA Technical Reports Server (NTRS)

    Schultz, D. F.; Wolfbrandt, G.

    1980-01-01

    An experimental parametric study of rich-lean two-stage combustion in a flame tube is described and approaches for minimizing the conversion of fuel-bound nitrogen to nitrogen oxides in a premixed, homogeneous combustion system are evaluated. Air at 672 K and 0.48 MPa was premixed with fuel blends of propane, toluene, and pyridine at primary equivalence ratios ranging from 0.5 to 2.0 and secondary equivalence ratios of 0.5 to 0.7. Distillates of SRC-II, a coal syncrude, were also tested. The blended fuels were proportioned to vary fuel hydrogen composition from 9.0 to 18.3 weight percent and fuel nitrogen composition from zero to 1.5 weight percent. Rich-lean combustion proved effective in reducing fuel nitrogen to NO sub x conversion; conversion rates up to 10 times lower than those normally produced by single-stage combustion were achieved. The optimum primary equivalence ratio, where the least NO sub x was produced and combustion efficiency was acceptable, shifted between 1.4 and 1.7 with changes in fuel nitrogen content and fuel hydrogen content. Increasing levels of fuel nitrogen content lowered the conversion rate, but not enough to avoid higher NO sub x emissions as fuel nitrogen increased.

  2. Experimental investigation on CRDI engine using butanol-biodiesel-diesel blends as fuel

    NASA Astrophysics Data System (ADS)

    Divakar Shetty, A. S.; Dineshkumar, L.; Koundinya, Sandeep; Mane, Swetha K.

    2017-07-01

    In this research work an experimental investigation of butanol-biodisel-diesel blends on combustion, performance and emission characteristics of a direct injection (DI) diesel engine is carried out. The blends are prepared at different proportions and fuel properties such as calorific value, viscosity, flash point and fire point, cloud point, pour point of butanol (B), biodiesel (B), diesel (D), biodiesel-diesel (BD) blends and butanol-biodiesel-diesel (BBD) blends are determined. The engine test is conducted at different speed and load. From the results obtained for fuel properties we can observe that the flash, fire and pour point, viscosity and density are decreasing by increasing the percentage of butanol in BBD blends. It is also observed that the performance parameters such as brake thermal efficiency (BTE) and exhaust gas temperature increases with increase in the proportion of butanol in BBD blend. However, the brake specific fuel consumption (BFSC) decreases with increase in the proportion of butanol in BBD blend. The increase of butanol in BBD blends also influence to increase on emission characteristic such as carbon monoxide (CO), hydrocarbon (HC) and oxides of nitrogen (NOx).

  3. Fuel Efficient Strategies for Reducing Contrail Formations in United States Air Space

    NASA Technical Reports Server (NTRS)

    Sridhar, Banavar; Chen, Neil Y.; Ng, Hok K.

    2010-01-01

    This paper describes a class of strategies for reducing persistent contrail formation in the United States airspace. The primary objective is to minimize potential contrail formation regions by altering the aircraft's cruising altitude in a fuel-efficient way. The results show that the contrail formations can be reduced significantly without extra fuel consumption and without adversely affecting congestion in the airspace. The contrail formations can be further reduced by using extra fuel. For the day tested, the maximal reduction strategy has a 53% contrail reduction rate. The most fuel-efficient strategy has an 8% reduction rate with 2.86% less fuel-burnt compared to the maximal reduction strategy. Using a cost function which penalizes extra fuel consumed while maximizing the amount of contrail reduction provides a flexible way to trade off between contrail reduction and fuel consumption. It can achieve a 35% contrail reduction rate with only 0.23% extra fuel consumption. The proposed fuel-efficient contrail reduction strategy provides a solution to reduce aviation-induced environmental impact on a daily basis.

  4. Emission and Performance Analysis of ZrO2 And CeO2 Coated Piston Using Refined Vegetable Oils

    NASA Astrophysics Data System (ADS)

    Hemanandh, J.; Narayanan, K. V.; Manoj, Vemuri

    2017-05-01

    Increase in global warming and pollution leads to look for an alternative fuel. The aim of this paper to improve the performance and to reduce the emissions in DI diesel engine. The 80% of ZrO2 and 20% of CeO2 were mixed and coated on the piston head using plasma spray method. The B10 fuel of various refined vegetable oil methyl esters were used as fuel. The test was conducted in the 4-stroke DI diesel engine at a constant speed of 1500 rpm. The results show that the brake thermal efficiency, NOx and BSFC was increased. The CO and HC were decreased.

  5. Market Analysis and Consumer Impacts Source Document. Part III. Consumer Behavior and Attitudes Toward Fuel Efficient Vehicles

    DOT National Transportation Integrated Search

    1980-12-01

    This source document on motor vehicle market analysis and consumer impacts consists of three parts. Part III consists of studies and reviews on: consumer awareness of fuel efficiency issues; consumer acceptance of fuel efficient vehicles; car size ch...

  6. Proton exchange membrane fuel cell system diagnosis based on the signed directed graph method

    NASA Astrophysics Data System (ADS)

    Hua, Jianfeng; Lu, Languang; Ouyang, Minggao; Li, Jianqiu; Xu, Liangfei

    The fuel-cell powered bus is becoming the favored choice for electric vehicles because of its extended driving range, zero emissions, and high energy conversion efficiency when compared with battery-operated electric vehicles. In China, a demonstration program for the fuel cell bus fleet operated at the Beijing Olympics in 2008 and the Shanghai Expo in 2010. It is necessary to develop comprehensive proton exchange membrane fuel cell (PEMFC) diagnostic tools to increase the reliability of these systems. It is especially critical for fuel-cell city buses serving large numbers of passengers using public transportation. This paper presents a diagnostic analysis and implementation study based on the signed directed graph (SDG) method for the fuel-cell system. This diagnostic system was successfully implemented in the fuel-cell bus fleet at the Shanghai Expo in 2010.

  7. NOx formation from the combustion of monodisperse n-heptane sprays doped with fuel-nitrogen additives

    NASA Technical Reports Server (NTRS)

    Sarv, Hamid; Cernansky, Nicholas P.

    1989-01-01

    A series of experiments with simulated synthetic fuels were conducted in order to investigate the effect of droplet size on the conversion of fuel-nitrogen to NOx. Pyridine and pyrrole were added to n-heptane as nitrogen-containing additives and burned as monodisperse fuel droplets under various operating conditions in a spray combustion facility. The experimental results indicate that under stoichiometric and fuel-rich conditions, reducing the droplet size increases the efficiency of fuel-N conversion to NOx. This observation is associated with improved oxidation of the pyrolysis fragments of the additive by better oxygen penetration through the droplet flame zone. The dominant reactions by which fuel-N is transformed to NOx were also considered analytically by a premixed laminar flame code. The calculations are compared to the small droplet size results.

  8. Fuel economy and life-cycle cost analysis of a fuel cell hybrid vehicle

    NASA Astrophysics Data System (ADS)

    Jeong, Kwi Seong; Oh, Byeong Soo

    The most promising vehicle engine that can overcome the problem of present internal combustion is the hydrogen fuel cell. Fuel cells are devices that change chemical energy directly into electrical energy without combustion. Pure fuel cell vehicles and fuel cell hybrid vehicles (i.e. a combination of fuel cell and battery) as energy sources are studied. Considerations of efficiency, fuel economy, and the characteristics of power output in hybridization of fuel cell vehicle are necessary. In the case of Federal Urban Driving Schedule (FUDS) cycle simulation, hybridization is more efficient than a pure fuel cell vehicle. The reason is that it is possible to capture regenerative braking energy and to operate the fuel cell system within a more efficient range by using battery. Life-cycle cost is largely affected by the fuel cell size, fuel cell cost, and hydrogen cost. When the cost of fuel cell is high, hybridization is profitable, but when the cost of fuel cell is less than 400 US$/kW, a pure fuel cell vehicle is more profitable.

  9. The Route Analysis Based On Flight Plan

    NASA Astrophysics Data System (ADS)

    Feriyanto, Nur; Saleh, Chairul; Fauzi, Achmad; Rachman Dzakiyullah, Nur; Riza Iwaputra, Kahfi

    2016-02-01

    Economic development effects use of air transportation since the business process in every aspect was increased. Many people these days was prefer using airplane because it can save time and money. This situation also effects flight routes, many airlines offer new routes to deal with competition. Managing flight routes is one of the problems that must be faced in order to find the efficient and effective routes. This paper investigates the best routes based on flight performance by determining the amount of block fuel for the Jakarta-Denpasar flight route. Moreover, in this work compares a two kinds of aircraft and tracks by calculating flight distance, flight time and block fuel. The result shows Jakarta-Denpasar in the Track II has effective and efficient block fuel that can be performed by Airbus 320-200 aircraft. This study can contribute to practice in making an effective decision, especially helping executive management of company due to selecting appropriate aircraft and the track in the flight plan based on the block fuel consumption for business operation.

  10. Fuel Cell Power Plants Renewable and Waste Fuels

    DTIC Science & Technology

    2011-01-13

    of FuelCell Energy, Inc. Fuels Resources for DFC • Natural Gas and LNG • Propane • Biogas (by Anaerobicnaerobic Digestion) - Municipal Waste...FUEL RESOURCES z NATURAL GAS z PROPANE z DFC H2 (50-60%) z ETHANOL zWASTE METHANE z BIOGAS z COAL GAS Diversity of Fuels plus High Efficiency...trademarks (®) of FuelCell Energy, Inc. DFC Advantages for Biogas • More power for given amount of biogas : Higher efficiency than

  11. Heat exchangers in regenerative gas turbine cycles

    NASA Astrophysics Data System (ADS)

    Nina, M. N. R.; Aguas, M. P. N.

    1985-09-01

    Advances in compact heat exchanger design and fabrication together with fuel cost rises continuously improve the attractability of regenerative gas turbine helicopter engines. In this study cycle parameters aiming at reduced specific fuel consumption and increased payload or mission range, have been optimized together with heat exchanger type and size. The discussion is based on a typical mission for an attack helicopter in the 900 kw power class. A range of heat exchangers is studied to define the most favorable geometry in terms of lower fuel consumption and minimum engine plus fuel weight. Heat exchanger volume, frontal area ratio and pressure drop effect on cycle efficiency are considered.

  12. Analysis of chitin particle size on maximum power generation, power longevity, and Coulombic efficiency in solid-substrate microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Rezaei, Farzaneh; Richard, Tom L.; Logan, Bruce E.

    Microbial fuel cells (MFCs) produce bioelectricity from a wide variety of organic and inorganic substrates. Chitin can be used as a slowly degrading substrate in MFCs and thus as a long-term fuel to sustain power by these devices in remote locations. However, little is known about the effects of particle size on power density and length of the power cycle (longevity). We therefore examined power generation from chitin particles sieved to produce three average particle sizes (0.28, 0.46 and 0.78 mm). The longevity increased from 9 to 33 days with an increase in the particle diameter from 0.28 to 0.78 mm. Coulombic efficiency also increased with particle size from 18% to 56%. The maximum power density was lower for the largest (0.78 mm) particles (176 mW m -2), with higher power densities for the 0.28 mm (272 mW m -2) and 0.46 mm (252 mW m -2) particle sizes. The measured lifetimes of these particles scaled with particle diameter to the 1.3 power. Application of a fractal dissolution model indicates chitin particles had a three-dimensional fractal dimension between 2 and 2.3. These results demonstrate particles can be used as a sustainable fuel in MFCs, but that particle sizes will need to be controlled to achieve desired power levels.

  13. Hige Compression Ratio Turbo Gasoline Engine Operation Using Alcohol Enhancement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heywood, John; Jo, Young Suk; Lewis, Raymond

    The overall objective of this project was to quantify the potential for improving the performance and efficiency of gasoline engine technology by use of alcohols to suppress knock. Knock-free operation is obtained by direct injection of a second “anti-knock” fuel such as ethanol, which suppresses knock when, with gasoline fuel, knock would occur. Suppressing knock enables increased turbocharging, engine downsizing, and use of higher compression ratios throughout the engine’s operating map. This project combined engine testing and simulation to define knock onset conditions, with different mixtures of gasoline and alcohol, and with this information quantify the potential for improving themore » efficiency of turbocharged gasoline spark-ignition engines, and the on-vehicle fuel consumption reductions that could then be realized. The more focused objectives of this project were therefore to: Determine engine efficiency with aggressive turbocharging and downsizing and high compression ratio (up to a compression ratio of 13.5:1) over the engine’s operating range; Determine the knock limits of a turbocharged and downsized engine as a function of engine speed and load; Determine the amount of the knock-suppressing alcohol fuel consumed, through the use of various alcohol-gasoline and alcohol-water gasoline blends, for different driving cycles, relative to the gasoline consumed; Determine implications of using alcohol-boosted engines, with their higher efficiency operation, in both light-duty and medium-duty vehicle sectors.« less

  14. The effect of changes in compression ratio upon engine performance

    NASA Technical Reports Server (NTRS)

    Sparrow, Stanwood W

    1925-01-01

    This report is based upon engine tests made at the Bureau of Standards during 1920, 1921, 1922, and 1923. The majority of these tests were of aviation engines and were made in the Altitude Laboratory. For a small portion of the work a single cylinder experimental engine was used. This, however, was operated only at sea-level pressures. The report shows that an increase in break horsepower and a decrease in the pounds of fuel used per brake horsepower hour usually results from an increase in compression ratio. This holds true at least up to the highest ratio investigated, 14 to 1, provided there is no serious preignition or detonation at any ratio. To avoid preignition and detonation when employing high-compression ratios, it is often necessary to use some fuel other than gasoline. It has been found that the consumption of some of these fuels in pounds per brake horsepower hour is so much greater than the consumption of gasoline that it offsets the decrease derived from the use of the high-compression ratio. The changes in indicated thermal efficiency with changes in compression ratio are in close agreement with what would be anticipated from a consideration of the air cycle efficiencies at the various ratios. In so far as these tests are concerned there is no evidence that a change in compression ratio produces an appreciable, consistent change in friction horsepower, volumetric efficiency, or in the range of fuel-air ratios over which the engine can operate. The ratio between the heat loss to the jacket water and the heat converted into brake horsepower or indicated horsepower decreases with increase in compression ratio. (author)

  15. Performance gains by using heated natural-gas fuel in an annular turbojet combustor

    NASA Technical Reports Server (NTRS)

    Marchionna, N. R.

    1973-01-01

    A full-scale annular turbojet combustor was tested with natural gas fuel heated from ambient temperature to 800 K (980 F). In all tests, heating the fuel improved combustion efficiency. Two sets of gaseous fuel nozzles were tested. Combustion instabilities occurred with one set of nozzles at two conditions: one where the efficiency approached 100 percent with the heated fuel; the other where the efficiency was very poor with the unheated fuel. The second set of nozzles exhibited no combustion instability. Altitude relight tests with the second set showed that relight was improved and was achievable at essentially the same condition as blowout when the fuel temperature was 800 K (980 F).

  16. Integration of Thermoelectric Generators and Wood Stove to Produce Heat, Hot Water, and Electrical Power

    NASA Astrophysics Data System (ADS)

    Goudarzi, A. M.; Mazandarani, P.; Panahi, R.; Behsaz, H.; Rezania, A.; Rosendahl, L. A.

    2013-07-01

    Traditional fire stoves are characterized by low efficiency. In this experimental study, the combustion chamber of the stove is augmented by two devices. An electric fan can increase the air-to-fuel ratio in order to increase the system's efficiency and decrease air pollution by providing complete combustion of wood. In addition, thermoelectric generators (TEGs) produce power that can be used to satisfy all basic needs. In this study, a water-based cooling system is designed to increase the efficiency of the TEGs and also produce hot water for residential use. Through a range of tests, an average of 7.9 W was achieved by a commercial TEG with substrate area of 56 mm × 56 mm, which can produce 14.7 W output power at the maximum matched load. The total power generated by the stove is 166 W. Also, in this study a reasonable ratio of fuel to time is described for residential use. The presented prototype is designed to fulfill the basic needs of domestic electricity, hot water, and essential heat for warming the room and cooking.

  17. 10 CFR 436.103 - Program goal setting.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... measurement which are consistent throughout the planning period. Particular attention should be given to increased energy use efficiency in nonrenewable fuel consumption. The second focus of attention should be on...

  18. High Efficiency, Low Emissions Homogeneous Charge Compression Ignition (HCCI) Engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gravel, Roland; Maronde, Carl; Gehrke, Chris

    2010-10-30

    This is the final report of the High Efficiency Clean Combustion (HECC) Research Program for the U.S. Department of Energy. Work under this co-funded program began in August 2005 and finished in July 2010. The objective of this program was to develop and demonstrate a low emission, high thermal efficiency engine system that met 2010 EPA heavy-duty on-highway truck emissions requirements (0.2g/bhp-hr NOx, 0.14g/bhp-hr HC and 0.01g/bhp-hr PM) with a thermal efficiency of 46%. To achieve this goal, development of diesel homogenous charge compression ignition (HCCI) combustion was the chosen approach. This report summarizes the development of diesel HCCI combustionmore » and associated enabling technologies that occurred during the HECC program between August 2005 and July 2010. This program showed that although diesel HCCI with conventional US diesel fuel was not a feasible means to achieve the program objectives, the HCCI load range could be increased with a higher volatility, lower cetane number fuel, such as gasoline, if the combustion rate could be moderated to avoid excessive cylinder pressure rise rates. Given the potential efficiency and emissions benefits, continued research of combustion with low cetane number fuels and the effects of fuel distillation are recommended. The operation of diesel HCCI was only feasible at part-load due to a limited fuel injection window. A 4% fuel consumption benefit versus conventional, low-temperature combustion was realized over the achievable operating range. Several enabling technologies were developed under this program that also benefited non-HCCI combustion. The development of a 300MPa fuel injector enabled the development of extended lifted flame combustion. A design methodology for minimizing the heat transfer to jacket water, known as precision cooling, will benefit conventional combustion engines, as well as HCCI engines. An advanced combustion control system based on cylinder pressure measurements was developed. A Well-to-wheels analysis of the energy flows in a mobile vehicle system and a 2nd Law thermodynamic analysis of the engine system were also completed under this program.« less

  19. Hydrogen as an Auxiliary Fuel in Compression-Ignition Engines

    NASA Technical Reports Server (NTRS)

    Gerrish, Harold C; Foster, H

    1936-01-01

    An investigation was made to determine whether a sufficient amount of hydrogen could be efficiently burned in a compression-ignition engine to compensate for the increase of lift of an airship due to the consumption of the fuel oil. The performance of a single-cylinder four-stroke-cycle compression-ignition engine operating on fuel oil alone was compared with its performance when various quantities of hydrogen were inducted with the inlet air. Engine-performance data, indicator cards, and exhaust-gas samples were obtained for each change in engine-operating conditions.

  20. Fuel properties to enable lifted-flame combustion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurtz, Eric

    The Fuel Properties to Enable Lifted-Flame Combustion project responded directly to solicitation DE-FOA-0000239 AOI 1A, Fuels and Lubricants for Advanced Combustion Regimes. This subtopic was intended to encompass clean and highly-efficient, liquid-fueled combustion engines to achieve extremely low engine-out nitrogen oxides (NOx) and particulate matter (PM) as a target and similar efficiency as state-of-the-art direct injection diesel engines. The intent of this project was to identify how fuel properties can be used to achieve controllable Leaner Lifted Flame Combustion (LLFC) with low NOx and PM emissions. Specifically, this project was expected to identify and test key fuel properties to enablemore » LLFC and their compatibility with current fuel systems and to enhance combustion models to capture the effect of fuel properties on advanced combustion. Successful demonstration of LLFC may reduce the need for after treatment devices, thereby reducing costs and improving thermal efficiency. The project team consisted of key technical personnel from Ford Motor Company (FMC), the University of Wisconsin-Madison (UW), Sandia National Laboratories (SNL) and Lawrence Livermore National Laboratories (LLNL). Each partner had key roles in achieving project objectives. FMC investigated fuel properties relating to LLFC and sooting tendency. Together, FMC and UW developed and integrated 3D combustion models to capture fuel property combustion effects. FMC used these modeling results to develop a combustion system and define fuel properties to support a single-cylinder demonstration of fuel-enabled LLFC. UW investigated modeling the flame characteristics and emissions behavior of different fuels, including those with different cetane number and oxygen content. SNL led spray combustion experiments to quantify the effect of key fuel properties on combustion characteristics critical for LLFC, as well as single cylinder optical engine experiments to improve fundamental understanding of flame lift-off, generate model validation data, and demonstrate LLFC concurrent with FMC efforts. Additionally, LLNL was added to the project during the second year to develop a detailed kinetic mechanism for a key oxygenate to support CFD modeling. Successful completion of this project allowed the team to enhance fundamental understanding of LLFC, improve the state of current combustion models and increase understanding of desired fuel properties. This knowledge also improves our knowledge of how cost effective and environmentally friendly renewable fuels can assist in helping meet future emission and greenhouse gas regulations.« less

  1. Energy Efficiency and Air Quality Repairs at Lyonsdale Biomass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brower, Michael R; Morrison, James A; Spomer, Eric

    2012-07-31

    This project enabled Lyonsdale Biomass, LLC to effect analyses, repairs and upgrades for its biomass cogeneration facility located in Lewis County, New York and close by the Adirondack Park to reduce air emissions by improving combustion technique and through the overall reduction of biomass throughput by increasing the system's thermodynamic efficiency for its steam-electrical generating cycle. Project outcomes result in significant local, New York State, Northeast U.S. and national benefits including improved renewable energy operational surety, enhanced renewable energy efficiency and more freedom from foreign fossil fuel source dependence. Specifically, the reliability of the Lyonsdale Biomass 20MWe woody biomass combined-heatmore » and power (CHP) was and is now directly enhanced. The New York State and Lewis County benefits are equally substantial since the facility sustains 26 full-time equivalency (FTE) jobs at the facility and as many as 125 FTE jobs in the biomass logistics supply chain. Additionally, the project sustains essential local and state payment in lieu of taxes revenues. This project helps meet several USDOE milestones and contributes directly to the following sustainability goals:  Climate: Reduces greenhouse gas emissions associated with bio-power production, conversion and use, in comparison to fossil fuels. Efficiency and Productivity: Enhances efficient use of renewable resources and maximizes conversion efficiency and productivity. Profitability: Lowers production costs. Rural Development: Enhances economic welfare and rural development through job creation and income generation. Standards: Develop standards and corresponding metrics for ensuring sustainable biopower production. Energy Diversification and Security: Reduces dependence on foreign oil and increases energy supply diversity. Net Energy Balance: Ensures positive net energy balance for all alternatives to fossil fuels.« less

  2. 49 CFR 535.4 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., DEPARTMENT OF TRANSPORTATION MEDIUM- AND HEAVY-DUTY VEHICLE FUEL EFFICIENCY PROGRAM § 535.4 Definitions. The... fuel cell. Fuel efficiency means the amount of work performed for each gallon of fuel consumed. Good... engine or powertrain that includes energy storage features other than a conventional battery system or...

  3. Evaluation of Fuel Cell Operation and Degradation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Mark; Gemmen, Randall; Richards, George

    The concepts of area specific resistance (ASR) and degradation are developed for different fuel cell operating modes. The concepts of exergetic efficiency and entropy production were applied to ASR and degradation. It is shown that exergetic efficiency is a time-dependent function useful describing the thermal efficiency of a fuel cell and the change in thermal efficiency of a degrading fuel cell. Entropy production was evaluated for the cases of constant voltage operation and constant current operation of the fuel cell for a fuel cell undergoing ohmic degradation. It was discovered that the Gaussian hypergeometric function describes the cumulative entropy andmore » electrical work produced by fuel cells operating at constant voltage. The Gaussian hypergeometric function is found in many applications in modern physics. This paper builds from and is an extension of several papers recently published by the authors in the Journal of The Electrochemical Society (ECS), ECS Transactions, Journal of Power Sources, and the Journal of Fuel Cell Science and Technology.« less

  4. Micro solid oxide fuel cells: a new generation of micro-power sources for portable applications

    NASA Astrophysics Data System (ADS)

    Chiabrera, Francesco; Garbayo, Iñigo; Alayo, Nerea; Tarancón, Albert

    2017-06-01

    Portable electronic devices are already an indispensable part of our daily life; and their increasing number and demand for higher performance is becoming a challenge for the research community. In particular, a major concern is the way to efficiently power these energy-demanding devices, assuring long grid independency with high efficiency, sustainability and cheap production. In this context, technologies beyond Li-ion are receiving increasing attention, among which the development of micro solid oxide fuel cells (μSOFC) stands out. In particular, μSOFC provides a high energy density, high efficiency and opens the possibility to the use of different fuels, such as hydrocarbons. Yet, its high operating temperature has typically hindered its application as miniaturized portable device. Recent advances have however set a completely new range of lower operating temperatures, i.e. 350-450°C, as compared to the typical <900°C needed for classical bulk SOFC systems. In this work, a comprehensive review of the status of the technology is presented. The main achievements, as well as the most important challenges still pending are discussed, regarding (i.) the cell design and microfabrication, and (ii.) the integration of functional electrolyte and electrode materials. To conclude, the different strategies foreseen for a wide deployment of the technology as new portable power source are underlined.

  5. Effect of Variable Compression Ratio on Performance of a Diesel Engine Fueled with Karanja Biodiesel and its Blends

    NASA Astrophysics Data System (ADS)

    Mishra, Rahul Kumar; soota, Tarun, Dr.; singh, Ranjeet

    2017-08-01

    Rapid exploration and lavish consumption of underground petroleum resources have led to the scarcity of underground fossil fuels moreover the toxic emissions from such fuels are pernicious which have increased the health hazards around the world. So the aim was to find an alternative fuel which would meet the requirements of petroleum or fossil fuels. Biodiesel is a clean, renewable and bio-degradable fuel having several advantages, one of the most important of which is being its eco-friendly and better knocking characteristics than diesel fuel. In this work the performance of Karanja oil was analyzed on a four stroke, single cylinder, water cooled, variable compression ratio diesel engine. The fuel used was 5% - 25% karanja oil methyl ester by volume in diesel. The results such obtained are compared with standard diesel fuel. Several properties i.e. Brake Thermal Efficiency, Brake Specific Fuel Consumptions, Exhaust Gas Temperature are determined at all operating conditions & at variable compression ratio 17 and 17.5.

  6. Peer Review of March 2013 LDV Rebound Report By Small ...

    EPA Pesticide Factsheets

    The regulatory option of encouraging the adoption of advanced technologies for improving vehicle efficiency can result in significant fuel savings and GHG emissions benefits. At the same time, it is possible that some of these benefits might be offset by additional driving that is encouraged by the reduced costs of operating more efficient vehicles. This so called “rebound effect”, the increased driving that results from an improvement in the energy efficiency of a vehicle, must be determined in order to reliably estimate the overall benefits of GHG regulations for light-duty vehicles. Dr. Ken Small, an Economist at the Department of Economics, University of California at Irvine, with contributions by Dr. Kent Hymel, Department of Economics, California State University at Northridge, have developed a methodology to estimate the rebound effect for light-duty vehicles in the U.S. Specifically, rebound is estimated as the change in vehicle miles traveled (VMT) with respect to the change in per mile fuel costs that can occur, for example, when vehicle operating efficiency is improved. The model analyzes aggregate personal motor-vehicle travel within a simultaneous model of aggregate VMT, fleet size, fuel efficiency, and congestion formation. To use the peer review process to help assure that the methodologies considered by the U.S. EPA for estimating VMT rebound have been thoroughly examined.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lercher, Johannes

    PNNL’s catalysis research is serving as a catalyst for changing how our nation will secure a strong, clean energy future. Senior Physical Chemist Johannes Lercher leads an award-winning team that is developing catalysts that efficiently make fuels from alternate feedstocks, such as biomass, and can store electrical energy in chemical bonds. The researchers are also creating catalysts that can increase vehicle fuel efficiency, while simultaneously cutting emissions. About 80 percent of all man-made materials — from plastics to pharmaceuticals — are made using catalysts. Through PNNL’s Institute for Integrated Catalysis, Johannes and colleagues study how to speed the catalysis reactionmore » process for manufacturers, which ultimately cuts costs and production time.« less

  8. Experimental and simulation study of a Gaseous oxygen/Gaseous hydrogen vortex cooling thrust chamber

    NASA Astrophysics Data System (ADS)

    Yu, Nanjia; Zhao, Bo; Li, Gongnan; Wang, Jue

    2016-01-01

    In this paper, RNG k-ε turbulence model and PDF non-premixed combustion model are used to simulate the influence of the diameter of the ring of hydrogen injectors and oxidizer-to-fuel ratio on the specific impulse of the vortex cooling thrust chamber. The simulation results and the experimental tests of a 2000 N Gaseous oxygen/Gaseous hydrogen vortex cooling thrust chamber reveal that the efficiency of the specific impulse improves significantly with increasing of the diameter of the ring of hydrogen injectors. Moreover, the optimum efficiency of the specific impulse is obtained when the oxidizer-to-fuel ratio is near the stoichiometric ratio.

  9. Feed-forward control of a solid oxide fuel cell system with anode offgas recycle

    NASA Astrophysics Data System (ADS)

    Carré, Maxime; Brandenburger, Ralf; Friede, Wolfgang; Lapicque, François; Limbeck, Uwe; da Silva, Pedro

    2015-05-01

    In this work a combined heat and power unit (CHP unit) based on the solid oxide fuel cell (SOFC) technology is analysed. This unit has a special feature: the anode offgas is partially recycled to the anode inlet. Thus it is possible to increase the electrical efficiency and the system can be operated without external water feeding. A feed-forward control concept which allows secure operating conditions of the CHP unit as well as a maximization of its electrical efficiency is introduced and validated experimentally. The control algorithm requires a limited number of measurement values and few deterministic relations for its description.

  10. Comparison of traditional nondestructive analysis of RERTR fuel plates with digital radiographic techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davidsmeier, T.; Koehl, R.; Lanham, R.

    2008-07-15

    The current design and fabrication process for RERTR fuel plates utilizes film radiography during the nondestructive testing and characterization. Digital radiographic methods offer a potential increases in efficiency and accuracy. The traditional and digital radiographic methods are described and demonstrated on a fuel plate constructed with and average of 51% by volume fuel using the dispersion method. Fuel loading data from each method is analyzed and compared to a third baseline method to assess accuracy. The new digital method is shown to be more accurate, save hours of work, and provide additional information not easily available in the traditional method.more » Additional possible improvements suggested by the new digital method are also raised. (author)« less

  11. Catalytic combustion of residual fuels

    NASA Technical Reports Server (NTRS)

    Bulzan, D. L.; Tacina, R. R.

    1981-01-01

    A noble metal catalytic reactor was tested using two grades of petroleum derived residual fuels at specified inlet air temperatures, pressures, and reference velocities. Combustion efficiencies greater than 99.5 percent were obtained. Steady state operation of the catalytic reactor required inlet air temperatures of at least 800 K. At lower inlet air temperatures, upstream burning in the premixing zone occurred which was probably caused by fuel deposition and accumulation on the premixing zone walls. Increasing the inlet air temperature prevented this occurrence. Both residual fuels contained about 0.5 percent nitrogen by weight. NO sub x emissions ranged from 50 to 110 ppm by volume at 15 percent excess O2. Conversion of fuel-bound nitrogen to NO sub x ranged from 25 to 50 percent.

  12. Mixing enhancement of reacting parallel fuel jets in a supersonic combustor

    NASA Technical Reports Server (NTRS)

    Drummond, J. P.

    1991-01-01

    Pursuant to a NASA-Langley development program for a scramjet HST propulsion system entailing the optimization of the scramjet combustor's fuel-air mixing and reaction characteristics, a numerical study has been conducted of the candidate parallel fuel injectors. Attention is given to a method for flow mixing-process and combustion-efficiency enhancement in which a supersonic circular hydrogen jet coflows with a supersonic air stream. When enhanced by a planar oblique shock, the injector configuration exhibited a substantial degree of induced vorticity in the fuel stream which increased mixing and chemical reaction rates, relative to the unshocked configuration. The resulting heat release was effective in breaking down the stable hydrogen vortex pair that had inhibited more extensive fuel-air mixing.

  13. Catalytic Steam and Partial Oxidation Reforming of Liquid Fuels for Application in Improving the Efficiency of Internal Combustion Engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brookshear, Daniel William; Pihl, Josh A.; Szybist, James P.

    Here, this study investigated the potential for catalytically reforming liquid fuels in a simulated exhaust gas recirculation (EGR) mixture loop for the purpose of generating reformate that could be used to increase stoichiometric combustion engine efficiency. The experiments were performed on a simulated exhaust flow reactor using a Rh/Al 2O 3 reformer catalyst, and the fuels evaluated included iso-octane, ethanol, and gasoline. Both steam reforming and partial oxidation reforming were examined as routes for the production of reformate. Steam reforming was determined to be an ineffective option for reforming in an EGR loop, because of the high exhaust temperatures (inmore » excess of 700 °C) required to produce adequate concentrations of reformate, regardless of fuel. However, partial oxidation reforming is capable of producing hydrogen concentrations as high as 10%–16%, depending on fuel and operating conditions in the simulated EGR gas mixture. Meanwhile, measurements of total fuel enthalpy retention were shown to have favorable energetics under a range of conditions, although a tradeoff between fuel enthalpy retention and reformate production was observed. Of the three fuels evaluated, iso-octane exhibited the best overall performance, followed by ethanol and then gasoline. Overall, it was found that partial oxidation reforming of liquid fuels in a simulated EGR mixture over the Rh/Al 2O 3 catalyst demonstrated sufficiently high reformate yields and favorable energetics to warrant further evaluation in the EGR system of a stoichiometric combustion engine.« less

  14. Catalytic Steam and Partial Oxidation Reforming of Liquid Fuels for Application in Improving the Efficiency of Internal Combustion Engines

    DOE PAGES

    Brookshear, Daniel William; Pihl, Josh A.; Szybist, James P.

    2018-02-07

    Here, this study investigated the potential for catalytically reforming liquid fuels in a simulated exhaust gas recirculation (EGR) mixture loop for the purpose of generating reformate that could be used to increase stoichiometric combustion engine efficiency. The experiments were performed on a simulated exhaust flow reactor using a Rh/Al 2O 3 reformer catalyst, and the fuels evaluated included iso-octane, ethanol, and gasoline. Both steam reforming and partial oxidation reforming were examined as routes for the production of reformate. Steam reforming was determined to be an ineffective option for reforming in an EGR loop, because of the high exhaust temperatures (inmore » excess of 700 °C) required to produce adequate concentrations of reformate, regardless of fuel. However, partial oxidation reforming is capable of producing hydrogen concentrations as high as 10%–16%, depending on fuel and operating conditions in the simulated EGR gas mixture. Meanwhile, measurements of total fuel enthalpy retention were shown to have favorable energetics under a range of conditions, although a tradeoff between fuel enthalpy retention and reformate production was observed. Of the three fuels evaluated, iso-octane exhibited the best overall performance, followed by ethanol and then gasoline. Overall, it was found that partial oxidation reforming of liquid fuels in a simulated EGR mixture over the Rh/Al 2O 3 catalyst demonstrated sufficiently high reformate yields and favorable energetics to warrant further evaluation in the EGR system of a stoichiometric combustion engine.« less

  15. Multiple exciton generation for photoelectrochemical hydrogen evolution reactions with quantum yields exceeding 100%

    DOE PAGES

    Yan, Yong; Crisp, Ryan W.; Gu, Jing; ...

    2017-04-03

    Multiple exciton generation (MEG) in quantum dots (QDs) has the potential to greatly increase the power conversion efficiency in solar cells and in solar-fuel production. During the MEG process, two electron-hole pairs (excitons) are created from the absorption of one high-energy photon, bypassing hot-carrier cooling via phonon emission. Here we demonstrate that extra carriers produced via MEG can be used to drive a chemical reaction with quantum efficiency above 100%. We developed a lead sulfide (PbS) QD photoelectrochemical cell that is able to drive hydrogen evolution from aqueous Na 2S solution with a peak external quantum efficiency exceeding 100%. QDmore » photoelectrodes that were measured all demonstrated MEG when the incident photon energy was larger than 2.7 times the bandgap energy. Finally, our results demonstrate a new direction in exploring high-efficiency approaches to solar fuels.« less

  16. Transportation Energy Futures Series. Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vyas, A. D.; Patel, D. M.; Bertram, K. M.

    2013-02-01

    Considerable research has focused on energy efficiency and fuel substitution options for light-duty vehicles, while much less attention has been given to medium- and heavy-duty trucks, buses, aircraft, marine vessels, trains, pipeline, and off-road equipment. This report brings together the salient findings from an extensive review of literature on future energy efficiency options for these non-light-duty modes. Projected activity increases to 2050 are combined with forecasts of overall fuel efficiency improvement potential to estimate the future total petroleum and greenhouse gas (GHG) emissions relative to current levels. This is one of a series of reports produced as a result ofmore » the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.« less

  17. Transportation Energy Futures Series: Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vyas, A. D.; Patel, D. M.; Bertram, K. M.

    2013-03-01

    Considerable research has focused on energy efficiency and fuel substitution options for light-duty vehicles, while much less attention has been given to medium- and heavy-duty trucks, buses, aircraft, marine vessels, trains, pipeline, and off-road equipment. This report brings together the salient findings from an extensive review of literature on future energy efficiency options for these non-light-duty modes. Projected activity increases to 2050 are combined with forecasts of overall fuel efficiency improvement potential to estimate the future total petroleum and greenhouse gas (GHG) emissions relative to current levels. This is one of a series of reports produced as a result ofmore » the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.« less

  18. A Stirling engine for use with lower quality fuels

    NASA Astrophysics Data System (ADS)

    Paul, Christopher J.

    There is increasing interest in using renewable fuels from biomass or alternative fuels such as municipal waste to reduce the need for fossil based fuels. Due to the lower heating values and higher levels of impurities, small scale electricity generation is more problematic. Currently, there are not many technologically mature options for small scale electricity generation using lower quality fuels. Even though there are few manufacturers of Stirling engines, the history of their development for two centuries offers significant guidance in developing a viable small scale generator set using lower quality fuels. The history, development, and modeling of Stirling engines were reviewed to identify possible model and engine configurations. A Stirling engine model based on the finite volume, ideal adiabatic model was developed. Flow dissipation losses are shown to need correcting as they increase significantly at low mean engine pressure and high engine speed. The complete engine including external components was developed. A simple yet effective method of evaluating the external heat transfer to the Stirling engine was created that can be used with any second order Stirling engine model. A derivative of the General Motors Ground Power Unit 3 was designed. By significantly increasing heater, cooler and regenerator size at the expense of increased dead volume, and adding a combustion gas recirculation, a generator set with good efficiency was designed.

  19. Cold homes, fuel poverty and energy efficiency improvements: A longitudinal focus group approach.

    PubMed

    Grey, Charlotte N B; Schmieder-Gaite, Tina; Jiang, Shiyu; Nascimento, Christina; Poortinga, Wouter

    2017-08-01

    Cold homes and fuel poverty have been identified as factors in health and social inequalities that could be alleviated through energy efficiency interventions. Research on fuel poverty and the health impacts of affordable warmth initiatives have to date primarily been conducted using quantitative and statistical methods, limiting the way how fuel poverty is understood. This study took a longitudinal focus group approach that allowed exploration of lived experiences of fuel poverty before and after an energy efficiency intervention. Focus group discussions were held with residents from three low-income communities before (n = 28) and after (n = 22) they received energy efficiency measures funded through a government-led scheme. The results show that improving the energy efficiency of homes at risk of fuel poverty has a profound impact on wellbeing and quality of life, financial stress, thermal comfort, social interactions and indoor space use. However, the process of receiving the intervention was experienced by some as stressful. There is a need for better community engagement and communication to improve the benefits delivered by fuel poverty programmes, as well as further qualitative exploration to better understand the wider impacts of fuel poverty and policy-led intervention schemes.

  20. Cold homes, fuel poverty and energy efficiency improvements: A longitudinal focus group approach

    PubMed Central

    Grey, Charlotte N. B.; Schmieder-Gaite, Tina; Jiang, Shiyu; Nascimento, Christina

    2017-01-01

    Cold homes and fuel poverty have been identified as factors in health and social inequalities that could be alleviated through energy efficiency interventions. Research on fuel poverty and the health impacts of affordable warmth initiatives have to date primarily been conducted using quantitative and statistical methods, limiting the way how fuel poverty is understood. This study took a longitudinal focus group approach that allowed exploration of lived experiences of fuel poverty before and after an energy efficiency intervention. Focus group discussions were held with residents from three low-income communities before (n = 28) and after (n = 22) they received energy efficiency measures funded through a government-led scheme. The results show that improving the energy efficiency of homes at risk of fuel poverty has a profound impact on wellbeing and quality of life, financial stress, thermal comfort, social interactions and indoor space use. However, the process of receiving the intervention was experienced by some as stressful. There is a need for better community engagement and communication to improve the benefits delivered by fuel poverty programmes, as well as further qualitative exploration to better understand the wider impacts of fuel poverty and policy-led intervention schemes. PMID:28890663

  1. 75 FR 11873 - Notice of Fuel Cell Pre-Solicitation Workshop

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-12

    ... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy Notice of Fuel Cell Pre... Cell Pre-Solicitation Workshop. SUMMARY: The Fuel Cell Technologies Program, under the DOE Office of Energy Efficiency and Renewable Energy, is inviting the fuel cell research community and other...

  2. Efficiency Benefits Using the Terminal Area Precision Scheduling and Spacing System

    NASA Technical Reports Server (NTRS)

    Thipphavong, Jane; Swenson, Harry N.; Lin, Paul; Seo, Anthony Y.; Bagasol, Leonard N.

    2011-01-01

    NASA has developed a capability for terminal area precision scheduling and spacing (TAPSS) to increase the use of fuel-efficient arrival procedures during periods of traffic congestion at a high-density airport. Sustained use of fuel-efficient procedures throughout the entire arrival phase of flight reduces overall fuel burn, greenhouse gas emissions and noise pollution. The TAPSS system is a 4D trajectory-based strategic planning and control tool that computes schedules and sequences for arrivals to facilitate optimal profile descents. This paper focuses on quantifying the efficiency benefits associated with using the TAPSS system, measured by reduction of level segments during aircraft descent and flight distance and time savings. The TAPSS system was tested in a series of human-in-the-loop simulations and compared to current procedures. Compared to the current use of the TMA system, simulation results indicate a reduction of total level segment distance by 50% and flight distance and time savings by 7% in the arrival portion of flight (200 nm from the airport). The TAPSS system resulted in aircraft maintaining continuous descent operations longer and with more precision, both achieved under heavy traffic demand levels.

  3. Computational study of fuel injection in a shcramjet inlet

    NASA Astrophysics Data System (ADS)

    Parent, Bernard

    The primary objective of this investigation is to present the mixing of fuel with air in the inlet of a shock-induced combustion ramjet (shcramjet). The study is limited to non-reacting hydrogen-air mixing in an external-compression inlet at a flight Mach number of 11 and at a dynamic pressure of 1400 psf (67032 Pa), using an array of cantilevered ramp injectors. A numerical method based on the Yee-Roe scheme and block-implicit approximate factorization is developed to solve the FANS equations closed by the Wilcox ko turbulence model. A new acceleration technique for streamwise-separated hypersonic flow, dubbed the "marching window", is presented. The dilatational dissipation correction is seen to affect the mixing efficiency considerably for a cantilevered ramp injector flowfield even at a vanishing convective Mach number, due to the high turbulent Mach number generated by the high cross-stream shear induced by the ramp-generated axial vortices. Due to the fuel being injected at a very high speed, fuel injection in the inlet is found to increase considerably the thrust potential, with a gain exceeding the loss by 40--120%. Losses due to skin friction are seen to play a significant role in the inlet, as they are estimated to make up as much as 50--70% of the thrust potential losses. The use of a turbulence model that can predict accurately the wall shear stress is hence crucial in assessing the losses accurately in a shcramjet inlet. Substituting the second inlet shock by a Prandtl-Meyer compression fan is encouraged as it decreases the thrust potential losses, reduces the risk of premature ignition by reducing the static temperature, while decreasing the mixing efficiency by a mere 6%. One approach that is observed herein to be successful at increasing the mixing efficiency in the inlet is by alternating the injection angle along the injector array. The use of two injection angles of 9 and 16 degrees is seen to result in a 32% increase in the mixing efficiency at the expense of a 14% increase in the losses when compared to a single injection angle of 10 degrees. Using alternating injection angles, the mixing efficiency reaches as much as 0.47 at the inlet exit.

  4. FY2015 Annual Report for Alternative Fuels DISI Engine Research.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sjöberg, Carl-Magnus G.

    2016-01-01

    Climate change and the need to secure energy supplies are two reasons for a growing interest in engine efficiency and alternative fuels. This project contributes to the science-base needed by industry to develop highly efficient DISI engines that also beneficially exploit the different properties of alternative fuels. Our emphasis is on lean operation, which can provide higher efficiencies than traditional non-dilute stoichiometric operation. Since lean operation can lead to issues with ignition stability, slow flame propagation and low combustion efficiency, we focus on techniques that can overcome these challenges. Specifically, fuel stratification is used to ensure ignition and completeness ofmore » combustion but has soot- and NOx- emissions challenges. For ultralean well-mixed operation, turbulent deflagration can be combined with controlled end-gas auto-ignition to render mixed-mode combustion that facilitates high combustion efficiency. However, the response of both combustion and exhaust emissions to these techniques depends on the fuel properties. Therefore, to achieve optimal fuel-economy gains, the engine combustion-control strategies must be adapted to the fuel being utilized.« less

  5. Modeling Fuel Efficiency: MPG or GPHM?

    ERIC Educational Resources Information Center

    Bartkovich, Kevin G.

    2013-01-01

    The standard for measuring fuel efficiency in the U.S. has been miles per gallon (mpg). However, the Environmental Protection Agency's (EPA) switch in rating fuel efficiency from miles per gallon to gallons per hundred miles with the 2013 model-year cars leads to interesting and relevant mathematics with real-world connections. By modeling…

  6. 48 CFR 908.1170 - Leasing of fuel-efficient vehicles.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 5 2012-10-01 2012-10-01 false Leasing of fuel-efficient vehicles. 908.1170 Section 908.1170 Federal Acquisition Regulations System DEPARTMENT OF ENERGY COMPETITION ACQUISITION PLANNING REQUIRED SOURCES OF SUPPLIES AND SERVICES Leasing of Motor Vehicles 908.1170 Leasing of fuel-efficient vehicles. (a) All...

  7. Federal roles to realize national energy-efficiency opportunities in the 1990s

    NASA Astrophysics Data System (ADS)

    Hirst, Eric

    1989-10-01

    Improving energy efficiency throughout the U.S. economy is a vital component of our nation's energy future, with many benefits. Improving efficiency can: save money consumers, increase economic productivity and international competitiveness, reduce oil and gas prices by reducing the demand for foreign oil, enhance national security by lowering oil imports, reduce the adverse environmental consequences of fuel cycles, especially acid rain and global warming, add diversity and flexibility to the nation's portfolio of energy resources, respond to public interest in, and support of, energy efficiency. The primary purpose of this report is to suggest expanded roles for the U.S. Department of Energy (DOE) in improving energy efficiency during the 1990s. In an ideal world, the normal workings of the market place would yield optimal energy-efficiency purchase and operating decisions. Unfortunately, distortions in fuel prices, limited access to capital, misplaced incentives, lack of information, and difficulty in processing information complicate energy-related decision making. Thus, consumers in all sectors of the economy underinvest in energy-efficient systems. These market barriers, coupled with growing concern about environmental quality, justify a larger Federal role.

  8. Power generation from furfural using the microbial fuel cell

    NASA Astrophysics Data System (ADS)

    Luo, Yong; Liu, Guangli; Zhang, Renduo; Zhang, Cuiping

    Furfural is a typical inhibitor in the ethanol fermentation process using lignocellulosic hydrolysates as raw materials. In the literature, no report has shown that furfural can be utilized as the fuel to produce electricity in the microbial fuel cell (MFC), a device that uses microbes to convert organic compounds to generate electricity. In this study, we demonstrated that electricity was successfully generated using furfural as the sole fuel in both the ferricyanide-cathode MFC and the air-cathode MFC. In the ferricyanide-cathode MFC, the maximum power densities reached 45.4, 81.4, and 103 W m -3, respectively, when 1000 mg L -1 glucose, a mixture of 200 mg L -1 glucose and 5 mM furfural, and 6.68 mM furfural were used as the fuels in the anode solution. The corresponding Coulombic efficiencies (CE) were 4.0, 7.1, and 10.2% for the three treatments, respectively. For pure furfural as the fuel, the removal efficiency of furfural reached up to 95% within 12 h. In the air-cathode MFC using 6.68 mM furfural as the fuel, the maximum values of power density and CE were 361 mW m -2 (18 W m -3) and 30.3%, respectively, and the COD removal was about 68% at the end of the experiment (about 30 h). Increase in furfural concentrations from 6.68 to 20 mM resulted in increase in the maximum power densities from 361 to 368 mW m -2, and decrease in CEs from 30.3 to 20.6%. These results indicated that some toxic and biorefractory organics such as furfural might still be suitable resources for electricity generation using the MFC technology.

  9. FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George Rizeq; Janice West; Arnaldo Frydman

    It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Energy and Environmental Research Corporation (GE EER) has developed an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GEmore » EER (prime contractor) was awarded a Vision 21 program from U.S. DOE NETL to develop the UFP technology. Work on this Phase I program started on October 1, 2000. The project team includes GE EER, Southern Illinois University at Carbondale (SIU-C), California Energy Commission (CEC), and T. R. Miles, Technical Consultants, Inc. In the UFP technology, coal/opportunity fuels and air are simultaneously converted into separate streams of (1) pure hydrogen that can be utilized in fuel cells, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure oxygen-depleted air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on process modeling work, has an estimated process efficiency of 68%, based on electrical and H{sub 2} energy outputs relative to the higher heating value of coal, and an estimated equivalent electrical efficiency of 60%. The Phase I R&D program will determine the operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates lab-, bench- and pilot-scale studies to demonstrate the UFP technology. This is the tenth quarterly technical progress report for the Vision 21 UFP program supported by U.S. DOE NETL (Contract No. DE-FC26-00FT40974). This report summarizes program accomplishments for the period starting January 1, 2003 and ending March 31, 2003. The report includes an introduction summarizing the UFP technology, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including lab-scale experimental testing, pilot-scale assembly, and program management.« less

  10. FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George Rizeq; Janice West; Arnaldo Frydman

    It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Energy and Environmental Research Corporation (GE EER) has developed an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GEmore » EER was awarded a Vision 21 program from U.S. DOE NETL to develop the UFP technology. Work on this Phase I program started on October 1, 2000. The project team includes GE EER, California Energy Commission, Southern Illinois University at Carbondale, and T. R. Miles, Technical Consultants, Inc. In the UFP technology, coal/opportunity fuels and air are simultaneously converted into separate streams of (1) pure hydrogen that can be utilized in fuel cells, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure oxygen-depleted air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on process modeling work, has an estimated process efficiency of 68%, based on electrical and H{sub 2} energy outputs relative to the higher heating value of coal, and an estimated equivalent electrical efficiency of 60%. The Phase I R&D program will determine the operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates lab-, bench- and pilot-scale studies to demonstrate the UFP technology. This is the ninth quarterly technical progress report for the Vision 21 UFP program supported by U.S. DOE NETL (Contract No. DE-FC26-00FT40974). This report summarizes program accomplishments for the period starting October 1, 2002 and ending December 31, 2002. The report includes an introduction summarizing the UFP technology, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including lab- and bench-scale experimental testing, pilot-scale design and assembly, and program management.« less

  11. FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George Rizeq; Janice West; Arnaldo Frydman

    It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Global Research (GEGR) has developed an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GEGR (prime contractor) was awardedmore » a Vision 21 program from U.S. DOE NETL to develop the UFP technology. Work on this Phase I program started on October 1, 2000. The project team includes GEGR, Southern Illinois University at Carbondale (SIU-C), California Energy Commission (CEC), and T. R. Miles, Technical Consultants, Inc. In the UFP technology, coal/opportunity fuels and air are simultaneously converted into separate streams of (1) pure hydrogen that can be utilized in fuel cells, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure oxygen-depleted air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on process modeling with best-case scenario assumptions, has an estimated process efficiency of 68%, based on electrical and H{sub 2} energy outputs relative to the higher heating value of coal, and an estimated equivalent electrical efficiency of 60%. The Phase I R&D program will determine the operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates lab-, bench- and pilot-scale studies to demonstrate the UFP technology. This is the eleventh quarterly technical progress report for the Vision 21 UFP program supported by U.S. DOE NETL (Contract No. DE-FC26-00FT40974). This report summarizes program accomplishments for the period starting April 1, 2003 and ending June 30, 2003. The report includes an introduction summarizing the UFP technology, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including lab-scale experimental testing, pilot-scale assembly, and program management.« less

  12. Modeling and control of fuel distribution in a dual-fuel internal combustion engine leveraging late intake valve closings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kassa, Mateos; Hall, Carrie; Ickes, Andrew

    Advanced internal combustion engines, although generally more efficient than conventional combustion engines, often encounter limitations in multi-cylinder applications due to variations in the combustion process encountered across cylinders and between cycles. This study leverages experimental data from an inline 6-cylinder heavy-duty dual fuel engine equipped with exhaust gas recirculation (EGR), a variable geometry turbocharger, and a fully-flexible variable intake valve actuation system to study cylinder-to-cylinder variations in power production and the underlying uneven fuel distribution that causes these variations. The engine is operated with late intake valve closure timings in a dual-fuel combustion mode in which a high reactivity fuelmore » is directly injected into the cylinders and a low reactivity fuel is port injected into the cylinders. Both dual fuel implementation and late intake valve closing (IVC) timings have been shown to improve thermal efficiency. However, experimental data from this study reveal that when late IVC timings are used on a multi-cylinder dual fuel engine a significant variation in IMEP across cylinders results and as such, leads to efficiency losses. The difference in IMEP between the different cylinders ranges from 9% at an IVC of 570°ATDC to 38% at an IVC of 610°ATDC and indicates an increasingly uneven fuel distribution. These experimental observations along with engine simulation models developed using GT-Power have been used to better understand the distribution of the port injected fuel across cylinders under various operating conditions on such dual fuel engines. This study revealed that the fuel distribution across cylinders in this dual fuel application is significantly affected by changes in the effective compression ratio as determined by the intake valve close timing as well as the design of the intake system (specifically the length of the intake runners). Late intake valve closures allow a portion of the trapped air and port injected fuel to flow back out of the cylinders into the intake manifold. The fuel that is pushed back in the intake manifold is then unevenly redistributed across the cylinders largely due to the dominating direction of the flow in the intake manifold. The effects of IVC as well as the impact of intake runner length on fuel distribution were quantitatively analyzed and a model was developed that can be used to accurately predict the fuel distribution of the port injected fuel at different operating conditions with an average estimation error of 1.5% in cylinder-specific fuel flow.« less

  13. Emissions from prescribed fire in temperate forest in south-east Australia: implications for carbon accounting

    NASA Astrophysics Data System (ADS)

    Possell, M.; Jenkins, M.; Bell, T. L.; Adams, M. A.

    2014-09-01

    We estimated of emissions of carbon, as CO2-equivalents, from planned fire in four sites in a south-eastern Australian forest. Emission estimates were calculated using measurements of fuel load and carbon content of different fuel types, before and after burning, and determination of fuel-specific emission factors. Median estimates of emissions for the four sites ranged from 20 to 139 T CO2-e ha-1. Variability in estimates was a consequence of different burning efficiencies of each fuel type from the four sites. Higher emissions resulted from more fine fuel (twigs, decomposing matter, near-surface live and leaf litter) or coarse woody debris (CWD; > 25 mm diameter) being consumed. In order to assess the effect of estimating emissions when only a few fuel variables are known, Monte-Carlo simulations were used to create seven scenarios where input parameters values were replaced by probability density functions. Calculation methods were: (1) all measured data were constrained between measured maximum and minimum values for each variable, (2) as for (1) except the proportion of carbon within a fuel type was constrained between 0 and 1, (3) as for (2) but losses of mass caused by fire were replaced with burning efficiency factors constrained between 0 and 1; and (4) emissions were calculated using default values in the Australian National Greenhouse Accounts (NGA), National Inventory Report 2011, as appropriate for our sites. Effects of including CWD in calculations were assessed for calculation Method 1, 2 and 3 but not for Method 4 as the NGA does not consider this fuel type. Simulations demonstrate that the probability of estimating true median emissions declines strongly as the amount of information available declines. Including CWD in scenarios increased uncertainty in calculations because CWD is the most variable contributor to fuel load. Inclusion of CWD in scenarios generally increased the amount of carbon lost. We discuss implications of these simulations and how emissions from prescribed burns in temperate Australian forests could be improved.

  14. Alternative Fuel and Advanced Technology Commercial Lawn Equipment (Spanish version); Clean Cities, Energy Efficiency & Renewable Energy (EERE) (in Spanish)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Erik

    Powering commercial lawn equipment with alternative fuels or advanced engine technology is an effective way to reduce U.S. dependence on petroleum, reduce harmful emissions, and lessen the environmental impacts of commercial lawn mowing. Numerous alternative fuel and fuel-efficient advanced technology mowers are available. Owners turn to these mowers because they may save on fuel and maintenance costs, extend mower life, reduce fuel spillage and fuel theft, and demonstrate their commitment to sustainability.

  15. Engine Concept Study for an Advanced Single-Aisle Transport

    NASA Technical Reports Server (NTRS)

    Guynn, Mark D.; Berton, Jeffrey J.; Fisher, Kenneth L.; Haller, William J.; Tong, Michael; Thurman, Douglas R.

    2009-01-01

    The desire for higher engine efficiency has resulted in the evolution of aircraft gas turbine engines from turbojets, to low bypass ratio, first generation turbofans, to today's high bypass ratio turbofans. Although increased bypass ratio has clear benefits in terms of propulsion system metrics such as specific fuel consumption, these benefits may not translate into aircraft system level benefits due to integration penalties. In this study, the design trade space for advanced turbofan engines applied to a single aisle transport (737/A320 class aircraft) is explored. The benefits of increased bypass ratio and associated enabling technologies such as geared fan drive are found to depend on the primary metrics of interest. For example, bypass ratios at which mission fuel consumption is minimized may not require geared fan technology. However, geared fan drive does enable higher bypass ratio designs which result in lower noise. The results of this study indicate the potential for the advanced aircraft to realize substantial improvements in fuel efficiency, emissions, and noise compared to the current vehicles in this size class.

  16. Injection system used into SI engines for complete combustion and reduction of exhaust emissions in the case of alcohol and petrol alcohol mixtures feed

    NASA Astrophysics Data System (ADS)

    Ispas, N.; Cofaru, C.; Aleonte, M.

    2017-10-01

    Internal combustion engines still play a major role in today transportation but increasing the fuel efficiency and decreasing chemical emissions remain a great goal of the researchers. Direct injection and air assisted injection system can improve combustion and can reduce the concentration of the exhaust gas pollutes. Advanced air-to-fuel and combustion air-to-fuel injection system for mixtures, derivatives and alcohol gasoline blends represent a major asset in reducing pollutant emissions and controlling combustion processes in spark-ignition engines. The use of these biofuel and biofuel blending systems for gasoline results in better control of spark ignition engine processes, making combustion as complete as possible, as well as lower levels of concentrations of pollutants in exhaust gases. The main purpose of this paper was to provide most suitable tools for ensure the proven increase in the efficiency of spark ignition engines, making them more environmentally friendly. The conclusions of the paper allow to highlight the paths leading to a better use of alcohols (biofuels) in internal combustion engines of modern transport units.

  17. Au/ZnS core/shell nanocrystals as an efficient anode photocatalyst in direct methanol fuel cells.

    PubMed

    Chen, Wei-Ta; Lin, Yin-Kai; Yang, Ting-Ting; Pu, Ying-Chih; Hsu, Yung-Jung

    2013-10-04

    Au/ZnS core/shell nanocrystals with controllable shell thicknesses were synthesized using a cysteine-assisted hydrothermal method. Incorporating Au/ZnS nanocrystals into the traditional Pt-catalyzed half-cell reaction led to a 43.3% increase in methanol oxidation current under light illumination, demonstrating their promising potential for metal/semiconductor hybrid nanocrystals as the anode photocatalyst in direct methanol fuel cells.

  18. Operational Energy Metrics: Increasing Flexibility While Reducing Vulnerability

    DTIC Science & Technology

    2010-03-01

    procurement decisions with a greater level of fidelity concerning the cost- benefit analysis for systems lifetime cost of energy. Furthermore, it...or we have to RTB, we’re BINGO -fuel48”? As General Ronald Keys, USAF (RET.) stated when discussing energy efficiency and mission effectiveness...of Defense change to fully value the delivered cost of fuel, the sooner joint force commanders will reap the “strategic benefits of reallocating

  19. Report on Carbon Nano Material Workshop: Challenges and Opportunities

    DTIC Science & Technology

    2013-01-22

    trolyte fuel cells ( PEMFCs ) utilize the ability of the catalysts to initiate and maintain the oxygen reduction reaction on the cathode and the fuel...oxidation reaction on the anode. In order to increase the efficiency of the PEMFC catalysts, high-surface-area mesoporous carbons, carbon blacks, carbon...mechanical and thermal properties derived from a three-dimensional intercon- nected nanonetwork structure. The exceptional properties of CAs for PEMFC

  20. Saving Energy in Historic Buildings: Balancing Efficiency and Value

    ERIC Educational Resources Information Center

    Cluver, John H.; Randall, Brad

    2012-01-01

    By now the slogan of the National Trust for Historic Preservation that "the greenest building is the one already built" is widely known. In an era of increased environmental awareness and rising fuel prices, however, the question is how can historic building stock be made more energy efficient in a manner respectful of its historic…

  1. Direct hydrogen fuel cell systems for hybrid vehicles

    NASA Astrophysics Data System (ADS)

    Ahluwalia, Rajesh K.; Wang, X.

    Hybridizing a fuel cell system with an energy storage system offers an opportunity to improve the fuel economy of the vehicle through regenerative braking and possibly to increase the specific power and decrease the cost of the combined energy conversion and storage systems. Even in a hybrid configuration it is advantageous to operate the fuel cell system in a load-following mode and use the power from the energy storage system when the fuel cell alone cannot meet the power demand. This paper discusses an approach for designing load-following fuel cell systems for hybrid vehicles and illustrates it by applying it to pressurized, direct hydrogen, polymer-electrolyte fuel cell (PEFC) systems for a mid-size family sedan. The vehicle level requirements relative to traction power, response time, start-up time and energy conversion efficiency are used to select the important parameters for the PEFC stack, air management system, heat rejection system and the water management system.

  2. A concept for a fuel efficient flight planning aid for general aviation

    NASA Technical Reports Server (NTRS)

    Collins, B. P.; Haines, A. L.; Wales, C. J.

    1982-01-01

    A core equation for estimation of fuel burn from path profile data was developed. This equation was used as a necessary ingredient in a dynamic program to define a fuel efficient flight path. The resultant algorithm is oriented toward use by general aviation. The pilot provides a description of the desired ground track, standard aircraft parameters, and weather at selected waypoints. The algorithm then derives the fuel efficient altitudes and velocities at the waypoints.

  3. Nonhumidified High-Temperature Membranes Developed for Proton Exchange Membrane Fuel Cells

    NASA Technical Reports Server (NTRS)

    Kinder, James D.

    2005-01-01

    Fuel cells are being considered for a wide variety of aerospace applications. One of the most versatile types of fuel cells is the proton-exchange-membrane (PEM) fuel cell. PEM fuel cells can be easily scaled to meet the power and space requirements of a specific application. For example, small 100-W PEM fuel cells are being considered for personal power for extravehicular activity suit applications, whereas larger PEM fuel cells are being designed for primary power in airplanes and in uninhabited air vehicles. Typically, PEM fuel cells operate at temperatures up to 80 C. To increase the efficiency and power density of the fuel cell system, researchers are pursuing methods to extend the operating temperature of the PEM fuel cell to 180 C. The most widely used membranes in PEM fuel cells are Nafion 112 and Nafion 117--sulfonated perfluorinated polyethers that were developed by DuPont. In addition to their relatively high cost, the properties of these membranes limit their use in a PEM fuel cell to around 80 C. The proton conductivity of Nafion membranes significantly decreases above 80 C because the membrane dehydrates. The useful operating range of Nafion-based PEM fuel cells can be extended to over 100 C if ancillary equipment, such as compressors and humidifiers, is added to maintain moisture levels within the membrane. However, the addition of these components reduces the power density and increases the complexity of the fuel cell system.

  4. Physical particularities of nuclear reactors using heavy moderators of neutrons

    NASA Astrophysics Data System (ADS)

    Kulikov, G. G.; Shmelev, A. N.

    2016-12-01

    In nuclear reactors, thermal neutron spectra are formed using moderators with small atomic weights. For fast reactors, inserting such moderators in the core may create problems since they efficiently decelerate the neutrons. In order to form an intermediate neutron spectrum, it is preferable to employ neutron moderators with sufficiently large atomic weights, using 233U as a fissile nuclide and 232Th and 231Pa as fertile ones. The aim of the work is to investigate the properties of heavy neutron moderators and to assess their advantages. The analysis employs the JENDL-4.0 nuclear data library and the SCALE program package for simulating the variation of fuel composition caused by irradiation in the reactor. The following main results are obtained. By using heavy moderators with small neutron moderation steps, one is able to (1) increase the rate of resonance capture, so that the amount of fertile material in the fuel may be reduced while maintaining the breeding factor of the core; (2) use the vacant space for improving the fuel-element properties by adding inert, strong, and thermally conductive materials and by implementing dispersive fuel elements in which the fissile material is self-replenished and neutron multiplication remains stable during the process of fuel burnup; and (3) employ mixtures of different fertile materials with resonance capture cross sections in order to increase the resonance-lattice density and the probability of resonance neutron capture leading to formation of fissile material. The general conclusion is that, by forming an intermediate neutron spectrum with heavy neutron moderators, one can use the fuel more efficiently and improve nuclear safety.

  5. Microwave decoration of Pt nanoparticles on entangled 3D carbon nanotube architectures as PEM fuel cell cathode.

    PubMed

    Sherrell, Peter C; Zhang, Weimin; Zhao, Jie; Wallace, Gordon G; Chen, Jun; Minett, Andrew I

    2012-07-01

    Proton-exchange membrane fuel cells (PEMFCs) are expected to provide a complementary power supply to fossil fuels in the near future. The current reliance of fuel cells on platinum catalysts is undesirable. However, even the best-performing non-noble metal catalysts are not as efficient. To drive commercial viability of fuel cells forward in the short term, increased utilization of Pt catalysts is paramount. We have demonstrated improved power and energy densities in a single PEMFC using a designed cathode with a Pt loading of 0.1 mg cm(-2) on a mesoporous conductive entangled carbon nanotube (CNT)-based architecture. This electrode allows for rapid transfer of both fuel and waste to and from the electrode, respectively. Pt particles are bound tightly, directly to CNT sidewalls by a microwave-reduction technique, which provided increased charge transport at this interface. The Pt entangled CNT cathode, in combination with an E-TEK 0.2 mg cm(-2) anode, has a maximum power and energy density of 940 mW cm(-2) and 2700 mA cm(-2), respectively, and a power and energy density of 4.01 W mg(Pt)(-1) and 6.35 A mg(Pt)(-1) at 0.65 V. These power densities correspond to a specific mass activity of 0.81 g Pt per kW for the combined mass of both anode and cathode electrodes, approaching the current US Department of Energy efficiency target. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Effect of cooled EGR on performance and exhaust gas emissions in EFI spark ignition engine fueled by gasoline and wet methanol blends

    NASA Astrophysics Data System (ADS)

    Rohadi, Heru; Syaiful, Bae, Myung-Whan

    2016-06-01

    Fuel needs, especially the transport sector is still dominated by fossil fuels which are non-renewable. However, oil reserves are very limited. Furthermore, the hazardous components produced by internal combustion engine forces many researchers to consider with alternative fuel which is environmental friendly and renewable sources. Therefore, this study intends to investigate the impact of cooled EGR on the performance and exhaust gas emissions in the gasoline engine fueled by gasoline and wet methanol blends. The percentage of wet methanol blended with gasoline is in the range of 5 to 15% in a volume base. The experiment was performed at the variation of engine speeds from 2500 to 4000 rpm with 500 intervals. The re-circulated exhaust gasses into combustion chamber was 5%. The experiment was performed at the constant engine speed. The results show that the use of cooled EGR with wet methanol of 10% increases the brake torque up to 21.3%. The brake thermal efficiency increases approximately 39.6% using cooled EGR in the case of the engine fueled by 15% wet methanol. Brake specific fuel consumption for the engine using EGR fueled by 10% wet methanol decreases up to 23% at the engine speed of 2500 rpm. The reduction of CO, O2 and HC emissions was found, while CO2 increases.

  7. Fuels for high-compression engines

    NASA Technical Reports Server (NTRS)

    Sparrow, Stanwood W

    1926-01-01

    From theoretical considerations one would expect an increase in power and thermal efficiency to result from increasing the compression ratio of an internal combustion engine. In reality it is upon the expansion ratio that the power and thermal efficiency depend, but since in conventional engines this is equal to the compression ratio, it is generally understood that a change in one ratio is accompanied by an equal change in the other. Tests over a wide range of compression ratios (extending to ratios as high as 14.1) have shown that ordinarily an increase in power and thermal efficiency is obtained as expected provided serious detonation or preignition does not result from the increase in ratio.

  8. Regulated and unregulated emissions from a diesel engine fueled with biodiesel and biodiesel blended with methanol

    NASA Astrophysics Data System (ADS)

    Cheung, C. S.; Zhu, Lei; Huang, Zhen

    Experiments were carried out on a diesel engine operating on Euro V diesel fuel, pure biodiesel and biodiesel blended with methanol. The blended fuels contain 5%, 10% and 15% by volume of methanol. Experiments were conducted under five engine loads at a steady speed of 1800 rev min -1 to assess the performance and the emissions of the engine associated with the application of the different fuels. The results indicate an increase of brake specific fuel consumption and brake thermal efficiency when the diesel engine was operated with biodiesel and the blended fuels, compared with the diesel fuel. The blended fuels could lead to higher CO and HC emissions than biodiesel, higher CO emission but lower HC emission than the diesel fuel. There are simultaneous reductions of NO x and PM to a level below those of the diesel fuel. Regarding the unregulated emissions, compared with the diesel fuel, the blended fuels generate higher formaldehyde, acetaldehyde and unburned methanol emissions, lower 1,3-butadiene and benzene emissions, while the toluene and xylene emissions not significantly different.

  9. Issues in International Energy Consumption Analysis: Chinese Transportation Fuel Demand

    EIA Publications

    2014-01-01

    Since the 1990s, China has experienced tremendous growth in its transportation sector. By the end of 2010, China's road infrastructure had emerged as the second-largest transportation system in the world after the United States. Passenger vehicle sales are dramatically increasing from a little more than half a million in 2000, to 3.7 million in 2005, to 13.8 million in 2010. This represents a twenty-fold increase from 2000 to 2010. The unprecedented motorization development in China led to a significant increase in oil demand, which requires China to import progressively more petroleum from other countries, with its share of petroleum imports exceeding 50% of total petroleum demand since 2009. In response to growing oil import dependency, the Chinese government is adopting a broad range of policies, including promotion of fuel-efficient vehicles, fuel conservation, increasing investments in oil resources around the world, and many others.

  10. Fuzzy control based engine sizing optimization for a fuel cell/battery hybrid mini-bus

    NASA Astrophysics Data System (ADS)

    Kim, Minjin; Sohn, Young-Jun; Lee, Won-Yong; Kim, Chang-Soo

    The fuel cell/battery hybrid vehicle has been focused for the alternative engine of the existing internal-combustion engine due to the following advantages of the fuel cell and the battery. Firstly, the fuel cell is highly efficient and eco-friendly. Secondly, the battery has the fast response for the changeable power demand. However, the competitive efficiency of the hybrid fuel cell vehicle is necessary to successfully alternate the conventional vehicles with the fuel cell hybrid vehicle. The most relevant factor which affects the overall efficiency of the hybrid fuel cell vehicle is the relative engine sizing between the fuel cell and the battery. Therefore the design method to optimize the engine sizing of the fuel cell hybrid vehicle has been proposed. The target system is the fuel cell/battery hybrid mini-bus and its power distribution is controlled based on the fuzzy logic. The optimal engine sizes are determined based on the simulator developed in this paper. The simulator includes the several models for the fuel cell, the battery, and the major balance of plants. After the engine sizing, the system efficiency and the stability of the power distribution are verified based on the well-known driving schedule. Consequently, the optimally designed mini-bus shows good performance.

  11. The use of tyre pyrolysis oil in diesel engines.

    PubMed

    Murugan, S; Ramaswamy, M C; Nagarajan, G

    2008-12-01

    Tests have been carried out to evaluate the performance, emission, and combustion characteristics of a single cylinder direct injection diesel engine fueled with 10%, 30%, and 50% of tyre pyrolysis oil (TPO) blended with diesel fuel (DF). The TPO was derived from waste automobile tyres through vacuum pyrolysis. The combustion parameters such as heat release rate, cylinder peak pressure, and maximum rate of pressure rise also analysed. Results showed that the brake thermal efficiency of the engine fueled with TPO-DF blends increased with an increase in blend concentration and reduction of DF concentration. NO(x), HC, CO, and smoke emissions were found to be higher at higher loads due to the high aromatic content and longer ignition delay. The cylinder peak pressure increased from 71 bars to 74 bars. The ignition delays were longer than with DF. It is concluded that it is possible to use tyre pyrolysis oil in diesel engines as an alternate fuel in the future.

  12. Joining of Silicon Carbide-Based Ceramics for MEMS-LDI Fuel Injector Applications

    NASA Technical Reports Server (NTRS)

    Halbig, Michael C.; Singh, Mrityunjay

    2012-01-01

    Deliver the benefits of ceramics in turbine engine applications- increased efficiency, performance, horsepower, range, operating temperature, and payload and reduced cooling and operation and support costs for future engines.

  13. Energy Extra

    ERIC Educational Resources Information Center

    CEFP Journal, 1978

    1978-01-01

    Summarizes findings of an experimental research program to provide a controlled and documented evaluation of the effectiveness of proprietary combustion-type fuel-oil additives and pure compounds for reducing air pollutant emissions and for increasing boiler efficiency. (Author/MLF)

  14. Improved automobile gas turbine engine

    NASA Technical Reports Server (NTRS)

    Kofskey, M. G.; Katsanis, T.; Roelke, R. J.; Mclallin, K. L.; Wong, R. Y.; Schumann, L. F.; Galvas, M. R.

    1976-01-01

    Upgraded engine delivers 100 hp in 3500 lb vehicle. Improved fuel economy is due to combined effects of reduced weight, reduced power-to-weight ratio, increased turbine inlet pressure, and improved component efficiencies at part power.

  15. Integrated Application of Active Controls (IAAC) technology to an advanced subsonic transport project: Final ACT configuration evaluation

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The Final ACT Configuration Evaluation Task of the Integrated Application of Active Controls (IAAC) technology project within the energy efficient transport program is summarized. The Final ACT Configuration, through application of Active Controls Technology (ACT) in combination with increased wing span, exhibits significant performance improvements over the conventional baseline configuration. At the design range for these configurations, 3590 km, the block fuel used is 10% less for the Final ACT Configuration, with significant reductions in fuel usage at all operational ranges. Results of this improved fuel usage and additional system and airframe costs and the complexity required to achieve it were analyzed to determine its economic effects. For a 926 km mission, the incremental return on investment is nearly 25% at 1980 fuel prices. For longer range missions or increased fuel prices, the return is greater. The technical risks encountered in the Final ACT Configuration design and the research and development effort required to reduce these risks to levels acceptable for commercial airplane design are identified.

  16. FUEL ECONOMY AND CO2 EMISSIONS STANDARDS, MANUFACTURER PRICING STRATEGIES, AND FEEBATES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Changzheng; Greene, David L; Bunch, Dr David S.

    2012-01-01

    Corporate Average Fuel Economy (CAFE) standards and CO2 emissions standards for 2012 to 2016 have significantly increased the stringency of requirements for new light-duty vehicle fuel efficiency. This study investigates the role of technology adoption and pricing strategies in meeting new standards, as well as the impact of feebate policies. The analysis is carried out by means of a dynamic optimization model that simulates manufacturer decisions with the objective of maximizing social surplus while simultaneously considering consumer response and meeting CAFE and emissions standards. The results indicate that technology adoption plays the major role and that the provision of compliancemore » flexibility and the availability of cost-effective advanced technologies help manufacturers reduce the need for pricing to induce changes in the mix of vehicles sold. Feebates, when implemented along with fuel economy and emissions standards, can bring additional fuel economy improvement and emissions reduction, but the benefit diminishes with the increasing stringency of the standards.« less

  17. Progress on coal-derived fuels for aviation systems

    NASA Technical Reports Server (NTRS)

    Witcofski, R. D.

    1978-01-01

    The results of engineering studies of coal-derived aviation fuels and their potential application to the air transportation system are presented. Synthetic aviation kerosene (SYN. JET-A), liquid methane (LCH4) and liquid hydrogen (LH2) appear to be the most promising coal-derived fuels. Aircraft configurations fueled with LH2, their fuel systems, and their ground requirements at the airport are identified. Energy efficiency, transportation hazards, and costs are among the factors considered. It is indicated that LCH4 is the most energy efficient to produce, and provides the most efficient utilization of coal resources and the least expensive ticket as well.

  18. Assessment of future natural gas vehicle concepts

    NASA Astrophysics Data System (ADS)

    Groten, B.; Arrigotti, S.

    1992-10-01

    The development of Natural Gas Vehicles is progressing rapidly under the stimulus of recent vehicle emission regulations. The development is following what can be viewed as a three step progression. In the first step, contemporary gasoline or diesel fueled automobiles are retrofitted with equipment enabling the vehicle to operate on either natural gas or standard liquid fuels. The second step is the development of vehicles which utilize traditional internal combustion engines that have been modified to operate exclusively on natural gas. These dedicated natural gas vehicles operate more efficiently and have lower emissions than the dual fueled vehicles. The third step is the redesigning, from the ground up, of a vehicle aimed at exploiting the advantages of natural gas as an automotive fuel while minimizing its disadvantages. The current report is aimed at identifying the R&D needs in various fuel storage and engine combinations which have potential for providing increased efficiency, reduced emissions, and reductions in vehicle weight and size. Fuel suppliers, automobile and engine manufacturers, many segments of the natural gas and other industries, and regulatory authorities will influence or be affected by the development of such a third generation vehicle, and it is recommended that GRI act to bring these groups together in the near future to begin, developing the focus on a 'designed-for-natural-gas' vehicle.

  19. Effect of hydrogen on ethanol-biodiesel blend on performance and emission characteristics of a direct injection diesel engine.

    PubMed

    Parthasarathy, M; Isaac JoshuaRamesh Lalvani, J; Dhinesh, B; Annamalai, K

    2016-12-01

    Environment issue is a principle driving force which has led to a considerable effort to develop and introduce alternative fuels for transportation. India has large potential for production of biofuels like biodiesel from vegetable seeds. Use of biodiesel namely, tamanu methyl ester (TME) in unmodified diesel engines leads to low thermal Efficiency and high smoke emission. To encounter this problem hydrogen was inducted by a port fueled injection system. Hydrogen is considered to be low polluting fuel and is the most promising among alternative fuel. Its clean burning characteristic and better performance attract more interest compared to other fuels. It was more active in reducing smoke emission in biodiesel. A main drawback with hydrogen fuel is the increased NO x emission. To reduce NO x emission, TME-ethanol blends were used in various proportions. After a keen study, it was observed that ethanol can be blended with biodiesel up to 30% in unmodified diesel engine. The present work deals with the experimental study of performance and emission characteristic of the DI diesel engine using hydrogen and TME-ethanol blends. Hydrogen and TME-ethanol blend was used to improve the brake thermal efficiency and reduction in CO, NO x and smoke emissions. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Alternative Fuels Data Center: College Students Engineer Efficient Vehicles

    Science.gov Websites

    in EcoCAR 2 CompetitionA> College Students Engineer Efficient Vehicles in EcoCAR 2 Competition to someone by E-mail Share Alternative Fuels Data Center: College Students Engineer Efficient Vehicles in EcoCAR 2 Competition on Facebook Tweet about Alternative Fuels Data Center: College Students Engineer

  1. On the use of controls for subsonic transport performance improvement: Overview and future directions

    NASA Technical Reports Server (NTRS)

    Gilyard, Glenn; Espana, Martin

    1994-01-01

    Increasing competition among airline manufacturers and operators has highlighted the issue of aircraft efficiency. Fewer aircraft orders have led to an all-out efficiency improvement effort among the manufacturers to maintain if not increase their share of the shrinking number of aircraft sales. Aircraft efficiency is important in airline profitability and is key if fuel prices increase from their current low. In a continuing effort to improve aircraft efficiency and develop an optimal performance technology base, NASA Dryden Flight Research Center developed and flight tested an adaptive performance seeking control system to optimize the quasi-steady-state performance of the F-15 aircraft. The demonstrated technology is equally applicable to transport aircraft although with less improvement. NASA Dryden, in transitioning this technology to transport aircraft, is specifically exploring the feasibility of applying adaptive optimal control techniques to performance optimization of redundant control effectors. A simulation evaluation of a preliminary control law optimizes wing-aileron camber for minimum net aircraft drag. Two submodes are evaluated: one to minimize fuel and the other to maximize velocity. This paper covers the status of performance optimization of the current fleet of subsonic transports. Available integrated controls technologies are reviewed to define approaches using active controls. A candidate control law for adaptive performance optimization is presented along with examples of algorithm operation.

  2. NREL Fuels and Engines R&D Revs Up Vehicle Efficiency, Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    NREL bridges fuels and engines R&D to maximize vehicle efficiency and performance. The lab’s fuels and engines research covers the full spectrum of innovation—from fuel chemistry, conversion, and combustion to the evaluation of how fuels interact with engine and vehicle design. This innovative approach has the potential to positively impact our economy, national energy security, and air quality.

  3. Experimental study of combustion in hydrogen peroxide hybrid rockets

    NASA Astrophysics Data System (ADS)

    Wernimont, Eric John

    Combustion behavior in a hydrogen peroxide oxidized hybrid rocket motor is investigated with a series of experiments. Hybrid chemical rocket propulsion is presently of interest due to reduced system complexity compared to classical chemical propulsion systems. Reduced system complexity, by use of a storable oxidizer and a hybrid configuration, is expected to reduce propulsive costs. The fuel in this study is polyethylene which has the potential of continuous manufacture leading to further reduced system costs. The study investigated parameters of interest for nominal design of a full scale hydrogen peroxide oxidized hybrid rocket. Amongst these parameters is the influence of chamber pressure, mass flux, fuel molecular weight and fuel density on fuel regression rate. Effects of chamber pressure and aft combustion length on combustion efficiency and non-acoustic combustion oscillations are also examined. The fuel regression behavior is found to be strongly influenced by both chamber pressure and mass flux. Combustion efficiencies in the upper 90% range are attained by simple changes to the aft combustion chamber length as well as increased combustion pressure. Fuel burning surface is found to be influenced by the density of the polyethylene polymer as well as molecular weight. The combustion is observed to be exceptionally smooth (oscillations less than 5% zero-to-peak of mean) in all motors tested in this program. Tests using both a single port fuel gain and a novel radial flow hybrid are also performed.

  4. Smoke emissions due to burning of green waste in the Mediterranean area: Influence of fuel moisture content and fuel mass

    NASA Astrophysics Data System (ADS)

    Tihay-Felicelli, V.; Santoni, P. A.; Gerandi, G.; Barboni, T.

    2017-06-01

    The aim of this study was to investigate emission characteristics in relation to differences in fuel moisture content (FMC) and initial dry mass. For this purpose, branches and twigs with leaves of Cistus monspeliensis were burned in a Large Scale Heat Release apparatus coupled to a Fourier Transform Infrared Spectrometer. A smoke analysis was conducted and the results highlighted the presence of CO2, H2O, CO, CH4, NO, NO2, NH3, SO2, and non-methane organic compounds (NMOC). CO2, NO, and NO2 species are mainly released during flaming combustion, whereas CO, CH4, NH3, and NMOC are emitted during both flaming and smoldering combustion. The emission of these compounds during flaming combustion is due to a rich fuel to air mixture, leading to incomplete combustion. The fuel moisture content and initial dry mass influence the flame residence time, the duration of smoldering combustion, the combustion efficiency, and the emission factors. By increasing the initial dry mass, the emission factors of NO, NO2, and CO2 decrease, whereas those of CO and CH4 increase. The increase of FMC induces an increase of the emission factors of CO, CH4, NH3, NMOC, and aerosols, and a decrease of those of CO2, NO, and NO2. Increasing fuel moisture content reduces fuel consumption, duration of smoldering, and peak heat release rate, but simultaneously increases the duration of propagation within the packed bed, and the flame residence time. Increasing the initial dry mass, causes all the previous combustion parameters to increase. These findings have implications for modeling biomass burning emissions and impacts.

  5. Peak oil demand: the role of fuel efficiency and alternative fuels in a global oil production decline.

    PubMed

    Brandt, Adam R; Millard-Ball, Adam; Ganser, Matthew; Gorelick, Steven M

    2013-07-16

    Some argue that peak conventional oil production is imminent due to physical resource scarcity. We examine the alternative possibility of reduced oil use due to improved efficiency and oil substitution. Our model uses historical relationships to project future demand for (a) transport services, (b) all liquid fuels, and (c) substitution with alternative energy carriers, including electricity. Results show great increases in passenger and freight transport activity, but less reliance on oil. Demand for liquids inputs to refineries declines significantly after 2070. By 2100 transport energy demand rises >1000% in Asia, while flattening in North America (+23%) and Europe (-20%). Conventional oil demand declines after 2035, and cumulative oil production is 1900 Gbbl from 2010 to 2100 (close to the U.S. Geological Survey median estimate of remaining oil, which only includes projected discoveries through 2025). These results suggest that effort is better spent to determine and influence the trajectory of oil substitution and efficiency improvement rather than to focus on oil resource scarcity. The results also imply that policy makers should not rely on liquid fossil fuel scarcity to constrain damage from climate change. However, there is an unpredictable range of emissions impacts depending on which mix of substitutes for conventional oil gains dominance-oil sands, electricity, coal-to-liquids, or others.

  6. Promoted decomposition of NOx in automotive diesel-like exhausts by electro-catalytic honeycombs.

    PubMed

    Huang, Ta-Jen; Chiang, De-Yi; Shih, Chi; Lee, Cheng-Chin; Mao, Chih-Wei; Wang, Bo-Chung

    2015-03-17

    NO and NO2 (collectively called NOx) are major air pollutants in automotive emissions. More effective and easier treatments of NOx than those achieved by the present methods can offer better protection of human health and higher fuel efficiency that can reduce greenhouse gas emissions. However, currently commercialized technologies for automotive NOx emission control cannot effectively treat diesel-like exhausts with high NOx concentrations. Thus, exhaust gas recirculation (EGR) has been used extensively, which reduces fuel efficiency and increases particulate emission considerably. Our results show that the electro-catalytic honeycomb (ECH) promotes the decomposition of NOx to nitrogen and oxygen, without consuming reagents or other resources. NOx can be converted to nitrogen and oxygen almost completely. The ECHs are shown to effectively remove NOx from gasoline-fueled diesel-like exhausts. A very high NO concentration is preferred in the engine exhaust, especially during engine cold-start. Promoted NOx decomposition (PND) technology for real-world automotive applications is established in this study by using the ECH. With PND, EGR is no longer needed. Diesel-like engines can therefore achieve superior fuel efficiency, and all major automotive pollutants can be easily treated due to high concentration of oxygen in the diesel-like exhausts, leading to zero pollution.

  7. Co-Optimization of Fuels and Engines (Co-Optima) -- Introduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farrell, John T; Wagner, Robert; Holladay, John

    The Co-Optimization of Fuels and Engines (Co-Optima) initiative is a U.S. Department of Energy (DOE) effort funded by both the Vehicle and Bioenergy Technology Offices. The overall goal of the effort is to identify the combinations of fuel properties and engine characteristics that maximize efficiency, independent of production pathway or fuel composition, and accelerate commercialization of these technologies. Multiple research efforts are underway focused on both spark-ignition and compression-ignition strategies applicable across the entire light, medium, and heavy-duty fleet. A key objective of Co-Optima's research is to identify new blendstocks that enhance current petroleum blending components, increase blendstock diversity, andmore » provide refiners with increased flexibility to blend fuels with the key properties required to optimize advanced internal combustion engines. In addition to fuels and engines R&D, the initiative is guided by analyses assessing the near-term commercial feasibility of new blendstocks based on economics, environmental performance, compatibility, and large-scale production viability. This talk will provide an overview of the Co-Optima effort.« less

  8. Center for Advanced Biofuel Systems (CABS) Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kutchan, Toni M.

    2015-12-02

    One of the great challenges facing current and future generations is how to meet growing energy demands in an environmentally sustainable manner. Renewable energy sources, including wind, geothermal, solar, hydroelectric, and biofuel energy systems, are rapidly being developed as sustainable alternatives to fossil fuels. Biofuels are particularly attractive to the U.S., given its vast agricultural resources. The first generation of biofuel systems was based on fermentation of sugars to produce ethanol, typically from food crops. Subsequent generations of biofuel systems, including those included in the CABS project, will build upon the experiences learned from those early research results and willmore » have improved production efficiencies, reduced environmental impacts and decreased reliance on food crops. Thermodynamic models predict that the next generations of biofuel systems will yield three- to five-fold more recoverable energy products. To address the technological challenges necessary to develop enhanced biofuel systems, greater understanding of the non-equilibrium processes involved in solar energy conversion and the channeling of reduced carbon into biofuel products must be developed. The objective of the proposed Center for Advanced Biofuel Systems (CABS) was to increase the thermodynamic and kinetic efficiency of select plant- and algal-based fuel production systems using rational metabolic engineering approaches grounded in modern systems biology. The overall strategy was to increase the efficiency of solar energy conversion into oils and other specialty biofuel components by channeling metabolic flux toward products using advanced catalysts and sensible design:1) employing novel protein catalysts that increase the thermodynamic and kinetic efficiencies of photosynthesis and oil biosynthesis; 2) engineering metabolic networks to enhance acetyl-CoA production and its channeling towards lipid synthesis; and 3) engineering new metabolic networks for the production of hydrocarbons required to meet commercial fuel standards.« less

  9. Pd/activated carbon sorbents for mid-temperature capture of mercury from coal-derived fuel gas.

    PubMed

    Li, Dekui; Han, Jieru; Han, Lina; Wang, Jiancheng; Chang, Liping

    2014-07-01

    Higher concentrations of Hg can be emitted from coal pyrolysis or gasification than from coal combustion, especially elemental Hg. Highly efficient Hg removal technology from coal-derived fuel gas is thus of great importance. Based on the very excellent Hg removal ability of Pd and the high adsorption abilities of activated carbon (AC) for H₂S and Hg, a series of Pd/AC sorbents was prepared by using pore volume impregnation, and their performance in capturing Hg and H₂S from coal-derived fuel gas was investigated using a laboratory-scale fixed-bed reactor. The effects of loading amount, reaction temperature and reaction atmosphere on Hg removal from coal-derived fuel gas were studied. The sorbents were characterized by N₂ adsorption, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The results indicated that the efficiency of Hg removal increased with the increasing of Pd loading amount, but the effective utilization rate of the active component Pd decreased significantly at the same time. High temperature had a negative influence on the Hg removal. The efficiency of Hg removal in the N₂-H₂S-H₂-CO-Hg atmosphere (simulated coal gas) was higher than that in N₂-H₂S-Hg and N₂-Hg atmospheres, which showed that H₂ and CO, with their reducing capacity, could benefit promote the removal of Hg. The XPS results suggested that there were two different ways of capturing Hg over sorbents in N₂-H₂S-Hg and N₂-Hg atmospheres. Copyright © 2014. Published by Elsevier B.V.

  10. External fuel vaporization study, phase 1

    NASA Technical Reports Server (NTRS)

    Szetela, E. J.; Chiappetta, L.

    1980-01-01

    A conceptual design study was conducted to devise and evaluate techniques for the external vaporization of fuel for use in an aircraft gas turbine with characteristics similar to the Energy Efficient Engine (E(3)). Three vaporizer concepts were selected and they were analyzed from the standpoint of fuel thermal stability, integration of the vaporizer system into the aircraft engine, engine and vaporizer dynamic response, startup and altitude restart, engine performance, control requirements, safety, and maintenance. One of the concepts was found to improve the performance of the baseline E(3) engine without seriously compromising engine startup and power change response. Increased maintenance is required because of the need for frequent pyrolytic cleaning of the surfaces in contact with hot fuel.

  11. Lean Gasoline System Development for Fuel Efficient Small Cars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Stuart R.

    2013-11-25

    The General Motors and DOE cooperative agreement program DE-EE0003379 is completed. The program has integrated and demonstrated a lean-stratified gasoline engine, a lean aftertreatment system, a 12V Stop/Start system and an Active Thermal Management system along with the necessary controls that significantly improves fuel efficiency for small cars. The fuel economy objective of an increase of 25% over a 2010 Chevrolet Malibu and the emission objective of EPA T2B2 compliance have been accomplished. A brief review of the program, summarized from the narrative is: The program accelerates development and synergistic integration of four cost competitive technologies to improve fuel economymore » of a light-duty vehicle by at least 25% while meeting Tier 2 Bin 2 emissions standards. These technologies can be broadly implemented across the U.S. light-duty vehicle product line between 2015 and 2025 and are compatible with future and renewable biofuels. The technologies in this program are: lean combustion, innovative passive selective catalyst reduction lean aftertreatment, 12V stop/start and active thermal management. The technologies will be calibrated in a 2010 Chevrolet Malibu mid-size sedan for final fuel economy demonstration.« less

  12. Efficient Conversion of Lignin to Electricity Using a Novel Direct Biomass Fuel Cell Mediated by Polyoxometalates at Low Temperatures.

    PubMed

    Zhao, Xuebing; Zhu, J Y

    2016-01-01

    A novel polyoxometalates (POMs) mediated direct biomass fuel cell (DBFC) was used in this study to directly convert lignin to electricity at low temperatures with high power output and Faradaic efficiency. When phosphomolybdic acid H3 PMo12 O40 (PMo12) was used as the electron and proton carrier in the anode solution with a carbon electrode, and O2 was directly used as the final electron acceptor under the catalysis of Pt, the peak power density reached 0.96 mW cm(-2), 560 times higher than that of phenol-fueled microbial fuel cells (MFCs). When the cathode reaction was catalyzed by PMo12, the power density could be greatly enhanced to 5 mW cm(-2). Continuous operation demonstrated that this novel fuel cell was promising as a stable electrochemical power source. Structure analysis of the lignin indicated that the hydroxyl group content was reduced whereas the carbonyl group content increased. Both condensation and depolymerization takes place during the PMo12 oxidation of lignin. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Proton exchange membrane fuel cells cold startup global strategy for fuel cell plug-in hybrid electric vehicle

    NASA Astrophysics Data System (ADS)

    Henao, Nilson; Kelouwani, Sousso; Agbossou, Kodjo; Dubé, Yves

    2012-12-01

    This paper investigates the Proton Exchange Membrane Fuel Cell (PEMFC) Cold Startup problem within the specific context of the Plugin Hybrid Electric Vehicles (PHEV). A global strategy which aims at providing an efficient method to minimize the energy consumption during the startup of a PEMFC is proposed. The overall control system is based on a supervisory architecture in which the Energy Management System (EMS) plays the role of the power flow supervisor. The EMS estimates in advance, the time to start the fuel cell (FC) based upon the battery energy usage during the trip. Given this estimation and the amount of additional energy required, the fuel cell temperature management strategy computes the most appropriate time to start heating the stack in order to reduce heat loss through the natural convection. As the cell temperature rises, the PEMFC is started and the reaction heat is used as a self-heating power source to further increase the stack temperature. A time optimal self-heating approach based on the Pontryagin minimum principle is proposed and tested. The experimental results have shown that the proposed approach is efficient and can be implemented in real-time on FC-PHEVs.

  14. Atomization and combustion performance of antimisting kerosene and jet fuel

    NASA Technical Reports Server (NTRS)

    Fleeter, R.; Parikh, P.; Sarohia, V.

    1983-01-01

    Combustion performance of antimisting kerosene (AMK) containing FM-9 polymer was investigated at various levels of degradation (restoration of AMK for normal use in a gas turbine engine). To establish the relationship of degradation and atomization to performance in an aircraft gas turbine combustor, sprays formed by the nozzle of a JT8-D combustor with Jet A and AMK at 1 atmosphere (atm) (14.1 lb/square in absolute) pressure and 22 C at several degradation levels were analyzed. A new spray characterization technique based on digital image analysis of high resolution, wide field spray images formed under pulsed ruby laser sheet illumination was developed. Combustion tests were performed for these fuels in a JT8-D single can combustor facility to measure combustion efficiency and the lean extinction limit. Correlation of combustion performance under simulated engine operating conditions with nozzle spray Sauter mean diameter (SMD) measured at 1 atm and 22 C were observed. Fuel spray SMD and hence the combustion efficiency are strongly influenced by fuel degradation level. Use of even the most highly degraded AMK tested (filter ratio = 1.2) resulted in an increase in fuel consumption of 0.08% to 0.20% at engine cruise conditions.

  15. Modeling the emissions of a dual fuel engine coupled with a biomass gasifier-supplementing the Wiebe function.

    PubMed

    Vakalis, Stergios; Caligiuri, Carlo; Moustakas, Konstantinos; Malamis, Dimitris; Renzi, Massimiliano; Baratieri, Marco

    2018-03-12

    There is a growing market demand for small-scale biomass gasifiers that is driven by the economic incentives and the legislative framework. Small-scale gasifiers produce a gaseous fuel, commonly referred to as producer gas, with relatively low heating value. Thus, the most common energy conversion systems that are coupled with small-scale gasifiers are internal combustion engines. In order to increase the electrical efficiency, the operators choose dual fuel engines and mix the producer gas with diesel. The Wiebe function has been a valuable tool for assessing the efficiency of dual fuel internal combustion engines. This study introduces a thermodynamic model that works in parallel with the Wiebe function and calculates the emissions of the engines. This "vis-à-vis" approach takes into consideration the actual conditions inside the cylinders-as they are returned by the Wiebe function-and calculates the final thermodynamic equilibrium of the flue gases mixture. This approach aims to enhance the operation of the dual fuel internal combustion engines by identifying the optimal operating conditions and-at the same time-advance pollution control and minimize the environmental impact.

  16. Review and analysis of potential safety impacts of and regulatory barriers to fuel efficiency technologies and alternative fuels in medium- and heavy-duty vehicles

    DOT National Transportation Integrated Search

    2015-06-01

    This report summarizes a safety analysis of medium- and heavy-duty vehicles (MD/HDVs) equipped with fuel efficiency (FE) technologies and/or using alternative fuels (natural gas-CNG and LNG, propane, biodiesel and power train electrification). The st...

  17. Analysis of a fuel cell on-site integrated energy system for a residential complex

    NASA Technical Reports Server (NTRS)

    Simons, S. N.; Maag, W. L.

    1979-01-01

    Declining supplies of domestic oil and gas and the increased cost of energy resulted in a renewed emphasis in utilizing available resources in the most efficient manner possible. This, in turn, brought about a reassessment of a number of methods for converting fossil fuels to end uses at the highest practical efficiency. One of these is the on-site integrated energy system (OS/IES). This system provides electric power from an on-site power plant and recovers heat from the power plant that would normally be rejected to the environment. An OS/IES is potentially useful in any application that requires both electricity and heat. Several OS/IES are analyzed for a residential complex. The paper is divided into two sections; the first compares three energy supply systems, the second compares various designs for fuel cell OS/IES.

  18. Hybrid Vehicle Technologies and their potential for reducing oil use

    NASA Astrophysics Data System (ADS)

    German, John

    2006-04-01

    Vehicles with hybrid gasoline-electric powertrains are starting to gain market share. Current hybrid vehicles add an electric motor, battery pack, and power electronics to the conventional powertrain. A variety of engine/motor configurations are possible, each with advantages and disadvantages. In general, efficiency is improved due to engine shut-off at idle, capture of energy during deceleration that is normally lost as heat in the brakes, downsizing of the conventional engine, and, in some cases, propulsion on the electric motor alone. Ongoing increases in hybrid market share are dependent on cost reduction, especially the battery pack, efficiency synergies with other vehicle technologies, use of the high electric power to provide features desired by customers, and future fuel price and availability. Potential barriers include historically low fuel prices, high discounting of the fuel savings by new vehicle purchasers, competing technologies, and tradeoffs with other factors desired by customers, such as performance, utility, safety, and luxury features.

  19. Correlations of catalytic combustor performance parameters

    NASA Technical Reports Server (NTRS)

    Bulzan, D. L.

    1978-01-01

    Correlations for combustion efficiency percentage drop and the minimum required adiabatic reaction temperature necessary to meet emissions goals of 13.6 g CO/kg fuel and 1.64 g HC/kg fuel are presented. Combustion efficiency was found to be a function of the cell density, cell circumference, reactor length, reference velocity, and adiabatic reaction temperature. The percentage pressure drop at an adiabatic reaction temperature of 1450 K was found to be proportional to the reference velocity to the 1.5 power and to the reactor length. It is inversely proportional to the pressure, cell hydraulic diameter, and fractional open area. The minimum required adiabatic reaction temperature was found to increase with reference velocity and decrease with cell circumference, cell density and reactor length. A catalyst factor was introduced into the correlations to account for differences between catalysts. Combustion efficiency, the percentage pressure drop, and the minimum required adiabatic reaction temperature were found to be a function of the catalyst factor. The data was from a 12 cm-diameter test rig with noble metal reactors using propane fuel at an inlet temperature of 800 K.

  20. Take a Closer Look:Biofuels Can Support Environmental, Economic and Social Goals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dale, Bruce E.; Anderson, James; Brown, Dr. Robert C.

    The US Congress passed the Renewable Fuels Standard (RFS) seven years ago. Since then, biofuels have gone from darling to scapegoat for many environmentalists, policy makers, and the general public. The reasons for this shift are complex and include concerns about environmental degradation, uncertainties about impact on food security, new access to fossil fuels, and overly optimistic timetables. As a result, many people have written off biofuels. However, numerous studies indicate that biofuels, if managed sustainably, can help solve pressing environmental, social and economic problems (Figure 1). The scientific and policy communities should take a closer look by reviewing themore » key assumptions underlying opposition to biofuels and carefully consider the probable alternatives. Liquid fuels based on fossil raw materials are likely to come at increasing environmental cost. Sustainable futures require energy conservation, increased efficiency, and alternatives to fossil fuels, including biofuels.« less

  1. Effect on combined cycle efficiency of stack gas temperature constraints to avoid acid corrosion

    NASA Technical Reports Server (NTRS)

    Nainiger, J. J.

    1980-01-01

    To avoid condensation of sulfuric acid in the gas turbine exhaust when burning fuel oils contaning sulfur, the exhaust stack temperature and cold-end heat exchanger surfaces must be kept above the condensation temperature. Raising the exhaust stack temperature, however, results in lower combined cycle efficiency compared to that achievable by a combined cycle burning a sulfur-free fuel. The maximum difference in efficiency between the use of sulfur-free and fuels containing 0.8 percent sulfur is found to be less than one percentage point. The effect of using a ceramic thermal barrier coating (TBC) and a fuel containing sulfur is also evaluated. The combined-cycle efficiency gain using a TBC with a fuel containing sulfur compared to a sulfur-free fuel without TBC is 0.6 to 1.0 percentage points with air-cooled gas turbines and 1.6 to 1.8 percentage points with water-cooled gas turbines.

  2. Theoretical Investigation For The Effect of Fuel Quality on Gas Turbine Power Plants

    NASA Astrophysics Data System (ADS)

    AbdulRazzak khudair, Omar; Alwan Abass, Khetam; Saadi Abed, Noor; Hussain Ali, Khalid; AbdulAziz, Saad; Chlaib Shaboot, Ali

    2018-05-01

    Gas turbine engine power generation is declined dramatically because of the reduction in thermodynamic parameters as a work of turbine, compressor ratio, compressor work, and air mass flow rate and fuel consumption. There are two main objectives of this work, the first is related with the effect of fuel kinds and their quality on the operation of fuel flow divider and its performance specifically gear pump displacement and fuel flow rate to the combustion chambers of gas power plant. AL-DORA gas turbine power plant 35MW was chosen to predict these effects on its performance MATLAB Software program is used to perform thermodynamic calculations. Fuel distribution stage before the process of combustion and as a result of the kind and its quality, chemical reaction will occur between the fuel and the parts of the gear system of each pump of the flow divider, which causes the erosion of the internal pump wall and the teeth of the gear system, thus hampering the pump operation in terms of fuel discharge. The discharge of fuel form the eight external gates of flow divider is decreased and varied when going to the combustion chambers, so that, flow divider does not give reliable mass flow rate due to absence of accurate pressure in each of eight exit pipes. The second objective deals with the stage of fuel combustion process inside the combustion chamber. A comparative study based upon performance parameters, such as specific fuel consumption for gas and gasoil and power generation. Fuel poor quality causes incomplete combustion and increased its consumption, so that combustion products are interacted with the surface of the turbine blades, causing the erosion and create surface roughness of the blade and disruption of gas flow. As a result of this situation, turbulence flow of these gases will increase causing the separation of gas boundary layers over the suction surface of the blade. Therefore the amount of extracted gas will decrease causing retreat work done by turbine, as a result decline of power and gas turbine power plant efficiency causing the drop in the level of electric generation. The fuel quality is found to be a strong function of specific fuel consumption and its effects on the power generation and the efficiency of the gas turbine power plants and hence, the cycle performance shifts towards favorable conditions.

  3. Evaluation of advanced combustion concepts for dry NO sub x suppression with coal-derived, gaseous fuels

    NASA Technical Reports Server (NTRS)

    Beebe, K. W.; Symonds, R. A.; Notardonato, J. J.

    1982-01-01

    The emissions performance of a rich lean combustor (developed for liquid fuels) was determined for combustion of simulated coal gases ranging in heating value from 167 to 244 Btu/scf (7.0 to 10.3 MJ/NCM). The 244 Btu/scf gas is typical of the product gas from an oxygen blown gasifier, while the 167 Btu/scf gas is similar to that from an air blown gasifier. NOx performance of the rich lean combustor did not meet program goals with the 244 Btu/scf gas because of high thermal NOx, similar to levels expected from conventional lean burning combustors. The NOx emissions are attributed to inadequate fuel air mixing in the rich stage resulting from the design of the large central fuel nozzle delivering 71% of the total gas flow. NOx yield from ammonia injected into the fuel gas decreased rapidly with increasing ammonia level, and is projected to be less than 10% at NH3 levels of 0.5% or higher. NOx generation from NH3 is significant at ammonia concentrations significantly less than 0.5%. These levels may occur depending on fuel gas cleanup system design. CO emissions, combustion efficiency, smoke and other operational performance parameters were satisfactory. A test was completed with a catalytic combustor concept with petroleum distillate fuel. Reactor stage NOx emissions were low (1.4g NOx/kg fuel). CO emissions and combustion efficiency were satisfactory. Airflow split instabilities occurred which eventually led to test termination.

  4. Life cycle assessment of microalgae-based aviation fuel: Influence of lipid content with specific productivity and nitrogen nutrient effects.

    PubMed

    Guo, Fang; Zhao, Jing; A, Lusi; Yang, Xiaoyi

    2016-12-01

    The aim of this work is to compare the life cycle assessments of low-N and normal culture conditions for a balance between the lipid content and specific productivity. In order to achieve the potential contribution of lipid content to the life cycle assessment, this study established relationships between lipid content (nitrogen effect) and specific productivity based on three microalgae strains including Chlorella, Isochrysis and Nannochloropsis. For microalgae-based aviation fuel, the effects of the lipid content on fossil fuel consumption and greenhouse gas (GHG) emissions are similar. The fossil fuel consumption (0.32-0.68MJ·MJ -1 MBAF) and GHG emissions (17.23-51.04gCO 2 e·MJ -1 MBAF) increase (59.70-192.22%) with the increased lipid content. The total energy input decreases (2.13-3.08MJ·MJ -1 MBAF, 14.91-27.95%) with the increased lipid content. The LCA indicators increased (0-47.10%) with the decreased nitrogen recovery efficiency (75-50%). Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Essays on alternative energy policies affecting the US transportation sector

    NASA Astrophysics Data System (ADS)

    O'Rear, Eric G.

    This dissertation encompasses three essays evaluating the impacts of different policies targeting the greenhouse gas (GHG) emissions, fuel demands, etc. of the transportation sector. Though there are some similarities across the three chapters, each essay stands alone as an independent work. The 2010 US EPA MARKAL model is used in each essay to evaluate policy effects. Essay 1 focuses on the recent increases in Corporate Average Fuel Economy (CAFE) standards, and the implications of a "rebound effect." These increases are compared to a carbon tax generating similar reductions in system-wide emissions. As anticipated, the largest reductions in fuel use by light-duty vehicles (LDV) and emissions are achieved under CAFE. Consideration of the rebound effect does little to distort CAFE benefits. Our work validates many economists' belief that a carbon tax is a more efficient approach. However, because the tax takes advantage of cheaper abatement opportunities in other sectors, reductions in transportation emissions will be much lower than what we observe with CAFE. Essay 2 compares CAFE increases with what some economists suggest would be a much more "efficient" alternative -- a system-wide oil tax internalizing some environmental externalities. Because oil taxes are likely to be implemented in addition to CAFE standards, we consider a combined policy case reflecting this. Our supplementary analysis approximates the appropriate tax rates to produce similar reductions in oil demands as CAFE (CAFE-equivalent tax rates). We discover that taxes result in greater and more cost-effective reductions in system-wide emissions and net oil imports than CAFE. The current fuel tax system is compared to three versions of a national vehicle miles traveled (VMT) tax charged to all LDVs in Essay 3. VMT taxes directly charge motorists for each mile driven and help to correct the problem of eroding tax revenues given the failure of today's fuel taxes to adjust with inflation. Results suggest that VMT taxes generate more revenue than our existing fuel tax structure, but do so at the expense of the LDV fleet becoming less fuel-inefficient. If stringent enough, VMT taxes can lead to some rather noticeable reductions in miles driven, fuel use, and emissions.

  6. A fuel-cell-assisted iron redox process for simultaneous sulfur recovery and electricity production from synthetic sulfide wastewater.

    PubMed

    Zhai, Lin-Feng; Song, Wei; Tong, Zhong-Hua; Sun, Min

    2012-12-01

    Sulfide present in wastewaters and waste gases should be removed due to its toxicity, corrosivity, and malodorous property. Development of effective, stable, and feasible methods for sulfur recovery from sulfide attains a double objective of waste minimization and resource recovery. Here we report a novel fuel-cell-assisted iron redox (FC-IR) process for simultaneously recovering sulfur and electricity from synthetic sulfide wastewater. The FC-IR system consists of an oxidizing reactor where sulfide is oxidized to elemental sulfur by Fe(III), and a fuel cell where Fe(III) is regenerated from Fe(II) concomitantly with electricity producing. The oxidation of sulfide by Fe(III) is significantly dependent on solution pH. Increasing the pH from 0.88 to 1.96 accelerates the oxidation of sulfide, however, lowers the purity of the produced elemental sulfur. The performance of fuel cell is also a strong function of solution pH. Fe(II) is completely oxidized to Fe(III) when the fuel cell is operated at a pH above 6.0, whereas only partially oxidized below pH 6.0. At pH 6.0, the highest columbic efficiency of 75.7% is achieved and electricity production maintains for the longest time of 106 h. Coupling operation of the FC-IR system obtains sulfide removal efficiency of 99.90%, sulfur recovery efficiency of 78.6 ± 8.3%, and columbic efficiency of 58.6 ± 1.6%, respectively. These results suggest that the FC-IR process is a promising tool to recover sulfur and energy from sulfide. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Effect of fuel properties on performance of a single aircraft turbojet combustor

    NASA Technical Reports Server (NTRS)

    Butze, H. F.; Ehlers, R. C.

    1975-01-01

    The performance of a single-can JT8D combustor was investigated with a number of fuels exhibiting wide variations in chemical composition and volatility. Performance parameters investigated were combustion efficiency, emissions of CO, unburned hydrocarbons and NOx, as well as liner temperatures and smoke. At the simulated idle condition no significant differences in performance were observed. At cruise, liner temperatures and smoke increased sharply with decreasing hydrogen content of the fuel. No significant differences were observed in the performance of an oil-shale derived JP-5 and a petroleum-based Jet A fuel except for emissions of NOx which were higher with the oil-shale JP-5. The difference is attributed to the higher concentration of fuel-bound nitrogen in the oil-shale JP-5.

  8. The Development of Fuel Cell Technology for Electric Power Generation - From Spacecraft Applications to the Hydrogen Economy

    NASA Technical Reports Server (NTRS)

    Scott, John H.

    2005-01-01

    The fuel cell uses a catalyzed reaction between a fuel and an oxidizer to directly produce electricity. Its high theoretical efficiency and low temperature operation made it a subject of much study upon its invention ca. 1900, but its relatively high life cycle costs kept it as "solution in search of a problem" for its first half century. The first problem for which fuel cells presented a cost effective solution was, starting in the 1960's that of a power source for NASA's manned spacecraft. NASA thus invested, and continues to invest, in the development of fuel cell power plants for this application. However, starting in the mid-1990's, prospective environmental regulations have driven increased governmental and industrial interest in "green power" and the "Hydrogen Economy." This has in turn stimulated greatly increased investment in fuel cell development for a variety of terrestrial applications. This investment is bringing about notable advances in fuel cell technology, but these advances are often in directions quite different from those needed for NASA spacecraft applications. This environment thus presents both opportunities and challenges for NASA's manned space program.

  9. Review of solar fuel-producing quantum conversion processes

    NASA Technical Reports Server (NTRS)

    Peterson, D. B.; Biddle, J. R.; Fujita, T.

    1984-01-01

    The status and potential of fuel-producing solar photochemical processes are discussed. Research focused on splitting water to produce dihydrogen and is at a relatively early stage of development. Current emphasis is primarily directed toward understanding the basic chemistry underlying such quantum conversion processes. Theoretical analyses by various investigators predict a limiting thermodynamic efficiency of 31% for devices with a single photosystem operating with unfocused sunlight at 300 K. When non-idealities are included, it appears unlikely that actual devices will have efficiencies greater than 12 to 15%. Observed efficiencies are well below theoretical limits. Cyclic homogeneous photochemical processes for splitting water have efficiencies considerably less than 1%. Efficiency can be significantly increased by addition of a sacrificial reagent; however, such systems are no longer cyclic and it is doubtful that they would be economical on a commercial scale. The observed efficiencies for photoelectrochemical processes are also low but such systems appear more promising than homogeneous photochemical systems. Operating and systems options, including operation at elevated temperature and hybrid and coupled quantum-thermal conversion processes, are also considered.

  10. Enhancing Solar Cell Efficiencies through 1-D Nanostructures

    PubMed Central

    2009-01-01

    The current global energy problem can be attributed to insufficient fossil fuel supplies and excessive greenhouse gas emissions resulting from increasing fossil fuel consumption. The huge demand for clean energy potentially can be met by solar-to-electricity conversions. The large-scale use of solar energy is not occurring due to the high cost and inadequate efficiencies of existing solar cells. Nanostructured materials have offered new opportunities to design more efficient solar cells, particularly one-dimensional (1-D) nanomaterials for enhancing solar cell efficiencies. These 1-D nanostructures, including nanotubes, nanowires, and nanorods, offer significant opportunities to improve efficiencies of solar cells by facilitating photon absorption, electron transport, and electron collection; however, tremendous challenges must be conquered before the large-scale commercialization of such cells. This review specifically focuses on the use of 1-D nanostructures for enhancing solar cell efficiencies. Other nanostructured solar cells or solar cells based on bulk materials are not covered in this review. Major topics addressed include dye-sensitized solar cells, quantum-dot-sensitized solar cells, and p-n junction solar cells.

  11. System and method of vehicle operating condition management

    DOEpatents

    Sujan, Vivek A.; Vajapeyazula, Phani; Follen, Kenneth; Wu, An; Moffett, Barty L.

    2015-10-20

    A vehicle operating condition profile can be determined over a given route while also considering imposed constraints such as deviation from time targets, deviation from maximum governed speed limits, etc. Given current vehicle speed, engine state and transmission state, the present disclosure optimally manages the engine map and transmission to provide a recommended vehicle operating condition that optimizes fuel consumption in transitioning from one vehicle state to a target state. Exemplary embodiments provide for offline and online optimizations relative to fuel consumption. The benefit is increased freight efficiency in transporting cargo from source to destination by minimizing fuel consumption and maintaining drivability.

  12. A study of water electrolysis using ionic polymer-metal composite for solar energy storage

    NASA Astrophysics Data System (ADS)

    Keow, Alicia; Chen, Zheng

    2017-04-01

    Hydrogen gas can be harvested via the electrolysis of water. The gas is then fed into a proton exchange membrane fuel cell (PEMFC) to produce electricity with clean emission. Ionic polymer-metal composite (IPMC), which is made from electroplating a proton-conductive polymer film called Nafion encourages ion migration and dissociation of water under application of external voltage. This property has been proven to be able to act as catalyst for the electrolysis of pure water. This renewable energy system is inspired by photosynthesis. By using solar panels to gather sunlight as the source of energy, the generation of electricity required to activate the IPMC electrolyser is acquired. The hydrogen gas is collected as storable fuel and can be converted back into energy using a commercial fuel cell. The goal of this research is to create a round-trip energy efficient system which can harvest solar energy, store them in the form of hydrogen gas and convert the stored hydrogen back to electricity through the use of fuel cell with minimal overall losses. The effect of increasing the surface area of contact is explored through etching of the polymer electrolyte membrane (PEM) with argon plasma or manually sanding the surface and how it affects the increase of energy conversion efficiency of the electrolyser. In addition, the relationship between temperature and the IPMC is studied. Experimental results demonstrated that increases in temperature of water and changes in surface area contact correlate with gas generation.

  13. Fuel cell apparatus and method thereof

    DOEpatents

    Cooper, John F.; Krueger, Roger; Cherepy, Nerine

    2004-11-09

    Highly efficient carbon fuels, exemplary embodiments of a high temperature, molten electrolyte electrochemical cell are capable of directly converting ash-free carbon fuel to electrical energy. Ash-free, turbostratic carbon particles perform at high efficiencies in certain direct carbon conversion cells.

  14. SmartWay Featured Partner: Walmart

    EPA Pesticide Factsheets

    This EPA fact sheet spotlights Walmart as a SmartWay partner and their commitment to increase its’ transportation efficiency and safety; thereby reducing fuel and emissions, minimizing its environmental impact. (EPA publication # EPA-420-F-16-042)

  15. Effect of fabrication technique on direct methanol fuel cells designed to operate at low airflow

    NASA Technical Reports Server (NTRS)

    Valdez, T. I.; Narayanan, S. R.

    2002-01-01

    This study investigates the effects of catalyst ink constituents and MEA fabrication techniques on improving cell performance. Particular attention was focused on increasing the overall cell efficiency.

  16. Position verification systems for an automated highway system.

    DOT National Transportation Integrated Search

    2015-03-01

    Automated vehicles promote road safety, fuel efficiency, and reduced travel time by decreasing traffic : congestion and driver workload. In a vehicle platoon (grouping vehicles to increase road capacity by : managing distance between vehicles using e...

  17. Economic and environmental comparison of conventional, hybrid, electric and hydrogen fuel cell vehicles

    NASA Astrophysics Data System (ADS)

    Granovskii, Mikhail; Dincer, Ibrahim; Rosen, Marc A.

    Published data from various sources are used to perform economic and environmental comparisons of four types of vehicles: conventional, hybrid, electric and hydrogen fuel cell. The production and utilization stages of the vehicles are taken into consideration. The comparison is based on a mathematical procedure, which includes normalization of economic indicators (prices of vehicles and fuels during the vehicle life and driving range) and environmental indicators (greenhouse gas and air pollution emissions), and evaluation of an optimal relationship between the types of vehicles in the fleet. According to the comparison, hybrid and electric cars exhibit advantages over the other types. The economic efficiency and environmental impact of electric car use depends substantially on the source of the electricity. If the electricity comes from renewable energy sources, the electric car is advantageous compared to the hybrid. If electricity comes from fossil fuels, the electric car remains competitive only if the electricity is generated on board. It is shown that, if electricity is generated with an efficiency of about 50-60% by a gas turbine engine connected to a high-capacity battery and an electric motor, the electric car becomes advantageous. Implementation of fuel cells stacks and ion conductive membranes into gas turbine cycles permits electricity generation to increase to the above-mentioned level and air pollution emissions to decrease. It is concluded that the electric car with on-board electricity generation represents a significant and flexible advance in the development of efficient and ecologically benign vehicles.

  18. Ubiquitous Supercritical Wing Design Cuts Billions in Fuel Costs

    NASA Technical Reports Server (NTRS)

    2015-01-01

    A Langley Research Center engineer’s work in the 1960s and ’70s to develop a wing with better performance near the speed of sound resulted in a significant increase in subsonic efficiency. The design was shared with industry. Today, Renton, Washington-based Boeing Commercial Airplanes, as well as most other plane manufacturers, apply it to all their aircraft, saving the airline industry billions of dollars in fuel every year.

  19. High power density yeast catalyzed microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Ganguli, Rahul

    Microbial fuel cells leverage whole cell biocatalysis to convert the energy stored in energy-rich renewable biomolecules such as sugar, directly to electrical energy at high efficiencies. Advantages of the process include ambient temperature operation, operation in natural streams such as wastewater without the need to clean electrodes, minimal balance-of-plant requirements compared to conventional fuel cells, and environmentally friendly operation. These make the technology very attractive as portable power sources and waste-to-energy converters. The principal problem facing the technology is the low power densities compared to other conventional portable power sources such as batteries and traditional fuel cells. In this work we examined the yeast catalyzed microbial fuel cell and developed methods to increase the power density from such fuel cells. A combination of cyclic voltammetry and optical absorption measurements were used to establish significant adsorption of electron mediators by the microbes. Mediator adsorption was demonstrated to be an important limitation in achieving high power densities in yeast-catalyzed microbial fuel cells. Specifically, the power densities are low for the length of time mediator adsorption continues to occur. Once the mediator adsorption stops, the power densities increase. Rotating disk chronoamperometry was used to extract reaction rate information, and a simple kinetic expression was developed for the current observed in the anodic half-cell. Since the rate expression showed that the current was directly related to microbe concentration close to the electrode, methods to increase cell mass attached to the anode was investigated. Electrically biased electrodes were demonstrated to develop biofilm-like layers of the Baker's yeast with a high concentration of cells directly connected to the electrode. The increased cell mass did increase the power density 2 times compared to a non biofilm fuel cell, but the power density increase was shown to quickly saturate with cell mass attached on the electrode. Based on recent modelling data that suggested that the electrode currents might be limited by the poor electrical conductivity of the anode, the power density versus electrical conductivity of a yeast-immobilized anode was investigated. Introduction of high aspect ratio carbon fiber filaments to the immobilization matrix increased the electrical conductivity of the anode. Although a higher electrical conductivity clearly led to an increase in power densities, it was shown that the principal limitation to power density increase was coming from proton transfer limitations in the immobilized anode. Partial overcoming of the gradients lead a power density of ca. 250 microW cm-2, which is the highest reported for yeast powered MFCs. A yeast-catalyzed microbial fuel cell was investigated as a power source for low power sensors using raw tree sap. It was shown that yeast can efficiently utilize the sucrose present in the raw tree sap to produce electricity when excess salt is added to the medium. Therefore the salinity of a potential energy source is an important consideration when MFCs are being considered for energy harvesting from natural sources.

  20. Plasma promoted manufacturing of hydrogen and vehicular applications

    NASA Astrophysics Data System (ADS)

    Bromberg, Leslie

    2003-10-01

    Plasmas can be used for promoting reformation of fuels. Plasma-based reformers developed at MIT use a low temperature, low power, low current electrical discharge to promote partial oxidation conversion of hydrocarbon fuels into hydrogen and CO. The very fuel rich mixture is hard to ignite, and the plasmatron provides a volume-ignition. To minimize erosion and to simplify the power supply, a low current high voltage discharge is used, with wide area electrodes. The plasmatron fuel reformer operates at or slightly above atmospheric pressure. The plasma-based reformer technology provides the advantages of rapid startup and transient response; efficient conversion of the fuel to hydrogen rich gas; compact size; relaxation or elimination of reformer catalyst requirements; and capability to process difficult to reform fuels. These advantages enable use of hydrogen-manufacturing reformation technology in cars using available fuels, such as gasoline and diesel. This plasma-based reformer technology can provide substantial throughputs even without the use of a catalyst. The electrical power consumption of the device is minimized by design and operational characteristics (less than 500 W peak and 200 W average). The product from these plasma reactors is a hydrogen rich mixture that can be used for combustion enhancement and emissions aftertreatment in vehicular applications. By converting a small fraction of the fuel to hydrogen rich gas, in-cylinder combustion can be improved. With minor modification of the engine, use of hydrogen rich gas results in increased fuel efficiency and decreased emissions of smog producing gases. The status of plasma based reformer technology and its application to vehicles will be described.

  1. Army Energy Strategy for the End of Cheap Oil

    DTIC Science & Technology

    2006-11-01

    increased fuel efficiency in any Army vehicles or other power generation equipment. This oversight results in a logistics system where, “over 70...become a victim of increasing energy costs. Living close to one’s job location as well as both telecommuting and teleconferencing will become the

  2. Hybrid cars now, fuel cell cars later.

    PubMed

    Demirdöven, Nurettin; Deutch, John

    2004-08-13

    We compare the energy efficiency of hybrid and fuel cell vehicles as well as conventional internal combustion engines. Our analysis indicates that fuel cell vehicles using hydrogen from fossil fuels offer no significant energy efficiency advantage over hybrid vehicles operating in an urban drive cycle. We conclude that priority should be placed on hybrid vehicles by industry and government.

  3. Hybrid Cars Now, Fuel Cell Cars Later

    NASA Astrophysics Data System (ADS)

    Demirdöven, Nurettin; Deutch, John

    2004-08-01

    We compare the energy efficiency of hybrid and fuel cell vehicles as well as conventional internal combustion engines. Our analysis indicates that fuel cell vehicles using hydrogen from fossil fuels offer no significant energy efficiency advantage over hybrid vehicles operating in an urban drive cycle. We conclude that priority should be placed on hybrid vehicles by industry and government.

  4. A survey of Opportunities for Microbial Conversion of Biomass to Hydrocarbon Compatible Fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jovanovic, Iva; Jones, Susanne B.; Santosa, Daniel M.

    2010-09-01

    Biomass is uniquely able to supply renewable and sustainable liquid transportation fuels. In the near term, the Biomass program has a 2012 goal of cost competitive cellulosic ethanol. However, beyond 2012, there will be an increasing need to provide liquid transportation fuels that are more compatible with the existing infrastructure and can supply fuel into all transportation sectors, including aviation and heavy road transport. Microbial organisms are capable of producing a wide variety of fuel and fuel precursors such as higher alcohols, ethers, esters, fatty acids, alkenes and alkanes. This report surveys liquid fuels and fuel precurors that can bemore » produced from microbial processes, but are not yet ready for commercialization using cellulosic feedstocks. Organisms, current research and commercial activities, and economics are addressed. Significant improvements to yields and process intensification are needed to make these routes economic. Specifically, high productivity, titer and efficient conversion are the key factors for success.« less

  5. Design and control of a variable geometry turbofan with an independently modulated third stream

    NASA Astrophysics Data System (ADS)

    Simmons, Ronald J.

    Emerging 21st century military missions task engines to deliver the fuel efficiency of a high bypass turbofan while retaining the ability to produce the high specific thrust of a low bypass turbofan. This study explores the possibility of satisfying such competing demands by adding a second independently modulated bypass stream to the basic turbofan architecture. This third stream can be used for a variety of purposes including: providing a cool heat sink for dissipating aircraft heat loads, cooling turbine cooling air, and providing a readily available stream of constant pressure ratio air for lift augmentation. Furthermore, by modulating airflow to the second and third streams, it is possible to continuously match the engine's airflow demand to the inlet's airflow supply thereby reducing spillage and increasing propulsive efficiency. This research begins with a historical perspective of variable cycle engines and shows a logical progression to proposed architectures. Then a novel method for investigating optimal performance is presented which determines most favorable on design variable geometry settings, most beneficial moment to terminate flow holding, and an optimal scheduling of variable features for fuel efficient off design operation. Mission analysis conducted across the three candidate missions verifies that these three stream variable cycles can deliver fuel savings in excess of 30% relative to a year 2000 reference turbofan. This research concludes by evaluating the relative impact of each variable technology on the performance of adaptive engine architectures. The most promising technologies include modulated turbine cooling air, variable high pressure turbine inlet area and variable third stream nozzle throat area. With just these few features it is possible to obtain nearly optimal performance, including 90% or more of the potential fuel savings, with far fewer variable features than are available in the study engine. It is abundantly clear that three stream variable architectures can significantly outperform existing two stream turbofans in both fuel efficiency and at the vehicle system level with only a modest increase in complexity and weight. Such engine architectures should be strongly considered for future military applications.

  6. Highly Efficient Light-Driven TiO2-Au Janus Micromotors.

    PubMed

    Dong, Renfeng; Zhang, Qilu; Gao, Wei; Pei, Allen; Ren, Biye

    2016-01-26

    A highly efficient light-driven photocatalytic TiO2-Au Janus micromotor with wireless steering and velocity control is described. Unlike chemically propelled micromotors which commonly require the addition of surfactants or toxic chemical fuels, the fuel-free Janus micromotor (diameter ∼1.0 μm) can be powered in pure water under an extremely low ultraviolet light intensity (2.5 × 10(-3) W/cm(2)), and with 40 × 10(-3) W/cm(2), they can reach a high speed of 25 body length/s, which is comparable to common Pt-based chemically induced self-electrophoretic Janus micromotors. The photocatalytic propulsion can be switched on and off by incident light modulation. In addition, the speed of the photocatalytic TiO2-Au Janus micromotor can be accelerated by increasing the light intensity or by adding low concentrations of chemical fuel H2O2 (i.e., 0.1%). The attractive fuel-free propulsion performance, fast movement triggering response, low light energy requirement, and precise motion control of the TiO2-Au Janus photocatalytic micromotor hold considerable promise for diverse practical applications.

  7. Roots Air Management System with Integrated Expander

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stretch, Dale; Wright, Brad; Fortini, Matt

    2016-07-06

    PEM fuel cells remain an emerging technology in the vehicle market with several cost and reliability challenges that must be overcome in order to increase market penetration and acceptance. The DOE has identified the lack of a cost effective, reliable, and efficient air supply system that meets the operational requirements of a pressurized PEM 80kW fuel cell as one of the major technological barriers that must be overcome. This project leveraged Roots positive displacement development advancements and demonstrated an efficient and low cost fuel cell air management system. Eaton built upon its P-Series Roots positive displacement design and shifted themore » peak efficiency making it ideal for use on an 80kW PEM stack. Advantages to this solution include: • Lower speed of the Roots device eliminates complex air bearings present on other systems. • Broad efficiency map of Roots based systems provides an overall higher drive cycle fuel economy. • Core Roots technology has been developed and validated for other transportation applications. Eaton modified their novel R340 Twin Vortices Series (TVS) Roots-type supercharger for this application. The TVS delivers more power and better fuel economy in a smaller package as compared to other supercharger technologies. By properly matching the helix angle with the rotor’s physical aspect ratio, the supercharger’s peak efficiency can be moved to the operating range where it is most beneficial for the application. The compressor was designed to meet the 90 g/s flow at a pressure ratio of 2.5, similar in design to the P-Series 340. A net shape plastic expander housing with integrated motor and compressor was developed to significantly reduce the cost of the system. This integrated design reduced part count by incorporating an overhung expander and motor rotors into the design such that only four bearings and two shafts were utilized.« less

  8. International Experience in Developing Low-Emission Combustors for Land-Based, Large Gas-Turbine Units: Mitsubishi Heavy Industries' Equipment

    NASA Astrophysics Data System (ADS)

    Bulysova, L. A.; Vasil'ev, V. D.; Berne, A. L.; Gutnik, M. N.; Ageev, A. V.

    2018-05-01

    This is the second paper in a series of publications summarizing the international experience in the development of low-emission combustors (LEC) for land-based, large (above 250 MW) gas-turbine units (GTU). The purpose of this series is to generalize and analyze the approaches used by various manufacturers in designing flowpaths for fuel and air in LECs, managing fuel combustion, and controlling the fuel flow. The efficiency of advanced GTUs can be as high as 43% (with an output of 350-500 MW) while the efficiency of 600-800 MW combined-cycle units with these GTUs can attain 63.5%. These high efficiencies require a compression ratio of 20-24 and a temperature as high as 1600°C at the combustor outlet. Accordingly, the temperature in the combustion zone also rises. All the requirements for the control of harmful emissions from these GTUs are met. All the manufacturers and designers of LECs for modern GTUs encounter similar problems, such as emissions control, combustion instability, and reliable cooling of hot path parts. Methods of their elimination are different and interesting from the standpoint of science and practice. One more essential requirement is that the efficiency and environmental performance indices must be maintained irrespective of the fuel composition or heating value and also in operation at part loads below 40% of rated. This paper deals with Mitsubishi Series M701 GTUs, F, G, or J class, which have gained a good reputation in the power equipment market. A design of a burner for LECs and a control method providing stable low-emission fuel combustion are presented. The advantages and disadvantages of the use of air bypass valves installed in each liner to maintain a nearly constant air to fuel ratio within a wide range of GTU loads are described. Methods for controlling low- and high-frequency combustion instabilities are outlined. Upgrading of the cooling system for the wall of a liner and a transition piece is of great interest. Change over from effusion (or film) cooling to convective steam cooling and convective air cooling has considerably increased the GTU efficiency.

  9. Soybean and Coconut Biodiesel Fuel Effects on Combustion Characteristics in a Light-Duty Diesel Engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Manbae; Cho, Kukwon; Sluder, Scott

    This study investigated the effects of soybean- and coconut-derived biodiesel fuels on combustion characteristics in a 1.7-liter direct injection, common rail diesel engine. Five sets of fuels were studied: 2007 ultra-low sulfur diesel (ULSD), 5% and 20% volumetric blends of soybean biodiesel with ULSD (soybean B5 and B20), and 5% and 20% volumetric blends of coconut biodiesel with ULSD (coconut B5 and B20). In conventional diesel combustion mode, particulate matter (PM) and nitrogen oxides (NO/dx) emissions were similar for all fuels studied except soybean B20. Soybean B20 produced the lowest PM but the highest NO/dx emissions. Compared with conventional dieselmore » combustion mode, high efficiency clean combustion (HECC) mode, achieved by increased EGR and combustion phasing, significantly reduced both PM and NO/dx emissions for all fuels studied at the expense of higher hydrocarbon (HC) and carbon monoxide (CO) emissions and an increase in fuel consumption (less than 4%). ULSD, soybean B5, and coconut B5 showed no difference in exhaust emissions. However, PM emissions increased slightly for soybean B20 and coconut B20. NO/dx emissions increased significantly for soybean B20, while those for coconut B20 were comparable to ULSD. Differences in the chemical and physical properties of soybean and coconut biodiesel fuels compared with ULSD, such as higher fuel-borne oxygen, greater viscosity, and higher boiling temperatures, play a key role in combustion processes and, therefore, exhaust emissions. Furthermore, the highly unsaturated ester composition in soybean biodiesel can be another factor in the increase of NO/dx emissions.« less

  10. Waste plastics as supplemental fuel in the blast furnace process: improving combustion efficiencies.

    PubMed

    Kim, Dongsu; Shin, Sunghye; Sohn, Seungman; Choi, Jinshik; Ban, Bongchan

    2002-10-14

    The possibility of using waste plastics as a source of secondary fuel in a blast furnace has been of recent interest. The success of this process, however, will be critically dependent upon the optimization of operating systems. For instance, the supply of waste plastics must be reliable as well as economically attractive compared with conventional secondary fuels such as heavy oil, natural gas and pulverized coal. In this work, we put special importance on the improvement of the combustibility of waste plastics as a way to enhance energy efficiency in a blast furnace. As experimental variables to approach this target, the effects of plastic particle size, blast temperature, and the level of oxygen enrichment were investigated using a custom-made blast model designed to simulate a real furnace. Lastly, the combustion efficiency of the mixture of waste plastics and pulverized coal was tested. The observations made from these experiments led us to the conclusion that with the increase of both blast temperature and the level of oxygen enrichment, and with a decrease in particle size, the combustibility of waste polyethylene could be improved at a given distance from the tuyere. Also it was found that the efficiency of coal combustion decreased with the addition of plastics; however, the combustion efficiency of mixture could be comparable at a longer distance from the tuyere.

  11. The Influence of Chitosan Substrate and Its Nanometric Form Toward the Green Power Generation in Sediment Microbial Fuel Cell.

    PubMed

    Karthikeyan, C; Sathishkumar, Y; Lee, Yang Soo; Kim, Ae Rhan; Yoo, Dong Jin; Kumar, G Gnana

    2017-01-01

    A simple, environmental friendly and biologically important sediment interfaced fuel cell was developed for the green energy generation. The soil sediment used for the study is enriched of rich anthropogenic free organic carbon, sufficient manganese and high level potassium contents as evidenced from the geochemical characterizations. The saccharides produced by the catalytic reaction of substrate chitosan were utilized for the growth of microorganisms and electron shuttling processes. Chitosan substrate influenced sediment microbial fuel cells exhibited the nearly two fold power increment over the substrate free fuel cells. The fuel cell efficiencies were further increased by bringing the substrate chitosan at nanometric level, which is nearly three and two fold higher than that of substrate free and chitosan influenced sediment microbial fuel cells, respectively, and the influential parameters involved in the power and longevity issues were addressed with different perspectives.

  12. Research on the influence of ozone dissolved in the fuel-water emulsion on the parameters of the CI engine

    NASA Astrophysics Data System (ADS)

    Wojs, M. K.; Orliński, P.; Kamela, W.; Kruczyński, P.

    2016-09-01

    The article presents the results of empirical research on the impact of ozone dissolved in fuel-water emulsion on combustion process and concentration of toxic substances in CI engine. The effect of ozone presence in the emulsion and its influence on main engine characteristics (power, torque, fuel consumption) and selected parameters that characterize combustion process (levels of pressures and temperatures in combustion chamber, period of combustion delay, heat release rate, fuel burnt rate) is shown. The change in concentration of toxic components in exhausts gases when engine is fueled with ozonized emulsion was also identified. The empirical research and their analysis showed significant differences in the combustion process when fuel-water emulsion containing ozone was used. These differences include: increased power and efficiency of the engine that are accompanied by reduction in time of combustion delay and beneficial effects of ozone on HC, PM, CO and NOX emissions.

  13. Study of combustion and emission characteristics of fuel derived from waste plastics by various waste to energy (W-t-E) conversion processes

    NASA Astrophysics Data System (ADS)

    Hazrat, M. A.; Rasul, M. G.; Khan, M. M. K.

    2016-07-01

    Reduction of plastic wastes by means of producing energy can be treated as a good investment in the waste management and recycling sectors. In this article, conversion of plastics into liquid fuel by two thermo-chemical processes, pyrolysis and gasification, are reviewed. The study showed that the catalytic pyrolysis of homogenous waste plastics produces better quality and higher quantity of liquefied fuel than that of non-catalytic pyrolysis process at a lower operating temperature. The syngas produced from gasification process, which occurs at higher temperature than the pyrolysis process, can be converted into diesel by the Fischer-Tropsch (FT) reaction process. Conducive bed material like Olivine in the gasification conversion process can remarkably reduce the production of tar. The waste plastics pyrolysis oil showed brake thermal efficiency (BTE) of about 27.75%, brake specific fuel consumption (BSFC) of 0.292 kg/kWh, unburned hydrocarbon emission (uHC) of 91 ppm and NOx emission of 904 ppm in comparison with the diesel for BTE of 28%, BSFC of 0.276 kg/kWh, uHC of 57 ppm and NOx of 855 ppm. Dissolution of Polystyrene (PS) into biodiesel also showed the potential of producing alternative transport fuel. It has been found from the literature that at higher engine speed, increased EPS (Expanded Polystyrene) quantity based biodiesel blends reduces CO, CO2, NOx and smoke emission. EPS-biodiesel fuel blend increases the brake thermal efficiency by 7.8%, specific fuel consumption (SFC) by 7.2% and reduces brake power (Pb) by 3.2%. More study using PS and EPS with other thermoplastics is needed to produce liquid fuel by dissolving them into biodiesel and to assess their suitability as a transport fuel. Furthermore, investigation to find out most suitable W-t-E process for effective recycling of the waste plastics as fuel for internal combustion engines is necessary to reduce environmental pollution and generate revenue which will be addressed in this article.

  14. Increased Efficiency of a Permanent Magnet Synchronous Generator through Optimization of NdFeB Magnet Arrays

    NASA Astrophysics Data System (ADS)

    Khazdozian, Helena; Hadimani, Ravi; Jiles, David

    2014-03-01

    The United States is currently dependent on fossil fuels for the majority of its energy needs, which has many negative consequences such as climate change. Wind turbines present a viable alternative, with the highest energy return on investment among even fossil fuel generation. Traditional commercial wind turbines use an induction generator for energy conversion. However, induction generators require a gearbox to increase the rotational speed of the drive shaft. These gearboxes increase the overall cost of the wind turbine and account for about 35 percent of reported wind turbine failures. Direct drive permanent magnet synchronous generators (PMSGs) offer an alternative to induction generators which eliminate the need for a gearbox. Yet, PMSGs can be more expensive than induction generators at large power output due to their size and weight. To increase the efficiency of PMSGs, the geometry and configuration of NdFeB permanent magnets were investigated using finite element techniques. The optimized design of the PMSG increases flux density and minimizes cogging torque with NdFeB permanent magnets of a reduced volume. These factors serve to increase the efficiency and reduce the overall cost of the PMSG. This work is supported by a National Science Foundation IGERT fellowship and the Barbara and James Palmer Endowment at the Department of Electrical and Computer Engineering of Iowa State University.

  15. Combustion studies of coal derived solid fuels by thermogravimetric analysis. III. Correlation between burnout temperature and carbon combustion efficiency

    USGS Publications Warehouse

    Rostam-Abadi, M.; DeBarr, J.A.; Chen, W.T.

    1990-01-01

    Burning profiles of 35-53 ??m size fractions of an Illinois coal and three partially devolatilized coals prepared from the original coal were obtained using a thermogravimetric analyzer. The burning profile burnout temperatures were higher for lower volatile fuels and correlated well with carbon combustion efficiencies of the fuels when burned in a laboratory-scale laminar flow reactor. Fuels with higher burnout temperatures had lower carbon combustion efficiencies under various time-temperature conditions in the laboratory-scale reactor. ?? 1990.

  16. ADAPTIVE CLEARANCE CONTROL SYSTEMS FOR TURBINE ENGINES

    NASA Technical Reports Server (NTRS)

    Blackwell, Keith M.

    2004-01-01

    The Controls and Dynamics Technology Branch at NASA Glenn Research Center primarily deals in developing controls, dynamic models, and health management technologies for air and space propulsion systems. During the summer of 2004 I was granted the privilege of working alongside professionals who were developing an active clearance control system for commercial jet engines. Clearance, the gap between the turbine blade tip and the encompassing shroud, increases as a result of wear mechanisms and rubbing of the turbine blades on shroud. Increases in clearance cause larger specific fuel consumption (SFC) and loss of efficient air flow. This occurs because, as clearances increase, the engine must run hotter and bum more fuel to achieve the same thrust. In order to maintain efficiency, reduce fuel bum, and reduce exhaust gas temperature (EGT), the clearance must be accurately controlled to gap sizes no greater than a few hundredths of an inch. To address this problem, NASA Glenn researchers have developed a basic control system with actuators and sensors on each section of the shroud. Instead of having a large uniform metal casing, there would be sections of the shroud with individual sensors attached internally that would move slightly to reform and maintain clearance. The proposed method would ultimately save the airline industry millions of dollars.

  17. Turbulence and Cavitation Suppression by Quaternary Ammonium Salt Additives.

    PubMed

    Naseri, Homa; Trickett, Kieran; Mitroglou, Nicholas; Karathanassis, Ioannis; Koukouvinis, Phoevos; Gavaises, Manolis; Barbour, Robert; Diamond, Dale; Rogers, Sarah E; Santini, Maurizio; Wang, Jin

    2018-05-16

    We identify the physical mechanism through which newly developed quaternary ammonium salt (QAS) deposit control additives (DCAs) affect the rheological properties of cavitating turbulent flows, resulting in an increase in the volumetric efficiency of clean injectors fuelled with diesel or biodiesel fuels. Quaternary ammonium surfactants with appropriate counterions can be very effective in reducing the turbulent drag in aqueous solutions, however, less is known about the effect of such surfactants in oil-based solvents or in cavitating flow conditions. Small-angle neutron scattering (SANS) investigations show that in traditional DCA fuel compositions only reverse spherical micelles form, whereas reverse cylindrical micelles are detected by blending the fuel with the QAS additive. Moreover, experiments utilising X-ray micro computed tomography (micro-CT) in nozzle replicas, quantify that in cavitation regions the liquid fraction is increased in the presence of the QAS additive. Furthermore, high-flux X-ray phase contrast imaging (XPCI) measurements identify a flow stabilization effect in the region of vortex cavitation by the QAS additive. The effect of the formation of cylindrical micelles is reproduced with computational fluid dynamics (CFD) simulations by including viscoelastic characteristics for the flow. It is demonstrated that viscoelasticity can reduce turbulence and suppress cavitation, and subsequently increase the injector's volumetric efficiency.

  18. A Comparison of the Performance Capabilities of Radioisotope Energy Conversion Systems, Betavoltaic Cells, and other Nuclear Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steinfelds, Eric V; Prelas, Mark A.; Sudarshan, Loyalka K.

    2006-07-01

    In this paper we compare the potential performance capabilities of several types of nuclear batteries to the Radioisotope Thermocouple Generators (RTG's) currently in use. There have been theoretical evaluations of, and some experimental testing of, several types of nuclear batteries including Radioisotope Energy Conversion Systems (RECS), Direct Energy Conversion (DEC) systems, and Betavoltaic Power Cells (BPC's). It has been theoretically shown, and to some extent experimentally demonstrated, that RECS, capacitive DEC systems, and possibly BPC's are all potentially capable of efficiencies well above the 9% maximum efficiency demonstrated to date in RTG's customized for deep space probe applications. Even thoughmore » RTG's have proven their reliability and have respectable power to mass ratios, it is desirable to attain efficiencies of at least 25% in typical applications. High fuel efficiency is needed to minimize the quantities of radioisotopic or nuclear fuels in the systems, to maximize power to mass ratios, and to minimize housing requirements. It has been shown that RECS can attain electric power generation efficiencies greater than 18% for devices which use Sr-90 fuel and where the accompanying material is less than roughly twice the mass of the Sr-90 fuel. Other radioisotopic fuels such as Pu-238 or Kr-85 can also be placed into RECS in order to attain efficiencies over 18%. With the likely exception of one fuel investigated by the authors, all of the promising candidates for RECS fuels can attain electric power to mass ratios greater than 15 W kg{sup -1}. It has been claimed recently [1] that the efficiency of tritium-fueled BPC's can be as high as 25%. While this is impressive and tritium has the benefit of being a 'soft' radioisotopic fuel, the silicon wafer that holds the tritium would have to be considerably more massive than the tritium contained within it and immediately adjacent to the wafer. Considering realistic mass requirements for the presence of silicon in the bulk of the wafer, a tritium cell would thus be limited to power to mass ratios <3 W kg{sup -1}. Even RECS designs with more energetic fuels and higher shielding burdens can attain >3 W kg{sup -1} and efficiencies exceeding 20%. Capacitive DEC systems can also offer significant benefits. With larger fuel quantities and larger dimensions, DEC systems can attain power efficiencies >50%. For small nuclear batteries of low or medium power, RECS appear highly desirable since the efficiency of a RECS does not vary with the amount of fuel present nor does it vary with temperature to any significant degree. (authors)« less

  19. Performance and emissions characteristics of aqueous alcohol fumes in a DI diesel engine

    NASA Technical Reports Server (NTRS)

    Heisey, J. B.; Lestz, S. S.

    1981-01-01

    A single cylinder DI Diesel engine was fumigated with ethanol and methanol in amounts up to 55% of the total fuel energy. The effects of aqueous alcohol fumigation on engine thermal efficiency, combustion intensity and gaseous exhaust emissions were determined. Assessment of changes in the biological activity of raw particulate and its soluble organic fraction were also made using the Salmonella typhimurium test. Alcohol fumigation improved thermal efficiency slightly at moderate and heavy loads, but increased ignition delay at all operating conditions. Carbon monoxide and unburned hydrocarbon emission generally increased with alcohol fumigation and showed no dependence on alcohol type or quality. Oxide of nitrogen emission showed a strong dependence on alcohol quality; relative emission levels decreased with increasing water content of the fumigant. Particulate mass loading rates were lower for ethanol fueled conditions. However, the biological activity of both the raw particulate and its soluble organic fraction was enhanced by ethanol fumigation at most operating conditions.

  20. Optimum hot electron production with low-density foams for laser fusion by fast ignition.

    PubMed

    Lei, A L; Tanaka, K A; Kodama, R; Kumar, G R; Nagai, K; Norimatsu, T; Yabuuchi, T; Mima, K

    2006-06-30

    We propose a foam cone-in-shell target design aiming at optimum hot electron production for the fast ignition. A thin low-density foam is proposed to cover the inner tip of a gold cone inserted in a fuel shell. An intense laser is then focused on the foam to generate hot electrons for the fast ignition. Element experiments demonstrate increased laser energy coupling efficiency into hot electrons without increasing the electron temperature and beam divergence with foam coated targets in comparison with solid targets. This may enhance the laser energy deposition in the compressed fuel plasma.

  1. Index of the Relative Importance of Fuel Efficiency (IFE) in the Motor Vehicle Market

    DOT National Transportation Integrated Search

    1981-10-01

    The need for the National Highway Traffic Safety Administration to understand the importance of vehicle fuel economy in the marketplace has created the requirement for a quantitative measure of consumer attitudes toward fuel efficiency. This paper su...

  2. Selected Technical and Economic Comparisons of Synfuel Options

    DOT National Transportation Integrated Search

    1981-04-01

    This study is a comparative technical and economic assessment of selected synfuel technologies. It contains papers written for Office of Technology Assessment (OTA) to assist in preparation of the report "Increased Automobile Fuel Efficiency and Synt...

  3. Improved Cattle Hauler

    NASA Technical Reports Server (NTRS)

    Saltzman, E. J.

    1983-01-01

    Better aerodynamics and ventilation increases fuel efficiency and decreases shipping losses. Trailer is ventilated and cooled by inlet ports in front of rig and outlet ports in middle and rear. Rounded cab and fairing reduce drag by creating an attached airflow.

  4. Biodesulfurization of refractory organic sulfur compounds in fossil fuels.

    PubMed

    Soleimani, Mehran; Bassi, Amarjeet; Margaritis, Argyrios

    2007-01-01

    The stringent new regulations to lower sulfur content in fossil fuels require new economic and efficient methods for desulfurization of recalcitrant organic sulfur. Hydrodesulfurization of such compounds is very costly and requires high operating temperature and pressure. Biodesulfurization is a non-invasive approach that can specifically remove sulfur from refractory hydrocarbons under mild conditions and it can be potentially used in industrial desulfurization. Intensive research has been conducted in microbiology and molecular biology of the competent strains to increase their desulfurization activity; however, even the highest activity obtained is still insufficient to fulfill the industrial requirements. To improve the biodesulfurization efficiency, more work is needed in areas such as increasing specific desulfurization activity, hydrocarbon phase tolerance, sulfur removal at higher temperature, and isolating new strains for desulfurizing a broader range of sulfur compounds. This article comprehensively reviews and discusses key issues, advances and challenges for a competitive biodesulfurization process.

  5. Applications of Graphene-Modified Electrodes in Microbial Fuel Cells

    PubMed Central

    Yu, Fei; Wang, Chengxian; Ma, Jie

    2016-01-01

    Graphene-modified materials have captured increasing attention for energy applications due to their superior physical and chemical properties, which can significantly enhance the electricity generation performance of microbial fuel cells (MFC). In this review, several typical synthesis methods of graphene-modified electrodes, such as graphite oxide reduction methods, self-assembly methods, and chemical vapor deposition, are summarized. According to the different functions of the graphene-modified materials in the MFC anode and cathode chambers, a series of design concepts for MFC electrodes are assembled, e.g., enhancing the biocompatibility and improving the extracellular electron transfer efficiency for anode electrodes and increasing the active sites and strengthening the reduction pathway for cathode electrodes. In spite of the challenges of MFC electrodes, graphene-modified electrodes are promising for MFC development to address the reduction in efficiency brought about by organic waste by converting it into electrical energy. PMID:28773929

  6. Analysis performance of proton exchange membrane fuel cell (PEMFC)

    NASA Astrophysics Data System (ADS)

    Mubin, A. N. A.; Bahrom, M. H.; Azri, M.; Ibrahim, Z.; Rahim, N. A.; Raihan, S. R. S.

    2017-06-01

    Recently, the proton exchange membrane fuel cell (PEMFC) has gained much attention to the technology of renewable energy due to its mechanically ideal and zero emission power source. PEMFC performance reflects from the surroundings such as temperature and pressure. This paper presents an analysis of the performance of the PEMFC by developing the mathematical thermodynamic modelling using Matlab/Simulink. Apart from that, the differential equation of the thermodynamic model of the PEMFC is used to explain the contribution of heat to the performance of the output voltage of the PEMFC. On the other hand, the partial pressure equation of the hydrogen is included in the PEMFC mathematical modeling to study the PEMFC voltage behaviour related to the input variable input hydrogen pressure. The efficiency of the model is 33.8% which calculated by applying the energy conversion device equations on the thermal efficiency. PEMFC’s voltage output performance is increased by increasing the hydrogen input pressure and temperature.

  7. Engine component improvement: Performance improvement, JT9D-7 3.8 AR fan

    NASA Technical Reports Server (NTRS)

    Gaffin, W. O.

    1980-01-01

    A redesigned, fuel efficient fan for the JT9D-7 engine was tested. Tests were conducted to determine the effect of the 3.8 AR fan on performance, stability, operational characteristics, and noise of the JT9D-7 engine relative to the current 4.6 AR Bill-of-Material fan. The 3.8 AR fan provides increased fan efficiency due to a more advanced blade airfoil with increased chord, eliminating one part span shroud and reducing the number of fan blades and fan exit guide vanes. Engine testing at simulated cruise conditions demonstrated the predicted 1.3 percent improvement in specific fuel consumption with the redesigned 3.8 AR fan. Flight testing and sea level stand engine testing demonstrated exhaust gas temperature margins, fan and low pressure compressor stability, operational suitability, and noise levels comparable to the Bill-of-Material fan.

  8. pH-dependent ammonia removal pathways in microbial fuel cell system.

    PubMed

    Kim, Taeyoung; An, Junyeong; Lee, Hyeryeong; Jang, Jae Kyung; Chang, In Seop

    2016-09-01

    In this work, ammonia removal paths in microbial fuel cells (MFCs) under different initial pH conditions (pH 7.0, 8.0, and 8.6) were investigated. At a neutral pH condition (pH 7.0), MFC used an electrical energy of 27.4% and removed 23.3% of total ammonia by electrochemical pathway for 192h. At the identical pH condition, 36.1% of the total ammonia was also removed by the biological path suspected to be biological ammonia oxidation process (e.g., Anammox). With the initial pH increased, the electrochemical removal efficiency decreased to less than 5.0%, while the biological removal efficiency highly increased to 61.8%. In this study, a neutral pH should be maintained in the anode to utilize MFCs for ammonia recovery via electrochemical pathways from wastewater stream. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Physical particularities of nuclear reactors using heavy moderators of neutrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulikov, G. G., E-mail: ggkulikov@mephi.ru; Shmelev, A. N.

    2016-12-15

    In nuclear reactors, thermal neutron spectra are formed using moderators with small atomic weights. For fast reactors, inserting such moderators in the core may create problems since they efficiently decelerate the neutrons. In order to form an intermediate neutron spectrum, it is preferable to employ neutron moderators with sufficiently large atomic weights, using {sup 233}U as a fissile nuclide and {sup 232}Th and {sup 231}Pa as fertile ones. The aim of the work is to investigate the properties of heavy neutron moderators and to assess their advantages. The analysis employs the JENDL-4.0 nuclear data library and the SCALE program packagemore » for simulating the variation of fuel composition caused by irradiation in the reactor. The following main results are obtained. By using heavy moderators with small neutron moderation steps, one is able to (1) increase the rate of resonance capture, so that the amount of fertile material in the fuel may be reduced while maintaining the breeding factor of the core; (2) use the vacant space for improving the fuel-element properties by adding inert, strong, and thermally conductive materials and by implementing dispersive fuel elements in which the fissile material is self-replenished and neutron multiplication remains stable during the process of fuel burnup; and (3) employ mixtures of different fertile materials with resonance capture cross sections in order to increase the resonance-lattice density and the probability of resonance neutron capture leading to formation of fissile material. The general conclusion is that, by forming an intermediate neutron spectrum with heavy neutron moderators, one can use the fuel more efficiently and improve nuclear safety.« less

  10. Effects of fuel nozzle design on performance of an experimental annular combustor using natural gas fuel

    NASA Technical Reports Server (NTRS)

    Wear, J. D.; Schultz, D. F.

    1972-01-01

    Tests of various fuel nozzles were conducted with natural gas fuel in a full-annulus combustor. The nozzles were designed to provide either axial, angled, or radial fuel injection. Each fuel nozzle was evaluated by measuring combustion efficiency at relatively severe combustor operating conditions. Combustor blowout and altitude ignition tests were also used to evaluate nozzle designs. Results indicate that angled injection gave higher combustion efficiency, less tendency toward combustion instability, and altitude relight characteristics equal to or superior to those of the other fuel nozzles that were tested.

  11. Fuel cell on-site integrated energy system parametric analysis of a residential complex

    NASA Technical Reports Server (NTRS)

    Simons, S. N.

    1977-01-01

    A parametric energy-use analysis was performed for a large apartment complex served by a fuel cell on-site integrated energy system (OS/IES). The variables parameterized include operating characteristics for four phosphoric acid fuel cells, eight OS/IES energy recovery systems, and four climatic locations. The annual fuel consumption for selected parametric combinations are presented and a breakeven economic analysis is presented for one parametric combination. The results show fuel cell electrical efficiency and system component choice have the greatest effect on annual fuel consumption; fuel cell thermal efficiency and geographic location have less of an effect.

  12. Very High Fuel Economy, Heavy Duty, Constant Speed, Truck Engine Optimized Via Unique Energy Recovery Turbines and Facilitated High Efficiency Continuously Variable Drivetrain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bahman Habibzadeh

    2010-01-31

    The project began under a corporative agreement between Mack Trucks, Inc and the Department of Energy starting from September 1, 2005. The major objective of the four year project is to demonstrate a 10% efficiency gain by operating a Volvo 13 Litre heavy-duty diesel engine at a constant or narrow speed and coupled to a continuously variable transmission. The simulation work on the Constant Speed Engine started on October 1st. The initial simulations are aimed to give a basic engine model for the VTEC vehicle simulations. Compressor and turbine maps are based upon existing maps and/or qualified, realistic estimations. Themore » reference engine is a MD 13 US07 475 Hp. Phase I was completed in May 2006 which determined that an increase in fuel efficiency for the engine of 10.5% over the OICA cycle, and 8.2% over a road cycle was possible. The net increase in fuel efficiency would be 5% when coupled to a CVT and operated over simulated highway conditions. In Phase II an economic analysis was performed on the engine with turbocompound (TC) and a Continuously Variable Transmission (CVT). The system was analyzed to determine the payback time needed for the added cost of the TC and CVT system. The analysis was performed by considering two different production scenarios of 10,000 and 60,000 units annually. The cost estimate includes the turbocharger, the turbocompound unit, the interstage duct diffuser and installation details, the modifications necessary on the engine and the CVT. Even with the cheapest fuel and the lowest improvement, the pay back time is only slightly more than 12 months. A gear train is necessary between the engine crankshaft and turbocompound unit. This is considered to be relatively straight forward with no design problems.« less

  13. Sustainable and Renewable Energy Resources — Alternative Forms of Energy

    NASA Astrophysics Data System (ADS)

    Rao, M. C.

    In order to move towards a sustainable existence in our critically energy dependent society there is a continuing need to adopt environmentally sustainable methods for energy production, storage and conversion. A fuel cell is an energy conversion device that generates electricity and heat by electrochemically combining a gaseous fuel and an oxidant gas through electrodes and across an ion conducting electrolyte. The use of fuel cells in both stationary and mobile power applications can offer significant advantages for the sustainable conversion of energy. Currently the cost of fuel cell systems is greater than that of similar, already available products, mainly because of small scale production and the lack of economies of scale. The best fuel for fuel cells is hydrogen and another barrier is fuel flexibility. Benefits arising from the use of fuel cells include efficiency and reliability, as well as economy, unique operating characteristics and planning flexibility and future development potential. By integrating the application of fuel cells, in series with renewable energy storage and production methods, sustainable energy requirements may be realized. As fuel cell application increases and improved fuel storage methods and handlings are developed, it is expected that the costs associated with fuel cell systems will fall dramatically in the future.

  14. Proton exchange membrane fuel cell technology for transportation applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swathirajan, S.

    1996-04-01

    Proton Exchange Membrane (PEM) fuel cells are extremely promising as future power plants in the transportation sector to achieve an increase in energy efficiency and eliminate environmental pollution due to vehicles. GM is currently involved in a multiphase program with the US Department of Energy for developing a proof-of-concept hybrid vehicle based on a PEM fuel cell power plant and a methanol fuel processor. Other participants in the program are Los Alamos National Labs, Dow Chemical Co., Ballard Power Systems and DuPont Co., In the just completed phase 1 of the program, a 10 kW PEM fuel cell power plantmore » was built and tested to demonstrate the feasibility of integrating a methanol fuel processor with a PEM fuel cell stack. However, the fuel cell power plant must overcome stiff technical and economic challenges before it can be commercialized for light duty vehicle applications. Progress achieved in phase I on the use of monolithic catalyst reactors in the fuel processor, managing CO impurity in the fuel cell stack, low-cost electrode-membrane assembles, and on the integration of the fuel processor with a Ballard PEM fuel cell stack will be presented.« less

  15. Role of fuel cells in industrial cogeneration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Camara, E.H.

    Work at the Institute of Gas Technology on fuel cell technology for commercial application has focused on phosphoric acid (PAFC), molten carbonate (MCFC), and solid oxide (SOFC) fuel cells. The author describes the status of the three technologies, and concludes that the MCFC in particular can efficiently supply energy in industrial cogeneration applications. The four largest industrial markets are primary metals, chemicals, food, and wood products, which collectively represent a potential market of 1000 to 1500 MEe annual additions. At $700 to $900/kW, fuel cells can successfully compete with other advanced systems. An increase in research and development support wouldmore » be in the best interest of industry and the nation. 1 reference, 5 figures, 5 tables.« less

  16. AVTA Federal Fleet PEV Readiness Data Logging and Characterization Study for NASA Stennis Space Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schey, Stephen; Francfort, Jim

    Federal agencies are mandated to purchase alternative fuel vehicles, increase consumption of alternative fuels, and reduce petroleum consumption. Available plug-in electric vehicles (PEVs) provide an attractive option in the selection of alternative fuel vehicles. PEVs, which consist of both battery electric vehicles (BEVs) and plug-in hybrid electric vehicles (PHEVs), have significant advantages over internal combustion engine (ICE) vehicles in terms of energy efficiency, reduced petroleum consumption, and reduced production of greenhouse gas (GHG) emissions, and they provide performance benefits with quieter, smoother operation. This study intended to evaluate the extent to which NASA Stennis Space Center (Stennis) could convert partmore » or all of their fleet of vehicles from petroleum-fueled vehicles to PEVs.« less

  17. Higher energy efficient homes are associated with increased risk of doctor diagnosed asthma in a UK subpopulation.

    PubMed

    Sharpe, Richard A; Thornton, Christopher R; Nikolaou, Vasilis; Osborne, Nicholas J

    2015-02-01

    The United Kingdom (UK) has one of the highest prevalence of asthma in the world, which represents a significant economic and societal burden. Reduced ventilation resulting from increased energy efficiency measures acts as a modifier for mould contamination and risk of allergic diseases. To our knowledge no previous study has combined detailed asset management property and health data together to assess the impact of household energy efficiency (using the UK Government's Standard Assessment Procedure) on asthma outcomes in an adult population residing in social housing. Postal questionnaires were sent to 3867 social housing properties to collect demographic, health and environmental information on all occupants. Detailed property data, residency periods, indices of multiple deprivation (IMD) and household energy efficiency ratings were also investigated. Logistic regression was used to calculate odds ratios and confidence intervals while allowing for clustering of individuals coming from the same location. Eighteen percent of our target social housing population were recruited into our study. Adults had a mean age of 59 (SD±17.3) years and there was a higher percentage of female (59%) and single occupancy (58%) respondents. Housing demographic characteristics were representative of the target homes. A unit increase in household Standard Assessment Procedure (SAP) rating was associated with a 2% increased risk of current asthma, with the greatest risk in homes with SAP >71. We assessed exposure to mould and found that the presence of a mouldy/musty odour was associated with a two-fold increased risk of asthma (OR 2.2 95%; CI 1.3-3.8). A unit increase in SAP led to a 4-5% reduction in the risk of visible mould growth and a mouldy/musty odour. In contrast to previous research, we report that residing in energy efficient homes may increase the risk of adult asthma. We report that mould contamination increased the risk of asthma, which is in agreement with existing knowledge. Exposure to mould contamination could not fully explain the association between increased energy efficiency and asthma. Our findings may be explained by increased energy efficiency combined with the provision of inadequate heating, ventilation, and increased concentrations of other biological, chemical and physical contaminants. This is likely to be modified by a complex interaction between occupant behaviours and changes to the built environment. Our findings may also be confounded by our response rate, demographic and behavioural differences between those residing in low versus high energy efficient homes, and use of self-reported exposures and outcomes. Energy efficiency may increase the risk of current adult asthma in a population residing in social housing. This association was not significantly modified by the presence of visible mould growth, although further research is needed to investigate the interaction between other demographic and housing characteristic risk factors, especially the impact of fuel poverty on indoor exposures and health outcomes. A multidisciplinary approach is required to assess the interaction between energy efficiency measures and fuel poverty behaviours on health outcomes prior to the delivery of physical interventions aimed at improving the built environment. Policy incentives are required to address fuel poverty issues alongside measures to achieve SAP ratings of 71 or greater, which must be delivered with the provision of adequate heating and ventilation strategies to minimise indoor dampness. Changes in the built environment without changes in behaviour of domicile residents may lead to negative health outcomes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Pavement Smoothness and Fuel Efficiency: An Analysis of the Economic Dimensions of the Missouri Smooth Roads Initiative.

    DOT National Transportation Integrated Search

    2006-11-01

    Its widely accepted that smooth roads provide greater driver comfort and satisfaction, decreased vehicle maintenance costs, and better fuel economy. Now thanks to a recently completed study, the affect of pavement smoothness on fuel efficiency has...

  19. 49 CFR 535.4 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., DEPARTMENT OF TRANSPORTATION MEDIUM- AND HEAVY-DUTY VEHICLE FUEL EFFICIENCY PROGRAM § 535.4 Definitions. The... energy for the motor is supplied by a fuel cell. Fuel efficiency means the amount of work performed for... other than a conventional battery system or conventional flywheel. Supplemental electrical batteries and...

  20. Preliminary tests of an advanced high-temperature combustion system

    NASA Technical Reports Server (NTRS)

    Wear, J. D.; Trout, A. M.; Smith, J. M.; Jacobs, R. E.

    1983-01-01

    A combustion system has been developed to operate efficiently and with good durability at inlet pressures to 4.05 MPa (40 atm), inlet air temperatures to 900 K, and exhaust gas temperatures to 2480 K. A preliminary investigation of this system was conducted at inlet pressures to 0.94 MPa (9 atm), a nominal inlet air temperature of 560 K, and exhaust gas temperatures to 2135 K. A maximum combustion efficiency of 98.5 percent was attained at a fuel-air ratio of 0.033; the combustion efficiency decreased to about 90 percent as the fuel-air ratio was increased to 0.058. An average liner metal temperature of 915 K, 355 kelvins greater than the nominal inlet air temperature, was reached with an average exhaust gas temperature of 2090 K. The maximum local metal temperature at this condition was about 565 kelvins above the nominal inlet air temperature and decreased to 505 kelvins above with increasing combustor pressure. Tests to determine the isothermal total pressure loss of the combustor showed a liner loss of 1.1 percent and a system loss of 6.5 percent.

  1. Energy, energy efficiency, and the built environment.

    PubMed

    Wilkinson, Paul; Smith, Kirk R; Beevers, Sean; Tonne, Cathryn; Oreszczyn, Tadj

    2007-09-29

    Since the last decades of the 19th century, technological advances have brought substantial improvements in the efficiency with which energy can be exploited to service human needs. That trend has been accompanied by an equally notable increase in energy consumption, which strongly correlates with socioeconomic development. Nonetheless, feasible gains in the efficiency and technology of energy use in towns and cities and in homes have the potential to contribute to the mitigation of greenhouse-gas emissions, and to improve health, for example, through protection against temperature-related morbidity and mortality, and the alleviation of fuel poverty. A shift towards renewable energy production would also put increasing focus on cleaner energy carriers, especially electricity, but possibly also hydrogen, which would have benefits to urban air quality. In low-income countries, a vital priority remains the dissemination of affordable technology to alleviate the burdens of indoor air pollution and other health effects in individuals obliged to rely on biomass fuels for cooking and heating, as well as the improvement in access to electricity, which would have many benefits to health and wellbeing.

  2. The impact of interface bonding efficiency on high-burnup spent nuclear fuel dynamic performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Hao; Wang, Jy-An John; Wang, Hong

    Finite element analysis (FEA) was used to investigate the impact of interfacial bonding efficiency at pellet-pellet and pellet-clad interfaces of high-burnup (HBU) spent nuclear fuel (SNF) on system dynamic performance. Bending moments M were applied to FEA model to evaluate the system responses. From bending curvature, κ, flexural rigidity EI can be estimated as EI = M/κ. The FEA simulation results were benchmarked with experimental results from cyclic integrated reversal bending fatigue test (CIRFT) of HBR fuel rods. The consequence of interface debonding between fuel pellets and cladding is a redistribution of the loads carried by the fuel pellets tomore » the clad, which results in a reduction in composite rod system flexural rigidity. Furthermore, the interface bonding efficiency at the pellet-pellet and pellet-clad interfaces can significantly dictate the SNF system dynamic performance. With the consideration of interface bonding efficiency, the HBU SNF fuel property was estimated with CIRFT test data.« less

  3. The impact of interface bonding efficiency on high-burnup spent nuclear fuel dynamic performance

    DOE PAGES

    Jiang, Hao; Wang, Jy-An John; Wang, Hong

    2016-09-26

    Finite element analysis (FEA) was used to investigate the impact of interfacial bonding efficiency at pellet-pellet and pellet-clad interfaces of high-burnup (HBU) spent nuclear fuel (SNF) on system dynamic performance. Bending moments M were applied to FEA model to evaluate the system responses. From bending curvature, κ, flexural rigidity EI can be estimated as EI = M/κ. The FEA simulation results were benchmarked with experimental results from cyclic integrated reversal bending fatigue test (CIRFT) of HBR fuel rods. The consequence of interface debonding between fuel pellets and cladding is a redistribution of the loads carried by the fuel pellets tomore » the clad, which results in a reduction in composite rod system flexural rigidity. Furthermore, the interface bonding efficiency at the pellet-pellet and pellet-clad interfaces can significantly dictate the SNF system dynamic performance. With the consideration of interface bonding efficiency, the HBU SNF fuel property was estimated with CIRFT test data.« less

  4. Synthesis of platinum nanoparticle electrocatalysts by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Lubers, Alia Marie

    Demand for energy continues to increase, and without alternatives to fossil fuel combustion the effects on our environment will become increasingly severe. Fuel cells offer a promising improvement on current methods of energy generation; they are able to convert hydrogen fuel into electricity with a theoretical efficiency of up to 83% and interface smoothly with renewable hydrogen production. Fuel cells can replace internal combustion engines in vehicles and are used in stationary applications to power homes and businesses. The efficiency of a fuel cell is maximized by its catalyst, which is often composed of platinum nanoparticles supported on carbon. Economical production of fuel cell catalysts will promote adoption of this technology. Atomic layer deposition (ALD) is a possible method for producing catalysts at a large scale when employed in a fluidized bed. ALD relies on sequential dosing of gas-phase precursors to grow a material layer by layer. We have synthesized platinum nanoparticles on a carbon particle support (Pt/C) by ALD for use in proton exchange membrane fuel cells (PEMFCs) and electrochemical hydrogen pumps. Platinum nanoparticles with different characteristics were deposited by changing two chemistries: the carbon substrate through functionalization; and the deposition process by use of either oxygen or hydrogen as ligand removing reactants. The metal depositing reactant was trimethyl(methylcyclopentadienyl)platinum(IV). Functionalizing the carbon substrate increased nucleation during deposition resulting in smaller and more dispersed nanoparticles. Use of hydrogen produced smaller nanoparticles than oxygen, due to a gentler hydrogenation reaction compared to using oxygen's destructive combustion reaction. Synthesized Pt/C materials were used as catalysts in an electrochemical hydrogen pump, a device used to separate hydrogen fuel from contaminants. Catalysts deposited by ALD on functionalized carbon using a hydrogen chemistry were the most successful hydrogen pumping catalysts, comparable to a commercial Pt/C catalyst. Synthesized Pt/C materials were also used as PEMFC catalysts. We found the ALD catalysts with lower platinum loading to be competitive with a commercial fuel cell catalyst, especially when exhibiting similar platinum particle characteristics. The functionalized carbon helped produce smaller and more dispersed platinum particles; however, it encouraged carbon corrosion within an electrode, severing electrical connections and lowering energy production. The most suitable chemistry for competitive Pt/C catalysts was produced by platinum ALD on unmodified carbon using hydrogen as a reactant. ALD is a promising method for fabricating electrocatalysts, which could help fuel cells become an economically viable alternative to fossil fuels.

  5. Closed DTU fuel cycle with Np recycle and waste transmutation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beller, D.E.; Sailor, W.C.; Venneri, F.

    1999-09-01

    A nuclear energy scenario for the 21st century that included a denatured thorium-uranium-oxide (DTU) fuel cycle and new light water reactors (LWRs) supported by accelerator-driven transmutation of waste (ATW) systems was previously described. This coupled system with the closed DTU fuel cycle provides several improvements beyond conventional LWR (CLWR) (once-through, UO{sub 2} fuel) nuclear technology: increased proliferation resistance, reduced waste, and efficient use of natural resources. However, like CLWR fuel cycles, the spent fuel in the first one-third core discharged after startup contains higher-quality Pu than the equilibrium fuel cycle. To eliminate this high-grade Pu, Np is separated and recycledmore » with Th and U--rather than with higher actinides [(HA) including Pu]. The presence of Np in the LWR feed greatly increases the production of {sup 238}Pu so that a few kilograms of Pu generated enough alpha-decay heat that the separated Pu is highly resistant to proliferation. This alternate process also simplifies the pyrochemical separation of fuel elements (Th and U) from HAs. To examine the advantages of this concept, the authors modeled a US deployment scenario for nuclear energy that includes DTU-LWRs plus ATW`s to burn the actinides produced by these LWRs and to close the back-end of the DTU fuel cycle.« less

  6. Co-flow planar SOFC fuel cell stack

    DOEpatents

    Chung, Brandon W.; Pham, Ai Quoc; Glass, Robert S.

    2004-11-30

    A co-flow planar solid oxide fuel cell stack with an integral, internal manifold and a casing/holder to separately seal the cell. This construction improves sealing and gas flow, and provides for easy manifolding of cell stacks. In addition, the stack construction has the potential for an improved durability and operation with an additional increase in cell efficiency. The co-flow arrangement can be effectively utilized in other electrochemical systems requiring gas-proof separation of gases.

  7. Energy conversion in isothermal nonlinear irreversible processes - struggling for higher efficiency

    NASA Astrophysics Data System (ADS)

    Ebeling, W.; Feistel, R.

    2017-06-01

    First we discuss some early work of Ulrike Feudel on structure formation in nonlinear reactions including ions and the efficiency of the conversion of chemical into electrical energy. Then we give some survey about isothermal energy conversion from chemical to higher forms of energy like mechanical, electrical and ecological energy. Isothermal means here that there are no temperature gradients within the model systems. We consider examples of energy conversion in several natural processes and in some devices like fuel cells. Further, as an example, we study analytically the dynamics and efficiency of a simple "active circuit" converting chemical into electrical energy and driving currents which is roughly modeling fuel cells. Finally we investigate an analogous ecological system of Lotka-Volterra type consisting of an "active species" consuming some passive "chemical food". We show analytically for both these models that the efficiency increases with the load, reaches values higher then 50 percent in a narrow regime of optimal load and goes beyond some maximal load abruptly to zero.

  8. Mitigating climate change: the role of domestic livestock.

    PubMed

    Gill, M; Smith, P; Wilkinson, J M

    2010-03-01

    Livestock contribute directly (i.e. as methane and nitrous oxide (N2O)) to about 9% of global anthropogenic greenhouse gas (GHG) emissions and around 3% of UK emissions. If all parts of the livestock production lifecycle are included (fossil fuels used to produce mineral fertilizers used in feed production and N2O emissions from fertilizer use; methane release from the breakdown of fertilizers and from animal manure; land-use changes for feed production and for grazing; land degradation; fossil fuel use during feed and animal production; fossil fuel use in production and transport of processed and refrigerated animal products), livestock are estimated to account for 18% of global anthropogenic emissions, but less than 8% in the UK. In terms of GHG emissions per unit of livestock product, monogastric livestock are more efficient than ruminants; thus in the UK, while sheep and cattle accounted for 32% of meat production in 2006, they accounted for 48% of GHG emissions associated with meat production. More efficient management of grazing lands and of manure can have a direct impact in decreasing emissions. Improving efficiency of livestock production through better breeding, health interventions or improving fertility can also decrease GHG emissions through decreasing the number of livestock required per unit product. Increasing the energy density of the diet has a dual effect, decreasing both direct emissions and the numbers of livestock per unit product, but, as the demands for food increase in response to increasing human population and a better diet in some developing countries, there is increasing competition for land for food v. energy-dense feed crops. Recalculating efficiencies of energy and protein production on the basis of human-edible food produced per unit of human-edible feed consumed gave higher efficiencies for ruminants than for monogastric animals. The policy community thus have difficult decisions to make in balancing the negative contribution of livestock to the environment against the positive benefit in terms of food security. The animal science community have a responsibility to provide an evidence base which is objective and holistic with respect to these two competing challenges.

  9. Ultralean low swirl burner

    DOEpatents

    Cheng, R.K.

    1998-04-07

    A novel burner and burner method has been invented which burns an ultra lean premixed fuel-air mixture with a stable flame. The inventive burning method results in efficient burning and much lower emissions of pollutants such as oxides of nitrogen than previous burners and burning methods. The inventive method imparts weak swirl (swirl numbers of between about 0.01 to 3.0) on a fuel-air flow stream. The swirl, too small to cause recirculation, causes an annulus region immediately inside the perimeter of the fuel-air flow to rotate in a plane normal to the axial flow. The rotation in turn causes the diameter of the fuel-air flow to increase with concomitant decrease in axial flow velocity. The flame stabilizes where the fuel-air mixture velocity equals the rate of burning resulting in a stable, turbulent flame. 11 figs.

  10. Ultralean low swirl burner

    DOEpatents

    Cheng, Robert K.

    1998-01-01

    A novel burner and burner method has been invented which burns an ultra lean premixed fuel-air mixture with a stable flame. The inventive burning method results in efficient burning and much lower emissions of pollutants such as oxides of nitrogen than previous burners and burning methods. The inventive method imparts weak swirl (swirl numbers of between about 0.01 to 3.0) on a fuel-air flow stream. The swirl, too small to cause recirculation, causes an annulus region immediately inside the perimeter of the fuel-air flow to rotate in a plane normal to the axial flow. The rotation in turn causes the diameter of the fuel-air flow to increase with concomitant decrease in axial flow velocity. The flame stabilizes where the fuel-air mixture velocity equals the rate of burning resulting in a stable, turbulent flame.

  11. Effect of fuel properties on performance of a single aircraft turbojet combustor. [from coal and oil-shale derived syncrudes

    NASA Technical Reports Server (NTRS)

    Butze, H. F.; Ehlers, R. C.

    1975-01-01

    The performance of a single-can JT8D combustor was investigated with a number of fuels exhibiting wide variations in chemical composition and volatility. Performance parameters investigated were combustion efficiency, emissions of CO, unburned hydrocarbons and NOx, as well as liner temperatures and smoke. At the simulated idle condition no significant differences in performance were observed. At cruise, liner temperatures and smoke increased sharply with decreasing hydrogen content of the fuel. No significant differences were observed in the performance of an oil-shale derived JP-5 and a petroleum-based Jet A fuel except for emissions of NOx which were higher with the oil-shale JP-5. The difference is attributed to the higher concentration of fuel-bound nitrogen in the oil-shale JP-5.

  12. Multidimensional Multiphysics Simulation of TRISO Particle Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. D. Hales; R. L. Williamson; S. R. Novascone

    2013-11-01

    Multidimensional multiphysics analysis of TRISO-coated particle fuel using the BISON finite-element based nuclear fuels code is described. The governing equations and material models applicable to particle fuel and implemented in BISON are outlined. Code verification based on a recent IAEA benchmarking exercise is described, and excellant comparisons are reported. Multiple TRISO-coated particles of increasing geometric complexity are considered. It is shown that the code's ability to perform large-scale parallel computations permits application to complex 3D phenomena while very efficient solutions for either 1D spherically symmetric or 2D axisymmetric geometries are straightforward. Additionally, the flexibility to easily include new physical andmore » material models and uncomplicated ability to couple to lower length scale simulations makes BISON a powerful tool for simulation of coated-particle fuel. Future code development activities and potential applications are identified.« less

  13. Updated estimation of energy efficiencies of U.S. petroleum refineries.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palou-Rivera, I.; Wang, M. Q.

    2010-12-08

    Evaluation of life-cycle (or well-to-wheels, WTW) energy and emission impacts of vehicle/fuel systems requires energy use (or energy efficiencies) of energy processing or conversion activities. In most such studies, petroleum fuels are included. Thus, determination of energy efficiencies of petroleum refineries becomes a necessary step for life-cycle analyses of vehicle/fuel systems. Petroleum refinery energy efficiencies can then be used to determine the total amount of process energy use for refinery operation. Furthermore, since refineries produce multiple products, allocation of energy use and emissions associated with petroleum refineries to various petroleum products is needed for WTW analysis of individual fuels suchmore » as gasoline and diesel. In particular, GREET, the life-cycle model developed at Argonne National Laboratory with DOE sponsorship, compares energy use and emissions of various transportation fuels including gasoline and diesel. Energy use in petroleum refineries is key components of well-to-pump (WTP) energy use and emissions of gasoline and diesel. In GREET, petroleum refinery overall energy efficiencies are used to determine petroleum product specific energy efficiencies. Argonne has developed petroleum refining efficiencies from LP simulations of petroleum refineries and EIA survey data of petroleum refineries up to 2006 (see Wang, 2008). This memo documents Argonne's most recent update of petroleum refining efficiencies.« less

  14. Fuel-optimal, low-thrust transfers between libration point orbits

    NASA Astrophysics Data System (ADS)

    Stuart, Jeffrey R.

    Mission design requires the efficient management of spacecraft fuel to reduce mission cost, increase payload mass, and extend mission life. High efficiency, low-thrust propulsion devices potentially offer significant propellant reductions. Periodic orbits that exist in a multi-body regime and low-thrust transfers between these orbits can be applied in many potential mission scenarios, including scientific observation and communications missions as well as cargo transport. In light of the recent discovery of water ice in lunar craters, libration point orbits that support human missions within the Earth-Moon region are of particular interest. This investigation considers orbit transfer trajectories generated by a variable specific impulse, low-thrust engine with a primer-vector-based, fuel-optimizing transfer strategy. A multiple shooting procedure with analytical gradients yields rapid solutions and serves as the basis for an investigation into the trade space between flight time and consumption of fuel mass. Path and performance constraints can be included at node points along any thrust arc. Integration of invariant manifolds into the design strategy may also yield improved performance and greater fuel savings. The resultant transfers offer insight into the performance of the variable specific impulse engine and suggest novel implementations of conventional impulsive thrusters. Transfers incorporating invariant manifolds demonstrate the fuel savings and expand the mission design capabilities that are gained by exploiting system symmetry. A number of design applications are generated.

  15. Rich-burn, flame-assisted fuel cell, quick-mix, lean-burn (RFQL) combustor and power generation

    NASA Astrophysics Data System (ADS)

    Milcarek, Ryan J.; Ahn, Jeongmin

    2018-03-01

    Micro-tubular flame-assisted fuel cells (mT-FFC) were recently proposed as a modified version of the direct flame fuel cell (DFFC) operating in a dual chamber configuration. In this work, a rich-burn, quick-mix, lean-burn (RQL) combustor is combined with a micro-tubular solid oxide fuel cell (mT-SOFC) stack to create a rich-burn, flame-assisted fuel cell, quick-mix, lean-burn (RFQL) combustor and power generation system. The system is tested for rapid startup and achieves peak power densities after only 35 min of testing. The mT-FFC power density and voltage are affected by changes in the fuel-lean and fuel-rich combustion equivalence ratio. Optimal mT-FFC performance favors high fuel-rich equivalence ratios and a fuel-lean combustion equivalence ratio around 0.80. The electrical efficiency increases by 150% by using an intermediate temperature cathode material and improving the insulation. The RFQL combustor and power generation system achieves rapid startup, a simplified balance of plant and may have applications for reduced NOx formation and combined heat and power.

  16. Assessment for advanced fuel cycle options in CANDU

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morreale, A.C.; Luxat, J.C.; Friedlander, Y.

    2013-07-01

    The possible options for advanced fuel cycles in CANDU reactors including actinide burning options and thorium cycles were explored and are feasible options to increase the efficiency of uranium utilization and help close the fuel cycle. The actinide burning TRUMOX approach uses a mixed oxide fuel of reprocessed transuranic actinides from PWR spent fuel blended with natural uranium in the CANDU-900 reactor. This system reduced actinide content by 35% and decreased natural uranium consumption by 24% over a PWR once through cycle. The thorium cycles evaluated used two CANDU-900 units, a generator and a burner unit along with a drivermore » fuel feedstock. The driver fuels included plutonium reprocessed from PWR, from CANDU and low enriched uranium (LEU). All three cycles were effective options and reduced natural uranium consumption over a PWR once through cycle. The LEU driven system saw the largest reduction with a 94% savings while the plutonium driven cycles achieved 75% savings for PWR and 87% for CANDU. The high neutron economy, online fuelling and flexible compact fuel make the CANDU system an ideal reactor platform for many advanced fuel cycles.« less

  17. Reducing GHG emissions in the United States' transportation sector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, Sujit; Andress, David A; Nguyen, Tien

    Reducing GHG emissions in the U.S. transportation sector requires both the use of highly efficient propulsion systems and low carbon fuels. This study compares reduction potentials that might be achieved in 2060 for several advanced options including biofuels, hybrid electric vehicles (HEV), plug-in hybrid electric vehicles (PHEV), and fuel cell electric vehicles (FCEV), assuming that technical and cost reduction targets are met and necessary fueling infrastructures are built. The study quantifies the extent of the reductions that can be achieved through increasing engine efficiency and transitioning to low-carbon fuels separately. Decarbonizing the fuels is essential for achieving large reductions inmore » GHG emissions, and the study quantifies the reductions that can be achieved over a range of fuel carbon intensities. Although renewables will play a vital role, some combination of coal gasification with carbon capture and sequestration, and/or nuclear energy will likely be needed to enable very large reductions in carbon intensities for hydrogen and electricity. Biomass supply constraints do not allow major carbon emission reductions from biofuels alone; the value of biomass is that it can be combined with other solutions to help achieve significant results. Compared with gasoline, natural gas provides 20% reduction in GHG emissions in internal combustion engines and up to 50% reduction when used as a feedstock for producing hydrogen or electricity, making it a good transition fuel for electric propulsion drive trains. The material in this paper can be useful information to many other countries, including developing countries because of a common factor: the difficulty of finding sustainable, low-carbon, cost-competitive substitutes for petroleum fuels.« less

  18. An assessment of advanced technology for industrial cogeneration

    NASA Technical Reports Server (NTRS)

    Moore, N.

    1983-01-01

    The potential of advanced fuel utilization and energy conversion technologies to enhance the outlook for the increased use of industrial cogeneration was assessed. The attributes of advanced cogeneration systems that served as the basis for the assessment included their fuel flexibility and potential for low emissions, efficiency of fuel or energy utilization, capital equipment and operating costs, and state of technological development. Over thirty advanced cogeneration systems were evaluated. These cogeneration system options were based on Rankine cycle, gas turbine engine, reciprocating engine, Stirling engine, and fuel cell energy conversion systems. The alternatives for fuel utilization included atmospheric and pressurized fluidized bed combustors, gasifiers, conventional combustion systems, alternative energy sources, and waste heat recovery. Two advanced cogeneration systems with mid-term (3 to 5 year) potential were found to offer low emissions, multi-fuel capability, and a low cost of producing electricity. Both advanced cogeneration systems are based on conventional gas turbine engine/exhaust heat recovery technology; however, they incorporate advanced fuel utilization systems.

  19. In situ metal ion contamination and the effects on proton exchange membrane fuel cell performance

    NASA Astrophysics Data System (ADS)

    Sulek, Mark; Adams, Jim; Kaberline, Steve; Ricketts, Mark; Waldecker, James R.

    Automotive fuel cell technology has made considerable progress, and hydrogen fuel cell vehicles are regarded as a possible long-term solution to reduce carbon dioxide emissions, reduce fossil fuel dependency and increase energy efficiency. Even though great strides have been made, durability is still an issue. One key challenge is controlling MEA contamination. Metal ion contamination within the membrane and the effects on fuel cell performance were investigated. Given the possible benefits of using stainless steel or aluminum for balance-of-plant components or bipolar plates, cations of Al, Fe, Ni and Cr were studied. Membranes were immersed in metal sulfide solutions of varying concentration and then assembled into fuel cell MEAs tested in situ. The ranking of the four transition metals tested in terms of the greatest reduction in fuel cell performance was: Al 3+ ≫ Fe 2+ > Ni 2+, Cr 3+. For iron-contaminated membranes, no change in cell performance was detected until the membrane conductivity loss was greater than approximately 15%.

  20. Highly Selective Upgrading of Biomass-Derived Alcohol Mixtures for Jet/Diesel-Fuel Components.

    PubMed

    Liu, Qiang; Xu, Guoqiang; Wang, Xicheng; Liu, Xiaoran; Mu, Xindong

    2016-12-20

    In light of the increasing concern about the energy and environmental problems caused by the combustion of petroleum-based fuels (e.g., jet and diesel fuels), the development of new procedures for their sustainable production from renewable biomass-derived platform compounds has attracted tremendous attention recently. Long-chain ketones/alcohols are promising fuel components owing to the fuel properties that closely resemble those of traditional fuels. The focus of this report is the production of long-chain ketones/alcohols by direct upgrading of biomass-derived short-chain alcohol mixtures (e.g., isopropanol-butanol-ethanol mixtures) in pure water. An efficient Pd catalyst system was developed for these highly selective transformations. Long-chain ketones/alcohols (C 8 -C 19 ), which can be used as precursors for renewable jet/diesel fuel, were obtained in good-to-high selectivity (>90 %) by using the developed Pd catalyst. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

Top